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Abstract

This thesis explores two distinct subjects at the intersection of commutative algebra, algebraic
geometry, multilinear algebra, and computer-aided geometric design:

(i) The study and effective construction of multilinear birational maps

(ii) The extraction of information from measures and data using polynomials

The primary and most extensive part of this work is devoted to multilinear birational maps. A
multilinear birational map is a rational map ffi : (P1)n 99K Pn, defined by multilinear polynomials,
which admits an inverse rational map. Birational transformations between projective spaces have
been a central theme in algebraic geometry, tracing back to the seminal works of Cremona, which
has witnessed significant advancement in the last decades. Additionally, there has been a recent
surge of interest in tensor-product birational maps, driven by the study of multiprojective spaces in
commutative algebra and their practical application in computer-aided geometric design.

In the first part, we address algebraic and geometric aspects of multilinear birational maps. We
primarily focus on trilinear birational maps ffi : (P1)3 99K P3, that we classify according to the
algebraic structure of their space, base loci, and the minimal graded free resolutions of the ideal
generated by the defining polynomials. Furthermore, we develop the first methods for constructing
and manipulating nonlinear birational maps in 3D with sufficient flexibility for geometric modeling
and design. Interestingly, we discover a characterization of birationality based on tensor rank,
which yields effective constructions and opens the door to the application of tools from tensors to
birationality. We also extend our results to multilinear birational maps in arbitrary dimension, in
the case that there is a multilinear inverse.

In the second part, our focus shifts to the application of polynomials in analyzing data and
measures. We tackle two distinct problems. Firstly, we derive bounds for the size of (1− ›)-nets
for superlevel sets of real polynomials. Our results allow us to extend the classical centerpoint
theorem to polynomial inequalities of higher degree. Secondly, we address the classification of
real cylinders through five-point configurations where four points are cocyclic, i.e. they lie on a
circumference. This is an instance of the more general problems of real root classification of systems
of real polynomials and the extraction of algebraic primitives from raw data.

Key words: birational map, multiprojective space, multilinear, syzygy, tensor, geometric modeling





Résumé

Cette thèse explore deux sujets distincts à l’intersection de l’algèbre commutative, de la géométrie
algébrique, de l’algèbre multilinéaire et de la modélisation géométrique:

(i) L’étude et la construction effective des transformations birationnelles multilinéaires

(ii) L’extraction d’informations à partir de données discrètes à l’aide de modèles polynomiaux

La partie principale de ce travail est consacrée aux transformations birationnelles multilinéaires.
Une transformation birationnelle multilinéaire est une transformation rationnelle ffi : (P1)n 99K Pn,
définie par des polynômes multilinéaires, qui admet une transformation rationnelle inverse. Les
transformations birationnelles entre espaces projectifs constituent un sujet d’étude important de
la géométrie algébrique, initié par les travaux fondateurs de Cremona, qui a connu des avancées
significatives au cours des dernières décennies. Plus récemment, les transformation birationnelles
multiprojectives, c’est-à-dire définies par des polynômes multi-homogènes, ont récemment suscité un
regain d’intérêt, motivé notamment par l’étude des structures multigraduées en algèbre commutative
et leurs applications pratique en modélisation géométrique.

Dans la première partie, nous étudions les aspects algébriques et géométriques des transforma-
tions birationales multilinéaires. Nous nous concentrons principalement sur les transformations
birationnelles trilinéaires ffi : (P1)3 99K P3 dont nous établissons une classification en fonction de
la structure algébrique de leur espace, du lieu base, et des résolutions libres graduées minimales
de l’idéal engendré par les polynômes de définition. En outre, nous développons les premières
méthodes qui permettent de construire et de manipuler des transformations birationnelles non
linéaires en dimension 3 avec une flexibilité suffisante pour les applications visées en modélisation
géométrique. De plus, nous établissons une caractérisation de la birationalité basée sur le rang
de tenseurs, qui permet de construire efficacement et ouvre la voie à l’application des outils de
l’algèbre tensorielle à la birationnalité. Nous étendons également nos résultats aux transformations
birationnelles multilinéaires en dimension arbitraire, dans le cas où il existe un inverse multilinéaire.

Dans la deuxième partie, nous nous concentrons sur l’application des polynômes à l’analyse des
données discrètes. Nous nous attaquons à deux problèmes distincts. Tout d’abord, nous dérivons
des bornes pour la taille des (1− ›)-nets pour les ensembles de non-négativité de polynômes réels.
Nos résultats nous permettent d’étendre le théorème classique du point central aux inégalités
polynomiales de degré supérieur. Ensuite, nous abordons la classification des cylindres réels qui
passent par cinq points qui sont tels que quatre d’entre eux sont cocycliques, c’est-à-dire qu’ils
se trouvent sur un cercle. Il s’agit d’un cas particulier de problèmes plus généraux que sont
la classification des racines réelles des systèmes de polynômes réels et l’extraction de primitives
algébriques à partir de données brutes.

Mots-clés: transformation birationnelle, espace multiprojectif, multilinéaire, syzygie, tenseur,
modélisation géométrique
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Chapter 1

Introduction

This thesis focuses on two separated subjects that lie in the intersection of commutative algebra,
algebraic geometry, multilinear algebra, and computer-aided geometric design:

(i) The study and effective construction of multilinear birational maps

(ii) The extraction of information from measures and data using polynomials

The thesis is divided into two parts, each addressing one of the aforementioned topics.

The first part, spanning Chapters 3 to 5, receives a more comprehensive treatment owing to its
inclusion of a greater number of contributions. It is devoted to the study of multilinear birational
maps. A multilinear rational map ffi : (P1)n 99K Pn is a rational map from a product of projective
lines to a projective space, which is defined by a tuple of multilinear polynomials. If it admits an
inverse rational map, we say that it is birational. Birational maps pose multiple challenges and
have historically occupied a central role in algebraic geometry (e.g. [72, 73, 119, 50, 2, 53, 85,
111, 109, 86]). However, much of the classic literature has primarily concentrated on birational
automorphisms of projective spaces, also known as Cremona maps, and did not give equal attention
to birational maps between multiprojective spaces. The study of multiprojective spaces is a very
active topic in commutative algebra, driven by multiple theoretical inquiries [146, 104, 16, 107, 107,
145] and its real-world applications due to the connection with tensor product maps [41, 59, 51,
28, 43]. Additionally, during the last decade interest in birational transformations within geometric
modeling and computer-aided geometric design (CAGD) has surged, and several works dedicated
to their construction and manipulation have appeared [185, 183, 203, 202, 99].

The formal statements of the principal results of the first part of the thesis are collected in §1.2,
along with examples and applications. We outline here the main objectives:

(i) Construction and manipulation of trilinear birational volumes: the ultimate goal is
to develop effective methods for the construction and manipulation of trilinear birational
maps, i.e. birational maps ffi : (P1)3 99K P3 defined by trilinear polynomials. We develop
tools to operate with these birational maps in a flexible way. In particular, we address several
problems: the description of the necessary geometric constraints for birationality, the explicit
computation of the inverse rational map, the computation of a birational approximation for a
rational map, and the deformation of birational maps.

(ii) Effective birationality criteria for trilinear rational maps: in order to achieve the first goal,
we require results that characterize the birationality of trilinear rational maps. Our second
objective is the derivation of new birationality criteria. We provide two main contributions in
this direction. The first is a syzygy-based characterization of birationality, which is effective
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for testing birationality but not as immediately applicable to construction. The second
contribution is a characterization of birationality involving tensor rank. More specifically,
under some necessary conditions, birationality holds if and only if a specific tensor of format
2× 2× 2 has rank one. This result establishes a bridge between birationality and tensors
that, as far as we know, had remained unnoticed. From this perspective, we can apply tools
from a vast literature on tensor rank to the construction of multilinear birational mappings.

(iii) Classification of the space and base loci of trilinear birational maps: the derivation
of our birationality criteria still requires an in-depth study of trilinear birational maps. We
describe the geometry of the space of trilinear birational maps, and find that it consists
of eight irreducible components of varying dimension. Roughly, each of these components
consists of the birational maps that exhibit the same algebraic behavior. Additionally, we
provide a complete list of the possible base loci of these transformations. In particular, we
find exactly 19 isomorphism classes for the base loci.

(iv) Construction of multilinear birational maps with multilinear inverse: we also address
the construction of multilinear birational maps ffi : (P1)n 99K Pn with a multilinear inverse.
Algebraically, the defining polynomials of these birational maps admit n independent linear
syzygies and have a Hilbert-Burch minimal graded free resolution. We extend the approach
established for trilinear rational maps to this context. Namely, we prove that birationality is
achieved if and only if a tensor of format 2×n has rank one, and present effective methods
for their construction.

In the second part, consisting of Chapters 6 and 7, we delve into inquiries related to using
polynomials in analyzing data and measures. We focus on two distinct problems. The first one
involves the investigation of (1− ›)-nets for superlevel sets of real polynomials, and relates to tensor
rank [26, 17] and convex algebraic geometry [83, 84]. The second problem is the classification of
the real cylinders through four cocyclic points. It can be regarded as an instance of a more general
problem in real algebraic geometry, known as real root classification (e.g. [137, 142, 209, 140]).
Moreover, it resides within the extraction of algebraic primitives from raw data (e.g. [165, 81, 42,
143]). The main objectives of the second part are summarized here:

(i) (1− ›)-nets for polynomial superlevel sets and the Carathéodory number of Veronese
varieties: we prove bounds on the size of a (1− ›)-net for the range space defined by the
superlevel sets of real polynomials with bounded degree, i.e. the loci defined by a single
polynomial inequality of bounded degree. These bounds allow us to generalize the classical
centerpoint theorem, replacing half-spaces by more general polynomial superlevel sets. Our
results build upon on novel estimates of the Carathéodory number of real Veronese varieties.

(ii) Classification of real cylinders through five points with four of them cocyclic: we
provide algebraic certificates to ascertain the number of cylinders through a given configuration
of five points with four cocyclic points (i.e. lying on a common circumference), and present
closed formulas for their defining equations. These certificates are the equations that, in the
space of five-point configurations with four cocyclic points, determine the regions with a
fixed count of real cylinders.
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1.1. Motivation and state-of-the-art

In this section, we provide the motivation that supports our research, and establish its context
within the existing body of literature and contemporary research trajectories. Furthermore, we
introduce the central ideas underlying the problems that we address. To ensure coherence, we
introduce elementary notation as it becomes necessary. The section is thematically divided based
on the research domains where our contributions lie.

1.1.1. Construction and manipulation of birational transformations

Surprisingly, although birational geometry is a classical topic in algebraic geometry with a trajectory
of over 150 years, it wasn’t until 2015 that the practical application of (nonlinear) birational
transformations to design emerged, thanks to the work of researchers in computer-aided geometric
design [185, 183].

In the fields of geometric modeling and computer-aided geometric design (CAGD), rational maps
play a pivotal role. They offer an intuitive means of representing curves, surfaces, and volumes [93,
166, 69], and have been instrumental for the modern development of these areas since the seminal
works of Pierre Bézier and Paul de Casteljau in the 1950s and 1960s [18, 74, 75].

A rational map is defined by ratios of polynomials. The primary representation of rational
parametrizations in practical scenarios involve control points, nonnegative weights, and blending
functions. The most frequent parametrizations of rational surfaces and volumes in CAGD rely on
tensor-product polynomials. Nevertheless, it is worth noting that other useful parametrizations
exist in geometric design, such as simplicial and toric Bézier patches [129]. For rational curves and
surfaces, the typical parametrizations take the following form

ffi : [0, 1] −→ A2
R

s 7→
Pn

i=0 wi Pi b
n
i (s)Pn

i=0 wi b
n
i (s)

ffi : [0, 1]2 −→ A3
R (1.1)

(s, t) 7→
Pn

i=0

Pm
j=0 wij Pij b

n
i (s) b

m
j (t)Pn

i=0

Pm
j=0 wij b

n
i (s) b

m
j (t)

,

where Pi = (xi , yi) in R2 (resp. Pij = (xij , yij , zij) in R3) are the control points, wi ≥ 0 (resp.
wij ≥ 0) are the weights, and

bni (s) =

„
n

i

«
(1− s)n−i s i

are the polynomials in the Bernstein basis of degree n in the variable s.

This formulation might seem unusual, or unnecessary, for readers with a background in algebra
and algebraic geometry. However, there are substantial arguments in its favour. First and foremost,
the control points and weights offer intuitive insights into the geometry of the rational map. The
parametrized shape mimics the net of control points, and the weights have a pull-push effect
towards the control points. Furthermore, the control points provide useful differential information
of the rational map, and the shape always lies in the convex hull of the control points. All these
properties are visually depicted in Figure 1.1, with the parametrization of a rational curve by means
of the representation in (1.1). We refer the reader to [93] and [69, Chapter 3] for a more detailed
description of the properties of these representations. In this thesis, we provide new arguments (of
algebraic nature) supporting this representation.
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Figure 1.1.: a rational curve parametrized using control points (green and red points) and their
associated weights. The curve approximates the geometry of the sequence of segments connecting
adjacent control points (green segments). In the image on the left, we use uniform weights equal
to one. The right image showcases the effect of increasing the weight of the third control point to
three, resulting in a “pull” effect that adjusts the curve towards the control point. Moreover, since
all the weights are positive, the curve lies in the convex hull of the control points.

A rational parametrization is birational if it admits an inverse map which is also rational [109,
111]. Birational maps have several advantages in applications. One key benefit is that they ensure
global injectivity (on a Zariski open set). Often, manipulating control points can lead to singularities
and self-intersections of shapes due to noninjective parametrizations. More importantly, the inverse
can be exploited for computing preimages. Some applications require the computation of preimages
for various purposes [64, 97], and it is convenient for others such as image and volume warping
[177, 194], morphing [193, 144], texturing [36, 150], or the generation of 3D curved meshes for
geometric analysis [173, 138]. Birational maps offer computational advantages since the inverse
yields formulas for these preimages without invoking numerical solving methods.

By a dimensional argument, the curve and surface parametrizations in (1.1) are birational for
a general choice of control points and weights. However, if the dimension of the source and
target spaces is the same, the situation is completely different. Such rational transformations
are ubiquitous in CAGD. For example, free-form deformations (FFDs) have revealed a powerful
technique with multiple applications (e.g. [184, 200, 158]), where the ambient space is transformed
by means of a rational map as shown in Figure 1.2.

More specifically, given control points Pijk = (xijk , yijk , zijk) and weights wijk ≥ 0, the volumetric
parametrization

ffi : A3
R 99K A3

R (1.2)

(s, t, u) 7→
Pn

i=0

Pm
j=0

Pl
k=0 wijk Pijk b

n
i (s) b

m
j (t) b

l
k(u)Pn

i=0

Pm
j=0

Pl
k=0 wijk b

n
i (s) b

m
j (t) b

l
k(u)

,

is in general not birational. Furthermore, the locus of birational transformations in the space of such
parametrizations generally has a large codimension. Therefore, birationality represents a notably
restrictive condition, making the construction of birational maps a challenging algebraic problem.
Hence, it must be treated using tools from commutative algebra.

In order to address the problem of constructing tensor-product birational maps with the eyes of
an algebraist, it is more convenient to adopt a multiprojective formulation. Let us consider the
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Figure 1.2.: free-form deformation of a 3D complex model by means of a trilinear rational map,
defined by a net of 2× 2× 2 = 8 control points.

homogeneous variables s0, s1 on a real projective line P1
R, and redefine the homogeneous Bernstein

polynomials of degree n in the variables s0, s1 as

bni (s0, s1) =

„
n

i

«
(s0 − s1)

n−i s i1

for every 0 ≤ i ≤ n. Moreover, we define the ring R = R[s0, s1]⊗ R[t0, t1]⊗ R[u0, u1], which is
canonically graded by three integers as it inherits the degree from the three pairs of homogeneous
variables. If we redefine Pijk = (1, xijk , yijk , zijk), the previous volume parametrization can be
equivalently written as

ffi : P1
R × P1

R × P1
R 99K P3

R (1.3)

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (f0 : f1 : f2 : f3)

where

f = (f0, f1, f2, f3) =
nX

i=0

mX
j=0

lX
k=0

wijk Pijk b
n
i (s0, s1) b

m
j (t0, t1) b

l
k(u0, u1) ∈ R4

In particular, the projective point (1 : xijk : yijk : zijk) lies in the affine chart A3
R ⊂ P3

R defined
by y0 ̸= 0. Since A3

R
∼= Spec(R[Y1,Y2,Y3]) for the variables Yn = yn=y0 for each n = 1, 2, 3,

the point (1 : xijk : yijk : zijk) is identified with (xijk , yijk , zijk) in A3
R. Consequently, both rational

maps coincide (see Definition 2.1.30) and the polynomial f0 can be though of as the common
denominator in (1.2). The advantage of this multiprojective setting is that we can transfer the
study of the rational map ffi to the study of the ideal B = (f0, f1, f2, f3) in R , called the base ideal
(Definition 2.1.32), and leverage homological methods for treating B as a graded R-module.

One of the central tools in commutative algebra are syzygies. In our context, a syzygy of f is a
tuple ff = (ff0,ff1,ff2,ff3) of homogeneous polynomials in R satisfying the relation

⟨ff, f⟩ = ff0 f0 + ff1 f1 + ff2 f2 + ff3 f3 = 0 ,

where ⟨−,−⟩ stands for the usual scalar product. To put it simply, a syzygy of f represents a linear
relation among the polynomials f0, f1, f2, and f3 with coefficients belonging to R. Approximately
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thirty years ago syzygies became involved in CAGD, primarily motivated by the problem of finding
the implicit equation of parametric rational curves and surfaces by the method of moving curves and
surfaces [182]. They have proven to be an instrumental tool in the modern theory of implicitization
since then (e.g. [123, 30, 44, 40, 39]). In the last decade, syzygies have also become involved in
the construction of birational maps.

The literature concerning the construction of birational maps for CAGD is still in its infancy. Much
of the research has focused on developing sufficient criteria for local injectivity, aiming to determine
conditions under which a rational parametrization is injective within a specific domain (e.g. [206,
207, 95, 168]). However, this approach falls short when it comes to efficiently computing preimages.
The earliest works on constructing birational maps dealt with 2D tensor-product parametrizations
ffi : P1

R × P1
R 99K P2

R defined by polynomials of low degree. In [185], the authors give a simple
characterization of birationality for rational maps with bilinear entries, and derive an effective
method to construct them with much flexibility. Notably, their approach does not impose geometric
constraints on control points and provides explicit formulas for defining the inverse rational map.
More general (nonrational) inversion formulas for nonbirational bilinear maps are studied in [94].
Research has also explored birational maps ffi : P1

R × P1
R 99K P2

R with entries of degree (1, n), i.e.
linear with respect to one of the parameters. In [183], the authors propose sufficient conditions for
birationality and methods for construction. Remarkably, the control points defining the rational
map remain unconstrained, and nonnegative weights can be computed to ensure birationality.
Recently, novel conditions for birationality have been proposed for parametrizations ffi : P2

R 99K P2
R

with quadratic entries, relying on the complex rational representation of a rational map [203, 202].
These works introduce methods for the construction of birational triangular patches, albeit with
some constraints on the geometry of the control points.

It is important to highlight three characteristics common to all the works addressing the
construction of birational maps in CAGD published to date:

(i) They only treat 2D parameterizations. Methods for constructing and manipulating 3D
nonlinear birational maps are yet to be developed

(ii) They rely on the imposition of specific syzygies to the entries of the rational map in order to
achieve birationality

(iii) They provide strategies for constructing (possibly constrained) nets of control points with
sufficient flexibility, followed by the computation of weights that ensure birationality

1.1.2. Criteria for birationality

The computation of the degrees and birationality of rational maps between multiprojective and
projective spaces has received attention recently [41, 59, 43, 28]. Approximately thirty years ago,
modern techniques from commutative algebra were incorporated to the study of birational maps,
primarily motivated by computational purposes. Syzygy-based birationality criteria date back to
[181], and have been further developed ever since (e.g. [178, 188]). In particular, they are necessary
in all the existing methods for the construction of birational transformations in CAGD.

The Jacobian Dual Criterion (JDC) is a general method to decide if a rational map between
projective varieties, or from a multiprojective variety to a projective variety, is birational [87, 178, 41,
188]. The JDC relies on the computation of the defining equations of the Rees algebra associated
to the rational map. The Rees algebra is a central object in commutative algebra (e.g. [57, 170,
198, 199]) that has proven useful in a number of scenarios (e.g. [66, 65, 67, 135, 134, 133]).
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More specifically, the defining equations of the Rees algebra associated to an ideal encompass all
the polynomial relations satisfied by the generators of the ideal. Among these relations we have
the syzygies, which are precisely the linear relations. The algebra induced by the syzygies is the
symmetric algebra, which is a rough approximation to the Rees algebra. However, in some particular
cases the symmetric algebra provides useful information about the Rees algebra [89, 151, 41, 132].

In the context of rational maps, the Rees algebra can be understood as the bihomogeneous
coordinate ring of the graph of the rational map [111, §II.7]. More specifically, let R = C[x1]⊗
... ⊗ C[xn] be the homogeneous coordinate ring of Pm1

C × ... × Pmn
C , where xi = (x0i , ... , xmi i)

are standard Z-graded variables (see §2.1.1). In particular, the tensor product ring R is standard
Zn-graded. Additionally, set m0 = m1 + ... +mn and let y = (y0, ... , ym0) be standard Z-graded
variables. Furthermore, let f = (f0, ... , fm0) be homogeneous polynomials in R . Clearly, f induces a
rational map ffi : Pm1

C × ...Pmn
C 99K P

m0
C . The Rees ideal J associated to f, or ffi, is the kernel of the

homomorphism of graded rings (see §2.1.4 for more details)

R[y] −→ R

yj 7→ fj ,

where R[y] is Zn+1-graded since it inherits the degree from R and the variables in y. The Rees
algebra associated to f, or ffi, is the quotient R := R[y]=J.

Let us denote by (d1, ... , dn; e) the Zn+1-degree in R[y], which is the concatenation of the
Zn-degree in R and the Z-degree of y. Namely, a polynomial in R[y] has degree (d1, ... , dn; e) if it
has degree di with respect to the variables in xi = (x0i , ... , xmi i ) and degree e with respect to the
variables in y = (y0, ... , ym0). For each 1 ≤ i ≤ n, let ei be the i-th canonical vector in Zn, i.e.

ei = (0 , ... , 0 , 1|{z}
i-th coordinate

, 0 , ... , 0) .

Additionally, we define the C[y]-module

J(ei ;∗) =
∞M
j=1

J(ei ; j)

where J(ei ; j) stands for the graded component of J in degree (ei ; j) (see Definition 2.1.3). If we
denote by C(y) the field of fractions of C[y], the multigraded JDC (Theorem 2.1.40) states that
ffi is birational if and only if the C(y)-vector space C(y)⊗C[y] J(ei ;∗) has dimension one for every
1 ≤ i ≤ n.

The following example shows how the multigraded JDC can be used to test birationality and
compute the inverse rational map explicitly.

Example 1.1.1. Consider the rational map

ffi : P1
C × P1

C × P1
C 99K P3

C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s1t0u1 : s0t0u1 − s0t1u1 : s1t1u0 : s0t1u0 − s0t1u1)

and let R = C[s0, s1] ⊗ C[t0, t1] ⊗ C[u0, u1] be standard Z3-graded, and y = (y0, y1, y2, y3) be
standard Z-graded. Using Macaulay2 [101], we derive that the Rees ideal associated to ffi is
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generated by the seven relations

s0 (y0 − y2)− s1 (y1 − y3) ,

(s0u0 − s0u1) y2 − s1u0 y3 ,

s1t1 y1 + (s0t1 − s0t0) y2 + (s1t0 − s1t1) y3 ,

(t1u0 − t1u1) y1 + (t1u1 − t0u1) y3 ,

t1u0 y0 − t0u1 y2 ,

t0 (y0y3 − y1y2)− t1 (y0y3 − y0y1) ,

u0 (y1y2 − y0y3)− u1 (y1y2 − y2y3) .

In particular, we find

J(1,0,0;1) = C⟨ s0 (y0 − y2)− s1 (y1 − y3) ⟩ ,
J(0,1,0;2) = C⟨ t0 (y0y3 − y1y2)− t1 (y0y3 − y0y1) ⟩ ,
J(0,0,1;2) = C⟨ u0 (y1y2 − y0y3)− u1 (y1y2 − y2y3) ⟩ ,

where C⟨−⟩ stands for the C-vector space spanned by −. Furthermore, the C(y)-vector spaces
C(y)⊗C[y] J(ei ;∗) are spanned by the generators of the vector spaces above. By the multigraded
JDC, it follows that ffi is birational.

Additionally, the defining relations of the Rees algebra can be used to efficiently compute
preimages. Specifically, the Rees ideal J is the defining ideal of the graph of ffi in the product space
(P1

C)
3 × P3

C (see §2.1.4), or equivalently, the graph of ffi is the scheme in (P1
C)

3 × P3
C defined by

the Rees algebra R = R[y]=J via the MultiProj construction (see §2.1.1). Namely, a point

(¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1)× (‹0 : ‹1 : ‹2 : ‹3) ∈ (P1
C)

3 × P3
C

lies in the graph of ffi if and only if

g(¸0,¸1,˛0,˛1, ‚0, ‚1, ‹0, ‹1, ‹2, ‹3) = 0

for every g in J. In particular, the pullback ffi−1 of the point (y0 : y1 : y2 : y3) = (1 : 1 : 2 : −3)
can be retrieved from the specializations of the generators of J(ei ;∗). More explicitly,

s0 (1− 2)− s1 (1 + 3) = s0 (−1)− s1 (4) ,

t0 (1 · (−3)− 1 · 2)− t1 (1 · (−3)− 1 · 1) = t0 (−5)− t1 (−4) ,

u0 (1 · 2− 1 · (−3))− u1 (1 · 2− 2 · (−3)) = u0 (5)− u1 (8)

implying that
ffi−1(1 : 1 : 2 : −3) = (4 : −1)× (4 : 5)× (8 : 5) .

More generally, the inverse rational map is given by

ffi : P3
C 99K P1

C × P1
C × P1

C

(y0 : y1 : y2 : y3) 7→ (y1 − y3 : y0 − y2)× (y0y3 − y0y1 : y0y3 − y1y2)× (y1y2 − y2y3 : y1y2 − y0y3) .

Unfortunately, there are two important drawbacks inherent to the JDC:
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(i) The derivation of the defining equations of the Rees algebra is a difficult problem [27, 38, 70,
68] that entails a high computational cost.

(ii) The JDC is suitable to test birationality and computing the inverse, but not so easily applicable
for the construction of birational transformations. More specifically, how can we effectively
ensure that the entries of a rational map ffi : P1

C ×P1
C ×P1

C 99K P3
C, defined by control points

and weights, admit relations of degrees

(1, 0, 0; d1) , (0, 1, 0; d2) , (0, 0, 1; d3)

for some positive integers d1, d2, and d3?

For applications to CAGD, specialized methods are more frequent. In particular, syzygy-based
criteria for birationality are preferred due to efficiency and applicability reasons. In dimension two,
there are birationality criteria that rely on the existence of particular syzygies for specific families
of birational maps. Namely, dominant rational parametrizations ffi : (P1

C)
2 99K P2

C with bilinear
entries, i.e. of Z2-degree (1, 1), are known to be birational if and only if the entries admit a syzygy
of degree either (1, 0) or (0, 1) [28]. Moreover, the minimal Z2-graded free resolution of the ideal
generated by the entries, called the base ideal, is Hilbert-Burch (see §2.2.4). This relates with the
recent interest on the study of resolutions of the base ideals of plane Cremona maps [112], and
more generally with the very active reasearch on resolutions in products of projective spaces [112,
31, 16, 107, 145]. Larger degrees for parametrizations ffi : (P1

C)
2 99K P2

C have also been considered,
but only partially. More specifically, sufficient conditions under which birationality holds are known
for maps with entries of degree (2, 2) [28] and (1, n) [183].

1.1.3. Classification of birational maps

The classification of birational maps has a rich history within algebraic geometry, with a vast body
of literature devoted to this topic (e.g. [119, 2, 186, 163, 79, 46, 23, 21, 14, 22, 25, 77]). Like any
other objects, birational maps can be examined from multiple perspectives, giving rise to various
notions for classification. The most relevant approaches can be summarized as follows:

(i) The study of groups of birational maps

(ii) The study of spaces of birational maps

(iii) The study of the base loci of birational maps

(iv) The study of the algebraic relations between the defining polynomials of birational maps

Naturally, the appropriateness of each point of view depends on the context, and the tools employed
to address them usually vary. Furthermore, these perspectives are interconnected. In this thesis, we
focus on (ii), (iii), and (iv).

The n-dimensional Cremona group over C, denoted by either Crn(C) or Bir(Pn
C), is the group

of birational endomorphisms of the complex projective space Pn
C. Equivalently, it is the group of

C-automorphisms of the field C(x0, ... , xn) where x0, ... , xn are the homogeneous variables in Pn
C.

Given an integer d , the subset Bird(Pn
C) ⊂ Crn(C) consists of all the birational endomorphisms

that are determined by n + 1 homogeneous polynomials of degree d . In particular, we have an
increasing sequence

PGL(n + 1,C) ∼= Aut(Pn
C) = Bir1(Pn

C) ⊂ Bir2(Pn
C) ⊂ ... ⊂ Bird(Pn

C) ⊂ ... ⊂ Crn(C) .
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A natural question is whether Crn(C) has the structure of an algebraic group (of infinite dimension),
i.e. if the group Crn(C) is compatible with the structure of an algebraic variety [111, 109]. The
answer is negative for n ≥ 2 [24]. However, the subset Bird(Pn

C) is always a locally closed projective
variety [24, Lemma 2.4]. Consequently, the investigation of spaces of Cremona maps primarily
hinges on the study of Bird(Pn

C) as an algebraic set. Regrettably, the algebraic structure of these
sets is generally intricate. The case n = 2 of birational endomorphisms of the projective plane,
or plane Cremona maps, is the simplest and best understood. We have a good understanding of
Bird(P2

C) for any d ≥ 2 [20, 53], and a complete classification of the base loci is known for d = 2, 3
[53].

In higher dimensions the situation quickly becomes more complicated. A very nice property of
plane Cremona maps is that the inverse of a birational map in Bird(P2

C) also lies in Bird(P2
C) [45,

78]. However, this property no longer holds true for n ≥ 3. More specifically, let ffi be a birational
automorphism of P3

C defined by polynomials of degree d without a common factor, and let ffi−1 be
defined by polynomials of degree d ′ without a common factor. Then, we have (see [45, 78, 80])

d2 = d ′ + degC , (1.4)

where C ⊂ Pn
C is the curve component of the base locus of ffi. Hence, the degree of the defining

polynomials of a birational automorphism of Pn
C is in general different from the degree of the

defining polynomials of its inverse. In §3.1.5, we establish the analogue of (1.4) transposed to our
multiprojective setting. This observation is crucial in this thesis, as it delineates the structure of
Chapters 3-5 since each type of inverse (see Definition 1.2.3) is studied separately.

Example 1.1.2. The trilinear birational map

ffi1 : P1
C × P1

C × P1
C 99K P3

C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s1t1u1 : s0t1u1 : s1t0u1 : s1t1u0)

admits the inverse

ffi−1
1 : P3

C 99K P1
C × P1

C × P1
C

(y0 : y1 : y2 : y3) 7→ (y1 : y0)× (y2 : y0)× (y3 : y0) ,

where all the defining polynomials are linear. On the other hand, the trilinear birational map

ffi2 : P1
C × P1

C × P1
C 99K P3

C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s1t0u1 − s0t1u1 : s0t0u1 : s1t1u0 : s0t1u0)

admits the inverse

ffi−1
2 : P3

C 99K P1
C × P1

C × P1
C

(y0 : y1 : y2 : y3) 7→ (y3 : y2)× (y1y3 : y1y2 − y0y3)× (y23 : y1y2 − y0y3) ,

defined by a pair of linear polynomials and two pairs of quadratic polynomials. As we shall see,
the algebraic behavior of these two birational maps is different. Moreover, they belong to different
irreducible components in the space of trilinear birational maps (see Theorem 1.2.4).

The algebraic structure of Bir2(P3
C) has been described in [161], together with a complete

classification of the base loci. In particular, Bir2(P3
C) has three irreducible components, each
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consisting of the birational maps with inverse defined by polynomials of degree 2, 3, and 4
respectively. Additionally, some of the irreducible components of Bir3(P3

C) have been properly
described [80], and a variety (75 classes) of the possible base loci is understood and classified [80,
Appendix A], [119, Table VI]. Unfortunately, we still lack analogous results for either n ≥ 4 or d ≥ 4.
In the context of multiprojective birational maps, the literature has only treated a classification for
the family of bilinear birational maps (P1

C)
2 99K P2

C to this date [185, 28]. Specifically, the base
locus is always a closed point. Furthermore, the space of such birational transformations is an
irreducible locally closed hypersurface in P11

C . Interestingly, Corollary 2.2.26 establishes that the
space of bilinear birational maps is identified with the hyperdeterminant of the tensors of format
3× 2× 2.

Cremona maps have also been investigated putting emphasis on the ideal-theoretic properties
of the base ideal [60, 162, 164, 188, 190, 191, 189]. In this direction, an in-depth homological
classification of plane Cremona maps has been undertaken for degrees 5 ≤ d ≤ 7 [112]. This
study is complemented by novel homological results concerning the base ideal of de Jonquières
transformations and their associated Rees algebra. Regarding multiprojective birational maps, such
homological classification is limited to the case of bilinear birational maps. Namely, the minimal
graded free resolution is Hilbert-Burch, with two linear syzygies [28].

1.1.4. Weak ›-nets for geometric range systems

In the fields of computational geometry and machine learning, ›-nets have proven a useful tool
with applications to statistical learning theory [197, 5, 113], efficient search algorithms [187, 147,
114] approximate solutions [105, 61, 7, 8], randomized algorithms [62, 33, 154], dimensionality
reduction [106], and data compression [1]. A geometric range system is a pair (—,F ) consisting of a
probability measure — on An

R and a family F of subsets of An
R, also called ranges. Given 0 ≤ › ≤ 1,

a weak ›-net for (—,F ) is a subset Y ⊂ An
R with the property that every range R in F satisfying

—(R) ≥ › has a nonempty intersection with Y .
One of the primary focuses in ›-nets research is the determination of their minimal size. In

general, this is a difficult task. Therefore, a substantial body of work has been dedicated to
establishing bounds on their cardinality (e.g. [176, 131, 56, 35, 155]). Naturally, these bounds
vary significantly depending on the choice of range systems. The most frequent range systems
involve semialgebraic sets, including lines [114], disks and balls [128, 37], triangles [6], axis-parallel
rectangles [114, 6]. It is noteworthy, however, that the exploration of ›-nets for range systems
defined by general polynomial inequalities has been largely overlooked, except for the linear case
where the ranges are half-spaces in An

R [148, 128]. More explicitly, let d ≥ 2 and let R[x1, ... , xn]≤d

be the R-vector space of real polynomials of degree at most d . We still lack results bounding the
size of ›-nets involving the range space

F = {(f ≥ 0) : f ∈ R[x1, ... , xn]≤d} ,

where
(f ≥ 0) := {(x1, ... , xn) ∈ An

R : f (x1, ... , xn) ≥ 0} .

Regarding linear inequalities, the classical centerpoint theorem (Theorem 1.2.28) of Rado and Birch
([169, 19], see [160] as well) states that for any probability measure — on Rn there exists a point c
in Rn such that every closed half-space H ⊂ Rn containing c satisfies —(H) ≥ 1

n+1 . While there
have been several extensions of the centerpoint theorem (e.g. [122, 167, 153, 121]), none have
addressed ranges defined by nonlinear polynomial inequalities to date.
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1.1.5. Extraction and count of real cylinders

The extraction of algebraic primitives from raw data involves computing algebraic shapes that
interpolate or approximate a given set of data points. The applications of the extraction process are
diverse, spanning various fields such as robotics [205, 54, 15], CAGD [55], computer-aided surgery
[205, 174], and data analysis [204]. In practice, the preference often leans towards elementary
shapes. In the context of 3D data, these shapes can include spheres, cylinders, cones, and tori.

In this thesis, our primary focus is on the extraction of primitive cylinders. While this problem
has already garnered attention [165, 81, 42, 143], there are important open questions regarding
classification. Specifically, there are exactly six cylinders over the complex numbers through five
general points in A3

R (e.g. [81, 42, 143]). However, the understanding of the number of such real
cylinders is quite limited. The problem of computing the number of real cylinders through five
general points boils down to computing the number of real solutions of a system of real polynomial
equations. Therefore, the generic count of real cylinders is either zero, two, four, or six. The
following questions arise naturally:

(i) Given five distinct points in A3
R, how many real cylinders interpolate them?

(ii) Can we describe the configurations of five points that yield a fixed number (0, 2, 4, or 6) of
real cylinders?

(iii) Can we compute the defining equations of the cylinders through five points?

In full generality, the first two questions above are very complicated. Formally, the first question
seeks a list of certificates for the five points to discriminate the number of real cylinders though
them. As real cylinders correspond to the real roots of a system of polynomial equations (e.g. [81,
42, 143]), these certificates manifest as algebraic equations in the coordinates of the points [108].

The second question delves into a considerably broader topic in the field of real algebraic geometry:
the real root classification. It entails identifying all semi-algebraic conditions within the space
(A3

R)
5 of five-points configurations, which discriminate all possible counts of real solutions to the

initial polynomial system (e.g. [139, §1.2.3]). Although some configurations of five general points
that yield zero real cylinders are known, such as when one point lies within the convex hull of the
others, and other conjectures of configurations with a fixed count of real cylinders are established
[143], a real root classification remains elusive. Furthermore, existing algorithms for the real root
classification of polynomial systems (e.g. [137, 142, 141, 208, 209, 140]) are inadequate for this
task, primarily due to the complexity of system, which after a suitable choice of coordinates involves
8 parameters. More specifically, by means of a change of coordinates the five points take the form

Q1 = (0, 0, 0) , Q2 = (1, 0, 0) , Q3 = (x3, y3, 0) , Q4 = (x4, y4, z4) , Q5 = (x5, y5, z5)

and the space of five-points configurations reduces to A2
R × A3

R × A3
R. Even if we were able to

obtain a complete list of certificates, interpreting the intricate semi-algebraic conditions involved
would pose a significant challenge.

In this thesis, we take a first step in this direction by providing a complete real root classification
for a specific configuration of the five points: four of them are cocylic, meaning they lie in a common
circumference. Although this configuration might initially appear restrictive (it is not Zariski dense
in the space of five-point configurations (A3

R)
5), our findings demonstrate that achieving a real

root classification is, in fact, far from trivial.
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Regarding the third question, there are several methods available for computing the implicit
equations of the cylinders. Some of these methods involve minimization algorithms aimed at
approximating optimal cylinders that fit a given point cloud (e.g. [165, 175, 180]). In our five-points
context, there are methods relying on Gröbner basis [143], eigenvalue computations [42, 81], and
resultants [81]. However, it is worth noting that none of these algebraic approaches provides
closed-form formulas for the defining equations of cylinders, which are often preferred.

1.2. Contributions

In this section we present the main results of the thesis. Our contributions span both theoretical
advancements and practical applications. For the latter, we provide illustrative examples to showcase
their usefulness. Semantically, the contributions are organized within the same topics discussed in
§1.1.

1.2.1. Classification of trilinear birational maps

Let A1 = C[s0, s1], A2 = C[t0, t1], and A3 = C[u0, u1] be standard Z-graded rings, each graded by
the corresponding pair of variables. The tensor product R = A1 ⊗ A2 ⊗ A3 is naturally endowed
with a standard Z3-grading, as it inherits the degrees from each factor. The multiprojective space
defined by R is the product (P1

C)
3 (see §2.1.1, in particular Example 2.1.10). Moreover, we let

C[y] = C[y0, y1, y2, y3] be the standard Z-graded homogeneous coordinate ring of P3
C.

Definition 1.2.1. A trilinear rational map in dimension three is a rational map

ffi : P1
C × P1

C × P1
C 99K P3

C (1.5)
(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (f0 : f1 : f2 : f3)

where fn = fn(s0, s1, t0, t1, u0, u1) is homogeneous of degree (1, 1, 1) for each 0 ≤ n ≤ 3, i.e.
linear and homogeneous with respect to the three pairs of variables, and gcd(f0, f1, f2, f3) = 1.
Additionally:

• The base ideal of ffi is the homogeneous ideal B = (f0, f1, f2, f3) in R

• The subscheme Z of X defined by B is the base locus of ffi.

If ffi is birational, the inverse rational map has the form

ffi−1 : P3
C 99K P1

C × P1
C × P1

C (1.6)
(y0 : y1 : y2 : y3) 7→ (a0 : a1)× (b0 : b1)× (c0 : c1) ,

where the ai = ai (y) (resp. bj = bj(y) and ck = ck(y)) are homogeneous of the same degree for
i = 0, 1 (resp. j = 0, 1 and k = 0, 1). Furthermore, without loss of generality we can assume that
gcd(a0, a1) = gcd(b0, b1) = gcd(c0, c1) = 1. Additionally, the degree of the defining polynomials
of ffi−1 is either one or two.

Remark 1.2.2. The last sentence in the previous paragraph follows from the fact that the inverse
rational map on each parameter yields a linear parametrization of the parametric surfaces (see
Definition 1.2.10), which are either planes or quadrics (see Remark 3.1.4).

Definition 1.2.3 (Type of ffi). If ffi is birational, the type of ffi is the triple (deg ai , deg bj , deg ck).
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We classify trilinear birational maps according to perspectives (ii), (iii), and (iv) as discussed
in §1.1.3. Specifically, our contributions focus on three aspects: studying the space of trilinear
birational maps as an algebraic set, computing the complete list of base loci up to isomorphism of
schemes, and classifying all the possible minimal Z3-graded free resolutions of the base ideal B as
an R-module.

Our first main result describes the space of trilinear birational maps and its irreducible components.
Given a vector space V , we denote by Gr(n,V ) the Grassmannian of n-dimensional vector subspaces
of V .

Theorem 1.2.4 (Theorem 3.3.6, Corollary 3.4.12). The set of trilinear birational maps is an
algebraic subset of Gr(4,R(1,1,1))× P15

C with eight irreducible components, and each component
consists of the birational maps of a fixed type. Moreover, all the components are unirational and:

• the component of type (1, 1, 1) has dimension 21

• the components of type (1, 1, 2), (1, 2, 1), and (2, 1, 1) have dimension 22

• the components of type (1, 2, 2), (2, 1, 2), and (2, 2, 1) have dimension 23

• the component of type (2, 2, 2) has dimension 23

On the other hand, let Aut(X ) stand for the group of automorphisms of a variety X . The
composition of trilinear birational maps with automorphisms of the source (P1

C)
3 and target P3

C
spaces induces a group action of Aut(P1

C × P1
C × P1

C)×Aut(P3
C) on the space of trilinear birational

maps. In particular, we have the following.

Theorem 1.2.5 (Theorems 3.4.3, 3.4.6, 3.4.8, 3.4.10). There are exactly 19 isomorphism classes of
the base loci of trilinear birational maps, depicted in Figure 1.3. Furthermore, there is a one-to-one
correspondence between these classes and the orbits of the group action of Aut(P1

C × P1
C × P1

C)×
Aut(P3

C) on the space of trilinear birational maps.

Regarding the algebraic relations of the defining polynomials, the structure of the syzygy
modules of the base ideal B is determined by the type of ffi. More explicitly, there is a one-to-one
correspondence between the type of ffi and the shape of its minimal Z3-graded free resolution.

Theorem 1.2.6 (Theorems 3.4.3, 3.4.6, 3.4.8, 3.4.10). Let ffi be a dominant trilinear rational map.
We have the following:

• ffi is birational of type (1, 1, 1) if and only if its minimal Z3-graded free resolution has the
Hilbert-Burch shape

0 −→

R(−2,−1,−1)
⊕

R(−1,−2,−1)
⊕

R(−1,−1,−2)

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0
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Figure 1.3.: the 19 isomorphism classes of the base loci of trilinear birational maps, and their
degenerations. Equivalently, these can be regarded as the orbits of the group action of Aut(P1

C ×
P1
C × P1

C) × Aut(P3
C). The number on the left-hand side is the dimension of the corresponding

orbit. An orbit degenerates into another if it has larger dimension and the two are connected by a
segment. The labels for each class are specified in §3.4, and the meaning of the symbols in §3.4.6.
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• ffi is birational of type (1, 1, 2) if and only its minimal Z3-graded free resolution has the shape

0 → R(−2,−2,−2) −→

R(−2,−1,−1)
⊕

R(−1,−2,−1)
⊕

R(−2,−1,−2)
⊕

R(−1,−2,−2)

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0

• ffi is birational of type (1, 2, 2) if and only if its minimal Z3-graded free resolution has the
shape

0 → R(−2,−2,−2)2 −→

R(−2,−1,−1)
⊕

R(−2,−2,−1)
⊕

R(−2,−1,−2)
⊕

R(−1,−2,−2)2

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0

• ffi is birational of type (2, 2, 2) if and only if its minimal Z3-graded free resolution has the
shape

0 → R(−2,−2,−2)3 −→

R(−2,−2,−1)2

⊕
R(−2,−1,−2)2

⊕
R(−1,−2,−2)2

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0

and some extra spltting conditions are satisfied (see Condition 3.5.7).

1.2.2. Birationality criteria for multilinear rational maps

From our classification, we derive syzygy-based criteria for determining the birationality of trilinear
rational maps, forming the foundational basis of our constructive results. In contrast to 2D
parametrizations, 3D parametrizations introduce a greater degree of complexity due to the potential
variation in the degrees of the defining polynomials of the inverse. Consequently, we present four
distinct birationality criteria, each corresponding to the types (1, 1, 1), (1, 1, 2) (and permutations),
(1, 2, 2) (and permutations), and (2, 2, 2). In essence, our criteria rely exclusively on assessing the
existence of certain first syzygies at some particular degrees. In order to simplify the statement, in
Z3 we set

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) .

Theorem 1.2.7 (Theorem 3.5.1). Let ffi be dominant, and let i , j , k be indices such that {i , j , k} =
{1, 2, 3}. Then, ffi is birational if and only if one of the following conditions holds:

(i) f has syzygies of degrees e1, e2, and e3. In this case, ffi has type (1, 1, 1).
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(ii) f has syzygies of degrees ei and ej , but not ek . In this case, ffi has type (1, 1, 1) + ek .

(iii) f has a syzygy of degree ei , but neither ej nor ek . Moreover, f has a syzygy of degree either
ei + ej or ei + ek , independent from the first one. In this case, ffi has type (1, 1, 1) + ej + ek .

(iv) f does not have syzygies of degree e1, e2, or e3. Moreover, f has two independent syzygies in
each of the degrees e1+e2, e1+e3, and e2+e3 satisfying the splitting property in Condition
3.5.7. In this case, ffi has type (2, 2, 2).

We illustrate the usefulness of our criteria to test the birationality of a trilinear rational map.

Example 1.2.8. Consider the trilinear rational map

ffi : P1
C × P1

C × P1
C 99K P3

C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (f0 : f1 : f2 : f3) = (s0 t1 u1 − s1 t0 u1 + 2 s0 t0 u1 + 3 s1 t1 u0 :

3 s1 t0 u0 − s0 t0 u1 + s1 t1 u1 :

s1 t1 u0 − s0 t0 u1 − 2 s1 t0 u0 : s1 t0 u0 + s0 t1 u1)

We can compute the degrees of a set of generators of the module of first syzygies of f = (f0, f1, f2, f3)
with the help of Macaulay2 [101].

i1 : R = QQ[s_0,s_1,t_0,t_1,u_0,u_1,
Degrees=>{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}}]

o1 = R
o1 : PolynomialRing
i2 : f_0 = s_0*t_1*u_1 - s_1*t_0*u_1 + 2*s_0*t_0*u_1 + 3*s_1*t_1*u_0;

-- ...initialization of entries
i5 : f_3 = s_1*t_0*u_0 + s_0*t_1*u_1;
i6 : f = matrix{{f_0,f_1,f_2,f_3}};

1 4
o6 : Matrix R <--- R
i7 : M = syz f;

4 17
o7 : Matrix R <--- R
i8 : source M

17
o8 = R
o8 : R-module, free, degrees {{1, 2, 2}, {2, 2, 1}, 3:{2, 2, 2},

{2, 3, 1}, {2, 1, 3}, {1, 2, 3}, {2, 1, 3},
2:{1, 3, 2}, {2, 2, 2}, 2:{3, 1, 2},
{1, 4, 1}, {2, 3, 1}, {3, 2, 1}}

We obtain a complex of graded R-modules

R17 −→ R(−1,−1,−1)

“
f0 f1 f2 f3

”
−−−−−−−−−−−−→ R −→ 0

where the Betti numbers of R17 are indicated in the output o8. In particular, we find no linear
syzygies and only two bilinear syzygies. Hence, ffi is not birational by Theorem 1.2.7. Now, consider
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the trilinear rational map

ffi : P1
C × P1

C × P1
C 99K P3

C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (f0 : f1 : f2 : f3) = (s0 t1 u1 − s1 t0 u1 + 2 s0 t0 u1 + 3 s1 t1 u0 :

3 s1 t0 u0 − s0 t0 u1 : s1 t1 u0 − s0 t0 u1 − 2 s1 t0 u0 :

s1 t0 u0 + s0 t1 u1 − s1 t0 u1)

where we have updated the entries f1 and f3. Now, Macaulay2 outputs the following.

i9 : f_1 = 3*s_1*t_0*u_0 - s_0*t_0*u_1;
i10 : f_3 = s_1*t_0*u_0 + s_0*t_1*u_1 - s_1*t_0*u_1;
i11 : f = matrix{{f_0,f_1,f_2,f_3}};

1 4
o11 : Matrix R <--- R
i12 : M = syz f;

4 5
o12 : Matrix R <--- R
i13 : source M

5
o13 = R
o13 : R-module, free, degrees {{1, 2, 1}, {2, 1, 2}, {1, 2, 2},

{2, 1, 2}, {2, 2, 1}}

This time, we obtain a complex of graded R-modules

R5 −→ R(−1,−1,−1)

“
f0 f1 f2 f3

”
−−−−−−−−−−−−→ R −→ 0

where the Betti numbers of R5 are indicated in the output o13. In particular, we find a linear
syzygy of degree (0, 1, 0) and bilinear syzygies of degrees (1, 1, 0) and (0, 1, 1). By Theorem 1.2.7,
it follows that ffi is birational of type (2, 1, 2).

1.2.3. Construction and manipulation of multilinear birational transformations

In this thesis, we present effective methods for constructing and manipulating birational tensor-
product maps ffi : P1

R × P1
R × P1

R 99K P3
R with trilinear entries, i.e. defined by polynomials of degree

(1, 1, 1). These are the first methods for the construction of nonlinear birational maps in 3D with
sufficient flexibility for geometric modeling and design [183, see §7]. Our approach aligns with
the principles of (ii) and (iii) stated in §1.1.1. Specifically, we rely on our birationality criteria and
compute suitable weights for an adequately constrained net of control points.

Notation 1.2.9. To simplify the notation, we write

b10(s0, s1) = b0(s0, s1) = s0 − s1 , b11(s0, s1) = b1(s0, s1) = s1 ,

i.e. we drop the superindex for the linear Bernstein polynomials.

We adopt the conventional CAGD formulation, and define ffi by means of control points and
weights. Given 2× 2× 2 = 8 control points Pijk = (1, xijk , yijk , zijk) in R4 and nonnegative weights
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wijk for each 0 ≤ i , j , k ≤ 1, we define

f = (f0, f1, f2, f3) :=
X

0≤i ,j ,k≤1

wijk Pijk bi (s0, s1) bj(t0, t1) bk(u0, u1) . (1.7)

Here, Pijk is identified with the projective point (1 : xijk : yijk : zijk) in P3
R = Proj(R[y]) =

Proj(R[y0, y1, y2, y3]). Specifically, in the affine chart A3
R ⊂ P3

R defined by y0 ̸= 0, Pijk coincides
with (xijk , yijk , zijk). The control points are the images of the vertices of the unit cube [0, 1]3 in
A3
R. More explicitly, the supporting planes of the unit cube in the affine chart A3

R ⊂ (P1
R)

3 defined
by s0 ̸= 0, t0 ̸= 0, and u0 ̸= 0 are

b0(s0, s1) = 0 , b1(s0, s1) = 0 , b0(t0, t1) = 0 , b1(t0, t1) = 0 , b0(u0, u1) = 0 , b1(u0, u1) = 0 .

Therefore, the vertices of the unit cube in (P1
R)

3 correspond to the points

(1 : i)× (1 : j)× (1 : k)

for each 0 ≤ i , j , k ≤ 1. Furthermore, if all the weights are nonnegative, the image of the unit
cube lies within the convex hull of the affine control points. This allows us to interpret ffi as a
deformation of the unit cube, as illustrated in Figure 1.2.

The concepts of parametric lines and surfaces help to describe the geometry of the rational map.
Similarly, the boundary lines and surfaces are very useful. Unless explicitly mentioned differently,
we always work with the Zariski topology.

Definition 1.2.10 (Parametric surfaces and lines).

(i) A parametric surface is the closure of ffi (P1 × P1) for the specialization of one parameter to
a general point in P1. If the parameter specialized is (s0 : s1) (resp. (t0 : t1) and (u0 : u1)),
we refer to the parametric surface as s-surface (resp. t- and u-surface).

(ii) A parametric line is ffi (P1) for the specialization of two parameters to general points in P1.
If the parameter that is not specialized is (s0 : s1) (resp. (t0 : t1) and (u0 : u1)), we refer to
the parametric line as s-line (resp. t- and u-line).

Definition 1.2.11 (Boundary surfaces and lines). The boundary surfaces are the parametric
surfaces defined by the supporting planes of the unit cube. Specifically, for each 0 ≤ i , j , k ≤ 1
they are:

(i) Σi defined by (s0 : s1) = (1 : i)

(ii) Tj defined by (t0 : t1) = (1 : j)

(iii) Yk defined by (u0 : u1) = (1 : k)

The boundary lines are the parametric lines defined by the supporting lines of the edges of the unit
cube. Specifically, they are:

(i) sjk defined by (t0 : t1) = (1 : j) and (u0 : u1) = (1 : k), or equivalently sjk = P0jkP1jk

(ii) tik defined by (s0 : s1) = (1 : i) and (u0 : u1) = (1 : k), or equivalently tik = Pi0kPi1k

(iii) uij defined by (s0 : s1) = (1 : i) and (t0 : t1) = (1 : j), or equivalently uij = Pij0Pij1
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(a) The boundary lines sjk (red), tik (green), and
uij (blue), for each 0 ≤ i , j , k ≤ 1 (b) The boundary surfaces Σ0 and Σ1

(c) The boundary surfaces T0 and T1 (d) The boundary surfaces Y0 and Y1

Figure 1.4.: The boundary lines and surfaces associated to a trilinear rational map.
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To gain some geometric intuition, Figure 1.4 illustrates the boundary lines and the boundary
surfaces associated to a trilinear rational map.

In the context of CAGD, the challenge lies in reconciling our syzygy-based birationality criteria
with the flexible manipulation of the control points and weights required by applications. As we
shall prove, the existence of the necessary syzygies for birationality imposes geometric constraints
on the control points, that are formalized in the following definition.

Definition 1.2.12 (Definitions 4.3.1, 4.4.1, 4.5.1). Let ffi be a dominant trilinear rational map,
satisfying a nondegeneracy assumption (see Property 1). We define the following classes:

(i) ffi is hexahedral if all the boundary surfaces are planes

(ii) ffi is pyramidal if all the boundary lines in one parameter meet at a point, and the boundary
surfaces in the same parameter are smooth quadrics

(iii) ffi is scaffold if the boundary surfaces in one parameter are planes that intersect at a line ‘,
the boundary surfaces in the other two parameters are smooth quadrics, and there are two
other lines that intersect ‘ and all the parametric lines in the same parameter

Remark 1.2.13. The properties of being hexahedral, pyramidal, or ladder depend exclusively on
the control points.

Each of the previous classes are depicted in Figure 1.5. Specifically, by Theorem 1.2.4 the space
of trilinear birational maps has multiple irreducible components. The components of type (1, 1, 1),
(1, 1, 2) with permutations, and (1, 2, 2) with permutations, respectively correspond to the previous
gemetric constraints, as explained by the following result.

Theorem 1.2.14. Let ffi be a general trilinear birational map, satisfying a nondegeneracy assumption
(see Property 1). We have the following:

(i) If ffi has type (1, 1, 1) then ffi is hexahedral

(ii) If ffi has type either (1, 1, 2), (1, 2, 1), or (2, 1, 1) then ffi is pyramidal

(iii) If ffi has type either (1, 2, 2), (2, 1, 2), or (2, 2, 1) then ffi is scaffold

In this thesis, we do not discuss the construction of the birational maps of type (2, 2, 2). Namely,
Theorem 1.2.7 establishes that the syzygies of the defining polynomials of a birational map of
type (2, 2, 2) require to satisfy additional splitting conditions. Since our methods are syzygy-based,
these extra conditions make their application more complicated. Additionally, the construction of
birational maps of type (1, 2, 2) is technically challenging (see §4.5), and the geometric constraints
on the control points are complicated due to the presence of quadric parametric surfaces for two
of the parameters. Since all the parametric surfaces of (2, 2, 2) birational maps are quadrics, we
expect that they are not very suitable for CAGD.

The syzygy-based birationality criteria of Theorem 1.2.7 offers an effective method to test
birationality. However, its application in the context of constructing trilinear birational maps in
CAGD is not straightforward, and introduces further challenges. To address them, we establish
a connection between birationality and tensor rank. Specifically, we prove that the simultaneous
existence of the necessary syzygies for birationality occurs if and only if a certain tensor with a
2× 2× 2 format has rank one. This connection opens the door to the application of an extensive
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(a) A hexahedral rational map (b) A pyramidal rational map

(c) A scaffold rational map

Figure 1.5.: the distinct geometric constraints on the control points necessary for the birationality
of type (1, 1, 1), (1, 1, 2), (1, 2, 2) and permutations.
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body of work related to tensor rank and fixed-rank approximations to the study of birational
maps. An important tool is the Canonical Polyadic Decomposition (CPD) (e.g. [76, 126, 118,
136]), which enables us to efficiently compute rank-one approximations. Furthermore, it provides
useful formulas for computing weights that ensure birationality, explicitly revealing the underlying
geometric structure of the Segre variety associated with (P1

R)
3.

In particular, we have the following birationality criterion.

Theorem 1.2.15. (Theorems 4.3.6, 4.4.7, 4.5.7) Let ffi be either hexahedral, pyramidal, or scaffold.
Then, ffi is birational of the corresponding type (see Theorem 1.2.14) if and only if the 2× 2× 2
tensor

W =

„
wijk

∆ijk

«
0≤i ,j ,k≤1

(1.8)

has rank one, where ∆ijk is a rational function on the control points (see Chapter 4).

Corollary 1.2.16. Let ffi be either hexahedral, pyramidal, or scaffold. Then, ffi is birational of the
corresponding type if and only if

wijk = ¸i ˛j ‚k ∆ijk (1.9)

for some (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) in (P1
C)

3.

Theorem 1.2.15 is yet another birationality criterion, which is now based on tensor rank. Notably,
it stands out for its effectiveness in the construction of birational maps, since Corollary 1.2.16
provides formulas for the weights that yield birationality.

Furthermore, Theorem 1.2.15 offers a means to measure the distance of ffi to a component of
birational maps, assuming one of the geometric configurations in Definition 1.2.12. Specifically, the
distance to birationality can be quantified as the distance of W to the locus of 2× 2× 2 tensors
of rank one. Additionally, a closest birational map to ffi can be computed by finding an optimal
rank-one approximation of W , and retrieving the weights from (1.9)

The following example illustrates how our results can be applied in practice.

Example 1.2.17 (Birational approximation of a pyramidal rational map). Consider the trilinear
rational map ffi defined by the control points

P000 =
`
1 −8

5 0 1
´
, P100 =

`
1 0 −9

5
1
2

´
, P010 =

`
1 0 27

20
1
2

´
, P110 =

`
1 4

5 0 1
´
,

P001 =
`
1 −11

10 0 9
4

´
, P101 =

`
1 0 −4

5 3
´
, P011 =

`
1 0 3

5 3
´
, P111 =

`
1 11

20 0 9
4

´
,

and wijk = 1 for every 0 ≤ i , j , k ≤ 1. Since the boundary u-lines, i.e. uij = Pij0Pij1 for each
0 ≤ i , j ≤ 1, meet at the point V = (1 0 0 5) it follows that ffi is pyramidal. While the rational
map ffi is not birational, we can render it birational by computing new weights according to Corollary
1.2.16. In this case, the computed values for the ∆ijk ’s (see §4.4) are

∆000 =
5

6
, ∆100 =

20

21
, ∆010 =

80

63
, ∆110 =

5

3
,

∆001 =
40

33
, ∆101 =

15

7
, ∆011 =

20

7
, ∆111 =

80

33
.

