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Abstract

Among the different sensing modalities, vision sensors are the ones that provide the most abundant

environmental information. Additionally, the usage of a short focal length lens allows to easily

increase the observed area. The release of color and polarimetric imagers makes it possible to ex-

tend even more the polarimetric application related to depth estimation. Indeed, the polarization

parameters of the reflected light are related to the nature and to the geometry of the objects, which

can be used advantageously. In this thesis, our main objective is to study the usage of polarization

data to enhance the perception capabilities applied to robotics tasks, particularly in the task of

scene depth reconstruction. Furthermore, we aim to push the knowledge in the field of polarization

imaging by providing other researchers with a set of tools that will allow them to quickly access the

polarization modality. After doing a complete introduction to the polarization theory and modeling,

we describe how to calibrate a Division of Focal Plane (DoFP) sensor. This sensing device allows

to capture two modalities (color and polarization) with a single snapshot. The new calibration

technique that we propose enables this device to provide more accurate measurements by fitting

a mathematical model to each individual pixel. The method we present here aims to reduce the

amount of equipment and, thus the experimental time required to obtain calibrated measurements.

We make a detailed explanation of the physics underlying the Shape from Polarization (SfP) tech-

nique, which enables the normal field estimation of an object by using polarization cues. All the

required equations as well as their inverted versions for deriving the vector parameters from the po-

larization state are detailed while taking into consideration the type of reflection and material. We

also put in evidence the effects of our calibration algorithm over the estimation of the normal vector

field by using polarization. The estimation of depth information using artificial intelligence has seen

significant growth in recent years. In this context, we also propose a deep-learning network to esti-

mate depth based on a middle-fusion architecture, and a polarimetric loss function. The objective

of this development is to show how to effectively integrate the polarization theory constraints into



a data-driven algorithm. A qualitative and quantitative evaluation of the results shows the interest

of using an RGB-polarimetric imager thanks to the contribution of the polarization information.

During this research work, a complete software toolbox was also developed, providing the scientific

community with simplified access to polarimetric imaging.
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Résumé

Parmi les différentes modalités employées en détection, les capteurs de vision sont ceux qui four-

nissent le plus d’informations sur l’environnement. L’utilisation d’objectifs à courte focale permet

en outre d’augmenter facilement la zone observée. L’apparition sur le marché d’imageurs couleurs

et polarimétriques permet d’étendre encore davantage les applications en estimation de profondeur.

En effet, les paramètres de polarisation de la lumière réfléchie sont liés à la nature des objets ainsi

qu’à leur géométrie et peuvent être utilisés avantageusement. Dans cette thèse, notre objectif princi-

pal est d’étudier l’utilisation des données de polarisation pour améliorer les capacités de perception

appliquées aux tâches robotiques, notamment dans la reconstruction de la profondeur de scène.

De plus, nous visons à enrichir les connaissances dans le domaine de l’imagerie de polarisation en

fournissant à d’autres chercheurs un ensemble d’outils qui leur permettront d’accéder rapidement

à la modalité de polarisation. Après avoir effectué une introduction complète à la théorie et à

la modélisation de la polarisation, nous décrivons comment calibrer un capteur de polarisation de

division de plan focale. Ce dispositif de détection permet de capturer deux modalités (couleur et

polarisation) avec une seule prise de vue. La nouvelle technique de calibration que nous proposons

permet à ce dispositif de fournir des mesures plus précises en ajustant un modèle mathématique

selon chaque pixel. La méthode que nous présentons ici vise à réduire la quantité d’équipement,

donc le temps expérimental nécessaire pour obtenir des mesures calibrées. Nous détaillons égale-

ment toute la physique sous-jacente à la technique de Shape-from-polarization (SfP) qui permet

d’estimer le champ des normales d’un objet en utilisant l’information de la polarisation. Les équa-

tions nécessaires et les modèles inverses pour dériver les paramètres des vecteurs depuis l’état de

polarisation sont détaillées tout en tenant compte du type de réflexion et du matériau. Nous mettons

ici en avant l’intérêt de notre algorithme de calibrage sur l’estimation du champ de normales par

polarisation L’estimation d’informations de profondeur grâce à l’intelligence artificielle a connu un



essort très important ces dernières années. Dans ce contexte, nous proposons également un réseau

d’apprentissage profond pour estimer la profondeur basé sur une architecture de fusion intermédiaire

et une fonction de perte polarimétrique. L’objectif de ce développement est de montrer comment

intégrer efficacement les contraintes de la théorie de la polarisation dans un algorithme basé sur les

données. Une évaluation qualitative et quantitative des résultats démontrent l’intérêt de l’utilisation

d’un imageur RGB-polarimétrique grâce à l’apport des informations de polarisation. Lors de ces

travaux de recherche, une boîte à outils logiciels complète a également été développée proposant

ainsi à la communauté scientifique un logiciel d’accès simplifié à l’imagerie polarimétrique.
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Chapter 1

Introduction

In this new era of computers and informatics, robots are becoming more present in our every

day lives. When we mention robots, we do not talk particularly of human-like machines,

with eyes, arms, legs, and cognitive capacities alike us, but in a broader sense of the term.

Any type of machine that is able to understand its environment, or interact with it, can be

considered as a robot. Robots have sensors to measure variables of interest of the environ-

ment, actuators to perform actions based on the measured parameters, and algorithms to

bound both actuators and sensors. Each aspect of the robot defines a domain of study in

itself: the structural design (disposition of sensors, and material selection), depending on the

intended application, the electronics components, the algorithms that deal with a specific

sensor, the integration of all the sensors’ information to perform the task (for instance, the

navigation of the robot under certain environmental conditions). Of all the possible sensing

modalities, vision is one of the richest sources of data due to the large amount of information

we can extract from it to develop different applications. For instance, by using a camera we

can detect and classify the different objects present in a scene observed by an autonomous

car, read and interpret the information shown on a traffic sign, compute the trajectory of a

robotic arm to grasp an object in a manufacturing process, extract the 3D shape of an object

and inspect its quality, interact with a robot by making gestures with the hands or the face,

estimate the distance to different objects, and we can also help a mobile robot to navigate

in an unknown environment. And the list can continue. The domain of Computer Vision

is the one that deals with all these problematics, looking for new and efficient methods to
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perform these tasks by fitting robots with cameras.

For most applications, a conventional color camera is used. This type of sensor mimics

the way the human being sees the world: only the visible spectrum is considered, and key

information is extracted from texture changes in the image. Additionally, the fact of having

two eyes, and not one, allows us to measure the depth to the objects. Theoretically speaking,

with only one eye, this is not possible, but our brain is already trained with plenty of real-life

situations, thus it is able to estimate the distance to the objects even with a single view.

There exist algorithms based on color-only cameras that produce outstanding results, and

in some cases, the performance obtained is even better than what a human can achieve.

However, there are recurrent problems that challenge conventional imaging techniques. If

no texture is present (for instance, a mono-color surface), no information can be extracted

from it with a color camera. Furthermore, highly reflective regions generally saturate the

pixels, and they do not allow the sensors to capture hidden patterns under the reflection.

Moreover, if the object is transparent, reflections over it may create false positives when

using texture-based algorithms.

Nonetheless, we are not constrained to work exactly as the human eyes, and that is why

there exist cameras that can even measure parameters that humans cannot see, such as the

infrared light, or the polarization state of the light. Each type of variable a camera is sensitive

to, is called a modality, and if a camera is able to sense several variables or modalities, it

is called a multi-modal camera. In this thesis, our focus is on the computer vision field, by

using a multi-modal camera that can measure both, the color and the state of polarization

of the incoming light. In simple terms, the polarization state of the light describes the way

the light moves as it travels through space. When this light reaches the camera, it can come

directly from a source of light, or result from reflection of objects. In the last case, the

light can provide information about the object’s shape and material composition, and the

direction of the source of light. This key information is useful to improve any of the above

mentioned applications of color cameras, since in any case we have the color information,

and then we are adding another parameter to the system that can help to decide when

the original system cannot. For instance, in autonomous robotics, the polarization camera

can see through fog, or rain, and it can avoid glare by blocking the light reflections from
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CHAPTER 1. INTRODUCTION

surrounding objects. Furthermore, the polarization information can be used to analyze the

sky reflections coming from the sun since this light is highly polarized. Moreover, the color

of the sky depends on the distance that light must pass through the atmosphere and this

distance depends on the position of the sun. As a consequence, using triangulation, it is

possible to estimate with high precision, the orientation of our camera, relatively to the sun.

Additionally, regarding biomedical studies, it can be shown that a polarized light reflected

over the skin contains almost the same polarization as the source, and the phase shift depends

on the depth to which the light has travelled before being reflected. The deeper it goes, the

larger is the phase shift. This phase shift will change based on the skin composition, thus

the polarization can be used to analyse skin diseases. Another field in which the polarization

state of the light finds its place is atmospheric remote sensing. In this case, a polarimetric

camera, combined with multi-spectral cameras can be used to measure the types of particles

present in the air, to assess the health hazards of aerosols, and to probe volcanic ash clouds.

Finally, since the polarization properties depend strongly on the surface shape, orientation

and roughness, a polarimetric camera can be used to detect features of objects that have

similar spectral characteristics as the background.

Despite the advantages of the polarization information, the amount of work in this domain

is still limited and it is not growing as rapidly as it is for the conventional color cameras:

there are no common benchmarks nor standard software toolkits to compare algorithms,

the existing calibration methods are not easy to implement due to the need for a large set

of equipment, and even though polarization provides additional information, there is not a

common method to integrate this new data to an already existing pipeline for color cameras.

In this thesis we address some of these points, and we expect to attract more researchers to

this interesting domain of polarization imaging.

1.1 Main contributions

The work presented in this thesis aims to investigate the usage of the polarization data

to improve the perception capabilities applied to robotics tasks, notably in scene depth

reconstruction. In this sense, we provide the following contributions.
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1.1. MAIN CONTRIBUTIONS

Firstly, we introduce a calibration method for polarization cameras based on the Division

of Focal Plane (DoFP) sensors which are the most used type of sensors in the robotics

domain. This is because this technology enables real-time applications by capturing all the

required information to estimate the polarization state in a single snapshot. The sensor

calibration is an important step in any computer vision application since it allows to ensure

that the measurements are correct, and bounded by a known error interval. By correctly

fitting a model to the device we want to calibrate, we account for the possible manufacturing

imperfections and non-idealities that a system can have. In our case, each pixel of the sensor

contains two filters: a color and a polarization filter. To compute the polarization state of

the light, the exact orientation of the filters needs to be known for each pixel in the sensor.

The manufacturer gives a nominal value for those orientations with a certain tolerance, thus

the only way to know their exact value is through calibration. The novelty of our calibration

algorithm is that it allows the user to reduce the complexity of the calibration setup by using

the same camera to estimate the calibration light parameters. The only knowledge about

the light is that it should be uniform, and have a moderate value in each primary color

frequency. Then, by taking at least five samples of the source light, the calibration problem

can be solved. The proposed algorithm accounts for both, vignetting and manufacturing

problems since it fits a pixel model such that the polarization answer is flat for all the

sensor surface. Therefore, we correct errors in the sensor filters orientations, non-ideal filters

response, and differences in pixel gain or in measured light intensity due to lens distortion.

Next, we present a complete formulae for the Shape from Polarization problem, which

has not been previously presented in the literature, to the best of our knowledge. The only

cases covered are either for metallic or insulators, and either for diffuse or specular reflection.

In this thesis, we consolidate all of them in a single document, and we provide the different

considerations related to material type and reflection. Moreover, we present the inverted

functions of the Fresnel equations that relate the DoLP with the zenith angle of the normal

vector to the surface. Even though for the specular reflections the original function is not

invertible, we present an alternative representation that provides the two solutions to the

equation in a closed-form.

As a final contribution, we present our works in the field of depth of the objects in the
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scene with respect to the camera coordinate frame by means of a deep-learning network.

This application is based on an already existing method, and our objective is to develop a

methodology to integrate the polarization information to it to improve the original color-

based results. We propose a design to integrate and to fuse the two modalities (color and

polarization) by a middle fusion technique. Additionally, by using the geometry constraints

given by the polarization theory, we learn the network to decide which modality gives the

most valuable information to correctly estimate the depth of the different objects in the

scene.

As part of the work done for this thesis, we present an entire toolkit that enables alike

usage with all the DoFP cameras available on the market. We have developed a software

suite composed of two parts, a server and a client. On the server side, the raw images coming

from the camera are retrieved and sent through a network socket. On the client side, as soon

as a new image is received, it is pre-processed, and shown. The server side makes use of

the Robot Operating System (ROS) middleware, which enables easy acquisition of a series

of images through their standard tools, and it also allows straightforward integration of this

camera to a larger robotics system. The client side also makes use of this middleware but it

does not need to know which DoFP polarization camera is being used. This software allows

to manipulate the camera parameters, to apply the different polarization algorithms to the

raw images and to calibrate the camera and analyze the result of the calibration.

1.2 Thesis organization

This thesis is organized as follows. In Chapter 2 we present the polarization basis, starting

from the physics of the light, up to the equations that relate the normal vectors to the

polarization measurements. Then, we present the sensing modality used to estimate the

polarization state, and a review of the literature regarding the applications in which the

polarization imaging is commonly used. In Chapter 3 we explain the calibration algorithm

we developed in this thesis, with the results that validate its quality. In Chapter 4, we present

the SfP basis theory for the different possible configurations of materials and reflections, and

we detail a pipeline to evaluate the calibration algorithm with this concrete application
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1.3. PUBLICATIONS

of the polarization state. This application serves to stress the fact that the calibration

step is required to make correct use of the polarization measurements. In Chapter 5 we

present a Deep Neural network we have developed to estimate the depth with a single

image. We explain its architecture, the input encoding, and the loss that takes into account

the geometry constraints given by the polarization theory. Finally, in Chapter 6 we present

our conclusions of this thesis, and our perspectives and future works. As complementary

works, in Appendix A we include the demonstration of the error introduced by the Angle

of Linear Polarization estimator used for our calibration algorithm, and in Appendix B we

show the developed software to interact with the polarization camera, and its capabilities.

1.3 Publications

As part of this thesis, we have have produced the following journal articles:

• J. Rodriguez, L. Lew-Yan-Voon, R. Martins and O. Morel, "A Practical Calibration

Method for RGB Micro-Grid Polarimetric Cameras," in IEEE Robotics and Automa-

tion Letters, vol. 7, no. 4, pp. 9921-9928, Oct. 2022, doi: 10.1109/LRA.2022.3192655.

