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Acknowledgements
I express my deep appreciation for my thesis supervisor, Mme. Amel Bouzeghoub, Professor

at Telecom Sudparis, for her invaluable guidance and unwavering support throughout my thesis.
I have gained immense knowledge from her expertise, and she has played a crucial role in shaping
me into the researcher I am today. Her expertise and unwavering commitment to my academic
success have motivated me to pursue excellence in all aspects of my research. She has taught
me the importance of diligence, critical thinking, and attention to detail—skills that I will carry
forward as I strive for new heights in my academic and professional journey.

I also wish to extend my gratitude to Mr. Pierre Pacchioni, Technical Director, and Mr. Jean-
Francois Beraud, Doctor and Director of R&D at Avisto, for their unwavering support during
this journey. Their pivotal roles in facilitating my progress at Avisto cannot be overstated.
They provided invaluable guidance, resources, and encouragement, ensuring that I navigated
through challenges effectively. Thanks to their mentorship, I maintained a strong link between
the academic world and the industrial sector, allowing me to apply theoretical knowledge to
practical settings and vice versa.

Furthermore, I want to express my heartfelt gratitude to the esteemed members of the
jury who dedicated their time and expertise to examining and evaluating my work. Special
thanks are due to Mr. Fawzi Nashashibi, Research Director at Inria, and Mr. Lounis Adouane,
Professor at UTC, for their generous contributions, insightful ideas, and valuable comments.
Their constructive feedback and guidance have enriched the quality of my research and its
impact.

I extend my gratitude to the members of the jury, including Mme. Maryline Laurent, Profes-
sor at Telecom Sudparis, Mr. Philippe Xu, Professor at ENSTA Paris, and Mr. Sascha Hornauer,
Associate Professor at PSL, for their integral role in evaluating my work. Their expertise and
dedication to the assessment process are deeply appreciated.

To my wife, Inass, you are my source of inspiration, and I am endlessly grateful for your
unwavering support and sacrifices. Thank you for being by my side throughout this journey,
your encouragement has been my strength.

i



Résumé
La recherche effectuée dans cette thèse concerne le domaine de la conduite urbaine sûre,

en utilisant des méthodes de fusion de capteurs et d’apprentissage par renforcement pour la
perception et le contrôle des véhicules autonomes. L’évolution et l’intégration généralisée des
technologies d’apprentissage automatique ont principalement propulsé la prolifération des véhi-
cules autonomes ces dernières années. Cependant, des progrès substantiels sont nécessaires avant
d’atteindre une adoption généralisée par le grand public. Pour accomplir son automatisation, les
véhicules autonomes nécessitent l’intégration d’une série de capteurs coûteux, comprenant des
caméras, des radars, des LiDARs et des capteurs ultrasoniques. En plus de leur fardeau finan-
cier, ces capteurs présentent une sensibilité aux variations telles que la météo, une limitation non
partagée par les conducteurs humains qui peuvent naviguer dans des conditions diverses en se
fiant à une vision frontale simple. Par ailleurs, l’avènement des algorithmes neuronaux de prise
de décision constitue l’intelligence fondamentale des véhicules autonomes. Les solutions d’ap-
prentissage profond par renforcement, facilitant l’apprentissage de la politique du conducteur de
bout en bout, ont trouvé application dans des scénarios de conduite élémentaires, englobant des
tâches telles que le maintien dans la voie, le contrôle de la direction et la gestion de l’accélération.
Cependant, il s’avère que ces algorithmes sont coûteux en temps d’exécution et nécessitent de
large ensembles de données pour un entraînement efficace. De plus, la sécurité doit être prise en
compte tout au long des phases de développement et de déploiement des véhicules autonomes.
Par ailleurs, l’avènement des algorithmes neuronaux de prise de décision constitue l’intelligence
fondamentale des véhicules autonomes. Les solutions d’apprentissage profond par renforcement,
facilitant l’apprentissage de la politique du conducteur de bout en bout, ont trouvé application
dans des scénarios de conduite élémentaires, englobant des tâches telles que le maintien dans
la voie, le contrôle de la direction et la gestion de l’accélération. Cependant, il s’avère que ces
algorithmes sont coûteux en temps d’exécution et nécessitent de large ensembles de données
pour un entraînement efficace. De plus, la sécurité doit être prise en compte tout au long des
phases de développement et de déploiement des véhicules autonomes.

Cette thèse se propose de relever les trois défis suivants qui concernent les phases de per-
ception et de prise de décision : (i) Comment peut-on obtenir une localisation absolue et de
haute précision d’un VA en utilisant des capteurs à faible coûts tels que GPS et IMU ? (ii) Dans
le contexte du stationnement automatique, comment éviter efficacement les obstacles statiques
et dynamiques de la scène, en garantissant une opération de stationnement sûre ? En particu-
lier, comment préserver le respect des caractéristiques spécifiques de la norme ISO-16787:2017
[Standardization, 2017a], concernant l’angle d’inclinaison et la déviation, pour s’aligner sur les
réglementations industrielles et les protocoles de sécurité ? (iii) Comment accélérer la conver-

ii



gence de l’algorithme d’apprentissage tout en en étant réactif face à des situations imprévues et
hautement dynamiques, en particulier dans des scénarios de conduite urbaine ?

La thèse répond à ces questions à travers les contributions suivantes : La première contribu-
tion améliore la localisation des véhicules en fusionnant les mesures des capteurs GPS et IMU à
faible coût avec une adaptation d’un filtre de Kalman, ES-EKF, et une réduction du bruit des
mesures IMU. Cette méthode se révèle efficace dans les environnements urbains caractérisés par
des interruptions de signal et des niveaux de bruit élevés, en atténuant l’impact négatif du bruit
dans les mesures des capteurs IMU, ce qui permet de maintenir la précision et la robustesse de
la localisation. L’algorithme est déployé et testé en utilisant des données de vérité terrain sur un
microcontrôleur embarqué, le STM32 Nucleo, et a atteint un niveau de précision de 92 % sur une
route en conditions réelles avec un temps d’exécution d’environ 20 µs. Ce pourcentage représente
la proportion de points de données où la position estimée (X, Y) par l’ES-EKF se trouve dans
un intervalle de confiance de 0,5 mètre par rapport à la position réelle correspondante.

La deuxième contribution propose l’algorithme DPPO-IL (Dynamic Proximal Policy Opti-
mization with Imitation Learning), conçu pour faciliter le stationnement automatisé de bout
en bout en accordant une attention toute particulière à la sécurité. Cet algorithme apprend à
exécuter des manœuvres de stationnement optimales tout en naviguant entre des d’obstacles sta-
tiques et dynamiques grâce à un entraînement complet intégrant des données simulées et réelles.
Il atteint un taux de réussite de 90 %, même dans les configurations les plus complexes, ce qui
témoigne de sa capacité d’adaptation. La troisième contribution est un framework de conduite
urbaine de bout en bout appelé Guided Hierarchical Reinforcement Learning (GHRL). Il intègre
des données de vision et de localisation ainsi que des démonstrations d’experts exprimées avec
des règles ASP (Answer Set Programming) pour guider la politique d’exploration de l’appren-
tissage par renforcement hiérarchique et accélérer la convergence de l’algorithme. Lorsqu’une
situation critique se produit, le système s’appuie également sur des règles liées à la sécurité pour
faire des choix judicieux dans des conditions imprévisibles ou dangereuses. GHRL est évalué sur
le jeu de données NoCrash du simulateur Carla et les résultats montrent qu’en incorporant des
règles logiques, GHRL obtient de meilleures performances que les algorithmes de l’état de l’art.

Mots clés : Fusion de Données, Apprentissage par Renforcement Neuro-Symbolique, Apprentis-
sage par Renforcement Hiérarchique, Véhicule Autonome, Conduite Urbaine Sûre, Règles ASP

iii



Abstract
The research conducted in this thesis is centered on the domain of safe urban driving, em-

ploying sensor fusion and reinforcement learning methodologies for the perception and control
of autonomous vehicles (AV). The evolution and widespread integration of machine learning
technologies have primarily propelled the proliferation of autonomous vehicles in recent years.
However, substantial progress is requisite before achieving widespread adoption by the general
populace. To accomplish its automation, autonomous vehicles necessitate the integration of an
array of costly sensors, including cameras, radars, LiDARs, and ultrasonic sensors. In addition
to their financial burden, these sensors exhibit susceptibility to environmental variables such as
weather, a limitation not shared by human drivers who can navigate diverse conditions with a
reliance on simple frontal vision. Moreover, the advent of decision-making neural network algo-
rithms constitutes the core intelligence of autonomous vehicles. Deep Reinforcement Learning
solutions, facilitating end-to-end driver policy learning, have found application in elementary
driving scenarios, encompassing tasks like lane-keeping, steering control, and acceleration mana-
gement. However, these algorithms demand substantial time and extensive datasets for effective
training. In addition, safety must be considered throughout the development and deployment
phases of autonomous vehicles.

This thesis addresses the following challenges: (i) How can absolute, high-precision AV lo-
calization be achieved using cost-effective sensors such as GPS and IMU? (ii) In the context of
Automatic Parking Mode, how can static and dynamic obstacles within the scene be effectively
avoided, ensuring a safe parking operation? In particular, how to maintain the adherence to
specific aspects of the ISO-16787:2017 standard, including the inclination angle and the devia-
tion, to align with industry regulations and safety protocols. (iii) How can we speed up the
convergence of the learning algorithm while ensuring responsiveness to unforeseen and highly
dynamic situations, particularly in urban driving scenarios?

This thesis seeks to answer these questions through the following contributions: The first
contribution of this thesis improves vehicle localization by fusing data from GPS and IMU
sensors with an adaptation of a Kalman filter, ES-EKF, and a reduction of noise in IMU measu-
rements. This method excels in urban environments marked by signal obstructions and elevated
noise levels, effectively mitigating the adverse impact of noise in IMU sensor measurements,
thereby maintaining localization accuracy and robustness. The algorithm is deployed and tes-
ted employing ground truth data on an embedded microcontroller, the STM32 Nucleo, and has
achieved an accuracy level of 92% on a real-world road and a swift execution time of around
20 µs. This percentage represents the proportion of data points where the estimated position
(X, Y) from the ES-EKF falls within a confidence level of a 0.5m distance threshold of the
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corresponding ground truth position.
The second contribution introduces the DPPO-IL (Dynamic Proximal Policy Optimization

with Imitation Learning) algorithm, designed to facilitate end-to-end automated parking while
maintaining a steadfast focus on safety. This algorithm acquires proficiency in executing opti-
mal parking maneuvers while navigating static and dynamic obstacles through exhaustive trai-
ning incorporating simulated and real-world data. It attains a commendable 90% success rate
even in the most challenging settings, underscoring its versatility and adaptability. The third
contribution is an end-to-end urban driving framework called GHRL. It incorporates vision and
localization data and expert demonstrations expressed in the Answer Set Programming (ASP)
rules to guide the hierarchical reinforcement learning (HRL) exploration policy and speed up the
learning algorithm’s convergence. When a critical situation occurs, the system relies on safety
rules, which empower it to make prudent choices amidst unpredictable or hazardous conditions.
GHRL is evaluated on the Carla NoCrash benchmark, and the results show that by incorporating
logical rules, GHRL achieved better performance over state-of-the-art algorithms.

Keywords : Data Fusion, Neuro-Symbolic Reinforcement Learning, Hierarchical Reinforcement
Learning, Self Driving Car, Safe Urban Driving, ASP Rules
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Chapitre 1. Introduction

1 Introduction

Autonomous driving has come a long way since its inception in the 1980s, with significant
progress made in recent years thanks to the support of major companies like Waymo 1 and
Tesla 2. While the technology is not yet fully mature, vehicles can now drive hundreds of kilo-
meters in certain conditions without human intervention. Autonomous systems possess a crucial
advantage in terms of safety, as they exhibit faster responsiveness than human drivers, leading
to a substantial reduction in the number of accidents [Wang, 2020a]. Additionally, by reducing
congestion, these vehicles can improve air quality and save drivers time on the road [Seuwou,
2020]. However, we are not yet at the stage of fully autonomous vehicles. The ultimate goal of
autonomous driving is complete automation. Nonetheless, several intermediate steps must be
taken, as defined by the National Highway Traffic Safety Administration (NHTSA) (Figure 1.1).
While levels 0 to 2 refer to advanced driver assistance, level 3 represents the delegation of driving
tasks to the autonomous system, requiring the human driver to be able to regain control at any
time. Levels 4 and 5 correspond to fully autonomous driving, with level 4 allowing for autono-
mous driving in specific conditions, while level 5 allows for autonomous driving in any situation.
However, realizing these levels is still accompanied by legal and ethical challenges, including the
issue of liability in the event of an accident involving an autonomous vehicle. Nevertheless, level
5 autonomy is becoming increasingly achievable with every passing day.

Figure 1.1 – Levels of automation for autonomous vehicles defined by the NHTSA.
https://www.nhtsa.gov/document/levels-automation

1. https://waymo.com/
2. https://www.tesla.com/en_eu
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1. Introduction

1.1 Problem Statement

Safety is a concern throughout the development and deployment of self-driving cars, under-
lining the need for a robust framework that prioritizes functionality and safety. As autonomous
vehicles can potentially reduce accidents and save lives significantly, it is crucial to address
the alarming statistic that 94% of severe accidents result from human error [Wang, 2020a]. By
mitigating the risk of human error, self-driving cars promise to reduce roadway accidents. Ho-
wever, achieving this promise requires navigating unique safety challenges that arise during the
journey to fully autonomous vehicles. The work accomplished by [Xu, 2022] on Safebench has
identified several safety challenges. These challenges include ensuring the reliability of software,
anticipating and managing unforeseen interactions with other road users, and accounting for the
influence of environmental factors.

The architecture underpinning self-driving cars plays a pivotal role in addressing these safety
challenges and fostering a secure and trustworthy autonomous driving experience [Cina, 2023].

The architecture involves a multifaceted approach to address safety challenges and ensure
a secure and reliable driving experience. Passive safety measures like airbags have provided
some relief, but their effectiveness has reached technological limits. Consequently, the focus has
shifted to active safety alternatives. This active safety architectural framework integrates and
orchestrates many components and systems, guided by principles like modularity, redundancy,
fault tolerance, perception, and decision-making. These principles collectively aim to establish
the highest levels of safety in autonomous operations.

This architectural design strongly emphasizes harmonious module integration, allowing for
individual testing and validation, thus ensuring unwavering reliability while minimizing vulne-
rabilities [Hataba, 2022]. Moreover, it enhances system resilience by implementing component
redundancy and deploying fail-safe mechanisms to mitigate potential faults or failures [Hataba,
2022]. The architecture also elevates the perceptual capabilities of these vehicles by intelligently
fusing data from diverse sensors [Alsuwian, 2022].

Data fusion and decision-making algorithms constitute an indispensable facet of the archi-
tecture. This symbiotic relationship is instrumental in providing self-driving vehicles with the
necessary capabilities to navigate the roadways securely and responsibly. As emphasized in [Gia-
calone, 2019], data fusion plays a paramount role in ensuring safety within autonomous driving.
Sensors are the crucial components that perceive the external environment for automated dri-
ving systems. However, relying solely on sensor fusion does not ensure the safety of AD cars in
complex traffic environments. It orchestrates the synthesis of multifaceted information streams,
affording self-driving vehicles an unparalleled and holistic perception of their immediate envi-
ronment as asserted in the survey [Zhang, 2023]. This multifaceted perception is indispensable
for minimizing the vulnerabilities associated with incomplete or erroneous data, which, in turn,
significantly contributes to ensuring the safety of autonomous operations [Farrell, 2017]. Data
fusion is the nexus through which diverse sensor modalities, such as LiDAR, cameras, radars,
Global Positioning System (GPS), and ultrasonic sensors, converge. This fusion transcends the
limitations of individual sensor inputs, facilitating comprehensive environmental awareness. Data
fusion equips self-driving vehicles with an all-encompassing understanding of their surroundings
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by processing and harmonizing these heterogeneous data sources [Nweke, 2019]. This expansive
comprehension plays a pivotal role in analyzing spatiotemporal factors and mitigating potential
risks, as the vehicle can detect objects and obstacles from myriad angles, thus substantially
reducing the likelihood of accidents [Xu, 2023]. Integrating data from an array of sensors effec-
tively eradicates blind spots, a critical concern in road safety [Shao, 2023]. The minimization
of blind spots empowers autonomous vehicles to detect objects and potential hazards from all
perspectives [Yeong, 2021]. This integration fosters a heightened level of safety, particularly du-
ring critical maneuvers such as lane changes and highway merging, where obscured obstacles
could pose a significant threat [Xu, 2023]. Beyond providing a static environmental snapshot,
data fusion endows self-driving vehicles with dynamic adaptability [Kovacova, 2022]. It enables
the vehicle to execute a well-defined decision-making algorithm to adapt its behavior in response
to real-time environmental changes. For instance, when confronted with heavy traffic, adverse
weather conditions, or unexpected road closures [Liu, 2021], the adaptability facilitated by data
fusion empowers the vehicle to make informed decisions and execute maneuvers that prioritize
safety.

In the domain of data fusion methods for autonomous vehicle localization, the Kalman Filter
is a widely adopted approach [Kalman, 1960]. It relies on statistical and control theory, employing
linear-quadratic estimations to calculate the state of a process while minimizing mean square
error. The Kalman Filter computes optimal positions using noisy sensor data, incorporating ve-
hicle dynamics and kinematics equations [Gelb, 1974]. However, it has drawbacks, including its
linearity assumption, sensitivity to Gaussian probability distributions, and sensitivity to sensor
noise. To address nonlinearity, alternatives like the Extended Kalman Filter (EKF) [Hoshiya,
1984] and Unscented Kalman Filter (UKF) [Wan, 2001] are preferred. EKF linearizes state
transitions, while UKF approximates posterior probability densities. However, they also have
limitations, including a trade-off between accuracy and computational efficiency. Sensor fusion
plays a pivotal role in enhancing the perception capabilities of autonomous vehicles, enabling
them to make informed decisions while prioritizing safety. Particle Filters (PF) offer another
option for multi-sensor fusion [Wan, 2001]. However, they can be computationally demanding,
particularly with many particles, and require careful tuning to balance accuracy. The right ba-
lance between computational efficiency and precision remains a challenge in PF-based fusion. In
parallel, recent advancements have introduced neural networks (NN) as practical tools for data
fusion, but they come with limitations. NN-based methods often necessitate substantial labeled
training data, which can be challenging and costly to acquire, especially for new environments
or maps. Moreover, these methods frequently rely on high-cost sensors, such as LiDAR or ca-
meras, which can hinder their practicality for low-cost autonomous systems. Additionally, deep
neural networks can be computationally intensive, potentially limiting their use in real-time
applications, especially on resource-constrained hardware.

Shifting our focus to decision-making, we must recognize that decision-making algorithms
lie at the core of autonomous vehicles’ intelligence [Li, 2022a]. These algorithms guide their
actions and responses in real-time scenarios, with safety as a concern. Whether route planning,
obstacle avoidance, or dynamic emergency responses, every decision is made with an unwa-
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vering commitment to prioritize safety [Jamgochian, 2022]. Numerous promising methods for
decision-making already exist, encompassing various techniques and approaches suited for spe-
cific scenarios and challenges [Li, 2022b]. While combining different methods for various driving
situations is conceivable, adopting such an iterative approach poses the risk of creating an excee-
dingly complex system. In the context of autonomous driving, machine learning offers two key
approaches for decision-making : supervised learning and deep reinforcement learning (DRL)
[Li, 2022b]. Supervised learning involves training models directly from human driver demonstra-
tions, but challenges arise due to potential distributional shifts between training and real-world
test data [Burton, 2017]. In contrast, DRL aligns naturally with the decision-making task for
autonomous driving. It deals with sequential decision-making problems aimed at maximizing
utility or rewards, empowering autonomous vehicles to learn and adapt their decisions based on
real-time feedback from the environment [Kiran, 2021].

However, DRL solutions for end-to-end driver policy learning have been applied to simple
driving scenarios, like lane keeping, steering control, and managing acceleration [Kendall, 2019].
A primary challenge in DRL is guaranteeing the safety of autonomous driving (AD) systems,
especially during the exploration phase [Gu, 2022]. When autonomous Vehicles (AV) engage in
exploratory behavior in urban driving scenarios, they risk taking actions that could result in
catastrophic consequences, potentially jeopardizing passengers’ lives. Moreover, DRL typically
demands substantial training data [Sutton, 2018]. Also, acquiring such extensive datasets for AD
can be exceedingly challenging [Kiran, 2021]. These combined difficulties confine the training
of AVs primarily to simulation environments and make their transition to real-world driving
situations practically unfeasible.

Several distinct approaches exist to achieve safety in DRL [Garcıa, 2015]. One approach
entails restricting the expected cost [Achiam, 2017]. Alternatively, using the loss function, ano-
ther method maximizes the safety constraints [Xu, 2018]. Moreover, penalties can be introduced
to discourage the agent from transgressing safety boundaries [Pham, 2018][Memarian, 2021].
An alternative is the creation of a more complex reward structure through temporal logic [De
Giacomo, 2019][Jiang, 2021][Hasanbeig, 2019][Den Hengst, 2022]. These approaches consolidate
safety concerns into a complex loss function, making the optimization more challenging. In
contrast, the shielding technique [Alshiekh, 2018] deploys a shield to directly forestall the agent
from taking actions that might potentially breach safety regulations during the exploration phase
of DRL [Yang, 2023]. However, the shield’s strictness may sometimes hinder the learning agent’s
ability to effectively explore the environment and discover its optimal policy [Könighofer, 2022].

In summary, while various sensor fusion and decision-making methods exist for autonomous
driving, each with its strengths and limitations, the overarching challenge is to develop compre-
hensive and robust systems. These systems must navigate the complexities of the real world,
guarantee safety, and ensure efficient use of affordable sensors while making critical decisions.
This necessitates ongoing research and development efforts to bridge the gap between existing
methods and the demanding requirements of autonomous driving in diverse and dynamic envi-
ronments.
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1.2 Avisto

This work is a collaboration between Telecom SudParis and AViSTO, an R&D and software
engineering company founded in 1999 in Sophia Antipolis, a region in the French Riviera. In
2004, it became a subsidiary of the ADVANS Group. Over the years, AViSTO has expanded its
portfolio and honed its expertise in various software technologies and services. The company’s
core focus lies in developing software solutions, specializing in "Object" technologies, including
Java/JEE, C++, C#, .Net, Core, Python, and PHP. Additionally, AViSTO excels in web de-
velopment, employing technologies such as Angular, ReactJS, and VueJS, as well as mobile
application development for Android, iOS, and cross-platform solutions. AViSTO maintains a
substantial workforce comprising between 200 and 249 employees, underscoring its significance in
the software engineering industry. In 2019, the company reported a turnover of €17,659,300.00,
further highlighting its robust presence. One distinguishing characteristic of AViSTO is its capa-
city to oversee the entire software development life cycle, encompassing requirements gathering
and preparations for future developments.

Furthermore, the company has diversified its service offerings, incorporating expertise in
DevOps, quality assurance, data science, and cybersecurity domains. Beyond its core software
development competencies, AViSTO can undertake projects across various domains, including
information systems, web development, telecommunications, industrial software, embedded ap-
plications, and networks.

1.2.1 KarLAB

KARlab is a collaborative multi-disciplinary research and development (R&D) project that
commenced in 2018, involving the active participation of ELSYS Design, Mécagine, and AVISTO.
The primary objective of this endeavor is to create an intelligent karting system designed to fa-
miliarize drivers with the anticipated interactions with future vehicles. The project serves to
advance the technological expertise within the ADVANS group, particularly in the domains of
electronic systems (embedded systems) and software engineering, encompassing immersive tech-
nologies, artificial intelligence (AI), big data, and more, all applied to the automotive industry.

In addition to its R&D focus, the project offers users a unique experience in augmented and
virtual reality karting races. Equipped with a mixed reality headset, specifically the Microsoft
Hololens 3, the kart driver engages with virtual elements seamlessly integrated into their real-
world environment. In a manner reminiscent of the popular video game "Mario Kart," these
virtual interactions have tangible consequences within the real-world racing context, impacting
the performance of the player’s kart and that of their competitors.

The evolution of the KARlab project, depicted in Figure 1.2, spans from its initial Proof Of
Concept (PoC) phase to its current status, where the work is being actively implemented on an
actual kart, representing a significant advancement in the project’s development.

This project involves the interaction of three distinct entities : the kart, the game server,
and the Hololens. The communication between these entities is facilitated through a WiFi net-

3. https ://www.microsoft.com/en-us/hololens
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Figure 1.2 – Projet KARlab : Initial and actual states

work, with data transmission conducted using the TCP protocol. The communication involved
components can transmit messages in the "FlatBuffers" format. A comprehensive overview of
the interactions between these entities is illustrated in Figures 1.3 and 1.4.

Figure 1.3 – Diagram summarizing the communications between the entities of the KARlab
project, as well as the modules present on board the kartt

The onboard systems integrated within the kart are responsible for task allocation. This
distribution of responsibilities encompasses three main components. The first component revolves
around the Environmental Interface Card (EIC), enabling the kart to gather environmental data,
such as its position and speed, through various sensors, including RADAR, GPS, and the inertial
measurement unit (IMU). The EIC engages in data exchange with the Electronic Control Unit
(ECU). The ECU assumes the tasks of data synthesis, information analysis, and the oversight
of Kart control processes. The final component involves mechanical elements, with actuators
responsible for manipulating the kart’s wheels’ angles, acceleration, and braking.

In the context of communication between the kart and the driver, the Hololens serves as the
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conduit for real-time information delivery to the driver, enabling them to perceive notifications
in their field of vision, such as detecting panels or real-time speed updates. In a masterful
capacity, the driver exchanges information with all the karts participating in the race on the
track. Furthermore, as depicted in Figure 1.4, the karts are interconnected, allowing them to
engage in direct data exchange. Ultimately, a central server orchestrates and coordinates the
overall game dynamics.

Figure 1.4 – Diagram of communications between KARlab entities

The technologies employed within the kart’s onboard systems primarily function and com-
municate using the C and C++ programming languages. Before integration into the kart, the
components responsible for supervision and artificial intelligence undergo initial development
and testing phases using Python or C#, carried out within simulation environments. In ad-
dition, the servers and technologies associated with the Human Machine Interface (HMI) are
constructed using React and JavaScript programming languages.

1.2.2 Onboard systems on the kart

For this project, a conventional electric kart called the "Sodikart," is the foundational plat-
form. It is augmented by the integration of an onboard electronic card known as the "Nvidia
Jetson TX2," effectively functioning as the Electronic Control Unit (ECU) mentioned previously.
The Nvidia Jetson TX2 card assumes the role of a central processing unit, processing incoming
information and managing critical events within the system. During the project’s development
phase, two distinct operating systems are employed concurrently : a Real-Time Operating Sys-
tem (RTOS), referred to as "Erika," and a conventional Rich Operating System (Linux). The
RTOS is responsible for overseeing critical decision-making processes upon which the kart’s
integrity and driver’s safety heavily rely, such as emergency braking procedures. It transmits
directives to the mechanical actuators, as indicated in Figure 1.3. The RTOS is designed to
swiftly make critical decisions and operate as close to real-time as possible. In contrast, the Li-
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(a) Diagram of the ECU architecture (b) Components on board the kart

nux system is responsible for handling non-critical data, particularly those related to the gaming
aspects. It establishes connections with the game server, retrieves relevant data, and stores it
in the kernel’s memory space. The RTOS leverages this data to make informed decisions. The
FreeRTOS bridges the Central Processing Units (CPUs) to the Controller Area Network (CAN)
bus.

A hypervisor is pivotal between the operating systems and the hardware components. Its
primary function is facilitating the concurrent operation of multiple operating systems on a
single physical machine. The hypervisor assigns specific hardware resources to each operating
system ; for instance, it allocates access to a WiFi device to the RTOS component. Furthermore,
the hypervisor efficiently allocates and manages the computing power on the card among the
coexisting operating systems, optimizing resource utilization within the kart’s onboard systems.
The operating systems engage in intercommunication through a shared memory space.

The second electronic card embedded in the kart is the Environmental Interface Card (EIC).
This card is a hub for all the sensors integrated within the kart, including radar, GPS, and the
Inertial Measurement Unit (IMU). The EIC performs the critical functions of collecting, orga-
nizing, and transmitting environmental data to the ECU. The ECU undertakes the associated
data processing tasks, encompassing the determination of the kart’s position and speed, ha-
zard detection, data fusion, and the implementation of an extended Kalman filter. Furthermore,
the ECU assumes control over the mechanical actuators, ensuring their operation following the
processed data.

1.2.3 Use cases

The KarLAB project is characterized by a cohesive network of interconnected use cases,
each meticulously outlined and contributing to the holistic research framework. This research
comprises a multidimensional exploration, with the individual components elucidated as follows :

1.2.3.1 Localization : In this operational mode, the kart is designed to identify potential
safety risks effectively. The system requirement in this mode is achieving precise real-time loca-
lization of the kart using cost-effective sensors. This critical capability enables the kart to adjust
its behavior, encompassing speed reduction and the initiation of emergency braking, in response
to identified safety concerns.
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1.2.3.2 Automatic Parking Mode : In the second use case, Automatic Parking Mode,
where important attention is given to safety and the autonomous parking process, specific re-
quirements have been established to fulfill the project’s objectives.

The system should be capable of effectively avoiding both static and dynamic obstacles within
the scene, ensuring a safe parking operation. Additionally, adherence to particular aspects of the
ISO-16787 :2017 standard, including the inclination angle and the deviation, must be maintained
to align with industry regulations and safety protocols.

ISO 16787 :2017 4 is a standard that specifically focuses on the Assisted Parking System
(APS) for light-duty vehicles, such as passenger cars, pick-up trucks, light vans, and sport
utility vehicles (excluding motorcycles). It outlines the minimum functionality requirements that
drivers can expect from such systems, including detecting suitable parking spaces, calculating
trajectories, and controlling the lateral movement of the vehicle during parking. Additionally,
it covers aspects like providing information about obstacles in the vehicle’s path and setting
requirements for failure indication and performance testing procedures.

The system should establish a well-defined action space for the agent responsible for guiding
the vehicle’s parking maneuvers, including options such as stop, accelerate, brake, and orienta-
tion. This breadth of available actions ensures adaptability and the ability to respond effectively
to various parking scenarios.

Moreover, the agent should be able to dynamically plan and execute the parking process,
irrespective of the initial distance between the vehicle and the designated parking spot. This
dynamic adaptability guarantees successful parking under varying conditions, emphasizing safety
and operational efficiency throughout the procedure.

1.2.3.3 Urban Driving Mode : The final use case addresses the complexities of urban
driving, involving interactions at junctions, traffic lights, and pedestrian crossings amidst multi-
lane traffic. Notably, the system’s performance in this mode must meet a requirement for fast
convergence and the ability to react effectively in previously unseen situations. The project
emphasizes the utilization of end-to-end systems, as discussed in the relevant literature (e.g.,
[Codevilla, 2019]), where driving policies are learned from data rather than relying on manually
created rules. This approach ensures adaptability and safety while navigating the complexities
of urban driving.

1.3 Research Questions and Hypotheses

In the pursuit of advancing the safety and reliability of self-driving cars, our research endea-
vors revolve around a set of fundamental and probing questions. These research inquiries are
not only the cornerstone of our investigation but also serve as the guiding stars illuminating our
path toward safer autonomous transportation :

— Research Question 1 : How can we attain high-precision absolute localization of AV by
utilizing cost-effective sensors such as GPS and IMU ?

4. https ://www.iso.org/standard/73768.html
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— Research Question 2 : Which approach or methodology can effectively ensure the safety
and efficient execution of autonomous parking operations, including planning and parking
the car while avoiding static and dynamic obstacles and respecting specific criteria outlined
in the ISO-16787 :2017 standard, such as the inclination angle and deviation ?

— Research Question 3 : What is the most suitable algorithm for self-driving vehicles to
facilitate rapid convergence and responsive actions in unforeseen and dynamic situations,
particularly within urban driving scenarios ?

1.4 Thesis contributions

To tackle these questions, the thesis contributes threefold : a new data fusion algorithm for
AV localization, a dynamic adjustment of a Deep Reinforcement Learning reward function, and
a new framework for safe urban driving.

1.4.1 Data fusion algorithm for AV localization

The quest for high-precision AV localization has become central to enhancing safety and
accident prevention. Multi-sensor data fusion is the practice of integrating data gathered from
multiple sensor devices. This integration improves reliability, reduces uncertainty, and augments
performance accuracy in real-time [Bounini, 2016]. Such techniques find applications in sensor
networks, robotics, image processing, and self-driving vehicles [Khaleghi, 2013]. The inherent
complexities of real-world scenarios often necessitate data fusion for optimal results [Osório,
2019]. Various fusion methods, including Kalman Filters (KF), Extended Kalman Filters (EKF),
and Error State Extended Kalman Filters (ES-EKF), have been employed, alongside probability
estimation, machine learning, and neural networks [Nweke, 2019]. Despite these approaches,
challenges persist. Some techniques are constrained to indoor robotics, while others rely on
expensive sensors, ill-suited for embedded systems [DAlfonso, 2015][Shaukat, 2021]. Simulators
like Carla provide ideal, noise-free data, which may not mirror real-world conditions [Castillo-
Torres, 2021].

To address these limitations, in Chapter 4, we present a solution for achieving high-precision
localization in AVs by utilizing cost-effective sensors, specifically GPS and IMU. Our approach
includes calibration of the IMU’s physical sensor and the implementation of a low-pass filter
to reduce IMU noise, followed by the integration of IMU sensor data with GPS coordinates
using ES-EKF. The study highlights the superior performance of ES-EKF compared to EKF
in fusing GPS and IMU data, as evidenced by improved localization results within the Carla
simulator. Furthermore, we validate our approach through real-time urban driving scenarios,
deploying the ICM 20600 IMU and Quectel L80-M39 GPS in a FreeRTOS real-time environment
on the STM32 Nucleo platform. This validation demonstrates a 92% accuracy, calculated by the
proportion of data points where the Error State Extended Kalman Filter (ES-KF) estimated
position (X, Y) falls within a 0.5 meter distance threshold of the corresponding ground truth
position. Additionally, our approach exhibits an exceptional swift execution time of around 20
µs, rendering it highly suitable for practical industrial applications.
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1.4.2 Dynamic Adjustment of Reward Function for Proximal Policy Optimization
with Imitation Learning

The second contribution is in the context of the second use case, Automatic Parking Mode,
where the primary focus is on ensuring safety and the efficient execution of autonomous parking
operations. The project has outlined specific requirements designed to address the key objectives
of this use case. It is essential to note that while various methods have been explored in the do-
main of autonomous parking systems (APS), such as geometric [Fraichard, 2004],[Gómez-Bravo,
2001],[Lini, 2011], sampling [Han, 2011],[Zheng, 2018], and numerical optimization techniques
for path planning [Thrun, 2006],[He, 2019],[Park, 2018], as well as Ackerman steering models
[Weinstein, 2010] for path tracking, many of these methods have faced challenges related to
the non-linearity of vehicle dynamics. These challenges have led to deviations from the inten-
ded route, and in some instances, they need to fully adhere to the European standard BS
ISO 16787-2017 for Intelligent Transport Systems. The state-of-the-art literature still needs to
comprehensively address the specific research question posed in this context, leaving room for
further exploration and developing a suitable methodology to meet the defined requirements
while focusing on safety and efficiency.

In light of these challenges, there is a growing interest in harnessing recent advancements
in machine learning to enhance the current state-of-the-art APS techniques. Specifically, rein-
forcement learning has emerged as a promising research area in which agents learn to make
intelligent decisions by interacting with their environment, taking actions, and receiving re-
wards. Deep Reinforcement Learning (DRL), which combines deep learning with reinforcement
learning, has shown remarkable success in various domains, including Atari video games, Go, and
robot manipulation. Several recent works have explored the application of DRL in APS, achie-
ving notable results. However, many of these approaches have focused on static obstacles within
the environment, neglecting dynamic obstacles and the critical aspect of braking constraints.

Despite the progress in DRL, it faces challenges when operating in real-world scenarios
compared to controlled video game environments. This is due to the complexity of formulating
reward functions for APS tasks, which can be complex and challenging. In particular, the ability
to ensure safe and efficient parking maneuvers through DRL remains a significant research
question.

In response to these challenges, chapter 5 presents a series of contributions and results aimed
at enhancing APS by addressing the specific requirements and ensuring the safety and efficiency
of autonomous parking operations. These contributions include utilizing a DRL algorithm, Proxi-
mal Policy Optimization (PPO) [Schulman, 2017] for parking spot exploration, planning, and
execution, with the capability to handle static and dynamic obstacles and adapt vehicle speed
as needed. The DRL algorithm is improved through dynamic reward adjustments and combined
with imitation learning to reduce training time. Additionally, a task-specific curriculum learning
approach is developed to train the agent effectively in complex environments.

Experimental results validate the model’s, with a 90% success rate in executing precise
control commands during parking maneuvers. This success rate reflects instances where the
vehicle successfully planned, navigated, and parked the car while avoiding static and dynamic
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obstacles. Moreover, 97% of these successful parking actions align with parking standards, fea-
turing inclination angles greater than ±0,2◦ and deviations of less than 0.1 meters, reflecting
the precision of the vehicle’s positioning within the parking space. These findings underscore
the model’s ability to meet rigorous parking requirements while ensuring safety and operational
efficiency.

1.4.3 Guided Hierarchical Reinforcement Learning for Safe Urban Driving

Currently, most AV systems employ hand-crafted modular architectures [Müller, 2018].
Though widely used, these architectures exhibit limitations in highly interactive environments,
such as urban driving, due to their tightly interconnected nature. In contrast, end-to-end archi-
tectures have emerged as a promising alternative where driving policies are learned and adapted
without manual intervention [Xu, 2017]. This approach facilitates continuous tuning of driving
policies, aiming for human-level performance. However, the quest for a safe end-to-end driving
policy remains challenging, particularly in complex urban driving scenarios.

End-to-end AV driving policies fall into three main categories : rule-based methods [Furda,
2011], imitation learning (IL) [Bansal, 2018][Xu, 2017][Chen, 2019a], and reinforcement learning
(RL) [Wolf, 2017]. Rule-based methods rely on predefined rules to determine driving actions, but
their development can be demanding due to the need for comprehensive rule sets [Furda, 2011].
IL-based methods offer an attractive alternative by directly learning driving policies from expert
demonstrations. However, they require substantial amounts of labeled training data, which can
be resource-intensive.

To address data challenges, DRL has been applied in more straightforward driving scenarios
like lane-keeping and steering control [Kendall, 2019]. Yet, ensuring the safety of autonomous
driving, especially during the exploratory phase in complex urban settings, remains a concern
[Gu, 2022]. DRL often demands extensive training data, limiting its real-world applicability
[Sutton, 2018]. Strategies for enhancing DRL safety involve complex cost functions and shiel-
ding techniques [Achiam, 2017] [Xu, 2018] [Alshiekh, 2018], but they can add computational
complexity and hinder the exploration of optimal policies [Yang, 2023].