Subsequently, for any choice of (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) ∈ (P1
R)

3 the computation

wijk = ¸i ˛j ‚k ∆ijk



24 Chapter 1. Introduction

Figure 1.6.: Deformations of a (truncated) Menger sponge using the trilinear birational map
presented in Example 1.2.17. In the left image, we use uniform weights, specifically wijk = 1 for
every 0 ≤ i , j , k ≤ 1. The right image showcases the effect of utilizing the computed birational
weights. These weight adjustments subtly influence the deformation, while simultaneously ensuring
the existence of an inverse transformation.

ensures that ffi is birational. However, the new birational map ffi might differ significantly from the
original ffi if we make a bad choice of (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1). Hence, we aim to compute
birational weights that are as close to 1 as possible. To achieve this, we can compute a rank-one
CP decomposition (see §2.2.2) of the tensor W in (1.8). Using the Python library TensorFox [32],
we compute the rational approximation

Wapprox = (¸0 ¸1)⊗ (˛0 ˛1)⊗ (‚0 ‚1) = (0.95 0.91)⊗ (1.06 0.78)⊗ (1.08 0.75) .

Specifically, this leads to the exact rational weights

wijk = ¸i ˛j ‚k ∆ijk (1.10)

for each 0 ≤ i , j , k ≤ 1. Additionally, if we introduce the Frobenius norm (see Definition 2.2.20) of
a real tensor A = (aijk)0≤i ,j ,k≤1 with 2× 2× 2 format as

∥A∥2 =
X

0≤i ,j ,k≤1

aijk
2 ,

we can measure the relative distance of W to the locus of birational maps as

∥W −Wapprox∥
∥W ∥ ∼ 0.2594 .

In Figure 1.6, we present a comparison between the deformations resulting from the original rational
map, with uniform weights wijk = 1 for every 0 ≤ i , j , k ≤ 1, and its birational approximation,
utilizing the weights specified in (1.10).

While birational maps indeed ensure injectivity on an open set, one of the most compelling
applications is the exact and fast computation of preimages avoiding numerical solving methods.
This computation relies on the inverse rational map. Therefore, having explicit formulas for ffi−1 is
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imperative. Birational maps of the same type are algebraically equivalent, and the inverses obey
the same formulas. However, the behavior between distinct types presents significant differences,
and different formulas are required. To simplify our statements, we establish the following notation
for the defining equations of the boundary surfaces, that is maintained throughout Part I.

Notation 1.2.18. Let 0 ≤ i , j , k ≤ 1. If the boundary surface Σi is a plane, it is defined by the
equation (we consider row vectors)

ffi (y) := ffi · yT = 0 (1.11)

for some vector ffi in R4. On the other hand, if Σi is a quadric, it is defined by

ffi (y) := y · ffi · yT = 0 (1.12)

for some symmetric 4 × 4 matrix ffi in R4×4. Similarly, we denote by fij and flk the vectors or
matrices defining the equations of the boundary surfaces Tj and Yk .

Remark 1.2.19. Clearly, the vectors and matrices ffi , fij , and flk are defined up to nonzero scalar.

The following result provides explicit formulas for the inverse of a trilinear birational map. By
definition, the degrees of the defining polynomials for ffi−1 are determined by the type of ffi. This
statement is a general version, encompassing hexahedral, pyramidal, and scaffold rational maps.
For more specific statements, tailored to each of the distinct classes, we refer the reader to Chapter
4.

Theorem 1.2.20 (Theorems 4.3.13, 4.4.19, 4.5.15). Let ffi be either a hexahedral, pyramidal, or
scaffold birational map, with weights as in Corollary 1.2.16. Then, maintaining the notation of
(1.6), the inverse ffi−1 is given by

(a0 : a1) = (¸0 –0 ff0(y)− ¸1 –1 ff1(y) : ¸0 –0 ff0(y)) ,

(b0 : b1) = (˛0 —0 fi0(y)− ˛1 —1 fi1(y) : ˛0 —0 fi0(y)) ,

(c0 : c1) = (‚0 0 fl0(y)− ‚1 1 fl1(y) : ‚0 0 fl0(y))

for some (–0 : –1), (—0 : —1), and (0 : 1) in P1
C which are rational functions on the coordinates

of the control points (see Chapter 4). Furthermore, we also provide explicitly the defining equations
of the irreducible components of the base loci of ffi and ffi−1 in Chapter 4, and we describe the
blow-ups and contractions.

The following example shows the explicit computation of the inverse of the trilinear birational
map of Example 1.2.17.

Example 1.2.21. We continue with Example 1.2.17, using the computed birational weights. In
this case, the vectors and matrices defining the boundary surfaces are

ff0 =
`
5 −5

2
10
3 1

´
, ff1 =

`
4 −4 2 −4

5

´
,

fi0 =
`
5 5

2
5
2 −1

´
, fi1 =

`
−3 3 2 3

5

´
,

fl0 =

0BBBB@
390 −30 −45

2 −294

−30 75 0 60

−45
2 0 −50 45

2

−294 60 45
2 102

1CCCCA , fl1 =

0BBBB@
1530 −495

2 −45 −438

−495
2 −225 0 165

2

−45 0 150 20

−438 165
2 20 114

1CCCCA .
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Furthermore, using the formulas of Chapter 4, we find

(–0 : –1)× (—0 : —1)× (0 : 1) = (4 : −5)× (3 : −5)× (11 : −18) .

In particular, the defining polynomials of ffi−1 yield linear parametrizations of the pencils of s-, t-,
and u-surfaces. More explicitly, we find the relations

ff(s0, s1) · fT = (¸0 –0 ff0 b0(s0, s1) + ¸1 –1 ff1 b1(s0, s1)) · fT = 0 ,

fi (t0, t1) · fT = (˛0 —0 fi0 b0(t0, t1) + ˛1 —1 fi1 b1(t0, t1)) · fT = 0 ,

f · fl(u0, u1) · fT = f · (‚0 0 fl0 b0(u0, u1) + ‚1 1 fl1 b1(u0, u1)) · fT = 0 .

In the context of higher-dimensional rational maps, we are able to extend the tensor rank criterion
for birationality of Theorem 1.2.15 to the simplest class within the family of multilinear rational
maps in arbitrary dimension: multilinear birational maps with a multilinear inverse.

Definition 1.2.22 (Multilinear rational map and multilinear inverse). A multilinear rational map in
dimension n is a rational map

ffi : (P1
C)

n 99K Pn
C (1.13)

(x01 : x11)× ...× (x0n : x1n) 7→ (f0, ... , fn)

where fk = fk(x01, x11, ... , x0n, x1n) is multilinear for each 0 ≤ k ≤ n and gcd(f0, f1, ... , fn) = 1. If
ffi is birational, the inverse rational map has the form

ffi−1 : Pn
C 99K (P1

C)
n (1.14)

(y0, ... , yn) 7→ (a01 : a11)× ...× (a0n : a1n)

where a0k = a0k(y) and a1k = a1k(y) are homogeneous of the same degree and coprime, for each
1 ≤ k ≤ n. If a0k , a1k are linear for every 1 ≤ k ≤ n, we say that ffi admits a multilinear inverse.

Once more, we define rational maps by means of control points and their associated weights.
Specifically, we introduce

f = (f0, ... , fn)
T :=

X
0≤i1,...in≤1

wi1...in Pi1...in bi1(x10, x11) ... bin(xn0, xn1) (1.15)

where we allow Pi1...in = (1, y1i1...in , ... , yni1...in) to lie in Cn+1, and the weights wi1...in to be nonzero
complex numbers, for each 0 ≤ i1, ... , in ≤ 1. At this point, it comes as no surprise that, for ffi to
admit a multilinear inverse, some geometric constraints must be imposed on the control points.
Namely, we have the following definition.

Definition 1.2.23 (Hypercubic rational map).

• For each 1 ≤ k ≤ n and ik = 0, 1, the boundary hypersurface Xikk of ffi is the closure of the
image of ffi after the specialization of (x0k : x1k) = (1 : ik)

• A multilinear rational map ffi : (P1
C)

n 99K Pn
C is n-cubic, hypercubic, or simply cubic, if it is

dominant and all the boundary hypersurfaces are hyperplanes
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The following result is the extension of Theorem 1.2.15 to the class of hypercubic rational maps.

Theorem 1.2.24. (Theorem 5.1.5) Let ffi be n-cubic. Then, ffi is birational with multilinear inverse
if and only if the tensor with 2×n format

W =

„
wi1...in

∆i1...in

«
0≤i1,...,in≤1

(1.16)

has rank one, where ∆i1...in is a rational function on the coordinates of the control points.

Corollary 1.2.25. Let ffi be n-cubic. Then, ffi is birational with multilinear inverse if and only if

wi1...in = ¸i11 ... ¸inn ∆i1...in (1.17)

for some (¸01 : ¸11)× ...× (¸0n : ¸1n) in (P1
C)

n.

The minimal graded free resolution of a hypercubic birational map is always Hilbert-Burch, and
f admits n independent linear syzygies. To elaborate, let n ≥ 4. For each 1 ≤ k ≤ n, we define the
standard Z-graded polynomial ring Ak = C[xk ] = C[x0k , x1k ]. In particular, the tensor product ring
R := A1 ⊗ ...⊗ An is hence standard Zn-graded by

R =
M

(i1...in)∈Zn

R(i1...in) =
M

(i1...in)∈Zn

(A1)i1 ⊗ ...⊗ (An)in .

The following result provides the explicit expression of the multilinear inverse of a birational
n-cubic map. Furthermore, it describes the base loci of the birational map and its inverse. For
simplicity in the statement, we write 1 = (1, ... , 1) in Zn and denote by ek the k-th canonical
vector.

Notation 1.2.26. If ffi is n-cubic, the boundary hyperplane Xik is defined by

fflfflfflik(y) := fflfflfflik · yT = 0

for some vector fflfflfflik = (ffl0ik , ... ,fflnik) in Cn+1.

Theorem 1.2.27 (Theorem 5.2.1). Let ffi be n-cubic. Then, maintaining the notation of (1.14)
for the inverse ffi−1, we have

(a0k : a1k) = (¸0k⟨fflfflffl0k , y⟩ − ¸1k⟨fflfflffl1k , y⟩ : ¸0k⟨fflfflffl0k , y⟩)

for each 1 ≤ k ≤ n. In particular, f admits the syzygy

¸0k fflfflffl0k b0(x0k , x1k) + ¸1k fflfflffl1k b1(x0k , x1k)

for each 1 ≤ k ≤ n, and the base ideal B = (f0, ... , fn) in R has a Hilbert-Burch minimal Zn-graded
free resolution

0 −→
nM

k=1

R(−1− ek) −→ R(−1)n+1 (f0 ... fn)−−−−−→ B −→ 0 .

Therefore, f coincides with the signed minors of maximal size of the (n + 1)× n syzygy matrix.
Additionally, the base locus of ffi−1 is the union of the (n− 2)-planes X0k ∩X1k for each 1 ≤ k ≤ n.
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1.2.4. Weak (1− ›)-nets for polynomial superlevel sets

In Chapter 6, we extend the classical centerpoint theorem by replacing half-spaces with superlevel
sets of polynomials, i.e. the loci in An

R defined by a polynomial inequality (of arbitrary degree).
More specifically, the centerpoint theorem can be stated as follows.

Theorem 1.2.28 (Centerpoint theorem). Let — be a probability measure on An
R. There exists a

point c in An
R, called centerpoint, such that every half-space H containing c satisfies

—(H) ≥ 1

n + 1
.

For our generalization to hold true, we must replace the centerpoint c by a finite set X in An
R.

Namely, X is a weak (1− ›)-net for the range space of superlevel sets of polynomials of bounded
degree (see §6.1.2) and some small › > 0.

We now present our first generalization of the centerpoint theorem, which deals with quadratic
polynomial inequalities.

Theorem 1.2.29. (Theorem 6.2.1) Let — be a probability measure on An
R. There exists a set X

of n+ 1 points in An
R such that any quadratic f in R[x1, ... , xn], that is nonnegative on every point

of X , satisfies

—{x ∈ An
R : f (x) ≥ 0} ≥ 2

(n + 2)(n + 1)
.

Notably, in the previous statement n + 1 is the least number of points for such a result to hold
true, for any other positive fraction (see Lemma 6.3.2). Specifically, given n (or less) points in
An
R we can always find a linear polynomial L in R[x1, ... , xn] that vanishes at all these points. In

particular, the polynomial f = −L2 is nonpositive on An
R, and zero (thus nonnegative) at every

point. Therefore,
—{x ∈ An

R : f (x) ≥ 0} = —{x ∈ An
R : L(x) = 0}

which has zero measure for multiple probability measures (for instance, if they are absolutely
continuous). Additionally, we are able to extend the centerpoint theorem to encompass polynomial
inequalities of arbitrary degree. Nevertheless, in this case we require the probability measure to be
absolutely continuous with respect to the Lebesgue measure (see Definition 6.1.5).

Theorem 1.2.30. (Theorem 6.2.2) Let — be a probability measure on An
R which is absolutely

continuous with respect the Lebesgue measure. For any ‹ > 0, there exists a set X of at most`n+2d
n

´
− n− 1 points in An

R such that any f in R[x1, ... , xn]≤d , that is nonnegative on every point
of X , satisfies

—{x ∈ An
R : f (x) ≥ 0} ≥

„„
n + 2d

2d

«
+ 1

«−1

− ‹ .

Our results rely on novel estimations of the Carathéodory number of Veronese varieties (see
Definition 6.1.13). Since the Carethéodory number is inherently a property of real affine sets,
and the Veronese embedding typically refers to a projective space, we recall the definitions of the
varieties that we are interested at.

Definition 1.2.31 (Real affine Veronese variety and Veronese cone).
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Figure 1.7.: A sample comprising N = 50 (green) points in A2
R. Let — denote the probability

measure derived from the normalized sum of ‹ masses associated with each of these points.
According to Theorem 1.2.29, there exist three points (red crosses) such that the superlevel sets
of every quadratic polynomial (blue regions) containing these three points have measure at least
1=6. In the right image, there is a plane conic passing through these three points. In particular, it
divides A2

R into two regions of measure of at least 1=6.

(i) The n-dimensional real affine Veronese variety in degree d , denoted by V (n, d), is the image
of

v : An
R −→ A(

n+d
n )−1

R
x = (1, x1, ... , xn) ≡ (x1, ... , xn) 7→ x⊗d

Specifically, it is the restriction of the Veronese embedding to an affine chart in Pn
R (see

Definition 2.2.13).

(ii) The (n + 1)-dimensional real Veronese cone in degree d , denoted by V̂ (n, d), is the affine
cone in An+1

R over the (projective) real Veronese variety (see Definition 2.2.13).

Remarkably, the Carathéodory number of the Veronese cone can be construed as the maximum
nonnegative symmetric rank of a real symmetric tensor (see Definition 2.2.19 and §6.1.3). This
relates with the literature on tensors, where the estimation of the maximum, typical and generic
(symmetric) ranks of real and complex (symmetric) tensors has garnered substantial attention
previously (e.g. [26, 171, 17, 136]).

The following result underlies our generalizations of the centerpoint theorem. Namely, it provides
bounds for the Carathéodory number of the real Veronese varieties.

Theorem 1.2.32 (Theorem 6.2.3). The Carathéodory numbers of the Veronese varieties, denoted
by »(V (n, d)) and »(V̂ (n, d)), satisfy the following:

(i) »(V (n, 2)) = n + 1

(ii) (di Dio and Kummer, [84]) »(V (n, 2d)) ≥
`n+2d

n

´
− n
`n+d

n

´
+
`n
2

´
(iii) »(V̂ (n + 1, 2d) ≤

`n+2d
n

´
− n − 1

(iv) »(V (n, 2d)) ≤ »(V (n, 2d + 1)) ≤ »(V (n, 2d + 2))
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1.2.5. Classification of real cylinders through five points with four cocyclic

In Chapter 7, we address a very specific problem: the classification and computation of the real
cylinders through five points in A3

R, where four of them are cocyclic.

Definition 1.2.33 (Cocyclic points). A family of points in A2
R is cocyclic it they lie in a circumfer-

ence.

To elaborate, by “classification” we refer to the real root classification of the system of two
polynomial equations defining the (possibly complex) cylinders through a five-point configuration.
Specifically, our objective is to establish semialgebraic equations that determine the count of real
roots for this polynomial system. Thanks to the inherent constraints of our configuration, we can
simplify the system to just two cubic equations in two homogeneous variables. Remarkably, our
semialgebraic certificates reduce to the classical discriminant of an homogeneous cubic equation in
two variables.

The following is the primary result in this direction. It permits the count of the real cylinders
through a configuration of five affine points, with four of them cocyclic. Additionally, it provides
closed formulas for the implicit equations of such cylinders, with rational coefficients in the
coordinates of the points.

Theorem 1.2.34 (Theorem 7.3.5, Corollary 7.3.7). Let Q1,Q2,Q3,Q4, and Q5 = (x5, y5, z5) be
points in A3

R. Additionally, suppose that Q1,Q2,Q3,Q4 are cocyclic and do not lie on a rectangle.
Then, for each i = 0, 1 there exists a bihomogeneous polynomial (see Notation 7.3.4)

Hi (s0, s1;w , x , y , z)

such that there is a one-to-one correspondence between the real cylinders through the five points
and the real roots of the cubic equations

h0(s0, s1) = H0(s0, s1; 1, x5, y5, z5) = 0 , h1(s0, s1) = H1(s0, s1; 1, x5, y5, z5) = 0 .

More explicitly, if (s0 : s1) = (¸0 : ¸1) in P1
R is a root of hi(s0, s1) for some i = 0, 1, then

Hi (¸0,¸1;w , x , y , z) = 0 is the defining equation in P3
R of a real cylinder through the five points.

In particular, if Di = Di (w , x , y , z) is the discriminant of hi (s0, s1) and we let Q5 ≡ (1, x5, y5, z5),
the number of real cylinders through the five points is. . .

(i) . . . six if and only if D0(Q5),D1(Q5) > 0

(ii) . . . four if and only if D0(Q5) · D1(Q5) < 0

(iii) . . . two if and only if D0(Q5),D1(Q5) < 0

We illustrate the use of Theorem 1.2.34 with an example.

Example 1.2.35 (Count and computation of the real cylinders through five points). Let

Q1 = (0, 0, 0) , Q2 = (1, 0, 0) , Q3 = (−2.2336, 2.3888, 0) , Q4 = (3.16, 3.41, 0) ,

which are cocyclic points in the plane z = 0. Furthermore, we compute the constants (see Chapter
7)

ȷ0 = −10.5633 , —0 = 14.8504 , —1 = 5.4139 .



1.3. Organization of the thesis 31

Now, let Q5 = (1.6667, 0.5, 4). Computing the discriminants of Theorem 1.2.34, we find

D0(Q5) < 0 , D1(Q5) > 0 ,

and therefore there are exactly four circular cylinders through the five points. Moreover, the unique
root of H0(s0, s1;Q5) in P1

R is

(¸0 : ¸1) = (0.0342 : −0.9994) ,

and the three roots of H1(s0, s1;Q5) in P1
R are

(˛0 : ˛1) = (0.5485 : 0.8361) , (‚0 : ‚1) = (0.0296 : −0.9996) , (‹0 : ‹1) = (0.0065 : 1.0000) .

Therefore, the defining polynomials in A3
R of the four cylinders through the five points are

C1(x , y , z) = H0(¸0,¸1; x , y , z) = −1.00292 x2 − 0.000876155 x y − 0.99829 y2 − 0.0128117 x z+

0.136535 y z − 0.00470974 z2 + 1.00292 x + 5.41667 y − 0.363995 z ,

C2(x , y , z) = H1(˛0,˛1; x , y , z) = 1.59086 x2 − 21.4486 x y + 114.874 y2 + 16.3473 x z+

1.53394 y z + 115.296 z2 − 1.59086 x − 327.132 y − 451.458 z ,

C3(x , y , z) = H1(‚0, ‚1; x , y , z) = −1.00219 x2 + 0.0748174 x y − 1.39735 y2 + 1.26197 x z+

0.118416 y z − 0.402178 z2 + 1.00219 x + 6.53683 y − 1.02075 z ,

C4(x , y , z) = H1(‹0, ‹1; x , y , z) = 1.00011 x2 − 0.00360464 x y + 1.01914 y2 + 0.277173 x z+

0.0260084 y z + 0.0193766 z2 − 1.00011 x − 5.46799 y − .209721 z .

1.3. Organization of the thesis

The thesis is divided into two parts, each organized thematically as outlined at the beginning of
Chapter 1 Introduction. More specifically, it respects the following structure:

• Chapter 2 Preliminaries introduces the elementary concepts and results in multiprojective
geometry and tensors that are necessary for the thesis.

• Part I MULTILINEAR BIRATIONAL MAPS deals with the main research direction of this
thesis, which is the study and effective application of multilinear birational maps. It comprises
three chapters:

• Chapter 3 Trilinear birational maps in dimension three delves into the algebro-
geometric classification of trilinear birational maps, and computational aspects related
to syzygies. The content of this chapter appears in the research article

[43] Laurent Busé, Pablo González-Mazón, and Josef Schicho. “Tri-linear birational
maps in dimension three”. In: Math. Comp. 92.342 (2023), pp. 1837–1866.

• In Chapter 4 Construction and manipulation of birational trilinear volumes
we develop effective methods for constructing and manipulating trilinear birational
transformations. Some of the results of this chapter are available in the preprint
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Figure 1.8.: The four circular cylinders through the five (blue) points in Example 1.2.35.

[99] Pablo González-Mazón and Laurent Busé. “Construction of birational trilinear
volumes via tensor rank criteria” (2024).

• In Chapter 5 Construction of multilinear birational maps with multilinear
inverse we extend the strategy developed for the construction of hexahedral birational
maps in Chapter 4 to the class of hypercubic birational maps in arbitrary dimension.

• Part II POLYNOMIAL DATA ANALYSIS addresses two lateral problems, involving the use of
polynomials to extract information from data. It comprises two chapters:

• Chapter 6 Weak (1 − ›) nets for polynomial superlevel sets focuses on the
derivation of bounds for the size of (1− ›)-nets for range systems defined by general
polynomial inequalities, the generalization of the centerpoint theorem, and the estimation
of the Carathéodory number of real affine Veronese varieties. The content of this chapter
is the conclusion of a research that originated during Pablo González Mazón’s master’s
thesis, under the supervision of Professor Alfredo Hubard, and is available in the preprint

[100] Pablo González-Mazón, Alfredo Hubard, and Roman Karasev. “Weak (1− ›)-nets
for polynomial superlevel sets” (2023).

• Chapter 7 Cylinders through four cocyclic points addresses the problem of counting
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and computing the real circular cylinders passing through a configuration of five points
where four are cocyclic. This work emerged during a three-month secondment at the
Universitat de Barcelona, in collaboration with the Ph.D. students Carles Checa and
Amrutha B. Nair, and supervised by the Professors Carlos D’Andrea and Joan Carles
Naranjo.





Chapter 2

Preliminaries

In this chapter, we introduce the fundamental objects studied in this thesis, along with some key
results that provide the necessary background for our work. We also establish some notation used
throughout the thesis.

The chapter comprises two sections, each dedicated to distinct aspects: multiprojective geometry
and tensors. The first section is oriented towards Part I, and presents the concepts of multiprojective
scheme, rational and birational maps between multiprojective spaces, base loci and base ideal, the
Rees algebra, and the Jacobian dual criterion. The second section serves as valuable background
for both Part I and Part II. It present tensors and their more relevant attributes, the notion of rank
with respect to a variety, and CP decompositions. Moreover, we discuss the geometry of some
spaces of tensors that are relevant in this work, and in §2.2.4 we prepare for our exploration of
trilinear birational maps by discussing their 2D counterparts, namely bilinear birational maps.

2.1. Birational maps between multiprojective spaces

The primary focus in the first part of this thesis centers on multilinear birational maps ffi :
`
P1
C
´n
99K

Pn
C. To this purpose, we delve into various aspects, including Zn-graded free resolutions and syzygies,

the classification of the base loci of trilinear birational maps, and birationality criteria. Thus, our
approach requires familiarity with commutative algebra and algebraic geometry.

In this section, we survey the main tools and concepts that we address. For a more comprehensive
treatment of the ideas discussed in this section, we refer the reader to [90, 89, 179, 71, 111].

2.1.1. Multiprojective schemes

We begin by introducing multiprojective schemes using the MultiProj construction, which parallels
the Proj construction for projective schemes but employs a Zn-grading rather than a Z-grading.

Definition 2.1.1 (Zn-graded ring and modules). A ring R is Zn-graded if it admits a direct sum
decomposition of abelian groups

R =
M
d∈Zn

Rd

such that
Rd1 · Rd2 ⊂ Rd1+d2 .

An R-module M is Zn-graded if it admits a direct sum decomposition of abelian groups

M =
M
d∈Zn

Md

such that
Rd1 ·Md2 ⊂ Md1+d2 .
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Notation 2.1.2. Let n ≥ 1. We write

ei = (0, ... , 0, 1|{z}
i-th entry

, 0, ... , 0)

for the i-th canonical vector in Zn.

The following are elementary definitions associated to graded rings and modules.

Definition 2.1.3. Let R be a ring and M be an R-module, both Zn-graded.

• The group Rd (resp. Md) is the graded component in degree d of R (resp. M)

• An element is homogeneous of degree d if it lies in Rd (resp. Md)

• An ideal I ⊂ R is homogeneous if it is generated by homogeneous elements

Notation 2.1.4. If n ≥ 2, it is common to say that R and M are multigraded. Likewise, we often
refer to homogeneous elements and ideals as multihomogeneous. We adhere to these conventions
in this work.

In this thesis, we exclusively focus on standard gradings. From a geometric perspective, these
gradings are very important as they give rise to projective and multiprojective spaces, along with
their associated subschemes. We remark that other gradings exist, leading to intriguing geometric
objects such as weighted projective spaces and more general toric varieties (see [71]).

Notation 2.1.5. Whenever we work with Zn-gradings, we denote by 0 = (0, ... , 0) the identically
zero vector in Zn.

Definition 2.1.6 (Standard grading). Let k be a field, and R be a finitely generated Zn-graded
k-algebra. We say that R is standard graded if R0 = k and all the generators have degree ei for
1 ≤ i ≤ n.

Definition 2.1.7. Let k be a field, and R be a finitely generated standard Zn-graded k-algebra.
For each 1 ≤ i ≤ n, we can recover the standard Z-graded k-algebra

R(i) =
M
d∈Z

Rd ·ei ,

and we denote Ni = (Rei ). We establish the following definitions:

(i) The multigraded irrelevant ideal of R is the ideal

N =
n\

i=1

Ni

(ii) A multihomogeneous ideal I ⊂ R is relevant if N ̸⊂ I

Projective and multiprojective schemes can be introduced using, respectively, homogeneous and
multihomogeneous prime ideals. While schemes can be introduced in a more general context (see
e.g. [111, 92]), such generality is not required for this thesis.
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Definition 2.1.8 (Multiprojective scheme). Let k be a field, and R be a finitely generated standard
Zn-graded k-algebra. The multiprojective scheme associated to R is

MultiProj (R) = {P ∈ R : P is prime, multihomogeneous, and relevant}

with the scheme structure induced by localizations at multihomogeneous relevant prime ideals (see
e.g. [120, §1]). In particular, the topology on MultiProj (R) is defined by taking the closed sets of
the form

V (I ) = {P ∈ MultiProj (R) : P ⊂ I} .

The MultiProj construction establishes an identification between multiprojective schemes and
multihomogeneous ideals, with the caveat that multihomogeneous ideals define the same multipro-
jective scheme up to saturation with respect to the irrelevant ideal N. The initial examples are
projective and multiprojective spaces.

Notation 2.1.9. When working over a field k , we denote ⊗k as ⊗ by default.

Example 2.1.10 (Multiprojective spaces). Let n ≥ 1, and let 1 ≤ i ≤ n.

(i) If R(i) = k[xi ] for the variables xi = (x0i , ... , xmi i ) is standard Z-graded, with irrelevant ideal
Ni = (xi ), then MultiProj(R(i)) = Proj(R(i)) = Pmi

k .

(ii) Similarly, if R = k[x1]⊗ ...⊗ k[xn] is standard Zn-graded by

R =
nO

i=1

R(i) =
M

(d1,...,dn)∈Zn

(R(1))d1 ⊕ ...⊕ (R(n))dn ,

with irrelevant ideal

N =
n\

i=1

Ni =
n\

i=1

(xi ) ,

then MultiProj(R) = Pm1
k × ...×Pmn

k . Equivalently, Pm1
k × ...×Pmn

k is just the product of the
projective spaces Pmi

k for each 1 ≤ i ≤ n. The points in Pm1
k × ...× Pmn

k are thus represented
by means of multihomogeneous coordinates

(¸01 : ... : ¸m11)× ...× (¸0n : ... : ¸mnn)

where (¸0i : ... : ¸mi i) lies in Pmi
k for each 1 ≤ i ≤ n. In particular, this point is identified

with the ideal
m1 + ... +mn

where
mi = (¸0i x1i − ¸1i x0i , ... , ¸0i xni − ¸ni x0i ) .

Notation 2.1.11. If Y ⊂ Pm1
C × ...× Pmn

C is a subscheme, we denote by IY ⊂ R the defining ideal
of Y .

Of course, multiprojective schemes can exhibit multiple properties and behaviors. Here, we
introduce some particular geometric properties that we address in Chapter 3. We refer the reader
to [90, Appendix 2] and [89, 111, 92] for more details about these definitions.
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Definition 2.1.12. Let R = C[x1] ⊗ ... ⊗ C[xn] be standard Zn-graded, I ⊂ R be a relevant
multihomogeneous ideal, and S = MultiProj (R=I ). We have the following definitions:

(i) S is equidimensional if all its irreducible components have the same dimension

(ii) S has an embedded component at Y if IY is an associated prime to R=I that is not minimal

(iii) S is Cohen-Macaulay if the localization of R=I at P is a Cohen-Macaulay ring for every
relevant multihomogeneous prime ideal P

For schemes of dimension zero and one, the property of being Cohen-Macaulay can be character-
ized as follows.

Lemma 2.1.13. ([195, Lemma 31.4.4]) Let S ⊂ Pm1
C × ...×Pmn

C be a subscheme with dim(S) ≤ 1.
The following are equivalent:

(i) S is Cohen-Macaulay

(ii) S has no embedded points

In the following example, we illustrate the properties of Definition 2.1.12 on the subscheme of
P1
C × P1

C × P1
C obtained as the base locus (see Definition 2.1.32) of one of the trilinear birational

maps that we classify in Chapter 3.

Example 2.1.14 (Base locus of a trilinear birational map of type (1, 2, 2)). Let R = C[s0, s1]⊗
C[t0, t1]⊗ C[u0, u1] be standard Z3-graded, and consider the multihomogeneous ideal

I = (s0t1u1 , s1t0u1 , s1t1u0 , s0t1u0 − s0t0u1) .

The multiprojective scheme S ⊂ P1
C × P1

C × P1
C defined by I is S = MultiProj (R=I ). Specifically,

since I admits the primary decomposition

I = (t1 , u1) ∩ (s0 , t0 , u0) ∩
`
s1 , t0u1 − t1u0 , t

2
1 , t1u1 , u

2
1

´
∩ (s0, s1) ∩ (t0, t1) ∩ (u0, u1) .

We conclude the following:

(i) S is not equidimensional, since (t1, u1) defines an irreducible component of dimension one,
but (s0, t0, u0) defines an irreducible component of dimension zero, i.e. a (closed) point

(ii) P = (s1, t1, u1) is associated to R=I , since it is the annihilator of the element t1 ∈ R=I (see
[90, Appendix 2]). However, it is not a minimal prime, as we find

(t1 , u1) ⊂ P .

Therefore, S has an embedded point at

(1 : 0)× (1 : 0)× (1 : 0) = MultiProj
„
R

P

«
= MultiProj (C[s0, t0, u0]) .

(iii) By Lemma 2.1.13, S is not Cohen-Macaulay since it has an embedded point and dim S = 1
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2.1.2. Syzygies and free resolutions

The MultiProj construction yields an equivalence between multihomogeneous ideals, saturated with
respect to the irrelevant ideal, and multiprojective schemes. Therefore, all the geometric properties
of a multiprojective scheme can be extracted from either the ideal I or the ring R=I . Among
these properties, two of the most relevant are the “dimension” and “degree” (or “multidegree”),
which are closely related to the graded structure of R=I . The formalization of these two important
properties requires the introduction of minimal graded free resolutions. To this goal, the first step
is to introduce the Hilbert function.

Definition 2.1.15 (Hilbert function for Zn-graded modules). Let k be a field, let R = k[x1] ⊗
...⊗ k[xn] be standard Zn-graded, and let M be a finitely generated graded R-module. The Hilbert
function of M is

HFM : Zn −→ N
d 7→ dimk Md

The most common method for computing the Hilbert function of a module involves the com-
putation of a graded free resolution. This approach traces its roots back to David Hilbert [116],
who proposed the idea of recursively comparing a module M with free modules, which are much
simpler. Minimal graded free resolutions are fundamental objects in commutative algebra, and
much research is devoted to their study (e.g. [31, 112, 16, 107, 145]). In Chapter 3, we study the
graded free resolutions that arise from the base loci of trilinear birational maps.

In the following lines, we introduce some elementary definitions related to free resolutions.

Definition 2.1.16. Let M,N be Zn-graded R-modules. An homomorphism ’ : M −→ N is graded
of degree d if ’(Mp) ⊂ Nd+p for every p in Zn.

Definition 2.1.17. Let
F• : ... −→ Fn

‹n−→ ... −→ F1
‹1−→ F0

be a chain complex of R-modules, and let M = coker ‹1 ⊂ F0.

• The homology of F• at Fi is Hi = ker ‹i=coker ‹i+1

• F• is exact if Hi = 0 for every i ≥ 1

• F• is finite if Fi = 0 for every i ≥ n, for some n ≥ 1. The minimal value n is the length of F•

• F• is free if Fi is a free R-module for every i ≥ 0

• F• is Zn-graded, or simply graded, if Fi is Zn-graded and ‹i : Fi −→ Fi−1 is graded of degree
0 for every i ≥ 1

• F• is a graded free resolution of M if it is free, graded, and exact

• A graded free resolution is minimal if ‹i sends a basis of Fi to a minimal set of generators of
the image of ‹i

Remark 2.1.18. Let
F• : ... −→ Fn

‹n−→ ... −→ F1
‹1−→ F0 (2.1)
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be a minimal graded free resolution of M = coker ‹1. With a small abuse of notation, we say that
the complex

F• : ... −→ Fn −→ ... −→ F1 −→ F0 −→ M −→ 0

is a minimal graded free resolution of M, although M might not be free.

The classical Hilbert’s syzygy theorem guarantees the existence of finite free resolutions for
finitely generated modules over standard Z-graded polynomial rings.

Theorem 2.1.19. (Hilbert’s syzygy theorem, [90, Theorem 1.1]) Let M be a finitely generated
graded module over the standard Z-graded polynomial ring k[x] = k[x0, ... , xm]. Then, M admits
a minimal graded free resolution of the form

0 −→ Fr −→ ... −→ F1 −→ F0

for some r ≤ m + 1.

Hilbert’s syzygy theorem readily generalizes to Zn-gradings with the following straightforward
extension.

Corollary 2.1.20 (Multigraded Hilbert’s syzygy theorem). Let M be a finitely generated graded
module over the standard Zn-graded polynomial ring k[x1, ... , xn], where xi = (x0, ... , xmi ) for each
1 ≤ i ≤ n. Then, M admits a minimal graded free resolution of length r ≤

Pn
i=1 (mi + 1).

Some of the most relevant attributes of a minimal graded free resolution are the Betti numbers,
that we introduce in the following definition. Additionally, the concept of “syzygy” plays a pivotal
role in this thesis. In particular, we rely on syzygies to establish our birationality criteria for
multilinear rational maps. Syzygies, in essence, represent R-linear relations within an R-module.
Specifically, for an R-module M equipped with a free resolution as (2.1), the (first) syzygies of its
generators are elements belonging to ker ‹1. Recursively, the n-th syzygies of M are the elements
in ker ‹n.

Notation 2.1.21. Let M be a Zn-graded module, and let d in Zn. We write M(−d) for the shift,
or twist, of the module M by d, namely

M(−d)e = Me+d

for every e in Zn. In particular, we have

dimk R(−d)e =

„
m1 + e1 − d1

m1

«
...

„
mn + en − dn

mn

«
where e = (e1, ... , en) and d = (d1, ... , dn).

Definition 2.1.22. Let M be a finitely generated Zn-graded R-module, with a minimal graded
free resolution

0 −→ Fr −→ ... −→ F1 −→ F0 −→ 0 .

Then, for each 1 ≤ i ≤ r , we can write

Fi =
M
d∈Zn

Fi (−d)˛id ,

where ˛id ̸= 0 only for finitely many d in Zn. For each 1 ≤ i ≤ r , we have the following definitions:
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(i) The exponents ˛id are the Betti numbers of M

(ii) The shape, also called the Betti table, of the minimal graded free resolution is the collection
of all the Betti numbers

(iii) ker ‹i is the module of i-th syzygies of M

(iv) The elements in ker ‹i are called the i-th syzygies of M

Remark 2.1.23. The Betti numbers and the shape are intrinsic properties of a module and are
independent of its minimal free resolution. Furthermore, two distinct graded free resolutions of the
same module are isomorphic (see e.g. [90, Theorem 1.6]).

When computing minimal graded free resolutions, certain shapes often recur. One of the most
significant and well-studied shapes is the Hilbert-Burch resolution. If a module M admits a
Hilbert-Burch resolution, the syzygy modules exhibit a remarkable simplicity: there are only first
syzygies, and the module of first syzygies is free of rank r , where r + 1 is the size of a minimal set
of generators of M.

More precisely, the following is the statement of the classical Hilbert-Burch theorem.

Theorem 2.1.24. (Hilbert-Burch theorem, [90, Theorem 3.2]) Let I be an ideal in a Noetherian
ring R admitting a free resolution

0 −→ F
M−→ G −→ I −→ 0 .

If the rank of F is r , then the rank of G is r + 1, and there exists a nonzerodivisor a ∈ R such
that I = aIr (M), where Ir is the ideal of r × r minors of the syzygy matrix M. Specifically, I is
generated by the signed maximal minors of M multiplied by a. Furthermore, grade (Ir (M)) is two.

Conversely, given a nonzerodivisor a ∈ R and a (r + 1)× r matrix M with entries in R, such
that grade ((Ir (M)) ≥ 2, the ideal I = aIr (M) admits a free resolution as above. Additionally,
grade (I ) = 2 if and only if a is a unit.

Hilbert-Burch resolutions appear frequently throughout Part I of this thesis. Specifically, they
define the resolutions of the base ideals of multilinear birational maps with multilinear inverse
(see §3.5.1 and Chapter 5). The next example illustrates a Hilbert-Burch minimal Z5-graded free
resolution.

Example 2.1.25 (Hilbert-Burch resolution of the base ideal of a multilinear birational map). Let 1
be the identically one vector in Z5. The base ideal B = (f0, ... , f5) of the standard Z5-graded ring
R = C[x1, ... , x5], where xi = (x0i , x1i ) for each 1 ≤ i ≤ 5, that we have taken from the multilinear
birational map ffi :

`
P1
C
´5
99K P5

C constructed in Example 5.2.4, admits a Hilbert-Burch minimal
graded free resolution. Specifically, it has the form

0 −→
5M

i=1

R(−1− ei ) −→ R(−1)6
(f0 ... f5)−−−−−→ B −→ 0 .

From the Betti numbers of the resolution, we deduce that B admits 5 independent syzygies, of
degrees ei for each 1 ≤ i ≤ 5 respectively. In particular, by Theorem 2.1.24 the generators of B
can be retrieved as the wedge of these syzygies, up to a nonzero scalar.
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Returning to geometry, if I is a relevant multihomogeneous ideal within a standard Zn-graded
ring R = k[x1, ... , xn], the minimal graded free resolution of M = R=I provides valuable information
for the associated scheme. In particular, it permits the computation of the dimension, as well
as the degree for projective schemes, and the multidegrees for multiprojective schemes. These
attributes are all derived from the Hilbert polynomial of M, which stands as a central tool in both
commutative algebra and algebraic geometry. More precisely, if M admits the minimal Zn-graded
free resolution

F• : 0 −→ Fr −→ ... −→ F1 −→ F0 −→ 0 ,

then for each multidegree d in Zn, we can take graded components to derive the resolution of
vector spaces

0 −→ (Fr )d −→ ... −→ (F1)d −→ (F0)d −→ 0 .

By exactness, the value of the Hilbert function is thus

HFM(d) =
rX

i=0

(−1)i HFFi (d) .

It is a classical result that, for Z-graded modules, the Hilbert function becomes a polynomial for
sufficiently large degrees. The following represents the multigraded analog of this result.

Theorem 2.1.26. ([115, Theorem 4.1], [146, Lemma 2.8], [29, Proposition 4.27]) Let k be a
field, R = k[x1, ... , xn] be standard Zn-graded, and let M be a finitely generated graded R-module.
Then, there is a polynomial HPM in Q[t] = Q[t1, ... , tn], called the multigraded Hilbert polynomial
of M,

HPM(t) =
X

(d1,...,dn)∈Zn

m(d1, ... , dn)

„
t1 + d1

d1

«
...

„
tn + dn

dn

«
such that HFM(e) = HPM(e) for every e = (e1, ... , en) with ei sufficiently large for every 1 ≤ i ≤ n.

As for projective schemes, the dimension and the degree of a multiprojective scheme can be read
from the Hilbert polynomial.

Definition 2.1.27. ([51, Definition 2.7]) Let k be a field, R = k[x1, ... , xn] be standard Zn-graded,
I ⊂ R be a relevant multihomogeneous ideal, M = R=I , and S = MultiProj(M). With the notation
of Theorem 2.1.26:

• The dimension of S , denoted by dimS , is the degree of HPM(t)

• For each d = (d1, ... , dn) in Zn such that d1 + ... + dn = dimS , the multidegree of S of
type d (with respect to the embedding space Pm1

k × ...× Pmn
k ) is m(d)

Remark 2.1.28. In classical algebro-geometric terms, the multidegree m(d) of type d = (d1, ... , dn)
is the number of points (counting multiplicity) in the intersection of S with the product L1×...×Ln ⊂
Pm1
k × ...× Pmn

k where Li ⊂ Pmi
k is a general (mi − di)-dimensional subspace, for each 1 ≤ i ≤ n

(e.g. [59, §2.1], [58, Theorem 4.7], [51, §2]).

In the following example, we compute the Hilbert polynomial of one of the subschemes of interest
in this thesis, namely the base locus of a trilinear birational map.
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Example 2.1.29. Continuing with Example 2.1.14, the minimal Z3-graded free resolution of the
ideal I is the one corresponding to trilinear birational maps of type (1, 2, 2) according to Theorem
1.2.6. Using this resolution, we can compute the Hilbert polynomial of the module M = R=I , or
equivalently, of the subscheme S . Namely,

HPM(t1, t2, t3) = t1 + 3 =

„
t1 + 1

1

«„
t2
0

«„
t3
0

«
+ 2

„
t1
0

«„
t2
0

«„
t3
0

«
.

Therefore:

(i) S has dimension one

(ii) The multidegrees of S of types

(1, 0, 0) , (0, 1, 0) , (0, 0, 1)

are respectively 1, 0, 0. In particular, we can group all these multidegrees in the triple (1, 0, 0)

in Z3. This will be our notion of tridegree for curves in
`
P1
C
´3 (see Definition 3.1.12).

2.1.3. Birational maps between multiprojective spaces

We now introduce rational and birational maps from a multiprojective space to a projective space,
along with the concepts of base ideal and base locus. We recall that we are working over the Zariski
topology.

Definition 2.1.30 (Rational map from a multiprojective to a projective space). Let k be a field. A
rational map from Pm1

k × ...× Pmn
k to Pm0

k is an equivalence class of pairs (U,ffi) where:

(i) U ⊂ Pm1
k × ...× Pmn

k is an open set

(ii) ffi : U −→ Pm0
k is a morphism

(iii) (U1,ffi1) ∼ (U2,ffi2) if ffi1|U1∩U2 = ffi2|U1∩U2

If ffi(U) is dense in the target space, we say that ffi is dominant. More concretely, if R = k[x1, ... , xn]
in standard Zn-graded, where xi = (x0i , ... , xmi i) for each 1 ≤ i ≤ n, a rational map from
Pm1
k × ...× Pmn

k to Pm0
k can equivalently be defined as

ffi : Pm1
k × ...× Pmn

k 99K Pm0
k (2.2)

x1 × ...× xn 7→ (f0 : ... : fm0)

where fj = fj(x1, ... , xn) lies in Rd for each 1 ≤ j ≤ m0, for some d in Zn. Since ffi is defined up to
an open set, we can assume gcd(f0, ... , fm0) = 1.

Remark 2.1.31. The following are two straightforward observations:

(i) Rational maps are denoted by 99K instead of −→ because, despite their name, they might
not be maps. More precisely, they are not defined at points where all the defining polynomials
vanish.

(ii) The definition of rational maps to a multiprojective target follows immediately from Definition
2.1.30, by considering multiple tuples of multihomogeneous polynomials.
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Our approach to study multilinear birational maps relies on the analysis of two intimately related
objects: the base ideal and the base locus. Specifically, we are interested on the multiprojective
schemes that arise as the base loci of these birational transformations. Therefore, all the generators
of their defining ideals have the same degree.

Definition 2.1.32 (Base ideal and base locus). Let k be a field, and R = k[x1, ... , xn] be standard
Zn-graded. Consider the rational map

ffi : Pm1
k × ...× Pmn

k 99K Pr1
k × ...× Prs

k (2.3)
x1 × ...× xn 7→ (f01 : ... : fr11)× ...× (f0s : ... : frss)

(i) The base ideal of ffi is the multihomogeneous ideal B ⊂ R defined by

B =
s\

i=1

(f0i , ... , fri i )

(ii) The base locus of ffi is the multiprojective subscheme Z ⊂ Pm1
k × ...× Pmn

k defined by B

Remark 2.1.33. By our hypothesis gcd(f0i , ... , fri i) = 1 for each 1 ≤ i ≤ s, it follows that
codimZ ≥ 2. Furthermore, Z is precisely the locus where ffi is not defined.

Now, we introduce birational maps, which are the central objects of study in this thesis.

Definition 2.1.34 (Birational map). Maintaining the notation of Definition 2.1.30, ffi is birational
if there exists a rational map (V ,’) from Pm0

k to Pm1
k × ... × Pmn

k such that the composition
(U ′,’ ◦ ffi) is the identity, for some open U ′ ⊂ Pm1

k × ...× Pmn
k .

In particular, if ffi is birational there exists an inverse rational map

ffi−1 : Pm0
k 99K Pm1

k × ...× Pmn
k (2.4)

y 7→ (g01 : ... : gm11)× ...× (g0n : ... : gmnn)

where for each 1 ≤ i ≤ n and 1 ≤ j ≤ mi , y = (y0, ... , ym0) and gji i = gji i(y) lies in R[y]di , for
some di in Z. Again, we can assume that gcd(g0i , ... , gmi i ) = 1.

In particular, birational maps can be seen as isomorphisms between the fraction fields of the
underlying rings of the source and target. In our multiprojective setting, we encounter the following.

Remark 2.1.35 (Isomorphisms of fraction fields). Maintaining the notation of Definitions 2.1.30
and 2.1.34, let f = (f0, ... , fm0). Since the composition ffi−1 ◦ffi yields the identity on Pm1

k × ...×Pmn
k ,

it induces the automorphism between the fields of fractions Φ : Frac(R) −→ Frac(R) given by

(x0i , ... , xmi i ) 7→ (g0i (f) , ... , gmi i (f)) = hi · (x0i , ... , xmi i )

for each 1 ≤ i ≤ n, where hi is a multihomogeneous polynomial in R . Thus, birational maps induce
field isomorphisms between the fraction fields Frac(R) and Frac(k[y]) = k(y0, y1, y2, y3).
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2.1.4. The Rees algebra and blow-ups

In this subsection, we introduce the Rees algebra, a fundamental concept in commutative algebra
widely studied in the literature (e.g., [57, 170, 198, 199]).

From a geometrical point of view, the Rees algebra can be used to define the coordinate ring of
the graph of a rational map, i.e. the MultiProj construction applied on the Rees algebra of the base
ideal of a rational map ffi : Pm1

k × ...× Pmn
k 99K P

m0
k yields the graph of ffi. Additionally, it serves as

the coordinate ring for the blow-up of a multiprojective variety along a multiprojective subscheme
[111, §II.7]. Moreover, the Jacobian Dual Criterion (JDC) is a characteristic-free criterion for
birationality that relies on the defining equations of the Rees algebra [178, 87, 41].

Definition 2.1.36. Let k be a field, R be a standard Zn-graded ring, I ⊂ R be a multihomogeneous
ideal, and t be a variable. The Rees algebra of I is

RR(I ) = R[It] =
M
i≥0

I i t i = R ⊕ It ⊕ I 2t2 ⊕ I 3t3 ⊕ ...

Given generators of I , say I = (f0, ... , fr ), then RR(I ) = R[f0t, ... , fr t]. In particular, RR(I ) is the
image of the ring homomorphism

Φ : R[y] −→ R[t]

yi 7→ fi t

where y = (y0, ... , yr ). The kernel J = ker Φ ⊂ R[y] = k[x1, ... , xn] ⊗ k[y] is the Rees ideal
associated to I , and the generators of J are the defining equations of the Rees algebra RR(I ).

The Rees ideal J is thus the ideal consisting of all the algebraic relations of the generators of I =
(f0, ... , fr ), i.e. a multihomogeneous polynomial g = g(x1, ... , xn, y) in R[y] = k[x1, ... , xn]⊗ k[y]
belongs to J if and only if

g(f0t, ... , fr t) = 0

or equivalently,
g(f0, ... , fr ) = 0 .

Remark 2.1.37 (Syzygies are linear relations in the Rees ideal). In particular, the linear relations
in y, i.e. those of the form

g = a0 y0 + ... + ar yr

with ai = ai (x1, ... , xn) in R , represent the first syzygies of the generators of I = (f0, ... , fn). More
precisely, the vector of polynomials a = (a0 ... an) is a syzygy of f = (f0 ... fn) if and only if

⟨a, f⟩ = a · fT = a0 f0 + ... + an fn = 0 .

Therefore, we talk indistinctly between syzygies, understood as vectors of polynomials defining
relations between f0, ... , fn, and the linear polynomials in y defining the same relations.

In our multiprojective setting, we introduce blow-ups of multiprojective spaces using the Rees
algebra as follows.
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Definition 2.1.38 (Blow-up of a multiprojective space along a subscheme). Let k be a field,
R = k[x1, ... , xn] be a standard Zn-graded ring, I ⊂ R be a multihomogeneous relevant ideal, and
S = MultiProj(R=I ). The blow-up of X = Pm1

k × ...× Pmn
k along S is the multiprojective scheme

BlS(X ) = MultiProj (RR(I )) .

If additionally I = (f0, ... , fm0), where all the fi have the same multidegree, then BlSX defines the
graph of the rational map

ffi : X 99K Pm0
k

x1 × ...× xn 7→ (f0 : ... : fm0) ,

which can be regarded as a subscheme of X×Pm0
k , since RR(I ) ∼= R[y]=J = (k[x1, ... , xn]⊗ k[y]) =J.

In the following paragraphs, we present the Jacobian dual criterion for multiprojective rational
maps. Actually, we state a weaker version of the general result, which can be formulated for rational
maps defined over multiprojective varieties (see [41, Theorem 4.4]). Nevertheless, in this thesis we
restrict to multiprojective spaces for the source.

Notation 2.1.39. Let I = (f0, ... , fm0) where fj = fj(x1, ... , xn) is homogeneous of degree d for
every 0 ≤ j ≤ m0, and let J ⊂ k[x1, ... , xn] ⊗ k[y] be the Rees ideal associated to I . For each
1 ≤ i ≤ n, define the k[y]-module

J(ei ;∗) =
∞M
j=1

J(ei ;j) ,

where (d; e) stands for the (Zn × Z)-degree in k[x1, ... , xn] ⊗ k[y], and let {h1i , ... , hri i} be a
minimal set of generators of J(ei ;∗). Let  i be the Jacobian matrix with respect to the variables
xi = (x0i , ... , xmi i ) associated to this set of generators, i.e.

 i =

0BB@
@h1i
@x0i

...
@hri i
@x0i

...
. . .

...
@h1i
@xmi i

...
@hri i
@xmi i

1CCA ,

which has size (mi + 1)× ri . Similarly, denote by  the diagonal concatenation

 =

0BBB@
 1 0 ... 0
0  2 ... 0
...

...
. . .

...
0 0 ...  n

1CCCA .

Theorem 2.1.40. (Multigraded Jacobian dual criterion, [41, Theorem 4.4]) Let the rational map

ffi : Pm1
k × ...× Pmn

k 99K Pm0
k (2.5)

x1 × ...× xn 7→ (f0 : ... : fm0)

be dominant. With Notation 2.1.39, the following are equivalent:

(i) ffi is birational
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(ii) rankk(y)( i ) = mi for each 1 ≤ i ≤ n

(iii) rankk(y)( ) = m1 + ... +mn

Unfortunately, deriving the defining equations of the Rees algebra is a challenging task requiring
significant computational resources [27, 38, 70, 68], which makes the JDC difficult to apply in
practice. Moreover, while suitable for testing birationality, it is less effective for constructing
birational transformations.

In applications, specialized methods tailored to specific families of birational transformations are
often preferred. In Chapter 3, we develop birationality criteria exclusively based on the first syzygies
of the defining polynomials, specifically designed for the family of trilinear birational maps.

2.2. Tensors

Tensors appear frequently in this thesis. This comes as no surprise, since general tensors are,
fundamentally, multilinear polynomials. They also serve to encode multilinear rational maps, which
constitute the primary object of study of Part I. In Part II, our exploration of (1− ›)-nets hinges
upon (real, affine) Veronese varieties, which define the loci of symmetric tensors of rank one.

In this section, we provide an overview of the fundamental concepts and results related to tensors
that are used in this thesis. We follow the references [136, 98, 152, 159, 159, 126], and refer the
reader to them for further details.

2.2.1. Elementary definitions

The tensor product is a fundamental algebraic construction applicable to modules and other abstract
structures, such as sheaves. Nevertheless, the term “tensors” predominantly refers to elements
within a tensor product of vector spaces

Definition 2.2.1 (Tensor). Let V0,V1, ... ,Vn be (finite-dimensional) vector spaces over a field k .
A multilinear map or tensor is a function

V1 × ...× Vn −→ V0

which is linear in Vi for each 1 ≤ i ≤ n. The space of such multilinear maps is the tensor product
V0 ⊗ V ∗

1 ⊗ ...⊗ V ∗
n , where V ∗ stands for the dual vector space of V . With this notation, a tensor

has the following attributes:

• The order, or dimension, is n + 1

• If dimk Vi = mi for each 0 ≤ i ≤ n, tensors have format m0 ×m1 × ...×mn

Clearly, V ∗
1 ⊗ ...⊗ V ∗

n is isomorphic to V1 ⊗ ...⊗ Vn, so we drop the superindex ∗.

Remark 2.2.2 (Alternative definitions of tensors). The following alternative ways to define tensors
are also very frequent in the literature, and might be more adequate depending on the context.

(i) A tensor is just an element in a finite tensor product of vector spaces.

(ii) (Linear maps over a tensor product of vector spaces) A tensor of order n+ 1 can be regarded
simply as a linear map

V1 ⊗ ...⊗ Vn −→ V0
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(iii) (Multilinear polynomials, our favorite) Let Bi = {e0i , ... , emi i} be a basis of Vi for each
1 ≤ i ≤ n. Then, a tensor of format (m1 + 1)× ...× (mn + 1) can be expressed as the sum

m1X
i1=0

...
mnX
in=0

–i1...in ei11 ⊗ ...⊗ einn ,

which is identified with the multilinear polynomial
m1X
i1=1

...
mnX
in=1

–i1...in xi11 ... xinn ,

in the variables of xi = (x0i , ... , xmi i ) for each 1 ≤ i ≤ n. Hence, tensors can be defined as
multilinear polynomials in k[x1]⊗ ...⊗ k[xn] (with the standard Zn-grading!).

(iv) (Multidimensional array) Tensors are often depicted as n-dimensional arrays with entries in k

M = (–i1...in)0≤i1≤m1 , ... , 0≤in≤mn
.

In particular, matrices are tensors of order two, or two-dimensional.

The equivalent concepts of flattening, matricization, contraction, or unfolding, [126, 136, 159,
127] refer to the process of reordering the entries of a higher-order tensor into a matrix.

Definition 2.2.3 (Flattening). Let V =
Ln

i=1 Vi , and let I , J be a bipartition of {1, ... , n}. The
flattening associated to (I , J) of a tensor in M is the matrix induced by the canonical isomorphism
from V to

W1 =
O
i∈I

V ∗
i −→ W0 =

O
j∈J

Vj .

When we mention the flattenings of a tensor without providing specific details, we are referring
to the flattenings associated to all possible bipartitions consisting of 1 and n − 1 elements.

Notation 2.2.4. Given a vector v in V , we denote

v⊗n := v ⊗ ...⊗ v| {z }
n times

and call v⊗n the n-th tensor power of v . Similarly, we denote V⊗n := V ⊗ ...⊗ V| {z }
n times

and

(m + 1)×n := (m + 1)× ...× (m + 1)| {z }
n times

for specifying this tensor format.

Example 2.2.5. In this thesis, we work with the flattenings of 2× 2× 2 tensors M = (–ijk) in
(R2)⊗3 in Chapter 4, since these tensors represent trilinear polynomials. These flattenings are the
2× 4 matrices that rearrange the elements of M. Specifically, if I = {1} we have

M(1) =

„
–000 –010 –001 –011
–100 –110 –101 –111

«
.

Similarly, for I = {2} and I = {3} we respectively find

M(2) =

„
–000 –100 –001 –101
–010 –110 –011 –111

«
, M(3) =

„
–000 –100 –010 –110
–001 –101 –011 –111

«
.
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The family of symmetric tensors has special relevance. In particular, they serve to encode
homogeneous polynomials in some (standard Z-graded) variables x = (x0, ... , xn).

Definition 2.2.6 (Symmetric tensor). Let M be a tensor of format (m + 1)×n. We say that
M = (–i1...in)0≤i1,...,in≤m is symmetric if

–i1...in = –ff(i1)...ff(in)

for every permutation ff of {1, ... , n}.

Remark 2.2.7. (Alternative definition of symmetric tensors) Symmetric tensors can be equivalently
defined as homogeneous polynomials. More explicitly, let {e0, ... , em} be a basis of V . Similarly, for
an integer d , let B be the monomial basis of the k-vector space k[x0, ... , xm]d , which has dimension`m+d

m

´
. In particular, elements in B can be regarded as multi-indices d = (d0, ... , dm) in Zm+1

such that
P

di = d , where xd ≡ xd00 ... xdmm . Then, a symmetric tensor of format (m + 1)×d can
be written as

mX
d1=0

...
mX

dn=0

–d1...dn ed1 ⊗ ...⊗ edn

with –d1...dn = –ff(d1)...ff(dn) for every ff in the group Sn of permutations of {1, ... , n}, or equivalently

X
d∈B

–d
d!

X
ff∈Sn

eff(d1) ⊗ ...⊗ eff(dn) .

In particular, we can identify the former symmetric tensor with the homogeneous polynomialX
d∈B

–d
d!

xd .

This yields a one-to-one identification between homogeneous polynomial in k[x0, ... , xm]d and
symmetric tensors of format (m+ 1)×d with entries in k . Hence, symmetric tensors can be defined
simply as homogeneous polynomials of degree d in k[x0, ... , xm] (with the standard Z-grading!).

2.2.2. Tensor rank and CP decompositions

The notions of tensor rank and tensor decomposition, originally introduced by Hitchcock [117] and
later by Kruskal [130], is probably the central feature in the study of tensors, driven by both its
theoretical significance and its multiple practical applications.

2.2.2.1. Tensor rank

The literature on tensor rank is vast, encompassing numerous aspects that extend beyond the scope
of our discussion. Complexity issues (determining the rank of a tensor is an NP-hard problem),
uniqueness of decompositions, and the existence of optimal approximations, among others, offer a
wide variety of challenges. Interested readers are encouraged to delve into these subjects through
[126] and the references therein.

We introduce tensor rank adopting an algebro-geometric point of view. First, we describe a very
general definition of rank with respect to a nondegenerate projective variety. Later, we particularize
this definition to the more usual notions of general and symmetric rank.
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Definition 2.2.8 (Nondegenerate variety). A variety V in Pn
k is nondegenerate if it is not contained

in a hyperplane.

Definition 2.2.9 (Rank with respect to a variety, [26]). Let V be a nondegenerate variety in Pn
k ,

and denote by V̂ its affine cone in kn+1. The rank of a point P in kn+1 with respect to V , denoted
by rankV (P), is

rankV (P) = min{r : P =
rX

i=1

Pi where Pi lies in V̂ for every 1 ≤ i ≤ r}

Remark 2.2.10. The projective span of a nondegenerate variety is the projective space where it
is embedded. This is the reason why we ask for nondegeneracy, to ensure that every point has a
“rank” with respect to the variety.

What is the geometry of the spaces of general and symmetric tensors? We can identify all
proportional tensors and dismiss the zero tensor, so that we can regard tensors as points in projective
spaces. Thus, a general tensor of order (m1 + 1)× ...× (mn + 1) is a point in P(m1+1)...(mn+1)−1

k ,

whereas a symmetric tensor of order (m + 1)×n is a point in P(
m+n
m )−1

k .

Notation 2.2.11. For each 1 ≤ i ≤ n, let xi = (x0i : ... : xmi i) in Pmi
k . With a small abuse of

notation, we write
x1 ⊗ ...⊗ xn

for the tensor product v1 ⊗ ...⊗ vn of any vectors vi in kmi+1 such that vi projectivizes to xi .