• J. Rodriguez, L. Lew-Yan-Voon, R. Martins and O. Morel, "Pola4All: A survey of

polarimetric applications and an open-source toolkit to analyze polarization" in SPIE

Journal of Electronic Imaging, 2023 (Accepted for publication)

Additionally, we have presented the software introduced in the paper "Pola4All: A sur-

vey of polarimetric applications and an open-source toolkit to analyze polarization" in the

National French Conference ROSConFr 2023 on July 2023 at Bordeaux, France. We have

also participated in another project related to multi-modality sensing methods. The result

of this work has been published in the proceedings of the ASAPI2023 conference:

• T. Clamens, J. Rodriguez, M. Delamare, L. Lew-Yan-Voon, E. Fauvet and D. Fofi,

"YOLO-based Multi-Modal Analysis of Vineyards using RGB-D Detections" in pro-

ceddings of Advances in Signal Processing and Artificial Intelligence, June 2023.
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Chapter 2

Polarization imaging and applications

In this chapter, we present a detailed mathematical model of the polarization state of the

light that we will use in the entire manuscript. Then, we introduce the different imaging

sensors used to capture the polarization state of the light. Finally, we will end the chapter

with a review of the different applications in which the polarization imaging has been used

in the recent years.

2.1 Polarization theory basis

In this section, we provide an introduction to polarization theory. All the concepts detailed

here will be used throughout the thesis manuscript, and we will refer to this section whenever

a specific concept is mentioned.

2.1.1 Electromagnetic waves

Light is an electromagnetic wave of high frequency. Thus, all the properties of this type of

wave can be used to explain the behavior of the light. A wave of this type is composed of two

elements: an electric field, and a magnetic field. Both of them are described by vectors with

a magnitude and a direction that are variables of the time and the position in space (x, y, z).

Nonetheless, since the magnetic and electric fields are two waves that move similarly, shifted

by 90◦ in space, we generally choose the vector of the electric field as reference. Hence, we
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2.1. POLARIZATION THEORY BASIS

(a) (b)

Figure 2.1: Electromagnetic wave representing the light for two different polarization states [77]. (a)
−→
E is the electric field

vector,
−→
B is the magnetic field, and

−→
V is the direction of propagation. The electromagnetic wave is the one described by the

extreme point of the
−→
E vector. This light corresponds to a linearly polarized light. (b) Electromagnetic wave representation

with a circularly polarized light.

describe the signal with respect to those of this vector. Then, the wave considered is the

one whose shape is drawn by the extreme point of the vector arrow, and we characterize

the electromagnetic wave by the properties of this wave. Thus, this wave that propagates

through space can be defined by its amplitude, its frequency, and the way it moves as it

travels. These three properties are illustrated in Fig. 2.1.

In this figure,
−→
E is the electric field vector direction,

−→
B is the magnetic field direction, and

−→
V is the direction of propagation of the wave. Taking into consideration the wave described

by the
−→
E vector, the height of the wave represents its amplitude, and the length of one period

of the wave is its wavelength. If we look at this electromagnetic wave as light, the amplitude

of the wave is equivalent to the brightness of the light, and the wavelength is equivalent to

its color. Furthermore, the way it moves transversely to the propagation direction defines

its polarization state. Let us consider the projection over a plane perpendicular to the

propagation direction of the extremity of the arrow vector of the electric field
−→
E . The light

is said to be linearly polarized if this projection gives a line. It is said to be circularly

polarized if the projection describes a circle. These two cases are represented in Fig. 2.1 (a)

and (b), respectively. If the vector moves in all directions without a preference, the light is

said to be unpolarized. It is worth noting that when the light is totally polarized (either

circularly, or linearly, or a mixture of both of them), the electric field vector end covers a

continuous curve. Furthermore, a combination of linearly and circularly polarized light gives

an elliptically polarized wave, and a light that has an unpolarized and a polarized component

8
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𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 

(a) (b) (c)

Figure 2.2: Examples of polarization states. Projection of all electric field vectors over a single plane perpendicular to the
direction of propagation. The shape of this projection describes qualitatively the polarization state of the light. (a) Totally
linearly polarized light. (b) Totally circularly polarized light. (c) Mixture of circular and linearly polarized light.

is a partially polarized light. Examples of totally polarized light states are shown in Fig. 2.2.

2.1.2 Polarization mathematical model

There exist several models to depict mathematically the polarization state, but the most

commonly used is the Stokes model. This model defines the light wave as a 4D vector

S = [S0, S1, S2, S3]
T . S0 represents the total light intensity (polarized or unpolarized). S1

and S2 describe the amount of light that is linearly polarized horizontally / vertically, and

in the direction of ±45◦, respectively. S3 represents the amount of light that is circularly

polarized. Using the Stokes vector, it is possible to make a representation of all the possible

polarization states by using the Poincaré sphere, which is shown in Fig. 2.3.

Using the Stokes model, it is possible to define two physical parameters:

ρ =

√
S2
1 + S2

2 + S2
3

S0

and ϕ =
1

2
arctan

(
S2

S1

)
, (2.1)

where ρ is called the Degree of Polarization (DoP) which represents the portion of the

light that is polarized, and ϕ is the Angle of Polarization (AoP). This angle represents the

orientation of the line segment or of the ellipse when the light is respectively, linearly or

elliptically polarized. In most applications, only the first three components are used, which

corresponds to the linear part of the Stokes vector. This is a common consideration since
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2.1. POLARIZATION THEORY BASIS

Figure 2.3: Poincaré sphere representation [4]. The surface of this unit sphere corresponds to the totally polarized light
cases. The origin of the sphere represents the totally unpolarized light. All the points between the origin and the surface of
the sphere represents the partially polarized light states. All the polarization states in the Equator line corresponds to the
linearly polarized states. The poles correspond to the totally circularly, and all the other points are associated to the mixtures
of linearly and circularly polarized light.

naturally generated light is generally linearly polarized [24]. Thus, S3 is set to zero, and the

Stokes model becomes a 3D vector. It follows that it is possible to express the Stokes vector

in the function of these physical variables as:

S =


S0

S0ρ cos (2ϕ)

S0ρ sin (2ϕ)

 . (2.2)

2.1.3 Polarization state measurement

An advantage of the Stokes model is that the effect produced by an object (either by trans-

mission or by reflection) over the incident wave can be modeled through a Mueller matrix

[40]. More specifically, a Stokes vector Sin that interacts with an object whose Mueller

matrix is M is converted into a Stokes vector Sout according to the following equation:

Sout = MSin. (2.3)

If the full-Stokes vector is used, the matrix M has a shape of 4× 4 elements, and if only

the linear part of the Stokes vector is used, then this matrix has 3×3 components. Until now,

the only way to measure the Stokes vector components is by using an indirect measurement
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method. This is done by taking measurements of the light after several filtering steps. For

the linear components of the light, the process consists in measuring the received intensity

when the light passes through a Linear Polarization Filter (LPF) at different orientations.

A LPF is an optical device that allows only the waves that have the same orientation as the

filter axis to pass. Any other wave is filtered with a gain that has a sine curve shape. The

maximum gain occurs when the filter orientation matches the AoLP of the incident light,

and the minimum gain will occur when these angles are separated by π/2 radians. An optical

device as the one described is modeled through the following Mueller matrix [27]:

M =
1

2


q + r (q − r)C2θ (q − r)S2θ

(q − r)C2θ m11 m12

(q − r)S2θ m21 m22

 , (2.4)

where q and r are the major and minor light transmittance of the linear polarizer, respec-

tively, θ is the orientation of the filter, and:

S2θ = sin (2θ) , C2θ = cos (2θ) ,

m11 = (q + r)C2
2θ + 2

√
qrS2

2θ,

m22 = (q + r)S2
2θ + 2

√
qrC2

2θ,

m21 = m12 =
(
q + r − 2

√
qr
)
S2θC2θ.

If a camera is used to take the measurements of the filtered light, then, only the first compo-

nent of Sout can be retrieved, which corresponds to the total intensity of the observed light

Sout
0 . Thereby, only the first line of the Mueller matrix M should be considered:

Sout
0θ

=
1

2

[
q + r (q − r)C2θ (q − r)S2θ

]
Sin, (2.5)

where Sout
0θ

is the S0 component of the output Stokes vector, when the filter axis is oriented

with an angle of θ radians. If the filter is considered ideal, then q = 1 and r = 0, and

Eq. (2.5) becomes:

Sout
0θ

=
1

2

[
1 cos (2θ) sin (2θ)

]
Sin. (2.6)
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In general, Sout
0θ

= Iθ − d, where Iθ is the readout intensity given by a pixel, and d is the

pixel offset, often called dark current. Most works ignore d since in commercial cameras, this

value is tiny compared with the camera measurement [57]. Thus, we have in general that:

Iθ =
1

2

[
1 cos (2θ) sin (2θ)

]
Sin. (2.7)

To find the vector Sin, several measurements at different θ values are required. In the

general case, if N orientations are used [θ1, ...θN ], then N intensity measurements [Iθ1 , ...IθN ]

will be obtained. If all the measurements are stacked following the Eq. (2.7), a linear system

can be built as: 

Iθ1

.

.

.

IθN


=

1

2



1 cos (2θ1) sin (2θ1)

. . .

. . .

. . .

1 cos (2θN) sin (2θN)


Sin,

⇒ I = ASin.

(2.8)

where I is the intensity measurements vector, A is called the pixel matrix, and Sin is the

Stokes vector we want to estimate. Then, if N ≥ 3, it is possible to find Sin by computing

the pseudo-inverse of A.

2.2 The polarization imaging

So far, the mathematical formalism of the polarization state of the light was introduced,

which comprises the most general case. In this section, the details about how the modeled

polarization state of the light can be measured by different imaging devices are explained.

The polarization of the light is present in several real-world physical phenomena. Light

coming from rainbows in the sky, reflections from water on highways, and monitors and

cellphones based on LCD are typical examples. Light polarization is naturally generated

when an unpolarized light source (e.g., light bulbs or the sun) hits a surface and is reflected.
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The polarized light generated in this way can be of two types: specular, when the reflection

of the light is in a single direction; or diffuse, when the reflection is in all directions. These

two types of behaviors are illustrated in Fig. 4.1. In the vision sense, the specular behavior is

associated to mirror-like reflections, and the diffuse one conveys the base color information.

The way the reflected wave oscillates depends on the characteristics and the shape of the

material. This relationship between the observed light and the object properties is a key

feature that vision algorithms can use to improve their accuracy with respect to another one

that uses only texture information. These additional features can be leveraged, for instance,

to improve object detection and scene segmentation results, detect mirrors and other surfaces

that polarize the light, or uniquely identify places in a room that will serve as landmarks

in navigation algorithms. It is worth noting that polarization cues are the main sources of

information used by many biological agents such as insects and bees for their orientation in

space [33].

2.2.1 Polarization imaging sensing methods

The polarization imaging systems have been introduced since Wolff [116], in which a normal

CCD camera is used jointly with a rotative filter. After taking 3 or more images with it,

he was able to estimate the polarization state of the light in a generic scene. There is not

a method to directly estimate the polarization parameters of the light as images. Since a

pixel in a camera is able to measure the total intensity received over a window of time, the

Stokes vector can be measured indirectly through filtering, and with it, the DoP and the

AoP can be computed. Using this concept, several polarization acquisition techniques have

been introduced, namely:

• Division of Time (DoT) [71]: The most common method used before the DoFP sensor.

In this case, a filter is rotated in front of the camera, and several images of an object or

a scene are captured with the filter placed at different positions. The inconvenience of

this technique is that it is not adapted to capture objects / scenes that change between

captures. Consequently, it is not possible to capture moving objects with it.

• Division of Amplitude (DoA) [75]: A prism is placed inside the camera, and this
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Figure 2.4: Different acquisition methods to estimate the polarization state of the light. (a) Division of time: A conventional
camera is used with a linear filter in front of it that can change its orientation (either mechanically either electronically). Several
images are taken, with different filter orientations, at different instants of time. (b) Division of amplitude: The incoming light
hits an optical prism that splits the light beam into several directions. At each output direction, a photometric detector is
placed, with a fixed linear polarization filter. Each filter is oriented differently, thus the three output images are used to estimate
the polarization state. (c) Division of focal plane: In this case, each pixel contains a linear polarization filter oriented differently.
By joining the measurements of four pixels in a pattern of 2 × 2 elements, the polarization state at those pixels is estimated.
This operation can be done for all the pixels, thus a polarization image is obtained.

device splits in three the incoming light beam. Next, each beam is projected over

a normal sensor doted with a linear polarization filter oriented differently from one

sensor to another. Even though effective, this method comprises some disadvantages:

the camera does not have a minimal dimension, the images require an alignment, and

the system is too fragile since the prism can move and completely misalign the images.

Furthermore, due to the split, the rays received by each sensor has less energy than

the original beam, reducing the Signal-to-Noise ratio (SNR) of the sensing system.

• Division of Focal Plane (DoFP): Differently from the other methods in which all the

pixels share the same filter, in the DoFP sensor each pixel has its own filter. The

filter are disposed on the sensor following a fixed pattern of 2× 2 pixels. With a single

photo, all the required information is captured without reducing the detection intensity

as in the DoA. Nonetheless, an interpolarization algorithm needs to be implemented

to not lose spatial resolution in the images. This is still a challenging problem to solve

particularly for the color camera, since a single sensing cell is composed of 4×4 pixels.

This is the technology we used for this thesis.

The representations of the working principle of the different cameras are shown in Fig. 2.4.

In the literature, mainly two measurement systems are used: Division of Amplitude

(DoA) and Division of Focal Plane (DoFP). The advantage of the second method with

respect to the first one is that it can capture all the required information in a single shot:

color and polarization. To do so, the sensing unit is composed of 4 × 4 pixels, as shown in
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Figure 2.5: Sony Polarsens IMX250MYR RGB-polarization sensor pattern, arranged as a Bayer RG pattern with polarizer
orientations of 0◦, 45◦, 90◦, and 135◦ [91].