Recent research has explored Hierarchical Reinforcement Learning (HRL) as a promising
approach for urban driving scenarios [Bronstein, 2022]. HRL decomposes complex tasks into
smaller, more manageable sub-tasks with simplified state spaces, potentially reducing the need
for extensive exploration [Guo, 2021]. Additionally, combining IL with HRL can address cold
start issues and improve agent performance by modeling expert demonstrations as humanlike
reasoning with symbolic rules [Cropper, 2022]. Although promising, it’s essential to consider
potential safety issues and limitations, particularly exploring unsafe actions and generalizing
new situations [Chen, 2019a].

The state-of-the-art provides a comprehensive overview of different methods used in AV
driving policy development, including rule-based methods, IL, and RL. While it highlights the
challenges and complexities associated with these methods, it needs to directly respond to the
research question regarding the most suitable algorithm for achieving rapid convergence and
responsive actions in unforeseen and dynamic urban driving scenarios. It mainly focuses on
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these approaches’ safety and training challenges, which, while necessary, do not directly address
the specific algorithmic suitability for urban driving, as emphasized in Research Question 3.

Chapter 5 presents Guided Hierarchical Reinforcement Learning (GHRL) for end-to-end
urban driving, incorporating vision and localization data and expert demonstrations expressed
in the Answer Set Programming (ASP) rules to guide the PPO exploration policy. GHRL-ASP
offers several advantages over alternative methodologies, simplifying the calculation of complex
loss functions and avoiding the complexity associated with shielding techniques. It ensures a
real-time and efficient decision-making process. Experimental evaluations conducted in urban
driving scenarios using the Carla simulator demonstrate the approach’s effectiveness in handling
challenges such as traffic lights static and dynamic obstacles by outperforming the state-of-the-
art methods on Carla’s NoCrash benchmark by 20%. Particularly in hazardous situations, the
system relies on ASP rules to ensure safety and adherence to predefined constraints, mitigating
potential harm to pedestrians. The system combines learned policies and rule-based systems
triggered by specific events, showcasing its adaptability and robustness in urban driving scenarios
[Brewka, 2011].

1.5 Thesis Organization

This manuscript presents the research carried out throughout my thesis and is organized
into seven chapters :

Chapter 2, titled Preliminaries, provides an essential foundation for exploring various Arti-
ficial Intelligence (AI) and Machine Learning (ML) concepts. After an introduction, the chapter
explores the core of neural networks and deep learning (Section 2) paradigms. Then, the chapter
progresses to cover other critical aspects of AI and ML, including Supervised Learning (Section
3) and Reinforcement Learning Algorithm (Section 4). Section 4, in particular, provides a detai-
led overview of the basic principle of reinforcement learning. The chapter further discusses the
role of sensors (Section 5) in AI and ML applications, including various sensor types such as
cameras, LiDAR, RADAR, and GPS/IMU. Finally, the chapter concludes with a discussion of
Answer Set Programming (ASP) (Section 6), a fundamental methodology in AI, addressing to-
pics like the ASP programming language and programming methodology and solving the frame
problem with ASP. The chapter concludes by summarizing the preliminary knowledge required
for the topics covered in this thesis.

Chapter 3, titled State of the Art, is a comprehensive exploration of the current landscape of
autonomous systems and their associated technologies. The chapter begins with an Introduction
(Section 1), providing context for the following topics. It then explores specific areas of interest,
such as Localization and Data Fusion (Section 2), highlighting the importance of these aspects
in autonomous systems. The chapter covers Imitation Learning and Reinforcement Learning
(Section 3), including specialized subsections like Autonomous Driving with Imitation Learning
and Autonomous Driving with Reinforcement Learning, detailing how these approaches are utili-
zed in autonomous vehicle technology. It also discusses the Automated Parking System (Section
3.3), a critical application of autonomous systems. Safety Challenges in Autonomous Systems
(Section 4) is also addressed, considering methods like Rule-based Methods and the importance
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of safety in reinforcement learning. The chapter then explores the tools available for simulation
environments (Section 5), encompassing games, indoor environments, and driving scenarios.
Finally, Synthesis and Research Trails (Section 6) provides a forward-looking perspective on
research and future directions. This chapter serves as a valuable resource for understanding the
latest advancements and challenges in autonomous systems and lays the groundwork for further
exploration of this dynamic field.

Chapter 4, titled Localization of Autonomous Vehicle with low-cost sensors introduces the
first contribution. It commences with an Introduction, providing an overview of absolute loca-
lization for autonomous vehicles by integrating two low-cost sensors, namely GPS and IMU.
Subsequently, Section 2, titled System Overview, is presented. This section provides in-depth in-
formation regarding key components and processes, such as IMU calibration, the application of
low-pass filters, and the ES-EKF methodology. This chapter then proceeds to Section 3, which
extensively explores Experiments and Results. It is here that various experiments are conducted
and their outcomes analyzed. The first subsection within Section 3 is dedicated to experiments
carried out in the Carla simulation environment, with detailed descriptions of the simulation
environment and a comprehensive breakdown of the simulation results. Following the simula-
tion experiments, the focus shifts to Real Test scenarios in subsection 3.2. This encompasses
descriptions of the real test environment, IMU calibration, low-pass filtering procedures, and,
significantly, the data fusion results obtained. Finally, the chapter concludes (section 4) with a
summarizing section, encapsulating the core findings and insights.

Chapter 5, titled Dynamic Adjustment of Reward Function for PPO with IL : Application
to Automated Parking Systems, describes the second contribution. It provides a detailed exami-
nation of a specific application of reinforcement learning in the context of automated parking
systems. After identifying the challenges and issues this research aims to address, the core of
the chapter revolves around the DPPO-IL algorithm by introducing various components like
Curiosity Reward and Imitation Learning with subcategories such as Behavior Cloning and
Generative Adversarial Imitation Learning. The chapter then presents the DPPO-IL Algorithm
and emphasizes Curriculum Learning as a crucial element in the approach. Experiments and
Results (Section 4) describe the test setup, the agent, the environment, and the outcomes ob-
tained through various experiments. Finally, the chapter concludes (Section 5) by summarizing
its findings and contributions to automated parking systems and reinforcement learning. This
chapter serves as a valuable resource for understanding how reinforcement learning techniques,
combined with the dynamic adjustment of reward functions, can be applied to enhance the
performance of automated parking systems.

Chapter 6, titled Guided Hierarchical Reinforcement Learning for Safe Urban Driving, is
dedicated to the third contribution. It delves into applying hierarchical reinforcement learning
techniques to ensure safe driving in urban environments. The core of the chapter focuses on
GHRL, a model-free on-policy RL algorithm. The GHRL learning process is further broken
down into Low-Level Policies, High-Level Policies, Safety Specification, Longitudinal Critical
Situations, and Lateral Critical Situations. The chapter then reports on the Experiments (Sec-
tion 3), providing insights into the setup of the environment and the evaluation metrics used.
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It presents the results obtained in various scenarios, including the NoCrash Benchmark, Obs-
tacle Avoidance, training Sub-Policies, and conducting experiments with Safe High-Policies. The
chapter concludes (Section 4) by summarizing its findings and contributions to safe urban dri-
ving through guided hierarchical reinforcement learning techniques. It is a valuable resource for
understanding how reinforcement learning can enhance safety in urban driving scenarios.

Chapter 7, titled Conclusion and Perspectives, serves as the final chapter of this thesis. In
this chapter, we summarize the key findings and contributions of the research. Then we explore
potential avenues for future research and development. This section can act as a bridge for
further investigations in the area of autonomous vehicles.
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1 Introduction

This chapter provides an in-depth exploration of deep learning in the context of autonomous
vehicles, focusing on the central role of neural networks. The target audience includes individuals
with a foundational understanding of machine learning and statistics, offering a comprehensive
overview of neural networks and their critical significance in shaping the trajectory of autono-
mous driving. Neural networks, inspired by the structure and functionality of the human brain,
form the core of deep learning. Within autonomous vehicles, these networks are vital in enabling
perception and navigation within real-world environments. Neural networks can discern com-
plex patterns from sensor data, making them indispensable for tasks such as image recognition,
natural language processing, and machine translation within the autonomous driving domain.
Fundamental to neural networks are artificial neurons, elemental components responsible for
processing sensor inputs and generating driving commands. These neurons establish intercon-
nected layers, and their weighted connections are pivotal in shaping the network’s learning and
performance. This chapter examines how artificial neural networks are applied to improve key
functionalities of autonomous vehicles. We elucidate how networks receive input data from di-
verse sensors, encompassing cameras, LiDAR, radar, and GPS. This data undergoes processing
through hidden layers, ultimately yielding output that translates into critical driving decisions.
For tasks of utmost importance to autonomous driving, such as object detection and lane fol-
lowing, we explore convolutional neural networks (CNNs), a specialized neural network variant
tailored for image recognition. CNNs leverage convolutional layers to extract complex features
from sensor data, achieving state-of-the-art performance in domains crucial to autonomous ve-
hicles. Our exploration extends beyond architectural considerations to encompass the essential
training process. Neural networks are trained to execute specific driving tasks, with backpro-
pagation emerging as a pivotal algorithm for weight adjustments, minimizing a loss function
indicative of the network’s performance on training data. Supervised learning, a foundational
concept, assumes prominence in our discussion, involving model training on labeled datasets
containing sensor data and corresponding driving commands. This empowers autonomous ve-
hicles to predict driving commands for novel sensor data by discerning patterns within labeled
examples. Furthermore, we explore the domain of reinforcement learning, where autonomous
vehicles acquire the ability to make informed driving decisions through interactions with their
environment. These models receive rewards and penalties based on their actions, eventually
mastering hard tasks like navigating dynamic traffic scenarios. This chapter places significant
emphasis on sensors, which serve as the sensory apparatus of autonomous vehicles. Sensors mea-
sure physical attributes such as distance, speed, and object proximity. They are the core of
data acquisition, facilitating informed decision-making and ensuring the safety and reliability
of autonomous driving. In conclusion, we touch upon answer set programming, a declarative
language that addresses challenges within autonomous driving, encompassing route planning,
task scheduling, and fault diagnosis. This programming paradigm has been pivotal in developing
machine learning models that address complex problems within the autonomous vehicle domain.

This chapter serves as an insightful journey into the profound realm of deep learning within
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the context of autonomous vehicles. It is structured into subsections, each contributing to a ho-
listic understanding of deep learning in the context of autonomous vehicles. It commences with
a comprehensive introduction that sets the stage for the subsequent discussions. The chapter
then explores the fundamentals of neural networks and deep learning, covering aspects such as
artificial neurons, artificial neural networks, convolutional neural networks, and the critical trai-
ning and backpropagation processes. It further explores supervised learning and reinforcement
learning algorithms, encompassing their definitions, classifications, and function approximation
techniques. The chapter thoroughly examines sensors, a critical element in autonomous driving.

The latter include cameras, LiDAR, RADAR, and GPS/IMU systems, with in-depth insights
into their roles and applications in autonomous vehicle technology. The chapter’s content is
rich and varied, providing a comprehensive overview of deep learning and its application in
the context of autonomous vehicles. It culminates with a detailed exploration of Answer Set
Programming (ASP) and its application in addressing complex problems related to autonomous
vehicle decision-making. In conclusion, this chapter is a valuable reference for anyone seeking to
comprehend the landscape of deep learning in autonomous vehicles.

2 Neural Network and Deep Learning

2.1 Artificial Neuron

The concept of an artificial neuron was first introduced in 1943 in "A logical calculus of the
ideas immanent in nervous activity" by [Rosenblatt, 1962]. Modeled after biological neurons, an
artificial neuron is a mathematical entity that follows specific rules. When given an input of
x = [x0, . . . , xn], the neuron produces an output of y = σ (

∑
wixi + bi), where wi and bi are

the neuron’s internal parameters, representing its weight and bias, respectively. The activation
function σ may add non-linearity, and common activation functions include sigmoid (σ(x) =

1
1+e−x ), hyperbolic tangent (tanh)σ(x) = ex−e−x

ex+e−x , and rectified linear unit (ReLU) (σ(x) =
max(0, x)).

Figure 2.1 – Structure of an artificial neuron.

Initially, the first artificial neuron was a perceptron. It is a binary classifier whose activation
function is sign(), and there is no bias
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output =
{

1 if
∑

wixi > 0
0 otherwise

(2.1)

2.2 Artificial Neural Network

Due to its construction, the perceptron can only classify data separated by a single line,
making it unsuitable for modeling complex functions like the XOR function. Multiple perceptrons
are needed to model the function, leading to the development of a Multi-Layer Perceptron
(MLP). It is important to note that while an MLP consists of several perceptrons with binary
activation functions, an artificial neural network (ANN) can have various activation functions
for its neurons. Figure 2.2 illustrates a multi-layer ANN with neurons represented as circles,
typically organized into layers, where the outputs of one layer become the inputs of the next.
Hidden layers refer to the internal layers, and the term "deep learning" is used when an ANN
has more than two hidden layers.

Figure 2.2 – Multi layer artificial Neural Network.

2.3 Convolutional Neural Network

Fully connected layers are organized so that each neuron is connected to every neuron of the
previous layer. However, this design could be better for image processing as it would require
many parameters due to the size of the images. For instance, RGB images of size 224 × 224,
which are used in the ImageNet dataset, would require 150, 528(= 224 × 224 × 3) weights for
each neuron of the first layer. To address this problem, Convolutional Neural Networks (CNNs)
were introduced in 1998 by[LeCun, 1998] in their paper "Gradient-based learning applied to
document recognition" to enable handwriting recognition (refer to Figure 2.3). CNNs consist of
convolution layers that process the image by area instead of pixels to detect patterns, typically
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followed by pooling layers to subsample the image. CNNs reduce the number of parameters
and offer translation invariance as another advantage. Typically, CNNs include fully connected
layers after convolutional and pooling layers. Classical computer vision architectures, such as
VGG [Simonyan, 2014], Resnet [He, 2016], and Inception [Szegedy, 2015], are widely used. There
is an ongoing active pursuit to develop new architectures that are either lighter or more powerful.

Figure 2.3 – Convolutional network for handwriting recognition [LeCun, 1998]

2.4 Training and Backpropagation

Training an artificial neural network involves determining the optimal parameters θ - which
comprise the weights and biases of the network - for a specific task. To accomplish this, a loss
function L is defined, with the form of the function depending on the type of learning and the
problem at hand. Specific examples of loss functions in supervised or reinforcement learning can
be found in the subsequent sections. The network’s parameters are then adjusted based on the
derivative of the loss function, with each θi ∈ θ being modified in accordance.

∆θi = ∂L
∂θi

(2.2)

The gradient descent rule is used to update the parameter θi. When the goal is to maximize
the loss, this is referred to as gradient ascent.

θi ← θi − α∆θi (2.3)

The gradient descent rule utilizes the learning rate α, and the commonly used optimizers
include Stochastic Gradient Descent with momentum (SGD) [Qian, 1999] and the Adam op-
timizer [Kingma, 2014]. Machine learning has three main learning frameworks : supervised,
reinforcement, and unsupervised. Supervised learning involves learning from annotated data.
Reinforcement learning utilizes a reward function ; unsupervised learning deals with unlabeled
data. This thesis focuses on the first two frameworks, supervised and reinforcement learning,
which will be discussed in the following sections.
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3 Supervised Learning

Supervised learning is the most widely used type of machine learning, where the model is
trained on labeled data. This approach is frequently employed in computer vision for object
detection, image classification, depth prediction, and semantic segmentation tasks. The labeled
data consists of pairs (xn, yn), where n ∈ N, xi represents the input (e.g., an image), and yi

represents the corresponding desired output (e.g., the object’s type in the image). The model
can be represented by a function f with parameters θ representing the neural network’s weights
and biases. The objective is to learn these parameters, such that f(xi, θ) = yi for each pair in
the dataset. The L2 loss or mean square error is a standard loss function used in supervised
learning.

L = MSE(f(x, θ), y) = 1
N

N∑
(f (xi, θ)− yi)2 (2.4)

The cross-entropy or log loss (equation 2.5) is a commonly used loss function in classification
problems. In this scenario, the model’s output is f(x, θ) = p, where p denotes the probability of
the input belonging to a particular class, and the ground truth is represented by y ∈ [0, 1]. For
multi-class classification, the loss is computed as the sum of losses across all classes (equation
2.6).

L = CE(p, y) = −y log(p) + (1− y) log(1− p) (2.5)

L = −
∑

i

yi log (pi) (2.6)

Supervised learning has several advantages : being relatively fast, stable, and typically de-
monstrating good convergence. However, it requires labeled data, which can be expensive to
obtain. Additionally, datasets are limited in size and can be biased due to human factors. Su-
pervised learning can be affected by a distributional shift in scenarios requiring a sequence of
actions (e.g., autonomous driving). This means that the distribution of the training dataset is
not identical to the distribution encountered during testing. In such cases, a single mistake can
cause errors to accumulate, leading to the model being unable to recover from its mistakes.

4 Reinforcement Learning Algorithm

Reinforcement learning provides an alternative to supervised learning, often called "learning
by trial and error." Unlike supervised learning, it does not require labeled data but rather a
reward function that specifies desirable or undesirable behavior. This approach reduces the
influence of external bias, but learning can take longer as the model does not have access to
demonstrations of optimal behavior.
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4.1 Reinforcement Learning principle

4.1.1 Definition

Figure 2.4 – Reinforcement learning illustration [Sutton, 2018]

In reinforcement learning, an agent interacts with an environment at each time step t. The
environment generates a state st. Based on the current state st, the agent selects an action at

according to a policy π(at | st). The policy determines the probability of choosing action at

in state st. In a deterministic environment, π(st) = at. After the agent takes action at, the
environment provides a new state st+1 and a reward rt. The reward reflects the desirability of
the new state. The agent aims to maximize the cumulative rewards by achieving the highest sum
of rewards over time : max

∑
rt. To avoid unbounded sums, the cumulative rewards are often

discounted. The cumulative rewards, considering the discounting factor, are referred to as the
return Rt. γ is the discount factor. It quantifies the significance of future rewards. It not only
delineates the extent of importance attributed to future rewards but also aids in approximating
the variability or uncertainty associated with such rewards. Gamma, ranging from 0 to 1. When
Gamma approaches zero, the agent tends to prioritize immediate rewards over future ones.
Conversely, as Gamma approaches one, the agent accords greater weight to future rewards,
demonstrating a propensity to defer gratification in favor of potentially higher long-term gains.

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑

k=0
γkrt+k+1 (2.7)

We also define the V-function and Q-function as follows :

Vπ(s) = Eπ [Rt | St = s] (2.8)

Qπ(s, a) = Eπ [Rt | St = s, At = a] (2.9)

The V-function, or the value function, computes the return associated with a particular
state. Conversely, the Q-function, or quality function, computes the expected return associated
with a state-action pair. These functions evaluate the value or quality of a state (or state-action
pair) under a given policy π. Furthermore, the advantage function can be defined as :

Aπ(s, a) = Qπ(s, a)− V π(s) (2.10)
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The advantage defines how much better action a is compared to the action chosen by the
policy π.

4.1.2 MDP and POMDP

In reinforcement learning, the agent makes decisions by selecting actions based on the recei-
ved state. The state signal is assumed to possess the Markov property, which depends solely on
the previous state. As a result, the transition probability can be expressed as a function of the
previous state and action : p(st+1 | st, at). The reinforcement learning problem can be formulated
as a Markov Decision Process (MDP), which is characterized by a 5-tuple (S,A,P,R, γ) :

— S is a set of states
— A is a set of actions
— P is a transition function P : S ×A× S → [0, 1]
— R is a reward functionR : S×A×S×R→ [0, 1] or in deterministic casesR : S×A×S → R

— γ is the discount factor

However, it may only sometimes be feasible to obtain the complete state with all the in-
formation from the environment at a given time step. In certain environments, only partial
information is available. For example, in computer vision problems, there may be occlusions
in the visual input. In such cases, the observation is defined as incomplete information derived
from the state. This gives rise to the concept of a Partially Observable Markov Decision Process
(POMDP), which is represented by a 7-tuple (S,A,P,R, γ, Ω,O). In this tuple, S,A,P,R, and
γ are defined as in an MDP, while Ω represents the set of possible observations. The function O is
a conditional observation probability function that specifies the probability of observing o when
the system is in state s, mapping from S ×Ω to the interval [0, 1]. Addressing POMDPs can be
approached in various ways. One approach involves inferring or estimating the underlying state
from the observed information using a probability distribution known as a belief state. Another
approach is to ignore the hidden state altogether. However, this approach can lead to challenges
since different states can produce similar observations, causing ambiguity.

4.1.3 Model-free vs Model-based

Reinforcement learning algorithms can be classified into two main categories : model-free
and model-based. Model-based algorithms aim to learn the underlying Markov Decision Process
(MDP) by modeling the problem. By acquiring knowledge of the reward and transition functions,
the problem can be solved through optimization techniques. On the other hand, model-free
algorithms focus on directly optimizing the reward without explicitly building a model of the
MDP. Examples of model-free algorithms include Q-learning and Policy Gradient. In the specific
context of autonomous driving, learning a model of the environment in a high-dimensional space,
such as images, is challenging. Additionally, it is impossible to know the future actions of other
surrounding vehicles or actors. Therefore, in this thesis, our emphasis will be on model-free
approaches, which do not rely on explicit modeling of the environment or the knowledge of the
future actions of other agents.
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4.1.4 Exploration vs Exploitation

Exploration versus exploitation is a well-known challenge in reinforcement learning, where
exploitation refers to choosing the best option based on current knowledge. In contrast, explora-
tion involves testing alternative options to gather new information. Achieving the right balance
between these two aspects is critical for successful learning. It is generally advisable to prio-
ritize exploration at the beginning of the learning process when little is known and gradually
shift towards exploitation as the agent’s performance improves. Two common approaches for the
exploration-exploitation dilemma are ϵ-greedy and softmax. The ϵ-greedy approach selects the
best action (i.e., the greedy action) with probability 1 - ϵ and a random action with probability
ϵ. With the ϵ-greedy approach, all actions have an equal probability of being chosen. Commonly
chosen values for ϵ range from 0.01 to 0.1. In contrast, the softmax approach considers the quality
of each action Q(a,s) and selects the following action based on the Boltzmann distribution :

π(a, s) ∼ e
Q(a,s)

T∑
ai∈A e

Q(ai,s)
T

, (2.11)

Where T is a temperature parameter that controls the degree of exploration, when τ is
high, actions with lower Q-values have a higher probability of being chosen, leading to more
exploration. In contrast, low values of τ tend to favor exploiting the currently best-known actions.

Both ϵ-greedy and softmax approaches are designed for discrete action spaces. Still, in the
case of continuous action spaces, exploration is often done by sampling random actions around
the output of the policy model using a Gaussian probability distribution. This is known as
Gaussian exploration. The exploration is done by adding a small amount of noise sampled
from a Gaussian distribution to the policy output. The standard deviation of the Gaussian
distribution is typically chosen as a hyperparameter and determines the amount of exploration.
A higher standard deviation will lead to more exploration, while a lower standard deviation will
lead to more exploitation of the current policy. Gaussian exploration is commonly used in deep
reinforcement learning algorithms for continuous control tasks.

π(a, s) ∼ N (f(s), σ) (2.12)

Where f(s) is the model output, and σ is the standard deviation of the Gaussian.

4.1.5 On-Policy vs Off-Policy

In reinforcement learning, the learning process consists of two main phases : data collection
through interaction with the environment and policy updates based on the collected data. On-
policy algorithms collect data using the current policy, while off-policy algorithms use a different
policy (e.g., an older or more greedy policy) to gather data. On-policy algorithms are more stable
because they update the policy using the data collected by the same policy. However, they often
have slower learning rates compared to off-policy algorithms. On the other hand, off-policy
algorithms are sample-efficient, meaning that the collected data can be reused multiple times.
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This improves the utilization of data. Furthermore, data collection and policy updates can be
performed simultaneously in off-policy algorithms, accelerating the training process.

4.2 Classification of Reinforcement Learning Algorithms

Reinforcement learning algorithms can be classified into two main categories : tabular me-
thods and function approximation. Tabular methods are designed for MDPs with a finite number
of states and actions, while function approximation can be used for MDPs with an infinite num-
ber of states and actions. The following paragraph will briefly overview tabular methods before
delving into function approximation.

4.2.1 Tabular Methods

In Reinforcement Learning, Tabular methods are a class of algorithms used when the MDP
is finite, when the number of states and actions is limited, and can be represented in a table-like
structure. Tabular methods usually store and update the values of state-action pairs or state-
action-state transitions in a table called a Q-table or a V-table. These methods include dynamic
programming, Monte Carlo methods, and TD-learning, which are used for value iteration, policy
iteration, and Q-learning. Tabular methods work well for small-scale problems with a few states
and actions but become computationally infeasible for large-scale problems.

4.2.2 Dynamic Programming

Dynamic programming is a technique used for planning and control in model-based RL,
assuming perfect knowledge of the Markov Decision Process (MDP). Its main objective is to
find the optimal policy of a finite MDP using the Policy Iteration algorithm. This algorithm
consists of two parts : policy evaluation, where the value function V is computed for the current
policy π, and policy improvement, where π is improved using the calculated value function V

until the optimal policy π∗ is found. However, this algorithm can be computationally expensive
as policy and value are computed simultaneously. To overcome this, V -values can be directly
computed, and the optimal policy can be derived from the optimal V -values using the following
equation : π ≈ π ∗ such that π(s) = argmaxa

∑
s′,r p (s′, r | s, a) [r + γV (s′)].

4.2.3 Monte-Carlo Methods

Dynamic programming relies on having prior knowledge of the environment, whereas Monte
Carlo methods are model-free algorithms that learn from experience without assuming knowledge
of the transition function. Monte Carlo methods learn from complete episodes and do not use
bootstrapping, unlike TD (Temporal Difference) learning. These algorithms use mean values,
such as Q(s, a), representing the average return when starting from state s and taking action a.
See Algorithm 1 for more details.
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Algorithm 1 First-visit Monte-Carlo policy evaluation [Sutton, 2018]
Initialize, for all s ∈ S, a ∈ A :
Q(s, a)← arbitrary
Returns (s, a)← empty list for all s ∈ S
π(a | s)← ϵ-greedy policy
for every update do

Generate an episode using π
for each state (s, a) appearing in the episode do

R← return following the first occurrence of s
Append R to Returns (s, a)
Q(s, a)← average(Returns(s, a))

end for
end for

4.2.4 Temporal Difference Learning (TD-learning)

In contrast to Monte Carlo methods, TD-learning algorithms do not need to wait until the
end of the episode to estimate the value. Instead, they can update values during the episode
faster than the Monte Carlo methods. Two major TD algorithms are SARSA (Algorithm 2)
and Q-learning (Algorithm 3), both used for computing the Q-table. SARSA is an on-policy
algorithm, while Q-learning is an off-policy algorithm.

Algorithm 2 SARSA [Sutton, 2018]
Initialize Q(s, a) arbitrarily, ∀s ∈ S, a ∈ A and Q(terminal state)
for each episode do

Initialize s
choose action a from s using policy derived from Q (e.g. ϵ-greedy)
for each step of the episode do

take action a, observe reward r and next state s’
choose action a’ from s’ using policy derived from Q (e.g., ϵ-greedy)
Q(s, a)← Q(s, a) + α [r + γQ (s′, a′)−Q(s, a)]
s← s′; a← a′

end for
end for

The SARSA algorithm is named after the five elements (St, At, Rt+1, St+1, At+1) required
for its implementation. In each step, the agent selects an action based on its current policy,
occasionally choosing a random action for exploration. The agent receives a reward and transi-
tions to a new state s′. Then, based on its current policy, the agent selects another action and
updates the Q-table using the reward r, the new state s′, and the new action a′. SARSA is
an on-policy algorithm because the new action a′ is chosen according to the current policy. In
contrast, Q-learning is an off-policy variant of SARSA. In Q-learning, the agent does not have
to select a second action a′, and the update is performed using the Q-value of the best possible
action (maxa Q(s, a)) instead. This allows Q-learning to learn the optimal action-value function
while following a different (e.g., greedy) policy for exploration.

As SARSA is on-policy, its convergence properties depend on the policy used, whereas this

27



Chapitre 2. Preliminaries

Algorithm 3 Q-learning [Sutton, 2018]
Initialize Q(s, a) arbitrarily, ∀s ∈ S, a ∈ A, and Q( terminal state, ·)
for each episode do

Initialize s
for each step of the episode do

choose action a from s using policy derived from Q (e.g.ϵ-greedy)
take action a, observe reward r and next state s′

Q(s, a)← Q(s, a) + α [r + γ maxa Q (s′, a)−Q(s, a)]
s← s′ until s is terminal

end for
end for

is not the case for Q-learning, which is independent of the policy being followed.

4.3 Function Approximation

The previous section presented three classes of algorithms that assumed a finite MDP, which
can be limiting for ongoing or high-dimensional problems. This section will explore function ap-
proximation algorithms, which constitute the second class of reinforcement learning algorithms.
Unlike tabular methods, these algorithms may not converge to the optimal solution since they
operate in an infinite-dimensional space. Richard Bellman coined the term ’curse of dimen-
sionality’ in 1961 to describe the difficulties of dealing with large amounts of data. Function
approximation algorithms can be categorized into three classes. The first class is value-based
algorithms, which infer Q for each state-action pair and derive the optimal policy from it. While
the state space can be vast in function approximation, value-based algorithms still require a finite
action space. The second class is policy-based algorithms, which compute the policy directly,
allowing for large or infinite action spaces with no intermediate steps. However, a third class of
algorithms, actor-critics, is more stable and preferred over policy-based algorithms. Actor-critics
simultaneously calculate the policy and state value.

4.3.1 Value-based Algorithms

Value-based algorithms rely on computing the value of each state and, more specifically, the
Q-value for each state-action pair. As discussed in the previous paragraph, algorithms such as Q-
learning and SARSA utilize the Q function to obtain the optimal policy π∗(s) = argmax Q(a, s).
For problems with nonfinite state spaces, Deep Q learning is the most well-known value-based
algorithm. This algorithm is designed to compute the Q-value in such cases. In this section, we
will introduce Deep Q learning and some of its variations.

4.3.1.1 Deep Q-learning [Mnih, 2013] first introduced Deep Q-learning in their paper
"Playing Atari with Deep Reinforcement Learning", which utilized Q-learning with image inputs.
Traditional tabular methods struggle with high dimensional state spaces, which motivated the
use of a convolutional neural network to represent the Q-function in Deep Q-learning.
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Figure 2.5 – Deep Q learning illustration

This deep neural network, hence the name Deep Q Learning, takes preprocessed images
(e.g., current state and previous states) as inputs and outputs the predicted Q-values for every
possible action. The neural network weights, denoted as θ, represent the Q parameter in DQN.
The loss function that is optimized in DQN is :

Loss = E
[(

yDQN
i −Q(s, a, θ)

)2
]

(2.13)

with

yDQN
i = ri + γ max

a′
Q
(
si+1, a′ | θ

)
(2.14)

However, the assumption of independent and identically distributed data, which many lear-
ning algorithms rely on, is invalid in reinforcement learning due to states’ sequential and corre-
lated nature. To address this problem, [Mnih, 2013] introduced experience replay, first proposed
in 1993 and later formalized and tested by other researchers, such as [Kingma, 2014], in their
work on real-time reinforcement learning control. Experience replay involves storing samples in
a buffer during training and performing model updates, such as neural network weight updates,
with randomly sampled mini-batches from the buffer. Deep Q-learning, detailed in Algorithm 4,
achieved state-of-the-art results on seven Atari games.

4.3.1.2 Improvements and Variants In 2015, [Mnih, 2015] made further advancements
to Deep Q-learning by successfully applying it to all 49 available Atari games, as detailed in
their paper "Human-level control through deep reinforcement learning" [Mnih, 2015]. One es-
sential improvement was the introduction of a target network, which significantly enhanced the
algorithm’s stability. The concept of Double Q-learning, initially proposed by Hasselt in 2010
[Hasselt, 2010] for standard Q-learning, was later adapted for Deep Q-learning in the paper
"Deep Reinforcement Learning with Double Q-Learning" [Hasselt, 2016]. In Double Q-learning,
a target network Q with parameter θ1 is employed to compute the target yi in Equation 2.16,
thereby reducing the instability caused by yi being dependent on Q. This approach also helps
alleviate the issue of value overestimation that arises from the maximum operation in 2.14. To
ensure training stability, the target network Q is fixed for several iterations.
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Algorithm 4 Deep Q-learning with Experience Replay [Mnih, 2013]
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialize sequence s1 = x1 and preprocessed sequences ϕ1 = ϕ (s1)
for t=1, T do

With probability ϵ select a random action at

otherwise select at = maxa Q∗ (ϕ (st) , a; θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ (st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of transitions (ϕj , aj , rj , ϕj+1) from D

yi =
{

rj for terminal θj+1

rj + γ maxa′ Q (ϕj+1, a′; θ) for non terminal θj+1
Perform a gradient descent step on (yj −Q (ϕj , aj ; θ)) according to equation 2.13

end for
end for

yDDQN
i = ri + γ max

a′
Q
(
si+1, a′ | θ′

)
(2.15)

The update frequency of the target network’s parameters is every N step, achieved by setting
θ′ ← θ. In [Hasselt, 2016], DQN and DDQN (Double Deep Q Network) were compared on six
Atari games. DDQN exhibited better performance and stability than DQN, with a significantly
smaller Q value estimation overshoot. DDQN is considered a more stable and effective alter-
native to DQN. [Osband, 2016] proposed Deep Exploration via Bootstrapped DQN, where Q
functions are sampled over distribution at the start of an episode to address the exploration
issue in reinforcement learning. This allows for deep exploration and consistency within a single
episode. Dueling Network Architectures for Deep Reinforcement Learning" by [Wang, 2016c]
introduces an alternative approach by proposing a new network architecture that utilizes two
streams : one for estimating the state value function (V function) and another for estimating
the advantage function. By combining these two streams, the Q-values can be computed as
Q(s, a) = V (s) + A(s, a). This architecture explicitly computes the value and the advantage,
allowing the network to learn which actions are significant in particular states. Compared to a
single-stream architecture, the dueling Q network converges faster and performs better, as shown
by [Wang, 2016c] on 57 Atari games. Their dueling architecture has a mean score over the human
performance of 591.9%, while DQN from [Mnih, 2015] has 341.2%. Other improvements to the
DQN algorithm include Prioritized Experience Replay [Schaul, 2015], where transitions are given
probabilities based on their TD error δ = rt+1 +γ max a′Qtarget (st+1, a′)−Q (st, at), and Hind-
sight Experience Replay (HER) [Andrychowicz, 2017] proposed replays unsuccessful episodes by
changing the initial goal to the state the agent reached. This method addresses sparse rewards
in environments where exploration may not be sufficient to reach the goal. HER stores the goal
as a variable of the transition. The combination of DDPG and HER in the Mujoco simulator
[Todorov, 2012] achieved high success rates in three tasks with sparse rewards : pushing a box,
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sliding a puck, or picking and placing a box. In Rainbow : Combining Improvements in Deep
Reinforcement Learning [Hessel, 2018], a team from DeepMind combines multiple improvements
to DQN, such as double Q learning [Hasselt, 2010] and experience replay [Schaul, 2015], to assess
their complementarity.

4.3.2 Policy Gradient

Deep Q learning is a practical algorithm for discrete action spaces, but it faces the curse of
dimensionality when applied to continuous actions. Discretization of continuous actions can lead
to many possible actions, making the Q function output dimension grow exponentially with the
number of action dimensions. Policy Gradient is a RL algorithm that optimizes the policy and
is effective in high-dimensional or continuous action spaces. It can deal with stochastic policies
and has good theoretical convergence properties. In Policy Gradient methods, the policy is
represented by a parameter vector θ, which usually corresponds to the weights and biases of a
neural network. This policy takes a state s as input. When dealing with discrete action spaces, the
policy network produces a probability vector representing each possible action’s likelihood. On
the other hand, in continuous action spaces, the output is the mean (and sometimes variance) of
a Gaussian distribution. The distinctive aspect of Policy Gradient methods is that they directly
calculate the policy itself instead of first estimating the quality of a state and then constructing a
policy that guides toward favorable states, as done in Q-learning and Value iteration algorithms.

The first policy gradient algorithm described in detail in Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning by Williams (2012) is known as the REIN-
FORCE algorithm. Although developed in 2012, various enhancements have been made to im-
prove its efficiency. The fundamental concept behind REINFORCE (outlined in Algorithm 5) is
to optimize the expected sum of rewards for a trajectory τ : Eπ[R(τ)] by performing gradient
ascent on the policy parameter θ. Unlike minimizing a loss, as we want to maximize the reward,
gradient ascent is used. We recommend that readers consult the lectures of John Schulman
[Schulman, 2017] and David Silver [Belousov, 2021] for more information on this topic.

θ = θ +∇θEπ[R(τ)] (2.16)

Later we will use the notation J(θ) = Eπ[R(τ)], so the previous equation becomes :

θ = θ +∇θJ(θ) (2.17)

The gradient ∇θJ(θ) can be derived as follows.
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∇θJ(θ) = ∇θEπ[R(τ)]

= ∇θ

∫
p(τ | θ)R(τ)dτ

=
∫
∇θp(τ | θ)R(τ)dτ

=
∫

p(τ | θ)∇θp(τ | θ)
p(τ | θ) R(τ)dτ

=
∫

p(τ | θ)∇θ log p(τ | θ)R(τ)dτ

= Eπ [∇θ log p(τ | θ)R(τ)] (2.18)

Using the fact that the gradient of the log probability of p(τ | θ) is :

p(τ | θ) = p (s0)
T−1∏
t=0

[π (at | st, θ) P (st+1, rt | st, at)] (2.19)

where P (st+1, rt | st, at) is the transition probability and p(s0) is the initial state s0 proba-
bility. The gradient of the log probability of p() is :

log p(τ | θ) = log p (s0) +
T−1∑
t=0

[log π (at | st, θ) + log P (st+1, rt | st, at)] . (2.20)

When we differentiate by θ as logp (s0) and log P (st+1, rt | st, at) do not depend on θ, we
obtain :

∇θ log p(τ | θ) = ∇θ

T−1∑
t=0

log π (at | st, θ) (2.21)

So :

∇θJ(θ) = ∇θEπ[R(τ)]

= Eπ [R(τ)∇θ log p(τ | θ)]

= Eπ

[
R(τ)∇θ

T∑
t=0

log π (at | st, θ)
]

= Eπ

[(
T∑

t=0
r (st, at)

)(
∇θ

T∑
t=0

log π (at | st, θ)
)]

(2.22)

To obtain an approximation of the expected value, N trajectories are generated and the
expected value is computed as the average of these trajectories.

The key idea behind policy gradient is to assign higher probabilities to actions that result
in high rewards. However, Equation 2.22 treats all actions in a trajectory equally, regardless of
their quality. Additionally, policy gradient tends to have high variance and slow convergence. To
address these issues, one crucial trick is to incorporate causality into the algorithm. This means
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Algorithm 5 REINFORCE
Initialize θ
while not done do

sample
{
τ i
}

from πθ (at | st) (run the policy to sample trajectories)
∇θJ(θ) ≈ 1

N

∑N
i

[(∑T
t=0 r

(
si

t, ai
t

)) (
∇θ
∑T

t=0 log π
(
ai

t | si
t, θ
)])

Update θ ← θ − α∇θJ(θ)
end while

that the policy at time t can only impact rewards at a later time t′ if t′ > t.