Definition 2.2.12 (Segre embedding). The Segre embedding of Pm1
k × ...× Pmn

k is

ff : Pm1
k × ...× Pmn

k −→ P(m1+1)...(mn+1)−1
k (2.6)

x1 × ...× xn 7→ x1 ⊗ ...⊗ xn ,

i.e. the embedding defined by all multilinear monomials in k[x1]⊗ ...⊗ k[xn]. The image of this
embedding is the Segre variety.

Definition 2.2.13 (Veronese embedding). The Veronese embedding of degree d (in Z) of Pm
k is

vd : Pm
k −→ P(

m+d
m )−1

k (2.7)
x 7→ x⊗d ,

i.e. the embedding defined by all homogeneous monomials in k[x]d . The image of this embedding is
the Veronese variety, and its affine cone V̂ (n, d) in km+1 is the Veronese cone. The affine Veronese
variety, denoted by V (n, d), is the embedding of the affine chart Am

k defined by x0 ≠ 0. More
explicitly, it is the image (contained in the hyperplane y0 = 1) of

vd : Am
k −→ P(

m+d
m )−1

k (2.8)
x = (1, x1, ... , xm) 7→ x⊗d .

Definition 2.2.14 (Rank and symmetric rank). Let M be a general tensor of format (m1 + 1)×
...× (mn + 1), and let N be a symmetric tensor of format (m + 1)d .
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(i) The rank of M, denoted by rank(M), is the rank of M as a point in k(m1+1)...(mn+1) with
respect to Segre variety

(ii) The symmetric rank of N, denoted by rankS(N), is the rank of N as a point in k(
m+d
m ) with

respect to the Veronese variety

In particular, the affine cones over the Segre and Veronese varieties are the loci of rank-one tensors.

Remark 2.2.15. The rank of M can be recovered as

rank(M) = min{r : M =
rX

i=1

–i x1i⊗...⊗xni where xji ∈ kmi+1 and –i ∈ k for every 1 ≤ i ≤ r} .

Similarly, the symmetric rank of N can be expressed as

rankS(N) = min{r : N =
rX

i=1

–i x
⊗d
i where xi ∈ km+1 and –i ∈ k for every 1 ≤ i ≤ r} .

The rank of a three-dimensional tensors can be characterized in terms of its flattenings.

Lemma 2.2.16. ([159, Proposition 3.11]) A tensor of format a× b × c has rank one if and only
if two of its flattenings have rank one.

A natural query is whether the rank and the symmetric rank coincide for symmetric tensors. The
answer is negative, as asserted by the following result.

Theorem 2.2.17. ([201, Theorem 1.9]) There is an order six real tensor whose rank and symmetric
rank differ.

An important feature is that the rank of a tensor is sensitive to the choice of the base field.
In general, the complex rank is different from the real rank for real tensors, as illustrated by the
following example. For different examples, we refer the reader to [171, 136].

Example 2.2.18. ([126, §3.1]) The 2× 2× 2 real tensor M defined by

M{k=0} =

„
1 0
0 1

«
, M{k=1} =

„
0 1
−1 0

«
admits the minimal decomposition over R

M = (1 0)⊗ (1 0)⊗ (1 − 1) + (0 1)⊗ (0 1)⊗ (1 1) + (1 − 1)⊗ (1 1)⊗ (0 1) ,

whereas it can also be written as

M =
1

2
(1 − i)⊗ (1 i)⊗ (1 i) +

1

2
(1 i)⊗ (1 − i)⊗ (1 − i) .

In some contexts, the coefficients in the linear combinations of the definition of the rank are
constrained. This is the case for the nonnegative symmetric rank of real tensors.

Definition 2.2.19. The nonnegative symmetric rank of a real symmetric tensor N is

min{r : N =
rX

i=1

–i x
⊗d
i where xi ∈ Rm+1 and –i ≥ 0 for every 1 ≤ i ≤ r}

in the case that it exists, or ∞ otherwise.
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Similarly to the choice of field, it is interesting to see how the rank is affected when restricting
to nonnegative combinations. In Chapter 6, we are interested in nonnegative combinations over the
Veronese cone V̂ (n, d), since the maximum nonnegative symmetric rank can be regarded as the
Carethéodory number of V̂ (n, d).

2.2.2.2. CP decompositions

The CP decomposition of a tensor is its expression as a finite sum of rank-one tensors. Over
time, different authors have introduced various names for this decomposition, including polyadic
decomposition [117], PARAFAC [110], CANDECOMP [48], CP (CANDECOMP/PARAFAC) [48].
When the number of rank-one tensors in the decomposition equals the rank of the tensor, we refer
to canonical CP decompositions.

In practice, the computation of an exact CP decomposition is often not realistic or very challenging.
Therefore, the problem frequently involves finding an approximation.

Definition 2.2.20 (Frobenius norm). Let M = (–i1...in)i1,...,in be a complex or real tensor of format
(m1 + 1)× ...× (mn + 1). We define its Frobenius norm as

∥M∥2 =
m1X
i1=0

...
mnX
in=0

|–i1...in |2 .

The task of computing a rank-r CP decomposition N for a tensor M of order n can be formally
expressed as the optimization problem

min
N

∥M − N∥ where N =
rX

i=1

x1i ⊗ ...⊗ xni and xij lies in either Rn or Cn .

In particular, this formulation necessitates and appropriate rank r as an input. In most practical
scenarios, this rank is unknown (and NP-hard to compute). Consequently, algorithms typically
proceed by employing various rank until an acceptable approximation of M is achieved. Low-rank
approximations are often preferred in such cases. Several strategies for computing CP approximations
exist, though we do not delve into their technicalities here. Some notable approaches include
Alternating Least Squares (ALS) [48, 110], nonlinear least squares [32, §3.4], and limited-memory
BFGS method [192]. Furthermore, several software packages are available, such as TensorFox [32]
in Python and the tensor toolbox [125] in Matlab. In this thesis, we adopt a user perspective by
employing TensorFox to compute rank-one approximations of 2× 2× 2 tensors.

2.2.3. Some spaces of tensors

Since the locus of rank-one tensors of format (m1 + 1)× ...× (mn + 1) is Pm1
k × ...× Pmn

k , it is
natural to study the orbits of the natural group action of PGL(m1 +1, k)×PGL(mn +1, k) on the
space of tensors. More explicitly, this action is given by

(’1 × ...× ’n)×

0@ m1X
i1=0

...
mnX
in=0

–i1...in xi11 ... xinn

1A 7→

0@ m1X
i1=0

...
mnX
in=0

–i1...in ’1(xi11) ... ’n(xinn)

1A .

In the case of matrices, the orbits of this group action are well-known: the orbits are the loci of
matrices of fixed rank. For higher-dimensional tensors, the study of these orbits is in general very
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difficult. In the following subsection, we explain the first nonmatricial example: general tensors of
rank 2× 2× 2 over C. Tensors of this format are identified to trilinear polynomials, which define
the rational maps studied in Chapters 3 and 4.

2.2.3.1. The space of trilinear polynomials

In this subsection, we describe the geometry of the space P7
C of 2× 2× 2 tensors, or equivalently

trilinear polynomials in C[s0, s1] ⊗ C[t0, t1] ⊗ C[u0, u1]. There are six orbits of the action of
G = PGL(2,C)3, represented in Figure 2.1. We describe the most important features of these
orbits in the following lines:

(i) The Segre variety ff
`
P1
C × P1

C × P1
C
´

is the orbit of rank-one tensors, or trilinear polynomials
with three factors. This orbit is straightforward, since elements in G are automorphisms of`
P1
C
´3. It is a closed orbit, generated by the action of G on s0t0u0.

(ii) Above ff
`
P1
C × P1

C × P1
C
´

we find three Segre varieties ff
`
P1
C × P3

C
´
, corresponding to the

trilinear polynomials with one linear factor. Each of the three embeddings represent the
polynomials with a factor in {s0, s1}, {t0, t1}, and {u0, u1}, respectively. The corresponding
orbits of G are the complements of ff

`
P1
C × P1

C × P1
C
´

in each of the ff
`
P1
C × P3

C
´
. Ten-

sors in these orbits have rank two, and are respectively generated by the action of G on
s0 (t0u0 + t1u1), t0 (s0u0 + s1u1), and u0 (s0t0 + s1t1).

(iii) The closure of the next orbit is the hyperdeterminant Det (Definition 2.2.27) of format
2× 2× 2, defined by the polynomial

H = H(–––) = –2000–
2
111 + –2001–

2
110 + –2010–

2
101 + –2100–

2
011 − 2–000–001–110–111 (2.9)

−2–000–010–101–111 − 2–000–011–100–111 − 2–001–010–101–110 − 2–001–011–110–100

−2–010–011–101–100 + 4–000–011–0101–110 + 4–001–010–100–111 .

Interestingly, we have the following result.

Lemma 2.2.21. ([98, §14.1.A]) Let ’ = ’1 × ’2 × ’3 in GL(2,C)3, and let M = (–ijk)0≤i ,j ,k≤1

be a 2× 2× 2 tensor. Then,

H(’ ·M) = det(’1) det(’2) det(’3)H(M) .

In particular, Det is invariant by the action of G . Specifically, the complement in Det of the union
of the three Segre varieties ff

`
P1
C × P3

C
´

defines an orbit, which is generated by the action of
PGL(2,C)3 on s1t0u0+ s0t1u0+ s0t0u1. This orbit consists of the trilinear polynomials with exactly
one singular point. Remarkably, tensors in this orbit have rank three.

(iv) Finally, the complement of Det in P7
C defines an open orbit of tensors of rank two. This orbit

consists of the trilinear polynomials without a singular point.
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P7
R

Det

ff
`
P1
R × P2

R
´

ff
`
P1
R × P2

R
´

ff
`
P1
R × P2

R
´

ff
`
P1
R × P1

R × P1
R
´

Figure 2.1.: The closure of the six orbits of the action of PGL(2,C)3 in P7
C. An orbit is contained

in all the orbits above it.

2.2.3.2. Quadrics in P3
C

Quadrics in P3
C are defined by homogeneous quadratic polynomials in C[y] = C[y0, y1, y2, y3], or

equivalently, symmetric 4 × 4 matrices. In particular, the space of quadrics is stratified by the
matrix rank (see e.g. [159, Theorem 1.1]). There are four orbits of the natural group action given
by the automorphisms of P3

C: nonsingular (rank 4), cones (3), union of planes (2), and double
planes (1).

Quadrics are important in these thesis, since the inverse for at least one of the parameters is
quadratic in all classes of trilinear birational maps, except for birational maps with a multilinear
inverse, and thus the parametric surfaces are quadrics. Additionally, the geometric constraints on
the control points for some of these classes require to be explained using properties of quadric
surfaces.

We gather the following elementary results, which we will utilize in Chapter 4 for the description
of the admissible configurations of control points for birationality.

Lemma 2.2.22. ([111, Exercise 2.15] or [109, Exercise 6.6]) A smooth quadric in P3
C is isomorphic

to P1
C × P1

C.

Lemma 2.2.23. ([49, Corollary 8.3.19] or [109, Exercise 2.12]) Let a, b, c be three mutually
nonintersecting lines in P3

C. There exists a unique quadric Q ⊂ P3
C through a, b, c , which is smooth.

Lemma 2.2.24. Let ‘00, ‘10, ‘01, ‘11 be four mutually nonintersecting lines in P3
C. If the four lines

do not lie on a common quadric, then there are exactly two (counting multiplicity) lines r1, r2 that
meet ‘ij for every 0 ≤ i , j ≤ 1.

Proof. By Lemma 2.2.23, the lines ‘00, ‘10, ‘01 determine a unique smooth quadric Q ⊂ P3
C. Since

by hypothesis ‘11 does not lie in Q, ‘11 meets Q at two points P1,P2 (maybe one with multiplicity
two). Thus, the only lines that meet the four lines are the two lines in the ruling of Q, distinct
from the ruling of ‘00, ‘10, ‘01, through the points P1,P2 respectively.
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2.2.4. Bilinear birational maps

This subsection is a warm-up for our study of trilinear birational maps of Chapters 3, and we
study bilinear birational maps. In particular, we establish a connection between birationality,
hyperdeterminants, and syzygies.

Bilinear birational maps are the two-dimensional analogs of the multilinear birational maps with
multilinear inverse in arbitrary dimension studied in Chapter 5. Specifically, the resolution of the
base ideal of these transformations is always Hilbert-Burch.

A bilinear rational map is a rational map

ffi : P1
C × P1

C 99K P2
C

(s0 : s1)× (t0 : t1) 7→ (f0 : f1 : f2) =

0@ X
0≤i ,j≤1

–0ij si tj :
X

0≤i ,j≤1

–1ij si tj :
X

0≤i ,j≤1

–2ij si tj

1A
In particular, ffi can be encoded as the tensor ffi ≡ (–ijk)ijk of format 3× 2× 2. Thus, the space of
bilinear rational maps is P3·2·2−1

C = P11
C . We have the following characterization of their birationality.

Proposition 2.2.25. ([28, Proposition 8]) Let ffi be dominant. The following are equivalent:

(i) ffi is birational

(ii) The base ideal B = (f0, f1, f2) defines a point in P1
C × P1

C

(iii) (f0, f1, f2) admits a syzygy of degree (1, 0)

(iv) (f0, f1, f2) admits a syzygy of degree (0, 1)

We denote by ––– = (... ,–ijk , ...) the vector (or 3D-array) of the variables –ijk , for each 0 ≤ i , j ≤ 1
and 0 ≤ k ≤ 2. We have the following characterization of birationality.

Corollary 2.2.26. The space of bilinear birational maps is the hyperdeterminant of format 3×2×2
in P11

C . More explicitly, ffi is birational if and only if H(ffi) = 0, where H = H(–––) is the defining
polynomial of this hyperdeterminant.

In this section, we introduce the minimal concepts for Corollary 2.2.26 to make sense. As the
name suggests, hyperdeterminants are higher-dimensional analogs of matrix determinants, that
were first studied by Cayley [52].

Definition 2.2.27 (Hyperdeterminant). The hyperdeterminant, or simply determinant, of format
(m1 + 1)× ...× (mn + 1) is the projective dual of the Segre variety ff(Pm1

k × ...× Pmn
k ). Explicitly,

it is discriminant of multilinear polynomials in k[x1]⊗ ...⊗ k[xn], i.e. the subscheme of the space
of coefficients P(m1+1)...(mn+1)−1

C for which the generic multilinear polynomial with coefficients in
Z[–––], where ––– is the vector of all the variables –i1...in where 0 ≤ ij ≤ mj and 1 ≤ j ≤ n, given by

F =
m1X
i1=0

...
mnX
in=0

–i1...in xi11 ... xinn
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has a singular point, i.e. the ideal generated all the partial derivatives

@F

@xij j

defines (at least) a point in Pm1
k × ...× Pmn

k .

Example 2.2.28. We show that the hyperdeterminant of square matrices coincides with the
classical determinant. Namely, a matrix of size (m + 1)× (m + 1) is a bilinear polynomial

M =
mX
i=0

mX
j=0

–ij si tj

in k[s0, ... , sm]⊗ k[t0, ... , tm]. In particular, the partial derivatives can be identified with the rows
and columns of M, as

@M

@si
=

mX
j=0

–ij tj ,
@M

@tj
=

mX
i=0

–ij si

for each 0 ≤ i , j ≤ m. Therefore,

“
@M
@t0

... @M
@tm

”
=
`
s0 ... sm

´0B@–00 ... –0m
...

. . .
...

–m0 ... –mm

1CA =
`
0 ... 0

´
has a solution in Pm

k if and only if0B@
@M
@s0
...
@M
@sm

1CA =

0B@–00 ... –0m
...

. . .
...

–m0 ... –mm

1CA
0B@ t0

...
tm

1CA =

0B@0
...
0

1CA
has a solution in Pm

k if and only if det (–ij)0≤i ,j≤m = 0.

The following definition encompasses the tensors of interest in the study of multilinear rational
maps between spaces of equal dimension (recall Definition 2.1.30).

Definition 2.2.29 (Boundary format). A (m0 + 1)× ...× (mn + 1) tensor has boundary format if
m0 =

Pn
i=1mi .

Remark 2.2.30. Rational maps from a multiprojective space to a projective space of the same
dimension are encoded by tensors of boundary format. Specifically, the rational map

ffi : Pm1
k × ...Pmn

k 99K Pm0
k

x1 × ...× xn 7→ (f0 : ... : fm0)

where

fi0 = fi0(x1, ... , xn) =
m1X
i1=0

...
mnX
in=0

–i0i1...in xi11 ... xinn (2.10)

for each 0 ≤ j ≤ n and 0 ≤ ij ≤ mj , can be represented by the (m0 + 1)× ...× (mn + 1) tensor

ffi ≡
m0X
i0=0

m1X
i1=0

...
mnX
in=0

–i0i1...in xi00 xi11 ... xinn . (2.11)
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The following result asserts that the hyperdeterminant of a tensor of boundary format (m0 +
1)× ...× (mn + 1) is a resultant of multilinear polynomials.

Theorem 2.2.31. ([98, Theorem 3.1]) The hyperdeterminant of a tensor of boundary format as
(2.11) is the resultant of the polynomials f0, ... , fm0 . Explicitly, a point ––– = (... : –i0i1...in : ...) lies
in the hyperdeterminant if and only if the system of multilinear polynomials

f0 = ... = fm0 = 0

has a solution in Pm1
k × ...× Pmn

k .

Proof of Corollary 2.2.26. By Proposition 2.2.25, the bilinear rational map ffi is birational if and
only if the base ideal B = (f0, f1, f2) defines a point in P1

C × P1
C, or equivalently, if ffi lies in

the resultant of f0, f1, f2. By Theorem 2.2.31, this is precisely the hyperdeterminant of format
3× 2× 2.

Now, we describe the geometry of the syzygies of a bilinear birational map within the space P3
C

of bilinear polynomials.

Corollary 2.2.32. A bilinear rational map ffi is birational if and only if the C-vector space C⟨f0, f1, f2⟩
defines a tangent plane to the Segre variety ff(P1

C × P1
C) ⊂ P3

C, or equivalently, the projectivization
of C⟨f0, f1, f2⟩ determines a point in the dual of ff(P1

C×P1
C) (i.e. the determinant of 2×2 matrices).

Proof. Since bilinear polynomials are 2× 2 matrices, we can regard the linear system C⟨f0, f1, f2⟩ as
a plane in the space P3

C of 2×2 matrices, or equivalently, as a point in the dual
`
P3
C
´∨. Furthermore,

we can write

f = (f0, f1, f2) = s0 f0 + s1 f1 = s0 (t0 P00 + t1 P01) + s1 (t0 P10 + t1 P11)

for some Pij in C3. By Proposition 2.2.25, ffi is birational if and only if it admits a syzygy of degree
(1, 0). In particular, we find

ff = ff(s0, s1) = ff0 s0 + ff1 s1

for some ffi in k3, such that

⟨ff, f⟩ = s0 ⟨ff, f0⟩+ s1 ⟨ff, f1⟩ = s20 ⟨ff0, f0⟩+ s0s1 (⟨ff0, f1⟩+ ⟨ff1, f0⟩) + s21 ⟨ff1, f1⟩ = 0 .

Hence, we have ⟨ffi , fi ⟩ = 0 and

⟨ff0, f1⟩ = t0 ⟨ff0,P10⟩+ t1 ⟨ff0,P11⟩ = g(t0, t1) = −t0 ⟨ff1,P00⟩ − t1 ⟨ff1,P01⟩ = −⟨ff1, f0⟩ .

In particular,
⟨ff0, f⟩ = s1 g(t0, t1) , ⟨ff1, f⟩ = −s0 g(t0, t1)

and the image of the parametrization P1
C −→ C⟨f0, f1, f2⟩ defined by

(s0 : s1) 7→ ⟨ff(s0, s1), f⟩

is a line ‘ of degenerate bilinear polynomials, i.e. they have two linear factors. Thus, ‘ lies in
ff
`
P1
C × P1

C
´
, which is the locus of degenerate or rank-one bilinear polynomials. Since ff

`
P1
C × P1

C
´

is a smooth quadric and C⟨f0, f1, f2⟩ is a plane, their intersection is a singular conic. Therefore,
C⟨f0, f1, f2⟩ must be a tangent plane to ff

`
P1
C × P1

C
´
, and hence a point in the 2×2 determinant.
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In Chapter 4, we try to extend some of the ideas briefly exposed in this subsection to trilinear
birational maps. As already illustrated in §2.2.3.1, the space of trilinear polynomials is much more
complicated than the space of bilinear polynomials. This makes the study of trilinear birational
maps more complicated. In particular, there is no hope for a characterization of the space of
trilinear birational maps as a hyperdeterminant, since the base loci of trilinear birational maps are
not mere simple points.



Part I

MULTILINEAR BIRATIONAL
MAPS





Chapter 3

Trilinear birational maps in dimension
three

In this chapter, we address algebraic and geometric aspects about trilinear birational maps in
dimension three. In all the chapter, we assume that ffi is as in Definition 1.2.1.

Commutative algebra: we provide a characterization of birationality based on the first syzygies
of the entries (Theorem 3.5.1). More generally, we describe all the possible minimal graded free
resolutions of the ideal B = (f0, f1, f2, f3) in the tensor product ring R = C[s0, s1] ⊗ C[t0, t1] ⊗
C[u0, u1] (Propositions 3.5.2, 3.5.4, 3.5.5, and 3.5.8).

Algebraic geometry: we show that quotient Bir(1,1,1) of the set of trilinear birational maps
by Aut(P3

C) is a locally closed algebraic subset of the Grassmannian Gr(4,R(1,1,1)), and has eight
irreducible components (Theorem 3.3.6). We also prove that the group action on Bir(1,1,1) given
by Aut((P1

C)
3) defines 19 orbits, and each of these orbits determines an isomorphism class of the

base loci of these transformations (Theorems 3.4.3, 3.4.6, 3.4.8, and 3.4.10).

3.1. Preliminaries

In this section, we present the fundamental concepts and notation specific to this chapter. While
some of these concepts were introduced more generally in Chapter 2, here we provide brief,
specialized definitions tailored to the context of trilinear birational maps.

3.1.1. Basic definitions and properties

Let A1 = C[s0, s1], A2 = C[t0, t1], and A3 = C[u0, u1] be the homogeneous coordinate rings of
three projective lines, with the standard grading in each ring given by the corresponding pair of
variables.

Notation 3.1.1. We set R := A1⊗A2⊗A3, which is a standard Z3-graded ring. The multiprojective
scheme associated to R is the product X := (P1

C)
3. The irrelevant ideal of R is

N =
M

i>0, j>0, k>0

(A1)i ⊗ (A2)j ⊗ (A3)k = (s0, s1) ∩ (t0, t1) ∩ (u0, u1) .

Definition 3.1.2 (Base ideal and base locus of ffi). The base ideal of ffi is the homogeneous ideal
B = (f0, f1, f2, f3) in R . The subscheme Z of X defined by B is the base locus of ffi.

Remark 3.1.3. If ffi is dominant, then codim(Z ) ≥ 2 since otherwise we find a common factor to
the entries.
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Let (–0 : –1) ∈ P1
C be a general point. If ffi is dominant, then the image of the restriction

ffis : P1
C × P1

C 99K P3
C (3.1)

(t0 : t1)× (u0 : u1) 7→ (f ′0 : f ′1 : f ′2 : f ′3) ,

where f ′i = f ′i (t0, t1, u0, u1) = fi(–0,–1, t0, t1, u0, u1), is a parametric s-surface, described in
Definition 1.2.10, and is either a plane or a smooth quadric. The same observation holds true for
the restrictions ffit and ffiu to the other two parameters, which respectively yield parametric t- and
u-surfaces.

Remark 3.1.4. More precisely, ffis is a bilinear parametrization to P3
C. In particular, for each

0 ≤ i ≤ 3 we can write

f ′i (t0, t1, u0, u1) = ¸0i t0u0 + ¸1i t1u0 + ¸2i t0u1 + ¸3i t1u1

for some ¸ji not all zero. If the image of ffis does not lie on a plane, then the 4 × 4 coefficient
matrix (¸ji )ji has full rank. Therefore, ffis coincides with the Segre embedding of P1

C × P1
C up to

an automorphism of P3
C, and is thus a smooth quadric.

The following definition extends the notion of type, introduced in Definition 1.2.3 for trilinear
birational maps, to trilinear rational maps without the requirement of being birational.

Definition 3.1.5 (Type of ffi). The type of ffi is the triple (d1, d2, d3) in Z3, where d1 (resp. d2
and d3) is the degree of the s-surfaces (resp. t- and u-surfaces).

It follows immediately that there are only eight possible types for ffi, namely

(1, 1, 1) , (2, 1, 1) , (1, 2, 1) , (1, 1, 2) , (1, 2, 2) , (2, 1, 2) , (2, 2, 1) , (2, 2, 2) , (3.2)

which up to permutation, reduce to the four possibilities

(1, 1, 1) , (1, 1, 2) , (1, 2, 2) , (2, 2, 2) .

Let ffi be birational with an inverse rational map as in (1.6), where y = (y0, y1, y2, y3) are standard
Z-graded variables. The composition ffi−1 ◦ ffi : (P1

R)
3 99K (P1

R)
3 yields the identity on some open

set of X . More explicitly, ffi−1 ◦ ffi is generically given by

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (a0(f) : a1(f))× (b0(f) : b1(f))× (c0(f) : c1(f))

= (s0 : s1)× (t0 : t1)× (u0 : u1) ,

implying that the 2× 2 determinants in R[y]˛̨̨̨
s0 s1

a0(y) a1(y)

˛̨̨̨
,

˛̨̨̨
t0 t1

b0(y) b1(y)

˛̨̨̨
,

˛̨̨̨
u0 u1

c0(y) c1(y)

˛̨̨̨
(3.3)

vanish when we specialize yn 7→ fn for each 0 ≤ n ≤ 3. Therefore, these determinants represent
algebraic relations satisfied by the defining polynomials of ffi. Geometrically, they define the implicit
equations of the parametric surfaces. More specifically, given a general (s0 : s1) = (–0 : –1) in P1

R,
the equation of the corresponding s-surface in P3

R is˛̨̨̨
–0 –1

a0(y) a1(y)

˛̨̨̨
= 0 ,

and similarly for the t- and u-surfaces. In particular, if a0(y), a1(y) are linear, then the s-surfaces
form a pencil of planes. If they are quadratic, then the s-surfaces form a pencil of quadric surfaces.
The obvious observations hold for the t- and u-surfaces, as well as the following remark.
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Remark 3.1.6. If ffi is birational with an inverse as in (1.6), then the type of ffi is (deg ai , deg bj , deg ck).
In particular, the notions of type of Definitions 1.2.3 and 3.1.5 coincide on birational maps.

3.1.2. The Jacobian dual criterion for trilinear rational maps

Let R[y] = R[y0, y1, y2, y3] be the (Z3 × Z)-graded ring of the product X × P3
R, since R[y] inherits

the Z3-grading from R and the standard Z-grading of C[y]. Consider the ring homomorphism

R[y] → R[u] (3.4)
yi 7→ fi u .

Definition 3.1.7 (Rees ideal of ffi). The kernel J of (3.4) is the Rees ideal of ffi.

The Rees ideal J is prime, and hence saturated with respect to the irrelevant N. Specifically, J
defines the scheme-theoretic graph of ffi in X ×P3

C (recall §2.1.4), which is irreducible. In particular,
if ffi is birational, the polynomials in (3.3) belong to J.

Notation 3.1.8. Given a vector of polynomials g = (g0, g1, g2, g3) in R , we denote by y 7→ g the
specialization of the ring R[y] to R given by yn 7→ gn for every 0 ≤ n ≤ 3. Moreover, we use the
notation (d1, d2, d3; d4) ∈ Z3 × Z for the degree in R[y]. In particular, we have

g = g(s0, s1, t0, t1, u0, u1, y0, y1, y2, y3) ∈ J(d1,d2,d3;d4)

if g is homogeneous of degree (d1, d2, d3; d4) and additionally

g(s0, s1, t0, t1, u0, u1, f0, f1, f2, f3) = 0 ,

i.e. g vanishes after the specialization y 7→ f.

For any (d1, d2, d3) ∈ Z3, we define the C[y]-module

J(d1,d2,d3;∗) :=
M
d4∈Z

J(d1,d2,d3;d4) .

The multigraded Jacobian dual criterion (Theorem 2.1.40) characterizes birationality in terms of
the ideal J. In particular, we find the following corollary.

Corollary 3.1.9 (of Theorem 2.1.40). The trilinear rational map ffi is birational if and only if all

J(1,0,0;∗) , J(0,1,0;∗) , J(0,0,1;∗) (3.5)

have rank one as vector spaces over the field C(y) = C(y0, y1, y2, y3).

3.1.3. Automorphisms of (P1
C)

3

The automorphisms of X = (P1
C)

3 are in one-to-one correspondence with the automorphisms of
R that leave the irrelevant ideal N invariant. Let H E Aut(X ) be the normal subgroup of all the
automorphisms ’ : X −→ X such that the induced ring automorphism ’# : R −→ R is graded of
degree 0 = (0, 0, 0), i.e. it preserves the degree of the elements in R . Namely, these have the form

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ ”1(s0 : s1)× ”2(t0 : t1)× ”3(u0 : u1) ,

for some ”1, ”2, ”3 in PGL(2,C). Clearly, we have an isomorphism H ∼= PGL(2,C)3.
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Example 3.1.10. Not all the automorphisms of R are graded. In particular,

’ : X −→ X

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (t0 : t1)× (u0 : u1)× (s0 : s1)

induces

’# : R −→ R

si 7→ ti tj 7→ uj uk 7→ sk

which is not graded for any d = (d1, d2, d3) in Z3. In general, an automorphism of R always applies
a permutation to the integers in the Z3-degree of R .

Let K ≤ Aut(X ) be the subgroup consisting of the automorphisms that simply permute the
factors of X , which is isomorphic to the symmetric group S3 acting on three elements. Interestingly,
H and K satisfy the following properties:

• H ∩ K = {idX}

• The map K × H −→ Aut(X ) : (ff, ”) 7→ ff ◦ ” is a bijection of sets

Therefore, Aut(X ) is isomorphic to the semidirect product of groups K o H ∼= S3 o PGL(2,C)3.

3.1.4. Curves and surfaces in (P1
C)

3

Definition 3.1.11 (Surfaces and curves in (P1
C)

3). A subscheme Y of X is a surface (resp. curve)
if it is equidimensional of dimension two (resp. one).

In particular, a surface in X is the vanishing locus of a homogeneous polynomial in R .

Definition 3.1.12 (Tridegree of a subscheme in (P1
C)

3). Let Y be an equidimensional subscheme
of X of dimension either one or two. The tridegree of Y , denoted by trideg(Y ), is defined as
follows:

• If dim(Y ) = 2, trideg(Y ) is the degree of its defining polynomial

• If dim(Y ) = 1, trideg(Y ) = (d1, d2, d3) where di is the number of points, counted with
multiplicity, in the intersection of Y with the subspace of X determined by a general linear
form in Ai . Equivalently, di is the degree of the projection of Y onto the i-th P1

C factor of X

If Y is not equidimensional, we define its tridegree as the tridegree of its top-dimensional scheme,
i.e. the union of all the irreducible components of highest dimension.

Remark 3.1.13. Let Y be a subscheme of X with dim(Y ) ≥ 1. Definition 3.1.12 gives the correct
notion of Z3-degree of Y . Namely, the Chow ring of X is

CR(X ) =
Z[a, b, c]
(a2, b2, c2)

,

where a, b, and c are respectively the classes of surfaces of tridegree (1, 0, 0), (0, 1, 0), and (0, 0, 1).
This Chow ring is Z-graded by the dimension of the classes. Specifically,

CR(X ) = CR(X )2 ⊕ CR(X )1 ⊕ CR(X )0 ,
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where
CR(X )2 = Z⟨a, b, c⟩ , CR(X )1 = Z⟨bc, ac , ab⟩ , CR(X )0 = Z⟨abc⟩ .

Therefore, if trideg(Y ) = (d1, d2, d3) then the class [Y ] of Y in CR(X ) can be written as

[Y ] = d1 a+ d2 b + d3 c

if dim(Y ) = 2, or
[Y ] = d1 bc + d2 ac + d3 ab

if dim(Y ) = 1. Additionally, the tridegree of Y can be regarded as the concatenation of all
the multidegrees extracted by the Hilbert polynomial of Y , as explained in Definition 2.1.27 and
Example 2.1.29.

Notation 3.1.14. If Y ⊂ X is zero-dimensional, the class [Y ] in the Chow ring is determined by a
single integer. For simplicity in upcoming notation, we denote trideg(Y ) = (0, 0, 0) whenever Y is
zero-dimensional.

3.1.4.1. Cohen-Macaulay curves in (P1
C)

3

Recall that, by Lemma 2.1.13, a curve is Cohen-Macaulay if and only if it has no embedded points.
The following is a useful description of the Cohen-Macaulay curves in X of the tridegrees of interest
for the following sections.

Lemma 3.1.15. Let Y be a Cohen-Macaulay curve in X . Then, we have the following:

• If trideg(Y ) = (1, 1, 1), there is an automorphism of X that sends Y to the curve defined by
one of the following ideals:

(i) (s0t1 − s1t0, s0u1 − s1u0, t0u1 − t1u0)

(ii) (s0t1 − s1t0, u1) ∩ (s1, t0)

(iii) (s0t1 − s1t0, u1) ∩ (s1, t1)

(iv) (s1, t1) ∩ (s0, u1) ∩ (t0, u0)

(v) (s1, t1) ∩ (s1, u1) ∩ (t0, u0)

(vi) (s1, t1) ∩ (s1, u1) ∩ (t1, u0)

(vii) (s1, t1) ∩ (s1, u1) ∩ (t1, u1)

• If trideg(Y ) is either (1, 1, 0), (1, 0, 1), or (0, 1, 1), there is an automorphism of X that sends
Y to the curve defined by one of the following ideals:

(viii) (s0t1 − s1t0, u1)

(ix) (s1, u0) ∩ (t1, u1)

(x) (s1, u1) ∩ (t1, u1)

• If trideg(Y ) is either (1, 0, 0), (0, 1, 0), or (0, 0, 1), then Y is a projective line. In particular,
it can be transformed by an automorphism of X into the line defined by (t1, u1).

Proof. Up to an automorphism in K ≤ Aut(X ), that just permutes the factors (see §3.1.3), we can
assume that Y has tridegree either (1, 1, 1), (1, 1, 0), or (1, 0, 0). In the latter case, the projection
ı1 : Y −→ P1

C onto the first factor of X is an isomorphism, so Y is a projective line. Clearly, there
is an automorphism of X sending Y to the line (t1, u1).
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Now, assume that Y is irreducible of tridegree either (1, 1, 1) or (1, 1, 0). The projections
ıi : Y −→ P1

C onto the first two factors of X have degree one, so Y is rational. Hence, Y is the
image of a regular map ’ : P1

C −→ Y given by

(x0 : x1) 7→ (a0(x0, x1) : a1(x0, x1))× (b0(x0, x1) : b1(x0, x1))× (c0(x0, x1) : c1(x0, x1)) , (3.6)

for some linear forms ai , bj , ck in C[x0, x1]. If Y has tridegree (1, 1, 0), then c0, c1 are proportional
and we have (c0(x0, x1) : c1(x0, x1)) = (‚0 : ‚1) for some (‚0 : ‚1) in P1

C. In particular, any two
parametrizations of curves of the same tridegree coincide up to the action of PGL(2,C)3 ∼= H E
Aut(X ) (see §3.1.3). Hence, if Y has tridegree (1, 1, 1) (resp. (1, 1, 0)) there is an automorphism
of X sending it to the curve defined by the ideal (i) (resp. (viii)) in the statement.

Now, assume that Y has exactly two irreducible components of tridegrees (1, 1, 0) and (0, 0, 1). By
the argument above, the component of tridegree (1, 1, 0) can be transformed into the curve D ⊂ X
defined by the ideal (viii). Moreover, the component of tridegree (0, 0, 1) can be parametrized as

(x0 : x1) 7→ (¸0 : ¸1)× (˛0 : ˛1)× (c ′0(x0, x1) : c
′
1(x0, x1)) ,

for some (¸0 : ¸1) × (˛0 : ˛1) ∈ P1
C × P1

C and linear forms c ′0, c
′
1 in C[x0, x1]. In particular, if

(¸0 : ¸1)× (˛0 : ˛1) ∈ P1
C × P1

C satisfies ¸0˛1 − ¸1˛0 = 0 we find an automorphism of X that
stabilizes D and sends

(¸0 : ¸1)× (˛0 : ˛1)× (c ′0(t0, t1) : c
′
1(t0, t1)) 7→ (1 : 0)× (1 : 0)× (c ′0(t0, t1) : c

′
1(t0, t1)) .

On the other hand, if ¸0˛1 − ¸1˛0 ̸= 0 then we find an automorphism sending

(¸0 : ¸1)× (˛0 : ˛1)× (c ′0(t0, t1) : c
′
1(t0, t1)) 7→ (1 : 0)× (0 : 1)× (c ′0(t0, t1) : c

′
1(t0, t1))

that stabilizes D as well. The images of the two last parametrizations are the projective lines in X
respectively defined by (s1, t1) and (s1, t0). Therefore, Y can be transformed into the curve defined
by either the ideal (iii) or (ii) in the statement by means of an automorphism of X .

Proceeding similarly with curves of tridegree (1, 1, 1) with three irreducible components, one
derives the curves from (iv) to (vii). On the other hand, if Y is reducible of tridegree (1, 1, 0) it
must have exactly two irreducible components of tridegrees (1, 0, 0) and (0, 1, 0). Depending on
whether these components intersect, Y can be transformed into the curve defined by either (ix) or
(x).

3.1.5. Pairing between the type and the tridegree of the base locus

Let ffi be birational, with inverse as in (1.6). Given a general line ‘ ⊂ P3
C, the image ffi−1(‘) is a

closed rational curve in X . Additionally, writing ıi : X −→ P1
C for the projection of X onto the i-th

factor, the composition ı1 ◦ ffi−1|‘

P1
C
∼= ‘ ⊂ P3

C
ffi−1|‘−−−→ ffi−1(‘) ⊂ X = P1

C × P1
C × P1

C
ı1−→ P1

C

(y0 : y1 : y2 : y3) 7→ (a0 : a1)× (b0 : b1)× (c0 : c1) 7→ (a0 : a1) ,

yields an endomorphism of P1
C of degree deg ai . Similarly, the projections onto the other fac-

tors yield endomorphisms of degree deg bj and deg ck , implying that the tridegree of ffi−1(‘) is
(deg ai , deg bj , deg ck) (recall Definition 3.1.12). On the other hand, let

L =

 
3X

n=0

‹n yn ,
3X

n=0

›n yn

!
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be the defining ideal of ‘ in C[y]. Then, the homogeneous ideal

I =

 
3X

n=0

‹n fn ,
3X

i=0

›n fn

!

defines the scheme-theoretic union of ffi−1(‘) and the base locus Z , and has tridegree (2, 2, 2).
Namely, the class of each generator of I in the Chow ring CR(X ) is (a+ b + c), and hence (see
Remark 3.1.13)

(a+ b + c)2 = a2 + b2 + c2 + 2 ab + 2 ac + 2 bc = 2 ab + 2 ac + 2 bc mod (a2, b2, c2) .

Therefore, it follows the identity

trideg(ffi−1(‘)) + trideg(Z ) = (deg ai , deg bj , deg ck) + trideg(Z ) = (2, 2, 2) , (3.7)

where we set trideg(Z ) = (0, 0, 0) for zero-dimensional schemes (recall Notation 3.1.14).

Remark 3.1.16. A projective version of the identity (3.7) can be found in [80, §1].

We thus obtain the pairing between the possible types of ffi and the tridegree of the base locus
Z in Table 3.1. In particular, it follows immediately that if ffi has type (2, 2, 2) the base locus is
0-dimensional.

type of ffi trideg(Z )
(1,1,1) (1,1,1)

(1,1,2) (and permutations) (1,1,0) (and permutations)
(1,2,2) (and permutations) (1,0,0) (and permutations)

(2,2,2) (0,0,0)

Table 3.1.: Pairing between the type of a birational map and the tridegree of the base locus.

3.2. Factorization of trilinear birational maps

In this section, we explain the strategy followed in our geometric analysis. It is inspired by [161],
where the classification of birational endomorphisms of P3

C with quadratic entries is addressed. The
key idea is the factorization of trilinear rational maps through a linear system and a projection.

3.2.1. Commutative diagram for the factorization

Maintaining the notation of §3.1.1, let V be a C-vector space satisfying

B(1,1,1) ⊂ V ⊂ R(1,1,1) ,

and let N + 1 = dimV . Let “V : X 99K P(V ∨) be the rational map whose entries are the vectors
in a basis of the dual vector space V ∨, and write YV for the closure in P(V ∨) of the image of “V .
In particular, we have the commutative diagram
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YV P (V ∨) ∼= PN
C

BlVX ⊂ X × PN
C X P3

C

ıL

ıV

ΠV

ffi

“V (3.8)

where ıV : BlVX −→ X is the blow-up of X along the subscheme defined by the entries of “V ,
ΠV : BlVX −→ YV is the projection onto the second factor, and ıL : P(V ∨) 99K P3

C is the linear
projection from some suitable subspace L in P(V ∨). If N = 3, then P(V ∨) ∼= P3

C and ıL is just an
automorphism of P3

C. It follows from the diagram of (3.8) that ffi is birational if and only if both
“V and the restriction of ıL to YV are birational.

3.2.2. Factorization according to the type of ffi

Notation 3.2.1. Let Y be a subscheme in X .

• We denote by IY ⊂ R the (saturated) defining ideal of Y

• If dim(Y ) ≥ 1, we write CY for the curve defined by the intersection of all the associated
primes to IY of codimension exactly two. In this case CY does not have embedded points,
and by Lemma 2.1.13 it is a Cohen-Macaulay curve

• With a small abuse of notation, when Y = Z (the base locus of ffi) we denote CZ just by C

By definition, if dim(Z ) = 1 then we have B ⊂ IC . In particular, we can set V = (IC )(1,1,1) in
the diagram of (3.8). The situation is a little bit different if dim(Z ) = 0, i.e. if ffi has type (2, 2, 2)
(see §3.1.1). Namely, given a point

Q = (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) ∈ X (3.9)

we define the linear polynomials

∆Q
1 :=

˛̨̨̨
x0 x1
¸0 ¸1

˛̨̨̨
, ∆Q

2 :=

˛̨̨̨
y0 y1
˛0 ˛1

˛̨̨̨
, ∆Q

3 :=

˛̨̨̨
z0 z1
‚0 ‚1

˛̨̨̨
.

The following result allows us to use the diagram of (3.8) with birational maps of type (2, 2, 2).

Lemma 3.2.2. Let ffi be birational of type (2, 2, 2). Then, there exists a unique point Q as (3.9)
such that, for every 0 ≤ n ≤ 3, the entries of ffi satisfy

fn ∈
“
– ∆Q

1 yj zk + — xi ∆
Q
2 zk +  xi yj ∆

Q
3

”
+
“
∆Q

1 , ∆
Q
2 ,∆

Q
3

”2
(3.10)

for some –,—,  ∈ C∗ and indices 0 ≤ i , j , k ≤ 1 where ¸i ,˛j , ‚k are all nonzero.

Proof. Consider the Segre embedding ff : X ,→ Σ ⊂ P7
C of X , where the Segre variety Σ is smooth

of degree 6. From this isomorphism, it follows that the Hilbert series of Σ is

HSΣ(t) =
X
d≥0

dimC Γ(X ,OX (d , d , d)) t
d =

X
d≥0

(d + 1)3 td =
1 + 4t + t2

(1− t)4
,

where OX is the structure sheaf of X and (1− t)4HSΣ(t) is a polynomial because dimΣ = 3.
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On the other hand, given a general line ‘ ⊂ P3
C the image ffi−1(‘) is a closed, irreducible curve in

X . Moreover, if

L =

 
3X

n=0

‹n yn ,
3X

n=0

›n yn

!
is the defining ideal of ‘, then

I =

 
3X

n=0

‹n fn ,
3X

i=0

›n fn

!
defines ffi−1(‘). More specifically, I is the ideal of the scheme-theoretic union of ffi−1(‘) and the
base locus Z . Since codim I = 2 and R is a Cohen-Macaulay ring, all the associated primes to I
have codimension two. However, by (3.7) we have dimZ = 0, so codimBffi = 3. Therefore, I must
be the defining ideal of ffi−1(‘). In particular, the curve ff(ffi−1(‘)) is determined by two hyperplane
sections in P7

C, and its Hilbert series [102, Chapter 5] is

HSff(ffi−1(‘))(t) = HSffi−1(‘)(t) = (1− t)2HSΣ(t) =
1 + 4t + t2

(1− t)2
,

implying that the Hilbert polynomial of ffi−1(‘) is HPffi−1(‘)(t) = 6 t. In particular, the arithmetic
genus of ffi−1(‘) is one. By definition, ffi−1(‘) is a rational curve and its normalization is P1

C. Then,
from [111, Chapter 4, Exercise 1.8] ffi−1(‘) has a unique singular point Q. Since Σ is smooth, by
the strong Bertini’s theorem [91, Theorem 0.5] the curve ffi−1(‘) is smooth outside Z . Hence, Q is
supported in Z .

Without loss of generality, we can assume that Q belongs to the affine subset U ⊂ X given by
s0 ̸= 0, t0 ̸= 0, and u0 ≠ 0, i.e. we can assume indices (i , j , k) = (0, 0, 0) in the statement. From
the Jacobian criterion [111, §1 Exercise 5.8] in U, since Q is a singular point of ffi−1(‘) the rank of
the Jacobian matrix

Jacffi−1(‘) =

0BBBBB@
3X

n=0

‹n
@fn
@s1

3X
n=0

‹n
@fn
@t1

3X
n=0

‹n
@fn
@u1

3X
n=0

›n
@fn
@s1

3X
n=0

›n
@fn
@t1

3X
n=0

›n
@fn
@u1

1CCCCCA
specialized at Q is one. Equivalently, writing

∇fn =

„
@fn
@s1

,
@fn
@t1

,
@fn
@u1

«
,

then the vectors
3X

n=0

‹n ∇fn(Q) ,
3X

n=0

›n ∇fn(Q)

are proportional. The previous observations hold true for any choice of a general ‘ ⊂ P3
C, i.e. for

general values of the ‹n’s and ›n’s. Therefore, it can only occur if the ∇fn(Q)’s are all proportional
to a vector (–,—, ) in C3. In particular, from the Taylor expansion of fn centered at Q we derive
that

fn = „n (–∆
Q
1 y0 z0 + — x0∆

Q
2 z0 +  x0 y0∆

Q
3 ) + hn ,

for some „n ∈ C and hn ∈ (∆Q
1 ,∆

Q
2 ,∆

Q
3 )

2. Moreover, if – = 0 (resp. — = 0 or  = 0) we find a
line in the base locus Z , against dimZ = 0. Hence, –,—,  are all nonzero.
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Notation 3.2.3. Given a point Q as in (3.9) and –,—,  ∈ C∗, we define the ideal

IQ(–,—,) :=
“
– ∆Q

1 yj zk + — xi ∆
Q
2 zk +  xi yj ∆

Q
3

”
+
“
∆Q

1 , ∆Q
2 , ∆Q

3

”2
⊂ R

for the smallest indices 0 ≤ i , j , k ≤ 1 such that ¸i ,˛j , ‚k are all nonzero. The graded component
of IQ(–,—,) in degree (1, 1, 1) is spanned by the five independent polynomials

– ∆Q
1 tj uk + — si ∆

Q
2 uk +  si tj ∆

Q
3 , ∆Q

1 ∆Q
2 uk , ∆Q

1 tj ∆
Q
3 , si ∆

Q
2 ∆Q

3 , ∆Q
1 ∆Q

2 ∆Q
3 .

Notation 3.2.4. Let ffi be birational.

• If dim(Z ) = 1, we define Vffi = (IC )(1,1,1) (see Notation 3.2.1)

• If dim(Z ) = 0, we define Vffi = (IQ(–,—,))(1,1,1) for the Q and –,—,  in the statement of
Lemma 3.2.2 (see Notation 3.2.3)

• By definition, in both cases we have B(1,1,1) ⊂ Vffi

Definition 3.2.5 (Variety of minimal degree). A projective variety Y ⊂ PN
C has minimal degree if

it is nondegenerate (recall Definition 2.2.8) and degV = 1 + codim V .

The following result gives useful information about diagram in (3.8), according to the type of ffi.

Proposition 3.2.6. Let ffi be birational, and set V = Vffi. We have the following:

• If ffi has type (1, 1, 1), then N = 3 and YV
∼= P3

C.

• If ffi has type (1, 1, 2), then N = 4 and degYV = 2.

• If ffi has type (1, 2, 2), then N = 5 and degYV = 3.

• If ffi has type (2, 2, 2), then N = 4 and degYV = 2.

In all the cases, YV has minimal degree and “V is birational for any choice of basis in V ∨. Moreover,
if dimZ = 1 the curve C is connected.

Proof. We prove each statement separately.

• If ffi has type (1, 1, 1), by (3.7) the base locus Z has tridegree (1, 1, 1). In particular, up to
an automorphism of X the curve C is one of the seven listed in Lemma 3.1.15. The ideals
(i), (iii), (vi), and (vii) determine connected curves, and satisfy dimV = 4. On the other
hand, the ideals (ii), (iv), (v) yield dimV = 3. Since the entries of ffi are independent and lie
in V , we must have dimV ≥ 4. Therefore, dimV = 4 and C is connected.

• If ffi has type (1, 1, 2), Z has tridegree (1, 1, 0). In particular, up to an automorphism of X
the curve C is one of the three listed in Lemma 3.1.15. The ideals (viii) and (x) determine
connected curves and satisfy dimV = 5. On the other hand, the ideal (ix) defines two skew
lines. Let I be the ideal in (ix). An easy computation (performed with the help of Macaulay2)
yields I ̸= (I(1,1,1)), since the ideal generated by the polynomials of degree (1, 1, 1) in I
defines a curve of tridegree (1, 1, 1). Therefore, we must have dimV = 5 and C is again
connected. The degree of YV follows from a direct computation (performed with Macaulay2)
with the ideals (viii) and (x).
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• If ffi has type (1, 2, 2), Z has tridegree (1, 0, 0). By Lemma 3.1.15 C is a projective line, so it
is connected and dimV = 6. Similarly, the degree of YV follows from a direct computation
on the ideal (t0, u0).

• If ffi has type (2, 2, 2), by Notation 3.2.3 we have dimV = 5. Similarly, it follows from a
direct computation that degYV = 2.

On the other hand, two distinct bases in V ∨ yield rational maps “V that coincide up to an
automorphism of PN

C . The birationality of “V then follows from the explicit construction of this
rational map when V = I(1,1,1) for the ideals I listed above.

3.3. The algebraic set of trilinear birational maps

In this section we describe the algebraic set Bir(1,1,1), which is the quotient of the set of trilinear
birational maps by the group action of Aut(P3

C) given by composition. Additionally, we introduce
the group action of Aut(X ).

3.3.1. The sets Bir(1,1,1) and Bir(d1,d2,d3)

Let
Rat(1,1,1) = P

“
(R(1,1,1))

4
”

,

i.e. the projective space where (closed) points are 4-tuples of trilinear polynomials in R , up to nonzero
scalar. Let U be the open set in Rat(1,1,1) of points f = (f0, f1, f2, f3) such that gcd(f0, f1, f2, f3) = 1.

Clearly, there is a one-to-one correspondence between U and the set of trilinear rational maps.
In U, we define the equivalence relation

ffi ∼ ffi′ if Vffi = Vffi′ ,

or equivalently,
ffi ∼ ffi′ if there is a ȷ ∈ Aut(P3

C) such that Vȷ◦ffi = Vffi′ .

Definition 3.3.1. Bir(1,1,1) is the quotient of U by the equivalence relation ∼.

In particular, there is an injective map of sets

Bir(1,1,1) −→ Gr(4,R(1,1,1))

[ffi] 7→ Vffi ,

so we can write Vffi instead of [ffi]. On the other hand, two birational maps ffi and ffi′ in the same
class of Bir(1,1,1) have the same type. Therefore, the following definition makes sense.

Definition 3.3.2. Given (d1, d2, d3) ∈ Z3, Bir(d1,d2,d3) = {Vffi ∈ Bir(1,1,1) : ffi has type (d1, d2, d3)}.

By §3.1.1, the sets Bir(d1,d2,d3) indexed by the types listed in (3.2) form a partition of Bir(1,1,1).
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3.3.2. The group action of Aut((P1
C)

3) on Bir(1,1,1)

The map of sets

Aut(X )×Bir(1,1,1) −→ Bir(1,1,1) (3.11)
‰ × Vffi 7→ Vffi◦‰

is a well-defined group action of Aut(X ) on Bir(1,1,1).

Definition 3.3.3. The group action in (3.11) is the right-action on Bir(1,1,1), which induces an
equivalence relation ∼r .

Notation 3.3.4. If Vffi ∼r Vffi′ , we say that ffi and ffi′ lie in the same orbit. More explicitly, this
means ffi and ffi′ lie in the same orbit in Rat(1,1,1) of the group action of Aut(X )× Aut(P3

C) given
by composition, since

Vffi ∼r Vffi′ if and only if there are ȷ ∈ Aut(P3
C) and ‰ ∈ Aut(X ) such that ffi′ = ȷ ◦ ffi ◦ ‰ .

Remark 3.3.5. The base loci of two birational maps in the same orbit coincide up to automorphism
of X .

3.3.3. The algebraic set Bir(1,1,1)

We write S(YV ) for the variety of (N − 4)-dimensional subspaces secant to YV . Now, we prove
the main result of this section. In our proof, we rely on a result of [161], that establishes that
birational endomorphisms of a projective space, defined by homogeneous polynomials of a given
degree, determine a locally closed algebraic set of a certain Grassmannian.

Theorem 3.3.6. The set Bir(1,1,1) has the structure of a locally closed algebraic subset of the
Grassmannian Gr(4,R(1,1,1)). Moreover, its irreducible components are the following:

• Bir(1,1,1), of dimension 6.

• Bir(1,1,2), Bir(1,2,1), and Bir(2,1,1), all of dimension 7.

• Bir(1,2,2), Bir(2,1,2), and Bir(2,2,1), all of dimension 8.

• Bir(2,2,2), of dimension 8.

Remark 3.3.7. In Theorem 1.2.4, the increase in dimensionality of the components arises because
we do not consider classes with respect to the group action of Aut(P3

C). Therefore, the irreducible
components can be viewed as locally closed subvarieties of Gr(4,R(1,1,1)) × Aut(P3

C), where
Aut(P3

C) = PGL(4,C) ∼= P15
C .

Proof. The birational map

Φ : X 99K P3
C (3.12)

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s0t0u0 : s1t0u0 : s0t1u0 : s0t0u1)

is an isomorphism between the affine subset U ⊂ X determined by s0 ̸= 0, t0 ̸= 0, u0 ̸= 0 and the
affine subset of P3

C = Proj(C[y]) given by y0 ̸= 0. Write V3 for the C-vector space of cubic forms
in y0,y1,y2, and y3. We have the injective linear map ffl : R(1,1,1) −→ V3 given by

s0t0u0 7→ y30 , s1t0u0 7→ y20 y1 , s0t1u0 7→ y20 y2 , s0t0u1 7→ y20 y3 ,

s1t1u0 7→ y0y1y2 , s1t0u1 7→ y0y1y3 , s0t1u1 7→ y0y2y3 , s1t1u1 7→ y1y2y3 .
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In particular, the rational endomorphism  : P3
C 99K P3

C that sends

(y0 : y1 : y2 : y3) 7→ (ffl(f0) : ffl(f1) : ffl(f2) : ffl(f3))

coincides with ffi ◦ Φ−1 on the open set Φ(U), i.e. we have  = ffi ◦ Φ−1. Therefore, the map

ffi 7→  = ffi ◦ Φ−1

is a bijection between trilinear rational maps and rational endomorphisms of P3
C with entries in the

vector space

V ′ = ⟨y30 , y20 y1 , y20 y2 , y20 y3 , y0y1y2 , y0y1y3 , y0y2y3 , y1y2y3⟩ ⊂ V3 .

By [161, Proposition B], the classes (up to composition with an automorphism of P3
C) of birational

automorphisms of P3
C with cubic entries form a locally closed algebraic set Y ′ ⊂ Gr(4,V3). On the

other hand, the Grassmannian Gr(4,V ′) is a subvariety of Gr(4,V3). Hence, the intersection

Bir(1,1,1) = Y ′ ∩ Gr(4,V ′)

is also a locally closed algebraic subset of the Grassmannian Gr(4,V ′) ∼= Gr(4,R(1,1,1)).

Now, we prove the statements about the irreducible components of Bir(1,1,1). Recall from
Proposition 3.2.6 that if dimZ = 1 the Cohen-Macaulay curve Cffi is connected. Let C(1,1,1) be the
variety of connected Cohen-Macaulay curves of tridegree (1, 1, 1), which is irreducible of dimension
6 [9, Proposition 4.9]. Additionally, consider the algebraic set

V(1,1,1) = {Vffi × C ∈ Bir(1,1,1) × C(1,1,1) : Vffi ⊂ (IC )(1,1,1)} ,

together with the canonical projections Π1 : V(1,1,1) −→ Bir(1,1,1) and Π2 : V(1,1,1) −→ C(1,1,1).
Given a curve C in C(1,1,1) we have Π−1

2 (C ) = V × C , where V = (IC )(1,1,1) since dimV = 4
by Proposition 3.2.6. Hence, V(1,1,1) is irreducible of dimension 6. On the other hand, given a
Vffi in Bir(1,1,1) we have Π−1

1 (Vffi) = Vffi × Cffi if ffi has type (1, 1, 1) and Π−1
1 (Vffi) = ? otherwise.

Therefore, it follows that Bir(1,1,1) ∼= C(1,1,1).

The study of the irreducible components Bir(1,1,2), Bir(1,2,1), and Bir(2,1,1) is identical, since the
associated birational maps differ by a permutation of the factors of X . Therefore, we can focus on
Bir(1,1,2). By Lemma 3.1.15, the ideal of a connected Cohen-Macaulay curve of tridegree (1, 1, 0)
has the form

(¸0 s0t0 + ¸1 s1t0 + ¸2 s0t1 + ¸3 s1t1, ‚0u1 − ‚1u0) ,

for some (¸0 : ¸1 : ¸2 : ¸3)× (‚0 : ‚1) ∈ P3
C × P1

C, where the first generator might be reducible.
Thus, we can identify the variety C(1,1,0) of such curves with P3

C × P1
C. Consider now the algebraic

set
V(1,1,2) = {Vffi × C ∈ Bir(1,1,1) × C(1,1,0) : Vffi ⊂ (IC )(1,1,1)} ,

together with the projections as before. Given a curve C in C(1,1,0), by [161, Proposition A] the
fiber Π−1

2 (C ) is isomorphic to an open subset of S(YV ), where V = (IC )(1,1,1). Hence, V(1,1,2) is
irreducible of dimension dim C(1,1,0) + dimS(YV ) = 4 + 3 = 7. On the other hand, we have the
identity of sets

Bir(1,1,2) = Π1(V(1,1,2)) \Bir(1,1,1) ,
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so given a general Vffi in Π1(V(1,1,2)) the base locus Z has tridegree (1, 1, 0). Thus, we have
Π−1
1 (Vffi) = (Vffi,Cffi) and Π1 is birational, implying that Bir(1,1,2) is irreducible of dimension 7.

Similarly, one proves that Bir(1,2,2), Bir(2,1,2), and Bir(2,2,1) are all irreducible of dimension 8.

For the irreducible component Bir(2,2,2), we consider the algebraic set

V(2,2,2) = {Vffi × Q × (–,—) ∈ Bir(1,1,1) × X × (C∗)2 : Vffi ⊂ (IQ(–,—,1))(1,1,1)} ,

with the projections Π1 : V(2,2,2) −→ Bir(1,1,1) and Π2 : V(2,2,2) −→ X × (C∗)2. By [161, Proposition
A], given Q × (–,—) ∈ X × (C∗)2 the fiber Π−1

2 (Q × (–,—)) is isomorphic to an open subset of
S(YV ), where V = (IQ(—,,1))(1,1,1). Hence, V(2,2,2) is irreducible of dimension

dimX + dim(C∗)2 + dimS(YV ) = 3 + 2 + 3 = 8 .

On the other hand, given a general Vffi in Π1(V(2,2,2)) by Lemma 3.2.2 we have Π−1
1 (Vffi) =

Vffi × Q × (–,—) for the unique singular point Q ∈ Z and some (–,—) ∈ (C∗)2. In particular,
Π1 is birational. Moreover, since a general point in Π1(V(2,2,2)) belongs to Bir(2,2,2) the latter is
irreducible of dimension 8.

3.4. Classification of the base loci

In this section, we provide the complete list of the orbits of the right-action on Bir(1,1,1). More
specifically, there are 19 orbits. Each of these orbits determines an isomorphism class of the base
loci of a trilinear birational map. In the entire section, we maintain the notation of the diagram in
(3.8).

One way to understand the different classes of the base loci is through the linear system of
surfaces spanned by the entries of ffi, i.e. the surfaces in X defined by the equations in the vector
subspace C⟨f0, f1, f2, f3⟩ of R(1,1,1). In order to describe this point of view, we recall the following
definition.

Definition 3.4.1 (Points of contact and tangency in X ). Let Y be a surface in X .