Fig. 2.5. This matrix of pixels follows a Bayer RG color pattern, where each color filter is

divided in normal super-pixels. The reason of why selecting these four orientation values

for the super-pixel is demonstrated in [104], in which it concludes that using equidistant

angles in the range [0◦, 180◦] optimizes the SNR of the computed Stokes vector. If such a

sensor is used, the Stokes vector can be measured by using Eq. (2.8), where N = 4, and

[θ1, θ2, θ3, θ4] = [0◦, 45◦, 90◦, 135◦]. It follows that:

Sin =


I0◦ + I45◦ + I90◦ + I135◦

2

I0◦ − I90◦

I45◦ − I135◦

 . (2.9)

2.2.2 Real-time outdoor polarization imaging: The division-of-focal-

plane sensor

The introduction of micro-grid polarization sensors, such as Sony Polarsens, boosted the

research in the polarization domain since they are capable of capturing all the required

information (intensity, color, and linear polarization) in a single snapshot, and they also allow

measurements outside laboratory conditions. However, the number of approaches leveraging

polarization for performing computer vision and robotics tasks is, unfortunately, still quite

limited. For this, we found several reasons. Firstly, the Sony Polarsens sensor is available

only since 2018. Thus, not too many datasets have been created with this technology so

far. Before that, other DoFP sensors have been developed, but they included a micro-grid

of filters placed on top of the micro-lenses of the sensor. As a consequence, there were a

cross-talk effect between the pixels that increases as we approach the borders the of sensor.
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Figure 2.6: Cross-talking effect comparison between the older technology (a), and the Sony sensor technology (Polarsens)
2.

Finally, the accuracy of the sensor was acceptable only around the center of the image.

Therefore, if low errors are seek with the ancient technology, the effective sensor resolution

has to be drastically reduced. An sketch of this effect is shown in Fig. 2.6.

Another reason for the limitations of approaches is that, to the best of our knowledge,

there is no standard method to integrate the additional polarization information to already

existing texture-based algorithms. On one hand, if classical approaches are considered (as

with the equations shown in Sec. 2.1 to estimate the normal vectors), a reflection model needs

to be assumed, the index of refraction needs to be known, and a difference between metallic

and dielectric objects needs to be done. On the other hand, when data-driven approaches

are used, there is no unified model or loss function that effectively integrates the polarization

information to perform its task.

It is for these reasons that we aim to open the track in this research field by adding

new tools that simplify the usage of this modality, and by researching a simple but effective

method to take the best of both worlds: textures and polarization.

2.3 Applications of the polarization imaging

In this section, we discuss recent advances in the field of polarization imaging within both

model-based and data-driven strategies. We have reviewed the latest applications in the

computer vision and robotics field that utilize polarimetry between the years 2016 and 2022.

Older applications have not been considered because the most significant advancements
2https://thinklucid.com/tech-briefs/polarization-explained-sony-polarized-sensor/
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began after the release of the first micro-grid division-of-focal plane (DoFP) sensor around

2014. Since then, DoFP sensors have been adopted and widely used as it allows real-time

imaging. In 2018, Sony introduced a DoFP sensor, named PolarSens, which became the

core device of many commercial polarization cameras. It offers much better quality data and

facilitates the development of more performant algorithms and real-time applications beyond

laboratory conditions. The works have been grouped into four representative categories

and complementary tasks: image enhancement, segmentation, surface depth and normal

estimation, and pose estimation. Most reviewed works focus on the application fields of

computer vision and robotic vision. Particularly, we focus our study on the context of

scene understanding in both ground and underwater environments Polarization has also

been extensively used in the field of remote sensing, notably in combination with Synthetic-

Aperture Radar (SAR) data. Applications in remote sensing are not the focus of this thesis

and a good review of the recent advances of applications of polarization in this field using

data-driven algorithms can be found in [65].

2.3.1 Image enhancement

In real-world applications, changes in viewing conditions can strongly impact the perfor-

mance of computer vision algorithms. Thus, enhancing the quality of the visual information

is often a required step to keep the accuracy of the developed computer vision system. The

type of image quality improvement depends on the application itself. In some cases, this

implies having high-quality measurements independently of the camera used, which can be

achieved through camera calibration [27, 57, 85, 91]. In others, the improvement can be

related to removing highly bright, specular reflections, requiring a separation between this

type of reflection from the diffuse ones [47, 79, 106]. In more complex cases, the background

structure needs to be recovered when an atmospheric phenomenon is present such as mist

or fog, as shown for some examples in Fig. 2.7. In most cases, the physical constraints de-

fined by the polarization state of the light can be used to improve the results obtained by

conventional cameras.

In this context, Ono et al. [79] present a white balance algorithm for RGB-polarization

sensors based on the achromaticity of the Stokes vector in the visible spectrum. Rodriguez
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Figure 2.7: Results of some of the reviewed algorithms for image enhancement. (a)-(c) Input image, ground truth,
and algorithm results of DoLP-based color constancy.[79] (d)-(f) Input image, obtained diffuse image, and obtained specular
image of polarization-guided specular reflection separation.[113] (g)-(i) Input image, ground truth, and resulting images of the
polarization dehazing method.[125] Images courtesy of the respective works.

et al. [91] relax the experiment setup to calibrate micro-grid color-polarization sensors to

achieve a flat-field response in all the polarization parameter images. Wen et al. [113] solve

the separation of specular from diffuse reflections with a model-based optimization strategy

[15]. Their pipeline is independent of the illumination source by exploiting polarization and

chromaticity images. Wen et al. [114] propose to jointly demosaic RGB and polarization

information to obtain high-quality, 12-channeled RGB-polarization images by using a sparse

representation model. The model is obtained through an optimization algorithm that uses

the ADMM scheme. Similarly, Morimatsu et al. [76] obtain high-quality, polarization

images by extrapolating the residual interpolation for RGB images [51] to the monochrome

and color polarization sensors. They achieve their results by changing the guidance image

so that it is edge-aware, and by making use of the raw polarization intensity measurements.

Tanaka et al. [99] achieve better quality images by improving the condition number of
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the transport matrix in comparison with conventional, passive Non-Line-Of-Sight (NLOS)

system. This is done by using the polarization leakage effect model produced by the oblique

reflection over a filter oriented at the Brewster angle [40] of a wall.

Using hand-crafted theories provides good results when the scene and the effect to an-

alyze are not complex, since a high-precision mathematical model of the problem can be

established. When this is not possible, data-driven algorithms can be used, as they have the

capability to learn complex theories during training. For example, they can handle scenes

with several objects at the same time, or model effects for which no known mathematical

model exists. Data-driven approaches as described in Lei et al. [59] have been designed

to remove the reflections produced by different types of glasses by using polarization theory.

The input to their network architecture, composed of pre-trained U-net and VGG-19 net-

works, is an image which is a combination of the raw measurements, split by polarization

channel and polarization parameters (I, ρ, ϕ). Zhou et al. [125] use a single polarization

image and a deep learning network composed of two U-net models and two autoencoders to

dehaze urban scenes. Hu et al. [41] developed a data-driven approach and a dataset to

increase the brightness and quality of images under low-illumination conditions. They cre-

ated a convolutional neural network that works in two steps based on the raw measurements

of the camera: firstly, an enhancement in the intensity domain for all the color channels,

and then each color channel is treated by a separate network. Liu et al. [68] proposed

a Generative Adversarial Network (GAN) architecture to fuse the DoLP and the intensity

images into a single intensity image. By dividing the image into background and foreground,

the network fuses these two polarization images into a single image that has an increased

and better contrast than the original intensity image. The results produced by this network

can be used to train other networks, i.e., to perform an improved data augmentation, and

with it, obtain models with large generalization capabilities. Despite the outstanding results

of data-driven algorithms with respect to the optimization-based approaches, the quality of

these results depends on the data and the type of model used. Particularly for the data, if

not all the cases have been considered in the images provided during training, the missing

cases might produce less accurate results during testing.

Several relevant image enhancing approaches have also been proposed to deal with the
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challenging scenario of underwater imaging. Li et al. [64] aim to improve the contrast of

underwater images due to turbidity by using polarization and an optimization strategy. They

propose to split the Stokes vector into three contributions (diffuse, specular, and scattered

light), since they claim that the scattering reflection underwater cannot be neglected. In

the same direction, Hu et al. [42] present a novel CNN based on residual blocks that fuse

the polarization features to restore the contrast of underwater images. By using the raw

measurements of three polarization channels of a monochrome polarization camera, they are

able to see through turbid water, and obtain a clear image of the hidden objects. Amer et al.

[2] propose a static pipeline to increase the image quality for underwater applications. Based

on the active cross-polarization technique, and an optimized version of the Dark Channel

Prior, they achieve contrast improvement for underwater imaging, with a single snapshot

in real-time. Shen and Zhao [96] developed an iterative pipeline to jointly improve the

image contrast and denoise the image. With two polarization images taken with a rotative

filter at 0◦ and 90◦, they compute the transmittance and the irradiance maps in underwater

conditions for each color channel. Then, they establish an iterative process to refine these

results by using an adaptative bilateral filter, and an adaptative color correction routine.

Despite the remarkable improvement brought by polarization to image enhancement, as

compared to similar applications for RGB-only cameras, several challenges still remain. For

example, Ono et al. [79] outperform different baselines in many scenes, but it is left as

future work to improve the results obtained when the sky occupies a large portion of the

image. Similarly, Zhou et al. [125] retrieve the hidden structure of objects behind the

haze with good accuracy in real-world situations, after training the network with computer

generated images. Despite this, the authors claim that the model does not produce adequate

reconstructions for fog and mist since the physical phenomena produced by these perturba-

tions are not the same as for the haze. It is important to note that one of the barriers

in the polarization image enhancement field is the lack of standard benchmarks. Indeed,

most works had to create a dataset to demonstrate their contributions. Some of the created

datasets, which often required a huge amount of work, can be reused as in Lei et al. [59] ,

where the authors realized acquisitions in a large variety of environments, and with different

types of glasses. On the other hand, other applications have been demonstrated using small,
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Figure 2.8: Segmentation examples with polarization cues. From left to right: (a)-(c) Input image, results obtained with an
RGB-only method, and the result of glass segmentation using intensity and spectral polarization information.[72] (d)-(f) Input
image with transparent objects, RGB-only method object segmentation results, and results obtained with the polarization data-
driven method. [48] (g)-(i) Input image, RGB-only method results, and the results of the multimodal material segmentation
algorithm.[66] Images courtesy of the respective works.

non-available datasets, that may not necessarily cover all the required cases [114], or they

have created a polarization dataset based on RGB ones and a mathematical model of the

polarization effect [125], which may not fit the real environment effect.

2.3.2 Image segmentation

The polarization state of the light is directly linked to the object’s material and shape as

mentioned in Sec. 2.1. This property can provide insightful and complementary information

to guide object segmentation approaches in scenarios where only the surface color is not

discriminant. Indeed, the index of refraction depends on the internal structure of the objects,

and on the wavelength of the incident light as defined by the Fresnel equations [13]. It is for

this reason that material classification is one of the most fruitful application of polarization

theory. Previously, this task was accomplished using hand-crafted features, in controlled
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acquisition conditions, using rotative filters, and considering a single object to be analyzed

at a time [19, 101, 103, 115]. Nowadays, with the advances in sensors and the advent of

data-driven algorithms, object characterization with polarization cues has been ported to

more complex, constraint-relaxed scenarios.

In the domain of infra-red imaging, Li et al. [62] succeed in efficiently detecting the

road area in urban scenes by using the zero-distribution prior in the AoLP and the difference

in the DoLP of the objects to increase the accuracy of the segmentation. This information

is further used in a visual tracking algorithm to continuously track the road online. In

an extension of their previous work, Li et al. [63] use the zero-distribution prior of the

AoLP to create a coarse map of the road. Then, they developed a deep-learning network to

refine the coarse road map. Their network consists of two branches that analyze different

aspects of the scene. The main branch receives the information captured by an infra-red

camera, already converted into a fake color image, i.e., a 3-channel image result of stacking

the AoLP, the DoLP, and the total intensity together, and then converted from the HSV

to the RGB color space. The objective of this branch is to extract multi-modal features of

the scene. The other branch or polarization-guided branch also receives the AoLP and the

DoLP of the scene, but it does not receive the intensity image. Instead, the coarse map

obtained from the zero-distribution prior of the AoLP is provided. By doing so, the authors

aim to guide the network based on the polarization properties of the road, and not of the

entire scene. In the visible spectrum, Xiang et al. [118] developed a fusion network to

combine color and polarization data to better segment objects of urban scenes. They tested

several combinations of polarization information with attention mechanisms and concluded

that using only color and the AoLP is the best combination to improve the results. Kalra

et al. [48] improve the instance-semantic segmentation network Mask R-CNN [50] to

handle transparent objects (as shown in Fig. 2.8) by adding monochrome polarization cues

to the original mid-fusion pipeline. Each polarization parameter image (intensity, AoLP,

and DoLP) is fed into a different backbone encoder, and the fusion of the feature maps is

performed at each encoder level. Mei et al. [72] extend the work presented in [48] by

using RGB polarization cues, instead of monochrome, with the aim of segmenting glasses

in urban scenes. Each of the two measured RGB polarization images (DoLP and AoLP)
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is balanced by using an attention mechanism. Then, these two results, and the intensity

RGB image are fed into three independent Conformer encoders [80] and fused using local

and global guidance. In a more complex scenario, Liang et al. [66] build a network to fuse

RGB, infra-red, and polarization cues to produce an outdoor scene segmentation based on

the object material type. The proposed pipeline is composed of two core elements: a network

that will classify the captured objects into one class of a subset of the segmentation labels

from the CityScapes dataset [22]; and a region-based filter selection module that chooses the

modality that provides the most relevant information for determining the type of material

of the constitutive elements of each detected object. The full network is composed of four

encoders, one for the RGB intensity, one for the AoLP image, one for the DoLP image, and

one for the infra-red image.

All these works outperform RGB systems when the polarization information is added

to each developed pipeline. A higher gain in performance is also often obtained when the

network is adapted to correctly process the AoLP and the DoLP, and not when an RGB net-

work is trained with polarization images. This is why most of these works propose carefully

designed fusion schemes. However, the lack of datasets including polarization information

in the field of image segmentation poses limitations on the development of polarization-

based approaches. It is important to highlight that all the previously discussed works have

presented their own dataset to show that polarization is a path to consider in image segmen-

tation. For instance, Kalra et al. [48] used a private dataset acquired in a very specific

environment, focused on the particular application with a pick-and-place robotic arm. Xiang

et al. [118] provide a small-scale dataset of RGB-polarization images captured in various

urban scenes. Although informative, the dataset contains only 394 annotated images seg-

mented into 9 different classes. Mei et al. [72] introduce a medium-scale dataset, with 4511

images annotated only for the labels glass and no-glass. Similarly, Liang et al. [66] made

publicly available a dataset of semantic segmentation of urban scenes, with multi-modal

sensors, but it only includes 500 labeled images, and Li et al. [62] did it for road segmen-

tation, and with their personalized infra-red polarization camera. Thus, there is a need for a

common large-scale benchmark to evaluate the performance of these different segmentation

algorithms to trace the direction toward a generalization of the polarization modality.
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Figure 2.9: Results of some of the reviewed algorithms for surface normal and depth estimation. From left to right: (a)-(c)
intensity input image, reconstructed mesh, and estimated normal map by the method introduced by [95]. (d)-(f) Real RGB
image, corresponding rendered image, and the corresponding rendered degree of linear polarization. This result corresponds
to the scene rendering technique implemented in [53]. (g)-(i) Input polarization images, ground truth, and estimated normal
maps. These results are courtesy of [8].