∇θJ(θ) ≈ 1
N

∑N
i

(
∇θ
∑T

t=0 log π
(
ai

t | si
t, θ
)) [(∑T

t=0 r
(
si

t, ai
t

))]
≈ 1

N

∑N
i

∑T
t=0

(
∇θ log π

(
ai

t | si
t, θ
)) [∑T

t′=0 r
(
si

t′ , ai
t′
)]

≈ 1
N

∑N
i

∑T
t=0

(
∇θ log π

(
ai

t | si
t, θ
)) [∑T

t′=t r
(
si

t′ , ai
t′
)]

(2.23)

The updated approach enhances actions based on their anticipated future rewards, effecti-
vely resolving the issue of treating all actions within a trajectory equally. Furthermore, policy
gradient methods are characterized by considerable variance and slow convergence, but two
techniques can mitigate these challenges. The first technique, called causality, ensures that the
policy at a given time "t" exclusively impacts rewards occurring at a later time "t′" if "t′" is more
significant than "t." This constraint guarantees a temporal ordering of policy and rewards. The
second technique involves reducing variance by incorporating a baseline. This baseline allows
only actions that outperform the average to receive a boost. One popular choice for the base-
line is the expected sum of rewards. By employing this baseline, the variance in policy gradient
estimation is minimized.

b = 1
N

N∑
i=0

r
(
τ i
)

(2.24)

We can add a baseline since :

Eπ [∇θ log πθ(τ)b] =
∫

πθ(τ)∇θ log πθ(τ)bdτ

=
∫
∇θπθ(τ)bdτ

= b∇θ

∫
πθ(τ)dτ

= b∇θ1

= 0 (2.25)

The gradient then becomes :
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∇θJ(θ) = 1
N

N∑
i

T∑
t=0

(
∇θ log π

(
ai

t | si
t, θ
)) [ T∑

t′=t

r
(
si

t′ , ai
t′ − b

)]
(2.26)

output the mean µ(s) of a Gaussian distribution, and the variance σ2(s) can also be fixed.
The action can then be sampled from the distribution as follows : a ∼ N

(
µ(s), σ2(s)

)
.

4.3.2.1 Actor Critic The following section draws inspiration from Sergey Levine’s lecture
[Levine 2017]. The Actor-Critic algorithm is a combination of both Policy Gradient and Q-
learning. After the Policy Gradient algorithm, the result obtained (without considering the
baseline) is as follows :

∇θJ(θ) ≈ 1
N

N∑
i

T∑
t=0

(
∇θ log π

(
ai

t | si
t, θ
)) [ T∑

t′=t

r
(
si

t′ , ai
t′

)]
(2.27)

The primary objective of the equation above is to guide actions toward maximizing rewards.
However, the term

∑T
t′=t r

(
si

t′ , ai
t′
)

represents a single-sample estimate of future rewards obtained
by starting from state si

t and taking action ai
t. Since this estimate relies on a single sample, the

policy gradient approach is susceptible to high variance, which can impede convergence speed
and quality. To address this, reducing variance becomes crucial for achieving faster and more
optimal convergence. A more effective approach involves obtaining a more accurate estimation
of future rewards when initiating from state si

t and taking action ai
t. One such estimator is the

Q-value, defined as Qπ(s, a) = Eπ [Rt | St = s, At = a]. This Q-value estimator better assesses
the expected rewards when following policy π starting from a specific state-action pair. Utilizing
this estimator, the policy gradient method can yield improved performance and convergence.
The equation 2.27 becomes :

∇θJ(θ) ≈ 1
N

N∑
i

T∑
t=0

(
∇θ log π

(
ai

t | si
t, θ
))

Q
(
si

t, ai
t

)
(2.28)

In addition to the Q value estimator, a baseline is added to reduce bias. A commonly
used baseline is the sum of rewards 1

N

∑N
i=0 r

(
τ i
)
, but in this case, a more precise average

can be computed by using the Q value as the baseline. Specifically, the baseline is set as
b = 1

N

∑N
i Q

(
si

t, ai
t

)
≈ Eat ∼ πθ (at | st) [Q (st, at)] = V (st). With this baseline, the gradient

becomes :

∇θJ(θ) ≈ 1
N

N∑
i

T∑
t=0

(
∇θ log π

(
ai

t | si
t, θ
)) [

Q
(
si

t, ai
t

)
− V

(
si

t

)]
(2.29)

We defined earlier the advantage A(s, a) = Q(s, a)− V (s), which indicates how much action
a is better than the average action.

∇θJ(θ) ≈ 1
N

N∑
i

T∑
t=0

(
∇θ log π

(
ai

t | si
t, θ
)) [

A
(
si

t, ai
t

)]
(2.30)

To compute the advantage, the following approximation is used :
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Q (st, at) ≈ r (st, at) + γV (st+1) (2.31)

This leads to the following :

A (st, at) = Q (st, at)− V (st) = r (st, at) + γV (st+1)− V (st) (2.32)

An example of an Actor-Critic algorithm :

Algorithm 6 Actor Critic
Initialize θ and ϕ
while not done do

Sample {si, ai} from πθ(a | s) (run the policy to sample trajectories)
Fit V π

ϕ (s) to sampled reward sums
Aπ (si, ai) = r (si, ai) + γV π

ϕ (s′i)− V π
ϕ (si)

∇θJ(θ) ≈ 1
N

∑N
i ∇θ log πθ (ai | si) Aπ (si, ai)

Update θ ← θ − α∇θJ(θ)
end while

In essence, actor-critic algorithms consist of two components - an actor represented by the
policy parameterized by θ and a critic (which could be Q, V or A depending on the specific
algorithm) represented by the parameter ϕ that evaluates the actor’s output. In the subsequent
sections, we will overview various actor-critic algorithms.

4.3.2.2 Deterministic Policy Gradient : DDPG, RDPG, D4PG Traditional policy
gradient algorithms are typically designed for stochastic policies. However,[Xiong, 2022] intro-
duced a modified actor-critic algorithm, the "Deterministic Policy Gradient Algorithms," to
handle deterministic policies. The deterministic policy gradient computation is more efficient
since it involves differentiating the Q value solely concerning actions. To extend the Deter-
ministic Policy Gradient (DPG) approach, the authors presented an off-policy algorithm that
learns a deterministic policy using a stochastic policy for exploration. In "Continuous Control
with Deep Reinforcement Learning" [Lillicrap, 2015], introduced the DDPG (Deep Determinis-
tic Policy Gradient) algorithm, which combines techniques from DPG and DQN [Mnih, 2015].
DDPG utilizes an actor-critic framework to learn a deterministic policy similar to DPG. Howe-
ver, it incorporates Deep Q learning methods to estimate the critic, including experience replay
and a target network. Additionally, the target network is updated slowly using the equation
θ′ ← τθ + (1 − τ)θ′, where τ is a small value close to 0. DDPG has demonstrated significant
speed improvements on most Atari games, solving them in significantly fewer steps than DQN.
Algorithm 7 presents the implementation of DDPG. However, studies conducted by [Hender-
son, 2018] and [Duan, 2016] have shown that DDPG is sensitive to hyperparameters and less
stable than batch algorithms. Unlike many actor-critic algorithms that update the policy after
sampling a batch of trajectories, DDPG updates the policy at each step.

In the paper [Heess, 2015], a variant of the RDPG (Recurrent Deterministic Policy Gra-
dient) algorithm is introduced. This modified algorithm incorporates recurrent neural networks
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Algorithm 7 DDPG from [Lillicrap, 2015]
Initialize critic network Q(s, a | ϕ) and actor µ(s | θ) with weights ϕ and θ
Initialize target network Q′ and µ′ with weights ϕ′ ← ϕ, θ′ ← θ
Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ (st | θ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1)
Set yi = ri + γQ′ (si+1, µ′ (si+1 | θ′) | ϕ′)
Update critic by minimizing the loss L = 1

N

∑
i (yi −Q (si, ai | ϕ))

Update the actor policy using the sampled policy gradient :

∇θJ ≈ 1
N

∑
i

∇aQ(s, a | ϕ)
∣∣∣∣∣
s=si,a=µ(si)

∇θµ(s | θ)

∣∣∣∣∣∣
si

Update the target networks :

ϕ′ ← τϕ + (1− τ)ϕ′

θ′ ← τθ + (1− τ)θ′

end for
end for

and utilizes experience replay and target networks. It is highly effective in partially observed en-
vironments where the agent needs to retain information about previous states. Another extension
of DDPG is the D4PG (Distributed Distributional Deterministic Policy Gradients) algorithm
[Barth-Maron, 2018], which employs multiple actors for trajectory sampling and incorporates
distributional critic updates [Bellemare, 2017]. Unlike traditional methods that focus on lear-
ning the expected return, D4PG aims to learn the distribution of returns, considering them as
random variables. The algorithm also includes techniques such as Prioritized Experience Re-
play and N-step return. Notably, the utilization of N-step return yields significant performance
improvements.

4.3.2.3 Reinforcement Learning with Multiple Workers : A3C, A2C, ACER The
A3C (Asynchronous Advantage Actor-Critic) algorithm, developed by Google DeepMind, uti-
lizes parallelization to eliminate the need for a replay buffer. Instead of propagating with a
batch of episodes, A3C performs smaller backpropagations in parallel with smaller batches. The
algorithm consists of a global agent and multiple workers, each equipped with local networks.
The global agent maintains up-to-date networks while each worker interacts with its instance
of the environment. The workers copy the global networks locally, execute episodes, and com-
pute gradients accordingly. The global network then gets updated with the gradients from the
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local worker, and the process repeats as workers continue copying the global networks, running
episodes, and so on. Since these tasks are executed in parallel by each worker, the update of
the global network occurs asynchronously. A3C follows the actor-critic paradigm, which involves
computing two gradients : one for the policy and another for the value function. The global agent
and workers possess two networks with parameters θ and ϕ for the policy and value functions.
Figure 2.6 visually represents the A3C algorithm, while Algorithm 8 presents the pseudocode
for a single worker. It is important to emphasize that A3C is specifically designed for parallel
computing and can significantly accelerate the training process.

Figure 2.6 – A3C algorithm

The A3C algorithm efficiently performs various tasks, including Atari games and labyrinth
navigation. Several extensions of A3C have been proposed to improve its performance further
and address its limitations :

— A2C (Advantage Actor-Critic) is a synchronous version of A3C. It waits for all workers to
finish their tasks before updating the global agent and copying the up-to-date weights to
the workers. A2C has been found to perform similarly or even better than A3C.

— ACER [Wang, 2016b] is an off-policy extension of A3C that uses a replay buffer to improve
sample efficiency.

— Impala [Espeholt, 2018] (Importance Weighted Actor-Learner Architecture) separates the
acting and training processes. The actors do not compute gradients but send complete
transitions to the global agent, which performs the updates. The training process can also
be split into several learners to improve efficiency. Impala has been shown to perform well
in large-scale distributed environments.

37



Chapitre 2. Preliminaries

Algorithm 8 A3C - pseudo-code for one worker i (one actor-learner thread) from [Mnih, 2016]
Initialize thread step counter t← 1
while T > Tmax do

Reset gradient : dθi ← 0 and dϕi ← 0.
Synchronize thread-specific parameters θi = θ and ϕi = ϕ
tstart = t
Get state st

while episode done do
Perform at according to policy πθi

(at | st)
Receive reward rt and new state st+1
t← t + 1
T ← T + 1

end while

R =
{

0 for terminal state st

Vϕi
(st) otherwise

for k from t-1 to tstart do
R← rk + γR
Accumulate gradients wrt θi : dθi ← dθi +∇θi

log πθi
(ak | sk) (R− Vϕi

(sk))
Accumulate gradients wrt ϕi : dϕi ← dϕi + ∂ (R− Vϕi

(sk))2 /∂ϕi

end for
Perform asynchronous update of θ using dθi and of ϕ using dϕi

end while

4.3.2.4 Trust Region Algorithms : TRPO, ACKTR, PPO In order to perform actions
in continuous space, policy gradient algorithms require careful selection of the step size α. If
the value of α is too small, the learning process can be slow, and if it is too large, it can
be overwhelmed by noise, resulting in the next batch being collected under a poor policy. To
address this issue, [Schulman, 2015] proposed Trust Region Policy Optimization, which modifies
the policy at every update to improve performance while remaining close to the previous policy.
The primary objective of this algorithm is to maximize η(θ) = Eπ

[
γtr (st)

]
, which is difficult

to compute directly. Therefore, the authors introduce a surrogate function to approximate this
objective.

L(θ) = E
[

πθ (at | st)
πθold(at|stt)

At

]
(2.33)

That is a local approximation of the true objective and which first-order derivatives are
equal.

∇θL (πθ)|θold
= Es,a∼πold

[∇θπθ(a | s)
πold (a | s) Aπold (s, a)

]∣∣∣∣
θold

= Es,a∼πold [∇θ log πθ(a | s)Aπold (s, a)]|θold
(2.34)

We get the formula of the gradient derivative as in equation 2.30, so at first order, when θ

and θold are close.
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∇θL (πθ)|θold
= ∇θη (πθ)|θ=θold

(2.35)

The objective of the TRPO algorithm is to maximize the expected discounted return η(θ) =
Eπ[

∑
t = 0∞γtr(st)], subject to a constraint on the divergence between the new policy π and

the old policy πold. The Kullback-Leibler (KL) divergence is used to measure this constraint.
This ensures that the new policy is not too far from the old policy, preventing extensive policy
updates that may lead to instability. The algorithm iteratively finds the policy that maximizes
this objective while keeping the KL divergence between the old and new policies under a certain
threshold. 

maximize
θ

∑N
n

πθ(an|sn)
πθold(an|sn)

An

subject to KL [πold , π] < δ
(2.36)

A team from OpenAI proposed a modified version of the TRPO algorithm called the Proximal
Policy Gradient Algorithm [Schulman, 2017] ACKTR [Wu, 2017] is another variation of TRPO
that uses Kronecker-factored approximate curvature instead of Kullback-Leibler divergence for
trust region optimization. The authors of both algorithms suggest two different surrogate func-
tions to ensure that the new policy π is close to the old one πold. The first surrogate function,
LKLP EN , directly adds the KL penalty from Equation 2.36 to the objective function instead of
using a separate constraint.

LKLP EN (θ) = Et

[
πθ (at | st)

πθold (at | st)
At − βKL [πθold

, πθ]
]

(2.37)

The parameter β is updated as follows. With d = Et [KL [πθold
, πθ]]

if d < dtarg /1.5 β ← β/2
if d > dtarg × 1.5 β ← β × 2

(2.38)

Instead of using the KL penalty, a clipped surrogate function LCLIP can be used as a more
stable alternative. Here, rt(θ) is defined as the probability ratio rt(θ) = πθ(at|st)

πθold
(at|st) , and At is still

the advantage at timestep t. The clipped surrogate function is then defined as follows :

LCLIP (θ) = Et [min (rt(θ)At, clip (st(θ), 1− ϵ, 1 + ϵ) At)] (2.39)

This clipped function will force the rt(θ) to stay in [1− ϵ, 1 + ϵ] range.
In case the neural network parameters are shared between the policy and the value function

in the Actor-Critic algorithm, the objective function is as follows :

L(θ) = Et

[
LP G

t (θ) + c1LV F
t (θ)− c2S [πθ (st)]

]
(2.40)

The objective function used in the Actor-Critic algorithm includes either the clipped surro-
gate function LCLIP or the Kullback-Leibler penalty surrogate function LKLP EN . Additionally,
a squared error value loss LV F is used to compute the value function V , and an entropy bonus
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S is included to encourage exploration. These algorithms were evaluated using the Atari game
benchmark and robotics tasks in the Mujoco simulator [Todorov, 2012]. PPO is simpler than
TRPO and ACER and allows the value and policy networks to share parameters, unlike TRPO,
which has a constraint on the policy. The PPO algorithm outperformed A2C and TRPO on the
robotics tasks and was competitive with ACER on the Atari games, outperforming it on the
Enduro game.

4.3.2.5 Entropy with Reinforcement Learning : SQL, SAC A common challenge in
reinforcement learning is the tendency of agents to become overly specialized and only learn
a single approach to solving a particular task. A robot trained with traditional reinforcement
learning will exclusively focus on the optimal upper passage and struggle to adapt if that route
becomes blocked. To address this issue and promote the exploration of alternative solutions,
one approach is to incorporate entropy into the learning process. By maximizing both the sum
of rewards and the entropy, agents are encouraged to learn multiple ways of solving the task.
This approach is demonstrated in the paper "Reinforcement Learning with Deep Energy-Based
Policies" by [Haarnoja, 2017], where the optimal policy is defined as :

π∗ = argmax
π

Eπ

[∑
t

rt +H (π (·, st))
]

(2.41)

Figure 2.7 – In a maze navigation task, shown in a figure by [Wei, 2018], classical reinforcement
learning would cause the robot to learn only the optimal path to reach the goal (left). However,
by adding entropy regularization to the learning process (right), the robot is encouraged to learn
multiple paths to reach the goal, which enables it to adapt to changes in the environment.

The agent’s tendency to become too specialized in solving a specific task is a common issue
in reinforcement learning. For instance, in the example shown in Figure 2.7, a robot trained
using classical RL will focus only on the upper passage, which is the optimal route. However, if
this passage is blocked, the robot will have to start from scratch and might be unable to learn
an alternative route. Entropy can be added to the learning process to address this problem and
encourage the robot to explore and learn all possible ways to solve the task. This method, called
Soft Q-Learning (SQL), involves maximizing both the sum of rewards and the entropy. Using
SQL, the robot will learn both passages but still prefer the optimal route. The robot can quickly
switch to the alternative route if the optimal passage is blocked.

Soft Q-Learning (SQL) serves as the predecessor of Soft Actor-Critic (SAC), which is presen-
ted in the paper "Soft Actor-Critic : Off-Policy Maximum Entropy Deep Reinforcement Learning
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with a Stochastic Actor" [Haarnoja, 2018]. SAC combines off-policy updates with maximum en-
tropy to improve exploration and learning. Later work by [Haarnoja, 2018] in 2018 extended
SAC by introducing automatic tuning of hyperparameters, resulting in more regular training.
Many reinforcement learning algorithms, such as A3C and PPO, now incorporate entropy in
their surrogate functions for improved exploration and robustness, as discussed in the paper by
[Ahmed, 2019].

The primary goal of a RL agent is to find a policy that maximizes the total reward over
various possible paths the agent can take while following that policy. During the exploration
of state and action spaces to determine the optimal policy, the agent traverses various paths,
each with an expected length defined by the task horizon. When faced with large state and
action spaces and a long task horizon, traditional RL methods encounter challenges [Nachum,
2019][Pathak, 2017].

4.4 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) offers a solution by breaking down complex
tasks into simpler subtasks through a hierarchy of learned policies. In this hierarchy, the top-
level policy selects subtasks of the main task as its actions [Pateria, 2021]. This policy is trained
to execute the main task by sequencing its subtasks based on rewards obtained during the main
task. At lower levels of the hierarchy, each subtask chosen by the higher-level policy becomes
a reinforcement learning problem itself. A lower-level policy is trained to execute that subtask
using internal rewards associated with it, with the option of including the main task reward.
The lowest-level policies select basic actions known as primitive actions.

4.4.1 Definition of a Subtask in Hierarchical Reinforcement Learning

This section presents a formal definition of a subtask within the context of HRL. It combines
various interpretations from different HRL methodologies and should be viewed as a compre-
hensive understanding.

To begin, we designate the primary long-horizon task as Γ and denote its corresponding task
policy as πΓ, situated at the apex of a hierarchical structure. A subtask is represented by ω, and
its definition encompasses the following components :

— The policy of the subtask, denoted as πω, which maps environment states to either primitive
actions or subtasks within ω [Sutton, 1999].

— Objective components :
— rω, the subtask reward utilized for training πω, often distinct from the reward linked

with the main task [Vezhnevets, 2017].

— gω, a subgoal or set of subgoals associated with ω, which might encompass a state
s ∈ S itself [Pateria, 2021], an abstract state representation [Pateria, 2021] a lear-
ned embedding [Vezhnevets, 2017], among other possibilities. The reward rω may be
defined in relation to these subgoal(s).

— Execution components :
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— Iω, the initiation condition of ω, which may be defined as a set of states enabling the
execution of ω [Sutton, 1999], a function influencing the likelihood of selecting ω in
a given state, a series of logical conditions, etc.

— βω, the termination condition of ω, which might be articulated as a set of states
indicating when ω should conclude if it is being executed [Pateria, 2021], a function
modulating the likelihood of terminating ω in a specific state [Sutton, 1999], a fixed
time constraint, etc. If gω is specified, the subgoal state typically dictates a state at
which ω must conclude [Pateria, 2021].

4.4.2 Formulation of HRL within the Framework of Semi-Markov Decision Pro-
cesses (SMDP)

The underpinning of HRL is grounded in the theory of Semi-Markov Decision Processes
(SMDP) [Sutton, 1999]. Unlike Markov Decision Processes (MDP) discussed in Section 4.4.1,
an SMDP introduces the element of time regarding the duration for which an action persists
after selection. In the context of HRL, these actions with temporal considerations correspond
to subtasks. Assuming an agent starts from a state st ∈ S and selects a subtask ωt ∈ Ω, where
Ω denotes the set of subtasks (or the subtask space), the transition function of the SMDP is
defined by a joint distribution :

P (st+cωt
, cωt | st, ωt) = P (st+cωt

| st, ωt, cωt)P (cωt | st, ωt). (2.42)

Here, cωt represents the number of time steps for which ωt is executed, commencing from
state st. This duration cωt is determined by the termination condition βωt , one of the execution
components elaborated in Section 4.4.1.

The reward obtained when performing subtask ωt starting from state st is denoted as
R(st, ωt), calculated as :

R(st, ωt) = Ea∼πωt (s)

cωt−1∑
i=0

γir(st+i, at+i) | st, at = πωt(st)

 . (2.43)

This equation illustrates that the reward R(st, ωt) is the expected cumulative reward acquired
while following the subtask policy πωt from time t until the termination of ωt after cωt time steps.

An optimal task policy aims to achieve the maximum desired Q-value :

Q (st, ωt) = R (st, ωt) +
∑

st+cωt
,cωt

γcωt P
(
st+cωt

, cωt | st, ωt

)
max
ωt+c0t

Q
(
st+cωt

, ωt+cωt

)
, (2.44)

for all s ∈ S and all ω ∈ Ω.
It’s noteworthy that the Q-value in Equation 2.44 also relies on R(st, ωt) and P (st+cωt

, cωt |st, ωt).
These quantities are contingent on the execution of ωt using its policy πωt . Hence, an agent needs
to learn multiple policies at various levels of a task decomposition hierarchy, encompassing πΓ

42



4. Reinforcement Learning Algorithm

and the policies of all subtasks. We extend the notations of subtasks and policies for a multi-level
hierarchy as defined below.

— ωl : A subtask at level l of the hierarchy.

— Ωωl : Set of subtasks under the subtask ωl such that ωl−1 ∈ Ωωl .

— πωl : S × Ωωl → [0, 1] : Policy of the subtask ωl, where ωl−1 is chosen by πωl .

— Ωω1 = A : The output space of a subtask at the lowest level ( l = 1) is the primitive action
space A.

— πΓ and ΩΓ denote the main task policy and the set of subtasks at the highest level,
respectively.

Combining all the definitions provided above, two principal components of an HRL agent
emerge :

— Subtask space Ωhierarchy : The encompassing set of all subtasks employed in a hierarchy,
Ωhierarchy = {Ωω2 , Ωω3 , Ωω4 , ..., ΩΓ}.

— Hierarchical policy πhierarchy : The primitive action chosen by the HRL agent is the outcome
of recursive selections of subtasks. Here, the primary policy πΓ selects a level 2 subtask,
ω2 = πΓ(s), where ω2 ∈ ΩΓ. The policy of ω2 is executed until its termination according
to βω2 . It selects the lowest-level subtask ω1 = πω2(s), where ω1 ∈ Ωω2 . The policy of ω1 is
executed until its termination according to βω1 . This lowest-level policy chooses a primitive
action, a = πω1(s). This complete mapping from state to subtask to action based on πω1

is termed the hierarchical policy, denoted as πhierarchy. The primitive action taken by the
HRL agent as a whole can be equivalently expressed as a = πhierarchy(s). This description
extends to hierarchies with more than three levels.

Based on the aforementioned definitions, the expected discounted cumulative reward received
by the HRL agent can be expressed as :

Qhierarchy (st, at) = Ea∼πhierarchy |Ωhierarchy

[ ∞∑
i=0

γt+ir (st+i, at+i) | st, at

]
, (2.45)

where a ∼ πhierarchy | Ωhierarchy signifies that a primitive action a is selected following the
hierarchical policy πhierarchy, considering the available subtask space Ωhierarchy.

4.4.3 Problem Definition of HRL

The overarching objective of Hierarchical Reinforcement Learning (HRL) is to determine the
optimal hierarchical policy π∗hierarchy and the optimal subtask space Ω∗hierarchy as the solution to :

Ω∗hierarchy, π∗hierarchy = argmaxΩhierarchyargmaxπhierarchy|ΩhierarchyQhierarchy(s, a),∀s ∈ S, a ∈ A.

(2.46)
Equation 2.46 encapsulates the HRL problem, which can be dissected into two primary

facets.
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The first facet involves learning the hierarchical policy, where the aim is to identify the op-
timal hierarchical policy conditioned on the available subtask space (i.e., maximizing πhierarchy |
Ωhierarchy). This aspect is crucial as the hierarchical policy governs the behavior of an HRL agent
across various tasks. Strategies for learning the policies at different levels of πhierarchy may involve
simultaneous learning in an end-to-end manner or sequential learning from bottom to top.

The second facet pertains to subtask discovery, which involves automatically identifying
the optimal subtask space utilizing the experiential data of the HRL agent (i.e., maximizing
Ωhierarchy). While subtask discovery is not obligatory, as a subtask space could be manually
designed based on specific domain knowledge, it becomes indispensable for generalized HRL
applications aiming to eliminate reliance on manual crafting.

5 Sensors

In the context of autonomous vehicles, ensuring reliable and accurate environmental percep-
tion is paramount to safe driving. To capture a comprehensive understanding of the surroundings,
it is crucial to fuse data from multiple sensors [Hu, 2020]. Autonomous vehicles heavily rely on
many sensors installed on the ego vehicle, including cameras, radar, LiDAR, and ultrasonic sen-
sors, to sense and perceive the environment. These sensors work in synergy to provide a holistic
view of the surroundings, detecting obstacles, road conditions, and other relevant information.

In addition to the above, sensors, such as the Global Positioning System (GPS), the Inertial
Measurement Unit (IMU), and vehicle odometry sensors, are utilized to determine the vehicle’s
relative and absolute localization. The GPS aids in obtaining the vehicle’s global position, while
the IMU provides information about the vehicle’s orientation and acceleration. Vehicle odometry
sensors are vital in estimating the vehicle’s motion, including speed and direction.

By integrating and fusing data from diverse sensors, autonomous vehicles can create a de-
tailed and accurate perception of the environment. This comprehensive perception is essential
for making informed decisions and ensuring the vehicle’s and its occupants’ safety.

5.1 Camera

Among the sensors used in the computer vision stack of autonomous vehicles, the camera
plays a fundamental role and is widely employed. Generally, three types of cameras are utilized
in the context of autonomous vehicles : monocular, binocular, and multi-modal.

Monocular cameras are the most prevalent in advanced driver-assistance systems (ADAS),
serving as the backbone of visual perception in autonomous vehicles. They operate by capturing
single images and providing real-time feedback on the vehicle’s surroundings. Monocular came-
ras excel in offering clear visuals in close-range scenarios, facilitating tasks such as lane-keeping,
pedestrian detection, and traffic sign recognition. However, their effectiveness diminishes when
tasked with capturing distant objects or extensive views. This limitation arises from their in-
ability to accurately gauge depth and spatial relationships beyond a certain distance, leading to
reduced performance in tasks like long-range obstacle detection and environment mapping.
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On the other hand, Binocular cameras address the limitations of monocular cameras by
utilizing a pair of cameras. This configuration enables depth perception and better clarity in
various scenarios. Each camera captures a slightly different perspective, enabling the system to
calculate distances through disparity analysis. This depth of information is pivotal for tasks like
safe navigation and object recognition. Additionally, binocular cameras employ techniques such
as stereo correspondence and 3D reconstruction to improve image clarity by reducing noise and
generating richer 3D representations of the environment. This capability enhances understanding
of complex scenes and enables better occlusion handling.

Multi-modal cameras integrate a visual camera with additional sensors like LiDAR, ther-
mal cameras, and RADAR. This integration enhances environmental understanding crucial for
autonomous vehicles, robotics, and surveillance systems. However, challenges such as system
complexity, higher costs, and computational demands accompany this integration.

Despite the advantages of binocular and multi-modal cameras, monocular cameras remain
prevalent in autonomous driving due to their affordability compared to the other types and
lower computational demands. While binocular cameras offer enhanced depth perception, their
higher costs hinder broader adoption. Overall, the choice of camera type in autonomous driving
scenarios is influenced by factors such as cost, computational resources, and system effectiveness.

5.2 LiDAR

LiDAR (Light Detection And Ranging) is a remote sensing technique employed in various
fields to measure the distance between objects. It operates by emitting laser beams and detecting
the signals reflected from the targets. LiDAR sensors analyze the time interval between the
emission and reception of the laser pulses, enabling accurate distance estimation.

LiDAR sensors generate point data, commonly known as point cloud data (PCD), in di-
mensions such as 1D, 2D, and 3D. These point clouds provide spatial information about the
surroundings. Additionally, LiDAR sensors capture data on object intensity, which helps distin-
guish objects based on their reflectivity.

In the case of 3D LiDAR sensors, the point cloud data comprises the x, y, and z coordinates,
representing the position of objects in three-dimensional space. The intensity information of the
obstacles present in the scene or surroundings is also recorded along with spatial coordinates.
This spatial and intensity data combination facilitates accurate mapping and detection of objects
in LiDAR’s field of view.

By leveraging LiDAR technology, autonomous vehicles and other applications can create
detailed and precise representations of their environment. LiDAR sensors contribute valuable
spatial data, allowing for advanced perception, object recognition, and navigation in complex
and dynamic surroundings.

5.3 RADAR

RADAR technology, first introduced into vehicles for automated parking assistance systems
[Jeong, 2010], is vital in enhancing vehicle safety and awareness. The RADAR emits electro-
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magnetic (EM) waves into the region of interest, detecting scattered waves or reflections from
various targets. By utilizing the Doppler effect of electromagnetic waves, RADAR systems can
accurately determine the distance and relative speed of detected obstacles [Shahian Jahromi,
2019]. RADAR’s ability to emit and receive EM waves provides valuable data for analyzing
the surrounding environment. This data enables the calculation of object ranges and velocities,
contributing to advanced driver assistance systems and collision avoidance mechanisms. By inte-
grating RADAR technology, vehicles can improve their ability to detect and respond to potential
hazards in real-time, enhancing safety for vehicle occupants and other road users. Combining
RADAR and other sensors like LiDAR and cameras allows for a multi-modal perception system
in autonomous vehicles. By fusing the data from these sensors, a comprehensive understanding
of the environment can be achieved, facilitating robust decision-making and safe navigation.

5.4 GPS/IMU

The combination of GPS/IMU is a cost-effective and real-time localization method in au-
tonomous driving [Atia, 2017]. By fusing GPS and IMU data, it becomes possible to achieve
real-time localization with minimal delay, high precision, and a high frequency of updates.

GPS can provide precise location information at the centimeter level in dynamic environ-
ments. However, it is essential to note that the satellite signal can be obstructed, resulting in
occasional disruptions in the availability of position updates. Furthermore, the frequency of GPS
position updates may be relatively modest.

To address these limitations, IMUs and odometers play a crucial role. They continuously
gather data on displacement and direction deviations during the interval between two successive
GPS positioning updates. This data is then utilized to refine and adjust the localization esti-
mates. While IMUs and odometers provide frequent updates, their accuracy degrades over time
due to inherent error accumulation.

The fusion of GPS and IMU enables autonomous vehicles to achieve real-time localization
with a balance of accuracy and reliability. By leveraging the high precision of GPS when available
and compensating for temporary signal loss or limitations, the IMU data bridges the gaps and
maintains localization information. This approach allows for precise navigation and control in
autonomous driving scenarios.

6 Answer Set Programming

Answer Set Programming (ASP) represents a form of declarative programming tailored ex-
plicitly for tackling challenging, primarily NP-hard search problems. It has emerged due to
research focused on employing nonmonotonic reasoning in knowledge representation, making it
highly valuable for knowledge-intensive applications. ASP foundation lies in the stable model
(answer set) semantics of logic programming, which draws from concepts in autoepistemic logic
and default logic to handle negation as failure.

In the context of ASP, search problems are transformed into the computation of stable mo-
dels. Answer set solvers, programs designed to generate stable models, are then employed to
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conduct the search process [Gomes, 2008]. These solvers often build upon the Davis-Putnam-
Logemann-Loveland (DPLL) procedure and exhibit similarities to the algorithms utilized in effi-
cient SAT solvers. A notable characteristic of ASP’s algorithms is their capacity to permanently
terminate in principle, distinguishing them from the Selective Linear Definite Clause Resolution
with Negation as Failure (SLDNF) resolution utilized in Prolog. The ASP methodology has
existed for approximately a decade. An early demonstration of answer set programming can be
found in the planning method proposed by [Dimopoulos, 1997], which establishes a connection
between plans and stable models, as described in [Subrahmanian, 1995]. Moreover, [Tiihonen,
2003] applied the principles of answer set programming, now recognized as such, to address
the product configuration problem. The application of answer set solvers for the search was
first identified as a new programming paradigm in [Marek, 1999], with the term "answer set
programming" being used for the first time in [Niemelä, 1999]. The basic idea behind ASP is
to express a given problem in the form of a logic program, for which we need to search for
stable models representing the solutions to the original problem. We first use rules in first-order
logic to concisely express the problem. Consequently, the problem will be expressed by a logic
program, often referred to as a non-terminal program, containing predicates with variables. To
find stable models, the most efficient solvers adopt a two-phase approach. The first phase is
the instantiation of the variables, generally called grounding. It involves transforming a logic
program expressed in first-order logic into a propositional program. The resulting program will
no longer contain any variables but keep stable patterns identical to the original. The second
phase is the resolution, which calculates the program’s stable models of the program.

6.1 Answer Set Programming Language

The System LPARSE [Gebser, 2007] was initially developed as a front-end tool for the
answer set solver SMODELS [Syrjänen, 2001]. Nowadays, it serves the same purpose as most
other answer set solvers. In LPARSE programs, it can find traditional "Prolog-style" rules, like :r1 : p :- q.

r2 : q :- ¬r.
(2.47)

A collection of such Prolog-style rules typically has a unique stable model, which often includes
all the queries Prolog would respond "yes." For example, with the two rules mentioned above, the
stable model consists of p and q. In addition to Prolog-style rules, LPARSE also accommodates
"choice rules," such as : {

r3 : s, t :- p. (2.48)

This rule means that if p is part of the stable model, it can arbitrarily choose to include either
s or t. When using SMODELS to find all stable models of a program P containing these three
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rules, the output would be as follows :

Answer 1 : Stable Model : p q

Answer 2 : Stable Model : t p q

Answer 3 : Stable Model : s p q

Answer 4 : Stable Model : s t p q

(2.49)

Choice rules can include numerical bounds in their heads. For instance, the rule :{
r4. 1 s, t :- p. (2.50)

States that if p is generated, then at least one of the atoms s or t must also be generated.
By substituting this rule for the last one in P, Answer 1 would disappear from the SMODELS
output.

The definition of a stable model from [Gelfond, 1988] was extended by [Niemelä, 1999] to
encompass programs with choice rules and other rules involving numerical bounds. [Ferraris,
2005] provided a general definition of a stable model covering these rules and others.

In LPARSE, a constraint is a rule with an empty head, like :{
r5. :- s, ¬t. (2.51)

Adding a constraint to a program removes some of its stable models. For instance, the constraint
above forbids generating s if t is not generated, which would eliminate Answer 3. Before passing
a program with variables to SMODELS, LPARSE grounds it (replaces it with an equivalent
program without variables). For example :



Original :

p(a). p(b). p(c).

q(X) :- p(X).

r(X) : p(X).

Grounded :

p(a). p(b). p(c).

q(a) :- p(a).

q(b) :- p(b).

q(c) :- p(c).

r(a), r(b), r(c).

(2.52)

6.2 Programming Methodology : Generate, Define, Test

Consider a self-driving car program to navigate a complex intersection. We want the car to
identify safe paths that avoid collisions with other vehicles and adhere to traffic laws. Here, we
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can leverage ASP to achieve this goal using a generate-and-test methodology.

6.2.1 Generate Potential Solutions

The first step is to generate a set of potential paths the car can take. Let’s represent the
intersection as a graph, where roads are edges and intersections are vertices. We can use the
following ASP rule to define a predicate path(X,Y) :

{
path(X,Y) :- edge(X,Y). (2.53)

This rule presents a potential path between two spatial points, X and Y, whereby the presence
of a direct edge linking X to Y signifies the existence of such a path. Essentially, it conceptualizes
any sequence of interconnected road segments (edges) as a plausible route connecting the two
spatial points.

6.2.2 Define Constraints (Test)

Next, we need to define constraints (rules) to eliminate unsafe paths from our potential
solutions. Here are some examples :

6.2.2.1 No Collisions : We can define a rule to eliminate paths where the car would be
on the same road segment (edge) as another vehicle at the same time. Here’s the corresponding
ASP rule : {

collision_avoidance(X, Y, T) :- path(X, Y), not occupied(X, T) (2.54)

This rule ensures safe movement between points X and Y at time T. It verifies that a path
exists between these points and that point X is not occupied at the specified time.

6.2.2.2 Traffic Signals : Similarly, a rule can be defined to allow to proceed that violates
traffic signals, like going through a red light :

{
not_allowed_to_proceed(X, Y, T) :- path(X, Y), traffic_light(red, X, T). (2.55)

Here, the condition checks if there is a path from location X to location Y, along with a
red light at intersection X at time T. If this condition is met, it implies that the vehicle is not
allowed to proceed along the specified path at the indicated time due to the presence of a red
light at the intersection.

6.2.2.3 Traffic Laws We can incorporate specific traffic laws into the program. Here’s an
example of a rule that forbids to proceed at an intersection if another vehicle is coming on the
right.
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 not_allowed_to_proceed(X, Y, T) :- path(X, Y), path(Z, X), occupied (Z, T),

coming_from_right(Z, T).
(2.56)

This rule states that if a path from location Z to location X is located to the right of a path
from location X to location Y and the former is occupied by a vehicle (coming on the right),
then the vehicle at location X is prohibited from moving forward.

