
HAL Id: tel-04597625
https://theses.hal.science/tel-04597625v1

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Argumentation, Logic and Explainability
Théo Duchatelle

To cite this version:
Théo Duchatelle. Argumentation, Logic and Explainability. Logic in Computer Science [cs.LO].
Université Paul Sabatier - Toulouse III, 2023. English. �NNT : 2023TOU30330�. �tel-04597625�

https://theses.hal.science/tel-04597625v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Théo DUCHATELLE

Le 13 décembre 2023

Argumentation, Logique et Explicabilité

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Marie-christine LAGASQUIE

Jury
M. Nicolas MAUDET, Rapporteur
M. Stefan WOLTRAN, Rapporteur

Mme Sylvie DOUTRE, Examinatrice
M. Bruno ZANUTTINI, Examinateur
Mme Leila AMGOUD, Examinatrice

Mme Marie-christine LAGASQUIE, Directrice de thèse

Argumentation, Logique et Explicabilité
Explications pour l’Argumentation Abstraite :

du Visuel à la Logique

L’Argumentation Abstraite en tant que moyen de prise de décision est un domaine de l’informatique
recevant de plus en plus d’attention. Formellement, on considère un ensemble d’objets abstraits appelés
“arguments” et une relation de conflit entre eux. La prise de décision s’effectue en identifiant des groupes
d’arguments ayant de bonnes propriétés vis-à-vis de la relation de conflit. Cependant, les techniques em-
ployées ne produisent pas de résultats pouvant être justifiés par des explications intuitives pour des utilisateurs
humains. Les travaux menés dans cette thèse visent à produire des explications pour ces processus de décision
qui soient accessibles aux non experts, en particulier en tâchant de se reposer sur des critères visuels. De
plus, les travaux menés ambitionnent de généraliser les résultats obtenus dans des contextes d’argumentation
enrichis. En effet, il est possible d’étendre le cadre de base en ajoutant une relation supplémentaire posi-
tive (de support) entre les arguments, de considérer des relations d’ordre supérieur ou de considérer des
arguments agissant en coalitions. Chaque enrichissement change la façon de questionner et d’accepter les
arguments. Pour finir, une implémentation des concepts proposés sera fournie via l’encodage logique des
cadres d’argumentation, de leurs processus de décision et de leurs explications.

Argumentation, Logic and Explainability
Explanations for Abstract Argumentation: from Visual to Logic

Abstract Argumentation, as a decision tool, currently is a research topic undergoing intense study. For-
mally, we consider a set of abstract objects that we call “arguments” and a conflict relation between them.
The decision is made by identifying sets of arguments that have desirable properties regarding the conflict
relation. However, systems based on these formal models provide outputs that can hardly be supported by
explanations perceived as intuitive by human users. The work carried out aim at providing explanations for
these decision processes that are understandable even by non experts, in particular by trying to rely on visual
criteria. What’s more, we also aim at generalising the results we obtain to the context of enriched argu-
mentation frameworks. Indeed, it is possible to extend the basic framework by adding an additional positive
relation (a support relation) between the arguments, by considering higher order relations, or by consider-
ing arguments that work in coalitions. Each of these enrichments changes the way the acceptability and
non-acceptability of arguments is questioned. To complete the picture, an implementation of the proposed
concepts will be made through the logical encoding of the argumentation frameworks, their decision processes
and their explanations.

Acknowledgements

First and foremost, I would like to express my gratitude towards my supervisors, Marie-Christine Lagasquie-
Schiex and Sylvie Doutre. Not only have they provided me with invaluable insights and advice for my
research, but they also always made sure that it was ultimately me who decided the direction my works
would take. Having had discussions with other PhD. students made me realise how scarce this is, so I cannot
be thankful enough to them for ensuring the best conditions I could have hoped for during my three years of
work. I would also like to express my gratitude to Philippe Besnard, who supervised me during the beginning
of my PhD but had to retire before its end, for his wise guidance into the world of academic research.

I would then like to thank my reviewers, Nicolas Maudet and Stefan Woltran, for their work and invest-
ment in reviewing my dissertation. Their remarks and suggestions have unveiled some aspects of my work
that I did not suspect and promise exciting research directions for the future. Likewise, I want to thank my
examiners, Bruno Zanuttini and Leila Amgoud, for the interest they showed in my works, for their presence
at my defence, and for the enlightening discussions we had after my presentation.

Finally, I am especially grateful to my family, my mother, my two brothers and our three cats, for their
unconditional and continuous support and love throughout my PhD study. Without their understanding and
encouragement during this period, I would probably not have been able to achieve my work. My gratitude
and appreciation extends to all my close friends that I hold dear who, be it around a drink, a game, both,
or any other occasion found a way to make me keep going always onward.

Contents

1 Introduction 7

2 Preliminary Notions: Abstract Argumentation 12
2.1 Argumentation Frameworks (AF) . 12
2.2 Classical Problems . 16
2.3 Enrichments for Argumentation Frameworks . 17

2.3.1 Argumentation Frameworks with Coalitions . 18
2.3.2 Higher-Order Argumentation Frameworks . 19
2.3.3 Bipolar Argumentation Frameworks . 21

2.4 Decomposition of Abstract Argumentation semantics . 25

3 Visual Explanations for Abstract Argumentation 28
3.1 Related Works . 28
3.2 Motivation and Hypotheses . 32

3.2.1 Motivation . 32
3.2.2 Hypotheses . 34

3.3 Technical Tool: Graph Theory . 35
3.4 Visual Explanations for Argumentation Semantics . 38

3.4.1 Methodology . 39
3.4.2 Explanation for Coherence . 40
3.4.3 Explanation for Defence . 41
3.4.4 Explanation for Reinstatement . 43
3.4.5 Explanation for Complement Attack . 47
3.4.6 Results on Explanations for Semantics Extensions . 49
3.4.7 Computing Explanations for Semantics Extensions . 54

3.5 Visual Explanations for Extension Membership . 55
3.5.1 Non-contrastive Questions . 57
3.5.2 Contrastive Questions . 58

3.6 Summary . 63
3.6.1 Questions and Explanations . 63
3.6.2 Recap Example . 67

3.7 Comparison with Related Works . 72
3.8 Quality of Explanations . 73
3.9 Future Perspectives . 76

4 Logical Encoding of Argumentation Frameworks to Compute Extensions 80
4.1 Existing Approaches . 80
4.2 Motivation . 81
4.3 Technical Tool: First-Order Logic . 81
4.4 A General Account of Enriched Argumentation Frameworks 85

4

4.4.1 Higher-Order Bipolar Argumentation Frameworks with Coalitions 85
4.4.2 Structures and Semantics . 86
4.4.3 From a General Formulation to its Usual Formulation 88
4.4.4 Summary on Enriched Argumentation . 92

4.5 A Family of Logical Theories for Enriched Abstract Argumentation 92
4.5.1 A Generic Theory . 94
4.5.2 Simplification and Specialisations . 99
4.5.3 Theory for an Argumentation Framework . 100
4.5.4 Theory for an Argumentation Framework with Coalitions (AF-C) 101
4.5.5 Theory for a Higher-Order Argumentation Framework (HO-AF) 103
4.5.6 Theory for an Evidence-Based Argumentation Framework (EBAF) 104
4.5.7 Theory for a Higher-Order Evidence-based Argumentation Framework (HO-EBAF) . 107

4.6 Summary . 110
4.6.1 Logical Encoding . 110
4.6.2 Recap Example . 112

4.7 Related works . 120
4.8 Future Perspectives . 123

5 Extension of the Logical Encoding: Computation of Explanations for Extensions 126
5.1 Motivation . 126
5.2 Identifying Shared Structures . 127
5.3 A Family of Logical Theories for Explaining Abstract Argumentation 130

5.3.1 A Generic Theory . 130
5.3.2 Theory for the Coherence Principle . 135
5.3.3 Theory for the Defence Principle . 135
5.3.4 Theory for the Rein1 Principle . 137
5.3.5 Theory for the Rein2 Principle . 137
5.3.6 Theory for the Complement Attack Principle . 139

5.4 Results . 140
5.5 Recap example . 140
5.6 Future Perspectives . 146

6 Conclusion 149

A Proofs of Chapter 3 160
A.1 Conformity Checks and Visual Behavior . 160

A.1.1 Coherence . 160
A.1.2 Defence . 160
A.1.3 Reinstatement . 161
A.1.4 Complement Attack . 162

A.2 Properties on the Classes of Explanations . 162
A.2.1 Empty Explanation . 162
A.2.2 Maximal and Minimal Explanations . 163

A.3 Computation of Explanations for Semantics Extensions . 169
A.3.1 Characterization of Maximal Explanations . 169
A.3.2 Algorithms to Compute Minimal Explanations . 170

B Proofs of Chapter 4 174
B.1 Conventions . 174
B.2 Proofs for Section 4.5.1: A Generic Theory . 174
B.3 Proofs for Section 4.5.2: Simplification and specialisations . 175
B.4 Proofs for Section 4.5.3: Theory for AF . 176

5

B.5 Proofs for Section 4.5.4: Theory for AF-C . 180
B.6 Proofs for Section 4.5.5: Theory for HO-AF . 185
B.7 Proofs for Section 4.5.6: Theory for EBAF . 189

B.7.1 Additional Definitions . 189
B.7.2 Additional Propositions and Lemmas for Correspondence of Definitions 191
B.7.3 Additional Lemmas for the Logical Encoding . 197
B.7.4 Proof of the Main Proposition Concerning the Translation of EBAFs 200

B.8 Proofs for Section 4.5.7: Theory for HO-EBAF . 208

C Proofs of Chapter 5 214
C.1 Theory for Explanations in Argumentation Frameworks . 214

6

Chapter 1

Introduction

When it comes to taking decisions using Artificial Intelligence (AI) techniques, an obvious observation is
the ever increasing complexity of these techniques. The most telling example is probably the recent rise and
general deployment of artificial neural networks techniques across an extremely wide spectrum of applications.
Although the first perceptron, that is to say the first artificial model of a biological neuron, was theorized
as far back as in the 1950s ([Ros58]), such methods could not possibly be used until recently, due to a lack
of computational power. Now, however, this computational power is available, and with it neural networks
have achieved results that were previously thought to be unreachable. This of course resulted in neural
networks (and AI in general, but mostly neural networks) being largely spread and discussed among a way
larger audience than the restricted club of field specialists: non-expert people. So much so actually, that
more usually than not for non-experts, the term “AI” solely refers to neural networks. It is highly probable
that a random non-expert does not know, for instance, what the A∗ algorithm is or how it works, and even
if it is described, it will probably (wrongly) not be considered as “AI”.

Nonetheless, all this generalised interest and curiosity about neural networks have unveiled a troublesome
and somewhat worrying observation. Indeed, neural networks were very promising, extremely efficient, and
applicable on a vast variety of areas. Thus, people wanted to know the inner workings of neural networks
so that they could effectively be applied. So they inquired the experts to describe to them what was going
on when a neural network algorithm was running. And there came the troublesome observation: even the
experts did not know what was going on. Now, that is of course a bit of an exaggeration. Experts do know
the general principles that guide the execution and use of a neural network and there are situations in
which a description of the network’s behavior can be satisfying enough. But, more usually than not, once a
neural network has been trained and is being used, experts are unable to tell precisely what makes it take
a decision or another. This is an important change of paradigm because, before neural networks, obtaining
such a description and understanding of the inner workings of an algorithm was always possible. With neural
networks however, this is not always possible.

The importance of this flaw should not be underestimated. Among other consequences, this means in
particular that the safety of a neural networks cannot be assessed. In other terms, there are no ways to
be sure that a neural networks does what it is required to do, and more importantly, if it fails to do so,
there are no ways to know precisely where such a failure comes from. Consequently, it is usually considered
unacceptable to let a neural network assume a critical function, on which could depend human lives for
instance. Furthermore, such a lack of reliability has in fact tempered the willingness of (generally private)
actors to even use neural networks, be it for critical or safe functions. As a consequence, the general
deployment of neural networks is going at a slower pace than one could have initially imagined.

And yet, such a general deployment is still desirable to and desired by many who put a great deal of
efforts in that direction. And, as would be expected now, one of these efforts is to find ways to know what is
going on inside neural networks. To put it simply, a lot of researches that wish to make neural networks more
understandable are looking for ways to define explanations. As a matter of fact, this quest for explanations

7

for neural networks has given rise to its own dedicated area of research: Explainable Artificial Intelligence
(XAI). To measure the importance of XAI, we point out two indicators: (1) XAI has been the subject of a
research project by the DARPA back in 2016 ([DAR16]), and (2) AI has been the subject of a regulation
in the European Union (EU), first in EU’s General Data Protection Regulation (GDPR) in 2018 ([Uni16]),
and then in a proposition by the European Commission (the AI Act, [Com21]) in 2021 and still subject to
debates. One of the objectives of both EU’s regulations is for individuals to have a “right to explanations”
when dealing with AI systems.

The intense research being undertaken on the problem of finding good explanations for neural networks
have already yielded a lot of results, among which are explainability methods. The most popular ones are
probably LIME ([RSG16]) and SHAP ([LL17]). To present them in a few words, LIME locally approximates
the decision taken by the initial decision-making process by using a simpler and understandable decision-
making process, while SHAP instead computes a score for each input that represents the impact of that
input on a precise decision. Both these methods have a certain number of qualities. To give only one,
they are both model-agnostic, which they can be used not only for neural networks but in fact for any
machine learning algorithm, of which neural networks are only one representative. However, there are also
important issues with both methods. In the case of LIME, since it produces a local approximation of the
initial decision-making process, it is not faithful to the overall algorithm. Sure, it might give targeted
insights at how the algorithm behaves on specific inputs, but it still provides no insight as to how it works
in general. In the case of SHAP, it could be said to not give enough details. What good is knowing which
inputs played the more important roles if we do not know which role was played and how? As a matter
of fact, these problems are not exclusive only to LIME and SHAP, but to many explanation methods, as
pointed in [Rud19]. Based on these observations (among others), the author of [Rud19] advocates for not
using algorithms that would require explanations to become interpretable, and to use algorithms that are
directly interpretable instead (for critical functions at least). But is being interpretable enough? The author
of [Rud19] notes that interpretability is a domain-specific notion. Yet, it somehow generally refers to the
ability of peeking inside an algorithm and see what it is made of. Is knowing what constitutes an algorithm
enough to make it understandable? We consider that it is not the case. To motivate our answer, consider
expert systems. They are interpretable, it is possible to say what they are made of: facts, rules, and an
inference system. Moreover, most inference systems are in fact relying on deductions based on a formal logic
representation of knowledge. And still, despite being interpretable, researchers on the area sought to give
them explanatory capabilities, way before such capabilities were also sought for neural networks (see for
instance the survey of [MS88] dating from the 1980s). This is not in contradiction with the observation that
the quest for explanations for neural networks gave rise to XAI. With neural networks came an explosion
of interest on this research problematic. However, that problematic existed and was studied before this
explosion of attention, even in computer science. Also, on a side note, it is remarkable to see how the reasons
that pushed researchers to have explanations for expert systems are similar to the reasons that now push
researchers to have explanations for neural networks, even though the two systems are radically different.
It eventually comes down to: “If we want this system (i.e. expert systems / neural networks) to be more
widely used, we must increase the trust people have in it by making it more understandable”. To us, this is
related to the misconception that interpretability is enough to make a computer program understandable by
potentially anyone. To us, interpretability is instead enough to make a computer program understandable
by experts. This is why we still consider relevant the ability to produce explanations, even for interpretable
systems. Because, anyone who might come to use it, and who just happens to not have studied computer
science that much, will still lack the expert knowledge required to understand what is really going on, thus
resulting in distrust in the system. For that kind of people, explanations are relevant and useful, no matter
what kind of system is being used. We also believe that this is why there was such a burst of interest when
this problematic emerged for neural networks: in this case, even the experts cannot understand what is going
on.

Here is thus the purpose we believe explanations should serve: to breach the gap created by expert
knowledge and to make accessible what would otherwise be exclusively reserved to experts. We do believe
that neural networks (and other non interpretable machine learning techniques) are the gateway to all sorts

8

of new exciting possibilities in the domain of AI. However, the exploration of these possibilities and the
deployment of applications emerging from them direly needs for potentially anyone to know what is being
done exactly (even if explorations and applications are certainly being made without this requirement being
met). Thus, in our opinion, research on the matter should follow two tracks, parallel at first, but that will
eventually meet: firstly, to make non interpretable machine learning interpretable (so understandable for
experts) and secondly to make interpretable systems explainable (so understandable for non experts).

Now, after our rather expansive contextualization and exposition of beliefs, let us focus on the present
work. It should be seen as a part of the second track of research we outlined previously. As such, we do not
work on neural networks or any other non interpretable machine learning formalism. Instead, the subject
of our research is the definition of explanations for systems that are already interpretable. The hope we
have, and that we left implicit at the end of the previous paragraph, is that by working towards making
interpretable systems explainable one by one, a general theory of explanation for interpretable formalisms
could emerge. Such a theory would be of great use, say when non interpretable machine learning techniques
would become interpretable for instance. So, we are actually interested here in producing explanations for a
specific interpretable formalism: Abstract Argumentation.

The formalism known as Abstract Argumentation is being increasingly studied to provide explanations
in all sorts of domains. As a testimony of this trend, the survey [ČRA+21] cites works whose objective is to
build explanations, using Abstract Argumentation, for systems in fields such as Classification, Recommender
systems or Planning and Scheduling. As the authors of the survey note, in these cases, Abstract Argumen-
tation is chosen to provide explanations because it intrinsically possesses some properties that are perceived
as desirable when explaining. Indeed, Argumentation Frameworks (the main objects handled in Abstract
Argumentation) natively have dialectical aspects: it is very easy, by their nature, to project a discussion
on them. This makes Abstract Argumentation coherent with the observation from social sciences that ex-
planations are social, that they are transferred in a conversation by someone to someone else. Additionally,
decisions taken using Abstract Argumentation are made so that they are “robust” in some sense. The criteria
used to make these decisions offer a high capability of convincing that the decision is coherent, justifiable,
dominant, . . . depending on the criteria used.

Abstract Argumentation is what we call a non-monotonic reasoning formalism. In mathematics, monotony
is a concept that refers to a certain idea of stability. When we say that something is monotonic, it usually
means that it stays the way it is, at least regarding a particular property. As such, non-monotony would
in turn refer to a certain idea of instability. Now, a reasoning formalism is a mathematical tool whose aim
is to model and mimic human reason. Thus, reasoning formalisms are usually designed to allow, one way
or another, to infer new knowledge from a given base of knowledge (which is incidentally usually called a
“Knowledge Base”). As such, in a non-monotonic reasoning formalism, like Abstract Argumentation, when
we make further observations after having inferred some conclusions, these conclusions may not be valid
anymore: they are, in a sense, unstable.

The usual take in a non-monotonic reasoning formalism is to consider that our Knowledge Base contains
conflicting observations from the start (we say that it is inconsistent). There are then several ways to deal
with this situation and try to draw conclusions despite our starting inconsistency. The earliest works of the
domain focused on trying to find the maximum amount of non-conflicting information in the Knowledge
Base. We could then proceed with a monotonic reasoning formalism from there on. Other works later
focused on trying to repair the inconsistent Knowledge Base, and try to make it consistent again. To do so,
these works actually aimed at finding the least amount of information that was conflicting, so that it could
get rid off in one way or another to get closer to a consistent Knowledge Base.

The study of argumentation from a computer science perspective originates from the latter family of
works in non-monotonic reasoning formalisms. However, despite focusing on finding the minimal conflicts
in a Knowledge Base, the primary objective of argumentation was not necessarily to repair that Knowledge
Base. In fact, the study of argumentation in computer science rapidly followed two parallel, but not un-
correlated, tracks. The first one, Structured Argumentation, is fully integrated in the family of works that
aim at finding minimal amounts of conflicting information. More precisely, from the inconsistent Knowledge
Base, Structured Argumentation has ways to produce what is called “arguments”. Then, and perhaps more

9

importantly, Structured Argumentation identifies several ways in which the arguments that can be built
from a Knowledge Base may be in conflict with one another. These conflicts are called “attacks” and indeed
represent where the inconsistencies appear in the Knowledge Base. Yet, Structured Argumentation does not
necessarily provide ways to deal with the arguments and attacks it builds when it is done. Which leads us
to the second parallel track of research on argumentation in computer science: Abstract Argumentation.
Indeed, Abstract Argumentation precisely deals with what to do with arguments and attacks once we have
them. And, perhaps surprisingly, this does not classically involve repairing the Knowledge Base from which
they might originate. The reason for this is that, since the arguments and attacks are considered to be given,
where they come from is not considered important. So, instead, Abstract Argumentation is concerned with
which conclusions should be drawn from those that are conflicting. To say it differently, Abstract Argu-
mentation provides ways of selecting arguments based on the conflicts that exist between them. Without
delving too much into technicalities, the idea is to select a group of arguments that, together, have some
desirable properties regarding the conflicts that are given, and thus can be reasonably chosen as an outcome
of these conflicts. This more or less comes down to the general way of deeming that something is reasonable
in non-monotonic reasoning: we consider that we can believe in something until provided evidences that it
is wrong. In Abstract Argumentation, if we consider conflicts as evidences that arguments are wrong, we
thus are to select groups of arguments that are together consistent, and somewhat “resist” these conflicts.

Abstract Argumentation is perfectly interpretable. But, as we more generally discussed previously, this
does not necessarily make it understandable for anyone. As we previously discussed, Abstract Argumentation
mostly provides selection methods, and indeed, it is not because it is interpretable that a particular selection
becomes obvious to anyone. With this comes a problem: if Abstract Argumentation is used to produce
explanations for other AI methods, and if Abstract Argumentation is not necessarily understandable for
anyone, how can anyone trust its explanations, without further explanations? This observation unveils a
major risk for the field of XAI: if we seek to explain AI methods (which can certainly be assumed to not be
understandable for anyone) using more AI methods, then we might just end up in a non-ending loop of need
for explanations. As such, it is fundamentally critical that this potential loop is broken as soon as possible.
Abstract Argumentation has shown its potential to produce explanations for a wide range of AI methods.
Yet, it is still an AI method itself, so explanations for the argumentative process are relevant and needed.
Therefore, it is critical that the explanations defined for Abstract Argumentation do not rely on more AI
methods.

This is precisely the subject of the present work: we seek to propose explanations for Abstract Argumen-
tation under the critical constraint that these explanations should be understandable and usable by anyone,
even non experts. Since the core utility of Abstract Argumentation is selecting arguments, this is exactly
what we will provide explanations for: the validity or non validity of a given selection. We will see that the
explanations originally designed for that matter can serve to explain other matters. Additionally, to raise
the curtain a little, we propose that our explanations can be understandable and usable by anyone because
they are founded on visual modalities.

In addition, it should be noted that since the beginning of its study in computer science, argumentation
has had close ties with another domain: formal logic. Indeed, in Structured Argumentation, the arguments
that are produced are simply premises taken from a Knowledge Base, a conclusion that is inferred from
them, and the inference of that conclusion from the premises. Well, the inference system used to derive
the conclusion from the premises usually takes the form of a formal logic system. Furthermore, the selec-
tion processes of Abstract Argumentation were designed from the start as corresponding to other concepts
developed in fields related to formal logic, such as Logic Programming.

Fundamentally, formal logic is the study of reasoning. To be more precise, formal logic is aimed at
capturing a particular kind of reasoning: the cognitive process of deduction. When using formal logic,
we are interested in determining whether a statement can be deemed to be true via a deductive process.
Importantly, this is done solely based on the form of this statement in an abstract dedicated language, and
not based on its content. Because the language used is abstract (and usually quite restricted), the cognitive
notion of deduction can be captured (at least in essence) using what are called inference rules. It is these
inference rules that will be used when determining whether a statement is true or not. To avoid challenging

10

their correctness, and so the correctness of the entire method, they are usually precise and rather simple.
The idea is then to consider a statement to be true if it can be derived from other statements considered to
be already true (called axioms) using only the inference rules.

Formal logic is seen and used as a powerful formalization tool. Thus, it should come to no surprise that, in
the recent explosion of activity on the subjects of explanations, some researchers worked on representing the
explanation process in logic. To be fair, these efforts were already being done before the recent resurgence of
interest in explanations, when we tried to explain expert systems for instance. Nonetheless, such a resurgence
did boost efforts of researchers on the matter. The point of representing the explanation process in formal
logic would be to identify its ground axioms, so its fundamental principles. With this, researchers would
have solid rules, laws or at least guidelines under which to develop explanations for various formalisms. To
the best of our knowledge however, such principles are not yet available.

Still, despite not having the fundamental mechanisms of explanation, there have been definitions of
concepts related to the process of explanation. As such, we consider that it could be beneficial to investigate
whether our explanations for Abstract Argumentation correspond to these notions or not. Doing so would
require to have a logical account of the explanations we define, but also of what they explain, that is to
say the selection of arguments. Thus, in the prospect of conducting a study of our explanations from a
logical point of view, we will discuss in the present work logical encoding of both the argument selection
process and their explanations. Both of these logical encodings have been designed and developed with the
idea of facilitating their extension to various additional aspects of Abstract Argumentation, in particular its
generalisations.

To summarize a bit our previous discussions, the present work is about making an interpretable system,
namely Abstract Argumentation, explainable. That is to say, it is about producing explanations for Abstract
Argumentation so that anyone, even non experts, may understand and use them. To do so, we design them
so that they rely on a visual modality. Additionally, we wish to study the status of our explanations as such
using logical tools. To this aim, we provide logical encodings of both the argumentative process and the
explanations we defined for it. These two encodings are designed so that they are easy to expand.

The present work is organised as follows. In Chapter 2, we present the basic notions that we need
to conduct our research. This includes a presentation of Abstract Argumentation, its basic concepts and
related problems, several of its extensions and some particular aspects. Then, in Chapter 3, we present
our efforts in defining explanations for Abstract Argumentation that match the constraints we discussed
previously. After defining our explanations, we present results as to how to use them and additional results
that give insights on their general behavior. We then see how these explanations can be used as a base to
build other explanations. In Chapter 4, we present a logical encoding for Abstract Argumentation aimed at
capturing its selection mechanisms. This logical encoding is defined in a generic way, in that it can be used
for basic Abstract Argumentation or for its extensions by playing on some parameters. In Chapter 5, we then
present the logical encoding of the explanations presented in Chapter 3. In the spirit of Chapter 4, we made
this logical encoding generic by being able to capture different kinds of explanations by playing on some
parameters. We also directed our efforts towards making a logical encoding that as similar as possible to the
one presented in Chapter 4, so that the exploration of their links would be easier. Finally, in Chapter 6, we
summarize our contributions and findings.

11

Chapter 2

Preliminary Notions: Abstract
Argumentation

2.1 Argumentation Frameworks (AF)
Argumentation Frameworks were first defined by Dung in [Dun95]. They aim at representing abstract entities
called “arguments” and the conflicts that emerge between them. These notions are grouped into a directed
graph.

Definition 1. An Argumentation Framework (AF) is an ordered pair (A ,R) such that R ⊆ A ×A .

Vocabulary. For an Argumentation Framework (A ,R), the elements of A are called arguments. R is an
attack relation: for a, b ∈ A , aRb means that a attacks b. This can be extended to sets of arguments: for
S ⊆ A and b ∈ A , we say that S attacks b if and only if aRb for some a ∈ S.
Vocabulary. We collectively refer to arguments and attacks as elements.
Note. In the present work, we are only interested in finite Argumentation Frameworks, that is to say,
Argumentation Frameworks where A is finite.

Example. Figures 2.1, 2.2 and 2.3 depict Argumentation Frameworks that we will use throughout this work.
In Figure 2.1, a, b, c, d, e are the arguments. We can say that b attacks a and c. We can also say that {b, d}
attacks c, but not {a, d}.

We can think of an Argumentation Framework as modeling some debate. This debate can be between
several protagonists, or an internal one. Once we have an Argumentation Framework at hand, what we want
to achieve is to find the arguments that can collectively “win the debate”. Of course, this notion of “winning”
may very well vary from one person to another. Nevertheless, in the end, the idea is obtain one (or more)
set(s) of arguments with some desirable properties. In his paper, Dung proposed several ways to select such
sets of arguments. These sets are called extensions, and the ways they are selected semantics.

The semantics that Dung defined are inherently tied to the notion of defence. The idea is to have some-
thing to say against everything that hinders our point of view. To quote directly from Dung’s introduction:

The way humans argue is based on a very simple principle which is summarized succinctly by an
old saying: “The one who has the last word laughs best”.

— Phan Minh Dung, [Dun95]

This way, if the idea is respected, no matter what could be said against the point of view we hold,
we would always have something to say back, and thus have “the last word”. If we consider that “to have
something to say against” means “to attack”, we naturally see that to defend an argument, we must attack
its attacker.

12

a b c

d

e

Figure 2.1: A first example of Argumentation Framework
Legend: the nodes are the arguments and the arrows are the attacks

a

b

c

d

e

f g

h i j

Figure 2.2: A second example of Argumentation Framework

a
b

c

d
e

f

g

h

i

j

Figure 2.3: A third example of Argumentation Framework

13

Vocabulary. For an Argumentation Framework (A ,R) and a, c ∈ A , we say that a defends c if and only if
aRb for some b ∈ A such that bRc. This can be extended to sets of arguments: for S ⊆ A and c ∈ A , we
say that S defends c if and only if aRb for some a ∈ S and some b ∈ A such that bRc.1

Example. Back to Figure 2.1, since b attacks c and a attacks b, we can say that a defends c. We can also
say that {a, b} defends d.

Yet, recall that the initial idea is to have something to say against everything that hinders our point of
view. As such, it may very well happen that some argument, or set of arguments, defends another argument,
in the sense that we just proposed, without it to be enough to correspond to the idea.

Example. In Figure 2.1, although a defends c because it attacks b, it does not attack its second attacker,
e. As such, if we consider the point of view made of the two arguments {a, c}, we might consider it “weak”
since there exists a counterargument (e) that none of the arguments composing the point of view can defeat.

This observation leads to the stronger, and fundamentally central, notion of acceptability.

Definition 2. Let (A ,R) be an AF. An argument a ∈ A is acceptable with respect to S ⊆ A if and only
if for all b ∈ A , if bRa then cRb for some c ∈ S.

As such, acceptability is akin to an effective defence, a defence that works.

Example. In Figure 2.1, c is not acceptable with respect to {a}. However, d is acceptable with respect to
{b}.

From the notion of acceptability, we define a function that assigns to a set of arguments the set of
arguments that are acceptable with respect to it. We call this function the characteristic function.

Definition 3. Let A = (A ,R) be an AF. The characteristic function of A is FA : 2A → 2A such that
FA(S) = {a ∈ A | a is acceptable with respect to S} for all S ⊆ A .

With these tools, we can now delve into the ways of selecting arguments in an Argumentation Framework.
The semantics originally defined in [Dun95] are as follows.

Definition 4. Let (A ,R) be an AF. A subset S of A is said to be:

• conflict-free iff there are no a and b in S such that a attacks b,

• admissible iff S is conflict-free and for all a ∈ S, a is acceptable with respect to S,

• complete iff S is admissible and for all a ∈ A , if a is acceptable with respect to S then a ∈ S,

• preferred iff S is maximally (in the sense of set inclusion) admissible,2

• grounded iff S is the least fixpoint for FA,

• stable iff S is conflict-free and S attacks all a ∈ A \ S.

We can think of conflict-freeness as some notion of coherence. An admissible extension is thus coherent,
and defends all its arguments (it is self-sufficient). To use the words of Dung, completeness captures a kind
of confident rationality, in which one believes in every thing they can defend. The preferred semantics would
thus be some credulous rationality, in which want to be able to defend our point of view but also accept
as much as possible. At the opposite, the grounded semantics would represent some skeptical rationality,
in which we believe only in what cannot be denied and what follows from it. Finally, the stable semantics
represents a dominant point of view, in which we want to have something to say against anything.

Example. Tables 2.1, 2.2 and 2.3 give the results of the semantics (omitting conflict-freeness) in the Argu-
mentation Frameworks of Figures 2.1, 2.2 and 2.3 respectively.

1In the literature the term “defence” is sometimes associated with the stronger notion of “acceptability” from Definition 2.
Here, we dissociate the two so that being defended and being acceptable have two different meanings.

2We write ⊆-maximal (or ⊆-minimal).

14

Admissible Complete Preferred Grounded Stable
∅ ✓ ✓ ✓
{a} ✓ ✓ ✓
{b} ✓
{b, d} ✓ ✓ ✓ ✓

Table 2.1: Acceptable sets of the Argumentation Framework of Figure 2.1 under the different semantics

Admissible Complete Preferred Grounded Stable
∅ ✓
{b} ✓
{d} ✓
{f} ✓ ✓ ✓
{i} ✓
{j} ✓
{a, c} ✓
{b, d} ✓
{b, f} ✓
{b, i} ✓
{b, j} ✓
{d, f} ✓
{d, i} ✓
{d, j} ✓
{f, i} ✓ ✓
{f, j} ✓
{h, j} ✓
{a, c, f} ✓ ✓
{a, c, i} ✓
{a, c, j} ✓
{b, d, f} ✓ ✓
{b, d, i} ✓
{b, d, j} ✓
{b, f, i} ✓
{b, f, j} ✓
{b, h, j} ✓
{d, f, i} ✓
{d, f, j} ✓
{d, h, j} ✓
{f, h, j} ✓ ✓
{a, c, f, i} ✓ ✓ ✓ ✓
{a, c, f, j} ✓
{a, c, h, j} ✓
{b, d, f, i} ✓ ✓ ✓ ✓
{b, d, f, j} ✓
{b, d, h, j} ✓
{b, f, h, j} ✓
{d, f, h, j} ✓
{a, c, f, h, j} ✓ ✓ ✓ ✓
{b, d, f, h, j} ✓ ✓ ✓ ✓

Table 2.2: Acceptable sets of the Argumentation Framework of Figure 2.2 under the different semantics

15

Admissible Complete Preferred Grounded Stable
∅ ✓ ✓ ✓
{a, i, f} ✓ ✓ ✓ ✓

Table 2.3: Acceptable sets of the Argumentation Framework of Figure 2.3 under the different semantics

Some properties have been proven in [Dun95] establishing a link between the different semantics. For
instance:

Proposition 1. Given an AF (A ,R),

• There exists at least one preferred extension.

• Every preferred extension is complete, but not vice-versa.

• Every stable extension is preferred, but not vice-versa.

• The grounded extension is the ⊆-minimal complete extension.

2.2 Classical Problems
In this section, we mention some classical problems that are tackled in Abstract Argumentation. As we men-
tioned in the previous section, the main mechanism in Abstract Argumentation is the concept of semantics,
that is to say, the selection of groups of arguments (extensions). As such, most classical problems revolve
around the notion of extension.

Note. All the problems mentioned here are decision problems.

Note. Notations and results in this section are taken from [DD18], in which these notions are discussed more
deeply. In particular, we will assume the reader familiar with the Computational Complexity Theory.

The first problem that we mention is a very natural one. It consists in verifying whether a given set of
arguments is an extension of a given semantics considering a given Argumentation Framework. We call it
the Verification Problem and we denote it with Verσ for a semantics σ.

Verσ Input : an Argumentation Framework A = (A ,R), a semantics σ, a set of arguments S ⊆ A
Output : YES if S is an extension of σ in A, NO otherwise

Example. Consider the Argumentation Framework of Figure 2.1, the complete semantics Co and the sets of
arguments {a} and {b}. According to Table 2.1, the output of VerCo on {a} is YES, while it is NO on {b}.

The next problems are tied with the computation of extensions. In some situations, an argumentation
may not provide any extension for a given semantics. Verifying whether this occurs can be done easily
by trying to compute one extension of the considered semantics (in the case of stable semantics), or one
extension different from the empty set in the case of the other semantics. We will call the first problem
the Extension Existence Problem and denote it Existsσ, while we will call the second problem Non-Empty
Extension Existence Problem and denote it Exists¬∅

σ .

Existsσ Input : an Argumentation Framework A = (A ,R), a semantics σ
Output : YES if there exists a set S ⊆ A such that S is an extension of σ, NO otherwise

Exists¬∅
σ Input : an Argumentation Framework A = (A ,R), a semantics σ

Output : YES if there exists a set S ⊆ A such that S ̸= ∅ and S is an extension of σ, NO
otherwise

16

Example. Consider the Argumentation Framework of Figure 2.1, the stable semantics Sta and the grounded
semantics Gr. According to Table 2.1, the output of ExistsSta and ExistsGr is YES in both cases, while the
output of Exists¬∅

Sta is YES and the output of Exists¬∅
Gr is NO.

Finally, we consider two problems that are related to one another. Indeed, as we can see on Tables 2.1,
2.2 and 2.3, there can be several, and in fact a lot, of different extensions for a fixed semantics. In a situation
where we want to make a decision using Abstract Argumentation and we have identified the semantics that
would correspond to our decision, this means that we would still have a choice to make between the different
possible extensions yielded by that semantics. This is unfortunate as we could have naturally wished to rely
on the argumentative process to make that choice for us, that is to say, to identify only one extension.3

In that regard, it seems natural to turn to some ways of selecting extensions among the several possible
ones for a given semantics. One way to do so is to use what we call the credulous acceptance or skeptical
acceptance of arguments. On the one hand, an argument is credulously accepted with respect to some
semantics if it belongs to at least one extension of that semantics. On the other hand, an argument is
skeptically accepted with respect to some semantics if it belongs to every extension of that semantics.

Credulous and skeptical acceptance can be thought of as making conclusions on arguments at a sort of
“global” scale of the Argumentation Framework. They can be used to filter out a bit the extensions we obtain
via the Enumeration Problem. For instance, if a particular argument is credulously accepted, we might want
to keep only the extensions that contain it. On the contrary, if an argument is skeptically accepted, we
cannot try to keep extensions that do not contain it. We can define associated problems that consist in
verifying whether a given argument is credulously accepted or not, or skeptically accepted of not.

Credσ Input : an Argumentation Framework A = (A ,R), a semantics σ, an argument a ∈ A
Output : YES if a belongs to at least one extension of σ in A, NO otherwise

Skeptσ Input : an Argumentation Framework A = (A ,R), a semantics σ, an argument a ∈ A
Output : YES if a belongs to every extension of σ in A, NO otherwise

Example. Consider the Argumentation Framework of Figure 2.1, the preferred semantics Pr and the argu-
ments a and b. According to Table 2.1, the output of CredPr is YES, while the output of SkeptPr is NO,
both for a and b.

We finish by summarizing in Table 2.4 the complexity of solving each problem mentioned in this section,
for each semantics mentioned in Definition 4. This is a reduced version of the similar Table given in [DD18].

2.3 Enrichments for Argumentation Frameworks
Here, we will detail several generalisations of Argumentation Frameworks that we call enrichments. Some
of them have already been given names, however we wish to adopt a more functional naming process in

3Note that the grounded semantics has been proved to yield only one extension, but this extension is empty if all arguments
are attacked by another argument.

σ Verσ Existsσ Exists¬∅
σ Credσ Skeptσ

CF in L Trivial in L in L Trivial
Adm in L Trivial NP-c NP-c Trivial
Co in L Trivial NP-c NP-c P-c
Gr P-c Trivial in L P-c P-c
Pr coNP-c Trivial NP-c NP-c ΠP

2 -c
Sta in L NP-c NP-c NP-c coNP-c

Table 2.4: Complexity of classical problems in Abstract Argumentation in function of the semantics
(C-c denotes completeness for complexity class C)

17

this work. Accordingly we will precise how a given generalisation was named in the literature, and how we
will call it in the present work. We will present them in isolation at first, and then define a Generalised
Argumentation Framework that captures them all together.

For readability reasons, arcs will be identified by names, as it is classically done for vertices. We will use
Latin letters to identify arguments and Greek letters to identify arcs.

2.3.1 Argumentation Frameworks with Coalitions
The formalism we call Argumentation Framework with Coalitions (AF-C) is called SETAF (for “Framework
with sets of attacking arguments”) in the literature, and has been studied for instance in [NP06], [FB19].

In an Argumentation Framework with Coalitions, we consider that the arguments may not only attack
each other individually, but may also do so in groups. That is to say, attacks may originate from sets of
arguments, and may also target sets of arguments. As such, Argumentation Frameworks with Coalitions
are just the generalisation of Argumentation Frameworks to hypergraphs. In the present work however, we
will restrict ourselves to the particular case of attacks targeting only singleton sets. In other words, attacks
continue to target individual arguments only.

As a general discussion before going to definitions, this generalisation raises of course the question of
how to interpret the attack relation. Typically, when is an attack effective? What effect does it have? As
it is often the case when sets are involved, the new interpretation relies on the dual notions of universality
and existentiality : either all or (at least) one element of the set is affected. Thus, an attack that originates
from a set of arguments would be effective when either all the arguments of the set, or at least one, satisfy
a particular condition. Likewise, an attack targeting a set of arguments could enforce a particular condition
on either all arguments of the set, or at least one. In reality, the matter is actually more complicated. The
meaning of a group of arguments being attacked together is a controversial subject, without any emerging
consensus. The reader can see [DDK+23] for a short overview of possibilities.

The choices made between the different possibilities eventually lead to different interpretations. In the
present work, we will consider that an attack, in such a setting, is effective when all the arguments of the
set it originates from satisfy a particular condition.

Definition 5. An AF-C is a tuple (A ,R, s, t) where A is a set of arguments and R is a set of attacks such
that:

• A ∩R = ∅,

• s : R → 2A \ {∅},

• t : R → A .

Vocabulary. For an Argumentation Framework with Coalitions (A ,R, s, t) and an attack α ∈ R, s(α) is
called the source of α and t(α) is called the target of α.

Vocabulary. For an Argumentation Framework with Coalitions (A ,R, s, t), S ⊆ A and b ∈ A , we say that
S attacks b if and only if there is some α ∈ R such that α targets b and has a subset of S as its source.

To retrieve the notion of defence, recall our choice of interpretation: all the arguments from the source of
an attack need to be viable for the attack to be effective. Thus, if one of them is challenged, the entire attack
is crippled. As such, an argument needs only to see one argument from the source of one of the attacks that
target it attacked back.

Vocabulary. For an Argumentation Framework with Coalitions (A ,R, s, t), S ⊆ A and c ∈ A , we say that
S defends c if and only if for some α ∈ R such that t(α) = c, ∃β ∈ R with t(β) ∈ s(α) and s(β) ⊆ S.

Example. Figure 2.4 depicts an Argumentation Framework with Coalitions, derived from the Argumentation
Framework of Figure 2.1. In this context, we can say that {a, f} attacks b. {a, f} is the source of α, while b
is the target of α. As {b} attacks c, we can say that {a, f} defends c.

18

a

b c

d

ef

γα

β

δ

ε

θ

Figure 2.4: An example of an Argumentation Framework with Coalitions

Admissible Complete Preferred Grounded Stable
∅ ✓
{b} ✓
{f} ✓ ✓ ✓
{a, f} ✓ ✓ ✓
{b, d} ✓
{b, f} ✓
{b, d, f} ✓ ✓ ✓ ✓

Table 2.5: Acceptable sets of the Argumentation Framework with Coalitions of Figure 2.4 under the different
semantics

We now provide definitions for the classical semantics for Argumentation Frameworks with Coalitions.
As it turns out, we need not repeat definitions beyond acceptability and conflict-freeness, as they straight-
forwardly carry over from Argumentation Frameworks.

Definition 6. Let (A ,R, s, t) be an AF-C. An argument a ∈ A is acceptable with respect to S ⊆ A if and
only if ∀α ∈ R such that t(α) = a, ∃β ∈ R with t(β) ∈ s(α) and s(β) ⊆ S.

Definition 7. Let (A ,R, s, t) be an AF-C. A subset S of A is said to be conflict-free if and only if ∄b ∈ S
and S′ ⊆ S such that ∃α ∈ R where s(α) = S′ and t(α) = b.

Example. Table 2.5 gives the results of the semantics (omitting conflict-freeness) in the Argumentation
Framework with Coalitions of Figure 2.4.

2.3.2 Higher-Order Argumentation Frameworks
The formalism we call Higher-Order Argumentation Framework (HO-AF) is a generalisation that also leads
to several interpretations. However, at the opposite of Argumentation Frameworks with Coalitions, in the
literature, one name was given for each interpretation. This generalisation was introduced in [BGW05],
and then developed in several papers, among which one can cite the AFRA (Argumentation Framework
with Recursive Attacks) interpretation, described in [BCGG11], and the RAF (Recursive Argumentation
Framework) interpretation described in [CFFL21]. Note that despite the different names and the different
interpretations, there is no difference in the structure of the graph.

Roughly speaking, Higher-Order Argumentation Frameworks are named so because they introduce higher-
order attacks, that is to say attacks that may target other attacks as well as arguments (hence the idea of
recursive attacks in the names of the literature). In the present work, we are only interested in the RAF
interpretation of the generalisation, leaving the AFRA interpretation to future considerations.

Definition 8. An HO-AF is a tuple (A ,R, s, t) where A is a set of arguments and R is a set of attacks
such that:

19

• A ∩R = ∅,

• s : R → A ,

• t : R → A ∪R.

Vocabulary. Just as with AF-C, s returns the source of an attack and t returns its target.

To retrieve the notion of attack, recall that it is now possible for an attack to target another attack
instead of an argument. So, the notion of being attacked is to be extended to all elements of A ∪R.

Vocabulary. For a Higher-Order Argumentation Framework (A ,R, s, t), a ∈ A and x ∈ A ∪R, we say that
a attacks x if and only if there is some α ∈ R such that α targets x and has a as its source. This can be
extended to sets of arguments: for S ⊆ A and x ∈ A ∪R, we say that S attacks x if and only if a attacks
x for some a ∈ S.

The adaptation of the notion of defence is where lies the real fundamental difference between the AFRA
interpretation and the RAF interpretation. In an Argumentation Framework, to defend an argument is
to attack one of its attackers. Thus, attacking the source of an attack suffices to take care of the attack.
Now, in our setting, attacks can be directly targeted as well, which should provide another way of dealing
with them. And indeed, both in the AFRA and the RAF interpretations, directly attacking an attack or
attacking its source are the two ways of neutralizing that attack. However, this also raises the new questions
of how and when to defend attacks. We might consider that we need to defend an attack when either it or
its source is attacked. This is indeed the choice that is made in the AFRA interpretation. However, in the
RAF interpretation, we only need to defend an attack when it is directly attacked, and not necessarily when
its source is attacked.

Vocabulary. For a Higher-Order Argumentation Framework (A ,R, s, t), a ∈ A and x ∈ A ∪R, we say that
a defends x if and only if a attacks α or s(α) for some α ∈ R such that t(α) = x. This can be extended to
sets of arguments: for S ⊆ A and x ∈ A ∪R, we say that S defends x if and only if a attacks α or s(α) for
some a ∈ S and for some α ∈ R such that t(α) = x.

Example. Figure 2.5 depicts a Higher-Order Argumentation Framework, derived from the Argumentation
Framework of Figure 2.1. In this context, we can say that a attacks b, but also that g attacks γ. a is the
source of α, while b is the target of α. As {b} attacks c, we can say that a defends c, but as γ is the attack
targeting c, we may also say that g defends c. Additionally, we can say that {a, g} attacks b and defends c.

We now provide the basic notions needed to express the classical semantics for a Higher-Order Ar-
gumentation Framework. Since all elements of A ∪ R can be attacked, the notions of acceptability and
conflict-freeness are relative to both a subset of A and a subset of R. In the RAF interpretation, we tend to
consider these subsets separately, while in the AFRA interpretation, we tend to consider the union of these
sets. Since the present work assumes arguments to be disjoint from attacks, this does not change much for
us.

The difference between the two interpretations in the notion of defence leads to different results for some
semantics, although not all of them.

Definition 9. Let (A ,R, s, t) be an HO-AF. An element x ∈ A ∪R is acceptable with respect to S ⊆ A
and Γ ⊆ R if and only if ∀α ∈ R, if t(α) = x, then there exists β ∈ Γ such that s(β) ∈ S and either t(β) = α
or t(β) = s(α).

Definition 10. Let (A ,R, s, t) be an HO-AF. For S ⊆ A and Γ ⊆ R, (S,Γ) is said to be conflict-free if
and only if ∀α ∈ Γ such that s(α) ∈ S, t(α) /∈ S ∪ Γ.

As for Argumentation Frameworks with Coalitions, the definitions beyond acceptability and conflict-
freeness straightforwardly carry from Argumentation Frameworks, provided we define them for pairs (S,Γ).

Example. Table 2.6 gives the results of the semantics (omitting conflict-freeness and admissibility) in the
Higher-Order Argumentation Framework Figure 2.5.

20

a b c

d

e

g

γ

α

β

δ

ε

θ

λ

Figure 2.5: An example of a Higher-Order Argumentation Framework

Complete Preferred Grounded Stable
({g}, {α, β, δ, ϵ, θ, λ}) ✓ ✓
({a, g}, {α, β, δ, ϵ, θ, λ}) ✓ ✓
({b, g}, {α, β, δ, ϵ, θ, λ}) ✓ ✓

Table 2.6: Acceptable sets of the Higher-Order Argumentation Framework of Figure 2.5 under the different
semantics

Note. Please note, regarding admissibility, that there are in fact a very large number of admissible extensions.
Indeed, ({a}, {α}) is admissible for instance, but we can also add any number of additional attacks (except
γ) to this extension and obtain a new admissible extension. Regarding definitions 9 and 10, this is due to
the fact that all attacks (except γ) are unattacked themselves, and that a is only the source of α. This leads
to an exponentially large number of admissible extensions with respect to the number of both attacks and
arguments, and not just arguments.

2.3.3 Bipolar Argumentation Frameworks
The formalism we call Bipolar Argumentation Framework (BAF) is a generalisation in which we consider
an additional binary relation between the arguments: the relation of support. The support relation is
generally considered to be a “positive” relation between arguments, at the opposite of the attack relation.
This enrichment was introduced in [KP01, CL05]. Just like the previous enrichments, there are several
interpretations of the support relation. [CL13] gives a comparative study of these different interpretations.
As with Higher-Order Argumentation Frameworks, although the different possible interpretations rely on
different intuitions, the structure of the graph is the same for all of them.

Definition 11. A BAF is a tuple (A , R, S , s, t) where A is a set of arguments, R is a set of attacks and
S is a set of supports such that:

• A ∩R = A ∩S = R ∩S = ∅,

• s : R ∪S → A ,

• t : R ∪S → A .

Vocabulary. We collectively refer to attacks and supports as interactions, and to arguments, attacks and
supports as elements.

Vocabulary. Like with the previous enrichments, s returns the source of an interaction and t returns its
target.

In Argumentation Frameworks, the attack relation is interpreted in a somewhat “immediate scope”:
attacking an argument means to have an attack arc directed to it. Additionally, attacking an attacker is
considered defence. Thus, along a path in the attack relation ending in a fixed argument, the individual

21

a b c

d

e

g

γ

α

β

δ

ε

θ

λ

µ ν

π

Figure 2.6: An example of a Bipolar Argumentation Framework
Legend: The plain arrows are the attacks and the dashed arrows are the supports

meaning of the arcs fluctuates between attack and defence (regarding the last, fixed, argument). This is not
the case for the support relation. Its meaning is sort of transferred from arguments to arguments via such a
chain, remaining constant.
Vocabulary. For a Bipolar Argumentation Framework (A , R, S , s, t) and a, b ∈ A , we say that a supports
b if and only if there is a path from a to b in the support relation.
Note. Notice the difference of behavior between attacks and supports. Attacks could be said to be interpreted
“immediately” or “locally”. Their scope is limited to their target. That is why, along a path in the attack
relation, starting from a fixed argument, the effect of successive attacks will switch between offense and
defence. On the contrary, for the support relation, the same interpretation is preserved and propagated
along a given path. Thus, supports could be said to be interpreted “globally”.

In our figures, we will differentiate supports from attacks by depicting supports as dashed arrows.
Example. Figure 2.6 depicts a Bipolar Argumentation Framework, derived from the Argumentation Frame-
work of Figure 2.1. In this context, α is an attack and λ a support. Both are interactions. We can say that
g supports a, b, c and d.

As we have already said, there are several possible interpretation of the support relation. We now present
three of them, which are all studied in [CL13]. In this work, we will focus on only one out the three.

The deductive support interpretation has been introduced in [BGvdTV10]. The main idea behind this
interpretation is to consider that, for an argument a that supports an argument b, if a is selected in an
extension, then b should be as well (because b can be deduced from a). The necessary support interpretation
comes from [NR11]. In this interpretation, we consider that, for an argument a that supports an argument
b, if b is selected in an extension, then a should be as well (because a is necessary for b). In both of these
interpretations, the effect of the support relation is taken into account via the addition of new attacks,
on the basis of the supports. Interestingly, these two interpretations are dual: the results in a Bipolar
Argumentation Framework with deductive support are identical to those in the same graph, in which the
direction of the support arcs has been reversed, interpreted as having a necessary support.

The interpretation we focus on in the present work is the evidential support interpretation. It was first
defined in [ON08], then revised in [PO14]. The idea behind this interpretation is that arguments, to be
deemed worth of consideration, should receive support from particular arguments that we call prima-facie.
Prima-facie arguments can be thought of as some sort of undeniable truth, much like evidences (hence
the name of the interpretation). A Bipolar Argumentation Framework with evidential support is called
Evidence-Based Argumentation Framework (EBAF) in the literature, a name we shall keep in the present
work. An Evidence-Based Argumentation Framework is merely a Bipolar Argumentation Framework with
an additional set containing the prima-facie arguments.
Note. In [ON08] and [PO14], Evidence-Based Argumentation Framework are defined with interactions that
can have sets of arguments as their source. In order to deal with enrichments separately, we provide a
definition where only a single argument can be the source of an interaction.

22

Definition 12. An EBAF is a tuple (A ,R,S ,P, s, t) where A is a set of arguments, R is a set of attacks
and S is a set of supports such that:

• A ∩R = A ∩S = R ∩S = ∅,

• P ⊆ A ,

• s : R ∪S → A ,

• t : R ∪S → A .

Vocabulary. For an Evidence-Based Argumentation Framework (A , R, S , P, s, t) and a ∈ A , we say that
a is prima-facie if and only if a ∈P.

In our figures, we will differentiate prima-facie arguments from regular arguments by depicting them as
double circled.

Of course, semantics in an Evidenced-Based Argumentation Framework must take into account the
support relation. The following definitions capture this need for support and serve as the basis of more
complex ones.

Definition 13. Let (A ,R,S ,P, s, t) be an EBAF. An argument a ∈ A is e-supported if and only if a ∈P
or there exists b ∈P such that b supports a.4

Note. Notice the difference between the notion of support as previously given in vocabulary and this notion
of e-support. Support is defined regarding two arguments, while e-support is defined regarding only one. As
such, e-support is more akin to a notion of “global” support, at the scale of the entire framework.

Note. The notion of e-support can be restricted regarding a given set.

Definition 14. Let (A ,R,S ,P, s, t) be an EBAF. An argument a ∈ A is e-supported by a set S ⊆ A if
and only if a ∈P or ∃α ∈ S with (1) t(α) = a, (2) s(α) ∈ S, and (3) s(α) is e-supported by S \ {a}.

Note. Notice the constraint in condition (3): an argument must be supported without itself.

Note. In Definition 14, taking S = A yields a different (in particular, recursive) but equivalent definition of
e-support as defined in Definition 13.

Vocabulary. For an Evidence-Based Argumentation Framework (A , R, S , P, s, t) an argument a ∈ A ,
and a set of arguments S ⊆ A , we say that a is minimally e-supported by S if and only if ∄S′ ⊂ S such that
a is e-supported by S′.

The previous definitions give us the first brick that we need to build the semantics.

Definition 15. Let (A ,R,S ,P, s, t) be an EBAF. A set S ⊆ A is self-supported if and only if ∀a ∈ S, a
is e-supported by S.

As we said before, the intuition is that only the arguments that are supported (in the sense we said
earlier) by a prima-facie argument should be considered. To make sure this occurs, we redefine even the
notion of attack.

Definition 16. Let (A ,R,S ,P, s, t) be an EBAF. An argument a ∈ A e-attacks an argument b ∈ A if
and only if a attacks b and a is e-supported.

Note. The notion of e-attack can be defined regarding a given set.

Definition 17. Let (A ,R,S ,P, s, t) be an EBAF. A set S ⊆ A e-attacks an argument b ∈ A if and only
if there exists a ∈ S such that a attacks b and a is e-supported by S.

4Keep in mind how we said what “b supports a” means earlier: “there is a path from b to a in the support relation”.

23

a b c

d

e

g

γ

α

β

δ

ε

θ

λ

µ ν

π

Figure 2.7: An example of an Evidence-Based Argumentation Framework

Admissible Complete Preferred Grounded Stable
∅ ✓
{g} ✓ ✓ ✓
{a, g} ✓ ✓ ✓
{b, g} ✓
{b, d, g} ✓ ✓ ✓ ✓

Table 2.7: Acceptable sets of the Evidence-Based Argumentation Framework of Figure 2.7 under the different
semantics

Note. Definition 17 is neither a restriction nor a generalisation of Definition 16 because, even if potential
attackers are grouped in a set, support (which is essential in this setting) is confined to within this set.

Example. Figure 2.7 depicts an Evidence-Based Argumentation Framework, which is simply the Bipolar
Argumentation Framework of Figure 2.6, where e and g are prima-facie arguments. In this context, all
the arguments are e-supported. In particular, e and g are e-supported by ∅ and the other arguments are
e-supported by {g}. We can say that a e-attacks b, however {a} does not e-attack b: {a, g} does.

We are now ready to define acceptability in the context of an Evidence-Based Argumentation Framework.

Definition 18. Let (A ,R,S ,P, s, t) be an EBAF. An argument a is e-acceptable with respect to S ⊆ A
if and only if (1) a is e-supported by S and (2) for any T ⊆ A that e-attacks a, S e-attacks an element of T .

Most of the usual semantics are expressed as in Definition 4 by changing acceptability for e-acceptability.
We give only the semantics for which a change occurs.

Note. Notice that, by condition (1) of Definition 18, a set of arguments such that all its arguments are
e-acceptable with respect to it is self-supported.

Definition 19. Let (A ,R,S ,P, s, t) be an EBAF. A set S ⊆ A is conflict-free if and only if there are no
a and b in S such that ∃α ∈ R with s(α) = a and t(α) = b.

Remark. Please observe that Definition 19 is merely the definition of conflict-freeness from Definition 4
adapted to the use of functions s and t.

Definition 20. Let (A ,R,S ,P, s, t) be an EBAF. A set S ⊆ A is a stable extension if and only if (1)
S is conflict-free, (2) S is self-supported and (3) ∀a ∈ (A \ S) such that a is e-supported, S attacks a or S
attacks b ∈ T for any ⊆-minimal set T such that a is e-supported by T .

Example. Table 2.7 gives the results of the semantics (omitting conflict-freeness) in the Evidence-Based
Argumentation Framework of Figure 2.7.

24

2.4 Decomposition of Abstract Argumentation semantics
Recall that the entire idea of Abstract Argumentation is to have ways of selecting groups of arguments that
possess some desirable properties. We have seen that this idea is captured by the concept of semantics.
Semantics group together these properties and offer ready-to-use ways of selection arguments. In addition,
we can see in Definition 4 that semantics are somewhat built on each other. Consider the following:

• a set of arguments is conflict-free if and only if it has no internal conflicts,

• a set of arguments is admissible if and only if it is conflict-free and respects another property,

• a set of arguments is complete if and only if it is admissible and respects another property.

This way, we see that some of the sort of atomic conditions that constitute semantics are shared between
several of them, due to how they are defined on one another. As such, people have explored how to decompose
Abstract Argumentation semantics into a set of atomic conditions, and redefine them in terms of which atomic
conditions must be satisfied to retrieve the semantics. This would allow to have a modular understanding
of semantics.

Vocabulary. In the following, we will call underlying principles (or simply principles) the atomic conditions
that constitute Abstract Argumentation semantics.

The study of the decomposition of Abstract Argumentation semantics into underlying principles has
already been done in [DM16]. Considering an Argumentation Framework A = (A ,R) and a set of arguments
S ⊆ A , the authors identify the following principles:

Coherence (Coh): there exists no internal conflicts in S
Defence (Def): ∀x ∈ S, x is acceptable with respect to S

Reinstatement (Rein): ∀x acceptable with respect to S, x ∈ S
Complement Attack (CA): S attacks all arguments not in S

Maximality (Max): S is ⊆-maximal
Minimality (Min): S is ⊆-minimal

Note. The Coherence principle is also called the Conflict-freeness principle in the literature, for reasons that
we are about to see. In this work, we use a different one to clearly distinguish the moments when we talk
about semantics and when we talk about principles.

Note. The Maximality and Minimality principles are to be understood relatively to other principles. The
idea is for the set to be ⊆-maximal (or ⊆-minimal) such that other principles are respected as well.

Example. Consider the Argumentation Framework of Figure 2.1. The set {a} respects the Coherence and
Defence principles. Likewise, the set {b, d} respects the Coherence and Complement Attack principles.

Notation. In the following, provided that they are not used to name arcs, we will use the letter σ to denote
some Abstract Argumentation semantics, and the letter π to denote some Abstract Argumentation principle.

Following the identification of underlying principles, a correspondence was established in [DM16] between
semantics and respect of some principles. This is the object of the next Proposition:

Proposition 2. Let A = (A ,R) be an Argumentation Framework, and S ⊆ A. S is:

Conflict-free if and only if S respects { Coh }
Admissible if and only if S respects { Coh, Def }
Complete if and only if S respects { Coh, Def, Rein }
Preferred if and only if S respects { Coh, Def, Max }
Grounded if and only if S respects { Coh, Def, Rein, Min }

Stable if and only if S respects { Coh, CA }

25

Example. Consider the Argumentation Framework of Figure 2.1. We have already seen that {a} respects
the Coherence and Defence principles, and {b, d} respects the Coherence and Complement Attack principles.
This makes {a} an admissible extension and {b, d} a stable extension (verifiable on Table 2.1).

We have seen that Abstract Argumentation semantics can be decomposed into underlying principles in the
case of Argumentation Frameworks. We have also seen that Argumentation Frameworks can be be generalised
using different enrichments. Considering this, it seems natural to wonder whether the decomposition we have
seen still holds when enrichments are added, or whether the addition of enrichments somehow brings new
atomic underlying principles to consider. This is what we will look at now.

Coalitions and Higher-Order interactions As it turns out, the addition of coalitions and higher-
order interactions does not bring new underlying principles to consider. This means that, in these enriched
frameworks, semantics can be decomposed in the same way that we have seen, and Proposition 2 still holds.
That is, of course, provided that we use the definitions corresponding to the framework at hand. So, for
instance, the Defence principle which states for a set of arguments S “∀x ∈ S, x is acceptable with respect
to S” would then refer to Definition 6 of acceptability in the case of an Argumentation Framework with
Coalitions, and to Definition 9 in the case of a Higher-Order Argumentation Framework.

Evidential support In the case of an Evidence-Based Argumentation Framework however, we need to
consider an additional underlying principle. This principle corresponds to the intuition that, in this case,
arguments should receive support (using the evidential interpretation of “receiving support”). For a set of
arguments S, this in fact refers to Definition 15 of self-support.

Now, recall that we already observed that, by Definition 18, any set of arguments such that all its argu-
ments are e-acceptable with respect to it is self-supported. Thus, one way to include this new principle could
be to change the phrasing of principles that use the notion of acceptability to replace it by e-acceptability.
Thus, for example, the Defence principle would become, for a set of arguments S, “∀x ∈ S, x is e-acceptable
with respect to S”. This way, Proposition 2 could still be used in the case of Evidence-Based Argumentation
Frameworks. Another way to include the new principle would be to add it to the list, and provide a definition
for acceptability (which is different from e-acceptability) in Evidence-Based Argumentation Frameworks (it
would thus be a softer version of Definition 18 of e-acceptability, not taking into account the aspects of
support). This would then require to give an adapted version of Proposition 2 in the case of Evidence-Based
Argumentation Frameworks. Since the initial idea of this approach was to decompose semantics into atomic
principles, and the Defence principle using e-acceptability can be separated into two principles, we choose
to do the latter, which we consider to be closer to the intuition of the approach.

We begin with giving a definition for the concept of acceptability for Evidence-Based Argumentation
Frameworks. Again, we insist that this notion of acceptability does not correspond per se to the notion of
e-acceptability from Definition 18. It is meant to be the union of the notions of acceptability and self-support
that allows to retrieve e-acceptability. As such, in acceptability, the consideration that the arguments of the
extension should be supported by it is left aside.

Definition 21. Let (A ,R,S ,P, s, t) be an EBAF. An argument a is acceptable with respect to S ⊆ A if
and only if for any T ⊆ A that e-attacks a, S attacks an element of T .

Remark. Notice that in Definition 21, in addition of removing the condition of a being e-supported by S,
we also require that S simply attacks an element of T , instead of using the notion of e-attack. In practice,
since this notion is to be supplemented with self-support, the attack from S will indeed be an e-attack.

We now give the new list of principles to use, including the new principle of Self-support. Considering
an Evidence-Based Argumentation Framework A = (A ,R,S ,P, s, t) and a set of arguments S ⊆ A , we
consider the following principles:

26

Coherence (Coh): there exists no internal conflicts in S
Self-support (SS): ∀x ∈ S, x is e-supported by S

Defence (Def): ∀x ∈ S, x is acceptable5 with respect to S
Reinstatement (Rein): ∀x acceptable with respect to S, x ∈ S

Complement Attack (CA): ∀x /∈ S, if x is e-supported, S attacks x or every chain of support of x
Maximality (Max): S is ⊆-maximal
Minimality (Min): S is ⊆-minimal

Remark. Note that the Complement Attack principle also has to be changed to take supports into account,
in correspondence with Definition 20.

Finally, we give an adapted version of Proposition 2 for the case of Evidence-Based Argumentation
Frameworks.

Proposition 3. Let A = (A ,R) be an Argumentation Framework, and S ⊆ A. S is:

Conflict-free if and only if S respects { Coh }
Admissible if and only if S respects { Coh, SS, Def }
Complete if and only if S respects { Coh, SS, Def, Rein }
Preferred if and only if S respects { Coh, SS, Def, Max }
Grounded if and only if S respects { Coh, SS, Def, Rein, Min }

Stable if and only if S respects { Coh, SS, CA }

Example. Consider the Evidence-Based Argumentation Framework of Figure 2.7. {a, g} respects the Coher-
ence, Self-support and Defence principles. Additionally, {b, d, g} respects the Coherence, Self-support and
Complement Attack principles. According to Proposition 3, {a, g} is then an admissible extension, while
{b, d, g} is a stable extension, which is verifiable on Table 2.7.

5Of course, the notion of “acceptable” here refers to Definition 21

27

Chapter 3

Visual Explanations for Abstract
Argumentation

In this chapter, we are interested in providing explanations for results obtained via a selection process from
Abstract Argumentation. In particular, we have the ambition to make these explanations understandable
and usable by anyone, even by people that are not familiar with notions of Abstract Argumentation. To do
so, we will make efforts to give an important visual modality to our explanations. This way, instead of using
theoretical notions from Abstract Argumentation to understand and use an explanation, it will be possible
to only rely on how it looks like, which would indeed make it accessible to anyone.

The chapter is organized as follows: we begin by presenting the relevant related works, by putting the
accent on what problems are explanations defined for in the literature, and how they are defined (Section 3.1).
Next, in Section 3.2, we motivate the explanation problem that is addressed in the present work, which is
different from the main problem addressed in the literature. We also provide some hypotheses on which we
rely to tackle the problem we address. Then, in sections 3.4 and 3.5, we formally define our explanations
and give formal results on how they can be used, how they are organized and how to compute them. We
proceed with showing how these explanations can be used to build new kind of explanations, addressing a
different problem. In the end, Section 3.6, we summarize our work briefly by restating the main points of
our contribution and giving an example that illustrates the whole approach. Finally, we compare our work
to the related works, discuss on how to assess the quality of the explanations we defined and present some
ideas for future lines of research (sections 3.7 to 3.9). Note also that we recall in Section 3.3 some useful
technical tools.

3.1 Related Works
Before developing our approach, we present several existing works related to the computation of explanations
for Abstract Argumentation, and also on explanations in general. For the first part, the presentation is or-
ganised following the “taxonomy” of the types of explanation proposed in the survey [ČRA+21]: explanations
can be defined as either subgraphs, changes, extensions (sets of arguments), or dialogue-games.

Subgraphs. Let us consider first the category of subgraphs. A first example of work defining explanations as
subgraphs is [SWW20]. It was in fact categorised in the second category (change) in [ČRA+21], a choice which
can be discussed. Indeed, [SWW20] seeks to explain the credulous non acceptance of some argument, not by
changing its status, but by finding a Strongly Rejecting Subframework. A Strongly Rejecting Subframework
is an induced subgraph of an Argumentation Framework that does not credulously accept an argument, and
nor do its supergraphs that are still induced subgraphs of the original Argumentation Framework. As such,
Strongly Rejecting Subframeworks aim to capture the core argumentative reasons for why an argument is
not credulously accepted under a certain semantics.

28

[NJ20] also studies subgraphs to obtain explanations for the credulous non acceptance of some argument
for a given semantics (except the grounded semantics). Their work is very similar to that of [SWW20]
presented previously. The differences here are that the authors consider both induced and spanning subgraphs
for their explanations. More importantly, the subgraphs are not the explanations themselves, but rather used
to characterize explanations. To be more precise, they call a set of arguments (respectively of attacks) an
explanation if the induced subgraph (respectively spanning subgraph) computed using this set does not
credulously accept the queried argument, and nor does any of its supergraphs.

[UW21] proposes strong explanations for credulous acceptance of a set of arguments under a given
semantics. A strong explanation is a set of arguments such that for every subgraph induced by a superset
of the explanation, there exists an extension of the considered semantics that includes the set to explain.
Thus, strong explanations for credulous acceptance can be seen as a core set of arguments needed for an
argument to be part of at least one extension under the desired semantics. Here again, subgraphs are not
the explanations themselves, but are used as a tool to define explanations.

A specific kind of graph that is also used in explaining argumentative results is Defence Trees. Defence
Trees (sometimes also called Dispute Trees) are trees where nodes are arguments and each successor of a
node is an attacker of that node. As such, they can be used to prove whether an argument is acceptable
or not. Some works, like [RT21], use Defence Trees as explanations for argumentative results, while others,
like [FT15a], use them to compute their notion of explanation. In [FT15a], the authors aim to explain
the credulous acceptance of some argument under admissibility, and do so by defining a new semantics,
related admissibility, which is used to characterize explanations. Dispute Trees (more precisely, Dispute
Forests) are used to compute these explanations. In [RT21], the authors argue that a Defence Tree is a
dialogical explanation for the selection of an argument in an extension since it can be used to show that
it is acceptable. They motivate this choice by stating that Dispute Trees can be seen both as contrastive
and selective explanations. Contrastive because Dispute Trees can be seen as a debate in which the person
putting the initial argument forward must defend it against counter arguments. Selective because one could
deem one branch instead of the entire tree as a sufficient explanation.

Changes. We now turn to the second category, which concerns changes. Changes consist in identifying
which elements to remove from an Argumentation Framework in order to modify a given result. This kind
of methods can be drawn back to the problem of dealing with inconsistencies, and in particular trying to
restore consistency, in knowledge representation formalisms.

This is the method used in [FT15b], in which the authors explain why an argument is not credulously
accepted under admissibility. Their explanations consist of sets of arguments or attacks to remove from the
Argumentation Framework in order to make the considered argument credulously accepted under admissi-
bility in the resulting subgraph. These explanations are computed using Defence Trees.

Although they were not considered through the prism of explainability, such sets were also studied in
[UB19], in which they were called “diagnosis”. The authors were concerned in cases of Argumentation
Frameworks in which no arguments are credulously or skeptically accepted under some semantics, and how
such frameworks could be “repaired ”. They investigated some fundamental problems regarding diagnoses
and repairs, such as deciding if some exists, their verification, their computation and the enumeration of all
existing solutions.

Diagnoses are also parts of the study of [NJ20], which we already discussed before in the category of
explanations using subgraphs. In addition to their notion of explanations, the authors study the notion of
diagnosis as another way of identifying underlying reasons for the non acceptance of an argument under
credulous reasoning. In particular, they provide a way of computing both their explanations and diagnoses
using logical formulas, and providing complexity results.

Extensions. The third category of approach consists of taking sets of arguments as explanations. This is
probably the most widely used approach to this problem. In most of the works using this method, the point
of view is to consider that explanation equates to justification and that arguing for an argument is justifying
it, and thus explaining it. Hence the use of sets of arguments as explanations, since such sets can be deemed

29

as arguing for a queried argument.
In [FT15a], as we have already discussed before, the authors define an explanation semantics, called

related admissibility, which provides all the reasons why an argument belongs to an admissible set. Even
though Defence Trees are used to compute the extensions of this new semantics, it is the extensions which
are deemed to be explanations. The idea of related admissibility is to get rid of all the arguments that are
not relevant for the acceptance of the queried argument, that is, those that are not connected to it via the
attack relation.

In [BB20b, BB21c], the authors propose a basic framework to compute explanations as sets of arguments
for the credulous/skeptical acceptance or non-acceptance of an argument. They distinguish between skeptical
and credulous explanations. Skeptical explanations provide all the reasons why an argument can be accepted
and one reason why an argument cannot be accepted. On the other hand, credulous explanations provide one
reason why an argument can be accepted and all the reasons why an argument cannot be accepted. Their
framework for explanations can be parameterised in order to modify the way explanations are computed,
for instance taking into account the depth to consider when computing an explanation. In their work, the
authors focus on some human biases used to select explanations such as simplicity (taken as minimality),
sufficiency and necessity. In subsequent works ([BB21a, BB21b]) the authors extend their framework to
adapt it to Structured Argumentation (adding another parameter to control the form of the explanation)
and to compute contrastive explanations (the intersection of why an argument (the fact) is accepted and
why a set of arguments (the foils) are not). As such, a contrastive explanation contains the reasons for
both the acceptance (or non acceptance) of the fact and the non acceptance (or acceptance) of every foil.
The authors also provide a way to deal with implicit foils both for Abstract Argumentation and Structured
Argumentation.

Some other works define their explanations from the observation that in the computation of an extension,
some parts are non-deterministic choices, while others, deterministic, result from the first ones. This is the
case of [LvdT20], in which the authors base their approach on the observation that each Strongly Connected
Component (SCC) of an Argumentation Framework can be seen as making a choice for accepting conflict-
free sets of arguments. From these choices results the rest of the accepted arguments. Thus, in a set of
arguments, each argument can be explained by the set of arguments that were chosen in a given SCC.

Similarly, in [BU21], the authors observe that complete and admissible semantics are computed firstly
by the computation of the grounded (respectively strongly admissible) extension, then making choices in
even cycles, and finally computing the grounded (respectively strongly admissible) extension again. As such,
they define the arguments chosen in the even cycles as the explanations for some complete or admissible
extension.

Dialogues. The fourth, and last, category regroups approaches that use so-called dialogues (or dialogue-
games) as explanation. Dialogues are a formalism which allow agents (usually two, but it can be more) to
engage in a conversation. This conversation is built turn by turn by the agents which can use moves to put
forward elements in the discussion. The formal part comes as a protocol that the agents must follow in order
to use their moves. This allows to use dialogues as proofs of certain results (typically, in a given situation,
the dialogue will necessary reach a given state). Such proofs are called dialectical proofs.

[MC09] studies how dialogues (called argument games) can be used to prove certain results in argu-
mentation. These dialogues are structured around two agents, the proponent and the opponent. An initial
argument is put forward by the proponent as a first move and then the two agents alternate in attacking
each other’s arguments. The initial argument can be proved to have a certain status if the proponent has
a winning strategy for the dialogue. The nature of this certain status is dependent on the protocol used in
the dialogue. It should be noted that this particular work is not necessarily tied with explainability, but
provides good insights on the workings of dialogues and how to use them.

The authors of [BGK+14] take changes as explanations for argumentative results, but use dialogues to
obtain them. The dialogues are structured as detailed before, with a proponent and an opponent attacking
each other’s arguments alternatively. The idea is for the proponent to consider several Argumentation
Frameworks at a time, close to each other but different by the means of changes. Then, the proponent can

30

make moves that are legal in any the AFs considered, but at each move, the AFs in which it is illegal are
removed. The AFs that are still present at the end of the dialogue (so those in which all the moves of the
proponent are legal) are deemed to be explanations for the argumentative result the dialogue is about (again,
depending on the protocol used).

[ABC17] proposes a dialogue with explanatory capabilities using Abstract Argumentation in the context
of inconsistent databases. The main concern of the authors is to have a way to solve inconsistencies in
a database without having to use classical repairing techniques, which involve the removal of information.
Instead, they want a way to yield results even in the presence of inconsistencies, hence their choice of using
Abstract Argumentation. In this setting, the dialogue is taken to be the explanation that answers to the
user’s query.

In [SA18], the authors present their argumentation-based dialogue framework for explanation in a human-
robot interaction setting. The human and the robot are supposed to cooperate in a Treasure Hunt Game. The
authors model the beliefs of both agents, and their dialogues, which result in Argumentation Frameworks,
are designed so that the agents can mutually change their beliefs, either by adding new ones or modifying
the existing ones. As such, the dialogues produced have an explanatory role. In particular, the authors try
to measure how the dialogues help to achieve the task at hand, and if certain kinds of dialogue, tailored
towards specific goals, were more efficient in helping than others.

We now present some additional aspects of explanations. Contrarily to the works mentioned previously,
these are not specifically related to Abstract Argumentation, but to Explainability in general. As such, they
should be taken as high level ideas on explanations, the different types that there can be, how to obtain
them, what can they be used for, etc. . . By no means this short presentation should be considered exhaustive,
each of ideas mentioned could be (and certainly are) the subjects of entire works on their own.

Abductive explanations. Abduction is form of logical reasoning, like deduction and induction, which
was formulated by the American philosopher Charles Sander Peirce during the 19th century. The idea of
abduction is to find what led to some event that is observed. This can be formally represented with the
following logical scheme: if we know b and that a leads to b, then we can conclude a. It should be noted
that abduction, unlike deduction, does not yield a conclusion that we can be sure of, only a plausible one.
Nonetheless, Peirce considered abduction as the only form of reasoning that could introduce new knowledge.

More recently, abduction has been studied as a mean to obtain explanations. Indeed, we can see from its
logical scheme that abduction can be used to infer what can be considered as causes of an observed event. For
this reason, among the other names that can be used to designate abduction, it has been called “inference to
the best explanation” ([Har65]). The process is to formulate hypotheses on what caused a certain observed
event to occur, and to identify among these hypotheses which one can be considered as the “best”. Although
it is usually a difficult task to automate, humans are generally considered quite efficient to do it. The usual
take is that humans use biases, like simplicity, temporal closeness, etc. . . to efficiently select what they deem
the best hypothesis as the explanation (see [Mil19]). Still, the explanations obtained this way are thus called
abductive explanations.

Counterfactual explanations. Counterfactual thinking is a concept of psychology ([Roe97]). It desig-
nates the process of creating possible alternative to events that have already occurred. In a nutshell, it can
be understood as corresponding to the thought process induced by the questions “What if. . . ” or “If only. . . ”.
As its name states, it goes “contrarily to the facts”. Humans are quite adept at imagining how reality could
have turned out, provided that things went differently. And here we touch the core of what constitutes
counterfactual thinking and how it works. It is important to understand that it is based on differences, or
changes, that humans make to generate new situations that are different from the one they experienced.
Because with this understanding, we can move from counterfactual thinking to counterfactual explanations.

Indeed, counterfactual thinking can be used to seek and obtain explanations. Consider that explanations
are usually sought for in response to a surprising situation. It is generally accepted that surprise comes
from making predictions as to what is supposed to happen and then observe something else. Thus, to make

31

their prediction models more accurate, humans will naturally try to explain why the situation they observed
turned out different from the situation they expected. This is where counterfactual thinking comes into
use. By using counterfactual thinking, and putting alternative possibilities in contrast, humans are able to
pinpoint a selection of causes that, if changed, would have led to the situation they expected in the first place.
These causes indicate what should be changed in the prediction model used to make the first expectation,
and are usually considered to be the (counterfactual) explanation. Additionally, it should be noted that
counterfactual explanations are often rather simple. This is because the process of counterfactual thinking
relies on changes made on an already existing situation. To generate alternatives, a small number of changes
suffices, as all the rest can be deemed to be the same as in the initial situation. Thus, the generation process
is kept efficient, and the explanations (so the changes made) are kept as small as possible.

This concludes our presentation of related works on explanations for Abstract Argumentation and expla-
nations in general. There exist other types of explanations we could have mentioned, but we consider them
to not be relevant to the present work. As we have seen, explanations related to Abstract Argumentation
can have many forms, even for explaining the same result. This gives them a good potential for adaptability
to the preferences of the person asking for them. We now move on to motivate our own work and to present
our main hypotheses.

3.2 Motivation and Hypotheses

3.2.1 Motivation
To introduce our motivation for our approach, let us present an example from [BB20a], slightly reduced and
adapted. This is a real-case scenario of Abstract Argumentation applied for the Dutch National Police.

Example. A citizen has ordered a product through an online shop, paid for it, and received a package.
However, it is the wrong product, it seems suspicious as if it might be a replica, rather than a real product.
Still, the citizen wants to file a complaint of internet trade fraud. While the citizen provides the information
from the described scenario, the system constructs further arguments from this, based on the Dutch law.
The following arguments are obtained (their conclusions are emphasized):

A1 It is not because the wrong product was received, that it is a case of fraud; then we may consider that
it is not a case of fraud.

A2 It is not because the wrong product was received, that the counterparty has not delivered; the counter-
party has delivered.

A3 A suspicious product is usually fake, which supports the fact that the product is fake.

A4 The reasons which lead to the conclusion that the product is fake, and the fact that when a product is
fake, then usually the counterparty did not deliver, lead to the conclusion that the counterparty did
not deliver.

A5 An investigation shows that there is no problem with the product: the product is not fake.

A1 A6 A2 A4 A5 A3

Figure 3.1: Delivery Example from [BB20a]

32

A6 The fact that the complainant paid and was delivered, combined to the assumption that the product is
fake and to the other reasons which lead to the conclusion that the counterparty did not deliver, shows
that it is likely to be a case of fraud.

The arguments of this scenario and their attack relationships can be represented by the Argumentation
Framework depicted on Figure 3.1.

Now, the question is: which conclusion can be drawn from this situation? Of course, we want to know
whether this is a case of fraud or not. A1 concludes that it is not a case of fraud, whereas A6 concludes
that it is a case of fraud. We may naturally want to look for extensions, that will then act as our decision,
that contain these arguments. Let us pick stable semantics to take our decision. The stable extensions are:
{A6, A4, A3}, {A1, A2, A5}, {A1, A4, A3}. Since we have several choices, we may want use the techniques
of credulous or skeptical acceptance presented in Section 2.2 to support a preference for either A1 or A6.
In this case, both are credulously accepted and none is skeptically accepted (still under stable semantics).
Thus, we do not really have elements to choose one over the other.

It may result from this that Abstract Argumentation alone (or at least, the rudimental techniques we
have used) may not lead us directly to a decision. Most certainly, deciding whether this is a case of fraud or
not will either rely on more advanced techniques, or on some external factors outside of the argumentative
process. Nonetheless, we may require explanations as for why Abstract Argumentation cannot help us much
in this situation. In particular, we may want to ask why are A1 and A6 both credulously accepted under
stable semantics, and why are they both not accepted under stable semantics. This is indeed the questions
that are tackled in the related works presented in the previous section.

However, we wish to strongly insist on the fact that this makes sense because of the decision we want to
make and because of the meaning of the arguments. Indeed, we knew from the start that we were to decide
whether the scenario was a case of fraud or not. And we have, in the Argumentation Framework, arguments
whose meaning is precisely the decision we want to make. As such, the Argumentation Framework is, in fact,
built around those arguments. They are at the core of the framework, and the other arguments either attack
one of them and support the other, or attack the latter and support the former. This is why questions of
credulous / skeptical acceptance are relevant here, because of our decision relying on the acceptability status
of some precise arguments. But, this might not be the case for all Argumentation Frameworks.

We should not forget that Abstract Argumentation provides tools to select arguments collectively. Thus,
focusing on some precise arguments may not always be relevant. Consider this: for what other reason should
an argument be individually focused on, other than its internal meaning? And recall that internal meanings
of the arguments are left aside in an abstract setting.

As such, in the present work, we propose to tackle questions relative to the basic utility of Argumentation
Frameworks: the selection of semantics extension. To come back to our previous example, suppose that in
the end, the extension {A1, A2, A5} is chosen. A user that wishes for explanations may then ask "Why is
this a valid result?". Since {A1, A2, A5} was chosen on the basis of being a stable semantics, this in fact
equates to wondering why {A1, A2, A5} is a stable extension. More generally, given a set S of arguments
and a semantics σ, we are interested in the following questions:

QExt
σ : "Why is S [not] a σ extension?"

Note. Please note that since these questions are referring to the basic process of argumentative selection,
they are relevant in any context involving Abstract Argumentation.

Notice that question QExt
σ is just a modification of the question "Is S [not] a σ extension?", which

just asks to solve the Verification Problem mentioned in Section 2.2. As such, we will consider question QExt
σ

to ask to solve a modified version of the Verification Problem, which we call the Explainable Verification
Problem and denote XVerσ, and that we define as the following:

XVerσ Input : an Argumentation Framework A = (A ,R), a semantics σ, a set of arguments S ⊆ A
Output : the reasons that make S an extension (or not) of σ in A

33

3.2.2 Hypotheses
In order to provide answers for questions QExt

σ , we rely on some hypotheses that we make clear in this section.
First of all, it is commonly agreed that, when dealing with finding and giving explanations, contextual
information is critically important. Indeed, the need for explanation rises in reaction to some event, usually
an unexpected one. And an event is deemed unexpected when it does not make sense with the context in
which it occurred. Hence the importance of contextual information. In our case, we describe the context of
our work using the following Hypothesis:

A user asks for an explanation after they have been presented the result of an Abstract
Argumentation selection process by some program. (H1)

In other terms, we place ourselves in a situation where some user needs to make a decision with an
Abstract Argumentation tool. The decision of the argumentative process may be the final decision of the
user, or only a step in chain of processes leading to the final decision, it does not matter. What matters is
that the user reacts to the decision of the argumentative process. This result may typically be the selection of
a set of arguments, that is to say the computation of an extension of some semantics. In this situation, the
semantics used would correspond to the constraints under which the user wanted their decision (or decision
step) to be made.