2.3.3 Surface normal and depth estimation

Polarization is well known to encode shape information of the different objects being ob-

served. The classical algorithms of Shape-from-Polarization require to make several assump-

tions to be able to estimate the normal vectors to the surfaces. Most existing approaches

consider an orthographic projection of the incoming light to simplify the coordinate system

bound between those of the normal vectors and that of the camera. Furthermore, the re-

fractive index of the object is generally supposed to be known approximately since it is hard

to run an experiment to have a ground-truth value of it. With these two assumptions the

normal vectors to the surface can be estimated, and through integration, the depth map

can be retrieved. These approaches are based on the Fresnel’s formulae, that is detailed in

Chapter 4, and it establishes the relationship between the Degree of Linear Polarization with

the zenith angle of the normal, and the Angle of Linear Polarization with the azimuth angle.
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Method Type of
Algorithm

Object type Reflection
type

Light
condition

Ambiguity
handled

Ba et al. [8] Data-driven Dielectric Both Single source,
unknown

Both

Berger et al. [10] Optimization Dielectric Specular Non-controlled Azimuth
Blanchon et al. [11] Data-driven Both Specular Non-controlled Azimuth

Deschaintre et al. [26] Data-driven Dielectric Diffuse Controlled,
frontal-flash

Azimuth

Fukao et al. [31] Optimization Dielectric Both Controlled,
known

direction

Azimuth

Ichikawa et al. [45] Optimization Dielectrics Both Uncontrolled,
under clear sky

None, it uses
Mueller
calculus

Kondo et al. [53] pBRDF
formulation

Dielectrics Both Known
positions and

Stokes

Both

Lei et al. [60] Data-driven Both Both Uncontrolled Both
Shakeri et al. [95] Optimization Dielectrics Both Uncontrolled Both
Smith et al. [97] Optimization Uniform

Dielectric
Both Uncontrolled,

under sun
Both

Zhao et al. [124] Optimization Dielectric Both Uncontrolled Azimuth
Zhu and Smith [126] Optimization Dielectric Both Point source,

known
direction

Both

Table 2.1: Comparisons of hypothesis used in the different SfP and depth estimation methods.

Even though effective in several works and scenarios [7, 73, 74, 121], the fact that both the

object’s refraction index and the light direction must be known makes this approach lim-

ited to laboratory strict conditions. Additionally, the relationship between polarization and

the normal vector has geometric ambiguities. Therefore, one important research direction

is to reduce the constraints and priors required for the acquisition while maintaining low

reconstruction errors.

Ba et al. [8] propose a learning-based approach to estimate the normal map of objects

as shown in Fig. 2.9. The ambiguous normal maps from Fresnel’s theory are used as priors

given directly to a deep neural network as inputs with the objective that the network will

learn to disambiguate them. Fukao et al. [31] present a shape from polarization algorithm

that uses a stereo pair of polarization cameras. The coarse map from the stereo vision is

refined by filtering the normal maps with a belief propagation scheme. They exploit Fresnel’s

equations, and an improved modeling of the micro-facet reflection effect by considering that

it is a linear combination of the diffuse and the specular lobe reflection. Similarly, Ichikawa

et al. [45] relaxed the constraints for shape from polarization by using the Rayleigh [98]

and the Perez [81] models to estimate the sun polarization state and direction on a clear day.

Then, through mathematical optimization, the normal and shading maps are obtained.
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The additional cues about the incident Stokes vector serve to determine how the object

modulates the incident light (Mueller calculus), and jointly with the shading constraints,

the normal map can be estimated. Deschaintre et al. [26] propose a 3D object shape

estimation, jointly with a spatially variable BRDF model estimation, by using a single-view

polarization image fed to a U-Net based network architecture. The full input of the model

is the intensity image, the normalized Stokes map, and the normalized diffuse color which

encodes the object reflectance information. Lei et al. [60] propose a deep-learning network

to estimate the normal map of complex scenes. Their aim is to improve the accuracy limits

by incorporating viewing encoding as input to the network, which accounts for the non-

orthographic projection. This input is an image where each pixel represents the direction

of the incident light. When estimating the normal vectors from polarization under the

orthographic assumption, all the incident light rays are supposed to be colinear to the Z

axis of the camera coordinate frame. Thus, all the zenith angles are measured with respect

to a common coordinate frame. When using a perspective lens, the zenith angle given by

the polarization theory is measured with respect to the direction of propagation of the light,

which in this case, will be different for each pixel. By providing the viewing encoding,

the authors claim the network will understand the viewing direction of the polarization

state and use this information to improve the results of a network that works under the

orthographic assumption with a perspective lens. The other inputs to the model are the raw

measurements of the camera separated by polarization channel, the AoLP, the DoLP, and

the total intensity. Their network is also grounded by an architecture similar to a U-Net

model, with a multi-head self-attention module in the bottleneck. Smith et al. [97] define

the Shape from Polarization problem as a large linear system of equations. They combine

the physics theory of polarization with the geometry of the problem to formulate the depth

equations directly, without passing through the computation of the normals. Berger et al.

[10] present a depth estimation algorithm that uses the polarization cues in a stereo vision

system. They improve the correspondence matching by adding the AoLP-normal constraint

to the intensity similarity function. In the same direction, Zhu and Smith [126] propose

a hybrid RGB-polarization acquisition system to obtain a dense depth reconstruction. By

classifying the pixels into specular or diffuse, they make use of normal vectors obtained
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from Fresnel’s theory to improve the estimation of the normal maps obtained from the

stereo images. Blanchon et al. [11] extend the monocular depth estimation network

Monodepthv2 [36] to consider polarization information by adding the azimuthal constraint

to the deep-learning loss. Zhao et al. [124] extend the multi-view reconstruction system [52]

by adding polarization cues to the optimization. They introduce a continuous function that

has four minimum values, each of them at one of the ambiguous normal azimuth possibilities

of Fresnel’s theory. Kondo et al. [53] developed a polarimetric BRDF model that does not

constrain the illumination nor the camera position during acquisition. This model is used

to synthesize polarization images out of RGB images, easing the dataset creation for data-

driven algorithms. By acquiring images with different illumination of known Stokes vectors,

they use Mueller calculus to model the object reflectance. Shakeri et al. [95] produce a

dense 3D reconstruction by using polarization cues. This is done by optimizing an initial

depth map obtained from MiDaS [88], and the coarse depth map from COLMAP [94]. The

optimization routine constraints the normals with the ones from Fresnel’s theory. The initial

depth map is used to disambiguate the polarization normals, and the coarse map is used to

regularize the optimization routine, since they are metrically correct but sparse.

The previously presented works have all been developed for shape/depth estimation while

leveraging the polarization information. Combining the polarization state of the light with

any geometry problem developed for the RGB space results in a significant improvement in

accuracy and image quality. Since the polarization measurements are provided pixel-wise,

then the normal constraints are dense. Thus, passive, high-quality far-field 3D reconstruc-

tions can be retrieved using a multi-modal RGB-polarization camera, which cannot be done

with active sensors such as LiDAR or Microsoft Kinect. However, these polarization con-

straints are still often dependent on knowing priors about the material (metallic vs Dielectric)

and the reflection type (specular vs diffuse), thus sometimes they can poorly perform in the

wild. To overcome this problem, some works decide to use only diffuse reflections [26], or to

classify the pixels into either diffuse dominant or specular dominant (such as in [95, 97]). To

deal with more complex cases, a better modeling of the reflection effect might be required

[31]. For data-driven algorithms, this field also suffers from the lack of large-scale datasets

that can be used as benchmarks for research. Most papers propose their own dataset by
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Results of some of the reviewed algorithms for pose estimation. From left to right: (a)-(c) input RGB image,
reconstructed surface with the algorithm provided in [25]. (d)-(f) Glass vase model and the detected pose from two viewpoints.
Results courtesy of [32].

doing acquisitions [60], or they model the entire light behavior assuming artificial conditions

to simulate the polarization state over already existing RGB images [53].

In summary, the polarization clearly provides valuable cues in the field of shape estimation

and 3D reconstruction but two main problems need to be addressed. Foremost, the lack of

large-scale, standard evaluation benchmarks, that hinders the development of techniques

using this modality in the current era of data-driven algorithms. On the other hand, there

is no generic model that can effectively handle generic types of reflections over any type of

material. Therefore the challenge of interpreting the measured data and determining which

model to use remains open.

2.3.4 Pose estimation

The polarization of light can also play a significant role in object pose estimation since it

provides valuable geometric constraints in the determination of the vectors normal to the

observed surfaces (as discussed in Sec. 2.3.3). Hence, this additional information can be

used to overcome the ill-posedness condition of many RGB problems, such as estimating

the relative rotation and translation of textureless objects between two images. Particularly,

these additional constraints are useful when the objects to analyze are highly reflective
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and translucent since the polarization measurements are independent of the intensity of the

light. Cui et al. [25] use the normal vectors estimated from the Fresnel equations to add

geometric constraints for pose estimation (some visualizations of the pose estimation can be

seen in Fig. 2.10). With this additional information, only two corresponding points in two

views are required to estimate the rotation matrix and the translation vector. In the same

direction, Gao et al. [32] propose a data-driven algorithm to find the pose transformation

of an object in the image with respect to the camera coordinate frame. The algorithm uses

three ambiguous normals as inputs to one encoder, and the polarization parameters into

another. Then, the features are fused at different levels, and given to the decoder. Tzabari

and Schechner [105] present a static approach in which they use the AoLP and the DoLP

to expand the optical flow theory. This new component accounts for the rotational speed

estimation, which cannot be done with the classical optical-flow approach. Hu et al. [43]

utilize a monochrome polarization camera to build a complete pipeline to estimate the sun’s

position based on the DoLP and the AoLP measurements underwater. Jointly using the

Snell and Fresnel theories, they revert the ray bending caused by the change in medium

and handle the problem as if the measurements were done outside the water. Similarly, by

using the Rayleigh model of the polarization pattern given by the sky, Kronland-Martinet

et al. [55] developed a bio-inspared algorithm to estimate the North Celestial Pole (NCP)

with a polarimetric camera and a fish-eye lens. This reference point is calculated based on

the DoLP measurements over three instant of time, with which the intersection point of the

invariance axes of the DoLP is obtained. Zou et al. [127] push forward the accuracy

in the human shape and pose estimation by building a two steps network with polarization

cues. Assuming the human cloth to be diffuse dominant, they retrieve the human features by

using the raw polarization intensity images, and the ambiguous normal maps obtained from

Fresnel theory. The first network produces a high-quality normal map, and the second one

uses this result, jointly with the output of the SMPL human shape model [70] to estimate

the final shape and pose of a clothed person.

Due to the geometric nature of the pose estimation problem, the polarization state of

the light provides valuable clues that can be used in any computer vision algorithm in this

field. The applications included in this section of the review demonstrate the potential of
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accuracy gain obtained with the polarization constraint, while at the same time relaxing

the other algorithms hypothesis. In [25], it is shown that only two points are required to

estimate the pose transformation between two views, resulting in an improvement in speed

and accuracy when added to any structure from motion algorithm. Without any requirement

in the type of clothes to be used, Zou et al. [127] were able to estimate the human pose with

a lower error and fewer constraints than competitors. In underwater applications, Global

Positioning System (GPS) signals cannot be used because their intensities decrease rapidly

with the depth in the water. To address this issue, Hu et al. [43] propose an autonomous

underwater navigation system that uses polarization instead of a GPS signal. In their system,

the camera’s global position is estimated by applying geometrical constraints that link the

sun’s position to its known trajectory [29, 61]. However, several limitations still remain

when doing pose estimation with polarization. For example, in [32], only the position of

one object can be done each time, while others adopt known object materials and physical

properties. Furthermore, most algorithms only consider one type of reflection (either diffuse

or specular), which limits their generalization to any type of scene.

2.4 Conclusions

In this chapter, we have reviewed the basis of the polarization state mathematical modeling

through the Stokes vector, the sensing techniques, and the most relevant applications of the

last years. From this last part, we have seen that there is a larger community working in

the development of techniques oriented to the depth estimation by including polarization

cues than in the other domains. This is expected since the type of information given by the

polarization state is mainly geometrical, thus its use is directly related to the outcome of a

depth estimation algorithm. On the other hand, we can also conclude that almost none of the

published articles make use of a sensor calibration algorithm, or at least, it is not mentioned

on them. This is an important step when developing a a vision algorithm since the results can

be biased by the particular sensor and lens used to do the data acquisition. Additionally, we

have observed that there is a lack of details in the algorithms related to the SfP algorithms.

Indeed, there is no article that makes a full description of the problem, or the evaluation of
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the consequences of assuming either a single reflection model, or a single type of material.

In the following chapters of this thesis, we address these problems by providing a sensor

calibration algorithms that reduces the material and procedure requirements to its bare

minimum, and by writing the SfP algorithm in its complete form. Additionally, we evaluate

the results obtained when considering both reflection models, the effects of considering only

one of them, and the improvements introduced by the calibration algorithm. Furthermore,

we introduce a deep learning network to estimate the scene depth from monocular images,

and a complete toolkit to capture, analyze, and process polarization images from any DoFP

camera.
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Chapter 3

Polarimetric sensor with lens calibration

Camera calibration is a very important procedure to be included in any computer vision

algorithm. It allows for compensating the errors due to manufacturing and the addition

of any other device placed between the variable to measure and the sensing unit. This

procedure enables the use of the camera as a measuring device. It also allows any computer

vision algorithm to be used with any camera. Indeed, after calibrating our measuring device,

we are independent of any particularity of our camera or our lens. In this chapter we

introduce a new calibration algorithm pipeline to improve the sensor measurements of a

color-polarization sensor when it is used with a lens. We do a complete description of the

method, and we provide exhaustive experiments that justify its validity.