• Q is a point of contact of Y to a surface S ⊂ X if IY ⊂ IS + IQ
2

• Q is a point of tangency of Y to a curve C ⊂ X if IY ⊂ IC + IQ
2

Remark 3.4.2. Let ffi be birational of type (2, 2, 2). By Lemma 3.2.2, and maintaining the same
notation, every surface in the linear system C⟨f0, f1, f2, f3⟩ has Q as a point of contact to the
surface

– ∆Q
1 tj uk + — si ∆

Q
2 uk +  si tj ∆

Q
3 = 0 .

3.4.1. Orbits of birational maps of type (1, 1, 1)

The classification of the orbits in Bir(1,1,1) is the most straightforward, since by Proposition 3.5.2
(that we postpone until §3.5) the base locus is a Cohen-Macaulay curve.

Theorem 3.4.3. Let ffi be birational of type (1, 1, 1). Then, ffi belongs to the orbit of one of the
following birational maps:
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• ȷ
(1,1,1)
1 ≡ (s1t0u1 − s0t1u1 : s1t1u0 − s0t1u1 : s0t1u0 − s0t0u1 : s1t0u0 − s0t0u1)

The entries of ȷ(1,1,1)1 are given by the 3× 3 minors of the matrix0BB@
0 −t1 −u1

−s1 0 u1
s0 t0 0
−s0 0 u0

1CCA .

A surface in Vȷ1 contains an irreducible curve of tridegree (1, 1, 1). The base ideal is

(s0t1 − s1t0 , s0u1 − s1u0 , t0u1 − t1u0) .

• ȷ
(1,1,1)
2 ≡ (s1t1u1 : s0t1u1 : s1t0u1 : s1t0u0 − s0t1u0)

The entries of ȷ(1,1,1)2 are given by the 3× 3 minors of the matrix0BB@
0 0 −u1
0 −t1 u0

−s1 0 −u0
s0 t0 0

1CCA ,

A surface in Vȷ2 contains an irreducible curve of tridegree (1, 1, 0) and a line of tridegree
(0, 0, 1) that intersect. The base ideal is

(s1t0 − s0t1, u1) ∩ (s1, t1) .

• ȷ
(1,1,1)
3 ≡ (s1t1u1 : s0t1u1 : s1t1u0 : s1t0u0)

The entries of ȷ(1,1,1)3 are given by the 3× 3 minors of the matrix0BB@
0 −t1 0
0 t0 −u1

−s1 0 0
s0 0 u0

1CCA .

A surface in Vȷ3 contains three lines of tridegrees (1, 0, 0), (0, 1, 0), and (0, 0, 1), one of
them intersecting the other two at distinct points. The base ideal is

(s1, t1) ∩ (s1, u1) ∩ (t1, u0) .

• ȷ
(1,1,1)
4 ≡ (s1t1u1 : s0t1u1 : s1t0u1 : s1t1u0)

The entries of ȷ(1,1,1)4 are given by the 3× 3 minors of the matrix0BB@
0 0 −u1
0 −t1 0

−s1 0 0
s0 t0 u0

1CCA .

A surface in Vȷ4 contains three lines of tridegrees (1, 0, 0), (0, 1, 0), and (0, 0, 1) that intersect
at a common point. The base ideal is

(s1, t1) ∩ (s1, u1) ∩ (t1, u1) .
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Proof. From Proposition 3.5.2, the base locus of ffi is a connected Cohen-Macaulay curve of tridegree
(1, 1, 1), i.e. we have Z = C (see Notation 3.2.1). Additionally, by the proof of Proposition 3.2.6
given a connected Cohen-Macaulay curve C of tridegree (1, 1, 1) we have dim(IC )(1,1,1) = 4. Hence,
any such curve determines a unique Vffi in Bir(1,1,1). On the other hand, by Lemma 3.1.15 any
connected Cohen-Macaulay curve of tridegree (1, 1, 1) is equivalent, by means of an automorphism
of X , to the base loci of one of the birational maps in the statement.

3.4.2. Orbits of birational maps of type (1, 1, 2), (1, 2, 1) and (2, 1, 1)

Let C be a connected Cohen-Macaulay curve in X of tridegree either (1, 1, 0), (1, 0, 1), or (0, 1, 1).
From Lemma 3.1.15, by means of an automorphism of X the curve C can be transformed into one
of the curves Co or C× respectively defined by the ideals

ICo = (s0t1 − s1t0 , u1) , IC× = (s1t1, u1) .

In particular, any birational map of type either (1, 1, 2), (1, 2, 1), or (2, 1, 1) lies in the orbit of a
birational map with either Co or C× in its base locus. Therefore, by the diagram of (3.8) in order
to study the orbits of the right-action in Bir(1,1,2), Bir(1,2,1) and Bir(2,1,1) it is enough to:

(i) Compute the orbits of the group action given by the stabilizer Stab(Co) ≤ Aut(X ) of the
curve Co acting on YVo , where Vo := (ICo )(1,1,1)

(ii) Compute the orbits of the group action given by the stabilizer Stab(C×) ≤ Aut(X ) of the
curve C× acting on YV× , where V× := (IC×)(1,1,1)

3.4.2.1. Orbits of Stab(Co) on YVo

In this subsection, we set V = Vo . The birational map “V appearing in the diagram of (3.8) is

“V : (s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s0t0u1 : s1t0u1 : s0t1u1 : s1t1u1 : (s0t1 − s1t0)u0) , (3.13)

and YV ⊂ P4
C is the cone determined by y0y3 − y1y2 = 0. Equivalently, YV is the image of the

projection ΠV : BlVX ⊂ X × P4
C −→ P4

C, where ıV : BlVX −→ X is the blow-up of X along Co .
The exceptional divisor E of BlVX projects onto a 2-dimensional cone in YV . Namely, the defining
equation of ΠV (E ) in YV is y1 − y2 = 0, and its singular point is P = (0 : 0 : 0 : 0 : 1). We write
H1−2 and H4 for the divisors in YV determined by y1 − y2 = 0 and y4 = 0, respectively.

Lemma 3.4.4. The group action of Stab(Co) on YV determines the four orbits:

YV \H1−2 , H1−2\(H4 ∪ P) , H1−2 ∩ H4 , P

Proof. Write Dst and Du for the divisors in X defined by s0t1 − s1t0 = 0 and u1 = 0, respectively.
By §3.4.5.3, the group action of Stab(Co) on X determines the four orbits

Co = Dst ∩ Du , Du\Co , Dst\Co , X\(Du ∪ Dst) . (3.14)

The last three orbits are respectively transformed by “V into P , H1−2 ∩ H4, and YV \H1−2. Thus,
we find three of the orbits in the statement. The remaining orbit H1−2\(H4 ∪ P) follows from the
extension of the action of Stab(Co) to YV , by the action of the group MV of matrices of the form
(3.21). Equivalently, this last orbit corresponds to the projection by ΠV of general orbit on the
exceptional divisor E of the blow-up BlVX −→ X , when we let Stab(Co) act on BlVX .
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3.4.2.2. Orbits of Stab(C×) on YV×

In this subsection, we set V = V×. The birational map “V in the diagram of (3.8) is

“V : (s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s0t0u1 : s1t0u1 : s0t1u1 : s1t1u1 : s1t1u0) . (3.15)

As in §3.4.2.1, YV is determined by y0y3 − y1y2 = 0. However, the projection ΠV (E ) of the
exceptional divisor E is now the union of the loci y1 = y3 = 0 and y2 = y3 = 0 in P4

C. We maintain
the notation of §3.4.2.1, and write Hi for the divisor in YV defined by yi = 0. Additionally, we set
O = (1 : 0 : 0 : 0 : 0) and write OP for the projective line OP = H1 ∩ H2 ∩ H3.

Lemma 3.4.5. The group action of Stab(C×) on YV determines the six orbits:

YV \((H1 ∪ H2) ∩ H3) , ((H1 ∪ H2) ∩ H3)\(H4 ∪ OP) ,

((H1 ∪ H2) ∩ H3 ∩ H4)\O , OP \(O ∪ P) , O , P

Proof. Write Ds , Dt , and Du for the divisors in X respectively determined by s1 = 0, t1 = 0, and
u1 = 0, and moreover let Q ′ = (1 : 0)3 ∈ X . By §3.4.5.4, the group action of Stab(C×) on X
determines the five orbits

Q ′ , C×\Q ′ , Du\C× , (Ds ∪ Dt)\C× , X\(Ds ∪ Dt ∪ Du) .

The last three orbits are respectively transformed by “V into P, ((H1 ∪ H2) ∩ H3 ∩ H4)\O, and
YV \((H1 ∪ H2) ∩ H3). Therefore, we find three of the orbits in the statement. The orbits
((H1 ∪ H2) ∩ H3)\(H4 ∪ OP), OP\(O ∪ P), and O follow from the extension of the action of
Stab(C×) to YV , by the action of the group MV of matrices of the form (3.22). Equivalently,
they correspond to the projection by ΠV of the orbits in E of the blow-up BlVX −→ X , when we
let Stab(C×) act on BlVX .

The following is a classification theorem for the trilinear birational maps of type (1, 1, 2), (1, 2, 1),
and (2, 1, 1). Namely, it provides the orbits of the right-action in Bir(1,1,2), Bir(1,2,1), and Bir(2,1,1).

Theorem 3.4.6. Let ffi be birational of type either (1, 1, 2), (1, 2, 1) or (2, 1, 1). Then, ffi belongs
to the orbit of one of the following birational maps:

• ȷ
(1,1,2)
1 ≡ (s1t1u1 : s0t1u1 : s0t0u1 : s1t0u0 − s0t1u0)

A surface in Vȷ1 contains an irreducible curve of tridegree (1, 1, 0) and an isolated point.
The base ideal is

(s0t1 − s1t0, u1) ∩ (s0, t1, u0) .

• ȷ
(1,1,2)
2 ≡ (s0t1u1 : s1t0u1 : s0t0u1 : s1t0u0 − s0t1u0 − s1t1u1)

A surface in Vȷ2 contains an irreducible curve of tridegree (1, 1, 0) and has contact to a
surface of tridegree (1, 1, 1) at a point of the curve. The base ideal is

(s0t1 − s1t0, u1) ∩ (u21 , t0u1, s0u1, t
2
0 , s0t0, s

2
0 , s1t0u0 − s0t1u0 − s1t1u1) .

• ȷ
(1,1,2)
3 ≡ (s0t1u1 : s1t0u1 : s0t0u1 : s1t1u0)

A surface in Vȷ3 contains a pair of intersecting lines, of tridegrees (1, 0, 0) and (0, 1, 0), and
an isolated point. The base ideal is

(s1, u1) ∩ (t1, u1) ∩ (s0, t0, u0) .



78 Chapter 3. Trilinear birational maps in dimension three

• ȷ
(1,1,2)
4 ≡ (s1t1u1 : s0t1u1 : s0t0u1 : s1t1u0 − s1t0u1)

A surface in Vȷ4 contains a pair of intersecting lines, of tridegrees (1, 0, 0) and (0, 1, 0), and
is tangent to a curve of tridegree (0, 1, 1) at one of the points of the line of tridegree (1, 0, 0).
The base ideal is

(s1, u1) ∩ (t1, u1) ∩ (s0, t0u1 − t1u0, t
2
1 , t1u1, t

2
1 ) .

• ȷ
(1,1,2)
5 ≡ (s1t1u1 : s0t1u1 : s1t0u1 : s1t1u0 + s0t0u1)

A surface in Vȷ5 contains a pair of intersecting lines, of tridegrees (1, 0, 0) and (0, 1, 0), and
has contact to a surface of tridegree (1, 1, 1) at the point of intersection of the lines. The
base ideal is

(s1, u1) ∩ (t1, u1) ∩ (s1t1u0 + s0t0u1, s
2
1 , s1u1, t

2
1 , t1u1, u

2
1) .

Proof. By the diagram of (3.8), ffi lies in the orbit of a birational map that factors as ffi′ = “V ◦ ıL
for either V = Vo or V = V× and some point L in YV . In particular, the orbit of ffi is determined
by one of the orbits listed in Lemmas 3.4.2.1 and 3.4.2.2, depending the curve component of Z
and where the point L belongs. In the case that L = P , we find a common factor to the entries of
ffi. Excluding this case, the possibilities when V = Vo are the following:

• If L ∈ YV \H1−2, ffi lies in the orbit of ȷ(1,1,2)1

• If L ∈ H1−2\(H4 ∪ P), ffi lies in the orbit of ȷ(1,1,2)2

• If L ∈ H1−2 ∩ H4, ffi lies in the orbit of ȷ(1,1,1)2

Secondly, if V = V× the possibilities are the following:

• If L ∈ YV \((H1 ∪ H2) ∩ H3), ffi lies in the orbit of ȷ(1,1,2)3

• If L ∈ ((H1 ∪ H2) ∩ H3)\(H4 ∪ OP), ffi lies in the orbit of ȷ(1,1,2)4

• If L ∈ ((H1 ∪ H2) ∩ H3 ∩ H4)\O, ffi lies in the orbit of ȷ(1,1,1)3

• If L ∈ OP\(O ∪ P), ffi lies in the orbit of ȷ(1,1,2)5

• If L = O, ffi lies in the orbit of ȷ(1,1,1)4

3.4.3. Orbits of birational maps of type (1, 2, 2), (2, 1, 2) and (2, 2, 1)

By Lemma 3.1.15, any Cohen-Macaulay curve in X of tridegree either (1, 0, 0), (0, 1, 0), or (0, 0, 1)
is a projective line. Therefore, by means of an automorphism of X it can be transformed into the
line ‘ of ideal I‘ = (t1, u1). In particular, any birational map of type (1, 2, 2), (2, 1, 2), or (2, 2, 1)
lies in the orbit of a birational map with ‘ in its base locus.

By the diagram (3.8), in order to study the orbits of the right-action in Bir(1,2,2), Bir(2,1,2), and
Bir(2,2,1) we can compute the orbits of the group action given by the stabilizer Stab(‘) ≤ Aut(X )
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of ‘ acting on YV , where V = (I‘)(1,1,1). Namely, the birational map in the diagram “V : X 99K

YV ⊂ P5
C is

“V : (s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s0t0u1 : s1t0u1 : s0t1u1 : s1t1u1 : s0t1u0 : s1t1u0) , (3.16)

and YV is determined by the ideal (y0y5−y1y4, y2y5−y3y4, y1y2−y0y3). The defining equations of
the projection ΠW (E ) of the exceptional divisor E in YV are y2 = y3 = 0. We write H01, H23, and
H45 for the subvarieties of YW given respectively by y0 = y1 = 0, y2 = y3 = 0, and y4 = y5 = 0.

Lemma 3.4.7. The group action of Stab(‘) on YV determines the three orbits:

YV \H23 , H23\(H01 ∪ H45) , H23 ∩ (H01 ∪ H45)

Proof. Write Dt and Du for the divisors in X respectively determined by t1 = 0 and u1 = 0. By
§3.4.5.5, the group action of Stab(‘) on X determines the three orbits

‘ , (Dt ∪ Du)\‘ , X\(Dt ∪ Du) .

The last two orbits are respectively transformed by “V into H23 ∩ (H01 ∪ H45) and YV \H23. Thus,
we find two of the orbits in the statement. The orbit H23\(H01 ∪ H45) follows from the extension
of the action of Stab(‘) to YV , by the action of the group MV of matrices of the form (3.23).
Equivalently, this last orbit corresponds to the projection by ΠV of general orbit on the exceptional
divisor E of the blow-up BlVX −→ X , when we let Stab(‘) act on BlVX .

Theorem 3.4.8. Let ffi be birational of type either (1, 2, 2), (2, 1, 2) or (2, 2, 1). Then, ffi belongs
to the orbit of one of the following birational maps:

• ȷ
(1,2,2)
1 ≡ (s1t0u1 − s0t1u1 : s0t0u1 − s0t1u1 : s1t1u0 − s0t1u1 : s0t1u0 − s0t1u1)

A surface in Vȷ1 contains a line and two isolated points with all the coordinates different, i.e.
the projections onto the factors of X = (P1

C)
3 are all different. The base ideal is

(t1, u1) ∩ (s0, t0, u0) ∩ (s0 − s1, t0 − t1, u0 − u1) .

• ȷ
(1,2,2)
2 ≡ (s1t0u1 : s0t0u1 : s1t1u0 − s0t1u1 : s0t1u0 + s0t1u1)

A surface in Vȷ2 contains a line and two isolated points with the same coordinate in exactly
one of the factors of X . The base ideal is

(t1, u1) ∩ (s0, t0, u0) ∩ (s0 + s1, t0, u0 + u1) .

• ȷ
(1,2,2)
3 ≡ (s1t0u1 − s0t1u1 : s0t0u1 : s1t1u0 − s0t1u1 : s0t1u0)

A surface in Vȷ3 contains a line and is tangent to a curve of tridegree (1, 1, 1) at an isolated
point. The base ideal is

(t1, u1) ∩ (s0t1 − s1t0, s0u1 − s1u0, t0u1 − t1u0, s
2
0 , s0t0, s0u0, t

2
0 , t0u0, u

2
0) .

• ȷ
(1,2,2)
4 ≡ (s1t0u1 − s0t1u1 : s0t0u1 : s1t1u0 : s0t1u0)

A surface in Vȷ4 contains a line of tridegree (1, 0, 0) and is tangent to a curve of tridegree
(1, 1, 0) at an isolated point. The base ideal is

(t1, u1) ∩ (u0, s0t1 − s1t0, s
2
0 , s0t0, t

2
0 ) .
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• ȷ
(1,2,2)
5 ≡ (s0t1u1 : s1t0u1 : s1t1u0 : s0t1u0 − s0t0u1)

A surface in Vȷ5 contains a line of tridegree (1, 0, 0) and an isolated point, and is tangent to
a curve of tridegree (0, 1, 1) at a point of the line. The base ideal is

(t1, u1) ∩ (s0, t0, u0) ∩ (s1, t0u1 − t1u0, t
2
1 , t1u1, u

2
1) .

• ȷ
(1,2,2)
6 ≡ (s1t1u1 : s0t1u1 : s1t1u0 + s1t0u1 : s0t1u0 − s0t0u1 − 2s1t0u1)

A surface in Vȷ6 contains a line of tridegree (1, 0, 0) and is tangent to two curves of tridegree
(0, 1, 1) at two distinct points of the line. The base ideal is

(t1, u1) ∩ (s1, t0u1 − t1u0, t
2
1 , t1u1, u

2
1) ∩ (s0 + s1, t0u1 + t1u0, t

2
1 , t1u1, u

2
1) .

• ȷ
(1,2,2)
7 ≡ (s1t1u1 : s0t1u1 : s1t1u0 − s1t0u1 : s0t1u0 − s0t0u1 + s1t0u1)

A surface in Vȷ7 contains a line and has contact to a surface of tridegree (0, 1, 1) at a point
of the line. The base ideal is

(t1, u1) ∩ (s1t1u0 − s1t0u1, s0t1u0 − s0t0u1 + s1t0u1, s
2
1 , t

2
1 , t1u1, u

2
1) .

• ȷ
(1,2,2)
8 ≡ (s1t1u1 : s1t0u1 − s0t1u1 : s1t1u0 − s0t1u1 : s0t1u0 − s0t0u1 − s0t1u1)

A surface in Vȷ8 contains a line and has contact to a surface of tridegree (0, 1, 1) at a point
of the line. The base ideal is

(t1, u1) ∩ (t1u0 − t0u1 − t1u1, s
2
1 , u

3
1 , t1u

2
1 , s1u

2
1 , s1u0u1 − s0u

2
1 ,

t21u1, s1t1u1, s1t0u1 − s0t1u1, t
3
1 , s1t

2
1 , s1t0t1 − s0t

2
1 ) .

Proof. By the diagram (3.8), ffi lies in the orbit of a birational map that factors as ffi′ = “V ◦ ıL
for some line L in P5

C such that the restriction ıL|YV has degree one, i.e. ıL|YV is birational.
From Proposition 3.2.6, we have degYV = 3. If L ̸⊂ YV , then deg(L ∩ YV ) ≥ 2 as otherwise
deg(ıL|YV ) > 1. On the other hand, consider a linear parametrization P1

C −→ L. Since the ideal
of YV is generated by three quadratic forms, the pullback of L ∩ YV yields three quadratic forms
in P1

C, implying that deg(L ∩ YV ) ≤ 2. Then, we must have either L ⊂ YV or L ̸⊂ YV and
deg(L ∩ YV ) = 2.

Given a point P ∈ YV \H23, we find Q = (¸0 : ¸1)× (˛ : 1)× (‚ : 1) in X such that “V (Q) = P .
Write Yt(P) ⊂ YV for the closure of the image of the restriction of “V to P1

C × (˛ : 1) × P1
C.

Analogously, we define Yu(P) ⊂ YV by restricting “V to P1
C × P1

C × (‚ : 1). Notice that the
restriction of “V to (¸0 : ¸1)× P1

C × P1
C is a projective plane. Both Yt(P) and Yu(P) are smooth

subvarieties of YV . Given a subvariety S ⊂ YV and a smooth point P in S , we write TP(S) for
the tangent space of S at P .

Now, we discuss all the possible intersections between L and YV . In the first place, we assume
that L ̸⊂ YV :

• If L meets YV transversally at P1,P2 ∈ YV \H23, and moreover we have P2 ̸∈ Yt(P1) and
P2 ̸∈ Yu(P1), ffi lies in the orbit of ȷ(1,2,2)1

• If L meets YV transversally at P1,P2 ∈ YV \H23, and either P2 ∈ Yt(P1) or P2 ∈ Yu(P1), ffi
lies in the orbit of ȷ(1,2,2)2
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• If L ⊂ TP(YV ) at a point P ∈ YV \H23, and moreover we have L ̸⊂ TP(Yt(P)) and
L ̸⊂ TP(Yu(P)), ffi lies in the orbit of ȷ(1,2,2)3

• If L ⊂ TP(YV ) at a point P ∈ YV \H23, and either L ⊂ TP(Yt(P)) or L ⊂ TP(Yu(P)), ffi
lies in the orbit of ȷ(1,2,2)4

• If L meets YV transversally at P1 ∈ YV \H23, P2 ∈ H23\(H01 ∪ H45), ffi lies in the orbit of
ȷ
(1,2,2)
5

• If L meets YV transversally at P1,P2 ∈ H23\(H01 ∪ H45), ffi lies in the orbit of ȷ(1,2,2)6

• If L ⊂ TP(YV ) at a point P ∈ H23\(H01 ∪ H45) and L ⊂ TP(H23), ffi lies in the orbit of
ȷ
(1,2,2)
7

• If L ⊂ TP(YV ) at a point P ∈ H23\(H01 ∪ H45) and L ̸⊂ TP(H23), ffi lies in the orbit of
ȷ
(1,2,2)
8

• If L meets YV transversally at P1 ∈ YV \H23, P2 ∈ H23 ∩ (H01 ∪ H45), ffi lies in the orbit of
ȷ
(1,1,2)
3

• If L meets YV transversally at P1 ∈ H23\(H01 ∪ H45), P2 ∈ H23 ∩ (H01 ∪ H45), ffi lies in the
orbit of ȷ(1,1,2)4

• If L ⊂ TP(H23) at a point P ∈ H23 ∩ (H01 ∪ H45), ffi lies in the orbit of ȷ(1,1,2)5

Secondly, we study the cases where L ⊂ YV :

• If L ⊂ YV \H23, ffi is not dominant

• If L ⊂ YV and intersects transversally H23\(H01 ∪ H45), then ffi lies in the orbit of ȷ(1,1,1)2

• If L ⊂ YV and intersects transversally H23 ∩ (H01 ∪ H45), ffi lies in the orbit of ȷ(1,1,1)3

• If L ⊂ H23\(H01 ∪ H45), and L ̸⊂ H23 ∩ (H01 ∪ H45), ffi lies in the orbit of ȷ(1,1,1)4

3.4.4. Orbits of birational maps of type (2, 2, 2)

Let Q be a point in X and let –,—,  ∈ C∗. There is always an automorphism of R that sends the
ideal IQ(–,—,) (see Notation 3.2.3) to

I ′ = IQ ′(1,1,1) = (s1t0u0 + s0t1u0 + s0t0u1 , s0t1u1 , s1t0u1 , s1t1u0 , s1t1u1) ,

where Q ′ = (1 : 0)3 ∈ X . In particular, any birational map of type (2, 2, 2) lies in the orbit of a
birational map with the singular point defined by I ′ in its base locus. Let Stab(Q ′(1, 1, 1)) ≤ Aut(X )
be the stabilizer of this singular. Then, in order to study the orbits of the right-action in Bir(2,2,2),
we can compute the orbits of the group action given by the stabilizer Stab(Q ′(1, 1, 1)) acting on
YV , where we set V = I ′(1,1,1). The birational map “V : X 99K YV ⊂ P5

C in the diagram (3.8) is
now

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s1t0u0 + s0t1u0 + s0t0u1 : s0t1u1 : s1t0u1 : s1t1u0 : s1t1u1) ,
(3.17)
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and the defining equation of YV in P4
C is y1y2 + y1y3 + y2y3 − y0y4 = 0. On the other hand,

the projection H4 = ΠV (E ) of the exceptional divisor E is the hyperplane section in YV given
by y4 = 0. The divisor H4 is again a 2-dimensional cone, of singular point O = (1 : 0 : 0 : 0 : 0).
Similarly, we define the points

P1 = (0 : 1 : 0 : 0 : 0) , P2 = (0 : 0 : 1 : 0 : 0) , P3 = (0 : 0 : 0 : 1 : 0) .

Lemma 3.4.9. The group action of Stab(Q ′(1, 1, 1)) on YV determines the four orbits:

YW \H4 , H4\(OP1 ∪ OP2 ∪ OP3) , (OP1 ∪ OP2 ∪ OP3)\O , O

Proof. Write Ds , Dt , and Du for the divisors in X defined respectively by s1 = 0, t1 = 0, and
u1 = 0. Similarly, write Dst , Dsu and Dtu for their intersections, with the obvious notation. By
§3.4.5.5, the group action of Stab(Q ′(1, 1, 1)) on X determines the four orbits

Q ′ , (Dst ∪ Dsu ∪ Dtu)\Q ′ , (Ds ∪ Dt ∪ Du)\(Dst ∪ Dsu ∪ Dtu) , X\(Ds ∪ Dt ∪ Du) .

The last three orbits are respectively transformed by “V into O, (OP1 ∪ OP2 ∪ OP3)\O, and
YV \H4. Therefore, we find three of the orbits in the statement. The orbit H4\(OP1 ∪OP2 ∪OP3)
follows from the extension of the action of Stab(‘) to YV , by the action of the group MV of
matrices of the form (3.24). Equivalently, this last orbit corresponds to the projection by ΠV of
general orbit on the exceptional divisor E of the blow-up BlVX −→ X , when we let Stab(Q ′(1, 1, 1))
act on BlVX .

Theorem 3.4.10. Let ffi be birational of type (2, 2, 2). Then, ffi belongs to the orbit of one of the
following birational maps:

• ȷ
(2,2,2)
1 ≡ (s0t1u1 : s1t0u1 : s1t1u0 : s1t0u0 + s0t1u0 + s0t0u1)

A surface in Vȷ1 contains a point and has contact to a surface of tridegree (1, 1, 1) at a
distinct point. The base ideal is

(s0, t0, u0) ∩ (s1t0u0 + s0t1u0 + s0t0u1 , s
2
1 , s1t1 , s1u1 , t

2
1 , t1u1 , u

2
1) . (3.18)

• ȷ
(2,2,2)
2 ≡ (s1t1u1 : s1t0u1 − s0t1u1 : 2s1t1u0 + s0t1u1 : s1t0u0 + s0t1u0 + s0t0u1)

A surface in Vȷ2 has contact to a surface of tridegree (1, 1, 1) at a point. The base ideal is

(u31 , t1u
2
1 , s1u

2
1 , 2t1u0u1 + t0u

2
1 , 2s1u0u1 + s0u

2
1 , t

2
1u1 , s1t1u1 , s1t0u1 − s0t1u1 ,

s21u1 , 2t
2
1u0 + t0t1u1 , 2s1t1u0 + s0t1u1 , s1t0u0 + s0t1u0 + s0t0u1 ,

2s21u0 + s0s1u1 , t
3
1 , s1t

2
1 , s1t0t1 − s0t

2
1 , s

2
1 t1 , s

2
1 t0 − s0s1t1 , s

3
1 ) .

Proof. By the diagram (3.8), ffi lies in the orbit of a birational map that factors as ffi′ = “V ◦ ıL
for some point L in YW . We have the following four possibilities:

• If L ∈ YV \H4, ffi lies in the orbit of ȷ(2,2,2)1

• If L ∈ H4\(OP1 ∪ OP2 ∪ OP3), ffi lies in the orbit of ȷ(2,2,2)2

• If L ∈ (OP1 ∪ OP2 ∪ OP3)\O, ffi lies in the orbit of ȷ(1,1,2)2
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• If L = O, ffi lies in the orbit of ȷ(1,1,1)4

Remark 3.4.11 (Singular point in the base locus of a general (2, 2, 2) birational map). The
singular point in the base locus of a general trilinear birational map of type (2, 2, 2) is not a local
complete intersection. More precisely, let Q be this singular point. Then, Q is a local complete
intersection if and only if deg(Q) = e(Q) (see [149, §14] and [39, §4.1]), where e(Q) stands for
the Hilbert-Samuel multiplicity of Q. Using Macaulay2 [101], we find

deg(Q) = dimC
RQ

BQ
= 3 ,

where RQ and BQ respectively stand for the localizations of R and B at Q. On the other hand, since
ffi is birational the Hilbert-Samuel multiplicity of the base locus Z must be 5, as the intersection
of three general trilinear polynomials in

`
P1
C
´3 has multiplicity 6 (see [96, §4.4]). Moreover, Z is

the union of Q and a simple point P, satisfying deg(P) = e(P) = 1. Therefore, it follows that
e(Q) = 4 ̸= deg(Q), and Q is not a complete intesection.

Altogether, Theorems 3.4.3, 3.4.6, 3.4.8 and 3.4.10 provide the complete list of the orbits of the
right-action in Bir(1,1,1). Interestingly, we find the following corollary from this classification.

Corollary 3.4.12. All the irreducible components of Bir(1,1,1) are unirational.

Proof. Let Y be an irreducible component of Bir(1,1,1), as listed in Theorem 3.3.6. The action
of the subgroup H E Aut(X ), consisting of the automorphisms ’ such that the associated ring
automorphism ’# : R −→ R is degree-preserving, on any representative of the general orbit of Y
(of the type that labels the irreducible component Y !), as listed in either Theorem 3.4.3, 3.4.6,
3.4.8, or 3.4.10, yields a dominant rational map from H to Y . Since we find a dense affine set in
H ∼= PGL(2,C)3, the result follows.

Remark 3.4.13 (Deformation of birational maps). The proof of Corollary 3.4.12 provides dominant
rational parametrizations for each irreducible component of the space of trilinear birational maps.
However, these parametrizations may not be “geometrically intuitive” from the perspective of
geometric design.

To clarify, consider a specific domain, such as the unit cube [0, 1]3 in the affine chart defined
by s0 ̸= 0, t0 ̸= 0, u0 ̸= 0. When we compose ffi with automorphisms in Aut(X ) and Aut(P3

C) to
obtain a new birational map ffi′, it’s not immediately clear how the image of ffi′([0, 1]3) relates to
the image of ffi([0, 1]3).

In Chapter 4, we tackle the question of deforming birational maps in a geometrically meaningful
way (see §4.3.5). This involves providing a continuous parametrization of the irreducible components
in Bir(1,1,1), and explaining how to systematically determine new control points for defining trilinear
birational maps. This approach allows users to grasp the variation in the geometry of the rational
map along with the deformation.

3.4.5. The group actions of the stabilizers on YV

In this section, we describe explicitly the groups of matrices acting on PN
C that extend the group

actions of the stabilizers, considered in §3.4.2, §3.4.3, and §3.4.4, from X to YV . These actions
are used in the proofs of Lemmas 3.4.4, 3.4.5, 3.4.7, and 3.4.9, and are thus necessary for the
classification of the base loci.
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3.4.5.1. General strategy for the action extension

Let S ⊂ X be one of the stabilized subschemes of the previous subsections, and set V = (IS)(1,1,1).
We define a group monomorphism

Φ : Stab(S) −→ PGL(N + 1,C) (3.19)
’ 7→ M’

whose image MV induces an action on PN
C satisfying

“V (’(Q)) = M’ · “V (Q)

for every Q in X . In particular, since YV is the closure of the image of “V , the action of MV

restricts to YV . Therefore, the group of matrices MV extends the action of Stab(S) from X to
YV . More explicitly, “V has the form

“V : X = P1
C × P1

C × P1
C 99K YV ⊂ PN

C = Proj(C[y0, ... , yN ]) (3.20)
(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (g0 : ... : gN)

for some gn = gn(s0, s1, t0, t1, u0, u1) defining a basis of V . Given an automorphism ’ in Stab(S),
the induced ring automorphism ’# : R −→ R satisfies ’#(I ) = I . Namely, ’# restricts to a
C-vector space automorphism of V . Hence, we find an invertible (N + 1)× (N + 1) matrix M’

such that `
’#(g0) ... ’#(gN)

´t
= M’

`
g0 ... gN

´t
,

which yields the group monomorphism Φ : ’ 7→ M’ in (3.19).
In the following subsections, we derive the group monomorphism Φ, or equivalently the group of

matrices MV , explicitly.

3.4.5.2. Group of matrices in §3.4.2

3.4.5.3. Nonsingular case

If S = Co , we find

I = (ICo )(1,1,1) = (s0t0u1 , s1t0u1 , s0t1u1 , s1t1u1 , (s0t1 − s1t0)u0) = N ∩ ICo ,

and “V is as in (3.13). Let Ao ≤ PGL(2,C)3 be the subgroup of elements of the form

’ = ’1 × ’2 × ’3 =

„
˛00 ˛01
˛10 ˛11

«
×
„
˛00 ˛01
˛10 ˛11

«
×
„
‚00 ‚01
0 ‚11

«
.

The algebraic group Stab(Co) has two irreducible components K1 and K2, which are isomorphic to
Ao . More specifically, an element in K1 has the form

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ ’1(s0, s1)× ’2(t0, t1)× ’3(u0, u1)

whereas elements in K2 have the form

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ ’1(t0, t1)× ’2(s0, s1)× ’3(u0, u1) .
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In particular, Φ splits in two monomorphisms Φi : Ki
∼= Ao −→ PGL(5,C). The monomorphism Φ1

maps ’ to0BBBB@
˛200‚11 ˛00˛01‚11 ˛00˛01‚11 ˛201‚11 0

˛00˛10‚11 ˛00˛11‚11 ˛01˛10‚11 ˛01˛11‚11 0
˛00˛10‚11 ˛01˛10‚11 ˛00˛11‚11 ˛01˛11‚11 0
˛210‚11 ˛10˛11‚11 ˛10˛11‚11 ˛211‚11 0

0 (˛01˛10 − ˛00˛11) ‚01 (˛00˛11 − ˛01˛10) ‚01 0 (˛00˛10 − ˛00˛11) ‚00

1CCCCA
(3.21)

whereas Φ2 maps ’ to the same matrix, after the permutation of the columns induced by si ↔ ti .

3.4.5.4. Singular case

If S = C×, we find

I = (IC×)(1,1,1) = (s0t0u1 , s1t0u1 , s0t1u1 , s1t1u1 , s1t1u0) = N ∩ IC× ,

and “V is as in (3.15). Let A× ≤ PGL(2,C)3 be the subgroup of elements of the form

’ = ’1 × ’2 × ’3 =

„
¸00 ¸01

0 ¸11

«
×
„
˛00 ˛01
0 ˛11

«
×
„
‚00 ‚01
0 ‚11

«
.

The algebraic group Stab(C×) has again two irreducible components K1 and K2, which are
isomorphic to A×. Similarly, these components encode the permutation of the factors of X . Once
more, Φ splits in two monomorphisms Φi : Ki

∼= A× −→ PGL(5,C), where Φ1 maps ’ to0BBBB@
¸00 ˛00 ‚11 ¸01 ˛00 ‚11 ¸00 ˛01 ‚11 ¸01 ˛01 ‚11 0

0 ¸11 ˛00 ‚11 0 ¸11 ˛01 ‚11 0
0 0 ¸00 ˛11 ‚11 ¸01 ˛11 ‚11 0
0 0 0 ¸11 ˛11 ‚11 0
0 0 0 ¸11 ˛11 ‚01 ¸11 ˛11 ‚00

1CCCCA , (3.22)

and Φ2 maps ’ to the same matrix after the permutation of the columns induced by si ↔ ti .

3.4.5.5. Group of matrices in §3.4.3

If S = ‘, we find

I = (I‘)(1,1,1) = (s0t0u1 , s1t0u1 , s0t1u1 , s1t1u1 , s0t1u0 , s1t1u0) = N ∩ I‘ ,

and “V is as in (3.16). Let A‘ ≤ PGL(2,C)3 be the subgroup of elements of the form

’ ≡
„
¸00 ¸01

¸10 ¸11

«
×
„
˛00 ˛01
0 ˛11

«
×
„
‚00 ‚01
0 ‚11

«
,

The algebraic group Stab(‘) has again two irreducible components K1 and K2, which are isomorphic
to A‘. Now, the automorphisms in K1 fix all the factors of X while those in K2 transpose the last
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two factors. Again, Φ as Φi : Ki
∼= A‘ −→ PGL(5,C), where Φ1 maps ’ to0BBBBBB@

¸00 ˛00 ‚11 ¸01 ˛00 ‚11 ¸00 ˛01 ‚11 ¸01 ˛01 ‚11 0 0
¸10 ˛00 ‚11 ¸11 ˛00 ‚11 ¸10 ˛01 ‚11 ¸11 ˛01 ‚11 0 0

0 0 ¸00 ˛11 ‚11 ¸01 ˛11 ‚11 0 0
0 0 ¸10 ˛11 ‚11 ¸11 ˛11 ‚11 0 0
0 0 ¸00 ˛11 ‚01 ¸01 ˛11 ‚01 ¸00 ˛11 ‚00 ¸01 ˛11 ‚00
0 0 ¸10 ˛11 ‚01 ¸11 ˛11 ‚01 ¸10 ˛11 ‚00 ¸11 ˛11 ‚00

1CCCCCCA (3.23)

and Φ2 maps ’ to the same matrix after the permutation of the columns induced by tj ↔ uj .

3.4.5.6. Group of matrices in §3.4.4

If S is the subscheme defined by I ′ = IQ ′(1,1,1), we find

I = (I ′)(1,1,1) = (s1t0u0 + s0t1u0 + s0t0u1 , s0t1u1 , s1t0u1 , s1t1u0 , s1t1u1) = N ∩ I ′ ,

and “V is as in (3.17). Let AS ≤ PGL(2,C)3 be the subgroup of elements of the form

’ ≡
„
¸0 ‹1 ¸1 ‹0
0 ¸0 ‹0

«
×
„
˛0 ‹1 ˛1 ‹0
0 ˛0 ‹0

«
×
„
‚0 ‹1 ‚1 ‹0
0 ‚0 ‹0

«
for some (¸0 : ¸1), (˛0 : ˛1), (‚0 : ‚1), and (‹0 : ‹1) in P1

C. This time, the algebraic group Stab(S)
has six irreducible components K1, ... ,K6 labelled by the permutations of the three factors of X .
Now, Φ splits in six monomorphisms Φi : Ki

∼= AS −→ PGL(5,C), where Φ1 maps ’ to0BBBB@
¸0 ˛0 ‚0 ‹

2
1 ¸0 ‹0 ‹1 (˛1 ‚0 + ˛0 ‚1) ˛0 ‹0 ‹1 (¸1 ‚0 + ¸0 ‚1)

0 ¸0 ˛0 ‚0 ‹0 ‹1 0
0 0 ¸0 ˛0 ‚0 ‹0 ‹1 ...
0 0 0
0 0 0

‚0 ‹0 ‹1 (¸1 ˛0 + ¸0 ˛1) ‹20 (¸1 ˛1 ‚0 + ¸1 ˛0 ‚1 + ¸0 ˛1 ‚1)
0 ¸1 ˛0 ‚0 ‹

2
0

... 0 ¸0 ˛1 ‚0 ‹
2
0

¸0 ˛0 ‚0 ‹0 ‹1 ¸0 ˛0 ‚1 ‹
2
0

0 ¸0 ˛0 ‚0 ‹
2
0

1CCCCA (3.24)

and similarly for the remaining components, after the corresponding permutation of the columns.

3.4.6. Degenerations of the base loci

Definition 3.4.14 (Degeneration of orbits). Given orbits O1,O2 of the right-action in Bir(1,1,1),
we say that the orbit O1 degenerates to O2 if the (Zariski) closure of O1 contains O2.

From the proofs of Theorems 3.4.3, 3.4.6, 3.4.8, and 3.4.10 we deduce most of the degenerations
of the orbits. Figure 1.3 represents all the degenerations of the possible base loci of trilinear
birational maps. The symbols • and − respectively represent nonsingular points and curves
contained in any surface of the linear system, and ◦ represents a point of contact to a surface.
Similarly, an arrow → represents a tangency at a point to a curve of tridegree (1, 1, 1), and a
dashed arrow 99K a tangency to a curve of tridegree (1, 1, 0) or permutation.
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The degenerations of the 0-dimensional base loci require further analysis. Namely, we can derive
the degenerations to base loci of tridegree (1, 0, 0) (resp. (0, 1, 0), (0, 0, 1)) by studying the orbits
in the closure Y ′ of the image of

“′ : X 99K Y ′ ⊂ P4
C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s1t1u1 : s0t1u1 : s1t0u1 : s1t1u0 : s0t1u0 + s0t0u1) .

In this case, the entries of “′ determine a basis for the graded component I ′(1,1,1) of the ideal

I ′ = (x0y1z0 + x0y0z1) + (x1, y1, z1)
2 .

Similarly, the degenerations to base loci of tridegree (1, 1, 0) (resp. (1, 0, 1), (0, 1, 1)) can be
deduced from the orbits in the closure Y ′′ of the image of

“′′ : X 99K Y ′′ ⊂ P4
C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s1t1u1 : s0t1u1 : s1t0u1 : s1t1u0 : s0t0u1) ,

where the entries of “′′ now determine a basis of the graded component I ′′(1,1,1) of

I ′′ = (x0y0z1) + (x1, y1, z1)
2 .

Example 3.4.15. The orbits on Y ′ of the action given by the stabilizer of the subscheme of X
defined by I ′ are

Y ′\H4 , (H1 ∩ H4)\H2−3 , (H2−3 ∩ H4)\(H1 ∪ H2) , PQ\H1 , H1 ∩ H2−3 ∩ H4 , Q (3.25)

where H1,H2−3,H4 are the divisors in Y ′ respectively given by t1 = 0, t2 − t3 = 0, and t4 = 0, and

Q = (1 : 0 : 0 : 0 : 0) , P = (0 : 1 : 0 : 0 : 0) .

Representatives associated to each orbit in (3.25), in the same order, are

ȷ
(1,2,2)
5 , ȷ

(1,2,2)
6 , ȷ

(1,2,2)
8 , ȷ

(1,1,1)
2 , ȷ

(1,2,2)
7 , ȷ

(1,1,1)
4 .

Since PQ ⊂ H2−3 ∩ H4 but PQ ̸⊂ H1 ∩ H4, it follows that ȷ(1,2,2)8 degenerates to ȷ(1,1,1)2 , but
ȷ
(1,2,2)
6 does not.

3.5. Syzygies and minimal graded free resolutions

In this section we study the syzygies of the entries f = (f0, f1, f2, f3) of trilinear birational maps.
Interestingly, novel methods for the construction and manipulation of birational trilinear volumes
can be derived from the results in this section. Namely, these methods are developed in Chapter 4,
and they are based on the imposition of specific syzygies.

The following theorem yields a birationality criterion that relies on the computation of the first
syzygies of f in some degrees. In order to simplify the statement, we set

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) .

Theorem 3.5.1. Let ffi be dominant, and let i , j , k be indices such that {i , j , k} = {1, 2, 3}. Then,
ffi is birational if and only if one of the following conditions holds:



88 Chapter 3. Trilinear birational maps in dimension three

(i) f has syzygies of degrees e1, e2, and e3. In this case, ffi has type (1, 1, 1).

(ii) f has syzygies of degrees ei and ej , but not ek . In this case, ffi has type (1, 1, 1) + ek .

(iii) f has a syzygy of degree ei , but neither ej nor ek . Moreover, f has a syzygy of degree either
ei + ej or ei + ek , independent from the first one. In this case, ffi has type (1, 1, 1) + ej + ek .

(iv) f does not have syzygies of degree e1, e2, or e3. Moreover, f has two independent syzygies in
each of the degrees e1+e2, e1+e3, and e2+e3 satisfying the splitting property in Condition
3.5.7 (see §3.5.1). In this case, ffi has type (2, 2, 2).

The proof of Theorem 3.5.1 follows immediately from Propositions 3.5.2, 3.5.4, 3.5.5, and 3.5.8,
and it relies strongly on the geometric classification of §3.4. More explicitly, the composition of a
rational map ffi with automorphisms of (P1

C)
3 and P3

C induces isomorphisms between the syzygy
modules of the entries of both rational maps, with maybe a permutation of the Betti numbers (not
all the automorphisms of (P1

C)
3 are degree-preserving, see §3.1.3).

Therefore, the syzygies of f can be computed for the representatives of the finitely many orbits
of the right-action in Bir(1,1,1), listed in Theorems 3.4.3, 3.4.6, 3.4.8, and 3.4.10.

On the other hand, even though Theorem 3.5.1 is suitable for computational purposes, we
provide further cohomological information about the base loci. Namely, we prove that there is a
one-to-one correspondence between the type of a birational ffi and the shape of the minimal graded
free resolution of its base ideal B . For the sake of comparison, the minimal graded free resolution
of the base ideal of a trilinear rational map with general entries is (we exclude the Betti numbers)

0 −→ R −→ R21 −→ R62 −→ R69 −→ R30 −→ R4 −→ B −→ 0 . (3.26)

As we shall see in this section, the resolution is remarkably simpler if ffi is birational.

3.5.1. Birational maps of type (1, 1, 1)

For birational maps of type (1, 1, 1), the minimal graded free resolution of B is Hilbert-Burch.

Proposition 3.5.2. Let ffi be dominant. The following are equivalent:

(i) ffi is birational of type (1, 1, 1).

(ii) The minimal graded free resolution of the base ideal B is

0 −→

R(−2,−1,−1)
⊕

R(−1,−2,−1)
⊕

R(−1,−1,−2)

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0 , (3.27)

i.e. it is Hilbert-Burch. In particular, the base locus Z is a Cohen-Macaulay curve.

(iii) f has syzygies of degrees e1, e2, and e3.
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Proof. We first prove that (i) implies (ii). Let ffi be birational of type (1, 1, 1). Maintaining the
notation of (1.6) for ffi−1, in the Rees ideal J we find the polynomials

g1 =

˛̨̨̨
s0 s1
a0 a1

˛̨̨̨
, g2 =

˛̨̨̨
t0 t1
b0 b1

˛̨̨̨
, g3 =

˛̨̨̨
u0 u1
c0 c1

˛̨̨̨
. (3.28)

Consider the 4× 3 matrix M = M(si , tj , uk), whose (m, n)-th entry is the coefficient of gn in the
variable ym. By definition, the tuple f = (f0, f1, f2, f3) lies in the cokernel of M. Now, write ∆m for
the 3× 3 signed minor obtained by deleting the m-th row of M. Then, the tuple (∆0, ∆1, ∆2, ∆3)
also lies in the cokernel of M. Moreover, since ffi is birational the specialization of the gn’s at a
general point of X yields three independent linear forms in y, so the matrix M has generically rank
3. In particular M has no kernel in R3, and its cokernel is a free R-module of rank one generated
by (∆0,∆1,∆2,∆3). Since the tuples (f0, f1, f2, f3) and (∆0,∆1,∆2,∆3) have trilinear entries,
they must differ by a nonzero constant. Therefore, since codim(B) ≥ 2 the complex

0 −→ R3 M−→ R4 (∆0 ∆1 ∆2 ∆3)−−−−−−−−−→ B −→ 0 (3.29)

is a minimal graded free resolution of B . On the other hand, from the Auslander-Buchbaum formula
the quotient ring R=B is Cohen-Macaulay of codimension two (see e.g. [89, §20.4]), which implies
that Z is a Cohen-Macaulay curve.

Clearly (ii) implies (iii). Thus, we now assume (iii) and prove (i). The syzygies of degrees e1,
e2, and e3 can be written as

s0 a1 − s1 a0 =

˛̨̨̨
s0 s1
a0 a1

˛̨̨̨
, t0 b1 − t1 b0 =

˛̨̨̨
t0 t1
b0 b1

˛̨̨̨
, u0 c1 − u1 c0 =

˛̨̨̨
u0 u1
c0 c1

˛̨̨̨
,

for some linear forms ai = ai (y), bj = bj(y), and ck = ck(y). Then, the rational map from P3
C to

X given by
(y0 : y1 : y2 : y3) 7→ (a0 : a1)× (b0 : b1)× (c0 : c1)

must be the inverse rational map of ffi. Hence, ffi is birational of type (1, 1, 1).

Remark 3.5.3. Notice that the proof of Proposition 3.5.2 is independent from the classification
of §3.4. In particular, it is valid to use Proposition 3.5.2 in the proof of Theorem 3.4.3. On
the other hand, it follows from the proof that the base locus Z of a birational map ffi of type
(1, 1, 1) is an arithmetically Cohen-Macaulay curve, i.e. the homogeneous coordinate ring R=B is
Cohen-Macaulay, which is stronger than requiring that Z is Cohen-Macaulay.

3.5.2. Birational maps of type (1, 1, 2)

The study of the syzygies of birational maps of type either (1, 1, 2), (1, 2, 1), or (2, 1, 1) is equivalent,
by means of an automorphism of X . In particular, the shape of the minimal graded free resolution
of B is the same up to a permutation of the Betti numbers. Therefore, we restrict to the class of
birational maps of type (1, 1, 2).

Proposition 3.5.4. Let ffi be dominant. The following are equivalent:

(i) ffi is birational of type (1, 1, 2)
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(ii) The minimal graded free resolution of the base ideal B is

0 → R(−2,−2,−2) −→

R(−2,−1,−1)
⊕

R(−1,−2,−1)
⊕

R(−2,−1,−2)
⊕

R(−1,−2,−2)

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0 (3.30)

(iii) f has syzygies of degrees e1 and e2, but not e3

Proof. The implication from (i) to (ii) follows from the computation of the minimal graded free
resolutions of the base ideals of all the representatives listed in Theorem 3.4.6 (performed with the
help of Macaulay2). Moreover, it is straightforward that (ii) implies (iii).

Now, we assume that (iii) holds. The syzygies of degrees e1 and e2 can be respectively written
as

s0 a1 − s1 a0 =

˛̨̨̨
s0 s1
a0 a1

˛̨̨̨
, t0 b1 − t1 b0 =

˛̨̨̨
t0 t1
b0 b1

˛̨̨̨
, (3.31)

for some linear forms ai = ai (y) and bj = bj(y). Let P be a general point in P3
C, and let (¸0 : ¸1),

(˛0 : ˛1) in P1
C be the projective points such that˛̨̨̨

¸0 ¸1

a0(P) a1(P)

˛̨̨̨
= 0 ,

˛̨̨̨
˛0 ˛1

b0(P) b1(P)

˛̨̨̨
= 0 .

Thus, any point Q in the pullback ffi−1(P) has the form

Q = (¸0 : ¸1)× (˛0 : ˛1)× (u0 : u1)

for some (u0 : u1) ∈ P1
C, since the point Q × P in X × P3

C must vanish the polynomials in (3.31).
Moreover, since ffi is dominant the restriction given by

ffi′ : (¸0 : ¸1)× (˛0 : ˛1)× P1
C 99K P3

C (3.32)
(u0 : u1) 7→ (f ′0 : f ′1 : f ′2 : f ′3) ,

where f ′n = f ′n(u0, u1) = fn(¸0,¸1,˛0,˛1, u0, u1), is an isomorphism of projective lines. In particular,
there is a unique point in the pullback ffi−1(P), implying that ffi is birational. The syzygies of
degrees e1 and e2 determine ffi−1 on the first two factors of X , and hence the degrees of the s-
and t-surfaces. Moreover, there is no syzygy of degree e3. Therefore, ffi has type (1, 1, 2).

3.5.3. Birational maps of type (1, 2, 2)

Similarly to §3.5.2, we can restrict our analysis to the class of birational maps of type (1, 2, 2).

Proposition 3.5.5. Let ffi be dominant. The following are equivalent:

(i) ffi is birational of type (1, 2, 2)
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(ii) The minimal graded free resolution of the base ideal B is

0 → R(−2,−2,−2)2 −→

R(−2,−1,−1)
⊕

R(−2,−2,−1)
⊕

R(−2,−1,−2)
⊕

R(−1,−2,−2)2

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0 (3.33)

(iii) f has a syzygy of degree e1, but neither e2 nor e3. Moreover, f has a syzygy of degree either
e1 + e2 or e1 + e3, independent from the first one

Proof. The implication from (u) to (ii) follows from the computation of the minimal graded free
resolutions of the base ideals of all the representatives listed in Theorem 3.4.8 (performed with the
help of Macaulay2). Moreover, it is straightforward that (ii) implies (iii).

Now, we assume that (iii) holds. Without loss of generality, we suppose that f has a syzygy of
degree e1 + e2. The syzygies of degrees e1 and e1 + e2 can be respectively written as

s0 a1 − s1 a0 =

˛̨̨̨
s0 s1
a0 a1

˛̨̨̨
, (3.34)

t0 (s0 h01 + s1h11)− t1 (s0 h00 + s1h10) =

˛̨̨̨
t0 t1

s0 h00 + s1h10 s0 h01 + s1h11

˛̨̨̨
, (3.35)

for some linear forms ai = ai (y) and hij = hij(y). Let P be a general point in P3
C, and let (¸0 : ¸1)

in P1
C be the projective point such that˛̨̨̨

¸0 ¸1

a0(P) a1(P)

˛̨̨̨
= 0 .

Similarly, let (˛0 : ˛1) in P1
C be the projective point such that˛̨̨̨

˛0 ˛1
¸0 h00(P) + ¸1 h10(P) ¸0 h01(P) + ¸1 h11(P)

˛̨̨̨
= 0 .

Thus, any point Q in the pullback ffi−1(P) has the form

Q = (¸0 : ¸1)× (˛0 : ˛1)× (u0 : u1)

for some (u0 : u1) in P1
C, since the point Q × P in X × P3

C must vanish the polynomials (3.34)
and (3.35). Repeating the argument in the proof of Proposition 3.5.4 with the restriction map ffi′,
it follows that there is a unique point in the pullback ffi−1(P), implying that ffi is birational. The
syzygy of degree e1 determines ffi−1 on the first factor of X , and hence the degree of the s-surfaces.
Moreover, there are no syzygies of degrees e2 nor e3. Therefore, ffi has type (1, 2, 2).
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3.5.4. Birational maps of type (2, 2, 2)

Finally, we study the syzygies of birational maps of type (2, 2, 2). In this class, f does not have
syzygies of degrees e1, e2, or e3, and the analysis is more complicated. Moreover, the degree of the
first syzygies alone is not enough to decide birationality, as Example 3.5.9 shows. However, from
Proposition 3.5.8 it follows that birationality can still be decided from the first syzygies of f, by
checking a splitting condition on three related polynomials.

Before stating Proposition 3.5.8, we introduce some hypotheses on the first syzygies.

Notation 3.5.6. If f has two independent syzygies of degree e1 + e2, these can be written as

s0t0 g00 + s1t0 g10 − s0t1 g01 − s1t1 g11 , s0t0 h00 + s1t0 h10 − s0t1 h01 − s1t1 h11 , (3.36)

for some linear forms gij = gij(y) and hij = hij(y). We define z1 = z1(si , yn) as

z1 :=

˛̨̨̨
s0 g00 + s1g10 s0 g01 + s1g11
s0 h00 + s1h10 s0 h01 + s1h11

˛̨̨̨
.

The polynomial z1 is nonzero, since the syzygies (3.36) are independent by assumption. Moreover,„
s0 g00 + s1g10 s0 g01 + s1g11
s0 h00 + s1h10 s0 h01 + s1h11

«„
t0
t1

«
tj 7→fj7−−−→

„
0
0

«
implying that z1 is a relation in the Rees ideal J of degree (2, 0, 0; 2).

Similarly, if f has syzygies of degrees e1+e3 and e2+e3, we define the polynomials z2 = z2(tj , yn),
z3 = z3(uk , yn) from the pairs of syzygies of degrees e2 + e3 and e1 + e3 respectively. These z2, z3
lie in J, and have degrees (0, 2, 0; 2) and (0, 0, 2; 2).

Condition 3.5.7. We assume that f does not have syzygies of degrees e1, e2, or e3, but has a pair
of independent syzygies in each of the degrees e1 + e2, e1 + e3, and e2 + e3. Moreover, at least
two of z1, z2, and z3 have a linear factor of degree (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.

Proposition 3.5.8. Let ffi be dominant. The following are equivalent:

(i) ffi is birational of type (2, 2, 2)

(ii) The minimal graded free resolution of the base ideal B is

0 → R(−2,−2,−2)3 −→

R(−2,−2,−1)2

⊕
R(−2,−1,−2)2

⊕
R(−1,−2,−2)2

−→ R(−1,−1,−1)4
(f0 f1 f2 f3)−−−−−−−→ B −→ 0 (3.37)

and Condition 3.5.7 is satisfied.

Proof. The implication from (i) to (ii) follows from the computation of the minimal graded free
resolutions of the base ideals of the two representatives listed in Theorem 3.4.10. Moreover,
Condition 3.5.7 is always satisfied (these computations have been performed with the help of
Macaulay2).
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Now, we assume that Condition 3.5.7 holds. Without loss of generality, the polynomials z1 and
z2 have linear factors l1 = l1(s0, s1) and l2 = l2(t0, t1), i.e. we can write

z1 = l1

˛̨̨̨
s0 s1
a0 a1

˛̨̨̨
, z2 = l2

˛̨̨̨
t0 t1
b0 b1

˛̨̨̨
, (3.38)

for some quadratic forms ai = ai(y) and bj = bj(y). Let P be a general point in P3
C. We now

prove that ffi−1(P) has a unique point in the open set U ⊂ X where l1 and l2 are both nonzero.
Given Q ∈ U ∩ ffi−1(P), the point Q × P in U × P3

C must vanish the two polynomials in (3.38).
By assumption we have l1(Q) ̸= 0 and l2(Q) ̸= 0, implying that Q × P must vanish the second
factor in each polynomial. In particular, Q must have the form

Q = (¸0 : ¸1)× (˛0 : ˛1)× (u0 : u1)

for some (u0 : u1) in P1
C, where˛̨̨̨

¸0 ¸1

a0(P) a1(P)

˛̨̨̨
= 0 ,

˛̨̨̨
˛0 ˛1

b0(P) b1(P)

˛̨̨̨
= 0 .

Repeating the argument in the proof of Proposition 3.5.4 with the restriction map ffi′, it follows
that the pullback ffi−1(P) defines a unique point in U, implying that ffi is birational. Since f has no
syzygies of degrees e1, e2 or e3, ffi must have type (2, 2, 2).

Example 3.5.9. From Proposition 3.5.8, the minimal graded free resolution of the base ideal B of
a trilinear birational map of type (2, 2, 2) is always (3.37). However, the rational map

ffi : P1
C × P1

C × P1
C 99K P3

C

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (s0t0u1 : s1t1u0 + s1t0u1 + s0t1u1 + s1t1u1 : s0t1u0 : s1t0u0)

has a resolution as (3.37) but is not birational, since Condition 3.5.7 is not satisfied.





Chapter 4

Construction and manipulation of
birational trilinear volumes

In this chapter, we provide effective methods to construct and manipulate trilinear birational maps
ffi : (P1

R)
3 99K P3

R. This is the first family of nonlinear birational transformations between 3D spaces
that can be operated with enough flexibility for applications in geometric modeling (see [183, §7]).
Interestingly, we find a connection between birationality and tensor rank that had remained unseen
so far. This connection is the cornerstone of the results of this chapter.

In order to make our constructions geometrically intuitive, we adopt the standard setting in
CAGD and define these rational maps by means of control points and weights. This point of view
has also advantages from a purely algebraic perspective, since it facilitates the description of the
parametric surfaces and makes the statements of our results lighter. Specifically, a trilinear rational
map is defined by 2× 2× 2 = 8 control points Pijk = (1, xijk , yijk , zijk) in R4 and their associated
(nonnegative) weights wijk , for each 0 ≤ i , j , k ≤ 1. Thus, we study rational maps defined as

ffi : P1
R × P1

R × P1
R 99K P3

R (4.1)

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→
X

0≤i ,j ,k≤1

wijk Pijk bi (s0, s1) bj(t0, t1) bk(u0, u1)

where b0(s0, s1) = s0 − s1 and b1(s0, s1) = s1 define the homogeneous Bernstein basis of linear
polynomials.

Construction of birational maps: for general rational maps of type (1, 1, 1), (1, 1, 2), (1, 2, 2)
and permutations, we describe the geometric constraints on the control points that are necessary
for birationality, and present constructions for such constrained configurations (Constructions 1,
2, and 3). More importantly, for adequately constrained nets of control points, we prove that
birationality is achieved if and only if a certain 2 × 2 × 2 tensor has rank one (Theorems 4.3.6,
4.4.7, 4.5.7). As a corollary, we derive formulas for computing exactly the weights that yield
birationality, which are effective for the flexible construction of these transformations in applications.
Additionally, we introduce a notion of “distance to birationality” for trilinear rational maps, and
explain how to continuously deform birational maps. Finally, we provide explicit formulas for the
inverse ffi−1 (Theorems 4.3.13, 4.4.19, and 4.5.15), and we give the defining equations of the
irreducible components of the base loci.