6.2.3 Combining the Rules

The first rule generates the brake(T) action if the brake conditions are satisfied. The second
rule specifies these conditions ; for instance, here, it is when a collision may occur. The third
rule defines the conditions of having a collision. These three rules can be activated in cascade.


brake(T) :- brake_conditions(T).

brake_conditions(T) :- not_collision_avoidance(X, Y, Z, T).

not_collision_avoidance(X, Y, T) :- path(X, Y), not occupied(X, T)

(2.57)

6.3 Representing Incomplete Information

From the knowledge representation perspective, a set of atoms can be seen as a complete
state of knowledge. Atoms in the set are known to be accurate, while atoms not in the set
are considered false. Representing a possibly incomplete state of knowledge involves using a
consistent but incomplete set of literals. If an atom "p" and its negation do not belong to the
set, it is uncertain whether "p" is true or false.

In logic programming, this distinction gives rise to two types of negation : negation as failure,
demonstrated above, and strong (or "classical") negation, denoted in the language of LPARSE
by "¬". To illustrate the difference between these types of negation, consider the example of a
bus crossing railway tracks only when there is no approaching train :

The rule cross : − ¬train. is not an adequate representation because it implies that crossing
is acceptable when there is no information about an approaching train. The more suitable rule
that uses strong negation is cross : − ¬train., stating that crossing is permissible when we know
that no train is approaching.

By combining both forms of negation in the same rule, we can express the closed world
assumption, which assumes that a predicate does not hold unless there is evidence to support
it [Reiter, 1980]. For example, the rule ¬q(X, Y ) :- ¬q(X, Y ), p(X), p(Y ).

indicates that the binary relation q is considered false for a pair of elements from p unless
there is supporting evidence suggesting otherwise.

In an ASP program with strong negation, the closed-world assumption rules can be applied
to some predicates while leaving other predicates under the open-world assumption. This allows
for a more flexible and nuanced representation of knowledge and uncertainty.
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7 Conclusion

In conclusion, this chapter emphasizes the importance of reliable and precise environmental
perception in autonomous vehicles. Autonomous vehicles heavily rely on diverse sensors, inclu-
ding cameras, LiDAR, radar, ultrasonic sensors, GPS, IMU, and vehicle odometry sensors, to
create a comprehensive view of their surroundings. This multifaceted perception is indispensable
for making informed decisions and ensuring the vehicle’s and its occupants’ safety.

The chapter further explores individual sensor types, elucidating their specific roles and
contributions to environmental perception. Each sensor type, such as monocular cameras, Li-
DAR, radar, GPS, and IMU, has advantages and limitations, making them suitable for various
autonomous driving applications. The integration of these sensor modalities empowers autono-
mous vehicles with multi-modal perception, enabling robust decision-making and safe navigation,
even in complex and dynamic scenarios.

As autonomous vehicle technology advances, sensors will remain at the forefront of environ-
mental perception. Ongoing developments in sensor technologies and sensor fusion algorithms
are set to further enhance the safety and capabilities of autonomous vehicles on our roads.

This chapter provides a comprehensive exploration of deep neural networks, supervised lear-
ning, and reinforcement learning algorithms, with a particular emphasis on model-free deep rein-
forcement learning. While supervised learning relies on annotated data, reinforcement learning
has demonstrated its prowess in solving sequential decision problems without such annotations.
The thesis prioritizes reinforcement learning for vision-based navigation, using a continuous
action-capable algorithm, Proximal Policy Optimization (PPO), to achieve the task.

PPO stands out as a state-of-the-art method for image-based reinforcement learning and
offers stability and efficiency, making it an excellent choice for the study’s objectives. The sub-
sequent chapter will further delve into applying reinforcement learning to vision-based navigation
tasks, building upon the foundation established in this chapter.

Lastly, the chapter introduces readers to Answer Set Programming (ASP), a powerful decla-
rative programming paradigm designed for addressing complex, often NP-hard search problems.
ASP leverages nonmonotonic reasoning in knowledge representation, offering valuable capabili-
ties for knowledge-intensive applications. This approach relies on the stable model (answer set)
semantics of logic programming, effectively handling negation as failure. Within ASP, complex
search problems are translated into the computation of stable models, and answer set solvers
are employed to facilitate the search process.

In summary, this chapter has laid the foundation for understanding and utilizing ASP, which
will be further explored and applied in subsequent chapters to address complex problems and
decision-making in autonomous systems. In the following chapter, our primary focus will be on
addressing safety concerns related to self-driving vehicles. We aim to conduct an extensive and
methodical examination of the current scientific literature and cutting-edge technologies about
the safety aspects of autonomous vehicles.
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1 Introduction

The primary objective of this chapter is to discuss safety related to self-driving vehicles. Our
main objective is to conduct a comprehensive review of the existing literature related to the safety
aspects of autonomous vehicles. This research includes an in-depth analysis of existing knowledge
and technological advances. Such comprehensive research is the cornerstone for building a deep
and nuanced understanding of the multifaceted challenges, notable advances, and gaps we need
to see in automotive safety. This chapter explores the design, hardware, AI-based technologies,
safety concerns, and current solutions for autonomous vehicles.

Autonomous vehicles (AVs) and the associated technologies have garnered significant atten-
tion from the research community due to their potential benefits. To navigate their surroundings,
AVs use sensor technologies, including computer vision, odometry, GPS, laser lights, sensors, and
mapping systems. By leveraging these technologies, AVs can assess their environment, determine
their location, and identify suitable routes while avoiding obstacles and adhering to traffic si-
gns [Mukhtar, 2015][Mukhtar, 2015]. The envisioned advantages of AVs include reducing vehicle
accidents, improving traffic flow and mobility, decreasing fuel consumption, driverless opera-
tion, and enhanced efficiency in business operations and transportation [Clements, 2017][Delhi,
2016][Speranza, 2018][Mahmassani, 2016].

Since the mid-1980s, numerous car companies, research institutes, universities, and industries
worldwide have studied and developed AVs. To promote AV technology, various renowned com-
petitions have been organized. For instance, the Defense Advanced Research Projects Agency
(DARPA) initiated the first competition of the DARPA Grand Challenge in the USA. In this
challenge, AVs were required to navigate a 142-mile desert track within a 10-hour. However, du-
ring the initial miles, all AVs failed to navigate successfully. Subsequently, the second DARPA
Grand Challenge took place in 2005, featuring a 132-mile track encompassing mountain passes,
numerous turns, narrow tunnels, and flat, dry lake beds [Buehler, 2007]. Out of the 23 finalists,
only four AVs completed the track within the designated time. Stanford University’s "Stanley"
secured first place, followed by Carnegie Mellon University’s "Sandstorm" and "Highlander" in
second and third place, respectively. The third competition, the DARPA Urban Challenge, was
held in California in 2007. AVs were required to navigate a 60-mile urban track, which included
human-driven cars, simulating a realistic urban environment within a six-hour time limit [Bueh-
ler, 2009]. Among the 11 finalists, six AVs completed the challenge. Carnegie Mellon University’s
"Boss" claimed first place, followed by Stanford University’s "Junior" in second place, and Virgi-
nia Tech’s "Odin" in third place. Nevertheless, these competitions did not encompass the complex
challenges encountered in everyday traffic scenarios. Following the DARPA competitions, nume-
rous trials and competitions have been conducted by different organizations. Notable examples
include ELROB, an ongoing competition since 2006 [Schneider, 2011], the AV Competition from
2009 to 2017, and the Intelligent Vehicle Future Challenge from 2009 to 2013 [Xin, 2014]. Industry
and academic communities have recently intensified their research efforts in AVs. Leading com-
panies such as Google, Argo AI, Nvidia, Mercedes Benz, Ford, Volvo, Lyft, Baidu, WeRide and
Aptiv have been actively engaged in cutting-edge AV research. Additionally, esteemed univer-
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sities, including Virginia Tech, MIT, Carnegie Mellon University, Stanford University,Tsinghua
University, Beijing Jiaotong University, and the University of Ulm, have significantly contributed
to AV research. To standardize vehicle automation, the SAE J3016 standard categorizes vehicle
automation into six levels ranging from 0 to 5 [International, 2018][Favarò, 2017]. Each level pos-
sesses distinct functionalities : Level 0 signifies no automation, with the individual driver solely
responsible for all operating activities. At Level 1, the vehicle is controlled by a human driver,
while an automation system assists in operating tasks (e.g., Tesla Autopilot) [Linja, 2022]. Level
2 involves utilizing automated features, but human intervention is required for control and en-
vironmental aspects of the driving process (e.g., Tesla Autopilot) [Linja, 2022]. Level 3 requires
the human driver to remain prepared to assume vehicle control at any moment (Automated
Conditional Driving). At Level 4, the automation system can drive the car autonomously un-
der specific conditions, but the human operator can take control (e.g., Waymo driverless cars)
[Waymo, 2017]. Lastly, Level 5 corresponds to full automation, where the automation system
can drive the car autonomously under all conditions, with the human operator having the op-
tion to intervene (e.g., fully autonomous Waymo driverless cars) [Waymo, 2017]. The driving
decisions of an AV are classified into three levels : tactical (lane-keeping and lane-changing),
operational (brake and pedal control), and strategic (routing) levels [Di, 2021]. The tactical and
operational controls further involve lateral and longitudinal control categories [Di, 2021]. Many
researchers and organizations strive to achieve Level 5 automation, and this chapter comprehen-
sively addresses its associated challenges. AI serves as a crucial technology for enabling efficient
autonomous vehicle functionality. AVs leverage AI and sensor technologies to mitigate risks and
enhance performance. Deep learning techniques have proven highly effective in object detection,
computer vision, and semantic segmentation, surpassing the previous benchmarks on various
object detection datasets [Everingham, 2010][Lin, 2014]. Within the realm of AVs, deep learning
methods are commonly employed for detecting pedestrians [Zhang, 2017][Chen, 2017b], vehicles
[Fang, 2016][Li, 2017], road signs [Lee, 2018][Luo, 2017], and traffic lights [Bach, 2017][Beh-
rendt, 2017]. AI techniques play a pivotal role in perception, decision-making, localization, and
mapping, contributing to the overall performance of AVs [Notomista, 2017]. Perception entails
the continuous scanning and monitoring of the environment by AVs through sensors, simulating
human vision [Bojarski, 2016]. However, perception remains challenging for AVs, and numerous
deep-learning approaches have been applied to improve perception capabilities [Bojarski, 2017].
Furthermore, AI facilitates AV decision-making processes such as automatic parking [Notomista,
2017] and path planning [Akermi, 2020]. Simultaneous localization and mapping (SLAM) is a
computational challenge associated with creating or updating maps of uncertain areas [Alcan-
tarilla, 2018], and it plays a critical role in AVs.

However, despite these immense potentials, there exist various unresolved issues related to
safety, security, legal and regulatory frameworks, social acceptance, ethics, and technological
challenges [Chopra, 2019][Neumann, 2016][Parkinson, 2017][Złotowski, 2017]. To ensure the suc-
cess of AV systems, it is crucial to address these problems comprehensively.

As previously examined, self-driving cars encounter challenges in ensuring safety across
various aspects of their operation. These challenges encompass perception, decision-making,
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human-machine interaction, and the regulatory landscape. However, addressing these challenges
and achieving the ultimate goal of safe autonomous driving hinges significantly on advancements
in localization technologies. Localization involves determining the precise position and orienta-
tion of the autonomous vehicle within its environment. The vehicle can accurately perceive its
surroundings by combining various localization techniques, such as GPS and sensor-based, using
lidar, radar, and cameras. However, more than localization is required for intelligent decision-
making. It needs to be complemented by data fusion, which integrates information from different
sensors to create a comprehensive and reliable understanding of the environment. This seamless
data fusion allows the autonomous vehicle to make informed decisions based on a holistic view
of its surroundings. Therefore, we will investigate the pivotal role played by localization and
data fusion in the context of autonomous vehicles.

2 Localization and Data Fusion

Accurate localization is at the heart of self-driving car safety. With precise knowledge of
their position and environment, autonomous vehicles can make informed decisions and navigate
safely [Vitale, 2022]. This is particularly pertinent in addressing challenges related to perception
and decision-making. By delving into the state-of-the-art localization techniques, we explore how
technological advancements such as GPS, IMU, and sensor fusion methods like Extended Kalman
Filters provide the foundational data required for safe autonomous operation. Additionally, we
analyze recent research findings and advancements in localization technologies, highlighting their
pivotal role in enhancing the safety of self-driving cars. Accurate and robust localization enables
self-driving cars to perceive their surroundings better, make timely decisions, and interact safely
with the environment and other road users. Therefore, advancements in localization technologies
are a critical component of the broader safety framework in autonomous driving.

Data fusion for self-driving cars integrates sensor data to increase reliability and minimize un-
certainty in AV localization. When different sensors are combined, sensor noise and uncertainty
can be substantially reduced. In addition to increasing the robustness, ensure data reliability
and reduce the number of inaccurate [Banos, 2012]. Different data fusion algorithms have been
proposed in the context of automated and autonomous driving. Generally, these approaches
can be categorized into groups based on statistical and control functions, probabilistic methods,
graph and knowledge-based methods, or data-fusing techniques based on machine learning and
neural networks. [Pires, 2016] [Luo, 2011]. One of the first and classical data fusion methods
for AV localization is the Kalman Filter [Kalman, 1960]. The Kalman filter algorithm itera-
tively estimates the state variables, such as the position and velocity of a projectile, within a
noisy linear dynamical system. It achieves this by minimizing the mean-squared estimation error
of the current state as it receives noisy measurements and tracks the system’s evolution over
time. With each update, it furnishes the most recent unbiased estimate of the system variables
along with an indication of the uncertainty through a covariance matrix. This updating pro-
cess is versatile and allows for effective tracking of system dynamics under varying conditions
[Gelb, 1974]. In the case of nonlinear situations, several extensions of the basic KF have been
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proposed, but the Extended Kalman filter (EKF) [Hoshiya, 1984] and Unscented Kalman Filter
(UKF)[Wan, 2001] remain the most reliable alternatives in nonlinear environments. The former
uses Taylor series expansions to linearize the state transition and observation matrices. The
latter approximates the posterior probability density arising from the nonlinear transformation
of a random variable. Indeed, the EKF has lower accuracy than the UKF ; however, the UKF
requires additional computational time, which is unsuitable in real-time environments [Feraco,
2021]. Particle Filters (PF) are based on sequential stochastic algorithms (Monte Carlo) for
Bayesian filtering to perform multi-sensor fusion problems[Wan, 2001]. However, PF requires
a trade-off between estimating accuracy and computing burden by altering the number of em-
ployed particles. Recently, a neural network (NN) has been successfully employed for data fusion
in robotics. In [Forechi, 2018], the authors use a deep neural network to perform the localization
using a one-shot image. In contrast, in [Cattaneo, 2020], authors trained a convolutional neural
network with a data set containing images and location information.

The successful adoption of neural network (NN)-based localization methods has showcased
impressive results. However, it is essential to acknowledge the associated challenges. One si-
gnificant limitation is the reliance on high-cost sensors, such as lidar or cameras, which can
significantly increase the overall cost of autonomous vehicles [Khankalantary, 2020]. Moreo-
ver, these NN-based methods often exhibit high computational complexity, demanding substan-
tial processing power and potentially limiting their use in real-time applications, especially on
resource-constrained hardware. Additionally, these methods typically require extensive labeled
training data, which can be challenging and costly to obtain, mainly when dealing with new
environments or maps. Ground-truth data is essential for supervised training, posing practi-
cal challenges when transitioning to new geographic areas or navigating previously uncharted
territories. While NN-based localization methods show promise, they underscore the need for
alternative approaches that balance accuracy and affordability, particularly in safety-critical
autonomous driving scenarios. In data fusion for autonomous vehicle (AV) localization, the Ex-
tended Kalman Filter (EKF) has traditionally been the preferred solution due to its ability to
integrate sensor data effectively. However, it has limitations, most notably linearization errors
[Madyastha, 2011]. An innovative alternative to the EKF is the Error-State Extended Kalman
Filter (ES-EKF), which has gained prominence in various domains, including robotics and air
vehicle attitude estimation. The ES-EKF adopts a distinct approach to address the challenges
posed by nonlinear dynamics compared to the traditional EKF. Instead of estimating the entire
state, as done in the EKF, the ES-EKF focuses on estimating the error state, typically compo-
sed of small-magnitude linear error dynamics. This emphasis on the error state enables optimal
prediction and update of the error state covariance, resulting in efficient and timely localization.
This approach aligns well with the imperatives of AV safety, ensuring precise localization within
dynamic and unpredictable environments.

The upcoming chapter will explore the ES-EKF more comprehensively, offering readers a
deeper understanding of its principles and applications in autonomous vehicle localization. By
addressing the challenges posed by linearization errors and nonlinear dynamics, the ES-EKF
represents a promising avenue for enhancing the reliability and safety of AV localization. In
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conclusion, it is vital to recognize the profound impact of localization data quality and reliability
on a self-driving car’s ability to make practical, real-time decisions. Accurate localization serves
as the linchpin for robust and safe autonomous navigation. This connection between precise
localization and effective decision-making paves the way for a critical aspect of self-driving car
safety : reinforcement learning. The subsequent discussion will shed light on how reinforcement
learning plays a pivotal role in enhancing the safety and autonomy of self-driving vehicles.

3 Imitation Learning and Reinforcement Learning

The ability to make well-informed and adaptive decisions is a core competency of paramount
importance. The emergence of reinforcement learning (RL) has significantly advanced the ca-
pability of autonomous vehicles in this regard. In this section, we introduce the concepts of
imitation learning and reinforcement learning in the autonomous vehicle (AV) world. We then
embark on an academic exploration, delving deep into the application of RL algorithms for
decision-making in the context of self-driving cars. Our rigorous analysis encompasses a com-
prehensive overview of various RL approaches and their pragmatic implementations within the
domain of autonomous driving scenarios, with a specific emphasis on auto-parking scenarios.

Reinforcement learning, situated within machine learning, equips autonomous vehicles with
the capacity to autonomously learn and optimize their actions based on interactions with their
dynamic environments. It follows an initial phase of imitation learning, where the AV learns from
human demonstrations. Within this academic inquiry, we traverse the multifaceted landscape of
RL and unveil its multifarious applications in self-driving car technology.

This inquiry involves exploring different RL methods specifically designed for the challenges
faced by autonomous driving. These methods, based on strong theoretical frameworks, go beyond
theory to become practical solutions that shape self-driving car technology. Our focus is parti-
cularly on automated parking situations.

Auto-parking may seem like a simple task, but it embodies the essence of autonomous
decision-making. It requires accuracy, adaptability, and quick responses. In our study, we exa-
mine RL algorithms crafted to guide a self-driving car as it parks itself. Furthermore, we engage
in a scholarly examination of the versatility of RL in addressing a broad spectrum of autono-
mous driving challenges. Our inquiry extends beyond the confines of auto-parking, encompassing
complexities such as navigation through urban environments, highway driving, and collision avoi-
dance. By focusing our academic lens on these practical applications, we offer a comprehensive
scholarly account of how RL emerges as an indispensable tool in elevating self-driving cars’
safety, efficiency, and dependability.

3.1 Autonomous Driving with Imitation Learning

In a sequential decision-making problem, such as autonomous driving, imitation learning,
behavior cloning, and supervised learning are often used interchangeably. Imitation learning
involves learning from demonstrations, where a learning agent is trained on examples of human
driving and tasked with replicating the observed behavior. However, supervised learning in
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autonomous driving requires substantial annotated data, which can be challenging to collect
in real-world scenarios due to the vast number of potential driving situations (varying weather
conditions, time of day, road types, etc.). One solution to this challenge is to use simulated
data, but the issue of transferring learned behaviors from simulation to the real world must be
addressed.

In 1989 Navlab introduced ALVINN, the first autonomous vehicle to utilize a neural network
trained with supervised learning. ALVIN consisted of three layers : an input layer with 1217 units,
a hidden layer with 29 units, and an output layer with 46 units. The input layer comprised 960
units from a 30 x 32 road image, 256 units from an 8 x 32 laser rangefinder, and one feedback
unit from the output layer. This configuration enabled ALVINN to perform lane-following tasks
on simple real-world roads. However, since then, neural networks have advanced significantly in
size and capabilities.

In a later study by [Muller, 2005], a mobile robot was trained to navigate off-road while
avoiding obstacles. In this case, the input size was much larger than that of ALVINN. It consisted
of a 149 x 58 x 6 input derived from two stereo cameras, and a convolutional neural network
(CNN) with 72000 trainable parameters was employed. This approach demonstrated practical
obstacle avoidance in real-world navigation scenarios.

More recently, [Bojarski, 2016] trained a CNN using a large dataset, approximately 72 hours
of driving, to perform lane following. The trained model was then deployed on a real car, showca-
sing successful lane-following capabilities. Similarly,[Rausch, 2017] employed the idea of end-to-
end control of autonomous vehicles with a driving simulator using a deep neural network policy.
However, it is essential to note that both the [Bojarski, 2016] study and the [Rausch, 2017] study
focused solely on controlling the steering angle during lane-following tasks and did not address
controlling the vehicle’s speed.

Autonomous driving is a complex decision-making process that can benefit from incorpo-
rating temporal information to enhance the robustness and consistency of the driving model.
[Fernando, 2017] and [Xu, 2017] introduced the use of Short-Term Long Memory (LSTM) layers
to handle memory in the context of autonomous driving. In [Xu, 2017], a single LSTM layer
is employed, which merges the output of the Convolutional Neural Network (CNN) with the
trajectory features (such as speed and angle) before passing through the LSTM layer. This ar-
chitecture aims to capture the temporal dependencies within the input data by leveraging the
LSTM’s ability to retain and recall past information. In contrast, [Fernando, 2017] proposes a
different approach by utilizing two distinct memory modules : the spatial memory module for
the CNN output and the trajectory memory module for the trajectory features. These memory
modules are maintained separately and later merged to incorporate both types of information.
This architecture allows for the differentiation of memories. It facilitates the capture of long-term
dependencies, which can benefit a more comprehensive understanding and decision-making in
autonomous driving scenarios.

Although various approaches have been proposed for achieving end-to-end autonomous dri-
ving, most focus solely on the lane-following task and do not include any specific driving com-
mands, such as "turn left" or "go straight." In their work introducing the CARLA simulator,
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[Dosovitskiy, 2017] proposed a benchmark for evaluating driving agents on goal-directed na-
vigation called the CARLA CoRL benchmark. This benchmark includes four tasks, such as
straightforward navigation and navigation with dynamic obstacles, and evaluates agents’ ability
to reach their destination successfully. Six weather conditions and two towns are used to assess
the agents’ generalization capabilities. The benchmark highlights that both the modular pipe-
line and imitation learning approaches achieve satisfactory results, particularly under training
conditions, while reinforcement learning performs poorly. However, both modular pipeline and
imitation learning approaches show a drop in performance in unseen towns. [Codevilla, 2018]
provide more detail on the imitation learning training process, including transfer to the real
world. The supervised learning algorithm takes as input the current road image, a vector of
measurements containing the current speed, and a high-level command indicating where to go.
Their work studies two global architectures, as illustrated in Figure 3.1.

Figure 3.1 – "End-to-End Driving via Conditional Imitation Learning," [Codevilla, 2018] dis-
cuss two network architectures for conditional driving. The first architecture, shown on the left,
uses the driving command as input and concatenates its features with the features extracted
from the image and measurements. The second architecture, shown on the right, splits the net-
work into command-specific branches using the discrete driving command as a guide.

[Codevilla, 2018] introduced two network architectures for conditional driving. In the first
architecture, the inputs (image, command, and measurement) are processed independently by
separate networks : a convolutional network for the image and two fully connected networks
for the command and measurement. The outputs from these networks are concatenated and
fed into a control module, represented by a fully connected network. This architecture, known
as the "command input" approach, suffers from the drawback of not explicitly considering the
command in the algorithm’s decision-making process. The authors propose a second approach
called the "branched" architecture to overcome this limitation. This approach retains the image
and measurement networks while the command is treated as a discrete variable. After concate-
nating the image and measurement, a sub-policy corresponding to the command is selected from
a predefined sub-policy set. This approach has demonstrated superior performance to the classi-
cal concatenation method and has gained popularity in recent research. In [Cultrera, 2020], the
imitation learning architecture is enhanced by incorporating an attention module. This module
enables the model’s predictions to be explained and improves the driving agent’s performance
compared to simple imitation learning. In [Ohn-Bar, 2020], the autonomous driving policy com-
prises a mixture of experts and a context embedding system. The objective is to enhance the
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performance of the autonomous driving agent in situational driving scenarios. The approach
involves several steps. First, a mixture of models is trained using imitation learning. This ini-
tial training phase lets the agent learn from expert demonstrations and acquire basic driving
skills. Next, a context embedding system is developed using a Variational Autoencoder (VAE).
The VAE extracts relevant information from the input image while reducing its dimensionality.
This context embedding provides a compact representation of the driving environment and aids
in capturing crucial situational cues. Finally, the policy is refined using the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) algorithm. However, this refinement is applied
only to the last layers of the policy, allowing for fine-tuning and adaptation to specific driving
tasks. By leveraging task-driven rewards and the evolutionary nature of CMA-ES, the policy is
optimized to handle various situational driving scenarios effectively. Figure 3.2 illustrates the in-
tegration of expert demonstrations context embedding, and evolutionary optimization to achieve
superior performance in autonomous driving tasks, particularly in complex and dynamic driving
situations.

Figure 3.2 – Learning Situational Driving.

The model proposed in [Codevilla, 2018] was initially trained and developed for urban driving
scenarios using simulation. However, to validate its performance in the real world, the model
was also tested and trained on a small robotic truck deployed in a residential area. Real-world
data collected from the truck and simulated data were incorporated into the training process.
This approach aimed to enhance the model’s robustness and adaptability to real-world driving
conditions. The branch architecture employed in the model played a crucial role in ensuring
that the robot successfully navigated through crossovers without missing any essential points.
By considering multiple branches, the model could effectively handle complex scenarios and
make accurate driving decisions. However, collecting real-world data can be a challenging and
costly endeavor. Therefore, many approaches focus on transitioning from simulation to real-world
environments instead of relying solely on real-world data for training. This transition bridges
the gap between simulation and reality by aligning the model’s performance with real-world
driving conditions. In the context of this transition, the approach presented in [Müller, 2018]
takes a different approach by not training the driving policy end-to-end. Instead, it leverages
segmented images to extract valuable information and generate waypoints for the driving path.
By producing waypoints rather than specific driving commands like steering angle and accele-
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ration/braking, this approach aims to facilitate the transition to real-world driving conditions.
The system architecture is shown in Figure 3.3

Figure 3.3 – The network architecture for the driving system in [Müller, 2018] consists of
three main modules : the perception module, the driving policy module, and the PID controller
module. The perception module is responsible for segmenting the input image, while the driving
policy module computes waypoints based on the segmented image. Finally, the PID controller
module computes driving commands using the computed waypoints.

The network architecture proposed in [Müller, 2018] for the driving system comprises three
main components : the perception module, the driving policy, and the PID controller. The per-
ception module, trained on the Cityscapes dataset, utilizes an encoder-decoder network with
ERFNet architecture to segment the input image. The segmented map is then passed to the dri-
ving policy, trained on the CARLA simulator. The driving policy takes the segmented map and
the driving instruction as inputs and generates two waypoints for each frame. This architecture
is similar to the branched network used in [Dosovitskiy, 2017]. Finally, the waypoints are conver-
ted into driving commands using a PID controller. Extensive ablation studies were conducted
to evaluate the model’s generalization ability, comparing the proposed approach to various al-
ternative configurations. The results demonstrated that the proposed approach outperformed
the other configurations regarding generalization in both simulation and real-world scenarios.
In contrast, the approach presented in [Bewley, 2019] focused solely on training a driving agent
using imitation learning in a simulated environment. A translation network was employed to
map real-world images to the latent space that resembles the simulated images to bridge the
gap between the simulation and the real world. This enabled the agent to drive in the real world
without requiring any real driving examples. The method primarily relied on imitation learning
in the simulated environment to acquire the necessary driving skills. In summary, while [Mül-
ler, 2018] incorporated a perception module, driving policy, and PID controller in their network
architecture and demonstrated superior generalization in simulation and real-world scenarios,
[Bewley, 2019] focused on training a driving agent solely through imitation learning in simulation
and utilized a translation network to adapt to real-world conditions without real-world driving
examples. As a result, the agent could drive in the real world without seeing any real driving
examples 3.4.
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Figure 3.4 – To facilitate the transition from simulated to real-world driving, [Bewley, 2019]
introduces a Sim2Real transition network for autonomous driving. This network utilizes a com-
mon latent space (Z) between the real and simulated images to compute the driving commands.
To achieve this, two Variational AutoEncoders (VAEs) are employed, one for each domain, which
are used to generate images and compute the corresponding latent representations in the com-
mon space. The Sim2Real network is trained solely on simulated data using imitation learning
and then tested on real-world scenarios, demonstrating its ability to generalize and perform well
even without real-world training data.

Autonomous driving can be approached through two conventional methods : end-to-end
driving and modular pipeline. However, both approaches have their limitations. The modular
pipeline requires optimizing each module independently, while end-to-end driving is challenging
to interpret and train effectively. To address these limitations, an alternative solution is to employ
intermediate driving representations, known as Direct Perception. In the work of [Chen, 2015],
the authors proposed this approach, utilizing a convolutional neural network (CNN) to process
input images and extract affordance information such as distances to other vehicles and lane
markings. Subsequently, a straightforward controller utilizes these extracted affordances to make
driving decisions, including steering commands and acceleration/braking based on factors like
the distance to the preceding vehicle and its position within the lane. The CNN was trained using
12 hours of human driving data from the TORCS racing game [Wymann, 2000]. The controller’s
performance was evaluated on TORCS tracks, real-world data sourced from smartphone videos,
and the KITTI dataset [Geiger, 2013]. The results demonstrated the effectiveness of the proposed
approach in both simulated and real-world environments. Subsequent advancements in this field
include the work of [Al-Qizwini, 2017], who improved upon the initial approach by using a more
accurate feature extractor and reducing the number of computed affordances.
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Furthermore, intermediate representation has been successfully applied to conditional driving
in the CARLA simulator through the work of [Sauer, 2018]. This approach uses video input
instead of frame-by-frame analysis to address conditional driving, traffic light management, and
traffic sign detection. It has proven to be effective according to the CARLA CoRL benchmark.

In work presented by [Mehta, 2018], affordances are trained as additional tasks in the au-
tonomous driving system. This involves generating two types of auxiliary predictions : visual
affordances, which include information like the distance to the vehicle ahead and the lateral
distance to an approaching pedestrian, and action primitives, such as slowing down, turning
right, or speeding up. The action primitives act as a planner, considering inputs from the plan-
ner, visual cues, and speed to predict the appropriate action to take at any given moment. For
example, if the planner input indicates a right turn, the action primitive predicts whether the
vehicle should turn immediately, wait until it reaches a crossing, or slow down to stop at a traffic
light. These auxiliary predictions are trained concurrently with the driving task and are utilized
as input for the final block of the architecture.

The loss function in this scenario consists of both the auxiliary loss (for action primitives
and visual affordances) and the driving control loss. Additionally, the affordances serve as input
for the subsequent step, providing valuable information for the intermediate representation.
Additional tasks are incorporated in [Hawke, 2020], although the intermediate representation
is not explicitly defined. The perception module is trained to reconstruct various interpretable
outputs such as semantic segmentation, depth, and optical flow, capturing temporal dynamics.
However, only the encoded features are utilized for the driving tasks. The perception module is
pre-trained on multiple large datasets, including KITTI [Geiger, 2013], Cityscape [Cordts, 2016],
and Deeplab [Chen, 2017a]. In some experiments, three cameras are employed (forward, left-
facing, and right-facing), and each image is processed independently by the perception module.
The intermediate representations are subsequently merged using a sensor fusion module.

In [Kang, 2019], the research is entirely conducted in real-world settings. Data collection
involves driving around Cambridge, and tests are performed with a human driver available as
a backup in emergencies. The authors can identify crucial aspects of autonomous driving by
utilizing supervised learning. They emphasize the importance of data distribution and employ
techniques to balance the dataset during training, preventing dominant behaviors such as staying
stationary or driving straight from overpowering the system. Furthermore, they observe that the
system’s performance improves with increased exposure to data. The authors also highlight the
significance of developing a robust representation of the environment for practical, real-world
driving.

In [Li, 2018], the exact auxiliary predictions, specifically semantic segmentation and depth
prediction, are utilized. However, unlike the approach described in [Hawke, 2020], the percep-
tion module is trained separately and remains fixed during the training of the driving module.
Learning to drive can be categorized into two main principles : understanding and acting wi-
thin the environment. As discussed earlier, one method to assist the agent in understanding
the environment is through intermediate representations. Another approach, LBC, as presented
in citechen2020learning, involves training a privileged agent with access to expert trajectories
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and detailed information about the environment’s layout (such as bird’s-eye view and actor po-
sitions). Subsequently, this privileged agent trains a second agent with only raw image input
and no other ground truth information. This two-step approach allows for focused learning :
the privileged agent can concentrate on learning to drive while having complete knowledge of
the environment. In contrast, the second agent focuses on "learning to see" and comprehending
the information provided through image input. This approach has achieved a perfect score on
the CARLA CoRL benchmark and demonstrated effective generalization in previously unseen
towns.

Despite the application of data augmentation techniques, utilizing human-provided data in
imitation learning and supervised learning more broadly presents a challenge. The fundamental
question arises : How can a car achieve flawless driving if it is solely trained using imperfect
human driving examples ? This is where reinforcement learning becomes relevant. By employing
reinforcement learning, it is possible to circumvent human bias as the system learns through
self-exploration. The agent is not explicitly instructed on how to behave ; instead, it receives
positive and negative rewards based on the quality of its actions. The objective is to provide
the agent with minimal human-specified features to avoid bias. For instance, in the context of
an autonomous car, the agent is not explicitly taught to follow road lines but instead receives
a negative reward if it deviates from the road. In [Codevilla, 2019], the authors investigate and
examine the boundaries of behavior cloning when applied to autonomous driving. This study
sheds light on the limitations associated with behavior cloning, including :

— The term "distributional shift" refers to the disparity between the distribution of the
data used for training and the distribution encountered during testing. This discrepancy
is particularly evident in imitation learning for autonomous driving due to the driving
task’s sequential and non-i.i.d. (independent and identically distributed) nature. As a
result, minor errors in previously unseen situations may accumulate over time, resulting
in significant mistakes during testing.

— The work by [Codevilla, 2019] brings attention to the limitations of behavior cloning
in autonomous driving. One fundamental limitation identified is dataset bias, where the
collected data predominantly comprises straightforward scenarios such as driving straight.
However, the autonomous agent must also learn to respond effectively in more complex
situations that occur less frequently in the dataset.

— Causal confusion is a limitation that arises when the neural network discovers correlations
that are artificially present only in the dataset. This can lead to misleading predictions
and a lack of generalization. Additionally, distributional shift, also referred to as covariate
or dataset shift, is another limitation caused by the sequential nature of the driving task,
which violates the assumption of independent and identically distributed data. As a result,
minor errors occur during the testing phase, and these errors accumulate, leading to more
significant mistakes.

— Models trained using identical parameters demonstrate significant variability in their out-
comes, particularly when facing demanding test scenarios involving numerous dynamic
objects. The variance in performance can be as substantial as 40% when comparing twelve
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models trained with different seeds.

The authors of this study used a conditional network similar to that of [Codevilla, 2018]
with additional changes to enhance its robustness, such as incorporating a module to predict
the speed and using the Mean Absolute Error instead of Mean Square Error. They also proposed
a new NoCrash benchmark to test the agent’s behavior under traffic conditions. The study found
that the best performance was achieved with only 10 hours of demonstration data, as the dataset
needed more diversity, and additional data would lead to overfitting. Besides, the dataset bias
was highlighted, as the agent performed better when encountering vehicles with standard models
and colors. The study also explored the variance issue, training identical models with different
random seeds and noting a significant difference in results on the NoCrash benchmark. To address
this issue, pretraining the CNN on ImageNet was found to reduce variance. Finally, the study
identified the inertia problem caused by causal confusion, where the agent remained unmoving in
many test episodes due to traffic lights or other vehicles. Although the speed prediction branch
mitigated this issue, it was not eliminated. The study provides insights into the difficulties of
supervised learning in autonomous driving and suggests future research directions.

Expanding the training dataset is a viable approach to mitigate the challenges posed by
distributional shifts. In imitation learning, the system cannot recover from mistakes, leading to
error accumulation when confronted with unseen scenarios during testing. To address this issue,
researchers have explored the augmentation of their training datasets. Several papers, such as
[Gandhi, 2017], [Codevilla, 2018], and [Bojarski, 2016], have focused on enlarging the datasets
for autonomous driving scenarios using a single camera.

In [Gandhi, 2017], the authors intentionally crashed a drone more than 11,000 times to
create an extensive crash database. A naive and random algorithm was employed to eliminate
human bias. The dataset was enriched with trajectories capturing both erroneous behavior and
corresponding correct behavior, enhancing the agent’s robustness.

In [Bojarski, 2016] and [Codevilla, 2018], two additional cameras were introduced to capture
a broader range of samples, including "bad" samples. These cameras, positioned on each side of
the vehicle, provided images from different angles. The images from these additional cameras
were labeled based on the camera rotation, which facilitated the inclusion of more "bad" samples
during training. Furthermore, the dataset was augmented by randomly shifting and rotating the
recorded images, and the corresponding ground truth was appropriately adjusted to introduce
further variations during training.

In [Toromanoff, 2020], a dataset augmentation method without additional sensors. They uti-
lize a single fisheye camera and apply a cylindrical projection to the captured image, transforming
it into a format similar to a standard camera. This transformed image is then used to predict
steering angles. To augment the dataset, lateral offset images are created through cylindrical
projections of the fisheye camera image. While this approach offers more flexibility compared to
using multiple conventional cameras for data collection, it does require post-processing of the
data.

Increasing the dataset is crucial in robustifying autonomous driving systems within behavior
cloning frameworks. The paper by [Bansal, 2018] introduced the ChauffeurNet model by intro-
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ducing perturbations to the dataset and modifying the imitation loss function. Perturbations
are applied to alter the trajectories in the dataset, enabling the agent to learn how to recover
from challenging situations. Additional losses, including collision, on-road, and geometry losses,
are incorporated to prevent undesired events. These losses help reduce collisions, encourage the
agent to stay on the road, and ensure consistent trajectory, regardless of speed.

Moreover, the ChauffeurNet model predicts the positions of other dynamic objects in the
scene, and auxiliary losses are employed to handle these predictions. While most existing works
in this domain utilize a single front-facing camera, ChauffeurNet leverages mid-level inputs such
as a bird’s-eye view of the road map, traffic lights, dynamic object boxes, and the planned route.
The model then generates a driving trajectory. This research sheds light on the limitations of
behavior cloning and proposes methodologies to enhance its application in autonomous driving.

Several approaches have been explored in this section, each with challenges and opportunities.
Imitation Learning faces dataset size and diversity issues, posing challenges for training fully
autonomous vehicles. It also needs help to account for safety-critical aspects of autonomous
driving and may not generalize well to novel scenarios. The lack of a standardized evaluation
approach further complicates its assessment.

3.2 Autonomous driving with Reinforcement Learning

Although Imitation Learning offers benefits such as quick implementation and efficiency, it
has several limitations. Due to the increasing complexity of problems in autonomous driving,
reinforcement learning has emerged as a viable alternative. While reinforcement learning excels
at learning through trial and error, its reliance on large datasets for convergence can limit its
real-world application at this stage. Extensive simulation environments are often used to train
these algorithms before deployment. This is especially true when it comes to urban navigation.