Vocabulary. In the following, we will refer to the program that has computed the result as the system.

From this, we identify that our context is made of three contextual information: the result that was
presented by the system (a set of arguments), the way this result was obtained (a semantics), and the object
from which it was obtained (an Argumentation Framework).

Notation. Except specified otherwise, we will denote them using the following notation:

• A = (A ,R) denotes the contextual Argumentation Framework

• σ denotes the contextual semantics

• Res ⊆ A denotes the result given in the context

Example. Consider S ⊆ A and the question QExt
σ : "Why is S [not] a σ extension?". σ then refers to

the semantics used to compute Res in the contextual Argumentation Framework A. Both A and Res are
not referred to in the question, hence their reference is left implicit. Note that we do not necessarily have
S = Res.

Our next hypothesis concerns the explanatory process. We have already stated that the need for expla-
nation rises in reaction to some event (here the computation of an extension). In our situation, this reaction
takes the form of a question asked by the user. It is through the question that they ask that the user requires
an explanation. Hence, the explanation we will provide will in turn be in reaction to the question of the
user. In other terms, our explanations are in fact answers to the questions of the user.

An explanation is an answer to some question. (H2)

Note that, in the present work, we consider that the user only asks why-questions. This does not mean that
explanations are necessarily answers to why-questions in general. A question like "How was Res obtained?"
may be deemed as another question asking for explanations. Chances are that this explanation may even
be different from the ones that we will seek to provide in answer to QExt

σ , although the two questions seem
very similar in the case where S = Res. Note also that Hypothesis (H2) does not imply that every question
asks for an explanation. The following results directly from Hypothesis (H2).

34

Corollary 1. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and σ be an Abstract Argumentation
semantics. An explanation of S for σ on A is an answer to QExt

σ .

As such, in the following, to define explanations, we will in fact aim at defining answers to QExt
σ .

Finally, our last hypothesis will, in practice, constrain how our explanations are defined. Indeed, our
work is done in the perspective that Abstract Argumentation will become widely deployed as a decision
making tool, and may thus come to be used by anybody. In particular, we consider that even users without
any idea of Abstract Argumentation selection processes operate may come to use it.

The user has no expert knowledge of Abstract Argumentation. (H3)

Observe that even a user that does not know how the system works may require explanations about it.
Hence, our explanations should take this into account, and should be understandable and usable by anybody.

3.3 Technical Tool: Graph Theory
Before to define our explanations, we recall here some elementary notions of Graph Theory that we will use
in this chapter. We refer the reader to [BM08] for additional notions on this subject.

We suppose the reader familiar with the notion of graph itself, so we begin with the notion of subgraph.
A subgraph of some graph is basically another graph, included in the first one.

Definition 22. Let G = (V,E) and G′ = (V ′, E′) be two graphs. G′ is a subgraph of G iff V ′ ⊆ V and
E′ ⊆ E.

Note. In Definition 22, G is called a supergraph of G′.

Note. Note that an arbitrary graph is always a subgraph of itself. It is possible to have a more strict notion
in the case that is not wanted.

Definition 23. Let G = (V,E) and G′ = (V ′, E′) be two graphs. G′ is a strict subgraph of G iff it is a
subgraph of G and either V ′ ⊂ V or E′ ⊂ E.

Note. In Definition 23, G is called a strict supergraph of G′.

A given graph may potentially have a very large number of subgraphs. It may thus be of interest to
consider only specific ones. That is the case for induced and spanning subgraphs.

Definition 24. Let G = (V,E) and G′ = (V ′, E′) be two graphs. G′ is an induced subgraph of G by V ′ if
G′ is a subgraph of G and for all a, b ∈ V ′, (a, b) ∈ E′ iff (a, b) ∈ E. G′ is denoted as G[V ′]Ind.

Definition 25. Let G = (V,E) and G′ = (V ′, E′) be two graphs. G′ is a spanning subgraph of G by E′ if
G′ is a subgraph of G and V ′ = V . G′ is denoted as G[E′]Span.

As such, induced subgraphs are those for which we keep only a certain number of the original nodes, as
well as all the arcs that are related to these nodes. Spanning subgraphs are those for which we keep only a
certain number of arcs.

Example. Figure 3.2 depicts an induced subgraph of Figure 2.2 by the set {a, b, c, d, e}. Figure 3.3 depicts an
induced subgraph of Figure 2.3 by the set {a, b, c, d, g}. Figure 3.4 depicts a spanning subgraph of Figure 2.2
by the set {(f, e), (f, g), (h, e), (i, h), (i, j), (j, i)}. Figure 3.5 depicts a spanning subgraph of Figure 2.3 by
the set {(c, f), (f, b), (f, d), (f, e), (f, h), (j, f)}.

Induced and spanning subgraphs are examples of ways to obtain a new graph from another single graph.
Another interesting operation producing a new graph from other ones is the union that represents the
aggregation of the information contained in two graphs.

35

a

b

c

d

e

Figure 3.2: An induced subgraph of Figure 2.2

a
b

c

d

g

Figure 3.3: An induced subgraph of Figure 2.3

a

b

c

d

e

f g

h i j

Figure 3.4: A spanning subgraph of Figure 2.2

a
b

c

d
e

f

g

h

i

j

Figure 3.5: A spanning subgraph of Figure 2.3

36

a
b

c
d

e

Figure 3.6: The graph of Figure 3.2 rearranged
to highlight its bipartite nature

a b

c

d

e

f

g

hi

j

Figure 3.7: The graph of Figure 3.5 rearranged
to highlight its bipartite nature

Definition 26. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The union of G1 and G2 is G1 ∪G2 =
(V1 ∪ V2, E1 ∪ E2).

Example. Let G1 be the graph of Figure 2.2, G2 be the graph of Figure 3.2 and G3 be the graph of Figure 3.4.
We obviously have G1 = G2 ∪G3.

We now consider a particular kind of graphs, bipartite graphs. Bipartite graphs are those graphs whose
set of vertices can be split two disjoint sets and in which every arc connects a vertex of one part to a vertex
of the other part:

Definition 27. Let G = (V,E) be a graph. G is bipartite (with parts T and U) if and only if there exist
T,U ⊆ V such that T ∪ U = V and T ∩ U = ∅ (T and U are a partition of V) and for every (a, b) ∈ E,
either a ∈ T and b ∈ U , or a ∈ U and b ∈ T .

Note. A bipartite graph (V,E) with parts T and U can be denoted (T,U,E).
Note. For a bipartite graph (T,U,E), we say that U is the complement part of T and vice-versa.

Example. Figures 3.6 and 3.7 depict the graphs of Figures 3.2 and 3.5 respectively, but visually rearranged
so that their bipartite nature is more obvious. Here, the graph of Figure 3.2 is shown with parts {b, d, e}
and {a, c}, while the graph of Figure 3.5 is shown with parts {a, f, g, i} and {b, c, d, e, h, j}.
Note. Notice that a given bipartite graph may have its vertices separated in several possible ways. For
instance, the graph of Figure 3.7 could have been shown with parts {f} and {a, b, c, d, e, g, h, i, j}.

We now define the successor and predecessor functions of a graph, which allow to have a sense of neigh-
borhood in that graph.

Definition 28. Let G = (V,E) be a graph. The successor function of G is the function E+ : V 7→ 2V such
that E+(v) = {u | (v, u) ∈ E} and the predecessor function of G is the function E− : V 7→ 2V such that
E−(v) = {u | (u, v) ∈ E}.

Note. The successor and predecessor functions can be extended to sets of vertices.

Definition 29. Let G = (V,E) be a graph and S be a set of vertices. E+(S) =
⋃

v∈S E
+(v) and E−(S) =⋃

v∈S E
−(v).

Finally, since the successor and predecessor functions capture a certain notion of neighborhood, we may
want to parameterize this notion. For instance, we might want to consider that the neighbors of some vertex
are not only those that are directly connected to it via an arc, but also those that are connected to them.
In that respect, we introduce a n-step version of the successor and predecessor functions.

37

Definition 30. Let G = (V,E) be a graph and n ≥ 0. The n-step successor (resp. predecessor) function of

G is E+n(v) =

n times︷ ︸︸ ︷
E+ ◦ · · · ◦ E+(v) (resp. E−n(v) =

n times︷ ︸︸ ︷
E− ◦ · · · ◦ E−(v)).

Convention. By convention, we have E+0(v) = E−0(v) = v.

Note. Note that E+1(v) = E+(v) and E−1(v) = E−(v).

Note. In the context of an Argumentation Framework, the successor (resp. predecessor) function represents
the arguments that are attacked by (resp. the attackers of) some argument(s). An Argumentation Framework
being usually denoted by (A,R), the successor and predecessor functions are thus denoted R+ and R− in
this context.

Example. In the graph of Figure 3.3, we have E+1(a) = {c, g}, E+2(a) = {d} and E−1(a) = {b, d}. Addi-
tionally, E+1({b, g}) = {a, c, d}.

Finally, we consider some vertices having a particular status in a graph.

Definition 31. Let G = (V,E) be a graph and v ∈ V . v is a source vertex if and only if E−(v) = ∅.

Definition 32. Let G = (V,E) be a graph and v ∈ V . v is a sink vertex if and only if E+(v) = ∅.

Definition 33. Let G = (V,E) be a graph and v ∈ V . v is an isolated vertex if and only if it is both a
source vertex and a sink vertex.

Thus, source vertices are vertices for which there exists no arc in the graph targeting them. Sink vertices
are those for which there exists no arc in the graph originating from them. Isolated vertices are those
completely devoid of connections to the other vertices.

Example. In the graph of Figure 3.7, c and j are source vertices, b, d, e and h are sink vertices, and a, g and
i are isolated vertices.

3.4 Visual Explanations for Argumentation Semantics
We propose, here, to provide formal answers to a certain kind of questions. These questions are those
introduced in Section 3.2.1: "Why is S [not] a σ extension?", S being a set of arguments and σ ranging
over the conflict-free, admissible, complete and stable semantics.

Example. Consider the Argumentation Framework depicted on Figure 2.2. Imagine that a user asks the
question "Why is {b,d} a complete extension?". In this case, {b, d} is a complete extension (see Table 2.2),
thus we would need to provide the elements that show what makes {b, d} to be so. Alternatively, imagine
that a user asks the question "Why is {a,b} not a complete extension?". In this case, {a, b} is not a
complete extension (again, see Table 2.2), hence we should provide the elements that show the reasons for
this set not to be so.

The next step is to discuss what these elements are. To answer those questions, and provided that the
user can access to the Argumentation Framework that is being used, notice that they could simply check the
conformity of the questioned set with Definition 4. However, not only may the user not have direct access to
the Argumentation Framework, but it also requires expert knowledge (in particular, of the definitions) and
might prove to be tedious, because the graph might be large and/or contain a large number of arcs (think of
the Argumentation Framework of Figure 2.3 for instance). On the other hand, it is worth pointing out that
the conformity to this definition is precisely what makes a set of argument valid or not regarding a given
semantics, and thus contains all the reasons to decide on its validity status. As such, what we propose are
ways to do this conformity check, such that:

1. The conformity check should be as easy as possible

2. The user should not get lost in information

38

3. No expert knowledge is required

To achieve the objectives we have just listed, we take advantage of the visual nature of Argumentation
Frameworks. Argumentation Frameworks are graphs. Graphs can be drawn. Even if this property is difficult
to mathematically formalize, and so to reason on, we believe it is decisive in how it can make explanations
understandable and usable by anyone. Thus, our explanations will be graphs as well.

In compliance with Point 2, we will aim for our explanations to keep only the information that might be
useful1 for the user. To do so, we reverse the problem, and in fact get rid of all the information that we can
be sure is irrelevant. As such, our explanation graphs will be parts of the initial information from which the
decision was taken. In more formal terms, our explanations will be subgraphs of the initial Argumentation
Framework.

To achieve Point 3, we will aim for our conformity check to rely only on visual properties of our expla-
nations. The idea is that this way, users can make the conformity check themselves, using only the layout
of the explanation, thus getting past the need for expert knowledge of the precise formal definitions. We
will still support such a use of our explanations via formal results. So, we need a formal counterpart to this
notion of “visual property”. Formally, we identify them with structural properties of the explanation graphs.

Finally, to respect Point 1, we will also take advantage of the decomposition of Abstract Argumenta-
tion semantics into principles presented in Section 2.4. Indeed, semantics can be decomposed into sim-
pler and modular underlying principles. As such, checking conformity with a given semantics amounts
to checking conformity with each of its underlying principles. Obviously, this means that, for one given
semantics, the user could possibly do several conformity checks. However, they will all individually be
simpler than if the user was to check conformity with the entire semantics at once. Additionally, since
some principles are underlying in several semantics, there won’t be a lot of different explanations to de-
fine. Moreover, we are confident that through repeated uses, the principles that are underlying in sev-
eral semantics will get easier (and so, faster) to check, thus mitigating the drawback of possibly having
to do several checks for one semantics. So, our explanations will in fact be explanations for seman-
tics principles, instead of explanations for semantics. With this approach, an explanation for a seman-
tics will then be the set of explanations for its underlying principles, the latter being in turn the an-
swers to the following intermediate questions where π represents an Abstract Argumentation principle:

QExt
π : "Why does S [not] respect the π principle?"

To summarize, in this work, explanations are subgraphs of an initial Argumentation Framework and
are meant to be used to check conformity with the underlying principles of semantics using only structural
properties. Explanations for semantics are then just the set of explanations for the underlying principles
that constitute the given semantics.

3.4.1 Methodology
In the following subsections, we formally present our explanations. Each time, we follow the same method-
ology:

1. We begin with an introductory example which we discuss to identify what the explanation is about
and what is required;

2. We then formally define our explanation (possibly in several steps);

3. Once formally defined, we illustrate the explanation with further examples and introduce notations.

To support the use of our explanations, we will investigate some of their properties in Section 3.4.6.
Additionally, we end Section 3.4 with a wider example, aimed at illustrating how we envision the entire
explanatory process to take place.

Finally, we will use the following color scheme on all the figures representing our explanations:
1We say “might be useful” only, because we consider that we don’t know what is relevant or not for the user in advance.

39

Legend of the colors used in the explanation graphs:

• The arguments of the set which is given as input in the question will be in blue.

• Arguments that are displayed because they take the role of attackers (of a given
set), as well as problematic attacks, will be in red.

• Arguments that are defended or acceptable with respect to the input set, but
not part of it, will be in green.

• Other arguments and attacks of the explanation subgraph will appear in black.

• Elements of the explanation graph that make a conformity check fail will be
displayed as thickened

3.4.2 Explanation for Coherence
Recall that a set of arguments respects the Coherence principle if and only if there are no arcs between its
elements. Hence, if we are to show why a set of arguments is coherent, we must show a part of the graph
that highlights the absence of arcs within this set. We begin with an example in order to provide an intuition
of how to define the explanation.

a

f

i

Figure 3.8: Explanation on why {a, f, i} is coher-
ent in Figure 2.3. All arcs between a, f and i are
shown, and there is none.

b

d

i

Figure 3.9: Explanation on why {b, d, i} is not
coherent in Figure 2.3. All arcs between b, d and
i are shown, and there is one between i and b,
and one between i and d.

Example. Consider the Argumentation Framework of Figure 2.3 and the questions "Why does {a,f,i}
respect the Coherence principle?" and "Why does {b,d,i} not respect the Coherence principle?".
Figures 3.8 and 3.9 show the answers for the first and second question respectively.

The idea here is to have a subgraph in which we make sure that if there is at least one arc between two
arguments of the questioned set, then such an arc appears in it. Indeed, the presence of at least one such
arc is enough to conclude that the set is not coherent. If no such arc exists, then none is displayed and we
can conclude that the set is coherent.

Note. In this situation, we may only focus on the arguments of the questioned set, and forgo all the others.

Note. Even if only one arc between two arguments of the set is enough, there may very well be several of
them (for instance, on Figure 3.9). In this case, we may choose to keep only one, all of them, or even any
number inbetween. All these choices result in valid explanations, since we can infer from them that the set
is not coherent. It is however crucial that at least one appears so that we do not make a false conclusion.

All these considerations give rise to the following definition.

40

b

d

i

Figure 3.10: Other possible explanation on why
{b, d, i} is not coherent in Figure 2.3.

b

d

i

Figure 3.11: Other possible explanation on why
{b, d, i} is not coherent in Figure 2.3.

Definition 34. Let A = (A ,R) be an Argumentation Framework, S ⊆ A , and consider X = {(a, b) ∈
R | a, b ∈ S}. A subgraph (A ′,R′) of A is an answer to QExt

Coh for S on A if and only if

• A ′ = S

• R′ ⊆ X

• If X ̸= ∅, then R′ ̸= ∅

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Coh for S on A by ExplCoh(S).

Example. We have already seen that Figure 3.9 shows an answer to QExt
Coh for {b, d, i} on the Argumentation

Framework of Figure 2.3. Figures 3.10 and 3.11 depict other possible answers for the same question.

Once an answer to QExt
Coh is provided, the conformity check simply consists in verifying whether or not an

arc is displayed.2 In other terms, it consists in verifying whether or not the set of arcs is empty.

Notation. In the following, considering a set of arguments S and an explanation for Coherence for S
ExplCoh(S), we denote by CCoh the condition “there exists no arcs in ExplCoh(S)”.

Explanation for Conflict-freeness

Recall that the conflict-freeness semantics is only made of the Coherence principle. As such, we can simply
define an answer to QExt

CF for a set S as being a set containing only ExplCoh(S).

Definition 35. Let A = (A ,R) be an Argumentation Framework, and S ⊆ A . An answer to QExt
CF for S

on A is a set {ExplCoh(S)}.

Example. Figures 3.8 and 3.9 both display answers to QExt
CF on the Argumentation Framework of Figure 2.3,

for {a, f, i} and {b, d, i} respectively.

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

CF for S on A by ExplCF(S).

3.4.3 Explanation for Defence
Recall that a set of arguments respects the Defence principle if and only if all its arguments are acceptable
with respect to it. In particular, this means that for every argument that attacks one in the set, there is an

2Note that this is an inherently structural, and so visual property

41

argument in the set that attacks this attacker. Therefore, if we are to show why a set of arguments only
contains arguments that are acceptable with respect to it, we must exhibit a part of the graph highlighting
that all the attackers of this set are attacked in return. We begin by illustrating on some examples to give
the intuition, and then formally define these explanations.

a
b

c

d
e

f

h

i

j

Figure 3.12: Explanation on why {a, f, i} only
contain arguments that are acceptable with re-
spect to {a, f, i} in Figure 2.3. All the attackers
of a, i, and f are attacked in return.

b

c

d
e

f

h

i

j

Figure 3.13: Explanation on why {b, h, j} does
not only contain arguments that are acceptable
with respect to {b, h, j} in Figure 2.3. h is at-
tacked by d and j is attacked by e, while both d
and e are not attacked by b, h or j in return.

Example. Consider the Argumentation Framework of Figure 2.3 and the questions "Why does {a,f,i}
respect the Defence principle?" and "Why does {b,h,j} not respect the Defence principle?".
Figures 3.12 and 3.13 show the answers for the first and second questions respectively.

The idea here is to have a subgraph in which we make sure that, for every attacker of the set, if there is at
least one arc from an argument of the set to that attacker, then such an arc appears in the subgraph. Indeed,
the presence of such an arc is enough to conclude that the attacker we consider is being taken care of. Hence
the need to do so for every attacker. If no such arc exists, then none is displayed and we can conclude that
there is a hole in the defence of the set, and so that it does not respect the Defence principle. Additionally,
the subgraph should contain the arcs from the attackers to the set, to show that they are indeed attackers.
Note. In this situation, we may only focus on the arguments of the questioned set and its attackers, and so
forgo all the others. Additionally, we are not interested in attacks between two attackers of S, or between
two elements of S. So, we can only keep the arcs that go from an element of S to an attacker of S or vice
versa.
Note. We can make a similar observation as in the case of explanations for the Coherence principle, concerning
the arcs from the questioned set to its attackers. For each attacker, even if only one is enough, there may
very well be several of them (for instance, on Figure 3.12, both f and i attack d). Just as in the case of
explanations for the Coherence principle, we may in this situation choose how many we keep between one
and all of them, all these choices resulting in valid explanations. Yet again, it is crucial that at least one
appears, so that we do not make a false conclusion.

All these considerations give rise to the following definition.

Definition 36. Let A = (A ,R) be an Argumentation Framework, S ⊆ A , and consider X = {(b, a) ∈
R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. A subgraph (A ′,R′) of A is an answer
to QExt

Def for S on A if and only if

• A ′ = S ∪R−1(S)

• X ⊆ R′ ⊆ X ∪ Y

42

a
b

c

d
e

f

h

i

j

Figure 3.14: Other possible explanation on why
{a, f, i} only contains arguments that are accept-
able with respect to {a, f, i} in Figure 2.3.

a
b

c

d
e

f

h

i

j

Figure 3.15: Other possible explanation on why
{a, f, i} only contains arguments that are accept-
able with respect to {a, f, i} in Figure 2.3.

• ∀b ∈ R−1(S), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Def for S on A by ExplDef(S).

Example. We have already seen that Figure 3.12 shows an answer to QExt
Def for {a, f, i} on the Argumentation

Framework of Figure 2.3. Figures 3.14 and 3.15 depict other possible answers for the same question.

Once an answer to QExt
Def is provided, the conformity check consists in verifying whether or not every

attacker of S is attacked back by S. Since, by definition, in an answer to QExt
Def attackers of S can only be

attacked by elements of S, this reduces to verifying whether or not every attacker of S is attacked at all. In
other terms, it consists in verifying whether or not every attacker of S is not a source vertex.3

Notation. In the following, considering a set of arguments S and an explanation for Defence for S ExplDef(S),
we denote by CDef the condition “there exists no source vertex among the attackers of S in ExplCoh(S)”.

Explanation for Admissibility

Recall that the admissibility semantics is made of the Coherence and the Defence principles. As such, we
can define an answer to QExt

Adm for a set S as being a set containing ExplCoh(S) and ExplDef(S).

Definition 37. Let A = (A ,R) be an Argumentation Framework, and S ⊆ A . An answer to QExt
Def for S

on A is a set {ExplCoh(S),ExplDef(S)}.

Example. Figures 3.8 and 3.12 constitute an answer to QExt
Def on the Argumentation Framework of Figure 2.3,

for {a, f, i}.

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Adm for S on A by ExplAdm(S).

3.4.4 Explanation for Reinstatement
Recall that a set of arguments respects the Reinstatement principle if and only if all the arguments that are
acceptable with respect to it belong to it. In particular, this means that all the arguments for which the set

3Note that the presence of a source vertex is indeed a structural property.

43

attacks all the attackers should belong to it. However, in virtue of Definition 2, this also means that all the
arguments for which there exists no attacker should belong to the set as well.

Now, these two kinds of arguments are quite not similar by nature. The arguments for which there exists
attackers that the set attacks are connected to it via the binary relation of the graph, and always in the same
way: they are the arguments that belong to R+2(S). On the contrary, the arguments for which no attacker
exists may not be connected to the set, and even if they are, we may not have a unique way to reach them
all from the set. As such, we have decided to treat these two cases separately.

In practice, this means that we have split the Reinstatement principle into two sub-principles: the one
concerning the arguments for which there exists no attacker, and the one concerning the arguments for which
the set attacks all the attackers. We call these two principles Rein1 and Rein2, and for a set S, they have
the following meaning:

Reinstatement 1 (Rein1): All the unattacked arguments are in S
Reinstatement 2 (Rein2): All the arguments for which S attacks all the attackers are in S

Of course, these two sub-principles can be considered as principles on their own. Thus we can use to
consider concepts that are defined regarding Abstract Argumentation principles, for instance the questions
QExt

Rein1 and QExt
Rein2. As they make together the Reinstatement principle, following our methodology, we will

define an answer to QExt
Rein as a set containing an answer to QExt

Rein1 and an answer to QExt
Rein2.

f

Figure 3.16: Explanation on why {f, h, j} con-
tains all the unattacked arguments in Figure 2.2.
Only f is unattacked and it is part of the set.

f

Figure 3.17: Explanation on why {b} does not
contain all the unattacked arguments in Fig-
ure 2.2. Only f is unattacked and it is not part
of the set.

f

h i j

Figure 3.18: Explanation on why {f, h, j} con-
tains all the arguments for which it attacks all
the attackers in Figure 2.2. f is unattacked and
j attacks i, thus making h acceptable, and h is
part of the set.

a

b

c

d

e

f

h

Figure 3.19: Explanation on why {b} does not
contain all the arguments for which it attacks all
the attackers in Figure 2.2. b attacks c, thus de-
fending e but it is not enough to make acceptable
since it is also attacked by f and h, so e should
not be in the set, which is the case. However,
attacking c makes d acceptable, so d should be in
the set, which is not the case.

Example. Consider the Argumentation Framework of Figure 2.2 and the questions "Why does {f,h,j}
respect the Reinstatement principle?" and "Why does {b} not respect the Reinstatement prin-
ciple?". Figures 3.16 and 3.18 show the answer for the first question, while Figures 3.17 and 3.19 show the
answer for the second question.

44

Explanation for Rein1

In the case of Rein1, the idea is to have a subgraph in which we make sure that, if an unattacked argument
does not belong to the questioned set, then such an argument appears in the subgraph. Indeed, the presence
of such an argument is enough to conclude that there exists an argument that is acceptable with respect to
the set and does not belong to it.
Note. In this situation, we may only focus on the arguments that are not attacked, and forgo all the others.
Additionally, since the arguments displayed are unattacked, there can’t exist any interaction between them,
thus we will always have an empty set of arcs.
Note. We can make a similar observation as in the previous cases, concerning the unattacked arguments
that are not in the set. Even if only one is enough, there may very well be several of them. Just as in the
previous cases, we may in this situation choose how many we keep between one and all of them, all these
choices resulting in valid explanations. Yet again, it is crucial that at least one appears, so that we do not
make a false conclusion.

All these considerations give rise to the following definition.

Definition 38. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {a ∈
A | R−1(a) = ∅}. A subgraph (A ′,R′) of A is an answer to QExt

Rein1 for S on A if and only if

• S ∩X ⊆ A ′ ⊆ X

• R′ = ∅

• If (A \ S) ∩X ̸= ∅, then ∃a ∈ (A \ S) ∩X with a ∈ A ′

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Rein1 for S on A by ExplRein1(S).

Example. Consider the Argumentation Frameworks of Figures 2.1 and 2.3, and any set of arguments in those
frameworks. The explanation on why this set contains all the unattacked arguments would be the empty
graph for either of these frameworks. Indeed, notice that neither of them contains any unattacked argument.

Once an answer to QExt
Rein1 is provided, the conformity check simply consists in verifying whether or not

every argument displayed belongs to S.

Notation. In the following, considering a set of arguments S and an explanation for Rein1 for S ExplRein1(S),
we denote by CReins1 the condition “all the arguments of ExplRein1(S) belong to S”.

Explanation for Rein2

In the case of Rein2, the idea is to have a subgraph in which we make sure that, if an argument, for which
the questioned set attacks all the attackers, does not belong to the set, then such an argument appears in
the subgraph. Indeed, the presence of such an argument is enough to conclude that there exists an argument
that is acceptable with respect to the set and does not belong to it. To get these arguments, we may consider
those for which the set attacks at least one attacker, in other terms, the arguments that the set defends.
These are the arguments reachable in two steps of the successor function starting from the set. We should
then also consider all the attackers of these arguments.
Note. In this situation, we may focus on the arguments of the questioned set, the arguments that it defends,
and the attackers of those arguments. Additionally, we are only interested in attacks from the set to the
attackers (to know whether or not the defended arguments are acceptable) and from the attackers to the
defended arguments (to show that they are indeed attackers).
Note. We can make a similar observation as in the previous cases, concerning the attacks from the set to the
attackers of the arguments it defends. For each attacker, even if only one is enough, there may very well be
several of them. Just as in the previous cases, we may in this situation choose how many we keep between
one and all of them, all these choices resulting in valid explanations. Yet again, it is crucial that at least one
appears, so that we do not make a false conclusion.

45

a

b

c

d

e

f

h

Figure 3.20: Possible explanation on why {b, d}
contains all the arguments for which it attacks
all the attackers in Figure 2.2

a

b

c

d

e

f

h

Figure 3.21: Other possible explanation on why
{b, d} contains all the arguments for which it at-
tacks all the attackers in Figure 2.2.

All these considerations give rise to the following definition.

Definition 39. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {(b, c) ∈
R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. A subgraph (A ′,R′)
of A is an answer to QExt

Rein2 for S on A if and only if

• A′ = S ∪R+2(S) ∪R−1(R+2(S))

• X ⊆ R′ ⊆ X ∪ Y

• For every b ∈ R−1(R+2(S)), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Rein2 for S on A by ExplRein2(S).

Example. Figures 3.20 and 3.21 depict two answers to QExt
Rein2 for {b, d} on the Argumentation Framework

of Figure 2.2.
Once an answer to QExt

Rein2 is provided, the conformity check consists in verifying whether or not every
argument defended by S that is not in S has an attacker that is not attacked by S. Since, by definition, in
an answer to QExt

Rein2 these attackers can only be attacked by elements of S, this reduces to verifying whether
or not every argument defended by S that is not in S has an attacker that is not attacked at all. In other
terms, it consists in verifying whether or not every argument defended by S that is not in S has an attacker
that is a source vertex.

Notation. In the following, considering a set of arguments S and an explanation for Rein2 for S ExplRein2(S),
we denote by CReins2 the condition “all the arguments that S defends but are not in S are attacked by a
source vertex in ExplRein2(S)”.

Explanation for Completeness

Recall that the complete semantics is made of the Coherence, Defence and Reinstatement principles, the last
one being divided into the Rein1 and Rein2 sub-principles. As such, we can define an answer to QExt

Co for a
set S as being a set containing ExplCoh(S), ExplDef(S), ExplRein1(S) and ExplRein2(S).

Definition 40. Let A = (A ,R) be an Argumentation Framework, and S ⊆ A . An answer to QExt
Co for S

on A is a set {ExplCoh(S),ExplDef(S),ExplRein1(S),ExplRein2(S)}.

Example. Figures 3.22, 3.23, 3.17 and 3.19 constitute an answer to QExt
Co on the Argumentation Framework

of Figure 2.2, for {b}. In particular, Figures 3.22 and 3.19 show that {b} respects the principles of Coherence
and Defence respectively, but Figures 3.17 and 3.23 show that {b} does not respect the Rein1 and Rein2
principles respectively.

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Co for S on A by ExplCo(S).

46

b

Figure 3.22: Explanation on why {b} is coherent
in Figure 2.2

a

b

Figure 3.23: Explanation on why {b} only con-
tains arguments that are acceptable with respect
to {b} in Figure 2.2.

3.4.5 Explanation for Complement Attack
Recall that a set of arguments respects the Complement Attack principle if and only if all the arguments
that do not belong to the set are attacked by an argument of the set. Consequently, if we are to show why a
set of arguments attacks its complement, we must show a part of the graph highlighting the attacks from this
set to its complement. We begin by illustrating on some examples the intuition, and then formally define
these explanations.

a
b

c

d
e

f

g

h

i

j

Figure 3.24: Explanation on why {a, f, i} attacks
its complement in Figure 2.3. All arguments that
are not a, f or i are attacked by either a, f or i.

a
b

c

d
e

f

g

h

i

j

Figure 3.25: Explanation on why {b, h, j} does
not attack its complement in Figure 2.3. d and e
are not attacked by b, h or j.

Example. Consider the Argumentation Framework of Figure 2.3 and the questions "Why does {a,f,i}
respect the Complement Attack principle?" and "Why does {b,h,j} not respect the Complement
Attack principle?". Figures 3.24 and 3.25 show the answers for the first and second questions respectively.

The idea here is to have a subgraph in which we make sure that, for every argument that is not in the
considered set, if there is at least one arc from an argument of the set to that outsider, then such an arc
appears in the subgraph. Indeed, the presence of such an arc is enough to conclude that the outsider we
consider is being dealt with. As a consequence, it is needed to do so for every argument that is not in the
set. If no such arc exists, none is displayed and we can conclude that some outsider is being left aside, and
so that the set does not respect the Complement Attack principle.
Note. In this situation, it seems best to focus both on arguments of the questioned set and the arguments
that do not belong to it, that is to say, all the arguments. However, we are only interested in the arcs that
go from the arguments of the set to those that are not in it, and so forgo all the others.
Note. Similarly to the previous cases, we can observe that, for each argument that is not in the set, even
though only one arc from an argument of the set is enough, there may be several of them (for instance, on
Figure 3.24, both a and f attack e). In such a case, we may again choose how many arcs we keep, between
one and all of them, all these choices resulting in valid explanations. Once again, it is crucial that at least
one appears, so that we do not make a false conclusion.

47

a
b

c

d
e

f

g

h

i

j

Figure 3.26: Other possible explanation on why
{a, f, i} attacks its complement in Figure 2.3.

a
b

c

d
e

f

g

h

i

j

Figure 3.27: Other possible explanation on why
{a, f, i} attacks its complement in Figure 2.3.

All these considerations give rise to the following definition.

Definition 41. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and X = {(a, b) ∈ R | a ∈ S, b /∈
S}. A subgraph (A ′,R′) of A is an answer to QExt

CA for S on A if and only if

• A ′ = A

• R′ ⊆ X

• ∀b ∈ A \ S, if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S
Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

CA for S on A by ExplCA(S).

Example. We have already seen that Figure 3.24 shows an answer to QExt
CA for {a, f, i} on the Argumentation

Framework of Figure 2.3. Figures 3.26 and 3.27 depict other possible answers for the same question.
Once an answer to QExt

CA is provided, the conformity check consists in verifying whether or not every
argument that is not in S is attacked by S. Since, by definition, in an answer to QExt

CA, arguments not in
S can only be attacked by elements of S, this reduces to verifying whether or not every argument not in S
is attacked at all. In other terms, it consists in verifying whether or not every argument not in S is not a
source vertex. In addition, since the attacks from S to arguments not in S are the only attacks in the graph,
it consists in fact in verifying whether or not every argument not in S is not an isolated vertex.4

Notation. In the following, considering a set of arguments S and an explanation for Complement Attack
for S ExplCA(S), we denote by CCA the condition “there exists no isolated vertex among the arguments that
do not belong to S in ExplCA(S)”.

Explanation for Stability

Recall that the stable semantics is made of the Coherence and the Complement Attack principles. As such,
we can define an answer to QExt

Sta for a set S as being a set containing ExplCoh(S) and ExplCA(S).

Definition 42. Let A = (A ,R) be an Argumentation Framework, and S ⊆ A . An answer to QExt
Sta for S

on A is a set {ExplCoh(S),ExplCA(S)}.
Example. Figures 3.8 and 3.24 constitute an answer to QExt

CA on the Argumentation Framework of Figure 2.3,
for {a, f, i}.
Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments, we will denote an answer to QExt

Sta for S on A by ExplSta(S).
4Note that the presence of an isolated vertex is indeed a structural property.

48

3.4.6 Results on Explanations for Semantics Extensions
In the previous section, we formally defined explanations for some of the different principles that constitute
Abstract Argumentation semantics. We’ve illustrated them using examples and informally gave directions
as to how to use them to explain. In particular, we have given what we called conformity checks that rely
on structural properties of the explanations, so that these properties may be seen on the explanation graphs.
As they were given in an informal way, nothing guarantees yet that these conformity checks are always valid,
no matter the explanation we might consider in the explanation class of each principle. In this section, we
therefore provide formal results that demonstrate the validity of each conformity check for its associated
class of explanations.

Conformity checks and visual behavior

We begin with the Coherence principle. Recall that the conformity check consists in checking whether an
arc exists in the explanation, the idea being that if one does, then we may conclude that the questioned
set does not respect the principle. The following theorem indicates that this conformity check is correct for
every explanation of the class corresponding to the Coherence principle.

Theorem 1. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCoh(S) be an explanation
for Coherence for S on A. S is conflict-free if and only if ExplCoh(S) satisfies CCoh.

This theorem indeed states that, in order to know whether a set S of arguments is conflict-free or not
(semantic property), one might just compute an explanation for Coherence ExplCoh(S) and see whether
arcs are present or not (structural property). Interestingly, since this is an equivalence result, if we know
beforehand that S is conflict-free, we can predict the appearance of ExplCoh(S) (i.e. being devoid of arcs).

In the case of the Defence principle, recall that the conformity check consists in verifying whether or not
there exists a source vertex among the attackers of the questioned set. The following theorem indicates that
this conformity check is correct for every explanation of the class corresponding to the Defence principle,
provided that the questioned set is conflict-free.

Theorem 2. Let A = (A ,R) be an Argumentation Framework, S ⊆ A be a conflict-free set of arguments
and ExplDef(S) be an explanation for Defence for S on A. S ⊆ FA(S) if and only if ExplDef(S) satisfies
CDef.

This theorem states that, in order to know whether a conflict-free set S of arguments contains only
acceptable arguments, one might just compute an explanation for Defence ExplDef(S) and see whether there
exists a source vertex among the attackers of S or not. As we have an equivalence result, this also means
that we can predict what the explanation will look like if computed on a set that we know to be admissible.
Note. The condition on the set being conflict-free to effectively use the explanation might be surprising.
Recall however that an explanation for Defence is never used without an explanation for Coherence. Thus,
one might want to look first at an explanation for Coherence to verify whether the questioned set is conflict-
free, and if it is the case, then look at an explanation for Defence.

In addition to Theorem 2, we have an additional result concerning the visual behavior of explanations
for Defence. Recall that the idea is consider a set, its attackers, and the attacks that from one to the other
and vice versa. Hence, we can feel that there is an inherent separation between two groups of arguments in
the explanation. The following proposition formalizes this intuition.

Proposition 4. Let A = (A ,R) be an Argumentation Framework and S ⊆ A If S is conflict-free, then
ExplDef(S) is a bipartite graph with part S.56

As such, if an explanation for Defence is computed on a set that is conflict-free, it is possible to display
it so that its vertices are separated into two groups, with the arcs always going from one group to the other.
Alternatively, if one computes an explanation for Defence for a set and if it does not result in a bipartite
graph with the set as one of its parts, we may conclude that the set is not conflict-free.

5The other part is then obviously R−1(S)
6S and R−1(S) might not be the only possible partition of the set of arguments, but in this case it is always one.

49

a

b

c

d

e

f

hi

j

Figure 3.28: The graph of Figure 3.12 rearranged to highlight its bipartite nature

Example. Consider the explanation for Defence for {a, f, i} on the Argumentation Framework of Figure 2.3
depicted on Figure 3.12. According to Table 2.3, {a, f, i} is conflict-free. Thus the graph of Figure 3.12 is
a bipartite graph with part {a, f, i}. Figure 3.28 shows a different display of Figure 3.12 to highlight its
bipartite nature.

Regarding the Reinstatement principle, recall that we have divided it into two sub-principles: Rein1 and
Rein2, with their corresponding explanations. For Rein1, the idea is to verify that every argument displayed
belongs to the questioned set. For Rein2, the idea is that the arguments that are defended by S but not in
S must have an attacker that is a source vertex. The following theorem formalizes the correctness of both
these conformity checks for the Reinstatement principle.

Theorem 3. Let A = (A ,R) be an Argumentation Framework, S ⊆ A , ExplRein1(S) be an explanation
for Rein1 for S on A and ExplRein2(S) be an explanation for Rein2 for S on A. If ExplRein1(S) satisfies
CReins1 and ExplRein2(S) satisfies CReins2, then FA(S) ⊆ S.

This theorem states that by computing ExplRein1(S) and verifying that all its vertices are in S, and by
computing ExplRein2(S) and verifying that the arguments that S defends but are not in S are all attacked
by a source vertex, one verifies that S contains all the arguments that are acceptable with respect to it.

Notice that, on the contrary of previous results, this is not an equivalence result. We also have a result
that reverses the implication, but it does not rely on the same conditions.

Theorem 4. Let A = (A ,R) be an Argumentation Framework, S ⊆ A , ExplRein1(S) be an explanation for
Rein1 for S on A and ExplRein2(S) be an explanation for Rein2 for S on A. If FA(S) ⊆ S, then ExplRein1(S)
satisfies CReins1 and ExplRein2(S) satisfies C ′

Reins2, with C ′
Reins2 being the condition “all the arguments that

S defends but are not in S are attacked by a source vertex or an argument of R+2(S) in ExplRein2(S)”.

This theorem states that if we compute ExplRein1(S) on a set S of arguments which we know contains all
the arguments that are acceptable with respect to it, we know that all the arguments in ExplRein1(S) will
be contained in S. Likewise, if we compute ExplRein2(S) on a similar set, we know that all the arguments
that S defends but which are not in S will be attacked by a source vertex or a an argument that S defends.

From theorems 3 and 4 follows the next corollary, which shows an equivalence result for the Reinstatement
principle:

Corollary 2. Let A = (A ,R) be an Argumentation Framework, S ⊆ A be a set of arguments such
that R+2(S) is conflict-free, ExplRein1(S) be an explanation for Rein1 for S on A and ExplRein2(S) be an
explanation for Rein2 for S on A. FA(S) ⊆ S if and only if ExplRein1(S) satisfies CReins1 and ExplRein2(S)
satisfies CReins2.

50

a

b

c

d

e

f

g

h

i j

Figure 3.29: The graph of Figure 3.24 rearranged to highlight its bipartite nature

Finally, in the case of the Complement Attack principle, recall that the conformity check consists in
verifying whether there is an isolated vertex among the arguments that do not belong to the questioned
set. The following theorem indicates that this conformity check is correct for every explanation of the class
corresponding to the Complement Attack principle.

Theorem 5. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCA(S) be an explanation
for Complement Attack for S on A. A \ S ⊆ R+1(S) if and only if ExplCA(S) satisfies CCA.

This theorem states that, in order to know if a set S of arguments attacks its complement or not, one
might just compute ExplCA(S) and look at the arguments not in S. If one of them is isolated, S does not
attack its complement, otherwise it does. Again, since this is an equivalence result, if we compute ExplCA(S)
on a set that we know to attack its complement, we can predict how ExplCA(S) will look like.

As for the Defence principle, we have an additional result regarding the visual behavior of explanations
for Complement Attack. Indeed, recall that the idea is to separate the arguments between those that belong
to the questioned set and those that do not, while only considering the attacks that go from the set to its
complement. Again, we can sense that a clear separation between two groups of arguments can be made.
The following proposition formalizes this intuition.

Proposition 5. Let A = (A ,R) be an Argumentation Framework and S ⊆ A . ExplCA(S) is a bipartite
graph with part S78 and every argument of S is a source vertex in ExplCA(S).9

Thus, it is possible to display an explanation for the Complement Attack principle so that its vertices
are separated in two groups, with the arcs always going from one group to the other.

Remark. Notice that Proposition 5, on the contrary of Proposition 4, does not require a condition on the
set of arguments. Moreover, it is more precise in that we have an additional result on the status of the
arguments in the explanation, which is not the case for Proposition 4.

Example. Consider the explanation for Complement Attack for {a, f, i} on the Argumentation Framework
of Figure 2.3 depicted on Figure 3.24. The graph of Figure 3.24 is a bipartite graph with part {a, f, i}.
Figure 3.29 shows a different display of Figure 3.24 to highlight its bipartite nature.

7The other part is then obviously A \ S.
8S and A \ S might not be the only possible partition of the set of arguments, but in this case it is always one.
9By Definition 27, this means in particular that every argument of A \ S is a sink vertex.

51

Properties on the classes of explanations

Now that we have formalized the correctness of the conformity checks, linking structural (and so, visual)
properties to semantic ones, as well as giving additional results regarding the visual behavior of some expla-
nations, we turn to the study of other types of properties. These additional properties help to identify specific
explanations inside a given class, some of them that could be deemed undesirable, and help us understand
how these classes of explanations are organised. Let us first define the properties that we investigate.

Minimality, Maximality A minimal (respectively maximal) explanation is an explanation which con-
tains the least (respectively all the) possible amount of information. In a sense, a minimal explanation only
provides what is required to explain whereas a maximal explanation in fact provides everything that might
be relevant to explain, even if it might be redundant.

Definition 43. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1,
Rein2, CA} be an Abstract Argumentation principle. Explπ(S) is a minimal (respectively maximal) answer
to XVerπ if and only if there is no other Explπ(S)′ such that Explπ(S)′ is a strict subgraph (respectively
supergraph) of Explπ(S).

Emptyness The notion of an empty explanation is one that should be avoided when providing explana-
tions, in the sense that it somewhat represents the incapacity of the system to answer the question that has
been asked.

Definition 44. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1,
Rein2, CA} be an Abstract Argumentation principle. Explπ(S) is an empty answer to XVerπ if and only if
Explπ(S) = (∅,∅).

Uniqueness We consider an explanation to be unique when there is only one of its kind. Although we
defined classes of explanations that can represent all the different points of view that could emerge as to how
to answer a question, in some situations, there can only be one way to answer that question.

Definition 45. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1,
Rein2, CA} be an Abstract Argumentation principle. Explπ(S) is a unique answer to XVerπ if and only if
there is no Explπ(S)′ such that Explπ(S)′ ̸= Explπ(S).

The first results concern empty explanations. The following theorem shows that although empty expla-
nations can occur, they only do so in very specific situations.

Theorem 6. Let A = (A ,R) be an Argumentation Framework and S ⊆ A . (∅,∅) is an answer to

1. QExt
π for S on A with π ∈ {Coh,Def,Rein2} if and only if S = ∅.

2. QExt
Rein1 for S on A if and only if {a ∈ A | R−1(a) = ∅} = ∅.

3. QExt
CA for S on A if and only if A = (∅,∅).

As such, the empty explanation is, and can only be, a valid explanation when the question QExt
π is asked

on an empty set for the principles Coh, Def and Rein2, and when it is asked on an empty Argumentation
Framework for the principle CA. In the case of the principle Rein1, this occurs when the set of unattacked
arguments in the initial Argumentation Framework is empty, which definitely less specific than for the other
principles, and a lot more likely to happen in our opinion. In practice, we consider that it means that when
an explanation is required for the complete semantics on an Argumentation Framework without unattacked
arguments, we may skip the explanation for Rein1 and only display the three other explanations (recall
Definition 40).

Not only is the empty explanation a valid explanation in specific cases, it is itself a very specific one, as
shows the following result.

52

Theorem 7. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA} be an Abstract Argumentation principle. If (∅,∅) is an answer to QExt

π for S on A, then it is unique.

This theorem states that the empty explanation is in fact so specific that, when it occurs, it is the only
possible explanation.

We now turn to maximal explanations. As it turns out, for every Abstract Argumentation principle that
we consider, there is only one maximal explanation. This is the object of the next theorem.

Theorem 8. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA} be an Abstract Argumentation principle. If Explπ(S) is a maximal explanation for π, then it is the
unique maximal explanation for π.

Since there exists only one maximal explanation for every Abstract Argumentation principle that we
consider, we introduce a dedicated notation for referring to them.

Notation. In the following, considering an arbitrary Argumentation Framework A and given a set S of
arguments and an Abstract Argumentation principle π, we will denote a maximal explanation for π for S
on A by MaxExplπ(S).

We might then consider minimal explanations and wonder if a similar result exists for them as well. In
general, there can be several minimal explanations for every principle.

Example. Figures 3.10 and 3.11 depict different minimal explanations for Coherence for {b, d, i} on the
Argumentation Framework of Figure 2.3.

So we do not have a uniqueness result on minimal explanations. Nevertheless, we can obtain differ-
ent interesting results for them. In particular, the following lemmas give us size boundaries for minimal
explanations of each explanation class.

Lemma 1. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCoh(S) = (A ′,R′) be an
explanation for Coh. ExplCoh(S) is a minimal explanation for Coh if and only if |R′| ≤ 1.

Lemma 2. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplDef(S) = (A ′,R′) be an
explanation for Def. ExplDef(S) is a minimal explanation for Def if and only if for all x ∈ R−1(S) \ S,
|R′−1(x)| ≤ 1.

Lemma 3. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplRein1(S) = (A ′,R′) be an
explanation for Rein1. ExplRein1(S) is a minimal explanation for Rein1 if and only if |A ′ \ S| ≤ 1.

Lemma 4. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplRein2(S) = (A ′,R′) be
an explanation for Rein2. ExplRein2(S) is a minimal explanation for Rein2 if and only if for all x ∈
R−1(R+2(S)) \R+2(S), |R′−1(x)| ≤ 1.

Lemma 5. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCA(S) = (A ′,R′) be an
explanation for CA. ExplCA(S) is a minimal explanation for CA if and only if for all x /∈ S, |R′−1(x)| ≤ 1.

Finally, minimal and maximal explanations have a particular relation, which is the object of the next
theorem.

Theorem 9. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA} be an Abstract Argumentation principle. Consider a maximal explanation for π Explπ(S), and let M
be the set of all minimal explanations for π. Then Explπ(S) =

⋃
G∈M G.

This last theorem states that, for each Abstract Argumentation principle that we consider in the present
work, the maximal explanation of the class related to this principle is exactly the union (in the sense of the
graph union operator defined in Definition 26) of all the minimal explanations. This gives us some insight
as to how the class of explanations is organized regarding the inclusion (i.e. subgraph) relation.

53

3.4.7 Computing Explanations for Semantics Extensions
We now turn to how to obtain an answer to a question QExt

π for some π ∈ {Coh, Def, Rein1, Rein2, CA}. To
do so, first recall the context in which we place ourselves (Hypothesis (H1)). Taking this into consideration,
here are the elements that we consider reasonable to use to compute our explanations:

1. The initial Argumentation Framework

2. The set of arguments for which to compute the explanation

3. The Abstract Argumentation principle for which to compute the explanation

Now, using these elements, to compute explanations, we take advantage of the inner organization of
classes of explanation regarding the inclusion relation (cf. Theorem 9). The idea is to have a way to obtain
maximal explanations (which are unique in virtue of Theorem 8), and a way to obtain the other explanations
from the maximal ones.

To get maximal explanations from the elements we listed above, we give them a characterization in terms
of either their arguments, or their attack relation.

Lemma 6. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {(a, b) ∈ R | a, b ∈
S}. If ExplCoh(S) = (A ′,R′) is a maximal explanation for Coh, then X ⊆ R′.

Lemma 7. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(S)}. If ExplDef(S) = (A ′,R′) is a maximal explanation for Def, then Y ⊆ R′.

Lemma 8. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {a ∈ A | R−1(a) =
∅}. If ExplRein1(S) = (A ′,R′) is a maximal explanation for Rein1, then X ⊆ A ′.

Lemma 9. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(R+2(S))}. If ExplRein2(S) = (A ′,R′) is a maximal explanation for Rein2, then Y ⊆ R′.

Lemma 10. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {(a, b) ∈ R | a ∈
S, b /∈ S}. If ExplCA(S) = (A ′,R′) is a maximal explanation for CA, then X ⊆ R′.

Using these Lemmas in combination with Definitions 34, 36, 38, 39 and 41, we see that we can easily and
efficiently obtain maximal explanations only using the induced subgraph and spanning subgraph operators
(Definitions 24 and 25) on the initial Argumentation Framework. Some maximal explanations require both
operators (using the induced subgraph first, then the spanning subgraph), while others require only the use
of one of them. In particular, maximal explanations for Coherence and Rein1 are only induced subgraphs,
while the maximal explanation for Complement Attack is only a spanning subgraph.

Next, from the maximal explanations, we give algorithms to compute minimal explanations. These algo-
rithms all follow the same schema. The idea is to start from a maximal explanation and to gradually remove
elements until a minimal explanation is obtained. We give one algorithm for each Abstract Argumentation
principle that we consider, and name them Algπ for π ∈ {Coh,Def,Rein1,Rein2,CA}.

AlgCoh Computation of a minimal answer to QExt
Coh

Require: A = (A ,R), S ⊆ A
1: (A ′,R′)← MaxExplCoh(S)
2: while |R′| > 1 do
3: (x, y)← choose(R′)
4: R′ ← R′ \ {(x, y)}
5: end while
6: return (A ′,R′)

The following theorem states that our algorithms are sound and complete for the computation of minimal
explanations.

54

AlgDef Computation of a minimal answer to QExt
Def

Require: A = (A ,R), S ⊆ A
1: (A ′,R′)← MaxExplDef(S)
2: for y ∈ R−1(S) \ S do
3: while |R′−1(y)| > 1 do
4: x← choose(R′−1(y))
5: R′ ← R′ \ {(x, y)}
6: end while
7: end for
8: return (A ′,R′)

AlgRein1 Computation of a minimal answer to QExt
Rein1

Require: A = (A ,R), S ⊆ A
1: (A ′,R′)← MaxExplRein1(S)
2: while |A ′ \ S| > 1 do
3: x← choose(A ′ \ S)
4: A ′ ← A ′ \ {x}
5: end while
6: return (A ′,R′)

Theorem 10. Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA}. Algorithm Algπ using A and S as inputs is sound and complete for the computation of a minimal
explanation for π.

To finish with, we would like to point out that Algorithms Algπ can easily be adapted to compute not a
minimal explanation, but an intermediate one, which is neither minimal, nor maximal. To do so, it suffices to
stop the removal process before the condition of the associated While instruction is reached. By arbitrarily
doing so, we can obtain any intermediate explanation. As such, we have a process to obtain any explanation,
given an initial Argumentation Framework, a set of arguments and an Abstract Argumentation principle
among {Coh,Def,Rein1,Rein2,CA}.

3.5 Visual Explanations for Extension Membership
In the previous section (3.4), we provided explanations for some Abstract Argumentation semantics. Recall
that, relying on Hypothesis (H2), we did so by providing answers to questions asked by some user, these
questions being, for some set of arguments S and some semantics σ: "Why is S [not] a σ extension?".

AlgRein2 Computation of a minimal answer to QExt
Rein2

Require: A = (A ,R), S ⊆ A
1: (A ′,R′)← MaxExplRein2(S)
2: for y ∈ R−1(R+2(S)) \R+2(S) do
3: while |R′−1(y)| > 1 do
4: x← choose(R′−1(y))
5: R′ ← R′ \ {(x, y)}
6: end while
7: end for
8: return (A ′,R′)

55

AlgCA Computation of a minimal answer to QExt
CA

Require: A = (A ,R), S ⊆ A
1: (A ′,R′)← MaxExplCA(S)
2: for y ∈ A \ § do
3: while |R′−1(y)| > 1 do
4: x← choose(R′−1(y))
5: R′ ← R′ \ {(x, y)}
6: end while
7: end for
8: return (A ′,R′)

Recall as well the context, given by Hypothesis (H1), in which these questions are asked and answered:

• A contextual Argumentation Framework A = (A ,R)

• A contextual semantics σ used to compute some result

• A contextual result Res ⊆ A

Now, consider this observation: in this particular context, question QExt
σ (in the case where S = Res) more

or less comes down to challenging the entire result. In other terms, QExt
σ requires reasons that makes S as a

whole valid regarding semantics σ. In our context, it seems reasonable to consider that, in some situations,
the user would wish to challenge, instead of the entire result, a part of the result only. To do so, the user would
ask a question, different from QExt

σ , requiring why some part of the result is in it. We call them questions
on extension membership. Still relying on Hypothesis (H2), their answers would then be explanations for
extension membership.

What could these questions be? We take them to be the questions: "Why is S accepted?". Note that,
just like QExt

σ , we can also consider the negative form of this question, that is: "Why is S not accepted?".
Now, we could be tempted to interpret the term “accepted” as referring to the notion of credulous / skeptical
acceptance. In our opinion, this is not the case here. Recall that, in our context, the user asks their question
after being presented some result, so, most likely, in reaction to it. Considering this, we find more natural
to interpret "Why is S accepted?" as "Why is S a part of the result?". Similarly, "Why is S not
accepted?" would then be "Why is S not a part of the result?".

Remains the problem of answering these questions. What elements to give as an answer? To decide this,
we must rely on what they mean. As we already discussed, these questions require elements that show why
a set of arguments S is either part of the result or not. There could be several ways to do so. Consider the
question "Why is S accepted?". To answer it, one could think of showing that S does not come at the
expense of the principles that constitute the semantics σ used to compute the result Res. So, for instance,
in the case of σ being admissibility, one could show that S is not in conflict with itself and the rest of Res,
and that it is defended, again either by itself or the rest of Res. Please note that this is not exactly like
showing that Res as a whole is admissible. It is more like doing a focus on S, keeping in mind the underlying
principles of σ, here taken to be admissibility. In a sense, that would be showing that S “has the right to be
in Res”.

Following on this vision, our take is instead to take the opposing view and show that S “does not have
the right not to be here”. Again, please note that this is not exactly the same as what was discussed just
before. Indeed, in the approach we choose, the idea is to focus on S by showing that Res cannot hold as
a whole without it. In other terms, answering the question "Why is S accepted?" is showing that S is a
necessary part of Res. With a similar reasoning, answering "Why is S not accepted?" is then showing that
S is incompatible with Res. This is thus what we will aim at showing when answering these questions in the
following.

56

We can go even further regarding questions on extension memberships. From our previous discussion,
we interpret the question "Why is S accepted?" as requiring the elements that show that S is necessary in
Res. Recall that this question is, in our context, asked in reaction to Res being presented to the user. From
this, we would assume that the user disagrees with S being part of the result. Similarly, from the question
"Why is S not accepted?", we could assume that the user disagrees with S not being part of the result.
But what if the user wishes to express both disagreements at the same time?

Indeed, consider the questions "Why is S accepted and not S′?" and "Why is S not accepted and
not S′?". They are slightly modified versions of the questions considered before. In particular, they are
contrastive. Of course, in both cases, the contrast is made on S. That is to say, S′ is brought in opposition
to S. It seems clear that from the question "Why is S accepted and not S′?" we could assume that the
user disagrees with S being part of the result and S′ not being part of it. Similarly, from the question "Why
is S not accepted and not S′?" we could assume that the user disagrees with S not being part of the
result and S′ being part of it.

These are thus the questions to which we will aim to provide answers in this section. We now proceed to
define notations for them. To do so, we first distinguish between contrastive and non-contrastive questions.
Then, we take into account the presence or the absence of a negation on the property of being “accepted”.
We will call “positive” the questions that refer to being “accepted” and “negative” the questions that refer to
being “not accepted”. So, given two sets of arguments S and S′, we are interested in the following questions.

QNCPMem
σ (non-constrastive positive): "Why is S accepted?"

QNCNMem
σ (non-constrastive negative): "Why is S not accepted?"

QCPMem
σ (constrastive positive): "Why is S accepted and not S′?"

QCNMem
σ (constrastive negative): "Why is S not accepted and not S′?"

3.5.1 Non-contrastive Questions
We begin by addressing the case of questions in which no contrast is made, i.e. questions of the form "Why
is S accepted?" and "Why is S not accepted?". Recall that we consider these questions to ask for the
reasons that make S a necessary part of, or not possible to include in respectively, the result Res. Assuming
that S is a necessary part of the result, one way to show it is to show that Res without S is not a valid
result anymore. Likewise, assuming that S cannot be included in the result, one way to show it is to show
that Res to which we add S is not a valid result anymore.

Positive Non-contrastive Questions

Recall that, by Hypothesis (H1), Res was obtained by computing an extension of some semantics σ on
an Argumentation Framework. Thus, showing that Res without S is not a valid result anymore reduces
to showing that Res \ S is not an extension of the σ semantics in the Argumentation Framework that we
consider. This is precisely what the explanations we defined in Section 3.4 are for.

Definition 46. Let A = (A ,R) be an Argumentation Framework, Res, S ⊆ A and σ ∈ {CF,Adm,Co,Sta}
be an Abstract Argumentation semantics. An answer to QNCPMem

σ for S on A and Res is an answer to
QExt

σ for Res \ S on A.

Note. Note that, extrapolating from Definition 46, considering an Argumentation Framework A, a result Res
of some semantics σ, and some set of arguments S, we may consider the question "Why is S accepted?" to
be in fact the question "Why is Res \ S not a σ extension?".

Example. Consider the Argumentation Framework of Figure 2.3 and the result Res = {a, f, i} for the
admissible semantics. Suppose the user asks the question "Why is {a} accepted?". Figures 3.30 and 3.31
show the corresponding answer: {a, f, i} without a is not admissible. Figure 3.30 shows that, without a, the
result would still respect the Coherence principle. However, Figure 3.31 shows that, without a, the result

57

f

i

Figure 3.30: Explanation on why {a, f, i} with-
out a respects the Coherence principle. The con-
formity check is verified: there is no arc in the
explanation.

c

e

f

h

i

j

Figure 3.31: Explanation on why {a, f, i} with-
out a does not respect the Defence principle. The
conformity check is not verified: c, a attacker of
f is a source vertex in the explanation.

would not respect the Defence principle. As such, in this particular context (Argumentation Framework,
result, semantics), a is necessary in the result presented by the system because it plays a role in how the
result defends itself as a whole.
Note. Notice that, in the previous example, although we considered a question on only one argument (a),
we wrote the question as if it were on the singleton set {a}. This is because questions have been introduced
as being on sets in Section 3.2.1. It does not seem unreasonable however to imagine that questions may, and
will, be asked on only one argument. Thus, in the following, we identify questions on a single argument x
as the same question on the singleton set {x}.

Negative Non-contrastive Questions

We turn now to negative questions. The methodology is very similar as for the positive questions. Recall
that we aim at showing, in this case, that S is incompatible with Res. This reduces to showing that Res∪S
is not an extension of the σ semantics in the Argumentation Framework that we consider. Again, we can
use the explanations defined in Section 3.4 to achieve this.

Definition 47. Let A = (A ,R) be an Argumentation Framework, Res, S ⊆ A and σ ∈ {CF,Adm,Co,Sta}
be an Abstract Argumentation semantics. An answer to QNCNMem

σ for S on A and Res is an answer to
QExt

σ for Res ∪ S on A.

Note. Note that, extrapolating from Definition 47, considering an Argumentation Framework A, a result Res
of some semantics σ, and some set of arguments S, we may consider the question "Why is S not accepted?"
to be in fact the question "Why is Res ∪ S not a σ extension?".

Example. Consider the Argumentation Framework of Figure 2.3 and the result Res = {a, f, i} for the
admissible semantics. Suppose the user asks the question "Why is {d} not accepted?". Figures 3.32 and
3.33 show the corresponding answer: {a, f, i} with d is not admissible. Figure 3.32 shows that, with d, the
result would not respect the Coherence principle. However, Figure 3.33 shows that, with d, the result would
still respect the Defence principle. As such, in this particular context, d cannot be included in the result
presented by the system because it would add some internal conflicts.

3.5.2 Contrastive Questions
After the case of non-contrastive questions comes the case of contrastive ones. Recall that this concerns
questions of the form "Why is S accepted and not S′?" and "Why is S not accepted and not S′?". For
these questions to be properly answered, we first discuss what they mean.

As we stated at the beginning of Section 3.5, in these questions, the contrast is of course made on the set
of arguments. That is to say, in their question, the user proposes a second set (S′) that is meant to be put

58

a

d
f

i

Figure 3.32: Explanation on why {a, f, i} with
d does not respect the Coherence principle. The
conformity check is not verified: there are some
arcs in the explanation.

a
b

c

d
e

f

g

h

i

j

Figure 3.33: Explanation on why {a, f, i} with-
out a does not respect the Defence principle. The
conformity check is verified: no attacker of a, d,
f or i is a source vertex in the explanation.

in contrast with the first one (S). What is critically important is to understand correctly the effect of this
contrast. It seems clear that, in these questions, S and S′ are put in opposition. But regarding what? We
argue that this is regarding their status of being “accepted” or not. Recall the contextual information that
is available: an Argumentation Framework, a semantics, and an extension computed using the semantics.
There is no indication in the question that S′ is to be put in relation to different contextual information.
Hence, we can implicitly infer they should be the same as for S. So, the only aspect left in order to oppose S
and S′ is their acceptability status, which is made implicitly. Making this opposition explicit, a question like
"Why is S accepted and not S′?" is to be understood as “Why is S part of the result and S′ not part of
the result?” (implicitly, for the same result, of the same semantics on the same Argumentation Framework).
Using our terminology, that would be the question "Why is S accepted and not S′ accepted?". And the
second question "Why is S not accepted and not S′?" would then become "Why is S not accepted and
not S′ not accepted?".

Of course these reformulations seem way less natural. We consider this to be perfectly normal since,
as we said, they make explicit some information that does not need to be to understand the question. We
as humans, are probably not accustomed to that way of doing. In the case of the second question, this
also introduces a new negation, which then makes the whole question feels like it has too many of them.
Nonetheless, we can understand that these reformulations are indeed the same question. Moreover, since they
uncover some information that was previously left implicit, we would say that they give precious insight as
to how these questions are built, and how they should be understood. Indeed, notice how the reformulations
are in fact made of two statements, identically structured, concatenated by the connector “and not”. From
this observation, we deduce that the question "Why is S accepted and not S′ accepted?" is in fact the
concatenation of two questions, that is "Why is S accepted and why is S′ not accepted?". And the
question "Why is S not accepted and not S′ not accepted?" would then be "Why is S not accepted
and why is S′ not not accepted?", or by eliminating the double negation, "Why is S not accepted
and why is S′ accepted?". Importantly, in both cases, the two questions that are concatenated are non-
contrastive questions for extension membership, for which we already have answers available. Thus, we will
use these observations to answer to the contrastive questions, following a similar line of thoughts as for how
non-contrastive questions are answered.

Note. Note that, since contrastive questions are made of two statements with identical structure, and in
which the set of arguments can be either “accepted” or “not accepted”, from a combinatorial perspective,
there are four possible contrastive questions.

For the sake of being exhaustive, we will consider all four possibilities, even though only two initially

59

motivated us. We will name them following the same process as at the beginning of Section 3.5. The only
difference is that, since we handle two statements, we should precise for both of them if they are either
positive or negative. Note that since the connector used to concatenate the two statements is “and not”, the
property of being accepted or not in the second statement should be understood as being reversed. Thus,
considering two sets of arguments S and S′, we obtain the following questions:

• Positive-positive contrastive question for extension membership QCPPMem
σ : "Why is S accepted and

not S′ not accepted?"

• Positive-negative contrastive question for extension membership QCPNMem
σ : "Why is S accepted and

not S′ accepted?"

• Negative-positive contrastive question for extension membership QCPPMem
σ : "Why is S not accepted

and not S′ not accepted?"

• Negative-negative contrastive question for extension membership QCPPMem
σ : "Why is S not accepted

and not S′ accepted?"

Note. Recall that QCPNMem
σ corresponds in fact to our initial question QCPMem

σ , and that QCNPMem
σ

corresponds in fact to our initial question QCNMem
σ .

Although we consider that each of our constrastive questions has the same meaning as a concatenation of
two non-constrastive questions, we think that it is not correct to answer them using the sequence of individual
answers to the non-contrastive questions. Instead, we consider that concatenating the two non-contrastive
questions, and not expressing them independently, is an invitation to providing one single answer for both
of them simultaneously. This is thus what we shall aim for.

Positive-Positive Contrastive Questions

We begin with positive-positive contrastive questions. Along the line of thoughts of Section 3.5.1, an answer
for the question "Why is S accepted and not S′ not accepted?" should show simultaneously that Res
without S is not a valid result anymore, but also that Res without S′ is not a valid result anymore. Hence,
such an answer should show that (Res \ S) \ S′ is not an extension of the σ semantics used to compute Res
in the Argumentation Framework that is considered.

Definition 48. Let A = (A ,R) be an Argumentation Framework, Res, S, S′ ⊆ A , and σ ∈ {CF, Adm, Co,
Sta} be an Abstract Argumentation semantics. An answer to QCPPMem

σ for S on A and Res is an answer
to QExt

σ for (Res \ S) \ S′ on A.

Note. Note that (Res \S) \S′ = Res \ (S ∪S′). As such, the question "Why is S accepted and not S′ not
accepted?" is in fact the question "Why is S ∪ S′ accepted?", which in turn becomes the question "Why
is Res \ (S ∪ S′) not a σ-extension?". This may explain why the question QCPPMem

σ for S and S′ on A
and Res seems quite unnatural: there exists a much simpler way to ask the same question, that is question
QNCPMem

σ for S ∪ S′ on A and Res.

Remark. Notice as well that, by eliminating double negations, the question "Why is S accepted and not
S′ not accepted?" becomes the more natural question "Why is S accepted and S′ accepted?"

Example. Consider the Argumentation Framework of Figure 2.2 and the result Res = {a, c, f, i} for the
stable semantics. Suppose the user asks the question "Why is {f} accepted and not {i} not accepted?".
Figures 3.34 and 3.35 show the corresponding answer: {a, c} without f and without i is not stable. Figure 3.34
shows that, without f and without i, the result would still respect the Coherence principle. However,
Figure 3.35 shows that, without f and without i, the result would not respect the Complement Attack
principle. As such, in this particular context, f and i are necessary in the result presented by the system
because they play a role in how the result attacks all the arguments that do not belong to it.

60

a c

Figure 3.34: Explanation on why {a, c, f, i} with-
out f and without i respects the Coherence prin-
ciple. The conformity check is verified: there is
no arc in the explanation.

a

b

c

d

e

f g

h i j

Figure 3.35: Explanation on why {a, c, f, i} with-
out f and without i does not respect the Com-
plement Attack principle. The conformity check
is not verified: f , g, h, i and j, which are not
part of {a, c} are isolated.

b

d

e

i

Figure 3.36: Explanation on why {b, d, f, i} with-
out f but adding e respects the Coherence prin-
ciple. The conformity check is verified: there is
no arc in the explanation.

a

b

c

d

e

f g

h i j

Figure 3.37: Explanation on why {b, d, f, i} with-
out f but adding e does not respect the Com-
plement Attack principle. The conformity check
is not verified: f and g, which are not part of
{b, d, e, i} are isolated.

Positive-Negative Contrastive Questions

Next is the case of positive-negative contrastive questions. Following the same methodology as in the
previous case, an answer to "Why is S accepted and not S′ accepted?" should show simultaneously that
Res without S is not a valid result anymore, but also that Res to which we add S′ is not a valid result
anymore. Hence, such an answer should show that (Res \S)∪S′ is not an extension of the σ semantics used
to compute Res in the Argumentation Framework that is considered.

Definition 49. Let A = (A ,R) be an Argumentation Framework, Res, S, S′ ⊆ A , and σ ∈ {CF, Adm, Co,
Sta} be an Abstract Argumentation semantics. An answer to QCPNMem

σ for S on A and Res is an answer
to QExt

σ for (Res \ S) ∪ S′ on A.

Note. Recall that the question QCPNMem
σ "Why is S accepted and not S′ accepted?" is in fact the

question QCPMem
σ "Why is S accepted and not S′?" that initially motivated us.

Example. Consider the Argumentation Framework of Figure 2.2 and the result Res = {b, d, f, i} for the
stable semantics. Suppose the user asks the question "Why is {f} accepted and not {e}?". Figures 3.36
and 3.37 show the corresponding answer: {b, d, f, i} without f and adding e is not stable. Figure 3.36 shows
that, without f and adding e, the result would still respect the Coherence principle. However, Figure 3.37
shows that, without f and adding e, the result would not respect the Complement Attack principle. As
such, in this particular context, f is necessary in the result presented by the system because it plays a role
in how the result attacks all the arguments that do not belong to it, and e cannot be used to replace f .

61

a c

g

h j

Figure 3.38: Explanation on why {a, c, f, h, j}
adding g but without f respects the Coherence
principle. The conformity check is verified: there
is no arc in the explanation.

a

b

c

d

e

f g

h i j

Figure 3.39: Explanation on why {a, c, f, h, i}
adding g but without f does not respect the
Complement Attack principle. The conformity
check is not verified: f , which is not part of
{a, c, g, h, i} is isolated.

Negative-Positive Contrastive Questions

Then, comes the case of negative-positive contrastive questions. Following the same methodology as in
the previous cases, an answer to "Why is S not accepted and not S′ not accepted?" should show
simultaneously that Res to which we add S is not a valid result anymore, but also that Res without S′ is
not a valid result anymore. Hence, such an answer should show that (Res∪S) \S′ is not an extension of the
σ semantics used to compute Res in the Argumentation Framework that is considered.

Definition 50. Let A = (A ,R) be an Argumentation Framework, Res, S, S′ ⊆ A , and σ ∈ {CF, Adm, Co,
Sta} be an Abstract Argumentation semantics. An answer to QCNPMem

σ for S on A and Res is an answer
to QExt

σ for (Res ∪ S) \ S′ on A.

Note. Recall that the question QCNPMem
σ "Why is S not accepted and not S′ not accepted?" is in fact

the question QCNMem
σ "Why is S not accepted and not S′?" that initially motivated us.

Remark. Notice as well that, by eliminating double negations, the question "Why is S not accepted and
not S′ not accepted?" becomes the more natural question "Why is S not accepted and S′ accepted?"

Example. Consider the Argumentation Framework of Figure 2.2 and the result Res = {a, c, f, h, j} for
the stable semantics. Suppose the user asks the question "Why is {g} not accepted and not {f}?".
Figures 3.38 and 3.39 show the corresponding answer: {a, c, f, h, j} adding g but without f is not stable.
Figure 3.38 shows that, adding g but without f , the result would still respect the Coherence principle.
However, Figure 3.39 shows that, adding g but without f , the result would not respect the Complement
Attack principle. As such, in this particular context, g is not enough to replace f in its role of attacking
arguments that do not belong to the result.

Negative-Negative Contrastive Questions

Finally, we treat the case of negative-negative contrastive questions. Following the same methodology as in
the previous cases, an answer to "Why is S not accepted and not S′ accepted?" should show simultane-
ously that Res to which we add S is not a valid result anymore, but also that Res to which we add S′ is not
a valid result anymore. Hence, such an answer should show that (Res ∪ S) ∪ S′ is not an extension of the σ
semantics used to compute Res in the Argumentation Framework that is considered.

Definition 51. Let A = (A ,R) be an Argumentation Framework, Res, S, S′ ⊆ A , and σ ∈ {CF, Adm, Co,
Sta} be an Abstract Argumentation semantics. An answer to QCNNMem

σ for S on A and Res is an answer
to QExt

σ for (Res ∪ S) ∪ S′ on A.

Note. Note that (Res ∪ S) ∪ S′ = Res ∪ (S ∪ S′). As such, the question "Why is S not accepted and not
S′ accepted?" is in fact the question "Why is S ∪S′ not accepted?", which in turn becomes the question

62

b

d

f g

h i j

Figure 3.40: Explanation on why {b, d, f, h, j}
adding g and adding i does not respect the Co-
herence principle. The conformity check is not
verified: some arcs are present in the explana-
tion.

a

b

c

d

e

f g

h i j

Figure 3.41: Explanation on why {b, d, f, h, j}
adding g and adding i respects the Complement
Attack principle. The conformity check is veri-
fied: none of the arguments that are not part of
{b, d, f, g, h, i, j} is isolated.

"Why is Res ∪ (S ∪ S′) not a σ-extension?". As for the question QCPPMem
σ , this may explain why the

question QCNNMem
σ for S and S′ on A and Res seems quite unnatural: there exists a much simpler way to

ask the same question, that is question QNCNMem
σ for S ∪ S′ on A and Res.

Example. Consider the Argumentation Framework of Figure 2.2 and the result Res = {b, d, f, h, j} for the
stable semantics. Suppose the user asks the question "Why is {g} not accepted and not {i} accepted?".
Figures 3.40 and 3.41 show the corresponding answer: {b, d, f, h, j} adding g and adding i is not stable.
Figure 3.40 shows that, adding g and adding i, the result would not respect the Coherence principle. However,
Figure 3.41 shows that, adding g and adding i, the result would still respect the Complement Attack principle.
As such, in this particular context, g and i cannot be added to the result, because it leads to internal conflicts.

3.6 Summary
In this section, we summarize the different elements of our approach on explanations for Abstract Argu-
mentation. We recall the most important notions and how they are related. At the end of the section, we
present a recap example of how we envision our explanations to be used.

3.6.1 Questions and Explanations
First of all, we recall our hypotheses:

(H1): A user asks for an explanation after they have been presented the result of an Abstract Argumentation
selection process by some program.

(H2): An explanation is an answer to some question.

(H3): The user has no expert knowledge of Abstract Argumentation.

Then, let A = (A ,R) be the Argumentation Framework that has been used to compute some set of
arguments Res ⊆ A using a semantics σ ∈ {CF,Adm,Co,Sta}. The questions we are interested in are:

Questions on Abstract Argumentation semantics: let S be a set of arguments.

QExt
σ : "Why is S [not] a σ extension?"

To answer this question, we use some questions related to the principles behind the semantics (Coher-
ence, Defence, Reinstatement (itself divided into two sub-principles Rein1 and Rein2) and Complement
Attack).

63

Questions on Abstract Argumentation principles: let S be a set of arguments and π ∈ {Coh, Def,
Rein1, Rein2, CA} be an Abstract Argumentation principle.

QExt
π : "Why does S [not] respect the π principle?"

The answer to QExt
σ is then a set of answers to QExt

π , one for each principle π that composes the
semantics σ.

Questions on extension membership: let S, S′ be sets of arguments.

QNCPMem
σ : Why is S accepted? (positive non-constrastive question)

QNCNMem
σ : Why is S not accepted? (negative non-constrastive question)

QCPPMem
σ : Why is S accepted and not S′ not accepted? (positive-positive constrastive question)

QCPNMem
σ : Why is S accepted and not S′ accepted? (positive-negative constrastive question);10

QCNPMem
σ : Why is S not accepted and not S′ not accepted? (negative-positive constrastive

question);11

QCNNMem
σ : Why is S not accepted and not S′ accepted? (negative-negative constrastive question)

The answers to questions QExt
π (instanciated for each principle π) are given in Table 3.1. The answers to

questions QExt
σ (instanciated for each semantics σ) are given in Table 3.2. Finally, the answers to questions

QNCPMem
σ , QNCNMem

σ , QCPPMem
σ , QCPNMem

σ , QCNPMem
σ and QCNNMem

σ are given in Table 3.3

As noted in Section 3.5.1, some contrastive questions are equivalent to non-contrastive ones:

• QCPPMem
σ : Why is S accepted and not S′ not accepted? is equivalent to QNCPMem

σ : Why is
S ∪ S′ accepted?.

• QCNNMem
σ : Why is S not accepted and not S′ accepted? is equivalent to QNCNMem

σ : Why is
S ∪ S′ not accepted?.

From these equivalences, it follows that S and S′ can be swapped in QCPPMem
σ and QCNNMem

σ without
any consequence on the answer which is provided. In other terms, fact and foil are treated equivalently
in these questions. This can lead to a little simplification of our approach, considering only two kinds of
contrastive questions, QCPNMem

σ and QCNPMem
σ (QCPPMem

σ and QCNNMem
σ being transformed into non-

contrastive questions).

Regarding these two remaining questions, a specific case can lead to another simplification: if S ∩ S′ =
∅, then QCPNMem

σ and QCNPMem
σ can lead to equivalent reformulations with an identical answer, if the

positions of S and S′ are swapped between the questions. Indeed, in this case, (Res \S)∪S′ = (Res∪S′) \S,
so the answers to QCPNMem

σ and QCNPMem
σ are the same, and so the questions can be deemed equivalent.

Thus, in this situation, considering only either QCPNMem
σ or QCNPMem

σ could be sufficient.

Finally, the formulation of the contrastive questions that we choose imposed “and not” as a connector
to introduce the contrastive part, thus adding a new negation into the question. Questions QCPPMem

σ and
QCNPMem

σ could then be reformulated in a more natural by eliminating double negations: QCPPMem
σ : Why

is S accepted and S′ accepted?, QCNPMem
σ : Why is S not accepted and S′ accepted?

10Recall that this question corresponds to the simple contrastive positive question QCPMem
σ : Why is S accepted and not

S′?
11Recall that this question corresponds to the simple contrastive negative question QCNMem

σ : Why is S not accepted and
not S′?

64

Question on Coherence QExt
Coh: Why does S respect the Coherence principle?

Answer : Explanation ExplCoh(S) = (A ′,R′) (see Definition 34)

with (A ′,R′)
a subgraph
defined by:

Considering X = {(a, b) ∈ R | a, b ∈ S}:
• A ′ = S

• R′ ⊆ X

• If X ̸= ∅, then R′ ̸= ∅
Conformity check: CCoh: there exists no arcs in ExplCoh(S) (see Theorem 1)

Question on Defence QExt
Def: Why does S respect the Defence principle?

Answer : Explanation ExplDef(S) = (A ′,R′) (see Definition 36)

with (A ′,R′)
a subgraph
defined by:

Considering X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(S)}:

• A ′ = S ∪ R−1(S)

• X ⊆ R′ ⊆ X ∪ Y

• ∀b ∈ R−1(S), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Conformity check: CDef: there exists no source vertex among the attackers of S in ExplCoh(S)
(see Theorem 2)

Question on Rein1 QExt
Rein1: Why does S respect the Rein1 principle?

Answer : Explanation ExplRein1(S) = (A ′,R′) (see Definition 38)

with (A ′,R′)
a subgraph
defined by:

Considering X = {a ∈ A | R−1(a) = ∅}:
• S ∩X ⊆ A ′ ⊆ X

• R′ = ∅
• If (A \ S) ∩X ̸= ∅, then ∃a ∈ (A \ S) ∩X with a ∈ A ′

Conformity check: CReins1: all the arguments of ExplRein1(S) belong to S (see Theorems 3 and 4)

Question on Rein2 QExt
Rein2: Why does S respect the Rein2 principle?

Answer : Explanation ExplRein2(S) = (A ′,R′) (see Definition 39)

with (A ′,R′)
a subgraph
defined by:

Considering X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y =
{(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}:

• A ′ = S ∪ R+2(S) ∪ R−1(R+2(S))

• X ⊆ R′ ⊆ X ∪ Y

• For every b ∈ R−1(R+2(S)), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with
a ∈ S

Conformity check:

CReins2: all the arguments that S defends but are not in S are attacked by a
source vertex in ExplRein2(S) (see Theorems 3)
C′

Reins2: all the arguments that S defends but are not in S are attacked by a
source vertex or an argument of R+2(S) in ExplRein2(S) (see Theorems 4)

Question on Complement Attack QExt
CA: Why does S respect the Complement Attack principle?

Answer : Explanation ExplCA(S) = (A ′,R′) (see Definition 41)

with (A ′,R′)
a subgraph
defined by:

Considering X = {(a, b) ∈ R | a ∈ S, b /∈ S}:
• A ′ = A

• R′ ⊆ X

• ∀b ∈ A \ S, if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Conformity check:
CCA: there exists no isolated vertex among the arguments that do not belong
to S in ExplCA(S) (see Theorem 5)

Table 3.1: Questions on Abstract Argumentation principles and their answers, considering an Argumentation
Framework A and a principle π ∈ {Coh,Def,Rein1,Rein2,CA}

65

Question on Conflict-freeness QExt
CF : Why is S a conflict-free extension?

Answer : Explanation ExplCF(S) = a set of subgraphs (see Definition 35)
Subgraphs: {ExplCoh(S)}

Conformity checks: CCoh applied on ExplCoh(S)

Question on Admissibility QExt
Adm: Why is S an admissible extension?

Answer : Explanation ExplAdm(S) = a set of subgraphs (see Definition 37)
Subgraphs: {ExplCoh(S),ExplDef(S)}

Conformity checks: CCoh applied on ExplCoh(S), CDef applied on ExplDef(S)

Question on Completeness QExt
Adm: Why is S a complete extension?

Answer : Explanation ExplCo(S) = a set of subgraphs (see Definition 40)
Subgraphs: {ExplCoh(S),ExplDef(S),ExplRein1(S),ExplRein2(S)}

Conformity checks:
CCoh applied on ExplCoh(S), CDef applied on
ExplDef(S), CReins1 applied on ExplRein1(S), CReins2
(or C′

Reins2) applied on ExplRein2(S)

Question on Stability QExt
Sta : Why is S a stable extension?

Answer : Explanation ExplSta(S) = a set of subgraphs (see Definition 42)
Subgraphs: {ExplCoh(S),ExplCA(S)}

Conformity checks: CCoh applied on ExplCoh(S), CCA applied on ExplCA(S)

Table 3.2: Questions on Abstract Argumentation semantics and their answers, considering an Argumentation
Framework A and a semantics σ ∈ {CF,Adm,Co,Sta}

QNCPMem
σ : Why is S accepted?

Answer : Explanation Explσ(Res \ S) (see Definition 46)
QNCNMem

σ : Why is S not accepted?
Answer : Explanation Explσ(Res ∪ S) (see Definition 47)

QCPPMem
σ : Why is S accepted and not S′ not accepted?

Answer : Explanation Explσ((Res \ S) \ S′) (see Definition 48)
QCPNMem

σ (and QCPMem
σ): Why is S accepted and not S′ accepted?

Answer : Explanation Explσ((Res \ S) ∪ S′) (see Definition 49)
QCNPMem

σ (and QCNMem
σ): Why is S not accepted and not S′ not accepted?

Answer : Explanation Explσ((Res ∪ S) \ S′) (see Definition 50)
QCNNMem

σ : Why is S not accepted and not S′ accepted?
Answer : Explanation Explσ((Res ∪ S) ∪ S′) (see Definition 51)

Table 3.3: Questions on Abstract Argumentation principles and their answers, considering an Argumentation
Framework A = (A ,R), a result Res ⊆ A and a semantics σ ∈ {CF,Adm,Co,Sta}

66

3.6.2 Recap Example
In this section, we provide an example which summarizes the entire approach. Suppose that a political
debate is held. Two candidates, that we will soberly name Candidate 1 and Candidate 2, make propositions
on some defined arbitrary subject and confront them. The propositions of each candidate are given in
Table 3.4. A computer program (the system) is used to extract arguments from their statements, and
identify the conflicts between them. In more formal terms, the system creates an Argumentation Framework
that supposedly represents the debate. The Argumentation Framework obtained corresponds to Figure 3.42.
We will thus consider it to be our contextual Argumentation Framework which we denote A = (A ,R).