4.1. Preliminaries

4.1.1. Motivating by applications

To motivate our work and contributions, we list four questions of interest for applications that
are formalized and answered throughout the chapter. This presentation is useful, since the main
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sections of the chapter preserve the same structure, addressing these questions sequentially for the
different types of trilinear maps. Specifically:

§4.3 deals with birational maps of type (1, 1, 1), or hexahedral birational maps

§4.4 deals with birational maps of type (1, 1, 2) and permutations, or pyramidal birational maps

§4.5 deals with birational maps of type (1, 2, 2) and permutations, or scaffold birational maps

In this thesis, we do not discuss the construction of birational maps of type (2, 2, 2). There are
two reasons for this. The first one lies in Proposition 3.5.8, which establishes that the syzygies of
the defining polynomials of a birational map of type (2, 2, 2) require additional splitting conditions,
making their analysis more complicated when relying on syzygy-based birationality criteria. Secondly,
the construction of birational maps of type (1, 2, 2) is already quite technical (see §4.5), and the
geometric constraints on the control points are complicated due to the presence of quadric boundary
surfaces. Because of this, we expect that (2, 2, 2) birational maps are not very suitable for CAGD,
since they are fully quadratic. In particular, we expect that the class of hexahedral birational maps
receives more attention, since it is the simplest to use in applications.

We align our approach with the following principle, which is common to all the existing algorithms
for the construction of birational maps in geometric design (recall §1.1.1):

(iii) Provide strategies for constructing (possibly constrained) nets of control points with sufficient
flexibility, followed by the computation of weights that ensure birationality.

In this direction, the following is the first natural question.

Question 4.1.1. What constraints should be imposed on the control points to ensure the existence
of weights that render ffi birational?

As we shall see, for a general choice of control points there are no weights that yield a birational
map. Namely, achieving birationality necessitates specific control point arrangements, and Question
4.1.1 demands such constraints explicitly. This question leads us to discover various configurations
of control points where birationality becomes possible: the classes of hexahedral, pyramidal, and
scaffold rational maps (recall Definition 1.2.12). These configurations respectively correspond to
the types (1, 1, 1), (1, 1, 2), (1, 2, 2) and their permutations.

Question 4.1.2. How “far” is ffi from being birational? how can we compute a birational approxi-
mation for ffi?

The intuition behind this question is clear, but the question itself lacks precision. To formalize it,
the first step is to introduce a notion of distance that provides a precise definition of the term “far”.
In full generality, this presents a delicate challenge. Namely, the distance from ffi to each of the
components of the locus of birational maps is in general different. Moreover, even when specifying
a component, Question 4.1.2 remains highly challenging due to the fact that a point in the space
of these rational maps is determined by 31 parameters (in the monomial basis: 8× 4 coefficients
up to scalar; in the Bernstein basis: 3 coordinates × 8 control points + 8 weights up to scalar).

To tackle Questions 4.1.1 and 4.1.2, we establish a connection between birationality and tensor
rank. Specifically, we prove that the simultaneous existence of the necessary syzygies for birationality
(recall Theorem 3.5.1) occurs if and only if a certain tensor with a 2× 2× 2 format has rank one.
This connection opens the door to the application of an extensive body of work related to tensor
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rank and low-rank approximations to the study of birational maps. An important tool is the CP
Decomposition (CPD) (e.g. [76, 126, 118, 136]), which enables us to efficiently compute rank-one
approximations for tensors.

More specifically, for adequately constrained control points, we prove that ffi is birational if and
only if a tensor of the form

W =

„
wijk

∆ijk

«
0≤i ,j ,k≤1

(4.2)

where ∆ijk = ∆ijk(Pijk) are rational functions on the coordinates of the control points, has rank
one. In particular, for each 0 ≤ i , j , k ≤ 1 it follows that

wijk = ¸i ˛j ‚k ∆ijk (4.3)

for some point (¸0 : ¸1) × (˛0 : ˛1) × (‚0 : ‚1) in (P1
R)

3. The formula (4.3) is useful for the
computation of birational weights, and explicitly reveals the underlying geometric structure of the
Segre variety associated with (P1

R)
3. On the other hand, we rely on the Frobenius norm for tensors

(recall Definition 2.2.20) to define our notion of “distance to birationality”. Namely, we measure
it as the distance from W to the locus of rank-one tensors, i.e. the affine cone over the Segre
variety ff

`
P1
R × P1

R × P1
R
´
. Remarkably, this distance depends solely on the weights of ffi (i.e. 8

parameters up to scalar). This is a design-oriented approach, since a designer will typically move
the control points of a rational map but will rarely modify the weights. With this formulation, a
“closest birational map” refers to a point in the affine cone of ff

`
P1
R × P1

R × P1
R
´

that minimizes
the distance to W . Therefore, the problem of computing a closest birational map transfers to
the computation of a rank-one CP decomposition for W . In the context of this thesis, we take
advantage of the Python library TensorFox [32] to accomplish this task.

Although birational maps ensure injectivity on a Zariski open set, the most interesting application is
the exact and fast computation of preimages avoiding numerical solving methods. This computation
is performed through the inverse rational map, and therefore having explicit formulas for ffi−1

becomes imperative. The inverses of birational maps of the same type (i.e. lying on the same
component) obey the same formulas. However, the behavior between distinct types has important
differences, and distinct formulas are required.

Question 4.1.3. If ffi is birational, how can we compute ffi−1?

The last question concerns the modification of the parameters defining a birational map while
preserving birationality. More specifically, we are interested in modifying these parameters continu-
ously. The process of deformation is instrumental in practice, since applications typically require
the manipulation of the control points until the designer achieves the desired shape. Specifically,
we raise the following query.

Question 4.1.4. Given a birational map ffi0, how can we “deform” it birationally to another
birational map ffi1?

A deformation of ffi0 to ffi1 is simply a continuous map ‹ : [0, 1] −→ W×P (in the usual topology),
where W and P are respectively the sets of possible weights and control points, such that ‹(0) = ffi0
and ‹(1) = ffi1. Question 4.1.4 asks for an explicit deformation ‹ such that ‹(t) = ffit is birational
for each 0 ≤ t ≤ 1.

Actually, we answer a query more general than Question 4.1.4. Before we address it, we would like
to exclude some degenerate configurations of control points, that are inherent to our formulation.
To this purpose, we include the following remark, and a property that we always require.
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Remark 4.1.5 (Boundary surfaces might not be surfaces). In some degenerate cases, the image of
the specialization of ffi to some parameters, say (s0 : s1) = (–0 : –1), might not be a surface, but a
curve or a point due to a contraction. For instance, this occurs if Pi00, Pi10, Pi01, and Pi11 are
colinear, for some i = 0, 1. Similarly, the images of the specializations to two parameters might not
be lines.

Thus, according to Definition 1.2.11, the boundary surfaces and lines might not be, respectively,
surfaces and lines. Even though these concepts are very useful to simplify our statements and
formulas, as proven throughout the chapter, this problem is inherent to their definition. In this
chapter, we avoid these degenerate cases for two reasons:

(i) In general, they lack interest for applications

(ii) Dealing with them would make our constructions and arguments cumbersome

Therefore, we will always require that ffi satisfies the following property.

Property 1. The following conditions are satisfied:

(i) Σi , Tj , and Yk are smooth surfaces for every 0 ≤ i , j , k ≤ 1, pairwise distinct

(ii) sjk , tik , and uij are lines for every 0 ≤ i , j , k ≤ 1, pairwise distinct

(iii) Pijk = (1, xijk , yijk , zijk) for every 0 ≤ i , j , k ≤ 1, i.e. it lies in A3
R

Returning to Question 4.1.4, let P(d1,d2,d3) be the set of admissible configurations that answers
Question 4.1.1 for the type (d1, d2, d3). We provide a rational parametrization of the irreducible
component labelled by (d1, d2, d3) of the form

Φ(d1,d2,d3) : (P
1
R)

3 ×P(d1,d2,d3) 99K W ×P(d1,d2,d3) (4.4)
(¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1)× (... : Pijk : ...) 7→ (... : wijk : ...)× (... : Pijk : ...) =

(... : ∆ijk ¸i ˛j ‚k : ...)× (... : Pijk : ...)

In particular, Φ(a,b,c) yields all the weights that make ffi birational of type (d1, d2, d3) for a valid net
of control points. This parametrization explains how the continuous birational deformation can be
performed. Specifically, a user can decide new control points and compute each new ∆ijk (which
are continuous functions in the coordinates of the points) accordingly to update the weights.

Along this chapter, we illustrate all these applications with a variety of examples.

4.1.2. Notation for this chapter

As usual, we write R = C[s] ⊗ C[t] ⊗ C[u] = C[s0, s1] ⊗ C[t0, t1] ⊗ C[u0, u1] and C[y] =
C[y0, y1, y2, y3], both rings standard graded. Additionally, when we refer to affine spaces A3

C (or
A3
R) in (P1

C)
3 and P3

C, we respectively mean those defined by s0 ̸= 0, t0 ̸= 0, u0 ̸= 0 and y0 ≠ 0.
Furthermore, we denote by N the irrelevant ideal of R , namely N = (s0, s1) ∩ (t0, t1) ∩ (u0, u1).

For the sake of simplicity, we use the standard monomial basis instead of the Bernstein basis.
The purpose of this is to simplify the notation and statements. However, we retain the conventional
formulation in CAGD, and define entries of a trilinear rational maps using control points and
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weights. Specifically, for some Pijk = (1, xijk , yijk , zijk) in R4 and wijk ∈ C (although we are
primarily interested in real, nonnegative weights), we set

ffi :
`
P1
C
´3
99K P3

C (4.5)

s× t× u 7→ f = (f0 : f1 : f2 : f3) =
X

0≤i ,j ,k≤1

wijk Pijk si tjuk .

In the case that ffi is birational, we write

ffi−1 : P3
C 99K

`
P1
C
´3

y 7→ g1 × g2 × g3 = (g01 : g11)× (g02 : g12)× (g03 : g13)

and denote by y 7→ f the specialization yn 7→ fn for each 0 ≤ n ≤ 3, and by

s 7→ g1 , t 7→ g2 , u 7→ g3

the specializations respectively given by

si 7→ gi1 , tj 7→ gj2 , uk 7→ gk3

for each 0 ≤ i , j , k ≤ 1. The following remark serves as a caveat for our choice of basis.

Remark 4.1.6 (Standard basis instead of Bernstein basis). Due to our choice of basis, the intuition
of a deformation of the unit cube in A3

R (recall §1.2.3) is lost. Nevertheless, we recover the usual
setting by means of the automorphism of P1

C × P1
C × P1

C sending (s0 : s1)× (t0 : t1)× (u0 : u1) to

(b0(s0, s1) : b1(s0, s1))× (b0(t0, t1) : b1(t0, t1))× (b0(u0, u1) : b1(u0, u1)) .

In all the examples of the section, we apply our results using the Bernstein basis, i.e. we apply the
automorphism above. In particular, the boundary surfaces and lines (recall Definition 1.2.10) need
to be adjusted to our notation. Specifically, in our setting the boundary surfaces are redefined as:

(i) Σ0 and Σ1 are respectively defined by (s0 : s1) = (1 : 0) and (s0 : s1) = (0 : 1)

(ii) T0 and T1 are respectively defined by (t0 : t1) = (1 : 0) and (t0 : t1) = (0 : 1)

(iii) Y0 and Y1 are respectively defined by (u0 : u1) = (1 : 0) and (u0 : u1) = (0 : 1)

And the boundary lines are redefined accordingly.

Additionally, we adopt Notation 1.2.18 (see §1.2.3) for the defining vectors and symmetric
matrices of these boundary surfaces. This choice of notation is intentional: the boundary s-, t-, and
u-surfaces are respectively defined by ffi , fij , and flk . In particular, the defining polynomials of the
boundary surfaces Σi , Tj , and Yk are respectively ffi (y), fij(y), and flk(y) for each 0 ≤ i , j , k ≤ 1.
Additionally, given two vectors ¸ = (¸0,¸1,¸2,¸3) and a = (a0, a1, a2, a3) in C4, regarded as row
vectors, we denote

⟨¸̧̧, a⟩ = ¸̧̧ · aT = ¸0 a0 + ¸1 a1 + ¸2 a2 + ¸3 a3 .

On the other hand, for each 0 ≤ i , j , k ≤ 1 we define

Ajk(s0, s1) = w0jk P0jk s0 + w1jk P1jk s1 ,

Bik(t0, t1) = wi0k Pi0k t0 + wi1k Pi1k t1 ,

Cij(u0, u1) = wij0 Pij0 u0 + wij1 Pij1 u1 ,
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which respectively define line isomorphisms to the boundary lines sjk , tik , and uij . Furthermore, we
have the identities

f =
X

0≤j ,k≤1

Ajk(s0, s1) tjuk =
X

0≤i ,k≤1

Bik(t0, t1) siuk =
X

0≤i ,j≤1

Cij(u0, u1) si tj .

4.2. Linear syzygies

In this section, we provide several characterizations for the existence of a linear syzygy for the
defining polynomials of a trilinear rational map. More precisely, by “linear syzygies” we mean syzygies
of degree either (1, 0, 0), (0, 1, 0), and (0, 0, 1). Additionally, the syzygies of B = (f0, f1, f2, f3) can
be identified with linear polynomials in the Rees ideal of B (recall Remark 2.1.37), and we work
with both perspectives indistinctly.

By Theorem 3.5.1, all birational maps admit such a syzygy except for the type (2, 2, 2). Thus,
all the birational maps considered in this chapter verify these characterizations for at least one
parameter.

4.2.1. Rank characterization

The following lemma characterizes the existence of a linear syzygy of f by means of a matrix rank
condition. It is stated for syzygies of degree (1, 0, 0), but it can be easily reformulated for syzygies
of degrees (0, 1, 0) and (0, 0, 1), as done in Remark 4.2.2. Notice that a syzygy of degree (1, 0, 0)
implies that the parametric s-surfaces are planes (recall §3.1.1). In particular, for such a syzygy to
exist, the boundary surfaces Σ0 and Σ1 are required to be planes.

Lemma 4.2.1. Let ffi be dominant, and let Σ0, Σ1 be planes. Then, f has a syzygy of degree
(1, 0, 0) if and only if

rank

„
w100 ⟨ff0,P100⟩ w110 ⟨ff0,P110⟩ w101 ⟨ff0,P101⟩ w111 ⟨ff0,P111⟩
w000 ⟨ff1,P000⟩ w010 ⟨ff1,P010⟩ w001 ⟨ff1,P001⟩ w011 ⟨ff1,P011⟩

«
= 1. (4.6)

In particular, if (4.6) holds we find a point (¸0 : ¸1) in P1
C (or P1

R for real weights) such that

−¸0 w1jk ⟨ff0,P1jk⟩ = ¸1 w0jk ⟨ff1,P0jk⟩ (4.7)

for every 0 ≤ j , k ≤ 1. Then, any syzygy of degree (1, 0, 0) of f is proportional to

ff = ff(s0, s1) = ¸0 ff0 s0 + ¸1 ff1 s1 . (4.8)

Proof. Suppose that f has a syzygy of the form

ı = ı(s0, s1) = ı0 s0 + ı1 s1

for some ı0,ı1 in R4. On the other hand, for each i = 0, 1 we define

fi = fi (t0, t1, u0, u1) =
X

0≤j ,k≤1

wijk Pijk tjuk ,

so that we can easily write f = f0 s0 + f1 s1. In particular, fi defines a rational parametrization of
Σi . With this notation, we find

⟨ı, f⟩ = s0 ⟨ı0, f⟩+ s1 ⟨ı1, f⟩ = s0 (s0 ⟨ı0, f0⟩+ s1 ⟨ı0, f1⟩) + s1 (s0 ⟨ı1, f0⟩+ s1 ⟨ı1, f1⟩) =
s20 ⟨ı0, f0⟩+ s0s1 (⟨ı0, f1⟩+ ⟨ı1, f0⟩) + s21 ⟨ı1, f1⟩ = 0 .
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It follows immediately that ⟨ıi , fi ⟩ = 0 for both i = 0, 1. By hypothesis, the boundary surfaces
Σ0, Σ1 are both planes. Therefore, fi defines a bilinear rational parametrization to Σi and any
vector ı satisfying ⟨ı, fi ⟩ = 0 must be proportional to ffi , as Σi is defined by the ideal (ffi (y)). In
particular, we find ıi = ¸i ffi for some non-zero ¸i . Hence, we obtain

¸0⟨ff0, f1⟩+ ¸1⟨ff1, f0⟩ =
X

0≤j ,k≤1

(¸0 w1jk ⟨ff0,P1jk⟩+ ¸1 w0jk ⟨ff1,P0jk⟩) tjuk = 0 ,

which is satisfied for some ¸0,¸1 if and only if (4.6) holds. Moreover, since ffi is dominant no row
in (4.6) is identically zero. Thus, (¸0 : ¸1) ∈ P1

C is unique and ı is proportional to ff.

Remark 4.2.2. After the obvious modifications, we derive analogous results to Lemma 4.2.1 for
syzygies of degree (0, 1, 0) and (0, 0, 1). Specifically, let ffi be dominant.

(i) If T0 and T1 are planes, then f has a syzygy of degree (0, 1, 0) if and only if

rank

„
w010 ⟨fi0,P010⟩ w110 ⟨fi0,P110⟩ w011 ⟨fi0,P011⟩ w111 ⟨fi0,P111⟩
w000 ⟨fi1,P000⟩ w100 ⟨fi1,P100⟩ w001 ⟨fi1,P001⟩ w101 ⟨fi1,P101⟩

«
= 1 . (4.9)

In particular, we find a unique (˛0 : ˛1) in P1
C satisfying

−˛0 wi1k ⟨fi0,Pi1k⟩ = ˛1 wi0k ⟨fi1,Pi0k⟩ ,

and therefore any syzygy of degree (0, 1, 0) of f is propotional to

fi = fi (t0, t1) = ˛0 fi0 t0 + ˛1 fi1 t1 . (4.10)

(ii) If Y0 and Y1 are planes, then f has a syzygy of degree (0, 0, 1) if and only if

rank

„
w001 ⟨fl0,P001⟩ w101 ⟨fl0,P101⟩ w011 ⟨fl0,P011⟩ w111 ⟨fl0,P111⟩
w000 ⟨fl1,P000⟩ w100 ⟨fl1,P100⟩ w010 ⟨fl1,P010⟩ w110 ⟨fl1,P110⟩

«
= 1 . (4.11)

In particular, we find a unique (‚0 : ‚1) in P1
C satisfying

− ‚0 wij1 ⟨fl0,Pij1⟩ = ‚1 wij0 ⟨fl1,Pij0⟩

and therefore any syzygy of degree (0, 0, 1) of f is propotional to

fl = fl(u0, u1) = ‚0 fl0 u0 + ‚1 fl1 u1 . (4.12)

4.2.2. Geometric characterizations

The previous rank conditions can be endowed with a more geometric meaning, related to the
behavior of ffi. Specifically, we now establish connections between:

(i) The linear syzygies of f

(ii) The contractions of ffi

(iii) The geometry of C⟨f⟩ in the space of 2× 2× 2 tensors

To introduce formally the item (ii), we include the following definitions.
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Definition 4.2.3 (Pullback ideal). Let J = (h1, ... , hr ) be an homogeneous ideal in C[y]. We
define the pullback ideal of J by ffi as the saturation of

J ′ = (h1(f), ... , hr (f)) ⊂ R

with respect to the irrelevant ideal N ⊂ R. Similarly, if ffi is birational and J = (h1, ... , hr ) is an
homogeneous ideal in R , we define the pullback ideal of J by ffi−1 as the saturation of

J ′ = (h1(g1, g2, g3), ... , hr (g1, g2, g3)) ⊂ C[y]

with respect to the irrelevant ideal m = (y0, y1, y2, y3) of C[y].
Geometrically, the pullback ideal by ffi defines the closure of the union of the base locus of ffi

and the “strict pullback” of the scheme S defined by J, i.e. the closure in (P1
C)

3 of the pullback
(ffi|U)−1 (S) where U ⊂ (P1

C)
3 is an open set where ffi becomes a morphism. If ffi is birational, there

are some subvarieties of P3
C of codimension greater than one that pullback to surfaces in

`
P1
C
´3.

The following definition gives a name to this phenomenon.

Definition 4.2.4 (Contractions and blow-ups). We say that ffi contracts a surface S ⊂ (P1
C)

3 if
the image ffi(S) is either a curve or a point. If ffi is birational, we say that ffi−1 blows up ffi(S) to S .

Remark 4.2.5. Notice that ffi contracts a surface S to a curve (or a point) C if and only if the
pullback by ffi of the defining ideal of C is principal. If ffi is birational, ffi blows up a curve (or a
point) C to a surface S if and only if the pullback by ffi−1 of the defining ideal of C is principal.

The following remark explains how the existence of a linear syzygy of f can be characterized as a
specific contraction of ffi.

Notation 4.2.6. Given indices 0 ≤ i , j , k ≤ 1, we denote their converse by i∗, j∗, k∗. More
explicitly, we set 0∗ = 1 and 1∗ = 0.

Remark 4.2.7 (Contraction of bilinear surfaces). With the hypotheses of Lemma 4.2.1, we find

⟨ffi , f⟩ = si∗
X

0≤j ,k≤1

wi∗jk ⟨ffi ,Pi∗jk⟩ tj uk = si∗ gi (t0, t1, u0, u1) .

In particular, the coefficients of gi in the monomial basis coincide with the entries of the (i + 1)-th
row in (4.6). Therefore, if (4.6) is satisfied, we find a (¸0 : ¸1) in P1

C such that g = ¸i gi . In
particular, the pullback by ffi of the ideal defining the line s = Σ0 ∩ Σ1 is principal, and generated
by the polynomial g of degree (0, 1, 1). Geometrically, f admits a syzygy of degree (1, 0, 0) if and
only if ffi contracts a surface of degree (0, 1, 1) in (P1

C)
3 to the line s.

Repeating the argument with the rank conditions (4.9) and (4.11), we conclude that f admits
syzygies of degrees (0, 1, 0) and (0, 0, 1) if and only if there are surface of degrees (1, 0, 1) and
(1, 1, 0) that are contracted to the lines t = T0 ∩ T1 and u = Y0 ∩ Y1, respectively.

Remark 4.2.8 (Lines in ff
`
P1
R × P3

R
´
). If f admits a syzygy of degree (1, 0, 0) as (4.8), then by

the previous Remark 4.2.7 there is a polynomial g of degree (0, 1, 1) such that

(–0 : –1) 7→ ⟨–0 ff0 + –1 ff1, f⟩ = (–0 ¸1 s0 + –1 ¸0 s1) g(t0, t1, u0, u1)

is a line isomorphism P1
R −→ ff

`
P1
R × P3

R
´
, where ff

`
P1
R × P3

R
´

is the Segre variety in the space of
2× 2× 2 tensors, or equivalently trilinear polynomials, representing the polynomials with one linear
factor of degree (1, 0, 0) (see §2.2.3). In particular, its image is the Segre embedding of the line
P1
R × {g}.
Therefore, f admits a syzygy of degree 1× 0× 0 if and only if the linear system C⟨f⟩ contains a

line of the form ff
`
P1
R × {g}

´
for some polynomial g of degree (0, 1, 1).



4.3. Hexahedral birational maps 103

4.3. Hexahedral birational maps

In this section, we study the first and simplest family of trilinear birational maps: the class of
hexahedral birational maps.

Definition 4.3.1 (Hexahedral rational map). A trilinear rational map is hexahedral if it satisfies
Property 1 and all the boundary surfaces are planes.

The most interesting case in applications, that gives the name to this family, is when the
control points define a quadrilateral-faced hexahedron. Interestingly, hexahedral birational maps
are the direct generalization to 3D of the 2D quadrilateral birational maps studied in [185, 28],
since the minimal graded free resolution of the base ideal is Hilbert-Burch (recall Propositions
2.2.25 and 3.5.2). In Chapter 5, we generalize the construction of these two families of birational
transformations to an arbitrary dimension. In particular, we will derive analogous results to those
presented in this section.

4.3.1. Construction of control points

Following the motivating questions listed in §4.1.1, we begin describing the geometric constraints
on the control points necessary for birationality. Furthermore, we propose an effective construction
for such constrained nets of control points.

Firstly, we make the following straightforward observation.

Remark 4.3.2. If ffi is a birational map of type (1, 1, 1) satisfying Property 1, then it is hexahedral.
Namely, by definition the parametric surfaces (and in particular the boundary surfaces) are planes.

Remark 4.3.2 combined with Theorem 4.3.6, stated and proven in §4.3.2, provides an answer
to Question 4.1.1 for birational maps of type (1, 1, 1). More precisely, when ffi is hexahedral we
can compute weights that render ffi birational of type (1, 1, 1). Specifically, we find the following
corollary.

Corollary 4.3.3. The set

P(1,1,1) = { {Pijk}0≤i ,j ,k≤1 : ffi is hexahedral }

answers Question 4.1.1. More explicitly, for every net of control points in P(1,1,1) we can find
weights that render ffi birational of type (1, 1, 1).

In practice, nets of control points in P(1,1,1) can be given indirectly if, instead of listing the
constrained control points explicitly, a user decides boundary planes Σi , Tj , Yk under no geometric
constraint. The generation of a net of control points using Construction 1 is illustrated in Figure
4.1.

Construction 1 (Control points for hexahedral rational maps). A net of control points in P(1,1,1)

can be generated as follows:

1. For each 0 ≤ i , j , k ≤ 1, choose planes Σi , Tj , Yk such that Σi ∩ Tj ∩ Yk is a point in A3
R

2. Define Pijk = Σi ∩ Tj ∩ Yk
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Figure 4.1.: the control points of a hexahedral rational map, computed using Construction 1. The
boundary planes Σ0, Σ1 appear in red, T0,T1 appear in green, and Y0,Y1 appear in blue.

4.3.2. Effective computation of weights

In this section, we establish for the first time our birationality criterion based on a rank-one condition
on a 2 × 2 × 2 tensor, for the class of hexahedral rational maps. This is the main result of the
section.

Notation 4.3.4. Let ffi be hexahedral. We introduce the following notation:

(i) For each 0 ≤ i , j , k ≤ 1, the boundary planes Σi , Tj , and Yk are respectively defined by the
vectors

ffi =
`
ff0i ff1i ff2i ff3i

´
, fij =

`
fi0j fi1j fi2j fi3j

´
, flk =

`
fl0k fl1k fl2k fl3k

´
.

(ii) If ffi is hexahedral, Pijk can be expressed as the wedge of the vectors ffi , fij , and flk defining
the boundary planes. More specifically, we have

Pijk = ∆−1
ijk ffi ∧ fij ∧ flk , (4.13)

where

∆ijk =

˛̨̨̨
˛̨ff1i ff2i ff3i
fi1j fi2j fi3j
fl1k fl2k fl3k

˛̨̨̨
˛̨ (4.14)

for each 0 ≤ i , j , k ≤ 1.

Remark 4.3.5 (Nonzero and positive ∆ijk). Notice that ∆ijk is zero if and only if Pijk lies at the
plane y0 = 0 “at ∞” in P3

R, a possibility excluded by Property 1. Namely, ∆ijk is the first maximal
minor of the 3× 4 matrix with ffi , fij , and flk as rows, and the four 3× 3 minors, with alterned
sign, determine Pijk .

On the other hand, the rows of the determinant ∆ijk can be regarded as the normal vectors
of the affine boundary planes. In the most interesting case for geometric modeling, when these
boundary planes define a quadrilateral-faced hexahedron, the nonnegativity of ∆ijk can be ensured
by choosing all these normals “pointing to the same side” of the hexahedron. More precisely, we
can always choose ff0,ff1 such that ⟨ff0,P1jk − P0jk⟩, ⟨ff1,P1jk − P0jk⟩ ≥ 0 for some (and hence
all) 0 ≤ j , k ≤ 1.
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The following theorem relates birationality, the existence of linear syzygies, and tensor rank. It is
our key ingredient to answer the questions posed in §4.1.1 for the class of hexahedral birational
maps.

Theorem 4.3.6. Let ffi be hexahedral. Then, ffi is birational of type (1, 1, 1) if and only if the
2× 2× 2 tensor

W =

„
wijk

∆ijk

«
0≤i ,j ,k≤1

(4.15)

has rank one.

Proof. By Theorem 3.5.1, ffi is birational of type (1, 1, 1) if and only if f admits syzygies of degrees
(1, 0, 0), (0, 1, 0), and (0, 0, 1). Equivalently, by Lemma 4.2.1 and Remark 4.2.2, ffi is birational if
and only if the rank conditions (4.6), (4.9), and (4.11) are simultaneously satisfied.

We rewrite the rank conditions (4.6), (4.9), and (4.11) so that the matrices involved have the
same entries. For any 0 ≤ i , j , k ≤ 1, we can write

∆0jk ⟨ff1,P0jk⟩ = ff1∧ff0∧fij ∧flk = −∆1jk ∆
−1
1jk ff0∧ff1∧fij ∧flk = −∆1jk ⟨ff0,P1jk⟩ . (4.16)

In particular, (4.6) can be equivalently written as

rank

„
w100∆100

−1 w110∆110
−1 w101∆101

−1 w111∆111
−1

w000∆000
−1 w010∆010

−1 w001∆001
−1 w011∆011

−1

«
= 1 . (4.17)

With a similar argument, we derive

∆i0k ⟨fi1,Pi0k⟩ = −∆i1k ⟨fi0,Pi1k⟩ , ∆ij0 ⟨fl1,Pij0⟩ = −∆ij1 ⟨fl0,Pij1⟩ ,

and (4.9) and (4.11) can be respectively rewritten as

rank

„
w010∆010

−1 w110∆110
−1 w011∆011

−1 w111∆111
−1

w000∆000
−1 w100∆100

−1 w001∆001
−1 w101∆101

−1

«
= 1 , (4.18)

rank

„
w001∆001

−1 w101∆101
−1 w011∆011

−1 w111∆111
−1

w000∆000
−1 w100∆100

−1 w010∆010
−1 w110∆110

−1

«
= 1 . (4.19)

In particular, the matrices in (4.17), (4.18), and (4.19) are the three flattenings (recall Definition
2.2.3 and Example 2.2.5) of the tensor W in the statement. By Lemma 2.2.16, they have all rank
one if and only if W has rank one.

Corollary 4.3.7. Let ffi be hexahedral. Then, ffi is birational of type (1, 1, 1) if and only if

wijk = ¸i ˛j ‚k ∆ijk (4.20)

for some (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) in (P1
C)

3.

Proof. The tensor W in (4.15) has rank one if and only if it lies in the Segre embedding of (P1
R)

3

(see §2.2).

Remark 4.3.8 (Nonzero, real, and positive weights). In particular, we must have ¸i ≠ 0, ˛j ̸= 0,
and ‚k ̸= 0 for every 0 ≤ i , j , k ≤ 1. Namely, if ¸i = 0 then the weights wi00,wi10,wi01, and wi11

are also zero, and the image of ffi lies in Σi∗ . The obvious observations hold for the other indices.
In applications, a designer is typically interested in rational maps with real coefficients. Because

of this, we will in general choose (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) in (P1
R)

3. Even more, nonnegative
weights are preferred in order to preserve the property that ffi

`
[0, 1]3

´
lies in the convex hull of the

control points. If the control points define a quadrilateral-faced hexahedron, positive weights can
be ensured by choosing ¸i ,˛j , ‚k > 0 and by Remark 4.3.5.
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4.3.3. Distance to birationality

We now address the question of measuring the distance of a trilinear rational map to the locus of
birational maps. Interestingly, Theorem 4.3.6 provides a way to quantify this distance. Specifically,
we introduce the following definition.

Definition 4.3.9 (Distance to birationality: hexahedral). Let ffi be hexahedral with real weights,
and let W in R2×2×2 be as in Theorem 4.3.6. We define the distance to birationality of ffi,
denoted by distbir(ffi), as the relative distance from W to the affine cone over the Segre variety
ff
`
P1
R × P1

R × P1
R
´
, with the Frobenius norm (Definition 2.2.20) in R2×2×2. More explicitly,

distbir(ffi) := min
P∈V

∥W − P∥
∥W ∥ (4.21)

Remark 4.3.10. Although ffi is defined up to nonzero constants for the vector of weights w =
(wijk)0≤i ,j ,k≤1 and the defining vectors of the boundary planes ffi , fij ,flk , any choice of such
constants yield proportional tensors W (the determinant is multilinear). In particular, for nonzero
constants –,—, we can write

min
P∈V

∥–W − P∥
∥–W ∥ = min

P∈V

∥–W − –—−1P∥
∥–W ∥ = min

P∈V

∥W − —−1P∥
∥W ∥ = min

P∈V

∥—W − P∥
∥—W ∥ ,

and distbir(ffi) is thus well defined.

Therefore, in order to compute a birational map that approximates ffi, we can solve the minimization
problem

min
P

distbir (M − P) where P = –¸⊗ ˛ ⊗ ‚ for some ¸,˛, ‚ in R2 and – ̸= 0 (4.22)

or simply

min
P

∥M − P∥ where P = –¸⊗ ˛ ⊗ ‚ for some ¸,˛, ‚ in R2 and – ̸= 0 , (4.23)

i.e. we can compute a rank-one CP decomposition of the tensor W (see §2.2.2.2).

Remark 4.3.11. Since the Frobenius norm is actually the Euclidean norm in R8, an optimal solution
to (4.23) is among the orthogonal projections of W onto the affine cone over ff

`
P1
R × P1

R × P1
R
´
.

By [88, Example 8.2], for a general W there are exactly 6 orthogonal projections onto this variety.

In the following example, we explicitly compute a birational map that approximates a hexahedral
rational map that is not birational.

Example 4.3.12 (Computation of a birational approximation: hexahedral). Consider the boundary
planes defined by the vectors (with exact rational entries!)

ff0 =
`
0.16 −0.45 −0.07 −0.14

´
, ff1 =

`
1.25 −0.63 −0.32 −0.63

´
,

fi0 =
`
0 0 0 1

´
, fi1 =

`
−1.18 0.18 0.51, 1

´
,

fl0 =
`
0 0 1 0

´
, fl1 =

`
−1.17 0.1 0.8 0.54

´
.



4.3. Hexahedral birational maps 107

Figure 4.2.: deformations of the Stanford bunny [172] using the hexahedral birational maps of
Example 4.3.12. To recover the intuition of a deformation of the unit cube, we have replaced the
monomial basis by the Bernstein basis (see §4.1.2). In the left image, we use w0

ijk = 1 for every
0 ≤ i , j , k ≤ 1. The right image showcases the effect of utilizing the birational weights extracted
from the rational rank-one approximation W 1 of the tensor W 0. These weight adjustments subtly
influence the deformation, while simultaneously ensuring the existence of an inverse transformation.

For each 0 ≤ i , j , k ≤ 1, we can use the formula (4.13) and express Pijk = Σi ∩ Tj ∩ Yk as the
exterior product

Pijk = ∆−1
ijk ffi ∧ fij ∧ flk (4.24)

where each ∆ijk can be computed using (4.14). Specifically, we find the exact rational numbers

∆000 = 0.45 , ∆100 = 0.63 , ∆010 = 0.4248 , ∆110 = 0.5166 ,

∆001 = 0.353 , ∆101 = 0.472 , ∆011 = 0.222854 , ∆111 = 0.271012 .

Suppose that we initialize the weights as w0
ijk = 1 for every 0 ≤ i , j , k ≤ 1. Then, the tensor

W 0 =

 
w0
ijk

∆ijk

!
0≤i ,j ,k≤1

given by

W 0
{k=0} =

„
2.2222 ... 2.3540 ...
1.5873 ... 1.9357 ...

«
, W 0

{k=1} =

„
2.8328 ... 4.4872 ...
2.1186 ... 3.6898 ...

«
does not have rank one. Using the Python library TensorFox [32], we compute the rational rank-one
approximation of W 0

W 1 =

 
w1
ijk

∆1
ijk

!
0≤i ,j ,k≤1

=

(¸0 , ¸1)⊗ (˛0 , ˛1)⊗ (‚0 , ‚1) = (1.56 , 1.24)⊗ (1.12 , 1.65)⊗ (1.02 , 1.71) ,

which yields the tensor

W 1
{k=0} =

„
1.7821 ... 2.6254 ...
1.4165 ... 2.0869 ...

«
, W 1

{k=1} =

„
2.9877 ... 4.4015 ...
2.3748 ... 3.4986 ...

«
.
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In particular, using W 1 we can upper bound the distance to birationality of ffi as

distbir(ffi) ≤
∥W 0 −W 1∥

∥W 0∥ = 0.0847 ...

Furthermore, by Corollary 1.2.16 recomputing w1
ijk = ¸i ˛j ‚k ∆

1
ijk renders ffi birational. Specifically,

we find the birational weights

w1
000 = 0.8019 ... , w1

100 = 0.8924 ... , w1
010 = 1.1153 ... , w1

110 = 1.0781 ... , (4.25)

w1
001 = 1.0546 ... , w1

101 = 1.1209 ... , w1
011 = 0.9809 ... , w1

111 = 0.9481 ...

Notice that, although we show approximations, the weights are exact since ¸i ,˛j , ‚k and ∆ijk are
rational numbers. In Figure 4.2, we present a comparison between the deformations resulting from
the original rational map, with uniform weights wijk = 1 for every 0 ≤ i , j , k ≤ 1, and its birational
approximation, utilizing the weights specified in (4.25).

4.3.4. Inverse rational map and base locus

At this point, we address the most important computational advantage of birational maps: the
efficient (and exact over Q) computation of preimages.

The following result presents explicit formulas for the inverse ffi−1 of a hexahedral birational map.
Moreover, we provide a minimal set of generators for the base ideal, and explain the contractions
and blow-ups.

Theorem 4.3.13. Let ffi be hexahedral, with weights as in Corollary 4.3.7. Then, ffi−1 is given by

y 7→ (−¸1 ff1(y) : ¸0 ff0(y))× (−˛1 fi1(y) : ˛0 fi0(y))× (−‚1 fl1(y) : ‚0 fl0(y)) .

Moreover, the base locus of ffi is the curve C ⊂ (P1
C)

3 defined by the ideal

B =

0@ X
0≤j ,k≤1

w0jk⟨ff1,P0jk⟩ tjuk ,
X

0≤i ,k≤1

wi0k⟨fi1,Pi0k⟩ siuk ,
X

0≤i ,j≤1

wij0⟨fl1,Pij0⟩ si tj

1A ,

and the base locus of ffi−1 is the union of the lines s = Σ0 ∩ Σ1, t = T0 ∩ T1, and u = Y0 ∩ Y1.
Additionally:

• ffi contracts the surfaces in
`
P1
C
´3 defined by the first, second, and third generators of B to

the lines s, t, and u, respectively

• If the lines s, t, and u mutually do not intersect, then ffi blows up C to the unique smooth
quadric Q ⊂ P3

C through the lines s, t, and u

Proof. By Corollary 4.3.7, a hexahedral rational map is birational if and only if the weights satisfy
(4.3.7) for some (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) in (P1

C)
3. In particular, we can write

f =
X

0≤i ,j ,k≤1

wijk Pijk si tjuk =
X

0≤i ,j ,k≤1

(¸i ˛j ‚k ∆ijk)
“
∆−1

ijk ffi ∧ fij ∧ flk

”
si tjuk =

X
0≤i ,j ,k≤1

(¸i ffi si ) ∧ (˛i fij tj) ∧ (‚k flk uk) = ff(s0, s1) ∧ fi (t0, t1) ∧ fl(u0, u1) ,
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where ff(s0, s1), fi (t0, t1), and fl(u0, u1) are as in Lemma 4.2.1 and Remark 4.2.2. Therefore, f
admits the linear syzygies

ff(s0, s1; y) = ¸0 ff0(y) s0 + ¸1 ff1(y) s1 = s0 g11(y)− s1 g01(y) ,

fi (t0, t1; y) = ˛0 fi0(y) t0 + ˛1 fi1(y) t1 = t0 g12(y)− t1 g02(y) ,

fl(u0, u1; y) = ‚0 fl0(y) u0 + ‚1 fl1(y) u1 = u0 g13(y)− u1 g03(y)

and ffi−1 is thus given by

y 7→ (g01(y) : g11(y))× (g02(y) : g12(y))× (g03(y) : g13(y)) .

Regarding the base locus of ffi, we find

ff0(f) = ¸1 s1 a , ff1(f) = −¸0 s0 a

where a = a(t0, t1, u0, u1) is proportional to the first generator of B (recall Remark 4.2.7). Similarly,
we find

fij(f) = (−1)j ˛j∗ tj∗ b , flk(f) = (−1)k ‚k∗ uk∗ c ,

where b and c are the second and third generators of B. Hence, the graded component V =
(B ∩N)(1,1,1) lies in C⟨f⟩. Since dimC V = 4, it follows that V = C⟨f⟩ and B defines the base
locus of ffi. On the other hand, the base ideal of ffi−1 is the intersection

(g01, g11) ∩ (g02, g12) ∩ (g03, g13) ,

which defines the union of the lines s, t, and u. Furthermore, by Remark 4.2.7 the first, second,
and third generators of B define the surfaces contracted by ffi to s, t, and u, respectively.

Finally, the pullback of B by ffi−1 (recall Definition 4.2.3) must yield a principal ideal J ⊂ C[y],
since as ffi is birational (the composition yields the identity on an open set) we find

(f0(g1, g2, g3) , f1(g1, g2, g3) , f2(g1, g2, g3) , f3(g1, g2, g3)) = q(y) (y0 , y1 , y2 , y3) ,

for some q(y) homogeneous and quadratic. If the lines s, t, and u mutually do not intersect, then
J is generated by a quadratic form that vanishes at the three of them. Therefore, by Lemma 2.2.23
J defines the unique smooth quadric through the lines.

Remark 4.3.14 (Base locus in practical applications). One of the primary applications of birational
transformations in CAGD is to ensure injectivity within a specific domain. While birational maps
are injective in an open (Zariski) set, they may lose this property on the contracted loci, and are
not even defined on the base locus. Therefore, having control over the base locus through its
explicit defining equations can prove valuable in practice. In particular, these equations serve as a
means to test whether the birational map is injective within a particular domain.

Example 4.3.15. Using the data of Example 4.3.12, the (exact!) inverse rational map of ffi is
given by

y 7→ (1.24 ff1(y) : 1.56 ff0(y))× (1.65 fi1(y) : 1.12 fi0(y))× (1.71 fl1(y) : 1.02 fl0(y))

Moreover, since the lines s = Σ0 ∩ Σ1, t = T0 ∩ T1, and u = Y0 ∩ Y1 do not intersect, the base
locus of ffi is blown-up to the quadric Q through s, t, u, defined by the quadratic polynomialX

0≤i ,j≤1

wij1⟨fl0,Pij1⟩ (¸i∗ ffi∗(y)) (˛j∗ fij∗(y)) = ¸0 ¸1 ˛0 ˛1 ‚1
X

0≤i ,j≤1

∆ij1 yij1 ffi∗(y) fij∗(y)
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which, up to nonzero constant, is

q(y) = 86855198 y20 − 83702178 y0 y1 + 10747080 y21 − 61871537 y0 y2 + 34161786 y1 y2

+ 10516557 y22 − 154343278 y0 y3 + 93619656 y1 y3 + 50553377 y2 y3 + 58824388 y23 .

Additionally, the pullback polynomial q(f) yields a trilinear polynomial with the factors

h1(t,u) = 3907008000 t0u0 − 1190646000 t1u0 − 376698560 t0u1 + 47450751 t1u1 ,

h2(s,u) = 221972400 s0u0 − 39841200 s1u0 − 112388133 s0u1 + 8111542 s1u1 ,

h3(s, t) = 222986400 s0t0 − 435507520 s1t0 − 368641338 s0t1 + 721224457 s1t1 ,

which respectively define the surfaces contracted to the lines s, t, and u.

Remark 4.3.16 (Polynomial hexahedral birational maps). Polynomial maps that are nonrational,
i.e. the entries are given by polynomials and not rational functions, are sometimes preferred
for applications. In the conventional formulation in CAGD, using the Bernstein basis, this case
corresponds to wijk = 1 for every 0 ≤ i , j , k ≤ 1 since

f0 =
X

0≤i ,j ,k≤1

wijk bi (s0, s1) bj(t0, t1) bk(u0, u1) =
X

0≤i ,j ,k≤1

bi (s0, s1) bj(t0, t1) bk(u0, u1) = s0t0u0 ,

and in the affine chart A3
R of (P1

R)
3 given by s0 ̸= 0, t0 ̸= 0, and u0 ̸= 0 we can set f0 = 1.

Therefore, in this chart ffi : A3
R −→ A3

R restricts to a polynomial morphism. From our former results,
we derive the following corollary.

Corollary 4.3.17. Let ffi be hexahedral, and wijk = 1 for every 0 ≤ i , j , k ≤ 1. If the control points
define a parallelepiped, then ffi is birational of type (1, 1, 1).

Proof. For the same considerations in Theorem 4.3.13, ffi is birational of type (1, 1, 1) if and only
if the rank conditions (4.6), (4.9), and (4.11) are simultaneously satisfied. Since wijk = 1 for every
0 ≤ i , j , k ≤ 1, this is equivalent to the matrices„

⟨ff0,P1jk⟩
⟨ff1,P0jk⟩

«
0≤j ,k≤1

,

„
⟨fi0,Pi1k⟩
⟨fi1,Pi0k⟩

«
0≤i ,k≤1

,

„
⟨fl0,Pij1⟩
⟨fl1,Pij0⟩

«
0≤i ,j≤1

having rank one. On the other hand, we can write

⟨ffi ,Pî jk⟩ = ∥ffi∥ ⟨∥ffi∥−1 ffi ,Pî jk⟩ = ∥ffi∥ sdist(Σi ,Pî jk) ,

where sdist(·, ·) is the signed Euclidean distance. Hence,

rank

„
∥ff0∥ sdist(Σ0,P1jk)
∥ff1∥ sdist(Σ1,P0jk)

«
0≤j ,k≤1

= rank

„
sdist(Σ0,P1jk)
sdist(Σ1,P0jk)

«
0≤j ,k≤1

.

In particular, the rank is one if the boundary planes Σ0, Σ1 are parallel. The analogous observations
hold for the remaining two matrices.
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Figure 4.3.: a birational deformation of the hexahedral birational map of Example 4.3.12. The
boundary plane Σ1, previously defined by the vector ff1 = (1.25 − 0.63 − 0.32 − 0.63), is updated
to the plane defined by ff1 = (2.31 − 0.84 − 0.2 − 0.32), yielding new control points. Additionally,
the weights are also updated to preserve birationality.

4.3.5. Deformation of birational maps

The construction of nets of control points for hexahedral rational maps of §4.3.1 and Corollary 4.3.7
yield a dominant rational parametrization of the irreducible component of trilinear birational maps
of type (1, 1, 1). Unlike the dominant rational parametrization that follows from the geometric
classification of §3.4, based on the composition of a representative with the automorphisms in
Aut((P1

C)
3) and Aut(P3

C) (used in the proof of Corollary 3.4.12), we provide a parametrization where
a designer grasps the geometry of the constructed map. Namely, birational maps are parametrized
by means of the boundary planes and weights.

By (4.13), the control points of a hexahedral rational map are defined by 6 nonzero vectors
ff0,ff1, fi0, fi1,fl0, and fl1 defining the boundary planes, i.e. by a point in G(1,1,1) := ((P3

R)
2)3. In

particular, we have the dominant rational parametrization

Φ(1,1,1) : (P1
R)

3 × G(1,1,1) 99K W ×P(1,1,1) (4.26)

(¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1)

× 7→ (... : ∆ijk ¸i ˛j ‚k : ...)× (... : ∆−1
ijk ffi ∧ fij ∧ flk : ...)

(ff0,ff1)× (fi0, fi1)× (fl0,fl1)

Therefore, ffi can be deformed by adjusting the control points deciding new boundary planes,
updating the ∆ijk accordingly, and adjusting the weights as a point in (P1

R)
3.

The following is an example of a deformation of the hexahedral birational map constructed in
Example 4.3.12.

Example 4.3.18 (Deformation of a hexahedral birational map). Starting where we left it at Example
4.3.12, suppose that we want to update the control points, as a user frequently does during the
design process. However, we want to do so preserving birationality. In particular, the property of
being hexahedral must(!) be preserved. If a single control point is moved, the new rational map is
no longer hexahedral. Therefore, several control points must be moved simultaneously, making the
update cumbersome.
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An easier approach is to update the boundary planes instead, and compute the control points
accordingly using the identity (4.24). In our example, we update

ff1 =
`
1.25 −0.63 −0.32 −0.63

´
−→ ff1 =

`
2.31 −0.84 −0.2 −0.32

´
.

In particular, for each 0 ≤ j , k ≤ 1 the values of ∆1jk → ∆2
1jk must be recomputed accordingly

using (4.14). Therefore, if we recompute the weights using

w1jk = ¸1 ˛j ‚k ∆
2
ijk

for each 0 ≤ j , k ≤ 1 and the same (¸0 , ¸1) ⊗ (˛0 , ˛1) ⊗ (‚0 , ‚1) as in Example 4.3.12,
birationality is preserved.

4.4. Pyramidal birational maps

In this section, we study the second family of birational maps: the class of pyramidal birational
maps. This name is motivated by the geometry of the control points of birational maps of type
(2, 1, 1), (1, 2, 1) and (1, 1, 2) (see Proposition 4.4.3).

Definition 4.4.1 (Pyramidal rational map). A trilinear rational map is pyramidal if it satisfies
Property 1 and for one of the three parameters:

(i) The four boundary lines intersect at a point

(ii) The two boundary surfaces are quadrics

Remark 4.4.2. In Definition 4.4.1, we require that a pair of boundary surfaces are smooth quadrics
to exclude hexahedral rational maps.

4.4.1. Construction of control points

Once again, we start explaining the necessary constraints on the control points for birationality to
be possible. Firstly, we prove that general birational maps of type (1, 1, 2), (1, 2, 1), and (2, 1, 1)
are pyramidal. Without loss of generality, we can restrict to the first type.

Proposition 4.4.3. If ffi is a general birational map of type (1, 1, 2), then it is pyramidal. In
particular, the boundary u-lines meet at a point V (in P3

R).

Proof. By Theorem 3.4.6, ffi has a base point defined by the ideal

(a(s0, s1) , b(t0, t1) , e(u0, u1)) (4.27)

for some linear a(s0, s1), b(t0, t1), and e(u0, u1) in R . In particular, the pullback ideal by ffi

(a(g01, g11) , b(g02, g12) , e(g03, g13)) (4.28)

is principal in C[y]. More specifically, the blow-up ı : X = BlZ (P1
C × P1

C × P1
C) −→ (P1

C × P1
C × P1

C)
of P1

C × P1
C × P1

C along the base locus Z of ffi is isomorphic to the graph of ffi (see §2.1.4). In
particular, the exceptional divisor of this blow-up has two irreducible components, which are Cartier
divisors (i.e. they have codimension one in X ), since X can be obtained by blowing up P1

C×P1
C×P1

C
along the curve in Z and the base point in (4.27), subsequently. Hence, the image of each of these
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Figure 4.4.: the generation of the control points of a pyramidal rational map, computed using
Construction 2. The left image shows the choice of the boundary u-lines through a common point.
The right image illustrates a choice of two control points per line.

irreducible components, by the morphism X −→ P3
C that extends ffi, is a surface in P3

C. By definition,
the surface associated to the irreducible point (4.27) in Z is defined by the pullback ideal in (4.28).
Therefore, the linear polynomials a(g01, g11) and b(g02, g12) must be proportional. Geometrically,
this means that the boundary planes Σ0, Σ1,T0, and T1 are not independent, or equivalently, they
intersect at a point V. Since uij = Σi ∩ Tj , we find

u00 ∩ u10 ∩ u01 ∩ u11 = Σ0 ∩ Σ1 ∩ T0 ∩ T1 = V ,

and ffi is pyramidal.

Proposition 4.4.3 combined with Theorem 4.4.7, presented and proven in §4.4.2, provides an
answer to Question 4.1.1 for trilinear birational maps of type (1, 1, 2). Specifically, we find the
following corollary.

Corollary 4.4.4. The set

P(1,1,2) = { {Pijk}0≤i ,j ,k≤1 : ffi is pyramidal }

answer Question 4.1.1. More explicitly, for every net of control points in P(1,1,2) we can compute
weights that render ffi birational of type (1, 1, 2).

In applications, nets of control points in P(1,1,2) can be generated using the following construction.
The generation of a net of control points using Construction 2 is illustrated in Figure 4.4.

Construction 2 (Control points for pyramidal rational maps). A net of control points in P(1,1,2)

can be generated as follows:

1. Choose a point V in P3
R (green point in the left image of Figure 4.4). Points at ∞ are

allowed, meaning that the boundary u-lines are parallel

2. For each 0 ≤ i , j ≤ 1, choose an affine line uij (green lines in Figure 4.4) through V

3. Choose two distinct affine points Pij0 and Pij1 on uij , different from V
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4.4.2. Effective computation of weights

In this section, we derive an analogous birationality criterion to Theorem 4.3.6 for pyramidal
birational maps. To properly state this result, we introduce some necessary notation. Without loss
of generality, we can assume that ffi has type (1, 1, 2). Because of this choice, when we refer to a
“pyramidal rational map”, we actually refer to a “pyramidal rational map of type (1, 1, 2)”.

Notation 4.4.5. Let ffi be pyramidal. We introduce the following notation:

(i) For each 0 ≤ i , j ≤ 1, the boundary planes Σi and Tj are defined by the vectors ffi and fij in
R4, respectively. Moreover, we denote s = Σ0 ∩ Σ1 and t = T0 ∩ T1.

(ii) For each k = 0, 1, Yk is defined by the symmetric matrix flk in R4×4.

(iii) On the other hand, there is a plane Π through the lines s and t, defined by a vector ı in R4.
Namely, we can write

V = Σ0 ∩ Σ1 ∩ T0 ∩ T1 = (Σ0 ∩ Σ1) ∩ (T0 ∩ T1) = s ∩ t ,

so the lines s, t intersect. In particular, we find (–0 : –1) and (—0 : —1) in P1
R such that

ı = –0 ff0 + –1 ff1 = —0 fi0 + —1 fi1 .

Additionally, for each 0 ≤ i , j , k ≤ 1 we define

∆ijk =
1

⟨ı,Pijk⟩
,

as well as the 2× 2× 2 tensor

W =

„
wijk

∆ijk

«
0≤i ,j ,k≤1

. (4.29)

Remark 4.4.6 (Nonzero and positive ∆ijk). Notice that ∆ijk is not defined if and only if Pijk = V.
Property 1 excludes this possibility, since all the boundary lines are distinct. Specifically, if Pijk = V
for some 0 ≤ i , j , k ≤ 1 we find

sjk = P0jkP1jk = Pi∗jkV = Pi∗j0Pi∗j1 = ui∗k ,

and similarly tik = uj∗k . Furthermore, if all the control points are left at “one side of Π”, i.e. if
they lie in one of the two halfspaces defined by Π in A3

R, then the vector ı can be chosen so that
⟨ı,Pijk⟩ > 0, and hence ∆ijk > 0, for every 0 ≤ i , j , k ≤ 1.

We now prove the first main result of the section. It is a characterization of birationality for
pyramidal maps relying on tensor rank.

Theorem 4.4.7. Let ffi be pyramidal. The following are equivalent:

(i) ffi is birational of type (1, 1, 2)

(ii) The tensor W has rank one
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(iii) The trilinear polynomial ⟨ı, f⟩ has three linear factors

Proof. Clearly, (ii) and (iii) are equivalent, since

⟨ı, f⟩ =
X

0≤i ,j ,k≤1

wijk ⟨ı,Pijk⟩ si tjuk =
X

0≤i ,j ,k≤1

wijk

∆ijk
si tjuk .

Therefore, it is sufficient to prove that (i) and (ii) are equivalent. By Theorem 3.5.1, ffi is birational
of type (1, 1, 2) if and only if f admits syzygies of degrees (1, 0, 0), (0, 1, 0), and not (0, 0, 1). Since
Y0,Y1 are smooth quadrics, f cannot have a syzygy of degree (0, 0, 1). Therefore, by Lemma
4.2.1 and Remark 4.2.2, ffi is birational if and only if the rank conditions (4.6) and (4.9) hold
simultaneously.

Once more, we rewrite these rank conditions in terms of the flattenings of W . Namely, since

⟨ffi ,Pijk⟩ = 0 , ⟨fij ,Pijk⟩ = 0

for every 0 ≤ i , j , k ≤ 1, we can write

–i∗⟨ffi∗ ,Pijk⟩ = ⟨–0 ff0 + –1 ff1,Pijk⟩ = ⟨ı,Pijk⟩ ,
—j∗⟨fij∗ ,Pijk⟩ = ⟨—0 fi0 + —1 fi1,Pijk⟩ = ⟨ı,Pijk⟩ .

Therefore, (4.6) and (4.9) are respectively equivalent to

rank

 
w1jk ∆

−1
1jk

w0jk ∆
−1
0jk

!
0≤j ,k≤1

= 1 , rank

„
wi1k ∆

−1
i1k

wi0k ∆
−1
i0k

«
0≤i ,k≤1

= 1 ,

which are the first two flattenings of W . By Lemma 2.2.16, the result follows.

Corollary 4.4.8. Let ffi be pyramidal. Then, ffi is birational of type (1, 1, 2) if and only if

wijk = ¸i ˛j ‚k ∆ijk (4.30)

for some (¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) in (P1
C)

3.

Proof. Analogous to the proof of Corollary 4.3.7.

Remark 4.4.9 (Nonzero, real, and positive weights). The same observations as in Remark 4.3.8,
combined with Remark 4.5.6, apply.

Remark 4.4.10 (Deformation of pyramidal birational maps). Construction 2, combined with
Theorem 4.4.7, provides an effective way to deform pyramidal birational maps, as explained in
§4.3.5. In particular, it offers users the flexibility to continuously deform the net of control points
by choosing new positions for V, adjusting the lines uij for each 0 ≤ i , j ≤ 1, and making choices
regarding the control points. Furthermore, Corollary 4.4.8 asserts that birational weights can be
selected by adjusting specific parameters that depend rationally on the coordinates of the control
points.
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4.4.2.1. The contractions of a pyramidal birational map

From Corollary 4.4.8, we can recover useful information about the contractions of ffi. In particular,
we have the following result.

Corollary 4.4.11. Let ffi be pyramidal with weights as in Corollary 4.4.8, and define the polynomials

a(s0, s1) =

˛̨̨̨
s0 s1

−¸1 ¸0

˛̨̨̨
, b(t0, t1) =

˛̨̨̨
t0 t1

−˛1 ˛0

˛̨̨̨
, c(u0, u1) =

˛̨̨̨
u0 u1

−‚1 ‚0

˛̨̨̨
.

Then:

(i) ffi contracts the surface a(s0, s1) = 0 to the line t

(ii) ffi contracts the surface b(t0, t1) = 0 to the line s

(iii) ffi contracts the surface c(u0, u1) = 0 to the point V

(iv) The base locus of u-surfaces, defined by Y0 ∩ Y1, contains the lines s and t

Proof. By (4.30), the pullback by ffi of the plane Π factorizes as

⟨ı, f⟩ =
X

0≤i ,j ,k≤1

(¸i si ) (˛j tj) (‚k uk) = a(s0, s1) b(t0, t1) c(u0, u1) .

Since the boundary lines ti0, ti1 lie in Σi for each i = 0, 1, and by definition Σi ∩Π = Σ0 ∩Σ1 = s,
all the boundary t-lines intersect Π at s. Thus, for each 0 ≤ i , k ≤ 1 the point Bik(−˛1,˛0) lies
in s, and ffi contracts b(t0, t1) = 0 to s. Similarly, it follows that ffi contracts a(s0, s1) = 0 to t.
Additionally, all the boundary u-lines meet Π at V, and ffi contracts c(u0, u1) = 0 to V.

On the other hand, by Theorem 3.5.1, since ffi is birational of type (1, 1, 2) it admits syzygies

ff(s0, s1; y) =

˛̨̨̨
s0 s1

ff′
0(y) ff′

1(y)

˛̨̨̨
, ‰(s0, s1, u0, u1; y) =

˛̨̨̨
s0 s1

‰0(u0, u1; y) ‰1(u0, u1; y)

˛̨̨̨
of degrees (1, 0, 0; 1) and (1, 0, 1; 1), respectively. In particular, the inverse for the parameter
(u0 : u1), which defines the pencil of u-surfaces, is defined by˛̨̨̨

ff′
0(y) ff′

1(y)
‰0(u0, u1; y) ‰1(u0, u1; y)

˛̨̨̨
.

Since the ideal Bs = (ff′
0(y),ff

′
1(y)) = (ff0(y),ff1(y)) defines s, it follows that all the u-surfaces

contain s. Similarly, we deduce that all the u-surfaces contain t.

Remark 4.4.12 (Computation of the quadric boundary surfaces). It is convenient to keep the
following parallelism in mind. In the same manner that

“three (not aligned) points determine a unique plane”,

by Lemma 2.2.23 we have that

“three (mutually nonintersecting) lines determine a unique (smooth) quadric”.
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In the same way that the defining vector of a plane can be computed as the wedge of three points on
it, we can compute the defining symmetric matrix of a smooth quadric as the wedge of the vectors
in C10 (or R10) given as the image by the Veronese map (in degree two, with four homogeneous
variables) of three distinct points per line, for three lines.