Despite the application of imitation learning in autonomous driving, there are limitations to
its use. For example, some researchers have focused solely on controlling the lateral movement
of the vehicle while leaving the speed control to a separate controller. In one approach presented
by [Wolf, 2017], an end-to-end control system is utilized. In another study by [Li, 2019], the
learning process is divided into two modules : a perception module that predicts track features
and a control module that computes the steering angle based on these features and information
about the vehicle’s speed. The perception module is trained using multi-task supervised learning,
while the control module is trained using reinforcement learning with DPG (Deterministic Policy
Gradient). However, in both approaches, the vehicle’s speed is not controlled using reinforcement
learning and requires the involvement of an additional controller.

In the lane following task, other works incorporate speed control commands (acceleration/-
brake) as part of a racing game. These works include [Sallab, 2016], [Sallab, 2017], [Perot, 2017],
and [Jaritz, 2018]. While [Perot, 2017] and [Jaritz, 2018] utilize road images as input, [Sallab,
2016], and [Sallab, 2017] use more direct inputs, such as the position of the track borders.

[Perot, 2017] and [Jaritz, 2018] employ the A3C (Asynchronous Advantage Actor-Critic)
algorithm with discrete actions and incorporate LSTM (Long Short-Term Memory) in the net-
work to capture temporal dependencies based on the visual inputs. These agents are trained
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with various driving conditions, such as weather conditions, road structures, or adherence levels,
using the racing game World Rally Championship 6 (WRC6). The trained agents demonstrate
the ability to generalize to unseen tracks.

Recent research has focused on tasks resembling driving in urban environments, such as lane
changing and traffic light management. [Chen, 2019a] introduce Attention-based Hierarchical
Deep Reinforcement Learning for lane change behaviors. They use hierarchical reinforcement
learning with image inputs to train agents to change lanes. This hierarchical approach decom-
poses the policy into sub-policies, which allows for smoother transfer to other tasks and improves
interpretability.

[Sun, 2023] introduced NavTL, a graph-enhanced bi-directional hierarchical reinforcement
learning framework designed to collaboratively manage traffic signal phases and navigation di-
rections of autonomous vehicles (AVs). However, the authors solely focus on addressing the
collaborative control of traffic signals and navigation directions, thus overlooking other crucial
aspects of autonomous vehicle navigation and control, such as AV accelerations and lane changes
at intelligent intersections.

[Al-Sharman, 2023] presented a hierarchical reinforcement learning-based decision-making
scheme tailored for automated unprotected left-turn maneuvers at unsignalized intersections.
The proposed integrated scheme combines soft-actor-critic (SAC) and model predictive control
(MPC) principles for high-level behavioral planning and low-level motion planning layers, res-
pectively.

[Gu, 2023] present Safari, a state-based safety enhancement method for autonomous driving
in highway scenarios, utilizing Direct Hierarchical Reinforcement Learning. Safari integrates a
dynamic continuous-lattice module into policy training, considering factors like basic safety,
temporal-spatial continuity, and kinematic feasibility when generating future driving goals. Ho-
wever, the method primarily concentrates on constrained reinforcement learning for general
driving tasks, potentially neglecting extremely dangerous scenarios.

[Wang, 2024] introduces a hierarchical reinforcement learning framework aimed at enhancing
mixed traffic control at intersections by integrating high-level decisions with low-level longitu-
dinal and lateral maneuvers. Additionally, the safety mechanism is incorporated to ensure the
integrity of the framework and the safety of all vehicles crossing the intersection. While the pro-
posed framework presents promising advancements in mixed traffic control, it primarily focuses
on intersections and may not address other aspects of traffic management beyond this specific
context.

Similarly, hierarchical reinforcement learning is employed to manage traffic lights [Chen,
2018]. Hierarchical reinforcement learning provides better interpretability and facilitates a smoo-
ther transfer to other tasks than flat reinforcement learning. The authors first train a primitive
controller individually to determine the acceleration/brake intensity based on the distance to
the crosswalk. Then, they assemble these primitive controllers into a hierarchical structure to
handle the traffic light scenario. However, it is essential to note that the system’s state includes
information about when the traffic light turns red, which may not be available in real-world dri-
ving scenarios. Nonetheless, the hierarchical reinforcement learning approach outperforms flat
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reinforcement learning in the traffic light scenario.
The researchers devised a reward system to encourage the car to stay in its lane while

maintaining a preferred speed of 35 km/h. Suppose a slower vehicle is detected within a 100-
meter range. In that case, the agent is incentivized to overtake it after deciding to change lanes
(high-level command) and calculating the appropriate driving commands (low-level command).
Their training approach is based on DDPG, where the actor generates the high-level command
from the current state, and the critic produces the driving command using both the current
state and the high-level command. Similar to a study by [Chen, 2018], the authors in [Nosrati,
2018] compared hierarchical reinforcement learning with flat reinforcement learning and found
that the former performs better in lane change tasks. They achieved even higher performance
by incorporating spatial and temporal attention mechanisms and utilizing a Long Short-Term
Memory (LSTM) network to process temporal information.

In [Mirchevska, 2018], the focus is solely on making high-level decisions using reinforcement
learning. These decisions involve determining whether to stay in the current lane or change
lanes to the right or left. The reward function is based solely on the agent’s speed, with higher
rewards for getting closer to the desired speed. The agent’s input consists of its current speed, the
relative speed of adjacent vehicles, and the distance to adjacent vehicles. Although this specific
input is not available in real-world scenarios where Vehicle-to-Everything (V2X) communication
infrastructure is lacking, the study demonstrates that the agent can autonomously decide to
overtake a slower vehicle. Notably, both [Mirchevska, 2018] and [Chen, 2018] highlight that the
agent can independently determine whether or not to change lanes.

Besides the learning mentioned above approaches, there is an increasing focus on integra-
ting symbolic reasoning with deep learning in autonomous driving systems. Neuro-symbolic
approaches combine logical and rule-based reasoning capabilities with the expressive power of
neural networks. By leveraging symbolic representations, these approaches can provide decision-
making processes that are interpretable and explainable. The fusion of symbolic reasoning and
deep learning presents a promising direction for developing intelligent and dependable autono-
mous driving systems that can effectively reason about complex rules, constraints, and high-level
objectives.

The approaches mentioned earlier primarily focus on reinforcement learning for autonomous
driving, explicitly emphasizing road following. However, a critical challenge in urban driving
scenarios is navigating intersections. Addressing this challenge, [Dosovitskiy, 2017] introduced
conditional driving with reinforcement learning. They employed a combination of imitation
learning and a modular pipeline to pioneer end-to-end RL training for conditional driving using
vision-based input. The training process involved 10 million iterations with the A3C algorithm.
However, the results were lower than those of supervised learning or the modular pipeline.
During training, the RL agent completed only 14% of the episodes, whereas the supervised
training achieved an 86% completion rate.

In a recent study by [Liang, 2018], a different approach called "CIRL : Controllable Imitative
Reinforcement Learning for Vision-based Self-driving" was proposed. This approach combines
supervised learning and reinforcement learning by pretraining the network using supervised
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learning.
Following a similar approach to [Dosovitskiy, 2017], CIRL also incorporates a branched net-

work to incorporate driving commands, maintaining a similar experimental setup. The training
process of the RL agent utilizes the DDPG algorithm. The actor and critic networks are treated
as separate entities, and only the actor-network leverages the pre-trained weights obtained from
imitation learning as an initializer. The imitation learning component undergoes training for 14
hours of driving, mirroring the approach in [Dosovitskiy, 2017]. For RL finetuning, 0.5 million
steps are performed, a smaller number compared to the 10 million steps used for RL training
from scratch in [Dosovitskiy, 2017]. Remarkably, CIRL performs better than supervised and
reinforcement learning training methods on the Carla CoRL benchmark.

In [Rhinehart, 2018], the authors introduced a combined supervised and reinforcement lear-
ning approach for conditional driving. This combination aims to address the limitations of using
reinforcement learning alone, which can lead to unsafe behavior during training due to the su-
boptimal nature of the model. In contrast to the model-free approach used in CIRL, [Rhinehart,
2018] adopts a model-based approach. The proposed approach involves constructing an imita-
tive model that prioritizes the expert’s trajectory instead of considering all possible options as
in traditional reinforcement learning. The imitative model learns from LiDAR points and the
agent’s previous positions to plan a trajectory towards a specific objective, such as a point a few
meters or several meters away from the agent. A PID controller generates commands based on
the planned trajectory during testing. This combined approach of supervised and reinforcement
learning allows for a shorter and safer training period, mitigating the risks associated with pure
reinforcement learning.

[Toromanoff, 2020] proposed IARL, a reinforcement learning approach for autonomous dri-
ving with two steps. In the first step, a supervised learning approach trains an encoder that
computes affordances. These affordances include semantic segmentation, the state and distance
to traffic lights, the distance to crossings, and the angle of the ego vehicle concerning the road.

In this work, the encoder is initially trained in a supervised manner to compute the affor-
dances above. Once trained, the encoder is frozen, and its output is utilized for reinforcement
learning training. The input to the system consists of four road images that incorporate tempo-
rality and the current vehicle speed. The driving instruction, such as turning left or changing
lanes, is provided as a high-level command, and a branched architecture, similar to the approach
used in [Dosovitskiy, 2017], is employed to incorporate this instruction. The proposed approach
achieves impressive results on CARLA benchmarks and the CARLA Autonomous Driving Chal-
lenge.

[Zhao, 2022] proposed CADRE framework that employs a Cascade DRL approach for vision-
based autonomous urban driving. It divides the driving task into perception and control subtasks.
Initially, a Co-attention Perception Module (CoPM) pre-trains by establishing relationships
between visual and control information. Then, an on-policy algorithm, PPO, trains the agent
in a distributed manner. Through reward shaping and sequential model LSTM, the PPO agent
achieves high success rates in complex urban environments, even in dense traffic conditions.

The works of [Michels, 2005] and [Riedmiller, 2007] mark the early stages of applying rein-
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forcement learning to autonomous driving in real-world settings. In [Michels, 2005] work, an RL
agent is trained to navigate in an unstructured outdoor environment while avoiding obstacles.
The vision system is initially trained using supervised learning to predict depth from monocu-
lar camera input images. Subsequently, the controller is trained using reinforcement learning,
taking the depth input into account to generate control commands. Similarly, [Riedmiller, 2007]
presents their work where the RL controller is trained to drive a real car by following a predefi-
ned track. The input to the controller consists of the car’s position and current speed, and the
reward function is designed based on the proximity to the desired track, with higher rewards for
staying in the middle.

These initial experiments demonstrate the feasibility of using reinforcement learning for au-
tonomous driving in real-world scenarios. However, it is essential to note that these experiments
were conducted with small robot cars. In a subsequent study by [Kendall, 2019], the scalabi-
lity of RL-based autonomous driving was demonstrated. Using only images from a front-facing
camera, their RL agent successfully learned to perform lane-following tasks in simulated and
real-world environments. This research showcased the potential of reinforcement learning in
enabling autonomous vehicles to navigate real-world scenarios.

DDPG, introduced by [Lillicrap, 2015], serves as the actor-critic algorithm in [Kendall, 2019].
To obtain optimal hyperparameters, the DDPG algorithm is fine-tuned using simulations. Ho-
wever, during real-world vehicle tests, a safety driver assumes control when the vehicle deviates
significantly from the center of the road, marking the end of an episode. To accelerate and
improve the learning process, [Kendall, 2019] incorporate a Variational AutoEncoder (VAE) as
an auxiliary task that runs concurrently with the driving task. The VAE is trained to recons-
truct the original image, enhancing the training efficiency. Notably, the training is exclusively
performed on the actual car, without any reliance on transitioning from simulation to the real
world.

It is essential to acknowledge the difficulty of directly applying reinforcement learning in
real-world environments, primarily due to the trial-and-error nature of the algorithm, which ne-
cessitates the agent learning from its own mistakes through interactions with the environment.
Consequently, to address safety concerns, most research in autonomous driving focuses on simu-
lations, with only a limited number of real-world experiments, typically involving road-following
tasks in simple and uncluttered environments.

Researchers are actively exploring specialized approaches to tackle the challenge of transitio-
ning from simulation to the real world. One such approach is presented in work by [Pan, 2017a],
where a translation network is proposed to bridge the gap between simulated and real-world
images. This translation network facilitates the transformation of simulated images into realistic
ones through a segmentation process. The network’s first component segments the simulated
image to extract semantic information, while the second component transforms the segmen-
ted image into a realistic representation. Initially trained as a Generative Adversarial Network
(GAN), the translation network trains a driving agent using the A3C algorithm. By exclusively
exposing the driving agent to realistic images, a seamless transition to real-world scenarios is
achieved.
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In [Agarwal, 2019] and [Chen, 2019b], the agents are trained to drive using the route in-
formation, eliminating the need for detailed route planning and simplifying the driving task
compared to high-level instruction-based approaches. It is worth noting that humans can follow
high-level commands while unconsciously planning their trajectory and also follow GPS-guided
trajectories, indicating that these methods are not mutually exclusive.

In [Agarwal, 2019] framework proposed for autonomous driving, bird-view segmented images
and route waypoints are utilized for training the agent. The segmented image is first processed
through an encoder and then concatenated with the waypoint features. The output of this
concatenation is used to determine the steering angle and target speed. A PID controller converts
the target speed into appropriate throttle/brake commands. During training, the encoder is
initially trained as part of an autoencoder, reconstructing the segmented image. Subsequently,
the encoder is frozen and used in the RL (Reinforcement Learning) driving training. However,
the encoder is regularly fine-tuned using the collected segmented images to improve stability
throughout the training process.

This work achieved remarkable results in the Carla CoRL benchmark [Dosovitskiy, 2017] by
using reinforcement learning as the sole method for driving policy. They achieved a success rate
of over 90% on the navigation task. However, when it came to more dynamic navigation tasks,
such as roundabouts or in unseen towns, the success rate dropped to 79% or even 60%.

[Chen, 2019b] work explores more complex driving scenarios, including roundabouts, in
contrast to the simpler crossroads considered in [Agarwal, 2019]. Like [Agarwal, 2019], their
approach consists of two separate modules : a perception module with latent encoding and a
control module with the RL agent. They train the encoder using supervised learning with a
Variational AutoEncoder (VAE) and then freeze it during RL training for driving control by the
agent. The input to their system includes a preview image of the map containing the routing
information, the ego vehicle, and surrounding objects. Their approach also achieved high scores
in the Carla CoRL benchmark, with a success rate of over 90% on the navigation task. However,
similar to the previous work, the success rate dropped to 79% or even 60% in unseen towns
during the dynamic navigation task.

While it is possible to input road information through GPS, obtaining the positions of
surrounding objects and generating semantic segmented bird’ s-eye view images like those used
in Agarwal’s study is a more complex task in real-world scenarios, requiring additional data
processing before implementing such algorithms.

3.3 Automated Parking System

Early approaches focused on path planning for identified parking spaces in the initial stages
of automated parking system (APS) development, followed by path tracking execution. Path
planning methods included geometric techniques such as Reeds–Shepp (RS) curves [Fraichard,
2004], B-spline curves [Gómez-Bravo, 2001], and n3-splines [Lini, 2011], as well as sampling
methods like Rapidly-exploring Random Tree (RRT) [Han, 2011] and target bias RRT [Zheng,
2018], alongside numerical optimization methods. Correspondingly, path tracking solutions en-
compass Ackerman steering model-based open-loop control [Thrun, 2006] and vehicle dynamics
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model-based closed-loop control [He, 2019] to ensure precise parking execution.
It is imperative to recognize that irrespective of the chosen path planning or tracking method,

the non-linear dynamics inherent to vehicles necessitate accurate execution adjustments during
automated parking tasks.

However, with the advent of deep neural networks and RL algorithms, novel approaches
emerged, aiming to emulate human-like end-to-end models for APS execution. For instance,
Folker et al. [Folkers, 2019] explored parking space identification using two reward functions
("Driver" and "Stopper") within a state space that encompassed perception maps, vehicle po-
sition, speed, orientation, target position, and orientation. The Proximal Policy Optimization
(PPO) algorithm was employed for agent training, with positive feedback tied to target proxi-
mity and negative feedback associated with high wheel angles or excessive agent speed. Notably,
this approach lacked explicit control over braking actions, resulting in binary stop-and-go be-
havior with no gradual deceleration and acceleration akin to real-world scenarios. Furthermore,
constraints such as inclination angles and deviations from the parking spot should have been
addressed.

Zhuang et al. [Zhuang, 2018] proposed a model divided into three stages : "get closer,"
"plan and park," and "adjust," exclusively focusing on parking maneuvers. The model leveraged
a PPO algorithm with Long Short-Term Memory (LSTM) neural networks trained through
curriculum learning. Nevertheless, this approach’s limitation was that it only considered wheel
angle adjustments in the agent’s action space, neglecting acceleration, braking, proximity to the
parking spot, or angular deviations. Additionally, it did not account for obstacle presence.

In works by Zhang et al., [Zhang, 2019] and [Zhang, 2020], the DDPG algorithm was applied
to APS through a path planning and tracking framework, segmented into "get closer" and "park"
steps. Parking spot detection and angle estimation were facilitated using four cameras, with
minor distinctions in tracking techniques. However, both approaches shared a common drawback
of failing to address parking spot exploration, relying on separate policies for longitudinal and
lateral control.

The study by Du et al. [Du, 2020] centered on the Deep Q-Network (DQN) and Deep Re-
current Q-Network (DRQN) algorithms, focusing on intelligent parking scenarios where parking
spot information is communicated to the car for path planning. Notably, this work should have
included the consideration of braking actions and the distance to the parking spot, which are
crucial elements in real-world scenarios.

Feher et al. [Fehér, 2019] and [Fehér, 2020] developed a model employing the DDPG al-
gorithm, addressing longitudinal and lateral trajectory planning and tracking. Another DDPG-
based approach was proposed by Bejar et al. [Bejar, 2019], but it solely focused on parking tasks,
providing limited details that hindered requirement assessment. Lastly, Thunyapoo et al. [Thu-
nyapoo, 2020] implemented an auto-parking framework utilizing the PPO algorithm, focusing
solely on parking execution without path planning considerations.

It is important to note that the discussed works rarely detail how vehicles come to a stop
within the parking space and manage their speed during parking maneuvers, encompassing
acceleration, deceleration, and braking actions. The criteria for episode success varied among
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these works, with some defining success as strict alignment within the parking space and others
considering approximate positioning as successful. Additionally, agent speed was often restricted
to a fixed value due to the absence of a dedicated braking system. Simulation environments and
software details were only sporadically provided.

Moreover, some works inconsistently adhered to the recommended normalization of the state
space and reward function, as advocated in [Schulman, 2017]. Notably, papers focusing solely
on Deep Reinforcement Learning (DRL) algorithms rarely conducted comparative analyses with
other DRL techniques, a facet that this study addresses comprehensively. Furthermore, the
simulation environments in most papers were simplified and needed more standardization, posing
challenges in direct comparison. Additionally, these simulations often overlooked the physical
constraints and behaviors inherent to real-world vehicles.

Safety is of paramount importance as we progress in autonomous driving technology. Addres-
sing safety concerns involves tackling challenges related to uncertain and dynamic environments,
handling system failures, implementing fault-tolerant mechanisms, and making ethical decisions.
Safety assurance and verification methods are crucial in testing and validating autonomous sys-
tems to ensure they meet rigorous safety standards. As the deployment of autonomous vehicles
on public roads increases, regulatory and legal aspects also come into play, necessitating careful
consideration and adherence to established guidelines and protocols.

4 Safety Challenges in Autonomous Systems

Safe end-to-end autonomous driving has been an active research topic in recent years. Most
end-to-end systems now fall under one of three paradigms : rule-based, imitation learning, and
deep reinforcement learning. Despite much research on end-to-end urban driving, this chapter
is concerned explicitly with safe end-to-end urban driving. While many previous studies have
explored various aspects of urban driving automation, the safety of passengers and other road
users must remain a top priority.

4.1 Rule-based Methods

The first studies adopting AV rules are [Montemerlo, 2008] and [Furda, 2011]. Authors in
[Montemerlo, 2008] adopted a 13-state finite state machine (FSMs) to select maneuvers for Junior
in DARPA (the Defense Advanced Research Projects Agency) and implemented a behavior rule
to switch between diverse driving states. In [Furda, 2011], FSM is integrated with multi-criteria
decision-making for the execution of each driving maneuver. However, they did not consider
any safety features. In [Collin, 2020], the authors presented an AV decision-making system that
respects safety considerations and traffic laws following ISO/PAS 21448 [Radlak, 2020]. [Xiao,
2021] developed a system that imposes the safety of AV by validating the rule priority struc-
ture for each decision. [Lin, 2022] proposed a framework to repair the AV trajectory following
traffic rules formalized in temporal logic. [Kothawade, 2021] proposed a common sense reasoner
using ASP for AV end-to-end decision-making by simulating the mind of a human driver. The
rule-based system played a pivotal role in ensuring the safety of an AV decision-making system.
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However, all the possible scenarios must be manually anticipated and encoded, particularly in
urban driving, where the traffic environment is highly dynamic. Indeed [Collin, 2020],[Radlak,
2020],[Xiao, 2021],[Lin, 2022] and [Kothawade, 2021] presented end-to-end systems while em-
phasizing safety features. However, such a system relies on a fixed set of rules and needs more
flexibility to adapt to unexpected scenarios. Also, this can result in reduced performance and
even failure in complex and dynamic driving situations. Additionally, rule-based systems can be
challenging to maintain and update as they require manual adjustments for each new scenario.

4.2 Safety in Reinforcement Learning

Learning-based methods aim to learn the driving policies without human intervention. Ho-
wever, ensuring their safety is a significant concern. Several works tried to overcome this issue by
bypassing the functional requirements of the neural network [Li, 2021b][Filos, 2020] or verifying
the safety of each action in post-hoc methods [Phan-Minh, 2022][Krasowski, 2022].

In [Alshiekh, 2018], a shield is employed to proactively prevent the agent from taking actions
that could potentially result in safety breaches during the exploration phases of both model-
based DRL [Yang, 2023] [Jansen, 2020] and model-free DRL [Kimura, 2021]. This shield is a
logical component designed to carefully consider safety constraints during the exploration of an
environment[Yang, 2023], while limiting the agent’s actions to avoid catastrophic failures during
the learning process [Leurent, 2020].

Shielding strategies encompass rejection and suggestion-based approaches, often grounded
in formal verification methods, which offer robust safety assurances compared to other safe
exploration techniques [Yang, 2023]. In a related study [Kimura, 2021], a shielding technique
based on logical neural networks (LNNs) [Riegel, 2020] recommends safe actions and avoids
unnecessary ones. Their research demonstrates that leveraging external knowledge through LNN
to suggest the appropriate actions represents a promising approach to shielding. This approach
reduces the need for extensive training trials and ensures safety throughout the learning process.

However, synthesizing an offline shield for discrete-event systems demands an exhaustive,
upfront safety analysis for all potential state-action combinations, resulting in exponential com-
plexity in state and action dimensions [Alshiekh, 2018] and becoming over-restrictive [Jansen,
2020]. Online shielding lacks worst-case computation time guarantees, potentially allowing the
agent to reach the next decision state before the shield determines which action to block. It is
suitable in scenarios where alternative actions, like "waiting," can be taken.

Some works designed hierarchical methods that learn high-level policies and extract low-level
policies by imitating an expert with an additional layer of safety for each option. [Li, 2021a] and
[Jamgochian, 2022] proposed HRL with safety constraints. However, it has only been tested on
roundabouts and did not include other features of urban driving that we have considered in our
study. To overcome these limitations, we propose combining HRL with rule-based systems. HRL
can provide the flexibility and adaptability to navigate complex and dynamic urban environ-
ments. In contrast, rule-based systems provide a set of predefined rules that can be applied in
critical situations to ensure safety. By combining both approaches, an AV can learn from its ex-
periences in a hierarchical manner and make decisions based on its learned policies. However, in
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a dangerous or unpredictable situation, the vehicle can switch to a rule-based system to reduce
exploration and ensure safety. This hybrid approach can balance exploration and safety, making
autonomous urban driving safer and more efficient.

Having explored the different aspects of autonomous vehicle projects, ranging from localiza-
tion and data fusion to imitation learning, reinforcement learning, neuro-symbolic approaches,
and safety considerations, it is crucial to summarize the essential findings and reflect on the emer-
ging trends and future directions. The upcoming chapter will elucidate the tools and simulation
environment employed for self-driving cars.

5 Tools : Available Simulation Environments

This section outlines a list of available environments that can be utilized for working pur-
poses. The environments have been categorized into games, indoor environments, and driving
environments - comprising simulators or datasets. It is important to note that this list is non-
exhaustive.

5.1 Games

Regarding reinforcement learning based on visual input, games are often chosen as the en-
vironment due to their simplicity and efficient agent-environment interaction. However, these
games typically offer a limited range of actions and relatively basic scenarios. The Atari games
[Bellemare, 2013] were among the first games used in this context, with Enduro being particu-
larly relevant to driving.

There are also game environments specifically designed for AI research, such as ViZDoom
[Wydmuch, 2018] and DeepMind Lab [Beattie, 2016]. DeepMind Lab provides a maze-based
environment, while ViZDoom is a first-person shooter game with a customizable 3D environment
and first-person view. ViZDoom, unlike DeepMind Lab, requires the agent to navigate and
engage with enemies simultaneously. However, it is essential to note that these virtual game
environments lack realistic rendering and actions that can be directly transferred to real-world
scenarios.

5.2 Indoor Environments

In our initial exploration of navigation, we also considered indoor environments, which led
us to examine various indoor simulators and datasets. These resources play a crucial role in
facilitating research on indoor navigation.

Two examples of indoor datasets containing many images and offering semantic segmentation
are SceneNet RGB [McCormac, 2016] and the SUNCG dataset [Song, 2017]. While both datasets
are synthetic, SceneNet RGB stands out for its photorealistic rendering.

Indoor simulators such as Minos [Savva, 2017], House3D [Wu, 2018], and HoME [Brodeur,
2017] allow agents to navigate within virtual houses, providing a controlled environment for tes-
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ting navigation algorithms. These simulators offer different features and capabilities to support
diverse research requirements.

Another notable indoor simulator is AI2 THOR [Zhu, 2017 ; Kolve, 2017], which consists of
3D photorealistic indoor scenes. In AI2 THOR, agents can interact with the environment by
moving objects or pushing them, enabling more complex and interactive navigation scenarios.

5.3 Driving Environments

With the advancement of autonomous driving technology, a wide range of learning environ-
ments has emerged, falling into the categories of datasets and simulators. Among the unique
datasets, the Kitti dataset [Geiger, 2013] holds a prominent position in vision-based driving
tasks. It comprises an extensive collection of real-world images captured in Karlsruhe, Ger-
many. It provides ground truth data for various tasks such as stereo vision, optical flow, visual
odometry, 3D object detection, and 3D tracking. The dataset includes challenging scenarios en-
countered on the road, including median strips, narrow roads with parked cars, and a tramway
line.

Several derivatives of the Kitti dataset have been introduced to cater to specific needs. For
example, the work by [Menze, 2015] extended the dataset to include dynamic scenes, capturing
the dynamic nature of objects in the environment. Kitti-Road [Fritsch, 2013] was explicitly
developed for road and lane detection tasks, focusing on providing accurate annotations in those
areas of interest. Another unique dataset, the Virtual Kitti dataset [Cabon, 2020], serves as a
virtual extension of the Kitti dataset. It replicates scenes from the original dataset in a virtual
environment, offering different weather and lighting variations. Ground truth data for depth
maps, semantic segmentation, optical flow, and object detection and tracking are provided in
this virtual dataset. Collectively, these datasets contribute to advancing research in autonomous
driving by providing valuable resources for training and evaluation purposes.

The SYNTHIA (SYNTHetic collection of Imagery and Annotations) dataset [Ros, 2016] is a
comprehensive photorealistic driving that includes semantic segmentation and depth prediction.
It comprises vast data, with over 200,000 labeled images captured under different lighting condi-
tions, weather conditions, seasons, and diverse urban environments such as European towns,
modern cities, highways, and green areas.

On the other hand, cityscape [Cordts, 2016] is a real-world urban dataset specifically desi-
gned for semantic segmentation tasks. It comprises images collected from various cities across
Germany, providing a realistic representation of urban environments.

Waymo has recently released its dataset [Sun, 2020], which was gathered from three cities in
the United States : San Francisco, Phoenix, and Mountain View. This dataset offers a wealth of
camera and LiDAR data, providing a rich source of real-world images for autonomous driving
research.

Additionally, several other datasets are available for autonomous driving research, each with
unique characteristics and focus. These include CamVid [Brostow, 2009] and Torontocity [Wang,
2016a], which are suitable for semantic segmentation tasks. The Robotcar dataset [Maddern,
2017] provides a diverse set of data collected from a sensor-rich autonomous vehicle operating in

76



5. Tools : Available Simulation Environments

urban environments. The Audi Autonomous Driving Dataset (A2D2) [Geyer, 2020] offers a large-
scale dataset with various sensor modalities, including camera, LiDAR, and radar. Appoloscape
[Huang, 2019] is a comprehensive dataset designed for autonomous driving, covering diverse
scenarios such as urban, highway, and nighttime driving. Lastly, the BDD100K - DeepDrive
Dataset from Berkeley [Yu, 2020] contains a vast collection of diverse driving scenes captured
from many dashcams.

While datasets provide valuable insights into autonomous driving, they cannot interact with
the environment. Driving simulators offer a solution to address this limitation. One such simu-
lator is Javascript Racer [Gordon, 2012], a simple driving game that can run on any computer.
Although it lacks photorealistic graphics, its simplicity makes it accessible for basic driving
simulations.

Another widely used driving simulator in research projects is Torcs [Wymann, 2000], which
offers a more realistic design than Javascript Racer. Torcs provides a richer driving experience
and a platform for testing and evaluating autonomous driving algorithms.

Additionally, a simulator called highway-env [Leurent, 2018] emulates the dynamics of a high-
way environment with multiple lanes and vehicles. It is specifically tailored for the development
and assessment of decision-making algorithms for autonomous vehicles.

Furthermore, VISTA [Amini, 2022] emerges as an open-source, data-driven simulator tai-
lored for the multi-sensor perception of embodied agents. Utilizing real-world data, VISTA
constructs ego-agent viewpoints as they navigate through dynamically evolving trajectories wi-
thin the environment. Equipped with efficient and high-fidelity sensors, this simulator facilitates
online perception learning, evaluation, and seamless deployment from simulation to real-world
scenarios.

For urban driving simulations, two popular open-source options are Carla [Dosovitskiy, 2017]
and Airsim [Shah, 2018]. Airsim, developed by Microsoft AI & Research, supports drone flight
and car driving simulations. On the other hand, Carla is an urban driving simulator supported
by Intel and Toyota. Both simulators offer photorealistic graphics and a wide range of features.

These simulators provide complex urban environments with realistic lighting and weather
conditions. They also support multiple sensors, including cameras, LiDARs, radars, and seman-
tic segmentation. This allows researchers to simulate various driving scenarios and test their
algorithms in a controlled and reproducible environment. Simulators play a crucial role in deve-
loping and evaluating autonomous driving systems, enabling researchers to iterate and improve
their algorithms before deploying them in real-world settings.

In this section, we have introduced various learning environments that range from simple
games to driving simulators. The literature offers a wide variety of choices for these environ-
ments. This chapter’s conclusion aims to provide a comprehensive overview of the state-of-the-art
approaches in autonomous vehicle projects, highlighting their potential impact on society while
considering ethical, societal, and technological considerations.
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6 Synthesis and Research Trails

In this literature review, we have explored various frameworks for autonomous driving and
navigation, which employ supervised learning, reinforcement learning, or a combination of both.
It is worth noting that only a few approaches focus on a complete image-based end-to-end so-
lution using reinforcement learning, and the few that do are limited to lane following [Kendall,
2019][Pan, 2017b]. For more complex driving tasks, such as urban driving, the state space is
simplified by using segmented bird view images [Agarwal, 2019], pre-training the agent with
supervised learning (CIRL [Liang, 2018]]), or pre-training a portion of the network using su-
pervised learning to predict affordances, which are then used as inputs for an RL agent [To-
romanoff, 2020]. The agent did not directly learn from images and reinforcement learning in
these cases. Therefore, this thesis aims to investigate the feasibility of end-to-end learning using
reinforcement learning. We can observe from the literature a widespread utilization of inter-
mediate affordances or representations, both in the context of imitation learning (IL) [Sauer,
2018][Chen, 2015][Al-Qizwini, 2017][Mehta, 2018] and reinforcement learning (RL) [Toromanoff,
2020][Li, 2019]]. These affordances can be categorized as either implicit or explicit. When ex-
plicit, affordances are typically driving-specific features (such as distance from the preceding
car, center of the road, etc.) that enable more transparent learning by mitigating the black-box
effect of neural networks. However, humans generate these affordances, so their selection could
bias the agent. For instance, is it necessary to predict that the car ahead is at a distance of 5.5
meters, or is it adequate to know that there is a car ahead and determine whether it is close or
far away ? On the other hand, intermediate representations are implicit affordances generated
during training for a specific task (such as semantic segmentation or reconstruction of the ori-
ginal image using a VAE). The agent utilizes this intermediate representation for autonomous
driving.

The literature shows various approaches for training affordances or intermediate representa-
tions, including training them simultaneously with the driving task (known as auxiliary tasks)
as in [Mehta, 2018][Hawke, 2020] or training them separately in a supervised way, which is
more common [Li, 2018][Li, 2019][Chen, 2019a][Toromanoff, 2020][Sauer, 2018][Chen, 2015][Al-
Qizwini, 2017]. In the latter case, the affordances can be used by a PID controller or as input for
a driving agent, which helps reduce the state space, especially in RL-based driving[Toromanoff,
2020]. However, decoupling perception and control could negatively impact the agent’s perfor-
mance and robustness since there is no direct mapping between image perception and driving
control. To overcome this limitation, end-to-end training using auxiliary tasks has been explo-
red in navigation tasks such as maze-solving [Jaderberg, 2016][Mirowski, 2016]. This approach
is promising but underexplored for complex tasks like autonomous driving with RL in an urban
environment.

This thesis uses reinforcement learning with localization, raw image input, and continuous
actions for conditional urban driving. Continuous actions were chosen to make the system more
realistic and not rely on predetermined discretization. However, due to the challenging nature
of the driving task, we will investigate methods to speed up learning and improve performance,
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including incorporating auxiliary tasks. Given the trial-and-error nature of reinforcement lear-
ning and the importance of safety, we will conduct our work in simulation. Specifically, we will
use the Carla simulator [Dosovitskiy, 2017] due to its urban driving environment, various sensor
options, and availability of evaluation benchmarks and challenges. It should be noted that only
some existing approaches use reinforcement learning, and none of them use end-to-end RL with
RGB visual input.

Carla provides a suitable environment for urban driving simulations due to its diverse sen-
sors and environmental variability. Additionally, it offers an autopilot mode and two evaluation
benchmarks (CoRL and NoCrash) that researchers can use to compare their algorithms. Carla
also hosts the Carla Challenge [CARLA Autonomous Driving Challenge 2019], which evaluates
the ability of algorithms to handle complex driving situations, such as intersections, overtaking,
and multi-lane driving. Furthermore, Carla has a large and growing community ; some have
created maps, including interactive traffic scenarios in [Osiński, 2020].

In the following chapter, we will present our initial work, which revolves around attaining
precise real-time localization of the kart through the utilization of cost-effective sensors.
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1. Introduction

1 Introduction

The world has experienced many autonomous vehicles (AVs) in recent years. AV will play
a significant role in preventing death and injuries caused by car accidents. However, numerous
challenges exist before AV can be introduced in the market and sold as a level five fully auto-
mated car [Yaqoob, 2019]. AV architecture comprises five functionalities : localization, percep-
tion, planning, control, and system management [Jo, 2014]. Nonetheless, localization is essential
functionality for an AV [Reid, 2019] since performing a safe trip from point A to point B while
recognizing its surroundings is crucial. This will allow the vehicle to avoid static and dynamic
obstacles and make different decisions, such as braking, accelerating, stopping, or lane changing.
Nowadays, AVs have different exteroceptive sensors (GPS, LiDAR, CAMERA, RADAR, etc.)
and proprioceptive sensors (vehicle motion sensor, IMU, etc.). However, none of these sensors can
perform a complete and error-free AV localization. For instance, LiDAR sensors achieved promi-
sing results, but they are expensive compared to other sensors, the camera does not perform well
when the weather is not clear [Liu, 2021], the GPS suffers from signal blockage [Kanhere, 2018],
IMU accuracy degrades with time, etc. Furthermore, the computational complexity required by
some of these sensors makes them hard to use on an embedded system for real-time localization.
In this sense, data fusion of different sensors can be used in AV localization. Multi-sensor data
fusion involves integrating data collected by multiple sensor devices to provide reliability and
robustness, decrease uncertainty, and increase performance accuracy in real-time [Bounini, 2016].

Sensor networks, robotics, video image processing, and self-driving vehicles are just a few
fields where data fusion systems are used today [Khaleghi, 2013]. These features are difficult to
eliminate using a single sensor data [Osório, 2019]. Several techniques have been developed to fuse
different data modalities in real-time for heterogeneous or homogeneous sensors [Nweke, 2019],
such as Kalman Filter (KF), Extended Kalman Filter (EKF), and Error State Extend Kalman
Filter (ES-EKF). In addition, methods using probability estimation techniques [Nweke, 2019],
machine learning, and neural networks have also been proposed. Although these approaches have
been successful, they suffer from many weaknesses : (i) some of them are limited to indoor robotic
applications ; (ii) when applied to AVs, the vehicles are equipped with expensive sensors such
as cameras and LiDAR that require powerful computational units not suitable for embedded
systems [DAlfonso, 2015][Marković, 2022][Shaukat, 2021] ; (iii) when conducted on a simulator
such as Carla, sensors’ data are always reliable and noise-free [Castillo-Torres, 2021].

To overcome these limitations, the main contributions of this chapter are threefold : 1) we
present the absolute localization for autonomous vehicles by integrating two low-cost sensors,
namely GPS and IMU. Our approach includes a high-precision calibration method for the IMU
sensor, noise reduction through a low-pass filter, and using ES-EKF to integrate IMU data with
GPS coordinates ; 2) we have verified that ES-EKF outperformed EKF on the Carla simulator
and achieved better localization results ; 3) finally, we performed diverse real-time urban driving
simulations utilizing the ICM 20600 IMU and Quectel L80-M39 GPS executed in a FreeRTOS
real-time environment, the STM32 Nucleo 1. These simulations yielded a 92% accuracy within

1. https ://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html/
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a confidence level of 0.5m distance threshold. The execution time, with an execution time of
approximately 20 µs in real-world industrial applications.

The remainder of this chapter is structured as follows : Section 2 focuses on the chapter’s
contribution, Section 3 provides a comprehensive overview of all experiments conducted, and
lastly, Section 4 concludes and offers perspectives for future considerations.