From this representation, the objective is then to identify some propositions that can collectively act
as a viable outcome of the debate. In more formal terms, this would correspond to selecting an extension
from some semantics. We will assume that the conditions under which the outcome is selected has been
given beforehand. Suppose that we want some strong propositions that represent a radical point of view by
defeating all the other propositions that were given. This would correspond to the dominant notion of a
stable extension. Thus, we consider the stable semantics to be our contextual semantics, that we denote σ.
In the Argumentation Framework of Figure 3.42, such an extension would be {b, c, g, i, l, p}.

We consider that this is indeed the outcome that is computed by the system. As such, we consider it
to be our contextual result (so, Res = {b, c, g, i, l, p}). The system then presents this outcome to its users
which are left to judge what they think of it, using the internal meaning of the arguments contained within
it, which we abstract for the sake of the example. This process is illustrated by Figure 3.48.

Some of the users are somewhat surprised by this outcome. Consider the user Arnold. Arnold remarks
that the outcome is composed of propositions made by both candidates, whereas he expected the outcome
to hold positions expressed by only one of them. He then wonders “How does this constitute a reasonable
outcome?”. Arnold asks here what makes Res a valid outcome. So, if we reformulate, he in fact asks question
QExt

σ for Res on A with σ = Sta.
The system then seeks to provide an explanation to Arnold. This will be an explanation ExplSta(Res).

Such an explanation can be seen on Figures 3.44 and 3.45. On Figure 3.44, Arnold can see that no arrow
is present. As such, the result that was presented is indeed coherent. In our setting, this might mean that,
contrarily to what Arnold expected, the propositions of both candidates were not necessarily in contraction
with one another. On Figure 3.45, Arnold can see that no red node is isolated. As such, the result that was
presented indeed attacks all the other arguments. In our setting, this might mean the point of view used as
outcome corresponds to a radical one, as we wanted. This process is illustrated by Figure 3.49.

At this point, Arnold is still not convinced. He sees why the outcome that was presented is valid
but believes that another one might be better. He remarks that argument p is the only proposition from
Candidate 1 in the outcome, while the others have all been stated by Candidate 2. He thus wonders why is p
in the outcome instead of n for instance, which is a proposition from Candidate 2 as well. By reformulating,
Arnold is in fact asking question QCPMem

σ on A with S = {p}, S′ = {n}, and σ = Sta.
The system then seeks to provide an explanation to Arnold. This will be an explanation ExplSta((Res \

{p})∪{n}). Such an explanation can be seen on Figures 3.46 and 3.47. On Figure 3.46, Arnold can see that
there is an arrow from from i to n and from n to l. As such, the result in which p is replaced by n is not
coherent. In our setting, this might mean that, contrarily to what Arnold thought, Candidate 2 has not been
consistent in his propositions, and contradicted what he previously stated at some point. On Figure 3.47,
Arnold can see that the red node p is isolated. As such, the result in which p is replaced by n does not
attack all the other arguments. In our setting, this might mean that, contrarily to what Arnold thought, the
propositions of Candidate 2 only are not sufficient to constitute a radical point of view like we want. This
process is illustrated by Figure 3.50.

At this point, Arnold is convinced. He realizes the qualities of the result that was presented to him and
acknowledges that it corresponds to the kind of result that was expected. He also recognizes that what he
thought was a better result is in fact not viable for several reasons. This concludes our example.

67

Candidate 1 a, d, e, f, h, j, k,m, p
Candidate 2 b, c, g, i, l, n, o

Table 3.4: The propositions of each candidate in the debate

a

b

c

d

e

f

g h

i

j

k l

m no

p

Figure 3.42: An Argumentation Framework representing a fictional debate

a

d

e

f

h

j

k

m

p

b

c

i

g

l

n

o

Figure 3.43: The Argumentation Framework of Figure 3.42 where the propositions of Candidate 1 are
grouped together on the left and those of Candidate 2 are grouped together on the right

68

b

c

g

i

l

p

Figure 3.44: An explanation for why the outcome {b, c, g, i, l, p} is coherent: no arrow is present

a

b

c

d

e

f

g h

i

j

k l

m no

p

Figure 3.45: An explanation for why the outcome {b, c, g, i, l, p} is a radical point of view: no red node is
isolated

69

b

c

g

i

l

n

Figure 3.46: An explanation for why the outcome {b, c, g, i, l, p}, in which p is replaced by n, is not coherent:
there is an arrow from i to n and from n to l

a

b

c

d

e

f

g h

i

j

k l

m no

p

Figure 3.47: An explanation for why the outcome {b, c, g, i, l, p}, in which p is replaced by n, is not a radical
point of view: the red node p is isolated

70

Figure 3.48: A stable extension, representing the outcome of the debate is computed and presented to the
users

Figure 3.49: A user asks a question challenging the result as a whole, and the system provides explanations
for it

Figure 3.50: A user asks a question challenging a part of the result only, and the system provides explanations
for it

71

3.7 Comparison with Related Works
In this section, we compare our work with those that were mentioned in Section 3.1. We will follow the same
categorization from [ČRA+21].

General remarks. Before considering each related work individually, we begin with general remarks
concerning our approach which make it close to, or differ from, all the other works that are mentioned.
First, our work obviously falls into the category of subgraphs, since our explanations are subgraphs of the
initial Argumentation Frameworks, for reasons that we motivated in Section 3.4.

Then, we wish to insist on the fact that we defined our explanations as answers to precise questions.
To the best of our knowledge, we are the only ones to proceed this way. As we presented in Section 3.2.2,
there are several ways of requiring explanations, and each of them may require different answers. Hence the
importance of precisely indicating which question is tackled instead of studying explanations for a property
of some object(s).

Finally, a critical difference is the efforts we made to produce explanations that rely on visual criteria
in order to make them usable without expert knowledge. It is worth noting that this is not only due to the
graphic nature of our explanations, but also to how they are used. All the other works mentioned define
explanations that are destined for experts, either of Abstract Argumentation, or of the field in which it is
applied.

Subgraphs. In [SWW20], the authors define Strongly Rejecting Subframeworks as explanations for the
credulous non acceptance of some argument. A first difference with our approach is that, we defined ex-
planations for the acceptability status of a set of arguments regarding a semantics, and for the inclusion
or non-inclusion of some arguments in an extension. So, we are not interested in the same questions. In
addition, there are some semantics that we do not consider in our work, namely the grounded and preferred
semantics. It is also worth mentioning that, to the contrary of [SWW20], our subgraphs are not only induced
subgraphs but also spanning subgraphs.

In [NJ20] and [UW21], the authors define explanations for the credulous non acceptance and acceptance
of some argument respectively as sets of arguments or attacks. As we mentioned before, a first difference
is that we are interested in a different problem. Their definition is based on the behavior of the induced
(respectively spanning) subgraph resulting from the considered set of arguments (respectively attacks). Our
work instead considers the subgraphs to be the explanations themselves. Moreover, the subgraphs we define
are computed using both the induced subgraph and the spanning subgraph operations, while [NJ20] consider
them separately and [UW21] only use induced subgraphs.

There also exist works that use graphs to explain, but not subgraphs. These works are [FT15a, RT21] and
they rely on the concept of Defence Trees. While not being subgraphs technically speaking, one can easily
retrieve the subgraph represented by a Defence Tree using the original Argumentation Framework. Hence
one could wonder what are the connections between a subgraph used as an explanation and the subgraph
implied by a specific Defence Tree. Alternatively, we could also explore the existence of specific Defence
Trees inside a subgraph used as an explanation. So, there may exist some ties between the two approaches.
Apart from the technical difference between the two methods used, a more fundamental one between the
works of [FT15a, RT21] and ours is that we do not explain the same problem. Indeed, [FT15a, RT21] are
interested in explaining the credulous acceptance of some argument under admissibility.

Changes. We turn to the works that consider changes as explanations, that is to say, [FT15b], [UB19]
and [NJ20]. As noted in [NJ20], diagnoses can be seen as a kind of dual of the computation of induced and
spanning subgraphs. Indeed, each diagnosis infers an induced or spanning subgraph, and conversely, each
induced or spanning subgraph is computed using (the complement of) a diagnosis. As such, the links between
the two approaches are very strong. One could thus wonder what are the properties of the complement of
a set used to compute a certain induced or spanning subgraph, or what can be said about the induced or
spanning subgraph computed from the complement of a given diagnosis. Although our view on explanations

72

is closely tied to theirs, the authors of these works seek to explain different problems from those we are
addressing.

Extensions. We continue with the works that use sets of arguments as explanations, that is to say, [FT15a],
[LvdT20], [BU21] and the works from Borg and Bex. We have already made some remarks on this kind of
approaches in Section 3.2.1 that we will not repeat. Although the links between subgraph-based methods of
explanation and extension-based methods are less direct than with diagnosis-based methods, there are still
some that can be studied. Indeed, one could wonder what are the links between a subgraph computed by
a subgraph-based method and the subgraph induced by the set computed by an extension-based method.
Or, conversely, what can be said about the set that was used to compute an induced subgraph and the set
computed by an extension-based method. Whether the explanation of an extension-based method is included
in the explanation of a subgraph-based method can also be asked, the converse as well. Those are questions
that could help explore the ties between the two methods, and which should be investigated in future work.
Borg and Bex, as well as [FT15a] are focused on explaining the credulous and/or skeptical (non-)acceptance
of some arguments, which is not the same problem as we consider. Note that [BB21b] provide a notion of
contrastive explanations, just like we do with our explanations for extension membership. [LvdT20, BU21]
however are interested in the same problem as our explanations for extension semantics. Yet, there is no
obvious connection between their method and ours.

Dialogues. We finish with the works that use dialogue-games in their explanatory process, like [BGK+14],
[ABC17] and [SA18]. In [BGK+14], dialogues are used as a way to obtain explanations which are in fact
changes. Hence, in a way, dialogues are the explanatory process. On the contrary, in [ABC17] and [SA18],
dialogues are the explanations. To understand the links between dialogues and graphical approaches, we
should not forget that dialogues basically correspond to (parts of) an Argumentation Framework, but pre-
sented in a different, interactive, form. Starting from there, it could be possible that a dialogue obtained
following a certain protocol corresponds to one of the explanations defined in the present work. Alterna-
tively, we could try to see if the explanations we defined can be obtained via a dialogue dictated by a given
protocol. If it is the case, this would mean more flexibility to our approach. Indeed, we could then present
our explanations either as graphs relying on some structural properties, or as dialogues in a more interactive
way. For the moment, such considerations are left as future research directions.

3.8 Quality of Explanations
In this section, we discuss the explanations that we defined in this chapter, and try to assess some of their
advantages, limits, as well as their overall utility and quality.

The way we proceed is essentially by making some observations on the behavior of our explanations in
certain cases. These observations were not made in previous sections, but may have nonetheless not escaped
the careful reader. We make them here and now, because we consider they are some first steps in assessing
the quality of our explanations, especially their limits and their potential improvements.

Our first observation concerns our explanations for Abstract Argumentation semantics, defined in Sec-
tion 3.4. Recall that they are defined as answers to the questions QExt

σ for a semantics σ. Questions, using
the plural. Indeed, the notation QExt

σ covers two questions, that are "Why is S a σ extension?" and "Why
is S not a σ extension?". As such, a same class of answers is in fact defined for both questions. This
might seem strange considering that we then proceeded to define different answers for each question based
on the presence or absence of a negation in Section 3.5 for explanations on extension membership.

This difference in treatment is due to what the questions are about. In questions on extension membership,
the questions are on the presence or absence of some argument(s) in the result. We can thus assume that
the user expected the contrary of the statement used in the question, which we can use to provide answers.
In questions on semantics, the questions are on the conformity of some set to the conditions of a semantics.
As before, the presence or absence of a negation might indicate what the user expected (either that the set

73

respects the conditions or not). However, in this case, it in fact does not have any importance. Indeed, a set
of arguments being an extension of some semantics is entirely determined by the Argumentation Framework
that is considered. And remember that by our Hypothesis (H1), the Argumentation Framework of our
context is fixed. As such, no matter what the user may expect, the conformity or inadequacy of S with the
semantics σ is already established. And this conformity or inadequacy is precisely what is shown on our
explanations. If the presence or absence of a negation is indeed indicative of what the user expected, it is
then entirely possible that our explanations might prove the user to be wrong.

Example. Consider the Argumentation Framework of Figure 2.3. We have already seen that Figure 3.25 is
an answer to the question "Why does {b,h,j} not respect the Complement Attack principle?". It is
however also an answer to the question "Why does {b,h,j} respect the Complement Attack principle?".
In the latter case, we might think that the user assumes {b, h, j} to indeed respect the Complement Attack
principle. In the Argumentation Framework of Figure 2.3, this is however not the case, and Figure 3.25
shows it.

This way of doing might be surprising to some. Indeed, by proceeding as we do, we deliberately might
not comply with the expectations of the user. This is an understandable concern, in that the user could
get annoyed by this behavior. It could be argued that, instead of showing the user that they are wrong, it
would be best to align with the expectations of the user and that, if an explanation is not in accordance
with the expectations of the user, then it is a sign that the system should seek to modify itself to better
suit the user. While we do not necessarily disagree with such a way of doing, we wish to point out that the
identification of such a discordance between the system and the user is certainly the first step of such an
adaptive feedback mechanism. Our explanations as they are will make explicit such a discordance, without
having the system directly taking measures, but instead letting the user judge the situation. After all, it is
always possible that the user admits that they were wrong. If it is not the case, then a feedback mechanism
can be initiated to make the system adapt itself to the user. However, such a mechanism is not our object
of study in the present work.

The following observation concerns explanations for extension membership. Recall that our approach for
these explanations consists in showing the user what they expected, with the objective of convincing the user
that it is actually not possible and so that the original result is somewhat better. For instance, considering
the question QNCPMem

σ "Why is S accepted?", we assume that the user expected S not to be part of the
result, and thus display an explanation for Abstract Argumentation semantics on Res \ S for σ, with the
objective of showing that Res \ S is not a viable extension for σ. However, it may very well happen that
Res \ S indeed is a viable extension for σ.

Example. Consider the Argumentation Framework of Figure 2.2 and the result {b, d, f, i} for the complete
semantics. Suppose the user asks the question "Why is {i} accepted?". According to Definition 46, the
system will then show an explanation for completeness on {b, d, f, i} \ {i} = {b, d, f}, with the objective of
showing that a problem arises to let the user conclude that i is necessary in the result and should be part of
it. However, according to Table 2.2, {b, d, f} is a complete extension, so no problem will arise.

We used question QNCPMem
σ for the sake of example, but this observation can in fact be made on all

questions on extension membership. So, what causes this behavior, and what to say about it? Indeed, some
might find this behavior alarming, with reasonable arguments. This is the sign that the objective for which
these explanations were defined might not always be reached. The reasons behind this particularity are the
following: the explanations only take into account the purely argumentative results. In other terms, when
explaining, we only focus on the Argumentation Framework that was used. If the argumentative decision is
part of a larger process, this might add some additional constraints on the selection of arguments, like for
instance the absolute necessary presence of a particular argument in the extension. If this is the case, and if
they are relevant, then such external constraints should be invoked as explanations in this situation. If not,
then the answer given by the system is in fact the sign that the intuition of the user was correct: the result
modified according to the expectation of the user is indeed a viable decision and could be used as a result
instead of the one presented previously.

74

a

b

c

d e

f g

h i j

Figure 3.51: Another way to see that {a, c} respects the Defence Principle in the AF of Figure 2.2. {a, c}
is in blue, the arguments attacked by {a, c} are in red, and the other arguments are in white. We see that
there is no arrow from a white argument to a blue argument.

Moreover, since the new potential result is built based on the expectations of the user, chances are that
the user finds it better. Thus, just like for the previous observation, we believe that this situation could be
used as the initiation of a feedback mechanism destined to refine the initial result presented to make it more
aligned with the preferences of the user. As such, we do not really consider this behavior of our explanations
to be a weakness, but rather an opening towards their personalization. If this point of view still appears
unsatisfying to the reader, there is of course always the possibility of using the other approach mentioned at
the beginning of Section 3.512 when ours fails to be considered enough.

Our next observation is on our explanations’ level of transparency. Recall that, by definition, our expla-
nations are subgraphs. As such, there are parts of the initial graph that are left aside. Moreover, in virtue
of the inclusion relation between explanations on a same set of arguments for a same semantics, there is
even the possibility of making additional pruning inside a given explanation (until a minimal explanation
is obtained). The reason why we proceed this way is to achieve simplicity. Indeed, Theorems 1 to 5 show
that our explanations can be used effectively without relying on the parts of the initial graph that are not
in the explanation. Thus, we do not overwhelm the user with information that can be deemed unnecessary
or irrelevant, ensuring a simpler explanation and, hopefully, a better understanding.

However, from the perspective of the user, these parts of the initial graph that are pruned away cor-
respond to information that is hidden. While we argued that it makes the explanations simpler and more
understandable, it could also be argued that some users might find it unsettling. To these users, maybe the
hidden information was important, or maybe they just dislike by principle hiding information and thus find
it suspicious. In any case, it seems that our approach is probably not the best suited for these users.

Yet, it might be possible to find different types of explanations, better suited for such users, that are
still similar in nature (i.e. that are based on the same ideas). We can think of an example regarding the
Defence Principle. We could define an explanation for Defence for a set of arguments on an Argumentation
Framework as the entirety of the Argumentation Framework (so that no information is missing) but visually
organized to highlight three partitions of the set of arguments:

1. the set of arguments the explanation is about

2. the set of arguments that is attacked by the first set

3. the other arguments

Then, the set number 1 of arguments would respect the Defence principle if and only if there is no attack
from the set number 3 to the set number 1.

12We are talking about the approach consisting of answering question QNCPMem
σ on S by showing that S “has the right to

be accepted”, and all the answers that may derive from this take for the other questions.

75

Example. Consider the Argumentation Framework of Figure 2.2. According to Table 2.2, {a, c} is an admis-
sible extension, and thus respects the Defence Principle. An alternative way from our explanations to see
that could be by looking at Figure 3.51. It is merely a different display of the Argumentation Framework
of Figure 2.2, in which the arguments have changed positions, {a, c} is displayed in blue, the arguments
attacked by {a, c} are displayed in red, and the other arguments are displayed in white. Notice, that all
the information of the initial Argumentation Framework is kept. We can conclude that {a, c} respects the
Defence Principle by seeing that there is no attack from a white argument to a or c.

It remains to be seen if similar intuitions can be found for the other semantics principles. If it is the case,
the two approaches could be considered to be complementary. In the end, the choice of using one approach
or the other would be a question on finding balance between two considerations: either to not bother the
user by hiding information, or to not bother the user by showing irrelevant information. Of course in the
present work, we present results leaning towards the latter, but approaches leaning towards the former are
definitely worth investigating.

The last observation we make concerns the explanatory process, and more precisely the contextual in-
formation that we take for granted throughout this chapter. Recall from Section 3.2.2 that it is an Argu-
mentation Framework, a semantics to compute an extension, and an actual extension taken as the result of
the argumentative process. Specifically, the result is only one set of arguments. However, looking back at
Section 2.1, we see that for a single Argumentation Framework, there can be potentially several extensions
for the same semantics. As such, for the system to present a single extension as the result, there must have
been some selection step, outside the argumentative process itself, that guided the choice of this particular
result. For now, this selection step is not taken into account in our explanatory process, precisely because it
is not part of the argumentative process. Yet, as it is part of the selection of the result, one could wonder if
it should be part of the explanation that the user receives.

We consider that, ideally, it should indeed be part of the explanation. We did not include it in the present
work because we wanted to focus specifically on the argumentative process, which, as we said, the selection
of an extension among several possible ones is not a part of. For this reason, we also believe that this does
not constitute a methodological mistake, or, put differently, that taking the selection of a single extension
into account in the explanation invalidates or drastically changes the present work. Instead, we think that
taking the selection of the result into account merely is complementing our explanations with an additional
explanation for this selection, which, again, can be completely unrelated to the argumentative process.

For instance, the selection of the result could be as trivial as returning the first extension computed, or
returning one at random. This certainly corresponds to situations where no specific extension holds particular
importance and thus where this selection step does not really matter. In this case, the additional explanation
would surely be quite simple. Alternatively, the selection step could be more elaborate, with constraints on
some arguments needing to be in the extension, while others must not be part of it, and additional constraints
on the size of the extension, enforcing that the extension does not have too much arguments in it. In this
case, the additional explanation would be built around all these constraints. With this, we see that the
selection of the result among all the possibilities should probably have its own explanatory system, which
would certainly be fairly simple, but still distinct from the explanatory system of the argumentative process.
Then, the explanations for the selection of the result could be used to supplement our own explanations on
how this result was argumentatively obtained.

3.9 Future Perspectives
The work presented in this chapter opens many possibilities. The one we think to be the most obvious is
on extending our explanations to cover the missing classical semantics, that are preferred and grounded.
Following the methodology we established and the decomposition of semantics into principles, this would
in fact imply the definition of explanations for the maximality and minimality of extensions. Note that
this is completely independent from the notion of maximal and minimal explanations, if explanations for
maximality and minimality can be defined, we can perfectly think of minimal explanations for maximality

76

or maximal explanations for minimality. The thing is, for such explanations to be defined following our
methodology, we would need a (preferably simple) visual (i.e. structural) property that could serve as a
witness of these principles on some class of subgraphs. As for now, we have not found such properties
and classes of subgraphs and we do not really have an intuition to lead us on this way. One could believe
that such properties and objects do not exist for maximality and minimality. This is because, recalling
Table 2.4, the semantics for which we defined explanations have their Verification Problem (so the problem
explained by our explanations) in L, while grounded and preferred semantics (for which we lack minimality
and maximality respectively) have their Verification Problem P-complete and coNP-complete respectively.
This might thus disqualify them from being explained using the same tools as the other semantics (following
our methodology at least). But still, this is probably not something we can be sure of either, so in our
opinion, the problem is still open.

Since the use of visual properties of graphs is at the core of our approach, it could be beneficial to
investigate additional properties from Graph Theory dealing with the visual organization of graphs for our
explanations. As for now, we mainly use the properties of a node being either a source node or an isolated
node among a meaningful partition of a graph. We also have bipartition results for some explanations, which
give additional insights as to how the graph can be visually displayed. Other instances of such visual friendly
properties could include planarity for example. While the argumentative meaning of a planar graph could be
unclear or irrelevant, it may be interesting to know in which situations we can guarantee an explanation to
be planar because it would then be more visually appealing. We should explore Graph Theory to search for
more such visual properties and see whether they could be meaningful for our explanations. If it is the case,
we should then try to see in which circumstances we can provide guarantees for our explanations regarding
these properties.

Another line of research would be to extend our methodology to explain more diverse subjects. For now,
our explanations only deal with explaining why a result as a whole, or part of it, is valid, with the possibility
of considering a contrast on the part of the result in the latter case. Now recall that our explanations are
defined as answers to questions. We think that one way to extending them would be to increase the range
of questions that can be answered following our methodology. For instance, consider two Argumentation
Frameworks, A = (A ,R), A′ = (A ′,R′), a set of arguments S such that S ⊆ A and S ⊆ A ′ and the
following question: "Why is S an admissible extension in A and not in A′?". This question is of
course not covered by our explanations, but might still prove relevant. What we observe is that this question
is structurally very similar to the ones addressed in the present work: it uses similar contextual information
we could consider that the additional Argumentation Framework is brought by the user), it deals with the
validity of a set of argument regarding a semantics, and there is contrast that is made. However, this contrast
is not made on another set of arguments but on another Argumentation Frameworks. It thus requires different
elements of answers, that is different subgraphs from the ones we defined and that would show why S is
supposedly valid in the first framework but not in the other. What we believe is that it might be possible to
compute these elements of answers based on the question that is asked. We could imagine a formal grammar
(see [Cho63] and [CM63] for basic notions on the subject) that would yield questions that are different but
structurally similar (since originating from the same grammar). Then, we could imagine that the sequence of
production rules used to yield a specific question could correspond to a composition of operations to make on
related Argumentation Frameworks to obtain the answer. Thus, the answer would be somewhat computed
depending on the question that is asked. To stay on the limited scope of Abstract Argumentation, we could
imagine questions about Argumentation Frameworks, sets of arguments and semantics, on whether a set is
valid regarding a semantics or not, and the possibility to have a contrast on either of those elements. Thus,
a question like "Why is S an admissible extension in A and not a stable extension?" could be
another different possibility captured by this way of doing. We think this line of research is very interesting,
but probably also very complex and only for long term considerations. [BDDL22] provides some preliminary
investigations as to how this might be achieved.

On a similar line of research, we could investigate explanations for other properties than semantical ones.
Indeed, for now, our explanations only dealt with the property of being valid regarding a semantics for a set of

77

arguments. We could however imagine questions that are not about semantical but instead structural ones.
For instance, "Why is a an argument?" or "Why is there an attack from a to b?". These are questions
about how the Abstract Argumentation Framework is structured, how it is built. In the case of Abstract
Argumentation, such questions are supposedly irrelevant because we consider the Argumentation Framework
to be given, we do not know, nor do we care, how it was obtained. However, for a neophyte user, this might
still be questions worth of interest. Again, since in Abstract Argumentation, the framework is considered to
be given, the elements of answers for those questions will probably not be from the tools used in this domain.
Instead, they will probably be from a domain whose main concern is to build an Argumentation Framework
from something else. In this category could fall for instance Structured Argumentation or Argument Mining.

To keep on the track of extending our approach of explanations for Abstract Argumentation, we could
think of generalising our explanations to generalised accounts of argumentation. That is to say, define our
explanations for enriched frameworks. We presented a few possibilities of enrichments in Section 2.3, but
many more exist which we did not cover, like for instance Claim-based Argumentation Frameworks (CAFs).
In CAFs, arguments are paired with claim that they support, with the possibility of several arguments
supporting the same claim. Thus, arguments are no longer abstract as the claim they support is a glimpse
of their internal structure. The reader can see [DRW23] for a more detailed study of this enrichment.
Since enrichments aim at capturing additional ways of arguing, it could be of interest to see how our
explanations adapt to these settings, and how the addition of enrichments actually impacts the reasons
behind decisions taken in more complex forms of argumentation. Indeed, recall from Section 2.3 that the
addition of enrichments changes how semantics works. This would undoubtedly affect how our explanations
are computed since they are precisely based on the decomposition of semantics. As such changes are profound
by nature, it is not obvious to see how much our explanations would have to be adapted to a generalised
account of argumentation. Thus, we do not have yet a clear intuition on how to generalise our explanations.
It should be pointed out that as these enrichments usually have several different interpretations, it seems
reasonable that the generalised explanations would then be for a given interpretation of some enrichment.
Nonetheless, working towards explanations for a generalised account of argumentation could bring useful
insights on the core mechanisms in the argumentative process.

We could also push further the use of subgraphs to explain by imagining new kinds of explanations. Con-
sider that most semantical properties of Abstract Argumentation, and especially the fundamental property
of acceptability, are purely decided by the attack relation. In the case of acceptability for instance, once the
Argumentation Framework, the set of arguments and the argument, whose acceptability status with respect
to the set is checked, are known, the argument being acceptable with respect to set or not is entirely dictated
by the attack relation. We must indeed check that all the attackers of the arguments (those are defined
by the attack relation) are attacked back by the set (again, this is only dependent on the attack relation).
So the point is that, usually, semantical properties only rely on how the attack relation is structured (this
is not always the case, for instance in the case of the grounded and preferred semantics where a property
of minimality or maximality of the set is added). However, the subgraph inclusion relation does not only
compare the organization of the attack relation, but also if nodes with the same names are indeed the same
nodes (meaning they are connected in the same way to the same other nodes in both graphs). There exists
however a relation between graphs that, contrarily to subgraph inclusion, solely compares the structure of the
arcs: subgraph isomorphism. Subgraph isomorphism can be thought as a more general (and more complex)
comparison then subgraph inclusion. Where subgraph inclusion more or less informally asks “Do my graphs
contain the same elements?”, subgraph isomorphism informally asks “Are my graphs organized in the same
way?”. As such, we believe that subgraph isomorphism can be used to build different kinds of explanations
for Abstract Argumentation results than the ones built in this chapter. For instance, imagine that a user
does not agree with a part of a result obtained via Abstract Argumentation and asks for explanations. One
way to explain it could be of the likes of “The part of the graph in which you disagree with the result is
isomorphic to this other part of the graph with which you agree and in which the same result is obtained.
So you should agree with the first part.”. This would be somewhat akin to a reasoning by association.

Finally, as a last idea, we should not forget that the explanations defined and investigated in this chapter

78

are designed for potentially anyone, and in particular, people without muck background in computer science.
Although there are some formal results which tend to support this feature (notably Theorems 1 to 5 that
show how to use and understand the explanations using only their visual characteristics), these intuitions
still need confirmation from an empirical point of view. This means conducting social experiments to assess
whether people that are non experts can indeed use and understand the explanations easily and whether
they find them useful or not.

79

Chapter 4

Logical Encoding of Argumentation
Frameworks to Compute Extensions

In this chapter, we present a logical encoding whose aim is to capture Abstract Argumentation Frameworks
and their classical semantics. By “Abstract Argumentation Frameworks”, we mean any framework that can
be obtained with a combination of the enrichments presented in Section 2.3. This covers the basic Argu-
mentation Frameworks, but also Argumentation Frameworks with Coalitions, Higher-Order Argumentation
Frameworks and so on. More specifically, the first objective is to provide what we call a generic theory for
Argumentation Frameworks and their enriched versions: a group of general formulas that are common to
every framework, and in which the variable parts are isolated into what we call parameters. The point is to
specify the particularities of each individual kind of Abstract Argumentation Framework in the parameters,
which are then integrated into the shared general formulas to obtain the theory relative to the kind of Ab-
stract Argumentation Framework considered. The second objective is that the theories obtained this way
can be used to compute the extensions of the Abstract Argumentation Framework which is encoded for the
classical semantics through their models.

The chapter is organized as follows: we begin with an overview of existing similar approaches (Section 4.1),
the presentation of our motivations (Section 4.2) and a succinct description of the technical tool used in this
chapter (Section 4.3). Next, in Section 4.4, we present an Abstract Argumentation Framework that regroupes
all the enrichments that we consider in the present work and will act as the backbone of our logical encoding.
Following this, we present our generic logical theory in Section 4.5, starting with the shared formulas and then
showing how they can be parameterized to retrieve all the Abstract Argumentation Frameworks captured by
our general formalism presented previously. Additionally, we provide results stating that the family of logical
theories obtained can indeed be used to compute the extensions of the encoded Abstract Argumentation
Frameworks for the classical semantics. Lastly, we summarize our work, compare it to relevant related works
(Section 4.7) and discuss perspectives for future research (Section 4.8).

4.1 Existing Approaches
The links between Abstract Argumentation and Formal Logic have been studied since the introduction of
the former. Indeed, already in the seminal work of Dung ([Dun95]), a first bridge between these domains
has been presented, linking Abstract Argumentation and Logic Programming. The nature and objectives of
these bridges are variable, although for the latter, it is often a matter of having a way to compute extensions
for some Abstract Argumentation Framework (as is our case in the present work). One way to do so is
through the so-called model checking approach.

The idea is to compute all the extensions of an Abstract Argumentation Framework for a given semantics,
using a group of logical formulas. Once such a group of formulas is specified, the aim is to establish a
link between its models and the extensions of the Abstract Argumentation Framework that is considered

80

(usually, one model corresponds to one extension). Several works have been done in this line of research
(see for instance [BD04, CG09, DJWW12, CDGV13]) in the case of simple Argumentation Frameworks.
More recently, a model checking approach has been developed for Higher-Order Argumentation Frameworks
(and the simpler Argumentation Frameworks as well) in [CL18]. This work was then extended to Higher-
Order Evidence-Based Argumentation Frameworks in [CL20] for the specific case where no support cycles
are present at first, and then in the general case in [Lag21], in which even the case of coalitions of arguments
is handled.

4.2 Motivation
There is, in the existing model checking approaches for the computation of extensions, an inconvenience for
which the will of fixation serves as the basis of our motivation. Indeed, there is already a certain number
of works proposing logical encoding of Argumentation Frameworks following the model checking approach,
and even of enriched Abstract Argumentation Frameworks. However, all of these propositions are ad hoc
constructions, dedicated to a unique kind of Abstract Argumentation Framework, without trying to rely on
the similarities that connect all these frameworks.

This is something to which we want to bring an answer. The key idea of this work is unification. We
want to propose a single generic logical theory that is sufficiently large to be ultimately adapted to any
kind of Abstract Argumentation Framework, enriched or not. To do so, it is essential to rely extensively
on the common ground of all these different frameworks. This is indeed a central point of our general
methodology, as the core of our generic logical theory is in fact the group of formulas that are shared by
all the Abstract Argumentation Frameworks that are included. As such, the variable parts that correspond
to the individual specificities of each kind of Abstract Argumentation Framework are in fact isolated into
what we call parameters. So, to retrieve a particular kind of Abstract Argumentation Framework, it suffices
to give the correct meaning to each parameter. Since the parameters are already included in the general
group of formulas (but without any meaning at first), their effect once they have been specified is immediate.
Thus, the only to do to instantiate a particular kind of Abstract Argumentation Framework is indeed only
to instantiate the parameters.

Such an approach is not modular per se. For a modular approach, one would expect a general theory
that is already ready to be used for some case, and then additional formulas to add or not whether we want
to enable or disable some enrichments. However, we wish to insist that the formulas that instantiate the
parameters are not arbitrary. In fact, we will observe that, depending on the presence or absence of a given
enrichment, these formulas are modified in the same way. Thus, the formulas corresponding to the presence
of two enrichments are in fact those obtained by mechanically applying the modifications that correspond
to both of them individually. As such, they are not ad hoc constructions.

We would also like to point out that each theory obtained through the instantiating of our generic theory
is essentially the same as the logical encoding already given in the literature for the same kind of Abstract
Argumentation Frameworks (in particular those described in [CL18, CL20]).

4.3 Technical Tool: First-Order Logic
We recall here some notions of First-Order Logic that we will use in this chapter. We refer the reader to
[Hod13] (of which most of the definitions and results presented in this section are from) for additional notions
on this subject.

We suppose the reader familiar with the notion of Propositional Logic, of which First-Order Logic is an
extension. As for any formal logic, the point of First-Order Logic is to model statements and then have a
way of deciding which statements are true and which are false. As such, the first step is to define an abstract
language using which we can write syntactical expressions that aim at capturing the statements we wish to
model, independently from what these statements actually are. There are two kinds of symbols used in a
language of First-Order Logic, given in Table 4.1.

81

Logical symbols Nonlogical symbols
x, y, z, . . . individual variables a, b, c, . . . constant symbols
¬ ∨ logical connectors f, g, h, . . . n-ary function symbols (n = 1, 2, . . .)
∀ quantifier P,Q,R, . . . n-ary predicate symbols (n = 1, 2, . . .)
() , punctuation
= symbol for equality

Table 4.1: Symbols of the language of First Order Logic

Note. We assume that there is an infinite list of individual variables, but that each kind of nonlogical symbols
has a countable number of elements.

Note. In practice, the constant symbols, function symbols and predicate symbols are specific to a given
language, and precisely serve to differentiate a language from another. When defining a specific language,
those symbols must be specified. The ones given in Table 4.1 can be thought as metasymbols: symbols used
to denote any symbol that can be put in their place.

Convention. We introduce additional logical symbols to the language that are defined relatively to those
given in Table 4.1. (A∧B) means ¬(¬A∨¬B), (A→ B) means (¬A∨B), (A↔ B) means ((A→ B)∧(B →
A)), and ∃xn(A) means ¬∀xn(¬A).

The syntactical expressions used to represent the statements we wish to capture are called formulas.
They are defined using the symbols given in Table 4.1. They rely on an intermediate syntactical concepts,
the terms.

Definition 52. The terms are defined inductively as follows:

1. Each individual variable x and each constant c is a term.

2. If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

3. Every term is obtained by a finite application of steps 1 and 2.

Terms can be thought as representing individual objects our statements are about. Using the terms, we
can define the formulas.

Definition 53. The formulas are defined inductively as follows:

1. If s and t are terms, (s = t) is a formula.

2. If P is an n-ary predicate symbol and t1, . . . , tn are terms, then P (t1, . . . , tn) is a formula.

3. If A and B are formulas and xn is an individual variable, then ¬A, A ∨B, and ∀xn(A) are formulas

4. Every formula is obtained by a finite application of steps 1, 2 and 3.

The formulas can be thought as the “correct” syntactical expressions of the language. In particular, they
are the expressions we are interested into, as they are the ones that are meant to represent the statements
we wish to model. Thus, we now need a way to determine whether a formula (and so the statement it
represents) is true or not. To this end, we define the concept of interpretation.

Definition 54. An interpretation of a first-order language consists of:

1. a non-empty set DI (called the domain of the interpretation);

2. for each constant symbol c, a specific element cI of DI (so cI ∈ DI);

3. for each n-ary function symbol f , an n-ary operation fI on DI (so fI : Dn
I 7→ DI)

82

4. for each n-ary predicate symbol P , an n-ary relation PI on DI (so PI ⊆ Dn
I).

An interpretation is a well named object, in that it is indeed intended to model the meaning we give to
the nonlogical symbols of a language (so that its formulas indeed represent the statements we wish to model).
To know whether a formula is true or not, we also need the concept of assignment in an interpretation.

Definition 55. Let I be an interpretation of a first-order language. An assignment in I is a function ϕ
from the set of individual variables into the domain of I.

Note. If we denote by V AR the set of individual variables of a first-order language, an assignment is thus a
function ϕ such that ϕ : V AR 7→ DI .

An assignment can be thought as a way of giving a precise meaning (one among possibly many) to a
formula regarding an interpretation. We now introduce a notion used to determine if two assignments are
somewhat “close” to each other.

Definition 56. Let I be an interpretation of a first-order language. Two assignments ϕ and ψ in I are
xn-variants if ϕ(xk) = ψ(xk) for all k ̸= n.

Note. Two assignments ϕ and ψ of an interpretation I that are xn-variants in fact agree everywhere except
possibly at xn where they may or may not differ.

Remark. Every assignment ϕ of an interpretation I is a xn-variant of itself.

To determine whether a formula is true or not, we first need to extend the notion of assignment to terms,
and then to formulas. This is the object of the two following definitions.

Definition 57. Let I be an interpretation of a first-order language and ϕ an interpretation in I. The
extension of ϕ to terms, which we continue to denote ϕ, is defined by induction as follows:

1. For each constant symbol c of the language, ϕ(c) = cI .

2. If f is an n-ary function symbol and t1, . . . , tn are terms, then ϕ(f(t1, . . . , tn)) = fI(ϕ(t1), . . . , ϕ(tn)).

Note. If we denote by TRM the set of terms of a first-order language, the extension of an assignment to
terms is thus a function ϕ such that ϕ : TRM 7→ DI .

Definition 58. Let I be an interpretation of a first-order language and ϕ an interpretation in I. The
extension of ϕ to formulas, which we continue to denote ϕ, is defined by induction as follows:

1. If s and t are terms, ϕ(s = t) = true if ϕ(s) = ϕ(t) (so ϕ(s) and ϕ(t) are the same element of DI) and
ϕ(s = t) = false otherwise.

2. If P is an n-ary predicate symbol and t1, . . . , tn are terms, then ϕ(P (t1, . . . , tn)) = true if (ϕ(t1), . . . ,
ϕ(tn)) ∈ PI , and ϕ(P (t1, . . . , tn)) = false otherwise.

3. If A is a formula, then ϕ(¬A) = true if ϕ(A) = false, and ϕ(¬A) = false otherwise.

4. If A and B are formulas, then ϕ(A ∨B) = true if ϕ(A) = true or ϕ(B) = true, and ϕ(A ∨B) = false
otherwise.

5. If A is a formula and xn is an individual variable, then ϕ(∀xn(A)) = true if ϕ(A) = true for every
assignment ψ that is an xn-variant of ϕ, and ϕ(∀xn(A)) = false otherwise.

Note. If we denote by FRM the set of formulas of a first-order language, the extension of an assignment to
formulas is thus a function ϕ such that ϕ : FRM 7→ {true, false}.

We can now advance towards the definition of what is a true formula of a first-order language.

Vocabulary. Let I be an interpretation of a first-order language, A a formula over that first-order language
and ϕ an assignment in I. We say that ϕ satisfies A if ϕ(A) = true.

83

Vocabulary. Let A be a formula over a first-order language. We say that A is satisfiable if there is at least
one interpretation I of that first-order language and at least one assignment ϕ in I such that ϕ satisfies I.
If A is not satisfiable, we then say that it is unsatisfiable.

Definition 59. Let I be an interpretation of a first-order language and A a formula over that first-order
language. A is true in the interpretation I if every assignment of I satisfies A.

Remark. A formula A is not defined as being true per se, but instead is defined as being true in a given
interpretation.

Vocabulary. Let I be an interpretation of a first-order language and A a formula over that first-order language.
We say that I is a model of A if A is true in I. This extends to sets of formulas: if Γ is a set of formulas
over the language of I, we say that I is a model of Γ if I is a model of every formula of Γ.

Vocabulary. Let I be an interpretation of a first-order language and A a formula over that first-order language.
We say that A is false in the interpretation I if no assignment in I satisfies A.

Definition 60. Let A be a formula over a first-order language. A is logically valid if it is true in every
interpretation I of the language of A.

Although determining whether a given formula (or set of formulas) is logically valid or even satisfiable
in Propositional Logic is decidable, it is well known that the same problem is undecidable in general in
First-Order Logic. This means that there exists no algorithm that can tell whether an arbitrary formula
(or set of formulas) over a first-order language is satisfiable or valid. To be more precise, this problem is in
fact semidecidable: we have an algorithm that can enumerate all logically valid formulas over the language
(so we might find our formula(s) among them if we wait long enough), but that is all. In particular, if our
formula (or one of our formulas) is not logically valid, the algorithm never stops. We also know that there
exists particular restricted fragments of first-order logic that are decidable.

In practice, we are sometimes not interested in verifying whether a formula is satisfiable in general (so
considering every possible interpretation), but rather whether one specific interpretation satisfies it. So it
is more a problem of determining if a certain interpretation satisfies our formula rather than determining
whether there exists an interpretation that satisfies it. This is the problem that we are interested in in this
chapter. Note that this problem, provided that the interpretation has a finite domain (this is not necessarily
the case according to Definition 54) is indeed decidable.

We now characterize a specific kind of interpretation, designed to be as simple as possible: Herbrand
models. These will be the models that we will use in this chapter. For this, we need the notions of Herbrand
universe and Herbrand base.

Definition 61. Let A be a formula over a first-order language. We define:

1. U0 is the set of all constant symbols in A. If A has no constant symbol, U0 is {a} instead (so that it
is not empty)

2. Ui+1 is the union of Ui with the set of all the terms of the form fn(t1, . . . , tn) where fn is an n-ary
function symbol that appears in A and t1, . . . , tn are terms of Ui

The Herbrand universe of A, denoted UA, is the set of terms
∞⋃
i=0

Ui.

The Herbrand universe of a formula can be thought of as the set of all terms that are relevant for this
particular formula. This definition can be easily extended to sets of formulas. Now, we give the definition
of the Herbrand base of a formula.

Definition 62. Let A be a formula over a first-order language. The Herbrand base of A, denoted BA, is the
set of all formulas of the form (s = t) or of the form Pn(t1, . . . , tn) where Pn is an n-ary predicate symbol
that appears in A and s, t, t1, . . . , tn are terms of the Herbrand universe UA of A.

84

Similarly as with the Herbrand universe of a formula, the Herbrand base of a formula can be thought as
the set of all ground formulas (atoms) that are relevant for this particular formula. This definition can also
be easily extended to sets of formulas.

The Herbrand base of a formula allows to easily define interpretations that are relevant for the formula we
consider. Indeed, in virtue of Definition 58, the truth value of a formula derives from the truth values of the
atoms that are relevant to it. This is precisely what contains the Herbrand base. So we only need to select
a subset of that base, which will be the atoms that we arbitrarily consider to be true, making all the other
automatically false, to obtain an interpretation. Such an interpretation is called a Herbrand interpretation.

Definition 63. Let A be a formula over a first-order language. A Herbrand interpretation is a subset of
BA.

This definition can also be extended to sets of formulas. We point out that Herbrand interpretations are
indeed interpretations in that it is possible to build an interpretation of the first-order language (so in the
sense of Definition 54) from any of them.

Vocabulary. Let A be a formula over a first-order language and I be a Herbrand interpretation. Just like
arbitrary interpretations, we say that I is a Herbrand model of A if it satisfies A.

Notation. Let A be a formula over a first-order language. The set of Herbrand models of A is denoted HA.
This extends to sets of formulas.

From there on, we will assume the reader familiar with some more advanced but still classical concepts
of formal logic, notably semantical entailment (⊨) and syntactical entailment (⊢). We provide additional
definitions surrounding the latter.

Definition 64. Let H be a set of formulas. We say that H is theoretically closed if for every formula φ such
that H ⊢ φ, we have φ ∈ H.

Definition 65. Let H be a set of formulas. The theoretical closure of H is its smallest superset that is
theoretically closed.

Notation. Let H be a set of formulas. The theoretical closure of H is denoted Th(H).

Finally, we give a convention that we will use for the rest of the present work when writing formulas.
This convention aims at avoiding nested implicative formulas.

Convention. We will abbreviate formulas ∀z
(
P (z)→ ψ

)
as ∀z ∈ P ψ and ∃z

(
P (z) ∧ ψ

)
as ∃z ∈ P ψ

Note. Please consider that this convention does not mean that we use multi-sorted logics: this is simply a
convenient notation to improve the readability of the axioms further in the present work.

4.4 A General Account of Enriched Argumentation Frameworks
In this section, we are interested in defining an Abstract Argumentation Framework that captures all the
enrichments mentioned in Section 2.3. Just like in Section 2.3, we will study how its semantics can be
defined. This framework will be the backbone of the family of logical theories we will provide in the next
section. We will also give some intuitions as to how simpler frameworks and their specific semantics can be
retrieved from this one.

4.4.1 Higher-Order Bipolar Argumentation Frameworks with Coalitions
The formalism we call Higher-Order Bipolar Argumentation Frameworks with Coalitions (HO-BAF-C) is
a generalisation of Argumentation Frameworks in which we consider simultaneously higher-order relations
(attack and support relations) and coalitions of arguments.

85

Definition 66. An HO-BAF-C is a tuple (A , R, S , s, t) where A is a set of arguments, R is a set of
attacks and S is a set of supports such that:

• A ∩R = A ∩S = R ∩S = ∅,

• s : R ∪S → 2A \ {∅},

• t : R ∪S → A ∪R ∪S .

Vocabulary. We collectively refer to attacks and supports as interactions, and to arguments, attacks and
supports as elements.

Vocabulary. For a Higher-Order Bipolar Argumentation Frameworks with Coalitions (A , R, S , s, t) and
an interaction α ∈ R ∪S , s(α) is the source of α and t(α) is the target of α.

The same remarks concerning the interpretations of enrichments that have been made in Section 2.3
can be made concerning an HO-BAF-C. We recall them briefly. In the case of Coalitions, we consider that
an interaction is effective when all the arguments of its source satisfy a particular condition, and restrict
ourselves to the case of interactions having a single target. We use the RAF interpretation of higher-order
relations. Finally, we interpret the support relation as being an evidential support.

Note that from the last point, we do not just consider Higher-Order Bipolar Argumentation Frameworks
with Coalitions, but more specifically Higher-Order Evidence-Based Argumentation Frameworks with Coali-
tions (HO-EBAF-C). In particular, this means that we must identify the origin of supports, that is to say,
prima-facie objects. Observe that in an HO-EBAF-C, contrarily to a simple EBAF, arguments, attacks and
supports can be targeted by interactions. In particular, this means that arguments, attacks and supports
can all receive supports. Consequently, prima-facie objects, so objects whose support is not to be questioned,
can be found among all the elements of the framework.

Definition 67. An HO-EBAF-C is a tuple (A , R, S , P, s, t) where A is a set of arguments, R is a set
of attacks and S is a set of supports such that:

1. A ∩R = A ∩S = R ∩S = ∅,

2. s : R ∪S → 2A \ {∅},

3. t : R ∪S → A ∪R ∪S ,

4. P ⊆ A ∪R ∪S .

Vocabulary. For a Higher-Order Evidence-Based Argumentation Frameworks with Coalitions (A , R, S , P,
s, t) and an element x ∈ A ∪R ∪S , we say that x is prima-facie if and only if x ∈P.

Remark. Definition 66 will not be of much use in the present work. Since we focus on the evidential
interpretation of support, we will use Definition 67 instead. Nevertheless, we introduced Definition 67
through Definition 66 to follow a similar methodology as in Chapter 2 when we presented the support
relation.

4.4.2 Structures and Semantics
We already discussed in Section 2.3 that in the case of Higher-Order Argumentation Frameworks, since both
arguments and attacks can be targeted, the semantical concepts of Abstract Argumentation are defined
relatively to a subset of arguments and a subset of attacks. Following this idea, in a Higher-Order Bipolar
Argumentation Frameworks with Coalitions (and so, in a Higher-Order Evidence-Based Argumentation
Frameworks with Coalitions), the semantical concepts are defined relatively to a subset of arguments, a
subset of attacks and a subset of supports. Contrarily to Section 2.3, this idea is formalized by using the
concept of structure, as introduced in [CFFL18a].

86

Definition 68. Let (A , R, S , P, s, t) be an HO-EBAF-C. A structure is an ordered pair U = (S,Γ,∆)
where S ⊆ A , Γ ⊆ R and ∆ ⊆ S .

Remark. Please observe that, in a structure U = (S,Γ,∆), S, Γ and ∆ are pairwise disjoint (in symbols,
S ∩Γ = S ∩∆ = ∆∩Γ = ∅) as a consequence of the condition A ∩R = A ∩S = R ∩S = ∅ in Definition
67.

A structure is meant to capture the whole context that underlies acceptability (in a generalized account,
it may take some attacks and/or supports to be accepted for a set of arguments to be accepted). Since the
more elements we have to consider in definitions, the more intricate they become, we have to differ a little
from the general methodology that was followed in Sections 2.1 and 2.3 to define semantics. Here, we adopt
a more set-theoretic approach and define several intermediate notions before defining semantics themselves.

The first of these intermediate notions is that of elements being defeated by a structure.

Definition 69. Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) a structure. An element
x ∈ A ∪R ∪S is defeated by U if and only if there exists α ∈ Γ such that s(α) ⊆ S and t(α) = x.

Notation. In the following, considering a structure U = (S,Γ,∆), we denote by Def(U) the set of all
elements defeated by U .

Considering interactions, their effect can be prevented either by being defeated by a structure, or having
an argument of their source being defeated by that structure. We formalize this idea with the notion of
inhibition.

Definition 70. Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) a structure. An interaction
β is inhibited by U if and only if β or some b ∈ s(β) is defeated by U .

Notation. In the following, considering a structure U = (S,Γ,∆), we denote by Inh(U) the set of all
elements inhibited by U .

The next notion is the generalisation of evidential support to the context of Higher-Order Evidence-Based
Argumentation Frameworks with Coalitions.

Definition 71. Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) be a structure. An element
x ∈ A ∪R ∪S is e-supported by U if and only if either x ∈P or there exists α ∈ ∆ with

1. t(α) = x,

2. s(α) ⊆ S and

3. α is e-supported by U ′ = (S \ {x},Γ \ {x},∆ \ {x}) and for all a ∈ s(α), a is e-supported by U ′.

Notation. In the following, considering a structure U = (S,Γ,∆), we denote by Supp(U) the set of all
elements supported by U .

We now introduce a somewhat new notion, that of unsupportability. Informally, we consider an element
to be unsupportable when we know it cannot receive any support whatsoever.

Definition 72. Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) be a structure. An
element x ∈ A ∪ R ∪ S is unsupportable by U if and only if x is not e-supported by the structure U ′ =
(A \Def(U),R,S \Def(U)).

Notation. In the following, considering a structure U = (S,Γ,∆), we denote by UnSupp(U) the set of all
elements unsupportable by U .

With this, we now have everything we need to proceed with the definition of acceptability.

Definition 73. Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) be a structure. An element
x ∈ A ∪R ∪S is acceptable with respect to U if and only if

87

1. x is e-supported by U and

2. for all α ∈ R, if t(α) = x then either α or some a ∈ s(α) is either defeated by U or unsupportable by
U .

Notation. In the following, considering a structure U = (S,Γ,∆), we denote by Acc(U) the set of all
elements acceptable by U .

As usual, with acceptability comes the possibility of finally introducing the classical semantics.

Definition 74. Let (A , R, S , P, s, t) be an HO-EBAF-C. A structure U = (S,Γ,∆) is said to be:

• conflict-free iff for all α ∈ Γ, for all x ∈ S ∪ Γ ∪∆, if s(α) ⊆ S then t(α) ̸= x,

• admissible iff U is conflict-free and for all x ∈ S ∪ Γ ∪∆, x is acceptable wrt U ,

• complete iff U is admissible and for all x ∈ A ∪R ∪S , if x is acceptable wrt U then x ∈ S ∪ Γ ∪∆,

• preferred iff U is a ⊆-maximal admissible structure,1

• grounded iff U is a ⊆-minimal complete structure,

• stable iff (A ∪R∪S)\ (S∪Γ∪∆) = {x ∈ A ∪R∪S | x is not e-supported wrt (A \Def(U),R,S \
Def(U)) or ∃α ∈ Γ, s(α) ⊆ S, t(α) = x}.

We can use some of our previously introduced notations to rewrite some semantics of Definition 74 as
follows.

Corollary 3. Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) be a structure. Consider the
structure U ′ = (A \Def(U),R,S \Def(U)). U is said to be:

• admissible iff U is conflict-free and S ∪ Γ ∪∆ ⊆ Acc(U),

• complete iff U is admissible and Acc(U) ⊆ S ∪ Γ ∪∆,

• stable iff

– A \ S = {a ∈ A | a /∈ Acc(U ′) or ∃β ∈ Γ such that s(β) ⊆ S and t(β) = a},
– R \ Γ = {α ∈ R | α /∈ Acc(U ′) or ∃β ∈ Γ such that s(β) ⊆ S and t(β) = α}, and

– S \∆ = {α ∈ S | α /∈ Acc(U ′) or ∃β ∈ Γ such that s(β) ⊆ S and t(β) = α}.

4.4.3 From a General Formulation to its Usual Formulation
The definitions we gave in the previous section are general in the sense that they reduce to the correct simpler
definitions corresponding to the case where some enrichments are not considered. We could have stopped at
this statement and let the reader verify it by themselves, but in order to be convincing, we propose here a
mechanical approach to retrieve simpler formulations of definitions from the general ones, based on how to
get from the general framework to the simpler ones.

The key here is to see that retrieving simpler frameworks is mostly done through imposing restrictions
upon the conditions for s and/or t in Definition 67.2. That is, restricting A ∪R ∪S in Condition 3 to A
allows us to disable higher-order relations. Restricting 2A \ {∅} in Condition 2 to singleton subsets of A
allows us to disable coalitions. Finally, restricting R∪S in Conditions 2, 3 and 4 to R (both in domain and
co-domain in the case of 3) allows us to disable the support relation. In the case of disabling the support

1We consider that (X,Y, Z) ⊆ (P,Q,R) if and only if X ⊆ P , Y ⊆ Q and Z ⊆ R.
2Obvious adjustments apply: e.g., a condition such that t(β) ∈ s(α) is identified with t(β) = a whenever s(α) is the singleton

set {a}.

88

relation, we must add that this case is identified with the situation S = ∅ and P = A ∪R in the general
framework.

Based on these restrictions, at the level of the framework, we now propose the following language oper-
ations to apply directly on the definition to obtain the correct definitions from the general ones considering
which restrictions we wish to apply.

Procedure for versions reducing structures to extensions (†)
Everywhere:

• replace “structure” with “set of arguments”,

• replace U = (S,Γ,∆) (or (S,Γ,∆) or U) by S,

• replace S ∪ Γ ∪∆ by S,

• replace Γ by R,

• replace ∆ by S ,

• replace A ∪R ∪S by A ,

• replace framework names of the form “HO-X” by “X”.

Remark. Observe that the notion of structure simplifies to the notion of extension for a framework without
higher-order relations considering that Γ = R and ∆ = S . In this case, for any extension S of the simpler
framework, the corresponding structure in the general framework is U = (S,R,S).

Simplification for versions disallowing coalitions (‡)
Everywhere:

• replace a ∈ s(γ) by a = s(γ),

• replace s(γ) ⊆ S by s(γ) ∈ S,

• replace framework names of the form “X-C” by “X”.

Simplification for versions disallowing the support relation (¶)
Everywhere:

• replace S by ∅,

• replace P by A ∪R,

• replace framework names of the form “EBAF” by “AF”.

Procedure for eliminating names of attacks (‖)
Everywhere:

• replace Qγ ∈ R by Qyγzγ s.t. yγRzγ (where Q is ∀ or ∃ or non-existent),

• replace s(γ) by yγ ,

• replace t(γ) by zγ ,

• delete conditions involving an equation of the form “γ = . . .”,

• delete conditions of the form “γ is . . . ”.

89

Please observe how the language operations correspond, for each enrichment, to the restriction on func-
tions s and t that we previously discussed. As an illustration, we can check that the original setting of
Argumentation Frameworks is retrieved by applying all these operations on some definition.

Lemma 11. For an Argumentation Framework, Definition 73 then becomes:

Let (A , R, ∅, A ∪R, s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable
wrt S iff for all yβ , zβ s.t. yβRzβ, if zβ = x then there exists yγ , zγ s.t. yγRzγ where yγ ∈ S and
zγ = b for some b = yβ.

Equivalently,

Let (A , R, ∅, A ∪R, s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable
wrt S iff for all y s.t. yRx, there exists v s.t. vRy where v ∈ S.

which amounts to Definition 2.

Proof. Definition 73 is as follows (replacing several notions with their definition):
Let (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) a structure. An element x ∈ A ∪R ∪S

is acceptable wrt U iff (1.1) x ∈ P or (1.2) there exists α ∈ ∆ with (1.2.1) t(α) = x, (1.2.2) s(α) ⊆ S,
and (1.2.3.1) α is e-supported by U ′ = (S \ {x},Γ \ {x},∆ \ {x}) and (1.2.3.2) for all a ∈ s(α), a is e-
supported by U ′, and (2) for all β ∈ R, if t(β) = x then either (2.1) there exists γ ∈ Γ where (2.1.1)
s(γ) ⊆ S and either (2.1.2) t(γ) = β or (2.1.3) t(γ) = b for some b ∈ s(β), or (2.2) β /∈ P and there
exists no δ ∈ ∆ with (2.2.1) t(δ) = β, (2.2.2) s(δ) ⊆ A \ Def(U), (2.2.3) δ is e-supported by U ′′ =
(A \ (Def(U) ∪ {β}),R \ {β},S \ (Def(U) ∪ {β})), and (2.2.4) for all c ∈ s(δ), c is e-supported by U ′′, or
(2.3) for some d ∈ s(β), d /∈P and there exists no δ ∈ ∆ with (2.3.1) t(δ) = b, (2.3.2) s(δ) ⊆ A \Def(U),
(2.3.3) δ is e-supported by U ′′, and (2.3.4) for all c ∈ s(δ), c is e-supported by U ′′.

Applying (†) then gives (modifications are given in a box):
Let (A , R, S , P, s, t) be an EBAF-C and S a set of arguments . An element x ∈ A is acceptable

wrt S iff (1.1) x ∈ P or (1.2) there exists α ∈ S with (1.2.1) t(α) = x, (1.2.2) s(α) ⊆ S, and (1.2.3.1)
α is e-supported by S \ {x} , and (1.2.3.2) for all a ∈ s(α), a is e-supported by S \ {x} , and (2) for all

β ∈ R, if t(β) = x then either (2.1) there exists γ ∈ R where (2.1.1) s(γ) ⊆ S and either (2.1.2) t(γ) = β

or (2.1.3) t(γ) = b for some b ∈ s(β), or (2.2) β /∈ P and there exists no δ ∈ S with (2.2.1) t(δ) = β,
(2.2.2) s(δ) ⊆ A \ Def(S) , (2.2.3) δ is e-supported by A \ (Def(S) ∪ {β}) , and (2.2.4) for all c ∈ s(δ), c

is e-supported by A \ (Def(S) ∪ {β}) , or (2.3) for some d ∈ s(β), d /∈P and there exists no δ ∈ S with

(2.3.1) t(δ) = b, (2.3.2) s(δ) ⊆ A \ Def(S) , (2.3.3) δ is e-supported by A \ (Def(S) ∪ {β}) , and (2.3.4)

for all c ∈ s(δ), c is supported by A \ (Def(S) ∪ {β}) .

Applying (‡) then gives (modifications are given in a box):
Let (A , R, S , P, s, t) be an EBAF and S a set of arguments. An element x ∈ A is acceptable wrt

S iff (1.1) x ∈ P or (1.2) there exists α ∈ S with (1.2.1) t(α) = x, (1.2.2) s(α) ∈ S, and (1.2.3.1) α is
e-supported by S \ {x}, and (1.2.3.2) for all a = s(α), a is e-supported by S \ {x}, and (2) for all β ∈ R, if
t(β) = x then either (2.1) there exists γ ∈ R where (2.1.1) s(γ) ∈ S and either (2.1.2) t(γ) = β or (2.1.3)
t(γ) = b for some b = s(β), or (2.2) β /∈P and there exists no δ ∈ S with (2.2.1) t(δ) = β, (2.2.2) s(δ) ∈
A \ Def(S), (2.2.3) δ is e-supported by A \ (Def(S) ∪ {β}), and (2.2.4) for all c = s(δ), c is e-supported
by A \ (Def(S)∪{β}), or (2.3) for some d = s(β), d /∈P and there exists no δ ∈ S with (2.3.1) t(δ) = b,
(2.3.2) s(δ) ∈ A \ Def(S), (2.3.3) δ is e-supported by A \ (Def(S)∪ {β}), and (2.3.4) for all c = s(δ), c
is supported by A \ (Def(S) ∪ {β}).

90

Applying (¶) then gives (modifications are given in a box):
Let (A , R, ∅ , A ∪R , s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable

wrt S iff (1.1) x ∈ A ∪R or (1.2) there exists α ∈ ∅ with (1.2.1) t(α) = x, (1.2.2) s(α) ∈ S, and (1.2.3.1)
α is e-supported by S \ {x}, and (1.2.3.2) for all a = s(α), a is e-supported by S \ {x}, and (2) for all
β ∈ R, if t(β) = x then either (2.1) there exists γ ∈ R where (2.1.1) s(γ) ∈ S and either (2.1.2) t(γ) = β or
(2.1.3) t(γ) = b for some b = s(β), or (2.2) β /∈ A ∪R and there exists no δ ∈ ∅ with (2.2.1) t(δ) = β,
(2.2.2) s(δ) ∈ A \ Def(S), (2.2.3) δ is e-supported by A \ (Def(S) ∪ {β}), and (2.2.4) for all c = s(δ), c is
e-supported by A \ (Def(S) ∪ {β}), or (2.3) for some d = s(β), d /∈ A ∪R and there exists no δ ∈ ∅
with (2.3.1) t(δ) = b, (2.3.2) s(δ) ∈ A \ Def(S), (2.3.3) δ is e-supported by A \ (Def(S)∪{β}), and (2.3.4)
for all c = s(δ), c is supported by A \ (Def(S) ∪ {β}).

With these previous modifications, some conditions become obviously valid or contradictory. We rewrite the
definition by replacing valid conditions with T and contradictory ones with F :

Let (A , R, ∅, A ∪R, s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable wrt
S iff (1.1) T or (1.2) F , and (2) for all β ∈ R, if t(β) = x then either (2.1) there exists γ ∈ R where (2.1.1)
s(γ) ∈ S and either (2.1.2) t(γ) = β or (2.2.3) t(γ) = b for some b = s(β), or (2.2) F and T , or (2.3) F and
T .

By deleting useless conditions, we obtain the following statement:
Let (A , R, ∅, A ∪R, s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable wrt

S iff for all β ∈ R, if t(β) = x then there exists γ ∈ R where s(γ) ∈ S and either t(γ) = β or t(γ) = b for
some b = s(β).

Finally, applying (‖) gives (modifications are given in a box):
Let (A , R, ∅, A ∪ R, s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable

wrt S iff for all yβ , zβ s.t. yβRzβ , if zβ = x then there exists yγ , zγ s.t. yγRzγ where yγ ∈ S and

either zγ = β or zγ = b for some b = yβ .

And so the final formulation (without any box) is:
Let (A , R, ∅, A ∪R, s, t) be an AF and S a set of arguments. An element x ∈ A is acceptable wrt S

iff for all yβ , zβ s.t. yβRzβ , if zβ = x then there exists yγ , zγ s.t. yγRzγ where yγ ∈ S and zγ = b for some
b = yβ .

In a nutshell, the semantics for Argumentation Frameworks (modulo the naming of attacks) are obtained
from Definition 74 as follows.

Lemma 12. Let (A , R, ∅, A ∪R, s, t) be an AF. A set of arguments S is said to be:

• conflict-free iff for all y, z s.t. yRz, for all x ∈ S, if y ∈ S then z ̸= x,

• admissible iff S is conflict-free and for all x ∈ S, x is acceptable wrt U ,

• complete iff S is admissible and for all x ∈ A , if x is acceptable wrt S then x ∈ S,

• preferred iff S is a ⊆-maximal admissible set of arguments,

• grounded iff S is a ⊆-minimal complete set of arguments,

• stable iff A \ S = {x ∈ A | ∃y, z s.t. yRz, y ∈ S, z = x}.

The equivalence of Lemma 12 with Definition 4 is straightforward.

91

4.4.4 Summary on Enriched Argumentation
Figure 4.1 displays the inclusion hierarchy that is induced by the enrichments considered in Section 2.3.
That is to say, it displays the different frameworks that are obtained depending on which enrichments (or
combinations thereof) are used.

Convention. As we discussed in the introduction, the term “Abstract Argumentation Framework” is then
used to designate any type of framework in this hierarchy.

Table 4.2 provides a synopsis of the types of Abstract Argumentation Frameworks that are of interest
in this work. The table includes for each type, its usual name, the name we use following our terminology,
references, domain and their specificity (more precisely, the domain and co-domain of attacks and supports).

AF

AF-C HO-AF BAF

HO-AF-C BAF-C HO-BAF

HO-BAF-C

Figure 4.1: Hierarchy for classes of argumentation frameworks (inclusion of these classes)

4.5 A Family of Logical Theories for Enriched Abstract Argumen-
tation

In this section, we present several logical theories that aim at capturing the different accounts of enriched
Abstract Argumentation that are captured by the Higher-Order Evidence-Based Argumentation Frameworks
with Coalitions formalism. More specifically, what we present is in fact a generic logical theory that can be
adapted via a parameterization process to retrieve all the different frameworks captured by a Higher-Order
Evidence-Based Argumentation Frameworks with Coalitions. The purpose of these logical theories is to give
a way to compute some (or all) the extension(s) of some semantics in a given framework, typically using
SAT solvers. We also hope that, with the way it is designed, it would not be very troublesome to extend the
generic logical theory to capture more exotic semantics than the ones we consider in the present work.

92

N
am

e
U

su
al

na
m

e
R

ef
er

en
ce

s
Se

ts
So

ur
ce

fu
nc

ti
on

T
ar

ge
t

fu
nc

ti
on

A
F

A
F

[D
un

95
,B

C
G

18
]

A
,R

s
:
R

→
A

t
:
R

→
A

A
F
-C

SE
T
A

F
[N

P
06

,F
B

19
]

A
,R

s
:
R

→
2A
\
{∅
}

t
:
R

→
A

H
O

-A
F

A
F
R

A
/R

A
F

[B
C

G
G

11
,C

F
F
L2

1]
A
,R

s
:
R

→
A

t
:
R

→
A
∪

R
H

O
-A

F
-C

N
/A

[L
ag

23
]

A
,R

s
:
R

→
2A
\
{∅
}

t
:
R

→
A
∪

R

B
A

F
A

F
D

*
N

/A
[B

G
vd

T
V

10
]

A
,R

,S
[,

P
]

s
:
R
∪

S
→

A
t
:
R
∪

S
→

A
A

F
N

**
A

F
N

[N
R

11
]

E
B

A
F

E
B

A
F

[O
N

08
,O

LR
10

]

B
A

F
-C

A
F
D

-C
N

/A
N

/A
A
,R

,S
[,

P
]

s
:
R
∪

S
→

2A
\
{∅
}

t
:
R
∪

S
→

A
A

F
N

-C
A

F
N

[P
O

14
]

E
B

A
F
-C

E
B

A
F

[O
N

08
,O

LR
10

,P
O

14
]

H
O

-B
A

F
H

O
-A

F
D

N
/A

[B
G

vd
T

V
10

]
A
,R

,S
[,

P
]

s
:
R
∪

S
→

A
t
:
R
∪

S
→

A
∪

R
∪

S
H

O
-A

F
N

A
SA

F
[C

G
G

S1
5,

G
C

G
S1

8,
La

g2
3]

H
O

-E
B

A
F

N
/A

N
/A

H
O

-B
A

F
-C

H
O

-A
F
D

-C
N

/A
N

/A
A
,R

,S
[,

P
]

s
:
R
∪

S
→

2A
\
{∅
}

t
:
R
∪

S
→

A
∪

R
∪

S
H

O
-A

F
N

-C
R

A
F
N

[C
F
F
L1

8b
,L

ag
23

]
H

O
-E

B
A

F
-C

R
E

B
A

F
[C

F
F
L1

8a
,C

F
F
L1

8b
]

T
ab

le
4.

2:
R

an
ge

an
d

co
m

bi
na

ti
on

of
fe

at
ur

es
fo

r
ar

gu
m

en
ta

ti
on

fr
am

ew
or

ks
(N

/A
=

N
ot

A
pp

lic
ab

le
).

C
ar

ef
ul

:
th

e
se

t
P

m
us

t
be

us
ed

w
he

n
th

e
m

ea
ni

ng
of

th
e

su
pp

or
t

is
th

e
ev

id
en

ti
al

on
e

*:
A

F
D

re
fe

rs
to

A
bs

tr
ac

t
A

rg
um

en
ta

ti
on

Fr
am

ew
or

ks
w

it
h

a
de

du
ct

iv
e

in
te

rp
re

ta
ti

on
of

su
pp

or
t

**
:

A
F
N

re
fe

rs
to

A
bs

tr
ac

t
A

rg
um

en
ta

ti
on

Fr
am

ew
or

ks
w

it
h

a
ne

ce
ss

ar
y

in
te

rp
re

ta
ti

on
of

su
pp

or
t

93

4.5.1 A Generic Theory
We begin by presenting the generic logical theory. Its axioms are formulas of first order logic with equal-
ity. Importantly, it is relative to a given Higher-Order Evidence-Based Argumentation Frameworks with
Coalitions A = (A ,R,S ,P, s, t), which is taken for granted throughout. Accordingly, we write LExt(A)
to denote the language of the theory.

Vocabulary

In our logical language, we will keep using the convention of using Latin letters to identify arguments and
Greek letters to identify arcs (be they attacks or supports). As such, our individual variables will be from
different fonts. Please keep in mind that this is for readability only: the logic is not two-sorted.

As to individual constants, instead of resorting to an explicit notation indicative of each element e in
the given framework A being mapped to an individual constant specific to this element e, we adopt a more
readable convention at the cost of abusing notation as follows.

Individual Constants For all e in A ∪R ∪S , we take e to be an individual constant.

As such, for a given element of the framework, the same letter will be used to designate it in the framework
and to designate the logical constant that represents it in the logical language.

Predicates The list of unary and binary predicates, as well as their intended meaning, is presented in
Table 4.3.

Unary Predicates Meaning
Arg(x) x is an argument
Att(x) x is an attack
Sup(x) x is a support

✓ Cand(x) x can be a candidate for being selected by the semantics, i.e. for
belonging to the result of this semantics (extension or structure)

PrimaFacie(x) x is a prima facie evidence
Selected(x) x is a member of the current extension/structure

✓ Defeated(x) x is defeated by an attack
✓ Inhibited(α) α is inhibited by an attack

Acceptable(x) x is acceptable, in the sense of the defence wrt the attacks
Unacceptable(x) x cannot be acceptable

✓ Activable(α) the interaction α may be activated
✓ Desactivated(α) the interaction α cannot possibly be activated

Supported(x) x is supported
Unsupportable(x) x cannot be supported

Binary Predicates Meaning
S(α, x) x is in the source of α
T (α, x) x is in the target of α

Table 4.3: Unary and Binary Predicates (✓ indicates those which are what we call parameters of the theory)

We can make several observations on those predicates. First, please note that the last six unary predicates
in this table can be viewed as having the same kind of behaviour:

• Acceptable(x) is a necessary condition for x to be accepted although possibly not sufficient (depending
on the characteristics of the argumentation framework and on the properties of the argumentation
semantics under consideration). On the other hand, Unacceptable(x) expresses a sufficient condition
for x to fail to be accepted.

94

• Activable(α) is necessary for α to succeed (there is however no guarantee that α succeeds). In contrast,
Desactivated(α) indicates that the attack α does fail.

• Supported(x) and Unsupportable(x) work in a similar manner as Acceptable(x) and Unacceptable(x)
but concerning the notion of support. Thus, Supported(x) represents a necessary condition for x to
receive evidential support while Unsupportable(x) is intended to work as a sufficient condition for x
not being able to receive such support.

The binary predicates S and T are obviously intended to capture the s and t functions of the argumen-
tation framework A. Although technically correct and consistent with the theory, the case where t(α) is a
set of cardinality greater than 1 will not be considered in the rest of this work.

Importantly, we regard the unary predicates Cand, Activable, Defeated, Inhibited and Desactivated as
parameters of the generic theory. They form the extra part supplementing the generic theory in order
to capture the distinctive features of each enrichment, and thus of each type of framework.
Note. Notice that our language thus possesses a finite number of constant symbols, a finite number of
predicate symbols and no function symbol.

Axioms for the Abstract Argumentation Framework

The formulas given here aim at describing the graph that constitutes the Abstract Argumentation Framework
being handled, without the argumentative interpretation. That is to say, without encoding the effect of its
relation(s) on the selection of its nodes

Since we are working with a given Higher-Order Evidence-Based Argumentation Frameworks with Coali-
tions A = (A , R, S , P, s, t), it is convenient to fix the following notation for the elements of A: We
write A = {e1, . . . , en1}, R = {en1+1, . . . , en2} and S = {en2+1, . . . , en3} where 0 ≤ n1 ≤ n2 ≤ n3. By
convention, we assume that n1 = 0 implies A = ∅, n1 = n2 implies R = ∅ and that n2 = n3 implies
S = ∅. In the case that A has a support relation, we write P = {y1, . . . , yk}, with the convention that
k = 0 implies P = ∅.

Axioms for the domain of elements of the framework

for all a ∈ A , Arg(a) ∧ ¬Att(a) ∧ ¬Sup(a) (4.1a)
for all α ∈ R, ¬Arg(α) ∧Att(α) ∧ ¬Sup(α) (4.1b)
for all α ∈ S , ¬Arg(α) ∧ ¬Att(α) ∧ Sup(α) (4.1c)

for all ei, ej ∈ A ∪R ∪S s.t. i ̸= j, ¬(ei = ej) (4.1d)
for all e ∈P, P rimaFacie(e) (4.1e)

for all e ∈ (A ∪R ∪S) \P, ¬PrimaFacie(e) (4.1f)

Closure axioms Considering A = {e1, . . . , en1}, R = {en1+1, . . . , en2} and S = {en2+1, . . . , en3},

∀z
(
Arg(z) ∨Att(z) ∨ Sup(z)

)
(4.2a)

∀z
(
Arg(z)→ z = e1 ∨ · · · ∨ z = en1

)
(4.2b)

∀z
(
Att(z)→ z = en1+1 ∨ · · · ∨ z = en2

)
(4.2c)

∀z
(
Sup(z)→ z = en2+1 ∨ · · · ∨ z = en3

)
(4.2d)

Remark. An immediate consequence of (4.2) is

∀z
(
z = e1 ∨ · · · ∨ z = en3

)
(UDCA)

where UDC stands for: Usual Domain Closure. In particular, we can restrict ourselves to interpretations in
which the domain is precisely A ∪R ∪ §, and so is finite.

95

Axiom for attacks and supports

for all α ∈ R ∪S ,
(∧

a∈s(α)

S(α, a)
)
∧
(∧

e∈t(α)

T (α, e)
)

(4.3)

Remark. Please observe that the theory is non-contradictory (A , R, and S are pairwise disjoint).

Note. Please note that each of Axioms (4.1) produces several formulas (one for each concerned element).
The same thing happens for Axiom (4.3) whereas it is not the case for Axioms (4.2) or (UDCA). Indeed, in
this last case, each axiom produces only one formula containing a quantifier over z that is a variable of the
language. This difference is essential and is formalised in the text, either with “for all” (case of Axioms (4.1)
and (4.3)), or “∀” (case of Axioms (4.2) or (UDCA)). In the rest of the document, the use of “∀” means that
the corresponding formula contains this quantifier and, in this case, the domain of the used variable is given
by the domain associated to the language (that is defined of course using A ∪R ∪S).

Notation. In the following, considering an HO-EBAF-C A, we denote by SA the subtheory consisting of
Axioms (4.1) and (4.3) together, and by Σ(A) the subtheory consisting of Axioms (4.1), (4.2) and (4.3)
together.

In the following, statements refer to Herbrand models whence the next theorem that provides a corre-
spondence between Herbrand models and arbitrary models for the theory. Recall that, given a formula ϕ,
a Herbrand interpretation for ϕ is any set of ground atoms relevant for ϕ, and given a set of formulas Σ, a
Herbrand model for Σ is a Herbrand interpretation that satisfies all formulas in Σ.

Theorem 11. Let A = (A ,R,S ,P, s, t) be an HO-EBAF-C. Let φ be a formula of LA. SA, UDCA |= φ
if and only if φ ∈ Th(HSA).

Basic Principles Underlying Argumentation Semantics

The formulas given here aim at describing the argumentative interpretation of the graph. That is to say, these
formulas encode semantics to select arguments. More precisely, we rely on the decomposition of semantics
into underlying principles, as presented in Section 2.4. Thus, our formulas encode in fact those underlying
principles.

We begin with the formula that encodes which elements are selected as a structure (or extension), the
formulas that encode the Coherence principle, and those that encode the interpretation of the support
relation.

Acceptability
∀x

(
Selected(x)↔ (Acceptable(x) ∧ Supported(x))

)
(4.4)

Coherence

∀α ∈ Att
(
Activable(α)→ ∃x ∈ Cand

(
T (α, x) ∧ Unacceptable(x)

))
(4.5a)

∀x ∈ Cand
(
Unacceptable(x)→ ¬Acceptable(x)

)
(4.5b)

Remark. Strictly speaking and in line with our previous discussions, formulas (4.5) do not rigorously capture
the Coherence principle, because predicates Activable and Cand have not yet been axiomatized (it will be
done below for each class of argumentation frameworks).

Note. In Formula (4.5a), the conclusion of the implication could also be encoded by ∀x ∈ Cand (T (α, x)→
Unacceptable(x)). Since in the present work we restrict ourselves to the cases where interactions can only
have one target, it does not change anything for us. Without this restriction, it would lead to a different
interpretation of sets of elements as targets.

96

Support

∀x ∈ Cand((
PrimaFacie(x) ∨ ∃α ∈ Sup

(
T (α, x) ∧Activable(α)

))
→ Supported(x)

) (4.6)

Notation. In the following, considering an HO-EBAF-C A, we denote by ΣCoh(A) the subtheory consisting
of Σ(A) and Axioms (4.4), (4.5) and (4.6) together.

ΣCoh(A) can be seen as a sort of core theory. It encapsulates both the encoding of the framework at
hand, and the first bricks (i.e. underlying principles) used to define argumentative semantics. In accordance
with how semantics are decomposed (cf. Section 2.4), it should be supplemented with additional axioms,
representing additional principles, to capture more complex semantics.

The next formulas encode the Self-support principle, necessary to properly decompose semantics in the
case where an evidential support relation is present.

Self-support

∀x ∈ Cand
(
Supported(x)→(

PrimaFacie(x) ∨ ∃α ∈ Sup
(
T (α, x) ∧Activable(α)

))) (4.7a)

∀x ∈ Cand
(
Unsupportable(x)↔(

¬PrimaFacie(x) ∧ ∀α ∈ Sup
(
T (α, x)→ Desactivated(α)

))) (4.7b)

Notation. In the following, considering an HO-EBAF-C A, we denote by ΣSS(A) the subtheory consisting
of ΣCoh(A) and Axioms (4.7) together.

Then, comes the formula that encodes the Defence principle.

Defence
∀x ∈ Cand

(
Acceptable(x)→

(
∀α ∈ Att

(
T (α, x)→ Desactivated(α)

)))
(4.8)

Notation. In the following, considering an HO-EBAF-C A, we denote by ΣDef(A) the subtheory consisting
of ΣSS(A) and Axiom (4.8) together.

The next formula encodes the Reinstatement principle.

Reinstatement

∀x ∈ Cand
((
∀α ∈ Att

(
T (α, x)→ Desactivated(α)

))
→ Acceptable(x)

)
(4.9)

Notation. In the following, considering an HO-EBAF-C A, we denote by ΣRein(A) the subtheory consisting
of ΣDef(A) and Axiom (4.9) together.

Lastly, a couple of axioms is dedicated to the Complement Attack principle.

Complement attack

∀x ∈ Cand
(
¬Acceptable(x)→ Defeated(x)

)
(4.10a)

∀x ∈ Cand
(
¬Supported(x)→ Unsupportable(x)

)
(4.10b)

Notation. In the following, considering an HO-EBAF-C A, we denote by ΣCA(A) the subtheory consisting
of ΣSS(A) and Axioms (4.10) together.

97

Semantics

We now give the links between the structures (or extensions) of an Abstract Argumentation Framework and
the models of its logical encoding. The following definitions allow us to retrieve a structure from a model,
and to have a notion corresponding to the Maximality and Minimality principles in the logical encoding.3

Definition 75. Let A = (A , R, S , P, s, t) be an HO-EBAF-C. Let I be an interpretation over LExt(A).
We define

• SI = {a ∈ A | I(Selected(a)) = ⊤}

• ΓI = {α ∈ R | I(Selected(α)) = ⊤}

• ∆I = {α ∈ S | I(Selected(α)) = ⊤}

Definition 76. Let A = (A , R, S , P, s, t) be an HO-EBAF-C. Let I be a model of a set of formulas Π
over LExt(A).

• I is a ⊆-maximal model of Π if and only if there is no model I ′ of Π such that (SI ∪ ΓI ∪ ∆I) ⊂
(SI′ ∪ ΓI′ ∪∆I′)

• I is a ⊆-minimal model of Π if and only if there is no model I ′ of Π such that (SI′ ∪ ΓI′ ∪ ∆I′) ⊂
(SI ∪ ΓI ∪∆I)

Consider a structure U = (S,Γ,∆) for A (Definition 68). We are to characterize σ-structures for A by
verifying the following properties for each class of Abstract Argumentation Frameworks. This approach is
very close to the work done in [CL18, CL20].
Remark. The properties that are to come are expressed relative to a varying set of formulas Σ′, which is
meant to encode features distinctive of each particular type of enrichment. Hence, the following property
is a generic property parameterized by Σ′: it must be instantiated in order to be applied to each studied
framework.

Property 1. Let A = (A , R, S , P, s, t) be an HO-EBAF-C and U = (S,Γ,∆) be a structure for A. Let
Σ′ be a set of formulas over LExt(A).

1. U is conflict-free if and only if there exists a model I of ΣCoh(A) ∪ Σ′ such that S = SI , Γ = ΓI and
∆ = ∆I .

2. U is admissible if and only if there exists a model I of ΣDef(A) ∪ Σ′ such that S = SI , Γ = ΓI and
∆ = ∆I .

3. U is complete if and only if there exists a model I of ΣRein(A) ∪ Σ′ such that S = SI , Γ = ΓI and
∆ = ∆I .

4. U is preferred if and only if there exists a model I ⊆-maximal of ΣDef(A) ∪ Σ′ such that S = SI ,
Γ = ΓI and ∆ = ∆I .

5. U is grounded if and only if there exists a model I ⊆-minimal of ΣRein(A) ∪ Σ′ such that S = SI ,
Γ = ΓI and ∆ = ∆I .

6. U is stable if and only if there exists a model I of ΣCA(A)∪Σ′ such that S = SI , Γ = ΓI and ∆ = ∆I .

Note. The case of structures is only correct for Abstract Argumentation Frameworks with higher-order
relations with the RAF interpretation. In other cases, we consider, instead of such a structure, a single
extension containing all accepted elements, these being arguments or even attacks or supports in some cases.
The idea to characterize a σ-extension T of an Abstract Argumentation Framework is the same as with a
σ-structure U = (S,Γ,∆), except that in the case of T , the condition S = SI , Γ = ΓI and ∆ = ∆I is replaced
by T = SI ∪ ΓI ∪∆I .

3Observe that we gave no axiom to encode the Maximality and Minimality principles.

98

The point is now to specify Σ′ for each type of argumentation framework so that Properties 1.1 to 1.6
hold for the type under consideration.

4.5.2 Simplification and Specialisations
Before instantiating the parameters of the theory for every kind of enrichment (and their combinations) so
that Properties 1.1 to 1.6 hold for them, we present in this section some methods whose aim is to simplify
or constrain the generic logical theory in order to adapt it to specific cases of Abstract Argumentation
Frameworks.

Simplification: No Support

The first method simplifies the theory for Abstract Argumentation Frameworks without a support relation.
In practice in this case, various formulas reduce to much simpler ones, or are even trivially satisfied.

The first result states that, under such circumstances, Formula (4.6) is in fact equivalent to all elements
being considered supported.

Proposition 6. Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, every Herbrand model of Σ(A) that satisfies ∀x (Cand(x)→ Arg(x)∨Att(x)) is a model of (4.6) if
and only if it is a model of ∀x ∈ Cand (Supported(x)).

In the case of Formula (4.7a), it is trivially satisfied provided that Formula (4.6) is as well.