By Corollary 4.4.11, the lines s, t lie on the boundary u-surfaces Y0,Y1. Therefore, Yk can be
extracted from the lines s, s0k , s1k or t, t0k , t1k .

We can extract further geometric information about a pyramidal birational map. To this purpose,
we introduce the following notation.

Notation 4.4.13. Let ffi be pyramidal. With Notation 4.4.5, for each k = 0, 1 define

›k =
X

0≤i ,j≤1

(−1)i+j ∆ijk ,

and for each 0 ≤ i , j ≤ 1, define the point

Qij = ›1∆ij0 Pij0 − ›0∆ij1 Pij1 .

The points Q00, Q00, Q00, and Q00 lie in a common plane Θ, defined by a vector „ in R4, since
by definition we have the relation

Q00 −Q10 −Q01 +Q11 = 0 ,

implying det (Q00,Q10,Q01,Q11) = 0.

The following corollary asserts that the pullback by ffi of the plane Θ admits a factor of degree
(0, 0, 1).

Corollary 4.4.14. Let ffi be pyramidal, with weights as in Corollary 4.4.8. With Notation 4.4.13,
define the polynomial

e(u0, u1) =

˛̨̨̨
u0 u1

−‚1›1 ‚0›0

˛̨̨̨
.

Then, we find a bilinear polynomial h = h(s0, s1, t0, t1) such that ⟨„, f⟩ = e(u0, u1) h(s0, s1, t0, t1) .
In particular:

(i) The image by ffi of the surface e(u0, u1) = 0 is dense in Θ

(ii) ffi contracts the surface h(s0, s1, t0, t1) = 0 to a plane conic C in Θ

(iii) The rank-two quadric Θ ∪ Π lies in the pencil of u-surfaces

Proof. For each 0 ≤ i , j ≤ 1, we find

Cij(−‚1›1, ‚0›0) = ¸i ˛j (‚0∆ij0 Pij0 (−‚1›1) + ‚1∆ij1 Pij1 (‚0›0))

= ¸i ˛j ‚0 ‚1 (−∆ij0 Pij0 ›1 +∆ij1 Pij1 ›0) = −¸i ˛j ‚0 ‚1Qij .

Since Θ contains Qij for every 0 ≤ i , j ≤ 1, it follows that the pullback polynomial ⟨„, f⟩ admits
e(u0, u1) as a factor. In particular, the specialization of ffi to (u0 : u1) = (−‚1›1 : ‚0›0) yields a
bilinear birational map to the plane Θ. The image of this rational map is dense in Θ, since otherwise
the points Q00, Q10, Q01, and Q11 are colinear and ffi would not be dominant. Therefore, one of
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the quadrics in the pencil of u-surfaces contains Θ. Since by Corollary 4.4.11 all the u-surfaces
contain Π, it follows that the rank-two quadric Θ ∪ Π is a u-surface. In particular, the base locus
of the u-surfaces is supported in Θ ∪ Π. Thus, the intersection of any general u-surface with Θ
is a plane conic C , and the base locus Y0 ∩ Y1 of the u-surfaces is s ∪ t ∪ C . In particular, the
pullback of the defining ideal of C is principal, and its generator must divide ⟨„, f⟩ since C ⊂ Θ.
Moreover, for each k = 0, 1 we have

flk(f) = uk∗ a(s0, s1) b(t0, t1) c(u0, u1) h
′(s0, s1, t0, t1)

since a, b, and c respectively define the pullbacks of s, t, and V (recall Corollary 4.4.11). Hence,
h′ has degree (1, 1, 0), and we conclude that h and h′ are proportional.

Example 4.4.15 (Geometry of a pyramidal birational map). Consider the control points

P000 =
`
1 −2 −2 −1

2

´
, P100 =

`
1 2 −2 0

´
, P010 =

`
1 −2 2 0

´
, P110 =

`
1 2 2 −1

2

´
,

P001 =
`
1 −2

3 −2
3

5
2

´
, P101 =

`
1 1

2 −1
2 3
´
, P011 =

`
1 −1

2
1
2 3
´
, P111 =

`
1 2

3
2
3

5
2

´
.

All the boundary u-lines, appearing as green lines in Figure 4.5, meet at the point V =
`
1 0 0 4

´
,

so the control points define a pyramidal map, depicted in Figure 4.5. In particular, the boundary s-
and t-surfaces are defined by the vectors

ff0 =
`
32 17 1 −8

´
, ff1 =

`
−32 17 1 8

´
,

fi0 =
`
32 1 17 −8

´
, fi1 =

`
−32 1 17 8

´
and the boundary u-surfaces by the symmetric matrices

fl0 =

0BB@
1024 0 0 2048
0 17 145 0
0 145 17 0

2048 0 0 −1088

1CCA , fl1 =

0BB@
3584 0 0 −1088
0 −17 −145 0
0 −145 −17 0

−1088 0 0 320

1CCA .

In particular, the plane Π, appearing in red in Figure 4.5, through the lines s = Σ0 ∩ Σ1 and
t = T0 ∩ T1, appearing as red lines in Figure 4.5, is defined by the vector

ı =
`
4 0 0 −1

´
.

Similarly, using Notation 4.4.13 we compute (›0 : ›1) = (1 : 12), as well as the points

Q00 =
`
1 −22

9 −22
9 −3

2

´
, Q10 =

`
1 11

4 −11
4 −3

2

´
,

Q01 =
`
1 −11

4
11
4 −3

2

´
, Q10 =

`
1 22

9
22
9 −3

2

´
,

which span the plane Θ, appearing in blue in Figure 4.5, defined by the vector

„ =
`
3 0 0 2

´
.
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Figure 4.5.: the geometric elements involved in the pyramidal map of Example 4.4.15. Specifically,
we have replaced the monomial basis by the Bernstein basis, to recover the geometric intuition of
a deformation of the unit cube. The lines s = Σ0 ∩ Σ1 and t = T0 ∩ T1 appear in red, and lie
on the plane Π, also in red. The point Qij appears in blue for each 0 ≤ i , j ≤ 1, and lies on the
plane Θ, also in blue. If the pyramidal map is birational, the base locus of its inverse consists of
the union of the lines s, t and a plane conic C supported on Θ.

4.4.3. Distance to birationality

We now extend the notion of distance to birationality, introduced in §4.3.3, to pyramidal rational
maps. The following definition is the immediate rephrasing of Definition 4.3.9.

Definition 4.4.16 (Distance to birationality: pyramidal). Let ffi be pyramidal with real weights, let
V ⊂ R2×2×2 be the affine cone over ff

`
P1
R × P1

R × P1
R
´
, and let W be as in Theorem 4.4.7. We

define the distance to birationality of ffi, denoted by distbir(ffi), as

distbir(ffi) := min
P∈V

∥W − P∥
∥W ∥ (4.31)

Example 1.2.8 in §1.2.3 shows an example of the computation of a birational approximation to a
pyramidal map that is not birational, according to Definition 4.5.12.

4.4.4. Inverse rational map and base locus

In this subsection, we derive formulas for the inverse of a pyramidal birational map, as well as the
defining equations of the irreducible components of the base locus.

Notation 4.4.17. By Corollary 4.4.14, the rank-two quadric Π ∪Θ is a u-surface. Therefore, for
some (0 : 1) in P1

R, the quadric Π ∪Θ is defined by the symmetric matrix

0 fl0 + 1 fl1 . (4.32)
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Remark 4.4.18. Notice that the points (–0 : –1), (—0 : —1), and (0 : 1) in P1
R are easy to

compute. Namely, to compute (–0 : –1) and (—0 : —1) we can just choose a general point P in Π
and respectively solve the linear equations

–0 ff0(P) + –1 ff1(P) = 0 , —0 fi0(P) + —1 fi1(P) = 0 .

Similarly, to compute (0 : 1) we can take a general P in Θ, and solve

0 fl0(P) + 1 fl1(P) = 0 .

Theorem 4.4.19. Let ffi be pyramidal, with weights as in Corollary 4.4.8. With the notation of
Corollaries 4.4.11 and 4.4.14, the inverse rational map ffi−1 is given by

(¸1 –1 ff1(y) : ¸0 –0 ff0(y))× (˛1 —1 fi1(y) : ˛0 —0 fi0(y))× (‚1 ›1 1 fl1(y) : ‚0 ›0 0 fl0(y))

Moreover, the base locus of ffi is defined by the ideal

B = (a, b, e) ∩ (c , h) , (4.33)

and the base locus of ffi−1 is the union of the lines s, t and the plane conic C ⊂ Θ. Additionally,
we have the following:

(i) ffi blows up the base point (a, b, e) to the plane Π

(ii) If h is irreducible, ffi blows up the base curve (c, h) to the cone through C of vertex V

Proof. First, we deduce the inverse for the parameters (s0 : s1) and (t0 : t1). We have„
w1jk ⟨ff0,P1jk⟩
w0jk ⟨ff1,P0jk⟩

«
0≤j ,k≤1

=

„
–−1
0 w1jk ⟨ı,P1jk⟩

−–−1
1 w0jk ⟨ı,P0jk⟩

«
0≤j ,k≤1

=

„
–−1
0 ¸1 ˛j ‚k

−–−1
1 ¸0 ˛j ‚k

«
0≤j ,k≤1

,

and by Lemma 4.2.1, it follows that

ff(s0, s1; y) = ¸0 –0 ff0(y) s0 − ¸1 –1 ff1(y) s1 =

˛̨̨̨
s0 s1

¸1 –1 ff1(y) ¸0 –0 ff0(y)

˛̨̨̨
(4.34)

is syzygy of f of degree (1, 0, 0), which yields the inverse for (s0 : s1). Similarly, it follows that

fi (t0, t1; y) = ˛0 —0 fi0(y) t0 − ˛1 —1 fi1(y) t1 =

˛̨̨̨
t0 t1

˛1 —1 fi1(y) ˛0 —0 fi0(y)

˛̨̨̨
(4.35)

is also a syzygy of f of degree (0, 1, 0), which yields the inverse for (t0 : t1). On the other hand,
the relation of multidegree (0, 0, 1; 2)

fl(u0, u1; y) =

˛̨̨̨
u0 u1

‚1 ›1 1 fl1(y) ‚0 ›0 0 fl0(y)

˛̨̨̨
(4.36)

vanishes after the specialization y 7→ f, and hence lies in the Rees ideal of ffi. Specifically, by
definition fl(u0, u1; f) vanishes for

(u0 : u1) = (1 : 0) , (u0 : u1) = (0 : 1) . (4.37)
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Additionally, if e(u0, u1) = 0, or equivalently if (u0 : u1) = (−‚1›1 : ‚0›0), we find˛̨̨̨
−‚1›1 ‚0›0

‚1 ›1 1 fl1(y) ‚0 ›0 0 fl0(y)

˛̨̨̨
= −‚0 ‚1 ›0 ›1 (0 fl0(y) + 1 fl1(y)) ,

which defines the rank-two quadric Π ∪ Θ (recall Notation 4.4.17). Moreover, as the image of
e(u0, u1) = 0 lies in Θ, the specialization fl(u0, u1; f) vanishes at (u0 : u1) = (−‚1›1 : ‚0›0).
On the other hand, the pullback fl(u0, u1; f) is either zero or a polynomial of degree (2, 2, 3) in
R. Moreover, it can be regarded as polynomial of degree (0, 0, 2), since by the contractions of
ffi described in Corollaries 4.4.11 and 4.4.14 the pullback polynomial flk(f) is proportional to the
product

uk∗ a(s0, s1) b(t0, t1) c(u0, u1) h(s0, s1, t0, t1) ,

as Y0 ∩ Y1 = s ∪ t ∪ C . Nevertheless, this polynomial of degree (0, 0, 2) admits the two roots in
(4.37), as well as (u0 : u1) = (−‚1›1 : ‚0›0). Therefore, fl(u0, u1; f) must be identically zero.

Regarding the base locus of ffi, the vector space V = B(1,1,1) contains the polynomials

s0 b c , s1 b c , a t1 c , a t0 c , e h ,

which are respectively proportional to the polynomials in C⟨f⟩ given by

⟨ff1, f⟩ , ⟨ff0, f⟩ , ⟨fi0, f⟩ , ⟨fi1, f⟩ , ⟨„, f⟩ .

Additionally we have dimC V = 4, implying that V = C⟨f⟩. On the other hand, by Corollaries
4.4.11 and 4.4.14 it follows that the base locus of ffi−1, defined by

(ff0(y),ff1(y)) ∩ (fi0(y), fi1(y)) ∩ (fl0(y),fl1(y)) = (fl0(y),fl1(y)) ,

is s ∪ t ∪C . Finally, since (a, b, e) is prime its pullback by ffi−1 is a principal ideal C[y]. In particular,
a(f) (resp. b(f)) define the plane Π. Hence, ffi blows up the base point (a, b, e) to Π. On the other
hand, if h is irreducible, the ideal (c, h) is also prime. Hence, the pullback J by ffi−1 of (c, h) is
principal. Additionally, since the point V is a singular point in Y0 ∩Y1 = s ∪ t ∪ C and ffi contracts
c = 0 to V, it follows that J defines a quadric with a singular point at V. Therefore, J defines the
cone through C of vertex V.

In the following example, we explicitly compute the inverse of a pyramidal birational map with
the same control points as in Example 4.4.15. Moreover, we provide the defining equations of the
irreducible components of the base locus, and the blown-up surfaces.

Example 4.4.20 (Inverse of a pyramidal birational map). Continuing with Example 4.4.15, using
Remark 4.4.18 we compute

(–0 : –1) = (1 : −1) , (—0 : —1) = (1 : −1) , (0 : 1) = (1 : 1) .

If we consider weights as in Corollary 4.4.7, defined by the “easy” choice of

(¸0 : ¸1)× (˛0 : ˛1)× (‚0 : ‚1) = (1 : 1)× (1 : 1)× (1 : 1) ,

the inverse rational map ffi−1 is defined by

y 7→ (−ff1(y) : ff0(y))× (−fi1(y) : fi0(y))× (12fl1(y) : fl0(y)) .
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In particular, the base ideal B of ffi is

(a, b, e) ∩ (c , h) = (s0 + s1 , t0 + t1 , u0 + 12 u1) ∩ (u0 + u1 , 16 s0t0 + 27 s1t0 + 27 s0t1 + 16 s1t1)

and furthermore:

(i) ffi contracts (s0 : s1) = (−1 : 1) to the line t

(ii) ffi contracts (t0 : t1) = (−1 : 1) to the line s

(iii) ffi contracts (u0 : u1) = (−1 : 1) to the point V

(iv) ffi restricts to a (plane) bilinear birational map ffi : (P1
R)

2 99K Θ at (u0 : u1) = (−12 : 1)

(v) ffi contracts h = 0 to a plane conic C ⊂ Θ

Additionally, ffi blows up the base point (a, b, e) to the plane Π, and since h(s, t) = 16 s0t0 +
27 s1t0 + 27 s0t1 + 16 s1t1 is irreducible, it also blows up the base curve defined by (c, h) to the
cone defined by the quadratic equation h(g1, g2), which is proportional to

44032 y20 − 187 y21 − 3190 y1y2 − 187 y22 − 22016 y0y3 + 2752 y23 .

Remark 4.4.21 (Polynomial pyramidal birational maps). Similarly to the case of hexahedral
birational maps, the following corollary is straightforward.

Corollary 4.4.22. Let ffi be pyramidal, and wijk = 1 for every 0 ≤ i , j , k ≤ 1. If the pairs Σ0, Σ1

and T0,T1 define parallel planes, then ffi is birational of type (1, 1, 2).

Proof. By the proof of Corollary 4.3.17, each of the rank conditions (4.6), (4.9) are satisfied if the
corresponding pair of boundary surfaces are parallel planes. By Theorem 3.5.1, ffi is birational of
type either (1, 1, 2), (1, 2, 1), or (2, 1, 1) if and only if exactly two of these rank conditions hold.

4.5. Scaffold birational maps

We now study the third family of birational maps: the class of scaffold birational maps. Again, this
name comes from the resemblance of the geometry of trilinear birational maps of type (1, 2, 2),
(2, 1, 2) and (2, 2, 1). A “scaffold” typically consists of four lines s00, s10, s01, s11 that support a
sequence of planar platforms, like the s-parametric planes.

Definition 4.5.1 (Scaffold rational map). A trilinear rational map is scaffold if it satisfies Property
1 and all the boundary surfaces are quadrics except for one of the three parameters, for which:

(i) The two boundary surfaces are planes, that intersect at a line ‘

(ii) The four boundary lines intersect two lines r0, r1, and these two intersect ‘

Remark 4.5.2. In Definition 4.5.1, we require that two pairs of boundary surfaces are smooth
quadrics to exclude the possible types (1, 1, 2), (1, 2, 1), (2, 1, 1), and (1, 1, 1).
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4.5.1. Construction of control points

As for pyramidal maps, we begin discussing the necessary constraints on the control points for
birationality. Namely, a general birational map of type either (1, 2, 2), (2, 1, 2), or (2, 2, 1) must be
scaffold.

Proposition 4.5.3. If ffi is a general birational map of type (1, 2, 2), then it is scaffold. Moreover,

T0 ∩ T1 = s ∪ x1 ∪ x2 ∪ y , Y0 ∩ Y1 = s ∪ x1 ∪ x2 ∪ z ,

where:

(i) x1, x2 are the unique two lines that meet sjk for every 0 ≤ j , k ≤ 1 (Lemma 2.2.24)

(ii) y is the line through the points u00 ∩ u01 and u10 ∩ u11

(iii) z is the line through the points t00 ∩ t01 and t10 ∩ t11

Proof. We start proving that ffi is scaffold. By Theorem 3.4.8, ffi has two base points defined by
the ideals

(a1(s) , b1(t) , c1(u)) , (a2(s) , b2(t) , c2(u)) (4.38)

for some linear ar (s), br (t), cr (u) in R , for each r = 1, 2. In particular, the pullback ideals by ffi−1

(a1(g1) , b1(g2) , c1(g3)) , (a2(g1) , b2(g2) , c2(g3)) (4.39)

are principal in C[y], for similar considerations as in the proof of Proposition 4.4.3. Therefore, we
can write

br (g2) = ar (g1)Fr (y) , cr (g3) = ar (g1)Gr (y)

for some linear forms Fr (y),Gr (y) in C[y]. Now, we look at the base loci of the pencils of t- and
u-surfaces, respectively Zt and Zu. These are defined by the ideals in C[y]

Bt = (g2) = (g02 , g12) = (b1(g2) , b2(g2)) = (a1(g1)F1(y) , a2(g1)F2(y)) =

(a1(g1) , a2(g1)) ∩ (a1(g1) , F2(y)) ∩ (F1(y) , a2(g1)) ∩ (F1(y) , F2(y))

and

Bu = (g3) = (g03 , g13) = (c1(g3) , c2(g3)) = (a1(g1)G1(y) , a2(g1)G2(y)) =

(a1(g1) , a2(g1)) ∩ (a1(g1) , G2(y)) ∩ (G1(y) , a2(g1)) ∩ (G1(y) , G2(y)) .

In particular, these base loci are the unions of four lines. Since general quadrics in each of these
pencils are smooth, and therefore doubly ruled (Lemma 2.2.22), for each of the decompositions
above we find two lines in each of the rulings. Specifically, if three lines belong to the same ruling,
then they mutually do not intersect. By Lemma 2.2.23, all the t- and u-quadrics would be the
unique quadric through these three lines. Moreover, the ideal

(a1(g1) , a2(g1)) = (g01 , g11)

defines the line s. In particular, the line ‘ defined by (F1,F2) lies in the same ruling of s for a
general t-surface, since by definition s intersects the other two lines.
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On the other hand, the line uij lies in Tj for each 0 ≤ i , j ≤ 1. Moreover, it intersects s since
uij ⊂ Σi and this is a plane. Hence, s and uij must belong to different rulings in Tj , implying that
‘ intersects uij as well. Since ui0, ui1 lie in Σi and ‘ does not, ‘ must meet the point ui0 ∩ ui1 for
each i = 0, 1. Therefore, it follows that ‘ = y .

We conclude proving that x1, x2 are the remaining two lines in Zt . Since the line sjk does not
meet s for any 0 ≤ j , k ≤ 1, it lies in the same ruling as s in Tj . Hence, the lines defined by the
ideals (a1(g1),F2) and (F1, a2(g1)) must intersect the four sjk ’s, and they are x1 and x2.

With a similar argument, it follows that (G1,G2) defines the line z , and the ideals (a1(g1),G1)
and (G2, a2(g1)) define x1 and x2.

Proposition 4.5.3 combined with Theorem 4.5.7, presented and proven in §4.5.2, provides an
answer to Question 4.1.1 for trilinear birational maps of type (1, 2, 2). Specifically, we find the
following corollary.

Corollary 4.5.4. The set

P(1,2,2) = { {Pijk}0≤i ,j ,k≤1 : ffi is scaffold }

answer Question 4.1.1. More explicitly, for every net of control points in P(1,2,2) we can compute
weights that render ffi birational of type (1, 2, 2).

In practice, nets of control points in P(1,2,2) can be generated using the following construction.
The generation of a net of control points using Construction 3 is illustrated in Figure 4.6.

Construction 3 (Control points for scaffold rational maps). A net of control points in P(1,2,2) can
be generated as follows:

1. Choose a line s in P3
R (red line in Figure 4.6). Lines at x0 = 0 are acceptable, meaning that

the boundary planes Σ0, Σ1 are parallel

2. Choose two skew lines x1, x2 in P3
R intersecting s (black lines in Figure 4.6)

3. For each 0 ≤ j , k ≤ 1, choose an affine line sjk intersecting both x1, x2 (green lines in Figure
4.6)

4. Choose two planes Σ0, Σ1 containing s

5. For each 0 ≤ i , j , k ≤ 1, define Pijk = Σi ∩ sjk (green points in Figure 4.6)

4.5.2. Effective computation of weights

As in the previous sections, here we derive a rank-based birationality criterion for scaffold rational
maps. Without loss of generality, we assume that ffi has type (1, 2, 2), and refer to “scaffold rational
maps” instead of “scaffold rational maps of type (1, 2, 2)”.

In order to state our birationality criterion, we introduce some necessary notation.

Notation 4.5.5. Let ffi be scaffold.

(i) For each i = 0, 1, the boundary plane Σi is defined by the vector ffi in R4, and s = Σ0 ∩Σ1

(ii) For each 0 ≤ j , k ≤ 1, the boundary quadrics Tj ,Yk are defined by the symmetric matrices
fij and flk in R4×4.
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1. Choice of a line s = Σ0 ∩ Σ1 2. Choice of two skew lines x1, x2 intersecting s

3. Choice of the boundary s-lines, intersecting x1, x2 4. + 5. Choice of Σ0, Σ1 and the control points

Figure 4.6.: Generation of the control points of a scaffold map, using Construction 3.
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(iii) For each r = 1, 2, Σ(r) is the plane through s and xr , defined by a vector ff(r) in R4. In
particular, we find (–0(r) : –1(r)) in P1

C such that

ff(r) = –0(r) ff0 + –1(r) ff1 .

(iv) As in Proposition 4.5.3, y is the line through the points u00 ∩ u01 and u00 ∩ u01

(v) As in Proposition 4.5.3, z is the line through the points t00 ∩ t01 and t00 ∩ t01

(vi) We denote by Q be the unique smooth quadric through the lines s, x , y (recall Lemma 2.2.23).
Since by Propopsition 4.5.3 the base loci of the t- and u-surfaces are respectively the unions
of lines s ∪ x1 ∪ x2 ∪ y and s ∪ x1 ∪ x2 ∪ z , it follows that Q lies in the pencils of both a
t- and a u-surfaces. Therefore, we find points (—0 : —1) and (0 : 1) in P1

C such that the
symmetric matrices

—0 fi0 + —1 fi1 , 0 fl0 + 1 fl1

define Q.

(vii) For each r = 1, 2, Br is the plane through y and xr , defined by a vector ˛̨̨ r in R4. Additionally,
for each 0 ≤ i , j , k ≤ 1 we define

∆ijk(r , y) =
1

⟨˛̨̨ r ,Pijk⟩
,

as well as the tensor of format 2× 2× 2

W (r , y) =

„
wijk

∆ijk(r , y)

«
0≤i ,j ,k≤1

. (4.40)

(viii) For each r = 1, 2, Γr is the plane through z and xr , defined by a vector ‚‚‚r in R4. Additionally,
for each 0 ≤ i , j , k ≤ 1 we define

∆ijk(r , z) =
1

⟨‚‚‚r ,Pijk⟩
,

as well as the tensor of format 2× 2× 2

W (r , z) =

„
wijk

∆ijk(r , z)

«
0≤i ,j ,k≤1

. (4.41)

Remark 4.5.6 (Nonzero and positive ∆ijk). Notice that ∆ijk(r , y) and ∆ijk(r , z) are not defined
if and only if Pijk lies on xr . Nevertheless, Property 1 excludes this possibility. Specifically, if Pijk

lies on xr , then Σi = Σ(r). Since Σi contains all the control points Pi00, Pi10, Pi01, and Pi11, it
follows that all these lie on xr . Therefore, Σi is not a surface but the line xr .

Furthermore, if all the control points are left at “one side of Br and Γr ”, i.e. if they all respectively
lie in one of the two halfspaces defined by each plane in A3

R, then the vectors ˛̨̨ r and ‚‚‚r can be
chosen so that ∆ijk > 0 for every 0 ≤ i , j , k ≤ 1.

As in the former sections, we now prove a characterization of birationality for scaffold rational
maps, relying on tensor rank.
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Theorem 4.5.7. Let ffi be scaffold. The following are equivalent:

(i) ffi is birational of type (1, 2, 2)

(ii) One of the tensors W (1, y), W (2, y), W (1, z), and W (2, z) has rank one

(iii) All the tensors W (1, y), W (2, y), W (1, z), and W (2, z) have rank one

(iv) All the trilinear polynomials ⟨˛̨̨1, f⟩, ⟨˛̨̨2, f⟩, ⟨‚‚‚1, f⟩, ⟨‚‚‚2, f⟩ have three linear factors

Proof. It is straightforward that (iii) and (iv) are equivalent, since for each r = 1, 2 we have

⟨˛̨̨ r , f⟩ =
X

0≤i ,j ,k≤1

wijk ⟨˛̨̨ r ,Pijk⟩ si tjuk =
X

0≤i ,j ,k≤1

wijk

∆ijk(r , y)
si tjuk ,

⟨‚‚‚r , f⟩ =
X

0≤i ,j ,k≤1

wijk ⟨‚‚‚r ,Pijk⟩ si tjuk =
X

0≤i ,j ,k≤1

wijk

∆ijk(r , z)
si tjuk .

Therefore, it is sufficient to prove the equivalence between (i), (ii), and (iii). First, we prove that
(ii) implies (i). Without loss of generality, let us assume that

W (1, y) =
`
¸i(1) ˛j(1) ‚k

´
0≤i ,j ,k≤1

for some (¸0(1) : ¸1(1))× (˛0(1) : ˛1(1))× (‚0 : ‚1) in (P1
C)

3, or equivalently

⟨˛̨̨1, f⟩ = a1(s0, s1) · b1(t0, t1) · c(u0, u1) ,

where

a1(s0, s1) =

˛̨̨̨
s0 s1

−¸1(1) ¸0(1)

˛̨̨̨
, b1(t0, t1) =

˛̨̨̨
t0 t1

−˛1(1) ˛0(1)

˛̨̨̨
, c(u0, u1) =

˛̨̨̨
u0 u1
−‚1 ‚0

˛̨̨̨
.

In particular, the images by ffi of the surfaces respectively defined by

(s0 : s1) = (−¸1(1) : ¸0(1)) , (u0 : u1) = (−‚1 : ‚0)

lie in the plane B1. We make the following two observations:

(i) Since ffi is scaffold, all the s-boundary lines meet the plane B1 at the line x1. In particular, the
specialization of Ajk at (s0 : s1) = (−¸1(1) : ¸0(1)) yields a point in x1 for each 0 ≤ j , k ≤ 1.
Therefore, ffi contracts the surface (s0 : s1) = (−¸1(1) : ¸0(1)) to x1. In particular, the
pullback ideal of x1 is principal, and a1 divides its generator.

(ii) Similarly, all the u-boundary lines meet the plane B1 at the line y . In particular, the
specialization of Cij at (u0 : u1) = (−‚1 : ‚0) yields a point in y for each 0 ≤ i , j ≤ 1.
Therefore, ffi contracts the surface (u0 : u1) = (−‚1 : ‚0) to y . In particular, the pullback
ideal of y is principal, and c divides its generator.

On the other hand, for each 0 ≤ j , k ≤ 1 the isomorphism of projective lines P1
C −→ sjk defined by

Ajk is completely determined by the image of the three points

(1 : 0) 7→ P0jk , (0 : 1) 7→ P1jk , (−¸1(1) : ¸0(1)) 7→ sjk ∩ x1 .
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Additionally, the line isomorphism ff : P1
C −→

`
P3
C
´∨ defined by

(1 : 0) 7→ ff0 , (0 : 1) 7→ ff1 , (−¸1(1) : ¸0(1)) 7→ ff(1)

yields a syzygy of degree (1, 0, 0) of Pij , since ⟨ff0,P0jk⟩ = ⟨ff1,P1jk⟩ = 0 and Σ(1) contains x1.
Thus, ff also defines a syzygy of degree (1, 0, 0) of f. In particular, as the line x2 intersects s, there
is a point (¸0(2) : ¸1(2)) in P1

C for which ff(−¸1(2),¸0(2)) = ff(2). For the same observation as
before, ffi contracts the surface (s0 : s1) = (−¸1(2) : ¸0(2)) to x2. Hence, since B2 contains the
two lines y and x2, we can write

⟨˛̨̨2, f⟩ = a2(s0, s1) · b2(t0, t1) · c(u0, u1)

for

a2(s0, s1) =

˛̨̨̨
s0 s1

−¸1(2) ¸0(2)

˛̨̨̨
, b2(t0, t1) =

˛̨̨̨
t0 t1

−˛1(2) ˛0(2)

˛̨̨̨
and some (˛0(2) : ˛1(2)) in P1

C. Therefore, by definition

˛̨̨ = ˛̨̨(s0, s1, t0, t1) = a2(s0, s1) b2(t0, t1) ˛̨̨1 − a1(s0, s1) b1(t0, t1) ˛̨̨2

is a syzygy of f of degree (1, 1, 0). By hypothesis, f does not admit syzygies of degrees (0, 1, 0)
and (0, 0, 1) since Tj and Yk are smooth quadrics, for each 0 ≤ j , k ≤ 1. Therefore, by Theorem
3.5.1 it follows that ffi is birational of type (1, 2, 2).

We conclude proving that (i) implies (iii), since the implication from (iii) to (ii) is straightforward.
If ffi is birational of type (1, 2, 2), it admits a syzygy

ff(s0, s1) = ff′
0 s0 + ff′

1 s1

for some ff′
i in C4, such that C⟨ff′

0,ff
′
1⟩ = C⟨ff0,ff1⟩ by Lemma 4.2.1. In particular, for each r = 1, 2

we find a point (¸0(r) : ¸1(r)) in P1
C such that the plane defined by ff(−¸1(r),¸0(r)) contains xr .

As all the boundary s-lines intersect xr , it follows that ffi contracts (s0 : s1) = (−¸1(r),¸0(r)) to xr .
In particular, the pullback ideal of xr is principal, and its generator is divisible by

ar (s0, s1) =

˛̨̨̨
s0 s1

−¸1(r) ¸0(r)

˛̨̨̨
.

On the other hand, by Proposition 4.5.3 the intersection of the boundary t-surfaces is the union

s ∪ x1 ∪ x2 ∪ y ,

which is defined by the ideal
Bt = (fi0(y), fi1(y)) ⊂ C[y] .

Since ffi is birational with a quadratic inverse for (t0 : t1), the pullback of Bt is principal and defined
by a polynomial of degree (2, 1, 2). Specifically, this polynomial is proportional to the product

g(t0, t1, u0, u1) · a1(s0, s1) · a2(s0, s1) · c(u0, u1)

where:

(i) g has degree (0, 1, 1) and defines the pullback of s (Remark 4.2.7)
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(ii) ar has degree (1, 0, 0) and defines the pullback of xr , for each r = 1, 2

(iii) c has degree (0, 0, 1) and defines the pullback of y

Therefore, as the plane Br contains the lines y and xr , the pullback polynomial ⟨˛̨̨ r , f⟩ admits the
linear factors ar and c , and must have rank one. With an analogous argument, we conclude that
the pullback polynomials ⟨‚‚‚1, f⟩ and ⟨‚‚‚2, f⟩ have rank one as well.

Corollary 4.5.8. Let ffi be scaffold. Then, ffi is birational of type (1, 2, 2) if and only if one of the
identities

wijk = ¸i(1)˛j(1)‚k ∆ijk(1, y) ‹(1, y) , (4.42)
wijk = ¸i(2)˛j(2)‚k ∆ijk(2, y) ‹(2, y) , (4.43)
wijk = ¸i(1)˛j ‚k(1)∆ijk(1, z) ‹(1, z) , (4.44)
wijk = ¸i(2)˛j ‚k(2)∆ijk(2, z) ‹(2, z) , (4.45)

holds for every 0 ≤ i , j , k ≤ 1, for some

(˛0 : ˛1)× (‚0 : ‚1) ∈ (P1
C)

2 , (¸0(r) : ¸1(r))× (˛0(r) : ˛1(r))× (‚0(r) : ‚1(r)) ∈ (P1
C)

3

and nonzero constants ‹(1, y), ‹(2, y), ‹(1, z), ‹(2, z). In particular:

(i) ffi contracts (s0 : s1) = (−¸1(r) : ¸0(r)) to the line xr , for each r = 1, 2

(ii) ffi contracts (t0 : t1) = (−˛1 : ˛0) to the line z

(iii) ffi contracts (u0 : u1) = (−‚1 : ‚0) to the line y

Notice that, by (the proof of) Theorem 4.5.7, if one of the identities (4.42)-(4.45) holds, then the
other three hold as well.

Remark 4.5.9 (Nonzero, real, and positive weights). The same observations as in Remark 4.3.8,
combined with Remark 4.5.6, apply.

Remark 4.5.10. Extending a bit further on the last sentence of Corollary 4.5.8, it does not follow
directly from the statement of Theorem 4.5.7, but rather from its proof.

The reason is the dependence between the rank-one factorizations of the four tensors. For
example, the point (¸0(r) : ¸1(r)) appears in the factorizations of Wijk(r , y) and Wijk(r , z), since
these tensors encode the pullback polynomials ⟨˛̨̨ r , f⟩ and ⟨‚‚‚r , f⟩, and both vanish at the line xr .

Remark 4.5.11 (Deformation of scaffold birational maps). Once again, Construction 3 and
Corollary 4.5.8 provide an effective approach to deform scaffold birational maps, in analogy to
§4.3.5. Namely, the lines s, x1, x2 can be chosen freely, as well as the lines sjk for each 0 ≤ j , k ≤ 1,
and the boundary planes Σ0, Σ1. Additionally, Corollary 4.5.8 can be used to preserve birational
weights, by recomputing some parameters depending rationally on the control points.
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4.5.3. Distance to birationality

We now provide a notion of distance to birationality for scaffold rational maps. Notice that this
time, by Theorem 4.5.7, the tensor that characterizes birationality is not unique. This is not a
problem since Theorem 4.5.7 guarantees that the four possible tensors have rank one simultaneously.
Nevertheless, we need to make a choice of one tensor to measure the distance to be birational.

Definition 4.5.12 (Distance to birationality: scaffold). Let ffi be pyramidal with real weights, let
V ⊂ R2×2×2 be the affine cone over ff

`
P1
R × P1

R × P1
R
´
, and maintain the notation of Theorem

4.4.7. Let either r = 1 or r = 2. We define the distance to birationality of ffi with respect to (r , y),
denoted by distbir(ffi; r , y), as

distbir(ffi; r , y) := min
P∈V

∥W (r , y)− P∥
∥W (r , y)∥ . (4.46)

Similarly, we define the distance to birationality of ffi with respect to (r , z), denoted by distbir(ffi; r , z),
as

distbir(ffi; r , z) := min
P∈V

∥W (r , z)− P∥
∥W (r , z)∥ . (4.47)

Example 4.5.13 (Computation of a birational approximation: scaffold). We can use Construction
3 to generate a net of scaffold control points. Namely, consider the points

S1 =
`
1 −3 −5 0

´
, S2 =

`
1 5

2 −3 0
´

and define the lines s = S1S2. Similarly, define the points

X1 =
`
1 −3 1 36

7

´
, X2 =

`
1 −3 1

2
9
2

´
and define the lines x1 = S1X1 and x2 = S2X2. Additionally, consider

S00(1) =
`
1 −3 −4 − 6

17

´
S00(2) =

`
1 −1 −17

22
63
22

´
S10(1) =

`
1 −3 −3

4 −3
2

´
S10(2) =

`
1 23

18 −20
9 1

´
S01(1) =

`
1 −3 −3 −12

17

´
S01(2) =

`
1 −5

2
2
11

45
11

´
S11(1) =

`
1 −3 3

5 −168
85

´
S11(2) =

`
1 − 9

14 −1 18
7

´
and define sjk = Sjk(1)Sjk(2) for each 0 ≤ j , k ≤ 1. If the boundary planes Σ0, Σ1 are defined by
the vectors

ff0 =
`
0 0 0 1

´
, ff1 =

`
43 −4 11 −43=2

´
we can define Pijk = Σi ∩ sjk . Preserving rational entries at this point yields very large fractions.
Because of this, we start working over the reals, which is the most likely scenario for applications.
The points

Y1 =
`
1 −3.43612 1.36111 0

´
, Y2 =

`
1 −4.11591 1.44148 3.42001

´
Z1 =

`
1 −3.6532 −4.39411 0

´
, Z2 =

`
1 −9.44588 −3.84022 1.73094

´



4.5. Scaffold birational maps 131

span the lines y = Y1Y2 and z = Z1Z2. Therefore, the defining vectors of the planes involved in
the definition of the 2× 2× 2 determining birationality are

˛̨̨1 =
`
74.5524 22.3023 1.5290 4.3323

´
, ˛̨̨2 =

`
24.2113 15.2903 20.8123 2.5007

´
,

‚‚‚1 =
`
9.7868 1.1664 1.2575 3.5629

´
, ‚‚‚2 =

`
42.2475 −2.6839 11.8459 −12.4938

´
.

Suppose that we initialize the weights as w0
ijk = 1 for every 0 ≤ i , j , k ≤ 1. Then, the tensor

W 0(1, y) =

 
w0
ijk

∆ijk(1, y)

!
0≤i ,j ,k≤1

given by

W 0
{k=0}(1, y) =

„
6.9649 62.3906
27.6214 94.2357

«
, W 0

{k=1}(1, y) =

„
5.4152 30.3459
19.0501 57.8150

«
does not have rank one. By Theorem 4.5.7, the tensors W 0(2, y), W 0(1, z), and W 0(2, z) do not
have rank one as well. Using TensorFox, we compute a rank-one approximation of W 0(1, y) as

W (1, y) =

 
wijk

∆1
ijk(1, y)

!
0≤i ,j ,k≤1

= ‹(1, y) · (¸0(1) , ¸1(1))⊗ (˛0(1) , ˛1(1))⊗ (‚0 , ‚1) =

134.5308 · (0.5145 , 0.8574)⊗ (0.2467 , 0.9690)⊗ (0.8633 , 0.5046) ,

which yields the tensor

W{k=0} =

„
14.7430 57.9094
24.5710 96.5128

«
, W{k=1} =

„
8.6180 33.8507
14.3629 56.4161

«
.

In particular, we find the upper bound

distbir(ffi; 1, y) ≤
∥W 0(1, y)−W (1, y)∥

∥W 0(1, y)∥ = 0.0881 .

Interestingly, when we compute optimal rank-one approximations for the tensors W (2, y), W (1, z),
and W (2, z), we obtain the decompositions

W (2, y) ∝ (0.9661 , 0.2578)⊗ (0.9971 , 0.0760)⊗ (0.8632 , 0.5047)

W (1, z) ∝ (0.5145 , 0.8574)⊗ (0.5257 , 0.8506)⊗ (0.6326 , 0.7744)

W (1, z) ∝ (0.9664 , 0.2568)⊗ (0.5260 , 0.8504)⊗ (0.3955 , 0.9184) ,

which yield numerically close factors as expected by Corollary 4.5.8, namely coinciding up to the
fourth decimal digit. Therefore, we can define

(¸0(2) , ¸1(2)) = (0.9664 , 0.2568) , (˛0(2) , ˛1(2)) = (0.9971 , 0.0760)

(‚0(1) , ‚1(1)) = (0.6326 , 0.7744) , (‚0(2) , ‚1(2)) = (0.3955 , 0.9184)

(˛0 , ˛1) = (0.5260 , 0.8504) .
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In particular, we compute the weights

w000 = 2.1167 , w100 = 0.8895 , w010 = 0.9281 , w110 = 1.0241 , (4.48)

w001 = 1.5913 , w101 = 0.7539 , w011 = 1.1154 , w111 = 0.9758

that render ffi birational. Figure 1.2, shown in Chapter 1, illustrates the deformation of the unit
cube by ffi, the weights specified in (4.48). To recover the geometric intuition for CAGD, we have
replaced the monomial basis by the Bernstein basis (see §4.1.2). Additionally, Figure 4.7 depicts
the base locus of the inverse rational map (see Theorem 4.5.15), and some of the planes involved
in the definition of the tensors of 4.5.7.

4.5.4. Inverse rational map and base locus

Notation 4.5.14. Assuming weights as in Corollary 4.5.8, for each r = 1, 2 we define the
polynomials

ar (s) =

˛̨̨̨
s0 s1

−¸1(r) ¸0(r)

˛̨̨̨
, br (t) =

˛̨̨̨
t0 t1

−˛1(r) ˛0(r)

˛̨̨̨
, cr (u) =

˛̨̨̨
u0 u1

−‚1(r) ‚0(r)

˛̨̨̨
,

as well as

b(t) =

˛̨̨̨
t0 t1
−˛1 ˛0

˛̨̨̨
, c(u) =

˛̨̨̨
u0 u1
−‚1 ‚0

˛̨̨̨
.

The following result provides the formulas for the inverse of a scaffold birational map. As for the
classes of hexahedral and pyramidal birational maps, we also provide the defining equations of the
irreducible components of the base locus, and define the contractions and blow-ups.

Theorem 4.5.15. Let ffi be scaffold. If ffi is birational of type (1, 2, 2) with weights as in Corollary
4.5.8, then the inverse rational map ffi−1 is given by`
¸1(r)–1(r)ff1(y) : ¸0(r)–0(r)ff0(y)

´
× (˛1 —1 fi1(y) : ˛0 —0 fi0(y))× (‚1 1 fl1(y) : ‚0 0 fl0(y))

where any r = 1, 2 is valid. Moreover, the base locus of ffi is defined by

B = (b, c) ∩ (a1, b1, c1) ∩ (a2, b2, c2) ,

and the base locus of ffi−1 is the union of the lines s, y , z , x1 and x2. Additionally, we have the
following:

(i) The base line (b, c) is blown-up to Q

(ii) The base point (ar , br , cr ) is blown-up to Σ(r), for each r = 1, 2

Proof. Let either r = 1 or r = 2. By Lemma 4.2.1, the relation

ff(s0, s1; y) =

˛̨̨̨
s0 s1

¸1(r)–1(r)ff1(y) ¸0(r)–0(r)ff0(y)

˛̨̨̨
is the syzygy of f of degree (1, 0, 0). Specifically, we have

`
¸0(r)–0(r) ¸1(r)–1(r)

´„w1jk ⟨ff0,P1jk⟩
w0jk ⟨ff1,P0jk⟩

«
0≤j ,k≤1

= 0 ,
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(a) the lines involved in the scaffold birational map of Example 4.5.13. Specifically, the
line s appears in red, the lines x1, x2 appear in black, the line y appears in blue, and the
line z appears in green. The base locus of the t-surfaces, is the union s ∪ x1 ∪ x2 ∪ y .
Similarly, the base locus of the u-surfaces is s ∪ x1 ∪ x2 ∪ z .

(b) the planes involved in the scaffold birational
map of Example 4.5.13. The image shows the
planes Σ(1), in red, and B2, in blue. In particular,
the union Σ(1) ∪ B2 is a rank-two quadric in the
pencil of t-surfaces.

(c) The image shows the planes Σ(2), in red, and
B1, in blue. Again, the union Σ(2)∪B1 is a rank-two
quadric in the pencil of t-surfaces. The planes Γ1
and Γ2, not shown on the image, are defined by the
line z and the two lines x1, x2.

Figure 4.7.: The geometry of a scaffold birational map.
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since the plane Σ(r) defined by ff(r) = –0(r)ff0 + –1(r)ff1 contains the point Ajk(−¸1(r),¸0(r)) in
xr , for every 0 ≤ j , k ≤ 1. On the other hand, the relation of multidegree (0, 1, 0; 2)

fi (t0, t1; y) =

˛̨̨̨
t0 t1

˛1 —1 fi1(y) ˛0 —0 fi0(y)

˛̨̨̨
(4.49)

vanishes after the specialization y 7→ f, and hence lies in the Rees ideal of ffi. Specifically, by
definition fi (t0, t1; f) for

(t0 : t1) = (1 : 0) , (t0 : t1) = (0 : 1) . (4.50)

Additionally, if (t0 : t1) = (−˛1 : ˛0) then˛̨̨̨
−˛1 ˛0

˛1 —1 fi1(y) ˛0 —0 fi0(y)

˛̨̨̨
= −˛0 ˛1 (—0 fi0(y) + —1 fi1(y))

defines the smooth quadric Q. In particular, since f contracts (t0 : t1) = (−˛1 : ˛0) to the
line y , the specialization fi (t0, t1; f) vanishes at (t0 : t1) = (−˛1 : ˛0). On the other hand, the
pullback fi (t0, t1; f) is either zero of a polynomial of degree (2, 3, 2) in R. Furthermore, if it is
nonzero then it can be regarded as a polynomial of degree (0, 2, 0), since by Proposition 4.5.3
T0 ∩ T1 = s ∪ x1 ∪ x2 ∪ y , and thus it admits the factors

a1(s0, s1) , a2(s0, s1) , c(u0, u1) , g(t0, t1, u0, u1) ,

of degrees (1, 0, 0), (1, 0, 0), (0, 0, 1), and (0, 1, 1) respectively. However, we have seen that it
admits the two roots in (4.50) as well as (t0 : t1) = (−˛1 : ˛0). Therefore, it must be identically
zero. With a similar argument, we conclude that the relation of multidegree (0, 0, 1; 2)

fl(u0, u1; y) =

˛̨̨̨
u0 u1

‚1 1 fl1(y) ‚0 0 fl0(y)

˛̨̨̨
(4.51)

lies in the Rees ideal of ffi, and hence defines the inverse for (u0 : u1).
The base locus of ffi−1 follows immediately from Proposition 4.5.3. Regarding the base locus of

ffi, we find dimC B(1,1,1) = 4. Moreover, C⟨f⟩ contains the linearly independent polynomials

a1 b1 c , a2 b2 c , a1 b c1 , a2 b c2 ,

since these are respectively proportional to

⟨˛̨̨1, f⟩ , ⟨˛̨̨2, f⟩ , ⟨‚‚‚1, f⟩ , ⟨‚‚‚2, f⟩ .

Therefore, we find B(1,1,1) = C⟨f⟩. On the other hand, the three components of B are prime.
Hence, the pullback by ffi−1 of each of them is a principal ideal C[y]. Specficially, the pullback
polynomials by ffi−1 of b, c are

b(g2) =

˛̨̨̨
−˛1 ˛0

˛1 —1 fi1(y) ˛0 —0 fi0(y)

˛̨̨̨
, c(g3) =

˛̨̨̨
−‚1 ‚0

‚1 1 fl1(y) ‚0 0 fl0(y)

˛̨̨̨
,

which define the smooth quadric Q. Similarly,

ar (g1) =

˛̨̨̨
¸1 ¸0

¸1 –1 ff1(y) ¸0 –0 ff0(y)

˛̨̨̨
= −¸0 ¸1 ⟨ff(r), y⟩ ,

which must be the generator of the pullback of the base point indexed by (r), since the other
two specializations are quadratic polynomials divisible by ar (g1). In particular, the base point is
blown-up to Σ(r).
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Example 4.5.16 (Inverse of a pyramidal birational map). Continuing with Example 4.5.13, the
symmetric matrices defining the boundar t- and u-surfaces are

fi0 =

0BB@
1.0000 0.1069 0.1480 −0.1148
0.1069 −0.0285 0.0373 −0.0430
0.1480 0.0373 0.0102 0.0117
−0.114 −0.0430 0.0117 −0.0159

1CCA fi1 =

0BB@
1.0000 0.1948 0.3699 0.1718
0.1948 −0.0449 0.0392 0.1016
0.3699 0.0392 0.1238 0.1813
0.1718 0.1016 0.1813 0.0332

1CCA

fl0 =

0BB@
1.0000 −0.3862 0.5241 0.8512
−0.3862 0.0632 −0.1237 0.0793
0.5241 −0.1237 0.2027 0.1895
0.8512 0.0793 0.1895 −0.5532

1CCA fl1 =

0BB@
1.0000 0.2114 0.0272 −0.3843
0.2114 −0.0479 0.0753 −0.0926
0.0272 0.0753 −0.0515 −0.0545
−0.3843 −0.0926 −0.0545 0.1044

1CCA
In particular, using Notation 4.5.5 we compute

(–0(2) : –1(2)) = (0.9923 : 0.1232) , (—0 : —1) = (0.8871 : −0.4615) , (0 : 1) = (0.9963 : 0.0855) .

Therefore, the inverse rational map is given by`
¸1(r)–1(r)ff1(y) : ¸0(r)–0(r)ff0(y)

´
× (˛1 —1 fi1(y) : ˛0 —0 fi0(y))× (‚1 1 fl1(y) : ‚0 0 fl0(y))

=

(0.0316ff1(y) : 0.9590ff0(y))× (−0.3924 fi1(y) : 0.4666 fi0(y))× (0.0431fl1(y) : 0.8600fl0(y))

Furthermore, the base ideal B of ffi is

(b , c) ∩ (a1 , b1 , c1) ∩ (a2 , b2 , c2) =

(0.5260 t0 + 0.8504 t1 , 0.8632 u0 + 0.5047 u1) ∩

(0.5145 s0 + 0.8574 s1 , 0.2467 t0 + 0.9690 t1 , 0.6326 u0 + 0.7744 u1) ∩

(0.9664 s0 + 0.2569 s1 , 0.9971 t0 + 0.0760 t1 , 0.3955 u0 + 0.9184 u1)

and we have the subsequent contractions specified in Corollary 4.5.8.
Notice that, since in this example we are working with floating point arithmetic, the defining

equations of the irreducible components (and therefore the contractions) of the base locus cannot be
recovered from the entries of ffi. Hence, having the explicit defining equations of these components
is convenient for applications.





Chapter 5

Construction of multilinear birational
maps with multilinear inverse

In this short chapter, we extend our treatment of hexahedral birational maps to the analogous
transformations in arbitrary dimension, namely multilinear rational maps with multilinear inverse,
as described in Definition 1.2.22. These birational maps are the higher-dimensional counterparts of
the hexahedral birational maps, studied in §4.3, and bilinear birational maps, discussed in §2.2.4.
Specifically, the minimal graded free resolution of their base ideal is Hilbert-Burch.

We adhere to the conventional formulation in CAGD, and define these transformations by means
of control points and weights. Specifically, for n ≥ 4 we consider the multilinear rational map

ffi : (P1
C)

n 99K Pn
C (5.1)

(x01 : x11)× ...× (x0n : x1n) 7→ f =
X

0≤i1,...in≤1

wi1...in Pi1...in bi1(x01, x11) ... bin(x0n, x1n)

where Pi1...in = (1, y1i1...in , ... , yni1...in) lies in Cn+1, and the weights wi1...in are nonzero complex
numbers, for each 0 ≤ i1, ... , in ≤ 1.

Construction of birational maps: Assuming the necessary constraints on the control points,
we prove that (5.1) admits a multilinear inverse if and only if a certain tensor of format 2×n has
rank one (Theorem 5.7), and we provide formulas for the weights that yield birationality. Moreover,
we propose a construction for nets of control points satisfying the necessary constraints required
for birationality. Additionally, we provide explicit formulas for the inverse ffi−1 and the defining
equations of the base loci, and describe the blow-ups and contractions (Theorem 5.2.1).

5.1. Rank-based characterization of birationality

In all the chapter, we let n ≥ 4 and only treat standard gradings. We consider the variables
xk = (x0k , x1k) in P1

C, for each factor indexed by 1 ≤ k ≤ n in (P1
C)

n, and y = (y0, ... , yn) in Pn
C.

Moreover, when we refer to affine charts An
C in either (P1

C)
n or (PC)

n we always refer to those
defined by x0k ̸= 0 for every 1 ≤ k ≤ n, and y0 ̸= 0, respectively.

By definition, all the parametric hypersurfaces of a multilinear birational map with multilinear
inverse are hyperplanes. Since the boundary hypersurfaces (recall Definition 1.2.23) are instances of
these parametric hypersurfaces, these transformations must be hypercubic rational maps, according
to Definition 1.2.23. This observation describes the necessary geometric constraints on the control
points that are necessary for a multilinear inverse to exist.

In analogy to the construction of hexahedral rational maps, we can generate nets of control
points for hypercubic rational maps indirectly through the boundary hyperplanes.
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Construction 4 (Control points for hypercubic rational maps). A net of control points for a
hypercubic rational map can be generated as follows:

1. For each 1 ≤ k ≤ n and ik = 0, 1, choose hyperplanes Xikk in An
C such that the intersections

Xi11 ∩ ... ∩ Xinn

define affine points, for every 0 ≤ i1, ... , in ≤ 1.

2. Define Pi1...in = Xi11 ∩ ... ∩ Xinn

Notation 5.1.1. Let ffi be n-cubic. We introduce the following notation:

(i) For each 1 ≤ k ≤ n and ik = 0, 1, the boundary hyperplane Xikk is defined by

fflfflfflikk(y) := ⟨fflfflfflikk , y⟩ = fflfflfflikk · yT = 0

for some vector fflfflfflikk = (ffl0ikk , ... ,fflnikk) in Cn+1

(ii) We denote xk = X0k ∩ X1k , which is a (n − 2)-plane in Pn
C

(iii) For each 0 ≤ i1, ... , in ≤ 1 we define

∆i1...in =

˛̨̨̨
˛̨̨̨
˛
ffl11 ffl12 ... ffl1n

ffl21 ffl22 ... ffl2n
...

...
. . .

...
ffln1 ffln2 ... fflnn

˛̨̨̨
˛̨̨̨
˛ (5.2)

In particular, we find the identity

Pi1...in = ∆i1...in
−1fflfflffli11 ∧ ... ∧fflfflfflinn

(iv) For each 1 ≤ k ≤ n and 0 ≤ i1, ... , ik−1, ik+1, ... in,≤ 1, we define the product

Bk
i1...ik−1ik+1...in = Bk

i1...ik−1ik+1...in(x1, ... , xk−1, xk+1, ... , xn) =
Y

1≤j≤n
j ̸=k

bij (x0j , x1j)

Remark 5.1.2 (Nonzero ∆i1...in). As in Remark 4.3.5, ∆i1...in is zero if and only if Pi1...in lies in the
“hyperplane at ∞” defined by y0 = 0. However, by the hypothesis Pi1...in = (1, yi1...in1, ... , yi1...inn)
we are excluding this possibility.

The following result is the direct generalization of Lemma 4.2.1 to dimension n. It characterizes
the existence of linear syzygies of f.

Lemma 5.1.3. Let ffi be dominant, and let X0k ,X1k be hyperplanes. Then, f has a syzygy of
degree ek if and only if

rank

„
wi1...ik−11ik+1...in ⟨fflfflffli1...ik−10ik+1...in , Pi1...ik−11ik+1...in ⟩
wi1...ik−10ik+1...in ⟨fflfflffli1...ik−11ik+1...in , Pi1...ik−10ik+1...in ⟩

«
1≤i1,...,ik−1,ik+1...in≤1

= 1 , (5.3)
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where the matrix has size 2× 2n−1. If (5.3) holds, we find a point (¸0k : ¸1k) in P1
R such that

−¸0k wi1...ik−11ik+1...in ⟨fflfflffli1...ik−10ik+1...in , Pi1...ik−11ik+1...in ⟩ = (5.4)
¸1k wi1...ik−10ik+1...in ⟨fflfflffli1...ik−11ik+1...in , Pi1...ik−10ik+1...in ⟩

for every 1 ≤ i1, ... ik−1, ik+1 ... in ≤ 1. Then, any syzygy of degree ek of f is proportional to

fflfflfflk(x0k , x1k) = ¸0k fflfflffl0 b0(x0k , x1k) + ¸1k fflfflffl1 b1(x0k , x1k) . (5.5)

Proof. The proof is the direct translation of Lemma 4.2.1 to dimension n.

In analogy to trilinear rational maps, the rank condition (5.3) has a geometric interpretation in
terms of the contractions of ffi. Specifically, we say that ffi contracts a hypersurface S in

`
P1
C
´n if

the dimension of ffi(S) is strictly less than n − 1.

Remark 5.1.4 (Contraction of (n − 1)-linear hypersurfaces). Let ik = 0, 1. By definition, if the
boundary surface Πikk is a plane, we have

⟨fflfflfflikk , f⟩ =

bi∗k (x0k , x1k)
X

0≤i1...ik−1ik+1...in≤1

wi1...ik−1ik
∗ik+1...in ⟨fflfflfflikk ,Pi1...ik−1ik

∗ik+1...in⟩B
k
i1...ik−1ik+1...in (5.6)

where 0∗ = 1 and 1∗ = 0. In particular, the sum in the right-hand of (5.6) is a multilinear
polynomial

gik = gik (x1, ... , xk−1, xk1 , ... , xn) ,

whose coefficients in the multilinear Bernstein basis determine the (ik + 1)-row of the matrix in
Lemma 5.1.3. Therefore, the rank of this matrix is one if and only if the polynomials g0 and g1 are
proportional, or equivalently, if the image by ffi of the hypersurface in (P1

C)
n defined by g0 = g1 = 0

lies in the (n − 2)-plane xk = X0k ∩ X1k .
Geometrically, f admits a syzygy of degree ek if and only if ffi contracts a surface of degree

1− ek to the (n − 2)-plane xk .

The following is the first main result of the chapter, which asserts that birationality can be
achieved by a rank-one condition on a tensor of format 2×n.

Theorem 5.1.5. Let ffi be n-cubic. Then, ffi is birational with multilinear inverse if and only if the
tensor with 2×n format

W =

„
wi1...in

∆i1...in

«
0≤i1,...,in≤1

(5.7)

has rank one.

Proof. By definition, ffi is birational with multilinear inverse if and only if f admits syzygies of
degrees e1, ... , en. Equivalently, by Lemma 5.1.3 f admits these syzygies if and only if the rank
condition (5.3) is satisfied for every 1 ≤ k ≤ n.

We rewrite the rank condition (5.3) so that the matrices involved have the same entries for every
1 ≤ k ≤ n. Namely, for any 0 ≤ i1, ... , ik−1, ik+1, ... , in ≤ 1 we have

∆i1...ik−10ik+1...in ⟨fflfflffl1k ,Pi1...ik−10ik+1...in⟩ = fflfflffl1k ∧fflfflffli11 ... ∧fflfflfflik−1k−1 ∧fflfflffl0k ∧fflfflfflik+1k+1 ∧ ... ∧fflfflfflinn

= −fflfflffl0k ∧fflfflffli11 ... ∧fflfflfflik−1k−1 ∧fflfflffl1k ∧fflfflfflik+1k+1 ∧ ... ∧fflfflfflinn

= −∆i1...ik−11ik+1...in ⟨fflfflffl0k ,Pi1...ik−11ik+1...in⟩ .
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Hence, we have ˛̨̨̨
⟨fflfflffl0k ,Pi1...ik−11ik+1...in⟩ −⟨fflfflffl1k ,Pi1...ik−10ik+1...in⟩

∆i1...ik−10ik+1...in ∆i1...ik−11ik+1...in

˛̨̨̨
= 0 ,

and (5.3) can be equivalently written as

rank

 
wi1...ik−11ik+1...in ∆

−1
i1...ik−11ik+1...in

wi1...ik−10ik+1...in ∆
−1
i1...ik−10ik+1...in

!
1≤i1,...,ik−1,ik+1...in≤1

= 1 . (5.8)

Therefore, the matrix in (5.8) is the k-flattening of the tensor W in the statement, and ffi admits a
multilinear inverse if and only if all these flattenings have rank one. However, this is equivalent to
W having rank one.

Corollary 5.1.6. Let ffi be n-cubic. Then, ffi is birational with multilinear inverse if and only if

wi1...in = ¸i11 ... ¸inn ∆i1...in (5.9)

for some (¸01 : ¸11)× ...× (¸0n : ¸1n) in (P1
C)

n.