3.1 State of the art

3.1.1 Motivation

In the computer vision field, the most widely known and used calibration algorithm for

perspective cameras [83] is the geometric calibration algorithm. Since the camera is composed

of pixels, which are the sensing units, and a lens that projects the light over each pixel,

there are some imperfections we need to account for. Indeed, the lens will produce non-

linear deformations in the object’s aspect present in the image due to the modifications it

introduces in the light path. Furthermore, for this type of system, the projection point
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of the lens will not be placed at the center of the sensor, the exact distance between the

projection point and the image plane is not known, and the distortion coefficients for the

lens deformation are also unknown. To estimate the parameters of the model for a system

as the one described, a calibration procedure needs to be executed. For this configuration

(photometric sensor and perspective lens), the Zhang’s method [122] is generally used, since

it produces good estimates of the camera parameters with a small calibration setup (only

some images of a checkerboard taken with the camera to calibrate are required).

Similarly, the polarization camera needs to be calibrated before being used as a measuring

device. In our case, a DoFP camera has a sensing unit composed of super-pixels. We

remember from Sec. 2.2 that a super-pixel is a set of 2×2 pixels, where each of its components

has a linear polarization filter on top of it. Additionally, each filter is oriented differently,

according to the following set of orientations αi = {0◦, 45◦, 90◦, 135◦}, where i is the pixel’s

position. For this sensor, the calibration algorithm will consider the fact that these filters

are not ideal, the orientations are not exactly the ones provided by the manufacturer, and

the lens will affect also the polarization state of the light source. Therefore, a model of the

measurement unit is required, and this model will account for these deviations from an ideal

polarization state analyzer. The objective is that, after correction, two pixels that receive

the same light intensity will provide the same polarization measurements.

In this chapter, we will detail the calibration procedure that we have developed. The

aim of this work is to reduce the calibration setup to its bare minimum without requiring

strict laboratory conditions so that it can be applied by a wider public. Indeed, by using

a uniform light source and a linear polarizer, the calibration procedure can be carried out

without any knowledge about the polarization state of the source light. Only a few samples

of this source light are enough to get good-quality results.

3.1.2 Previously developed calibration algorithms

Diverse calibration methods have been developed and reported in the literature to correct

polarization measurements. However, they are either not suitable for a camera based on

an RGB polarization sensor or they require complex equipment, making it hard to repli-

cate the experiments. For example, the method developed by Schechner [93] considers a
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Method
Requirements

Known Stokes Using
integrating

sphere

Band-pass
filter

Motorized
turning filter

Polarization
filters used

Hagen et al. [38] ✓ ✓ 1
Chen [20] ✓ ✓ ✓ ✓ 1

Ding et al. [27] ✓ 2
Powell and Gruev [84] ✓ ✓ ✓ ✓ 1

Proposed 1

Table 3.1: Comparative table of the requirements for the DoFP calibration methods available in the literature.

conventional camera with a polarizer filter in front of it. In this setup, all the pixels share

the same polarization filter and thus, to solve the calibration problem, only a few polar-

ized points in a generic scene are needed. This is not the case for a DoFP sensor where

each polarization analyzer is composed of four different pixels with polarizers oriented in

four different directions. The method by Wang et al. [111] uses an LCD screen to achieve

both, polarimetric and geometric calibration of a camera mounted with a polarization fil-

ter. Nevertheless, this method cannot be used in our case, because to illuminate all the

pixels with this type of screen, the sensor to the LCD distance must be so short that the

pixel pattern of the screen is captured by the camera. Thus, the light cannot be considered

uniform. Regarding calibration algorithms dedicated to DoFP sensors, Hagen et al. [38]

proposed a method that requires a few samples only, but the angle of polarisation of those

samples must be known accurately. Chen [20] introduced a calibration approach that has

several constraints in the experiment setup: the light source is expected to come from an

integrating sphere, and a band-pass filter is added to enable the estimation of the missing

pixel through a Fourier-based approach. Moreover, a motorized rotative polarization filter

is used, and all the light parameters should be known beforehand. Ding et al. [27] propose

a method to calibrate a micro-grid, monochrome polarization camera by using two polariza-

tion filters and a band-pass filter. With it, they show that the calibration algorithm does

not require to have a constant intensity when calibrating, but the calibration setup is not

minimal, and an additional step is required to align the two linear polarization filters. To

proceed with the alignment, the authors use a power meter. Powell and Gruev [84] calibrate

monochrome DoFP polarimeters, by two approaches: the single- and super-pixel algorithm.

In their paper, they explain that a simple gain calibration is not enough, since it does not
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have effect over the polarization parameters. Indeed, when a gain is added to the pixel

intensities, this gain disappears when computing the AoLP and the DoLP, and there is no

consideration about the change in the filter orientation, nor the non-ideality of the filter.

This is not the case of the super-pixel method, in which a full pixel model is used. The

drawback of their method is that the calibration set up is too elaborated to be replicated :

the light information should be known beforehand, they use a band-pass filters and a heat

filter, a shutter to control the amount of light, a motorized linear polarization filter, and an

integrating sphere to create uniform unpolarized light.

In the rest of this chapter, we will present the details about our approach. Then, we

include the results showing the effects of the calibration over the images captured with the

Sony Polarsens sensor. We will finish with the conclusions about this part of the thesis work.

In Tab. 3.1 we show a summary of the requirements of the proposed method, and the ones

detailed above to compare the reduction in the resources needed to calibrate the camera.

3.2 Developed method

As part of this thesis work, we propose an algorithm to calibrate a color-polarization camera.

The aim of the model is to compensate the effects of the manufacturing imperfections and

the lens on the parameters on which the Stokes depends, i.e., the total intensity, the DoLP,

and the AoLP. An overview of the proposed pipeline is sketched in Fig. 3.1. It is grounded

on the super-pixel calibration method detailed in [35, 84], which is a well-established method

in the literature. Different from other approaches, our calibration algorithm does not require

the knowledge of the polarization state of the input light. Instead, we propose to estimate

them and use the estimated polarization state in the calibration method. This section is

split as follows: Firstly, in Sec. 3.2.1, we depict the super-pixel calibration method, in which

the input light polarization parameters are required. Then, in Sec. 3.2.2 and Sec. 3.2.3, we

present methods to estimate these light parameters.
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3.2.1 Base super-pixel calibration

As mention in Sec. 2.1, a DoFP sensor measures the polarization state of the light by using

super-pixels, i.e., sets of 2 × 2 pixels with linear polarization filters on top of them. These

pixels are not perfect since they have a particular pixel gain, a filter that is not ideal, and their

orientation maybe deviated from their theoretical value. Additionally, the lens will modify

the polarization state of the light, and the transmission axis seen by the light. Indeed, the

transmission axis of a filter is measured with respect to a light that arrives perpendicularly

to it. In a perspective camera, the light rays arrive at different angles, depending on the

pixel’s position with respect to the central point [54]. This transmission axis seen by the

light is called effective transmission axis. In summary, even if the sensor is ideal, the fact of

using a lens will modify the effective parameter values of the pixel model.

To account for these non-idealities of the sensing unit, the pixel model of Eq. (2.5) should

be used. This equation has been copied here for convenience in Eq. (3.1)

Sout
0θ

=
1

2

[
q + r (q − r) cos (2θ) (q − r) sin (2θ)

]
S, (3.1)

We remember that in this equation, q and r are the major and minor light transmittance

of the linear polarizer, respectively, and θ is the orientation of the micro-filter of the pixel.

Additionally, Sout
0θ

is the total intensity of the output Stokes vector, and S is the Stokes

vector of the incident light. Ignoring the dark current of the pixel, and letting T = q−r
2

be

the pixel gain, and P = (q−r)
(q+r)

a coefficient that represents the non-ideality of the filter, we

obtain Eq. (3.2):

Iθ =
[

T
P

T cos (2θ) T sin (2θ)
]
S, (3.2)

As we can see, to fully describe a pixel in a polarization camera, we need to know three

parameters: (T, P, θ). Then, considering that we use a super-pixel of the sensor, we have

four measurements for a single Stokes vector. Therefore, we obtain the following matrix
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equation: 
I1

I2

I3

I4

 =


T1/P1 T1 cos (2θ1) T1 sin (2θ1)

T2/P2 T2 cos (2θ2) T2 sin (2θ2)

T3/P3 T3 cos (2θ3) T3 sin (2θ3)

T4/P4 T4 cos (2θ4) T4 sin (2θ4)

S

⇒ I = AS

(3.3)

where θi with i = {1, 2, 3, 4} are each of the super-pixel micro-filter effective orientation, I

is the measured intensity vector, and S is the Stokes vector of the incident light.

Calibrating a polarimetric camera consists in determining the super-pixel matrix A by

solving the Eq. (3.3) for each super-pixel individually. To be able to solve this equation,

that has 4 · 3 = 12 unknowns in the matrix A, at least three calibration light samples must

be acquired by the camera. Considering the general case where N calibration samples are

acquired with N ≥ 3, the left hand side intensities vector of Eq. (3.3) becomes a 4 × N

matrix, and the Stokes vector becomes a matrix of size 3×N . The matrix equation to solve

is, thus, defined as:

I = AS, (3.4)

where I is the intensity matrix of the N calibration light samples, A is the super-pixel matrix,

and S is the Stokes vectors matrix of the N calibration light samples. Consequently, using

a least-squares approach, the matrix A is equal to:

A = IS+, (3.5)

where S+ is the pseudo-inverse of S. Eq. (3.5) constitutes the super-pixel calibration equa-

tion, and it can be solved for A if the polarization states of the N input calibration light

samples are known. These states corresponds to the N columns of the matrix:

S =


S01 ... S0N

S01ρ1 cos (2α1) ... S0NρN cos (2αN)

S01ρ1 sin (2α1) ... S0NρN sin (2αN)

 , (3.6)
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Figure 3.1: Proposed calibration pipeline. From a Uniform Linearly Polarized light, N samples are captured. The block
(a) will estimate the angle of linear polarization of each sample, and with them and the captured images, the block (b) will
estimate the degree of linear polarization and the intensity of the source. Finally, with these estimations and the intensity
measurements, the super-pixel calibration is done (c).

where S0n is the intensity of the nth calibration light sample, ρn is its Degree of Linear

Polarization (DoLP), and αn is its Angle of Linear Polarization (AoLP), for n = 1, ..., N .

These parameters can be obtained with high accuracy but at the expense of a complex

laboratory set-up and time consuming experiments. In the following sections, we will show

how to estimate them using a Uniform Linearly Polarized (ULP) light that has moderate

values in each of the three RGB channels.

For creating this type of light, two configurations are possible, for which the proposed

calibration algorithm is valid: i) a linearly polarized light emitting device is fixed, and the

camera is rotated to obtain samples at different angles of linear polarization, or ii) a rotative

linear polarization filter is placed between a fixed camera and a fixed unpolarized light

source. These two cases are illustrated in Fig. 3.2. Due to equipment availability, the second

configuration is used for the experiments.

3.2.2 Input light angle of polarization estimation

In this section, we describe how to estimate the AoLP of the calibration light samples

represented by αn with n = 1, ..., N in Eq. (3.6). Considering that the polarization angle

39



3.2. DEVELOPED METHOD

(a) (b)

(c) (d)

Figure 3.2: Possible configurations of the camera and the illumination system for which our calibration algorithm is valid.
(a), (b) and (c) Linearly polarized light source is fixed, and the camera is rotated around its axis. (d) the camera is fixed, and
a linear polarization filter placed between the camera and the unpolarized light source is rotated

measured by a single super-pixel is independent of the light wavelength 1, then all the super-

pixels will observe the same polarization angle if they are illuminated by a ULP light. In

the real-world, this is not the case due to parameters dispersion, and there is not a single

pixel in the sensor that can provide an accurate measurement of this angle. Nonetheless, if

the AoLP error has a mean of zero, then the mean of all the estimations should be close to

the true value.

To compute this mean AoLP, we select a certain number of pixels that are negligibly

affected by several undesired effects such as vignetting due to the lens and the aperture, and

polarization state errors due to light rays of large angle of incidence. These pixels are those

that are found in the central region and that receive light rays pertaining to a small solid

angle or Angular Field Of View (AFOV ). The relationship between the AFOV , the length

h in mm of a square Region Of Interest (ROI) and the focal length f of the lens in mm is

given by:

AFOV = 2arctan

(
h

2f

)
. (3.7)

1Strictly speaking, they are not equal, but for the visible wavelength, the difference between bands is
negligible.
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Figure 3.3: Angular field of view definition. The distance between the sensor and the projection center is the focal length.
The solid angle covered by the camera is called field of view. The small solid angle around the optical axis of the camera is the
angular field of view, and the region in the sensor that corresponds to the projection of this solid angle on it defines the height
h.

This relationship can be deducted from the geometry shown in the Fig. 3.3. Let p be

the size of a super-pixel in mm and AFOVmax the maximum allowed angular field of view.

Then, we can use the Eq. (3.7) to compute an upper limit for the amount of pixels that

enters in the central region denoted by Nsp.

Nsp ≤
⌊
h

p

⌋
=

⌊
2f

p
tan

(
AFOVmax

2

)⌋
(3.8)

In other words, any central region of Nsp × Nsp super-pixels that satisfies Eq. (3.8)

constitutes an acceptable angular field of view for the estimator. If we set the angular limit

to 1◦ or 2◦, then we can say that such small region can be used for estimating the AoLP of

the nth light sample using contiguous 2× 2 pixels. We should note that the pixels used must

correspond to the same color filter, i.e., to estimate an AoLP, we cannot take one intensity

coming from one color channel and another intensity from another color channel. Then, the

obtained intensities can be used jointly with Eq. (3.3), in which:

• I =
[
Ij0 , I

j
45, I

j
90, I

j
135

]T
is the intensity vector of the jth super-pixel,

• S ≃ Ŝn
j =

[
Ŝj
n0, Ŝ

j
n1, Ŝ

j
n2

]T
is the Stokes vector of the incoming light sample measured

by the jth super-pixel,

•
(
T j
i , P

j
i , θ

j
i

)
are the parameters of a pixel that belongs to the jth super-pixel, and to

the ith pixel in the super-pixel arrangement.

For the central pixels, we assume that the lens has no influence in the measurements,
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and the pixels are not far away from the ideal conditions. Then, the ideal values of T j
i = 0.5,

P j
i = 1, and θi = {0◦, 45◦, 90◦, 135◦} for all i = {1, 2, 3, 4} can be adopted as a good

approximation. Consequently, the matrix A is completely known, and with its pseudo-

inverse, the Stokes vector of the nth light sample, Ŝn
j can be obtained by:

Ŝn
j =

[
Ŝj
n0 Ŝj

n1 Ŝj
n2

]T
= A+I. (3.9)

Finally, the AoLP αj measured by the jth super-pixel is then given by:

αj =
1

2
arctan

(
Ŝj
n2

Ŝj
n1

)
. (3.10)

This operation is repeated for all the K = Nsp · Nsp super-pixels in the central region,

and their average will give a good approximation of the real Angle of Linear Polarization.