Proposition 7. Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, every Herbrand model of Σ(A) and (4.6) that satisfies ∀x (Cand(x) → (Arg(x)∨Att(x))) is a model
of (4.7a), i.e., ∀x ∈ Cand

(
Supported(x) → [PrimaFacie(x) ∨ ∃α ∈ Sup (T (α, x) ∧ Activable(α))]

)
Similarly to the first result, Formula (4.7b) is in fact equivalent to all elements being considered not

unsupportable.

Proposition 8. Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, each Herbrand model of Σ(A) and (4.6) that satisfies ∀x (Cand(x) → Arg(x) ∨ Att(x)) is a model
of (4.7b) if and only if it is a model of ∀x ∈ Cand (¬Unsupportable(x)).

Lastly, Formula (4.10b) is trivially satisfied as well.

Proposition 9. Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, every Herbrand model of Σ(A) that satisfies ∀x (Cand(x)→ Arg(x)∨Att(x)) is a model of (4.10b),
i.e., ∀x ∈ Cand

(
¬Supported(x)→ Unsupportable(x)

)
Remark. The alert reader may have noticed that all these propositions are relative to some instantiating
of the parameter Cand. As we will see, every type of Abstract Argumentation Framework has in fact this
parameter instantiated by a formula that captures the one used as instantiating in these propositions.

Specialisation 1: Sources Are Singletons Sets

In order to impose the constraint that each source (of an attack or a support) is a single argument, the
theory at hand must be supplemented with the following axiom:

∀α ∈ Att ∪ Sup
(
∀a ∈ Arg

(
∀b ∈ Arg [(S(α, a) ∧ S(α, b))→ a = b]

))
(4.11)

99

Specialisation 2: Targets Are Singletons Sets

In order to impose the constraint that each target (of an attack or a support) is a single argument, the
theory at hand must be supplemented with the following axiom:

∀α ∈ Att ∪ Sup
(
∀a ∈ Arg

(
∀b ∈ Arg [(T (α, a) ∧ T (α, b))→ a = b]

))
(4.12)

As we only deal with the case of a single target throughout the present work, please keep in mind that
Axiom (4.12) is present in the theory whatever case we consider.

4.5.3 Theory for an Argumentation Framework
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to Argumentation Frameworks (see Section 2.1). For an Argumentation Framework, the parameters of the
generic theory are axiomatized as follows.

Parameters for an AF

∀x
(
Cand(x)↔ Arg(x)

)
(4.13a)

∀α
(
Activable(α)↔

(
∀a ∈ Arg [S(α, a)→ Selected(a)]

))
(4.13b)

∀x
(
Defeated(x)↔

(
∃α ∈ Att [T (α, x) ∧Activable(α)]

))
(4.13c)

∀α
(
Inhibited(α)↔

(
∃a ∈ Arg [S(α, a) ∧Defeated(a)]

))
(4.13d)

∀α
(
Desactivated(α)↔ Inhibited(α)

)
(4.13e)

Formula (4.13a) specifies that the only elements of the Argumentation Framework that can be part of
an extension are the arguments. Formula (4.13b) tells us that an attack is activable if and only if all the
arguments of its source are accepted in the extension. Then, Formula (4.13c) describes a defeated element
as an element that is targeted by an activable attack. Using this, Formula (4.13d) identifies inhibition with
the presence of a defeated element in the source of the inhibited element. Finally, Formula (4.13e) says that
being inhibited coincides with desactivation.

Note that (4.13) can be used to rewrite formulas (4.5), (4.8), (4.9) and (4.10a) as formulas (4.5a)AF,
(4.5b)AF, (4.8)AF, (4.9)AF, (4.10)AF below.

Conflict-free

∀α ∈ Att
((
∀a ∈ Arg [S(α, a)→ Selected(a)]

)
→(

∃x ∈ Arg [T (α, x) ∧ Unacceptable(x)]
)) ((4.5a)AF)

∀x ∈ Arg
(
Unacceptable(x)→ ¬Acceptable(x)

)
((4.5b)AF)

Defence

∀x ∈ Arg
(
Acceptable(x)→ ∀α ∈ Att

(
T (α, x)→ ∃a ∈ Arg[

S(a, α) ∧ ∃β ∈ Att
(
T (β, a) ∧ ∀b ∈ Arg [S(β, b)→ Selected(b)]

)]))
((4.8)AF)

100

Reinstatement

∀x ∈ Arg
([
∀α ∈ Att

(
T (α, x)→

∃a ∈ Arg
(
S(a, α) ∧ ∃β ∈ Att

(
T (β, a) ∧ ∀b ∈ Arg [S(β, b)→ Selected(b)]

)))]
→ Acceptable(x)

)
((4.9)AF)

Complement attack

∀x ∈ Arg
(
¬Acceptable(x)→ ∃α ∈ Att(

T (α, x) ∧
(
∀a ∈ Arg [S(α, a)→ Selected(a)]

))) ((4.10a)AF)

Note. Note that Formula (4.5aAF) can also be rewritten as:

∀x ∈ Cand
(
Defeated(x)→ Unacceptable(x)

)
((4.5a)AF)

Properties 1.1 to 1.6 hold whenever A is an Argumentation Framework using formulas (4.13), as well
as Axioms 4.11 and (4.12) as Σ′. This is captured by the following proposition that matches the results in
[CL18].

Proposition 10. Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an AF and S ⊆ A be
a set of arguments.

1. S is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.13)}
such that S = SI ∪ ΓI ∪∆I .

2. S is admissible if and only if there exists a Herbrand model I of ΣDef(A)∪{(4.11), (4.12), (4.13)} such
that S = SI ∪ ΓI ∪∆I .

3. S is complete if and only if there exists a Herbrand model I of ΣRein(A)∪ {(4.11), (4.12), (4.13)} such
that S = SI ∪ ΓI ∪∆I .

4. S is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.13)} such that S = SI ∪ ΓI ∪∆I .

5. S is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.13)} such that S = SI ∪ ΓI ∪∆I .

6. S is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

Remark. Observe that since S ⊆ A , we necessarily have ΓI = ∆I = ∅ in the previous proposition.

4.5.4 Theory for an Argumentation Framework with Coalitions (AF-C)
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to Argumentation Frameworks with Coalitions (see Section 2.3.1). For an Argumentation Framework with
Coalitions, the parameters of the generic theory are axiomatized as follows.

101

Parameters for an AF-C

∀x
(
Cand(x)↔ Arg(x)

)
(4.14a)

∀α
(
Activable(α)↔

(
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)))
(4.14b)

∀x
(
Defeated(x)↔

(
∃α ∈ Att

(
T (α, x) ∧Activable(α)

)))
(4.14c)

∀α
(
Inhibited(α)↔

(
∃a ∈ Arg

(
S(α, a) ∧Defeated(a)

)))
(4.14d)

∀α
(
Desactivated(α)↔ Inhibited(α)

)
(4.14e)

Remark. The parameters are axiomatized in the same way as for Argumentation Frameworks (see Sec-
tion 4.5.3), and thus have the same meaning. The only difference between the two theories is the presence,
in the case of an Argumentation Framework, of the axiom (4.11) which imposes that each source is a single
argument. This implies two observations. Firstly, the fundamental behaviour of Argumentation Frame-
works, with or without Coalitions, is the same. Secondly, Argumentation Frameworks are a special case of
Argumentation Frameworks with Coalitions.

Note. Since formulas (4.14) are the same as formulas (4.13), we will refer to the latter.

Since the parameters of an Argumentation Framework with Coalitions are the same as an Argumentation
Framework, formulas (4.5), (4.8), (4.9) and (4.10a) can be rewritten as in Section 4.5.3. We will thus refer
to formulas (4.5a)AF, (4.5b)AF, (4.8)AF, (4.9)AF, (4.10)AF, even in the case of Argumentation Framework with
Coalitions.

Properties 1.1 to 1.6 hold whenever A is an Argumentation Framework with Coalitions using formu-
las (4.13), as well as Axiom (4.12) as Σ′. This is captured by the following proposition.

Proposition 11. Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an AF-C and S ⊆ A
be a set of arguments.

1. S is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A)∪{(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

2. S is admissible if and only if there exists a Herbrand model I of ΣDef(A) ∪ {(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

3. S is complete if and only if there exists a Herbrand model I of ΣRein(A) ∪ {(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

4. S is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.12), (4.13)}
such that S = SI ∪ ΓI ∪∆I .

5. S is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.12), (4.13)}
such that S = SI ∪ ΓI ∪∆I .

6. S is stable if and only if there exists a Herbrand model I of ΣCA(A) ∪ {(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

Remark. This behavior of simply removing Axiom (4.11) from the theory of an Abstract Argumentation
Framework and obtaining a theory that captures the same framework with Coalitions is in fact transferable
to all type of Abstract Argumentation Framework considered in the present work. Thus, in the following,
we will only present frameworks in which Coalitions are absent, the theory capturing the case where they
are present being effectively the same in which we remove Axiom (4.11).

102

4.5.5 Theory for a Higher-Order Argumentation Framework (HO-AF)
In this section, we present how our generic theory can be parameterized to obtain a theory that corre-
sponds to Higher-Order Argumentation Frameworks (see Section 2.3.2). For a Higher-Order Argumentation
Framework, the parameters of the generic theory are axiomatized as follows.

Parameters for an HO-AF

∀x
(
Cand(x)↔ Arg(x) ∨Att(x)

)
(4.15a)

∀α
(
Activable(α)↔

(
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α)

))
(4.15b)

∀x
(
Defeated(x)↔

(
∃α ∈ Att

(
T (α, x) ∧Activable(α)

)))
(4.15c)

∀α

(
Inhibited(α)↔(

∃β ∈ Att
((
∃a ∈ Arg

(
S(α, a) ∧ T (β, a)

)
∨ T (β, α)

)
∧Activable(β)

))) (4.15d)

∀α
(
Desactivated(α)↔ Inhibited(α)

)
(4.15e)

Formulas (4.15) differ from formulas (4.13) in several points. To begin with, Formula (4.15a) specifies
that both arguments and attacks can be part of a structure. Then, Formula (4.15b) tells us that to be
activable, an interaction must have all the arguments of its source accepted, as in Formula (4.13b), but in
addition the interaction itself must also be accepted. Using this, Formula (4.15d) says that an element is
inhibited if and only if there is an attack that targets either the element or one argument of its source and
that is activable. Please note that this is equivalent to

∀α(Inhibited(α)↔ (Defeated(α) ∨ ∃a ∈ Arg(S(α, a) ∧Defeated(a))))

As expected, we now present formulas (4.5), (4.8), (4.9) and (4.10) rewritten using formulas (4.15).

Conflict-free

∀α ∈ Att
([
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α)

]
→

∃x ∈ (Arg ∪Att)
(
T (α, x) ∧ Unacceptable(x)

))
((4.5a)HOAF)

∀x ∈ (Arg ∪Att)
(
Unacceptable(x)→ ¬Acceptable(x)

)
((4.5b)HOAF)

Defence

∀x ∈ (Arg ∪Att)

(
Acceptable(x)→ ∀α ∈ Att

(
T (α, x)→

∃β ∈ Att
([
∃a ∈ Arg

(
S(α, a) ∧ T (β, a)

)
∨ T (β, α)

]
∧

[
∀b ∈ Arg

(
S(β, b)→ Selected(b)

)
∧ Selected(β)

])))
((4.8)HOAF)

103

Reinstatement

∀x ∈ (Arg ∪Att)

(
∀α ∈ Att

(
T (α, x)→

∃β ∈ Att
([
∃a ∈ Arg

(
S(α, a) ∧ T (β, a)

)
∨ T (β, α)

]
∧[

∀b ∈ Arg
(
S(β, b)→ Selected(b)

)
∧ Selected(β)

]))
→ Acceptable(x)

)
((4.9)HOAF)

Complement attack

∀x ∈ (Arg ∪Att)
(
¬Acceptable(x)→

∃α ∈ Att
(
T (α, x) ∧ ∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α)

))
((4.10a)HOAF)

Note. Note that Formula (4.5aHOAF) can be rewritten in the same way as Formula (4.5aAF) in Section 4.5.3.

Properties 1.1 to 1.6 hold whenever A is a Higher-Order Argumentation Framework using formulas (4.15),
as well as Axioms 4.11 and (4.12) as Σ′. This is captured by the following proposition.

Proposition 12. Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an HO-AF and
U = (S,Γ,∆) be a structure.

1. U is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.15)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

2. U is admissible if and only if there exists a Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12), (4.15)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

3. U is complete if and only if there exists a Herbrand model I of ΣRein(A)∪{(4.11), (4.12), (4.15)} such
that S = SI , Γ = ΓI and ∆ = ∆I .

4. U is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.15)} such that S = SI , Γ = ΓI and ∆ = ∆I .

5. U is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.15)} such that S = SI , Γ = ΓI and ∆ = ∆I .

6. U is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.15)} such that
S = SI , Γ = ΓI and ∆ = ∆I .

4.5.6 Theory for an Evidence-Based Argumentation Framework (EBAF)
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to Evidence-Based Argumentation Frameworks (see Section 2.3.3). For an Evidence-Based Argumentation
Framework, the parameters of the generic theory are axiomatized as follows.

Please remember that, in this work, we only take into account Evidence-Based Argumentation Frame-
works without support cycles. That is due to the constraint in e-support that an element cannot support

104

itself. Note also that this restriction has been lifted in [Lag23], not by changing the logical formulas, but by
adding a constraint on the logical models we consider.

Remember as well that according to our naming conventions, we do not consider Evidence-Based Argu-
mentation Frameworks to have relations between sets of arguments (that would be Evidence-Based Argu-
mentation Frameworks with Coalitions), while EBAFs in the literature do have this functionality.

Parameters for an EBAF

∀x
(
Cand(x)↔ Arg(x)

)
(4.16a)

∀α
(
Activable(α)↔

(
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)))
(4.16b)

∀x
(
Defeated(x)↔

(
∃α ∈ Att

(
T (α, x) ∧Activable(α)

)))
(4.16c)

∀α
(
Inhibited(α)↔

(
∃a ∈ Arg

(
S(α, a) ∧Defeated(a)

)))
(4.16d)

∀α
(
Desactivated(α)↔(
∃a ∈ Arg

(
S(α, a) ∧ Unsupportable(a)

)
∨ Inhibited(α)

)) (4.16e)

Formulas (4.16) are very similar to formulas (4.13). The only difference is that in the case of Evidence-
Based Argumentation Frameworks, the deactivation of an interaction is not strictly the same as its inhibition.
It is also sufficient to make one argument of its source unsupportable.

Since a support relation is present in Evidence-Based Argumentation Frameworks, we cannot use propo-
sitions 6 to 9. Thus, we present formulas (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) rewritten using formu-
las (4.16).

Conflict-free

∀α ∈ Att
(
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
→

∃x ∈ Arg
(
T (α, x) ∧ Unacceptable(x)

)) ((4.5a)EBAF)

∀x ∈ Arg
(
Unacceptable(x)→ ¬Acceptable(x)

)
((4.5b)EBAF)

Support

∀x ∈ Cand

([
PrimaFacie(x)∨

∃α ∈ Sup
(
T (α, x) ∧ ∀a ∈ Arg

(
S(α, a)→ Selected(a)

))]
→ Supported(x)

)
((4.6)EBAF)

105

Self-support

∀x ∈ Cand

(
Supported(x)→[

PrimaFacie(x)∨

∃α ∈ Sup
(
T (α, x) ∧ ∀a ∈ Arg

(
S(α, a)→ Selected(a)

))])
((4.7a)EBAF)

∀x ∈ Cand

(
Unsupportable(x)↔[

¬PrimaFacie(x) ∧ ∀α ∈ Sup
(
T (α, x)→[

∃a ∈ Arg
(
S(α, a) ∧ Unsupportable(a)

)
∨

∃a ∈ Arg
(
S(α, a) ∧ ∃β ∈ Att

(
T (β, a)∧

∀b ∈ Arg(S(β, b)→ Selected(b))
))])])

((4.7b)EBAF)

Defence

∀x ∈ Cand

(
Acceptable(x)→ ∀α ∈ Att

(
T (α, x)→[

∃a ∈ Arg
(
S(α, a) ∧ Unsupportable(a)

)
∨

∃a ∈ Arg
(
S(α, a) ∧ ∃β ∈ Att

(
T (β, a)∧

∀b ∈ Arg(S(β, b)→ Selected(b))
))]))

((4.8)EBAF)

Reinstatement

∀x ∈ Cand

(
∀α ∈ Att

(
T (α, x)→[
∃a ∈ Arg

(
S(α, a) ∧ Unsupportable(a)

)
∨

∃a ∈ Arg
(
S(α, a) ∧ ∃β ∈ Att

(
T (β, a)∧

∀b ∈ Arg(S(β, b)→ Selected(b))
))])

→ Acceptable(x)

)
((4.9)EBAF)

Complement attack

∀x ∈ Cand
(
¬Acceptable(x)→ ∃α ∈ Att

(
T (α, x)∧

∀a ∈ Arg
(
S(α, a)→ Selected(a)

))) ((4.10a)EBAF)

∀x ∈ Cand
(
¬Supported(x)→ Unsupportable(x)

)
((4.10b)EBAF)

106

Note. Again, Formula (4.5aEBAF) can be rewritten in the same way as Formula (4.5aAF) in Section 4.5.3.

Properties 1.1 to 1.6 hold whenever A is an Evidence-Based Argumentation Framework using formu-
las (4.16), as well as Axioms 4.11 and (4.12) as Σ′. This is captured by the following proposition.

Proposition 13. Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an EBAF and S ⊆ A
be a set of arguments.

1. S is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.16)}
such that S = SI ∪ ΓI ∪∆I .

2. S is admissible if and only if there exists a Herbrand model I of ΣDef(A)∪{(4.11), (4.12), (4.16)} such
that S = SI ∪ ΓI ∪∆I .

3. S is complete if and only if there exists a Herbrand model I of ΣRein(A)∪ {(4.11), (4.12), (4.16)} such
that S = SI ∪ ΓI ∪∆I .

4. S is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.16)} such that S = SI ∪ ΓI ∪∆I .

5. S is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.16)} such that S = SI ∪ ΓI ∪∆I .

6. S is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.16)} such that
S = SI ∪ ΓI ∪∆I .

4.5.7 Theory for a Higher-Order Evidence-based Argumentation Framework
(HO-EBAF)

In this section, we present how our generic theory can be parameterized to obtain a theory that corre-
sponds to Higher-Order Evidence-Based Argumentation Frameworks. For a Higher-Order Evidence-Based
Argumentation Framework, the parameters of the generic theory are axiomatized as follows.

As mentioned before, we only take into account Higher-Order Evidence-based Argumentation Framework
without support cycles.

Parameters for a Higher-Order Evidence-Based Argumentation Framework

∀x
(
Cand(x)↔ Arg(x) ∨Att(x) ∨ Sup(x)

)
(4.17a)

∀α
(
Activable(α)↔

(
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α)

))
(4.17b)

∀x
(
Defeated(x)↔

(
∃α ∈ Att

(
T (α, x) ∧Activable(α)

)))
(4.17c)

∀α
(
Inhibited(α)↔

∃β ∈ Att
([
T (β, α) ∨ ∃a ∈ Arg(S(α, a) ∧ T (β, a))

]
∧Activable(β)

)) (4.17d)

∀α
(
Desactivated(α)↔(
∃a ∈ Arg

(
S(α, a) ∧ Unsupportable(a)

)
∨ Unsupportable(α) ∨ Inhibited(α)

)) (4.17e)

107

Please observe that formulas (4.17) are in fact the combination of formulas (4.15) and (4.16). Thus,
Formula (4.17a) specifies that arguments, attacks and supports can be part of a structure. Then, For-
mula (4.17b) tells us that to be activable, an interaction must be accepted and have all the arguments of its
source accepted, as in Formula (4.15b). Using this, Formula (4.17d) says that an element is inhibited if and
only if there is an attack that targets either the element or one argument of its source and that is activable, as
in Formula (4.15d). Finally, Formula (4.17e) states that to be deactivated, an interaction must be inhibited,
or unsupportable, or have an an argument of its source being unsupportable. This in fact integrating the
higher-order relations generalisation into Formula (4.16e).

Again, since a support relation is present in Higher-Order Evidence-Based Argumentation Frameworks,
we cannot use propositions 6 to 9. Thus, we present formulas (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10)
rewritten using formulas (4.17).

Conflict-free

∀α ∈ Att
([
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α)

]
→

∃x ∈ (Arg ∪Att ∪ Sup)
(
T (α, x) ∧ Unacceptable(x)

)) ((4.5a)HOEBAF)

∀x ∈ (Arg ∪Att ∪ Sup)
(
Unacceptable(x)→ ¬Acceptable(x)

)
((4.5b)HOEBAF)

Support

∀x ∈ (Arg ∪Att ∪ Sup)

([
PrimaFacie(x)∨

∃α ∈ Sup
(
T (α, x) ∧ ∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α)

)]
→ Supported(x)

)
((4.6)HOEBAF)

108

Self-support

∀x ∈ (Arg ∪Att ∪ Sup)

(
Supported(x)→[

PrimaFacie(x)∨

∃α ∈ Sup
(
T (α, x)

∧ ∀a ∈ Arg
(
S(α, a)→ Selected(a)

)
∧ Selected(α)

)])
((4.7a)HOEBAF)

∀x ∈ (Arg ∪Att ∪ Sup)

(
Unsupportable(x)↔[

¬PrimaFacie(x) ∧ ∀α ∈ Sup
(
T (α, x)→[

∃a ∈ Arg
(
S(α, a) ∧ Unsupportable(a)

)
∨ Unsupportable(α)∨

∃β ∈ Att
([
T (β, α) ∨ ∃a ∈ Arg(S(α, a) ∧ T (β, a))

]
∧[

∀b ∈ Arg(S(β, b)→ Selected(b)) ∧ Selected(β)
])]

)])

((4.7b)HOEBAF)

Defence

∀x ∈ (Arg ∪Att ∪ Sup)

(
Acceptable(x)→ ∀α ∈ Att

(
T (α, x)→[

∃a ∈ Arg
(
S(α, a) ∧ Unsupportable(a)

)
∨ Unsupportable(α)∨

∃β ∈ Att
([
T (β, α) ∨ ∃a ∈ Arg(S(α, a) ∧ T (β, a))

]
∧[

∀b ∈ Arg(S(β, b)→ Selected(b)) ∧ Selected(β)
])]

))
((4.8)HOEBAF)

Reinstatement

∀x ∈ (Arg ∪Att ∪ Sup)

(
∀α ∈ Att

(
T (α, x)→[

∃a ∈ Arg
(
S(α, a) ∧ Unsupportable(a)

)
∨ Unsupportable(α)∨

∃β ∈ Att
([
T (β, α) ∨ ∃a ∈ Arg(S(α, a) ∧ T (β, a))

]
∧[

∀b ∈ Arg(S(β, b)→ Selected(b)) ∧ Selected(β)
])]

)
→ Acceptable(x)

)
((4.9)HOEBAF)

109

Complement attack

∀x ∈ (Arg ∪Att ∪ Sup)
(
¬Acceptable(x)→ ∃α ∈ Att

(
T (α, x)∧

∀a ∈ Arg(S(α, a)→ Selected(a)) ∧ Selected(α)
)) ((4.10a)HOEBAF)

∀x ∈ (Arg ∪Att ∪ Sup)
(
¬Supported(x)→ Unsupportable(x)

)
((4.10b)HOEBAF)

Note. Again, Formula (4.5aHOEBAF) can be rewritten in the same way as Formula (4.5aAF) in Section 4.5.3.

Properties 1.1 to 1.6 hold whenever A is a Higher-Order Evidence-Based Argumentation Framework
using formulas (4.17), as well as Axioms 4.11 and (4.12) as Σ′. This is captured by the following proposition.

Proposition 14. Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an HO-EBAF and
U = (S,Γ,∆) be a structure.

1. U is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.17)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

2. U is admissible if and only if there exists a Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12), (4.17)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

3. U is complete if and only if there exists a Herbrand model I of ΣRein(A)∪{(4.11), (4.12), (4.17)} such
that S = SI , Γ = ΓI and ∆ = ∆I .

4. U is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.17)} such that S = SI , Γ = ΓI and ∆ = ∆I .

5. U is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.17)} such that S = SI , Γ = ΓI and ∆ = ∆I .

6. U is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.17)} such that
S = SI , Γ = ΓI and ∆ = ∆I .

4.6 Summary
In this section, we summarize the contribution of the present chapter. We provide several tables and figures
that succinctly present our main results. At the end of the section, we present a recap example of how we
envision our logical encoding to be used.

4.6.1 Logical Encoding
Table 4.4 summarizes the previous sections by giving for each Abstract Argumentation Framework the
list of formulas that corresponds to its encoding. We remind the reader that in the present work, we are
only interested in the evidential interpretation of the support relation without support cycle, and the RAF
interpretation of higher-order interactions.

An important point is the fact that, using the hierarchy between frameworks, our generic approach
gives the way to logically represent the Abstract Argumentation Frameworks which have not been directly
addressed in the present work (i.e. HO-AF-C, EBAF-C, HO-EBAF-C), as indicated in Table 4.5.

Figure 4.2 presents the Abstract Argumentation Frameworks that can be taken into account with our
approach. Please notice that Figure 4.2 corresponds to Figure 4.1 in which the support relation is interpreted
as evidential support without support cycles.

110

Encoding for Specialisations ParametersGraph Semantics

Generic rep.

(4.1) to (4.3),

(4.4) to (4.10)

AF (4.4), (4.5)AF, (4.11) to (4.12) (4.13)(4.8)AF to (4.10a)AF

AF-C (4.4), (4.5)AF, (4.12) (4.13)(4.8)AF to (4.10a)AF

HO-AF (4.4), (4.5)HOAF

(4.11) to (4.12)

(4.15)(4.8)HOAF to (4.10a)HOAF

EBAF (4.4), (4.16)(4.5)EBAF to (4.10)EBAF

HO-EBAF (4.4), (4.17)(4.5)HOEBAF to (4.10)HOEBAF

Table 4.4: List of formulas for the encoding of each Abstract Argumentation Framework mentioned in
Section 4.5

Encoding for Specialisations ParametersGraph Semantics

Generic rep.

(4.1) to (4.3),

(4.4) to (4.10)

HO-AF-C (4.4), (4.5)HOAF,

(4.12)

(4.15)(4.8)HOAF to (4.10a)HOAF

EBAF-C (4.4), (4.16)(4.5)EBAF to (4.10)EBAF

HO-EBAF-C (4.4), (4.17)(4.5)HOEBAF to (4.10)HOEBAF

Table 4.5: List of formulas for the encoding of additional Abstract Argumentation Frameworks from those
mentioned in Section 4.5 adding the Coalition enrichment

111

AF

AF-C HO-AF EBAF∗

HO-AF-C EBAF-C∗ HO-EBAF∗

HO-EBAF-C∗

Figure 4.2: Hierarchy of classes of Abstract Argumentation Frameworks taken into account by our generic
approach (∗: without support cycles)

4.6.2 Recap Example
We now present an example to illustrate how our logical encoding works. To this end, we extend the example
presented in Section 3.6.2. To briefly recall its context, we suppose that a political debate is held between
two candidates, Candidate 1 and Candidate 2, and we aim at identifying which of their propositions can form
a satisfying conclusion to the debate. Thus, a computer program has been used to model the debate with
an Argumentation Framework, depicted on Figure 3.42, and it has been decided that a satisfying conclusion
would correspond to a stable extension of that Argumentation Framework.

Now, we know from Section 3.6.2 that such a stable extension is {b, c, g, i, l, p}. The question we are
interested in, and which we eluded in Section 3.6.2, is how such an extension can be obtained. There are of
course many ways to do so, but for the sake of the example, we will use our logical encoding.

So, we aim at showing how our logical encoding can compute the stable extension {b, c, g, i, l, p} in the
Argumentation Framework of Figure 3.42. Actually, we will use a version of this Argumentation Framework
in which the arcs have received labels, as pictured on Figure 4.3. The link between the models our logical
encoding computes and the extensions of an Argumentation Framework is formalised in Property 1, and more
specifically, Property 1.6 in the case of stable extensions. Moreover, since we are computing an extension of
an Argumentation Framework (i.e. without enrichments), our logical encoding must instantiated as shown in
Section 4.5.3. Thus, the result we will use is in fact Proposition 104, and more specifically, Proposition 10.6
in the case of stable extensions.

What Proposition 10.6 essentially says is that, to compute a stable extension, like {b, c, g, i, l, p}, we
must compute a Herbrand model of ΣCA(A)∪{(4.11), (4.12), (4.13)} (with A the Argumentation Framework
of Figure 3.42) in which the predicate Selected is true for b, c, g, i, l and p (and only them). Recall that

4Recall that Proposition 10 is in fact just an instantiating of Property 1 for Argumentation Frameworks.

112

a

b

c

d

e

f

g h

i

j

k l

m no

p

σ

ϕ

υ
τ

ψ
χ β′

γ′

ε′

θ′

η′

δ′

λ

κ
θ

µη

ε

α β
δγ

ω

α′

ξ

ν

π

ρ

Figure 4.3: The Argumentation Framework of Figure 3.42 with labelled arcs

ΣCA(A) is made of Axioms (4.1), (4.2), (4.3) and of formulas (4.4), (4.5), (4.6), (4.7), and (4.10). Since here
we compute an extension of an Argumentation Framework, our model must satisfy formulas (4.13). This
means that formulas (4.5) and (4.10a) are replaced by formulas (4.5)AF and (4.10a)AF. It also means that
Propositions 6 to 9 can be used to simplify the effects of formulas (4.6), (4.7), and (4.10b).

This being said, we can start to see how these formulas affect our models. We start with Axioms (4.1)
and (4.2). They give the value of the predicates Arg, Att and Sup for the elements of the domain. Axiom (4.3)
can be used to obtain values for the predicates S and T . These three axioms together basically encode the
structure of the Argumentation Framework at hand. Additionally, because our Argumentation Framework
does not have a support relation, we know that the predicate PrimaFacie is going to be true for every
element, and by formula (4.13a) we can also get the value of the predicate Cand for every element. Finally,
Propositions 6 and 8 give us some values for the predicates Supported and Unsupportable. All of this is
grouped in Tables 4.6 and 4.7 for the unary predicates, Tables 4.8 and 4.9 for the binary predicate S, and
Tables 4.10 and 4.11 for the binary predicate T .

We can observe that Tables 4.9 and 4.11 are completely empty, so we could have chosen not to display
them. Instead, we chose to do it anyway for the sake of being exhaustive. Additionally, since our models
must satisfy Axioms (4.11) and (4.12) (because we are working with an Argumentation Framework without
enrichments), in Tables 4.8 to 4.11, on each line where a “✓” is present, all other boxes of the line should
have an “X”. We chose not to display them this way for readability reasons (the “✓” would have been way
more difficult to spot).

Now, all the possible models must start from the basis displayed on Tables 4.6 to 4.11. Starting from
there, we can decide the truth value of other predicates, and the rest of the formulas our models must
satisfy will propagate the consequences on other predicates. Of course, here, the “decision variables” so to
say are the values of the predicate Selected for each element, which eventually encode the extension being
computed. So we can decide of the value of this predicate for an element, for instance Selected(b) = ⊤.
From this, we get Acceptable(b) = ⊤ using formula (4.4). Using formula (4.13b), since S(ϕ, b) = ⊤, we get
Activable(ϕ) = ⊤, which leads to Defeated(d) = ⊤ using formula (4.13c) and the fact that T (ϕ, d) = ⊤,
and thus to Inhibited(υ) = ⊤, Inhibited(α′) = ⊤, Desactivated(υ) = ⊤ and Desactivated(α′) = ⊤ using
formulas (4.13d) and (4.13e) because S(υ, d) = ⊤ and S(α′, d) = ⊤. We have analogous results for ξ, k
and λ, because S(ξ, b) = ⊤, T (ξ, k) = ⊤ and S(λ, k) = ⊤. In addition, by using formula (4.5), we obtain
Unacceptable(d) = ⊤ and Unacceptable(k) = ⊤, which then leads to Acceptable(d) = ⊥ and Acceptable(k) =
⊥. Using formula (4.4) again, we thus get Selected(d) = ⊥ and Selected(k) = ⊥. Finally, by contrapositive
reasoning, formula (4.5) gives us Unacceptable(b) = ⊥ which, because b is the only element such that

113

Arg Att Sup Cand PrimaFacie Selected Acceptable Unacceptable
a ✓ X X ✓ ✓
b ✓ X X ✓ ✓
c ✓ X X ✓ ✓
d ✓ X X ✓ ✓
e ✓ X X ✓ ✓
f ✓ X X ✓ ✓
g ✓ X X ✓ ✓
h ✓ X X ✓ ✓
i ✓ X X ✓ ✓
j ✓ X X ✓ ✓
k ✓ X X ✓ ✓
l ✓ X X ✓ ✓
m ✓ X X ✓ ✓
n ✓ X X ✓ ✓
o ✓ X X ✓ ✓
p ✓ X X ✓ ✓
α X ✓ X X ✓
β X ✓ X X ✓
γ X ✓ X X ✓
δ X ✓ X X ✓
ε X ✓ X X ✓
η X ✓ X X ✓
θ X ✓ X X ✓
κ X ✓ X X ✓
λ X ✓ X X ✓
µ X ✓ X X ✓
ν X ✓ X X ✓
ξ X ✓ X X ✓
π X ✓ X X ✓
ρ X ✓ X X ✓
σ X ✓ X X ✓
τ X ✓ X X ✓
υ X ✓ X X ✓
ϕ X ✓ X X ✓
χ X ✓ X X ✓
ψ X ✓ X X ✓
ω X ✓ X X ✓
α′ X ✓ X X ✓
β′ X ✓ X X ✓
γ′ X ✓ X X ✓
δ′ X ✓ X X ✓
ε′ X ✓ X X ✓
η′ X ✓ X X ✓
θ′ X ✓ X X ✓

Table 4.6: Starting point of a model of ΣCA(A) ∪ {(4.13)} for the Argumentation Framework of Figure 4.3
using formulas (4.1), (4.2), (4.6), (4.7), (4.13)

(✓: True, X: False)

114

Activable Defeated Inhibited Desactivated Supported Unsupportable
a ✓ X
b ✓ X
c ✓ X
d ✓ X
e ✓ X
f ✓ X
g ✓ X
h ✓ X
i ✓ X
j ✓ X
k ✓ X
l ✓ X
m ✓ X
n ✓ X
o ✓ X
p ✓ X
α
β
γ
δ
ε
η
θ
κ
λ
µ
ν
ξ
π
ρ
σ
τ
υ
ϕ
χ
ψ
ω
α′

β′

γ′

δ′

ε′

η′

θ′

Table 4.7: Starting point of a model of ΣCA(A) ∪ {(4.13)} for the Argumentation Framework of Figure 4.3
using formulas (4.1), (4.2), (4.6), (4.7), (4.13) (Continued)

115

S a b c d e f g h i j k l m n o p α β γ δ ε η
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
α ✓
β ✓
γ ✓
δ ✓
ε ✓
η ✓
θ ✓
κ ✓
λ ✓
µ ✓
ν ✓
ξ ✓
π ✓
ρ ✓
σ ✓
τ ✓
υ ✓
ϕ ✓
χ ✓
ψ ✓
ω ✓
α′ ✓
β′ ✓
γ′ ✓
δ′ ✓
ε′ ✓
η′ ✓
θ′ ✓

Table 4.8: Model of formula (4.3), for the Argumentation Framework of Figure 4.3 regarding the S
predicate (✓: True, X: False)

(Empty cells on the same line as a “✓” should have an “X” to respect Axiom (4.11))

116

S θ κ λ µ ν ξ π ρ σ τ υ ϕ χ ψ ω α′ β′ γ′ δ′ ε′ η′ θ′

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
α
β
γ
δ
ε
η
θ
κ
λ
µ
ν
ξ
π
ρ
σ
τ
υ
ϕ
χ
ψ
ω
α′

β′

γ′

δ′

ε′

η′

θ′

Table 4.9: Model of formula (4.3), for the Argumentation Framework of Figure 4.3 regarding the S
predicate (Continued)

(Empty cells on the same line as a “✓” should have an “X” to respect Axiom (4.11))

117

T a b c d e f g h i j k l m n o p α β γ δ ε η
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
α ✓
β ✓
γ ✓
δ ✓
ε ✓
η ✓
θ ✓
κ ✓
λ ✓
µ ✓
ν ✓
ξ ✓
π ✓
ρ ✓
σ ✓
τ ✓
υ ✓
ϕ ✓
χ ✓
ψ ✓
ω ✓
α′ ✓
β′ ✓
γ′ ✓
δ′ ✓
ε′ ✓
η′ ✓
θ′ ✓

Table 4.10: Model of formula (4.3), for the Argumentation Framework of Figure 4.3 regarding the T
predicate (✓: True, X: False)

(Empty cells on the same line as a “✓” should have an “X” to respect Axiom (4.12))

118

T θ κ λ µ ν ξ π ρ σ τ υ ϕ χ ψ ω α′ β′ γ′ δ′ ε′ η′ θ′

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
α
β
γ
δ
ε
η
θ
κ
λ
µ
ν
ξ
π
ρ
σ
τ
υ
ϕ
χ
ψ
ω
α′

β′

γ′

δ′

ε′

η′

θ′

Table 4.11: Model of formula (4.3), for the Argumentation Framework of Figure 4.3 regarding the T
predicate (Continued)

(Empty cells on the same line as a “✓” should have an “X” to respect Axiom (4.12))

119

T (σ, b) = ⊤ and T (ν, b) = ⊤, leads to Activable(σ) = ⊥ and Activable(ν) = ⊥. Then, using formula (4.13b),
we have Selected(a) = ⊥ and Selected(m) = ⊥, which leads to Acceptable(a) = ⊥ and Acceptable(m) = ⊥.

At this stage, if we only wanted to compute a conflict-free extension, we would be done with propagating
values in the model. Please remark that, in this case, our extension is not fully encoded since the value of
the predicate Selected is not known for all the elements that have ⊤ as the value for the predicate Cand.
However, having stopped propagating values means that we have reached a somewhat “stable” situation (not
to be confused with the notion of stable extension) in the sense that we could decide to stop there, put ⊥ as
the value of Selected for all the other elements with ⊤ as their value for Cand and that do not have a value
for Selected, propagate the necessary values according to formulas, and obtain a correct model. The model
would then encode the extension {b} which is a correct conflict-free extension. Alternatively, we could select
another element than b with the value ⊤ for the predicate Cand and no value for the predicate Selected,
like c, and decide that Selected(c) = ⊤. we would then need to do another round of value propagation, and
so on.

However, since our models must satisfy formula (4.10a), here it follows from Acceptable(a) = ⊥ and
Acceptable(m) = ⊥ that Defeated(a) = ⊤ and Defeated(m) = ⊤. Without detailing all the consequences
of these new values, they lead in particular to Activable(τ) − ⊤ (for a) and either Activable(θ) = ⊤ or
Activable(ε) = ⊤ (for m). Thus, we have Selected(c) = ⊤ and either Selected(l) = ⊤ or Selected(o) = ⊤.
Suppose that we decide to have Selected(l) = ⊤. Then, Selected(c) = ⊤ and Selected(l) = ⊤ would lead to
other rounds of value propagation similar to the one we had with b which we will not detail. In the end, we
obtain the model described by Tables 4.12 and 4.13 (still using Tables 4.8 to 4.11 for the binary predicates).
The extension encoded by this model is indeed {b, c, g, i, l, p}.

As a finishing note, we can observe that Tables 4.8 to 4.13 which display our final model are incomplete,
in the sense that some predicates are not assigned a value for some elements. This is because the value of
those predicates for those specific elements is in fact irrelevant, and does not impact the rest of the model.
We leave it to the reader to verify it. This means in particular that, instead of letting their value open, we
could simply force a value for them, which would greatly limit the time needed to compute a model. Please
observe as well that regarding the predicate Selected, in our case, we could assign the value ⊤ to elements
like α, β, . . . which have the value ⊥ for the predicate Cand and it would indeed not be contradictory with
the theory. However, in virtue of Proposition 10.6, only the models that assign the value ⊥ to those elements
are used to compute extensions.

4.7 Related works
First of all, it is interesting to note that the idea of defining a general account of Abstract Argumentation
Frameworks has been introduced in [BGW05] under the name of “higher-level networks” and pursued by
Gabbay through several papers [Gab09a, Gab09b], using the idea of meta-argumentation. In these networks,
one can find interactions (attacks or supports) between interactions at any level; moreover, interactions can
be collective (the source is a set of elements) or disjunctive (the target is a set of elements); and finally, each
element of these networks can be valued. Gabbay’s aim was to define a framework rich enough to generalize
all the existing networks. Nevertheless, due to this richness of representation, only informal examples are
given and most formal definitions are missing. For instance, the meaning of support is left unknown and the
only existing semantics are defined for a version of this network restricted to higher-order attacks that are
not collective (see [Gab09a, Gab09b]).

Consider now the approach proposed by Cayrol et al. in [CL20] that proposed an encoding of AF,
RAF and REBAF (HO-EBAF in the present work) and their semantics into first-order logics with finite
domains. Their approach is however not generic. In the present work, we clearly extend it through our
generic representation, taking into account AF, HO-AF and HO-EBAF (as in [CL20]) but also EBAF and
the collective versions of all these frameworks (AF-C, EBAF-C, HO-AF-C and HO-EBAF-C).

The Abstract Dialectical Frameworks (ADF) is another interesting approach, introduced many years ago
(see [BES+18] for a recent synthetic paper about ADF). This approach is related to ours in the sense that

120

Arg Att Sup Cand PrimaFacie Selected Acceptable Unacceptable
a ✓ X X ✓ ✓ X X ✓
b ✓ X X ✓ ✓ ✓ ✓ X
c ✓ X X ✓ ✓ ✓ ✓ X
d ✓ X X ✓ ✓ X X ✓
e ✓ X X ✓ ✓ X X ✓
f ✓ X X ✓ ✓ X X ✓
g ✓ X X ✓ ✓ ✓ ✓ X
h ✓ X X ✓ ✓ X X ✓
i ✓ X X ✓ ✓ ✓ ✓ X
j ✓ X X ✓ ✓ X X ✓
k ✓ X X ✓ ✓ X X ✓
l ✓ X X ✓ ✓ ✓ ✓ X
m ✓ X X ✓ ✓ X X ✓
n ✓ X X ✓ ✓ X X ✓
o ✓ X X ✓ ✓ X X ✓
p ✓ X X ✓ ✓ ✓ ✓ X
α X ✓ X X ✓
β X ✓ X X ✓
γ X ✓ X X ✓
δ X ✓ X X ✓
ε X ✓ X X ✓
η X ✓ X X ✓
θ X ✓ X X ✓
κ X ✓ X X ✓
λ X ✓ X X ✓
µ X ✓ X X ✓
ν X ✓ X X ✓
ξ X ✓ X X ✓
π X ✓ X X ✓
ρ X ✓ X X ✓
σ X ✓ X X ✓
τ X ✓ X X ✓
υ X ✓ X X ✓
ϕ X ✓ X X ✓
χ X ✓ X X ✓
ψ X ✓ X X ✓
ω X ✓ X X ✓
α′ X ✓ X X ✓
β′ X ✓ X X ✓
γ′ X ✓ X X ✓
δ′ X ✓ X X ✓
ε′ X ✓ X X ✓
η′ X ✓ X X ✓
θ′ X ✓ X X ✓

Table 4.12: Model of ΣCA(A) ∪ {(4.13)} for the Argumentation Framework of Figure 4.3
(✓: True, X: False)

(Empty cells could have either a “✓” or an “X” without changing the values already displayed)

121

Activable Defeated Inhibited Desactivated Supported Unsupportable
a ✓ ✓ X
b X ✓ X
c X ✓ X
d ✓ ✓ X
e ✓ ✓ X
f ✓ ✓ X
g X ✓ X
h ✓ ✓ X
i X ✓ X
j ✓ ✓ X
k ✓ ✓ X
l X ✓ X
m ✓ ✓ X
n ✓ ✓ X
o ✓ ✓ X
p X ✓ X
α X ✓ ✓
β ✓ X X
γ X ✓ ✓
δ ✓ X X
ε X ✓ ✓
η ✓ X X
θ ✓ X X
κ X ✓ ✓
λ X ✓ ✓
µ X ✓ ✓
ν X ✓ ✓
ξ ✓ X X
π ✓ X X
ρ ✓ X X
σ X ✓ ✓
τ ✓ X X
υ X ✓ ✓
ϕ ✓ X X
χ X ✓ ✓
ψ ✓ X X
ω ✓ X X
α′ X ✓ ✓
β′ ✓ X X
γ′ ✓ X X
δ′ X ✓ ✓
ε′ X ✓ ✓
η′ ✓ X X
θ′ X ✓ ✓

Table 4.13: Model of ΣCA(A) ∪ {(4.13)} for the Argumentation Framework of Figure 4.3
(Continued)

(Empty cells could have either a “✓” or an “X” without changing the values already displayed)

122

it proposes an encoding of AF, BAF (and even HO-AF by a flattening process) and their collective versions
using logics. Nevertheless the mechanisms used in the ADFs are completely different from what we develop.
Indeed, the ADF input consists of a dependence graph (nodes are arguments, statements or positions and
edges are dependence links) together with an acceptance condition attached to each node. This condition
can be (and generally is) a propositional formula expressing the way the status of the argument is impacted
by the status of its parents in the graph. Then the computation of the labellings or extensions is done using
the models of this dependence graph. It thus allows a great liberty as to how to decide of the status of
an argument, capturing a lot of different frameworks. In the present work, genericity lies in the use of a
common group of general formulas for each framework. These formulas are then specialized to correspond
to a given framework based on the enrichments (or combinations thereof) that are present or not.

Another related work is proposed in [GG15]. The authors also propose a logical encoding of an Argu-
mentation Framework using propositional logic. It is worth noticing that this encoding is quite similar to the
one proposed in [CL20]. And once again, the computation of semantics is done through the logical models
of the proposed theory. Nevertheless, this approach is only defined for Argumentation Frameworks, and, as
it stands, fails to be generic like the one in the present work is.

A more specific work that also proposed a logical encoding of an Argumentation Framework and a
mechanism for computing its extensions is described in [dSBCL16]. This approach is not generic as well.
Nevertheless it has the advantage of being usable for expressing the properties of update operators in dynamic
argumentation. Moreover, it enables to express incomplete knowledge about an Argumentation Framework,
and so to describe a set of Argumentation Frameworks by a single formula (each model of this formula
corresponding to a particular Argumentation Framework).

A more recent approach described in [AGPT20, AGPT21] also proposed an encoding of some enriched
frameworks. This encoding is given under the form of a logic program, each element of the framework
producing a specific rule characterising the conditions for belonging to a complete extension/structure.
Then a correspondence between complete extensions/structures and some special models (partial stable
models) of the logic program is given. Unlike us, this approach does not rely on the underlying principles
of each semantics (Coherence, Defence, Reinstatement, . . .). Moreover, the scope of this work does not
exactly match ours: the logics that are used are clearly different; we take into account more semantics;
the studied enrichments are different (coalitions, higher-order relations with the RAF interpretation and
evidential supports for us, and higher-order relations with the RAF or AFRA interpretation and necessary
or deductive supports for them). Nevertheless, there clearly are some common points between their approach
and the present work.

Finally, there exists some other approaches proposing an encoding of an Argumentation Framework (or
its enrichments) and a characterization of its extensions either by some specific models of a given logic pro-
gram or by the models of some specific logic programs (see for instance [EGW10, CNO09, ON17], the last
reference giving a summary of the numerous existing characterizations). Nevertheless, none of these works
propose a generic representation able to take into account indifferently an Argumentation Framework or one
of its enriched version. We can also mention the work of [SF21] which proposes a representation of Ab-
stract Argumentation in Henkin’s Extensional Type Theory. This formalism, which is more expressive than
First-Order Logic, allows the authors not only to assess Argumentation Frameworks under argumentation
semantics, but also to explore meta-theoretical properties of argumentation.

4.8 Future Perspectives
There are several lines of future research that can be drawn for our generic logical encoding of Abstract Argu-
mentation semantics. First of all, as we mentioned a few times, when both the support relation (interpreted
as evidential support) and higher-order relations (with the RAF interpretation) are present, we consider for
the moment that there is no support cycle. This is certainly a limitation that we ought to remove in order to
have a logical encoding in the general case. The recent work of [Lag21] has solved this problem for a different

123

encoding, which we proved was captured by ours. Thus, one could think of integrating similar modifications
to achieve the same results in our logical encoding.

A second line of research would be of course to extend our logical encoding so that more aspects of Abstract
Argumentation are taken into account. This includes the integration of new enrichments, to capture more
generalised Abstract Argumentation Frameworks, or even the integration of new Abstract Argumentation
principles, to capture new semantics. However, on a closer perspective, this also includes the integration of
the interpretations of the enrichments we already consider and that are not part of the encoding yet. This
covers the AFRA interpretation of Higher-Order relations, the deductive and necessary interpretation of
the support relation, taking into account coalitions of arguments as targets, and the missing interpretation
for coalitions in both cases of source and targets (a relation is effective if at least one argument respects a
property in its source, and a relation affects all or at least one argument of its target).

Now, we believe that our logical encoding is defined so that the integration of the different interpretations
of coalitions should not be too much difficult to include. We assumed through the entire chapter that
relations could only target a single arguments, which resulted in the inclusion of Axiom (4.12) in all the
theories we considered. To have a theory taking sets of arguments as targets, it suffices to remove this axiom
from the appropriate theory. Similarly, to move from a universal interpretation (all the arguments of the
source/target) to an existential one (at least an argument of the source/target), we believe it suffices to
change the quantifier (∀ or ∃) into its dual counterpart at some specific places in the formulas. For instance,
changing the ∀a ∈ Arg by ∃a ∈ Arg in the instantiating formula of the parameter predicate Activable would
be one of the possibly several changes needed to have a theory corresponding to a framework which uses an
existential interpretation of sets of arguments as sources of relations.

We have also already made some preliminary thoughts as to how to include the AFRA interpretation
of higher-order relations into our logical encoding. The RAF and AFRA interpretations are very close but
still separated by subtle differences. One obvious way to solve semantics for higher-order frameworks with
the AFRA interpretation would be to work with the flattened Argumentation Framework (that is already
included in the logical encoding) resulting from the higher-order one. However, we find that not to be very
insightful. More problematic, we also believe that it could be an obstacle to combining higher-order relations
with the AFRA interpretation with other enrichments. So, instead, we believe that the direct inclusion of
this interpretation into the formulas of the encoding (certainly into the instantiating formulas since it could
introduce a choice on whether to use the RAF or the AFRA interpretation) is more productive. Now, the
obvious technical obstacle is that our theory fails to involve a second type of defeat (namely, the indirect
defeat that is used in the AFRA interpretation). Despite this observation, a hint to deal with this problem
would be to introduce two extra parameters:

• The first parameter, called Challenged, would express what type of defeat must be taken into account
so as to capture conflict-freeness in the following way:

∀x ∈ Cand(Challenged(x)→ Unacceptable(x)) (4.18)

with Challenged(x) defined by:

– Defeated(x) for the RAF encoding

– Inhibited(x) for the AFRA encoding.

• The second parameter, called ImpactedBy, would express which attack can impact which item, so that
defense would be written as follows:

∀x ∈ Cand(Acceptable(x)→ ∀α ∈ Att(ImpactedBy(x, α)→ Desactivated(α))) (4.19)

with ImpactedBy(x, α) defined by:

– T (α, x) for the RAF encoding (x is impacted by α iff x is the target of α)

124

– T (α, x) ∨ ∃a ∈ Arg(S(x, a) ∧ T (α, a)) for the AFRA encoding (x is impacted by α iff either x is
the target of α or the target of α is part of the source of x).

These, of course, represent only preliminary thoughts and should be further studied to see if their intuition
is correct. Finally, we also thought about how to integrate the deductive and necessary interpretation of
the support relation. For now, our intuition is that these interpretation are too different from the evidential
interpretation to have a set of generic formulas being able to capture them all, even with the extra flexibility
introduced with the use of parameter predicates to instantiate. We thus believe that a different encoding
would be necessary to capture these other interpretations of the support relation. However, as it is well
known that deductive and necessary supports are dual, we also believe that the same encoding could be used
to capture both of them at once. A recent work, [Lag23], has explored the logical encoding of HO-AFN-C
(called RAFN in the literature) and could serve as a starting point for the integration of the deductive and
necessary interpretation of the support relation.

It is possible to put the work done in this chapter in perspective with the work presented in Chap-
ter 3. Indeed, Chapter 3 presented explanations for Abstract Argumentation semantics in Argumentation
Frameworks. But, Abstract Argumentation semantics are precisely the object of the logical encoding pre-
sented in this chapter. Not only that, but the work done in this chapter is not restricted to Argumentation
Frameworks only. As such, the logical encoding presented in this chapter, and especially the way it handles
generalisations of Abstract Argumentation, can be valuable for one of the future perspectives mentioned at
the end of Chapter 3: the extension of explanations to generalised accounts of Abstract Argumentation.

125

Chapter 5

Extension of the Logical Encoding:
Computation of Explanations for
Extensions

In this chapter, we extend the logical encoding of Abstract Argumentation Frameworks presented in Chap-
ter 4 to include the computation of explanations presented in Chapter 3. The main point here is to have
the computation of extensions and the computation of their explanations encapsulated into the same logical
theory. Recall that the explanations of Chapter 3 have only been defined for Argumentation Frameworks.
By integrating them into the generic logical theory of Chapter 4, we open the way to generalise them to any
Abstract Argumentation Framework of Figure 4.2. As such, the work in this chapter is in fact the pursue
of one of the future perspectives evoked in Chapter 3. In addition, having the computation of explanations
expressed in the same logical theory as the computation of what they are about could allow a deeper formal
study and analysis of their properties.

The chapter is organised as follows: firstly, we motivate further the work of this chapter (Section 5.1).
Then, in Section 5.2, using the definitions of the explanations from Chapter 3, we discuss how they can be
integrated into the logical theory. In particular, we wish for the encoding of the explanations to follow the
same spirit as the encoding of the extensions, in that we want them to be generic as well. That is to say, for
explanations as for extensions, we will have generic formulas that will require to be instantiated using some
parameters to retrieve each individual kind of explanations. Following this discussion and the observations
that we will make, we will then give the proper generic formulas to use, as well as each individual instantiating
for each kind of explanations (Section 5.3). We then present some formal results on this logical encoding of
explanations (Section 5.4). Finally, we discuss future directions of research that are still open for this body
of work (Section 5.6).

5.1 Motivation
In this section, we develop further our motivation for the work done in this chapter. As we said previously, the
purpose of this chapter is to propose a logical encoding of the visual explanations presented in Chapter 3 that
can be integrated into the logical theory of Abstract Argumentation Frameworks presented in Chapter 4.
By doing so, our objectives are firstly to have a first stone from which it is possible to study and build
the generalisations of our explanations to the generalisations of Argumentation Frameworks considered in
Chapter 4, and secondly, to have the possibility to study the links between our explanations and what
they explain from the same perspective, that is formal logic. The reader may recall that the first objective
corresponds to a future perspective that was discussed in Chapter 3.

Our first objective comes from the general observation that both our explanations of Chapter 3 and the

126

logical encoding of Chapter 4 are largely based on the decomposition of Abstract Argumentation semantics
into principles, discussed in Section 2.4. As such, it appears possible to us to merge both approaches. While
the explanations of Chapter 3 have only been defined for the basic case of Argumentation Frameworks, the
logical encoding of Chapter 4 is designed to generically capture several of their generalisations, as well as
to be able to include more of these generalisations in a facilitated way. It is perfectly possible to imagine
extending the explanations of Chapter 3 to various generalisations of Argumentation Frameworks separately
and independently. This has in fact been discussed as a future line of research in Chapter 3, and thus
constitutes a direct follow up of the work done in that chapter. Moreover, the logical encoding of Chapter 4
gives us precious insights as to how the presence/absence of some enrichment (i.e. generalisation) impacts
the computation of semantics. Since the computation of extensions is precisely what the explanations of
Chapter 3 are designed to explain, it would be a shame not to make use of these insights if we are to extend
those explanations to the different generalisations of Argumentation Frameworks. Hence, integrating an
encoding of our explanations into the generic logical theory of Chapter 4 should bring us one step closer to
the definitions of generalised explanations. It should be noted that the definition of generalised explanations
could allow us to identify the general principles that rule over our explanation process, principles that could
be missed due to the fact that we only study explanations for Argumentation Frameworks at the moment.
Moreover, it should also be noted that, since the logical encoding of Chapter 4 is thought to facilitate the
integration of new generalisations, integrating the computation of explanations into this theory should also
facilitate the adaptation of these explanations to the new generalisations that could be introduced in the
future.

Regarding our second objective, the point is to have a better understanding of the nature of the expla-
nations we defined in Chapter 3. To do that, one way could be to see if they correspond, or at least relate
to some level, to other notions of explanations in different domains. This is precisely the idea here. Indeed,
there are close ties between the study of explanations for AI systems and formal systems. Already back
in the time where we wanted to explain expert systems and the likes, the relations between explanations
and formal logic were being considered relevant. This is not surprising as formal logic is an integral part of
expert systems. Although there is no consensus on a particular definition of what an explanation or what the
explanatory process is in formal logic, there are notions related to explanations that have rather satisfactory
counterparts in formal logic. For instance, it is generally agreed upon that an explanation delivers causes,
and that humans select these causes via an abductive reasoning process ([Har65]). An abductive reasoning
process is basically trying to determine the correct causes of an event among a set of possible causes. This
process can be modeled in formal logic through the notion of an abductive reasoning problem. Similarly,
the formal logic notion of implicant ([Qui59]) is usually deemed a satisfactory representation of the notion
of cause (and so, of explanation). The term “implicant” has different meanings depending on the context in
which it is used. Thus, in general, an implicant simply is the hypothesis of an implication (so it is A in the
formula A → B). When referring to a boolean function, an implicant is a conjunction of litterals so that
when the implicant is true, so is the function. In the last case, it is possible to have more specific notions, so
for instance a prime implicant is an implicant that cannot be covered by a more reduced implicant. These
were only a few examples, but the general point is: do our explanations coincide with some of these notions?
Can they be obtained via an abductive reasoning problem from the encoding of Chapter 4? Are they im-
plicants or even prime implicants of this encoding? These are examples of questions that, we believe, can
bring precious insights on the nature of our explanations from a different perspective, and thus deserve to
be investigated.

5.2 Identifying Shared Structures
In this section, we work towards identifying how to integrate the explanations defined in Chapter 3 into the
logical theory of Chapter 4. Recall that an important point is to do so following the spirit of the generic
logical theory. Thus, explanations should be encoded using some generic formulas that describe common
ground on which rely the explanations, and then an instantiating of some parameters that, when combined
with the generic formulas, allows to retrieve each individual kind of explanations.

127

Before we begin, we consider necessary to inform the reader that, despite our efforts, we could not find
a way to have what we will call a complete integration of the explanations into the theory of Chapter 4.
What we mean by that is that, for a given Argumentation Framework A, we found no way to encode
explanations that uses strictly the same language LExt(A) as given in Section 4.5.1. More precisely, we
found no way to make the predicates given in Chapter 4 interact so that a set of formulas that use them
could indeed compute the desired explanations. Although, this would have probably been preferable to
pursue our objectives of generalising explanations to enriched frameworks and study the relation between
the computation of extensions and the computation of explanations form a logical perspective, this is maybe
not much of a surprise. Indeed, this may simply indicate that our explanations are based on different concepts
than those used to compute extensions. As such, the explanations are here encoded using a different language
than the one used to compute the extensions that are to be explained.

However, we should also point out that this language is not entirely different, as there are still some
common grounds with the language LExt(A). In particular, the two languages share the same predicates,
representing the same concepts, used to encode the structure (i.e. the graph) of the Argumentation Frame-
work at hand, as well as the extension that is considered. As such, while still being different, the two
languages used (one to compute extensions, one to compute explanations) would still have some shared
elements, that are in fact the predicates that describe the graph and those that describe the extension.

That being said, we now move on to discussing how we can logically encode in a generic way the explana-
tions of Chapter 3. Of course, such a generic encoding would heavily rely on the shared parts in the structure
of these explanations. These shared structures are destined to become the generic formulas that are to be
instantiated to retrieve each individual kind of explanations. Then, what is left would then be the individual
parts of each kind of explanations, that are to become the instantiated parameters of the generic formulas
through specific formulas. Thus, to identify these parts (shared and individual), we begin by recalling the
definitions of each kind of explanations (the original definitions can be found in Chapter 3).

Definition. 34 Let A = (A ,R) be an Argumentation Framework, S ⊆ A , and consider X = {(a, b) ∈
R | a, b ∈ S}. A subgraph (A ′,R′) of A is an answer to QExt

Coh for S on A if and only if

• A ′ = S

• R′ ⊆ X

• If X ̸= ∅, then R′ ̸= ∅

Definition. 36 Let A = (A ,R) be an Argumentation Framework, S ⊆ A , and consider X = {(b, a) ∈
R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. A subgraph (A ′,R′) of A is an answer
to QExt

Def for S on A if and only if

• A ′ = S ∪R−1(S)

• X ⊆ R′ ⊆ X ∪ Y

• ∀b ∈ R−1(S), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Definition. 38 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {a ∈
A | R−1(a) = ∅}. A subgraph (A ′,R′) of A is an answer to QExt

Rein1 for S on A if and only if

• S ∩X ⊆ A ′ ⊆ X

• R′ = ∅

• If (A \ S) ∩X ̸= ∅, then ∃a ∈ (A \ S) ∩X with a ∈ A ′

Definition. 39 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {(b, c) ∈
R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. A subgraph (A ′,R′)
of A is an answer to QExt

Rein2 for S on A if and only if

128

• A′ = S ∪R+2(S) ∪R−1(R+2(S))

• X ⊆ R′ ⊆ X ∪ Y

• For every b ∈ R−1(R+2(S)), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Definition. 41 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and X = {(a, b) ∈ R | a ∈ S, b /∈
S}. A subgraph (A ′,R′) of A is an answer to QExt

CA for S on A if and only if

• A ′ = A

• R′ ⊆ X

• ∀b ∈ A \ S, if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

It is immediately striking from the previous definitions that they indeed share a common structure. It may
appear, though, that some definitions cannot be grouped with others. It is especially visible using the third
condition of each definition. For some of the definitions (34 and 38), this condition is a general existential
criterion (if . . . then . . .), while for the others (36, 39 and 41) it is a condition over all the arguments of a
particular set. Notice further that in this case, the condition is always the same, i.e. if the argument of this
particular set is attacked by the extension, then one of these attacks must belong to the explanation. In
addition, for these explanations, the set of arguments is always the union of some subsets of arguments of
the initial framework, and the set of attacks is always contained in the union of two subsets of attacks of the
initial framework (think of the second set as being the empty set in the case of Definition 41).

As such, definitions 36, 39 and 41 seem sufficiently similar to be grouped together. It remains to see
whether definitions 34 and 38 can also be grouped together. Although their third condition is similar in
form, their sets of arguments and attacks behave quite differently from one another. However we can notice
that the set of arguments of Definition 34 behaves as the set of attacks of Definition 38: plain equality with
another set. Likewise, the set of attacks of Definition 34 behaves as the set of arguments of Definition 38:
inclusion in another set and a part of that set being mandatory (think of the empty set for Definition 34).
In addition, the third condition of Definition 34 is on attacks, while the third condition of Definition 38 is on
arguments, i.e. elements that behave alike in the explanations. Thus, it seems possible to group definitions 34
and 38 together, by abstracting on which elements (arguments or attacks) the conditions are on.

The two groups of definitions we obtain might correspond to two different ways of explaining, each way
being more appropriate for some semantics and not for the others. These ways of explaining may be better
understood using the third condition of the definitions, which is the main support of the existence of two
groups that cannot be further merged. Indeed, for the first group of definitions (definitions 34 and 38), the
third condition is a global conditional existential criterion. In other terms, the fulfilment of some general
condition at the level of the Argumentation Framework leads to the existence of some specific elements in
the explanation. In addition, the general condition is usually the existence of such elements in the framework
(i.e. a given set is not empty), thus making it easy to visually spot the information needed to interpret the
explanation on it.

Example. Recall Figure 3.9, that shows an explanation on why {b, d, i} does not respect the Coherence
principle in Figure 2.3. The presence of merely one attack is enough to deduce that it is not conflict-free.
This is why in Definition 34, if such attacks exist, we force at least one to appear, so that the explanation is
interpreted correctly. Such a criterion can immediately be spotted on the picture.

On the other hand, for the second group of definitions (definitions 36, 39 and 41), the third condition is a
conditional existential criterion on every element of a given set. That is to say, to interpret the explanation,
one needs to spot a visual information on all the elements of an identified group (hence enforcing the existence
of this information using the third condition). This is different from the first group of definitions because in
this case the information is not global, and thus requires somewhat a closer look. Since the interpretation
of the explanation requires the presence of information on all identified elements, one can also interpret it
by looking for the absence of that information on one of the identified elements, thus making it simpler.

129

Example. Recall Figure 3.13, that shows the explanation of why {b, h, j} does not respect the Defence
principle in Figure 2.3. The presence of merely one source node among its attackers is enough to deduce so.
This is why in Definition 36, we force the presence of at least one attack from the studied set to each of its
attackers, if such an attack exists, so that the explanation is interpreted correctly. Such a criterion requires
to inspect the attackers one after another, until one that is a source node has been found or all have been
inspected. Yet, the property of being a source node is usually easily spotted.

5.3 A Family of Logical Theories for Explaining Abstract Argu-
mentation

In this section, we use the discussion of the previous section to define several logical theories that aim at
capturing the different explanations defined in Chapter 3. Much in the spirit of Chapter 4, the logical theories
presented here are in fact all derived from a generic theory that can be instantiated through parameters.

5.3.1 A Generic Theory
As in Chapter 4, we begin with the generic part of the logical theory. Here as well, the formulas used are for-
mulas of first order logic with equality. We also consider that the theory is relative to a given Argumentation
Framework A = (A ,R) and a given extension S ⊆ A , which are taken for granted throughout. Importantly,
to follow the spirit of Chapter 4, we in fact use its Higher-Order Evidence-Based Argumentation Framework
notation (A ,R,∅,A ∪R, s, t) where R just contains the name of the attacks, S is empty, all the elements
are prima-facie, and s and t are the usual source and target functions, with s : R 7→ A and t : R 7→ A . We
write LExpl(A) to denote the language of this theory.

Vocabulary

As in Chapter 4, we keep here the convention of using Latin letters to identify arguments and Greek letters to
identify arcs (attacks only in this case). We also adopt the same convention regarding individual constants.

Individual Constants For all e in A ∪R ∪S , we take e to be an individual constant.

Thus again, the same letter designates both an element of the Argumentation Framework and the logical
constant that represents it in LExpl(A).

Predicates The list of unary and binary predicates, as well as their intended meaning, is presented in
Table 5.1.

First of all, please notice that this theory reuses the predicates Arg,Att, Sup, PrimaFacie, Selected, S, T
introduced in Chapter 4, with the same meanings. These represent the common grounds between the two
languages LExt(A) and LExpl(A).

The main new predicate that is introduced is Expl. Expl(x) means that x belongs to the explanation
(whether x is an argument or an attack). It will be this predicate that we use to characterize an explanation
from a model of the theory. ElemFixed(x) and ElemV ar(x) mean that x is a fixed and a variable element,
respectively. What we call fixed elements, are the elements from the Argumentation Framework (either
arguments or attacks) for which there is a clear and strict identification of those that belong to the explanation
(represented by ExplEF). On the contrary, variable elements are the elements from the Argumentation
Framework (either arguments or attacks) for which some must absolutely belong to the explanation and some
others may or may not belong to it. We make the distinction between the two using the NecessaryEV and
AdditionalEV predicates respectively. Finally, ParticularEF and ParticularEV represent some specific
fixed and variable elements respectively.

The predicates ElemFixed,ElemV ar,ExplEF, ParticularEV,NecessaryEV,AdditionalEV , and
ParticularEF are the parameters of this generic theory. They will be the predicates whose instantiating
allows to retrieve each different kind of explanations.

130

Unary Predicates Meaning
Arg(x) x is an argument
Att(x) x is an attack
Sup(x) x is a support
PrimaFacie(x) x is a prima facie evidence
Selected(x) x is a member of the current extension
Expl(x) x is a member of the current explanation

✓ ElemFixed(x) x is a fixed element
✓ ElemV ar(x) x is a variable element
✓ ExplEF (x) x is a fixed element that is a member of the current explanation
✓ ParticularEV (x) x is a particular variable element
✓ NecessaryEV (x) x is a variable element that must belong to the explanation
✓ AdditionalEV (x) x is a variable element that may belong to the explanation
✓ ParticularEF (x) x is a particular fixed element

Binary Predicates Meaning
S(α, x) x is in the source of α
T (α, x) x is in the target of α

Table 5.1: Unary and Binary Predicates (✓ indicates those which are what we call parameters of the theory)

Axioms for the Argumentation Framework

As in Chapter 4, the purpose of the formulas given here is to encode the graph of the Argumentation
Framework that is handled. We will use the same notation convention for the elements of A that was used
in Chapter 4. With this, we can in fact use the very same Axioms that were presented back then. This is
due to the fact that we precisely reuse the predicates that are relative to the encoding of the graph in this
theory. As such, Axioms (4.1), (4.2), and (4.3) are part of this theory.
Note. Please note that, as a consequence, Σ(A) is a valid notation in this theory as well.

Axioms for the Extension

Recall that the aim of the present theory is to compute explanations for a given extension. As we said
previously, it is relative to a given Argumentation Framework, and to a given extension. Hence, we need
some additional axioms to encode this extension. This is the role of the following formulas.

Axioms for the elements of the extension

for all a ∈ S, Selected(a) (5.1a)
for all a /∈ S, ¬Selected(a) (5.1b)

Note. Keep in mind that here S designates our extension and should not be confused with our binary
predicate encoding the source of the relations.

Notation. In the following, considering an AF A and a set of arguments S, we denote by Σ(A, S) the
subtheory consisting of Σ(A) and Axioms (5.1) together.

Generic Formulas for Explanations

The formulas given here aim at describing the explanations for the extension. As we mentioned earlier,
we highlighted the existence of two different groups of explanations, that are different in that they rely on
different ways of explaining. So, to be more precise, the formulas we give here encode the general structure
of each of these two groups.

131

Figure 5.1: Inclusion relations of predicates that rule the presence or absence of elements in an explanation
of the first group in Axioms (5.2)

We begin with the formulas that describe the first group of explanations, that is to say the explanations
for the Coherence and Rein1 principles.

First group of Explanations

∀x ∈ ElemFixed (Expl(x)↔ ExplEF (x)) (5.2a)
∀x ∈ ElemV ar (Expl(x)→ ParticularEV (x)) (5.2b)
∀x ∈ ElemV ar ((ParticularEV (x) ∧NecessaryEV (x))→ Expl(x)) (5.2c)(
∃x ∈ ElemV ar (ParticularEV (x) ∧ ¬NecessaryEV (x))

)
→(

∃x ∈ ElemV ar (ParticularEV (x) ∧ ¬NecessaryEV (x) ∧ Expl(x))
) (5.2d)

Looking back at definitions 34 and 38, Formula (5.2a) aims at representing the first condition of Def-
inition 34, and the second condition of Definition 38. Formulas (5.2b) and (5.2c) aim at representing the
second condition of Definition 34, and the first condition of Definition 38. Finally, Formula (5.2d) aims at
representing the third condition of both Definitions 34 and 38.

As we said, we distinguish between two types of elements in the Argumentation Framework : (i) fixed
elements (ElemFixed), and (ii) variable elements (ElemV ar). The distinction between the two is the way
they are selected to be kept in the explanation.

For the fixed elements, there is a clear and simple group of them (represented by ExplEF), which
corresponds directly to those that belong to the explanation, no more, no less.

For the variable elements, there are some that will be mandatory for the explanation, those that may or
may not be part of it, and those that will not belong to it. In the case of the first group of explanations,
the elements that are mandatory and those that may or may not belong to the explanation are parts of
the same group that can be identified (ParticularEV). In other terms, among some particular variable
elements, some will necessarily belong to the explanation (NecessaryEV), while the others (so those that
are not NecessaryEV) may or may not be part of it.

The diagram of Figure 5.1 summarizes the inclusion relations between the predicates that dictate the
presence or absence of elements in the explanation.

The decision process (of keeping elements in the explanation) is thus based on the variable elements. It
is an existential criterion. It states that if there exists a variable element of the group that was identified
(ParticularEV), and is not necessary in the explanation, then it must belong to it, because its presence will
change the interpretation of the explanation.

132

Figure 5.2: Inclusion relations of predicates that rule the presence or absence of elements in an explanation
of the second group in Axioms (5.3)

Notation. In the following, considering an AF A and a set of arguments S, we denote by Σ1(A, S) the
subtheory consisting of Σ(A, S) and Axioms (5.2) together.

We move on to the formulas that describe the second group of explanations, that is to say the explanations
for the Defence, Rein2 and Complement Attacks principles.

Second group of Explanations

∀x ∈ ElemFixed (Expl(x)↔ ExplEF (x)) (5.3a)
∀x ∈ ElemV ar (NecessaryEV (x)→ Expl(x)) (5.3b)
∀x ∈ ElemV ar (Expl(x)→ (NecessaryEV (x) ∨AdditionalEV (x))) (5.3c)

∀x ∈ ParticularEF
((
∃α, a (Att(α) ∧ T (α, x) ∧ S(α, a) ∧ Selected(a)

)
→(

∃β, b (Att(β) ∧ T (β, x) ∧ S(β, b) ∧ Selected(b) ∧ Expl(β)
)) (5.3d)

Looking back at definitions 36, 39 and 41, Formula (5.2a) aims at representing the first condition of each
of them. Formulas (5.2b) and (5.2c) aim at representing their second condition. Finally, Formula (5.2d)
aims at representing their third condition.

The second group of formulas is similar to the first group to some extent. The fixed elements work in
the same way as in the first group of formulas.

However, the variable elements work differently. Instead of having one group of elements, in which some
are necessary and the others are not, we consider one group of necessary elements (NecessaryEV) and
another (potentially different) group of additional elements (AdditionalEV). The additional elements are
always attacks from the extension to some particular group of arguments taken among the fixed elements
(ParticularEF). Even if the additional elements are not necessary, some will be made mandatory by
Formula (5.3d).

The diagram of Figure 5.2 summarizes the inclusion relations between the predicates that dictate the
presence or absence of elements in the explanation.

Remark. As it turns out, in the principles we consider, the fixed elements are always the arguments and the
variable elements are always the attacks.

The decision process (of keeping elements in the explanation) is thus based on the arguments. Typically,
if some arguments of the group targeted by the additional attacks (ParticularEF) are in fact not attacked

133

by arguments of the extension, it will change the interpretation of the extension. Hence, if such attacks exist,
at least one (for each target) is made mandatory by Formula (5.3d).

Notation. In the following, considering an AF A and a set of arguments S, we denote by Σ2(A, S) the
subtheory consisting of Σ(A, S) and Axioms (5.3) together.

Semantics

We give here the links between the explanations for an extension on an Argumentation Framework and the
models of its logical encoding. We begin with a definition whose aim is to characterize an explanation from
a model.

Definition 77. Let A = (A ,R,∅,A ∪R, s, t) be an AF and S ⊆ A be a subset of arguments. Let I be
an interpretation over LExpl(A), we define:

• AI = {a ∈ A | I(Expl(a)) = ⊤}

• RI = {α ∈ R | I(Expl(α)) = ⊤}

• sI : RI 7→ AI is the function such that sI(α) = a iff I(S(α, a)) = ⊤1

• tI : RI 7→ AI is the function such that tI(α) = a iff I(T (α, a)) = ⊤2

Using a similar approach as in Chapter 4, considering an Argumentation Framework A and a subset of
arguments S in A, we characterize the explanations for S on A for each Abstract Argumentation principles
in terms of the following generic property.

Remark. As in Chapter 4, Property 2 is expressed relatively to some varying sets of formulas, that are
intended to represent the specificities of each kind of explanations. Hence, it is a generic property that must
be instantiated in order to be applied to each kind of explanations.

Property 2. Let A = (A ,R,∅,A ∪R, s, t) be an AF and S ⊆ A be a set of arguments. Let Σ′
Coh, Σ

′
Def,

Σ′
Rein1, Σ

′
Rein2, Σ

′
CA be sets of formulas over LExpl(A).

1. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
Coh for S on A if and only if there exists a model I of

Σ1(A, S) ∪ Σ′
Coh such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

2. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
Def for S on A if and only if there exists a model I of

Σ2(A, S) ∪ Σ′
Def such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

3. (A ′,R′,∅,A ′ ∪R′, s′, t′) is an answer to QExt
Rein1 for S on A if and only if there exists a model I of

Σ1(A, S) ∪ Σ′
Rein1 such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

4. (A ′,R′,∅,A ′ ∪R′, s′, t′) is an answer to QExt
Rein2 for S on A if and only if there exists a model I of

Σ2(A, S) ∪ Σ′
Rein2 such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

5. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
CA for S on A if and only if there exists a model I of

Σ2(A, S) ∪ Σ′
CA such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

The point is now to specify Σ′
Coh, Σ

′
Def, Σ

′
Rein1, Σ

′
Rein2, Σ

′
CA so that Properties 2.1 to 2.5 indeed hold.

1So if I(S(α, a)) = ⊥ then α has no image by the function sI .
2So if I(T (α, a)) = ⊥ then α has no image by the function tI .

134

5.3.2 Theory for the Coherence Principle
In this section, we present how our generic theory can be parameterized to obtain a theory that corre-
sponds to explanations for Coherence. For the Coherence principle, the parameters of the generic theory are
axiomatized as follows.

Parameters for Coherence

∀x (ElemFixed(x)↔ Arg(x)) (5.4a)
∀x (ElemV ar(x)↔ Att(x)) (5.4b)
∀x (ExplEF (x)↔ Selected(x)) (5.4c)

∀x
(
ParticularEV (x)↔

∃a, b
(
S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ Selected(b)

)) (5.4d)

∀x (NecessaryEV (x)↔ ⊥) (5.4e)

Formulas (5.4a) and (5.4b) specify that the fixed elements are the arguments and that the variable
elements are the attacks respectively. Formula (5.4c) indicates that the fixed elements (so the arguments)
that are kept in the explanation are exactly those that belong to the extension. Formula (5.4d) states
that the variable elements (so the attacks) that are of interest for this explanation are those between two
arguments of the extension. Finally, Formula (5.4e) tells us that among these attacks of interest, none is
strictly necessary for the explanation.

Remark. There is no axiomatization of parameters AdditionalEV and ParticularEF because they are not
relevant for the first group of explanations (i.e. they do not appear in Axioms (5.2)).

Note that (5.4) can be used to rewrite Formulas (5.2), as formulas ((5.2a)Coh), ((5.2b)Coh), ((5.2c)Coh)
and ((5.2d)Coh) below.

Explanation for Coherence

∀x ∈ Arg (Expl(x)↔ Selected(x)) ((5.2a)Coh)

∀x ∈ Att
(
Expl(x)→

[
∃a, b(S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ Selected(b))

])
((5.2b)Coh)

∀x ∈ Att (⊥ → Expl(x))3 ((5.2c)Coh)(
∃x ∈ Att (∃a, b(S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ Selected(b)))

)
→(

∃x ∈ Att (∃a, b(S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ Selected(b)) ∧ Expl(x))
) ((5.2d)Coh)

5.3.3 Theory for the Defence Principle
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to explanations for Defence. For the Defence principle, the parameters of the generic theory are axiomatized
as follows.

3Note that Formula (5.2c)Coh is in fact a tautology and has thus no effect.

135

Parameters for Defence

∀x (ElemFixed(x)↔ Arg(x)) (5.5a)
∀x (ElemV ar(x)↔ Att(x)) (5.5b)

∀x
(
IsAttacker(x)↔

∃β, a (Att(β) ∧ S(β, x) ∧ T (β, a) ∧ Selected(a))
) (5.5c)

∀x
(
ExplEF (x)↔ (Selected(x) ∨ IsAttacker(x))

)
(5.5d)

∀x
(
NecessaryEV (x)↔

∃a, b (S(x, b) ∧ T (x, a) ∧ Selected(a) ∧ IsAttacker(b))
) (5.5e)

∀x
(
AdditionalEV (x)↔

∃a, b (S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ IsAttacker(b))
) (5.5f)

∀x
(
ParticularEF (x)↔ IsAttacker(x)

)
(5.5g)

Formulas (5.5a) and (5.5b) specify that the fixed elements are the arguments and that the variable
elements are the attacks respectively. Formula (5.5c) defines an attacker as an argument that attacks an
argument of the extension. Then, Formula (5.5d) indicates that the fixed elements (so the arguments) that are
kept in the explanation are exactly those that belong to the extension and those that attack these arguments.
Formula (5.5e) states that the variable elements (so the attacks) that are necessary in the explanation are
those that go from an attacker of the extension to an argument of the extension. Formula (5.5f) states that
the attacks that may or may not be in the explanation are those that go from an argument of the extension
to an attacker of the extension. Finally, Formula (5.5g) tells us that among the arguments, those that are
of interest for this explanation are the attackers of the extension.
Remark. The predicate IsAttacker is here a mere alias that is introduced for the sole purpose of improving
readability. It is not necessary in the theory.
Remark. There is no axiomatization of the parameter ParticularEV because it is not relevant for the second
group of explanations (i.e. it does not appear in Axioms (5.3)).

Note that (5.5) can be used to rewrite Formulas (5.3), as Formulas ((5.3a)Def), ((5.3b)Def), ((5.3c)Def)
and ((5.3d)Def) below (keeping Formula (5.5c) for the definition of the predicate IsAttacker).

Explanation for Defence

∀x ∈ Arg (Expl(x)↔ (Selected(x) ∨ IsAttacker(x))) ((5.3a)Def)

∀x ∈ Att
(
(∃a, b (S(x, b) ∧ T (x, a) ∧ Selected(a) ∧ IsAttacker(b)))→ Expl(x)

)
((5.3b)Def)

∀x ∈ Att
(
Expl(x)→(

∃a, b (S(x, b) ∧ T (x, a) ∧ Selected(a) ∧ IsAttacker(b))∨

∃a, b (S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ IsAttacker(b))
)) ((5.3c)Def)

∀x ∈ IsAttacker
((
∃α, a (Att(α) ∧ T (α, x) ∧ S(α, a) ∧ Selected(a)

)
→(

∃β, b (Att(β) ∧ T (β, x) ∧ S(β, b) ∧ Selected(b) ∧ Expl(β)
)) ((5.3d)Def)

∀x
(
IsAttacker(x)↔ ∃β, a (Att(β) ∧ S(β, x) ∧ T (β, a) ∧ Selected(a))

)
(5.5c)

136

5.3.4 Theory for the Rein1 Principle
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to explanations for Rein1. For the Rein1 principle, the parameters of the generic theory are axiomatized as
follows.

Parameters for Rein1

∀x (ElemFixed(x)↔ Att(x)) (5.6a)
∀x (ElemV ar(x)↔ Arg(x)) (5.6b)
∀x (ExplEF (x)↔ ⊥) (5.6c)

∀x
(
ParticularEV (x)↔ ∀α ∈ Att

(
¬T (α, x)

))
(5.6d)

∀x (NecessaryEV (x)↔ Selected(x)) (5.6e)

Formulas (5.6a) and (5.6b) specify that the fixed elements are the attacks and that the variable elements
are the arguments respectively. Formula (5.6c) indicates that none of the fixed elements (so the attacks)
are kept in the explanation. Formula (5.6d) states that the variable elements (so the arguments) that are
of interest for this explanation are those that are not attacked. Finally, Formula (5.6e) tells us that among
these arguments of interest, those that are strictly necessary for the explanation are those that belong to the
extension.

Remark. As in the case of the Coherence principle, parameters AdditionalEV and ParticularEF are not
axiomatized because they are not relevant for the first group of explanations.

Note that (5.6) can be used to rewrite Formulas (5.2), as Formulas ((5.2a)Rein1), ((5.2b)Rein1), ((5.2c)Rein1)
and ((5.2d)Rein1) below.

Explanation for Rein1

∀x ∈ Att (Expl(x)↔ ⊥) ((5.2a)Rein1)

∀x ∈ Arg
(
Expl(x)→

[
∀α ∈ Att (¬T (α, x))

])
((5.2b)Rein1)

∀x ∈ Arg
(
(∀α ∈ Att (¬T (α, x)) ∧ Selected(x))→ Expl(x)

)
((5.2c)Rein1)(

∃x ∈ Arg (∀α ∈ Att (¬T (α, x)) ∧ ¬Selected(x))
)
→(

∃x ∈ Arg (∀α ∈ Att (¬T (α, x)) ∧ ¬Selected(x) ∧ Expl(x))
) ((5.2d)Rein1)

5.3.5 Theory for the Rein2 Principle
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to explanations for Rein2. For the Rein2 principle, the parameters of the generic theory are axiomatized as
follows.

137

Parameters for Rein2

∀x (ElemFixed(x)↔ Arg(x)) (5.7a)
∀x (ElemV ar(x)↔ Att(x)) (5.7b)

∀x
(
IsDefended(x)↔

∃α, β, a, b (Att(α) ∧Att(β) ∧ T (β, x) ∧ S(β, b)∧

T (α, b) ∧ S(α, a) ∧ Selected(a))
) (5.7c)

∀x
(
IsAttackerOfDefended(x)↔

∃γ, c (Att(γ) ∧ T (γ, c) ∧ S(γ, x) ∧ IsDefended(c))
) (5.7d)

∀x
(
ExplEF (x)↔ (Selected(x) ∨ IsDefended(x) ∨ IsAttackerOfDefended(x))

)
(5.7e)

∀x
(
NecessaryEV (x)↔

∃b, c (S(x, b) ∧ T (x, c) ∧ IsAttackerOfDefended(b) ∧ IsDefended(c))
) (5.7f)

∀x
(
AdditionalEV (x)↔

∃a, b (S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ IsAttackerOfDefended(b))
) (5.7g)

∀x
(
ParticularEF (x)↔ IsAttackerOfDefended(x)

)
(5.7h)

Formulas (5.7a) and (5.7b) specify that the fixed elements are the arguments and that the variable
elements are the attacks respectively. Formula (5.7c) defines a defended argument as an argument with one
of its attackers being attacked by an argument of the extension, while Formula (5.7d) defines an attacker
of a defended argument as an argument that attacks a defended argument. Then, Formula (5.7e) indicates
that the fixed elements (so the arguments) that are kept in the explanation are exactly those that belong to
the extension, those that are defended, and those that attack a defended argument. Formula (5.7f) states
that the variable elements (so the attacks) that are necessary in the explanation are those that go from an
attacker of a defended argument to a defended argument. Formula (5.7g) states that the attacks that may
or may not be in the explanation are those that go from an argument of the extension to an attacker of a
defended argument. Finally, Formula (5.7h) tells us that among the arguments, those that are of interest
for this explanation are the attackers of a defended argument.