2 System Overview

The proposed approach for achieving accurate vehicle localization through the fusion of GPS
and IMU data is detailed in this section. Fig.4.1 visually represents the pipeline process involved
in the localization system. The methodology comprises three key steps, each contributing to the
overall accuracy of the localization process.

The first step focuses on IMU calibration, which is crucial for enhancing the precision of
angular velocity and linear acceleration measurements obtained from the IMU sensors. Through
a rigorous calibration process, offsets and biases inherent in the IMU sensors are carefully mea-
sured and compensated for. By rectifying these errors, the accuracy of IMU measurements is
significantly improved, laying the foundation for reliable and precise vehicle localization.

In the second step, a low-pass filter is employed to reduce the noise in the IMU data. Given
that IMU sensors are prone to noise, which can introduce measurement errors, the low-pass filter
effectively smooths the data by averaging old and new values with controlled weighting (α). This
noise reduction process further refines the accuracy of IMU measurements, contributing to the
overall accuracy of the localization system.

The final step in the pipeline involves the fusion of calibrated IMU and GPS data to estimate
the ego vehicle’s rotation, velocity, and position. This estimation process is achieved by applying
the Error State Extended Kalman Filter (ES-EKF). The ES-EKF is chosen for its robustness
in handling the non-linearities associated with vehicle motion. By integrating information from
IMU and GPS data, the ES-EKF provides reliable and accurate estimates of the vehicle’s motion
state, ultimately enhancing the accuracy of the vehicle localization system.

In the forthcoming sections, each part of the proposed method will be elaborated in detail.
This comprehensive analysis will illuminate the IMU calibration process’s technical complexity,
the low-pass filter’s noise reduction function, and the mathematical principles underlying the
ES-EKF filter for fusion and estimation. By dissecting each component, the analysis aims to offer
a deeper understanding of the approach’s implementation and its impact on achieving accurate
vehicle localization. Through this detailed examination, potential challenges and limitations
will also be explored, providing valuable insights for further research and improvements in the
localization system.

2.1 IMU calibration

The calibration removes the offsets for the accelerometer and the gyroscope. It is performed
stationary on a flat surface where the orientation is precisely known. This known orientation,
often referred to as "ground truth".
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Figure 4.1 – System diagram
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Ground truth refers to a known and accurate reference point against which the sensor mea-
surements are compared. Since the sensor is placed on a perfectly flat surface (0 degrees of tilt),
this established plane serves as the undisputed, true representation of the sensor’s orientation.
By comparing the sensor readings during calibration with this known ground truth (0 degrees),
any biases or offsets in the accelerometer and gyroscope can be identified and corrected. This
ensures that the sensors provide more accurate measurements during operation.

2.2 Low pass filter

A low − pass filter is an electronic filter that keeps the low-frequency signals unaffected while
reducing the amplitude of the signals above the cutoff frequency. The low-pass filter is a series
of resistors, a capacitor that absorbs high-frequency signals and blows low frequencies, allowing
them to pass through the load in parallel to the capacitor. The cutoff frequency is determined
by the time constant t : t = rc, where r is the resistance and c the capacitance [Bozic, 2018].
This time constant is directly related to the cut-off frequency fC = 1/(2πt). Generally, a higher
time constant t corresponds to a lower cut-off frequency fC .

We have applied the low pass filter to the accelerometer to minimize the unwanted effect
of noise. A simple way to apply such a filter is to take a percentage of the old value with the
percentage remainder of the newly measured value :

y[n] = α× y[n− 1] + (1− α)× x[n], (4.1)

where y represents the filtered output of the system, and x represents the accelerometer data.
α is defined as :

α = t

t + dt
(4.2)

The interrelation between the equation t = rc and the filtering equation is established
through the determination of the parameter α. In the filtering equation, α is derived as t

t+dt ,
wherein t represents the time constant of the filter and dt denotes the sample period. By manipu-
lating the equation t = rc, we can express t as a function of r and c. Substituting this expression
for t into the calculation of α engenders a relationship between the intrinsic properties of the
RC circuit, namely resistance and capacitance, and the filtering parameter α. This correlation
enables the formulation of the filter design based on the characteristics of the RC circuit and
the desired filtering attributes.

2.3 ES-EKF

The ES-EKF is a minimal filter that guarantees an effective linearization at all costs. The
Jacobians matrix is easily calculated since it is based on the error state, which is small compa-
red to the nominal state, as in EKF [Madyastha, 2011]. KF corrections are small in ES-EKF
compared to EKF or UKF, which results in a lower prediction rate. We have conducted some
experiments and proved that ES-EKF outperforms EKF compared to the Carla simulator in a
perfect scenario, where the sensor data are noise-free. This experiment will be detailed in the
next section.
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The architecture of ES-EKF in our setup is loosely coupled, allowing for efficient integration
of sensor data from different sources. The IMU sensor installed on the car will produce data
at a high rate (100hz). This data is collected into a large non-linear nominal-state X without
any noise and uncertainties and is used to calculate the measurement matrices. However, the
accumulated errors will be collected in a smaller one, the linear error-state δx, and predicts
the Gaussian estimate from δx only, since GPS data are slower compared (10hz) to IMU. Once
the system has captured the GPS sensor data, the correction is completed by ES-EKF, which
delivers a posterior Gaussian estimate of δx. Henceforth, δx means are inserted into X. δx is
reset to zero, its covariances matrix is updated, and the whole procedure is restated until no
further data is gathered.

In our ES-EKF architecture, synchronization between the GPS and IMU sensors is crucial
for accurate state estimation. This synchronization is achieved through the alignment of their
respective timestamps. The IMU sensor, operating at a high rate of 100 Hz, and the GPS sensor,
operating at a slower rate of 10 Hz, each provide data with timestamps that are synchronized
to a common reference point.

By aligning the timestamps of both sensors, we ensure that the measurements from each
sensor correspond to the same moment in time, facilitating the integration of data from mul-
tiple sources into the state estimation process. This synchronized data fusion enables ES-EKF
to effectively leverage information from both sensors to produce more accurate and reliable es-
timates of the vehicle’s state, even in dynamic environments with varying rates of sensor data
acquisition.

Additionally, the initialization of the covariance matrix is a critical step for accurate state
estimation. To ensure an appropriate initialization, we utilize values obtained from the sensors’
datasheets. These datasheets provide specifications regarding each sensor’s noise characteristics
and performance metrics. Furthermore, to handle matrix conditioning due to handling errors
rather than values, we have incorporated regularization techniques. Specifically, we add a small
amount of diagonal noise to the covariance matrix to prevent it from becoming singular.

By leveraging these values from the sensors’ datasheets, we initialize the covariance matrix
with appropriate estimates of the uncertainties associated with each sensor’s measurements.
This initialization process helps establish a reliable foundation for the covariance matrix, which
plays a key role in quantifying the uncertainty in the state estimates generated by the ES-EKF.

Moreover, the choice of representing orientation using quaternions in the ES-EKF further
enhances its performance. Quaternions offer a compact representation of orientation, avoiding
issues such as gimbal lock and ensuring smooth interpolation between orientations. Their nu-
merical stability and convenient algebraic properties simplify calculations involving rotations,
contributing to the overall robustness and efficiency of the state estimation process [Sola, 2017].

After reading the IMU data, true-acceleration at and true-angular rate wt are obtained in
the form of noisy sensor readings am and wm with Rt ≜ R {qt}. In [Sola, 2017], the readers can
find the detailed calculations. In short, the true kinematic equations are :
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Table 4.1 – Mathematical variables

xt, x, δx true-state, nominal-state, error-state
pt, p, δp true-position, nominal-position, error-position
vt, v, δv true-velocity, nominal-velocity, error-position
qt, q, δq true-quaternion, nominal-quaternion, error-quaternion

Rt, R, δR true-rotation matrix, nominal-rotation matrix, error-rotation matrix
δθ error-angles vector

abt, ab, δab true-accelerometer bias, nominal-accelerometer bias, error-accelerometer bias
aw noise accelerometer bias

wbt, wb, δwb true-Gyrometer bias, nominal-Gyrometer bias, error-Gyrometer bias
ww noise Gyrometer bias
gt true-gravity

at, am, an true-acceleration, measured acceleration, noise acceleration
wt, wm, wn true-angular rate, measured angular rate, noise angular rate

ṗt = vt (4.3)

v̇t = Rt (am − abt − an) + gt (4.4)

q̇t = 1
2qt ⊗ (ωm − ωbt − ωn) (4.5)

ȧbt = aw (4.6)

ω̇bt = ωw (4.7)

ġt = 0, (4.8)

Where the nominal-state kinematics, without any noise, corresponds to :

ṗ = v (4.9)

v̇ = R (am − ab) + g (4.10)

q̇ = 1
2q ⊗ (ωm − ωb) (4.11)

ȧb = 0 (4.12)

ω̇b = 0 (4.13)

ġ = 0, (4.14)

And the error-state kinematics :
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δ̇p = δv (4.15)

δ̇v = −R [am − ab]× δθ −Rδab + δg−Ran (4.16)

δ̇ = − [ωm − ωb]× δθ − δωb − ωn (4.17)

δ̇ab = aw (4.18)

ω̇b = ωw (4.19)

δ̇g = 0. (4.20)

After examining error-state equations, the Jacobian metrics are :

δ̂x← Fx (x, um) · δ̂x (4.21)

P← FxPF⊤x + FiQiF⊤i (4.22)

where δx ∼ N{δ̂x, P}; Fx and Fi are the jacobians of f ().
When GPS data is received, the ES-EKF is corrected. Consider the GPS equation as such.

y = h (xt) + v (4.23)

Where h() is the general nonlinear function of the true state, and v is a white Gaussian noise
with covariance V

v ∼ N{0, V} (4.24)

ES-EKF estimates the error, and the correction equations are as follows :

K = PH⊤
(
HPH⊤ + V

)−1
(4.25)

δ̂x← K (y− h (x̂t)) (4.26)

P← I−KH)P (4.27)

This will lead to the Jacobian matrix H to be defined concerning the error state δx :

H ≡ ∂h

∂δx

∣∣∣∣
x

(4.28)

And finally, the error state mean gets resets.

3 Experiments and Results

In this section, we explore the implementation and outcomes of our study. The focal points
of our investigation lie in the detailed examination of two components : the Carla Simulation
and the Real Test. Each subsection details the distinct environments, methodologies employed,
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and the results procured. A central focus lies in the critical evaluation and interpretation of the
obtained results, providing valuable insights into the practical implications and effectiveness of
the proposed methodologies across simulated and real-world contexts.

3.1 Carla Simulation

3.1.1 Simulation Environment

To compare ES-EKF and EKF, a simulation was conducted on the Carla simulator [Dosovits-
kiy, 2017], an experimental platform with ego vehicles equipped with GPS and IMU. The GPS
provides position measurements at a rate of 10Hz, while the IMU sensor measures accelerometer,
gyroscope, and compass at 100Hz. Every 100 updates of IMU navigation, ten GPS difference
observations are obtained. The localization estimation algorithm, implemented in Python 3.7,
ran on a computer with CPU i7-7700 @ 4.2 GHz and 16 GB RAM. CARLA simulates 3D ob-
jects like cars, pedestrians, and infrastructure, using a client-server architecture based on Unreal
Engine 4 (UE4) [Sanders, 2016]. CARLA provides pre-defined road networks with specific lane
markings and traffic rules, allowing realistic testing of autonomous vehicle behavior.

3.1.2 Simulation Results

Fig. 4.2 and Fig. 4.3 show the impact of GPS and IMU sensor fusion using error state
extended Kalman filter (ES-EKF) on enhancing the prediction of the x and y axis of velocity and
yaw. The graphs show that the ES-EKF significantly improves the accuracy of the predictions,
especially in the case of yaw.

In 4.2 and 4.3, the blue line shows the x and y-axis predictions of velocity and yaw using
only the IMU sensor. The red line shows the predictions using the ES-EKF. As can be seen,
the ES-EKF predictions are much more accurate, especially in the case of yaw. The accuracy of
the predictions improves because the ES-EKF considers the system’s non-linearities. The GPS
sensor provides linear measurements, but the vehicle’s actual motion is non-linear. The ES-EKF
linearizes the system around the current state estimate, which allows it to track the vehicle’s
non-linear motion more accurately. The ES-EKF is a powerful tool for enhancing the accuracy
of predicting the x and y axis of velocity and yaw. It is beneficial in applications where the
accuracy of the predictions is critical, such as autonomous vehicles. Here are some additional
details about the image :

— The graphs show the predictions for 10 seconds.

— The x and y axis of velocity is measured in meters per second.

— The yaw is measured in degrees.

— The error bars show the standard deviation of the predictions.

The first thing to note is that the ES-EKF predictions are much smoother than the GPS predic-
tions. This is because the ES-EKF can filter out the noise in the GPS measurements. Various
factors, such as atmospheric interference and the inaccuracy of the GPS satellites, cause noise
in the GPS measurements. The ES-EKF can filter out this noise by using a Kalman filter.
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The second point to consider is that ES-EKF predictions tend to be more accurate than those
solely based on GPS data. This is particularly evident in the prediction of yaw angles. While
GPS sensors excel in measuring the vehicle’s position, they may not offer the same precision
when it comes to yaw angles. On the other hand, IMU sensors are inherently better at mea-
suring yaw angles but may exhibit drift or inaccuracies over prolonged periods. By leveraging
the complementary strengths of both sensors, the ES-EKF effectively combines their inputs to
generate more precise predictions of the vehicle’s yaw angles.

The third thing to note is that the error bars are smaller for the ES-EKF predictions than
for GPS predictions. This means that the ES-EKF predictions are more reliable. The error bars
show the standard deviation of the predictions. The smaller the error bars, the more confident
we can be in the predictions. Overall, the graph analysis shows that the ES-EKF significantly
improves the accuracy of the x and y-axis predictions of velocity and yaw. The ES-EKF is a
powerful tool for enhancing the accuracy of the prediction of these quantities.

Figure 4.2 – IMU predictions comparing to ground truth

The first experiment depicted in Fig.4.4 compares the performance of EKF and the ES-EKF
on a simulated dataset. This research was conducted using the CARLA simulator, renowned for
its realistic emulation of driving scenarios, rendering it a valuable tool for developing and testing
autonomous vehicles.

The experiment outcomes demonstrated that the ES-EKF exhibited marginal enhancements
in position estimation accuracy compared to the EKF estimations. This improvement can be at-
tributed to the ES-EKF’s adeptness in modeling the system’s inherent non-linearities. However,
it was observed that the ES-EKF also resulted in a slight increase in orientation error compa-
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Figure 4.3 – ES-EKF predictions comparing to ground truth

red to the EKF estimations. This is potentially due to the ES-EKF’s heightened sensitivity to
measurement noise.

The marginal increase in orientation error observed in the ES-EKF is unsurprising, conside-
ring the experiment utilized noise-free sensor data. Consequently, the ES-EKF’s sensitivity to
measurement noise became more apparent. Nonetheless, the ES-EKF still exhibited a marginal
improvement in orientation estimate accuracy compared to the EKF estimations.

In summation, the findings of this experiment showcase the promising potential of the ES-
EKF as a valuable approach to enhance the accuracy of vehicle state estimation. However, it is
essential to underscore that further research is warranted to determine the optimal configurations
of the ES-EKF for diverse real-world applications.

In addition, using a simulated dataset may limit the direct applicability of these findings to
real-world scenarios. Nevertheless, this experiment serves as a valuable foundation for assessing
the performance of the ES-EKF in varied practical contexts. Furthermore, it is essential to ack-
nowledge that employing noise-free sensor data in this research may underestimate the ES-EKF
error in real-world conditions. Despite this, the experiment effectively offers valuable insights
into the potential benefits of the ES-EKF in augmenting vehicle state estimation accuracy.

One must also consider that the ES-EKF, a more complex algorithm than the conventional
EKF, demands increased computational resources. However, the potential gains in estimation
accuracy may justify the additional computational overhead, substantiating the ES-EKF as an
attractive option in specific applications.

90



3. Experiments and Results

Figure 4.4 – Carla simulation results

3.2 Real Test

The application is tested within real-world conditions during the Real Test phase. This
segment represents the culmination of theoretical frameworks and simulation endeavors, un-
dertaking the empirical domain to assess the system’s viability. The evaluation unfolds in two
primary facets : the Real Test Environment and the subsequent calibration and filtering proce-
dures applied to Inertial Measurement Units (IMUs). This validation was conducted in Vallauris,
France.

3.2.1 Real Test Environment

The architecture described in Fig.4.6 involves the utilization of FreeRTOS, a real-time ope-
rating system, on the Environmental Interface Card (EIC). Its primary function is to recover
real-time data sent by the GPS and IMU sensors and inject them into the ES-EKF. The ES-
EKF processes this data, generating advanced GPS coordinates, which are then transmitted to
the Electronic Control Unit (ECU) Nvidia Jetson TX2 via a Universal asynchronous receiver
transmitter (UART). The IMU used in the setup is ICM 20600, and the GPS sensor is Quectel
L80-M39, both interfaced on the EIC.

Implementing FreeRTOS in a real-time environment, coded in C language on the STM32,
ensures timely data retrieval and processing on the EIC. The NUCLEO-H743ZI kit facilitates
data acquisition from the GPS at 10 Hz via UART and from the IMU at 100 Hz via the Serial
Peripheral Interface (SPI). The efficient data transmission between the EIC and ECU enables
accurate localization and navigation for the autonomous vehicle.

This comprehensive setup showcases a sophisticated and efficient approach to vehicle lo-
calization and control, demonstrating the potential for practical implementation in real-world
autonomous vehicle systems. It highlights the significance of employing a real-time operating
system like FreeRTOS to ensure timely data processing and sensor fusion, enabling precise mo-
tion estimation for reliable navigation. The integration of low-cost GPS and IMU sensors and
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advanced filtering techniques exemplify the system’s robustness and accuracy in various sce-
narios. This architecture advances modern transportation and mobility technologies, offering
promising prospects for future research and applications in autonomous navigation systems.

Figure 4.5 – EIC and ECU

Figure 4.6 – EIC and ECU

3.2.2 IMU Calibration and Filtering

Calibration of IMUs is a fundamental process aimed at eliminating sensor offsets in accelero-
meters and gyroscopes arising from manufacturing tolerances to enhance measurement accuracy.
The calibration is conducted under stationary conditions on a known plane with a predetermi-
ned degree of inclination, considering that the offsets of the accelerometer and gyroscope are
contingent upon the sensor orientation. To achieve calibration, the vehicle is positioned flat, sta-
tionary, in neutral gear, and at a red light, and the sensor values are acquired over a designated
time frame and subsequently averaged, as shown in Table 4.2 :

The obtained offset values were relatively close to those mentioned above throughout the
vehicle’s journeys. However, it was evident that these values could exhibit substantial variations
contingent upon the IMU’s position, mainly attributable to the influences of gravitational and
magnetic fields. Consequently, it is imperative to recalculate the offsets at the initiation of each
journey to ensure their accuracy concerning the IMU’s prevailing position. The calibration’s
efficacy is validated through a comparative analysis of the accelerometer and gyroscope recei-
ved signal values before and after calibration, juxtaposed against ideal values that would be
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Table 4.2 – IMU Calibaration

Accelerometer X 0.266818 m/s2
Accelerometer Y 0.180452 m/s2
Accelerometer Z -0.089558 m/s2

Gyroscope X -1.237829 deg/s
Gyroscope Y -2.018467 deg/s
Gyroscope Z -0.798545 deg/s

Figure 4.7 – Example of IMU before calibration

attained without offsets. Notably, the pre-calibration values deviate significantly from the ideal
values, attributable to non-zero offsets. Conversely, post-calibration, the values exhibit remar-
kable proximity to the ideal values, substantiating the successful removal of offsets through the
calibration process. Fig.4.7 shows the accelerometer and gyroscope received signal values before
calibration compared to the ideal values.

In summary, the calibration process exemplifies its pivotal role in offset elimination to en-
hance the reliability and accuracy of IMU measurements. The dependence of offsets on the
IMU’s position underscores the necessity for periodic recalibration to ensure accurate readings
in varying operational conditions. Moreover, the calibration’s evident success, as manifested in
the improved correspondence with ideal values, bolsters the credibility and effectiveness of this
essential calibration procedure for IMUs.

3.2.3 Low-Pass Filter

Fig.4.8 illustrates the outcomes of applying various low-pass filters to accelerometer data,
highlighting the filter’s efficacy in noise reduction. The low pass filter, a straightforward tech-
nique, operates by averaging the previous and current data points, with the α value regulating
the weight attributed to the previous value. The image displays multiple attempts to identify
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Figure 4.8 – Different attempts for α selection

the optimal α values, with the blue line denoting the unfiltered data and other lines representing
data subjected to distinct low-pass filters, each associated with a specific α value.

The visual analysis indicates that an α value around 0.6 yields the best fit, signifying that
approximately 80% of the weight is ascribed to the previous value. In contrast, 20% is allocated
to the current value. This configuration establishes an advantageous equilibrium between noise
reduction and signal preservation, offering a reliable outcome.

Undoubtedly, the low-pass filter significantly impacts noise reduction in the accelerometer
data. In contrast to the highly noisy unfiltered data, the application of the filter results in
smoother data, achieved through the elimination of high-frequency noise components.

However, it is essential to note that the low pass filter slightly affects the signal in the data.
While the filtered data may be slightly less accurate than the unfiltered data, the difference is
not substantial, corroborating the filter’s capability to maintain overall data fidelity.

In conclusion, the low pass filter is a valuable tool for mitigating noise in accelerometer data.
The optimal α value, approximately 0.6 in this case, is a practical choice, striking an appropriate
balance between noise reduction and signal preservation. It is essential to recognize that the α

value can be adjusted depending on the specific application’s priorities. Higher α values prioritize
noise reduction, while lower values prioritize signal preservation. Moreover, the low pass filter
serves the secondary purpose of smoothing out data, enhancing its utility in scenarios where
the signal might be less distinct. As a result, the low pass filter emerges as an accessible yet
potent solution for noise reduction in accelerometer data analysis, contributing to enhanced data
accuracy and reliability across various applications.

Fig.4.9 depicts a comparative analysis of the accelerometer and gyroscope received signal
values to the ideal value after applying a low pass filter with α values ranging from 0.6 to 0.7.
The low pass filter has yielded noise reduction in the data. The filtered data exhibits a smoother
trajectory than the unfiltered data, and the disparity between the filtered data and the ideal
value has been substantially minimized.
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Figure 4.9 – IMU data after applying low pass filter

Furthermore, the low pass filter has effectively bridged the discrepancy between the IMU-
calibrated and ideal values. This outcome can be attributed to the filter’s efficacy in eliminating
noise, which previously contributed to the observed difference between the two datasets.

The low-pass filter has significantly enhanced the accuracy of the accelerometer and gyro-
scope data. When juxtaposed against the unfiltered data, the filtered data showcases superior
smoothness and accuracy, and the deviation from the ideal value has been substantially mitiga-
ted. This corroborates the filter’s potency in promoting the accuracy and reliability of motion
measurements from the IMU.

Additionally, it is imperative to underscore the low pass filter’s simplicity and efficacy in
reducing noise in accelerometer and gyroscope data. The α value in the interval [0.6 ; 0.7] appears
particularly suitable, as it strikes an appropriate balance between noise reduction and signal
preservation, optimizing the filter’s performance. Moreover, the filter’s ability to smoothen out
data holds valuable applications, especially in scenarios where the signal may not be distinctly
discernible.

The image also illustrates the low pass filter’s capacity to bridge the gap between IMU-
calibrated and ideal values. This signifies the filter’s valuable role in enhancing the calibration
process by minimizing discrepancies induced by noise, resulting in more accurate motion mea-
surements.

In conclusion, the low pass filter has proven to be a potent and versatile tool in motion data
analysis. Its effectiveness in noise reduction, signal smoothing, and facilitating calibration un-
derscores its significance in enhancing the accuracy and reliability of IMU-derived data, thereby
contributing to diverse fields such as navigation, robotics, and motion tracking.
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Figure 4.10 – Data fusion without IMU calibration

3.2.4 Data Fusion Results

In the southeastern region of France, specifically in Vallauris, Alpes-Maritimes department,
Provence-Alpes-Côte d’Azur region, we conducted a series of experiments to evaluate the pro-
posed system’s performance. The system was mounted on a vehicle, and various scenarios were
tested to assess the reliability and effectiveness of the proposed algorithm.

Throughout all the tests, we utilized a color-coded representation for the data visualization :
red dots represented IMU data, blue dots represented GPS data, and green dots represented the
data fusion results.

We aimed to demonstrate the data fusion results without IMU calibration in the initial at-
tempt. The scenario involved a simple straight line without curves, which ideally yields accurate
results for the system. However, upon analyzing Fig.4.10, it is evident that the data fusion re-
sults deviated from the road track, and the accuracy compared to the real-world ground truth
was below 60%. This percentage represents the proportion of data points where the estimated
position (X, Y) from the ES-EKF falls within a confidence level of a 0.5m distance threshold of
the corresponding ground truth position.

The discrepancy in the results can be attributed to the absence of IMU calibration, which is
crucial for enhancing the accuracy of the fusion process. The uncalibrated IMU data introduces
errors and inconsistencies, leading to inaccurate fusion outcomes. In a straightforward straight-
line scenario, one would expect more accurate results. Future iterations of the system should
incorporate IMU calibration techniques to unlock its full potential and enhance its applicability
in various practical settings.

This study examines the effects of applying a low pass filter to the IMU accelerometer and
gyroscope data. The objective is to assess the impact of calibration on the system’s performance,
as depicted in Fig.4.11. Notably, the system’s ability to achieve high accuracy in various scena-
rios, including straight lines and roundabouts, is evaluated by comparing the data fusion results
to the actual trajectory traced by the vehicle.

A significant improvement in accuracy is observed upon applying the low-pass filter. The
system exhibits remarkable performance in straight-line trajectories and complex roundabout
maneuvers, achieving accuracy levels of up to 96% calculated by measuring the proportion of
data points where the estimated position (X, Y) from the ES-EKF falls within a confidence level
of a 0.5m distance threshold of the corresponding ground truth position.

The effectiveness of the low pass filter can be attributed to its capability to reduce noise and
enhance data smoothness. The filter successfully attenuates high-frequency noise by averaging
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Figure 4.11 – Data fusion with IMU calibration

the old and new values with controlled weighting (α), resulting in a more refined and reliable
data fusion process.

Moreover, implementing IMU calibration plays a pivotal role in enhancing accuracy. By
removing sensor biases and inaccuracies, calibration ensures that the IMU data is aligned with
the actual motion of the vehicle. Consequently, the fusion results demonstrate higher fidelity to
the actual trajectory.

The obtained accuracy levels indicate that the proposed system, equipped with the low pass
filter and calibrated IMU, can provide highly accurate motion estimation. Such precision is
crucial in various applications, including autonomous navigation, vehicle tracking, and robotics,
where accurate trajectory information is essential for safe and effective operation.

It is worth noting that while the presented results showcase the system’s remarkable perfor-
mance, further investigations may be warranted to explore the impact of different filter settings
(α values) and calibration techniques on performance under diverse environmental conditions
and driving scenarios.

Overall, the findings of this study underscore the significance of employing low-pass filters
and IMU calibration in motion estimation systems. By mitigating noise and sensor inaccuracies,
these techniques pave the way for more reliable and accurate trajectory predictions, enhancing
the overall efficacy and applicability of the system in real-world settings. Future research may
explore integrating additional sensor data and advanced filtering algorithms to improve the
accuracy and robustness of motion estimation systems.

In this research, we sought to assess the robustness of our filter by subjecting it to a more chal-
lenging test scenario. To complicate the test, we deliberately reduced the frequency of the GPS
updates to 0.2 Hz, simulating an environment with intermittent or blocked GPS signals. Despite
this reduction in GPS updates, the system demonstrated remarkable performance, achieving
an accuracy level of 92% as evidenced in Fig.4.12 within the confidence level of 0.5m distance
threshold.

The ability of our filter to maintain high accuracy under these conditions highlights its
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Figure 4.12 – GPS blocked for 5 seconds

resilience in handling adverse situations with limited or interrupted GPS data. By leveraging
the low-pass filter and IMU calibration, the system successfully compensated for the reduced
GPS frequency, preserving the accuracy of the data fusion process.

During the test, the reduced GPS updates presented a challenge in maintaining accurate
trajectory information, as the system had to rely more heavily on IMU data. The low pass filter
played a pivotal role in attenuating noise and extracting valuable information from the IMU
sensors, which, when combined with the calibrated data, led to the accuracy achieved.

The 92% accuracy level indicates the filter’s capacity to make reliable predictions, even when
GPS signals are sparse or temporarily blocked. Such robustness is highly desirable in real-world
applications, especially in urban environments with tall buildings, tunnels, or other obstructions
that can obstruct GPS signals.

It is essential to highlight the potential implications of these findings for autonomous na-
vigation and other safety-critical applications. A filter with high robustness, such as the one
demonstrated in this study, can instill confidence in the system’s ability to handle challenging
environments effectively.

Future research could explore a broader range of scenarios to validate further and generalize
our findings, varying the duration and frequency of GPS blockages and testing the filter’s per-
formance under different driving conditions and terrains. Additionally, assessing the impact of
varying filter parameters and calibration settings would offer valuable insights into optimizing
the system’s robustness and accuracy in various operational contexts.

In conclusion, the results obtained in this study underscore the robustness of our filter
in handling situations with reduced GPS frequency. The high accuracy achieved, even under
challenging conditions, reflects the efficacy of the low pass filter and IMU calibration in preserving
the system’s accuracy and reliability. These findings have significant implications for autonomous
navigation and related fields, where robust motion estimation is essential for safe and efficient
operation in real-world environments.

In the concluding phase of our experimentation, we designed the final test to assess the
robustness of our filter under the most challenging conditions. The primary objective was to
subject the system to an extensive evaluation encompassing diverse scenarios. As anticipated,
the system exhibited remarkable resilience, achieving an accuracy of 90% while maintaining an
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efficient execution time of approximately 20 µs in the same confidence level of 0.5m. The test
was conducted with a notably low GPS update frequency of 0.05 Hz, and the road configuration
comprised a complex combination of a roundabout, a straight line segment, and an intersection,
as illustrated in Fig.4.13.

The system’s robustness in maintaining high accuracy despite the infrequent GPS updates
signifies the effectiveness of our low pass filter and IMU calibration techniques. By judiciously
fusing the IMU data with the limited GPS information, the filter mitigated the adverse effects
of reduced GPS frequency and generated reliable motion estimations.

The test’s mix of various road scenarios, including a roundabout, a straight line, and an
intersection, introduced complexities that could challenge the accuracy and consistency of the
system. However, the filter’s performance remained steady, delivering accurate results across
these diverse scenarios.

The execution time of approximately 20 µs indicates our filter’s computational efficiency.
The swift execution time is essential, particularly in real-time applications, where rapid data
processing is crucial for timely decisions.

The high accuracy and efficient execution time demonstrated by our filter in this rigorous
test scenario have significant implications for autonomous navigation and other safety-critical
applications. The system’s robustness in handling diverse road configurations and low GPS
update rates enhance its applicability in real-world environments with challenging conditions,
such as urban landscapes with signal obstructions and complex road layouts.

The 90% accuracy achieved in this comprehensive evaluation bolsters confidence in the filter’s
ability to deliver reliable motion estimations, even in scenarios with limited GPS data. The suc-
cessful performance under these demanding conditions underscores the practicality and efficacy
of our filter for real-world deployment within the confidence level of 0.5m distance threshold.

In conclusion, the final test comprehensively assessed our filter’s robustness, accuracy, and
computational efficiency. The system showcased remarkable resilience, achieving high accuracy
and rapid execution time despite reduced GPS updates and a diverse set of road scenarios. These
findings reinforce the potential of our filter for various applications, particularly in autonomous
navigation and other safety-critical domains where precise and efficient motion estimation is
of utmost importance. Future research could explore further optimizations and validate the fil-
ter’s performance in large-scale real-world scenarios to strengthen its application in autonomous
systems and related fields.
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Figure 4.13 – GPS blocked for 20 seconds

4 Conclusion

In conclusion, vehicle localization is a crucial aspect of autonomous navigation, demanding
precise and reliable position estimation for safe and efficient operation. In this chapter, we pre-
sented a hybrid solution that capitalizes on the strengths of low-cost GPS and IMU sensors
through a Kalman filter-based fusion approach. The proposed hardware design encompassed a
low-cost GPS module, an IMU sensor, and a microcontroller. In contrast, the software design
incorporated a Kalman filter algorithm within a real-time operating system. Comparative evalua-
tions on the Carla simulator demonstrated the proposed method’s superior accuracy in diverse
scenarios compared to the traditional Extended Kalman Filter (EKF). Real-time executions in
an urban driving context confirmed the method’s performance, achieving over 92% accuracy
across various configurations and driving maneuvers with the confidence level of 0.5m distance
threshold. The proposed solution’s real-world deployment in an autonomous vehicle further vali-
dated its reliability and applicability in industrial settings. The method exhibited robustness in
different environments, reaffirming its potential for practical implementation. The contribution
of this chapter lies in providing a promising approach for vehicle localization that fuses GPS
and IMU measurements through a Kalman filter-based fusion scheme. The accuracy, reliability,
and implementation feasibility on low-cost hardware make this solution particularly appealing
for autonomous vehicle systems. Future research directions could explore further optimizations
to enhance the system’s performance in challenging conditions and expand its applicability in
large-scale urban environments. Additionally, investigations into incorporating additional sensor
data, such as LiDAR or camera inputs, could further enrich the proposed method’s localization
capabilities.

In conclusion, the presented solution is valuable to vehicle localization, offering a robust,
accurate, and cost-effective approach suitable for practical deployment in autonomous navigation
systems. With continued advancements and refinements, this hybrid solution holds promise for
addressing the demands of real-world autonomous vehicles, driving this critical technology’s
advancement in modern transportation and mobility systems. In the next chapter, we will explore
decision-making for automated parking systems (APS) and propose an advanced autonomous
driving system that takes complete control over a vehicle to perform parking maneuvers with

100



4. Conclusion

full autonomy, ensuring user security, time efficiency, and optimized parking space utilization.
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1 Introduction

The global automotive industry has witnessed a substantial increase in vehicles compared
to the population in recent years, resulting in an augmented risk of road accidents. Advanced
Driver Assistance Systems (ADAS) for autonomous driving have been introduced to prevent
fatalities and injuries caused by car accidents [Farag, 2019]. These ADAS systems, equipped
with advanced sensors like radar, cameras, and LiDAR, offer various applications, including lane
keep and correction, pedestrian detection and avoidance, emergency braking, and Automated
Parking Systems (APS).

This chapter centers explicitly on APS, an advanced autonomous driving system that takes
complete control over a vehicle to perform parking maneuvers with complete autonomy, ensuring
user comfort, security, time efficiency, and optimized parking space utilization. APS’s architec-
ture comprises three fundamental methods : parking spot exploration, path planning, and path
tracking. While APS is not a novel concept, various path planning methods have been explored,
such as geometric, sampling, and numerical optimization techniques [Fraichard, 2004 ; Gómez-
Bravo, 2001 ; Lini, 2011]. Path tracking methods, like the Ackerman steering model and simple
kinematics, have also been employed [Weinstein, 2010]. However, these conventional approaches
often do not account for the European standard BS ISO 16787-2017 Intelligent Transport Sys-
tems, which mandates APS to have an inclination angle restricted to ±3◦ and a deviation of less
than 0.2 meters [Standardization, 2017b].

This study explores the potential of leveraging recent advancements in machine learning, par-
ticularly deep reinforcement learning (DRL), to enhance APS performance and overcome the
limitations of traditional methods. DRL is an actively researched area where an agent learns to
behave intelligently by exploring its environment, taking actions, and receiving rewards [Sutton,
2018]. In this context, DRL trains an agent to perform the auto parking task. Recent develop-
ments in artificial neural networks and computational processing capabilities have resulted in
significant breakthroughs in various domains, such as image classification and natural language
processing. DRL has achieved human-level control in diverse fields, including Atari video games
[Mnih, 2015], Go [Schrittwieser, 2020], and robot manipulation [Schulman, 2017].

While previous works have demonstrated promising results in auto parking tasks using DRL
[Folkers, 2019 ; Schulman, 2017 ; Fehér, 2019 ; Fehér, 2020], most of them only considered static
obstacles in the environment, neglecting dynamic obstacles and the braking constraint was not
addressed. Furthermore, despite the success of DRL in simple domains like Atari video games,
it still faces challenges in adapting to complex real-world environments, such as APS, due to the
difficulty in formulating a suitable reward function [Codevilla, 2019].

To address these challenges, this chapter presents our contributions to enhance APS perfor-
mance : (i) Utilizing a DRL algorithm, PPO, to define a Markov decision process that enables
the agent to explore empty parking spots effectively, plan optimal paths, and park vehicles sa-
fely while avoiding both static obstacles like parked cars and traffic signs and dynamic obstacles
like moving cars and pedestrians, with the ability to accelerate or brake when necessary ; (ii)
Introducing a dynamic adjustment of the reward function, leveraging intrinsic reward signals to
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facilitate exploration during training and improve the DRL algorithm ; (iii) Reducing training
time by integrating IL with DRL, enabling the agent to learn from expert demonstrations ; (iv)
Developing a task-specific curriculum learning approach to train the agent in highly complex en-
vironments effectively ; (v) Conducting extensive experiments to demonstrate the effectiveness of
the proposed model, achieving a remarkable 90% success rate in executing sophisticated control
commands, with 97% of them accurately aligned with parking spots having an inclination angle
> ±0,2◦ and a deviation > 0.1 meter.

Through these contributions, we aim to demonstrate the potential of DRL in APS capabilities
and advancing the field of autonomous parking systems, paving the way toward safer and more
efficient parking solutions.

Figure 5.1 – DPPO-IL architecture

2 Statment

This research presents a complex and challenging autonomous parking scenario for an agent.
The task involves the agent beginning from a randomly positioned and oriented location within
the blue zone (Fig. 5.2). The parking space is situated randomly in the red zone. The agent
aims to park the vehicle within a minute, ensuring proper alignment while adhering to all
the test standards specified in ISO 16787 :2017. The maximum allowable distance of 70 meters
between the vehicle’s starting position and the targeted parking spot is established to streamline
the parking process and optimize efficiency. While this distance is not standardized, it serves
to focus the scenario specifically on finding and parking a car rather than navigating lengthy
distances. By imposing this limit, the self-driving car system prioritizes the parking task itself,
ensuring that the vehicle dedicates its resources to locating an appropriate parking spot within
reasonable proximity and efficiently maneuvering into it.
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Completing this scenario demands the agent to identify an empty parking spot amidst a
complex scene cluttered with various obstacles. Subsequently, it must plan a safe and efficient
path to reach the designated parking spot, avoiding collisions with obstacles. Once at the parking
space, the agent must execute the parking maneuver with precise alignment, requiring adept
control of the vehicle’s speed and steering. Remarkably, the agent must learn all these essential
skills in a single shot without prior knowledge of the environment or the parking task.

This scenario poses several challenges for autonomous parking algorithms :

— The agent must exhibit robust capability in spot identification within a cluttered scene.

— It must demonstrate effective path planning while avoiding obstacles, ensuring safety and
efficiency.

— The agent must master the art of precise parking with the specified alignments, which
demands precise control over the vehicle.