Nonetheless, it is worth noting that, due to the periodicity of the AoLP, the normal average

of the K angles might conduct to wrong results. Thereby, we have to consider the circular

average expressed by Eq. (3.11), and whose result is an estimation of the AoLP of the nth

light sample denoted by αn with n = 1, ..., N .

sin (2α̂n) =
1
K

∑K
j=1 sin (2αj)

cos (2α̂n) =
1
K

∑K
j=1 cos (2αj)

α̂n = 1
2
arctan (sin (2α̂n) / cos (2α̂n))

(3.11)

The algorithm to estimate the AoLP as explained in this section is detailed in Alg. 1.

Algorithm 1 Estimator for the angle of polarization of an image
1: Input: Image of a ULP light taken by the camera, and default angles of the micro-polarizers θi
2: Compute ideal pixel matrix A and its pseudo-inverse A+.
3: for each group of pixels do:
4: Build intensity vector I
5: Compute matricial product A+I
6: Estimate αj as in Eq. (3.10)
7: Add the value to the circular avg. estimation
8: end for
9: Compute ᾱ by using Eq. (3.11).
10: Output: Average value ᾱ
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3.2.3 Light samples intensity and DoLP estimation

In what follows, we present a method to estimate the other two light parameters required

to construct the Stokes vector, i.e., the light intensities and the DoLP of the N calibration

light samples.

For the same reasons as explained in Sec. 3.2.2, a Nsp × Nsp super-pixels region around

the center of the sensor is considered. Since the light source and the filter placed between

the camera and the light source do not change, all the light samples will share the same

intensity and DoLP values, and a different AoLP between samples. Thus, in Eq. (3.6),

S01 = ... = S0N = S0 and ρ1 = ... = ρN = ρ. Consequently, the Stokes matrix of the N

calibration light samples S can be split into two matrices: a 3×3 matrix L that only depends

on (S0, ρ), and a 3×N matrix G that only depends on the angles of linear polarization αn

estimated in Sec. 3.2.2, such that S = LG:

S =


S0 0 0

0 S0ρ 0

0 0 S0ρ




1 ... 1

cos (2α1) ... cos (2αN)

sin (2α1) ... sin (2αN)

 (3.12)

Combining Eq. (3.4), which is the super-pixel calibration equation, and Eq. (3.12), yields:

IG+ = AL, (3.13)

where I is the 4×N matrix of the measured intensities. For the jth super-pixel, each row i

of the result IG+ can be expressed as:

(
IG+

)j
i
=
[
Xj

i Y j
i Zj

i

]
, (3.14)

where Xj
i =

T j
i S

j
0i

P j
i

, Y j
i = T j

i S
j
0i
ρji cos

(
2θji
)
, and Zj

i = T j
i S

j
0i
ρji sin

(
2θji
)
. If the camera is

considered ideal for the central pixels, as in the previous section, each of the four rows of
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IG+ allows to calculate a pair
(
Sj
0i
, ρji
)

as follows:

Sj
0i
= 2Xj

i ρji =

√
Y j2
i + Zj2

i

Xj
i

. (3.15)

Repeating this procedure for the K super-pixels and the N samples will yield two sets of

R = Nsp ·Nsp · 4 intensities and DoLP:
{
S1
0 , S

2
0 , ..., S

R
0

}
and

{
ρ1, ρ2, ..., ρR

}
. From these two

sets, the light parameters, S0 and ρ, can be estimated by extracting either the maximum

(highly sensitive to noise and outliers), the average (affected by lens vignetting and outliers)

or the median (affected only by lens vignetting) value. Because of its robustness to outliers,

the median value has been chosen and implemented for the experiments.

It is important to note that a color camera is used. To be free from the requirement

of using a white light, the detected intensities and DoLP are classified per color channel,

without mixing them. The color channel to which a super-pixel belongs to is given by its

position j. Indeed, considering that a colored super-pixel has a size of 4×4 elements, a pixel

with location (U, V ) belongs to a super-pixel location (u, v) defined by:

u = U % 4

v = V % 4,

(3.16)

where the operation (A % B) is the remainder of the integer division of the two values A

and B. With these coordinates, and the colored super-pixel pattern shown in Fig. 2.5, the

color channel can be retrieved.

At this point, an estimation of the light intensity Ŝ0, the degree of linear polarization ρ̂

per color channel, and the angle of polarization α̂n at the nth position of the linear filter has

been obtained. Therefore, the Stokes matrix Ŝ can be built, as in Eq. (3.17),

Ŝ =


Ŝ0 0 0

0 Ŝ0ρ̂ 0

0 0 Ŝ0ρ̂




1 ... 1

cos (α̂1) ... cos (α̂N)

sin (α̂1) ... sin (α̂N)

 . (3.17)

Then, its pseudo-inverse Ŝ+ can be computed and used in Eq. (3.5) to calculate the jth
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Algorithm 2 Light parameters estimator
1: Input:
- N light samples Im
- Angles of polarization of the samples αm

2: Compute matrix G from Eq. (3.12) and its pseudo-inverse G+

3: for each group of pixels do:
4: Detect color of super-pixel j
5: I = Matrix of samples for the group of pixels j ( Eq. (3.4))
6: AL = IG+

7: Store the coefficients Xj
i , Y j

i , and Zj
i from Eq. (3.14)

8: Compute Sj
0i

and ρji by Eq. (3.15)

9: Add Sj
0i

and ρji to average (or max. or med.)
10: end for
11: Compute the Stokes matrix Ŝ as in Eq. (3.17)
12: for each pixel do:
13: Compute pixel parameters (Ti, Pi, θi) from Eq. (3.3)
14: end for
15: Output:
- Ŝ0, ρ̂ per color channel and (Ti, Pi, θi) for each pixel

super-pixel matrix that we will denote here by Âj:

Âj = IŜ+. (3.18)

It follows that, from Âj, each row allows to compute the parameters (Ti, Pi, θi) for each of

the four pixels that compose the jth super-pixel.

The detailed algorithm for this estimator is detailed in Alg. 2.

3.3 Experiments

Our experimental setup is composed of a Basler acA2440-75ucPOL camera with a Sony

Polarsens IMX250MYR sensor of pixel size equal to 3.45µm or super-pixel size equal to

6.9µm, and a Fuji-film HF16XA-5M - F1.6/16mm lens. To compute an initial estimation of

the AoLP and DoLP required by our calibration method, we have chosen a central region of

50× 50 super-pixels determined according to Eq. (3.8). This region corresponds to incident

light rays with a maximum angle of incidence of 0.625◦ that is relatively small and will give

a good initial estimation of the polarization parameters of the incident light.

The developed algorithm runs on a computer with Intel Core i7-10850H @ 2.7 GHz and

32 GB of RAM. The OS is Ubuntu 18.04 LTS 64 bits. The program runs in 7 seconds for

7 samples, and 8 seconds for 73 samples approximately. The experimental set-up model is
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Figure 3.4: The experiment set up where only one super-pixel is represented[91].

shown in Fig. 3.4. The uniform, unpolarized light source device is a Schott Fostec DCR III

fiber optic illuminator, with a Schott ColdVision back light A08927. A 50mm linear glass

polarizing filter is used (Edmund Optics Inc #56-329), mounted on a metric polarizer mount

(Edmund Optics Inc #43-787). The linear polarizer filter is rotated by hand. Each position

of the filter corresponds to a light sample, and for each sample ten acquisitions of the light

are done and averaged to reduce the effects of the noise in the parameters estimation. The

acquisitions are done in a dark room to reduce the influence of the environment. Further-

more, the recommendations given in [57] have been followed. Particularly, the lens has been

correctly focused at the light source plane, and the f -number has been set higher than 2.8

for all the experiments. Finally, we have acquired several images with the camera in total

darkness and verified that, with a 12-bit pixel count and an exposure time of 200ms, the

dark current can effectively be neglected as reported in [57].
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Figure 3.5: AoLP estimator evaluation. The maximum error is of 0.65◦, and the RMSE is of 0.3316◦ for all the range
from [0◦, 180◦]. The sine-like evolution is mainly due to the error in the polarizers orientations. See Appendix A for the
demonstration.
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3.3.1 Evaluating the AoLP estimator

The first experiment that we have done is to verify the quality of the estimated AoLP with

the camera. The different AoLP values are set by turning the polarization filter in front of

the light source by steps of 5◦, in the range [0◦, 175◦]. Thirty-six images of the source light are

acquired with the camera, and from them, the AoLP are calculated and compared to the true

reference values given by the position of the polarization filter. For better visualization, only

the deviations from the reference values are represented in Fig. 3.5. A reference horizontal

line is shown in this figure to indicate the positions at which the estimator produces an error

of zero degrees. As we can see, the AoLP error curve exhibits a sine-like shape that is due

to errors in the parameters of the camera. Indeed, it can be proven that a small error in the

parameters of the camera due to imperfections will induce, in first order approximations,

four error terms in the expression of the estimated AoLP. These error terms are functions

of the sine and cosine of the true AoLP and they appear in the expressions of the computed

Stokes components S1 and S2. Because of these additional components, and that the ratio

of these two Stokes components is proportional to the tangent of the AoLP (as explained in

Sec. 2.1), the error curve follows a sine and cosine rule. The detailed demonstration of this

effect can be found in Appendix A. Nonetheless, by considering pixels around the center, and

averaging several samples, the estimation error is reduced, such that the RMSE is 0.3316◦,

and the maximum error is ±0.65◦ in all the range. Hence, the experiment confirms that

the camera can be used to provide reliable measurements of the AoLP of the ULP light.

Additionally, it avoids the requirement of aligning the rotative filter and the camera, since

the measurements are already in the camera’s coordinate frame.

3.3.2 Evaluation of sensor and measurement quality

The next step is to evaluate the accuracy of the calculated intensities, AoLP and DoLP with

the uncalibrated and the calibrated camera with N number of calibration light samples.

Prior to the test, a database has been created with all the required calibration light samples

images. These samples have the same intensity and DoLP, but different AoLP in the range of

[0◦, 180◦]. For the test, N sample images are randomly selected from the database and used
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Figure 3.6: Comparative graphs of how the accuracy changes with the number of light samples. Each sample is taken at
a different position of the rotative filter. Each point in the curve is the average of several runs of the algorithm. The black
curves are the mean values, and the gray vertical bars are the standard deviation. When uncalibrated, the parameters are:
S0 = 1336.327± 61.731, ρ = 0, 9776± 0, 006, and α = 43, 024◦ ± 0.48◦. When calibrated and the amount of samples N ≥ 10,
S0 = 1437.134± 9.25, ρ = 0.98± 0.005 and α = 43.099◦ ± 0.2◦. (a) Intensity S0. (b) AoLP α. (c) DoLP ρ.

to compute the pixel parameters. Once the camera is calibrated, the polarization parameters

of a test image are estimated. The mean and standard deviation of the test light parameters

are calculated over all the sensor area. This test is repeated several times for each value of

N = 3, ..., 36. For each run of the algorithm, a new set of N random calibration images is

chosen to calibrate the camera. Due to similarity of the results for different channels, only

the results for the red channel are shown in Fig. 3.6. The GT values of the test image are:

S0 = 1437, ρ = 0.97, and α = 43◦.

As shown in Fig. 3.6, when five or more calibration light samples are used, the stan-

dard deviation is considerably reduced with respect to the case when only three samples

are used, and when N ≥ 10, the values are stabilized. More precisely, for N ≥ 10,

S0 = 1437.134 ± 9.25, ρ = 0.98 ± 0.005 and α = 43.099◦ ± 0.2◦. The same

test image has been used with the uncalibrated camera , and the obtained parameters were:

S0 = 1336.327 ± 61.731, ρ = 0.9776 ± 0.006, and α = 43.024◦ ± 0.48◦. This experiment

corroborates that the camera calibrated with our algorithm reduces the disparity between

values over the sensor area with respect to the uncalibrated camera.

It is possible to inspect the sensor quality by plotting the histograms of the pixel model

parameters. The results for the polarization channel of 45◦ and the red color channel are

shown in Fig. 3.7. Similar plots are obtained for the other channels.

As we can see, the P and θ parameters have a very low standard deviation, and their

mean value is very close to the default value. Nonetheless, the T parameter has a wider

distribution than the other two. This is normal since it is this parameter that accounts for
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(a) (b) (c)

Figure 3.7: Histograms of the pixel parameters obtained after calibration for the polarization channel of 45◦, and the red
color channel. (a) Pixel parameter T . (b) Pixel parameter P . (c) Pixel parameter θ.

the vignetting effect compensation, i.e., it is in charge of compensating the variations in the

intensity due to the lens. The other two parameters are responsible for the flat-field correction

in the polarization parameters only. Since the sensor used is already of good quality and

the used lens does not introduce too much distortion in the polarization parameters, it is

expected to have a low correction in the P and θ parameters.

To confirm the validity of our method with respect to other algorithms, the calibration

outcomes have been compared with the super-pixel (SP) method described in [35, 84], and

the results are included in Tab. 3.2. The AoLP used for the SP method has been measured

from the rotative filter, while for our method they have been estimated with the proposed

algorithm in Sec. 3.2.2. The difference between the mean values of the intensity and the DoLP

is expected, since each method uses a different reference during calibration. However, the

most important results are the standard deviations that reflect how similar the measurements

of the ULP light are after the correction over the entire sensor area. One can notice that

the results obtained by both approaches have similar accuracy. However, our method has

the advantage of being experimentally simple: it does not require any specific devices to

measure the light polarization state. Additionally, the time required to take the samples is

reduced for the user since it only needs to randomly turn the polarizer a few times. Also, the

measurements of the orientation from the rotative filter are not required since the algorithm

will estimate them.