Remark. The predicates IsDefended and IsAttackerOfDefended are here mere aliases that are introduced
for the sole purpose of improving readability. They are not necessary in the theory.

Remark. As in the case of the Defence principle, the parameter ParticularEV is not axiomatized because
it is not relevant for the second group of explanations.

Note that (5.7) can be used to rewrite Formulas (5.3), as Formulas ((5.3a)Rein2), ((5.3b)Rein2), ((5.3c)Rein2)
and ((5.3d)Rein2) below (keeping formulas (5.7c) and (5.7d) for the definition of the predicates IsDefended
and IsAttackerOfDefended).

138

Explanation for Rein2

∀x ∈ Arg (Expl(x)↔ (Selected(x) ∨ IsDefended(x) ∨ IsAttackerOfDefended(x))) ((5.3a)Rein2)

∀x ∈ Att
((
∃b, c (S(x, b) ∧ T (x, c) ∧ IsAttackerOfDefended(b) ∧ IsDefended(c))

)
→

Expl(x)
) ((5.3b)Rein2)

∀x ∈ Att
(
Expl(x)→(
∃b, c (S(x, b) ∧ T (x, c) ∧ IsAttackerOfDefended(b) ∧ IsDefended(c))∨

∃a, b (S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ IsAttackerOfDefended(b))
)) ((5.3c)Rein2)

∀x ∈ IsAttackerOfDefended
((
∃α, a (Att(α) ∧ T (α, x) ∧ S(α, a) ∧ Selected(a)

)
→(

∃β, b (Att(β) ∧ T (β, x) ∧ S(β, b) ∧ Selected(b) ∧ Expl(β)
)) ((5.3d)Rein2)

∀x
(
IsDefended(x)↔ ∃α, β, a, b (Att(α) ∧Att(β)∧

T (β, x) ∧ S(β, b) ∧ T (α, b) ∧ S(α, a) ∧ Selected(a))
) (5.7c)

∀x
(
IsAttackerOfDefended(x)↔ ∃γ, c (Att(γ) ∧ T (γ, c) ∧ S(γ, x) ∧ IsDefended(c))

)
(5.7d)

5.3.6 Theory for the Complement Attack Principle
In this section, we present how our generic theory can be parameterized to obtain a theory that corresponds
to explanations for Complement Attack. For the Complement Attack principle, the parameters of the generic
theory are axiomatized as follows.

Parameters for Complement Attack

∀x (ElemFixed(x)↔ Arg(x)) (5.8a)
∀x (ElemV ar(x)↔ Att(x)) (5.8b)

∀x
(
ExplEF (x)↔ ⊤

)
(5.8c)

∀x
(
NecessaryEV (x)↔ ⊥

)
(5.8d)

∀x
(
AdditionalEV (x)↔

∃a, b (S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ ¬Selected(b))
) (5.8e)

∀x
(
ParticularEF (x)↔ (Arg(x) ∧ ¬Selected(x))

)
(5.8f)

Formulas (5.8a) and (5.8b) specify that the fixed elements are the arguments and that the variable
elements are the attacks respectively. Formula (5.8c) indicates that all the fixed elements (so the arguments)
are kept in the explanation. Formula (5.8d) states that no variable element (so the attacks) is necessary
in the explanation. Formula (5.8e) states that the attacks that may or may not be in the explanation are
those that go from an argument of the extension to an argument that is not in the extension. Finally,
Formula (5.8f) tells us that among the arguments, those that are of interest for this explanation are the
arguments that do not belong to the extension.
Remark. As in the case of the Defence principle, the parameter ParticularEV is not axiomatized because
it is not relevant for the second group of explanations.

139

Note that (5.8) can be used to rewrite Formulas (5.3), as Formulas ((5.3a)CA), ((5.3b)CA), ((5.3c)CA)
and ((5.3d)CA) below.

Explanation for Complement Attack

∀x ∈ Arg (Expl(x)↔ ⊤) ((5.3a)CA)

∀x ∈ Att (⊥ → Expl(x))4 ((5.3b)CA)
∀x ∈ Att (Expl(x)→ ∃a, b (S(x, a) ∧ T (x, b) ∧ Selected(a) ∧ ¬Selected(b))) ((5.3c)CA)

∀x ∈ (Arg ∧ ¬Selected)
((
∃α, a (Att(α) ∧ T (α, x) ∧ S(α, a) ∧ Selected(a)

)
→(

∃β, b (Att(β) ∧ T (β, x) ∧ S(β, b) ∧ Selected(b) ∧ Expl(β)
)) ((5.3d)CA)

5.4 Results
The following theorem is a correct instantiating of Property 2 using the formulas given above.

Theorem 12. Let A = (A ,R,∅,A ∪R, s, t) be an AF and S ⊆ A be a set of arguments.

1. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
Coh for S on A if and only if there exists a model I of

Σ1(A, S) ∪ {(5.4), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

2. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
Def for S on A if and only if there exists a model I of

Σ2(A, S) ∪ {(5.5), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

3. (A ′,R′,∅,A ′ ∪R′, s′, t′) is an answer to QExt
Rein1 for S on A if and only if there exists a model I of

Σ1(A, S) ∪ {(5.6), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

4. (A ′,R′,∅,A ′ ∪R′, s′, t′) is an answer to QExt
Rein2 for S on A if and only if there exists a model I of

Σ2(A, S) ∪ {(5.7), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

5. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
CA for S on A if and only if there exists a model I of

Σ2(A, S) ∪ {(5.8), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

Unfortunately, and due to limited time constraints, we were not able to provide additional results that
go in the direction of the two objectives we fixed at the beginning of the chapter beyond Theorem 12. We
consider Theorem 12 to be a primordial result as it demonstrates the correctness of the logical encoding
presented in this chapter. However, we also believe that results which go along the way of the two objectives
mentioned at the beginning of the chapter should be sought for, as they would fully integrate and complete
the entire done in the present work as a whole. Thus, due to our time constraints, the pursue of such results
is, for now, left to future considerations.

5.5 Recap example
As for previous chapters, we illustrate the work done in this chapter through an example. This example
is an extension of the example presented in Section 3.6.2. Recall that the example was about a political
debate held between two candidates. The objective is to identify a satisfying conclusion to the debate among
the propositions of the two candidates. So, a computer program has been used to model the debate with
an Argumentation Framework (Figure 3.42), and it has been decided that a satisfying conclusion would
correspond to a stable extension of that Argumentation Framework.

4Note that Formula (5.3b)CA is in fact a tautology and has thus no effect.

140

In Section 3.6.2, we saw that {b, c, g, i, l, p} was a suitable extension, and we showed how the explanations
defined in Chapter 3 would be used to convince users of its adequacy. Although it is perfectly possible to
get these explanations via Graph Theoretic operations (induced/spanning subgraph operators), we will show
here how they can be computed using our logical encoding.

To keep on using previous material, we will show in this section how our logical encoding can be used to
compute the explanations of Figures 3.44 and 3.45. They respectively depict an explanation for Coherence
and for Complement Attack for {b, c, g, i, l, p}. The way such explanations can be computed is formalised in
Property 2, and more specifically Properties 2.1 and 2.5. In particular, we will in fact use Theorem 12 and
more specifically its points 1 and 5 in the case of explanations for Coherence and Complement Attack.

Points 1 and 5 of Theorem 12 tell us that in order to obtain the explanations of Figures 3.44 and 3.45, we
must compute a model of Σ1(A, S)∪{(5.4), (4.11), (4.12)} (resp.Σ2(A, S)∪{(5.8), (4.11), (4.12)}) in which the
predicate Expl is true for the elements present on each Figure, and only them. Recall that Σ1(A, S) (resp.
Σ2(A, S)) is made of Σ(A, S) (itself made of Σ(A) and Axiom (5.1)) and Axiom (5.2) (resp. Axiom (5.3)).

Now that the general idea has been discussed, we can see more in detail how our models are computed.
Firstly, our models must satisfy Σ(A), which is made of Axioms (4.1), (4.2), and (4.3). The same consequences
as in Section (4.6.2) will thus follow: we will have the value for the predicates Arg, Att and Sup for the
elements of the domain, as well as some values for the predicates S and T . In addition to Axioms (4.1), (4.2),
and (4.3), our models must also satisfy Axiom (5.1). The role of this axiom is to encode the extension at hand
which, in the case of the problem of computing an explanation, is an input and not an output as in Chapter 4.
As such, our models will have given values for the predicate Selected for the elements of the domain. All of
this is grouped in Tables 5.2 and 5.3 for the unary predicates. In the case of the binary predicates S and
T , Tables 4.8 to 4.11 can be reused (since we are using the same Argumentation Framework). For the same
reason, Tables 5.2 and 5.3 are similar to Tables 4.6 and 4.7 in the sense that they share the same values for
the predicates Arg, Att and Sup.

Tables 5.2 and 5.3 display the basis on which all the models corresponding to an explanation will be
computed. Starting from there, if we firstly consider the explanation of Figure 3.44, our model still needs
to satisfy formulas (5.2) and (5.4). We see that formulas (5.4) give us values that we can immediately fill
for the predicates ElemFixed, ElemV ar, ExplEF and NecessaryEV . As such, we can already deduce
from formulas (5.2) that all the arguments will have the predicate Expl true if Selected is true, and false
otherwise. Additionally, the formula (5.2c) is trivially satisfied. Regarding the predicate ParticularEV , we
see from formulas (5.4) that it is true for an element if and only if the element has a source and a target
such that Selected is true for both of them. In our setting, using Tables 4.8 to 4.11, we see that this is the
case for none of the attacks (recall that by Axioms (4.11) and (4.12), the lines in which there is a “✓” must
otherwise be filled with “X”, even if it is not displayed for readability reasons). So, ParticularEV is going to
be false for all our attacks. However, using formula (5.2b), we have that Expl can be true for an attack only
if ParticularEV is true as well, so Expl will be false for all attacks. For the same reason, formula (5.2d) is
trivially satisfied. This leads us to the model described by Tables 5.4 and 5.5, which corresponds with the
explanation of Figure 3.44.

If we move on to the explanation of Figure 3.45, we can start from the model of Tables 5.2 and 5.3.
The model then also needs to satisfy formulas (5.3) and (5.8). As before, formulas (5.8) immediately give
use values for some predicates, namely ElemFixed, ElemV ar, ExplEF , NecessaryEV and ParticularEF .
From there, formulas (5.3) tell us that the predicate Expl will have the value true for all the arguments.
Notice as well that formula (5.3b) is going to be trivially satisfied. Using formula (5.3d), we will look at the
arguments that are not in the extension, like for instance a. We see on Tables 4.8 to 4.11 that there exists
only one attack (τ) that targets a with its source in the extension (c). So, to satisfy formula (5.3d), Expl
must be true for τ . However, we must check that it is coherent with formula (5.3c). This would require that
the source of τ is in the extension while its target is not, which is indeed the case. If we look at another
argument that is not in the extension, like e, we see on Tables 4.8 to 4.11 that there exist two attacks (ψ and
ω) that target e with their source in the extension (c and g). To satisfy formula (5.3d), Expl must then be

141

Arg Att Sup PrimaFacie Selected Expl ElemFixed ElemV ar
a ✓ X X ✓ X
b ✓ X X ✓ ✓
c ✓ X X ✓ ✓
d ✓ X X ✓ X
e ✓ X X ✓ X
f ✓ X X ✓ X
g ✓ X X ✓ ✓
h ✓ X X ✓ X
i ✓ X X ✓ ✓
j ✓ X X ✓ X
k ✓ X X ✓ X
l ✓ X X ✓ ✓
m ✓ X X ✓ X
n ✓ X X ✓ X
o ✓ X X ✓ X
p ✓ X X ✓ ✓
α X ✓ X ✓ X
β X ✓ X ✓ X
γ X ✓ X ✓ X
δ X ✓ X ✓ X
ε X ✓ X ✓ X
η X ✓ X ✓ X
θ X ✓ X ✓ X
κ X ✓ X ✓ X
λ X ✓ X ✓ X
µ X ✓ X ✓ X
ν X ✓ X ✓ X
ξ X ✓ X ✓ X
π X ✓ X ✓ X
ρ X ✓ X ✓ X
σ X ✓ X ✓ X
τ X ✓ X ✓ X
υ X ✓ X ✓ X
ϕ X ✓ X ✓ X
χ X ✓ X ✓ X
ψ X ✓ X ✓ X
ω X ✓ X ✓ X
α′ X ✓ X ✓ X
β′ X ✓ X ✓ X
γ′ X ✓ X ✓ X
δ′ X ✓ X ✓ X
ε′ X ✓ X ✓ X
η′ X ✓ X ✓ X
θ′ X ✓ X ✓ X

Table 5.2: Starting point of a model of Σ1(A, S) or Σ2(A, S) for the Argumentation Framework of
Figure 4.3 using formulas (4.1), (4.2), (5.1)

(✓: True, X: False)

142

ExplEF ParticularEV NecessaryEV AdditionalEV ParticularEF
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
α
β
γ
δ
ε
η
θ
κ
λ
µ
ν
ξ
π
ρ
σ
τ
υ
ϕ
χ
ψ
ω
α′

β′

γ′

δ′

ε′

η′

θ′

Table 5.3: Starting point of a model of Σ1(A, S) or Σ2(A, S) for the Argumentation Framework of
Figure 4.3 using formulas (4.1), (4.2), (5.1) (Continued)

143

Arg Att Sup PrimaFacie Selected Expl ElemFixed ElemV ar
a ✓ X X ✓ X X ✓ X
b ✓ X X ✓ ✓ ✓ ✓ X
c ✓ X X ✓ ✓ ✓ ✓ X
d ✓ X X ✓ X X ✓ X
e ✓ X X ✓ X X ✓ X
f ✓ X X ✓ X X ✓ X
g ✓ X X ✓ ✓ ✓ ✓ X
h ✓ X X ✓ X X ✓ X
i ✓ X X ✓ ✓ ✓ ✓ X
j ✓ X X ✓ X X ✓ X
k ✓ X X ✓ X X ✓ X
l ✓ X X ✓ ✓ ✓ ✓ X
m ✓ X X ✓ X X ✓ X
n ✓ X X ✓ X X ✓ X
o ✓ X X ✓ X X ✓ X
p ✓ X X ✓ ✓ ✓ ✓ X
α X ✓ X ✓ X X X ✓
β X ✓ X ✓ X X X ✓
γ X ✓ X ✓ X X X ✓
δ X ✓ X ✓ X X X ✓
ε X ✓ X ✓ X X X ✓
η X ✓ X ✓ X X X ✓
θ X ✓ X ✓ X X X ✓
κ X ✓ X ✓ X X X ✓
λ X ✓ X ✓ X X X ✓
µ X ✓ X ✓ X X X ✓
ν X ✓ X ✓ X X X ✓
ξ X ✓ X ✓ X X X ✓
π X ✓ X ✓ X X X ✓
ρ X ✓ X ✓ X X X ✓
σ X ✓ X ✓ X X X ✓
τ X ✓ X ✓ X X X ✓
υ X ✓ X ✓ X X X ✓
ϕ X ✓ X ✓ X X X ✓
χ X ✓ X ✓ X X X ✓
ψ X ✓ X ✓ X X X ✓
ω X ✓ X ✓ X X X ✓
α′ X ✓ X ✓ X X X ✓
β′ X ✓ X ✓ X X X ✓
γ′ X ✓ X ✓ X X X ✓
δ′ X ✓ X ✓ X X X ✓
ε′ X ✓ X ✓ X X X ✓
η′ X ✓ X ✓ X X X ✓
θ′ X ✓ X ✓ X X X ✓

Table 5.4: Model of formulas Σ1(A, S) ∪ {(5.4)} for the Argumentation Framework of Figure 4.3
(Empty cells could have either a “✓” or an “X” without changing the values already displayed)

144

ExplEF ParticularEV NecessaryEV AdditionalEV ParticularEF
a X X
b ✓ X
c ✓ X
d X X
e X X
f X X
g ✓ X
h X X
i ✓ X
j X X
k X X
l ✓ X
m X X
n X X
o X X
p ✓ X
α X X X
β X X X
γ X X X
δ X X X
ε X X X
η X X X
θ X X X
κ X X X
λ X X X
µ X X X
ν X X X
ξ X X X
π X X X
ρ X X X
σ X X X
τ X X X
υ X X X
ϕ X X X
χ X X X
ψ X X X
ω X X X
α′ X X X
β′ X X X
γ′ X X X
δ′ X X X
ε′ X X X
η′ X X X
θ′ X X X

Table 5.5: Model of formulas Σ1(A, S) ∪ {(5.4)} for the Argumentation Framework of Figure 4.3
(Continued)

(Empty cells could have either a “✓” or an “X” without changing the values already displayed)

145

true for either ψ or ω. Suppose that it is the case for ψ, then Expl can be either true or false for ω. We will
assume that it is true as well. Again, it can be checked that this is coherent with formula (5.3c). Proceeding
this way for the rest of the arguments that are not in the extension, we end up with the model of Tables 5.6
and 5.7, which corresponds with the explanation of Figure 3.45.

As for the example of Chapter 4, we bring the attention to the fact that Tables 5.4 to 5.7 are incomplete.
Again, the empty cells could be filled with either “✓” or “X” without impacting the model (in the limit of
respecting the formulas of course). In addition, we have seen for the explanation of Figure 3.45 that we
sometimes have the choice of deciding whether an element is present in the explanation (predicate Expl with
value true), like with ψ and ω. We first took ψ and had the choice for ω. We could have decided that Expl
was false for ω and still obtain a correct model. The explanation corresponding to this model would then still
be a valid explanation for Complement Attack for {b, c, g, i, l, p}, but not the one depicted on Figure 3.45.

5.6 Future Perspectives
Concerning the work done in this chapter, we of course wish to pursue our efforts in the directions of the
objectives we stated and which remain to be done.

The first one is using the generic logical encoding of explanations to study how they could be generalised
and extended to the enriched frameworks captured by the logical encoding of Chapter 4. To this end, we
believe the closeness between the languages of the encoding of this chapter and of Chapter 4 can certainly
be valuable. Actually, we can observe that, in both languages, the predicates the languages disagree on
always correspond to formulas using only predicates that the languages agree on. Thus, it should technically
be possible to express both encodings using the same language, which would be the common parts of both
languages. The formulas used would however then be much more complex and difficult to understand. Thus,
it requires additional precise formal study to determine if such an integration of the two languages is indeed
possible or not. Ideally, the generalisation of our explanations would only be a matter of playing with the
parameters of the encoding presented in this chapter. However, it is not possible to asses now whether it
will be needed to modify Formulas (5.2) and (5.3) to capture such a generalisation or not.

The second, and possibly the most important one, is using the generic logical encoding of explanations
to seek results relative to the overall evaluation of the explanations’ qualities when put in relation with
the generic logical encoding of extensions. As we mentioned in our motivation, there exist several notions
in formal logic which relate to explanations. Implicants and the abductive reasoning problem are merely
examples of such notions. Investigating whether our explanations correspond to some of these notions would
give us precious insights on the nature. Such insights could in turn considerably help to categorise our
explanations depending on what they are and how they work, so that they can be compared to other notions
of explanations.

146

Arg Att Sup PrimaFacie Selected Expl ElemFixed ElemV ar
a ✓ X X ✓ X ✓ ✓ X
b ✓ X X ✓ ✓ ✓ ✓ X
c ✓ X X ✓ ✓ ✓ ✓ X
d ✓ X X ✓ X ✓ ✓ X
e ✓ X X ✓ X ✓ ✓ X
f ✓ X X ✓ X ✓ ✓ X
g ✓ X X ✓ ✓ ✓ ✓ X
h ✓ X X ✓ X ✓ ✓ X
i ✓ X X ✓ ✓ ✓ ✓ X
j ✓ X X ✓ X ✓ ✓ X
k ✓ X X ✓ X ✓ ✓ X
l ✓ X X ✓ ✓ ✓ ✓ X
m ✓ X X ✓ X ✓ ✓ X
n ✓ X X ✓ X ✓ ✓ X
o ✓ X X ✓ X ✓ ✓ X
p ✓ X X ✓ ✓ ✓ ✓ X
α X ✓ X ✓ X X X ✓
β X ✓ X ✓ X ✓ X ✓
γ X ✓ X ✓ X X X ✓
δ X ✓ X ✓ X ✓ X ✓
ε X ✓ X ✓ X X X ✓
η X ✓ X ✓ X ✓ X ✓
θ X ✓ X ✓ X ✓ X ✓
κ X ✓ X ✓ X X X ✓
λ X ✓ X ✓ X X X ✓
µ X ✓ X ✓ X X X ✓
ν X ✓ X ✓ X X X ✓
ξ X ✓ X ✓ X ✓ X ✓
π X ✓ X ✓ X ✓ X ✓
ρ X ✓ X ✓ X ✓ X ✓
σ X ✓ X ✓ X X X ✓
τ X ✓ X ✓ X ✓ X ✓
υ X ✓ X ✓ X X X ✓
ϕ X ✓ X ✓ X ✓ X ✓
χ X ✓ X ✓ X X X ✓
ψ X ✓ X ✓ X ✓ X ✓
ω X ✓ X ✓ X ✓ X ✓
α′ X ✓ X ✓ X X X ✓
β′ X ✓ X ✓ X ✓ X ✓
γ′ X ✓ X ✓ X ✓ X ✓
δ′ X ✓ X ✓ X X X ✓
ε′ X ✓ X ✓ X X X ✓
η′ X ✓ X ✓ X ✓ X ✓
θ′ X ✓ X ✓ X X X ✓

Table 5.6: Model of formulas Σ2(A, S) ∪ {(5.8)} for the Argumentation Framework of Figure 4.3
(Empty cells could have either a “✓” or an “X” without changing the values already displayed)

147

ExplEF ParticularEV NecessaryEV AdditionalEV ParticularEF
a ✓ X ✓
b ✓ X X
c ✓ X X
d ✓ X ✓
e ✓ X ✓
f ✓ X ✓
g ✓ X X
h ✓ X ✓
i ✓ X X
j ✓ X ✓
k ✓ X ✓
l ✓ X X
m ✓ X ✓
n ✓ X ✓
o ✓ X ✓
p ✓ X X
α ✓ X X
β ✓ X ✓
γ ✓ X X
δ ✓ X ✓
ε ✓ X X
η ✓ X ✓
θ ✓ X ✓
κ ✓ X X
λ ✓ X X
µ ✓ X X
ν ✓ X X
ξ ✓ X ✓
π ✓ X ✓
ρ ✓ X ✓
σ ✓ X X
τ ✓ X ✓
υ ✓ X X
ϕ ✓ X ✓
χ ✓ X X
ψ ✓ X ✓
ω ✓ X ✓
α′ ✓ X X
β′ ✓ X ✓
γ′ ✓ X ✓
δ′ ✓ X X
ε′ ✓ X X
η′ ✓ X ✓
θ′ ✓ X X

Table 5.7: Model of formulas Σ2(A, S) ∪ {(5.8)} for the Argumentation Framework of Figure 4.3
(Continued)

(Empty cells could have either a “✓” or an “X” without changing the values already displayed)

148

Chapter 6

Conclusion

This chapter concludes the present work by summarizing our contributions and the different perspectives
they open.

Our first main achievement is the definition of visual explanations for Abstract Argumentation. We
say “for Abstract Argumention” because indeed, these explanations aim at explaining the basic methods of
Abstract Argumentation, which is the selection of arguments via semantics. As we discussed, this is an
aspect of Abstract Argumentation that is not the subject of much research from the explainability prism.
Most of the work done in this area is focusing on explaining credulous and/or skeptical acceptance, which
are mechanisms designed to mitigate one of the drawbacks of some semantics: the very large number of
extensions that may exist for a given semantics on a given Argumentation Framework.

These explanations are defined as subgraphs of the initial Argumentation Frameworks, hence their visual
nature. Importantly, these explanations are in fact aimed at answering some questions (questions that ask
for explanations). We have addressed several kinds of questions in the present work. The first kind of
questions is probably the most natural one and simply asks for the reasons that makes a set of argument
a valid (or not) extension for some semantics on a given Argumentation Framework. The second kind of
questions is a bit more complex and is built on the first one. It asks for the reasons which make a set of
arguments a valid part (or not) of an arbitrary extension for some semantics on a given Argumentation
Framework. It is also possible to include a contrast in the question on a second set of arguments. If the first
kind of questions can be seen as challenging a result as a whole, then the second kind of question can be
understood as challenging only a part of that result.

It is important to note that our explanations are not defined for all the classical semantics. As it is,
only the conflict-free, admissible, complete and stable semantics are studied. Additionally, our explanations
are heavily based on the decomposition of semantics into principles. Hence, the general methodology of
our approach consists in defining explanations for Abstract Argumentation principles (instead of semantics
directly) and then consider that an explanation for a semantics is simply the set of explanations for the
principles that compose it.

We have provided a number of results on our explanations that support their use and general desirable
behavior. Notably, we proved that the empty explanation, which is an example of undesirable result, only
occurs in very specific situations, that may be considered as off the charts from the beginning. Addition-
ally, we have provided insights on the structural organization of explanations, such as the existence of one
unique maximal explanation and several minimal explanations, the union of which exactly corresponds to
the maximal one, for each Abstract Argumentation principles we studied. However, the most critical results
in our opinion are the ones showing that our explanations can be used to answer the questions from which
they were defined using only structural properties (i.e. properties that can be seen on the graph). This is an
especially important result because it means that potentially anyone can use these explanations as inspection
facilitators for the initial Argumentation Frameworks, without prior knowledge of Abstract Argumentation
mechanisms. We also provided ways to compute the maximal explanation for each Abstract Argumentation

149

principle using basic graph theoretic operations, and algorithms to compute any minimal explanation from
the maximal one. These algorithms have been proved sound and complete for this purpose, and can be easily
adapted to compute any intermediary explanation.

Our second main contribution is the definition of a generic logical encoding to compute Abstract Argumen-
tation semantics that captures both the basic Argumentation Framework and several of its generalisations.
This logical encoding is generic in that it is composed of two kinds of formulas: the shared formulas and
the instantiating formulas. As their name indicates, the shared formulas are those formulas that are at
a somewhat “general” level and are present in all theories derived from the generic logical encoding. Im-
portantly, these shared formulas are written using what we called “parameter” predicates. That is to say,
predicates that are not defined at the general level of the shared formulas. The second kind of formulas,
the instantiating ones, are those that define and give a meaning to the parameter predicates so that the
shared formulas are completely defined. They are aimed at representing the specificities of the Abstract
Argumentation Framework that is being encoded. Hence, the association of the shared formulas with a set
of formulas that instantiates the parameter predicates yields a complete theory that can be used to compute
the extensions of some framework for a classical semantics.

The semantics that can be computed using this logical encoding are all the classical semantics initially
defined by Dung. To do so, we take advantage of the decomposition of these semantics into Abstract
Argumentation principles. As such, the logical encoding is in fact made of formulas that represent these
principles instead of having formulas that directly represent the semantics. This way, the semantics that is
being computed is dependent on which formulas of the encoding (i.e. principles) are being used to build
the theory. Since the logical encoding covers several different Abstract Argumentation Frameworks, it is
important to note that for a given semantics, it is always the same shared formulas that are being used, no
matter which specific framework is being handled.

As we said, the generic logical encoding captures Argumentation Frameworks and a certain number of
its generalisations. More precisely, the generalisations captured are those that can be obtained using any
combinations of the following enrichments: coalitions of arguments, addition of a support relation, and
higher-order relations. It is important to note that some restrictions apply: for each enrichment, only a
specific interpretation is taken into account for now. Thus, regarding the coalition enrichment, we consider
that a relation is effective when all the arguments of its source respect some property, and we consider that
the relations cannot target coalition (i.e. targets of relations are always a single argument). Regarding the
support relation, we only consider its evidential interpretation, without support cycle when higher-order
relations are present. And in the case of higher-order relations, we restrict ourselves to its RAF interpreta-
tion. To handle all these enrichments, the logical encoding is given regarding an Abstract Argumentation
Framework that possess all of them at once: the framework we called Higher-Order Evidence-Based Argu-
mentation Framework with Coalitions (HO-EBAF-C). Certain restrictions on the general definition of the
HO-EBAF-C allow to retrieve the simpler frameworks. Likewise, in the logical encoding, the less enrichments
are present, the simpler the instantiating of the parameters is. We have provided several results that give a
correspondence between the models of each theory obtained using the different instantiating we studied and
the extensions of the corresponding Abstract Argumentation Framework for the considered semantics.

Our third main contribution is the extension of the logical encoding of Chapter 4 to compute our expla-
nations defined in Chapter 3. There were several objectives to achieve by doing so. First of all, it would
allow to have both the computation of extensions, and the computation of explanations for these extensions
embedded in the same tool. Secondly, since our explanations are only defined for Argumentation Frameworks
but the logical encoding to compute extensions is defined for several of their generalisations, expressing the
explanations in the same theory will certainly facilitate their definition for enriched frameworks. Finally,
having both the explanations and their subject encoded in the same logical theory certainly opens the
perspective of studying in depth their relation from the prism of previous works in logical explanations.

Firstly, we consider important to recall that the logical encoding of explanations, while going along the
line of the encoding of Chapter 4, is not exactly integrated inside the same theory. Instead, both encoding
share a common part (the encoding of the framework) and then have each a specific part (the encoding of
Abstract Argumentation principles for one, the encoding of the explanations for the other). As such, it would

150

be abusive to claim that both encoding are indeed defined in the same logical theory. However, they do have
common grounds, and the encoding of the explanations do follow a similar methodology as the encoding of
the extensions as it is also generic. That is to say, in the logical encoding of explanations, there are also
two kinds of formulas, the shared ones and the instantiating ones, with the same “roles” (but not the same
subjects) as in the logical encoding of extensions. This methodology allowed us to uncover the fact that
our explanations could in fact be categorized into two different groups according to how they explain their
subject: this is what is captured by the shared formulas. The instantiating formulas would the capture the
specificities of each kind of explanations inside each different groups.

Similarly to Chapter 4, we have provided a result that establishes a correspondence between the models
of the different theories obtained using our instantiating formulas and the different kinds of explanations
as defined in Chapter 3. This is a first step towards the generalisation of our explanations to enriched
frameworks, as those considered in Chapter 4, and the study of correspondences between our explanations
and classical accounts of explanations from a logical perspectives. This objective remains to be fulfilled, but
we consider it to be important roads to explore and we firmly intend to continue our work in their direction.

Regarding the different paths left open for future research, our contributions pave the way for a lot
of directions. The most obvious ones are on the possible ways of extending our work to capture more
possibilities. These include the extension of our explanations from Chapter 3 to cover the missing classical
grounded and preferred semantics, as well as to cover generalisations of Abstract Argumentation. The
works of Chapters 4 and 5 can certainly help on that last matter. Indeed, the study of the connections
between the logical encoding of explanations (without enrichments) and the logical encoding of semantics
(with enrichments) should yield a way to adapt the formulas encoding the explanations to take enrichments
into account, and so, at the same time, obtain generalised definitions of the explanations. Still, it is not
obvious how much the definitions of explanations would be affected by the presence of enrichments, since
they directly affect semantics, which are at the core of our explanations. Thus, this line of research could
prove to be challenging. Our logical encoding from Chapter 4 can also be extended to capture more diverse
interpretations of the generalisations of Abstract Argumentation that are already considered, or even include
additional ones. Finally, he logical encoding of Chapter 5 could also be extended to cover generalised aspects
of Abstract Argumentation using its proximity with the logical encoding of Chapter 4, which coincides with
the first point mentioned just before.

Specifically to Chapter 3, we can also mention the possibility of exploring different visual properties from
Graph Theory to exploit in our explanations in order to characterize meaningful argumentative results in
terms of visual organization of the Argumentation Framework. We could as well research the definition
of explanations as answers to different questions than those addressed in the present work, like questions
putting a contrast on other elements of the context, or questions on how the Argumentation Framework was
built. There is also the possibility of studying explanations corresponding to a different way of explaining
than the one that was presented. We could think for instance of using graph isomorphism to show to a user
that the conclusion of a particular area of the graph should be the same as another, isomorphic, of the same
graph on which the user agrees. We additionally recall the need to conduct social experiments to confirm or
not our intuition that the explanations defined in Chapter 3 can indeed be understood and used by people
who are non experts in computer science.

Although we provided examples illustrating how our encodings works and how to use them in Chapters 4
and 5, these still rely to a certain point on some degree of intuition. As such, we could in the future propose
additional works presenting in full detail the complete methodology of how to use these encodings.

Lastly, the logical encoding of Chapter 5 should certainly be used to study more deeply the relations
our explanations from a logical perspective. In particular, the ways it relates with the logical encoding
of Chapter 4 should be of interest. For a given Argumentation Framework, questions such as “Are our
explanations implicants of the argumentative process?” or “Are our explanations the results of an abductive
reasoning problem?” would certainly provide insights on the nature of the explanations we defined.

Finally, this work on explanations for Abstract Argumentation should be put in a greater perspective
of works on explanations. In particular, there exists a vast body of work on the matter in philosophy, psy-

151

chology, cognitive science, . . . which was debated and thus matured for a much longer time than it was in
computer science. The survey [Mil19] could prove to be a valuable entry point on the subject for instance.
[Mil19] advocates that the findings on the question of explanations in these other fields are relevant for
and should be applied in XAI. One of the major results from these fields is the fact that humans tend to
project human characteristics on artificial systems. This means in particular that humans would expect a
computer program to explain something in the same way a human would have done. Hence the relevance
of findings on how humans explain. Results on the matter show that humans tend to explain contrastively.
That is to say, humans tend to explain by generating an alternative scenario from what really happened
and select the elements of the explanation they deliver in the difference between this alternative scenario
and reality. Moreover, humans also tend to be subject to some biases when generating such scenarios: they
focus on some specific elements. These elements are often based on a duality and may for instance include
intentionality/unintentionality, normality/abnormality, necessity/sufficiency, internal/external causes, tem-
poral closeness/distance, or controllability/uncontrollability. A last example of finding is the fact that, to
borrow words that are often used in these works: “Explanation is a three-place predicate: someone explains
something to someone”. As such, part of the explaining process is the transfer of the explanation from one
person to another, which is often adapted to the person receiving the explanation.

If computer science is to take inspiration from these works to provide explanations for artificial systems,
difficulties will likely include the identification of the proper biases to use when generating counterfactuals,
as they may very well vary from one application to another. Also, even though counterfactuals are properly
generated, the selection of one of them to serve as the basis of an explanation, and then the selection of
elements inside this counterfactual as the proper content of the explanation is not really clear as well. More-
over, the process of adapting a proper explanation to an interlocutor still largely has gray areas. Nonetheless,
all the works on explanation from social sciences certainly are closer to be the foundations of a general un-
derstanding of explanations than the works from computer science. If a general theory of explanations is to
be developed, and we believe it should, then all these different insights can certainly prove to be immensely
valuable, and works in computer science should probably start considering taking inspirations from them.

152

Bibliography

[ABC17] Abdallah Arioua, Patrice Buche, and Madalina Croitoru. Explanatory dialogues with ar-
gumentative faculties over inconsistent knowledge bases. Expert Systems with Applications,
80:244–262, 2017.

[AGPT20] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. On the semantics
of abstract argumentation frameworks: A logic programming approach. Theory and Practice
of Logic Programming, 20(5):703–718, September 2020.

[AGPT21] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. Defining the
semantics of abstract argumentation frameworks through logic programs and partial stable
models (extended abstract). In Zhi-Hua Zhou, editor, Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 4735–4739, Virtual Event / Montreal,
Canada, August 2021. IJCAI Organization.

[BB20a] AnneMarie Borg and Floris Bex. Explaining arguments at the dutch national police. In Víctor
Rodríguez-Doncel, Monica Palmirani, Michal Araszkiewicz, Pompeu Casanovas, Ugo Pagallo,
and Giovanni Sartor, editors, Proceedings of the International Workshops on AI Approaches to
the Complexity of Legal Systems (AICOL), Revised Selected Papers, volume 13048 of Lecture
Notes in Computer Science, pages 183–197. Springer, 2020.

[BB20b] AnneMarie Borg and Floris Bex. Necessary and sufficient explanations in abstract argumen-
tation. Computing Research Repository (CoRR), abs/2011.02414, 2020.

[BB21a] AnneMarie Borg and Floris Bex. A basic framework for explanations in argumentation. Intel-
ligent Systems, 36(2):25–35, March 2021.

[BB21b] AnneMarie Borg and Floris Bex. Contrastive explanations for argumentation-based conclu-
sions. Computing Research Repository, abs/2107.03265, 2021.

[BB21c] AnneMarie Borg and Floris Bex. Necessary and sufficient explanations for argumentation-
based conclusions. In Jirina Vejnarová and Nic Wilson, editors, Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU), volume 12897 of Lecture Notes in Computer Science, pages 45–58, Prague, Czech
Republic, September 2021. Springer.

[BCG18] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Abstract argumentation frame-
works and their semantics. In Pietro Baroni, Dov M. Gabbay, Massimiliano Giacomin, and
Leendert van der Torre, editors, Handbook of Formal Argumentation, volume 1, pages 157–234.
College Publications, February 2018.

[BCGG11] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. AFRA: Argu-
mentation framework with recursive attacks. International Journal of Approximate Reasoning,
52(1):19–37, January 2011.

153

[BD04] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of arguments. In
James P. Delgrande and Torsten Schaub, editors, Proceedings of the International Workshop
on Non-Monotonic Reasoning (NMR), pages 59–64, Whistler, Canada, June 2004.

[BDDL22] Philippe Besnard, Sylvie Doutre, Théo Duchatelle, and Marie-Christine Lagasquie-Schiex.
Question-Based Explainability in Abstract Argumentation. Research Report IRIT/RR–2022–
01–FR, IRIT : Institut de Recherche en Informatique de Toulouse, France, 2022.

[BES+18] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and Stefan
Woltran. Abstract dialectical frameworks. In Pietro Baroni, Dov Gabbay, Massimiliano Gi-
acomin, and Leendert van der Torre, editors, Handbook of Formal Argumentation, volume 1,
pages 237–286. College Publications, February 2018.

[BGK+14] Richard Booth, Dov M. Gabbay, Souhila Kaci, Tjitze Rienstra, and Leendert W. N. van der
Torre. Abduction and dialogical proof in argumentation and logic programming. In Torsten
Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors, Proceedings of the European Con-
ference on Artificial Intelligence (ECAI), volume 263 of Frontiers in Artificial Intelligence and
Applications, pages 117–122, Prague, Czech Republic, August 2014. IOS Press.

[BGvdTV10] Guido Boella, Dov M. Gabbay, Leendert W. N. van der Torre, and Serena Villata. Support
in abstract argumentation. In Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and
Guillermo R. Simari, editors, Proceedings of the International Conference on Computational
Models of Argument (COMMA), volume 216 of Frontiers in Artificial Intelligence and Appli-
cations, pages 111–122, Desenzano del Garda, Italy, September 2010. IOS Press.

[BGW05] Howard Barringer, Dov M. Gabbay, and John Woods. Temporal Dynamics of Support and
Attack Networks: From Argumentation to Zoology, volume 2605 of Lecture Notes in Computer
Science, pages 59–98. Springer, 2005.

[BM08] Adrian Bondy and Uppaluri S. R. Murty. Graph Theory. Graduate Texts in Mathematics.
Springer, 2008.

[BU21] Ringo Baumann and Markus Ulbricht. Choices and their consequences - explaining acceptable
sets in abstract argumentation frameworks. In Meghyn Bienvenu, Gerhard Lakemeyer, and
Esra Erdem, editors, Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 110–119, Online event, November 2021. IJCAI
Organization.

[CDGV13] Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro Vallati. Computing
preferred extensions in abstract argumentation: A sat-based approach. In Elizabeth Black,
Sanjay Modgil, and Nir Oren, editors, Proceedings of the International Workshop on Theory
and Applications of Formal Argumentation (TAFA), Revised Selected papers, volume 8306 of
Lecture Notes in Computer Science, pages 176–193, Beijing, China, August 2013. Springer.

[CFFL18a] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine Lagasquie-
Schiex. Argumentation frameworks with recursive attacks and evidence-based supports. In
Flavio Ferrarotti and Stefan Woltran, editors, Proceedings of the International Symposium on
Foundations of Information and Knowledge Systems (FoIKS), volume 10833 of Lecture Notes
in Computer Science, pages 150–169, Budapest, Hungary, May 2018. Springer.

[CFFL18b] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine Lagasquie-
Schiex. Structure-based semantics of argumentation frameworks with higher-order attacks and
supports. In Carlos I. et al. Chesñevar, editor, Argumentation-based Proofs of Endearment.
Essays in Honor of Guillermo R. Simari on the Occasion of his 70th Birthday, volume 37 of
Tributes, pages 43–72. College Publications, 2018.

154

[CFFL21] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine Lagasquie-
Schiex. Valid attacks in argumentation frameworks with recursive attacks. Annals of Mathe-
matics and Artificial Intelligence (Special Issue: Commonsense 2017), 89(1-2):53–101, Febru-
ary 2021.

[CG09] Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal argumentation.
Studia Logica, 93(2-3):109–145, November 2009.

[CGGS15] Andrea Cohen, Sebastian Gottifredi, Alejandro J. García, and Guillermo R. Simari. An ap-
proach to abstract argumentation with recursive attack and support. Journal of Applied Logic,
13(4):509–533, December 2015.

[Cho63] Noam Chomsky. Formal properties of grammars. In R. Duncan Luce, Robert R. Bush, and
Eugene Galanter, editors, Handbook of Mathematical Psychology, volume 2, chapter 12, pages
323–418. John Wiley and Sons, Inc., New York and London, 1963.

[CL05] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of arguments in
bipolar argumentation frameworks. In Lluís Godo, editor, Proceedings of the European Confer-
ence on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU),
volume 3571 of Lecture Notes in Computer Science, pages 378–389, Barcelona, Spain, July
2005. Springer.

[CL13] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumentation graphs:
Towards a better understanding. International Journal of Approximate Reasoning, 54(7):876–
899, September 2013.

[CL18] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Logical encoding of argumentation
frameworks with higher-order attacks. In Lefteri H. Tsoukalas, Éric Grégoire, and Miltiadis
Alamaniotis, editors, Proceedings of the International Conference on Tools with Artificial In-
telligence (ICTAI), pages 667–674, Volos, Greece, November 2018. IEEE.

[CL20] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Logical encoding of argumentation
frameworks with higher-order attacks and evidential supports. International Journal on Arti-
ficial Intelligence Tools, 29(3-4):2060003:1–2060003:50, June 2020.

[CM63] Noam Chomsky and George A. Miller. Introduction to the formal analysis of natural languages.
In R. Duncan Luce, Robert R. Bush, and Eugene Galanter, editors, Handbook of Mathematical
Psychology, volume 2, chapter 11, pages 269–321. John Wiley and Sons, Inc., New York and
London, 1963.

[CNO09] José Luis Carballido, Juan Carlos Nieves, and Mauricio Osorio. Inferring preferred extensions
by pstable semantics. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial,
13(41):38–53, 2009.

[Com21] European Commission. Proposal for a regulation of the european parliament and of the council
laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending
certain union legislative acts. https://artificialintelligenceact.eu/the-act/, 2021.

[ČRA+21] Kristijonas Čyras, Antonio Rago, Emanuele Albini, Pietro Baroni, and Francesca Toni. Ar-
gumentative XAI: A survey. In Zhi-Hua Zhou, editor, Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 4392–4399, Online Event / Montreal,
Canada, August 2021. IJCAI Organization.

[DAR16] DARPA. Broad agency announcement : Explainable artificial intelligence (xai). https://
www.darpa.mil/attachments/DARPA-BAA-16-53.pdf, August 2016.

155

https://artificialintelligenceact.eu/the-act/
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf

[DD18] Wolfgang Dvorák and Paul E. Dunne. Computational problems in formal argumentation
and their complexity. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert
van der Torre, editors, Handbook of Formal Argumentation, volume 1, pages 629–688. College
Publications, February 2018.

[DDK+23] Yannis Dimopoulos, Wolfgang Dvorák, Matthias König, Anna Rapberger, Markus Ulbricht,
and Stefan Woltran. Sets attacking sets in abstract argumentation. In Kai Sauerwald and
Matthias Thimm, editors, Proceedings of the International Workshop on Non-Monotonic Rea-
soning (NMR), volume 3464 of CEUR Workshop Proceedings, pages 22–31, Rhodes, Greece,
September 2023. CEUR-WS.org.

[DJWW12] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran. CEGAR-
TIX: a SAT-based argumentation system. In Proceedings of the International Workshop on
Pragmatics of SAT, Trento, Italy, June 2012.

[DM16] Sylvie Doutre and Jean-Guy Mailly. Quantifying the difference between argumentation se-
mantics. In Pietro Baroni, Thomas F. Gordon, Tatjana Scheffler, and Manfred Stede, editors,
Proceedings of the International Conference on Computational Models of Argument (COMMA),
volume 287 of Frontiers in Artificial Intelligence and Applications, pages 255–262, Potsdam,
Germany, September 2016. IOS Press.

[DRW23] Wolfgang Dvorák, Anna Rapberger, and Stefan Woltran. A claim-centric perspective on ab-
stract argumentation semantics: Claim-defeat, principles, and expressiveness. Artificial Intel-
ligence, 324:104011, November 2023.

[dSBCL16] Florence Dupin de Saint-Cyr, Pierre Bisquert, Claudette Cayrol, and Marie-Christine
Lagasquie-Schiex. Argumentation update in YALLA (yet another logic language for argu-
mentation). International Journal of Approximate Reasoning, 75:57–92, August 2016.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[EGW10] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings for
argumentation frameworks. Argument & Computation, 1(2):147–177, June 2010.

[FB19] Giorgos Flouris and Antonis Bikakis. A comprehensive study of argumentation frameworks
with sets of attacking arguments. International Journal of Approximate Reasoning, 109:55–86,
June 2019.

[FT15a] Xiuyi Fan and Francesca Toni. On computing explanations in argumentation. In Blai Bonet
and Sven Koenig, editors, Proceedings of the Association for the Advancement of Artificial
Intelligence (AAAI) International Conference, pages 1496–1502, Austin, Texas, USA, January
2015. AAAI Press.

[FT15b] Xiuyi Fan and Francesca Toni. On explanations for non-acceptable arguments. In Elizabeth
Black, Sanjay Modgil, and Nir Oren, editors, Proceedings of the International Workshop on
Theory and Applications of Formal Argumentation (TAFA), volume 9524 of Lecture Notes in
Computer Science, pages 112–127, Buenos Aires, Argentina, July 2015. Springer.

[Gab09a] Dov M. Gabbay. Fibring argumentation frames. Studia Logica, 93(2-3):231–295, November
2009.

[Gab09b] Dov M. Gabbay. Semantics for higher level attacks in extended argumentation frames Part 1:
Overview. Studia Logica, 93(2-3):357–381, November 2009.

156

[GCGS18] Sebastian Gottifredi, Andrea Cohen, Alejandro Javier García, and Guillermo Ricardo Simari.
Characterizing acceptability semantics of argumentation frameworks with recursive attack and
support relations. Artificial Intelligence, 262:336–368, July 2018.

[GG15] Dov M. Gabbay and Michael Gabbay. The attack as strong negation, part I. Logic Journal of
the IGPL, 23(6):881–941, 2015.

[Har65] Gilbert H. Harman. The inference to the best explanation. The Philosophical Review, 74(1):88–
95, January 1965.

[Hod13] Richard E. Hodel. An Introduction to Mathematical Logic. Dover, 2013.

[KP01] Nikos I. Karacapilidis and Dimitris Papadias. Computer supported argumentation and collab-
orative decision making: the HERMES system. Information Systems, 26(4):259–277, 2001.

[Lag21] Marie-Christine Lagasquie-Schiex. Handling support cycles and collective interactions in
the logical encoding of higher-order bipolar argumentation frameworks. In Pietro Baroni,
Christoph Benzmüller, and Yì N. Wáng, editors, Proceedings of the International Conference
on Logic and Argumentation (CLAR), volume 13040 of Lecture Notes in Computer Science,
pages 244–265, Hangzhou, China, October 2021. Springer.

[Lag23] Marie-Christine Lagasquie-Schiex. Handling support cycles and collective interactions in the
logical encoding of higher-order bipolar argumentation frameworks. Journal of Logic and
Computation, 33(2):289–318, March 2023.

[LL17] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Proceedings of the Annual Conference on Ad-
vances in Neural Information Processing Systems (NIPS), volume 30, pages 4765–4774, Long
Beach, CA, USA, December 2017.

[LvdT20] Beishui Liao and Leendert van der Torre. Explanation semantics for abstract argumentation. In
Henry Prakken, Stefano Bistarelli, Francesco Santini, and Carlo Taticchi, editors, Proceedings
of the International Conference on Computational Models of Argument (COMMA), volume
326 of Frontiers in Artificial Intelligence and Applications, pages 271–282, Perugia, Italy,
September 2020. IOS Press.

[MC09] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumenta-
tion frameworks. In Guillermo Ricardo Simari and Iyad Rahwan, editors, Argumentation in
Artificial Intelligence, chapter 6, pages 105–129. Springer, Boston, MA, 2009.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

[MS88] Johanna D. Moore and William R. Swartout. Explanation in expert systems : A survey. Tech-
nical Report ISI/RR-88-228, University of California, Information Science Institute, Marina
del Rey, CA, USA, December 1988.

[NJ20] Andreas Niskanen and Matti Järvisalo. Smallest explanations and diagnoses of rejection in
abstract argumentation. In Diego Calvanese, Esra Erdem, and Michael Thielscher, editors,
Proceedings of the International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 667–671, Rhodes, Greece, September 2020. IJCAI Organization.

[NP06] Søren Holbech Nielsen and Simon Parsons. A generalization of Dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In Nicolas Maudet, Simon Parsons,
and Iyad Rahwan, editors, Proceedings of the International Workshop on Argumentation in

157

Multi-Agent Systems (ArgMAS), volume 4766 of Lecture Notes in Artificial Intelligence, pages
54–73, Hakodate, Japan, May 2006. Springer.

[NR11] Farid Nouioua and Vincent Risch. Argumentation frameworks with necessities. In Salem
Benferhat and John Grant, editors, Proceedings of the International Conference on Scalable
Uncertainty Management (SUM), volume 6929 of Lecture Notes in Artificial Intelligence, pages
163–176, Dayton, OH, USA, October 2011. Springer.

[OLR10] Nir Oren, Michael Luck, and Chris Reed. Moving between argumentation frameworks. In
Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Guillermo R. Simari, editors,
Proceedings of the International Conference on Computational Models of Argument (COMMA),
volume 216 of Frontiers in Artificial Intelligence and Applications, pages 379–390, Desenzano
del Garda, Italy, September 2010. IOS Press.

[ON08] Nir Oren and Timothy J. Norman. Semantics for evidence-based argumentation. In Philippe
Besnard, Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the International Confer-
ence on Computational Models of Argument (COMMA), volume 172 of Frontiers in Artificial
Intelligence and Applications, pages 276–284, Toulouse, France, October 2008. IOS Press.

[ON17] Mauricio Osorio and Juan Carlos Nieves. Range-based argumentation semantics as two-valued
models. Theory and Practice of Logic Programming, 17(1):75–90, May 2017.

[PO14] Sylwia Polberg and Nir Oren. Revisiting support in abstract argumentation systems. In Simon
Parsons, Nir Oren, Chris Reed, and Federico Cerutti, editors, Proceedings of the International
Conference on Computational Models of Argument (COMMA), volume 266 of Frontiers in
Artificial Intelligence and Applications, pages 369–376, Pitlochry, Scotland, September 2014.
IOS Press.

[Qui59] Willard V. Quine. On cores and prime implicants of truth functions. The American Mathe-
matical Monthly, 66(9):755–760, November 1959.

[Roe97] Neal J. Roese. Counterfactual thinking. Psychological Bulletin, 121(1):133–148, 1997.

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65(6):386–408, 1958.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Ex-
plaining the predictions of any classifier. In Balaji Krishnapuram, Mohak Shah, Alexander J.
Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining SIGKDD, volume 22, pages
1135–1144, San Francisco, CA, USA, August 2016. ACM.

[RT21] Teeradaj Racharak and Satoshi Tojo. On explanation of propositional logic-based argumenta-
tion system. In Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik, editors, Proceedings
of the International Conference on Agents and Artificial Intelligence (ICAART), volume 2,
pages 323–332, Online Streaming, February 2021. SCITEPRESS.

[Rud19] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, May 2019.

[SA18] Elizabeth I. Sklar and Mohammad Q. Azhar. Explanation through argumentation. In Michita
Imai, Tim Norman, Elizabeth I. Sklar, and Takanori Komatsu, editors, Proceedings of the
International Conference on Human-Agent Interaction (HAI), pages 277–285, Southampton,
United Kingdom, December 2018. ACM.

[SF21] Alexander Steen and David Fuenmayor. A formalisation of abstract argumentation in higher-
order logic. CoRR, abs/2110.09174, 2021.

158

[SWW20] Zeynep Gozen Saribatur, Johannes Peter Wallner, and Stefan Woltran. Explaining non-
acceptability in abstract argumentation. In Giuseppe De Giacomo, Alejandro Catalá, Bistra
Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang, editors, Proceedings
of the European Conference on Artificial Intelligence (ECAI), volume 325 of Frontiers in Arti-
ficial Intelligence and Applications, pages 881–888, Santiago de Compostela, Spain, September
2020. IOS Press.

[UB19] Markus Ulbricht and Ringo Baumann. If nothing is accepted - repairing argumentation frame-
works. Journal of Artificial Intelligence Reseach, 66:1099–1145, 2019.

[Uni16] European Union. Regulation (eu) 2016/679 of the european parliament and of the council of 27
april 2016 on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing directive 95/46/ec (general data protec-
tion regulation). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32016R0679, April 2016.

[UW21] Markus Ulbricht and Johannes Peter Wallner. Strong explanations in abstract argumenta-
tion. In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI)
International Conference, pages 6496–6504, Online event, February 2021. AAAI Press.

159

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

Appendix A

Proofs of Chapter 3

A.1 Conformity Checks and Visual Behavior

A.1.1 Coherence
Theorem. 1 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCoh(S) be an explanation
for Coherence for S on A. S is conflict-free if and only if ExplCoh(S) satisfies CCoh.

Proof. (for Theorem 1) Denote ExplCoh(S) = (A ′,R′) and let X = {(a, b) ∈ R | a, b ∈ S}.
Suppose that S is conflict-free and that there is an attack (a, b) in (A ′,R′). By Def. 34, we have that

R′ ⊆ X, so a, b ∈ S and that (a, b) ∈ R. This contradicts Def. 4 on conflict-freeness.
Suppose now that there are no attacks in (A ′,R′) and that S is not conflict-free. By Def. 4, there exists

a, b ∈ S such that (a, b) ∈ R. Thus, X ̸= ∅ and by Condition 3 of Def. 34, R′ ̸= ∅. This contradicts the
absence of attacks in (A ′,R′).

A.1.2 Defence
Theorem. 2 Let A = (A ,R) be an Argumentation Framework, S ⊆ A be a conflict-free set of arguments
and ExplDef(S) be an explanation for Defence for S on A. S ⊆ FA(S) if and only if ExplDef(S) satisfies
CDef.

Proof. (for Theorem 2) Denote ExplDef(S) = (A ′,R′) and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and
Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}.

Assume that S ⊆ FA(S). Suppose now that there is a source vertex b in R−1(S) in (A ′,R′). By Def. 31,
we have that R′−1(b) = ∅, which means there exists no a ∈ A ′ such that (a, b) ∈ R′. Because S is conflict-
free, S ∩R−1(S) = ∅. As b ∈ R−1(S) and R′ ⊆ X ∪ Y (Def. 36), it must be the case that a ∈ S. Hence,
there exists no a ∈ S such that (a, b) ∈ R′. So following Condition 3 of Def. 36, there exists no a ∈ S such
that (a, b) ∈ R. As b ∈ R−1(S), there exists c ∈ S such that (b, c) ∈ R. Hence, we know that there exists
b ∈ A with (b, c) ∈ R for some c ∈ S and such that there exists no a ∈ S with (a, b) ∈ R. This contradicts
the assumption that S ⊆ FA(S).

Assume now that there are no source vertices in R−1(S) in (A ′,R′). Suppose that there is some c ∈ S
such that c is not acceptable wrt S. By Def. 2, this means that there exists a ∈ A such that (a, c) ∈ R
and there is no b ∈ S with (b, a) ∈ R. Firstly, notice that by Def. 28, a ∈ R−1(c) and so a ∈ R−1(S).
Secondly, since c ∈ S, a ∈ R−1(S) and (a, c) ∈ R, (a, c) ∈ X and so, by Def. 36, it holds that c, a ∈ A ′ and
(a, c) ∈ R′. Thus, by assumption, a is not a source vertex in (A ′,R′). Subsequently, there exists b ∈ A ′

such that (b, a) ∈ R′. Since a ∈ R−1(S) and S is conflict-free (i.e. S ∩R−1(S) = ∅), it holds that b ∈ S.
In addition, as R′ ⊆ R, we deduce that (b, a) ∈ R. Thus, we have c ∈ S such that c is not acceptable w.r.t.
S and for any a ∈ A with (a, c) ∈ R, there is b ∈ S with (b, a) ∈ R, a contradiction.

160

Proposition. 4 Let A = (A ,R) be an Argumentation Framework and S ⊆ A If S is conflict-free, then
ExplDef(S) is a bipartite graph with part S.

Proof. (for Proposition 4) Denote ExplDef(S) = (A ′,R′) and suppose S is conflict-free. So, S∩R−1(S) = ∅.
Since by Def. 36 A ′ = S ∪R−1(S), S and R−1(S) then form a partition of A ′. According to Def. 27, we
must then show that for every (a, b) ∈ R′, either a ∈ S and b ∈ R−1(S) or a ∈ R−1(S) and b ∈ S. This is
given by Def. 36.

A.1.3 Reinstatement
Theorem. 3 Let A = (A ,R) be an Argumentation Framework, S ⊆ A , ExplRein1(S) be an explanation
for Rein1 for S on A and ExplRein2(S) be an explanation for Rein2 for S on A. If ExplRein1(S) satisfies
CReins1 and ExplRein2(S) satisfies CReins2, then FA(S) ⊆ S.

Proof. (for Theorem 3) Denote ExplRein1(S) = (A ′,R′) and ExplRein2(S) = (A ′′,R′′), and let X1 = {a ∈
A | R−1(a) = ∅}, X2 = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(R+2(S))}.

Assume that A ′ ⊆ S and that all vertices in R+2(S) \ S are the endpoint of an arc whose origin is a
source vertex in (A ′′,R′′). In other words, A ′ ⊆ S and for every x ∈ R+2(S) \ S, there exists y ∈ A ′′

such that (y, x) ∈ R′′ and R′′−1(y) = ∅. Consider a ∈ FA(S). This means that for every b ∈ A such that
(b, a) ∈ R, there exists c ∈ S with (c, b) ∈ R. We must show that a ∈ S. Suppose first that a is not attacked
in A. That is to say, R−1(a) = ∅, and so, a ∈ X1. By assumption, A ′ ⊆ S. This means that (A ′ \S) = ∅.
In particular, (A ′ \ S) ∩X1 = ∅, so by Condition 3 of Def. 38, we have (A \ S) ∩X1 = ∅. Since a ∈ X1,
X1 ̸= ∅, so we deduce that either A \ S = ∅ or X1 ⊆ S. In the first case, we conclude A ⊆ S and thus
a ∈ S. In the second case, we have that X1 ∩ S = X1, and so X1 ⊆ A ′. As A ′ ⊆ S by assumption, a ∈ S.
Suppose now that R−1(a) ̸= ∅. By Def. 28, we have a ∈ R+2(S) and for every b ∈ A such that (b, a) ∈ R,
b ∈ R−1(R+2(S)). As such, (b, a) ∈ X2 and (c, b) ∈ Y . So, by Def. 39, we have that a, b, c ∈ A ′′ and
(b, a) ∈ R′′. In addition, by Condition 3 of Def. 39, as b ∈ R+1(S), there exists (c′′, b) ∈ R′′ with c′′ ∈ S.
Thus, for every b ∈ A ′′ such that (b, a) ∈ R′′, R′′−1(b) ̸= ∅. Hence, all b ∈ A ′′ such that (b, a) ∈ R′′ are
not source vertices. Consequently, by assumption, a /∈ R+2(S)\S, but we know that a ∈ R+2(S). It follows
that a ∈ R+2(S) ∩ S, and thus that a ∈ S.

Theorem. 4 Let A = (A ,R) be an Argumentation Framework, S ⊆ A , ExplRein1(S) be an explanation for
Rein1 for S on A and ExplRein2(S) be an explanation for Rein2 for S on A. If FA(S) ⊆ S, then ExplRein1(S)
satisfies CReins1 and ExplRein2(S) satisfies C ′

Reins2, with C ′
Reins2 being the condition “all the arguments that

S defends but are not in S are attacked by a source vertex or an argument of R+2(S) in ExplRein2(S)”.

Proof. (for Theorem 4) Denote ExplRein1(S) = (A ′,R′) and ExplRein2(S) = (A ′′,R′′), and let X1 = {a ∈
A | R−1(a) = ∅}, X2 = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(R+2(S))}.

Assume that FA(S) ⊆ S. Suppose now that either A ′ ̸⊆ S or there is a vertex a in R+2(S) \ S that is
not the endpoint of an arc whose origin is a source vertex or in R+2(S) in (A ′′,R′′). In the first case, by
Def. 38 A ′ ⊆ X1. So, we have that there exists x ∈ A such that R−1(x) = ∅ and x /∈ S. However, by
Def. 2, this means that x ∈ FA(S) and x /∈ S, a contradiction. In the second case, we have a /∈ S and for
every b ∈ A ′′ such that (b, a) ∈ R′′, R′′−1(b) ̸= ∅ and b /∈ R+2(S). In other words, b /∈ R+2(S) and there
exists c ∈ A ′′ with (c, b) ∈ R′′. By Def. 39, X2 ⊆ R′′ ⊆ X2 ∪ Y . So, since a ∈ R+2(S) \ S and b /∈ R+2(S),
we thus know that b ∈ R−1(R+2(S)). In addition, also because b /∈ R+2(S), it must be the case that c ∈ S.
So, for every b ∈ A ′′ such that (b, a) ∈ R′′, there exists c ∈ S with (c, b) ∈ R′′. By Def. 39 again, we deduce
that for every b ∈ A such that (b, a) ∈ R, there exists c ∈ S with (c, b) ∈ R. By Def. 2, this means that a
is acceptable wrt S and so that a ∈ FA(S). Hence, by assumption, a ∈ S, a contradiction.

Corollary. 2 Let A = (A ,R) be an Argumentation Framework, S ⊆ A be a set of arguments such that
R+2(S) is conflict-free, ExplRein1(S) be an explanation for Rein1 for S on A and ExplRein2(S) be an ex-

161

planation for Rein2 for S on A. FA(S) ⊆ S if and only if ExplRein1(S) satisfies CReins1 and ExplRein2(S)
satisfies CReins2.

Proof. (for Corollary 2) Immediate from The. 3 and 4.

A.1.4 Complement Attack
Theorem. 5 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCA(S) be an explanation
for Complement Attack for S on A. A \ S ⊆ R+1(S) if and only if ExplCA(S) satisfies CCA.

Proof. (for Theorem 5) Denote ExplCA(S) = (A ′,R′) and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}.
Assume that A \ S ⊆ R+1(S). Suppose now that there is an isolated vertex a in A ′ \ S. By Def. 41,

we know that A ′ = A . As such, there exists a ∈ A \ S such that a is isolated in (A ′,R′). By Def. 33, this
means in particular that R′−1(a) = ∅ and thus that there is no b ∈ A ′ with (b, a) ∈ R′. Again, in particular,
we have that there is no b ∈ S with (b, a) ∈ R′. However, by Condition 3 of Def. 41, we deduce that there
is no b ∈ S with (b, a) ∈ R. Since a ∈ A \ S, this contradicts the assumption that A \ S ⊆ R+1(S).

Suppose now that there are no isolated vertices in A ′\S in (A ′,R′) and that A \S ̸⊆ R+1(S). From the
first assumption, by Def. 41, we have that there are no isolated vertices in A \ S in (A ′,R′). In particular,
by Def. 33, we know that there is no a ∈ A \S such that R′−1(a) = ∅, or equivalently, for every a ∈ A \S,
there exists b ∈ A such that (b, a) ∈ R′. By Def. 41, we have that R′ ⊆ X, thus we deduce that for every
a ∈ A \ S, there exists b ∈ S such that (b, a) ∈ R′. From the second assumption, we have that there exists
some c ∈ A \ S such that there is no b ∈ S with (b, c) ∈ R. By Def. 41 (Conditions 1 and 2), we deduce
that there exists some c ∈ A \ S such that there is no b ∈ S with (b, c) ∈ R′, a contradiction of the first
assumption.

Proposition. 5 Let A = (A ,R) be an Argumentation Framework and S ⊆ A . ExplCA(S) is a bipartite
graph with part S and every argument of S is a source vertex in ExplCA(S).

Proof. (for Proposition 5) Denote ExplCA(S) = (A ′,R′) and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. By
Def. 41, we have that A ′ = A and R′ ⊆ X. An obvious partition of A based on S is of course S and A \S.
As R′ ⊆ X, by Def. 27, (A ′,R′) is a bipartite graph. In addition, since there is no (b, a) ∈ R′ such that
b ∈ A \ S and a ∈ S, it holds that for every a ∈ S, R′−1(a) = ∅. Thus, by Def. 31, every vertex of S is a
source vertex in (A ′,R′).

A.2 Properties on the Classes of Explanations

A.2.1 Empty Explanation
Theorem. 6 Let A = (A ,R) be an Argumentation Framework and S ⊆ A . (∅,∅) is an answer to

1. QExt
π for S on A with π ∈ {Coh,Def,Rein2} if and only if S = ∅.

2. QExt
Rein1 for S on A if and only if {a ∈ A | R−1(a) = ∅} = ∅.

3. QExt
CA for S on A if and only if A = (∅,∅).

Proof. (for Theorem 6)

1. Firstly, consider π = Coh. Suppose that (∅,∅) is an answer to QExt
Coh for S on A. According to Def. 34,

we have that A ′ = ∅ = S. So the “only if” part is satisfied. Suppose now that S = ∅ and consider
the empty graph (A ′ = ∅,R′ = ∅). We must prove that it is an answer to QExt

Coh for S on A. The first
condition, A ′ = ∅ = S, is respected by supposition. Since R′ = ∅, the second condition is respected
as well. Moreover, since S = ∅, by definition X = ∅ and the third condition is trivially satisfied.
Thus, the “if” part is satisfied.

162

Secondly, consider π = Def. Suppose that (∅,∅) is an answer to QExt
Def for S on A. By Def. 36, we have

that S ∪R−1(S) = ∅ and thus S = ∅. So the “only if” part is satisfied. Suppose now that S = ∅ and
consider the empty graph (A ′ = ∅,R′ = ∅). We must prove that it is an answer to QExt

Def for S on
A. By supposition, S = ∅, so R−1(S) = ∅ and the first condition is respected. Since R−1(S) = ∅,
the third condition is also respected. Since S = ∅, by definition X = ∅ and the second condition is
trivially respected. Thus, the “if” part is satisfied.
Lastly, consider π = Rein2. Suppose that (∅,∅) is an answer to QExt

Rein2 for S on A. By Def. 39,
we have that S ∪ R+1(S) ∪ R−1(R+2(S)) = ∅ and thus S = ∅. So the “only if” part is satisfied.
Suppose now that S = ∅ and consider the empty graph (A ′ = ∅,R′ = ∅). We must prove that it
is an answer to QExt

Rein2 for S on A. By supposition, S = ∅, so R−1(S) = ∅ and R−1(R+2(S)) = ∅
as well, which means that the first condition is respected. As R−1(R+2(S)) = ∅, the third condition
is also respected. Since S = ∅, by definition X = ∅ and the second condition is trivially respected.
Thus, the “if” part is satisfied.

2. Let X = {a ∈ A | R−1(a) = ∅} and assume that (∅,∅) is an answer to QExt
Rein1 for S on A. Suppose

now that X ̸= ∅. By Def. 38, since A ′ = ∅, it must be the case that S ∩ X = ∅. Since X ⊆ A
and S ⊆ A , this means that (A \ S) ∩X = X, and so by supposition that (A \ S) ∩X ̸= ∅. So by
Condition 3 of Def. 38, ∃a ∈ (A \ S) ∩X with a ∈ A ′, which contradicts the hypothesis that (∅,∅)
is an answer to QExt

Rein1 for S on A. As such, we deduce X = ∅. Thus, the “only if” is satisfied.
Assume now that X = ∅. Consider the empty graph (∅,∅). We must prove that it is an answer to
QExt

Rein1 for S on A. Condition 2 of Def. 38 is obviously respected. Moreover, since X = ∅, Condition
1 of Def. 38 is also obviously respected. Again, from X = ∅ we deduce (A \ S) ∩ X = ∅, and thus
Condition 2 of Def. 38 is respected as well. Hence, it follows that (∅,∅) is an answer to QExt

Rein1 for S
on A. Thus, the “if” is satisfied.

3. Assume that (∅,∅) is an answer to QExt
CA for S on A. By Def. 41 we thus know that A ′ = ∅ = A .

Hence, since A = ∅ and R ⊆ A ×A , it follows that R = ∅ and so A = (∅,∅). Thus, the “only if”
is satisfied.
Assume now that A = (∅,∅). Consider the empty graph (∅,∅). We must prove that it is an answer
to QExt

CA for S on A. First and second condition of Def. 39 follow immediately from A ′ = R′ = ∅. The
third condition follows from A = ∅. Thus, the “if” is satisfied.

Theorem. 7 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA} be an Abstract Argumentation principle. If (∅,∅) is an answer to QExt

π for S on A, then it is unique.

Proof. (for Theorem 7) Assume that (∅,∅) is an answer to QExt
π for S on A. Let (A′, R′) be a subgraph of

A. Suppose (A ′,R′) is also an answer to QExt
π for S on A. We must prove that (A ′,R′) = (∅,∅). Since

R′ ⊆ A ′ ×A ′, this can be reduced to proving that A ′ = ∅.
Consider π = Coh or Def or Rein2. Following Th. 6 and since (∅,∅) is an answer to QExt

π for S on A,
S = ∅ and so R−1(S) = R+2(S) = R−1(R+2(S)) = ∅. So following Condition 1 in Def. 34 (resp. Def. 36,
Def. 39), A ′ = ∅.

Consider π = Rein1 and let X = {a ∈ A | R−1(a) = ∅}. By assumption (∅,∅) is an answer to QExt
Rein1

for S on A, thus by Th. 6, we know that X = ∅, so by Condition 1 in Def. 38, A ′ = ∅.
Consider π = CA. By assumption (∅,∅) is an answer to QExt

CA for S on A, thus by Th. 6, we know that
A = ∅. Since (A ′,R′) is a subgraph of A, we deduce that A ′ = ∅.

A.2.2 Maximal and Minimal Explanations
Uniqueness of Maximal Explanations

Theorem. 8 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA} be an Abstract Argumentation principle. If Explπ(S) is a maximal explanation for π, then it is the

163

unique maximal explanation for π.

The proof of Th. 8 relies on Lem. 6 to 10.

Proof. (for Theorem 8) Denote Explπ(S) = (A ′,R′), assume (A ′,R′) is a maximal explanation for π and
let (A ′′,R′′) be a subgraph of A. Suppose (A ′′,R′′) is also a maximal explanation for π. We must prove
that (A ′′,R′′) = (A ′,R′).

Consider π = Coh and let X = {(a, b) ∈ R | a, b ∈ S}. Since (A ′′,R′′) is an explanation for Coh, we
know by Def. 34 that A ′′ = S and R′′ ⊆ X. But (A ′′,R′′) is a maximal explanation for Coh. Thus, by
Lem. 6, X ⊆ R′′ and so R′′ = X. However, (A ′,R′) is also an explanation for Coh, so A ′ = S and R′ ⊆ X.
Thus, A ′ = A ′′ and R′ ⊆ R′′, so we conclude that (A ′,R′) is a subgraph of (A ′′,R′′). If R′ ⊂ R′′, we
conclude further that (A ′,R′) is a strict subgraph of (A ′′,R′′), a contradiction with the assumption that
(A ′,R′) is a maximal explanation for Coh. So it must be the case that R′ = R′′.

Consider π = Def and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(S)}. Since (A ′′,R′′) is an explanation for Def, we know by Def. 36 that A ′′ = S ∪R−1(S), X ⊆ R′′

and R′′ ⊆ X∪Y . But (A ′′,R′′) is a maximal explanation for Def. Thus, by Lem. 7, Y ⊆ R′′, soX∪Y ⊆ R′′,
and so R′′ = X∪Y . However, (A ′,R′) is also an explanation for Def, so A ′ = S∪R−1(S) and R′ ⊆ X∪Y .
Thus, A ′ = A ′′ and R′ ⊆ R′′, so we conclude that (A ′,R′) is a subgraph of (A ′′,R′′). If R′ ⊂ R′′, we
conclude further that (A ′,R′) is a strict subgraph of (A ′′,R′′), a contradiction with the assumption that
(A ′,R′) is a maximal explanation for Def. So it must be the case that R′ = R′′.

Consider π = Rein1 and let X = {a ∈ A | R−1(a) = ∅}. Since (A ′′,R′′) is an explanation for Rein1,
we know by Def. 38 that A ′′ ⊆ X and R′′ = ∅. But (A ′′,R′′) is a maximal explanation for Rein1. Thus,
by Lem. 8, X ⊆ A ′′, and so A ′′ = X. However, (A ′,R′) is also an explanation for Rein1, so A ′ ⊆ X
and R′ = ∅. Thus, A ′ ⊆ A ′′ and R′ = R′′, so we conclude that (A ′,R′) is a subgraph of (A ′′,R′′).
If A ′ ⊂ A ′′, we conclude further that (A ′,R′) is a strict subgraph of (A ′′,R′′), a contradiction with the
assumption that (A ′,R′) is a maximal explanation for Rein1. So it must be the case that A ′ = A ′′.

Consider π = Rein2 and let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈
R | a ∈ S, b ∈ R−1(R+2(S))}. Since (A ′′,R′′) is an explanation for Rein2, we know by Def. 39 that
A ′′ = S ∪R+2(S) ∪R−1(R+2(S)), X ⊆ R′′, and R′′ ⊆ X ∪ Y . But (A ′′,R′′) is a maximal explanation
for Rein2. Thus, by Lem. 9, Y ⊆ R′′, so X ∪ Y ⊆ R′′, and so R′′ = X ∪ Y . However, (A ′,R′) is also
an explanation for Rein2, so A ′ = S ∪ R+2(S) ∪ R−1(R+2(S)) and R′ ⊆ X ∪ Y . Thus, A ′ = A ′′ and
R′ ⊆ R′′, so we conclude that (A ′,R′) is a subgraph of (A ′′,R′′). If R′ ⊂ R′′, we conclude further that
(A ′,R′) is a strict subgraph of (A ′′,R′′), a contradiction with the assumption that (A ′,R′) is a maximal
explanation for Rein2. So it must be the case that R′ = R′′.

Consider π = CA and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. Since (A ′′,R′′) is an explanation for CA,
we know by Def. 41 that A ′′ = A and R′′ ⊆ X. But (A ′′,R′′) is a maximal explanation for CA. Thus,
by Lem. 10, X ⊆ R′′, and so R′′ = X. However, (A ′,R′) is also an explanation for CA, so A ′ = A
and R′ ⊆ X. Thus, A ′ = A ′′ and R′ ⊆ R′′, so we conclude that (A ′,R′) is a subgraph of (A ′′,R′′).
If R′ ⊂ R′′, we conclude further that (A ′,R′) is a strict subgraph of (A ′′,R′′), a contradiction with the
assumption that (A ′,R′) is a maximal explanation for CA. So it must be the case that R′ = R′′.

Characterization of Minimal Explanations

Lemma. 1 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCoh(S) = (A ′,R′) be an
explanation for Coh. ExplCoh(S) is a minimal explanation for Coh if and only if |R′| ≤ 1.

Proof. (for Lemma 1) Suppose that |R′| > 1. Let (x, y) ∈ R′ and consider (A ′,R′′) such that R′′ =
R′ \ {(x, y)}. Obviously, (A ′,R′′) is a strict subgraph of (A ′,R′). Let X = {(a, b) ∈ R | a, b ∈ S}. Since
(A ′,R′) is an explanation for Coh, by Def. 34, we know that A ′ = S, R′ ⊆ X, and because |R′| > 1,
X ̸= ∅. However, R′′ ⊂ R′, so R′′ ⊂ X and |R′′| ≥ 1, so R′′ ̸= ∅. Thus, by Def. 34, (A ′,R′′) is an
explanation for Coh, which contradicts the minimality of (A ′,R′).

Suppose now that |R′| ≤ 1 and there exists a strict subgraph (A ′′,R′′) of (A ′,R′) such that (A ′′,R′′)
is also an explanation for Coh. Let X = {(a, b) ∈ R | a, b ∈ S}. Assume firstly that A ′′ ⊂ A ′. By Def. 34,

164

we know that A ′′ = S, so we have S ⊂ A ′, which contradicts the fact that (A ′,R′) is an explanation for
Coh. Assume secondly that R′′ ⊂ R′. By supposition |R′| ≤ 1, so in this case, |R′| = 1 and R′′ = ∅. As
such, R′′ ⊆ X. Since (A ′′,R′′) is an explanation for Coh and R′′ = ∅, by Def. 34, X = ∅. However, as
|R′| = 1, this would mean that R′ ̸⊆ X, which contradicts the fact that (A ′,R′) is an explanation for Coh.
Consequently, it must be the case that R′′ = R′, and so (A ′′,R′′) = (A ′,R′) and (A ′,R′) is a minimal
explanation for Coh.

Lemma. 2 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplDef(S) = (A ′,R′) be an
explanation for Def. ExplDef(S) is a minimal explanation for Def if and only if for all x ∈ R−1(S) \ S,
|R′−1(x)| ≤ 1.

Proof. (for Lemma 2) Suppose that there exists x ∈ R−1(S) \ S such that |R′−1(x)| > 1. Let (w, x) ∈ R′

and consider (A ′,R′′) such that R′′ = R′ \ {(w, x)}. Obviously, (A ′,R′′) is a strict subgraph of (A ′,R′).
Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. Since (A ′,R′)
is an explanation for Def, by Def. 36, we know that A ′ = S ∪ R−1(S), X ⊆ R′ ⊆ X ∪ Y . In addition,
because x ∈ R−1(S) and x /∈ S, it cannot be that (w, x) ∈ X, so (w, x) ∈ (Y \ X) and x ∈ R+1(S).
However, R′′ ⊂ R′, so R′′ ⊂ X ∪ Y and since (w, x) ∈ (Y \X), X ⊆ R′′. Moreover, as |R′−1(x)| > 1, we
have that |R′′−1(x)| ≥ 1, so ∃(w′, x) ∈ R′′; consequently, knowing that x ∈ R−1(S) and x ∈ R+1(S), the
third condition of Def. 36 is satisfied for each b ∈ R−1(S) including x. Thus, by Def. 36, (A ′,R′′) is an
explanation for Def, which contradicts the minimality of (A ′,R′).

Suppose now that for all x ∈ R−1(S)\S, |R′−1(x)| ≤ 1 and that there exists a strict subgraph (A ′′,R′′)
of (A ′,R′) such that (A ′′,R′′) is also an explanation for Def. Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S}
and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. Assume firstly that A ′′ ⊂ A ′. By Def. 36, we know that
A ′′ = S ∪R−1(S), so we have S ∪R−1(S) ⊂ A ′, which contradicts the fact that (A ′,R′) is an explanation
for Def. Assume secondly that R′′ ⊂ R′. By Def. 36, we have X ⊆ R′ ⊆ X ∪ Y and X ⊆ R′′ ⊆ X ∪ Y ; so
since R′′ ⊂ R′ there exists at least (a, b) ∈ R′ \R′′ and by definition (a, b) ∈ Y \ X, so b ∈ R−1(S) \ S.
Moreover, by supposition, for all x ∈ R−1(S) \ S, |R′−1(x)| ≤ 1, so in this case, we have |R′−1(b)| = 1
and R′′−1(b) = ∅. In addition, as (A ′′,R′′) is an explanation for Def, b ∈ R−1(S) and R′′−1(b) = ∅, by
the third condition of Def. 36, b /∈ R+1(S) and so (a, b) /∈ Y . This would mean that R′ ̸⊆ X ∪ Y , which
contradicts the fact that (A ′,R′) is an explanation for Def. Consequently, it must be the case that R′′ = R′,
and so (A ′′,R′′) = (A ′,R′) and (A ′,R′) is a minimal explanation for Def.

Lemma. 3 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplRein1(S) = (A ′,R′) be an
explanation for Rein1. ExplRein1(S) is a minimal explanation for Rein1 if and only if |A ′ \ S| ≤ 1.

Proof. (for Lemma 3) Suppose that |A ′ \ S| > 1. Let x ∈ A ′ \ S and consider (A ′′,R′) such that
A ′′ = A ′ \ {x}. Obviously, (A ′′,R′) is a strict subgraph of (A ′,R′). Let X = {a ∈ A |R−1(a) = ∅}.
Since (A ′,R′) is an explanation for Rein1, by Def. 38, we know that R′ = ∅, S∩X ⊆ A ′ ⊆ X, and because
x /∈ S, x ∈ X \ S. However, A ′′ ⊂ A ′, so A ′′ ⊂ X and since x ∈ A ′ \ S, S ∩ X ⊆ A ′′. Moreover, as
|A ′ \ S| > 1 and x ∈ X, we have that |(A ′′ \ S) ∩X| ≥ 1. Thus, by Def. 38, (A ′′,R′) is an explanation for
Rein1, which contradicts the minimality of (A ′,R′).

Suppose now that |A ′ \ S| ≤ 1 and that there exists a strict subgraph (A ′′,R′′) of (A ′,R′) such that
(A ′′,R′′) is also an explanation for Rein1. Let X = {a ∈ A | R−1(a) = ∅}. Assume firstly that R′′ ⊂ R′.
By Def. 38, we know that R′′ = ∅, so we have |R′| > 0, which contradicts the fact that (A ′,R′) is an
explanation for Rein1. Assume secondly that A ′′ ⊂ A ′. As (A ′,R′) and (A ′′,R′′) are explanations for
Rein1, by Def. 38, S ∩X ⊆ A ′ ⊆ X and S ∩X ⊆ A ′′ ⊆ X. Since A ′′ ⊂ A ′, we have that A ′′ \S ⊂ A ′ \S.
By supposition |A ′ \S| ≤ 1, so in this case, |A ′ \S| = 1 and A ′′ \S = ∅. As A ′′ \S = ∅, ∄a ∈ (A \S)∩X
with a ∈ A ′′. Since (A ′′,R′′) is an explanation for Rein1, by Def. 38, (A \ S) ∩ X = ∅. However, as
|A ′ \ S| = 1, this would mean that A ′ ̸⊆ X, which contradicts the fact that (A ′,R′) is an explanation for
Rein1. Consequently, it must be the case that A ′′ = A ′, and so (A ′′,R′′) = (A ′,R′) and (A ′,R′) is a
minimal explanation for Rein1.

165

Lemma. 4 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplRein2(S) = (A ′,R′) be
an explanation for Rein2. ExplRein2(S) is a minimal explanation for Rein2 if and only if for all x ∈
R−1(R+2(S)) \R+2(S), |R′−1(x)| ≤ 1.

Proof. (for Lemma 4) Suppose that there exists x ∈ R−1(R+2(S)) \R+2(S) such that |R′−1(x)| > 1. Let
(w, x) ∈ R′ and consider (A ′,R′′) such that R′′ = R′ \ {(w, x)}. Obviously, (A ′,R′′) is a strict subgraph
of (A ′,R′). Let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(R+2(S))}. Since (A ′,R′) is an explanation for Rein2, by Def. 39, we know that A ′ = S ∪R+2(S) ∪
R−1(R+2(S)) and X ⊆ R′ ⊆ X ∪ Y . In addition, because x ∈ R−1(R+2(S)) and x /∈ R+2(S), it cannot
be that (w, x) ∈ X, so (w, x) ∈ (Y \ X) and x ∈ R+1(S). However, R′′ ⊂ R′, so R′′ ⊂ X ∪ Y and since
(w, x) ∈ (Y \ X), X ⊆ R′′. Moreover, as |R′−1(x)| > 1, we have that |R′′−1(x)| ≥ 1, so ∃(w′, x) ∈ R′′;
consequently, knowing that x ∈ R−1(R+2(S)) and x ∈ R+1(S), the third condition of Def. 39 is satisfied
for each b ∈ R−1(R+2(S)) including x. Thus, by Def. 39, (A ′,R′′) is an explanation for Rein2, which
contradicts the minimality of (A ′,R′).