— The agent must achieve all these skills in an integrated and seamless manner without any
prior experience with the environment or the specific parking task.

This challenging scenario is a valuable benchmark for evaluating autonomous parking algorithms’
performance. The experimental results from our study will provide valuable insights into auto-
nomous parking and the potential of machine learning approaches in addressing these complex
challenges.

Figure 5.2 – Vehicle modeling
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3 DPPO-IL, a Dynamic Adjustment of Reward Function for
PPO

As an initial step towards proposing a framework that aligns with our primary objective,
we conducted a comparative study of several widely used DRL algorithms on a simple parking
scenario. In this scenario, the parking space was situated less than 30 meters from the agent,
with no brake system in place and no control over the vehicle’s arrival speed at the parking
spot. The agent and the parking space were randomly initialized within the parking area, and
the episode concluded either when the agent moved more than 30 meters from the parking spot,
exceeded the time limit, or successfully parked the vehicle (with a distance of less than 0.5
meters from the parking space borders) [Codevilla, 2019].

For this scenario, we selected three algorithms for comparison : PPO [Schulman, 2017], Soft
Actor-Critic (SAC) [Haarnoja, 2018], and MultiAgent POsthumous Credit Assignment (MA-
POCA) from the Unity ML-agent library. SAC, an off-policy DRL algorithm, outperformed
DDPG and aimed to maximize the long-term reward to find the optimal policy. Among the
three algorithms tested on the simple scenario, PPO demonstrated the best convergence time,
achieving an impressive 98% success rate. Additionally, PPO proved to be the most straightfor-
ward algorithm to implement compared to the others [Schulman, 2017].

Based on these results, we proceeded with PPO and evaluated its performance on a more
complex scenario, as presented in Section 2. However, in the complex scenario, the success rate
dropped to 74.8%. It became evident that while PPO achieved a perfect success rate in a simple
scenario with a well-defined reward signal, its performance diminished in a real-world domain,
such as driving a car in an environment with dynamic and static obstacles [Codevilla, 2019].
The extensive state space made it challenging for the agent to determine the optimal actions
for each state and initialize the neural network weights effectively. Furthermore, formulating a
sound mathematical reward function that precisely distinguishes between good and bad policies
presented a formidable challenge. The absence of a suitable reward function rendered DRL ill-
posed for addressing the complexities of Automated Parking Systems (APS) [Codevilla, 2019].

To address these limitations, we propose three improvements to the PPO algorithm : (1) a
dynamic adjustment of the reward function to encourage the agent to explore more using intrin-
sic curiosity, a self-supervised prediction approach that addresses the exploration problem ; (2)
utilizing IL, whereby a good policy can be learned by imitating an expert’s driving and parking
maneuvers, facilitating the teaching of complex tasks to the agent through expert demonstra-
tions ; and (3) incorporating curriculum learning, which involves breaking down the learning task
into sub-tasks to aid the agent in training effectively in complex environments [Codevilla, 2019].

Before delving into the proposed algorithm, we provide an overview of the key concepts
utilized in this study : curiosity reward, IL, and curriculum learning.

3.1 Curiosity Reward

In the context of the Intrinsic Curiosity Module (ICM) [Pathak, 2017] used for reward lear-
ning, the parameter ϕst represents the feature representation of the current state st. This feature
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representation is obtained by encoding the essential information from the observation st into a
lower-dimensional feature space. The process of transforming the observation into a feature vec-
tor helps extract relevant information required for the agent’s actions while discarding redundant
or less informative details.

The parameter η in the equation for the intrinsic reward ri
t is a hyperparameter that controls

the scale of the reward signal. It determines the weighting of the prediction error in influencing
the agent’s behavior. A higher value of η amplifies the impact of the prediction error, leading to
more significant changes in the agent’s exploration behavior based on curiosity.

In the equation for ri
t, the term ϕ̂ (st+1) represents the predicted feature vector of the follo-

wing state st+1, obtained from the forward dynamics model. On the other hand, ϕ (st+1) denotes
the real feature vector of the following state st+1. The intrinsic reward ri

t is computed as half of
the squared Euclidean distance between the predicted and real feature vectors, scaled by the pa-
rameter η. This reward serves to incentivize the agent to explore states that are less predictable
based on its current knowledge, thereby promoting curiosity-driven learning.

ri
t = η

2

∥∥∥ϕ̂ (st+1)− ϕ (st+1)
∥∥∥2

2
. (5.1)

3.2 Imitation Learning

To foster the agent’s exploration, the ICM is employed as an algorithm for reward learning.
ICM transforms observations into a feature vector, capturing only the essential information
necessary for the agent’s actions.

The agent’s action ât is predicted using a self-supervised neural network on a proxy inverse
dynamics task, leveraging the agent’s current and subsequent states (st and st+1). Subsequently,
a forward dynamics model is trained with the feature space to predict the future representation
of the subsequent state ϕst+1 , based on the feature representation of the current state ϕst and the
action ât. Finally, the prediction error of the forward dynamics model is utilized as an intrinsic
reward ri

t to enhance the agent’s curiosity. Curiosity is the difference between the predicted
feature vector of the subsequent state and the actual feature vector of the subsequent state.

3.2.1 Behavior Cloning

Behavior Cloning (BC) is an effective IL algorithm that treats the problem as a supervised
learning task. Given a dataset of expert demonstrations, BC aims to learn a policy that maps
states to actions like the expert. In the BC approach, the agent does not interact with the envi-
ronment ; instead, it learns the policy by minimizing the negative log-likelihood of the expert’s
trajectories under the agent’s policy. This negative log-likelihood quantifies how probable the
agent’s policy generated the expert’s trajectories. A small negative log-likelihood indicates a
good match between the agent’s and the expert’s policies. The supervised training loss for BC
is formulated as follows :

min
π

JBC(π) := − 1
N

N∑
k=1

log π (ak | sk) (5.2)
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where N is the number of expert trajectories, sk represents the kth state in the trajectory,
ak is the kth action in the trajectory, and π(ak | sk) denotes the probability of the agent taking
action ak in state sk according to its policy.

The goal is to minimize this loss function by finding a policy π that maximizes the likelihood
of the agent taking actions that align with those taken by the expert in the dataset.

BC presents a straightforward and efficient approach to IL. However, it may need more
brittleness and limited generalization to new environments. The reason is that BC solely focuses
on imitating the expert’s actions and does not learn a model of the environment.

Despite its limitations, BC is a valuable starting point for IL and can be highly effective in
simple environments. It provides a practical means to learn a competent policy by leveraging
the expertise demonstrated in the expert demonstrations.

3.2.2 Generative Adversarial Imitation Learning

GAIL consists of two neural networks : the generator Gθ and the discriminator Dφ. The
generator produces a distribution of state-action pairs, while the discriminator, acting as a
secondary neural network, generates a distribution from expert demonstration samples φ. GAIL
aims to learn near-optimal behaviors directly from expert demonstrations and self-exploration
without requiring task-specific reward functions by encouraging the generator to confuse the
discriminator. This approach allows the agent to mimic a policy that exhibits states and actions
similar to those demonstrated by experts, resulting in human-like behavior [Blondé, 2019].

The GAIL optimization process involves minimizing the min-max cross-entropy objective,
as presented in Equation (5.3) :

min
θ

max
φ

V (θ, φ) ≜ Eπθ [log (1−Dφ(s, a))] + Eπe [log Dφ(s, a)] (5.3)

Here, the solution involves taking a gradient step concerning φ to increase V (θ, φ) and
performing a PPO optimization step on θ to decrease V (θ, φ). The discriminator Dφ is trained
to distinguish between the policy πθ generated by the generator and the expert policy πe. On the
other hand, the objective of the generator Gθ is to learn Π0 using the output of the discriminator
as a reward. This adversarial process enables GAIL to effectively imitate expert behavior and
learn robust policies for complex tasks.

3.3 Dynamic Proximal Policy Optimization with Imitation Learning Algo-
rithm

The DPPO-IL algorithm is designed in two distinct phases. In the first phase, BC is employed
for a predetermined number of steps denoted by HBC , to find an initial imitation policy from a
set of expert trajectory demonstrations τE ∼ πE (see Algorithm 9, Line 1).

These expert trajectories are derived from pre-recorded demonstrations of an expert attemp-
ting to navigate towards an empty parking spot and park the car. These demonstrations contain
information on the observations, actions, and rewards for a given agent during the recording
session.
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The process begins by generating a set of agent transition states from the demonstrated
expert trajectory sequence states, denoted as T a

E (Algorithm 9, Line 5), which is then utilized to
learn the agent’s inverse dynamic model. For each transition (st, st+1) ∈ τa

e , the agent-specific
inverse modelMθ(st, st+1) is computed in the InverseModelLearning step, where the agent learns
its unique inverse dynamics model [Torabi, 2018] (Algorithm 9, Line 6). This is formulated as a
maximum-likelihood estimation problem given by :

θ∗ = arg max
θ

N∏
i=0

pθ

(
ai | sa

i , sa
i+1
)

, (5.4)

where pθ is a conditional distribution over the action created at a specific state-transition
in Mθ. The neural network is trained using an Adam optimizer [Kingma, 2014] to find θ∗ in
Equation (5.4), with state-transitions as input and the individual means and standard deviations
for each action dimension as output. The maximum likelihood action from Mθ is then utilized
to construct a state-action set {(si , ai)} (Algorithm 9, Line 7). BC is then applied to find the
parameter θ in πθ that matches {(si , ai)} to learn the imitation policy. θ∗ can be found using
the maximum likelihood estimation in Equation (5.5) :

θ∗ = arg max
ϕ

N∏
i=0

πθ (ãi | si) , (5.5)

Moving on to the second phase, the discriminator parameter is updated and trained as a
binary classifier to distinguish between the agent’s policy and the expert’s policy (Algorithm 9,
Line 12). Subsequently, the policy π is updated via a PPO gradient method, and the policy is
optimized with the intrinsic reward ri

t (Algorithm 9, Line 13). The DPPO-IL algorithm extends
PPO, the BC algorithm [Torabi, 2018], and GAIL [Ho, 2016].

3.4 Curriculum Learning

Transfer learning is a significant concept in DRL, where the agent does not solely focus on
learning the final target task. However, instead, it learns a sequence of subtasks that lead up to
the ultimate target task. Each sub-task is treated as a Markov Decision Process (MDP) from
which knowledge can be transferred to other sub-tasks, thereby accelerating the learning process.
This knowledge transfer can take different forms, including value functions [Taylor, 2005], options
[Soni, 2006], samples [Lazaric, 2008], policies [Fernandez, 2010], or models [Fachantidis, 2013].

The sequence of sub-tasks is organized as a curriculum, representing a set of prior experiences
obtained through training on various tasks. By accumulating these experiences, the agent can
improve performance and accelerate training on more challenging tasks. In our approach, we
adopt a task-level curriculum.

The curriculum is constructed as a directed acyclic graph denoted as C=(V, E , g, T ), where
T is the set of tasks, and DT represents the set of all possible transitions for each task in T . For
each mi ∈ T , V is the set of vertices associated with a sample for a single task, E is the set of
directed edges and g : V →

{
DTi | mi ∈ T

}
is the mapping function.

Figure 5.3 illustrates a curriculum learning approach employed to train an automated parking
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Algorithm 9 DPPO-IL algorithm
1: Input Expert trajectories τe ∼ πe where τe = (s1, a1.s2, a2, ..)
2: params θ of policy πθ, params w of discriminatorDφ, HBC

3: Output policy πθ

4: while HBC ≤ τe do
5: Generate set of agent state transition T a

E from the demonstrated Expert trajectories τE

6: Mθ = InverseModelLearning(T a
E )

7: Deduce stat-actions pair {(si , ai)} from Mθ

8: πθ = BC({(si , ai)})
9: end while

10: for i = 0, 1, 2, . . . do
11: Sample trajectories τi ∼ πθ

12: Update the discriminator parameters φi to φi+1 with the gradient

Êτi [∇φ log (1−Dφ(s, a))] + ÊτE [∇φ log (Dφ(s, a))]

13: πθ = Update policy via policy gradient method of PPO on the intrinsic reward ri
t inferred

by
ri

t = η

2

∥∥∥ϕ̂ (st+1)− ϕ (st+1)
∥∥∥2

2

14: end for

system agent. Curriculum learning entails progressively increasing the complexity of training
tasks as the agent becomes more proficient. The breakdown of the curriculum depicted in the
image is as follows :

Task 01 : Initially, the agent learns to plan a trajectory within an unobstructed space. This
task typically involves exploring various paths and assessing their smoothness or efficiency.

Task 02 : Once the agent demonstrates effective trajectory planning, it advances to a more
demanding scenario involving obstacle avoidance. This task may require integrating obstacle
detection capabilities and adapting trajectory planning based on the surrounding environment.

Task 03 : Lastly, the agent undertakes the comprehensive parking task, which encompasses
trajectory planning, obstacle avoidance, and precise maneuvers to successfully park the vehicle.
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Figure 5.3 – Curriculum Learning

4 Experiments and Results

4.1 Test Setup

The system takes the agent’s state space, representing its observations, as input. The agent is
continuously trained to associate the observed state with the most appropriate action to progress
toward its goal and maximize the expected average return in a single task.

The DRL script specifies that three float values are produced as output, each ranging bet-
ween [−1, 1], representing percentages. These values are learned by the agent and subsequently
scaled by the Maximum motor torque, Maximum steering angle, and Maximum brake torque pa-
rameters in the Unity vehicle model 1, developed by Unity Technologies. Consequently, the agent
receives three action variables, namely "motorTorque," "steering angle," and "brakeTorque."

The first experiment tests and compares the performance of three algorithms, PPO, SAC,
and POCA, in a simple scenario. The results are exported in a ".onnx" open-source file format
[Bai, 2019], ensuring compatibility between AI models and various associated frameworks like
PyTorch and TensorFlow. After the training is completed and the policy is optimized, the
obtained model (.onnx) can be associated with an agent for inference in the developed Unity
environment, allowing the model’s accuracy to be tested.

During the training phase, training statistics are saved in a Tensorboard, a tool developed by
TensorFlow [Singh, 2020], which facilitates the visualization of the evolution of hyperparameters

1. https ://unity.com/

111



Chapitre 5. Dynamic Adjustment of Reward Function for PPO with IL : Application to
Automated Parking Systems

and other training parameters.

4.2 Agent

The vehicle in this study is accurately modeled to resemble the real-world Sodivehicle RSX
04 in terms of dimensions, weight, size, radius, wheel size, and other relevant aspects.

Special attention was given to ensuring a realistic simulation of a practical scenario. TThe
vehicle is designated as the agent„ and its physics are meticulously represented using Unity’s
"WheelColliders" documentation 2. The agent possesses a chassis modeled with a "Box Collider"
and four "Wheel Colliders" that simulate the wheels. The front wheels are capable of chan-
ging direction and braking. To facilitate the vehicle’s forward movement, a "Torque" is applied.
The agent is equipped with an autonomous parking script to learn from and interact with its
environment.

Additionally, the vehicle is equipped with a radar system that provides observations of the
azimuth plane within a range of ±60◦, with a resolution of 15◦ between two objects. The maxi-
mum range of the radar is set at 80 meters. These radar-related parameters are conveniently
managed using Unity’s "Raycast Observations" component, which is integrated into the vehicle’s
setup. A "ray cast" is essentially a radar originating from the vehicle’s center that detects the
distance at which it encounters an object and identifies the type of the detected object.

4.3 Environment

The agent’s environment consists of a parking area that includes the previously described
vehicle and a designated parking space, which serves as the agent’s objective. The parking
space is visually represented by white lines forming a rectangular shape with a green square
positioned in the center. Figure 5.4 illustrates the parking scenario, where the white blocks
represent obstacles, and a humanoid figure signifies the presence of a pedestrian.

4.4 Experiments

In the preliminary agent training sessions, we aimed to identify the optimal state space and
reward function for training the DPPO-IL algorithm. During the initial trials on the simple
scenario, the DPPO-IL algorithm achieved a satisfactory success rate with the following confi-
guration :

— State space : The agent’s heading angle Ha (1 value) ; its position Pa (3 values) ; its velocity
components in the plane V (2 values) ; the position of the parking space P (3 values).

— Reward function : The agent receives a reward based on the following conditions :

{
−1 if d(Pa, P ) >30 meters OR tp ≥1 minute.
+1 if d(Pa, P ) < 0.5 meters

2. https ://docs.unity3d.com/Manual/class-WheelCollider.html
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Figure 5.4 – 3 karts on the scene scenario

Here, tp denotes the allocated parking time, and d(Pa, P ) represents the distance between
the agent and the parking space.

However, despite achieving this policy within one hour of training, it was observed that the
agent needed to exhibit proper alignment with the parking space and tended to park in reverse
circles, indicating that further refinement and adjustments are needed in the training process.

To further optimize the system, several recommendations were followed during the training
of the DRL model :

— Increasing Parallel Agents : Increasing the number of agents working in parallel allows for
collecting a more extensive and more diverse set of experiences, enabling the exploration of
a broader range of states and accelerating the training process. For instance, by increasing
the number of agents from 8 to 256, the learning time decreased from 4 hours and 30
minutes to 1 hour and 30 minutes.

— Adjusting Penalty for Bad Alignment : Applying a higher penalty for lousy alignment bet-
ween the agent and the parking space improved the agent’s performance. This adjustment
helped the agent better align himself during the parking task.

Fig. 5.5 compares the performances of the three DRL algorithms (PPO, POCA [Cohen, 2021],
and SAC [Haarnoja, 2018]). The pink curve represents PPO, the blue curve corresponds to
POCA, and the red curve represents SAC. The comparison demonstrates that PPO and POCA
outperform SAC. Specifically, the reward for SAC was negative after 600,000 steps, whereas
PPO was thoroughly trained in less than 300,000 steps, and POCA took an additional 100,000
steps to reach full convergence after 400,000 steps.
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Based on this initial experiment, it can be confirmed that PPO, in this particular scenario,
outperforms both SAC and POCA. PPO achieved a remarkable success rate of 98% (2,165
out of 2,209 trials), of which 97.5% (2,154 out of 2,209 trials) were aligned and respected the
ISO-16787 :2017 norms for parking.

The results of this experiment suggest that PPO shows promise as a practical algorithm
for training DRL agents in autonomous parking tasks. Nevertheless, further experiments are
required to validate these findings and evaluate PPO’s performance in various scenarios.

Figure 5.5 – DRL algorithm comparison

The second experiment was conducted by employing the PPO algorithm with the following
configuration :

— State space : The agent’s heading angle (Ha), its position (Pa), its velocity components in
the plane (V ), the position of the parking space (P ), and the 3D components of the remai-
ning distance between the parking space and the agent. All observations are normalized.

— Reward function : The agent receives a reward based on the following conditions :

{
−1 if tp > 1 minute OR Γ < 0 OR |δsw| > ±15◦ OR |ey| = ±10◦.
+1 if d(Pa, P ) < 0.5 meters AND tp ≥ 1 second.

Where tp denotes the allocated parking time, Γ is the action torque, δsw is the wheel alignment
with the parking spot, ey is the alignment error with the parking space, and d(Pa, P ) denotes
the distance between the agent and the parking space.

As shown in Fig. 5.6, PPO took 8 million steps to converge and did not reach the maximum
reward of 1. Due to the random occurrence of various static and dynamic obstacles, the success
rate decreased to 74.8%. As a result, the scenario was retested by incorporating IL and curiosity
reward into PPO.

These experiments’ results demonstrated that adding IL and curiosity reward to PPO signi-
ficantly improved the agent’s performance. The agent could converge in less than 5 million steps
and achieve a success rate of 94.2% in the presence of obstacles.

These results suggest that the combination of IL and curiosity reward shows promise as a
practical approach for training DRL agents for autonomous parking. However, further experi-
ments are needed to confirm these findings and evaluate this approach’s performance in different
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scenarios.

Figure 5.6 – PPO main scenario

Fig. 5.7 illustrates the experiments’ results with different combinations of IL, Curiosity Re-
ward, and PPO. The orange curve represents DPPO, the red curve represents DPPO with GAIL,
and the blue curve represents DPPO-IL. The graph shows that adding Curiosity Reward to
DPPO significantly improved the agent’s performance. The agent achieved a cumulative reward
of 1 after 1.5 million steps, compared to 8 million without Curiosity Reward. This result sug-
gests that Curiosity Reward encouraged the agent to explore and learn new things. The inclusion
of GAIL in DPPO-IL further enhanced the agent’s performance. The agent could converge in
750,000 steps, compared to 3.5 million without GAIL. This finding indicates that GAIL assisted
the agent in learning a more robust policy to handle dynamic obstacles. The final configuration,
which combines Behavioral Cloning (BC), GAIL, and Curiosity Reward with PPO, achieved the
best performance. The agent learned in less than 350,000 steps, attaining a 92% success rate.
This outcome highlights the promising potential of combining these three techniques for training
DRL agents for autonomous parking in the presence of dynamic obstacles.

Figure 5.7 – PPO with IL and curiosity

The third experiment extends the previous scenario in Fig. 5.4 by introducing three vehicles in
the scene, each with three different parking spots that do not belong to anyone. The experiments
use the same state space as in the previous scenario. Each vehicle searches for the closest parking
spot and parks the car properly, ensuring that the selected spot is unoccupied.
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The results of the experiments with DPPO-IL are presented in Fig. 5.8. As observed, the
agent was able to converge in 60 million steps, but the reward exhibits significant fluctuations
due to the presence of highly dynamic objects in the environment. The success rate reached
81%, where 90% were aligned with the parking spot.

This outcome indicates that adding more vehicles to the scene makes the environment more
challenging for the agent. The agent must be more reactive, frequently re-exploring the available
parking spots and re-planning its trajectory. Moreover, this scenario imposes additional stress
on the acceleration and braking actions.

Although PPO is one of the best DRL algorithms, the highly dynamic environment proves
to be demanding, even with the inclusion of intrinsic rewards and IL. This suggests that fur-
ther research is required to develop DRL algorithms that effectively handle such challenging
environments.

Figure 5.8 – 3 karts on the scene DPPO-IL results

To address the challenges of training a DRL agent in a highly dynamic environment, we
have adopted curriculum learning [Narvekar, 2020]. This approach enables the agent to learn
concepts before exploiting the complex environment’s reward signal. The primary goal of these
concepts is to reduce random explorations and foster the adoption of more reliable actions.
Instead of conducting the training process as a single shot, we have decomposed the parking
task into sub-tasks. The first sub-task involves identifying and planning a trajectory toward
an unoccupied parking space. The second sub-task is to control the acceleration and braking
actions, avoiding any types of obstacles. Lastly, the third sub-task focuses on parking the car
with the required alignments. Each sub-task is deemed successfully learned when the agent
manages to double its accumulated reward for four million episodes, as depicted in Figure 5.9.
The non-linear learning curve of the rewards in Figure 5.9 is expected, as rewards are anticipated
to improve continuously throughout the training. Curriculum learning for DPPO-IL has proven
effective, delivering superior results and a faster learning rate than DPPO-IL from scratch, as
shown in Figure 5.9. The agent achieved a 90% success rate, where 97% of them aligned with
the parking spot with an inclination angle > ±0,2◦ and a deviation > 0.1m.
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Figure 5.9 – 3 karts on the scene with curriculum learning

5 Conclusion

In this chapter, we have introduced DPPO-IL, a DRL framework tailored for end-to-end
automated parking systems, utilizing the Proximal Policy Optimization algorithm. DPPO-IL
enables the agent to explore empty parking spaces, learn optimal acceleration, braking, and
rotation actions, and successfully park the vehicle in random parking spots while avoiding static
and dynamic obstacles.

We comprehensively studied various DRL algorithms, including PPO, SAC, and POCA.
Subsequently, we trained the agent in two distinct scenarios, refining the DRL algorithm by im-
plementing dynamic reward function adjustments through intrinsic reward signals. Furthermore,
we optimized training time by incorporating BC and Generative Adversarial IL.

The agent achieved a 90% success rate through these improvements in a highly complex
environment, facilitated by adopting a task-specific curriculum learning strategy.

In the following chapter, we will address the design of a safe decision-making system for
end-to-end urban driving, aiming to further enhance the capabilities of autonomous vehicles in
complex and dynamic urban environments.
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1 Introduction

Today, with the availability of affordable sensors (Camera, LiDAR, IMU, GPS) and the
introduction of cutting-edge software technologies (artificial intelligence, machine learning, com-
puter vision), the prospect of fully autonomous vehicles (AV) has never been closer. However,
cars must still attain level five of the Society of Automation Engineers (SAE). Most autonomous
vehicle (AV) systems use a hand-crafted modular architecture [Xu, 2017]. However, the modular
architecture is criticized for showing poor accuracy in highly interactive environments, such as
urban driving. These models are tightly interconnected, which makes them expensive to scale
and maintain. These limitations are bypassed by adopting end-to-end architectures, in which a
driving policy is learned and generalized without human intervention [Xu, 2017]. The learned
driving policy can also be continuously tuned with each driving attempt to achieve human-level
performance. A safe driving policy remains an open challenge where the complexity surpasses
a few well-defined tasks (e.g., moving box robot). The three main categories of end-to-end AV
driving policy are : rule-based methods [Furda, 2011], imitation learning (IL) [Bansal, 2018][Xu,
2017][Chen, 2019a] and reinforcement learning (RL) [Wolf, 2017]. The rule-based methods are
human-designed predetermined rules structured to achieve the best driving policy by selecting
maneuvers and then planning the trajectory [Furda, 2011]. Despite the popularity of rule-based
systems, manual rule encoding can put a strain on system engineers as they must anticipate all
the crucial and possible rules for each driving scenario [Wolf, 2017]. IL-based methods are an
effective alternative where the driving policy is learned directly and supervised by mimicking
expert demonstrations as training sets. However, these methods require large amounts of labe-
led training data. To limit the time-consuming hand-labeled data, solutions that use deep RL
(DRL) for end-to-end driver policy learning have been applied to simple driving scenarios, like
lane keeping, steering control, and managing the acceleration [Kendall, 2019]. However, they
suffer from a cold start and require extensive training before converging into a sound policy.
In the case of end-to-end urban driving, the state space is typically vast, encompassing details
about the road, surrounding vehicles, pedestrians, and traffic. Moreover, the exploration can be
dangerous in urban driving scenarios and may result in collisions.

Recent studies have shown that Hierarchical Reinforcement Learning (HRL) is more suitable
for urban driving [Bronstein, 2022]. HRL helps by breaking the task into smaller sub-tasks with
more straightforward state space, thus reducing the required exploration [Guo, 2021]. On the
other hand, IL can help with the cold start issue by providing a pre-trained expert policy
that helps guide the agent’s actions. Instead of providing the expert’s demonstrations as action
recommendations, modeling them as rules increases the information per interaction and does not
limit the intake to the current state. This more informationally-rich interaction method improves
the agent’s performance compared to existing methods. Combining HRL and IL in urban driving
can be a powerful approach to improve the efficiency of the driving task. However, HRL may
suffer from the same safety issues as RL, such as exploration of unsafe actions and failure to
generalize to new situations [Chen, 2019a]. Integrating a rule-based system as a safety mechanism
can be a potential solution to address safety concerns in critical situations when using an HRL
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approach for urban driving. Guided by the rules, the agent can learn to follow specific guidelines
or constraints during decision-making, reducing the risk of accidents or dangerous maneuvers.
Moreover, the rule-based system can provide a fallback option to ensure the safety of the driver,
passengers, and other road users. However, it is essential to note that incorporating a rule-
based system may limit the agent’s adaptability to new situations and may require additional
engineering effort to define the rules accurately. Therefore, it is crucial to balance the trade-offs
between safety and adaptability when designing an HRL-based autonomous driving system.

This chapter proposes a Guided Hierarchical Reinforcement Learning (GHRL) approach ba-
sed on vision and localization for end-to-end urban driving. We developed an approach to handle
navigation and affordance prediction in autonomous driving scenarios with a two-phase training
strategy. In the first phase, we employed a Autoencoder (AE) to learn a lower-dimensional repre-
sentation of the visual sensor’s input. This representation was further enriched with localization
and waypoints as navigation input. Moreover, the AE predicted various affordance features,
such as distance to impact or light traffic status. These features were inputs for the HRL agent
instead of the raw sensor data.

Our approach involves training a high-level master policy and several low-level sub-policies,
each with a specific goal, to handle the driving task. Initially, we divided the task into four
maneuvers - driving in the lane, right and left lane change, and braking - before training each
action’s sub-policy. The master policy selects the appropriate sub-policy based on the current
conditions. We created different state spaces and reward functions for each sub-policy.

To accelerate the training process, we injected expert demonstrations expressed in Answer
Set Programming (ASP) [Brewka, 2011] formalism into the learning process, which guides the
Proximal Policy Optimization (PPO) exploration policy. These rules are treated as on-policy,
meaning that the agent generates them. When making decisions, the agent considers the injected
rules and its learned policies, combining the information from both sources.

In dangerous situations, exploration by the agent to learn the best policy might not be
feasible and could even result in catastrophic consequences. Therefore, the system relies solely
on ASP rules to ensure safety. This approach guarantees the system adheres to predefined safety
constraints, preventing potential pedestrian harm. By incorporating a rule-based system in the
agent’s decision-making process, the agent can benefit from both the exploration of the learned
policy and the safety of the rule-based system. Specific situations or events, such as detecting
an obstacle or predicting a dangerous situation, trigger the switching between the two systems.
We evaluated our method on urban driving scenarios using Carla’s simulator [Dosovitskiy, 2017]
and demonstrated its effectiveness in handling various challenges, such as traffic lights and static
and dynamic obstacles.

Hence, the main contributions of this chapter can be summarized as follows :

— We proposed GHRL, a model-free on-policy RL algorithm. The algorithm employs PPO
and is guided by expert demonstration rules expressed in ASP.

— In situations where safety is of utmost importance, the system automatically switches
to ASP rules integrated into the agent’s decision-making process to take the appropriate
action in critical situations.

120



2. Guided Hierarchical Reinforcement Learning

— We have studied extensive parameters and performed ablation studies on reward shaping.

— The agents can learn efficient driving policies in the CARLA simulator that exhibits a
wide range of urban behaviors like lane-following, handling intersections or traffic lights,
and avoiding static or dynamic obstacles. The framework is adequately justified using the
Carla NoCrash benchmark.

The rest of this chapter is organized as follows : Section 2 is dedicated to the contribution
of this chapter, Section 3 details all the experiments, and finally, Section 4 concludes and gives
some perspectives.

2 Guided Hierarchical Reinforcement Learning

In the GHRL paradigm, the agent endeavors to tackle the intricate hierarchy of subtasks,
a structure where higher-level policies dictate the allocation of focus to specific subtasks, while
lower-level policies dictate the precise methodologies to execute each subtask. This approach is
grounded in the observation that human drivers inherently disassemble complex driving tasks
into a hierarchy of subtasks, encompassing actions like route planning, lane changes, and bra-
king. By cultivating an ability to resolve each subtask independently, the agent can glean a
driving policy that balances safety and efficiency, ultimately facilitating its capacity to navigate
real-world driving scenarios. The framework utilized within GHRL for learning hierarchical po-
licies is the option-critic (OC) framework [Hutsebaut-Buysse, 2022]. In OC, the agent acquires a
repertoire of options, where each option denotes a sequence of actions to achieve a distinct goal.
These options are assimilated through a reinforcement learning mechanism, often Q-learning,
while a critic, functioning as a value function, assesses the anticipated returns associated with
each option. The critic’s feedback is instrumental in directing the refinement of the options by
supplying information about their respective values. In the context of GHRL, we have harnessed
the OC framework to engender a hierarchy of driving options. The high-level options encap-
sulate various driving maneuvers, like lane changes and braking, that the agent can execute.
Correspondingly, low-level options delineate the specific actions essential for the execution of
each maneuver. The master policy governs the selection of the most suitable high-level option,
predicated on the prevailing environment state. Subsequently, the agent systematically executes
the sub-policies, orchestrating a hierarchy of actions. This OC framework has several advantages
over alternative HRL strategies. Primarily, it entails a comparatively straightforward learning
process, easing the burden of acquiring effective hierarchical policies. Moreover, the OC frame-
work demonstrates its efficacy in mastering tasks that may resist conventional reinforcement
learning methods. Furthermore, its adaptive nature lends itself well to scenarios marked by
environmental fluctuations, allowing policies to remain robust in the face of dynamic changes.
In essence, the GHRL approach, founded on the principle of hierarchical task decomposition,
employs the OC framework to empower agents with the capacity to navigate a complex array of
driving tasks efficiently. Through the synthesis of high-level and low-level policies, this approach
provides a flexible yet structured mechanism for autonomous agents to interact with and ma-
neuver within their environment, fostering a delicate equilibrium between safety, efficiency, and
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adaptability.

2.1 State

We aim to make the agent’s training more efficient and effective in completing the navigation
task with dynamic actors by defining the state space S to include sufficient environmental
knowledge as features. In our approach, the inputs fed to the AE [Wang, 2020b] consist of
all objects detected by Carla’s semantic segmentation (including static and dynamic obstacles,
traffic lights, sidewalks, and roads) and traffic light states. The AE utilizes an encoder and
a decoder to extract latent variables from images and generate new ones by sampling these
variables. Essentially, the encoder and decoder are neural networks trained on unlabeled images
[Doersch, 2016]. The AE encoder’s CNN includes 4x4 kernels, four filters (32, 64, 128, 256)
convolutions, and a stride of 2, with ReLU activation functions. The last convolution output is
flattened and fed into two fully connected layers of size Zdim, which creates a vector z from a
Gaussian distribution. To augment the vector z, we have added external state variables such as
waypoint features w. w is a set of predefined points from CARLA that the vehicle must pass
through to reach its destination. We have also included accurate localization by fusing GPS and
IMU [Albilani, 2022], speed, and orientation as a matrix m, which predicts additional features
to aid training, such as the distance to impact and distance to an incoming event (such as
entering an intersection or stopping at a traffic light). Furthermore, augmenting the data variety
includes lateral distance and angle with the optimal trajectory. This approach results in a more
disentangled agent training process.

Figure 6.1 – Autoencoder architecture [Wang, 2020b]

2.2 Data Variety Augmentation

In pursuit of a comprehensive dataset for training and evaluating our proposed approach,
we meticulously gathered a collection of 10,000 images, each with dimensions of 160x80 pixels,
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encompassing both RGB and semantic segmentation information. This dataset was curated
within the confines of Carla 0.9.8, employing an autonomous vehicle equipped with an autopilot
system. The data collection process spanned diverse urban environments, encompassing city
streets, highways, and intersections, to ensure the dataset encapsulated a broad spectrum of
driving scenarios.

Initially, relying solely on autopilot for data collection yielded a dataset without errors.
With its calibrated precision, the autopilot consistently maintained a centered lane position
and adeptly evaded collisions with dynamic obstacles. However, this pristine dataset posed a
challenge when training a reinforcement learning (RL) agent. The inherent predictability of the
autopilot’s behavior neglected the necessary exposure to unpredictable scenarios that an RL
agent should adeptly handle.

To address this limitation, we followed a methodology inspired by the approach delineated in
[Toromanoff, 2020]. By deliberately introducing perturbations during data collection, we emu-
lated the effects of varying real-world conditions, thus injecting a degree of realism into our
dataset. This procedure involved perturbing the positioning of the camera relative to the auto-
pilot during image capture. This deliberate variation in camera position engendered a layer of
noise within the images, rendering the dataset more representative of the inherent uncertainties
and fluctuations experienced during actual driving scenarios.

In addition to manipulating camera positions, we supplemented the dataset by incorporating
random perturbations to the steering and throttle inputs of the autopilot. This strategic inclu-
sion of noise intentionally disrupted the autopilot’s otherwise flawless trajectory and behavior.
The rationale behind this introduction of noise was to cultivate an environment in which the
RL agent could be trained to navigate and react effectively when confronted with unforeseen
circumstances.

The amplitude of the introduced noise underwent careful calibration, encompassing values
ranging from -0.1 to 0.1. This selection was a product of deliberate consideration aimed at
achieving equilibrium. The intention was to maintain a level of magnitude that would allow the
autopilot to carry out its driving maneuvers safely and with precision yet possess a substantial
magnitude that could give rise to noticeable deviations. This calibration sought to emulate
the inherent variability encountered in real-world driving scenarios, capturing the essence of
unanticipated perturbations while upholding a fundamental sense of safety.

Our dataset construction approach meticulously intertwined the deliberate introduction of
camera position variations and controlled noise within steering and throttle inputs. This interplay
was orchestrated to construct a dataset that not only encapsulated a wide array of urban driving
scenarios but also instilled the necessary elements of unpredictability, essential for nurturing the
development of robust and adaptable RL-based driving policies.

2.3 Reward Shaping

We devised a reward function following a quadratic structure, characterized by a quadratic
decrement for each sub-policy. This formulation of rewards serves as a driving incentive for
the agent, motivating actions that align more closely with the optimal path while concurrently
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imposing penalties for actions that veer further from this path. Additionally, we amalgamated
factors encompassing speed, deviation, and angle within the reward function, contributing to a
comprehensive assessment of the agent’s actions.

Our experimental findings highlight reward multiplication’s advantages over mere addition.
This preference for multiplication is grounded in its ability to foster more effective learning
within the agent. Consider a scenario where the agent governs a vehicle : the reward function
could emphasize higher speeds and penalize significant deviations from the intended trajectory.
Likewise, actions that facilitate the vehicle’s alignment with a specific angle or trajectory could
be subject to rewards.

Its impetus on maintaining specific performance parameters is central to the reward func-
tion’s design. This encompasses sustaining a predefined speed, adhering to the lane center, and
aligning harmoniously with the road configuration. However, the reward function judiciously
bestows elevated rewards only when a set of prerequisites is partially met. This design aims
to mold the agent’s learning trajectory towards actions that concurrently optimize safety and
efficiency. These rewards were inspired from [Vergara, 2019] and defined as follows :

R = f(rv) ∗ f(rd) ∗ f(rα) (6.1)

where f is a quadratic function, rv is the velocity reward function defined by :

rv =



−10 on infraction
v

vmin
v < vmin

1 vmin ≤ v < vtarget(
1− v−vtarget

vmax−vtarget

)
v ≥ vtarget

(6.2)

where vmin and vmax are the minimum and maximum allowed velocity (speed) according to the
law, and vtarget is the identified target velocity, rd is the deviation distance reward function
defined by :

rd =
{

0 d >= 3
1− d

dmax
else

(6.3)

where d is the route deviation distance and dmax is the maximum threshold set to 3m. It indicates
that rd decreases with the increase of d. If d is larger than the maximum allowed value, then
the agent will get a minimum reward of 0, and the deviation degree reward rα is calculated as
follows :

rα =

1−
∣∣∣ αdiff

αmax

∣∣∣ |αdiff | < αmax

0 else
(6.4)

where αmaxis the maximum threshold set to 90◦ and αdiff is the angle difference between the
vehicle’s forward vector and the current way-points forward vector.
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2.4 GHRL Learning

Designing a single end-to-end policy for urban driving with numerous behaviors can be chal-
lenging and may lead to poor performance in completing the driving task. To address this issue,
we propose an OC framework where high-level and low-level policies are trained synchronously.
This framework allows for the incorporation of expert demonstrations by injecting rules into the
learning process, which guide the agent’s behavior

Figure 6.2 – High-level representation of GHRL

Fig.6.2 illustrates the pipeline to train GHRL. It integrates visual input from cameras, sensor
data, and predefined rules to facilitate both high-level and low-level control of the vehicle. The
system comprises several interconnected components : car images are processed by an Autoen-
coder (AE) to generate a compressed latent representation capturing essential visual features ;
sensor fusion data, including localization and waypoints, complements the visual information.
The AE acts as an encoder, providing the HRL agent with a compressed latent vector and sensor
fusion data, enabling the agent to make high-level decisions regarding the vehicle’s overall goal
and direction. A separate low-level policy translates these decisions into concrete actions guided
by predefined rules, ultimately outputting control signals such as steering angle and acceleration.