3.3.3 Polarization state before and after calibration

Finally, the effect of calibration on an image of a ULP light is presented in Fig. 3.8. Again,

since the results over all the color channels are very similar, only the images for the red chan-
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S0 AoLP DoLP

Uncalibrated 3399.2 [65.475] 59.983 [0.215] 0.9863 [0.0041]
SP method 3402.4 [10.723] 60.035 [0.128] 1.005 [0.004]
Our method 3298.0 [10.402] 59.701 [0.128] 0.985 [0.004]

Table 3.2: Comparison of our method with the super-pixel (SP) method [35]. Content of each cell: mean value [standard
deviation]

nel are shown. In this figure, the images (a) and (b) correspond to the total intensity of the

light, (c) and (d) are for the AoLP of the light, and (e) and (f) are the corresponding images

of the DoLP. The top row of Fig. 3.8 shows the uncalibrated images, and the bottom row,

the calibrated ones. These images are the measurements of the camera when it is illuminated

by a ULP light. For the uncalibrated case, the values of the total intensity, AoLP and the

DoLP are in the intervals [1017, 1463], [0.9465, 1.0], and [41.099◦, 44.879◦], respectively. For

the calibrated camera the corresponding values are in the intervals [1370, 1521], [0.9741, 1.0],

and [41.934◦, 43.824◦]. What is important to note in these images is not the color but the

variations in the colors. Since these images represent the values of the measured polarization

parameters by the individual pixels of the camera, they should respectively be the same, i.e.

per image, all the pixels should have the same color, due to the fact that the observed light

is uniform and linearly polarized. However, this is not the case. The variations in the color

represent the measurement errors by the individual pixels. One can note that the color

is more uniform (and therefore, there are less errors) for the calibrated setup than for the

uncalibrated one.

Additionally, these images show that, for the uncalibrated images, both polarization

parameters present changes in the borders with respect to the center of the image. This is a

consequence of the angle of incidence. Indeed, the filter characteristics are given for a light

ray that arrives perpendicularly to the filter surface. The further we are from the center of

the image, the larger the angle of incidence, thus the larger the difference between the default

and the effective filter values. As one can see in Fig. 3.8, the uncalibrated measurements

have strong variations in the four corners of the images, and in the center they are mostly

constant. The proposed algorithm accounts for this alteration of the polarization state in

the pixel model, by modulating the polarizers parameters Pi and θi, to fit the measurements

with a flat-field response. Ti has no effect over these parameters since it is a factor of all
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Figure 3.8: Calibration improvement image for the red channel. Top row: uncalibrated. Bottom row: calibrated. (a) and
(b) Intensity images. (c) and (d) AoLP images. (e) and (f) DoLP images. AoLP uses the HSV color palette, and the DoLP
uses the Jet palette. Since the light source is ULP, the ideal response would be images with a single value for all the pixels for
the AoLP and another value for the DoLP. Due to characteristics dispersion in the pixels and the presence of the perspective
lens, the uncalibrated images present different values between the center of the sensor and its borders in the two polarization
parameters. After calibration, the distribution of measured values is reduced. Even though there seems to be a difference in
the colors of the calibrated images, looking at the color bars range, it is clear that the range of values present in the image is
small compared to the uncalibrated cases. The mean and the standard deviation of values in the images are detailed in the
images titles.

the three Stokes parameters, thus it is cancelled when computing the DoLP and the AoLP.

However, Ti corrects the vignetting effect over the intensity image.

3.3.4 Ablation study

To test the influence of each module, several scenarios have been evaluated and summarized

in Tab. 3.3. The first row of this table, SC1, corresponds to the results when using the

uncalibrated camera. Then, in SC2, the AoLP estimator has been used and the DoLP and

intensity of the input light have been fixed to 0.8 and 2000, respectively. As shown in the

table, this modification changes the corresponding mean value measured in the entire image,

but their standard deviation (SD) is not modified. The advantage of having a module that

estimates these parameters is that an early saturation of the measured value is avoided.

Then, in SC3, the AoLP estimator is disabled, and these values have been measured from

the filter ruler. In this case, the AoLP after calibration presents a slightly smaller SD than

when using the estimator, due to the small error in the measurements of this parameter.
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S0 [0, 4095] AoLP (◦) DoLP [0, 1]

SC1 2750.66 [153.46] 60.08 [0.416] 0.986 [0.0033]
SC2 1985.63 [4.88] 59.87 [0.126] 0.797 [0.00362]
SC3 2967.34 [7.24] 59.61 [0.125] 0.987 [0.0045]
SC4 2967.38 [7.24] 69.61 [0.125] 0.978 [0.0044]
SC5 2969.6 [7.26] 59.87 [0.126] 0.973 [0.0044]

Table 3.3: Results of the ablation experiments.

Nonetheless, this has as trade off a large experiment time, and the requirement of a rotative

mount with a ruler. In SC4, a similar experiment to SC3 is done, but a fixed shift is

introduced in the AoLP measurements. This effect corresponds to a rotational difference

between the coordinate systems of the camera and the filter. From Tab. 3.3 it can be seen

that this affects the mean value of the measured AoLP, but the SD remains low. This is

normal, since the AoLP is relative to the measurement system. Finally, our entire pipeline

is tested in SC5, in which a small SD is obtained in all the variables, and additionally, the

mean values are close to the GT values. Therefore, using a simple calibration set-up as ours

can provide not only accuracy, but also precision in the measurements given by the camera.

3.4 Discussions

The results obtained so far show that the uncalibrated Sony Polarsens sensor is of high

quality. This manifests as a very low standard deviation in the model parameters plot. The

differences in the mean value of the filter orientations may be due to a misalignment between

the filter used to create linearly polarized light and the sensor reference axis. As mentioned

in [44], the low standard deviation in the pixel parameters is expected since the manufacturer

ensures a spatial uniformity of approximately 0.5%, and an extinction ratio higher than 300.

This was not the case of the first DoFP sensors [84], in which the micro-grid of filters was

placed on top of the micro-lenses (which contributes to increase the cross-talk effect), the

spatial uniformity was 8%, and the extinction ratio was about 50.

Additionally, the lens used for these experiments does not produce large deformations in

the image since the largest Field of View (FoV) is less than 60◦. Unfortunately, we could not

compare the results obtained with other cameras due to their unavailability in the laboratory.

Nonetheless, the proposed method is still valid since if used, we can ensure the measurements
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are correct, no matter if the camera is of the newer or older technology, or if the lens has a

small or large FoV. Hence, based on the camera configuration and the results provided by

the calibration algorithm, one can consider that the system without calibration is accurate

enough and thus decide, depending on the application, not to apply any correction.

3.5 Conclusions

In this chapter, we have introduced a polarization camera calibration algorithm developed to

achieve a flat field response over the entire sensor area. The results included in the experiment

section show that following the proposed procedure improves the quality of the measurements

in both, accuracy and precision. Contrary to other methods, we have managed to reduce the

experiment setup to its bare minimum, and we have simplified the camera calibration step for

the user who does not need to know the polarization state of the calibration light beforehand.

The calibrated measurements are not too different from the uncalibrated ones for the setup

used since the Sony Polarsens sensor is already of high quality, and the tested lenses do not

produce large deformations in the intensity image. Nonetheless, the method is still valid,

and it can be used with several combinations of DoFP sensor, and lenses. Furthermore, as

mentioned in the Discussions, if previously released DoFP technology is used, the calibration

procedure is mandatory to be able to have more reliable polarization measurements. In that

case, our calibration method will allow the user to achieve this with a very simple setup.
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Chapter 4

Shape from polarization application

The direct application of the polarization information is the normal estimation at a surface

point. When this application is done for the whole surface of an object it is called Shape

from Polarization (SfP). Nonetheless, several conditions regarding the reflection type and

object material need to be met to correctly reconstruct the normal vector. In this chapter

we provide a complete description of the physical problem, an explanation of the proce-

dure for computing the ground-truth normal vector, and a qualitative and a quantitative

evaluation of the obtained results. We test the algorithm for the different reflection models

individually, and we conclude that using the diffuse- or specular-dominant hypothesis intro-

duce a non-negligible error in the final results. Additionally, we test the SfP algorithm with

our calibration procedure and we confirm that even small measurement corrections result in

large quantitative improvements in the Mean Angular Error of the reconstruction.

4.1 Properties of the naturally generated polarization

An important property of the polarization state is that it conveys information about the

shape and the composition of objects. According to the electromagnetic wave theory, a wave

that hits a surface will create two new waves: a reflected, and a refracted wave. In general,

the light captured by a camera that is observing an object is the result of reflection. A close

zoom to the surface of a generic object is shown in Fig. 4.1. This sketch shows the incident,

the reflected and the refracted light at the surface level, and the interaction of the light with
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Figure 4.1: Sketch of the interaction between the light and an object. The top medium is the air, and it has an index
of refraction n1. The bottom medium has an index of refraction n2. The light arrives at the surface with an angle αi. The
portion of the light that enters the object is the refracted light, and it travels in the direction αr (a) Specular reflection: the
incident light hits the surface at the point, creating a single ray of reflected light. The light leaves the surface with an angle
αo, which is the same as the incident ray angle. (b) Diffuse reflection: the incident light enters into the surface, but it hits the
sub-surface particles several times before exiting the material. When the internally reflected light hits the material interface, it
exits by spreading the light in all the directions with the same intensity, and a low degree of polarization. The intensity of the
exiting light depends on the angle of incidence.

the different mediums (air and the object).

A particular natural case appears when the sum of the angles of the specular reflected

and the refracted light with respect to the normal vector n is equal to 90◦. In this case, the

reflected light will be 100% linearly polarized, and the polarization direction will be parallel

to the surface at which it is reflected [40]. This type of reflection occurs only at a single

angle, called the Brewster angle, and it can be found using Eq. (4.1), also known as the

Snell’s law:
n2

n1

=
sin (αo)

sin (αr)
(4.1)

where n1 is the index of refraction of the top medium in Fig. 4.1, and n2 is the corresponding

index for the bottom medium. Furthermore, αo is the angle of the reflected light w.r.t.

the normal vector n, and αr is the angle formed by the refracted light with respect to the

opposite to the normal vector. Since for this case, to have 100% linearly polarized light

αo + αr = 90◦, then sin (αr) = cos (αo). Under this condition, the angle αo corresponds to

the Brewster angle αBrew. Therefore,

tan (αBrew) =
n2

n1

,

and then αBrew = arctan

(
n2

n1

)
.

(4.2)
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For each frequency, and combination of materials, the ratio n = n2/n1 is fixed, thus there is

a single incidence angle at which it is possible to obtain totally linearly polarized light. Any

other angle αo will produce partially linearly polarized light.

Another important detail regarding the reflected light is that the polarization state is

related to the surface orientation, therefore to the normal vector to the surface at the interface

point. The exact relationship between the normal to the surface and the polarization state

depends on the type of reflection and the type of material. In what follows, we will describe

the general method to estimate the normal vectors from the polarization parameters, and the

ground-truth normal. There is no modification to this general method when we apply the

calibration algorithm since this additional step is done before starting the algorithm. Once

the image is corrected, it can be treated as an image coming directly from the camera. In

the following section, the entire pipeline to estimate the normal vector from the polarization

state will be described, as well as the effects of using a calibrated setup with respect to an

uncalibrated one.

4.2 Normal vectors from polarization theory

In what follows, we will detail the results obtained with a Shape from Polarization (SfP)

method, implemented from scratch, by using only the physical constraints. Our contribution

consists of a complete formulation of the normal estimation theory based on the polarization

theory, which has not been done previously in the literature. We include the original Fresnel

theory equations that relate the DoLP to the normal zenith angle and their inverted equa-

tions, and the relationship between the AoLP and the normal azimuth angle. Additionally,

we give an in-depth explanation of how the light interacts with the different type of mate-

rials, and we quantify the errors produced by the diffuse-dominant and specular-dominant

assumptions. It is important to clarify that we did not develop a new method. Our objective

is to show the effect produced by the sensor calibration over a concrete application. To avoid

misunderstanding in the obtained results, we have considered a single type of object: a plane

surface made of a single material. In this way, the ground-truth information can be geo-

metrically estimated, and then used to quantify the normal vector error. We will describe
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a pipeline that we have implemented to estimate the normal field of an object, by using

the polarization theory. To be able to produce simple but valuable comparisons between a

calibrated and an uncalibrated setup, we will use a simple arrangement of a light source, a

polarization camera, and a plane surface. This surface is made of a single dielectric mate-

rial, thus all the observed pixels has a single index of refraction. Additionally, since a plane

surface is used, the normal vectors should be the same for every super-pixel. Therefore, the

ground-truth consists of a single vector the describes the plane.

4.2.1 Mathematical formulation of the SfP problem

The mathematical description of the relationships between the normal vectors and the polar-

ization parameters can be obtained from Fresnel formulae [74]. Particularly for the zenith,

an additional parameter requires to be known to estimate this angle. This parameter is the

index of refraction which has a unique value for each material and frequency. It is a real

number if the material is dielectric and a complex number if the material is metallic [74].

Another point to consider when estimating the object’s normal field is the reflection type,

which can be of two types: diffuse or specular. In the former case, part of the light penetrates

the object, and it is reflected several times in the sub-surface layer particles, before exiting

the object. At each internal reflection, the light is depolarized, and when it passes through

the surface layer to the air, it is spread in all the directions with the same intensity, and

with a small DoP, as shown in Fig. 4.1 (b). In the specular reflection case, a portion of the

light does not penetrate the object, and it is reflected at the surface layer directly, as shown

in Fig. 4.1 (a). In this case, a single ray of light is reflected for a single ray of light that hits

the surface. The sketch of how the light interacts with the materials is included in Fig. 4.1.

With these two supplementary information (index of refraction and reflection type), a

unit length normal vector to the surface can be estimated. This vector is defined by the

zenith and the azimuth angles, which can be obtained from the polarization state as follows

[97]:

Diffuse reflection: The azimuth angle α is related to the AoP ϕ. There are two possibil-

ities: either α = ϕ, or α = ϕ+ π. This fact is known as the π-ambiguity of the AoP, since it
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is not possible to distinguish the azimuth angle from the orientation of the oscillating wave.

Regarding the zenith angle θ, it is related to the DoP by the following formula [97]:

ρd =

sin2 (θ)

(
η − 1

η

)2

4 cos (θ)
√

η2 − sin2 (θ)− sin2 (θ)

(
η +

1

η

)2

+ 2η2 + 2

(4.3)

where η is the index of refraction of the material, and θ is the zenith angle of the normal

vector to the surface. This equation has a closed-form solution for the zenith given by [97]:

cos (θ) = f (ρ, η) =

√
2ρ+ 2η2ρ+ ρ2 + 4η2ρ2 − η4ρ2 − 4η3ρ

√
(1− ρ2) + (η2 − 1)

2

(1 + η4) (1 + ρ)2 + 2η2 (3ρ2 + 2ρ− 1)
(4.4)

Specular reflection: As for the diffuse reflection, the azimuth angle α is related to the

AoP ϕ with a π-ambiguity. In this case, α = ϕ± π
2
. Furthermore, the zenith angle θ of the

normal vector is related to the DoP by the following equation [74]:

ρs =
2 sin2 (θ) cos (θ)

√
η2 − sin2 (θ)

η2 − (1 + η2) sin2 (θ) + 2 sin4 (θ)
(4.5)

This function is not invertible, since for each DoP value, there are two possible zenith

angles, except for the Brewster angle at which the function has a maximum. Nonetheless, if

we split the function around the maximum value, we can obtain the two solutions as:

sin (θ) =

√√√√√√
η√

2β
√
1− ρ2

1− β
√
1− ρ2

+

(
1 + η2

2η

)2

+
1 + η2

2η

(4.6)

where again, η is the index of refraction of the material, and θ is the zenith angle of the

normal vector to the surface. Additionally, the factor β is either 1 or −1, depending which

solution we want to get (the left or right side to the maximum DoP value).