Suppose now that for all x ∈ R−1(R+2(S)) \ R+2(S), |R′−1(x)| ≤ 1 and that there exists a strict
subgraph (A ′′,R′′) of (A ′,R′) such that (A ′′,R′′) is also an explanation for Rein2. Let X = {(b, c) ∈
R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. Assume firstly
that A ′′ ⊂ A ′. By Def. 39, we know that A ′′ = S ∪ R−1(S), so we have S ∪ R−1(S) ⊂ A ′, which
contradicts the fact that (A ′,R′) is an explanation for Rein2. Assume secondly that R′′ ⊂ R′. By
Def. 39, we have X ⊆ R′ ⊆ X ∪ Y and X ⊆ R′′ ⊆ X ∪ Y ; so since R′′ ⊂ R′ there exists at least
(a, b) ∈ R′ \R′′ and by definition (a, b) ∈ Y \X, so b ∈ R−1(R+2(S)) \R+2(S). Moreover, by supposition,
for all x ∈ R−1(R+2(S)) \R+2(S), |R′−1(x)| ≤ 1, so in this case, we have |R′−1(b)| = 1 and R′′−1(b) = ∅.
In addition, as (A ′′,R′′) is an explanation for Rein2, b ∈ R−1(R+2(S)) and R′′−1(b) = ∅, by the third
condition of Def. 39, b /∈ R+1(S) and so (a, b) /∈ Y . This would mean that R′ ̸⊆ X ∪ Y , which contradicts
the fact that (A ′,R′) is an explanation for Rein2. Consequently, it must be the case that R′′ = R′, and so
(A ′′,R′′) = (A ′,R′) and (A ′,R′) is a minimal explanation for Rein2.

Lemma. 5 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and ExplCA(S) = (A ′,R′) be an
explanation for CA. ExplCA(S) is a minimal explanation for CA if and only if for all x /∈ S, |R′−1(x)| ≤ 1.

Proof. (for Lemma 5) Suppose that there exists x /∈ S such that |R′−1(x)| > 1. Let (w, x) ∈ R′ and
consider (A ′,R′′) such that R′′ = R′ \ {(w, x)}. Obviously, (A ′,R′′) is a strict subgraph of (A ′,R′).
Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. Since (A ′,R′) is an explanation for CA, by Def. 41, we know that
A ′ = A , R′ ⊆ X, and because x /∈ S, (w, x) ∈ X so x ∈ R+1(S). However, R′′ ⊂ R′, so R′′ ⊂ X and
as |R′−1(x)| > 1, we have that |R′′−1(x)| ≥ 1, so ∃(w′, x) ∈ R′′ and because R′′ ⊂ X and x /∈ S, w′ ∈ S.
Thus, by Def. 41, (A ′,R′′) is an explanation for CA, which contradicts the minimality of (A ′,R′).

Suppose now that for all x /∈ S, |R′−1(x)| ≤ 1 and that there exists a strict subgraph (A ′′,R′′) of
(A ′,R′) such that (A ′′,R′′) is also an explanation for CA. Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. Assume
firstly that A ′′ ⊂ A ′. By Def. 41, we know that A ′′ = A , so we have A ⊂ A ′, which contradicts the
fact that (A ′,R′) is an explanation for CA. Assume secondly that R′′ ⊂ R′. By Def. 41, we have R′ ⊆ X
and by supposition, for all x /∈ S, |R′−1(x)| ≤ 1, so in this case, there exists b /∈ S such that |R′−1(b)| = 1
and R′′−1(b) = ∅. As such, R′′ ⊆ X. Since (A ′′,R′′) is an explanation for CA, b /∈ S and R′′−1(b) = ∅,
by Def. 41, b /∈ R+1(S). However, as |R′−1(b)| = 1, this would mean that R′ ̸⊆ X, which contradicts
the fact that (A ′,R′) is an explanation for CA. Consequently, it must be the case that R′′ = R′, and so
(A ′′,R′′) = (A ′,R′) and (A ′,R′) is a minimal explanation for CA.

Equality between Maximal Explanation and Union of all Minimal Explanations

Theorem. 9 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA} be an Abstract Argumentation principle. Consider a maximal explanation for π MaxExplπ(S), and let
M be the set of all minimal explanations for π. Then Explπ(S) =

⋃
G∈M G.

The proof of Th. 9 relies on Lem. 6 to 10.

166

Proof. (for Theorem 9) • Denote MaxExplπ(S) = (A ′,R′) and M = {G1, . . . , Gn} with G1 = (A1,R1), . . . ,
Gn = (An,Rn). We prove that (A ′,R′) ⊆ ∪G∈MG. Suppose that (A ′,R′) ̸⊆

⋃
G∈M G. This means that

A ′ ̸⊆ A1 ∪ · · · ∪An or R′ ̸⊆ R1 ∪ · · · ∪Rn.
Consider π = Coh and let X = {(a, b) ∈ R | a, b ∈ S}. By supposition, (A ′,R′), G1, . . . , Gn are all

explanations for Coh. So, by Def. 34, we have A ′ = A1 = · · · = An = S. Thus, it must be the case that
R′ ̸⊆ R1 ∪ · · · ∪Rn. In addition, by Lem. 6, we know that R′ = X and so that R1 ⊆ R′, . . . , Rn ⊆ R′.
Assume firstly that X = ∅. Then, by Def. 34, we have R′ = R1 = · · · = Rn = ∅, a contradiction. Assume
secondly that X ̸= ∅. In this case we have R′ ̸= ∅, and by Def. 34, R1 ̸= ∅, . . . , Rn ̸= ∅. This means that
there exists R′′ ⊆ X with R′′ ̸= ∅, such that R′′∩R1 = · · · = R′′∩Rn = ∅. Let R′′′ ⊆ R′′ with |R′′′| = 1.
Consider (A ′,R′′′). We already know that A ′ = S, R′′′ ⊆ X and we have both X ̸= ∅ and R′′′ ̸= ∅. So,
by Def. 34, (A ′,R′′′) is an explanation for Coh. In addition, since R′′ ∩R1 = · · · = R′′ ∩Rn = ∅, we have
(A ′,R′′′) ̸= (A1,R1), . . . , (A ′,R′′′) ̸= (An,Rn). However, |R′′′| = 1, so by Lem. 1, (A ′,R′′′) is a minimal
explanation for Coh. A contradiction with the hypothesis that M is the set of all minimal explanations for
Coh.

Consider π = Def and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(S)}. By supposition, (A ′,R′), G1, . . . , Gn are all explanations for Def. So, by Def. 34, we have
A ′ = A1 = · · · = An = S ∪R−1(S). Thus, it must be the case that R′ ̸⊆ R1 ∪ · · · ∪Rn. In addition, by
Lem. 7, we know that R′ = X∪Y and so that R1 ⊆ R′, . . . , Rn ⊆ R′. Assume firstly that for all y ∈ R−1(S),
R′−1(y) = ∅. Then, by Def. 36, we have for all y ∈ R−1(S), y /∈ R+1(S). Since X ⊆ R1 ⊆ X ∪ Y , . . . ,
X ⊆ Rn ⊆ X ∪ Y , we deduce that for all y ∈ R−1(S), R−1

1 (y) = · · · = R−1
n (y) = R′−1(y) = ∅, and so that

R′ = R1 = · · · = Rn = X, a contradiction. Assume secondly that for some y ∈ R−1(S), R′−1(y) ̸= ∅. In
this case we have R′ ̸= ∅ and y ∈ R+1(S), so by Def. 36, R−1

1 (y) ̸= ∅, . . . , R−1
n (y) ̸= ∅ and thus, R1 ̸= ∅,

. . . , Rn ̸= ∅. Since, R′ ̸⊆ R1∪ . . .∪Rn and ∀i,Ri ⊆ R′, this means that there exists R′′ ⊆ Y with R′′ ̸= ∅,
such that R′′ ∩R1 = · · · = R′′ ∩Rn = ∅. In particular, this means that there exists y0 ∈ R−1(S) such that
R′′−1(y0) ̸= ∅ and R′′−1(y0) ∩ R−1

1 (y0) = · · · = R′′−1(y0) ∩ R−1
n (y0) = ∅. Moreover, because X ⊆ R1,

. . .X ⊆ Rn, we know that y0 /∈ S. Let R′′′ such that: (1) X ⊆ R′′′ ⊂ R′, (2) for all y ∈ R−1(S) \S, y ̸= y0,
|R′′′−1(y)| = 1 if y ∈ R+1(S) and |R′′′−1(y)| = 0 otherwise, (3) |R′′′−1(y0)| = 1 with R′′′−1(y0) ⊆ R′′−1(y0).
Consider (A ′,R′′′). We already know that A ′ = S ∪R−1(S) and X ⊆ R′′′ ⊆ X ∪ Y . In addition, we have
that for all y ∈ R−1(S) such that y ∈ R+1(S), R′′′−1(y) ̸= ∅ (definition of R′′′). So, by Def. 36, (A ′,R′′′)
is an explanation for Def. In addition, since R′′′−1(y0) ⊆ R′′−1(y0) and R′′−1(y0) ∩ R−1

1 (y0) = · · · =
R′′−1(y0) ∩ R−1

n (y0) = ∅, we have (A ′,R′′′) ̸= (A1,R1), . . . , (A ′,R′′′) ̸= (An,Rn). However, for all
y ∈ R−1(S) \ S, |R′′′−1(y)| ≤ 1, so by Lem. 2, (A ′,R′′′) is a minimal explanation for Def. A contradiction
with the hypothesis that M is the set of all minimal explanations for Def.

Consider π = Rein1 and let X = {a ∈ A |R−1(a) = ∅}. By supposition, (A ′,R′), G1, . . . , Gn are all
explanations for Rein1. So, by Def. 38, we have R′ = R1 = · · · = Rn = ∅. Thus, it must be the case
that A ′ ̸⊆ A1 ∪ · · · ∪ An. In addition, by Lem. 8, we know that A ′ = X and so that A1 ⊆ A ′, . . . ,
An ⊆ A ′. Assume firstly that X \ S = ∅ (or, written differently, S ∩X = X and (A \ S) ∩X = ∅). Then,
by Def. 38, we have A ′ = A1 = · · · = An = X, a contradiction. Assume secondly that X \ S ̸= ∅, so
(A \ S) ∩X ̸= ∅. By assumption A ′ ̸⊆ A1 ∪ · · · ∪An, so there exists A ′′ ⊆ X \ S with A ′′ ̸= ∅, such that
A ′′ ∩ A1 = · · · = A ′′ ∩ An = ∅. Let x ∈ A ′′ and A ′′′ = (S ∩X) ∪ {x}. Consider (A ′′′,R′). We already
know that R′ = ∅, S ∩X ⊆ A ′′′ ⊆ X and we have both (A \ S) ∩X ̸= ∅ and x ∈ ((A \ S) ∩X) ∩A ′′′.
So, by Def. 38, (A ′′′,R′) is an explanation for Rein1. In addition, since A ′′ ∩ A1 = · · · = A ′′ ∩ An = ∅,
we have (A ′′′,R′) ̸= (A1,R1), . . . , (A ′′′,R′) ̸= (An,Rn). However, |A ′′′ \ S| = 1, so by Lem. 3, (A ′′′,R′)
is a minimal explanation for Rein1. A contradiction with the hypothesis that M is the set of all minimal
explanations for Rein1.

Consider π = Rein2 and let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈
R | a ∈ S, b ∈ R−1(R+2(S))}. By supposition, (A ′,R′), G1, . . . , Gn are all explanations for Rein2. So,
by Def. 39, we have A ′ = A1 = · · · = An = S ∪ R+2(S) ∪ R−1(R+2(S)). Thus, it must be the case
that R′ ̸⊆ R1 ∪ · · · ∪ Rn. In addition, by Lem. 9, we know that R′ = X ∪ Y and so that R1 ⊆ R′, . . . ,
Rn ⊆ R′. Assume firstly that for all y ∈ R−1(R+2(S)), R′−1(y) = ∅. Then, by Def. 39, we have for
all y ∈ R−1(R+2(S)), y /∈ R+1(S) (so Y = ∅). Since X ⊆ R1 ⊆ X ∪ Y , . . . , X ⊆ Rn ⊆ X ∪ Y , we

167

deduce that R′ = R1 = · · · = Rn = X, a contradiction. Assume secondly that for some y ∈ R−1(R+2(S)),
R′−1(y) ̸= ∅. In this case we have R′ ̸= ∅ and y ∈ R+1(S), so by Def. 39, R−1

1 (y) ̸= ∅, . . . , R−1
n (y) ̸= ∅

and thus, R1 ̸= ∅, . . . , Rn ̸= ∅. Since, R′ ̸⊆ R1 ∪ . . . ∪Rn and ∀i,Ri ⊆ R′, this means that there exists
R′′ ⊆ Y with R′′ ̸= ∅, such that R′′ ∩R1 = · · · = R′′ ∩Rn = ∅. In particular, this means that there exists
y0 ∈ R−1(R+2(S)) such that R′′−1(y0) ̸= ∅ and R′′−1(y0) ∩R−1

1 (y0) = · · · = R′′−1(y0) ∩R−1
n (y0) = ∅.

Moreover, because X ⊆ R1, . . .X ⊆ Rn, we know that y0 /∈ R+2(S). Let R′′′ such that: (1) X ⊆ R′′′ ⊂
R′, (2) for all y ∈ R−1(R+2(S)) \ R+2(S), y ̸= y0, |R′′′−1(y)| = 1 if y ∈ R+1(S) and |R′′′−1(y)| = 0
otherwise, (3) |R′′′−1(y0)| = 1 and R′′′−1(y0) ⊆ R′′−1(y0). Consider (A ′,R′′′). We already know that
A ′ = S∪R+2(S)∪R−1(R+2(S)) and X ⊆ R′′′ ⊆ X∪Y . In addition, we have that for all y ∈ R−1(R+2(S))
such that y ∈ R+1(S), R′′′−1(y) ̸= ∅ (definition of R′′′). So, by Def. 39, (A ′,R′′′) is an explanation for
Rein2. In addition, since R′′′−1(y0) ⊆ R′′−1(y0) and R′′−1(y0)∩R−1

1 (y0) = · · · = R′′−1(y0)∩R−1
n (y0) = ∅,

we have (A ′,R′′′) ̸= (A1,R1), . . . , (A ′,R′′′) ̸= (An,Rn). However, for all y ∈ R−1(R+2(S)) \ R+2(S),
|R′′′−1(y)| ≤ 1, so by Lem. 4, (A ′,R′′′) is a minimal explanation for Rein2. A contradiction with the
hypothesis that M is the set of all minimal explanations for Rein2.

Consider π = CA and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. By supposition, (A ′,R′), G1, . . . , Gn are all
explanations for CA. So, by Def. 41, we have A ′ = A1 = · · · = An = A . Thus, it must be the case that
R′ ̸⊆ R1 ∪ · · · ∪Rn. In addition, by Lem. 10, we know that R′ = X and so that R1 ⊆ R′, . . . , Rn ⊆ R′.
Assume firstly that for all y /∈ S, R′−1(y) = ∅. Then, by Def. 41, we have for all y /∈ S, y /∈ R+1(S) (so
X = ∅). Since R1 ⊆ X, . . . , Rn ⊆ X, we deduce that R′ = R1 = · · · = Rn = ∅, a contradiction. Assume
secondly that for some y /∈ S, R′−1(y) ̸= ∅. In this case we have R′ ̸= ∅ and y ∈ R+1(S), so by Def. 41,
R−1

1 (y) ̸= ∅, . . . , R−1
n (y) ̸= ∅ and thus, R1 ̸= ∅, . . . , Rn ̸= ∅. Since, by assumption, R′ ̸⊆ R1 ∪ . . . ∪Rn,

there exists R′′ ⊆ X with R′′ ̸= ∅, such that R′′ ∩R1 = · · · = R′′ ∩Rn = ∅. In particular, this means that
there exists y0 /∈ S such that R′′−1(y0) ̸= ∅ and R′′−1(y0)∩R−1

1 (y0) = · · · = R′′−1(y0)∩R−1
n (y0) = ∅. Let

R′′′ ⊂ R′ such that: (1) for all y /∈ S, y ̸= y0, |R′′′−1(y)| ≤ 1 if y ∈ R+1(S) and |R′′′−1(y)| = 1 otherwise, (2)
|R′′′−1(y0)| = 1 with R′′′−1(y0) ⊆ R′′−1(y0). Consider (A ′,R′′′). We already know that A ′ = A , R′′′ ⊆ X
and for all y /∈ S such that y ∈ R+1(S), we have R′′′−1(y) ̸= ∅. So, by Def. 41, (A ′,R′′′) is an explanation
for CA. In addition, since R′′′−1(y0) ⊆ R′′−1(y0) and R′′−1(y0)∩R−1

1 (y0) = · · · = R′′−1(y0)∩R−1
n (y0) = ∅,

we have (A ′,R′′′) ̸= (A1,R1), . . . , (A ′,R′′′) ̸= (An,Rn). However, for all y /∈ S, |R′′′−1(y)| ≤ 1, so by
Lem. 5, (A ′,R′′′) is a minimal explanation for CA. A contradiction with the hypothesis that M is the set
of all minimal explanations for CA.

• Denote MaxExplπ(S) = (A ′,R′) and M = {G1, . . . , Gn} with G1 = (A1,R1), . . . , Gn = (An,Rn). We
prove (A ′,R′) ⊇ ∪G∈MG.

Consider π = Coh and let X = {(a, b) ∈ R | a, b ∈ S}. By Def. 34, we have A ′ = A1 = · · · = An = S.
Moreover, by Lem. 6, we know that R′ = X. Finally, by Def. 34, we know that R1 ⊆ X, . . . , Rn ⊆ X.
Thus, R1 ⊆ R′, . . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A ′,R′).

Consider π = Def and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(S)}. By Def. 36, we have A ′ = A1 = · · · = An = S ∪R−1(S). Moreover, by Lem. 7, we know that
R′ = X ∪ Y . Finally, by Def. 36, we know that R1 ⊆ X ∪ Y , . . . , Rn ⊆ X ∪ Y . Thus, R1 ⊆ R′, . . . ,
Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A ′,R′).

Consider π = Rein1 and let X = {a ∈ A |R−1(a) = ∅}. By Def. 38, we have R′ = R1 = · · · = Rn = ∅.
Moreover, by Lem. 8, we know that A ′ = X. Finally, by Def. 38, we know that A1 ⊆ X, . . . , An ⊆ X.
Thus, A1 ⊆ A ′, . . . , An ⊆ A ′ and so

⋃
G∈M G ⊆ (A ′,R′).

Consider π = Rein2 and let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(R+2(S))}. By Def. 39, we have A ′ = A1 = · · · = An = S ∪R+2(S)∪R−1(R+2(S)). Moreover,
by Lem. 9, we know that R′ = X ∪ Y . Finally, by Def. 39, we know that R1 ⊆ X ∪ Y , . . . , Rn ⊆ X ∪ Y .
Thus, R1 ⊆ R′, . . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A ′,R′).

Consider π = CA and letX = {(a, b) ∈ R | a ∈ S, b /∈ S}. By Def. 41, we have A ′ = A1 = · · · = An = A .
Moreover, by Lem. 10, we know that R′ = X. Finally, by Def. 41, we know that R1 ⊆ X, . . . , Rn ⊆ X.
Thus, R1 ⊆ R′, . . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A ′,R′).

168

A.3 Computation of Explanations for Semantics Extensions

A.3.1 Characterization of Maximal Explanations
Lemma. 6 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {(a, b) ∈ R | a, b ∈
S}. If ExplCoh(S) = (A ′,R′) is a maximal explanation for Coh, then X ⊆ R′.

Proof. (for Lemma 6) Suppose that (A ′,R′) is a maximal explanation for Coh. Two cases must be consid-
ered.

Assume firstly that X = ∅. Then we trivially have X ⊆ R′.
Assume secondly that X ̸= ∅ and that X ̸⊆ R′. Then, there exists (a, b) ∈ R such that a, b ∈ S and

(a, b) /∈ R′. Consider the graph (A ′′,R′′) with A ′′ = A ′ and R′′ = R′ ∪ {(a, b)}. Obviously, (A ′,R′)
is a strict subgraph of (A ′′,R′′). Since (A ′,R′) is an explanation for Coh, by Def. 34, A ′ = S, R′ ⊆ X
and because X ̸= ∅, R′ ̸= ∅ (Condition 3 in Def. 34). Thus, we deduce that A ′′ = S, R′′ ̸= ∅ and since
(a, b) ∈ X, R′′ ⊆ X. Hence, by Def. 34, (A ′′,R′′) is an explanation for Coh, a contradiction with the
supposition that (A ′,R′) is a maximal explanation for Coh.

Lemma. 7 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(S)}. If ExplDef(S) = (A ′,R′) is a maximal explanation for Def, then Y ⊆ R′.

Proof. (for Lemma 7) Suppose that (A ′,R′) is a maximal explanation for Def and let X = {(b, a) ∈ R | b ∈
R−1(S), a ∈ S}. Two cases must be considered.

Assume firstly that for all b ∈ R−1(S), b /∈ R+1(S). In other words, ∄(a, b) ∈ R such that a ∈ S, b ∈
R−1(S). So, we trivially have Y = ∅ ⊆ R′.

Assume secondly that for some b ∈ R−1(S), b ∈ R+1(S). In this case, Y ̸= ∅. Assume additionally that
Y ̸⊆ R′. Then, there exists (x, y) ∈ R such that x ∈ S, y ∈ R−1(S) and (x, y) /∈ R′. Consider the graph
(A ′′,R′′) with A ′′ = A ′ and R′′ = R′ ∪ {(x, y)}. Obviously, (A ′,R′) is a strict subgraph of (A ′′,R′′).
Since (A ′,R′) is an explanation for Def, by Def. 36, A ′ = S ∪ R−1(S), X ⊆ R′ ⊆ X ∪ Y and for all
b ∈ R−1(S) such that b ∈ R+1(S), ∃(a, b) ∈ R′ with a ∈ S. Thus, we deduce that A ′′ = S ∪R−1(S) and
since (x, y) ∈ Y , X ⊆ R′′ ⊆ X ∪ Y . Moreover, it is obvious that for all b ∈ R−1(S) such that b ∈ R+1(S),
∃(a, b) ∈ R′′ with a ∈ S (since R′ ⊆ R′′). Hence, by Def. 36, (A ′′,R′′) is an explanation for Def, a
contradiction with the supposition that (A ′,R′) is a maximal explanation for Def.

Lemma. 8 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {a ∈ A | R−1(a) =
∅}. If ExplRein1(S) = (A ′,R′) is a maximal explanation for Rein1, then X ⊆ A ′.

Proof. (for Lemma 8) Suppose that (A ′,R′) is a maximal explanation for Rein1. Two cases must be
considered.

Assume firstly that (A \ S) ∩ X = ∅. In other words, S ∩ X = X. In this case, as (A ′,R′) is an
explanation for Rein1, by Def. 38, we have S ∩X ⊆ A ′ and so X ⊆ A ′.

Assume secondly that (A \ S) ∩ X ̸= ∅ and that X ̸⊆ A ′. Then, there exists x ∈ A such that
R−1(x) = ∅ (so x ∈ X), and x /∈ A ′. Consider the graph (A ′′,R′′) with A ′′ = A ′ ∪ {x} and R′′ = R′.
Obviously, (A ′,R′) is a strict subgraph of (A ′′,R′′). Since (A ′,R′) is an explanation for Rein1, by Def. 38,
S ∩ X ⊆ A ′ ⊆ X, and R′ = ∅. Thus, since x ∈ X, conditions 1 and 2 of Def. 38 are also satisfied for
(A ′′,R′′): S ∩X ⊆ A ′′ ⊆ X and R′′ = ∅. In addition, as by assumption (A \ S)∩X ̸= ∅, by Condition 3
of Def. 38 we know that ∃a ∈ (A \ S) ∩X such that a ∈ A ′, and so a ∈ A ′′; thus Condition 3 of Def. 38 is
also satisfied for (A ′′,R′′). Hence, by Def. 38, (A ′′,R′′) is an explanation for Rein1, a contradiction with
the supposition that (A ′,R′) is a maximal explanation for Rein1.

Lemma. 9 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(R+2(S))}. If ExplRein2(S) = (A ′,R′) is a maximal explanation for Rein2, then Y ⊆ R′.

Proof. (for Lemma 9) Suppose that (A ′,R′) is a maximal explanation for Rein2 and let X = {(b, c) ∈
R | b ∈ R−1(R+2(S)), c ∈ R+2(S)}. Two cases must be considered.

169

Assume firstly that for all b ∈ R−1(R+2(S)), b /∈ R+1(S). In other words, ∄(a, b) ∈ R such that
a ∈ S, b ∈ R−1(R+2(S)). So, we trivially have Y = ∅ ⊆ R′.

Assume secondly that for some b ∈ R−1(R+2(S)), b ∈ R+1(S). In this case, Y ̸= ∅. Assume additionally
that Y ̸⊆ R′. Then, there exists (x, y) ∈ R such that x ∈ S, y ∈ R−1(R+2(S)) and (x, y) /∈ R′. Consider
the graph (A ′′,R′′) with A ′′ = A ′ and R′′ = R′ ∪ {(x, y)}. Obviously, (A ′,R′) is a strict subgraph of
(A ′′,R′′). Since (A ′,R′) is an explanation for Rein2, by Def. 39, A ′ = S ∪ R−1(S), X ⊆ R′ ⊆ X ∪ Y
and for all b ∈ R−1(S) such that b ∈ R+1(S), ∃(a, b) ∈ R′ with a ∈ S. Thus, we deduce that A ′′ =
S ∪R+2(S) ∪R−1(R+2(S)) and since (x, y) ∈ Y , X ⊆ R′′ ⊆ X ∪ Y . Moreover, it is obvious that for all
b ∈ R−1(R+2(S)) such that b ∈ R+1(S), ∃(a, b) ∈ R′′ with a ∈ S (since R′ ⊆ R′′). Hence, by Def. 39,
(A ′′,R′′) is an explanation for Rein2, a contradiction with the supposition that (A ′,R′) is a maximal
explanation for Rein2.

Lemma. 10 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and consider X = {(a, b) ∈ R | a ∈
S, b /∈ S}. If ExplCA(S) = (A ′,R′) is a maximal explanation for CA, then X ⊆ R′.

Proof. (for Lemma 10) Suppose that (A ′,R′) is a maximal explanation for CA. Two cases must be consid-
ered.

Assume firstly that for all b /∈ S, b /∈ R+1(S). In other words, ∄(a, b) ∈ R such that a ∈ S, b /∈ S. So, we
trivially have X = ∅ ⊆ R′.

Assume secondly that for some b /∈ S, b ∈ R+1(S). In this case, X ̸= ∅. Assume additionally that
X ̸⊆ R′. Then, there exists (x, y) ∈ R such that x ∈ S, y /∈ S and (x, y) /∈ R′. Consider the graph
(A ′′,R′′) with A ′′ = A ′ and R′′ = R′ ∪ {(x, y)}. Obviously, (A ′,R′) is a strict subgraph of (A ′′,R′′).
Since (A ′,R′) is an explanation for CA, by Def. 41, A ′ = A , R′ ⊆ X and for all b /∈ S such that b ∈ R+1(S),
∃(a, b) ∈ R′ with a ∈ S. Thus, we deduce that A ′′ = A and since (x, y) ∈ X, R′′ ⊆ X. Moreover, it is
obvious that for all b /∈ S such that b ∈ R+1(S), ∃(a, b) ∈ R′′ with a ∈ S (since R′ ⊆ R′′). Hence, by
Def. 41, (A ′′,R′′) is an explanation for CA, a contradiction with the supposition that (A ′,R′) is a maximal
explanation for CA.

A.3.2 Algorithms to Compute Minimal Explanations
Theorem. 10 Let A = (A ,R) be an Argumentation Framework, S ⊆ A and π ∈ {Coh, Def, Rein1, Rein2,
CA}. Algorithm Algπ using A and S as inputs is sound and complete for the computation of a minimal
explanation for π.

Proof. (for Theorem 10)
• AlgCoh. It begins by computing (A ′,R′) = MaxExplCoh(S), a maximal explanation for Coh. So, in
particular, it is an explanation for Coh. Obviously (x, y)← choose(R′) implies that (x, y) ∈ R′. This would
mean that R′ \ {(x, y)} ⊂ R′, and thus that |R′ \ {(x, y)}| < |R′|. As such, lines 2-5 compute (A ′′,R′′)
such that A ′′ = A ′, R′′ ⊆ R′ (in cases R′ = ∅ and |R′| = 1, we have R′′ = R′) and it holds that |R′′| ≤ 1.
Let X = {(a, b) ∈ R | a, b ∈ S}. As (A ′,R′) is an explanation for Coh, by Def. 34, we know that A ′ = S
and R′ ⊆ X. But A ′′ = A ′, so A ′′ = S and R′′ ⊆ R′, so R′′ ⊆ X. In addition, if R′ = ∅, then X = ∅ by
Def. 34, but R′′ ⊆ X, so we have R′′ = ∅ as well. Thus, by Def. 34, (A ′′,R′′) is an explanation for Coh.
Moreover, we know that |R′′| ≤ 1, so by Lem. 1, (A ′′,R′′) is a minimal explanation for Coh. So AlgCoh is
sound.

By Lem. 1, we know that |R′′| ≤ 1. AlgCoh begins by computing (A ′,R′) = MaxExplCoh(S), a maximal
explanation for Coh. Since (A ′′,R′′) and (A ′,R′) are both explanations for Coh, by Def. 34, we know that
A ′′ = S = A ′. In addition, by Th. 9, we know that (A ′′,R′′) ⊆ (A ′,R′). Let X = {(a, b) ∈ R | a, b ∈ S}
and (A ′′′,R′′′) be the result computed by AlgCoh. In the case where |R′′| = 0, by Def. 34 we have X = ∅,
and thus, still by Def. 34, R′ = ∅. So, in this case, R′ = R′′. Lines 2-5 are ignored and AlgCoh computes
(A ′′′,R′′′) with (A ′′′,R′′′) = (A ′,R′) = (A ′′,R′′). In the case where |R′′| = 1, we denote R′′ = {(x0, y0)}.
Since (A ′′,R′′) ⊆ (A ′,R′), R′′ ⊆ R′ and so (x0, y0) ∈ R′. We denote R′ = {(x0, y0), (x1, y1), . . . , (xn, yn)}.
Obviously (x, y) ← choose(R′) implies that (x, y) ∈ R′. This would mean that R′ \ {(x, y)} ⊂ R′, and
thus that |R′ \ {(x, y)}| < |R′|. As such, lines 2-5 compute (A ′′′,R′′′) such that A ′′′ = A ′ = A ′′ and

170

R′′′ = R′ \∆ with |R′′′| = 1. As we already know that A ′′′ = A ′′, we only need to find a set ∆ such that
R′ \∆ = R′′. {(x1, y1), . . . , (xn, yn)} is such a set. So AlgCoh is complete.

• AlgDef. It begins by computing (A′, R′) = MaxExplDef(S), a maximal explanation for Def. So, in particular,
it is an explanation for Def. Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it
implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y), and thus that |R′−1(y) \
{(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A ′′,R′′) such that, A ′′ = A ′, for some y ∈ R−1(S) \ S,
R′′−1(y) ⊆ R′−1(y) (in cases R′−1(y) = ∅ and |R′−1(y)| = 1, we have R′′−1(y) = R′−1(y)) and it holds
that |R′′−1(y)| ≤ 1. Thus, lines 2-7 compute (A ′′,R′′) such that, A ′′ = A ′ and for all y ∈ R−1(S) \ S,
R′′−1(y) ⊆ R′−1(y) and |R′′−1(y)| ≤ 1. Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈
R | a ∈ S, b ∈ R−1(S)}. As (A ′,R′) is an explanation for Def, by Def. 36, we know that A ′ = S ∪R−1(S)
and X ⊆ R′ ⊆ X∪Y . But A ′′ = A ′, so A ′′ = S∪R−1(S), R′′ ⊆ R′, so R′′ ⊆ X∪Y , and as y ∈ R−1(S)\S
and (x, y) ∈ R′, we deduce that (x, y) ∈ Y \ X and so X ⊆ R′′. In addition, if R′−1(y) ∩ S = ∅, then
y /∈ R+1(S) by Def. 36, but R′′ ⊆ X ∪ Y , so we have R′′−1(y)∩ S = ∅ as well. Thus, by Def. 36, (A ′′,R′′)
is an explanation for Def. Moreover, we know that for all y ∈ R−1(S) \ S, |R′′−1(y)| ≤ 1, so by Lem. 2,
(A ′′,R′′) is a minimal explanation for Def. So AlgDef is sound.

By Lem. 2, we know that for all y ∈ R−1(S) \S, |R′′−1(y)| ≤ 1. AlgDef begins by computing (A ′,R′) =
MaxExplDef(S), a maximal explanation for Def. Since (A ′′,R′′) and (A ′,R′) are both explanations for Def,
by Def. 36, we know that A ′′ = S∪R−1(S) = A ′. In addition, by Th. 9, we know that (A ′′,R′′) ⊆ (A ′,R′).
Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S}, Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}, (A ′′′,R′′′) be the
result computed by AlgDef and consider y ∈ R−1(S) \ S. In the case where |R′′−1(y)| = 0, in particular,
∄(x, y) ∈ R′′ with x ∈ S. So, by Def. 36 we have y /∈ R+1(S), and thus, still by Def. 36, R′−1(y) = ∅. So,
in this case, R′−1(y) = R′′−1(y) and lines 3-6 are ignored. Thus, lines 3-6 compute (A ′′′,R′′′) such that
A ′′′ = A ′ = A ′′, R′′′ = R′ and so, R′′′−1(y) = R′′−1(y). In the case where |R′′−1(y)| = 1, we denote
R′′−1(y) = {x0}. Since (A ′′,R′′) ⊆ (A ′,R′), R′′ ⊆ R′, so (x0, y) ∈ R′ and in particular, x0 ∈ R′−1(y).
We denote R′−1(y) = {x0, x1, . . . , xn}. Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y). In
particular, it implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y), and thus that
|R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A ′′′,R′′′) such that A ′′′ = A ′ = A ′′ and
R′′′ = R′ \∆ with |R′′′−1(y)| = 1. So, we only need to find a set ∆ such that (R′ \∆)−1(y) = R′′−1(y).
{(x1, y), . . . , (xn, y)} is such a set. So, using ∆ = {(x1, y), . . . , (xn, y)} in the second case, lines 3-6 compute
(A ′′′,R′′′) such that A ′′′ = A ′′ and for some y ∈ R−1(S)\S, R′′′−1(y) = R′′−1(y). Thus, lines 2-7 compute
(A ′′′,R′′′) such that A ′′′ = A ′′ and for all y ∈ R−1(S) \ S, R′′′−1(y) = R′′−1(y). Since X ⊆ R′′′ ⊆ X ∪ Y
and for all y ∈ R−1(S) \S, R′′′−1(y) = R′′−1(y), we deduce that R′′′ = R′′ and so (A ′′′,R′′′) = (A ′′,R′′).
So AlgDef is complete.

• AlgRein1. It begins by computing (A ′,R′) = MaxExplRein1(S), a maximal explanation for Rein1. So, in
particular, it is an explanation for Rein1. Obviously x← choose(A ′ \S) implies that x ∈ A ′ \S. This would
mean that A ′ \ {x} ⊂ A ′, and thus that |A ′ \ {x}| < |A ′|. In addition, since x ∈ A ′ \S, |(A ′ \S) \ {x}| <
|A ′ \ S|. As such, lines 2-5 compute (A ′′,R′′) such that R′′ = R′, A ′′ ⊆ A ′ (in cases A ′ \ S = ∅ and
|A ′ \ S| = 1, we have A ′′ = A ′) and it holds that |A ′′ \ S| ≤ 1. Let X = {a ∈ A |R−1(a) = ∅}. As
(A ′,R′) is an explanation for Rein1, by Def. 38, we know that R′ = ∅ and S∩X ⊆ A ′ ⊆ X. But R′′ = R′,
so R′′ = ∅, A ′′ ⊆ A ′, so A ′′ ⊆ X and since x ∈ A ′ \ S, S ∩X ⊆ A ′′. In addition, if (A ′ \ S) ∩X = ∅,
then (A \ S) ∩X = ∅ by Def. 38, but A ′′ ⊆ X, so we have (A ′′ \ S) ∩X = ∅ as well. Thus, by Def. 38,
(A ′′,R′′) is an explanation for Rein1. Moreover, we know that |A ′′ \ S| ≤ 1, so by Lem. 3, (A ′′,R′′) is a
minimal explanation for Rein1. So AlgRein1 is sound.

By Lem. 3, we know that |A ′′ \ S| ≤ 1. AlgRein1 begins by computing (A ′,R′) = MaxExplRein1(S), a
maximal explanation for Rein1. Since (A ′′,R′′) and (A ′,R′) are both explanations for Rein1, by Def. 38,
we know that R′′ = ∅ = R′. In addition, by Th. 9, we know that (A ′′,R′′) ⊆ (A ′,R′). Let X = {a ∈
A | R−1(a) = ∅} and (A ′′′,R′′′) be the result computed by AlgRein1. In the case where |A ′′ \ S| = 0, by
Def. 38 we have (A \ S) ∩X = ∅, and thus, A ′ \ S = ∅. So, in this case, A ′ = S ∩X = A ′′. In addition,
lines 2-5 are ignored and AlgRein1 computes (A ′′′,R′′′) with (A ′′′,R′′′) = (A ′,R′) = (A ′′,R′′). In the case
where |A ′′ \ S| = 1, we denote A ′′ \ S = {x0}. Since (A ′′,R′′) ⊆ (A ′,R′), A ′′ ⊆ A ′ and so x0 ∈ A ′. We

171

denote A ′ \ S = {x0, x1, . . . , xn}. Obviously x← choose(A ′ \ S) implies that x ∈ A ′ \ S. This would mean
that A ′\{x} ⊂ A ′, and thus that |A ′\{x}| < |A ′|. In addition, since x ∈ A ′\S, |(A ′\S)\{x}| < |A ′\S|.
Thus, lines 2-5 compute (A ′′′,R′′′) such that R′′′ = R′ = R′′ and A ′′′ \S = (A ′ \S)\∆ with |A ′′′ \S| = 1.
As we already know that R′′′ = R′′, we only need to find a set ∆ such that (A ′ \ S) \ ∆ = A ′′ \ S.
{x1, . . . , xn} is such a set. So AlgRein1 is complete.

• AlgRein2. It begins by computing (A ′,R′) = MaxExplRein2(S), a maximal explanation for Rein2. So,
in particular, it is an explanation for Rein2. Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y).
In particular, it implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y), and thus
that |R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A ′′,R′′) such that, A ′′ = A ′, for
some y ∈ R−1(R+2(S)) \R+2(S), R′′−1(y) ⊆ R′−1(y) (in cases R′−1(y) = ∅ and |R′−1(y)| = 1, we have
R′′−1(y) = R′−1(y)) and it holds that |R′′−1(y)| ≤ 1. Thus, lines 2-7 compute (A ′′,R′′) such that, A ′′ = A ′

and for all y ∈ R−1(R+2(S)) \R+2(S), R′′−1(y) ⊆ R′−1(y) and |R′′−1(y)| ≤ 1. Let X = {(b, c) ∈ R | b ∈
R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. As (A ′,R′) is an explanation
for Rein2, by Def. 39, we know that A ′ = S∪R+2(S)∪R−1(R+2(S)) and X ⊆ R′ ⊆ X∪Y . But A ′′ = A ′,
so A ′′ = S ∪R+2(S) ∪R−1(R+2(S)), R′′ ⊆ R′, so R′′ ⊆ X ∪ Y , and as y ∈ R−1(R+2(S)) \R+2(S) and
x ∈ S, we deduce that (x, y) ∈ Y \ X and so X ⊆ R′′. In addition, if R′−1(y) = ∅, then y /∈ R+1(S) by
Def. 39, but R′′ ⊆ X ∪ Y , so we have R′′−1(y) = ∅ as well. Thus, by Def. 39, (A ′′,R′′) is an explanation
for Rein2. Moreover, we know that for all y ∈ R−1(S) \R+2(S), |R′′−1(y)| ≤ 1, so by Lem. 4, (A ′′,R′′) is
a minimal explanation for Rein2. So AlgRein2 is sound.

By Lem. 4, we know that for all y ∈ R−1(R+2(S)) \ R+2(S), |R′′−1(y)| ≤ 1. AlgRein2, begins by
computing (A ′,R′) = MaxExplRein2(S), a maximal explanation for Rein2. Since (A ′′,R′′) and (A ′,R′) are
both explanations for Rein2, by Def. 39, we know that A ′′ = S∪R+2(S)∪R−1(R+2(S)) = A ′. In addition,
by Th. 9, we know that (A ′′,R′′) ⊆ (A ′,R′). Let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)},
Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}, (A ′′′,R′′′) be the result computed by AlgRein2 and consider
y ∈ R−1(R+2(S)) \ R+2(S). In the case where |R′′−1(y)| = 0, ∄(x, y) ∈ R′′ with x ∈ S. So, by Def. 39
we have y /∈ R+1(S), and thus, still by Def. 39, R′−1(y) = ∅. So, in this case, R′−1(y) = R′′−1(y) and
lines 3-6 are ignored. Thus, lines 3-6 compute (A ′′′,R′′′) such that A ′′′ = A ′ = A ′′, R′′′ = R′ and so,
R′′′−1(y) = R′′−1(y). In the case where |R′′−1(y)| = 1, we denote R′′−1(y) = {x0}. Since (A ′′,R′′) ⊆
(A ′,R′), R′′ ⊆ R′, so x0 ∈ R′ and in particular, x0 ∈ R′−1(y). We denote R′−1(y) = {x0, x1, . . . , xn}.
Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it implies that (x, y) ∈ R′. This
would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y), and thus that |R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such,
lines 3-6 compute (A ′′′,R′′′) such that A ′′′ = A ′ = A ′′ and R′′′ = R′ \ ∆ with |R′′′−1(y)| = 1. So, we
only need to find a set ∆ such that (R′ \∆)−1(y) = R′′−1(y). {(x1, y), . . . , (xn, y)} is such a set. So, using
∆ = {(x1, y), . . . , (xn, y)} in the second case, lines 3-6 compute (A ′′′,R′′′) such that A ′′′ = A ′′ and for some
y ∈ R−1(R+2(S)) \R+2(S), R′′′−1(y) = R′′−1(y). As such, lines 2-7 thus compute (A ′′′,R′′′) such that
A ′′′ = A ′′ and for all y ∈ R−1(R+2(S))\R+2(S), R′′′−1(y) = R′′−1(y). Since X ⊆ R′′′ ⊆ X∪Y and for all
y ∈ R−1(R+2(S))\R+2(S), R′′′−1(y) = R′′−1(y), we deduce that R′′′ = R′′ and so (A ′′′,R′′′) = (A ′′,R′′).
So AlgRein2 is complete.

• AlgCA. It begins by computing (A ′,R′) = ExplCA(S), a maximal explanation for CA. So, in particular,
it is an explanation for CA. Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it
implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y), and thus that |R′−1(y) \
{(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A ′′,R′′) such that, A ′′ = A ′, for some y ∈ A \ S,
R′′−1(y) ⊆ R′−1(y) (in cases R′−1(y) = ∅ and |R′−1(y)| = 1, we have R′′−1(y) = R′−1(y)) and it
holds that |R′′−1(y)| ≤ 1. Thus, lines 2-7 compute (A ′′,R′′) such that, A ′′ = A ′ and for all y /∈ S,
R′′−1(y) ⊆ R′−1(y) and |R′′−1(y)| ≤ 1. Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. As (A ′,R′) is an explanation
for CA, by Def. 41, we know that A ′ = A and R′ ⊆ X. But A ′′ = A ′, so A ′′ = A and R′′ ⊆ R′,
so R′′ ⊆ X. In addition, if R′−1(y) ∩ S = ∅, then y /∈ R+1(S) by Def. 41, but R′′ ⊆ X, so we have
R′′−1(y) ∩ S = ∅ as well. Thus, by Def. 41, (A ′′,R′′) is an explanation for CA. Moreover, we know that
for all y /∈ S, |R′′−1(y)| ≤ 1, so by Lem. 5, (A ′′,R′′) is a minimal explanation for CA. So AlgCA is sound.

172

By Lem. 5, we know that for all y /∈ S, |R′′−1(y)| ≤ 1. AlgCA begins by computing (A ′,R′) = ExplCA(S),
a maximal explanation for CA. Since (A ′′,R′′) and (A ′,R′) are both explanations for CA, by Def. 41, we
know that A ′′ = A = A ′. In addition, by Th. 9, we know that (A ′′,R′′) ⊆ (A ′,R′). Let X = {(a, b) ∈
R | a ∈ S, b /∈ S}, (A ′′′,R′′′) be the result computed by AlgCA and consider y /∈ S. In the case where
|R′′−1(y)| = 0, in particular, ∄(x, y) ∈ R′′ with x ∈ S. So, by Def. 41 we have y /∈ R+1(S), and thus,
still by Def. 41, R′−1(y) = ∅. So, in this case, R′−1(y) = R′′−1(y) and lines 3-6 are ignored. Thus, lines
3-6 compute (A ′′′,R′′′) such that A ′′′ = A ′ = A ′′, R′′′ = R′ and so, R′′′−1(y) = R′′−1(y). In the case
where |R′′−1(y)| = 1, we denote R′′−1(y) = {x0}. Since (A ′′,R′′) ⊆ (A ′,R′), R′′ ⊆ R′, so x0 ∈ R′ and in
particular, x0 ∈ R′−1(y). We denote R′−1(y) = {x0, x1, . . . , xn}. Obviously x ← choose(R′−1(y)) implies
that x ∈ R′−1(y). In particular, it implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂
R′−1(y), and thus that |R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A ′′′,R′′′) such that
A ′′′ = A ′ = A ′′ and R′′′ = R′ \ ∆ with |R′′′−1(y)| = 1. So, we only need to find a set ∆ such that
(R′ \ ∆)−1(y) = R′′−1(y). {(x1, y), . . . , (xn, y)} is such a set. So, using ∆ = {(x1, y), . . . , (xn, y)} in the
second case, lines 3-6 compute (A ′′′,R′′′) such that A ′′′ = A ′′ and for some y /∈ S, R′′′−1(y) = R′′−1(y). As
such, lines 2-7 thus compute (A ′′′,R′′′) such that A ′′′ = A ′′ and for all y /∈ S, R′′′−1(y) = R′′−1(y). Since
R′′′ ⊆ X and for all y /∈ S, R′′′−1(y) = R′′−1(y), we deduce that R′′′ = R′′ and so (A ′′′,R′′′) = (A ′′,R′′).
So AlgCA is complete.

173

Appendix B

Proofs of Chapter 4

B.1 Conventions
We recall here the conventions used, especially when handling logical objects. Please note that, when doing
so, we handle mathematical objects at three different levels:

• The elements of the argumentation framework at hand (that is, elements of A ∪R ∪S)

• The elements of the logical language

• The elements of the domain of a first-order interpretation

As explained in Section 4.5.1, we take the letter denoting an element of A ∪R ∪S to be also used as
the individual constant representing this element in the logical language. However, we make a distinction
with the elements of the domain, and will thus use a dotted notation ė to indicate the element of the domain
that is mapped to the individual constant e (and thus to the element e of A ∪R ∪S).

When working with the logical language, letters x, y, z, u, v denote individual variables, while letters
e, e1, e2, e3, e4, e5 denote individual constants as well as elements of A ∪R ∪S .

B.2 Proofs for Section 4.5.1: A Generic Theory
Theorem. 11 Let A = (A ,R,S ,P, s, t) be an HO-EBAF-C. Let φ be a formula of LA. SA, UDCA |= φ
if and only if φ ∈ Th(H(SA)).

Proof. (for Theorem 11)

⇒ The “only if” direction is obvious.

⇐ For the “if” direction, by an absurdio ad reductio, we assume that φ ∈ Th(H(SA)) and SA, UDCA ̸|= φ
for a given φ.

Thus, there exists a model M = (DM , σM) of SA and UDCA such that M |= ¬φ. Following UDCA
and Axiom 4.1d, |DM | = |A ∪R∪S |. Moreover, following Axiom 4.1d we can consider the restriction
of σM over constants, so σM |A ∪R∪S : (A ∪R ∪S) → DM is injective, and so, bijective. Thus DM

can be viewed as an enumeration such that DM = {d1, . . . , dl} with σM (ei) = di. Since the restriction
of σM over constants is a bijection to the domain of M , we can use it as a naming function ·̄ (i.e., ei
is used in place of di and the language of the model M is considered as being only LA).

A Herbrand model H for LA can be built as follows:
First, the domain of H is {e1, . . . , en1

, en1+1, . . . en2
, en2+1, . . . en3

}. Since H is a Herbrand model,
σH(ei) = ei.

174

Let prove by induction that for any formula φ, H |= φ iff M |= φ.

First consider atomic formulas. Two cases are possible:

• Let us show that H |= (t1 = t2) iff M |= (t1 = t2). Since LA is the language of M and the
language of H, t1 and t2 can only be ei. So, (t1 = t2) amounts to (ei = ej) for some i and j.
Then, H |= (ei = ej) iff σH(ei) = σH(ej) iff ei = ej iff i = j iff di = dj iff σM (ei) = σM (ej) iff
M |= (ei = ej).

• Consider σH(P) such that σH(P)(ei, . . . , ej) = σM (P)(di, . . . , dj). Let us show that H |=
P (t1, . . . , tp) iffM |= P (t1, . . . , tp). Once again, each ti can only be a certain el. So, P (t1, t2, . . . , tp)
amounts to P (ei, ej , . . . , ek) for some i, j, . . . , and k.
Then, H |= P (ei, ej , . . . , ek) iff σH(P)(ei, ej , . . . , ek) = ⊤ iff σM (P)(di, dj , . . . , dk) = ⊤ iff
σM (P)(σM (ei), σM (ej), . . . , σM (ek)) = ⊤ iff M |= P (ei, ej , . . . , ek).

So, for any atomic formula A of LA, we have H |= A iff M |= A.

Secondly, consider more complex formulas (i.e., formulas that are not atomic). The case of the connec-
tives ¬ and ∨ is obvious. More interesting is the case of the quantifiers. On the one hand, H |= ∀x B(x)
iff H |= B(x) for any x ∈ A ∪R ∪S iff H |= B(xi) for i = 1, . . . , n. On the other hand, M |= ∀x B(x)
iff M |= B(d) for any d ∈ DM iff M |= B(ei) for i = 1, . . . , n3. Assume that, by the induction
assumption, H |= B(ei) iff M |= B(ei). So, H |= ∀x B(x) iff M |= ∀x B(x).

Hence, M being a model of SA, this implies that H is also a model of SA. Moreover, considering
φ ∈ Th(H(SA)), then H |= φ and thus M |= φ, a contradiction arises.

B.3 Proofs for Section 4.5.2: Simplification and specialisations
Lemma 13. Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R. Then,
every Herbrand model of Σ(A) that satisfies ∀x (Cand(x)→ Arg(x)∨Att(x)) is a model of ∀x(Cand(x)→
PrimaFacie(x)).

Proof. (for Lemma 13) Since I is a Herbrand model of (4.1) and because P = A ∪ R, I is a model of
∀x([Arg(x) ∨ Att(x)] → PrimaFacie(x)). Also, I is a model of ∀x (Cand(x) → Arg(x) ∨ Att(x)), hence I
is a model of ∀x(Cand(x)→ PrimaFacie(x)).

Proposition. 6 Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, every Herbrand model of Σ(A) that satisfies ∀x (Cand(x)→ Arg(x)∨Att(x)) is a model of (4.6) if
and only if it is a model of ∀x ∈ Cand (Supported(x)).

Proof. (for Proposition 6) We prove both directions of the equivalence.

⇒ Let I be a Herbrand model of, (4.1), (4.2), (4.3), of ∀x
(
Cand(x)→ Arg(x)∨Att(x)

)
, and of (4.6). By

lemma 13, I is a model of ∀x(Cand(x) → PrimaFacie(x)). That is, ∀x ∈ Cand (PrimaFacie(x)).
However, I is a Herbrand model of (4.6), i.e., ∀x ∈ Cand ([PrimaFacie(x) ∨ ∃α ∈ Sup(T (α, x) →
Activable(α))]→ Supported(x)).
Thus, we can conclude that I is a model of ∀x ∈ Cand (Supported(x)).

⇐ Let I be a Herbrand model of (4.1), (4.2), (4.3), of ∀x
(
Cand(x) → Arg(x) ∨ Att(x)

)
, and of ∀x ∈

Cand (Supported(x)). Therefore, (4.6) is true for I, i.e., I satisfies (4.6), as desired.

Proposition. 7 Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, every Herbrand model of Σ(A) and (4.6) that satisfies ∀x (Cand(x) → (Arg(x)∨Att(x))) is a model
of (4.7a), i.e., ∀x ∈ Cand

(
Supported(x) → [PrimaFacie(x) ∨ ∃α ∈ Sup (T (α, x) ∧ Activable(α))]

)
175

Proof. (for Proposition 7) Let I be a Herbrand model of (4.1), (4.2), (4.3), (4.6) and a model of of
∀x

(
Cand(x) → Arg(x) ∨ Att(x)

)
. By Proposition 6, I is a model of ∀x ∈ Cand (Supported(x)). For

I to be a model of (4.7a), we show that I is a model of ∀x ∈ Cand(PrimaFacie(x) ∨ ∃α ∈ Sup(T (α, x) ∧
Activable(α))). By lemma 13, I is a model of ∀x(Cand(x) → PrimaFacie(x)). Thus, I is a model of
∀x ∈ Cand(PrimaFacie(x) ∨ ∃α ∈ Sup(T (α, x) ∧Activable(α))), as desired.

Proposition. 8 Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, each Herbrand model of Σ(A) and (4.6) that satisfies ∀x (Cand(x) → Arg(x) ∨ Att(x)) is a model
of (4.7b) if and only if it is a model of ∀x ∈ Cand (¬Unsupportable(x)).

Proof. (for Proposition 8) We prove both directions of the equivalence.

⇒ Let I be a Herbrand model of (4.1), (4.2), (4.3), (4.6), of ∀x
(
Cand(x) ↔ Arg(x) ∨ Att(x)

)
and of

(4.7b).
By lemma 13, I is a model of ∀x(Cand(x) → PrimaFacie(x)). Moreover, I is a Herbrand model of
(4.7b), i.e.:
∀x ∈ Cand(Unsupportable(x) ↔ [¬PrimaFacie(x)∧ ∀α ∈ Sup(T (α, x) →

Desactivated(α))]).
Thus, we can conclude that I is a model of ∀x ∈ Cand (¬Unsupportable(x)).

⇐ Let I be a Herbrand model of (4.1), (4.2), (4.3), (4.6), of ∀x
(
Cand(x) ↔ Arg(x) ∨ Att(x)

)
and of

∀x ∈ Cand (¬Unsupportable(x)). For I to be a model of (4.7a), we show that I is not a model of
∀x ∈ Cand(¬PrimaFacie(x)∧∀α ∈ Sup(T (α, x)→ Desactivated(α))). By lemma 13, I is a model of
∀x(Cand(x) → PrimaFacie(x)). I is thus not a model of ∀x(Cand(x) → ¬PrimaFacie(x)), and so,
it is not a model of ∀x ∈ Cand(¬PrimaFacie(x)∧∀α ∈ Sup(T (α, x)→ Desactivated(α))), as desired.

Proposition. 9 Let (A , R, S , P, s, t) be an HO-EBAF-C and suppose that S = ∅ and P = A ∪R.
Then, every Herbrand model of Σ(A) that satisfies ∀x (Cand(x)→ Arg(x)∨Att(x)) is a model of (4.10b),
i.e., ∀x ∈ Cand

(
¬Supported(x)→ Unsupportable(x)

)
Proof. (for Proposition 9) Let I be a Herbrand model of (4.1), (4.2), (4.3) and a model of ∀x

(
Cand(x)↔

Arg(x)∨Att(x)
)
. By Proposition 6, I is a model of ∀x ∈ Cand (Supported(x)). Trivially, I is thus a model

of (4.10b).

B.4 Proofs for Section 4.5.3: Theory for AF
Proposition. 10 Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an AF and S ⊆ A be
a set of arguments.

1. S is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.13)}
such that S = SI ∪ ΓI ∪∆I .

2. S is admissible if and only if there exists a Herbrand model I of ΣDef(A)∪{(4.11), (4.12), (4.13)} such
that S = SI ∪ ΓI ∪∆I .

3. S is complete if and only if there exists a Herbrand model I of ΣRein(A)∪ {(4.11), (4.12), (4.13)} such
that S = SI ∪ ΓI ∪∆I .

4. S is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.13)} such that S = SI ∪ ΓI ∪∆I .

5. S is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.13)} such that S = SI ∪ ΓI ∪∆I .

176

6. S is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

Proof. (for Proposition 10)
The idea is to apply a succession of operations on the language used in this work to retrieve the language

that is used in the "Logical Description of a RAF" and "Case of AF" sections of [CL20]. In the following, when
we mention formulas from [CL20], we refer to formulas given in these particular sections. These operations
will then be applied successively on the formulas (4.4) and (4.5)AF to (4.10)AF in order to eventually yield
the formulas used in [CL20].

First operation (denoted Θ): rename correctly some of the predicates of the language as follows.

• Arg becomes Arg

• Att becomes Attack

• Sup becomes ⊥ (Sup has no corresponding predicate in [CL20] and in an AF, we have S = ∅)

• PrimaFacie becomes ⊤ (PrimaFacie has no corresponding predicate in the logical encoding proposed
by [CL20] for AF; moreover, in an AF, we consider that S = ∅ and P = A ∪R)

• Acceptable becomes Acceptable (we will see later that this predicate can be replaced by others)

• Selected(x) becomes Acc(x)

• Supported becomes ⊤ (Sup has no corresponding predicate in [CL20] and we can use proposition 6)

• Unsupportable becomes ⊥ (Sup has no corresponding predicate in [CL20] and we can use proposition 8)

• Unacceptable becomes NAcc

• Cand becomes ⊤ (Cand does not appear in formulas (4.4) and (4.5)AF to (4.10)AF and has no corre-
sponding predicate in [CL20])

• Activable becomes ⊤ (same reason as for Cand))

• Defeated becomes ⊤ (same reason as for Cand)

• Inhibited becomes ⊤ (same reason as for Cand)

• Desactivated becomes ⊤ (same reason as for Cand)

Second operation (denoted Π : replace the use of binary predicates S and T by the introduction of
functional terms sα and tα (justified by the presence of the axioms (4.11) and (4.12) in the theory).

• ∀a ∈ Arg(S(α, a)→ φ) becomes φ in which all occurences of a are replaced by sα

• ∃a ∈ Arg(S(α, a) ∧ φ) becomes φ in which all occurences of a are replaced by sα

• T (α, x) becomes tα = x

The idea is then to apply successively Θ and Π on formulas (4.4) and (4.5)AF to (4.10)AF so that we obtain
the formulas used in [CL20]. However, for some formulas, this result is not immediate. We will therefore use
different versions of these formulas (namely (4.5a)AF) on which to apply Θ and Π.

Concerning Formula (4.5a)AF, we change the subformula ∃x ∈ Arg
(
T (α, x) ∧ Unacceptable(x)

)
into

∀x ∈ Arg
(
T (α, x) → Unacceptable(x)

)
. This modification is only valid because in propositions 1 to 6 we

consider models of theories that contain (4.12). We then use standard modifications that preserve logical
equivalence to put the quantifier ∀x ∈ Arg at the beginning of the formula. It results in Formula (4.5a)Diff

which will be used instead of (4.5a)AF.

177

∀x ∈ Arg
(
∀α ∈ Att

(
[
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ T (α, x)

]
→ Unacceptable(x)

)) ((4.5a)Diff)

By applying successively Θ and Π on formulas (4.4), (4.5a)Diff, (4.5b)AF, (4.8)AF, (4.9)AF, (4.10)AF, we
obtain the following formula.

∀x(Acc(x)↔ (Acceptable(x) ∧ ⊤)) ((4.4)Shift)

The result of this previous formula is that the predicate Acceptable becomes equivalent to the predicate
Acc. In the following formulas we will replace the predicate Acceptable by the predicate Acc.

∀x ∈ Arg(∀α ∈ Attack([Acc(sα) ∧ (tα = x)]→ NAcc(x))) ((4.5a)ShiftA)

∀x ∈ Arg(NAcc(x)→ ¬Acc(x)) ((4.5b)ShiftA)

∀x ∈ Arg(Acc(x)→ ∀α ∈ Attack((tα = x)→ ∃β ∈ Attack((tβ = sα) ∧Acc(sβ)))) ((4.8)ShiftA)

∀x ∈ Arg(∀α ∈ Attack((tα = x)→ ∃β ∈ Attack((tβ = sα) ∧Acc(sβ)))→ Acc(x)) ((4.9)ShiftA)

∀x ∈ Arg(¬Acc(x)→ ∃α ∈ Attack(tα = x ∧Acc(sα))) ((4.10a)ShiftA)

These modifications are not enough to retrieve the language used for AF in [CL20]. Indeed, the formulas
used in [CL20] do not use universal and existential quantifiers, and instead use conjunctions and disjunctions
that range over some set of arguments. We thus need a way to transform our quantifiers into propositional
operators. This will be the role of a third operation (denoted Ω). The idea is to turn universal quantifiers
into conjunctions and existential quantifiers into disjunctions. The justification for doing so is that we are
interested in encoding finite argumentation frameworks and that in propositions 1 to 6 we consider Herbrand
models of theories that contain (4.2).

In addition, some of our quantifiers range over attacks, while the conjunctions and disjunctions in the
formulas of [CL20] only range over arguments. The idea here is to use the successor and predecessor functions
R+ and R−. We can then define Ω.

Third operation (Ω) : replace first order quantifiers by propositional operators.

• ∀x ∈ Arg (φ) becomes
∧

x∈A (φ)

• ∃x ∈ Arg (φ) becomes
∨

x∈A (φ)

• ∀α ∈ Attack (φ) such that tα = x occurs in φ becomes
∧

y∈R−(x)(φ) with all occurrences of tα in φ
replaced by x and all occurrences of sα in φ replaced by y

178

• ∃α ∈ Attack (φ) such that tα = x occurs in φ becomes
∨

y∈R−(x)(φ) with all occurrences of tα in φ
replaced by x and all occurrences of sα in φ replaced by y

By applying Ω on formulas (4.5)ShiftA, (4.8)ShiftA, (4.9)ShiftA, (4.10a)ShiftA, we obtain the following formulas.

∧
x∈A

(
∧

y∈R−(x)

([Acc(y) ∧ (x = x)]→ NAcc(x))) ((4.5a)ShiftB)

∧
x∈A

(NAcc(x)→ ¬Acc(x)) ((4.5b)ShiftB)

∧
x∈A

(Acc(x)→
∧

y∈R−(x)

((x = x)→
∨

z∈R−(y)

((y = y) ∧Acc(z)))) ((4.8)ShiftB)

∧
x∈A

(
∧

y∈R−(x)

((x = x)→
∨

z∈R−(y)

((y = y) ∧Acc(z)))→ Acc(x)) ((4.9)ShiftB)

∧
x∈A

(¬Acc(x)→
∨

y∈R−(x)

((x = x) ∧Acc(y))) ((4.10a)ShiftB)

We have the following immediate results (where “amounts” means “logically equivalent”).

• Formula (4.5a)ShiftB amounts to Formula (1) of [CL20]

• Formula (4.5b)ShiftB amounts to Formula (3) of [CL20]

• Formula (4.8)ShiftB amounts to Formula (11) of [CL20]

• Formula (4.9)ShiftB amounts to Formula (13) of [CL20]

• Formula (4.10a)ShiftB amounts to Formula (15) of [CL20]

The only missing formulas are those that are used to describe the graph of an argumentation framework,
namely, (5), (7) and (9) in [CL20]. Since in [CL20], the only constant symbols used are those representing
the arguments, formulas (4), (6) and (8) are ignored. Moreover, Formula (5) becomes ∀x(Arg(x)). They
should be retrieved using formulas (4.1), (4.2) and (4.3).

Let us consider formulas (4.1)Shift, (4.2)Shift and (4.3)Shift, which are the formulas obtained by applying Θ
on formulas (4.1), (4.2) and (4.3). We have the following results.

• Formulas (4.1a)Shift and (4.2b)Shift together amount to Formula (7) of [CL20]

• Formula (4.1d)Shift amounts to formulas (9) and (10) together of [CL20] (although (10) is not used in
[CL20], we still encompass (9))

The problem with Formula (5) lies in the fact that [CL20] uses only the arguments as constant symbols,
while we use arguments and attacks as such, even in the case of an AF. This makes our theory to fail satisfying
the formula ∀x(Arg(x)). However, we have seen with formulas (4.5a)ShiftB to (4.10a)ShiftB that, for a given
semantics, we can build from our initial theory another one in which the constant symbols representing the

179

attacks are not used at all (i.e., there is not even a single occurrence). We could then delete these constant
symbols (along with the formulas / subformulas and predicates (like S and T) that use them, and get the
same results. In this new theory, only the constant symbols representing the arguments remain, and thus
the axiom ∀x(Arg(x)) holds ((4.1), (4.2)).

In conclusion, since our theory is equivalent to the theory given in [CL20], Consequence 4.1 of [CL20]
and Proposition 10 are also equivalent. And so Proposition 10 holds.

B.5 Proofs for Section 4.5.4: Theory for AF-C
Proposition. 11 Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an AF-C and S ⊆ A
be a set of arguments.

1. S is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A)∪{(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

2. S is admissible if and only if there exists a Herbrand model I of ΣDef(A) ∪ {(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

3. S is complete if and only if there exists a Herbrand model I of ΣRein(A) ∪ {(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

4. S is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.12), (4.13)}
such that S = SI ∪ ΓI ∪∆I .

5. S is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.12), (4.13)}
such that S = SI ∪ ΓI ∪∆I .

6. S is stable if and only if there exists a Herbrand model I of ΣCA(A) ∪ {(4.12), (4.13)} such that
S = SI ∪ ΓI ∪∆I .

Proof. (for Proposition 11)

1. For conflict-freeness:

⇒ Consider a set S of A that is conflict-free. An Herbrand interpretation I of ΣCoh(A) ∪ {(4.12),
(4.13)} can be defined as follows:

– For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Sup(e)) = ⊤ iff
e ∈ S

– For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R ∪S and e2 ∈ s(e1)
– For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R ∪S and e2 ∈ t(e1)
– For any ė in DI , I(PrimaFacie(e)) = ⊤ iff e ∈P

– For any ė in DI , I(Supported(e)) = ⊤ and I(Unsupportable(e)) = ⊥
– For any ė in DI , I(Selected(e)) = ⊤ iff e ∈ S
– For any ė in DI , I(Acceptable(e)) = ⊤ iff I(Selected(e)) = ⊤
– For any ė in DI , I(Unacceptable(e)) = ⊤ iff I(Acceptable(e)) = ⊥
– For any ė in DI , I(Cand(e)) = ⊤ iff I(Arg(e)) = ⊤
– For any ė1 in DI , I(Activable(e1)) = ⊤ iff for any ė2 in DI such that I(Arg(e2)) = ⊤, if
I(S(e1, e2)) = ⊤ then I(Selected(e2)) = ⊤

– For any ė1 in DI , I(Defeated(e1)) = ⊤ iff there exists ė2 in DI such that I(Att(e2)) = ⊤,
I(T (e2, e1)) = ⊤ and I(Activable(e2)) = ⊤

– For any ė1 in DI , I(Inhibited(e1)) = ⊤ iff there exists ė2 in DI such that I(Arg(e2)) = ⊤,
I(S(e1, e2)) = ⊤ and I(Defeated(e2)) = ⊤

180

– For any ė in DI , I(Desactivated(e)) = ⊤ iff I(Inhibited(e)) = ⊤
With this definition, SI = S. It remains to prove that I is a model of ΣCoh(A)∪ {(4.12), (4.13)}.
By definition of I and because t : R ∪S 7→ A (A being an AF-C), I is a model of Axiom (4.12).
Moreover I is a model of formulas (4.13).
Let prove that I is a model of ΣCoh(A). Obviously I is a model of formulas (4.1), (4.2) and
(4.3). Since I is a model of formulas (4.13), we must prove that I is a model of formulas (4.4),
(4.5)AF and (4.6). By definition of I, formulas (4.4), (4.5b)AF and (4.6) are obviously satisfied.

Consider now Formula (4.5a)AF. Assume that I does not satisfy Formula (4.5a)AF. So there exists
ė2 ∈ DI such that, I(Att(e2)) = ⊤, for any ė3 ∈ DI such that I(S(e2, e3)) = ⊤, I(Selected(e3)) =
⊤, and for any ė1 ∈ DI such that I(Arg(e1)) = ⊤ and I(T (e2, e1)) = ⊤, I(Unacceptable(e1)) = ⊥.
By definition of I, this implies that, for any ė1 ∈ DI such that I(Arg(e1)) = ⊤ and I(T (e2, e1)) =
⊤, I(Acceptable(e1)) = ⊤, and so that I(Selected(e1)) = ⊤. Since I is a model of Axiom (4.12),
ė1 is unique. So there exists e2 ∈ R such that s(e2) ⊆ S and t(e2) = e1 with e1 ∈ S. That is in
contradiction with S conflict-free and thus Formula (4.5a)AF is satisfied by I.

⇐ Let I is a Herbrand model of ΣCoh(A)∪ {(4.12), (4.13)}. Assume that SI is not conflict-free. So,
there exists e2 ∈ R and e1 ∈ A such that s(e2) ⊆ SI , e1 ∈ SI , and t(e2) = e1. Following formulas
(4.1) that are satisfied by I, there exist ė2, ė1 ∈ DI such that I(Att(e2)) = ⊤ and I(Arg(e1)) = ⊤.
Moreover, since I is a model of Formula (4.3), this implies that I(T (e2, e1)) = ⊤ and that for any
ė3 ∈ DI such that e3 ∈ s(e2), I(S(e2, e3)) = ⊤. And, by the definition of SI , I(Selected(e1)) = ⊤
and for any ė3 ∈ DI such that I(Arg(e3)) = ⊤ and I(S(e2, e3)) = ⊤, I(Selected(e3)) = ⊤. Since
I is a model of Formula (4.4), I(Acceptable(e1)) = ⊤, and so, following Formula (4.5b)AF that is
satisfied by I, I(Unacceptable(e1)) = ⊥. Thus, there exists ė2 ∈ DI such that I(Att(e2)) = ⊤ and
I is a model of Formula ∀z ∈ Arg(S(e2, z) → Selected(z)). Since I is a model of Axiom (4.12),
I is also a model of the formula ∃x ∈ Arg(T (e2, x) ∧ ¬Unacceptable(x)), that is in contraction
with Formula (4.5a)AF, and with the assumption that I is a model of Σ(A). So SI is conflict-free.

2. For admissibility:

⇒ Consider a set S of A that is admissible. An Herbrand interpretation I of ΣDef(A) ∪ {(4.12),
(4.13)} can be defined as in the proof of Proposition 11.1.
With this definition, SI = S. It remains to prove that I is a model of formulas ΣDef(A)∪{(4.12),
(4.13)}.
As for the proof of Proposition 11.1, I is a model of formulas (4.12) and (4.13).
Let prove that I is a model of ΣDef(A). Obviously I is a model of formulas (4.1), (4.2) and (4.3).
Since I is a model of formulas (4.13), we must prove that I is a model of formulas (4.4), (4.5)AF,
(4.6), (4.7) and (4.8)AF. By definition of I, formulas (4.4), (4.5b)AF and (4.6) are obviously
satisfied. The proof that I also satisfies Formula (4.5a)AF is the same that the one given for
Proposition 11.1.

Consider now Formula (4.7a). Since A is an AF-C, S = ∅ and P = A ∪R. Moreover I is a
model of Σ(A), and we have seen previously that I satisfies Formula (4.6). And, by definition
of I, for any ė in DI , I(Cand(e)) = ⊤ iff I(Arg(e)) = ⊤, so, I is a model of the formula
∀x(Cand(x) ↔ Arg(x)). Thus, I is a model of the formula ∀x(Cand(x) → Arg(x)), and also
of the formula ∀x(Cand(x) → Arg(x) ∨ Att(x)). So, following Proposition 7, I is a model of
Formula (4.7a).

Consider Formula (4.7b). Let ė ∈ DI such that I(Cand(e)) = ⊤. By definition of I, for any
ė1 in DI , I(Cand(e1)) = ⊤ iff I(Arg(e1)) = ⊤, for any ė2 in DI , I(PrimaFacie(e2)) = ⊤ iff

181

e2 ∈ P and for any ė3 in DI , I(Unsupportable(e3) = ⊥. So I(Unsupportable(e)) = ⊥ and
I(Arg(e)) = ⊤. By definition of I, this implies that e ∈ A . But, since A is an AF-C, S = ∅ and
P = A ∪R. So, e ∈P and I(PrimaFacie(e)) = ⊤. Thus I is not a model of the formula:
¬PrimaFacie(e) ∧ ∀y ∈ Sup(T (y, e1)→ Desactivated(y)).
And so, I is a model of the formula:
Unsupportable(e)↔

[¬PrimaFacie(e) ∧ ∀y ∈ Sup(T (y, e1)→ Desactivated(y))].

Consider Formula (4.8)AF. Assume that I does not satisfy Formula (4.8)AF. So there exists
ė1 ∈ DI such that I(Arg(e1)) = ⊤, I(Acceptable(e1)) = ⊤ and I does not satisfy the formula ∀y ∈
Att(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Selected(v))))).
By definition of I, and since I(Acceptable(e1)) = ⊤, I(Selected(e1)) = ⊤. There also exists
ė2 ∈ DI such that I(Att(e2)) = ⊤ and I(T (e2, e1)) = ⊤ and for any ė3 ∈ DI with I(Arg(e3)) = ⊤,
I(S(e2, e3)) = ⊥ or for any ė4 ∈ DI with I(Att(e4)) = ⊤, I(T (e4, e3)) = ⊥ or there exists ė5 ∈ DI

such that I(Arg(e5)) = ⊤, I(S(e4, e5)) = ⊤ and I(Selected(e5)) = ⊥. By definition of I and
since I is a model of Axiom (4.12), e1 ∈ A , e1 ∈ S and there exists e2 ∈ R such that t(e2) = e1,
and for any e3 ∈ A with e3 ∈ s(e2), for any e4 ∈ R with t(e4) = e3, there exists e5 ∈ A such
that e5 ∈ s(e4) and e5 /∈ SI . Thus there exist e1 ∈ S and e2 ∈ R such that t(e2) = e1 and there
does not exist e4 ∈ R with t(e4) ∈ s(e2) and s(e4) ⊆ S. So, e1 is not acceptable wrt S. That
contradicts the assumption that S is admissible.

⇐ Let I be a Herbrand model of ΣDef(A)∪{(4.12), (4.13)}. We must prove that SI is an admissible
set. Following the proof of Proposition 11.1, we know that SI is conflict-free. It remains to
prove that ∀x ∈ SI , x is acceptable wrt SI . Let e1 ∈ SI . Since SI ⊆ A and I is a model of
formulas (4.1), e1 ∈ A and there exists ė1 ∈ DI such that I(Arg(e1)) = ⊤. By definition of
SI , I(Selected(e1)) = ⊤, so, since I is a model of Formula (4.4), I(Acceptable(e1)) = ⊤ and
I(Supported(e1)) = ⊤. Since I is a model of Formula (4.8)AF, I satisfies the formula ∀y ∈
Att(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Selected(v))))).
Since I is a model of formulas (4.1), (4.2) and (4.3), for any e2 ∈ R such that e1 ∈ t(e2), there
exists e3 ∈ A with e3 ∈ s(e2), and there exists e4 ∈ R such that e3 ∈ t(e4) and for any e5 ∈ A
with e5 ∈ s(e4), e5 ∈ SI . Since I is a model of Axiom (4.12), e1 and e3 are unique. So for any
e2 ∈ R such that t(e2) = e1, there exists e3 ∈ A with e3 ∈ s(e2) and there exists e4 ∈ R such
that t(e4) = e3 and s(e4) ⊆ SI . This means that for any e2 ∈ R such that t(e2) = e1, there exists
e4 ∈ R such that t(e4) ∈ s(e2) and s(e4) ⊆ SI . So, e1 is acceptable wrt SI and so SI is admissible.

3. For the complete semantics:

⇒ Consider a complete extension S of A. An Herbrand interpretation I of ΣRein(A)∪{(4.12), (4.13)}
can be defined as follows:

– For any ė1 in DI , I(Acceptable(e1)) = ⊤ iff ∀e2 ∈ R such that t(e2) = e1, ∃e3 ∈ R with
t(e3) ∈ s(e2) and s(e3) ⊆ S

– For the other predicates, I is defined as in the proof of Proposition 11.2.
With this definition, SI = S. It remains to prove that I is a model of ΣRein(A)∪{(4.12), (4.13)}.
As for the proof of Proposition 11.1, I is a model of formulas (4.12) and (4.13).
Let prove that I is a model of ΣRein(A). Obviously, I is a model of formulas (4.1), (4.2) and (4.3).
Since I is a model of formulas (4.13), we must prove that I is a model of formulas (4.4), (4.5)AF,
(4.6), (4.7), (4.8)AF and (4.9)AF. By definition of I, Formula (4.5b)AF is satisfied by I. The proofs
that I satisfies formulas (4.5a)AF, (4.6) and (4.7) are identical to the ones given in the proof of
Proposition 11.2.

Consider Formula (4.4).

182

⇒ Let ė1 ∈ DI such that I(Selected(e1)) = ⊤. By definition of I, I(Supported(e1)) = ⊤ and
e1 ∈ S. But, S is a complete extension, so S is admissible and for any x such that x is
acceptable wrt S, x ∈ S; this implies that e1 is acceptable wrt S. So ∀e2 ∈ R such that
t(e2) = e1, ∃e3 ∈ R such that t(e3) ∈ s(e2) and s(e3) ⊆ S. Thus, I(Acceptable(e1)) = ⊤.

⇐ Let ė1 ∈ DI such that I(Supported(e1)) = ⊤ and I(Acceptable(e1)) = ⊤. By definition of I,
∀e2 ∈ R such that t(e2) = e1, ∃e3 ∈ R such that t(e3) ∈ s(e2) and s(e3) ⊆ S. This implies
that e1 is acceptable wrt S. But, S is a complete extension, so S is admissible and for any x
such that x is acceptable wrt S, x ∈ S. Thus e1 ∈ S, and so I(Selected(e1)) = ⊤.

Consider Formula (4.8)AF. Assume that I does not satisfy Formula (4.8)AF. So there exists
ė1 ∈ DI such that I(Arg(e1)) = ⊤, I(Acceptable(e1)) = ⊤ and I does not satisfy the formula ∀y ∈
Att(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Selected(v))))).
By definition of I, ∀e2 ∈ R such that t(e2) = e1, ∃e4 ∈ R with t(e4) ∈ s(e2) and s(e4) ⊆ S. Hence,
there also exists ė2 ∈ DI such that I(Att(e2)) = ⊤ and I(T (e2, e1)) = ⊤ and for any ė3 ∈ DI

with I(Arg(e3)) = ⊤, I(S(e2, e3)) = ⊥ or for any ė4 ∈ DI with I(Att(e4)) = ⊤, I(T (e4, e3)) = ⊥
or there exists ė5 ∈ DI such that I(Arg(e5)) = ⊤, I(S(e4, e5)) = ⊤ and I(Selected(e5)) = ⊥. By
definition of I and because I is a model of Axiom (4.12), there exists e2 ∈ R such that t(e2) = e1,
and for any e3 ∈ A with e3 ∈ s(e2), for any e4 ∈ R with t(e4) = e3, there exists e5 ∈ A such
that e5 ∈ s(e4) and e5 /∈ SI . So there exists e2 ∈ R such that t(e2) = e1 and there does not
exist e4 ∈ R with t(e4) ∈ s(e2) and s(e4) ⊆ S. This contradicts the fact that ∀e2 ∈ R such that
t(e2) = e1, ∃e4 ∈ R with t(e4) ∈ s(e2) and s(e4) ⊆ S.

Consider Formula (4.9)AF. Let ė1 ∈ DI such that I(Arg(e1)) = ⊤ and I satisfies the formula ∀y ∈
Att(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Selected(v))))).
Let show that I(Acceptable(e1)) = ⊤. By definition of I, e1 ∈ A . Moreover, as for the ⇐ part
of the proof of Proposition 11.2, one can deduce that for any e2 ∈ R such that t(e2) = e1, there
exists e3 ∈ R such that t(e3) ∈ s(e2) and s(e3) ⊆ SI . So I(Acceptable(e1)) = ⊤.

⇐ Let I be a Herbrand model of ΣRein(A)∪{(4.12), (4.13)}. Following the proof of Proposition 11.2,
we know that SI is admissible. So it remains to prove that for any x such that x is acceptable wrt
SI , x ∈ SI .

Consider e1 ∈ A such that e1 is acceptable wrt SI and let prove that I(Selected(e1)) = ⊤.
Since I is a model of Formula (4.4), it is enough to show that I(Supported(e1)) = ⊤ and
I(Acceptable(e1)) = ⊤. Since e1 is acceptable wrt sI , for any e2 ∈ R such that t(e2) = e1,
there exists e4 ∈ R such that t(e4) ∈ s(e2) and s(e4) ⊆ SI . Moreover, since I is a model of
formulas (4.1), we have I(Arg(e1)) = ⊤.

Let show that I(Supported(e1)) = ⊤. By definition of I, I is a model of Σ(A). Moreover,
since I is a model of formulas (4.13), I is also a model of ∀x(Cand(x) ↔ Arg(x)). This implies
that I is a model of the formula ∀x(Cand(x) → Arg(x)), and also a model of the formula
∀x(Cand(x) → Arg(x) ∨ Att(x)). Following Proposition 6, I is so a model of the formula ∀x ∈
Cand(Supported(x)). But, we know that I(Arg(e1)) = ⊤, so, since I is a model of ∀x(Cand(x)↔
Arg(x)), I(Cand(e1)) = ⊤. Consequently, I(Supported(e1)) = ⊤.

Let show that I(Acceptable(e1)) = ⊤. We know that for any e2 ∈ R such that t(e2) = e1, there
exists e4 ∈ R such that t(e4) ∈ s(e2) and s(e4) ⊆ SI . So for any e2 ∈ R such that t(e2) = e1, there
exists e3 ∈ A such that e3 ∈ s(e2) and there exists e4 ∈ R such that t(e4) = e3 and for any e5 ∈ A
with e5 ∈ s(e4), e5 ∈ SI . Since I is a model of formulas (4.1), (4.2) and (4.3), for any ė2 ∈ DI

such that I(Att(e2)) = ⊤ and I(T (e2, e1)) = ⊤, there exists ė3 ∈ DI such that I(Arg(e3)) = ⊤

183

and I(S(e2, e3)) = ⊤, and there exists ė4 ∈ DI such that I(Att(e4)) = ⊤, I(T (e4, e3)) = ⊤
and for any ė5 ∈ DI with I(Arg(e5)) = ⊤ and I(S(e4, e5)) = ⊤, I(Selected(e5)) = ⊤. Thus,
I is a model of the formula ∀y ∈ Att(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈
Arg(S(u, v)→ Selected(v))))). Following Formula (4.9)AF that is satisfied by I, one can conclude
that I(Acceptable(e1)) = ⊤.

4. For the preferred semantics: Let I be an interpretation of a set of formulas Σ. It is obvious to see that
I is a ⊆-maximal model of Σ iff SI is ⊆-maximal among the extensions SJ , where J is a model of Σ.
Considering Σ = ΣDef(A) ∪ {(4.12), (4.13)}, one can see that the preferred extensions correspond to
the extensions SI where I is a ⊆-maximal model of ΣDef(A) ∪ {(4.12), (4.13)}.

5. For the grounded semantics: Let I be an interpretation of a set of formulas Σ. It is obvious to see that
I is a ⊆-minimal model of Σ iff SI is ⊆-minimal among the extensions SJ , where J is a model of Σ. By
definition, the grounded extension is the complete extension that is ⊆-minimal. This implies that the
grounded extension is the extension SI where I is a ⊆-minimal model of ΣRein(A) ∪ {(4.12), (4.13)}.

6. For the stable semantics:

⇒ Consider a stable extension S of A. An Herbrand interpretation I of ΣCA(A) ∪ {(4.12), (4.13)}
can be defined as in the proof of Proposition 11.1.
With this definition, SI = S. Let prove that I is a model of formulas ΣCA(A) ∪ {(4.12), (4.13)}.
As for the proof of Proposition 11.1, I is a model of formulas (4.12) and (4.13).
Let show that I is a model of ΣCA(A). Obviously I is a model of formulas (4.1), (4.2) and (4.3).
Since I is a model of formulas (4.13), let prove that I is a model of formulas (4.4), (4.5)AF, (4.6),
(4.7) and (4.10)AF. By definition of I, formulas (4.4), (4.5b)AF and (4.6) are obviously satisfied
by I. Moreover, the proofs that I satisfies formulas (4.5a)AF and (4.7) are identical to those given
in the proof of Proposition 11.2.

Consider Formula (4.10a)AF. Let ė1 ∈ DI such that I(Arg(e1)) = ⊤ and I(Acceptable(e1)) = ⊥.
By definition of I, I(Selected(e1)) = ⊥ and so e1 /∈ S. But S is a stable extension, so S attacks
e1. Thus, there exists e2 ∈ R such that t(e2) = e1 and s(e2) ⊆ S. So there exists e2 ∈ R such
that t(e2) = e1 and for any e3 ∈ A such that e3 ∈ s(e2), e3 ∈ S. Then, since I is a model of
formulas (4.1), (4.2) and (4.3), there exists ė2 ∈ DI with I(Att(e2)) = ⊤ and I(T (e2, e1)) = ⊤
and for any ė3 ∈ DI such that I(Arg(e3)) = ⊤ and I(S(e2, e3)) = ⊤, I(Selected(e3)) = ⊤. So, I
is a model of the formula ∃y ∈ Att(T (y, e1)∧∀z ∈ Att(S(y, z)→ Selected(z))). This implies that
I is a model of Formula (4.10a)AF.

Consider Formula (4.10b). Since A is an AF-C, S = ∅ and P = A ∪R. Moreover I is a model of
Σ(A). And by definition of I, for any ė in DI , I(Cand(e)) = ⊤ iff I(Arg(e)) = ⊤, so I is a model
of the formula ∀x(Cand(x)↔ Arg(x)). Thus I is a model of the formula ∀x(Cand(x)→ Arg(x)),
and also a model of the formula ∀x(Cand(x) → Arg(x) ∨ Att(x)). Following Proposition 9, I is
a model of Formula (4.10b).