Remark 5.1.7 (Nonzero, real, and positive weights). Since ffi is dominant, we must have ¸ikk ≠ 0
for every 0 ≤ i , j , k ≤ 1. Namely, if ¸ikk = 0 then by Corollary 5.1.6 all the weights indexed by ik
at the k-th position are zero, and the image of ffi lies in Xi∗k k

.
Notice that, if the boundary hyperplanes are chosen over the reals, then (¸01 : ¸11)× ...× (¸0n :

¸1n) can be chosen in (P1
R)

n to achieve real weights. Furthermore, if ¸ikk > 0 for every 1 ≤ k ≤ n
and ik = 0, 1, by Remark 5.1.2 we can take all the weights positive, preserving the property that
ffi ([0, 1]n) lies in the convex hull of the control points.

5.2. Inverse rational map and base locus

The following result provides the explicit expression of the multilinear inverse of a birational n-cubic
map. Furthermore, it describes the base loci of the birational map and its inverse.

Theorem 5.2.1. Let ffi be n-cubic, with weights as in Corollary 5.1.6. Then, maintaining the
notation of (1.14), the inverse ffi−1 is given by

y 7→ (¸01fflfflffl01(y)−¸11fflfflffl11(y) : ¸01fflfflffl01(y))×...×(¸0nfflfflffl0n(y)−¸1nfflfflffl1n(y) : ¸0nfflfflffl0n(y)) , (5.10)

and the base ideal B = (f0, ... , fn) in R has a Hilbert-Burch minimal Zn-graded free resolution

0 −→
nM

i=1

R(−1− ei ) −→ R(−1)n+1 (f0 ... fn)−−−−−→ B −→ 0 , (5.11)

where R = C[x1]⊗ ...⊗ C[xn]. Moreover, B is generated by the (n − 1)-linear polynomials

X
0≤i1,...,ik−1,ik+1,...,in≤1

0BB@ Y
1≤j≤n
j ̸=k

¸ij j

1CCA ∆i1...ik−1ik ik+1...in ⟨fflfflffli∗k k
,Pi1...ik−1ik ik+1...in⟩Bk

i1...ik−1ik+1...in (5.12)
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for each 1 ≤ k ≤ n, where each possible index ik = 0 or ik = 1 is valid, and the base locus of ffi−1

is the union of all the (n − 2)-planes [
1≤k≤n

xk .

Moreover, ffi contracts the surface Sk ⊂ (P1
C)

n defined by (5.12) to xk , for each 1 ≤ k ≤ n.

Proof. By Corollary 5.1.6, a n-cubic rational map is birational with multilinear inverse if and only if
the weights satisfy (4.3.7) for some (¸01 : ¸11) × ... × (¸0n : ¸1n) in (P1

C)
n. Therefore, we can

write

f =
X

0≤i1,...,in≤1

wi1...in Pi1...in bi1(x01, x11) ... bin(xn1, xn1) =

=
X

0≤i1,...,in≤1

(¸i11 ...¸inn ∆i1...in) (∆i1...in fflfflffli11 ∧ ... ∧fflfflfflinn) bi1(x01, x11) ... bin(xn1, xn1) =X
0≤i1,...,in≤1

(¸i11fflfflffli11 bi1(x01, x11)) ∧ ... ∧ (¸innfflfflfflinn bin(x0n, x1n)) = fflfflffl1(x01, x11) ∧ ... ∧fflfflffln(x0n, x1n)

where fflfflfflk(x0k , x1k) is as in Lemma 5.2.1. Therefore, f admits the linear syzygy

fflfflffl(x0k , x1k ; y) = ¸0k fflfflffl0k(y) b0(x0k , x1k) + ¸1k fflfflffl1k(y) b1(x0k , x1k)

= x0k ¸0k fflfflffl0k(y) + x1k (¸1k fflfflffl1k(y)− ¸0k fflfflffl0k(y))

for each 1 ≤ k ≤ n, and ffi−1 is as (5.10). Since f admits n independent linear syzygies, of
degrees e1, ... , en respectively, by the Hilbert-Burch theorem (Theorem 2.1.24) it follows that f is
proportional to the tuple of signed minors of the matrix of first syzygies of f. Hence, the minimal
graded resolution (5.11) follows. Regarding the base locus of ffi, we find

fflfflffl0k(f) = ¸1k b1(x0k , x1k) gk , fflfflffl1k(f) = −¸0k b0(x0k , x1k) gk

where g = g(x1, ... , xk−1, xk+1, ... , xn) is proportional to (n − 1)-linear polynomials encoded by
the rows of the matrix in (5.3) (recall Remark 5.1.4), or equivalently, to the polynomial (5.12).
Hence, the graded component V = (B ∩N)1 lies in C⟨f⟩. Since dimC V = n + 1, it follows that
V = C⟨f⟩ and B defines the base locus of ffi. On the other hand, the base ideal of ffi−1 is the
intersection ideal

(fflfflffl01(y),fflfflffl11(y)) ∩ ... ∩ (fflfflffl0n(y),fflfflffl1n(y))

defines the union of the (n − 2)-planes xk , for every 1 ≤ k ≤ n. Furthermore, by Remark 5.1.4 the
hypersurface in

`
P1
C
´n defined by the polynomial (5.12) is contracted to xk .

Remark 5.2.2 (Polynomial hypercubic birational maps with multilinear inverse). In analogy to
Remark 4.3.16, ffi restricts to a polynomial map in An

R (choosing real weights) if wi1...in = 1 for
every 0 ≤ i1, ... , in ≤ 1. Using our results, we find the following straightforward class of birational
maps with multilinear inverse. Specifically, parallelepiped, or parallelotope, is a hypercube where
the facets are pairwise parallel.

Corollary 5.2.3. Let ffi be n-cubic and wi1...in = 1 for every 0 ≤ i1, ... , in ≤ 1. If the control points
define a parallelepiped, then ffi is birational with multilinear inverse.
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Proof. For each 1 ≤ k ≤ n and ik = 0, 1, we can write

⟨fflfflfflikk ,Pi1...ik−1i
∗
k ik+1...in⟩ = ∥fflfflfflikk∥sdist

`
Xikk ,Pi1...ik−1i

∗
k ik+1...in

´
,

where sdist(·, ·) denotes the signed distance in An
R. In particular, if the control points define a

parallelepiped, we find sdist
`
Xikk ,Pi1...ik−1i

∗
k ik+1...in

´
= –k for some nonzero constant –k . Hence,

the rank condition (5.3) is satisfied.

To conclude the chapter, we construct a multilinear birational map in dimension five with a
multilinear inverse. Furthermore, we compute explicitly the syzygies from the formulas of Theorem
5.2.1.

Example 5.2.4 (Birational deformation to a Klee-Minty 5-cube). We illustrate our results by
explicitly constructing a birational deformation from the unit 5-cube to the Klee-Minty 5-cube [124,
82], which is defined by the inequalities in A5

R = Spec (R[x1, ... , x5])

x1 ≤ 5 , 22 x1 + x2 ≤ 52 , ... , 25 x1 + 24 x2 + 23 x3 + 22 x2 + x1 ≤ 55

and xk ≥ 0 for each 1 ≤ k ≤ 5. Thus, the boundary hyperplanes are defined by the vectors in R5

fflfflffl01 =
`
5 −1 0 0 0 0

´
, fflfflffl11 =

`
0 1 0 0 0 0

´
,

fflfflffl02 =
`
52 −4 −1 0 0 0

´
, fflfflffl12 =

`
0 0 1 0 0 0

´
,

fflfflffl03 =
`
53 −8 −4 −1 0 0

´
, fflfflffl13 =

`
0 0 0 1 0 0

´
,

fflfflffl04 =
`
54 −16 −8 −4 −1 0

´
, fflfflffl14 =

`
0 0 0 0 1 0

´
,

fflfflffl05 =
`
55 −32 −16 −8 −4 −1

´
, fflfflffl15 =

`
0 0 0 0 0 1

´
.

In particular, the control points can be computed as

Pi1i2i3i4i5 = ∆i1i2i3i4i5
−1 fflfflffli11 ∧fflfflffli22 ∧fflfflffli33 ∧fflfflffli44 ∧fflfflffli55 (5.13)

where ∆i1i2i3i4i5 is as in (5.2), for each 0 ≤ i1, i2, i3, i4, i5 ≤ 1. Therefore, by Corollary (5.1.6), the
computation of the weights

wi1i2i3i4i5 = ¸i11 ¸i22 ¸i33 ¸i44 ¸i55∆i1i2i3i4i5 ,

for any (¸01 : ¸11)× (¸02 : ¸12)× (¸03 : ¸13)× (¸04 : ¸14)× (¸05 : ¸15) in
`
P1
C
´5, where all the

(¸0k : ¸1k) are distinct from (1 : 0) and (0 : 1), renders ffi birational. In particular, the choice

(¸01 : ¸11) = (1 : 1) , (¸02 : ¸12) = (0.5 : 3) , (¸03 : ¸13) = (2 : 0.1) ,

(¸04 : ¸14) = (0.12 : 7) , (¸05 : ¸15) = (3 : 1.25) ,

renders all the weights nonnegative, and morover f admits the linear syzygies

fflfflffl1(x1) = fflfflffl01 b0(x1) +fflfflffl11 b1(x1) , fflfflffl2(x2) = 0.5fflfflffl02 b0(x2) + 3fflfflffl12 b1(x2)

fflfflffl3(x3) = 2fflfflffl03 b0(x3) + 0.1fflfflffl13 b1(x3) , fflfflffl4(x4) = 0.12fflfflffl04 b0(x4) + 7fflfflffl14 b1(x4)

fflfflffl5(x5) = 3fflfflffl05 b0(x5) + 1.25fflfflffl15 b1(x5) .
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By the Hilbert-Burch theorem (Theorem 2.1.24), the vector of polynomials f defining ffi can be
recovered, up to scalar, as the wedge

fflfflffl1(x1) ∧fflfflffl2(x2) ∧fflfflffl3(x3) ∧fflfflffl4(x4) ∧fflfflffl5(x5) .

Moreover, by the convex hull property of the Bernstein basis (recall §1.1.1), the image of the unit
cube [0, 1]5 ⊂ A5

R is precisely the Klee-Minty 5-cube.
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Chapter 6

Weak (1− ›)-nets for polynomial
superlevel sets

In this chapter, we prove an extension of the classical centerpoint theorem that encompasses
sets defined by a single polynomial inequality of arbitrary degree. Additionally, we address the
estimations of the size of (1− ›)-nets for the range systems defined by polynomial superlevel sets
of bounded degree, and the Carathéodory number of real Veronese varieties.

Metric geometry: for any probability measure on Rn, we prove that there exist n + 1 points
such that the nonnegativity region of every quadratic polynomial that is nonnegative on the points
has probability at least 2=((n + 1)(n + 2)) (Theorem 6.2.1). Moreover, the number n + 1 is the
least possible. More generally, for a positive integer d and an absolutely continuous probability, we
can always find

`n+2d
n

´
− n − 1 points such that the nonnegativity region of every polynomial of

degree d , which is nonnegative at the points, has probability greater than zero (Theorem 6.2.2).

Convex algebraic geometry: We prove new bounds on the Carathéodory number of the real
affine Veronese variety and the real Veronese cone (Theorem 6.2.3).

6.1. Preliminaries

The classical centerpoint theorem of Rado and Birch [169, 19], stated as Theorem 1.2.28, is an
important result in computational geometry and data sciences, since it provides an extension of the
one-dimensional median to higher-dimensional data. In the language of convexity, the centerpoint
theorem states that the ( 1

n+1)-floating body of any probability measure is not empty (see e.g. [10,
122, 156, 196] and the references therein for different perspectives and a large body of work around
the centerpoint theorem and Tuckey depth).

Our goal in this chapter is to generalize this result by replacing half-spaces with superlevel sets
of polynomials, i.e. the loci of points in An

R satisfying a polynomial inequality.

6.1.1. Motivating example: disks and annuli

We begin with an example in A2
R, that provides some intuition on our strategy and results.

Specifically, we replace half-planes by disks and annuli. Given the family of polynomials of the form

f (x) = f (x1, x2) = ¸0 + ¸1 x1 + ¸2 x2 + ¸3 (x
2
1 + x22 ) (6.1)

for some (¸0 : ¸1 : ¸2 : ¸3) in P3
R, disks and annuli are the superlevel sets

(f ≥ 0) = {x = (x1, x2) ∈ A2
R : f (x) ≥ 0} .

Let X be a set of N points in A2
R.
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Question 6.1.1. Is there a centerpoint c = (a, b) in A2
R such that, given a f as (6.1), if f (c) ≥ 0

then (f ≥ 0) contains a fixed fraction of the points in X?

The answer is negative, since we can take the disk centered at c of radius › > 0 sufficiently
small, defined by

−(x21 + x22 ) + 2 a x1 + 2 b x2 − (›2 + a2 + b2) ≥ 0

which does not contain any point different from c . Hence, this disk encloses at most an arbitrarily
small fraction of the points in X .

We can reformulate the previous question, allowing more than one point.

Question 6.1.2. Are there two points c1, c2 in A2
R such that, given f as (6.1), if f (c1) ≥ 0 and

f (c2) ≥ 0 then (f ≥ 0) contains a fixed fraction of the points in X?

In this case, the answer is affirmative. Namely, let

 : A2
R −→ A3

R

(x1, x2) 7→ (y1, y2, y3) = (x1, x2, x
2
1 + x22 ) .

The image of  is the paraboloid of revolution P defined by y21 + y22 − y3 = 0. In particular, the
pushforward of X yields a sample Y of N points in P . By the centerpoint theorem, there exists a
point c in A3

R such that every half-space H ⊂ A3
R defined by

¸0 + ¸1 y1 + ¸2 y2 + ¸3 y3 ≥ 0

containing c also contains (at least) N=4 of the points in Y .
Unfortunately, this centerpoint c might not lie on P. Nevertheless, c does lie in the convex

hull of Y (this follows either from the classical Helly’s theorem, see for instance [160], or by the
hyperplane separation theorem [34, Exercise 2.22]), and therefore in the convex hull of P . On the
other hand, a general line ‘ through c meets P at two points c1, c2. In particular, any half-space H
containing the points c1 and c2 must also contain c. Therefore, H contains at least N=4 of the
points in Y . Finally, the pullback  −1(H ∩ P) is precisely the superlevel set of

f (x1, x2) := ¸0 + ¸1 x1 + ¸2 x2 + ¸3 (x
2
1 + x22 ) ,

and Question 6.1.2 is answered affirmatively. Figure 6.1 shows a sample X of points in A2
R for

which two centerpoints c1, c2 have been found. In particular, any superlevel set (f ≥ 0) with f as
(6.1) encloses at least N=4 points.

Remark 6.1.3. The same idea of the example above works in any dimension, for superlevel sets of
polynomials

f (x) = f (x1, ... , xn) = ¸0 + ¸1 x1 + ... + ¸n xn + ¸n+1

0@ X
1≤i≤n

x2i

1A ,

i.e. for n-dimensional balls and their complements. Namely, given a finite set X in An
R we can

always find two centerpoints c1, c2 such that every (f ≥ 0) containing c1, c2 also contains a fraction
(n + 2)−1 of the points in X .

In this chapter, we extend this strategy by considering the superlevel sets of all real polynomials
of degree d in n variables. This task naturally relies on the study of Veronese varieties.
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Figure 6.1.: A sample of N = 50 (green) points in A2
R. Every disk and annulus containing the two

centerpoints (red crosses) contains at least N=4 of the points.

6.1.2. Weak (1− ›) nets for polynomial superlevel sets

We briefly recall the basic definitions that are necessary in our work. As usual in the field of measure
theory, we replace the notation An

R, that we employed throughout Part I, by just Rn. Additionally,
in contrast to Part I, we start working over the usual topology in Rn. Furthermore, we always
consider the Borel ff-algebra on Rn.

Definition 6.1.4 (Borel ff-algebra). The Borel ff-algebra is the ff-algebra generated by the collection
of all open subsets in Rn, with the usual topology.

In particular, we only consider probability measures defined over the Borel ff-algebra. Similarly, we
are interested in probability measures that are absolutely continuous with respect to the Lebesgue
measure (see [63, §1.3] to recall the Lebesgue measure in Rn). More precisely, we have the following
definition.

Definition 6.1.5. (Absolutely continuous measure, [63, §4.2]) A measure — on Rn is absolutely
continuous with respect to the Lebesgue measure , or simply absolutely continuous, if for every
Borel set A such that (A) = 0 we have —(A) = 0.

The notion of a weak (1−›)-net is central for our results, since it plays the role of the centerpoint
for nonlinear polynomial inequalities. To formalize it, we require the following definition.

Definition 6.1.6 (Range space). A range space in Rn is a pair (—,F ) where — is a probability
measure on Rn and F is a family of subsets of Rn.

Definition 6.1.7 (Weak ›-net). Let 0 ≤ › ≤ 1, and let (—,F ) be a range space in Rn. A weak
›-net for (—,F ) is a set X ⊂ Rn such that every R in F satisfying —(R) ≥ › has a nontrivial
intersection with X , i.e. X ∩ R ̸= ?.

The motivating examples for this definition are the families of closed half-spaces in Rn and closed
convex sets (e.g. [155, 160]). Weak ›-nets were introduced in [11], to tackle the celebrated halving
sets problem. Additionally, ›-nets for half-spaces were introduced in the learning theory literature
[197], where they remain an important concept closely connected to the Vapnik-Chervonenkis
dimension. Furthermore, they are also relevant in computational geometry and approximation
algorithms.

Remark 6.1.8 (Centerpoint theorem and (1 − ›)-nets). Importantly, the centerpoint theorem
can be reformulated in the language of (1− ›)-nets. Specifically, given a probability measure —
on Rn, a centerpoint is a (1 − ›)-net for › = (n + 1)−1. Namely, every half-space H satisfying
—(H) ≥ 1− › must contain the centerpoint, since the complement Rn\H has —(H) < ›.
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Since we are interested in nonlinear polynomial inequalities, the main object of study in this
chapter are weak (1 − ›)-nets for range space determined by the family of superlevel sets of
polynomials.

Definition 6.1.9 (Polynomial superlevel set). Let f in R[x1, ... , xn]. The superlevel set of f ,
denoted by (f ≥ 0), is

(f ≥ 0) = {x = (x1, ... , xn) ∈ Rn : f (x) ≥ 0} . (6.2)

Remark 6.1.10. Half-spaces are the superlevel sets of linear polynomials.

Notation 6.1.11. Given x = (x1, ... , xn), we denote by R[x]≤d the R-vector space of polynomials
of degree at most d in the variables of x. Additionally, we define the collection of subsets of Rn

Fd := {(f ≥ 0) : f ∈ R[x]≤d} .

In words, Fd is the family of superlevel sets of polynomials of degree at most d .

6.1.3. The Carathéodory number of Veronese varieties

We start recalling some elementary concepts in convex geometry.

Definition 6.1.12 (Canonical simplex, convex combination, and convex hull).

(i) The (k − 1)-dimensional canonical simplex is the set

∆k−1 = {––– = (–1, ... ,–1) ∈ Rk :
kX

i=1

–i = 1 and –i ≥ 0 for every 1 ≤ i ≤ d}

(ii) A convex combination of the points x1, ... , xk in Rn is a sum

–1 x1 + ... + –k xk

where ––– = (–1, ... ,–k) lies in the (k − 1)-dimensional canonical simplex

(iii) The convex hull of a set X ⊂ Rn, denoted by conv(X ), is the set of all the convex combinations
of points in X

The Carathéodory number of a set in Rn is central in convex geometry.

Definition 6.1.13 (Carathéodory number). Let X be a subset in Rn. The Carathéodory number
of X , denoted by »(X ), is the smallest integer r such that every point in the convex hull of X can
be written as a convex combination of r points in X .

In this chapter, we are interested in the Carethéodory number of the real affine Veronese variety
V (n, d) and the real Veronese cone V̂ (n, d) (recall Definition 1.2.31). Remarkably, the Carathéodory
number of V̂ (n, d) is simply

max
x∈conv(V̂ (n,d))

min{r : x =
rX

i=1

–i x
⊗d
i where xi ∈ Rn+1 and –i ≥ 0 for every 1 ≤ i ≤ r} ,

i.e. we can forget about the constraint –1+...+–r = 1 since V̂ (n, d) is a cone, and the coefficients
can thus be “rescaled”. Recalling Definition 2.2.19, the Carathéodory number of the Veronese
cone is the maximum nonnegative symmetric rank of a real symmetric tensor in the convex hull of
V̂ (n, d), since by definition V̂ (n, d) is the locus of rank-one symmetric tensors of format (n+1)⊗d

(recall §2.2.2 and Definition 2.2.14).
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6.2. Contributions and related work

In this section, we present the main results of this chapter. Their proofs, among other technical
results, are postponed to the following sections.

6.2.1. Statement of our results

Our first result is an extension of the centerpoint theorem for the superlevel sets of quadratic
polynomials in Rn, for any Borel probability measure. Remarkably, the number n + 1 is sharp,
meaning that the result is not true for any set with less than n + 1 points (see Lemma 6.3.2).

Theorem 6.2.1. Let — be a probability measure on Rn. There exists a set X of n + 1 points in
Rn such that any quadratic f in R[x] that is nonnegative on every point of X satisfies

—(f ≥ 0)) ≥ 2

(n + 2)(n + 1)
.

Our second main result is an extension of the centerpoint theorem to arbitrary degree. However,
we require that the probability measure is absolutely continuous.

Theorem 6.2.2. Let — be a probability measure on Rn which is absolutely continuous with respect
to the Lebesgue measure. For any ‹ > 0, there exists a set X of at most

`n+2d
n

´
− n − 1 points in

Rn such that any f in R[x]≤d that is nonnegative on every point of X satisfies

—(f ≥ 0)) ≥
„„

n + 2d

2d

«
+ 1

«−1

− ‹ .

The previous results rely on new estimates for the Carathéodory numbers of the Veronese
varieties. Thus, our next task is to provide bounds for these numbers. Specifically, from Lemma
6.3.2 and Proposition 6.3.3 we obtain a lower bound »(V (n, 2d)) ≥

`n+d
n

´
. On the other hand,

the Carathéodory theorem [13, Theorem 2.3] provides the bound »(V (n, d)) ≤
`n+d

n

´
. We remark

that the problem of estimating these Carathéodory numbers has been raised by several authors
(e.g. [13, 12, 84], and [103, pp.10]). From a technical point of view, the bounds provided in the
next theorem are our most interesting result.

Theorem 6.2.3. Let n, d be positive integers. The Carathéodory numbers of the Veronese varieties
satisfy the following:

(i) »(V (n, 2)) = n + 1

(ii) (di Dio and Kummer, [84]) »(V (n, 2d)) ≥
`n+2d

n

´
− n
`n+2d

n

´
+
`n
2

´
(iii) »(V̂ (n + 1, 2d) ≤

`n+2d
n

´
− n − 1

(iv) »(V (n, 2d)) ≤ »(V (n, 2d + 1)) ≤ »(V (n, 2d + 2))

Item (i) follows from the spectral theorem for positive semidefinite matrices. Item (ii) is based
on Noga Alon’s Combinatorial Nullstellensatz [4]. While this result has been recently discovered
in [84], we offer a direct geometric proof that does not necessitate familiarity with commutative
algebra and Hilbert polynomials, as required in [84]. Item (iii) relies on a necessary conditions for a
hyperplane to be a supporting hyperplane of the convex hull of V̂ (n + 1, 2d), which might have its
own significance. Finally, (iv) is a straightforward observation: V (n, d) is a linear projection of
V (n, d + 1).
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6.2.2. Related work and discussion

Item (ii) of Theorem 6.2.3 is somehow disappointing. As explained in §6.1.3 before, the Carathéodory
number of V̂ (n + 1, d) is the maximum nonnegative symmetric rank of a symmetric tensor in the
convex hull of the locus of rank-one tensors. Without the nonnegativity condition, [26, Theorem 3]
shows that the real symmetric rank is not greater than twice the complex symmetric rank. The
complex symmetric rank, in turn, is understood by the celebrated Alexander-Hirschowitz theorem
[3]. Specifically, except for a finite number of cases the maximum complex symmetric rank is
⌈ 1
n+1

`n+d
n

´
⌉; in the exceptions, it is ⌈ 1

n+1

`n+d
n

´
⌉+1. We will explain these algebraic results in more

detail, and explain the inequality »(V̂ (n + 1, d)) ≤ 2
n+1

`n+d
n

´
for odd d in §6.4.2. However, this

behavior is irrelevant to obtain upper bounds on »(V (n, d)) for both d even and odd. Moreover, the
lower bound of item (ii) in Theorem 6.2.3 shows that, as d → ∞, the multiplicative improvement
over the bound given by the Carathéodory theorem is asymptotically like

`
1− n

2n

´
. If we fix d and

let n go to infinity the situation is even more dire, since there is no asymptotical improvement over
Carathéodory’s bound.

As we mentioned before, item (ii) of our Theorem 6.2.3 is not new. The work [84] proves it
with a less elementary argument using the Hilbert polynomials. Also, notice that [84] has a similar
bound for the odd degree case, but considering the Veronese image of the cube [0, 1]n instead of
the whole Rn.

6.3. (1− ›)-nets for superlevel sets of polynomials

Notation 6.3.1. Given positive integers n, d , we set

m(n, d) :=

„
n + d

n

«
,

which is the dimension of the vector space of homogeneous polyomials of degree d in n+1 variables.

In this section, we extend the strategy explained in §6.1.1 for disks and annuli to general
polynomial superlevel sets of arbitrary degree. In few words, our strategy can be summarized as
follows:

(i) We pushforward a measure in Rn using a Veronese embedding, so that we can identify the
superlevel sets of polynomials in Rn with halfspaces in Rm

(ii) We apply the classical Carathéodory theorem in Rm to find a centerpoint

(iii) In order to pullback this centerpoint, we express it as a convex combination of points in the
Veronese variety

The following result is a lower bound on the size of (1− ›)-nets for polynomial superlevel sets.

Lemma 6.3.2. Let — be a probability measure on Rn which is absolutely continuous with respect
to the Lebesgue measure, and let d be a positive integer. For every › > 0, a (1− ›)-net of the
range space (—,F2d) has at least m(n, d) points.

Proof. We proceed by contradiction. Let › > 0, and let X = {c1, ... , ck} be a (1−›)-net of (—,F2d)
of size k < m(n, d). Since the R-vector space R[x]≤d has dimension m(n, d), the evaluation linear
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map

R[x]≤d −→ Rk

f 7→ (f (c1) , ... , f (ck))

has a nontrivial kernel. In particular, we find a g in R[x]≤d that vanishes on every point of X .
Hence, for any ‹ > 0 the polynomial f = −g2 + ‹ in R[x]≤2d is positive on every point of X .
Moreover, since — is absolutely continuous with respect the Lebesgue measure and the measure of
(f ≥ 0) is arbitrarily small, we can find ‹ = ‹(›) such that —((f ≥ 0)) < ›. Therefore, X is not a
(1− ›)-net of (—,F2d).

The following results provides bounds for the size of a (1 − ›)-net for Fd in terms of the
Carathéodory number of the Veronese varieties.

Proposition 6.3.3. Let — be a probability measure on Rn and let d be a positive integer.

(i) There exists a weak
`
1−m(n, d)−1

´
-net of (—,Fd) of size at most »(V (n, d))

(ii) If — is absolutely continuous with respect the Lebesgue measure, then for every ‹ > 0 there
exists a weak

`
1− (m(n, 2d) + 1)−1 + ‹

´
-net of (—,F2d) of size at most »(V̂ (n + 1, 2d))

Proof. We first prove (i). Let  be the probability measure on V (n, d) obtained by pushing forward
— by the Veronese embedding vd : Rn −→ Rm(n,d)−1. By the centerpoint theorem, we find a point
c in Rm(n,d)−1 such that every half-plane H in Rm(n,d)−1 containing c satisfies (H) ≥ m(n, d)−1.
By the hyperplane separation theorem [34, Exercise 2.22], c lies in the convex hull of V (n, d). If
we set k = »(V (n, d)), we thus can write

c =
kX

i=1

–i ci ,

where ci lies on V (n, d) for every 1 ≤ i ≤ k , and ––– = (–1, ... ,–k) lies on the (k − 1)-dimensional
canonical simplex. We conclude proving that

X = {v−1
d (ci ) : 1 ≤ i ≤ k} ⊂ Rn

is a (1−m(n, d)−1)-net for (—,Fd). The affine Veronese embedding vd induces an isomorphism
between the R-vector spaces

Φ : R[x]≤d −→ R[y]≤1 (6.3)

f =
X

e=(e1,...,en) ,

|e|≤d

¸e x
e 7→ Lf =

X
e=(e1,...,en) ,

|e|≤d

¸e ye =

m(n,d)−1X
i=0

¸i yi ,

where for simplicity we index the monomials of degree at most d in the variables x = (x1, ... , xn)
with 0 ≤ i ≤ m(n, d)− 1, and y = (y0, ... , ym(n,d)−1). In particular, we find that (f ≥ 0) is the
pullback v−1

d (Hf ∩ V (n, d)), where Hf = (Lf ≥ 0). Therefore, (f ≥ 0) contains all the points in
X if and only if Hf contains ci for every 1 ≤ i ≤ k . Hence, we find —(f ≥ 0) ≥ m(n, d)−1.

Secondly, we prove (ii). As before, we let  be the probability measure on V (n, 2d) obtained by
pushing forward — by the Veronese embedding. Moreover, if we identify Rn with the hyperplane
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x0 = 1 in Rn+1, we find V (n, 2d) ⊂ V̂ (n + 1, 2d) ⊂ Rm(n,d). Thus, we can repeat the previous
strategy applying the centerpoint theorem in Rm(n,d).

Let k = »(V̂ (n + 1, 2d)). Then, we find a set

Y = {cj = (c0j , c1j , ... , c(m(n,d)−1)j) ∈ V̂ (n + 1, 2d) : 1 ≤ j ≤ k}

such that

c =
kX

j=1

–j cj ,

where ––– = (–1, ... ,–k) lies on the (k − 1)-dimensional canonical simplex. Additionally, the
centerpoint c must lie on y0 = 1, implying the relation

kX
j=i

–j c0j = 1 . (6.4)

Since x2d0 is nonnegative for any real number, it follows that V̂ (n + 1, 2d) lies in the half-space
y0 ≥ 0. Therefore, if c0j is nonzero for every 1 ≤ j ≤ k we can rewrite

c =
kX

j=1

–j c0j (c
−1
0j ci ) , (6.5)

and the result follows by (6.4) and the fact that V̂ (n + 1, 2d) is a cone. However, some cj might
lie on y0 = 0. We now deal with this situation. Let`

Yi = {c i1, ... , c ik}
´∞
i=1

be a sequence of sets in V̂ (n + 1, 2d) ∩ {y0 > 0} satisfying that

c ij
i−→∞−−−→ cj

for each 1 ≤ j ≤ k . Additionally, define

c i =
kX

j=1

–j c
i
j ,

so that c i i−→∞−−−→ c . Moreover, for each 1 ≤ i <∞ we can apply the same normalization as (6.5)
to write c i as a convex combination of k points in y0 = 1.

Let ‹ > 0 and › = (m(n, 2d) + 1)−1 − ‹. We show that there exists some i = i(‹,—) such that
Y i is a weak (1− ›)-net for (—,F2d). We proceed by contradiction. For each 0 ≤ i <∞, suppose
that there exists a poylnomial

fi =
X

e=(e1,...,en) ,

|e|≤2d

¸ei x
e

which is nonnegative on every point of Yi and satisfies

—((fi ≥ 0)) < › . (6.6)



6.4. The Carathéodory number of Veronese varieties 155

In particular fi is nonzero, and we can assume

∥fi∥2 :=
X

e=(e1,...,en) ,

|e|≤2d

(¸ei )
2 = 1

so that fi lies in the (compact) unit sphere. Therefore, the sequence (fi )
∞
i=1 converges to some f

uniformly on compacta. Moreover, since fi(c
i
j ) ≥ 0 it follows that f (cj) ≥ 0 for every 1 ≤ j ≤ k.

In order to find a contradiction, we prove that

—(f ≥ 0) ≤ › <
1

m(n, 2d) + 1
,

which is not possible by the isomorphism (6.3) since it implies the existence of a half-space
Hf = (Lf ≥ 0) containing the centerpoint c of measure strictly less than (m(n, 2d)+1)−1. Assume
the contrary, i.e. —(f ≥ 0) > ›. Since — is absolutely continuous with respect to the Lebesgue
measure and algebraic sets have measure zero, we find —((f ≥ 0)) = —((f > 0)). On the other
hand, as fi

i→∞−−−→ f pointwise it follows that

ffl(f≥0) ≤ lim inf
i→∞

ffl(fi≥0) ,

where fflS is the indicator function of a subset S of Rn. Additionally, by (6.6) and the Fatou lemma
[47, Lemma 18.13] we deriveZ

Rn

ffl(f≥0) d— = —((f ≥ 0)) ≤ 1

m(n, d) + 1
− ‹ ,

which is a contradiction.

6.4. The Carathéodory number of Veronese varieties

The goal of this section is to derive the bounds for the Carathéodory numbers of the Veronese
varieties presented in Theorem 6.2.3. Remarkably, the parity of the degree of the Veronese
embedding matters. Because of this, we address the even and odd degrees separately.

6.4.1. Even degree

We begin by proving the following lemma, which is a direct consequence of the spectral theorem
for real symmetric matrices.

Lemma 6.4.1. »(V̂ (n + 1, 2)) = n + 1.

Proof. The Veronese cone V̂ (n + 1, d) is the locus of symmetric rank-one tensors of format
(n + 1)⊗d (recall §2.2.2). In particular, if d = 2 it is just the locus of real symmetric matrices.

Let M be a nonzero (n + 1)× (n + 1) real symmetric matrix in the convex hull of V̂ (n + 1, d).
We can write

M =
kX

i=1

–i Mi

where Mi = xi ⊗ xi ≡ xixTi for some xi in Rn+1 and ––– = (–1, ... ,–k) is a point in the (k − 1)-
dimensional canonical simplex. As Mi is positive semidefinite for every 1 ≤ i ≤ k , M is a positive
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combination of positive semidefinite matrices. Thus, M is also positive semidefinite. By the spectral
theorem, we can write

M =
nX

i=0

—i yiy
T
i =

nX
i=0

„
—i

—

«
(
√
—i yi )(

√
—i yi )

T ≡
nX

i=0

„
—i

—

«
(
√
—i yi )⊗ (

√
—i yi )

where —0,—1, ... ,—n are the eigenvalues of M, y0, y1, ... , yn define an orthonormal basis of Rn+1,
and

— =
nX

i=0

—i . (6.7)

By definition, the point

——— =

„
—0

—
,
—1

—
, ... ,

—n

—

«
(6.8)

lies on the n-dimensional canonical simplex. Hence, M can be written as a convex combination of
n + 1 points on V̂ (n + 1, 2). Since we find positive semidefinite matrices of rank n + 1, the result
follows.

Now, we sequentially prove the bounds for the Carathéodory number of the Veronese varieties
stated in Theorem 6.2.3.

Proof of (i) in Theorem 6.2.3. We embed Rn in Rn+1 with the additional coordinate x0 = 1.
Then, the affine Veronese variety V = V (n, 2) consists of rank-one (n + 1)× (n + 1) symmetric
matrices x⊗ x for some nonzero x = (1, x1, ... , xn), regarded as a column vector.

Similarly to the proof of Lemma 6.4.1, for any M in the convex hull of V there exist a sum of
k ≤ n + 1 rank one positive matrices

M = E1 + · · ·+ Ek .

If M is full rank and k = n + 1, then there are a lot of such decompositions, transformed by
rotations of Rn+1 one into another. Because of this, one may also assume that the corner element
(Ei )0,0 is positive for every 1 ≤ i ≤ k . In order to achieve this, we just need to rotate so that the
hyperplanes in Rn+1

{xTEi x = 0} = {xT (eieTi ) x = 0} = {(xTei )2 = 0} = {xTei = 0}

do not contain the vector z = (1, 0, ... , 0). If A is not full rank, then the decompositions into
k = rank(M) matrices of rank one are transformed one into another by rotations of the k-
dimensional quotient Rn+1= kerM. It is also possible to rotate so that z is not inside any of the
hyperplanes {xTEi x = 0}, since z does not lie in kerM (equivalently M0,0 ̸= 0) and the intersection
of those hyperplanes is kerA.

After this, it is possible to take out the positive corner elements of the Ei and write

M = –1 e1e
T
1 + ... + –k eke

T
k

with positive –i and vectors ei with first entry equal to one. Since M lies in the hyperplane
H = {M0,0 = 1}, as well as eieTi for every 1 ≤ i ≤ k , it follows that –1 + ... + –k = 1. Hence, M
is a convex combination of at most n + 1 elements of V .
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Proof of (ii) in Theorem 6.2.3. Consider the univariate polynomial in the variable x

F (x) = (x − 1) ... (x − d) ,

and define the multivariate polynomial of degree D = 2d in the variables x1, ... , xn

P(x) = P(x1, ... , xn) = F (x1)
2 + · · ·+ F (xn)

2 .

By definition P is nonnegative, and its real zero set M ⊂ Rn is the finite product {1, ... , d}n, of
size dn. The Veronese image v(M) is an intersection of V (n,D) with the support hyperplane
corresponding to the polynomial P . Hence, we have »(V (n,D)) ≥ »(v(M)). Since v(M) is a finite
set, its Carathéodory number equals the dimension of its affine hull plus one, that is dim v(M) + 1.
This in turn equals the dimension of the vector space of restrictions of polynomials of degree at
most D to M.

In order to understand the dimension of the space of such restrictions, let us analyze the kernel of
the restriction map, that is the vector subspace Z(M) of R[x1, ... , xn]≤D of polynomials vanishing
on M. By Noga Alon’s Combinatorial Nullstellensatz [4, Theorem 1.1], any polynomial Q in Z(M)
can be written as

Q(x1, ... , xn) = S1(x1, ... , xn)F (x1) + ... + Sn(x1, ... , xn)F (xn) ,

where deg Si ≤ degQ − d for each 1 ≤ i ≤ n. When degQ ≤ D, we have deg Si ≤ d for every
1 ≤ i ≤ n. The dimension of all possible combinations of the Si is at most n ·m(n, d) = n

`n+d
n

´
.

Furthermore, the kernel of the linear map

(S1, ... , Sn) 7→ S1 F (x1) + · · ·+ Sn F (xn)

contains the
`n
2

´
linearly independent Koszul-like vectors of polynomials

(0, ... , F (xj)| {z }
i-th entry

, ... ,− F (xi )| {z }
j-th entry

, ... , 0) .

Therefore, the kernel of the restriction map for polynomials of degree D = 2d has dimension at
most n

`n+k
k

´
−
`n
2

´
. Thus, for the degree of the image of the restriction map we obtain

»(V (n, 2d)) ≥ m(n, 2d)− n ·m(n, d) +

„
n

2

«
=

„
2d + n

n

«
− n

„
d + n

n

«
+

„
n

2

«
.

Additionally, when D → ∞, this is asymptotically

»(V (n, 2d)) ≥ (2d)n

n!
− n

dn

2nn!
=
“
1− n

2n

” (2d)n

n!
=
“
1− n

2n

”
m(n, 2d) .

Proof of (ii) in Theorem 6.2.3. We proceed similarly to [13], where the Carathéodory number of
the moment curve is computed. Let D = 2d , and consider V̂ (n+1,D). In particular, V̂ (n+1,D) is
a cone over its section with the hyperplane in Rm(n,D) that is identified (by the Veronese embedding)
with the homogeneous polynomial

(x20 + x21 + · · ·+ x2n )
d = 1 .
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Namely, this hyperplane section corresponds to the restriction of homogeneous map

v̂ : Rn+1 −→ Rm(n,D) (6.9)
x = (x0, ... , xn) 7→ x⊗D ,

to the unit sphere Sn ⊂ Rn+1. Therefore, we may focus on estimating the Carathéodory number of
v̂(Sn), since it is the same as the Carathédory number of V̂ (n + 1,D). This point of view has the
advantage that v(Sn), as well as its convex hull, is compact.

Let ‰ be a point in conv(v̂(Sn)). Additionally, let x be a point in Sn and consider the maximum
t such that

‰ − tv̂(x) ∈ conv v̂(Sn) ,

which is attained since the convex hull is compact. We define the point

” = ‰ − t v̂(x) ,

which lies in the boundary of conv v̂(Sn). By the Hahn-Banach theorem (see e.g.[157]), there exists
a linear functional L that defines a supporting plane in Rm(n,D) of conv(v̂(Sn)) and contains ”.
Additionally, the Veronese map identifies L with a homogeneous polynomial P in of degree D in
n + 1 variables. In particular, if

M = {x ∈ Sn | P(x) = 0} ,

it follows that ” lies in conv v̂(M). Notice that, if dim conv v̂(M) ≤ N, by Carathéodory’s theorem
any point in conv v̂(M) can be expressed as a convex combination of N + 1 points. Additionally,
since v̂ yields an identification between homogeneous polynomials of degree D in Rn and linear
forms in Rm(n,D), we find

dim conv v̂(M) =

„
n + 2d

n

«
− dimZ(M)− 1 ,

where Z(M) is the vector space of homogeneous polynomials of degree D in n + 1 that vanish on
M. Therefore, we derive

» (v̂(M)) ≤
„
n + 2d

n

«
− dimZ(M)

and

»
“
V̂ (n + 1, 2d)

”
≤
„
n + 2d

n

«
− dimZ(M) + 1.

We conclude providing a lower bound for the dimension of Z(M). Notice that P lies in Z(M) by
definition. On the other hand, since M is the locus in Rn+1 where the minimum of P is attained,
all the (n + 1)2 products

xi
@P

@xj

vanish on M. Nevertheless, there might be linear relations between these polynomials. If we have a
nontrivial linear relation of the form

¸0 x0
@P

@xj
+ ... + ¸n xn

@P

@xj
= (¸0 x0 + ... + ¸n xn)

@P

@xj
= 0
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for some 0 ≤ j ≤ n, it follows that @P
@xj

= 0. However, since P is homogeneous of degree 2d there

must be some 0 ≤ j0 ≤ n for which @P
@xj0

is nonzero. In particular, all the products

x0
@P

@xj0
, ... , xn

@P

@xj0

are linearly independent, and lie in Z(M). Finally, if P is linearly independent from these n + 1
partial derivatives, we find

dimZ(M) ≥ n + 2

implying the bound (iii) in Theorem 6.2.3

»(V̂ (n + 1, 2d)) ≤
„
n + 2d

n

«
− n − 1 .

If this is not the case, assume without loss of generality that j0 = 0. Then, we find the nontrivial
linear relation

P = (¸0 x0 + ... + ¸n xn)
@P

@x0
. (6.10)

If ¸0 = 0, the restriction of the identity above to any line in Rn+1 of the form

x1 = ˛1 , ... , xn = ˛n ,

for some ˛̨̨ = (˛1, ... ,˛n) in Rn, becomes an ODE

@P

@x0
∝ P ,

with P as unknown, whose solutions are exponentials. Since P is a polynomial, this cannot be
the case. Therefore, we have ¸0 ̸= 0, and we can apply the inverse of the change of coordinates
defined by

y0 7→ x0 +
¸1

¸0
x1 + · · ·+ ¸n

¸0
xn ,

and sending yi 7→ xi for every 1 ≤ i ≤ n. Hence, (6.10) becomes

¸0 y0
@P

@y0
= P ,

and any solution of this has the form

P(y0, ... , yn) = y
1=a
0 Q(y1, ... , y2) .

Moreover, since P is a nonnegative polynomial, we have:

(i) 1
a must be an even positive integer 2d ′

(ii) Q must be a nonnegative of degree D − 2d ′ = 2(d − d ′)
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Additionally, we find some 1 ≤ k0 ≤ n such that the partial derivative

Rk0 =
@Q

@xk0

is a nonzero polynomial that vanishes at M. In particular, all the products xixjRk0 yield linearly
independent homogeneous polynomials of degree at most 2d that vanish at M. Since there are`n+2

2

´
of such products, multiplying by a power of x0 if necessary to make them of degree 2d , we

improve the bound

dimZ(M) ≥
„
n + 2

2

«
≥ n + 2 .

6.4.2. Odd degree

Regarding odd degrees, the bounds (iv) in Theorem 6.2.3 for the Carathéodory number of the
affine Veronese variety follow from the fact that linear projections ı : V (n, 2d) → V (n, 2d − 1)
preserve convex combinations. For the Veronese cone in odd degree (not stated in Theorem 6.2.3,
since we do not use to bound the size of (1− ›)-nets), a bound follows from the results of [26] and
[3].

For the sake of completeness, we briefly include the statements of the results that yield this
bound. Specifically, the following is a version of the celebrated Alexander–Hirschowitz, stated in
the language of symmetric tensors.

Theorem 6.4.2. [3] The symmetric rank of a general symmetric complex tensor of format (n+1)⊗d

is ⌈ 1
n+1 m(n, d)⌉, except for finitely many pairs (n, d) (see [26, §3.1]).

In general, over R there are (Zariski dense) open sets, within the spaces of tensors of a given
format, consisting of tensors that have a fixed rank. Each of this ranks is called a typical rank. This
phenomenon does not occur over C, where there is only one (Zariski dense) open set consisting of
tensors of a fixed rank. In particular, this rank is called the general rank. Here, we do not discuss
real typical ranks in detal (see e.g. [26, 126, 17], and interested readers can look at Table 3.3 in
[126] for a list of the typical ranks for a number of formats), but we include the following result.

Theorem 6.4.3. ([26, Theorems 2 and 3]) Given a specific tensor format, the maximum rank of a
real tensor is at most twice the smallest typical rank. Moreover, the smallest typical (real) rank is
the general rank of complex tensors of the same format.

Corollary 6.4.4. (Follows from [26, §3.1]) If d is odd, then

»(V̂ (n, d)) ≤ 2

n + 1

„
n + d

d

«
except for finitely many pairs (n, d).



Chapter 7

Cylinders through four cocyclic points

In this short chapter, we provide algebraic certificates for the number of real circular cylinders
through a particular configuration of five points in A3

R: four of the five points are cocyclic, i.e. they
lie in a commmon circumference (Theorem 7.3.5 and Corollary 7.3.7). Additionally, we give closed
formulas for the defining equations of such cylinders (Corollary 7.3.6).

7.1. Projective definition of circular cylinders

Intuitively, a cylinder is a surface in A3
R that is swept by parallel lines along a plane conic. If the

conic is a circumference, we say that the cylinder is circular. In particular, cylinders are quadric
surfaces. When we look at these quadrics in P3

R, all the parallel lines meet at the “plane at ∞”.
Therefore, cylinders are just real rank-three quadrics, that is real cones, where the singular point
lies at “∞”. To formalize ideas, we establish the following notation for the rest of the chapter.

Notation 7.1.1. We denote by Hi the plane in P3
C = Proj(C[x0, x1, x2, x3]) defined by xi = 0, for

each 0 ≤ i ≤ 3. As usual, A3
C is defined by y0 ̸= 0.

In this chapter, we are interested only in circular cylinders. To define them formally, we utilize a
projective characterization by means of the absolute conic, defined as follows.

Definition 7.1.2 (Absolute conic). The absolute conic in H0, denoted by K , is the curve defined
by

x21 + x22 + x23 = 0 .

The following is a useful property of the absolute conic.

Remark 7.1.3. (Rigid invariance of the absolute conic [49, Theorem 6.9.21], see also [49, §6.9])
The absolute conic is invariant under “rigid” transformations of A3

C, i.e. those defined by

(y1 , y2 , y3) 7→ (y1 , y2 , y3) ·M + v (7.1)

where yi = xi=x0 for each 1 ≤ i ≤ 3, M is a R3×3 orthogonal matrix, and v is a vector in R3.

We begin explaining our definition of circular cylinder. After a rigid transformation of A3
R, any

cylinder can be transformed into the one defined by the equation

x21 + x22 = r2 ,

for some r > 0. If we homogenize the previous equation using the variable x0, we find

x21 + x22 = r2x0 ,
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which at the plane H0 restricts to

x21 + x22 = (x1 − i x2)(x1 + i x2) = 0 ,

which defines the two complex conjugate lines parametrized by

(0 : ¸ : ±i¸ : ˛) , (7.2)

for (¸ : ˛) in P1
C. The following observations are in order:

(i) The unique real point of the lines (7.2) is (0 : 0 : 0 : 1), corresponding to the apex of the
cylinder

(ii) Each of these lines is tangent to the absolute conic K at the circular point (0 : 1 : ±i : 0)

Hence, this circular cylinder defines two tangent lines to the absolute conic at H0. Furthermore,
since K remains invariant under rigid transformations, every circular cylinder exhibits this property.
In fact, circular cylinders are characterized by this property. To be more precise, circular cylinders
precisely correspond to real rank-three quadrics that define tangent lines to the absolute conic at
H0 (see [49, §6.9 and §10]). We adopt this characterization as our definition.

Definition 7.1.4 (Circular cylinder). A cylinder C is circular if C ∩H0 consists of two lines tangent
to K .

Remark 7.1.5 (The axis of a cylinder). Equivalently, cylinders can be defined affinely by specifying
a direction for their axis, a point on the axis, and a radius. In the majority of works focused on
extracting circular cylinders from point sets, this perspective is adopted (e.g. [81, 42, 143]). Within
our projective framework, we identify the direction v for the cylinder’s axis with a point in H0. To
be more precise, we interpret an axis represented as v = (¸,˛, ‚) as the point (0 : ¸ : ˛ : ‚).

7.2. The conic of admissible vertices

As cylinders are real cones with their singular point at H0, they are determined by the apex and
a section with a plane in P3

C, say H3. In particular, given a circular cylinder C ⊂ P3
C, the section

C ∩H3 defines a plane conic in H3. When we focus on the cylinders through five points in A3
R, and

four of these points lie in the plane H3, it follows that the section C ⊂ P3
C belongs to the pencil of

conics that the four coplanar points determine in H3.
In this chapter, we focus specifically on configurations where four of the points are coplanar.

Furthermore, in §7.3 we impose the additional constraint that the four coplanar points lie on a
common circumference. However, for the present section, our primary objective is to derive the
equation of a plane conic in H0, relative to four coplanar points in H3, that contains the apex of
any circular cylinder passing through these four points

The following lemma describes explicitly the singular lines in H0 that are tangent to the absolute
conic and have a singular real point V , as it arises in C ∩ H0 when C is a circular cylinder.

Lemma 7.2.1. Let V = (¸ : ˛ : ‚) in P2
C. The conic singular at V that defines tangent lines to

the absolute conic K is defined by

`
x1 x2 x3

´0@˛2 + ‚2 −¸˛ −¸‚
−¸˛ ¸2 + ‚2 −˛ ‚
−¸‚ −˛ ‚ ¸2 + ˛2

1A0@x1
x2
x3

1A = 0 . (7.3)
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Proof. For each i = 1, 2, let ‘i be the line through V that is tangent to K . Also, let d be the
double line spanned by Q1 = ‘1 ∩ K and Q2 = ‘2 ∩ K , i.e. the double line of the polar of V with
respect to K . The three conics K , ‘1 ∪ ‘2, and d have fixed tangencies to ‘1, ‘2 respectively at
Q1,Q2. Therefore, each conic lies in the pencil spanned by the other two.

The polar of V with respect to K is

F = F (x1, x2, x3) =
`
x1 x2 x3

´0@1 0 0
0 1 0
0 0 1

1A0@¸˛
‚

1A = ¸x + ˛y + ‚z = 0 . (7.4)

Hence, d is defined by F 2 = 0. Without loss of generality, we can assume either ¸ ̸= 0, ˛ ̸= 0, or
‚ ̸= 0. For simplicity, we choose ¸ ̸= 0. A conic in the pencil spanned by K and d is defined by a
matrix

M(–0,–1) = –0

0@¸2 0 0
0 ¸2 0
0 0 ¸2

1A+ –1

0@¸2 ¸˛ ¸‚
¸˛ ˛2 ˛ ‚
¸‚ ˛ ‚ ‚2

1A
for some (–0 : –1) in P1

C. Moreover, ‘1 ∪ ‘2 is a singular conic in this pencil. In particular, the
determinant of its defining matrix vanishes. Since we have

detM(–0,–1) = ¸4 –20 (–0 ¸
2 + –1 (¸

2 + ˛2 + ‚2)) (7.5)

and the factor –20 corresponds to the double line d , it follows that ‘1 ∪ ‘2 is defined by

(–0 : –1) = (¸2 + ˛2 + ‚2 : −¸2) .

At this point, we explicitly specify our selection of four coplanar points in A3
R. More precisely,

we establish the following notation.

Notation 7.2.2. Let Q1,Q2,Q3,Q4 be four affine points in H3, that do not define a rectangle.
Applying a rigid transformation, we can assume that

Q1 = (1 : 0 : 0 : 0) , Q2 = (1 : 1 : 0 : 0) , Q3 = (1 : ¸3 : ˛3 : 0) , Q4 = (1 : ¸4 : ˛4 : 0)

for some real ¸3,¸4,˛3,˛4.

The following result provides an explicit parametrization of the pencil of conics, in the plane H3,
defined by the points Q1,Q2,Q3, and Q4.

Lemma 7.2.3. The pencil of conics in H3 through Q1,Q2,Q3, and Q4 is parametrized by

ffi : P1
C −→ P5

C

(–0 : –1) 7→
`
x0 x1 x2

´0@ 0 –1 —0 –0 + —1 –1
–1 −2–1 –0

—0 –0 + —1 –1 –0 ȷ0 –0 + ȷ1 –1

1A0@x0
x1
x2

1A
where

ȷ0 =
−2 (¸3 − ¸4)

(˛3 − ˛4)
, ȷ1 =

−2 ((¸3˛4(1− ¸3)− ¸4˛3(1− ¸4))

˛3˛4(˛3 − ˛4)
(7.6)

and

—0 =
(¸3 ˛4 − ¸4 ˛3)

(˛3 − ˛4)
, —1 =

¸3˛
2
4(1− ¸3)− ¸4˛

2
3(1− ¸4)

˛3˛4(˛3 − ˛4)
.
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Remark 7.2.4. The hypothesis on the points Q0,Q1,Q2, and Q3 of not being rectangular is
necessary for the good definition of the constants ȷ0, ȷ1,—0,—1, i.e. to ensure that

˛3 , ˛4 , ˛3 − ˛4

are all nonzero.

Proof. Let

F = F (x0, x1, x2) =
`
x0 x1 x2

´0@A D E
D B F
E F C

1A0@x0
x1
x2

1A
define a conic through Q1,Q2,Q3, and Q4. Since F (q1) = F (q2) = 0, we find

A = 0 , B = −2D .

Moreover, since F (q3) = F (q4) = 0 we also find„
2¸2

3D − 2¸3D − 2¸3 ˛3 F
2¸2

4D − 2¸4D − 2¸4 ˛4 F

«
=

„
˛23 2˛3
˛24 2˛4

«„
C
E

«
.

Applying Cramer’s rule, we derive

C =

˛̨̨̨
2¸2

3D − 2¸3D − 2¸3 ˛3 F 2˛3
2¸2

4D − 2¸4D − 2¸4 ˛4 F 2˛4

˛̨̨̨
˛̨̨̨
˛23 2˛3
˛24 2˛4

˛̨̨̨ = ȷ1 F + ȷ2D .

Similarly, we derive

E =

˛̨̨̨
˛23 2¸2

3D − 2¸3D − 2¸3 ˛3 F
˛24 2¸2

4D − 2¸4D − 2¸4 ˛4 F

˛̨̨̨
˛̨̨̨
˛23 2˛3
˛24 2˛4

˛̨̨̨ = —1 F + —2D .

The following is the definition of the conic of vertices, that vanishes at the “admissible” apexes,
or axis directions, of circular cylinders through Q1,Q2,Q3, and Q4.

Definition 7.2.5 (Conic of vertices). The conic of vertices relative to the points Q1,Q2,Q3,Q4 is
the curve in H0 defined by

G (x1, x2, x3) = 2 x21 + ȷ1 x
2
2 + (2 + ȷ1) x

2
3 + 2 ȷ0 x1 x2 = 0 . (7.7)

In the following lemma, we prove the aforementioned property of the conic of vertices.

Lemma 7.2.6. Let C be a circular cylinder through Q1,Q2,Q3,Q4 of vertex V = (0 : ¸ : ˛ : ‚).
We have the following:

(i) V lies in the conic of vertices
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(ii) The intersection C ∩ H3 is the conic defined by the matrix

M(¸,˛, ‚) =

0@ 0 ˛2 + ‚2 2—0 ¸˛ + —1 (˛
2 + ‚2)

˛2 + ‚2 −2 (˛2 + ‚2) 2¸˛
2—0 ¸˛ + —1 (˛

2 + ‚2) 2¸˛ 2 ȷ0 ¸˛ + ȷ1 (˛
2 + ‚2)

1A (7.8)

Proof. By Definition 7.1.4, the intersection C ∩ H0 is singular at V and tangent to K . Moreover,
since C contains Q1,Q2,Q3,Q4 the intersection C ∩ H3 is a conic in the pencil defined by these
four points in H3. By Lemmas 7.2.3 and 7.2.3, the restriction of C to H0 ∩ H3 yields the matrices„

−2–1 –0
–0 ȷ0 –0 + ȷ1 –1

«
,

„
˛2 + ‚2 −¸˛
−¸˛ ¸2 + ‚2

«
(7.9)

proportional, i.e.

rank

„
−2–1 –0 ȷ0 –0 + ȷ1 –1
˛2 + ‚2 −¸˛ ¸2 + ‚2

«
= 1 .

In particular, we derive ˛̨̨̨
−2¸˛ ˛2 + ‚2

ȷ1 ¸˛ ¸2 + ‚2 + ȷ2 ¸˛

˛̨̨̨
= ¸˛ G (¸,˛, ‚) = 0 .

If either ¸ = 0 or ˛ = 0, the points Q0,Q1,Q2,Q3 lie on parallel lines. Thus, the statement in (i)
follows. On the other hand, we also find˛̨̨̨

–0 –1
2¸˛ ˛2 + ‚2

˛̨̨̨
= 0 ,

and specializing in (7.2.2), the statement in (ii) follows.

7.3. Classification of real circular cylinders

In this section, we perform our classification of the real cylinders passing through five points, where
four of the points are cocyclic. Remarkably, we can characterize cocyclic configurations of four
points with a simple algebraic condition.

Lemma 7.3.1. Assume that ȷ20 ̸= 2 ȷ1. The following are equivalent:

(i) The points Q1,Q2,Q3,Q4 are cocyclic (recall Definition 1.2.33)

(ii) ȷ1 = −2

(iii) The conic of vertices is singular

Proof. The equivalence between the statements (ii) and (iii) follows from˛̨̨̨
˛̨ 2 ȷ0 0
ȷ0 ȷ1 0
0 0 2 + ȷ1

˛̨̨̨
˛̨ = (2 + ȷ1) (2 ȷ1 − ȷ20) .
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On the other hand, (i) is equivalent to˛̨̨̨
˛̨̨̨1 ¸1 ˛1 ¸2

1 + ˛21
1 ¸2 ˛2 ¸2

2 + ˛22
1 ¸3 ˛3 ¸2

3 + ˛23
1 ¸4 ˛4 ¸2

4 + ˛24

˛̨̨̨
˛̨̨̨ = ˛3 ˛4 (˛3 − ˛4)− (¸3 ˛4 (1− ¸3)− ¸4 ˛3 (1− ¸4)) = 0 (7.10)

where Qi = (1 : ¸i : ˛i ), since this condition means the existence of an equation

F = F (x0, x1, x2) = (x1 − ¸ x0)
2 + (x2 − ˛ x0)

2 − r2 x20

such that F (Qi ) = 0 for every 1 ≤ i ≤ 4. On the other hand, by definition we have

˛3 ˛4 (˛3 − ˛4) ȷ1 + 2 (¸3 ˛4 (1− ¸3)− ¸4 ˛3 (1− ¸4)) = 0 ,

and (7.10) can be equivalently written as

˛3 ˛4 (˛3 − ˛4) (ȷ1 + 2) = 0 ,

and by the hypothesis on Q1,Q2,Q3,Q4 we find that the statements (i) and (ii) are equivalent.

Notation 7.3.2. If ȷ1 = −2 we can factor

2G (x1, x2, x3) = (2 x1 + (ȷ0 − ff) x2) (2 x1 + (ȷ0 + ff) x2) ,

where ff =
q
ȷ20 + 4 ̸= 0. Hence, the conic of vertices is the union L0 ∪ L1, where L0 and L1 are

the lines in H0 defined by the two factors of G respectively. In particular, for each i = 0, 1, we
have the parametrizations

 i : P1
C −→ Li (7.11)

(–0 : –1) 7→ (
`
ȷ0 + (−1)iff

´
–0 : −2–0 : –1) .

The common point L0 ∩ L1 = (0 : 0 : 1) =  i(0, 1) corresponds to the vertex of the “vertical”
cylinder.

Up to this point, our discussion has focused solely on configurations involving four coplanar
points. However, it is for five-point configurations that the count of circular cylinders becomes
finite [81, 42, 143] over the complex numbers. As a result, we now introduce a fifth unconstrained
point within A3

R.