2.4.1 Low-Level Policies

We train low-level policies using PPO while incorporating expert demonstrations through
ASP rules injected by a well-defined hyperparameter p, whose optimal value is determined
through empirical study. This empirical investigation ensures that the hyperparameter p is care-
fully tuned to achieve the best performance and efficacy in training the low-level policies. These
rules are considered "on-policy," indicating that the agent generates them during training. By
integrating these expert demonstrations into the learning process, the agent can converge faster,
reducing the time spent on exploration. Also, this integration allows the agent to benefit from
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the expert’s demonstrations and valuable knowledge for handling various driving scenarios effec-
tively. We represent the set E of expert trajectories as τ = (s0, r0, a0, s1, r1, a1, ...), where each
state si has a corresponding ASP rule ri that determines the appropriate action ai (explained in
the following sub-section). Hence, the agent can effectively incorporate the expert’s knowledge
into decision-making as a pair (si,ai) while having a single source of reward. The new modified
policy πϕ

θ is used in the clipping function defined in[Schulman, 2017] as follows :

πϕ
θ =

πθ sampled from Environment with probability 1-p

πE sampled from Expert E with probability p
(6.5)

In Algorithm 10, we have modified the PPO by including expert demonstrations in the
training data and updating the policy to maximize the probability of taking actions guided
by the expert (lines 6-9). The hyperparameter p (line 6) controls the probability of selecting
an expert action rather than relying solely on the policy’s output, and it can be gradually
decreased as the policy improves during training (line 8). PPO optimizes the objective function
LGP P O (line 19), representing the expected return of the policy πθ with respect to its parameters
θ. This function estimates the cumulative reward anticipated from following the policy in the
environment.

The optimization process in PPO employs gradient descent to iteratively update the policy
parameters θ for enhanced performance. Over multiple epochs (K), the policy is optimized using
minibatches of experiences sampled from the environment. The size of these minibatches (M) is
usually smaller than or equal to the dimensionality of the observation space (N) multiplied by
the episode length (T ) (line 20).

During each epoch, the policy parameters θ are adjusted to minimize the objective function
via gradient descent. The gradient of this function with respect to the policy parameters is
computed through backpropagation within the neural network representing the policy (line 21).

Furthermore, PPO maintains an empty storage E to retain experiences sampled during
optimization, essential for updating policy parameters in subsequent iterations and epochs. This
ensures that the policy learns from a diverse array of experiences (line 22).

By integrating expert demonstrations, we provide the learning algorithm with constraints
that steer it toward the desired behavior while allowing for exploring and discovering new ap-
proaches. This hybridization enables the algorithm to learn from the expert’s knowledge and
experiences, leading to more effective decision-making and better handling of various tasks.

2.4.2 High-Level Policies

The high-level master policy πhigh is trained after completing all low-policies training. Al-
gorithm 11 is an OC algorithm responsible for learning the different high-level intra-option
policies πot (at | st, ot) and the termination condition βot (st, ot) for the option ot at state st.
In dangerous situations, φ, the agent will rely solely on the ASP rule set to make safe deci-
sions. This rule set will guide the AV in executing appropriate actions to address the short-term
goal, detailed in the upcoming sub-section. Dangerous situations are recognized by applying
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Algorithm 10 GPPO Low-Level Policies
1: Initialize parameters θ, p
2: Initialize storage ε← {}
3: for every update do
4: for actor 1,2,...,N do
5: Sample τ from expert trajectories E
6: if p then
7: for steps 1, 2, . . . , T do
8: st, rt, at, rt, st+1 ∼ πE (at | st)
9: Store transition E ← E ∪ {(st, at, rt)}

10: end for
11: else
12: for steps 1, 2, . . . , T do
13: Execute an action in the environment
14: st, at, rt, st+1 ∼ πθ (at | st)
15: Store transition E ← E ∪ {(st, at, rt)}
16: end for
17: end if
18: end for
19: Optimize LGP P O wrt θ, with K epochs and
20: minibatches size M ≤ NT
21: θ ← θ − η∇θLGP P O

22: Empty storage E ← {}
23: end for

the Responsibility-Sensitive Safety (RSS) framework [Shalev-Shwartz, 2017]. RSS aims to esta-
blish a common understanding of safe driving behavior for AVs by providing a set of rules and
guidelines governing AV behavior in various driving scenarios. The overarching goal of RSS is
to ensure the safety of passengers, pedestrians, and other road users by promoting responsible
driving practices in AVs.

The high-level policy over options is a ϵ-greedy form on approximating the option-value
function QΩ(St, Ot), where Ω is the specific value function to a particular option ot at state st.
Further elaboration on dangerous situations will be provided in section 2.4.4.

OC trains the intra-option policies as follows (see [Guo, 2021] for more details) :

∂L(θ)
∂θπ

= E
[

∂ log π (at | st, ot)
∂θπ

QU (st, ot, at)
]

, (6.6)

where θπ is the parameter of low-policies, and QU (st, ot, at) is the the option-value function.
The gradient is calculated as follows :

∂L(θ)
∂θβ

= E
[
−∂β (st, ot)

∂θβ
(AΩ (st, ot) + η)

]
, (6.7)

where θβ is the high-level policy termination parameter, and η is the deliberation cost. AΩ(st, ot)
is the termination advantage. To update the option-value function is as follows :

Qk+1
Ω (s, o) = Qk

Ω(s, o) + αΩ (6.8)
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Algorithm 11 Learning High-Level Policies
1: Initialize external options oi from low-policies
2: Initialize master policy πΩ, option library Ω
3: Initialize the facts F
4: Initialize dangerous situations φ
5: add all pre-trained low policies oi into Ω
6: for every update do
7: if φ then
8: Execute the logical program (P,F)
9: else

10: Choose ot according to s and πΩ
11: Execute ot according to low-policy πot and βot

12: get s′ and Rt+1, add (s, ot, s′, Rt+1) into buffer
13: Update with SMDP Q-Learning
14: Qk+1

Ω (s, o) = Qk
Ω(s, o) + αΩ

15: end if
16: end for

2.4.3 Safety Specification

Pre-defined rules are designed to make safe decisions in longitudinal and lateral critical
situations φ (explained in the following sub-section). A critical time interval in self-driving cars
refers to a situation where the car’s autonomous system fails to perceive or appropriately respond
to a potential hazard in the surrounding environment, such as a pedestrian crossing the street
or another vehicle suddenly changing lanes. During this interval, the ego vehicle cego will solely
apply safety ASP rule-based policy to guarantee safe longitudinal decision-making.

Figure 6.3 – Safety in critical situation

Fig.6.3 illustrates the pipeline during critical situations. The ASP rule engine assumes control
over signals like steering angle and acceleration, which are provided by the HRL agent.

The environment mapping in the scene is transformed into predicates describing the objects
present and their positions. These predicates are represented as facts F in ASP that form
the input for the driving decision-making process. F contains, among other information, the

128



2. Guided Hierarchical Reinforcement Learning

speed, the lane, the relative distance, the AV predicted trajectory, lane structure, intersection
information, visible traffic signs, lights, and other detected objects. Depending on the facts F ,
the rules r are applied to produce decisions Y such as accelerating, braking, cruising, changing
lanes, and turning left or right. In the following example, the sensors detect a pedestrian while the
ego vehicle initiates a right turn. The system should identify this situation as critical, requiring
longitudinal and lateral safety measures. Let’s consider the following logical program P and
F = {ego_path(30.215, 3 : 05), obj_path(Pedst1, 30.215, 3 : 05} a set of atoms :

r1 :abort_select_action(turn_right, T) :-

ego_path(EPath, T),

obj_path(Oid, OPath, T),

intent(turn_right, T),

path_intersects(EPath, Oid).

r2 :path_intersects(EPath, Oid) :- ego_path(EPath, T),

obj_path(Oid,OPath, T’), T=T’, EPath = OPath.

r3 :brake_conditions(T) :- intent(turn_right, T),

abort_select_action(turn_right, T).

(6.9)

In this scenario, the logical program P defines a set of rules describing the behavior detected
by the system of an AV intending to merge into the right lane "intent(turn_right, T )" at time
"T=3 :05". These rules consider the presence of pedestrians and intersections to make appro-
priate decisions. Rule 1 aborts the action "turn_right" at time "T" under certain conditions.
The rule checks explicitly if the ego vehicle’s path and the pedestrian’s path intersect at time
"T" using the ‘path_intersects(EPath, Oid) predicate. If an intersection is detected, the AV
avoids selecting the "turn_right" action to ensure pedestrian safety. Rule 2 defines the predicate
‘path_intersects(EPath, Oid)‘ responsible for checking whether the ego vehicle’s path (‘EPath‘)
and the pedestrian’s path (‘Opath‘) intersect at time "3 :05". The rule unifies ‘ego_path(EPath,
T)‘ and ‘obj_path(Oid, OPath, T’)‘ to determine if the paths intersect, enabling the AV to make
informed decisions based on spatial relationships. Lastly, Rule 3 specifies the "brake_conditions"
that are met at a time "T" if there is an "intent(turn_right, T)" and the ego vehicle’s path and
the pedestrian’s path intersect at that time. This rule ensures that the AV applies the brakes
when necessary to avoid collisions and adhere to the intent to merge into the right lane while
ensuring pedestrian safety.

2.4.4 Longitudinal Critical Situations

Let cego and cfwd be two cars such as cfwd is followed by cego with a distance d. A longitudinal
critical situation occurs when cfwd brakes with action amax,brake whilst cego accelerates with
amax,acc then it brakes with amin,brake until a collide with cfwd during a response time τres.
Otherwise, the longitudinal situation is safe. Let td be a period during which the situation is
critical and d ≤ dmin. The interval [td, td +τres] becomes a critical interval where the ASP safety
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rules are applied. The mathematical proof of dmin computation can be found in
The minimal distance is computed with the following equation :

dmin =
[
vegoτres + 1

2amax, accel τ2
res + (vego + τresamax, accel )2

2amin, brake

−
v2

fwd

2amax , brake

]
+

, (6.10)

where [x]+ := max{x, 0} and v is the velocity of the cars. Let td be a period during which
the situation is critical and d ≤ dmin. The interval [td, td +τres] becomes a critical interval where
the common sense safety rules are applied. The mathematical proof of dmin computation can be
found in [Shalev-Shwartz, 2017].

2.4.5 Lateral Critical Situations

Let cego be a car driving at a velocity vego and c a sideways moving car with a velocity
vc during a time interval [0, τres] distant from each other with a distance d. A lateral critical
situation occurs when both cars (or one of them) apply a lateral acceleration alat

max,acc and then
brake alat

min,brake until colliding laterally. Otherwise, the lateral situation is safe. The interval
[td

lat, t] is a critical lateral interval time, where td
lat is a lateral danger threshold time. The minimal

distance is computed by :

dmin = µ +
[

vego + vego,τ

2 τ +
v2

ego,τ

2alat
min , brake

−
(

vc + vc,τ

2 τ −
v2

c,τ

2alat
min , brake

)]
+

. (6.11)

The interval [td
lat, t] is a critical lateral interval time, where td

lat is a lateral danger threshold
time. The mathematical proof of dmin can be found in [Shalev-Shwartz, 2017].

3 Experiments

3.1 Environment Setup and Evaluation Metrics

All the experiments were conducted on the Carla simulator. The environment includes criteria
such as high traffic density or complex intersections (i.e., intersections with multiple lanes,
merging traffic, and pedestrians crossing). It also contains narrow streets, construction zones,
inclement weather, and pedestrian/cyclist interactions, which provide a realistic urban driving
experience.

Training Procedure. We evaluated the training phase and the testing outcomes in Town10.
The goal of an agent is to complete a trip from point A to point B with no infractions. Points
A and B are randomly chosen from a list of 120 points manually placed on the map, with 7140
possibilities. Using the search algorithm A∗ [Hart, 1968], a planner calculates the route between
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Table 6.1 – Training parameters

Parameter Value
Number of input frames 4
AE model type CNN
AE zdim 400
Action history false
Action smoothing 0
Batch size 32
Discount factor 0.99
Entropy scale 0.01
Value scale 1
Eval interval 20
Synchronous true
FPS 30
GAE lambda 0.95
Horizon 128
Initial std 1
Learning rate 1e−4

LR decay 0.9995
Num epochs 3
PPO epsilon 0.2
Seed 0

both points. Instead of scoring the completion rate of a route, an episode is considered successful
when the agent travels a distance of 2500 m, as in [Zhao, 2022]. Counting the completion rate of
a simple 200-meter straight route is not an indicator of generalization, whereas traveling 2,500
m with random routes does.

To save time, we defined three termination criteria : 1) the agent drives at a speed of 1km/h

for 5 seconds, 2) the agent deviates from the center for more than 2.5m, and 3) an agent
travels a distance of 2500 m. We used five metrics to compare our results : the total rewards,
the total distance traveled, the center lane deviation, the angle deviation, and the average
speed. [Codevilla, 2018] suggest using the NoCrash benchmark to evaluate the independent
driving policy in various urban settings. This benchmark has three different traffic situations
with varying degrees of difficulty : empty, regular (mid numbers of people and cars), and dense
(no moving items) (a large number of pedestrians and vehicles). Besides, it specifies 25 routes
in Town01 for training and 25 in Town02 for testing, along with six different types of weather.
Our autonomous agents are tested in the testing town and the testing weather to see how well
they operate. Table 6.1 represents the training hyperparameters.

Obstacles Avoidance Scenarios. NoCrash benchmark does not consider how the appea-
rance of various cars (such as small cars and big trucks) might affect the agent’s behavior.
NoCrash benchmark tests the agent over a lengthy path. Each scenario is created using the
unpredictable actions of cars and people, for example, pedestrians crossing the road. Further-
more, there are 26 types of pedestrians and 27 types of cars in CARLA 0.9.8. We thus created
twenty-six different obstacle avoidance scenarios in Town01 and Town02. Each scenario is a set
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of short courses to lessen the unpredictability and assess the obstacle avoidance performance
and inertia problem [Codevilla, 2018]. It is worth noting that all the courses are just for testing.
We determine the success rates along all paths, just like in the NoCrash benchmark.

Vehicles Avoidance Scenarios. Similarly, we created twenty-seven different obstacle avoi-
dance scenarios. A parked vehicle is produced at a 30m distance to block the ego vehicle once it
reaches the trigger location. The parked vehicle disappears, and the ego must stop in time and
resume its motion.

Pedestrians Avoidance Scenarios. A person appears at a distance of 30 m on the sidewalk
to cross the road. The ego vehicle must halt in time and resume motion after the pedestrian has
crossed the street.

In the first stage, we gathered a vast and diverse dataset for training our system using
Carla’s autopilot with additional random noise and 25 training routes under the three criteria
specified in the NoCrash benchmark from CARLA. A 60k 160x80x3 monocular RGB image, a
waypoint sequence, GPS, and IMU measurement will be fused using a Kalman filter for accurate
localization. We moved the camera around the autopilot during data collection. Besides, we
introduced a random noise to the steering and throttle between -0.1 to 0.1, leading to a more
realistic dataset for training the RL agent.

3.2 Results On NoCrach Benchmark

We compared our framework with state-of-the-art methods such as CADRE [Zhao, 2022],
IARL [Toromanoff, 2020], and LBC [Chen, 2020] (described in 3.2). Results of IARL and LBC
are taken from CADRE. Besides, IARL does not provide test results on testing weather, though
we have only the results on the training weather. Table 6.2 shows the success rate results on the
NoCrash benchmark.

In the empty scenario, GHRL achieves the highest score of 97 compared to the other methods.
LBC and CADRE also perform reasonably well, with scores of 89 and 95, respectively. However,
IARL lags behind with a score of 85, indicating slightly lower performance compared to GHRL
and CADRE.

Moving to the regular scenario, GHRL demonstrates performance with a perfect score of
100, showcasing its robustness and reliability in regular driving conditions. IARL, LBC, and
CADRE follow with scores of 86, 87, and 92, respectively.

In the dense scenario, GHRL maintains its superiority with a score of 96, indicating its
effectiveness even in dense traffic situations. IARL lags behind significantly with a score of 63,
suggesting challenges in handling dense traffic scenarios. LBC and CADRE perform better than
IARL but still fall short of GHRL, with scores of 75 and 82, respectively.

Overall, GHRL consistently outperforms the other methods across all scenarios, showcasing
its effectiveness in ensuring safe driving conditions. While IARL, LBC, and CADRE demonstrate
reasonable performance, they show limitations compared to GHRL, especially in challenging
scenarios such as dense traffic.
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Table 6.2 – NoCrash Benchmark

Task Town Weather IARL LBC CADRE GHRL
Empty 85 89 95 97
Regular Train Train 86 87 92 100
Dense 63 75 82 96
Empty 60 94 95
Regular Train Test 60 86 90
Dense 54 76 85
Empty 77 85 92 92
Regular Test Train 66 79 78 88
Dense 33 53 61 72
Empty 36 78 78
Regular Test Test 36 72 85
Dense 12 52 65

Table 6.3 – Obstacle Avoidance Benchmark

Vehicle avoidance Pedestrian avoidance
LBC 55 / 81 73 / 78
IARL 69 / 81 57 / 78
CADRE 81 / 81 76 / 78
GHRL 81 / 81 77 / 78

3.3 Results on Obstacle Avoidance

Table 6.3 shows the results of the NoCrash benchmark obstacle avoidance scenarios. We have
executed the evaluation 81 times for vehicle avoidance and 78 times for pedestrian avoidance to
align with the test scenarios performed by CADRE, LBC, and IARL. Our framework achieved
81 over 81 in vehicle avoidance, the same as CADRE, and slightly outperformed it in pedestrian
avoidance by achieving 77 over 78.

3.4 Training Sub-Policies

Figure 6.4 illustrates the performance evaluation of distinct iterations of GHRL agents wi-
thin the traffic light management sub-policy context. These agent variants diverge based on
the proportion of expert demonstrations integrated into ASP, which are employed to steer the
training of the PPO policies. The findings underscore that GHRL agents infused with a higher
ratio of ASP rules tend to exhibit superior performance compared to their counterparts lacking
ASP rules (PPO). This discrepancy in performance is attributed to the fact that ASP rules
encapsulate fundamental driving principles, such as refraining from acceleration when facing a
red traffic light. These encoded rules contribute to developing a traffic light management policy
that balances safety and efficiency within the GHRL agent. Furthermore, the results illuminate
a delicate equilibrium between the extent of ASP rule integration and the agent’s overarching
learning and generalization capacity. Notably, the GHRL agent, incorporating 20% ASP rules,
demonstrates optimal performance within the traffic light management sub-policy. However, this
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agent variant falls short compared to other GHRL agents in different sub-policies. This pheno-
menon is likely rooted in the specificity of the 20% ASP rules, which may be overly tailored to
the traffic light management sub-policy, thus hindering their applicability to broader scenarios.
The outcomes underscore that the strategic incorporation of ASP rules during GHRL agent
training can significantly enhance their competence in traffic light management. These findings
emphasize the importance of striking a nuanced balance between integrating domain-specific
rules and the agent’s broader capacity for learning and adaptation.

Figure 6.4 – Learning sub-policy

3.5 Safe High-Policies Experiments

Figure 6.5 is dedicated to meticulously evaluating urban driving safety through the lens of
distinct reinforcement learning (RL) algorithms. Our focus extends to diverse scenarios encom-
passing potential hazards and the unpredictable pre-crash scenarios stipulated by the National
Highway Traffic Safety Administration (NHTSA). The provided visual representation offers a
comparative analysis of three RL algorithms within a simulated urban driving environment :

— GHRL with safety rules (GHRL-R) : This variant integrates safety rules into the GHRL
agent’s framework, a strategic augmentation to enhance its safety performance.

— GHRL : This configuration adheres to the conventional GHRL algorithm without any
embedded safety rules.

— HRL : In this instance, a traditional hierarchical reinforcement learning algorithm is de-
ployed without any safety rule incorporation.

The outcomes of our comparative analysis underscore the superior performance of GHRL-R
in critical situations, eclipsing both GHRL and HRL counterparts. Notably, GHRL-R not only
outperforms its counterparts in dangerous scenarios but also accumulates higher rewards across
the entirety of the evaluation. This observed trend alludes to the effectiveness of safety features
in GHRL-R, rendering it capable of making informed decisions in precarious scenarios while still
achieving commendable performance across other contexts.
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Conversely, HRL emerges as the weakest performer, trailing behind GHRL and GHRL-R
in overall rewards and significantly struggling in critical situations. This deficiency in perfor-
mance can be attributed to the need for built-in safety mechanisms within the HRL framework.
The absence of such safety mechanisms renders HRL more susceptible to committing errors in
potentially hazardous situations, thus affecting its overall efficacy.

The outcomes derived from this investigation distinctly advocate for introducing safety rules
into RL algorithms to elevate their safety performance in urban driving scenarios. This strategic
incorporation, as evidenced by the superiority of GHRL-R, can substantially enhance an agent’s
ability to navigate dangerous circumstances. However, it is imperative to exercise meticulousness
in the design of these safety rules. Striking a balance between safety and learning potential is
pivotal to ensure that the agent’s ability to learn and generalize is not compromised in pursuing
enhanced safety measures.

Figure 6.5 – Safety comparison

4 Conclusion

This chapter presents GHRL, an innovative framework for vision-based control of autono-
mous vehicles within complex urban environments. GHRL capitalizes on the capabilities of a
convolutional neural network (CNN) to extract pertinent visual features from camera imagery,
supplemented by localization and waypoints serving as navigation inputs. The reinforcement
learning (RL) paradigm is harnessed to foster the acquisition of high-level policies through the
option-critic (OC) framework while simultaneously enabling the acquisition of low-level poli-
cies via expert demonstrations encoded within Answer Set Programming (ASP) rules. Notably,
the decision-making process is fortified by including safety rules strategically invoked during
precarious scenarios to ensure the agent’s decisions align with the principles of safety and res-
ponsibility.

The efficacy of GHRL is substantiated through its evaluation on the Carla NoCrash bench-
mark. Additionally, an ablation study is conducted to discern the impact of diverse network
architectures and RL hyperparameters on the performance of the proposed framework. The
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empirical outcomes from these evaluations reveal GHRL’s superiority over state-of-the-art me-
thodologies, manifesting in 87% overall success rate on the Carla NoCrash benchmark and a
fourfold improvement compared to conventional RL methods. The results effectively unders-
core the potential and viability of harnessing hierarchical reinforcement learning (HRL) for the
vision-based control of autonomous vehicles operating within urban landscapes.

In the following chapter, we will explore the thesis conclusion, summarizing the key contri-
butions and insights of this research, and discuss potential future directions in the field of
autonomous driving.

136



Conclusion and Future Directions

1 Summary

This thesis has made contributions to the field of autonomous driving, with a particular
focus on vehicle localization, automated parking, and safety control.

Chapter 4 presents a solution for vehicle localization, a crucial aspect of autonomous navi-
gation. Leveraging a Kalman filter-based approach, the proposed method adeptly fuses measu-
rements from low-cost Global Positioning System (GPS) and Inertial Measurement Unit (IMU)
sensors. By capitalizing on the complementary strengths of these sensors, the solution aims to
achieve precise and reliable position estimation, thereby facilitating safe and efficient autono-
mous navigation. The efficacy of the proposed method is rigorously evaluated through a series of
comprehensive experiments involving both simulated and real-world datasets. These evaluations
include diverse scenarios, thereby encompassing a wide range of environmental conditions and
driving maneuvers. The empirical analysis reveals that the approach consistently outperforms al-
ternative localization methods, particularly in challenging urban environments characterized by
signal obstructions and high noise levels. Notably, the empirical evidence shows a high accuracy
of the solution. The method’s performance superiority compared to conventional localization
techniques signifies a promising advancement in autonomous vehicle localization. This promi-
sing outcome paves the way for its consideration as a viable and effective solution to address the
critical challenges in autonomous vehicle navigation. The method’s ability to maintain superior
performance across various environmental settings and driving scenarios makes it particularly
promising for industrial applications where precise and reliable vehicle localization is paramount.

Chapter 5 introduces the DPPO-IL framework, tailored explicitly for end-to-end automa-
ted parking. The framework leverages the Proximal Policy Optimization (PPO) algorithm to
acquire optimal actions for parking maneuvers while effectively circumventing both static and
dynamic obstacles. The research design incorporates a task-specific curriculum learning strategy
alongside integrating dynamic reward function adjustments, augmenting the learning process.
The empirical evaluation of DPPO-IL is performed within a simulated parking environment,
whereby the agent is observed to accomplish a remarkable 90% success rate in a highly complex
and challenging setting.

The DPPO-IL framework exhibits its versatility by successfully learning to park in various
parking configurations, including parallel, perpendicular, and angled spots. Moreover, the agent
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demonstrates its adaptability to environmental changes, notably manifesting the capability to
navigate safely in the presence of other vehicles or pedestrians. The simulation-based assessments
affirm the efficacy of DPPO-IL in accomplishing the parking task and provide a comprehensive
understanding of its performance characteristics.

Overall, introducing the DPPO-IL framework represents a substantial advancement in au-
tomated parking systems. Its integration of advanced reinforcement learning techniques, task-
specific curriculum, and dynamic reward functions contribute to its high success rate and adap-
tive capabilities in a complex parking environment. The empirical validation of the framework
across various parking scenarios establishes its potential for real-world deployment, thus contri-
buting valuable insights to autonomous parking and reinforcement learning in the context of
vehicle navigation.

Chapter 6 introduces the Guided Hierarchy of Reinforcement Learning (GHRL) framework,
a seminal contribution in the realm of vision-based control for autonomous vehicles within the
challenging context of urban environments. The GHRL framework presents an innovative com-
bination of advanced machine-learning techniques to enable efficient and safe navigation for
autonomous vehicles.

At the core of the GHRL framework lies a Convolutional Neural Network (CNN) employed
to extract highly discriminative visual features from raw camera images, combined with precise
localization and waypoints, forming a comprehensive and informative navigation input. Subse-
quently, the framework harnesses a Hierarchical Reinforcement Learning (HRL) algorithm, a
powerful paradigm for decision-making in dynamic environments, to learn both high-level po-
licies, orchestrated through the Option-critic (OC) framework, and low-level policies that are
effectively guided by expert demonstrations encoded as Answer Set Programming (ASP) rules.
This hierarchical structure endows the GHRL framework with a multi-level control system that
effectively balances the high-level strategic decisions and the fine-grained control actions, leading
to proficient and contextually aware navigation.

Furthermore, the GHRL framework incorporates safety rules that augment the agent’s lear-
ning process to ensure responsible and safe decision-making. These safety rules act as a safeguard,
enabling the agent to make prudent and cautious decisions even in complex and ambiguous si-
tuations, thus mitigating potential risks and ensuring the safety of passengers, pedestrians, and
other road users.

The GHRL framework’s prowess is robustly demonstrated through rigorous empirical eva-
luations on the Carla NoCrash benchmark, where it exhibits superior performance compared to
state-of-the-art methods. This notable achievement signifies GHRL’s potential as an effective
vision-based control solution for autonomous vehicles navigating complex and dynamic urban
environments.

This thesis contributes to the burgeoning field of autonomous driving, specifically in vehicle
localization, automated parking, and vision-based control. Empirical evaluations confirm their
potential for real-world deployment, providing clear responses to the research questions.
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2 Perspectives

This thesis introduces solutions in autonomous driving ; it is imperative to recognize that
certain inherent limitations and challenges still need to be exhaustively addressed, thus warran-
ting more in-depth scientific scrutiny. These limitations stem from various sources, including the
complexities of real-world environments, algorithmic constraints, and hardware limitations.

Vehicle localization. The proposed solution showcases the absolute localization for au-
tonomous vehicles by integrating two low-cost sensors, namely GPS and IMU. The approach
includes a high-precision calibration method for the IMU sensor, noise reduction through a low-
pass filter, and using ES-EKF to integrate IMU data with GPS coordinates. However, the real
world presents diverse and dynamic conditions, from varying weather and lighting conditions
to unexpected obstacles and road deviations. Ensuring the robustness and adaptability of the
localization system under such conditions is a critical challenge. Addressing this challenge re-
quires an in-depth exploration of sensor fusion techniques, machine learning algorithms, and
data collection strategies to enhance the system’s precision, reliability, and scalability.

Real-time modeling of vehicle dynamics is critical for autonomous vehicles operating
at the limits of handling. Precise knowledge of the current vehicle dynamics is essential, with
tire-road contact, characterized by the friction value, playing a pivotal role. This friction value
undergoes significant changes influenced by aerodynamics (downforce), road conditions (tarmac),
weather conditions (rain, snow), and the vehicle’s ongoing maneuver (load shift during braking,
acceleration). The inherent high level of model uncertainty, attributed to external factors coupled
with the nonlinear effects within tire and vehicle dynamics, poses a formidable challenge for
motion planning and control algorithms. While existing models provide certain approximations
of vehicle dynamics, their computational demands remain significant, particularly concerning
tire models. Ongoing research endeavors aim to leverage artificial neural networks to compute
the vehicle’s dynamic behavior, offering computational efficiency surpassing traditional physical
models.

Cumulative rewards optimization poses an additional challenge in reinforcement lear-
ning, stemming from the inherent tension between the imperative to explore learning optimal
policies and the paramount importance of ensuring safety. This challenge manifests itself in
distinct ways across various approaches. In the case of hierarchical agents, suboptimal policies
distort rewards intractably, impeding the improvement of policies. On the other hand, end-to-
end methods need to be improved in exploring rewards due to the gradual expansion of the safe
region during training, thereby presenting obstacles to effective learning.

Domain adaptation, transferring knowledge gained in a simulated environment to a real-
world setting, poses a significant challenge in the autonomous vehicle (AV) domain. The data
received by sensors in the real world often belongs to distributions vastly different from those
encountered during training in simulated environments. Additionally, a crucial related concern
is inference time in the real-world environment.

Prior research has explored the sim-to-real transfer approach to address this challenge, par-
ticularly in localized AV tasks such as optimal parking assignment or navigation in controlled
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environments like indoor areas. Notably, meta-reinforcement learning (meta-RL) techniques have
successfully achieved zero-shot sim-to-real domain adaptation in robotics.

Exploring meta-RL-based approaches becomes a promising avenue to further enhance sim-
to-real transfer efficiency in the AV domain. These techniques, which have succeeded in robotics,
could be adapted for efficient knowledge transfer in the AV context.

Furthermore, active learning emerges as another potential research area in this domain.
Active learning involves agents consulting human experts in real-time to enhance the model’s
decision-making abilities. This avenue holds promise for improving AV systems’ adaptability
and real-world performance.

Generating new Answer Set Programming (ASP) rules directly from the environ-
ment without relying on manual, handcrafted engineering. This issue arises in autonomous sys-
tems or intelligent agents that utilize ASP for decision-making or rule-based reasoning.

Traditional approaches often involve human experts crafting ASP rules based on their un-
derstanding of the environment and task requirements. However, this manual engineering process
can be labor-intensive and time-consuming, and it may need to fully capture the complexity of
dynamic or evolving environments.

The research problem seeks innovative solutions that enable autonomous systems to autono-
mously learn and generate ASP rules by interacting with and observing their environment. The
goal is to reduce the dependence on manual rule creation, allowing systems to adapt flexibly to
changes and uncertainties in their operating environment.

In conclusion, the thesis catalyzes future research in the autonomous driving domain, provi-
ding solutions and performance benchmarks and inspiring comprehensive scientific exploration.
The unfolding research landscape is poised to unlock new horizons, offering the potential to re-
fine existing techniques, develop advanced safety and regulatory frameworks, and enhance user
acceptance, ultimately propelling the field of autonomous driving into a new era of innovation
and practical implementation.
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Titre : Apprentissage par renforcement profond neuro-symbolique pour une conduite urbaine sûre à l’aide de
capteurs à faible coût.

Mots clés : Apprentissage par Renforcement Hiérarchique, Voiture Autonome, Conduite Urbaine

Résumé : La recherche effectuée dans cette thèse
concerne le domaine de la conduite urbaine sûre, en
utilisant des méthodes de fusion de capteurs et d’ap-
prentissage par renforcement pour la perception et
le contrôle des véhicules autonomes (VA). L’évolution
généralisée des technologies d’apprentissage auto-
matique ont principalement propulsé la prolifération
des véhicules autonomes ces dernières années. Ce-
pendant, des progrès substantiels sont nécessaires
avant d’atteindre une adoption généralisée par le
grand public. Pour accomplir son automatisation, les
véhicules autonomes nécessitent l’intégration d’une
série de capteurs coûteux (e.g. caméras, radars, Li-
DAR et capteurs à ultrasons). En plus de leur far-
deau financier, ces capteurs présentent une sensi-
bilité aux variations telles que la météo, une limita-
tion non partagée par les conducteurs humains qui
peuvent naviguer dans des conditions diverses en
se fiant à une vision frontale simple. Par ailleurs,
l’avènement des algorithmes neuronaux de prise
de décision constitue l’intelligence fondamentale des
véhicules autonomes. Les solutions d’apprentissage
profond par renforcement, facilitant l’apprentissage
de la politique du conducteur de bout en bout, ont
trouvé application dans des scénarios de conduite
élémentaires, englobant des tâches telles que le
maintien dans la voie, le contrôle de la direction et
la gestion de l’accélération. Cependant, il s’avère que
ces algorithmes sont coûteux en temps d’exécution
et nécessitent de large ensembles de données pour
un entraı̂nement efficace. De plus, la sécurité doit
être prise en compte tout au long des phases de
développement et de déploiement des véhicules au-
tonomes. La première contribution de cette thèse
améliore la localisation des véhicules en fusionnant
les mesures des capteurs GPS et IMU avec une adap-

tation d’un filtre de Kalman, ES-EKF, et une réduction
du bruit des mesures IMU. L’algorithme est déployé
et testé en utilisant des données de vérité terrain sur
un microcontrôleur embarqué, le STM32 Nucleo, et a
atteint un niveau de précision de 92 % sur une route
en conditions réelles avec un temps d’exécution d’en-
viron 20 µs. Ce pourcentage représente la proportion
de points de données où la position estimée (X, Y) par
l’ES-EKF se trouve dans un intervalle de confiance
de 0,5 mètre par rapport à la position réelle corres-
pondante. La deuxième contribution propose l’algo-
rithme DPPO-IL (Dynamic Proximal Policy Optimiza-
tion with Imitation Learning), conçu pour faciliter le
stationnement automatisé en accordant une attention
toute particulière à la sécurité. Cet algorithme ap-
prend à exécuter des manœuvres de stationnement
optimales tout en naviguant entre des d’obstacles sta-
tiques et dynamiques grâce à un entraı̂nement com-
plet intégrant des données simulées et réelles. La
troisième contribution est un framework de conduite
urbaine de bout en bout appelé Guided Hierarchi-
cal Reinforcement Learning (GHRL). Il intègre des
données de vision et de localisation ainsi que des
démonstrations d’experts exprimées avec des règles
ASP (Answer Set Programming) pour guider la po-
litique d’exploration de l’apprentissage par renforce-
ment hiérarchique et accélérer la convergence de l’al-
gorithme. Lorsqu’une situation critique se produit, le
système s’appuie également sur des règles liées à la
sécurité pour faire des choix judicieux dans des condi-
tions imprévisibles ou dangereuses. GHRL est évalué
sur le jeu de données NoCrash du simulateur Carla
et les résultats montrent qu’en incorporant des règles
logiques, GHRL obtient de meilleures performances
que les algorithmes de l’état de l’art.



Title : Neuro-symbolic Deep Reinforcement Learning For Safe Urban Driving Using Low-Cost Sensors.

Keywords : Hierarchical Reinforcement Learning, Self Driving Car, Safe Urban Driving

Abstract : The research conducted in this thesis is
centered on the domain of safe urban driving, em-
ploying sensor fusion and reinforcement learning me-
thodologies for the perception and control of autono-
mous vehicles (AV). The evolution and widespread in-
tegration of machine learning technologies have pri-
marily propelled the proliferation of autonomous ve-
hicles in recent years. However, substantial progress
is requisite before achieving widespread adoption by
the general populace. To accomplish its automation,
autonomous vehicles necessitate the integration of an
array of costly sensors, including cameras, radars, Li-
DARs, and ultrasonic sensors. In addition to their fi-
nancial burden, these sensors exhibit susceptibility to
environmental variables such as weather, a limitation
not shared by human drivers who can navigate di-
verse conditions with a reliance on simple frontal vi-
sion. Moreover, the advent of decision-making neural
network algorithms constitutes the core intelligence of
autonomous vehicles. Deep Reinforcement Learning
solutions, facilitating end-to-end driver policy learning,
have found application in elementary driving sce-
narios, encompassing tasks like lane-keeping, stee-
ring control, and acceleration management. However,
these algorithms demand substantial time and exten-
sive datasets for effective training. In addition, safety
must be considered throughout the development and
deployment phases of autonomous vehicles. The first
contribution of this thesis improves vehicle localiza-
tion by fusing data from GPS and IMU sensors with
an adaptation of a Kalman filter, ES-EKF, and a reduc-
tion of noise in IMU measurements. This method ex-
cels in urban environments marked by signal obstruc-

tions and elevated noise levels, effectively mitigating
the adverse impact of noise in IMU sensor measure-
ments, thereby maintaining localization accuracy and
robustness. The algorithm is deployed and tested em-
ploying ground truth data on an embedded microcon-
troller, the STM32 Nucleo, and has achieved an accu-
racy level of 92% on a real-world road and a swift exe-
cution time of around 20 µs. This percentage repre-
sents the proportion of data points where the estima-
ted position (X, Y) from the ES-EKF falls within a confi-
dence level of a 0.5m distance threshold of the corres-
ponding ground truth position. The second contribu-
tion introduces the DPPO-IL (Dynamic Proximal Po-
licy Optimization with Imitation Learning) algorithm,
designed to facilitate end-to-end automated parking
while maintaining a steadfast focus on safety. This
algorithm acquires proficiency in executing optimal
parking maneuvers while navigating static and dyna-
mic obstacles through exhaustive training incorpora-
ting simulated and real-world data. The third contribu-
tion is an end-to-end urban driving framework called
GHRL. It incorporates vision and localization data and
expert demonstrations expressed in the Answer Set
Programming (ASP) rules to guide the hierarchical
reinforcement learning (HRL) exploration policy and
speed up the learning algorithm’s convergence. When
a critical situation occurs, the system relies on sa-
fety rules, which empower it to make prudent choices
amidst unpredictable or hazardous conditions. GHRL
is evaluated on the Carla NoCrash benchmark, and
the results show that by incorporating logical rules,
GHRL achieved better performance over state-of-the-
art algorithms.
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