⇐ Let I be a Herbrand model of ΣCA(A)∪{(4.12), (4.13)}. Following the proof of Proposition 11.1,
we know that SI is conflict-free. It remains to prove that SI attacks any x ∈ A \ SI . Let
e1 ∈ A \ SI . Since I is a model of formulas (4.1), there exists ė1 ∈ DI such that I(Arg(e1)) =
⊤. Moreover, by definition of SI , I(Selected(e1)) = ⊥. Since I is a model of Formula (4.4),
I(Acceptable(e1)) = ⊥. Following Formula (4.10a)AF that is satisfied by I, I is a model of the
formula ∃y ∈ Att(T (y, a) ∧ ∀z ∈ Arg(S(y, z) → Selected(z))). Thus, there exists ė2 ∈ DI with
I(Att(e2)) = ⊤ and I(T (e2, e1)) = ⊤ and for any ė3 ∈ DI such that I(Arg(e3)) = ⊤ and
I(S(e2, e3)) = ⊤, I(Selected(b)) = ⊤. Since I is a model of formulas (4.1), (4.2) and (4.3), this
implies that there exists e2 ∈ R such that t(e2) = e1 and for any e3 ∈ A such that e3 ∈ s(e2),
e3 ∈ SI . So there exists e2 ∈ R such that t(e2) = e1 and s(e2) ⊆ SI , and so, SI attacks e1.

184

B.6 Proofs for Section 4.5.5: Theory for HO-AF
Proposition. 12 Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an HO-AF and
U = (S,Γ,∆) be a structure.

1. U is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.15)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

2. U is admissible if and only if there exists a Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12), (4.15)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

3. U is complete if and only if there exists a Herbrand model I of ΣRein(A)∪{(4.11), (4.12), (4.15)} such
that S = SI , Γ = ΓI and ∆ = ∆I .

4. U is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.15)} such that S = SI , Γ = ΓI and ∆ = ∆I .

5. U is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.15)} such that S = SI , Γ = ΓI and ∆ = ∆I .

6. U is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.15)} such that
S = SI , Γ = ΓI and ∆ = ∆I .

Proof. (for Proposition 12) The idea is to apply a succession of operations on the language used in this work
to retrieve the language that is used in the "Logical Description of a RAF" and "Logical Formalization of
RAF semantics" sections of [CL20]. In the following, when we mention formulas from [CL20], we refer to
formulas given in these particular sections. These operations will then be applied successively to the formulas
(4.4) and (4.5)HOAF to (4.10)HOAF in order to eventually yield the formulas used in [CL20].

First operation (denoted Θ): correctly rename some of the predicates of the language as follows.

• Arg becomes Arg

• Att becomes Attack

• Sup becomes ⊥ (Sup has no corresponding predicate in [CL20] and in an HO-AF, we have S = ∅)

• PrimaFacie becomes ⊤ (PrimaFacie has no corresponding predicate in the logical encoding proposed
by [CL20] for a RAF; moreover, in an HO-AF, we consider that S = ∅ and P = A ∪R)

• Acceptable becomes Acceptable (we will see later that this predicate can be replaced by others)

• Supported becomes ⊤ (Sup has no corresponding predicate in [CL20] and we can use Proposition 6)

• Unsupportable becomes⊥ (Sup has no corresponding predicate in [CL20] and we can use Proposition 8)

• Unacceptable becomes NAcc

• Cand becomes ⊤ (Cand does not appear in formulas (4.4) and (4.5)HOAF to (4.10)HOAF and has no
corresponding predicate in [CL20])

• Activable becomes ⊤ (same reason as for Cand))

• Defeated becomes ⊤ (same reason as for Cand)

• Inhibited becomes ⊤ (same reason as for Cand)

185

• Desactivated becomes ⊤ (same reason as for Cand)

Once this operation is applied, we separate formulas Θ((4.5)HOAF) to Θ((4.10)HOAF) in two groups of
subformulas. In each formula, exactly one quantifier occurs that is bounded to Arg∪Attack. The separation
consists of putting in the first group the formulas with this quantifier bounded to only Arg (group A) and
in the second group the formulas with this quantifier bounded to Attack (group B).

Second operations (denoted Λ): correctly rename the missing unary predicates of the language as follows.

• Selected(x) becomes Acc(x) when Arg(x) is true

• Selected(x) becomes V al(x) when Attack(x) is true

Third operation (denoted Π): replace the use of binary predicates S and T by the introduction of
functional terms sα and tα (justified by the presence of the axioms (4.11) and (4.12) in the theory).

• ∀a ∈ Arg(S(α, a)→ φ) becomes φ in which all occurences of a are replaced by sα

• ∃a ∈ Arg(S(α, a) ∧ φ) becomes φ in which all occurences of a are replaced by sα

• T (α, x) becomes tα = x

The idea is then to apply successively Θ, Λ and Π on formulas (4.4) and (4.5)HOAF to (4.10)HOAF so that
we obtain the formulas used in [CL20]. However, for some formulas, this result is not immediate. We will
therefore use different versions of these formulas (namely (4.4), (4.5a)HOAF and (4.8)HOAF) on which to apply
Θ, Λ and Π.

Concerning Formula (4.4), we transform the universal quantifier into a quantifier restricted to Arg and
Att. This addition is correct because in Proposition 12 we consider models of theories that contain (4.4),
(4.1) and (4.2), and we consider the case of HO-AF in which we have S = ∅. Thus, instead of (4.4), we
consider Formula (4.4)Diff.

∀x ∈ (Arg ∪Att)(Selected(x)↔ (Acceptable(x) ∧ Supported(x))) ((4.4)Diff)

Concerning Formula (4.5a)HOAF, we change the subformula ∃x ∈ (Arg∪Att)
(
T (α, x)∧Unacceptable(x)

)
into ∀x ∈ (Arg ∪Att)

(
T (α, x)→ Unacceptable(x)

)
. This modification is valid because in Proposition 12 we

consider models of theories that contain (4.12). We then use standard modifications that preserve logical
equivalence to put the quantifier ∀x ∈ (Arg ∪Att) at the beginning of the formula. This results in Formula
(4.5a)Diff which will be used instead of (4.5a)HOAF.

∀x ∈ (Arg ∪Att)
(
∀α ∈ Att

(
[
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α) ∧ T (α, x)

]
→

Unacceptable(x)
)) ((4.5a)Diff)

Concerning Formula (4.8)HOAF, we use the same standard modifications that preserve logical equivalence
to put the quantifier ∀α ∈ Att at the beginning of the formula. This results in Formula (4.8)Diff which will
be used instead of (4.8)HOAF.

186

∀α ∈ Att

(
∀x ∈ (Arg ∪Att)

(
[Acceptable(x) ∧ T (α, x)]→

∃β ∈ Att
([
∃a ∈ Arg

(
S(α, a) ∧ T (β, a)

)
∨ T (β, α)

]
∧

[
∀b ∈ Arg

(
S(β, b)→ Selected(b)

)
∧ Selected(β)

])))
((4.8)Diff)

By applying successively Θ, Λ and Π on formulas (4.4)Diff, (4.5a)Diff, (4.5b)HOAF, (4.8)Diff, (4.9)HOAF,
(4.10)HOAF, we obtain the following formulas.

∀x ∈ Arg(Acc(x)↔ (Acceptable(x) ∧ ⊤)) ((4.4)ShiftA)

∀x ∈ Attack(V al(x)↔ (Acceptable(x) ∧ ⊤)) ((4.4)ShiftB)

The result of these two previous formulas is that the predicate Acceptable becomes equivalent to the
predicate Acc for arguments and to the predicate V al for attacks. Thus, we obtain:

∀x ∈ Arg(∀α ∈ Attack(
[Acc(sα) ∧ V al(α) ∧ (tα = x)]→ NAcc(x)))

((4.5a)ShiftA)

∀x ∈ Attack(∀α ∈ Attack(
[Acc(sα) ∧ V al(α) ∧ (tα = x)]→ NAcc(x)))

((4.5a)ShiftB)

∀x ∈ Arg(NAcc(x)→ ¬Acc(x)) ((4.5b)ShiftA)

∀x ∈ Attack(NAcc(x)→ ¬V al(x)) ((4.5b)ShiftB)

∀α ∈ Attack(∀x ∈ Arg([Acc(x) ∧ (tα = x)]→
∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧Acc(sβ) ∧ V al(β))

))

((4.8)ShiftA)

∀α ∈ Attack(∀x ∈ Attack([V al(x) ∧ (tα = x)]→
∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧Acc(sβ) ∧ V al(β))

))

((4.8)ShiftB)

∀x ∈ Arg(∀α ∈ Attack((tα = x)→
∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧Acc(sβ) ∧ V al(β)))

→ Acc(x))

((4.9)ShiftA)

187

∀x ∈ Attack(∀α ∈ Attack((tα = x)→
∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧Acc(sβ) ∧ V al(β)))

→ V al(x))

((4.9)ShiftB)

∀x ∈ Arg(¬Acc(x)→ ∃α ∈ Attack(tα = x ∧Acc(sα) ∧ V al(α))) ((4.10a)ShiftA)

∀x ∈ Attack(¬V al(x)→ ∃α ∈ Attack(tα = x ∧Acc(sα) ∧ V al(α))) ((4.10a)ShiftB)

We have the following immediate results (where “amounts” means “logically equivalent”).

• Formula (4.5a)ShiftA amounts to Formula (2) of [CL20]

• Formulas (4.5a)ShiftB and (4.5b)ShiftB together amount to Formula (1) of [CL20]

• Formula (4.5b)ShiftA amounts to Formula (3) of [CL20]

• Formula (4.8)ShiftA amounts to Formula (11) of [CL20]

• Formula (4.8)ShiftB amounts to Formula (12) of [CL20]

• Formula (4.9)ShiftA amounts to Formula (13) of [CL20]

• Formula (4.9)ShiftB amounts to Formula (14) of [CL20]

• Formula (4.10a)ShiftA amounts to Formula (15) of [CL20]

• Formula (4.10a)ShiftB amounts to Formula (16) of [CL20]

The only missing formulas are those that are used to describe the graph of an argumentation framework,
namely (4), (5), (6), (7), (8), (9) and (10) in [CL20]. They should be retrieved using formulas (4.1), (4.2)
and (4.3). Here are the details.

Let us consider formulas (4.1)Shift, (4.2)Shift and (4.3)Shift, which are the formulas obtained by applying Θ
on formulas (4.1), (4.2) and (4.3). We have the following results.

• Formula (4.2a)Shift amounts to Formula (5) of [CL20]

• Formulas (4.1a)Shift and (4.2b)Shift together amount to Formula (7) of [CL20]

• Formulas (4.1b)Shift and (4.2c)Shift together amount to Formula (8) of [CL20]

• Formula (4.1d)Shift amounts to formulas (9) and (10) together of [CL20]

Since in Proposition 12 we consider models of theories that contain (4.11) and (4.12), it is obvious that
(4.3) can be rewritten as follows.

for all α ∈ R with s(α) = a and t(α) = b, S(α, a) ∧ T (α, b) ((4.3)bis)

Modifying (4.3)bis by replacing the predicates S and T by the functional terms sα and tα allows us to
retrieve Formula (6) of [CL20].

188

To retrieve Formula (4) of [CL20], we use formulas (4.1a) and (4.1b) of our approach. The first issue is that
formulas (4.1a) and (4.1b) range over some elements of the argumentation framework, while Formula (4) of
[CL20] is universal. However, by formulas (4.2) that are satisfied by the models considered in Proposition 12
and the fact that we consider Herbrand models, the sets over which formulas (4.1a) and (4.1b) range form a
partition of the model’s domain. Thus, we can gather formulas (4.1a) and (4.1b) into a single formula that
uses an unbounded universal quantifier, as follows.

∀x([Arg(x) ∧ ¬Att(x) ∧ ¬Sup(x)] ∨ [¬Arg(x) ∧Att(x) ∧ ¬Sup(x)]) ((4.1)ab)

One can observe that Formula (4) of [CL20] is the closure of a Formula in CNF (provided we turn the
implication into a disjunction) while Formula (4.1)ab is the closure of a formula in DNF. Let us then compute
the CNF of the formula of which (4.1)ab is the closure. By applying the distributivity property, we obtain
the following formula.

∀x([Arg(x) ∨Att(x)] ∧ [Arg(x) ∨ ¬Sup(x)]∧
[¬Att(x) ∨ ¬Arg(x)] ∧ [¬Att(x) ∨ ¬Sup(x)]∧

[¬Sup(x) ∨ ¬Arg(x)] ∧ [¬Sup(x) ∨Att(x)] ∧ ¬Sup(x))

The previous formula can be simplified by removing the conjuncts that contain two terms amongst which
is ¬Sup(x), because the last conjunct consists of ¬Sup(x). This gives the following formula.

∀x([Arg(x) ∨Att(x)] ∧ [¬Att(x) ∨ ¬Arg(x)] ∧ ¬Sup(x))

If we apply Θ to the previous formula, we obtain formulas (4) and (5) of [CL20] (¬Sup(x) becomes ⊤
and can thus be removed).

In conclusion, since our theory is equivalent to the theory given in [CL20], Proposition 4.1 of [CL20] and
Proposition 12 are also equivalent. And so Proposition 12 holds.

B.7 Proofs for Section 4.5.6: Theory for EBAF
In this section, some additional definitions, propositions and lemmas are useful in order to prove the main
proposition concerning the translation of EBAFs.

B.7.1 Additional Definitions
These definitions are another, more set-theoretic, way to define the usual semantics for EBAF as given in
Section 2.3.3. We prefer to use these definitions as we find them easier to handle. We first prove that they
are indeed equivalent to the original definitions, and then proceed to use them in order to prove the main
result of this section, namely Proposition 13.

Note that some of these definitions are those from Section 4.4, which have been modified to correspond to
EBAF using the language operations (†) and (‡). There are also new definitions that are not from Section 4.4
but that are convenient when using a set-theoretic approach.

Definition 78 (Defeat). Let (A , R, S , P, s, t) be an EBAF and S a set of arguments. An element x ∈ A
is defeated by S if and only if there exists α ∈ R such that s(α) ∈ S and t(α) = x.

Notation. We recall that the set of all elements defeated by S is denoted Def(S).

Remark. Def(S) def
= {a ∈ A | ∃α ∈ R, s(α) ∈ S and t(α) = a}.

189

Definition 79 (Support). Let (A , R, S , P, s, t) be an EBAF and S a set of arguments. An element
x ∈ A is e-supported by S if and only if x ∈P or there exists α ∈ S with (1) t(α) = x, (2) s(α) ∈ S and
(3) s(α) is e-supported by S′ = S \ {x}.

Notation. We recall that the set of all elements e-supported by S is denoted Supp(S).

Remark. Supp(S) def
= P ∪ {t(α) | α ∈ S , s(α) ∈ S ∩ Supp(S \ {t(α)})}.

Definition 80 (Unsupportability). Let (A , R, S , P, s, t) be an EBAF and S a set of arguments.
An element x ∈ A is unsupportable by S if and only if x is not e-supported by the set of arguments
S′ = A \Def(S).

Notation. We recall that the set of all elements unsupportable by S is denoted UnSupp(S).

Remark. UnSupp(S) def
= (A \ Supp(A \Def(S))).

Definition 81 (Unacceptability). Let (A , R, S , P, s, t) be an EBAF and S a set of arguments. An
element x ∈ A is unacceptable with respect to S if and only if (1) x is defeated by S or (2) x is unsupportable
by S.

Notation. In the following, considering a set of arguments S, we denote by UnAcc(S) the set of all elements
unacceptable with respect to S.

Remark. UnAcc(S) def
= Def(S) ∪ UnSupp(S).

Definition 82 (Unactivability). Let (A , R, S , P, s, t) be an EBAF and S a set of arguments. An attack
α ∈ R is unactivable with respect to a set S if and only if s(α) is unacceptable with respect to S.

Notation. In the following, considering a set of arguments S, we denote by UnAct(S) the set of all elements
unactivable with respect to S.

Remark. UnAct(S) def
= {α ∈ R | s(α) ∈ UnAcc(S)}.

Definition 83 (Acceptability). Let (A , R, S , P, s, t) be an EBAF and S a set of arguments. An element
x ∈ A is acceptable with respect to a S if and only if (1) x is e-supoprted by S and (2) for all α ∈ R, if
t(α) = x, then s(α) is either defeated by S or unsupportable by S.

Notation. We recall that the set of all elements acceptable with respect to S is denoted Acc(S).

Remark. Acc(S) def
= {a ∈ A | a ∈ Supp(S) and ∀α ∈ R st t(α) = a, s(α) ∈ UnAct(S)}.

Definition 84 (Usual semantics). A set S ⊆ A is:

• self-supported iff S ⊆ Supp(S),

• conflict-free iff S ∩Def(S) = ∅,

• admissible iff S is conflict-free and S ⊆ Acc(S),

• complete iff S is conflict-free and S = Acc(S),

• preferred iff S is a ⊆-maximal admissible set,

• grounded iff S is a ⊆-minimal complete set,

• stable iff S = A \ UnAcc(S).

190

B.7.2 Additional Propositions and Lemmas for Correspondence of Definitions
We now proceed to prove that the semantics captured using the additional definitions are the same as the
usual semantics.

Lemma 14. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . An argument a is e-supported by S iff
a ∈ Supp(S).

Proof. (for Lemma 14) Obvious following Definitions 14 and 79.

Lemma 15. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . For any T s.t. S ⊆ T , Supp(S) ⊆ Supp(T).

Remark. A variant of this lemma is Lemma A.1 given for REBAF in [CFFL18a]

Proof. (for Lemma 15) The proof is made by induction on the number of elements in S.
Initial step: If S = ∅, then, by Definition 79, Supp(S) = P ∪ {t(α) | ∃α ∈ S , s(α) ∈ S ∩ Supp(S \

{t(α)})} = P. So for any T s.t. S ⊆ T , P ⊆P ∪ {t(α) | ∃α ∈ S , s(α) ∈ T ∩ Supp(T \ {t(α)})}.
Induction step: Let Sn ⊆ A be a set whose size is n. Let a ∈ Supp(Sn) and Tn s.t. Sn ⊆ Tn. By

Definition 79, a ∈ P ∪ {t(α) | ∃α ∈ S , s(α) ∈ Sn ∩ Supp(Sn \ {t(α)})}. If a ∈ P, the reasoning is similar
to the initial step. So let assume that a ∈ {t(α) | ∃α ∈ S , s(α) ∈ Sn ∩ Supp(Sn \ {t(α)})}. Since Sn ⊆ Tn,
(Sn ∩ Supp(Sn \ {t(α)})) ⊆ (Tn ∩ Supp(Sn \ {t(α)})).

• If a ∈ Sn, then Sn−1 = Sn \ {a} is a set whose size is n− 1. The induction hypothesis applies and for
any T s.t. Sn−1 ⊆ T , Supp(Sn−1) ⊆ Supp(T). As Sn ⊆ Tn, Sn−1 ⊆ Tn \ {a}. So, Supp(Sn \ {a}) ⊆
Supp(Tn\{a}), and thus, (Tn∩Supp(Sn\{a})) ⊆ (Tn∩Supp(Tn\{a})). So a ∈ {t(α) | ∃α ∈ S , s(α) ∈
Tn ∩ Supp(Tn \ {t(α)})}, and this implies that a ∈ Supp(Tn).

• If a /∈ Sn, (Sn \ {a}) = Sn. But, a ∈ {t(α) | ∃α ∈ S , s(α) ∈ Sn ∩ Supp(Sn \ {t(α)})}. So, s(α) ∈ Sn

and s(α) ∈ Supp(Sn). Since a /∈ Sn and Sn ⊆ Tn, we can see that Sn ⊆ (Tn \ {a}). So s(α) ∈ Tn
and s(α) ∈ Tn \ {a}. With a reasoning similar to the previous one (replacing a by s(α) and Tn by
Tn \ {a}), we have s(α) ∈ Supp(Tn \ {a}). So, s(α) ∈ (Tn ∩ Supp(Tn \ {a})). Finally we obtain
a ∈ {t(α) | ∃α ∈ S , s(α) ∈ Tn ∩ Supp(Tn \ {t(α)})}, and this implies that a ∈ Supp(Tn).

Lemma 16. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . Let a ∈ A . x ∈ Supp(S) iff x ∈
Supp(S \ {x}).

Proof. (for Lemma 16)

⇒ Let x ∈ Supp(S). By Definition 79, x ∈ P ∪ {t(α) α ∈ S , s(α) ∈ S ∩ Supp(S \ {t(α)})}. Two cases
are possible.

– If x ∈P, then, by definition, x ∈ Supp(S \ {x}).
– If x ∈ {t(α) α ∈ S , s(α) ∈ S ∩ Supp(S \ {t(α)})}, two subcases are possible.

∗ If x = s(α), by definition, s(α) ∈ S ∩ Supp(S \ {x}), so x ∈ Supp(S \ {x}).
∗ If x ̸= s(α), one can note that s(α) ∈ S \ {x}. Moreover (S \ {x}) \ {x} = S \ {x}. So
s(α) ∈ (S \ {x}) ∩ Supp((S \ {x}) \ {x}). Thus, by Definition 79, x ∈ Supp(S \ {x}).

⇐ Let x ∈ Supp(S \ {x}). Since (S \ {x}) ⊆ S, by Lemma 15, we have Supp(S \ {x}) ⊆ Supp(S). Since
x ∈ Supp(S \ {x}), then x ∈ Supp(S).

Proposition 15. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is self-supported1 (in the sense of
Definition 15) iff S is self-supported2 (in the sense of Definition 84).

191

Proof. (for Proposition 15)

S is self-supported1 iff ∀a ∈ S, a is e-supported by S (Definition 15)
iff ∀a ∈ S, a ∈ Supp(S) (Lemma 14)
iff S ⊆ Supp(S)
iff S is self-supported2 (Definition 84)

Lemma 17. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A be a self-supported extension.1. S e-attacks
an argument a iff a ∈ Def(S).

Proof. (for Lemma 17)

⇒ Obvious by Definitions 17 and 78.

⇐ Let assume that a ∈ Def(S). By Definition 78, ∃α ∈ R s.t. t(α) = a and s(α) ∈ S. But, S is a self-
supported extension. So, by Definition 84, ∀b ∈ S, b ∈ Supp(S). By Lemma 14, ∀b ∈ S is e-supported
by S. In particular, s(α) ∈ S, so s(α) is e-supported by S. So, by Definition 17, S e-attacks a.

Proposition 16. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is conflict-free1 (in the sense of
Def. 19) iff S is conflict-free2 (in the sense of Def. 84).

Proof. (for Proposition 16)

S is conflict-free1 iff ∄a, b ∈ S s.t. ∃α ∈ R with s(α) = a and t(α) = b (Def. 19)
iff ∄b ∈ S s.t. ∃α ∈ R with s(α) ∈ S and t(α) = b

iff ∄b ∈ S s.t. b ∈ Def(S) (Def. 78)
iff S ∩Def(S) = ∅
iff S is conflict-free2 (Def. 84)

Lemma 18. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A be a conflict-free extension.2. Then,
UnSupp(S) ⊆ (A \ Supp(S)).

Proof. (for Lemma 18) Since S is conflict-free, by Definition 84, we have S ∩ Def(S) = ∅. Since S ∩
Def(S) = ∅ and S ⊆ A , S ⊆ (A \ Def(S)). So, by Lemma 15, Supp(S) ⊆ Supp(A \ Def(S)). So,
A \ Supp(A \Def(S)) ⊆ (A \ Supp(S)), and as UnSupp(S) def

= (A \ Supp(A \Def(S))) by Definition 80,
UnSupp(S) ⊆ (A \ Supp(S)).

Lemma 19. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . An argument a is unsupportable wrt S iff
for any set T ⊆ A s.t. a ∈ Supp(T), T ∩Def(S) ̸= ∅.

Proof. (for Lemma 19)

⇒ By Definition 80, a ∈ (A \ Supp(A \ Def(S))). So, a /∈ Supp(A \ Def(S)). Let assume that
T ∩Def(S) = ∅. Since T ⊆ A , we can deduce that T ⊆ (A \Def(S)). Moreover, a ∈ Supp(T), so,
by Lemma 15, a ∈ Supp(A \Def(S)). We obtain a contradiction, and so T ∩Def(S) ̸= ∅.

1Following Proposition 15, it is not useful to make a distinction between self-supported1 and self-supported2.
2By Proposition 16, it is not useful to make a distinction between conflict-free1 and conflict-free2.

192

⇐ Let assume that a /∈ UnSupp(S). By Definition 80, this means that a /∈ (A \ Supp(A \ Def(S))).
Since a ∈ A , we can deduce that a ∈ Supp(A \ Def(S)). But, (A \ Def(S)) ⊆ A and (A \
Def(S)) ∩Def(S) = ∅. This contradicts the assumption that, for any set T ⊆ A s.t. a ∈ Supp(T),
T ∩Def(S) ̸= ∅. So, a ∈ UnSupp(S)

Lemma 20. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A be a self-supported extension. An argument
a is e-acceptable wrt S iff a ∈ Acc(S).

Proof. (for Lemma 20)

⇒ Let a be an argument e-acceptable wrt S. By Definition 18, a is e-supported by S, so following Lemma
14, a ∈ Supp(S). Consider α ∈ R s.t. t(α) = a. We must prove that α ∈ UnAct(S).

– If ∄T ⊆ A s.t. s(α) ∈ Supp(T), then ∀T ⊆ A , s(α) ∈ (A \ Supp(T)). In particular, s(α) ∈
(A \ Supp(A \Def(S))). So, s(α) ∈ UnSupp(S). By Definition 81, s(α) ∈ UnAcc(S), and so,
by Definition 82, α ∈ UnAct(S).

– Assume now that ∃T ⊆ A s.t. s(α) ∈ Supp(T). By Lemma 14, this means that s(α) is e-
supported by T , and so, by Definition 17, T ∪ {s(α)} e-attacks a. By Definition 18, this implies
that S e-attacks an element in T∪{s(α)}, and so, by Definition 17, ∃β ∈ R s.t. t(β) ∈ (T∪{s(α)}),
s(β) ∈ S and s(β) is e-supported by S.

∗ Assume that t(β) = s(α). By Definition 78, this means that s(α) ∈ Def(S).
∗ Moreover, assume now that t(β) ̸= s(α). So, t(β) ∈ T , and thus T ∩Def(S) ̸= ∅.

So, either s(α) ∈ Def(S), or ∀T ⊆ A s.t. s(α) ∈ Supp(T), T ∩Def(S) ̸= ∅. So, by Lemma 19,
either s(α) ∈ Def(S), or s(α) ∈ UnSupp(S). Thus, by Definitions 81 and 82, α ∈ UnAct(S).

⇐ Let a ∈ Acc(S). By Definition 83, we have a ∈ Supp(S) and ∀α ∈ R s.t. t(α) = a, α ∈ UnAct(S).
By Lemma 14, a is e-supported by S. By Definition 82, s(α) ∈ UnAcc(S), and so, by Definition 81,
s(α) ∈ Def(S) ∪ UnSupp(S).

– Assume that s(α) ∈ Def(S). By Lemma 17, S e-attacks s(α). Consider T ⊆ A s.t. T e-supports
s(α). By Definition 17, T ∪{s(α)} e-attacks a, and, since S e-attacks s(α), S e-attacks an element
in T ∪ {s(α)}. Since a is e-supported by S, by Definition 18, a is e-acceptable wrt S.

– Assume now that s(α) ∈ UnSupp(S). Consider T ⊆ A s.t. T e-supports s(α). By Definition 17,
X = T ∪ {s(α)} e-attacks a. By Lemma 14, s(α) ∈ Supp(T). By Lemma 19, this means that
T ∩ Def(S) ̸= ∅. By Definition 78 and Lemma 17, S e-supports an attack against an element
in T . So, S e-supports an attack against an element in X. So, for any set X s.t. X e-supports
an attacks against a, S e-supports an attacks against an element in X. So, by Definition 18, a is
e-acceptable wrt S.

Lemma 21. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A be an admissible1 extension (in the sense
of Def. 4). So, S is self-supported.

Proof. (for Lemma 21) By Definition 4, ∀a ∈ S a is e-acceptable wrt S. So, by Definition 18, ∀a ∈ S, a is
e-supported by S. Thus, by Definition 15, S is self-supported.

Lemma 22. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A be an admissible2 extension (in the sense
of Def. 84). Then, S is self-supported.

Remark. A variant of this lemma is Lemme A.6 given for REBAF in [CFFL18a]

193

Proof. (for Lemma 22) By Definition 84, S ⊆ Acc(S). So, by Definition 83, ∀a ∈ S, a ∈ Supp(S). So,
S ⊆ Supp(S). Thus, by Definition 84, S is self-supported.

Proposition 17. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is admissible1 (in the sense of
Def. 4) iff S is admissible2 (in the sense of Def. 84).

Proof. (for Proposition 17)

S is admissible1 iff S is conflict-free1 and ∀a ∈ S, a is e-acceptable wrt S (Def. 4)
iff S is conflict-free2 and ∀a ∈ S, a is e-acceptable wrt S (Prop. 16)
iff S is conflict-free2 and ∀a ∈ S, a ∈ Acc(S) (Lem. 21

and 20)
iff S is conflict-free2 and S ⊆ Acc(S)
iff S is admissible2 (Def. 84)

Proposition 18. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is complete1 (in the sense of Def. 4)
iff S is complete2 (in the sense of Def. 84).

Proof. (for Proposition 18)

S is complete1 iff S is admissible1 and
∀a ∈ A s.t. a is e-acceptable wrt S, a ∈ S (Def. 4)

iff S is admissible1 and ∀a ∈ A s.t. a ∈ Acc(S), a ∈ S (Lem. 21
and 20)

iff S is admissible1 and Acc(S) ⊆ S
iff S is admissible2 and Acc(S) ⊆ S (Prop. 17)
iff S is conflict-free2, S ⊆ Acc(S) and Acc(S) ⊆ S (Def. 84)
iff S is conflict-free2 and Acc(S) = S

iff S is complete2 (Def. 84)

Proposition 19. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is preferred1 (in the sense of Def. 4)
iff S is preferred2 (in the sense of Def. 84).

Proof. (for Proposition 19)

S is preferred1 iff S is an admissible1 ⊆ -maximal set (Def. 4)
iff S is an admissible2 ⊆ -maximal set (Prop. 17)
iff S is preferred2 (Def. 84)

Proposition 20. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is grounded1 (in the sense of
Prop. 1) iff S is grounded2 (in the sense of Def. 84).

Proof. (for Proposition 20)

S is grounded1 iff S is a complete1 ⊆ -minimal set (Prop. 1)
iff S is a complete2 ⊆ -minimal set (Prop. 18)
iff S is grounded2 (Def. 84)

194

Lemma 23. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . (A \ S) ⊆ UnAcc(S) iff ∀a ∈ (A \ S)
s.t. a is e-supported by A , ∃α ∈ R with (1) s(α) ∈ S and (2) t(α) = a or t(α) ∈ T for any set T s.t. a is
minimally e-supported by T .

Proof. (for Lemma 23)

⇒ Assume that (A \ S) ⊆ UnAcc(S). Let a ∈ (A \ S) s.t. a is e-supported by A . Since a ∈ UnAcc(S),
by Definition 81, a ∈ Def(S) ∪ UnSupp(S).

– Assume that a ∈ Def(S). By Definition 78, ∃α ∈ R s.t. s(α) ∈ S and t(α) = a.

– Assume now that a ∈ UnSupp(S). By Lemma 19, for any set T ⊆ A s.t. a ∈ Supp(T),
T ∩Def(S) ̸= ∅. By Lemma 14 and Definition 78, this means that for any set T ⊆ A s.t. a is
e-supported by T , ∃α ∈ R s.t. s(α) ∈ S and t(α) ∈ T . Since it holds for any set T ⊆ A s.t. a is
e-supported by T , then it also holds for any set T ⊆ A s.t. a is minimally e-supported by T .

⇐ Assume that ∀a ∈ (A \ S) s.t. a is e-supported by A , ∃α ∈ R with (1) s(α) ∈ S and (2) t(α) = a or
t(α) ∈ T for any set T s.t. a is minimally e-supported by T . Let a ∈ (A \ S) s.t. a is e-supported by
A . We must prove that a ∈ UnAcc(S). By assumption, there exists α ∈ R with (1) s(α) ∈ S and (2)
t(α) = a or t(α) ∈ T for any set T s.t. a is minimally e-supported by T .

– If t(α) = a then, by Definition 78, a ∈ Def(S).
– Assume now that t(α) ∈ T for any set T s.t. a is minimally e-supported by T . By Definition

78, this implies that for any set T s.t. a is minimally e-supported by T , T ∩ Def(S) ̸= ∅. Let
ESupMin(a) be the set of sets T ⊆ A s.t. a is minimally e-supported by T . Let T ′ s.t. a is
e-supported by T ′. As such, ∄T ∈ ESupMin(a) s.t. T ′ ⊂ T . So, ∃T ∈ ESupMin(a) s.t. T ⊆ T ′.
However, ∀T ∈ ESupMin(a), T ∩ Def(S) ̸= ∅, so T ′ ∩ Def(S) ̸= ∅. Thus, for any set T ′ s.t.
a is e-supported by T ′, T ′ ∩ Def(S) ̸= ∅. By Lemma 14, for any set T ′ s.t. a ∈ Supp(T ′),
T ′ ∩Def(S) ̸= ∅. By Lemma 19, this implies that a ∈ UnSupp(S).

Finally, since a ∈ Def(S) or a ∈ UnSupp(S), then a ∈ Def(S) ∪ UnSupp(S), and so, By Definition
81, a ∈ UnAcc(S).

Lemma 24. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A be a self-supported and conflict-free set.
Then, UnAcc(S) ⊆ (A \ S).

Proof. (for Lemma 24) Assume that S is self-supported and conflict-free. Consider a ∈ UnAcc(S). By
Definition 81, a ∈ (Def(S) ∪ UnSupp(S)). Two cases are possible:

• If a ∈ Def(S), since S is conflict-free, we have by Definition 84 S ∩ Def(S) = ∅ and since S ⊆ A ,
a ∈ (A \ S).

• If a ∈ UnSupp(S), by Definition 80, a ∈ (A \Supp(A \Def(S))). We must prove that (A \Supp(A \
Def(S))) ⊆ (A \S). Since S is conflict-free, S∩Def(S) = ∅, and since S ⊆ A , S ⊆ (A \Def(S)). By
Lemma 15, we have Supp(S) ⊆ Supp(A \Def(S)). Moreover, since S is self-supported, by Definition
84, S ⊆ Supp(S). So we have S ⊆ Supp(A \ Def(S)). Considering the complement sets wrt A of
these sets, we obtain that (A \ Supp(A \Def(S))) ⊆ (A \ S).

Lemma 25. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A s.t. S = A \ UnAcc(S). Let S2 s.t.
S2 ⊆ (A \Def(S)). Let S1 = S ∩ S2. Then, S2 ∩ Supp(S2) ⊆ S1 ∩ Supp(S1).

Proof. (for Lemma 25) Consider a ∈ S2 ∩ Supp(S2). The proof is split into 2 steps, the first one for proving
that a ∈ S1 and the second one for proving that a ∈ Supp(S1).

195

• Since a ∈ S2 ∩ Supp(S2), a ∈ Supp(S2). But, S2 ⊆ (A \Def(S)), so a ∈ A \Def(S) and, by Lemma
15, Supp(S2) ⊆ Supp(A \Def(S)), and so, a ∈ Supp(A \Def(S)). So, a ∈ (A \Def(S))∩Supp(A \
Def(S)). But, (A \ Def(S)) ∩ Supp(A \ Def(S)) = A \ (Def(S) ∪ (A \ Supp(A \ Def(S)))).
Moreover, by Definition 81, A \ (Def(S) ∪ (A \ Supp(A \Def(S)))) = A \ UnAcc(S). And finally,
by assumption, A \ UnAcc(S) = S. So, a ∈ S, and as a ∈ S2, we have a ∈ S ∩ S2 and consequently
a ∈ S1.

• The proof for a ∈ Supp(S1) is done by induction on S2.

Initial step: If S2 = ∅, then, obviously, S2 ∩ Supp(S2) ⊆ Supp(S1).

Induction step: Assume that for any S′
2 ⊂ S2, S′

2∩Supp(S′
2) ⊆ Supp(S′

1), with S′
1 = S∩S′

2. By Lemma
16, since a ∈ Supp(S2), a ∈ Supp(S2 \ {a}). As a ∈ S2, we have (S2 \ {a}) ⊂ S2. Let denote S2 \ {a}
by S′

2 and apply the induction hypothesis. Thus, S′
1 = S1 \ {a}. Since a ∈ Supp(S′

2), by Definition
79, a ∈P ∪ {t(α) | α ∈ S , s(α) ∈ S′

2 ∩ Supp(S′
2)}. If a ∈P, then by definition, a ∈ Supp(S1), so we

assume that ∃α ∈ S s.t. t(α) = a and s(α) ∈ S′
2 ∩ Supp(S′

2). By the induction hypothesis, we have
so s(α) ∈ Supp(S′

1), and by a proof similar to that used in the first step, s(α) ∈ S′
1. Since s(α) ∈ S′

1,
s(α) ∈ S1. So, ∃α ∈ S s.t. t(α) = a and s(α) ∈ S1 ∩Supp(S′

1). Thus, by Definition 79, a ∈ Supp(S1).

Lemma 26. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A s.t. UnAcc(S) = A \ S. Then, S is
conflict-free and self-supported.

Proof. (for Lemma 26) Proof in two parts, the first one for showing that S is conflict-free and the second
one for proving that S is self-supported.

• Assume that UnAcc(S) = A \ S. So, S = A \ UnAcc(S). By Definition 81, UnAcc(S) = Def(S) ∪
UnSupp(S). So, A \UnAcc(S) = A \(Def(S)∪(A \Supp(A \Def(S))) = (A \Def(S))∩Supp(A \
Def(S)). So, S ⊆ A \Def(S) and since Def(S) ⊆ A , we can deduce that S ∩Def(S) = ∅. Thus,
by Definition 84, S is conflict-free.

• Moreover, since following Definition 81, we have S = (A \Def(S))∩Supp(A \Def(S)), it is obvious
that (A \Def(S)) ⊆ (A \Def(S)). We apply Lemma 25 with S2 = (A \Def(S)). And we obtain that
S2∩Supp(S2) ⊆ S1∩Supp(S1) with S1 = S∩S2. But, since S = (A \Def(S))∩Supp(A \Def(S)), S ⊆
(A \Def(S)), so, S1 = S∩(A \Def(S)) = S. Moreover, since S = (A \Def(S))∩Supp(A \Def(S))
and S2 = (A \Def(S)), we have S = S2 ∩ Supp(S2. Thus, S ⊆ S ∩ Supp(S), and so, S ⊆ Supp(S).
Then, by Definition 84, S is self-supported.

Proposition 21. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . S is stable1 (in the sense of Def. 20)
iff S is stable2 (in the sense of Def. 84).

196

Proof. (for Proposition 21)

S is stable1 iff S is conflict-free1, self-supported1, and
∀a ∈ (A \ S) s.t. a is e-supported by A ,

∃α ∈ R with (1) s(α) ∈ S and (2) t(α) = a or
t(α) ∈ T for any set T s.t. a is minimally
e-supported by T. (Def. 20)

iff S is conflict-free1, self-supported1, and
(A \ S) ⊆ UnAcc(S) (Lem. 23)

iff S is conflict-free2, self-supported2, and
(A \ S) ⊆ UnAcc(S) (Prop. 16 and 15)

iff UnAcc(S) ⊆ (A \ S) and (A \ S) ⊆ UnAcc(S) (Lem. 24 and 26)
iff UnAcc(S) = (A \ S)
iff S = (A \ UnAcc(S))
iff S is stable2 (Def. 84)

Lemma 27. Let (A , R, S , P, s, t) be an EBAF. Let S ⊆ A . Let x ∈ A \P. Then, x ∈ UnSupp(S) iff
for any α ∈ S s.t. t(α) = x, s(α) ∈ UnSupp(S) or s(α) ∈ Def(S).

Proof. (for Lemma 27)

⇒ By Lemma 19, we know that for any set T ⊆ A s.t. x ∈ Supp(T), T ∩ Def(S) ̸= ∅. But, x /∈ P,
so, x /∈ Supp(∅) and so, by Definition 14, for any set T ⊆ A s.t. x ∈ Supp(T), T = T ′ ∪ {s(α)}
with T ′ ⊆ A , α ∈ S , t(α) = x and s(α) ∈ Supp(T ′). Thus, for any set T ′ ∪ {s(α)} with T ′ ⊆ A ,
α ∈ S , t(α) = x and s(α) ∈ Supp(T ′), (T ′ ∪ {s(α)})∩Def(S) ̸= ∅. Consequently, for any α ∈ S s.t.
t(α) = x, s(α) ∈ Def(S) or for any T ′ with T ′ ⊆ A and s(α) ∈ Supp(T ′), T ′ ∩Def(S) ̸= ∅. So, by
Lemma 19, for any α ∈ S s.t. t(α) = x, s(α) ∈ Def(S) or s(α) ∈ UnSupp(S).

⇐ By Lemma 19, we have, for any α ∈ S s.t. t(α) = x, s(α) ∈ Def(S) or ∀T ′ ⊆ A s.t. s(α) ∈ Supp(T ′),
T ′ ∩ Def(S) ̸= ∅. Thus, for any α ∈ S s.t. t(α) = x, for any T ′ ⊆ A s.t. s(α) ∈ Supp(T ′),
(T ′ ∪ {s(α)}) ∩Def(S) ̸= ∅. But, we know that x /∈ P. Consequently, x /∈ Supp(∅). Thus, for any
T ⊆ A s.t. x ∈ Supp(T), we know that T is under the form of T ′ ∪ {s(α)} with T ′ ⊆ A and α ∈ S
and t(α) = x. So, for any T ⊆ A s.t. x ∈ Supp(T), T ∩Def(S) ̸= ∅. By Lemma 19, this implies that
x ∈ UnSupp(S).

B.7.3 Additional Lemmas for the Logical Encoding
The lemmas here will be used as intermediate results so as to make the proof of Proposition 13 a bit more
concise.

Lemma 28. Let A = (A , R, S , P, s, t) be an EBAF without support cycle. Let I be a Herbrand model
of ΣSS(A) ∪ (4.16) ∪ (4.11) ∪ (4.12). Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I(Supported(e1)) = ⊤. Then,
e1 ∈ Supp(SI).

Proof. (for Lemma 28) The proof is made by induction on the size of a specific path in S , this path contains
only elements of SI and is originated in a prima facie argument.

Induction Hypothesis: Let C be an S -path, containing only elements of SI and originated in a prima
facie argument, the size of this path being n. Then the final element of the path belongs to Supp(SI).

197

Initial step: Assume that the size of the path C is 0. So, C = (e1). e1 is then the origin and the final
element of C. But, we know that the origin of C is a prima facie argument, so e1 ∈P , and so, by Definition
79, e1 ∈ Supp(SI).

Induction step: Assume that the size of C is n. If I(PrimaFacie(e1)) = ⊤, by formulae (4.1) satisfied
by I, we obtain that e1 ∈ P, and we conclude that e1 ∈ Supp(SI) as in the initial step. Assume that
I(PrimaFacie(e1)) = ⊥. Since I(Supported(e1)) = ⊤, by Formula (4.7a)EBAF satisfied by I, this implies
that I is a model of the formula ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z) → Acc(z))). Since I is is a model
of formulae (4.1), (4.2) and (4.3), this means that there exists ė2 ∈ DI s.t. e2 ∈ S , t(e2) = e1 and for
any ė3 ∈ DI s.t. I(Arg(e3)) = ⊤ and I(S(e2, e3)) = ⊤, I(Acc(e3)) = ⊤. Since I is also a model of Axiom
(4.11), e3 is in fact unique, and so, e3 = s(e2). Moreover, by Definition of SI , we know that e3 ∈ SI . Thus,
there exists e2 ∈ S s.t. t(e2) = e1 and s(e2) ∈ SI . Furthermore, I(Acc(e3)) = ⊤ and I is a model of
Formula (4.4), so, I(Supported(e3)) = ⊤. Consider C = (pf , . . . , e3, e1). The size of C is n, so the size of
the path C ′ = (pf , . . . , e3) is n − 1. In addition, since C ′ is is sub-path of C, C ′ is a path containing only
elements of SI and whose final element is e3. So the induction hypothesis can be applied and e3 ∈ Supp(SI).
Finally, since there is no support cycles in A, e1 cannot belong to C ′, so we have e3 ∈ Supp(SI \ {e1}).
Thus, e3 ∈ SI ∩ Supp(SI \ {e1}). Since e3 = s(e2), s(e2) ∈ SI ∩ Supp(SI \ {e1}), and so, by Definition 79,
e1 ∈ Supp(SI).

Lemma 29. Let A = (A , R, S , P, s, t) be an EBAF without support cycle. Let I be a Herbrand model
of ΣSS(A)∪ (4.16)∪ (4.11)∪ (4.12). Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I(Unsupportable(e1)) = ⊤. Then
e1 ∈ UnSupp(SI).

Proof. (for Lemma 29) Let consider the inverse relation of the support, i.e. the functions s′ and t′ s.t.
∀α ∈ S , s′(α) = t(α) and t′(α) = s(α), and ∀α ∈ R, s′(α) = s(α) and t′(α) = t(α). Any argument of A is
then the root of a tree in this new relation (the height of this tree might be equal to 0). The proof of this
lemma is made by induction on the height of this tree.

Induction Hypothesis: Let a tree in the inverse relation of the support, whose height is n and whose
root is such that there exists an element ė1 ∈ DI representing it with I(Unsupportable(e1)) = ⊤. Then
e1 ∈ UnSupp(SI).

Initial step: Assume that the height of the tree is 0. The tree is so reduced to its root e1. So there exists
no e2 ∈ S s.t. s′(e2) = e1. So, by definition of s′, there exists no e2 ∈ S s.t. t(e2) = e1. Since I satisfies
Formula (4.7b)EBAF and I(Unsupportable(e1)) = ⊤, we have I(PrimaFacie(e1)) = ⊥. Since I is a model of
formulae (4.1), we can deduce that e1 /∈P. Since there exists no e2 ∈ S s.t. t(e2) = e1 and e1 /∈P, then
there also exists no T ⊆ A s.t. e1 ∈ Supp(T). Thus, for any set T ⊆ A , e1 ∈ A \Supp(T). In particular, for
T = A \Def(SI) we obtain that e1 ∈ A \ Supp(A \Def(SI)) and so, by Definition 80, e1 ∈ UnSupp(SI).

Induction step: Assume that the height of the tree in the inverse relation of the support is n. Its
root is denoted by e1. As for the initial step, one can deduce that e1 /∈ P. Since I satisfies Formula
(4.7b)EBAF, I also satisfies Formula ∀y ∈ Supp(T (y, e1) → [∃z ∈ Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈
Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→ Acc(v))))]). Since I is a model of formulae (4.1),
(4.2) and (4.3), we obtain that, for any e2 ∈ S s.t. e1 ∈ t(e2), there exists e3 ∈ A with e3 ∈ s(e2) and
either I(Unsupportable(e3)) = ⊤, or there exists e4 ∈ R s.t. e3 ∈ t(e4) and for any e5 ∈ A s.t. e5 ∈ s(e4),
I(Acc(e5)) = ⊤. Moreover, I is a model of axioms (4.11) and (4.12), so e1 is the unique target of e2 and e3
and e5 are also unique. Moreover, by definition of SI , we have e5 ∈ SI . So, for any e2 ∈ S s.t. t(e2) = e1,
there exists e3 ∈ A with s(e2) = e3, and either I(Unsupportable(e3)) = ⊤, or there exists e4 ∈ R s.t.
t(e4) = e3 and s(e4) ∈ SI .

• If there exists e4 ∈ R s.t. t(e4) = e3 and s(e4) ∈ SI , by Definition 78, e3 ∈ Def(SI), and since
s(e2) = e3, s(e2) ∈ Def(SI).

198

• Assume that I(Unsupportable(e3)) = ⊤. Since s(e2) = e3 and t(e2) = e1, by definition of s′ and t′,
we have s′(e2) = e1 and t′(e2) = e3. But the height of the tree, whose root is e1, is n, so, as there is
no support cycle in A, the height of the tree whose root is e3 is strictly less than n. So the induction
hypothesis can be applied and since I(Unsupportable(e3)) = ⊤, e3 ∈ UnSupp(SI) and so, because
s(e2) = e3, s(e2) ∈ UnSupp(SI).

In conclusion, for any e2 ∈ S s.t. t(e2) = e1, either s(e2) ∈ UnSupp(SI), or s(e2) ∈ Def(SI). So, knowing
that e1 /∈P, one can deduce, by Lemma 27, that e1 ∈ UnSupp(SI).

Lemma 30. Let A = (A , R, S , P, s, t) be an EBAF without support cycle. Let I be a Herbrand model
of ΣSS(A) ∪ (4.16) ∪ (4.11) ∪ (4.12). Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and e1 ∈ UnSupp(SI). Then,
I(Unsupportable(e1)) = ⊤.

Proof. (for Lemma 30) Consider the inverse relation of the support, i.e. the functions s′ and t′ s.t. ∀α ∈
S , s′(α) = t(α) and t′(α) = s(α), and ∀α ∈ R, s′(α) = s(α) and t′(α) = t(α). Any argument of A is so the
root of a tree in this new relation (possibly with an height equals to 0). The proof of the lemma is made by
induction on the height of a tree in the inverse relation of the support.

Induction hypothesis: Let a tree in the inverse relation of the support whose height is n and whose root
belongs to UnSupp(SI). Then there exists in DI an element ė1 s.t. e1 is equals to the root of the tree and
I(Unsupportable(e1)) = ⊤.

Initial step: Assume that the height of the tree is 0. The tree is so reduced to its root e1. So there
exists no e2 ∈ S s.t. s′(e2) = e1. Thus, by definition of s′, there exists no e2 ∈ S s.t. t(e2) = e1. Since
e1 ∈ UnSupp(SI), e1 /∈ P. Since I is a model of Formula (4.1), one can deduce that there exists ė1 ∈ DI

with I(Arg(e1)) = ⊤ and I(PrimaFacie(e1)) = ⊥. Moreover since I is a model of formulae (4.1), (4.2)
and (4.3), one can also deduce that there exists no ė2 ∈ DI s.t. I(Supp(e2)) = ⊤ and I(T (e2, e1)) = ⊤.
So, for any ė2 ∈ DI s.t. I(Supp(e2)) = ⊤, I(T (e2, e1)) = ⊥. Thus, for any formula φ, I is a model of
the formula ∀y ∈ Supp(T (y, e1) → φ). In particular, I is a model of the formula ∀y ∈ Supp(T (y, e1) →
∃z ∈ Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) →
Acc(v))))). Finally, as I(PrimaFacie(e1)) = ⊥ and as I is a model for Formula (4.7b)EBAF, we have that
I(Unsupportable(e1)) = ⊤.

Induction step: Assume that the height of the tree in the inverse relation of the support is n. Its root is
denoted by e1. As for the initial step, one can deduce that there exists ė1 ∈ DI with I(Arg(e1)) = ⊤ and
I(PrimaFacie(e1)) = ⊥. By Lemma 27, we know that for any e2 ∈ S s.t. t(e2) = e1, s(e2) ∈ Def(SI) or
s(e2) ∈ UnSupp(SI). Two cases are possibles.

• If s(e2) ∈ Def(SI), there exists e3 ∈ A s.t. e3 = s(e2) and e3 ∈ Def(SI). By Definition 78, there exists
e4 ∈ R s.t. t(e4) = e3 and s(e4) ∈ SI . So, there exists e4 ∈ R s.t. t(e4) = e3 and there exists e5 ∈ A
s.t. s(e4) = e5 and e5 ∈ SI . Since I is a model of formulae (4.1), (4.2) and (4.3), this means that for any
ė2 ∈ DI s.t. I(Supp(e2)) = ⊤ and I(T (e2, e1)) = ⊤, there exist ė3, ė4, ė5 ∈ DI with I(Arg(e3)) = ⊤,
I(Att(e4)) = ⊤, I(Arg(e5)) = ⊤, I(S(e2, e3)) = ⊤, I(T (e4, e3)) = ⊤ and I(S(e4, e5)) = ⊤. Moreover,
by definition of SI , we have I(Acc(e5)) = ⊤. Since I is a model of Axiom (4.11), e5 is unique and so, I
satisfies the formula ∃u ∈ Att(T (u, e3)∧∀v ∈ Arg(S(u, v)→ Acc(v))). Thus, I satisfies the formula
∀y ∈ Supp(T (y, e1)→ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→ Acc(v))))).

• If s(e2) ∈ UnSupp(SI), there exists e3 ∈ A s.t. e3 = s(e2) and e3 ∈ UnSupp(SI). Since I is a model
of formulae (4.1), (4.2) and (4.3), there exist ė2, ė3 ∈ DI with I(Supp(e2)) = ⊤, I(Arg(e3)) = ⊤,
I(T (e2, e1)) = ⊤ and I(S(e2, e3)) = ⊤. But, since the height of the tree, whose root is e1, is n, and
there is no support cycle in A, then the height of the tree, whose root is e3, is strictly less that n. So
the induction hypothesis can be applied and since e3 ∈ UnSupp(SI), then, I(Unsupportable(e3)) = ⊤.
Thus, I is a model of the formula ∀y ∈ Supp(T (y, e1)→ ∃z ∈ Arg(S(y, z) ∧ Unsupportable(z))).

199

In conclusion, either I satisfies the formula ∀y ∈ Supp(T (y, e1)→ ∃z ∈ Arg (S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧
∀v ∈ Arg(S(u, v) → Acc(v))))) or I satisfies the formula ∀y ∈ Supp(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧
Unsupportable(z))). So, I satisfies the formula ∀y ∈ Supp (T (y, e1) → (∃z ∈ Arg (S(y, z) ∧
Unsupportable(z)) ∨ ∃z ∈ Arg (S(y, z) ∧ ∃u ∈ Att (T (u, z) ∧ ∀v ∈ Arg (S(u, v) → Acc(v)))))).
Moreover, since I(PrimaFacie(e1)) = ⊥, I(Arg(e1)) = ⊤ and I is a model of Formula (4.7b)EBAF, we can
conclude that I(Unsupportable(e1)) = ⊤.

B.7.4 Proof of the Main Proposition Concerning the Translation of EBAFs
Proposition. 13 Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an EBAF and S ⊆ A
be a set of arguments.

1. S is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.16)}
such that S = SI ∪ ΓI ∪∆I .

2. S is admissible if and only if there exists a Herbrand model I of ΣDef(A)∪{(4.11), (4.12), (4.16)} such
that S = SI ∪ ΓI ∪∆I .

3. S is complete if and only if there exists a Herbrand model I of ΣRein(A)∪ {(4.11), (4.12), (4.16)} such
that S = SI ∪ ΓI ∪∆I .

4. S is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.16)} such that S = SI ∪ ΓI ∪∆I .

5. S is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.16)} such that S = SI ∪ ΓI ∪∆I .

6. S is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.16)} such that
S = SI ∪ ΓI ∪∆I .

Proof. (for Proposition 13)

1. For conflict-freeness:

⇒ Consider an extension S of A that is conflict-free. We define a Herbrand interpretation I of
ΣCoh(A) ∪ {(4.11), (4.12), (4.16)} as follows:

– For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Supp(e)) = ⊤ iff
e ∈ S

– For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R ∪S and e2 ∈ s(x)
– For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R ∪S and e2 ∈ t(x)
– For any ė in DI , I(PrimaFacie(e)) = ⊤ iff e ∈P

– For any ė in DI , I(Supported(e)) = ⊤ and I(Unsupportable(e)) = ⊥3

– For any ė in DI , I(Acc(e)) = ⊤ iff e ∈ S
– For any ė in DI , I(Cand(e)) = ⊤ iff I(Acc(e)) = ⊤
– For any ė in DI , I(NCand(e)) = ⊤ iff I(Cand(e)) = ⊥
– For any ė in DI , I(Element(e)) = ⊤ iff I(Arg(e)) = ⊤
– For any ė1 in DI , I(Activable(e1)) = ⊤ iff for any ė2 in DI s.t. I(Arg(e2)) = ⊤, if
I(S(e1, e2)) = ⊤ then I(Acc(e2)) = ⊤

– For any ė1 in DI , I(Defeated(e1)) = ⊤ iff there exists ė2 in DI s.t. I(Att(e2)) = ⊤,
I(T (e2, e1)) = ⊤ and I(Activable(e2)) = ⊤

3The support relation is not used in the notion of conflict-freeness. In particular, a conflict-free extension in an EBAF (A ,
R, S , P, s, t) is also a conflict-free extension in (A ,R,S , s, t,A ∪R∪S). So we can consider a model in which any argument
is supported.

200

– For any ė1 in DI , I(Inhibited(e1)) = ⊤ iff there exists ė2 in DI s.t. I(Arg(e2)) = ⊤,
I(S(e1, e2)) = ⊤ and I(Defeated(e2)) = ⊤

– For any ė1 in DI , I(Deactivated(e1)) = ⊤ iff I(Inhibited(e1)) = ⊤ or there exists ė2 in DI

s.t. I(Arg(e2)) = ⊤, I(S(e1, e2)) = ⊤ and I(Unsupportable(e2)) = ⊤
With this definition, SI = S. It remains to prove that I is a model of formulae ΣCoh(A) ∪
{(4.11), (4.12), (4.16)}.
By definition of I and since s : R ∪S 7→ A and t : R ∪S 7→ A (A being an EBAF), I is a
model of axioms (4.11) and (4.12). Moreover, by definition of I, we also have that I is a model of
formulae (4.16).
We must prove that I is a model of ΣCoh(A). It is obvious to see that I is a model of formulae
(4.1), (4.2) and (4.3). It remains to show that I is is a model of formulae (4.4), (4.5) and (4.6).
Since I is a model of formulae (4.16), then we must prove that I is a model of formulae (4.4),
(4.5)EBAF and (4.6)EBAF. By definition of I, formulae (4.4), (4.5b)EBAF and (4.6)EBAF are obviously
satisfied.

I satisfies Formula (4.5a)EBAF: Assume that I does not satisfy Formula (4.5a)EBAF. So there
exists ė2 ∈ DI s.t. I(Att(e2)) = ⊤, for any ė3 ∈ DI s.t. I(Arg(e3)) = ⊤ and I(S(e2, e3)) = ⊤,
I(Acc(e3)) = ⊤, and for any ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I(T (e2, e1)) = ⊤, I(NCand(e1)) =
⊤. By definition of I, for any ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I(T (e2, e1)) = ⊤, I(Cand(e1)) = ⊥
and so I(Acc(e1)) = ⊤. Since I is a model of axioms (4.11) and (4.12), e1 and e3 are unique.
Thus, by definition of I, ∃e2 ∈ R s.t. s(e2) ∈ S and t(e2) = e1 with e1 ∈ S. So e1 ∈ Def(S) and
thus, S ∩Def(S) ̸= ∅, that contradicts the fact that S is conflict-free (Definition 84).

⇐ Let I be a Herbrand model of ΣCoh(A)∪{(4.11), (4.12), (4.16)}. Assume that SI is not conflict-free.
So there exist e2 ∈ R and e1 ∈ A s.t. s(e2) ∈ SI , e1 ∈ SI , and t(e2) = e1. Because of formulae
(4.1) that are satisfied by I, there exist ė2, ė1 ∈ DI s.t. I(Att(e2)) = ⊤ and I(Arg(e1)) = ⊤.
Similarly, since I is a model of Formula (4.3), we have I(T (e2, e1)) = ⊤ and there exists ė3 ∈ DI s.t.
I(S(e2, e3)) = ⊤. By the definition of SI , I(Acc(e1)) = ⊤ and I(Acc(e3)) = ⊤. Since I is a model
of Formula (4.4), we can deduce that I(Cand(e1)) = ⊤, and so, by Formula (4.5b)EBAF satisfied
by I, I(NCand(e1)) = ⊥. Since I is a model of Axiom (4.11), I is a model of the formula
∀x ∈ Arg(S(e2, x) → Acc(x)). Similarly, since I is a model of Axiom (4.12), I is a model of
the formula ∃y ∈ Arg(T (e2, y) ∧ ¬NCand(y)), that contradicts Formula (4.5a)EBAF, and so the
assumption saying that I is a model of Σ(A).

2. For admissibility:

⇒ Consider an extension S of A that is admissible. A Herbrand interpretation I of ΣDef(A) ∪
{(4.11), (4.12), (4.16)} can be defined as follows:

– For any ė in DI , I(Supported(e)) = ⊤ iff e ∈ Supp(S)
– For any ė in DI , I(Unsupportable(e)) = ⊤ iff e ∈ UnSupp(S)
– The interpretation of the other predicates is similar to the one given in the proof of Proposi-

tion 13.1

With this definition, SI = S. It remains to prove that I is a model of formulae ΣDef(A) ∪
{(4.11), (4.12), (4.16)}.
As in the proof of Proposition 13.1, I is a model of formulae (4.11), (4.12) and (4.16).
We must prove that I is a model of ΣDef(A). It is obvious that I is a model of formulae (4.1),
(4.2) and (4.3). It remains to show that I is a model of formulae (4.4), (4.5), (4.6), (4.7) and (4.8).
Since I is a model of formulae (4.16), it is enough to prove that I is a model of formulae (4.4),
(4.5)EBAF, (4.6)EBAF, (4.7)EBAF and (4.8)EBAF. By definition of I, Formula (4.5b)EBAF is obviously

201

satisfied. The proof that I satisfies Formula (4.5a)EBAF is similar to the one given in the proof of
Proposition 1.

I satisfies Formula (4.4):
⇒ Let ė1 ∈ DI s.t. I(Acc(e1)) = ⊤. By the definition of I, I(Cand(e1)) = ⊤ and e1 ∈ S. But, S

is an admissible extension, so, by Definition 84, e1 ∈ Acc(S). By Definition 83, x ∈ Supp(S),
and so, by definition of I, we have I(Supported(e1)) = ⊤.

⇐ Let ė1 ∈ DI s.t. I(Supported(e1)) = ⊤ and I(Cand(e1)) = ⊤. By definition of I, we have
I(Acc(e1)) = ⊤.

I satisfies Formula (4.6)EBAF: Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤, and I satisfies the formula
PrimaFacie(e1) ∨ ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(e2, z) → Acc(z))). We must prove
that I(Supported(e1)) = ⊤. We have I(PrimaFacie(e1)) = ⊤ or I satisfies the formula ∃y ∈
Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z)→ Acc(z))).

– Assume that I(PrimaFacie(e1)) = ⊤. So, by definition of I, e1 ∈ P, so e1 ∈ Supp(S) and
I(Supported(e1)) = ⊤.

– Assume that I satisfies the formula ∃y ∈ Supp(T (y, e1)∧∀z ∈ Arg(S(y, z)→ Acc(z))). So
there exists ė2 ∈ DI such that I(Supp(e2)) = ⊤, I(T (e2, e1)) = ⊤ and for any ė3 ∈ DI such
that I(Arg(e3)) = ⊤ and I(S(e2, e3)) = ⊤, I(Acc(e3)) = ⊤. So, by definition of I, ∃e2 ∈ S
s.t. e1 ∈ t(e2) and ∀e3 ∈ A s.t. e3 ∈ s(e2), e3 ∈ S. Since I is a model of axioms (4.11) and
(4.12), e1 and e3 are unique. As S is admissible, by Definition 84, e3 ∈ Acc(S), and so, by
Definition 83, e3 ∈ Supp(S). Two cases are possible.

∗ If e1 ∈ S, by Definition 84, e1 ∈ Acc(S), so, by Definition 83, e1 ∈ Supp(S), and by
definition of I, I(Supported(e1)) = ⊤.

∗ If e1 /∈ S, then (S \ {e1}) = S. So e3 ∈ Supp(S \ {e1}). Thus, e3 ∈ S ∩ Supp(S \ {e1}),
and since s(e2) = e3 and t(e2) = e1, by Definition 79, e1 ∈ Supp(S). So, by definition of
I, I(Supported(e1)) = ⊤.

I satisfies Formula (4.7a)EBAF: Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I(Supported(e1)) =
⊤. We must show that I satisfies the formula PrimaFacie(e1) ∨ ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈
Arg(S(y, z) → Acc(z))). By definition of I, e1 ∈ Supp(S). So, by Definition 79, e1 ∈
P ∪ {t(α) | α ∈ S , s(α) ∈ S ∩ Supp(S \ {t(α)})}. Two cases are possible.

– If e1 ∈ P, then by definition of I, I(PrimaFacie(e1)) = ⊤, and so I satisfies the formula
PrimaFacie(e1) ∨ ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z)→ Acc(z))).

– If e1 ∈ {t(α) | α ∈ S , s(α) ∈ S ∩ Supp(S \ {t(α)})}, then ∃e2 ∈ S s.t. t(e2) = e1,
s(e2) = e3 and e3 ∈ S ∩ Supp(S \ {e1})}. So, by definition of I, there exist ė2, ė3 ∈ DI s.t.
I(Supp(e2)) = ⊤, I(Arg(e3)) = ⊤, I(T (e2, e1)) = ⊤, I(S(e2, e3)) = ⊤ and I(Acc(e3)) = ⊤.
Since I is a model of Axiom (4.11), I satisfies the formula ∀z ∈ Arg(S(e2, z) → Acc(z)).
Thus, I satisfies the formula ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z)→ Acc(z))), and also
the formula PrimaFacie(e1) ∨ ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z)→ Acc(z))).

I satisfies Formula (4.7b)EBAF: Consider ė1 ∈ DI s.t. I(Arg(e1)) = ⊤.
⇒ Assume that I(Unsupportable(e1)) = ⊤.

We must show that I(PrimaFacie(e1)) = ⊥ and that I is a model of the formula ∀y ∈ Supp
(T (y, e1)→ (∃z ∈ Arg (S(y, z)∧Unsupportable(z)) ∨ ∃z ∈ Arg (S(y, z)∧∃u ∈ Att (T (u, z)∧
∀v ∈ Arg (S(u, v)→ Acc(v)))))). By definition of I, we know that I(Unsupportable(e1)) =
⊤ implies that e1 ∈ UnSupp(S). Then:

∗ By Definition 80, e1 ∈ (A \Supp(A \Def(S))). So, e1 /∈ Supp(A \Def(S)). By Definition
79, we can deduce that e1 /∈P and so, by definition of I, I(PrimaFacie(e1)) = ⊥.

202

∗ Since e1 /∈P, by Lemma 27, we have, for any e2 ∈ S s.t. t(e2) = e1, s(e2) ∈ Def(S) or
s(e2) ∈ UnSupp(S). By definition of I, we have I(Supp(e2)) = ⊤ and I(T (e2, e1)) = ⊥.
Two cases are possible.
· If s(e2) ∈ Def(S), then, by Definition 78, ∃e4 ∈ R s.t. t(e4) = s(e2) and s(e4) ∈ S.

By the definition of I, there exist ė3, ė4, ė5 ∈ DI s.t. I(Arg(e3)) = ⊤, I(Att(e4)) = ⊤,
I(Arg(e5)) = ⊤, I(S(e2, e3)) = ⊤, I(T (e4, e3)) = ⊤, I(S(e4, e5)) = ⊤ and I(Acc(e5)) =
⊤. Since I is a model of Axiom (4.11), I is a model of the formula ∀v ∈ Arg(S(e4, v)→
Acc(v)), and so it is also a model of the formula ∃z ∈ Arg (S(e2, z)∧∃u ∈ Att(T (u, z)∧
∀v ∈ Arg(S(u, v)→ Acc(v)))).

· If s(e2) ∈ UnSupp(S), then, by the definition of I, there exists ė3 ∈ DI s.t. I(Arg(e3)) =
⊤, I(S(e2, e3)) = ⊤ and I(Unsupportable(e3)) = ⊤. So I is a model of the formula
∃z ∈ Arg(S(e2, z) ∧ Unsupportable(z)).

In conclusion, for any ė2 ∈ DI such that I(Supp(e2)) = ⊤ and I(T (e2, e1)) = ⊥, I is a
model of the formula ∃z ∈ Arg(S(e2, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(e2, z) ∧ ∃u ∈
Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→ Acc(v)))). So, I is a model of the formula ∀y ∈ Supp
(T (y, e1) → (∃z ∈ Arg (S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg (S(y, z) ∧ ∃u ∈ Att
(T (u, z) ∧ ∀v ∈ Arg (S(u, v) → Acc(v)))))).

⇐ Assume that I(PrimaFacie(e1)) = ⊥ and I is a model of the formula ∀y ∈ Supp(T (y, e1)→
(∃z ∈ Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈
Arg(S(u, v) → Acc(v)))))). Following the first assumption, by definition of I, we can
deduce that e1 /∈ P. Following the second assumption, by definition of I and because I
is a model of Axiom (4.12), we can deduce that for any e2 ∈ S s.t. t(e2) = e1, I is a
model of the formula ∃z ∈ Arg(S(e2, z) ∧ Unsupportable(z) or I is a model of the formula
∃z ∈ Arg(S(e2, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→ Acc(v)))).

∗ If I is a model of ∃z ∈ Arg (S(e2, z) ∧ Unsupportable(z)), since I is a model of Axiom
(4.11), by definition of I, there exists e3 ∈ A s.t. s(e2) = e3 and e3 ∈ UnSupp(S). So,
s(e2) ∈ UnSupp(S).

∗ If I is a model of the formula ∃z ∈ Arg (S(e2, z) ∧ ∃u ∈ Att (T (u, z) ∧ ∀v ∈ Arg
(S(u, v) → Acc(v)))), then by definition of I and because I is a model of axioms (4.11)
and (4.12), there exists e3 ∈ A s.t. e3 = s(e2), there exists e4 ∈ R s.t. t(e4) = e3 and
there exists e5 ∈ A s.t. s(e4) = e5 and e5 ∈ S. So, there exists e4 ∈ R s.t. t(e4) = s(e2)
and s(e4) ∈ S. By Definition 78, we have s(e2) ∈ Def(S).

In conclusion, for any e2 ∈ S s.t. t(e2) = e1, s(e2) ∈ UnSupp(S) or s(e2) ∈ Def(S). Since
we know that e1 /∈P, by Lemma 27, we have e1 ∈ UnSupp(S) and thus, by definition of I,
I(Unsupportable(e1)) = ⊤.

I satisfies Formula (4.8)EBAF: Assume that I does not satisfy Formula (4.8)EBAF. So there
exists ė1 ∈ DI s.t. I(Arg(e1)) = ⊤, I(Cand(e1)) = ⊤ and I does not satisfy the formula
∀y ∈ Att(T (y, e1) → (∃z ∈ Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈
Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Acc(v)))))). By definition of I and because I is a model
of axioms (4.11) and (4.12), we have e1 ∈ A and there exists e2 ∈ R s.t. t(e2) = e1, and for
any e3 ∈ A with s(e2) = e3, e3 /∈ UnSupp(S) and for any e4 ∈ R s.t. t(e4) = e3, there exists
e5 ∈ A with s(e4) = e5 and e5 /∈ S. So, e1 ∈ A and there exists e2 ∈ R s.t. t(e2) = e1,
s(e2) /∈ UnSupp(S) and for any e4 ∈ R s.t. t(e4) = s(e2), s(e4) /∈ S. Donc, by Definition
78, s(e2) /∈ Def(S). Since s(e2) /∈ UnSupp(S), by Definition 81, s(e2) /∈ UnAcc(S) and so, by
definition 82, e2 /∈ UnAct(S). But, I(Cand(e1)) = ⊤, so, by definition of I, I(Acc(e1)) = ⊤ and
thus, e1 ∈ S. Moreover, S is admissible, so by Definition 84, e1 ∈ Acc(S); this implies that, by
Definition 83, ∀α ∈ R s.t. t(α) = x, α ∈ UnAct(S). This contradicts the initial assumption.

⇐ Let I be a Herbrand model of ΣDef(A) ∪ {(4.11), (4.12), (4.16)}. We must prove that SI is an

203

admissible extension. Following the proof of Proposition 13.1, we know that SI is a conflict-free
extension. It remains to prove that SI ⊆ Acc(SI). Let e1 ∈ SI . As SI ⊆ A , e1 ∈ A , and
since I is a model of formulae (4.1), there exists ė1 ∈ DI s.t. I(Arg(e1)) = ⊤. By definition
of SI , I(Acc(e1)) = ⊤, so, since I is a model of Formula (4.4), we have that I(Cand(e1)) = ⊤
and I(Supported(e1)) = ⊤. Since there is no support cycle in A, and I is a model of formulae
Σss(AFF) ∪ (4.16) ∪ (4.11) ∪ (4.12), and I(Arg(e1)) = ⊤ and I(Supported(e1)) = ⊤, by Lemma
28, e1 ∈ Supp(SI). Note that SI is self-supported.

We also know that I(Cand(e1)) = ⊤. Since I is a model of Formula (4.8)EBAF, I satisfies the
formula ∀y ∈ Att (T (y, e1) → (∃z ∈ Arg (S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg (S(y, z) ∧
∃u ∈ Att (T (u, z) ∧ ∀v ∈ Arg (S(u, v) → Acc(v)))))). Since I is a model of formulae (4.1),
(4.2) and (4.3), then for any e2 ∈ R s.t. e1 ∈ t(e2), there exists e3 ∈ A with e3 ∈ s(e2), and either
I(Unsupportable(e3)) = ⊤, or there exists e4 ∈ R s.t. e3 ∈ t(e4) and for any e5 ∈ A with e5 ∈
s(e4), e5 ∈ SI . Since I is a model of axioms (4.11) and (4.12), e3 and e5 are unique. Thus for any
e2 ∈ R s.t. t(e2) = e1, there exists e3 ∈ A with s(e2) = e3, and either I(Unsupportable(e3)) = ⊤,
or there exists e4 ∈ R s.t. t(e4) = e3 and s(e4) ∈ SI .

– If there exists e4 ∈ R s.t. t(e4) = e3 and s(e4) ∈ SI , then, by Definition 78, e3 ∈ Def(SI).
So, since s(e2) = e3, we have s(e2) ∈ Def(SI).

– If I(Unsupportable(e3)) = ⊤, by Lemma 29, e3 ∈ UnSupp(SI). So, since s(e2) = e3, we have
s(e2) ∈ UnSupp(SI).

In conclusion, for any e2 ∈ R s.t. t(e2) = e1, either s(e2) ∈ UnSupp(SI), or s(e2) ∈ Def(SI). By
Definition 81, one can deduce that s(e2) ∈ UnAcc(SI) and so, by Definition 82, e2 ∈ UnAct(SI).
Thus, e1 ∈ Supp(SI) and for any e2 ∈ R s.t. t(e2) = e1, e2 ∈ UnAct(SI). By Definition 83, this
implies that e1 ∈ Acc(SI).

3. For complete semantics:

⇒ Consider a complete extension S of A. A Herbrand interpretation I of ΣRein(A)∪{(4.11), (4.12),
(4.16)} can be defined as follows:

– For any ė in DI , I(Acceptable(e)) = ⊤ iff ∀α ∈ R s.t. t(α) = e, α ∈ UnAct(S)
– The interpretation of the other predicates is defined similarly as in the proof of Proposi-

tion 13.2
With this definition, SI = S. It remains to prove that I is a model of ΣRein(A) ∪ {(4.11), (4.12),
(4.16)}.
As in the proof of Proposition 13.1, I is a model of formulae (4.11), (4.12) and (4.16).
We must prove that I is a model of ΣRein(A). It is obvious that I is a model of formulae (4.1), (4.2)
and (4.3). It remains to show that I is a model of formulae (4.4), (4.5), (4.6), (4.7), (4.8) and (4.9).
Since I is a model of formulae (4.16), it is enough to prove that I is a model of formulae (4.4),
(4.5)EBAF, (4.6)EBAF, (4.7)EBAF, (4.8)EBAF and (4.9)EBAF. By definition of I, Formula (4.5b)EBAF is
obviously satisfied. The proofs for the fact that I satisfies formulae (4.5a)EBAF, (4.6)EBAF and
(4.7)EBAF are similar to those given in the proof of Proposition 13.2.

I satisfies Formula (4.4):
⇒ Let ė1 ∈ DI s.t. I(Acc(e1)) = ⊤. By the definition of I, e1 ∈ S. But, S is a complete exten-

sion, so, by Definition 84, S is conflict-free and S = Acc(S); this implies that e1 inAcc(S).
By Definition 83, e1 ∈ Supp(S), and ∀e2 ∈ R s.t. t(e2) = e1, e2 ∈ UnAct(S). Consequently,
by definition of I, I(Supported(e1)) = ⊤ and I(Cand(e1)) = ⊤.

⇐ Let ė1 ∈ DI s.t. I(Supported(e1)) = ⊤ and I(Cand(e1)) = ⊤. By definition of I, e1 ∈
Supp(S) and ∀e2 ∈ R s.t. t(e2) = e1, e2 ∈ UnAct(S). By Definition 83, e1 ∈ Acc(S). But, S
is a complete extension, so by Definition 84, S is conflict-free and S = Acc(S). This implies
that e1 ∈ S, and so, by definition of I, I(Acc(e1)) = ⊤.

204

I satisfies Formula (4.8)EBAF. Assume that I does not satisfy Formula (4.8)EBAF. So there
exists ė1 ∈ DI s.t. I(Arg(e1)) = ⊤, I(Cand(e1)) = ⊤ and I does not satisfy the formula
∀y ∈ Att(T (y, e1) → (∃z ∈ Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈
Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Acc(v)))))). By definition of I and because I is a
model of axioms (4.11) and (4.12), e1 ∈ A and there exists e2 ∈ R s.t. t(e2) = e1, and for
any e3 ∈ A with s(e2) = e3, e3 /∈ UnSupp(S) and for any e4 ∈ R s.t. t(e4) = e3, there exists
e5 ∈ A with s(e4) = e5 and e5 /∈ S. Thus, e1 ∈ A and there exists e2 ∈ R s.t. t(e2) = e1,
s(e2) /∈ UnSupp(S) and for any e4 ∈ R s.t. t(e4) = s(e2), s(e4) /∈ S. So, by Definition 78,
s(e2) /∈ Def(S). Since s(e2) /∈ UnSupp(S), then, by Definition 81, s(e2) /∈ UnAcc(S) and so,
by Definition 82, e2 /∈ UnAct(S). But, I(Cand(e1)) = ⊤, so, by definition of I, ∀e2 ∈ R s.t.
t(e2) = e1, e2 ∈ UnAct(S). This contradicts the initial assumption.

I satisfies Formula (4.9)EBAF. Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I satisfies the formula
∀y ∈ Att(T (y, e1) → (∃z ∈ Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈
Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v) → Acc(v)))))). We must show that I(Cand(e1)) = ⊤. By
definition of I, e1 ∈ A . Moreover, similarly to the part ⇐ of the proof of Proposition 13.2,
one can deduce that for any e2 ∈ R s.t. t(e2) = e1, e2 ∈ UnAct(S). So, by definition of I,
I(Cand(e1)) = ⊤.

⇐ Let I be a Herbrand model of Σd(EBAF) ∪ Σr(A) ∪ (4.16) ∪ (4.11) ∪ (4.12). By the proof of
Proposition 13.2, we know that SI is an admissible extension. So, by Definition 84, SI is conflict-
free and SI ⊆ Acc(SI). It remains to prove that Acc(SI) ⊆ SI .

Let e1 ∈ A s.t. e1 ∈ Acc(SI). By definition of SI , we must prove that I(Acc(e1)) = ⊤. Since I is
a model of Formula (4.4), it is enough to show that I(Supported(e1)) = ⊤ and I(Cand(e1)) = ⊤.
Moreover, since I is a model of formulae (4.1), we know that I(Arg(e1)) = ⊤.

Proof for I(Supported(e1)) = ⊤. By Definition 18, e1 ∈ Supp(SI), so by Definition 79, e1 ∈
P ∪ {t(α) | α ∈ S , s(α) ∈ SI ∩ Supp(SI \ {t(α)})}. Thus, e1 ∈P or e1 ∈ {t(α) | α ∈ S , s(α) ∈
SI ∩ Supp(SI \ {t(α)})}. Consequently, e1 ∈ P or there exists e2 ∈ S s.t. t(e2) = e1 and
s(e2) ∈ SI . Therefore, e1 ∈ P or there exists e2 ∈ S s.t. t(e2) = e1 and there exists e3 ∈ A
s.t. e3 = s(e2) and e3 ∈ SI . Since I is a model of formulae (4.1), (4.2) and (4.3), one can deduce
that I(PrimaFacie(e1)) = ⊤ or there exist ė2, ė3 ∈ DI with I(Supp(e2)) = ⊤, I(Arg(e3)) =
⊤, I(T (e2, e1)) = ⊤ and I(S(e2, e3)) = ⊤. In addition, by definition of SI , I(Acc(e3)) = ⊤.
Since I is a model of Axiom (4.11), e3 is unique, and so I(PrimaFacie(e1)) = ⊤ or I satisfies
the formula ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z) → Acc(zy))). So, I satisfies the formula
PrimaFacie(e1) ∨ ∃y ∈ Supp(T (y, e1) ∧ ∀z ∈ Arg(S(y, z) → Acc(z))). Since I is a model of
Formula (4.6)EBAF, this implies that I(Supported(e1)) = ⊤.

Proof for I(Cand(e1)) = ⊤. By Definition 18, for any e2 ∈ R s.t. t(e2) = e1, e2 ∈ UnAct(SI).
By definitions 82 and 81, for any e2 ∈ R s.t. t(e2) = e2, there exists e3 ∈ A s.t. e3 = s(e2) and
e3 ∈ Def(SI) or e3 ∈ UnSupp(SI). Two cases are possible.

– If e3 ∈ Def(SI) then, as for the first point of the induction step of Lemma 30, we can show
that I satisfies the formula ∀y ∈ Att (T (y, e1) → ∃z ∈ Arg (S(y, z) ∧ ∃u ∈ Att (T (u, z) ∧
∀v ∈ Arg (S(u, v) → Acc(v))))).

– If e3 ∈ UnSupp(SI), by Lemma 30, I(Unsupportable(e3)) = ⊤. Thus, for any e2 ∈ R s.t.
t(e2) = e1, there exists e3 ∈ A s.t. e3 = s(e2) and I(Unsupportable(e3)) = ⊤. Since
I is a model of formulae (4.1), (4.2) and (4.3), for any ė2 ∈ DI with I(Att(e2)) = ⊤
and I(T (e2, e1)) = ⊤, there exists ė3 ∈ DI with I(Arg(e3)) = ⊤, I(S(e2, e3)) = ⊤ and
I(Unsupportable(e3)) = ⊤. So, I satisfies the formula ∀y ∈ Att (T (y, e1) → ∃z ∈ Arg
(S(y, z) ∧ Unsupportable(z))).

205

In conclusion, I satisfies the formula ∀y ∈ Att (T (y, e1) → ∃z ∈ Arg (S(y, z) ∧ ∃u ∈ Att
(T (u, z) ∧ ∀v ∈ Arg (S(u, v) → Acc(v))))) or I satisfies the formula ∀y ∈ Att(T (y, e1) →
∃z ∈ Arg(S(y, z) ∧ Unsupportable(z))). So, I satisfies the formula ∀y ∈ Att(T (y, e1)→ (∃z ∈
Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→
Acc(v)))))). Since I is a model of Formula (4.9)EBAF, I(Cand(e1)) = ⊤.

4. For the preferred semantics: Let I be an interpretation of a set of formulas Σ. It is obvious to see that
I is a ⊆-maximal model of Σ iff SI is ⊆-maximal among the extensions SJ , where J is a model of Σ.
Considering Σ = ΣDef(A)∪{(4.11), (4.12), (4.16)}, one can see that the preferred extensions correspond
to the extensions SI where I is a ⊆-maximal model of ΣDef(A) ∪ {(4.11), (4.12), (4.16)}.

5. For the grounded semantics: Let I be an interpretation of a set of formulas Σ. It is obvious to
see that I is a ⊆-minimal model of Σ iff SI is ⊆-minimal among the extensions SJ , where J is a
model of Σ. By definition, the grounded extension is the complete extension that is ⊆-minimal. This
implies that the grounded extension is the extension SI where I is a ⊆-minimal model of ΣRein(A) ∪
{(4.11), (4.12), (4.16)}.

6. For stable semantics:

⇒ Consider a stable extension S of A. An interpretation I of ΣCA(A) ∪ {(4.11), (4.12), (4.16)} can
be defined as in the proof of Proposition 13.3.
With this definition, SI = S. It remains to prove that I is a model of formulae ΣCA(A) ∪
{(4.11), (4.12), (4.16)}.
As in the proof of Proposition 13.1, we can prove that I is a model of formulae (4.11), (4.12) and
(4.16).
We must prove that I is a model of ΣCA(A). It is obvious that I is a model of formulae (4.1),
(4.2) and (4.3). It remains to prove that I is a model of formulae (4.4), (4.5), (4.6), (4.7) and
(4.10). Since I is a model of formulae (4.16), it is enough to prove that I is a model of formulae
(4.4), (4.5)EBAF, (4.6)EBAF, (4.7)EBAF and (4.10)EBAF. Proving that I satisfies formulae (4.5)EBAF,
(4.6)EBAF and (4.7)EBAF can be done in the same way as in the proof of Proposition 13.2.

I satisfies Formula (4.4):
⇒ Let ė1 ∈ DI s.t. I(Acc(e1)) = ⊤. By the definition of I, e1 ∈ S. But, S is a stable extension,

so, by Definition 84, S = A \UnAcc(S). Moreover, by Definition 20, S is conflict-free and self-
supported. This implies that e1 ∈ Supp(S) and so, by definition of I, I(Supported(e1)) = ⊤.
Assume that I(Cand(e1)) = ⊥. By definition of I, this implies that there exists e2 ∈ R s.t.
t(e2) = e1 and e2 /∈ UnAct(S). By Definition 82, s(e2) /∈ UnAcc and so s(e2) ∈ S. Thus,
there exists e2 ∈ R s.t. t(e2) = e1 and s(e2) ∈ S, so, by Definition 78, e1 ∈ Def(S). As
e1 ∈ S, S ∩Def(S) ̸= ∅; this contradicts the fact that S is conflict-free.