Notation 7.3.3. Let
Q5 = (1 : ¸5 : ˛5 : ‚5)

for some real ¸5,˛5, ‚5 with ‚5 nonzero. The central projection through Q5 induces an isomorphism

Π : H0 −→ H3 (7.12)
(0 : x1 : x2 : x3) 7→ (x3 : ¸5 x3 − ‚5 x1 : ˛5 x3 − ‚5 x2 : 0)

By introducing the fifth point Q5, we can now proceed to count the number of real circular
cylinders, and derive their defining polynomials explicitly. To achieve this goal, we first introduce
some polynomials that are closely related to the geometry of these five points.
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Notation 7.3.4. For each i = 0, 1, we define the polynomials

h0i (z) = 4 z
`
(−1)i ff (2—0 + 1) + 2 ȷ0 —0 + ȷ0 − 2—1

´
,

h1i (x , y , z) = 2ff (−1)i (ȷ0 y
2 + ȷ0 z

2 + 2—0 y + 2 x y) + ȷ20 y
2 + ȷ20 z

2

+ 2 ȷ0 —0 y + 2 ȷ0 x y + 2 x2 − 2—1 y + 2 y2 + 4 z2 − 2 x ,

h2i (x , y , z) = z
`
(−1)i ff (−2 x + 1)− 2 ȷ0 x + ȷ0 − 2—1 + 4 y

´
,

h3(x , y) = x2 + y2 − —1 y − x .

Additionally, define

Hi (–0,–1; x , y , z) = –30 h0i (z) + –20 –1 h1i (x , y , z) + –0 –
2
1 h2i (x , y , z) + –31 h3(x , y) . (7.13)

The following represents the main result of this chapter, establishing that the count of real real
circular cylinders through a five-point configuration of affine points, where four of them are cocyclic,
coincides with the real roots in P1

R of two bivariate homogeneous cubic equations.

Theorem 7.3.5. Let Q1,Q2,Q3,Q4 be cocyclic and not rectangular. Then, V is the vertex of a
circular cylinder through the previous points and Q5 if and only if V =  i (–0,–1), where

Hi (–0,–1) = 0 , (7.14)

for some i = 0, 1. In particular, the real circular cylinders through the five points are in one-to-one
correspondence with the real roots of H0(–0,–1) = 0 and H1(–0,–1) = 0.

Proof. By Lemma 7.3.1, since Q1,Q2,Q3,Q4 are cocyclic and they do not lie on parallel lines the
conic of admissible vertices is the union of two lines parametrized by (7.11). Thus, if V is the
vertex of a cylinder C through Q1, ... ,Q5 we have

V =  i (–0,–1) = (–0 (ȷ1 + (−1)i ff) : −2–0 : –1)

for some (–0 : –1) in P1
R and i = 0, 1. By Lemma 7.2.6, the intersection C ∩ H3 is defined by`

x0 x1 x2
´
·M(V ) ·

`
x0 x1 x2

´T
= 0

where M = M(¸,˛, ‚) is as (7.8). Therefore, V is the vertex of a circular cylinder through the
points if and only if the projection Π(Q5) lies in C ∩ H3, i.e.

Π(Q5) ·M(V ) · Π(Q5)
T = −2–1Hi (–0,–1) = 0 .

If –1 = 0, then V lies in H0 ∩ H3 and C ∩ H3 consists of two (affinely) parallel lines, which is not
possible by our hypothesis on Q1,Q2,Q3,Q4. Hence, the statement follows.

The following are two corollaries of Theorem 7.3.5. Specifically, Corollary 7.3.6 permits the
explicit computation of the defining polynomials of each of the real circular cylinders through the
five points, given a real root (–0 : –1) of either H0(¸5,˛5, ‚5) or H1(¸5,˛5, ‚5). On the other
hand, Corollary 7.3.7 classifies the count of the real cylinders through the five points using the
discriminant of bivariate, homogeneous, cubic polynomials.
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Corollary 7.3.6. With the hypotheses of Theorem 7.3.5, given a real root (–0 : –1) of (7.14) the
equation of the circular cylinder in A3

R through Q1,Q2,Q3,Q4, and Q5 of vertex V =  i (–0,–1) is

H(–0,–1; x , y , z) = 0 . (7.15)

Proof. Let C be the circular cylinder through the five points of vertex V . By Lemma 7.2.6, the
intersection C ∩H3 is determined by Q1,Q2,Q3,Q4, and V . By definition, (7.15) defines the locus
of points Q = (x , y , z) for which the projection ΠQ : H0 −→ H3 induced by Q sends V to a point in
C ∩ H3. Therefore, (7.15) is the implicit equation of C .

Corollary 7.3.7. With the hypotheses of Theorem 7.3.5, let Di = Di (x , y , z) be the discriminant
of Hi (–0,–1; x , y , z) with respect to –0,–1. Then, there are exactly

(i) six circular cylinders through the points if and only if D0(Q5),D1(Q5) > 0

(ii) four circular cylinders through the points if and only if D0(Q5) · D1(Q5) < 0

(iii) two circular cylinders through the points if and only if D0(Q5),D1(Q5) < 0

We close the chapter with a computational example. More precisely, we count the number of
real circular cylinders through a five-point configuration of points in A3

R, where four points are
cocyclic, and compute their defining polynomials explicitly.

Example 7.3.8. Consider the points in A3
R

Q1 = (0, 0, 0) , Q2 = (1, 0, 0) , Q3 = (−2.2336, 2.3888, 0) , Q4 = (3.16, 3.41, 0) ,

which are cocyclic since ȷ1 = −2 and ȷ20 ̸= 2 ȷ1 (Lemma 7.3.1). In particular, we compute the
constants

ȷ0 = −10.5633 , —0 = 14.8504 , —1 = 5.4139 .

Now, let Q5 = (1, 1, 1). For each i = 1, 2, let Di be the discriminant of the polynomial in (7.13)
with respect to –0,–1. Evaluating Q5 on each discriminant, we find

D0(Q5) < 0 , D1(Q5) < 0 .

Therefore, by Corollary 7.3.7 there are exactly two circular cylinders through the five points.
Moreover, we can compute these cylinders using Corollary 7.3.6. Specifically, the unique root of
H0(–0,–1;Q5) in P1

R is
R1 = (0.4381 : −0.8989)

and the unique root of H1(–0,–1;Q5) in P1
R is

R2 = (0.2229 : −0.9749) .

Therefore, the defining polynomials of the two cylinders through the five points are

C1(x , y , z) =− 1.4165 x2 − 0.129509 x y − 0.732485 y2 − 0.132873 x z

+ 1.41604 y z − 0.696169 z2 + 1.4165 x + 5.74553 y − 5.47052 z ,

C2(x , y , z) =− 1.12009 x2 + 4.12761 x y − 22.9206 y2 + 9.02801 x z

+ 0.847136 y z − 22.1878 z2 + 1.12009 x + 67.3605 y − 36.2548 z

The circular cylinders through Q1,Q2,Q3,Q4 and Q5 are illustrated in Figure 7.1.
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Figure 7.1.: The two circular cylinders through the five (blue) points in Example 7.3.8.





171

Bibliography

[1] Nir Ailon and Bernard Chazelle. “The fast Johnson-Lindenstrauss transform and approximate
nearest neighbors”. In: SIAM J. Comput. 39.1 (2009), pp. 302–322. url: https://doi.
org/10.1137/060673096.

[2] Maria Alberich-Carramiñana. Geometry of the plane Cremona maps. Vol. 1769. Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2002, pp. xvi+257. isbn: 3-540-42816-X.
url: https://doi.org/10.1007/b82933.

[3] James Alexander and André Hirschowitz. “Polynomial interpolation in several variables”. In:
Journal of Algebraic Geometry 4.2 (1995), pp. 201–222.

[4] Noga Alon. “Combinatorial Nullstellensatz”. In: Combin. Probab. Comput. 8 (1999), pp. 7–
29.

[5] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.

[6] Boris Aronov, Esther Ezra, and Micha Shair. “Small-size ›-nets for axis-parallel rectangles and
boxes”. In: Proceedings of the forty-first annual ACM symposium on Theory of computing.
2009, pp. 639–648.

[7] Boris Aronov and Sariel Har-Peled. “On approximating the depth and related problems”. In:
SIAM Journal on Computing 38.3 (2008), pp. 899–921.

[8] Boris Aronov, Sariel Har-Peled, and Micha Sharir. “On approximate halfspace range counting
and relative epsilon-approximations”. In: Proceedings of the twenty-third annual symposium
on Computational geometry. 2007, pp. 327–336.

[9] Edoardo Ballico, Kiryong Chung, and Sukmoon Huh. “Curves on Segre threefolds”. In: Forum
Math. 32.1 (2020), pp. 63–78. url: https://doi.org/10.1515/forum-2019-0001.

[10] Imre Bárány, Matthieu Fradelizi, Xavier Goaoc, Alfredo Hubard, and Günter Rote. “Random
polytopes and the wet part for arbitrary probability distributions”. In: Annales Henri Lebesgue
3 (2020), pp. 701–715.

[11] Imre Bárány, Zoltán Füredi, and László Lovász. “On the number of halving planes”. In:
Comb. 10.2 (1990), pp. 175–183. url: https://doi.org/10.1007/BF02123008.

[12] Imre Bárány and Roman Karasev. “Notes about the Carathéodory number”. In: Discrete &
Computational Geometry 48 (2012), pp. 783–792.

[13] Alexander Barvinok. A course in convexity. Vol. 54. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2002, pp. x+366. isbn: 0-8218-2968-8.
url: https://doi.org/10.1090/gsm/054.

[14] Arnaud Beauville and Jérémy Blanc. “On Cremona transformations of prime order”. In:
Comptes Rendus Mathematique 339.4 (2004), pp. 257–259.

[15] Filippo Bergamasco, Mara Pistellato, Andrea Albarelli, and Andrea Torsello. “Cylinders
extraction in non-oriented point clouds as a clustering problem”. In: Pattern Recognition
107 (2020), p. 107443.

https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
https://doi.org/10.1007/b82933
https://doi.org/10.1515/forum-2019-0001
https://doi.org/10.1007/BF02123008
https://doi.org/10.1090/gsm/054


172 Bibliography

[16] Christine Berkesch, Daniel Erman, and Gregory G. Smith. “Virtual resolutions for a product
of projective spaces”. In: Algebr. Geom. 7.4 (2020), pp. 460–481. url: https://doi.org/
10.14231/ag-2020-013.

[17] Alessandra Bernardi, Grigoriy Blekherman, and Giorgio Ottaviani. “On real typical ranks”.
In: Boll. Unione Mat. Ital. 11.3 (2018), pp. 293–307. url: https://doi.org/10.1007/
s40574-017-0134-0.

[18] Pierre Bézier. “Procédé de définition numérique des courbes et surfaces non mathématiques”.
In: Automatisme 13.5 (1968), pp. 189–196.

[19] B. J. Birch. “On 3N points in a plane”. In: Proc. Cambridge Philos. Soc. 55 (1959), pp. 289–
293. url: https://doi.org/10.1017/s0305004100034071.

[20] Cinzia Bisi, Alberto Calabri, and Massimiliano Mella. “On plane Cremona transformations
of fixed degree”. In: J. Geom. Anal. 25.2 (2015), pp. 1108–1131. url: https://doi.org/
10.1007/s12220-013-9459-9.

[21] Jérémy Blanc. “Elements and cyclic subgroups of finite order of the Cremona group”. In:
Commentarii Mathematici Helvetici 86.2 (2011), pp. 469–497.

[22] Jérémy Blanc. “Finite abelian subgroups of the Cremona group of the plane”. In: Comptes
Rendus Mathematique 344.1 (2007), pp. 21–26.

[23] Jérémy Blanc. “Groupes de Cremona, connexité et simplicité”. In: Ann. Sci. Éc. Norm.
Supér. (4) 43.2 (2010), pp. 357–364. url: https://doi.org/10.24033/asens.2123.

[24] Jérémy Blanc and Jean-Philippe Furter. “Topologies and structures of the Cremona groups”.
In: Ann. of Math. (2) 178.3 (2013), pp. 1173–1198. url: https://doi.org/10.4007/
annals.2013.178.3.8.

[25] Jérémy Blanc, Stéphane Lamy, and Susanna Zimmermann. “Quotients of higher-dimensional
Cremona groups”. In: Acta Math. 226.2 (2021), pp. 211–318. url: https://doi.org/10.
4310/acta.2021.v226.n2.a1.

[26] Grigoriy Blekherman and Zach Teitler. “On maximum, typical and generic ranks”. In: Math.
Ann. 362.3-4 (2015), pp. 1021–1031. url: https://doi.org/10.1007/s00208-014-
1150-3.

[27] Jacob A. Boswell and Vivek Mukundan. “Rees algebras and almost linearly presented ideals”.
In: J. Algebra 460 (2016), pp. 102–127. url: https://doi.org/10.1016/j.jalgebra.
2016.03.035.

[28] Nicolás Botbol, Laurent Busé, Marc Chardin, Seyed Hamid Hassanzadeh, Aron Simis, and
Quang Hoa Tran. “Effective criteria for bigraded birational maps”. In: J. Symbolic Comput.
81 (2017), pp. 69–87. url: https://doi.org/10.1016/j.jsc.2016.12.001.

[29] Nicolás Botbol and Marc Chardin. “Castelnuovo Mumford regularity with respect to multi-
graded ideals”. In: J. Algebra 474 (2017), pp. 361–392. url: https://doi.org/10.1016/
j.jalgebra.2016.11.017.

[30] Nicolás Botbol and Alicia Dickenstein. “Implicitization of rational hypersurfaces via linear
syzygies: a practical overview”. In: J. Symbolic Comput. 74 (2016), pp. 493–512. url:
https://doi.org/10.1016/j.jsc.2015.09.001.

https://doi.org/10.14231/ag-2020-013
https://doi.org/10.14231/ag-2020-013
https://doi.org/10.1007/s40574-017-0134-0
https://doi.org/10.1007/s40574-017-0134-0
https://doi.org/10.1017/s0305004100034071
https://doi.org/10.1007/s12220-013-9459-9
https://doi.org/10.1007/s12220-013-9459-9
https://doi.org/10.24033/asens.2123
https://doi.org/10.4007/annals.2013.178.3.8
https://doi.org/10.4007/annals.2013.178.3.8
https://doi.org/10.4310/acta.2021.v226.n2.a1
https://doi.org/10.4310/acta.2021.v226.n2.a1
https://doi.org/10.1007/s00208-014-1150-3
https://doi.org/10.1007/s00208-014-1150-3
https://doi.org/10.1016/j.jalgebra.2016.03.035
https://doi.org/10.1016/j.jalgebra.2016.03.035
https://doi.org/10.1016/j.jsc.2016.12.001
https://doi.org/10.1016/j.jalgebra.2016.11.017
https://doi.org/10.1016/j.jalgebra.2016.11.017
https://doi.org/10.1016/j.jsc.2015.09.001


Bibliography 173

[31] Nicolás Botbol, Alicia Dickenstein, and Hal Schenck. “The simplest minimal free resolutions
in P1 × P1”. In: Commutative algebra. Springer, Cham, [2021] ©2021, pp. 113–145. isbn:
978-3-030-89693-5; 978-3-030-89694-2. url: https://doi.org/10.1007/978-3-030-
89694-2_3.

[32] Felipe Bottega Diniz. “Tensor decomposition and algorithms, with applications to tensor
learning”. PhD thesis. Universidade Federal do Rio de Janeiro, 2019.

[33] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. “Random projections for k-means
clustering”. In: Advances in neural information processing systems 23 (2010).

[34] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,
Cambridge, 2004, pp. xiv+716. isbn: 0-521-83378-7. url: https://doi.org/10.1017/
CBO9780511804441.

[35] Boris Bukh, Jiří Matoušek, and Gabriel Nivasch. “Lower bounds for weak epsilon-nets and
stair-convexity”. In: Israel J. Math. 182 (2011), pp. 199–208. url: https://doi.org/10.
1007/s11856-011-0029-1.

[36] Brent Burley and Walt Disney Animation Studios. “Physically-based shading at disney”. In:
Acm Siggraph. Vol. 2012. vol. 2012. 2012, pp. 1–7.

[37] Norbert Bus, Shashwat Garg, Nabil H Mustafa, and Saurabh Ray. “Tighter estimates for
›-nets for disks”. In: Computational Geometry 53 (2016), pp. 27–35.

[38] Laurent Busé. “On the equations of the moving curve ideal of a rational algebraic plane
curve”. In: J. Algebra 321.8 (2009), pp. 2317–2344. url: https://doi.org/10.1016/j.
jalgebra.2009.01.030.

[39] Laurent Busé, Fabrizio Catanese, and Elisa Postinghel. Algebraic Curves and Surfaces. Vol. 4.
Springer International Publishing, 2023.

[40] Laurent Busé and Falai Chen. “Determinantal tensor product surfaces and the method
of moving quadrics”. In: Trans. Amer. Math. Soc. 374.7 (2021), pp. 4931–4952. url:
https://doi.org/10.1090/tran/8358.

[41] Laurent Busé, Yairon Cid-Ruiz, and Carlos D’Andrea. “Degree and birationality of multi-
graded rational maps”. In: Proc. Lond. Math. Soc. (3) 121.4 (2020), pp. 743–787. url:
https://doi.org/10.1112/plms.12336.

[42] Laurent Busé, André Galligo, and Jiajun Zhang. “Extraction of cylinders and cones from
minimal point sets”. In: Graph. Models 86 (2016), pp. 1–12. url: https://doi.org/10.
1016/j.gmod.2016.05.003.

[43] Laurent Busé, Pablo González-Mazón, and Josef Schicho. “Tri-linear birational maps in
dimension three”. In: Math. Comp. 92.342 (2023), pp. 1837–1866. url: https://doi.
org/10.1090/mcom/3804.

[44] Laurent Busé and Thang Luu Ba. “The surface/surface intersection problem by means of
matrix based representations”. In: Comput. Aided Geom. Design 29.8 (2012), pp. 579–598.
url: https://doi.org/10.1016/j.cagd.2012.04.002.

[45] Serge Cantat. “The Cremona group in two variables”. In: European Congress of Mathematics.
Eur. Math. Soc., Zürich, 2013, pp. 211–225.

[46] Serge Cantat and Stéphane Lamy. “Normal subgroups in the Cremona group”. In: Acta
Math. 210.1 (2013), pp. 31–94. url: https://doi.org/10.1007/s11511-013-0090-1.

https://doi.org/10.1007/978-3-030-89694-2_3
https://doi.org/10.1007/978-3-030-89694-2_3
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/s11856-011-0029-1
https://doi.org/10.1007/s11856-011-0029-1
https://doi.org/10.1016/j.jalgebra.2009.01.030
https://doi.org/10.1016/j.jalgebra.2009.01.030
https://doi.org/10.1090/tran/8358
https://doi.org/10.1112/plms.12336
https://doi.org/10.1016/j.gmod.2016.05.003
https://doi.org/10.1016/j.gmod.2016.05.003
https://doi.org/10.1090/mcom/3804
https://doi.org/10.1090/mcom/3804
https://doi.org/10.1016/j.cagd.2012.04.002
https://doi.org/10.1007/s11511-013-0090-1


174 Bibliography

[47] N. L. Carothers. Real analysis. Cambridge University Press, Cambridge, 2000, pp. xiv+401.
isbn: 0-521-49756-6. url: https://doi.org/10.1017/CBO9780511814228.

[48] J Douglas Carroll and Jih-Jie Chang. “Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition”. In: Psychometrika
35.3 (1970), pp. 283–319.

[49] Eduardo Casas-Alvero. Analytic projective geometry. EMS Textbooks in Mathematics.
European Mathematical Society (EMS), Zürich, 2014, pp. xvi+620. isbn: 978-3-03719-138-
5. url: https://doi.org/10.4171/138.

[50] Guido Castelnuovo. Le trasformazioni generatrici del gruppo cremoniano nel piano. Turin R.
Accad. d. Sci., 1901.

[51] Federico Castillo, Yairon Cid-Ruiz, Binglin Li, Jonathan Montaño, and Naizhen Zhang.
“When are multidegrees positive?” In: Advances in Mathematics 374 (2020), p. 107382.

[52] Arthur Cayley. On the theory of determinants. Pitt Press, 1844.

[53] Dominique Cerveau and Julie Déserti. Transformations birationnelles de petit degré. Vol. 19.
Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2013,
pp. viii+223. isbn: 978-2-85629-770-4.

[54] Thomas Chaperon and Francois Goulette. “A note on the construction of right circular
cylinders through five 3D points”. PhD thesis. MINES ParisTech, 2003.

[55] Thomas Chaperon and François Goulette. “Extracting cylinders in full 3D data using a
random sampling method and the Gaussian image”. In: Vision Modeling and Visualization
Conference 2001 (VMV-01). 2001.

[56] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, M. Sharir, and E. Welzl. “Improved
bounds on weak ›-nets for convex sets”. In: Discrete Comput. Geom. 13.1 (1995), pp. 1–15.
url: https://doi.org/10.1007/BF02574025.

[57] Yairon Cid Ruiz. “Blow-up algebras in Algebra, Geometry and Combinatorics”. PhD thesis.
Universitat de Barcelona, 2019.

[58] Yairon Cid-Ruiz. “Mixed multiplicities and projective degrees of rational maps”. In: J. Algebra
566 (2021), pp. 136–162. url: https://doi.org/10.1016/j.jalgebra.2020.08.037.

[59] Yairon Cid-Ruiz, Oliver Clarke, and Fatemeh Mohammadi. “A study of nonlinear multiview
varieties”. In: arXiv preprint arXiv:2112.06216 (2021).

[60] Ciro Ciliberto, Francesco Russo, and Aron Simis. “Homaloidal hypersurfaces and hypersur-
faces with vanishing Hessian”. In: Adv. Math. 218.6 (2008), pp. 1759–1805. url: https:
//doi.org/10.1016/j.aim.2008.03.025.

[61] Kenneth L Clarkson. “Applications of random sampling in computational geometry, II”. In:
Proceedings of the fourth annual symposium on Computational geometry. 1988, pp. 1–11.

[62] Kenneth L Clarkson and Kasturi Varadarajan. “Improved approximation algorithms for
geometric set cover”. In: Proceedings of the twenty-first annual symposium on Computational
geometry. 2005, pp. 135–141.

[63] Donald L. Cohn. Measure theory. Second. Birkhäuser Advanced Texts: Basler Lehrbücher.
[Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, 2013,
pp. xxi+457. isbn: 978-1-4614-6955-1; 978-1-4614-6956-8. url: https://doi.org/10.
1007/978-1-4614-6956-8.

https://doi.org/10.1017/CBO9780511814228
https://doi.org/10.4171/138
https://doi.org/10.1007/BF02574025
https://doi.org/10.1016/j.jalgebra.2020.08.037
https://doi.org/10.1016/j.aim.2008.03.025
https://doi.org/10.1016/j.aim.2008.03.025
https://doi.org/10.1007/978-1-4614-6956-8
https://doi.org/10.1007/978-1-4614-6956-8


Bibliography 175

[64] Sabine Coquillart. “Extended free-form deformation: A sculpturing tool for 3D geometric
modeling”. In: Proceedings of the 17th annual conference on Computer graphics and
interactive techniques. 1990, pp. 187–196.

[65] Teresa Cortadellas Benítez and Carlos D’Andrea. “Minimal generators of the defining ideal of
the Rees algebra associated with a rational plane parametrization with — = 2”. In: Canad. J.
Math. 66.6 (2014), pp. 1225–1249. url: https://doi.org/10.4153/CJM-2013-035-1.

[66] Teresa Cortadellas Benítez and Carlos D’Andrea. “Rational plane curves parameterizable
by conics”. In: J. Algebra 373 (2013), pp. 453–480. url: https://doi.org/10.1016/j.
jalgebra.2012.09.034.

[67] Teresa Cortadellas Benítez and Carlos D’Andrea. “The Rees algebra of a monomial plane
parametrization”. In: J. Symbolic Comput. 70 (2015), pp. 71–105. url: https://doi.
org/10.1016/j.jsc.2014.09.026.

[68] David Cox, J. William Hoffman, and Haohao Wang. “Syzygies and the Rees algebra”. In: J.
Pure Appl. Algebra 212.7 (2008), pp. 1787–1796. url: https://doi.org/10.1016/j.
jpaa.2007.11.006.

[69] David A. Cox. Applications of polynomial systems. Vol. 134. CBMS Regional Conference
Series in Mathematics. American Mathematical Society, Providence, RI, [2020] ©2020,
pp. ix+250. isbn: 978-1-4704-5137-0.

[70] David A. Cox. “The moving curve ideal and the Rees algebra”. In: Theoret. Comput. Sci.
392.1-3 (2008), pp. 23–36. url: https://doi.org/10.1016/j.tcs.2007.10.012.

[71] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties. Vol. 124. Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2011, pp. xxiv+841.
isbn: 978-0-8218-4819-7. url: https://doi.org/10.1090/gsm/124.

[72] Luigi Cremona. Sulle trasformazione geometriche delle figure piane. Tipi Gamberini e
Parmeggiani, 1863.

[73] Luigi Cremona. “Sulle trasformazioni razionali nello spazio”. In: Annali di Matematica Pura
ed Applicata (1867-1897) 5.1 (1871), pp. 131–162.

[74] Paul De Casteljau. “Courbes à pôles”. In: National Industrial Property Institute (France)
(1959).

[75] Paul De Casteljau. “Courbes et surfaces à pôles”. In: André Citroën, Automobiles SA, Paris
66 (1963).

[76] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “On the best rank-1 and rank-
(R1,R2, · · · ,RN) approximation of higher-order tensors”. In: SIAM J. Matrix Anal. Appl.
21.4 (2000), pp. 1324–1342. url: https://doi.org/10.1137/S0895479898346995.

[77] Michel Demazure. “Sous-groupes algébriques de rang maximum du groupe de Cremona”. In:
Ann. Sci. École Norm. Sup. (4) 3 (1970), pp. 507–588. url: http://www.numdam.org/
item?id=ASENS_1970_4_3_4_507_0.

[78] Julie Déserti. Some properties of the Cremona group. Vol. 21. Ensaios Matemáticos [Math-
ematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro, 2012, pp. ii+188.
isbn: 978-85-85818-58-6.

[79] Julie Déserti. “Sur les automorphismes du groupe de Cremona”. In: Compos. Math. 142.6
(2006), pp. 1459–1478. url: https://doi.org/10.1112/S0010437X06002478.

https://doi.org/10.4153/CJM-2013-035-1
https://doi.org/10.1016/j.jalgebra.2012.09.034
https://doi.org/10.1016/j.jalgebra.2012.09.034
https://doi.org/10.1016/j.jsc.2014.09.026
https://doi.org/10.1016/j.jsc.2014.09.026
https://doi.org/10.1016/j.jpaa.2007.11.006
https://doi.org/10.1016/j.jpaa.2007.11.006
https://doi.org/10.1016/j.tcs.2007.10.012
https://doi.org/10.1090/gsm/124
https://doi.org/10.1137/S0895479898346995
http://www.numdam.org/item?id=ASENS_1970_4_3_4_507_0
http://www.numdam.org/item?id=ASENS_1970_4_3_4_507_0
https://doi.org/10.1112/S0010437X06002478


176 Bibliography

[80] Julie Déserti and Frédéric Han. “On cubic birational maps of P3
C”. In: Bull. Soc. Math.

France 144.2 (2016), pp. 217–249. url: https://doi.org/10.24033/bsmf.2712.

[81] Olivier Devillers, Bernard Mourrain, Franco P. Preparata, and Philippe Trebuchet. “Circular
cylinders through four or five points in space”. In: Discrete Comput. Geom. 29.1 (2003),
pp. 83–104.

[82] Antoine Deza, Eissa Nematollahi, and Tamás Terlaky. “How good are interior point methods?
Klee-Minty cubes tighten iteration-complexity bounds”. In: Math. Program. 113.1 (2008),
pp. 1–14. url: https://doi.org/10.1007/s10107-006-0044-x.

[83] Philipp J. di Dio and Mario Kummer. “The multidimensional truncated moment problem:
Carathéodory numbers from Hilbert functions”. In: Math. Ann. 380.1-2 (2021), pp. 267–291.
url: https://doi.org/10.1007/s00208-021-02166-x.

[84] Philipp J. di Dio and Konrad Schmüdgen. “The multidimensional truncated moment
problem: Carathéodory numbers”. In: J. Math. Anal. Appl. 461.2 (2018), pp. 1606–1638.
url: https://doi.org/10.1016/j.jmaa.2017.12.021.

[85] Igor Dolgachev. “The Cremona group and its subgroups [book review of 4256046]”. In: Bull.
Amer. Math. Soc. (N.S.) 59.4 (2022), pp. 617–622.

[86] Igor V. Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge,
2012, pp. xii+639. isbn: 978-1-107-01765-8. url: https : / / doi . org / 10 . 1017 /
CBO9781139084437.

[87] A. V. Doria, S. H. Hassanzadeh, and A. Simis. “A characteristic-free criterion of birationality”.
In: Adv. Math. 230.1 (2012), pp. 390–413. url: https://doi.org/10.1016/j.aim.
2011.12.005.

[88] Jan Draisma, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas.
“The Euclidean distance degree of an algebraic variety”. In: Found. Comput. Math. 16.1
(2016), pp. 99–149. url: https://doi.org/10.1007/s10208-014-9240-x.

[89] David Eisenbud. Commutative Algebra with a view towards Algebraic Geometry. Graduate
Texts in Mathematics, 150. Springer-Verlag, 1995.

[90] David Eisenbud. The geometry of syzygies. Vol. 229. Graduate Texts in Mathematics.
Springer-Verlag, New York, 2005, pp. xvi+243. isbn: 0-387-22215-4.

[91] David Eisenbud and Joe Harris. 3264 and all that—a second course in algebraic geometry.
Cambridge University Press, Cambridge, 2016, pp. xiv+616. isbn: 978-1-107-60272-4;
978-1-107-01708-5. url: https://doi.org/10.1017/CBO9781139062046.

[92] David Eisenbud and Joe Harris. The geometry of schemes. Vol. 197. Graduate Texts in
Mathematics. Springer-Verlag, New York, 2000, pp. x+294. isbn: 0-387-98638-3; 0-387-
98637-5.

[93] Gerald Farin. Curves and surfaces for computer-aided geometric design. Fourth. Computer
Science and Scientific Computing. Academic Press, Inc., San Diego, CA, 1997, pp. xviii+429.
isbn: 0-12-249054-1.

[94] Michael S. Floater. “The inverse of a rational bilinear mapping”. In: Comput. Aided Geom.
Design 33 (2015), pp. 46–50. url: https://doi.org/10.1016/j.cagd.2015.01.002.

[95] Xiao-Ming Fu, Yang Liu, and Baining Guo. “Computing locally injective mappings by
advanced MIPS”. In: ACM Transactions on Graphics (TOG) 34.4 (2015), pp. 1–12.

https://doi.org/10.24033/bsmf.2712
https://doi.org/10.1007/s10107-006-0044-x
https://doi.org/10.1007/s00208-021-02166-x
https://doi.org/10.1016/j.jmaa.2017.12.021
https://doi.org/10.1017/CBO9781139084437
https://doi.org/10.1017/CBO9781139084437
https://doi.org/10.1016/j.aim.2011.12.005
https://doi.org/10.1016/j.aim.2011.12.005
https://doi.org/10.1007/s10208-014-9240-x
https://doi.org/10.1017/CBO9781139062046
https://doi.org/10.1016/j.cagd.2015.01.002


Bibliography 177

[96] William Fulton. Intersection theory. Second. Vol. 2. Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, 1998, pp. xiv+470.

[97] James E. Gain and Neil A. Dodgson. “Preventing self-intersection under free-form de-
formation”. In: IEEE Transactions on Visualization and Computer Graphics 7.4 (2001),
pp. 289–298.

[98] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and
multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser Boston,
Inc., Boston, MA, 1994, pp. x+523. isbn: 0-8176-3660-9. url: https://doi.org/10.
1007/978-0-8176-4771-1.

[99] Pablo González-Mazón and Laurent Busé. “Construction of birational trilinear volumes via
tensor rank criteria”. 2024. url: https://inria.hal.science/hal-03939273.

[100] Pablo González-Mazón, Alfredo Hubard, and Roman Karasev. Weak (1 − ›)-nets for
polynomial superlevel sets. 2023. arXiv: 2308.14060 [math.MG].

[101] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in
algebraic geometry. Available at https://math.uiuc.edu/Macaulay2/.

[102] Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative algebra.
extended. Springer, Berlin, 2008, pp. xx+689. isbn: 978-3-540-73541-0.

[103] Misha Gromov. “Geometric, algebraic, and analytic descendants of Nash isometric embedding
theorems”. In: Bull. Amer. Math. Soc. (N.S.) 54.2 (2017), pp. 173–245. url: https:
//doi.org/10.1090/bull/1551.

[104] Huy Tài Hà and Adam Van Tuyl. “The regularity of points in multi-projective spaces”. In:
J. Pure Appl. Algebra 187.1-3 (2004), pp. 153–167. url: https://doi.org/10.1016/j.
jpaa.2003.07.006.

[105] Sariel Har-Peled. Geometric approximation algorithms. Vol. 173. Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2011, pp. xii+362. isbn:
978-0-8218-4911-8. url: https://doi.org/10.1090/surv/173.

[106] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. “Approximate nearest neighbor: towards
removing the curse of dimensionality”. In: Theory Comput. 8 (2012), pp. 321–350. url:
https://doi.org/10.4086/toc.2012.v008a014.

[107] Megumi Harada, Maryam Nowroozi, and Adam Van Tuyl. “Virtual resolutions of points in
P1 × P1”. In: J. Pure Appl. Algebra 226.12 (2022), Paper No. 107140, 18. url: https:
//doi.org/10.1016/j.jpaa.2022.107140.

[108] Robert M. Hardt. “Semi-algebraic local-triviality in semi-algebraic mappings”. In: Amer. J.
Math. 102.2 (1980), pp. 291–302. url: https://doi.org/10.2307/2374240.

[109] Joe Harris. Algebraic geometry. Vol. 133. Graduate Texts in Mathematics. Springer-Verlag,
New York, 1992, pp. xx+328. isbn: 0-387-97716-3. url: https://doi.org/10.1007/978-
1-4757-2189-8.

[110] Richard A Harshman et al. “Foundations of the PARAFAC procedure: Models and conditions
for an" explanatory" multimodal factor analysis”. In: (1970).

https://doi.org/10.1007/978-0-8176-4771-1
https://doi.org/10.1007/978-0-8176-4771-1
https://inria.hal.science/hal-03939273
https://arxiv.org/abs/2308.14060
https://math.uiuc.edu/Macaulay2/
https://doi.org/10.1090/bull/1551
https://doi.org/10.1090/bull/1551
https://doi.org/10.1016/j.jpaa.2003.07.006
https://doi.org/10.1016/j.jpaa.2003.07.006
https://doi.org/10.1090/surv/173
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1016/j.jpaa.2022.107140
https://doi.org/10.1016/j.jpaa.2022.107140
https://doi.org/10.2307/2374240
https://doi.org/10.1007/978-1-4757-2189-8
https://doi.org/10.1007/978-1-4757-2189-8


178 Bibliography

[111] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-
Verlag, New York-Heidelberg, 1977, pp. xvi+496. isbn: 0-387-90244-9.

[112] Seyed Hamid Hassanzadeh and Aron Simis. “Plane Cremona maps: saturation and regularity
of the base ideal”. In: J. Algebra 371 (2012), pp. 620–652. url: https://doi.org/10.
1016/j.jalgebra.2012.08.022.

[113] David Haussler. “Decision theoretic generalizations of the PAC model for neural net and
other learning applications”. In: The Mathematics of Generalization. CRC Press, 2018,
pp. 37–116.

[114] David Haussler and Emo Welzl. “Epsilon-nets and simplex range queries”. In: Proceedings
of the second annual symposium on Computational geometry. 1986, pp. 61–71.

[115] Manfred Herrmann, Eero Hyry, Jürgen Ribbe, and Zhongming Tang. “Reduction numbers
and multiplicities of multigraded structures”. In: J. Algebra 197.2 (1997), pp. 311–341. url:
https://doi.org/10.1006/jabr.1997.7128.

[116] David Hilbert. Hilbert’s invariant theory papers. Vol. VIII. Lie Groups: History, Frontiers
and Applications. Math Sci Press, Brookline, MA, 1978, pp. ix+336. isbn: 0-915692-26-0.

[117] Frank L Hitchcock. “Multiple invariants and generalized rank of a p-way matrix or tensor”.
In: Journal of Mathematics and Physics 7.1-4 (1928), pp. 39–79.

[118] David Hong, Tamara G Kolda, and Jed A Duersch. “Generalized canonical polyadic tensor
decomposition”. In: SIAM Review 62.1 (2020), pp. 133–163.

[119] Hilda P Hudson. Cremona transformations in plane and space. Vol. 1927. Cambridge, 1927.

[120] Eero Hyry. “The diagonal subring and the Cohen-Macaulay property of a multigraded ring”.
In: Trans. Amer. Math. Soc. 351.6 (1999), pp. 2213–2232. url: https://doi.org/10.
1090/S0002-9947-99-02143-1.

[121] Roman Karasev and Benjamin Matschke. “Projective center point and Tverberg theorems”.
In: Discrete Comput. Geom. 52.1 (2014), pp. 88–101. url: https://doi.org/10.1007/
s00454-014-9602-9.

[122] Roman N Karasev. “A topological central point theorem”. In: arXiv preprint arXiv:1011.1802
(2010).

[123] Amit Khetan and Carlos D’Andrea. “Implicitization of rational surfaces using toric varieties”.
In: J. Algebra 303.2 (2006), pp. 543–565. url: https://doi.org/10.1016/j.jalgebra.
2005.05.028.

[124] Victor Klee and George J. Minty. “How good is the simplex algorithm?” In: Inequalities, III
(Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory
of Theodore S. Motzkin). Academic Press, New York-London, 1972, pp. 159–175.

[125] Tamara G Kolda and Brett W Bader. MATLAB tensor toolbox. Tech. rep. Sandia National
Laboratories (SNL), Albuquerque, NM, and Livermore, CA . . ., 2006.

[126] Tamara G. Kolda and Brett W. Bader. “Tensor decompositions and applications”. In: SIAM
Rev. 51.3 (2009), pp. 455–500. url: https://doi.org/10.1137/07070111X.

[127] Tamara Gibson Kolda. Multilinear operators for higher-order decompositions. Tech. rep.
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA . . ., 2006.

https://doi.org/10.1016/j.jalgebra.2012.08.022
https://doi.org/10.1016/j.jalgebra.2012.08.022
https://doi.org/10.1006/jabr.1997.7128
https://doi.org/10.1090/S0002-9947-99-02143-1
https://doi.org/10.1090/S0002-9947-99-02143-1
https://doi.org/10.1007/s00454-014-9602-9
https://doi.org/10.1007/s00454-014-9602-9
https://doi.org/10.1016/j.jalgebra.2005.05.028
https://doi.org/10.1016/j.jalgebra.2005.05.028
https://doi.org/10.1137/07070111X


Bibliography 179

[128] János Komlós, János Pach, and Gerhard Woeginger. “Almost tight bounds for ›-nets”. In:
Discrete & Computational Geometry 7 (1992), pp. 163–173.

[129] Rimvydas Krasauskas. “Toric surface patches”. In: Advances in Computational Mathematics
17 (2002), pp. 89–113.

[130] Joseph B Kruskal. “Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics”. In: Linear algebra and its applications
18.2 (1977), pp. 95–138.

[131] Andrey Kupavskii, Nabil Mustafa, and János Pach. “New Lower Bounds for ›-nets”. In: 32nd
Annual International Symposium on Computational Geometry (SoCG 2016). 2016, p. 54.

[132] Andrew Kustin, Claudia Polini, and Bernd Ulrich. “The bi-graded structure of symmetric
algebras with applications to Rees rings”. In: J. Algebra 469 (2017), pp. 188–250. url:
https://doi.org/10.1016/j.jalgebra.2016.08.014.

[133] Andrew R. Kustin, Claudia Polini, and Bernd Ulrich. “Blowups and fibers of morphisms”.
In: Nagoya Math. J. 224.1 (2016), pp. 168–201. url: https://doi.org/10.1017/nmj.
2016.34.

[134] Andrew R. Kustin, Claudia Polini, and Bernd Ulrich. “Degree bounds for local cohomology”.
In: Proc. Lond. Math. Soc. (3) 121.5 (2020), pp. 1251–1267. url: https://doi.org/10.
1112/plms.12364.

[135] Andrew R. Kustin, Claudia Polini, and Bernd Ulrich. “Rational normal scrolls and the
defining equations of Rees algebras”. In: J. Reine Angew. Math. 650 (2011), pp. 23–65.
url: https://doi.org/10.1515/CRELLE.2011.002.

[136] Joseph M Landsberg. “Tensors: geometry and applications”. In: Representation theory
381.402 (2012), p. 3.

[137] Daniel Lazard and Fabrice Rouillier. “Solving parametric polynomial systems”. In: Journal of
Symbolic Computation 42.6 (2007), pp. 636–667.

[138] Binh Huy Le and Zhigang Deng. “Smooth skinning decomposition with rigid bones”. In:
ACM Transactions on Graphics (TOG) 31.6 (2012), pp. 1–10.

[139] Huu Phuoc Le. “On solving parametric polynomial systems and quantifier elimination over
the reals: algorithms, complexity and implementations”. PhD thesis. Sorbonne Université,
2021.

[140] Huu Phuoc Le and Mohab Safey El Din. “Solving parametric systems of polynomial equations
over the reals through Hermite matrices”. In: J. Symbolic Comput. 112 (2022), pp. 25–61.
url: https://doi.org/10.1016/j.jsc.2021.12.002.

[141] Songxin Liang and David J. Jeffrey. “Automatic computation of the complete root classifi-
cation for a parametric polynomial”. In: J. Symbolic Comput. 44.10 (2009), pp. 1487–1501.
url: https://doi.org/10.1016/j.jsc.2009.05.003.

[142] Songxin Liang, David J. Jeffrey, and Marc Moreno Maza. “The complete root classification
of a parametric polynomial on an interval”. In: ISSAC 2008. ACM, New York, 2008, pp. 189–
195. isbn: 978-1-59593-904-3. url: https://doi.org/10.1145/1390768.1390796.

[143] Daniel Lichtblau. “Cylinders through five points: computational algebra and geometry”. In:
J. Math. Res. 4.6 (2012), pp. 65–82. url: https://doi.org/10.5539/jmr.v4n6p65.

https://doi.org/10.1016/j.jalgebra.2016.08.014
https://doi.org/10.1017/nmj.2016.34
https://doi.org/10.1017/nmj.2016.34
https://doi.org/10.1112/plms.12364
https://doi.org/10.1112/plms.12364
https://doi.org/10.1515/CRELLE.2011.002
https://doi.org/10.1016/j.jsc.2021.12.002
https://doi.org/10.1016/j.jsc.2009.05.003
https://doi.org/10.1145/1390768.1390796
https://doi.org/10.5539/jmr.v4n6p65


180 Bibliography

[144] Mingxia Liu, Jun Zhang, Pew-Thian Yap, and Dinggang Shen. “View-aligned hypergraph
learning for Alzheimer’s disease diagnosis with incomplete multi-modality data”. In: Medical
image analysis 36 (2017), pp. 123–134.

[145] Michael C. Loper. “What makes a complex a virtual resolution?” In: Trans. Amer. Math.
Soc. Ser. B 8 (2021), pp. 885–898. url: https://doi.org/10.1090/btran/91.

[146] Diane Maclagan and Gregory G. Smith. “Multigraded Castelnuovo-Mumford regularity”. In:
J. Reine Angew. Math. 571 (2004), pp. 179–212. url: https://doi.org/10.1515/crll.
2004.040.

[147] Jiri Matousek. “Reporting points in halfspaces”. In: Computational Geometry 2.3 (1992),
pp. 169–186.

[148] Jiří Matoušek, Raimund Seidel, and Emo Welzl. “How to net a lot with little: Small ›-nets
for disks and halfspaces”. In: Proceedings of the sixth annual symposium on Computational
geometry. 1990, pp. 16–22.

[149] Hideyuki Matsumura. Commutative ring theory. Second. Vol. 8. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1989, pp. xiv+320. isbn:
0-521-36764-6.

[150] Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson. “Advanced graphics
programming techniques using OpenGL”. In: Computer Graphics (1998), pp. 95–145.

[151] Artibano Micali. “Sur les algèbres universelles”. In: Ann. Inst. Fourier (Grenoble) 14 (1964),
pp. 33–87. url: http://www.numdam.org/item?id=AIF_1964__14_2_33_0.

[152] Mateusz Michał ek and Bernd Sturmfels. Invitation to nonlinear algebra. Vol. 211. Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, [2021] ©2021,
pp. xiii+226. isbn: 978-1-4704-5367-1. url: https://doi.org/10.1090/gsm/211.

[153] Nabil H Mustafa and Saurabh Ray. “An optimal extension of the centerpoint theorem”. In:
Computational Geometry 42.6-7 (2009), pp. 505–510.

[154] Nabil H Mustafa and Saurabh Ray. “Improved results on geometric hitting set problems”.
In: Discrete & Computational Geometry 44 (2010), pp. 883–895.

[155] Nabil H. Mustafa and Kasturi R. Varadarajan. Epsilon-approximations and epsilon-nets.
2017. arXiv: 1702.03676 [cs.CG].

[156] Stanislav Nagy, Carsten Schütt, and Elisabeth M Werner. “Halfspace depth and floating
body”. In: Statistics Surveys 13 (2019), pp. 52–118.

[157] Lawrence Narici and Edward Beckenstein. Topological vector spaces. Second. Vol. 296. Pure
and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2011, pp. xviii+610.
isbn: 978-1-58488-866-6.

[158] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson.
“Physically based deformable models in computer graphics”. In: Computer graphics forum.
Vol. 25. 4. Wiley Online Library. 2006, pp. 809–836.

[159] Giorgio Ottaviani and Philipp Reichenbach. “Tensor rank and complexity”. In: arXiv preprint
arXiv:2004.01492 (2020).

[160] János Pach and Pankaj K Agarwal. Combinatorial geometry. John Wiley & Sons, 2011.

https://doi.org/10.1090/btran/91
https://doi.org/10.1515/crll.2004.040
https://doi.org/10.1515/crll.2004.040
http://www.numdam.org/item?id=AIF_1964__14_2_33_0
https://doi.org/10.1090/gsm/211
https://arxiv.org/abs/1702.03676


Bibliography 181

[161] I. Pan, F. Ronga, and T. Vust. “Transformations birationnelles quadratiques de l’espace
projectif complexe à trois dimensions”. In: Ann. Inst. Fourier (Grenoble) 51.5 (2001),
pp. 1153–1187. url: http://aif.cedram.org/item?id=AIF_2001__51_5_1153_0.

[162] Ivan Pan. “Sur le multidegré des transformations de Cremona”. In: C. R. Acad. Sci. Paris
Sér. I Math. 330.4 (2000), pp. 297–300. url: https://doi.org/10.1016/S0764-
4442(00)00142-7.

[163] Ivan Pan. “Une remarque sur la génération du groupe de Cremona”. In: Boletim da Sociedade
Brasileira de Matemática-Bulletin/Brazilian Mathematical Society 30.1 (1999), pp. 95–98.

[164] Ivan Pan and Francesco Russo. “Cremona transformations and special double structures”. In:
Manuscripta Math. 117.4 (2005), pp. 491–510. url: https://doi.org/10.1007/s00229-
005-0573-2.

[165] Michel Petitjean. “About the algebraic solutions of smallest enclosing cylinders problems”.
In: Appl. Algebra Engrg. Comm. Comput. 23.3-4 (2012), pp. 151–164. url: https :
//doi.org/10.1007/s00200-012-0171-y.

[166] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 1996.

[167] Alexander Pilz and Patrick Schnider. “Extending the centerpoint theorem to multiple points”.
In: arXiv preprint arXiv:1810.10231 (2018).

[168] Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. “Scalable
locally injective mappings”. In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 1.

[169] R. Rado. “A Theorem on General Measure”. In: Journal of the London Mathematical Society
s1-21.4 (1946), pp. 291–300. eprint: https://academic.oup.com/jlms/article-
pdf/s1-21/4/291/2726046/s1-21-4-291.pdf. url: https://doi.org/10.1112/
jlms/s1-21.4.291.

[170] David Rees. “On a problem of Zariski”. In: Illinois Journal of Mathematics 2.1 (1958),
pp. 145–149.

[171] Bruce Reznick. “On the length of binary forms”. In: Quadratic and higher degree forms.
Vol. 31. Dev. Math. Springer, New York, 2013, pp. 207–232. isbn: 978-1-4614-7487-6;
978-1-4614-7488-3. url: https://doi.org/10.1007/978-1-4614-7488-3_8.

[172] Robert Riener, Matthias Harders, Robert Riener, and Matthias Harders. Introduction to
virtual reality in medicine. Springer, 2012.

[173] David F Rogers and James Alan Adams. Mathematical elements for computer graphics.
McGraw-Hill, Inc., 1989.

[174] Ofer Ron, Leo Joskowicz, Charles Milgrom, and Ariel Simkin. “Computer-based periaxial
rotation measurement for aligning fractured femur fragments from CT: a feasibility study”.
In: Computer Aided Surgery 7.6 (2002), pp. 332–341.

[175] Gerhard Roth and Martin D Levine. “Extracting geometric primitives”. In: CVGIP: image
understanding 58.1 (1993), pp. 1–22.

[176] Natan Rubin. “Stronger bounds for weak epsilon-nets in higher dimensions”. In: STOC
’21—Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
ACM, New York, [2021] ©2021, pp. 989–1002. url: https://doi.org/10.1145/
3406325.3451062.

http://aif.cedram.org/item?id=AIF_2001__51_5_1153_0
https://doi.org/10.1016/S0764-4442(00)00142-7
https://doi.org/10.1016/S0764-4442(00)00142-7
https://doi.org/10.1007/s00229-005-0573-2
https://doi.org/10.1007/s00229-005-0573-2
https://doi.org/10.1007/s00200-012-0171-y
https://doi.org/10.1007/s00200-012-0171-y
https://academic.oup.com/jlms/article-pdf/s1-21/4/291/2726046/s1-21-4-291.pdf
https://academic.oup.com/jlms/article-pdf/s1-21/4/291/2726046/s1-21-4-291.pdf
https://doi.org/10.1112/jlms/s1-21.4.291
https://doi.org/10.1112/jlms/s1-21.4.291
https://doi.org/10.1007/978-1-4614-7488-3_8
https://doi.org/10.1145/3406325.3451062
https://doi.org/10.1145/3406325.3451062


182 Bibliography

[177] Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, and David J
Hawkes. “Nonrigid registration using free-form deformations: application to breast MR
images”. In: IEEE transactions on medical imaging 18.8 (1999), pp. 712–721.

[178] Francesco Russo and Aron Simis. “On birational maps and Jacobian matrices”. In: Compositio
Math. 126.3 (2001), pp. 335–358. url: https://doi.org/10.1023/A:1017572213947.

[179] Hal Schenck. Computational algebraic geometry. Vol. 58. London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 2003, pp. xiv+193. isbn: 0-521-
82964-X; 0-521-53650-2. url: https://doi.org/10.1017/CBO9780511756320.

[180] Elmar Schömer, Jürgen Sellen, Marek Teichmann, and Chee Yap. “Smallest enclosing
cylinders”. In: Proceedings of the twelfth annual symposium on computational geometry.
1996, pp. 413–414.

[181] F.-O. Schreyer, K. Hulek, and S. Katz. “Cremona transformations and syzygies.” In: Mathe-
matische Zeitschrift 209.3 (1992), pp. 419–444. url: http://eudml.org/doc/174372.

[182] Thomas W Sederberg and Falai Chen. “Implicitization using moving curves and surfaces”. In:
Proceedings of the 22nd annual conference on Computer graphics and interactive techniques.
1995, pp. 301–308.

[183] Thomas W. Sederberg, Ronald N. Goldman, and Xuhui Wang. “Birational 2D free-form
deformation of degree 1× n”. In: Comput. Aided Geom. Design 44 (2016), pp. 1–9. url:
https://doi.org/10.1016/j.cagd.2016.02.020.

[184] Thomas W Sederberg and Scott R Parry. “Free-form deformation of solid geometric models”.
In: Proceedings of the 13th annual conference on Computer graphics and interactive
techniques. 1986, pp. 151–160.

[185] Thomas W. Sederberg and Jianmin Zheng. “Birational quadrilateral maps”. In: Comput.
Aided Geom. Design 32 (2015), pp. 1–4. url: https://doi.org/10.1016/j.cagd.
2014.11.001.

[186] Jean-Pierre Serre. “Le groupe de Cremona et ses sous-groupes finis”. In: 332. 2010, Exp.
No. 1000, vii, 75–100. isbn: 978-2-85629-291-4.

[187] Micha Sharir and Hayim Shaul. “Semialgebraic range reporting and emptiness searching
with applications”. In: SIAM J. Comput. 40.4 (2011), pp. 1045–1074. url: https://doi.
org/10.1137/090765092.

[188] Aron Simis. “Cremona transformations and some related algebras”. In: J. Algebra 280.1
(2004), pp. 162–179. url: https://doi.org/10.1016/j.jalgebra.2004.03.025.

[189] Aron Simis and Rafael H. Villarreal. “Combinatorics of Cremona monomial maps”. In: Math.
Comp. 81.279 (2012), pp. 1857–1867. url: https://doi.org/10.1090/S0025-5718-
2011-02556-1.

[190] Aron Simis and Rafael H. Villarreal. “Constraints for the normality of monomial subrings
and birationality”. In: Proc. Amer. Math. Soc. 131.7 (2003), pp. 2043–2048. url: https:
//doi.org/10.1090/S0002-9939-02-06790-4.

[191] Aron Simis and Rafael H. Villarreal. “Linear syzygies and birational combinatorics”. In: Results
Math. 48.3-4 (2005), pp. 326–343. url: https://doi.org/10.1007/BF03323372.

https://doi.org/10.1023/A:1017572213947
https://doi.org/10.1017/CBO9780511756320
http://eudml.org/doc/174372
https://doi.org/10.1016/j.cagd.2016.02.020
https://doi.org/10.1016/j.cagd.2014.11.001
https://doi.org/10.1016/j.cagd.2014.11.001
https://doi.org/10.1137/090765092
https://doi.org/10.1137/090765092
https://doi.org/10.1016/j.jalgebra.2004.03.025
https://doi.org/10.1090/S0025-5718-2011-02556-1
https://doi.org/10.1090/S0025-5718-2011-02556-1
https://doi.org/10.1090/S0002-9939-02-06790-4
https://doi.org/10.1090/S0002-9939-02-06790-4
https://doi.org/10.1007/BF03323372


Bibliography 183

[192] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. “Optimization-based algo-
rithms for tensor decompositions: Canonical polyadic decomposition, decomposition in
rank-(L_r,L_r,1) terms, and a new generalization”. In: SIAM Journal on Optimization 23.2
(2013), pp. 695–720.

[193] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P Seidel.
“Laplacian surface editing”. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing. 2004, pp. 175–184.

[194] Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. “Deformable medical image
registration: A survey”. In: IEEE transactions on medical imaging 32.7 (2013), pp. 1153–
1190.

[195] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu.
2018.

[196] John W Tukey. “Mathematics and the picturing of data”. In: Proceedings of the International
Congress of Mathematicians, Vancouver, 1975. Vol. 2. 1975, pp. 523–531.

[197] V. N. Vapnik and A. Ya. Chervonenkis. “On the uniform convergence of relative frequencies
of events to their probabilities”. In: Measures of complexity. Springer, Cham, 2015, pp. 11–30.
isbn: 978-3-319-21851-9; 978-3-319-21852-6.

[198] Wolmer V Vasconcelos. Arithmetic of blowup algebras. Vol. 195. Cambridge University
Press, 1994.

[199] Wolmer V Vasconcelos. Integral closure: Rees algebras, multiplicities, algorithms. Springer,
2005.

[200] Bin Wang, Longhua Wu, KangKang Yin, Uri M Ascher, Libin Liu, and Hui Huang. “De-
formation capture and modeling of soft objects.” In: ACM Trans. Graph. 34.4 (2015),
pp. 94–1.

[201] Kexin Wang and Anna Seigal. “Lower bounds on the rank and symmetric rank of real
tensors”. In: J. Symbolic Comput. 118 (2023), pp. 69–92. url: https://doi.org/10.
1016/j.jsc.2023.01.004.

[202] Xuhui Wang, Yuhao Han, Qian Ni, Rui Li, and Ron Goldman. “Birational Quadratic Planar
Maps with Generalized Complex Rational Representations”. In: Mathematics 11.16 (2023),
p. 3609.

[203] Xuhui Wang, Meng Wu, Yuan Liu, and Qian Ni. “Constructing quadratic birational maps
via their complex rational representation”. In: Comput. Aided Geom. Design 85 (2021),
Paper No. 101969, 11. url: https://doi.org/10.1016/j.cagd.2021.101969.

[204] G Alistair Watson. “Fitting enclosing cylinders to data in Rn”. In: Numerical Algorithms 43
(2006), pp. 189–196.

[205] Simon Winkelbach, Ralf Westphal, and Thomas Goesling. “Pose estimation of cylindrical
fragments for semi-automatic bone fracture reduction”. In: Pattern Recognition: 25th DAGM
Symposium, Magdeburg, Germany, September 10-12, 2003. Proceedings 25. Springer. 2003,
pp. 566–573.

[206] Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo. “Analysis-suitable volume
parameterization of multi-block computational domain in isogeometric applications”. In:
Comput.-Aided Des. 45.2 (2013), pp. 395–404. url: https://doi.org/10.1016/j.cad.
2012.10.022.

https://stacks.math.columbia.edu
https://doi.org/10.1016/j.jsc.2023.01.004
https://doi.org/10.1016/j.jsc.2023.01.004
https://doi.org/10.1016/j.cagd.2021.101969
https://doi.org/10.1016/j.cad.2012.10.022
https://doi.org/10.1016/j.cad.2012.10.022


184 Bibliography

[207] Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo. “Optimal analysis-aware
parameterization of computational domain in 3D isogeometric analysis”. In: Comput.-Aided
Des. 45.4 (2013), pp. 812–821. url: https://doi.org/10.1016/j.cad.2011.05.007.

[208] Lu Yang, Xiaorong Hou, and Bican Xia. “A complete algorithm for automated discovering
of a class of inequality-type theorems”. In: Sci. China Ser. F 44.1 (2001), pp. 33–49. url:
https://doi.org/10.1007/BF02713938.

[209] Lu Yang and Bican Xia. “Real Solution Classification for Parametric Semi-Algebraic Systems.”
In: Algorithmic Algebra and Logic. 2005, pp. 281–289.

https://doi.org/10.1016/j.cad.2011.05.007
https://doi.org/10.1007/BF02713938

	Introduction
	Motivation and state-of-the-art
	Construction and manipulation of birational transformations
	Criteria for birationality
	Classification of birational maps
	Weak ε-nets for geometric range systems
	Extraction and count of real cylinders

	Contributions
	Classification of trilinear birational maps
	Birationality criteria for multilinear rational maps
	Construction and manipulation of multilinear birational transformations
	Weak (1-ε)-nets for polynomial superlevel sets
	Classification of real cylinders through five points with four cocyclic

	Organization of the thesis

	Preliminaries
	Birational maps between multiprojective spaces
	Multiprojective schemes
	Syzygies and free resolutions
	Birational maps between multiprojective spaces
	The Rees algebra and blow-ups

	Tensors
	Elementary definitions
	Tensor rank and CP decompositions
	Some spaces of tensors
	Bilinear birational maps


	MULTILINEAR BIRATIONAL MAPS
	Trilinear birational maps in dimension three
	Preliminaries
	Basic definitions and properties
	The Jacobian dual criterion for trilinear rational maps
	Automorphisms of (¶C1)3
	Curves and surfaces in (¶C1)3
	Pairing between the type and the tridegree of the base locus

	Factorization of trilinear birational maps
	Commutative diagram for the factorization
	Factorization according to the type of φ

	The algebraic set of trilinear birational maps
	The sets Bir(1,1,1) and Bir(d1,d2,d3)
	The group action of Aut((¶C1)3) on Bir(1,1,1)
	The algebraic set Bir(1,1,1)

	Classification of the base loci
	Orbits of birational maps of type (1,1,1)
	Orbits of birational maps of type (1,1,2), (1,2,1) and (2,1,1)
	Orbits of birational maps of type (1,2,2), (2,1,2) and (2,2,1)
	Orbits of birational maps of type (2,2,2)
	The group actions of the stabilizers on YV
	Degenerations of the base loci

	Syzygies and minimal graded free resolutions
	Birational maps of type (1,1,1)
	Birational maps of type (1,1,2)
	Birational maps of type (1,2,2)
	Birational maps of type (2,2,2)


	Construction and manipulation of birational trilinear volumes
	Preliminaries
	Motivating by applications
	Notation for this chapter

	Linear syzygies
	Rank characterization
	Geometric characterizations

	Hexahedral birational maps
	Construction of control points
	Effective computation of weights
	Distance to birationality
	Inverse rational map and base locus
	Deformation of birational maps

	Pyramidal birational maps
	Construction of control points
	Effective computation of weights
	Distance to birationality
	Inverse rational map and base locus

	Scaffold birational maps
	Construction of control points
	Effective computation of weights
	Distance to birationality
	Inverse rational map and base locus


	Construction of multilinear birational maps with multilinear inverse
	Rank-based characterization of birationality
	Inverse rational map and base locus


	POLYNOMIAL DATA ANALYSIS
	Weak (1-ε)-nets for polynomial superlevel sets
	Preliminaries
	Motivating example: disks and annuli
	Weak (1-ε) nets for polynomial superlevel sets
	The Carathéodory number of Veronese varieties

	Contributions and related work
	Statement of our results
	Related work and discussion

	(1-ε)-nets for superlevel sets of polynomials
	The Carathéodory number of Veronese varieties
	Even degree
	Odd degree


	Cylinders through four cocyclic points
	Projective definition of circular cylinders
	The conic of admissible vertices
	Classification of real circular cylinders

	Bibliography