⇐ Let ė1 ∈ DI s.t. I(Supported(e1)) = ⊤ and I(Cand(e1)) = ⊤. By definition of I, e1 ∈
Supp(S) and ∀e2 ∈ R s.t. t(e2) = e1, e2 ∈ UnAct(S). Since S is a stable extension, S = A \
UnAcc(S). By Definition 82, we also know that ∀e2 ∈ R s.t. t(e2) = e1, s(e2) ∈ UnAcc(S).
So, ∀e2 ∈ R s.t. t(e2) = e1, s(e2) /∈ S, and thus, by Definition 78, e1 /∈ Def(S). Moreover,
e1 ∈ Supp(S), so, e1 ∈ Supp(A \ UnAcc(S)). But, by Definition 81, Def(S) ⊆ UnAcc(S),
so, (A \ UnAcc(S)) ⊆ (A \ Def(S)) and since e1 ∈ Supp(A \ UnAcc(S)), by Lemma 15,
e1 ∈ Supp(A \ Def(S)). Thus, e1 /∈ A \ Supp(A \ Def(S)) and so, by Definition 80,
e1 /∈ UnSupp(S). Since e1 /∈ Def(S) and x /∈ UnSupp(S), by Definition 81, e1 /∈ UnAcc(S)
and since S = A \ UnAcc(S), e1 ∈ S. Consequently, by the definition of I, I(Acc(e1)) = ⊤.

I satisfies Formula (4.10a)EBAF: Let ė1 ∈ DI with I(Arg(e1)) = ⊤ and I(Cand(e1)) = ⊥.
By definition of I, there exists e2 ∈ R s.t. t(e2) = e1 and e2 /∈ UnAct(S). By Definition 82,
s(e2) /∈ UnAcc(S). Since S is stable, by Definition 84, s(e2) ∈ S. So there exists e2 ∈ R s.t.

206

t(e2) = e1 and there exists e3 ∈ A s.t. e3 = s(e2) and e3 ∈ S. Since I is a model of formulae (4.1),
(4.2) and (4.3), there exist ė2, ė3 ∈ DI with I(Att(e2)) = ⊤, I(Arg(e3)) = ⊤, I(T (e2, e1)) = ⊤,
I(S(e2, e3)) = ⊤. Moreover, by definition of I, I(Acc(e3)) = ⊤. Since I is a model of Axiom
(4.11), e3 is unique, and so I satisfies the formula ∀z ∈ Arg(S(e2, z)→ Acc(z)). Thus, I satisfies
the formula ∃y ∈ Arg(T (y, e1) ∧ ∀z ∈ Arg(S(y, z) → Acc(z))). So I is a model of Formula
(4.10a)EBAF.

I satisfies Formula (4.10b)EBAF:. Let ė1 ∈ DI s.t. I(Arg(e1)) = ⊤ and I(Supported(e1)) =
⊥. Since I is a model of Formula (4.6)EBAF, by contraposition, I does not satisfy the for-
mula PrimaFacie(e1) ∨ ∃y ∈ Supp (T (y, e1) ∧ ∀z ∈ Arg (S(y, z) → Acc(z))). So,
I(PrimaFacie(e1)) = ⊥ and for any ė2 ∈ DI with I(T (e2, e1)) = ⊥, there exists ė3 ∈ DI

with I(Arg(e3)) = ⊤, I(S(e2, e3)) = ⊤ and I(Acc(e3)) = ⊥. By definition of I, one can deduce
that e3 /∈ S. Moreover, S is stable, so by Definition 84, e3 ∈ UnAcc(S). By Definition 81,
e3 ∈ Def(S) ∪ UnSupp(S). So, e3 ∈ Def(S) or e3 ∈ UnSupp(S). Two cases are possible.

– If e3 ∈ Def(S), as in the point “Proof for I(Cand(e1)) = ⊤” given in the proof “For complete
semantics”, we can show that I satisfies the formula ∃u ∈ Att(T (u, e3)∧∀v ∈ Arg(S(u, v)→
Acc(v))). Thus, I satisfies the formula ∀y ∈ Supp(T (y, e1) → ∃z ∈ Arg(S(y, z) ∧ ∃u ∈
Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→ Acc(v))))).

– If a ∈ UnSupp(S), as in the point “Proof for I(Cand(e1)) = ⊤” in the proof “For complete
semantics”, we can show that I(Unsupportable(e3)) = ⊤ and so that I satisfies the formula
∀y ∈ Supp(T (y, e1)→ ∃z ∈ Arg(S(y, z) ∧ Unsupportable(z))).

In conclusion, I satisfies the formula ∀y ∈ Supp (T (y, e1) → ∃z ∈ Arg (S(y, z) ∧ ∃u ∈ Att
(T (u, z) ∧ ∀v ∈ Arg (S(u, v) → Acc(v))))) and I satisfies the formula ∀y ∈ Supp(T (y, e1)→
∃z ∈ Arg(S(y, z)∧Unsupportable(z))). So, I satisfies the formula ∀y ∈ Supp(T (y, e1)→ (∃z ∈
Arg(S(y, z) ∧ Unsupportable(z)) ∨ ∃z ∈ Arg(S(y, z) ∧ ∃u ∈ Att(T (u, z) ∧ ∀v ∈ Arg(S(u, v)→
Acc(v)))))). Since I(PrimaFacie(e1)) = ⊥ and I is a model of Formula (4.7b)EBAF, one can
conclude that I(Unsupportable(e1)) = ⊤. So, I satisfies Formula (4.10b)EBAF.

⇐ Let I be a Herbrand model of ΣCA(A)∪{(4.11), (4.12), (4.16)}. By the proof of Proposition 13.2,
we know that SI is an extension that is conflict-free and self-supported. So, by the proof of
Proposition 21, it remains to show that (A \ SI) ⊆ UnAcc(SI).

Let e1 ∈ A \ SI . So e1 /∈ SI . By definition of SI , there exists ė1 ∈ D1 with I(Acc(e1)) = ⊥.
Since I is a model of formulae (4.4), I(Cand(e1)) = ⊥ or I(Supported(e1)) = ⊥. Two cases are
possible.

– If I(Cand(e1)) = ⊥, then by Formula (4.10a)EBAF satisfied by I, we know that I satisfies the
formula ∃y ∈ Att (T (y, e1) ∧ ∀z ∈ Arg (S(y, z)→ Acc(z))). This implies that there exists
ė2 ∈ DI s.t. I(Att(e2)) = ⊤, I(T (e2, e1)) = ⊤ and for any ė3 ∈ DI s.t. I(Arg(e3)) = ⊤
and I(S(e2, e3)) = ⊤, I(Acc(e3)) = ⊤. Since I is also a model of Axiom (4.11), e3 is
unique. So, there exist ė2, ė3 ∈ DI s.t. I(Att(e2)) = ⊤, I(Arg(e3)) = ⊤, I(T (e2, e1)) = ⊤,
I(S(e2, e3)) = ⊤ and I(Acc(e3)) = ⊤. Since I is a model of formulae (4.1), (4.2) and (4.3),
there exist e2 ∈ R and e3 ∈ A s.t. t(e2) = e1 and s(e2) = e3. Moreover, by definition
of SI , e3 ∈ SI , and so s(e2) ∈ SI . By Definition 78, e1 ∈ Def(SI). Since e1 ∈ Def(SI),
e1 ∈ Def(SI) ∪ UnSupp(SI), and so, by Definition 81, e1 ∈ UnAcc(SI).

– If I(Supported(e1)) = ⊥, then by Formula (4.10b)EBAF satisfied by I, I(Unsupportable(e1)) =
⊤. By Lemma 29, e1 ∈ UnSupp(SI). Thus, e1 ∈ Def(SI)∪UnSupp(SI) and so, by Definition
81, e1 ∈ UnAcc(SI).

207

B.8 Proofs for Section 4.5.7: Theory for HO-EBAF
Proposition. 14 Let A = (A , R, S , P, s, t) be an HO-EBAF-C corresponding to an HO-EBAF and
U = (S,Γ,∆) be a structure.

1. U is conflict-free if and only if there exists a Herbrand model I of ΣCoh(A) ∪ {(4.11), (4.12), (4.17)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

2. U is admissible if and only if there exists a Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12), (4.17)}
such that S = SI , Γ = ΓI and ∆ = ∆I .

3. U is complete if and only if there exists a Herbrand model I of ΣRein(A)∪{(4.11), (4.12), (4.17)} such
that S = SI , Γ = ΓI and ∆ = ∆I .

4. U is preferred if and only if there exists a ⊆-maximal Herbrand model I of ΣDef(A) ∪ {(4.11), (4.12),
(4.17)} such that S = SI , Γ = ΓI and ∆ = ∆I .

5. U is grounded if and only if there exists a ⊆-minimal Herbrand model I of ΣRein(A)∪ {(4.11), (4.12),
(4.17)} such that S = SI , Γ = ΓI and ∆ = ∆I .

6. U is stable if and only if there exists a Herbrand model I of ΣCA(A)∪{(4.11), (4.12), (4.17)} such that
S = SI , Γ = ΓI and ∆ = ∆I .

Proof. (for Proposition 14)
As for Proposition 12, the idea is to apply a succession of operations on the language used in this work

to retrieve the language that is used in the "Logical Description of a REBAF" and "Logical Formalization
of REBAF semantics" sections of [CL20]. In the following, when we mention formulas from [CL20], we refer
to formulas given in these particular sections. These operations will then be applied successively to formulas
(4.4) and (4.5)HOEBAF to (4.10)HOEBAF in order to eventually yield the formulas used in [CL20].

First operation (denoted Θ): correctly rename some of the predicates of the language as follows.

• Arg becomes Arg

• Att becomes Attack

• Sup becomes ESupport

• PrimaFacie becomes PrimaFacie

• Supported becomes Supp

• Unsupportable becomes UnSupp

• Unacceptable becomes NAcc

• Cand becomes ⊤ (Cand does not occur in formulas (4.4) and (4.5)HOEBAF to (4.10)HOEBAF and has no
corresponding predicate in [CL20])

• Activable becomes ⊤ (same reason as for Cand))

• Defeated becomes ⊤ (same reason as for Cand)

• Inhibited becomes ⊤ (same reason as for Cand)

• Desactivated becomes ⊤ (same reason as for Cand)

208

Then we separate formulas Θ((4.5)HOEBAF) to Θ((4.10)HOEBAF) in two groups of subformulas. In each
formula, exactly one quantifier occurs that is bounded to Arg∪Attack∪ESupport. The separation consists
of putting in the first group the formulas with this quantifier bounded to only Arg (group A) and in the
second group the formulas with this quantifier bounded to Attack ∪ ESupport (group B).

Second operations (denoted Λ): correctly rename the missing unary predicates of the language as follows.

• Selected(x) becomes eAcc(x) when Arg(x) is true

• Acceptable(x) becomes Acc(x) when Arg(x) is true

• Selected(x) becomes eV al(x) when Attack(x) ∨ ESupport(x) is true

• Acceptable(x) becomes V al(x) when Attack(x) ∨ ESupport(x) is true

Third operation (denoted Π): replace the use of binary predicates S and T by the introduction of
functional terms sα and tα (justified by the presence of the axioms (4.11) and (4.12) in the theory).

• ∀a ∈ Arg(S(α, a)→ φ) becomes φ in which all occurences of a are replaced by sα

• ∃a ∈ Arg(S(α, a) ∧ φ) becomes φ in which all occurences of a are replaced by sα

• T (α, x) becomes tα = x

The idea is then to apply successively Θ, Λ and Π on formulas (4.4) and (4.5)HOEBAF to (4.10)HOEBAF so
that we obtain the formulas used in [CL20]. However, for some formulas, this result is not immediate. We
will therefore use different versions of these formulas (namely (4.4), (4.5a)HOEBAF and (4.8)HOEBAF) on which
to apply Θ, Λ and Π.

Concerning Formula (4.4), we add a boundary on the universal quantifier. This boundary ranges over
predicates Arg, Att and Sup. This addition is correct because in Proposition 14 we consider models of
theories that contain both (4.4) and (4.2). Thus, instead of (4.4), we consider Formula (4.4)Diff.

∀x ∈ (Arg ∪Att ∪ Sup)(Selected(x)↔ (Acceptable(x) ∧ Supported(x))) ((4.4)Diff)

Concerning Formula (4.5a)HOEBAF, the subformula ∃x ∈ (Arg ∪Att∪Sup)
(
T (α, x)∧Unacceptable(x)

)
is

changed into:
∀x ∈ (Arg ∪Att ∪ Sup)

(
T (α, x)→ Unacceptable(x)

)
This modification is only valid because in Proposition 14 we consider models of theories that contain

(4.12). We then use standard modifications that preserve logical equivalence to put the quantifier ∀x ∈
(Arg ∪ Att ∪ Sup) at the beginning of the formula. This results in Formula (4.5a)Diff which will be used
instead of (4.5a)HOEBAF.

∀x ∈ (Arg ∪Att ∪ Sup)
(
∀α ∈ Att

(
[
∀a ∈ Arg

(
S(α, a)→ Selected(a)

)
∧ Selected(α) ∧ T (α, x)

]
→

Unacceptable(x)
)) ((4.5a)Diff)

Concerning Formula (4.8)HOEBAF, we use the same standard modifications that preserve logical equivalence
to put the quantifier ∀α ∈ Att at the beginning of the formula. This results in Formula (4.8)Diff which will
be used instead of (4.8)HOEBAF.

209

∀α ∈ Att
(
∀x ∈ (Arg ∪Att ∪ Sup)

(
[Acceptable(x) ∧ T (α, x)]→[

∃a ∈ Arg
(
S(α, a) ∧ Unsupportable(a)

)
∨ Unsupportable(α)∨

∃β ∈ Att
([
T (β, α) ∨ ∃a ∈ Arg(S(α, a) ∧ T (β, a))

]
∧[

∀b ∈ Arg(S(β, b)→ Selected(b)) ∧ Selected(β)
])]
))

((4.8)Diff)

By applying successively Θ, Λ and Π on formulas (4.4)Diff, (4.5a)Diff, (4.6)HOEBAF, (4.7)HOEBAF, (4.8)Diff,
(4.9)HOEBAF, (4.10)HOEBAF, we obtain the following formulas.

∀x ∈ Arg(eAcc(x)↔ (Acc(x) ∧ Supp(x))) ((4.4)ShiftA)

∀x ∈ (Attack ∪ ESupport)(eV al(x)↔ (V al(x) ∧ Supp(x))) ((4.4)ShiftB)

∀x ∈ Arg(∀α ∈ Attack(
[eAcc(sα) ∧ eV al(α) ∧ (tα = x)]→ NAcc(x)))

((4.5a)ShiftA)

∀x ∈ (Attack ∪ ESupport)(∀α ∈ Attack(
[eAcc(sα) ∧ eV al(α) ∧ (tα = x)]→ NAcc(x)))

((4.5a)ShiftB)

∀x ∈ Arg(NAcc(x)→ ¬Acc(x)) ((4.5b)ShiftA)

∀x ∈ (Attack ∪ ESupport)(NAcc(x)→ ¬V al(x)) ((4.5b)ShiftB)

∀x ∈ Arg(
[PrimaFacie(x) ∨ ∃α ∈ ESupport((tα = x) ∧ eAcc(sα) ∧ eV al(α))]

→ Supp(x))

((4.6)ShiftA)

∀x ∈ (Attack ∪ ESupport)(
[PrimaFacie(x) ∨ ∃α ∈ ESupport((tα = x) ∧ eAcc(sα) ∧ eV al(α))]

→ Supp(x))

((4.6)ShiftB)

∀x ∈ Arg(Supp(x)→
[PrimaFacie(x) ∨ ∃α ∈ ESupport((tα = x) ∧ eAcc(sα) ∧ eV al(α))])

((4.7a)ShiftA)

210

∀x ∈ (Attack ∪ ESupport)(Supp(x)→
[PrimaFacie(x) ∨ ∃α ∈ ESupport((tα = x) ∧ eAcc(sα) ∧ eV al(α))])

((4.7a)ShiftB)

∀x ∈ Arg(UnSupp(x)↔
[¬PrimaFacie(x) ∧ ∀α ∈ ESupport((tα = x)→

[UnSupp(sα) ∨ UnSupp(α)∨
∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧ eAcc(sβ) ∧ eV al(β))]

)])

((4.7b)ShiftA)

∀x ∈ (Attack ∪ ESupport)(UnSupp(x)↔
[¬PrimaFacie(x) ∧ ∀α ∈ ESupport((tα = x)→

[UnSupp(sα) ∨ UnSupp(α)∨
∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧ eAcc(sβ) ∧ eV al(β))]

)])

((4.7b)ShiftB)

∀α ∈ Attack(∀x ∈ Arg([Acc(x) ∧ (tα = x)]→
[UnSupp(sα) ∨ UnSupp(α)∨

∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧ eAcc(sβ) ∧ eV al(β))]
))

((4.8)ShiftA)

∀α ∈ Attack(∀x ∈ (Attack ∪ ESupport)([V al(x) ∧ (tα = x)]→
[UnSupp(sα) ∨ UnSupp(α)∨

∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧ eAcc(sβ) ∧ eV al(β))]
))

((4.8)ShiftB)

∀x ∈ Arg(∀α ∈ Attack((tα = x)→
[UnSupp(sα) ∨ UnSupp(α)∨

∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧ eAcc(sβ) ∧ eV al(β))])
→ Acc(x))

((4.9)ShiftA)

∀x ∈ (Attack ∪ ESupport)(∀α ∈ Attack((tα = x)→
[UnSupp(sα) ∨ UnSupp(α)∨

∃β ∈ Attack([(tβ = α) ∨ (tβ = sα)] ∧ eAcc(sβ) ∧ eV al(β))])
→ V al(x))

((4.9)ShiftB)

∀x ∈ Arg(¬Acc(x)→ ∃α ∈ Attack(tα = x ∧ eAcc(sα) ∧ eV al(α))) ((4.10a)ShiftA)

211

∀x ∈ (Attack ∪ ESupport)(¬V al(x)→ ∃α ∈ Attack(tα = x ∧ eAcc(sα) ∧ eV al(α))) ((4.10a)ShiftB)

∀x ∈ Arg(¬Supp(x)→ UnSupp(x)) ((4.10b)ShiftA)

∀x ∈ (Attack ∪ ESupport)(¬Supp(x)→ UnSupp(x)) ((4.10b)ShiftB)

We have the following immediate results (where “amounts” means “is logically equivalent”).

• Formula (4.4)ShiftA amounts to Formula (2bis) of [CL20]

• Formula (4.4)ShiftB amounts to Formula (3bis) of [CL20]

• Formula (4.5a)ShiftA amounts to Formula (2) of [CL20]

• Formulas (4.5a)ShiftB and (4.5b)ShiftB together amount to Formula (1) of [CL20]

• Formula (4.5b)ShiftA amounts to Formula (3) of [CL20]

• Formulas (4.6)ShiftA and (4.6)ShiftB together amount to Formula (1bis) of [CL20]

• Formulas (4.7a)ShiftA and (4.7a)ShiftB together amount to Formula (17) of [CL20]

• Formulas (4.7b)ShiftA and (4.7b)ShiftB together amount to Formula (18) of [CL20]

• Formula (4.8)ShiftA amounts to Formula (11) of [CL20]

• Formula (4.8)ShiftB amounts to Formula (12) of [CL20]

• Formula (4.9)ShiftA amounts to Formula (13) of [CL20]

• Formula (4.9)ShiftB amounts to Formula (14) of [CL20]

• Formula (4.10a)ShiftA amounts to Formula (15) of [CL20]

• Formula (4.10a)ShiftB amounts to Formula (16) of [CL20]

• Formulas (4.10b)ShiftA and (4.10b)ShiftB together amount to Formula (19) of [CL20]

The only missing formulas are those that are used to describe the graph of an argumentation framework,
namely (4), (4bis), (4ter), (5), (6), (7), (8), (8bis), (8ter), (9) and (10) in [CL20]. They should be retrieved
using formulas (4.1), (4.2) and (4.3). Here are the details.

Let us consider formulas (4.1)Shift, (4.2)Shift and (4.3)Shift, which are the formulas obtained by applying Θ
on formulas (4.1), (4.2) and (4.3). We have the following results.

• Formula (4.2a)Shift amounts to Formula (5) of [CL20]

• Formulas (4.1a)Shift and (4.2b)Shift together amount to Formula (7) of [CL20]

• Formulas (4.1b)Shift and (4.2c)Shift together amount to Formula (8) of [CL20]

• Formulas (4.1c)Shift and (4.2d)Shift together amount to Formula (8bis) of [CL20]

• Formulas (4.1e)Shift and (4.1f)Shift together amount to Formula (8ter) of [CL20]

• Formula (4.1d)Shift amounts to formulas (9) and (10) together of [CL20]

212

Since in Proposition 14 we consider models of theories that contain (4.11) and (4.12), it is obvious that
(4.3) can be rewritten as follows.

for all α ∈ R ∪S with s(α) = a and t(α) = b, S(α, a) ∧ T (α, b) ((4.3)bis)

Modifying (4.3)bis by replacing the predicates S and T by the functional terms sα and tα allows us to
retrieve Formula (6) of [CL20].

To retrieve fromulas (4), (4bis) and (4ter) of [CL20], we use formulas (4.1a), (4.1b) and (4.1c) of this
work. The first issue is that formulas (4.1a), (4.1b) and (4.1c) range over some elements of the argumentation
framework, while formulas (4), (4bis) and (4ter) of [CL20] are universal. However, by formulas (4.2) that
are satisfied by the models considered in Proposition 14 and the fact that we consider Herbrand models,
the sets over which formulas (4.1a), (4.1b) and (4.1c) range form a partition of the model’s domain. Thus,
we can gather formulas (4.1a), (4.1b) and (4.1c) into a single formula governed by an unbounded universal
quantifier, as follows.

∀x([Arg(x) ∧ ¬Att(x) ∧ ¬Sup(x)]∨
[¬Arg(x) ∧Att(x) ∧ ¬Sup(x)]∨
[¬Arg(x) ∧ ¬Att(x) ∧ Sup(x)])

((4.1)abc)

As formulas (4), (4bis) and (4ter) of [CL20] are all universal formulas, we can also gather them into a
single formula, as follows.

∀x([¬Attack(x) ∨ ¬Arg(x)]∧
[¬Attack(x) ∨ ¬ESupport(x)]∧

[¬ESupport(x) ∨ ¬Arg(x)])
(4[CL20])

One can note that Formula 4[CL20] is the closure of a formula in CNF while Formula (4.1)abc is the closure
of a formula in DNF. Let us then compute the CNF of the formula of which (4.1)abc is the closure. By
applying the distributivity property, we obtain the following formula.

∀x([Arg(x) ∨Att(x) ∨ Sup(x)] ∧ [¬Att(x) ∨ ¬Arg(x)]∧
[¬Att(x) ∨ ¬Arg(x) ∨ Sup(x)] ∧ [¬Att(x) ∨ ¬Sup(x) ∨ ¬Arg(x)]∧

[¬Att(x) ∨ ¬Sup(x)] ∧ [¬Sup(x) ∨ ¬Arg(x)]∧
[¬Sup(x) ∨Att(x) ∨ ¬Arg(x)])

The previous formula can be simplified by removing some conjuncts that contain three terms, because
they are subsumed by some other conjuncts. We thus obtain the following formula.

∀x([Arg(x) ∨Att(x) ∨ Sup(x)]∧
[¬Att(x) ∨ ¬Arg(x)] ∧ [¬Att(x) ∨ ¬Sup(x)] ∧ [¬Sup(x) ∨ ¬Arg(x)])

If we apply Θ on the previous formula, we obtain formulas (4), (4bis), (4ter) and (5) of [CL20]

In conclusion, since our theory is equivalent to the theory given in [CL20], Proposition 6.1 of [CL20] and
Proposition 14 are also equivalent. And so Proposition 14 holds.

213

Appendix C

Proofs of Chapter 5

C.1 Theory for Explanations in Argumentation Frameworks
Theorem. 12 Let A = (A ,R,∅,A ∪R, s, t) be an AF and S ⊆ A be a set of arguments.

1. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
Coh for S on A if and only if there exists a model I of

Σ1(A, S) ∪ {(5.4), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

2. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
Def for S on A if and only if there exists a model I of

Σ2(A, S) ∪ {(5.5), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

3. (A ′,R′,∅,A ′ ∪R′, s′, t′) is an answer to QExt
Rein1 for S on A if and only if there exists a model I of

Σ1(A, S) ∪ {(5.6), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

4. (A ′,R′,∅,A ′ ∪R′, s′, t′) is an answer to QExt
Rein2 for S on A if and only if there exists a model I of

Σ2(A, S) ∪ {(5.7), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

5. (A ′,R′,∅,A ′ ∪ R′, s′, t′) is an answer to QExt
CA for S on A if and only if there exists a model I of

Σ2(A, S){(5.8), (4.11), (4.12)} such that A ′ = AI , R′ = RI , s′ = sI and t′ = tI .

Proof. (for Theorem 12)

1. ⇒ Consider an answer to QExt
Coh for S on A (A ′,R′,∅,A ′ ∪ R′, s′, t′) where A ′ ⊆ A , R′ ⊆ R,

s′ : R′ 7→ A ′ and t′ : R′ 7→ A ′. A Herbrand interpretation I of Σ1(A, S) ∪ {(5.4), (4.11), (4.12)}
can be defined as follows:

– For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Sup(e)) = ⊥
– For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R and e2 = s(e1)

– For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R and e2 = t(e1)

– For any ė in DI , I(PrimaFacie(e)) = ⊥
– For any ė in DI , I(Selected(e)) = ⊤ iff e ∈ S
– For any ė in DI , I(Expl(e)) = ⊤ iff e ∈ A ′ ∪R′

– For any ė in DI , I(ElemFixed(e)) = ⊤ iff e ∈ A

– For any ė in DI , I(ElemV ar(e)) = ⊤ iff e ∈ R

– For any ė in DI , I(ExplEF (e)) = ⊤ iff e ∈ S
– For any ė inDI , I(ParticularEV (e)) = ⊤ iff there exist ė1 and ė2 inDI such that I(S(e, e1)) =
⊤, I(T (e, e2)) = ⊤, I(Selected(e1)) = ⊤ and I(Selected(e2)) = ⊤

– For any ė in DI , I(NecesssaryElemV ar(e)) = ⊥

214

With this definition, AI = A ′ and RI = R′. As such, we have sI : R′ 7→ A ′ and tI : R′ 7→ A ′.
Moreover, using Definition 77 and this definition of I, we have for α ∈ R′, sI(α) = x iff s(α) = x
and tI(α) = y iff t(α) = y. Thus, we can deduce that sI = s′ and tI = t′. It remains to prove
that I is a model of Σ1(A, S) ∪ {(5.4), (4.11), (4.12)}.
I is obviously a model of Axioms (4.1), (4.2), (4.3) and (5.1), and of formulas (5.4). In addition,
by definition of I, and because A is an AF, I is a model of Axioms (4.11) and (4.12).

Consider Formula (5.2a) and let ė in DI such that I(ElemFixed(e)) = ⊤. By definition of I,
e ∈ A . Suppose that I(Expl(e)) = ⊤. By definition of I, e ∈ A ′ ∪R′, and since e ∈ A , e ∈ A ′.
Then, by Definition 34, A ′ = S, so e ∈ S. By definition of I, I(ExplEF (e)) = ⊤. The other
direction of the equivalence is proved by the reverse reasoning. So, I is a model of Formula (5.2a).

Consider Formula (5.2b) and let ė in DI such that I(ElemV ar(e)) = ⊤. By definition of I,
e ∈ R. Suppose that I(Expl(e)) = ⊤. By definition of I, e ∈ A ′ ∪ R′, and since e ∈ R,
e ∈ R′. Then, by Definition 34, s(e) ∈ S and t(e) ∈ S. Let e1 = s(e) and e2 = t(e). Since I
is a model of Axioms (4.2) and (4.3), there exist ė1 and ė2 in DI such that I(S(e, e1)) = ⊤ and
I(T (e, e2)) = ⊤. Moreover, as I is a model of Axioms (4.11) and (4.12), ė1 and ė2 are unique. As
e1, e2 ∈ S by definition of I, we have I(Selected(e1)) = I(Selected((e2)) = ⊤. Thus, by definition
of I, I(ParticularEV (e)) = ⊤. So, I is a model of Formula (5.2b).

Consider Formula (5.2c) and let ė in DI such that I(ElemV ar(e)) = ⊤. By definition of I,
I(NecessaryEV (e)) = ⊥, thus I is a model of Formula (5.2c).

Consider Formula (5.2d), X = {α ∈ R|s(α) ∈ S, t(α) ∈ S} and suppose that there exists ė
in DI such that I(ElemV ar(e)) = ⊤, I(ParticularEV (e)) = ⊤ and I(NecessaryEV (e)) = ⊥.
By definition of I, this means that e ∈ R and that there exist ė1 and ė2 in DI such that
I(S(e, e1)) = ⊤, I(T (e, e2)) = ⊤, I(Selected(e1)) = ⊤ and I(Selected(e2)) = ⊤. Still by definition
of I, we deduce that e1 = s(e), e2 = t(e) and e1, e2 ∈ S. Thus, s(e), t(e) ∈ S and so e ∈ X. As
such, X ̸= ∅ so by Definition 34, R′ ̸= ∅. Let e′ ∈ R′. By definition of I and because I is a
model of Axioms (4.1) and (4.2), we know that there exists ė′ ∈ DI s.t. I(ElemV ar(e′)) = ⊤,
I(NecessaryEV (e′)) = ⊥ and I(Expl(e′)) = ⊤. Since e′ ∈ R′, by Definition 34, we have e′ ∈ X,
so s(e′), t(e′) ∈ S. In other terms, there exist e′1, e′2 ∈ S s.t. e′1 = s(e′) and e′2 = t(e′). By
definition of I and because I is a model of Axioms (4.1) and (4.2), there thus exist ė′1, ė′2 ∈ DI

s.t. I(S(e′, e′1)) = ⊤, I(T (e′, e′2)) = ⊤, I(Selected(e′1)) = ⊤ and I(Selected(e′2)) = ⊤. By
definition of I, we then have I(ParticularEV (e′)) = ⊤. In other terms, there exists ė′ ∈ DI s.t.
I(ElemV ar(e′)) = ⊤, I(ParticularEV (e′)) = ⊤, I(NecessaryEV (e′)) = ⊥ and I(Expl(e′)) =
⊤. So I is a model of the formula ∃x ∈ ElemV ar (ParticularEV (x) ∧ ¬NecessaryEV (x)
∧Expl(x)). And so I is a model of of Formula (5.2d).

⇐ Let I be a Herbrand model of Σ1(A, S) ∪ {(5.4), (4.11), (4.12)}. Consider X = {α ∈ R|s(α) ∈
S, t(α) ∈ S} and suppose that (AI ,RI ,∅,AI ∪RI , sI , tI) is not an answer to QExt

Coh for S on A.

Assume firstly that AI ̸= S. So there exists e ∈ AI s.t. e /∈ S. As e ∈ AI and because I is a
model of Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈ DI with I(Arg(e)) = ⊤ and
I(Expl(e)) = ⊤. Since I is a model of formulas (5.4), we have I(ElemFixed(e)) = ⊤, and so by
Formula (5.2a), I(ExplEF (e)) = ⊤. By using again formulas (5.4), we deduce I(Selected(e)) = ⊤.
Finally, as I is a model of Axioms (5.1), we have e ∈ S, a contradiction.

Assume secondly that RI ̸⊆ X. So there exists e ∈ RI s.t. s(e) /∈ S or t(e) /∈ S. As e ∈
RI and because I is a model of Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈
DI with I(Att(e)) = ⊤ and I(Expl(e)) = ⊤. Since I is a model of formulas (5.4), we have

215

I(ElemV ar(e)) = ⊤, and so by Formula (5.2b), I(ParticularEV (e)) = ⊤. By using again
formulas (5.4), we deduce that there exist ė1, ė2 ∈ DI s.t. I(S(e, e1)) = ⊤, I(T (e, e2)) = ⊤,
I(Selected(e1)) = ⊤ and I(Selected(e2)) = ⊤. In addition, I is a model of Axiom 4.3, 4.11 and
4.12, so e1 = s(e) and e2 = t(e). Finally, as I is a model of Axioms (5.1), we have e1 ∈ S and
e2 ∈ S, so s(e) ∈ S and t(e) ∈ S, a contradiction.

Finally, assume that X ̸= ∅ and that RI = ∅. So there exists e ∈ R s.t. s(e) ∈ S and
t(e) ∈ S. Using Axioms (4.1), (4.2), (4.3) and (5.1), there exist ė, ė1, ė2 ∈ DI s.t. I(Att(e)) = ⊤,
I(S(e, e1)) = ⊤, I(T (e, e2)) = ⊤, I(Selected(e1)) = ⊤ and I(Selected(e2)) = ⊤. As I is a
model of formulas (5.4), we deduce that I(ElemV ar(e)) = ⊤, I(ParticularEV (e)) = ⊤ and
I(NecessaryEV (e)) = ⊥. So I is a model of the formula ∃x ∈ ElemV ar (ParticularEV (x) ∧
¬NecessaryEV (x)). Since I is a model of Formula (5.2d), I is thus also a model of the formula
∃x ∈ ElemV ar (ParticularEV (x) ∧ ¬NecessaryEV (x) ∧Expl(x)). In other terms, there exists
ė′ ∈ DI s.t. I(ElemV ar(e′)) = ⊤, I(ParticularEV (e′)) = ⊤, I(NecessaryEV (e′)) = ⊥ and
I(Expl(e′)) = ⊤. In particular, using formulas (5.4), I(Att(e′)) = ⊤. So, using axioms (4.1) and
(4.2), we deduce that e′ ∈ R. Moreover, as I(Expl(e′)) = ⊤ and e′ ∈ R, by Definition 77, we
have e′ ∈ RI , a contradiction.

2. ⇒ Consider an answer to QExt
Def for S on A (A ′,R′,∅,A ′ ∪ R′, s′, t′) where A ′ ⊆ A , R′ ⊆ R,

s′ : R′ 7→ A ′ and t′ : R′ 7→ A ′. A Herbrand interpretation I of Σ2(A, S) ∪ {(5.5), (4.11), (4.12)}
can be defined as follows:

– For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Sup(e)) = ⊥
– For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R and e2 = s(e1)

– For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R and e2 = t(e1)

– For any ė in DI , I(PrimaFacie(e)) = ⊥
– For any ė in DI , I(Selected(e)) = ⊤ iff e ∈ S
– For any ė in DI , I(Expl(e)) = ⊤ iff e ∈ A ′ ∪R′

– For any ė in DI , I(ElemFixed(e)) = ⊤ iff e ∈ A

– For any ė in DI , I(ElemV ar(e)) = ⊤ iff e ∈ R

– For any ė inDI , I(IsAttacker(e)) = ⊤ iff there exist ė1 and ė2 inDI such that I(Att(e1)) = ⊤,
I(S(e1, e)) = ⊤, I(T (e1, e2)) = ⊤ and I(Selected(e2)) = ⊤

– For any ė in DI , I(ExplEF (e)) = ⊤ iff I(Selected(e)) = ⊤ or I(IsAttacker(e)) = ⊤
– For any ė inDI , I(NecessaryEV (e)) = ⊤ iff there exist ė1 and ė2 inDI such that I(S(e, e2)) =
⊤, I(T (e, e1)) = ⊤, I(Selected(e1)) = ⊤ and I(IsAttacker(e2)) = ⊤

– For any ė inDI , I(AdditionalEV (e)) = ⊤ iff there exist ė1 and ė2 inDI such that I(S(e, e1)) =
⊤, I(T (e, e2)) = ⊤, I(Selected(e1)) = ⊤ and I(IsAttacker(e2)) = ⊤

– For any ė in DI , I(ParticularEF (e)) = ⊤ iff I(IsAttacker(e)) = ⊤
With this definition, AI = A ′ and RI = R′. As such, we have sI : R′ 7→ A ′ and tI : R′ 7→ A ′.
Moreover, using Definition 77 and this definition of I, we have for α ∈ R′, sI(α) = x iff s(α) = x
and tI(α) = y iff t(α) = y. Thus, we can deduce that sI = s′ and tI = t′. It remains to prove
that I is a model of Σ2(A, S) ∪ {(5.5), (4.11), (4.12)}.
I is obviously a model of Axioms (4.1), (4.2), (4.3) and (5.1), and of formulas (5.5). In addition,
by definition of I, and because A is an AF, I is a model of Axioms (4.11) and (4.12).

Consider Formula (5.3a) and let ė in DI such that I(ElemFixed(e)) = ⊤. By definition of I,
e ∈ A . Suppose that I(Expl(e)) = ⊤. By definition of I, e ∈ A ′ ∪R′, and since e ∈ A , e ∈ A ′.
Then, by Definition 36, A ′ = S ∪ R−1(S). If e ∈ S, by definition of I, I(Selected(e)) = ⊤.
Otherwise, e ∈ R−1(S), which means there exists e1 ∈ R s.t. s(e1) = e and t(e1) = e2 with
e2 ∈ S. Since I is a model of Axioms (4.1), (4.2) and (4.3), there exist ė1, ė2 in DI such that

216

I(Att(e1)) = ⊤, I(T (e1, e)) = ⊤, I(S(e1, e2)) = ⊤. Moreover, as I is a model of Axiom (5.1),
I(Selected(e2)) = ⊤. Thus, by definition of I, I(IsAttacker(e)) = ⊤. As such, I is a model of
the formula Selected(e) ∨ IsAttacker(e). Using Formulas (5.5) then gives I(ExplEF (e)) = ⊤.
The other direction of the equivalence is proved by the reverse reasoning. So, I is a model of
Formula (5.3a).

Consider Formula (5.3b), X = {α ∈ R | s(α) ∈ R−1(S), t(α) ∈ S} and let ė in DI such
that I(ElemV ar(e)) = ⊤. By definition of I, e ∈ R. Suppose that I(NecessaryEV (e)) = ⊤.
According to Formulas (5.5), this means that there exist ė1, ė2 in DI such that I(S(e, e2)) =
⊤, I(T (e, e1)) = ⊤, I(Selected(e1)) = ⊤ and I(IsAttacker(e2)) = ⊤. Since I is a model of
Axioms (4.2), (4.3), (4.11) and (4.12), this means that e2 = s(e) and e1 = t(e). In addition, by
definition of I, e1 ∈ S. With a similar reasoning as in the previous point, from I(IsAttacker(e2)) =
⊤, we deduce that e2 ∈ R−1(S). As such, e ∈ X, so by Definition 36, e ∈ R′. By definition of I
we thus have I(Expl(e)) = ⊤. So, I is a model of Formula (5.3b).

Consider Formula (5.3c), X = {α ∈ R | s(α) ∈ R−1(S), t(α) ∈ S}, Y = {α ∈ R | s(α) ∈ S, t(α) ∈
R−1(S)} and let ė in DI such that I(ElemV ar(e)) = ⊤. Suppose that I(Expl(e)) = ⊤. By
definition of I, e ∈ A ′∪R′, and since e ∈ R, e ∈ R′. By Definition 36, we thus have e ∈ X∪Y . If
e ∈ X, with a similar reasoning as in the previous point, we deduce that I(NecessaryEV (e)) = ⊤.
If e ∈ Y , since I is a model of Axioms (4.2), (4.3), (4.11) and (4.12), there exist ė1, ė2 in DI such
that I(S(e, e1)) = ⊤, I(T (e, e2)) = ⊤ and I(Selected(e1)) = ⊤. In addition, as e2 = t(e) and
t(e) ∈ R−1(S), with a similar reasoning as in the proof for Formula (5.3a), we deduce that
I(IsAttacker(e2)) = ⊤. Thus, using Formulas (5.5), we have I(AdditionalEV (e)) = ⊤. As
such, I is a model of the formula NecessaryEV (e) ∨ AdditionalEV (e). So, I is a model of
Formula (5.3c).

Consider Formula (5.3d), let ė in DI such that I(ParticularEF (e)) = ⊤. By definition of I, this
means that I(IsAttacker(e)) = ⊤. With a similar reasoning as in the proof for Formula (5.3a),
we deduce that e ∈ R−1(S). Moreover suppose that there exist ė1, ė2 ∈ DI s.t. I(Att(e1)) = ⊤,
I(Selected(e2)) = ⊤, I(T (e1, e)) = ⊤ and I(S(e1, e2)) = ⊤. In other terms, I is a model of the
formula ∃α, a(Att(α)∧T (α, e)∧S(α, a)∧Selected(a)). Still by definition of I, we also deduce that
e = t(e1) and e2 = s(e1). Thus, s(e1) ∈ S, so e ∈ R+1(S). As such, by Definition 36, there exists
e′1 ∈ R′ s.t. t(e′1) = e and s(e′1) = e′2 with e′2 ∈ S. By definition of I and because I is a model
of Axioms (4.1), (4.3) and (4.2), we thus know that there exist ė′1, ė′2 ∈ DI s.t. I(Att(e′1)) = ⊤,
I(Expl(e′1)) = ⊤, I(Selected(e′2)) = ⊤, I(T (e′1, e)) = ⊤ and I(S(e′1, e

′
2)) = ⊤. So I is a model of

the formula ∃β, b(Att(β) ∧ T (β, e) ∧ S(β, b) ∧ Selected(b) ∧ Expl(β)). And so I is a model of of
Formula (5.3d).

⇐ Let I be a Herbrand model of Σ2(A, S) ∪ {(5.5), (4.11), (4.12)}. Consider X = {α ∈ R | s(α) ∈
R−1(S), t(α) ∈ S}, Y = {α ∈ R | s(α) ∈ S, t(α) ∈ R−1(S)} and suppose that (AI ,RI ,∅,AI ∪
RI , sI , tI) is not an answer to QExt

Def for S on A.

Assume firstly that AI ̸= S ∪R−1(S). Thus, either AI ̸⊆ S ∪R−1(S) or S ∪R−1(S) ̸⊆ AI . Let
e ∈ AI and suppose e /∈ S ∪R−1(S). So, e /∈ S and e /∈ R−1(S). By Definition 77, and because
I is a model of Axioms (4.1) and (4.2), there exists ė ∈ DI s.t. I(Arg(e)) = ⊤ and I(Expl(e)) =
⊤. Using Formulas (5.5), we thus have I(ElemFixed(e)) = ⊤. Then, Formula (5.3a) gives
us I(ExplEF (e)) = ⊤, which, using again Formulas (5.5), results in I(Selected(e)) = ⊤ or
I(IsAttacker(e)) = ⊤. If I(Selected(e)) = ⊤, because I is a model of Axioms (5.1), we deduce
e ∈ S, a contradiction. If I(IsAttacker(e)) = ⊤, with a similar reasoning as in the previous
points, we deduce that e ∈ R−1(S), another contradiction. The case where S ∪R−1(S) ̸⊆ AI is
dealt with using the reverse reasoning.

217

Assume secondly that X ̸⊆ RI . So there exists e ∈ R s.t. s(e) ∈ R−1(S), t(e) ∈ S, and e /∈ RI .
As e ∈ R and e /∈ RI , and because I is a model of Axioms (4.1) and (4.2), by Definition 77, there
exists ė ∈ DI with I(Att(e)) = ⊤ and I(Expl(e)) = ⊥. Thus, using Formulas (5.5) we deduce
I(ElemV ar(e)) = ⊤. Moreover, as I is a model of Axioms (4.3), (4.11) and (4.12), there exist
ė1, ė2 ∈ DI s.t. I(S(e, e2)) = ⊤ and I(T (e, e1)) = ⊤. Using Axiom (5.1) we get I(Selected(e1)) =
⊤ and with a similar reasoning as in the previous points, from s(e) ∈ R−1(S) and s(e) = e2, we
get I(IsAttacker(e2)) = ⊤. Then, Formulas (5.5) yield I(NecessaryEV (e)) = ⊤ and thus, by
Formula (5.3b) we obtain I(Expl(e)) = ⊤, a contradiction.

Assume thirdly that RI ̸⊆ X ∪ Y . So there exists e ∈ RI s.t. e /∈ X and e /∈ Y . As e ∈
RI and because I is a model of Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈
DI with I(Att(e)) = ⊤ and I(Expl(e)) = ⊤. Since I is a model of formulas (5.5), we have
I(ElemV ar(e)) = ⊤, so by Formula (5.3c), I(NecessaryEV (e)) = ⊤ or I(AdditionalEV (e)) =
⊤. If I(NecessaryEV (e)) = ⊤, by formulas (5.5) there exist ė1, ė2 ∈ DI s.t. I(S(e, e2)) = ⊤,
I(T (e, e1)) = ⊤, I(Selected(e1)) = ⊤ and I(IsAttacker(e2)) = ⊤. Because I is a model of
Axioms (4.3), (4.2), (4.11) and (4.12), we have s(e) = e2 and t(e) = e1. In addition, by Axiom (5.1)
t(e) ∈ S and with a similar reasoning as in the previous points, with I(IsAttacker(e2)) = ⊤ and
I(S(e, e2)) = ⊤ we deduce that s(e) ∈ R−1(S). As such, we have e ∈ X, a contradiction. In
the case where I(AdditionalEV (e)) = ⊤, with a similar reasoning, we deduce that e ∈ Y , a
contradiction as well.

Finally, assume that there exists e ∈ R−1(S) with e ∈ R+1(S) and s.t. there exists no α ∈ RI

with t(α) = e and s(α) ∈ S. Using Axioms (4.1), (4.2), (4.3) and (5.1), there exist ė, ė1, ė2 ∈ DI

s.t. I(Arg(e)) = ⊤, I(Att(e1)) = ⊤, I(Arg(e2)) = ⊤, I(T (e1, e)) = ⊤, I(S(e1, e2)) = ⊤,
I(Selected(e2)) = ⊤. In addition, since e ∈ R−1(S), with a similar reasoning as in the previous
points, we deduce that I(IsAttacker(e)) = ⊤. As I is a model of formulas (5.5), we deduce
that I(ParticularEF (e)) = ⊤. In addition, I is a model of the formula ∃α, a (Att(α) ∧ T (α, e)
∧ S(α, a) ∧ Selected(a)). Since I is a model of Formula (5.3d), I is thus also a model of the
formula ∃β, b (Att(β) ∧ T (β, e) ∧ S(β, a) ∧ Selected(a) ∧ Expl(β)). In other terms, there exist
ė′1, ė

′
2 ∈ DI s.t. I(Att(e′1)) = ⊤, I(T (e′1, e)) = ⊤, I(S(e′1, e′2)) = ⊤, I(Selected(e′2)) = ⊤ and

I(Expl(e′1)) = ⊤. So, using axioms (4.1), (4.3), (4.2) and (5.1), and Definition 77 we deduce that
there exists e′1 ∈ RI s.t. t(e′1) = e, s(e′1) = e′2 and e′2 ∈ S, a contradiction.

3. ⇒ Consider an answer to QExt
Rein1 for S on A (A ′,R′,∅,A ′ ∪ R′, s′, t′) where A ′ ⊆ A , R′ ⊆ R,

s′ : R′ 7→ A ′ and t′ : R′ 7→ A ′. A Herbrand interpretation I of Σ1(A, S) ∪ {(5.6), (4.11), (4.12)}
can be defined as follows:

– For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Sup(e)) = ⊥
– For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R and e2 = s(e1)

– For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R and e2 = t(e1)

– For any ė in DI , I(PrimaFacie(e)) = ⊥
– For any ė in DI , I(Selected(e)) = ⊤ iff e ∈ S
– For any ė in DI , I(Expl(e)) = ⊤ iff e ∈ A ′ ∪R′

– For any ė in DI , I(ElemFixed(e)) = ⊤ iff e ∈ R

– For any ė in DI , I(ElemV ar(e)) = ⊤ iff e ∈ A

– For any ė in DI , I(ExplEF (e)) = ⊥
– For any ė in DI , I(ParticularEV (e)) = ⊤ iff for all ė′ in DI such that I(Att(e′)) = ⊤, we

have I(T (e′, e)) = ⊥
– For any ė in DI , I(NecessaryEV (e)) = ⊤ iff I(Selected(e)) = ⊤

With this definition, AI = A ′ and RI = R′. As such, we have sI : R′ 7→ A ′ and tI : R′ 7→ A ′.
Moreover, using Definition 77 and this definition of I, we have for α ∈ R′, sI(α) = x iff s(α) = x

218

and tI(α) = y iff t(α) = y. Thus, we can deduce that sI = s′ and tI = t′. It remains to prove
that I is a model of Σ1(A, S) ∪ {(5.6), (4.11), (4.12)}.
I is obviously a model of Axioms (4.1), (4.2), (4.3) and (5.1), and of formulas (5.6). In addition,
by definition of I, and because A is an AF, I is a model of Axioms (4.11) and (4.12).

Consider Formula (5.2a) and let ė in DI such that I(ElemFixed(e)) = ⊤. By definition of
I, e ∈ R. Moreover, still by definition of I, I(ExplEF (e)) = ⊥. Thus, we must prove that
I(Expl(e)) = ⊥. This equates to proving that e /∈ A ′ and e /∈ R′. Since e ∈ R and A ′ ⊆ A , we
obviously have e /∈ A ′. In addition, by Definition 38, R′ = ∅, ensuring that e /∈ R′. So, I is a
model of Formula (5.2a).

Consider Formula (5.2b), X = {a ∈ A |R−1(a) = ∅} and let ė in DI such that I(ElemV ar(e)) =
⊤. By definition of I, e ∈ A . Suppose that I(Expl(e)) = ⊤. By definition of I, e ∈ A ′ ∪R′, and
since e ∈ A , e ∈ A ′. Then, by Definition 38, e ∈ X and so, R−1(e) = ∅. In other terms, there
exists no e′ ∈ R such that t(e′) = e. Since I is a model of Axioms (4.1), (4.3) and (4.2), there
exists no ė′ ∈ DI such that I(Att(e′)) = ⊤ and I(T (e′, e)) = ⊤. Equivalently, for all ė′ ∈ DI such
that I(Att(e′)) = ⊤, I(T (e′, e)) = ⊥. Thus, by definition of I, I(ParticularEV (e)) = ⊤. So, I is
a model of Formula (5.2b).

Consider Formula (5.2c), X = {a ∈ A |R−1(a) = ∅} and let ė in DI such that I(ElemV ar(e)) =
⊤. Suppose that I(ParticularEV (e)) = ⊤ and I(NecessaryEV (e)) = ⊤. By definition of I, this
firstly mean that e ∈ A and I(Selected(e)) = ⊤, and so that e ∈ S. Secondly, this also means
that for all ė′ ∈ DI such that I(Att(e′)) = ⊤, I(T (e′, e)) = ⊥. Since I is a model of Axioms (4.1),
(4.3) and (4.2) and by definition of I, this means that there are no e′ ∈ R such that t(e′) = ∅.
Thus, R−1(e) = ∅, and so e ∈ X. As e ∈ S and e ∈ X, e ∈ S ∩ X, which, by definition 38,
means that e ∈ A ′. By definition of I, we deduce that I(Expl(e)) = ⊤. So, I is a model of
Formula (5.2c).

Consider Formula (5.2d), X = {a ∈ A |R−1(a) = ∅} and suppose that there exists ė in DI such
that I(ElemV ar(e)) = ⊤, I(ParticularEV (e)) = ⊤ and I(NecessaryEV (e)) = ⊥. By definition
of I, this means that e ∈ A , for all ė1 ∈ DI such that I(Att(e1)) = ⊤, I(T (e1, e)) = ⊥, and
I(Selected(e)) = ⊥. Thus, still by definition of I, e /∈ S. Since I is a model of Axioms (4.1), (4.3)
and (4.2) and by definition of I, this means that there are no e1 ∈ R such that t(e1) = e. Thus,
R−1(e) = ∅, and so e ∈ X. Hence, e ∈ (A \ S) ∩ X. By definition 38, we deduce that there
exists e′ ∈ (A \S)∩X with e′ ∈ A ′. By definition of I and because I is a model of Axioms (4.1)
and (4.2), we know that there exists ė′ ∈ DI such that I(Arg(e′)) = ⊤, I(Selected(e′)) = ⊥
and I(Expl(e′)) = ⊤. In particular, by definition of I, we also have I(ElemV ar(e′)) = ⊤ and
I(NecessaryEV (e′)) = ⊥. As e′ ∈ X, there are no e′1 ∈ R such that t(e′1) = e′. Since I is a
model of Axioms (4.1), (4.3) and (4.2), there exists no ė′1 ∈ DI such that I(Att(e′1)) = ⊤ and
I(T (e′1, e

′)) = ⊤. Thus, by definition of I, I(ParticularEV (e′)) = ⊤. As such, I(ElemV ar(e′)) =
⊤, I(ParticularEV (e′)) = ⊤, I(NecessaryEV (e′)) = ⊥ and I(Expl(e′)) = ⊤. So I is a model
of the formula ∃x ∈ ElemV ar (ParticularEV (x) ∧ ¬NecessaryEV (x) ∧Expl(x)). And so I is
a model of of Formula (5.2d).

⇐ Let I be a Herbrand model of Σ1(A, S)∪ {(5.6), (4.11), (4.12)}. Consider X = {a ∈ A |R−1(a) =
∅} and suppose that (AI ,RI ,∅,AI ∪RI , sI , tI) is not an answer to QExt

Rein1 for S on A.

Assume firstly that RI ̸= ∅. So there exists e ∈ RI . As e ∈ RI and because I is a model of
Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈ DI with I(Att(e)) = ⊤ and I(Expl(e)) =
⊤. Since I is a model of formulas (5.6), we have I(ElemFixed(e)) = ⊤, and I(ExplEF (e)) = ⊥.
Finally, by Formula (5.2a), I(Expl(e)) = ⊥, a contradiction.

219

Assume secondly that AI ̸⊆ X. So there exists e ∈ AI s.t. R−1(e) ̸= ∅. As e ∈ RI and because
I is a model of Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈ DI with I(Arg(e)) = ⊤
and I(Expl(e)) = ⊤. Since I is a model of formulas (5.6), we have I(ElemV ar(e)) = ⊤, and so
by Formula (5.2b), I(ParticularEV (e)) = ⊤. By using again formulas (5.6), we deduce that for
all ė′ ∈ DI s.t. I(Att(e′)) = ⊤, I(T (e′, e)) = ⊥. In addition, I is a model of Axiom (4.3) and
4.12, so for all e′ ∈ R, t(e′) ̸= e. Finally, this means that R−1(e) = ∅, a contradiction.

Assume thirdly that S ∩ X ̸⊆ AI . So, there exists e s.t. e ∈ S, e ∈ X and e /∈ AI . By
Definition 77, either e /∈ A or I(Expl(e)) = ⊥. By definition, S ⊆ A , so e ∈ A , thus it
must be the case that I(Expl(e)) = ⊥. As e ∈ S and e ∈ X, and because I is a model of
Axioms (5.1), (4.1), (4.2) and (4.12), we have I(Selected(e)) = ⊤, I(Arg(e)) = ⊤ and there
exists no ė′ ∈ DI s.t. I(Att(e′)) = ⊤ and I(T (e′, e)) = ⊤. In other terms, for all ė′ ∈ DI s.t.
I(Att(e′)) = ⊤, I(T (e′, e)) = ⊥. Using Formulas (5.6), we deduce that I(ElemV ar(e)) = ⊤,
I(NecessaryEV (e)) = ⊤ and I(ParticularEV (e)) = ⊤. Then, using Formula (5.2c) we obtain
I(Expl(e)) = ⊤. As e ∈ A and I(Expl(e)) = ⊤, by Definition 77 we have e ∈ AI , a contradiction.

Finally, assume that (A\S)∩X ̸= ∅ and that there exists no a ∈ (A\S)∩X s.t. a ∈ AI . So there
exists e s.t. e ∈ A , e ∈ X and e /∈ S. Using Axioms (4.1), (4.2), (4.3) and (5.1), there exists ė ∈ DI

s.t. I(Arg(e)) = ⊤, I(Selected(e)) = ⊥, and for all ė1 ∈ DI s.t. I(Att(e1)) = ⊤, I(S(e1, e)) = ⊥.
As I is a model of formulas (5.6), we deduce that I(ElemV ar(e)) = ⊤, I(ParticularEV (e)) = ⊤
and I(NecessaryEV (e)) = ⊥. So I is a model of the formula ∃x ∈ ElemV ar (ParticularEV (x)
∧ ¬NecessaryEV (x)). Since I is a model of Formula (5.2d), I is thus also a model of the formula
∃x ∈ ElemV ar (ParticularEV (x) ∧ ¬NecessaryEV (x) ∧Expl(x)). In other terms, there exists
ė′ ∈ DI s.t. I(ElemV ar(e′)) = ⊤, I(ParticularEV (e′)) = ⊤, I(NecessaryEV (e′)) = ⊥ and
I(Expl(e′)) = ⊤. Using again formulas (5.6), I(Arg(e′)) = ⊤, I(Selected(e′)) = ⊥ and for all
ė′1 ∈ DI s.t. I(Att(e′1)) = ⊤, I(T (e′1, e′)) = ⊥. Thus, by Axioms (4.1), (4.2), (4.3) and (4.12),
e′ ∈ A , e′ /∈ S and e′ ∈ X. Moreover, as I(Expl(e′)) = ⊤ and e′ ∈ A , by Definition 77, we have
e′ ∈ AI , a contradiction.

4. ⇒ Consider an answer to QExt
Rein2 for S on A (A ′,R′,∅,A ′ ∪ R′, s′, t′) where A ′ ⊆ A , R′ ⊆ R,

s′ : R′ 7→ A ′ and t′ : R′ 7→ A ′. A Herbrand interpretation I of Σ2(A, S) ∪ {(5.7), (4.11), (4.12)}
can be defined as follows:

– For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Sup(e)) = ⊥
– For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R and e2 = s(e1)

– For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R and e2 = t(e1)

– For any ė in DI , I(PrimaFacie(e)) = ⊥
– For any ė in DI , I(Selected(e)) = ⊤ iff e ∈ S
– For any ė in DI , I(Expl(e)) = ⊤ iff e ∈ A ′ ∪R′

– For any ė in DI , I(ElemFixed(e)) = ⊤ iff e ∈ A

– For any ė in DI , I(ElemV ar(e)) = ⊤ iff e ∈ R

– For any ė in DI , I(IsDefended(e)) = ⊤ iff there exist ė1, ė2 ė3 and ė4 in DI such that
I(Att(e1)) = ⊤, I(Att(e2)) = ⊤, I(T (e2, e)) = ⊤, I(S(e2, e4)) = ⊤, I(T (e1, e4)) = ⊤,
I(S(e1, e3)) = ⊤ and I(Selected(e3)) = ⊤

– For any ė in DI , I(IsAttackerOfDefended(e)) = ⊤ iff there exist ė1 and ė2 in DI such that
I(Att(e1)) = ⊤, I(S(e1, e)) = ⊤, I(T (e1, e2)) = ⊤ and I(IsDefended(e2)) = ⊤

– For any ė in DI , I(ExplEF (e)) = ⊤ iff I(Selected(e)) = ⊤ or I(IsDefended(e)) = ⊤ or
I(IsAttackerOfDefended(e)) = ⊤

– For any ė inDI , I(NecessaryEV (e)) = ⊤ iff there exist ė1 and ė2 inDI such that I(S(e, e2)) =
⊤, I(T (e, e1)) = ⊤, I(IsDefended(e1)) = ⊤ and I(IsAttackerOfDefended(e2)) = ⊤

220

– For any ė inDI , I(AdditionalEV (e)) = ⊤ iff there exist ė1 and ė2 inDI such that I(S(e, e1)) =
⊤, I(T (e, e2)) = ⊤, I(Selected(e1)) = ⊤ and I(IsAttackerOfDefended(e2)) = ⊤

– For any ė in DI , I(ParticularEF (e)) = ⊤ iff I(IsAttackerOfDefended(e)) = ⊤
With this definition, AI = A ′ and RI = R′. As such, we have sI : R′ 7→ A ′ and tI : R′ 7→ A ′.
Moreover, using Definition 77 and this definition of I, we have for α ∈ R′, sI(α) = x iff s(α) = x
and tI(α) = y iff t(α) = y. Thus, we can deduce that sI = s′ and tI = t′. It remains to prove
that I is a model of Σ2(A, S) ∪ {(5.7), (4.11), (4.12)}.
I is obviously a model of Axioms (4.1), (4.2), (4.3) and (5.1), and of formulas (5.7). In addition,
by definition of I, and because A is an AF, I is a model of Axioms (4.11) and (4.12).

Consider Formula (5.3a) and let ė in DI such that I(ElemFixed(e)) = ⊤. By definition of I,
e ∈ A . Suppose that I(Expl(e)) = ⊤. By definition of I, e ∈ A ′ ∪R′, and since e ∈ A , e ∈ A ′.
Then, by Definition 39, A ′ = S∪R+2(S)∪R−1(R+2(S)). In the first case, if e ∈ S, by definition of
I, I(Selected(e)) = ⊤. In the second case, if e ∈ R+2(S), it means that there exist e1, e2 ∈ R s.t.
t(e2) = e, s(e2) = e4, t(e1) = e4, s(e2) = e3 and e3 ∈ S. Since I is a model of Axioms (4.1), (4.2)
and (4.3), there exist ė1, ė2, ė3, ė4 in DI such that I(Att(e1)) = ⊤, I(Att(e2)) = ⊤, I(T (e2, e)) =
⊤, I(S(e2, e4)) = ⊤, I(T (e1, e4)) = ⊤, I(S(e1, e3)) = ⊤. Moreover, as I is a model of Axiom (5.1),
I(Selected(e3)) = ⊤. Thus, by definition of I, I(IsDefended(e)) = ⊤. In the third case, if
e ∈ R−1(R+2(S)), it means that there exists e1 ∈ R s.t. s(e1) = e, t(e1) = e2, e2 ∈ R+2(S). Since
I is a model of Axioms (4.1), (4.2) and (4.3), there exist ė1, ė2 in DI such that I(Att(e1)) = ⊤,
I(S(e1, e)) = ⊤, I(T (e1, e2)) = ⊤. Moreover, with a similar reasoning as in the previous case,
I(IsDefended(e2)) = ⊤. Thus, by definition of I, I(IsAttackerOfDefended(e)) = ⊤. As such,
I is a model of the formula Selected(e) ∨ IsAttacker(e) ∨ IsAttackerOfDefended(e). Using
Formulas (5.7) then gives I(ExplEF (e)) = ⊤. The other direction of the equivalence is proved
by the reverse reasoning. So, I is a model of Formula (5.3a).

Consider Formula (5.3b), X = {α ∈ R | s(α) ∈ R−1(R+2(S)), t(α) ∈ R+2(S)} and let ė in DI

such that I(ElemV ar(e)) = ⊤. By definition of I, e ∈ R. Suppose that I(NecessaryEV (e)) = ⊤.
According to Formulas (5.7), this means that there exist ė1, ė2 in DI such that I(S(e, e2)) = ⊤,
I(T (e, e1)) = ⊤, I(IsDefended(e1)) = ⊤ and I(IsAttackerOfDefended(e2)) = ⊤. Since I is
a model of Axioms (4.2), (4.3), (4.11) and (4.12), this means that e2 = s(e) and e1 = t(e). In
addition, with a similar reasoning as in the previous point, from I(IsDefended(e1)) = ⊤ and
I(IsAttackerOfDefended(e2)) = ⊤, we deduce that e1 ∈ R+2(S) and e2 ∈ R−1(R+2(S)). As
such, e ∈ X, so by Definition 39, e ∈ R′. By definition of I we thus have I(Expl(e)) = ⊤. So, I
is a model of Formula (5.3b).

Consider Formula (5.3c), X = {α ∈ R | s(α) ∈ R−1(R+2(S)), t(α) ∈ R+2(S)}, Y = {α ∈
R | s(α) ∈ S, t(α) ∈ R−1(R+2(S))} and let ė in DI such that I(ElemV ar(e)) = ⊤. Suppose
that I(Expl(e)) = ⊤. By definition of I, e ∈ A ′∪R′, and e ∈ R, so e ∈ R′. By Definition 39, we
thus have e ∈ X ∪ Y . If e ∈ X, with a similar reasoning as in the previous point, we deduce that
I(NecessaryEV (e)) = ⊤. If e ∈ Y , since I is a model of Axioms (4.2), (4.3), (4.11) and (4.12),
there exist ė1, ė2 in DI such that I(S(e, e1)) = ⊤, I(T (e, e2)) = ⊤ and I(Selected(e1)) = ⊤.
In addition, as e2 = t(e) and t(e) ∈ R−1(R+2(S)), with a similar reasoning as in the proof for
Formula (5.3a), we deduce that I(IsAttackerOfDefended(e2)) = ⊤. Thus, using Formulas (5.7),
we have I(AdditionalEV (e)) = ⊤. As such, I is a model of the formula NecessaryEV (e) ∨
AdditionalEV (e). So, I is a model of Formula (5.3c).

Consider Formula (5.3d), let ė in DI such that I(ParticularEF (e)) = ⊤ and suppose that there
exist ė1, ė2 ∈ DI s.t. I(Att(e1)) = ⊤, I(Selected(e2)) = ⊤, I(T (e1, e)) = ⊤ and I(S(e1, e2)) = ⊤.
In other terms, I is a model of the formula ∃α, a(Att(α) ∧ T (α, e) ∧ S(α, a) ∧ Selected(a)). By

221

definition of I, I(ParticularEF (e)) = ⊤ means that I(IsAttackerOfDefended(e)) = ⊤. With
a similar reasoning as in the proof for Formula (5.3a), we deduce that e ∈ R−1(R+2(S)). Still by
definition of I, we also deduce that e = t(e1) and e2 = s(e1). Thus, s(e1) ∈ S, so e ∈ R+1(S).
As such, by Definition 39, there exists e′1 ∈ R′ s.t. t(e′1) = e and s(e′1) = e′2 with e′2 ∈ S. By
definition of I and because I is a model of Axioms (4.1), (4.3) and (4.2), we thus know that there
exist ė′1ė′2 ∈ DI s.t. I(Att(e′1)) = ⊤, I(Expl(e′1)) = ⊤, I(Selected(e′2)) = ⊤, I(T (e′1, e)) = ⊤ and
I(S(e′1, e

′
2)) = ⊤. So I is a model of the formula ∃β, b(Att(β) ∧ T (β, e) ∧ S(β, b) ∧ Selected(b) ∧

Expl(β)). And so I is a model of of Formula (5.3d).
⇐ Let I be a Herbrand model of Σ2(A, S) ∪ {(5.7), (4.11), (4.12)}. Consider X = {α ∈ R | s(α) ∈

R−1(R+2(S)), t(α) ∈ R+2(S)}, Y = {α ∈ R | s(α) ∈ S, t(α) ∈ R−1(R+2(S))} and suppose that
(AI ,RI ,∅,AI ∪RI , sI , tI) is not an answer to QExt

Rein2 for S on A.

Assume firstly that AI ̸= S ∪ R+2(S) ∪ R−1(R+2(S)). Thus, either AI ̸⊆ S ∪ R+2(S) ∪
R−1(R+2(S)) or S ∪R+2(S) ∪R−1(R+2(S)) ̸⊆ AI . Let e ∈ AI and suppose e /∈ S ∪R+2(S) ∪
R−1(R+2(S)). So, e /∈ S and e /∈ R+2(S) and e /∈ R−1(R+2(S)). By Definition 77, and because
I is a model of Axioms (4.1) and (4.2), there exists ė ∈ DI s.t. I(Arg(e)) = ⊤ and I(Expl(e)) =
⊤. Using Formulas (5.7), we thus have I(ElemFixed(e)) = ⊤. Then, Formula (5.3a) gives
us I(ExplEF (e)) = ⊤, which, using again Formulas (5.7), results in I(Selected(e)) = ⊤ or
I(IsDefended(e)) = ⊤ or I(IsAttackerOfDefended(e)) = ⊤. If I(Selected(e)) = ⊤, because I
is a model of Axioms (5.1), we deduce e ∈ S, a contradiction. If I(IsDefended(e)) = ⊤, with a
similar reasoning as in the previous points, we deduce that e ∈ R+2(S), another contradiction. If
I(IsAttackerOfDefended(e)) = ⊤, with a similar reasoning as in the previous points, we deduce
that e ∈ R−1(R+2(S)), again a contradiction. The case where S ∪R+2(S)∪R−1(R+2(S)) ̸⊆ AI

is dealt with using the reverse reasoning.

Assume secondly that X ̸⊆ RI . So there exists e ∈ R s.t. s(e) ∈ R−1(R+2(S)), t(e) ∈ R+2(S),
and e /∈ RI . As e ∈ R and e /∈ RI , and because I is a model of Axioms (4.1) and (4.2), by Defini-
tion 77, there exists ė ∈ DI with I(Att(e)) = ⊤ and I(Expl(e)) = ⊥. Thus, using Formulas (5.7)
we deduce I(ElemV ar(e)) = ⊤. Moreover, as I is a model of Axioms (4.3), (4.11) and (4.12), there
exist ė1, ė2 ∈ DI s.t. I(S(e, e2)) = ⊤ and I(T (e, e1)) = ⊤. With a similar reasoning as in the previ-
ous points, from s(e) ∈ R−1(R+2(S)) and s(e) = e2, we get I(IsAttackerOfDefended(e2)) = ⊤,
and from t(e) ∈ R+2(S) and t(e) = e1, we get I(IsDefended(e2)) = ⊤. Then, Formulas (5.7)
yield I(NecessaryEV (e)) = ⊤ and thus, by Formula (5.3b) we obtain I(Expl(e)) = ⊤, a contra-
diction.

Assume thirdly that RI ̸⊆ X ∪ Y . So there exists e ∈ RI s.t. e /∈ X and e /∈ Y . As e ∈
RI and because I is a model of Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈
DI with I(Att(e)) = ⊤ and I(Expl(e)) = ⊤. Since I is a model of formulas (5.7), we have
I(ElemV ar(e)) = ⊤, so by Formula (5.3c), I(NecessaryEV (e)) = ⊤ or I(AdditionalEV (e)) =
⊤. If I(NecessaryEV (e)) = ⊤, by formulas (5.7) there exist ė1, ė2 ∈ DI s.t. I(S(e, e2)) = ⊤,
I(T (e, e1)) = ⊤, I(IsDefended(e1)) = ⊤ and I(IsAttackerOfDefended(e2)) = ⊤. Because
I is a model of Axioms (4.3), (4.2), (4.11) and (4.12), we have s(e) = e2 and t(e) = e1. In
addition, with a similar reasoning as in the previous points, with I(IsDefended(e1)) = ⊤ and
I(T (e, e1)) = ⊤ we deduce that t(e) ∈ R+2(S), and with I(IsAttackerOfDefended(e2)) = ⊤ and
I(S(e, e2)) = ⊤ we deduce that s(e) ∈ R−1(R+2(S)). As such, we have e ∈ X, a contradiction.
In the case where I(AdditionalEV (e)) = ⊤, with a similar reasoning, we deduce that s(e) ∈ S
and t(e) ∈ R−1(R+2(S)), so e ∈ Y , a contradiction as well.

Finally, assume that there exists e ∈ R−1(R+2(S)) with e ∈ R+1(S) and s.t. there exists
no α ∈ RI with t(α) = e and s(α) ∈ S. Using Axioms (4.1), (4.2), (4.3) and (5.1), there
exist ė, ė1, ė2 ∈ DI s.t. I(Arg(e)) = ⊤, I(Att(e1)) = ⊤, I(Arg(e2)) = ⊤, I(T (e1, e)) = ⊤,

222

I(S(e1, e2)) = ⊤, I(Selected(e2)) = ⊤. In addition, since e ∈ R−1(R+2(S)), with a similar
reasoning as in the previous points, we deduce that I(IsAttackerOfDefended(e)) = ⊤. As I is a
model of formulas (5.7), we deduce that I(ParticularEF (e)) = ⊤. In addition, I is a model of the
formula ∃α, a (Att(α) ∧ T (α, e) ∧ S(α, a) ∧ Selected(a)). Since I is a model of Formula (5.3d),
I is thus also a model of the formula ∃β, b (Att(β) ∧ T (β, e) ∧ S(β, a) ∧ Selected(a) ∧ Expl(β)).
In other terms, there exist ė′1, ė′2 ∈ DI s.t. I(Att(e′1)) = ⊤, I(T (e′1, e)) = ⊤, I(S(e′1, e′2)) = ⊤,
I(Selected(e′2)) = ⊤ and I(Expl(e′1)) = ⊤. So, using axioms (4.1), (4.3), (4.2) and (5.1), and
Definition 77 we deduce that there exists e′1 ∈ RI s.t. t(e′1) = e, s(e′1) = e′2 and e′2 ∈ S, a
contradiction.

5. Consider an answer to QExt
CA for S onA (A ′,R′,∅,A ′∪R′, s′, t′) where A ′ ⊆ A , R′ ⊆ R, s′ : R′ 7→ A ′

and t′ : R′ 7→ A ′. A Herbrand interpretation I of Σ2(A, S){(5.8), (4.11), (4.12)} can be defined as
follows:

• For any ė in DI , I(Arg(e)) = ⊤ iff e ∈ A , I(Att(e)) = ⊤ iff e ∈ R and I(Sup(e)) = ⊥
• For any ė1, ė2 in DI , I(S(e1, e2)) = ⊤ iff e1 ∈ R and e2 = s(e1)

• For any ė1, ė2 in DI , I(T (e1, e2)) = ⊤ iff e1 ∈ R and e2 = t(e1)

• For any ė in DI , I(PrimaFacie(e)) = ⊥
• For any ė in DI , I(Selected(e)) = ⊤ iff e ∈ S
• For any ė in DI , I(Expl(e)) = ⊤ iff e ∈ A ′ ∪R′

• For any ė in DI , I(ElemFixed(e)) = ⊤ iff e ∈ A

• For any ė in DI , I(ElemV ar(e)) = ⊤ iff e ∈ R

• For any ė in DI , I(ExplEF (e)) = ⊤
• For any ė in DI , I(NecessaryEV (e)) = ⊥
• For any ė in DI , I(AdditionalEV (e)) = ⊤ iff there exist ė1 and ė2 in DI such that I(S(e, e1)) = ⊤,
I(T (e, e2)) = ⊤, I(Selected(e1)) = ⊤ and I(Selected(e2)) = ⊥

• For any ė in DI , I(ParticularEF (e)) = ⊤ iff I(Arg(e)) = ⊤ and I(Selected(e)) = ⊥

With this definition, AI = A ′ and RI = R′. As such, we have sI : R′ 7→ A ′ and tI : R′ 7→ A ′.
Moreover, using Definition 77 and this definition of I, we have for α ∈ R′, sI(α) = x iff s(α) = x and
tI(α) = y iff t(α) = y. Thus, we can deduce that sI = s′ and tI = t′. It remains to prove that I is a
model of Σ2(A, S){(5.8), (4.11), (4.12)}.
I is obviously a model of Axioms (4.1), (4.2), (4.3) and (5.1), and of formulas (5.8). In addition, by
definition of I, and because A is an AF, I is a model of Axioms (4.11) and (4.12).

Consider Formula (5.3a) and let ė in DI such that I(ElemFixed(e)) = ⊤. By definition of I, e ∈ A .
In addition, still by definition of I, I(ExplEF (e)) = ⊤. Thus, we must prove that I(Expl(e)) = ⊤.
By Definition 41, A ′ = A , so e ∈ A ′. By definition of I, it follows that I(Expl(e)) = ⊤. So, I is a
model of Formula (5.3a).

Consider Formula (5.3b) and let ė in DI such that I(ElemV ar(e)) = ⊤. By definition of I, e ∈ R. In
addition, still by definition of I, I(NecessaryEV (e)) = ⊥. So, I is a model of Formula (5.3b).

Consider Formula (5.3c) and let ė in DI such that I(ElemV ar(e)) = ⊤. Suppose that I(Expl(e)) = ⊤.
By definition of I, e ∈ A ′∪R′, and since e ∈ R, e ∈ R′. Then, by Definition 41, s(e) ∈ S and t(e) /∈ S.
Let e1 = s(e) and e2 = t(e). Since I is a model of Axioms (4.2) and (4.3), there exist ė1 and ė2 in
DI such that I(S(e, e1)) = ⊤ and I(T (e, e2)) = ⊤. Moreover, as I is a model of Axioms (4.11) and

223

(4.12), ė1 and ė2 are unique. As e1 ∈ S and e2 /∈ S, by definition of I, we have I(Selected(e1)) = ⊤
and I(Selected((e2)) = ⊥. Thus, by definition of I, I(AdditionalEV (e)) = ⊤. So, I is a model of
Formula (5.3c).

Consider Formula (5.3d), let ė in DI such that I(ParticularEF (e)) = ⊤ and suppose that there exist
ė1, ė2 ∈ DI s.t. I(Att(e1)) = ⊤, I(Selected(e2)) = ⊤, I(T (e1, e)) = ⊤ and I(S(e1, e2)) = ⊤. In other
terms, I is a model of the formula ∃α, a(Att(α) ∧ T (α, e) ∧ S(α, a) ∧ Selected(a)). By definition of I,
this means that I(Arg(e)) = ⊤ and I(Selected(e)) = ⊥, so e ∈ A , e /∈ S, e1 ∈ R and e2 ∈ S. Still by
definition of I, we deduce that e = t(e1) and e2 = s(e1). Thus, s(e1) ∈ S, so e ∈ R+1(S). As such, by
Definition 41, there exists e′1 ∈ R′ s.t. t(e′1) = e and s(e′1) = e′2 with e′2 ∈ S. By definition of I and
because I is a model of Axioms (4.1), (4.3) and (4.2), we thus know that there exist ė′1, ė′2 ∈ DI s.t.
I(Att(e′1)) = ⊤, I(Expl(e′1)) = ⊤, I(Selected(e′2)) = ⊤, I(T (e′1, e)) = ⊤ and I(S(e′1, e′2)) = ⊤. So I is
a model of the formula ∃β, b(Att(β) ∧ T (β, e) ∧ S(β, b) ∧ Selected(b) ∧ Expl(β)). And so I is a model
of of Formula (5.3d).

⇐ Let I be a Herbrand model of Σ2(A, S){(5.8), (4.11), (4.12)}. ConsiderX = {α ∈ R|s(α) ∈ S, t(α) /∈ S}
and suppose that (AI ,RI ,∅,AI ∪RI , sI , tI) is not an answer to QExt

CA for S on A.

Assume firstly that AI ̸= A. Thus, either AI ̸⊆ A or A ̸⊆ AI . By Definition 77, we obviously have
AI ⊆ A , so it must be the case that A ̸⊆ AI . So there exists e ∈ A s.t. e /∈ AI . As e ∈ A and
because I is a model of Axioms (4.1) and (4.2), there exists ė ∈ DI with I(Arg(e)) = ⊤. Moreover,
since e /∈ AI , by Definition 77, we know that I(Expl(e)) = ⊥. However, using Since I is a model of
formulas (5.8), we have I(ElemFixed(e)) = ⊤ and I(ExplEF (e)) = ⊤. By using formula (5.3a), we
deduce I(Expl(e)) = ⊤, a contradiction.

Assume secondly that RI ̸⊆ X. So there exists e ∈ RI s.t. s(e) /∈ S or t(e) ∈ S. As e ∈ RI

and because I is a model of Axioms (4.1) and (4.2), by Definition 77, there exists ė ∈ DI with
I(Att(e)) = ⊤ and I(Expl(e)) = ⊤. Since I is a model of formulas (5.8), we have I(ElemV ar(e)) =
⊤ and I(NecessaryEV (e)) = ⊥, and so by Formula (5.3c), I(AdditionalEV (e)) = ⊤. By using
again formulas (5.8), we deduce that there exist ė1, ė2 ∈ DI s.t. I(S(e, e1)) = ⊤, I(T (e, e2)) = ⊤,
I(Selected(e1)) = ⊤ and I(Selected(e2)) = ⊥. In addition, I is a model of Axioms (4.3), (4.11) and
(4.12), so e1 = s(e) and e2 = t(e). Finally, as I is a model of Axiom (5.1), we have e1 ∈ S and e2 /∈ S,
so s(e) ∈ S and t(e) /∈ S, a contradiction.

Finally, assume that there exists e ∈ A \ S with e ∈ R+1(S) and s.t. there exists no α ∈ RI with
t(α) = e and s(α) ∈ S. Using Axioms (4.1), (4.2), (4.3) and (5.1), there exist ė, ė1, ė2 ∈ DI s.t.
I(Arg(e)) = ⊤, I(Selected(e)) = ⊥, I(Att(e1)) = ⊤, I(Arg(e2)) = ⊤, I(T (e1, e)) = ⊤, I(S(e1, e2)) =
⊤, I(Selected(e2)) = ⊤. As I is a model of formulas (5.8), we deduce that I(ParticularEF (e)) = ⊤.
In addition, I is a model of the formula ∃α, a (Att(α) ∧ T (α, e) ∧ S(α, a) ∧ Selected(a)). Since I is
a model of Formula (5.3d), I is thus also a model of the formula ∃β, b (Att(β) ∧ T (β, e) ∧ S(β, a) ∧
Selected(a) ∧ Expl(β)). In other terms, there exist ė′1, ė′2 ∈ DI s.t. I(Att(e′1)) = ⊤, I(T (e′1, e)) = ⊤,
I(S(e′1, e

′
2)) = ⊤, I(Selected(e′2)) = ⊤ and I(Expl(e′1)) = ⊤. So, using Axioms (4.1), (4.3), (4.2) and

(5.1), and Definition 77 we deduce that there exists e′1RI s.t. t(e′1) = e, s(e′1) = e′2 and e′2 ∈ S, a
contradiction.

224

	Résumé
	Abstract
	Contents
	Chapter 1 Introduction
	Chapter 2 Preliminary Notions: Abstract Argumentation
	2.1 Argumentation Frameworks (AF)
	2.2 Classical Problems
	2.3 Enrichments for Argumentation Frameworks
	2.3.1 Argumentation Frameworks with Coalitions
	2.3.2 Higher-Order Argumentation Frameworks
	2.3.3 Bipolar Argumentation Frameworks

	2.4 Decomposition of Abstract Argumentation semantics

	Chapter 3 Visual Explanations for Abstract Argumentation
	3.1 Related Works
	3.2 Motivation and Hypotheses
	3.2.1 Motivation
	3.2.2 Hypotheses

	3.3 Technical Tool: Graph Theory
	3.4 Visual Explanations for Argumentation Semantics
	3.4.1 Methodology
	3.4.2 Explanation for Coherence
	3.4.3 Explanation for Defence
	3.4.4 Explanation for Reinstatement
	3.4.5 Explanation for Complement Attack
	3.4.6 Results on Explanations for Semantics Extensions
	3.4.7 Computing Explanations for Semantics Extensions

	3.5 Visual Explanations for Extension Membership
	3.5.1 Non-contrastive Questions
	3.5.2 Contrastive Questions

	3.6 Summary
	3.6.1 Questions and Explanations
	3.6.2 Recap Example

	3.7 Comparison with Related Works
	3.8 Quality of Explanations
	3.9 Future Perspectives

	Chapter 4 Logical Encoding of Argumentation Frameworks to Compute Extensions
	4.1 Existing Approaches
	4.2 Motivation
	4.3 Technical Tool: First-Order Logic
	4.4 A General Account of Enriched Argumentation Frameworks
	4.4.1 Higher-Order Bipolar Argumentation Frameworks with Coalitions
	4.4.2 Structures and Semantics
	4.4.3 From a General Formulation to its Usual Formulation
	4.4.4 Summary on Enriched Argumentation

	4.5 A Family of Logical Theories for Enriched Abstract Argumentation
	4.5.1 A Generic Theory
	4.5.2 Simplification and Specialisations
	4.5.3 Theory for an Argumentation Framework
	4.5.4 Theory for an Argumentation Framework with Coalitions (AF-C)
	4.5.5 Theory for a Higher-Order Argumentation Framework (HO-AF)
	4.5.6 Theory for an Evidence-Based Argumentation Framework (EBAF)
	4.5.7 Theory for a Higher-Order Evidence-based Argumentation Framework (HO-EBAF)

	4.6 Summary
	4.6.1 Logical Encoding
	4.6.2 Recap Example

	4.7 Related works
	4.8 Future Perspectives

	Chapter 5 Extension of the Logical Encoding: Computation of Explanations for Extensions
	5.1 Motivation
	5.2 Identifying Shared Structures
	5.3 A Family of Logical Theories for Explaining Abstract Argumentation
	5.3.1 A Generic Theory
	5.3.2 Theory for the Coherence Principle
	5.3.3 Theory for the Defence Principle
	5.3.4 Theory for the Rein1 Principle
	5.3.5 Theory for the Rein2 Principle
	5.3.6 Theory for the Complement Attack Principle

	5.4 Results
	5.5 Recap example
	5.6 Future Perspectives

	Chapter 6 Conclusion
	Bibliography
	Appendices
	Appendix A Proofs of Chapter 3
	A.1 Conformity Checks and Visual Behavior
	A.1.1 Coherence
	A.1.2 Defence
	A.1.3 Reinstatement
	A.1.4 Complement Attack

	A.2 Properties on the Classes of Explanations
	A.2.1 Empty Explanation
	A.2.2 Maximal and Minimal Explanations

	A.3 Computation of Explanations for Semantics Extensions
	A.3.1 Characterization of Maximal Explanations
	A.3.2 Algorithms to Compute Minimal Explanations

	Appendix B Proofs of Chapter 4
	B.1 Conventions
	B.2 Proofs for Section 4.5.1: A Generic Theory
	B.3 Proofs for Section 4.5.2: Simplification and specialisations
	B.4 Proofs for Section 4.5.3: Theory for AF
	B.5 Proofs for Section 4.5.4: Theory for AF-C
	B.6 Proofs for Section 4.5.5: Theory for HO-AF
	B.7 Proofs for Section 4.5.6: Theory for EBAF
	B.7.1 Additional Definitions
	B.7.2 Additional Propositions and Lemmas for Correspondence of Definitions
	B.7.3 Additional Lemmas for the Logical Encoding
	B.7.4 Proof of the Main Proposition Concerning the Translation of EBAFs

	B.8 Proofs for Section 4.5.7: Theory for HO-EBAF

	Appendix C Proofs of Chapter 5
	C.1 Theory for Explanations in Argumentation Frameworks