To visualize the dependency of the DoP with the zenith angle of the normal, the plot of

the Eqs. (4.3) and (4.5) are show in Fig. 4.2, for different indexes of refraction in the range

η = 1.3 and η = 1.6.
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In sum, the normal to a surface point can be determined from the polarization state

of the light. Indeed, if the index of refraction is known, the azimuth and zenith angles

can be estimated as explained above. Nonetheless, there is not a unique solution because

if the reflection produced by the object is purely diffuse, two possibilities for the normal

are given due to the π-ambiguity in the azimuth angle. If the reflection is purely specular,

there are four possible normal vectors, since we have 2 possibilities for the azimuth, and two

possibilities for the zenith. In the real world, the reflections are in general a combination of

diffuse and specular light, thus an approach must be chosen to select which reflection model

best fits the problematic to solve. In any case, the information given by the polarization

state of the light geometrically constraints the problem we are trying to solve, and these

constraints can be used to improve the results obtained with color-only based approaches.

4.2.2 Hypothesis and normal definition

From the explanation of the previous section, we deduce that an algorithm that uses the

physics theory contains several constraints: the type of reflection needs to be known to

discard ambiguities, the index of refraction of the material needs to be known, and a way

to disambiguate the vectors and find the correct one has to be implemented. Despite these

difficulties, it is possible to solve the problem. For the index of refraction, as mentioned in

[6, 8, 97], the dependency of the normal vector with respect to this value is weak, and it will

only affect the zenith estimation. Since for s the index of refraction is in the interval [1.3, 1.6],

we fixed this index to the value 1.5. In Fig. 4.2, we have plotted the equations of the zenith

angle for diffuse and specular reflections, for three values of the index of refraction: 1.3, 1.6,

and 1.5. As we can notice, the difference among the three cases is very small, except for the

diffuse reflection when the zenith angle is higher than 60◦. Therefore fixing this value will

not introduce a large error if the plane inclination is lower than 60◦.

The next point to consider is the Camera Coordinate Frame (CCF), and how the mea-

sured angles are related to it. This will allow us to construct the normal vectors to the

surface based on the polarization information.

The first aspect to note is that, for a given surface, at each point there are two possible

unit normals to the surface: the one pointing towards the camera, and the one pointing
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Figure 4.2: Plots of the DoLP as a function of the zenith angle for different values of the index of refraction η. (a) Diffuse
reflection. (b) Specular reflection.

outwards the camera. If the two normals are −→n1 and −→n2, this aspect implies that −→n1 = −−→n2.

At the end, the vector that points towards the camera is the one that has a negative Z axis

value.

Secondly, we have to consider the increasing direction of the azimuth angle. In the po-

larization measurement system used in the DoFP sensor, the Angle of Linear Polarization

increases in the counter-clockwise direction. On the other hand, the positive direction in

the CCF is clockwise direction, since the Y axis is always pointing downwards. Therefore,

∠−→n azim = −ϕdisam, where ϕdisam is the angle given by the AoLP constraint, already disam-

biguated.

Another geometrical constraint is that the zenith angle of the seen normal is in the range[
0, π

2

]
. Indeed, since we can only reconstruct the vectors that are in the field of view of the

camera, only the angles in that range have to be considered.

Finally, based on the electromagnetic theory, the zenith angle of the normal vector is

measured from the Z axis. Thereby, if the normal to the surface is parallel to the Z axis, the

zenith angle is equal to zero, and if the normal to the plane is perpendicular to the Z axis,

the zenith angle is equal to 90◦. This fact is illustrated in Fig. 4.3.

The equation of a normal vector whose azimuth angle α measured in the clockwise di-

rection, and with a zenith angle β measured as the elevation of the vector with respect to
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Figure 4.3: Sketch of the evolution of the zenith angle θ of the normal vector to the plane with respect to the Z axis of the
CCF. The index of refraction of the object is η. (a) The zenith of the normal to the plane is θ1. (b) The zenith of the normal
to the plane is θ2 < θ1.

the XY plane is:

−→n =


x = cos (α) cos (β)

y = sin (α) cos (β)

z = sin (β)

(4.7)

If we consider the constraints given above, the normal vector as a function of the angles

estimated from the polarization state is:

−→n =


x = − cos (−ϕ) sin (θ)

y = − sin (−ϕ) sin (θ)

z = − cos (θ)

(4.8)

By applying the trigonometric properties, we obtain the final equation of the normal

from polarization:

−→n =


x = − cos (ϕ) sin (θ)

y = sin (ϕ) sin (θ)

z = − cos (θ)

(4.9)

Eq. (4.9) fulfils all the constraints to bound the CCF and the polarization theory:

• Given that the zenith from polarization goes from
[
0, π

2

]
, the Z axis is in the interval
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[−1, 0]. Therefore, the normal points towards the camera.

• When the normal vector is parallel to the Z axis (i.e., the zenith angle is equal to zero),

the X and Y coordinates are zero.

• When the zenith θ is not zero, and the AoLP rotates in the counter clockwise direction,

the projection of the normal onto the XY plane also moves in the counter-clockwise

direction. Since we take the vector that points towards the camera, this vector starts

from the negative X axis when the azimuth is zero, and its projection on the XY plane

moves towards the Y axis as the azimuth increases.

4.2.3 Normal vector disambiguation

With the details included so far, from a given polarization measurement, there exist several

possibilities for the normal vector at the measured point. Therefore, a method to disam-

biguate the azimuth and the zenith angles must be found. If the reflection type is unknown,

then we have 6 possibilities per point to consider. In general, the works that propose SfP

algorithms try to increase the constraints of the system, or to make assumptions or approx-

imations to be able to automatically obtain the normal vector that solves the problem. In

our case, we are not developing or evaluating a system capable of doing that. Instead, we

are interested in showing how the polarimetric calibration improves the measurements and

what is its impact on the normal estimation. Therefore, the disambiguation will be done

considering we know the ground-truth normal to the plane.

Let us consider the ground-truth normal to be −→ngt. This vector can point towards the

camera or away from it. As in other polarimetry works [18, 25, 97], we assume the object

is either diffuse-dominant or specular-dominant. In other words, even though the light is

a mixture of diffuse and specular intensities, we assume that there is one that contributes

more than the other to the normal vector.

Additionally, we assume there is a set of ambiguous normals A to the same point given by

the polarization theory: A =
[−→n1,

−→n2,
−→n3,

−→n4,
−→n5,

−→n6

]
. Then, the function f

(−→ngt,
−→n
)

defined
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in Eq. (4.10) can be computed:

f
(−→ngt,

−→n
)
= 1− ∥−→ngt · −→n ∥ (4.10)

where −→n is one of the ambiguous normals in A, ∥(.)∥ is the absolute value operator, and

(.)·(.) denotes the dot product operator. Then, f
(−→ngt,

−→n
)

is zero if the estimated vector −→n is

parallel or anti-parallel to −→ngt, and it is equal to the value 1 if they are orthogonal. Therefore,

this function can be used to find which is the best ambiguity vector to fit the ground-truth

normal. In general, the estimation will not be equal to the ground-truth vector (i.e., we are

not going to get a perfect zero for f
(−→ngt,

−→n
)
) for several reasons: sensor noise, discretization

noise, approximate index of refraction, non-ideality of the filters, and the fact that we are

not considering a mixture of light reflection models (specular and diffuse). Nevertheless,

we can ensure that the chosen normal pixel-wise will be the one that produces the lowest

reconstruction error. Additionally, we do not need to take into account the reflection type

since we disambiguate all the normals at once.

We again stress the fact that we are not aiming to develop a new SfP method, but just

to establish a pipeline that will allow us to quantify the impact of the calibration correction

in the input measurements on the estimation of the normals. In what follows, we will detail

our method to estimate the ground-truth normal vector to the plane surface.

4.3 Ground-truth normal estimation and Region of in-

terest selection

In this section we will detail a method to estimate the normal vector to the plane. The first

consideration is regarding the index of refraction value. Since we aim to show the results of

the most basic SfP method by using pure physics, we have to chose a uniform object, with a

uniform material without texture change. This way, the index of refraction will be the same

for all the points.

Then, to be able to quantify the error of the estimated normals, we need to know where

are the points of interest. This is a requirement that allows us to be independent of the
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environment in which the board to reconstruct is placed. In other words, instead of using

a specific background material to easily hide objects around the objective plane, we use a

mask image to erase everything that does not belong to the plane surface of interest. In

what follows, we will explain the tools used to estimate the normal vector, and then we will

detail how to combine them to obtain the final result.

4.3.1 Geometric Camera Calibration

All the operations required to estimate the ground-truth normal are grounded on the geo-

metric camera calibration. This procedure is the base of many computer vision algorithms,

in which any camera equipped with any lens is approximated by a given camera model (gen-

erally, either pin-hole either fish-eye). As any calibration procedure, the objective of doing

the geometric calibration is to be independent of our acquisition setup. In our particular

case, we will focus on the pin-hole model, since the lens we have used for this application is

not a fish-eye lens.

The geometric calibration is a required procedure to restore the original aspects of the

objects captured such that they respect the perspective geometry principles. By doing so,

the camera can be used as a measurement device in applications in which the pose and size

of objects are required.

The geometric camera calibration consists in estimating two elements: a projection ma-

trix and a set of distortion coefficients. The projection matrix P consists of a mixture of two

matrices: a pose matrix [R|t] and the camera intrinsics parameters matrix K:

P = K [R|t] (4.11)

The pose matrix depends on where the origin of the coordinate system is placed. In the

particular case in which the coordinate system is centered in the camera, the pose matrix

has only ones in its principal diagonal and zeros elsewhere. The intrinsics matrix has a shape

of 3× 3 elements, and it is upper-triangular. It contains the information regarding the focal

length, and the principal point of the camera system. With the projection matrix, a 3D

point in homogeneous coordinates X = [X, Y, Z, 1]T is projected onto the image plane at the
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(a) (b) (c) (d)

Figure 4.4: Examples of distortions produced by the lens. (a) Original image. (b) Radial distortion with negative
displacement light rays (also known as pincushion distortion). (c) Radial distortion with positive displacement light rays (also
known as Barrel distortion). (d) Tangential distortion due to the misalignment between the lens and the image plane.

homogeneous coordinates x′ = [u, v, 1]T following:

x′ = PX (4.12)

u and v are, respectively, the columns and rows coordinates of the projection of the 3D point

onto the image plane. Additionally, the fact of using a lens introduces a modification of the

ideal pin-hole projection model and the real light projection over the sensor. This difference

is mainly due to the light rays blend at the lens border (radial distortion) and due to the

non-alignment between the lens and the image plane (tangential distortion). An example of

these types of distortions are shown in Fig. 4.4.

Therefore, a function D is applied to the ideal pin-hole pixel location, giving the modified

pixel location x = D (x′, s). In this equation, s is a vector with the estimated coefficients

that consider the radial and tangential distortion introduced by the usage of a lens.

Several algorithms are available to geometrically calibrate a camera with a lens. In all

the cases, a set of 3D points and their 2D projection on the camera plane are required. If

the pin-hole model and the two distortion types are considered, a set of at least 10 pairs

of 3D-2D points are needed. Thus, a certain calibration rig is required in which the 3D

data is known, and once the pairing is done with the measured 2D points, the calibration

problem can be solved. For instance, the Direct Linear Transform (DLT) method [86] for

the intrinsics parameters, and an optimization routine for the distortion can be used. Since

the DLT method is not constraint to a particular calibration rig, any system able to provide
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Figure 4.5: Examples of raw images captured with the color-polarization camera. These images of the checkerboard pattern
are then used to compute the calibration parameters.

pairs of points can be used. For instance, a specific system with bright LED lights can

be built with the most strict precision, and by placing the camera at a given position, the

projection of the 3D points can be measured and paired. In practice, and due to equipment

availability, Zhang’s method is preferred [122]. In this method, the calibration rig consists of

a rectangular, planar checker board pattern, as the one shown in Fig. 4.4 (a). One of the key

points of this calibration algorithm is that the coordinate system is supposed to be placed

over the pattern, and the Z axis points outwards to it. In this way, all the Z coordinates of the

3D points are equal to zero, reducing the amount of parameters to consider. Furthermore,

the squares of the pattern have a fixed known size, measured in millimeters. Therefore, the

3D points are known all the time. Then, thanks to the particular structure of the pattern, it

is possible to accurately detect the intersection points of the white and black squares in the

image, and since it is rectangular, the correspondence between the 3D and 2D points can be

established. To obtain a good calibration quality, several images of the calibration pattern,

at different distances and orientation must be taken. From practice, it is recommended to

use more than 20 images to obtain a good estimation of the intrinsics parameters. Examples

of the raw images obtained with the color-polarization camera are shown in Fig. 4.5.

4.3.2 ArUco markers

To estimate the ground-truth normal, points that belong to the plane surface are required.

More specifically, we need a method to extract at least three points from a textureless object,
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Figure 4.6: Example of ArUco markers used. The markers encodes a binary word, in which the black color represents 0
and the white color represents 1.

made of a uniform material. Since it is not possible to extract features of such an object,

the simplest and most robust method is to add easy-to-identify objects over the plane. From

the available options, we have chosen the ArUco markers [34].

An ArUco marker or ArUco tag is a fiducial marker similar to a QR code, but it is not

intended to encode large strings of characters. Instead, they store only a word that represents

a unique identifier for that tag. They are aimed to enable robust, real-time detection and pose

estimation in robotics and Augmented Reality (AR) applications through vision algorithms.

To enable detection, decoding, and pose estimation, the calibration parameters need to be

known to undistort the raw images from the imaging sensor.

The first step to use the markers is the generation step. The original paper [34] provides

an algorithm to generate a set of markers called the dictionary of markers. The used markers

are generally made of black and white squares, as shown in Fig. 4.6. Based on the size of

the markers and the amount of possibilities that are required to be generated for the given

application, the dictionary of options will change. In any case, a new generated marker must

comply with certain conditions:

• The minimum Hamming distance [3] between the new marker and all the other markers

in the dictionary must be greater than a value τ . This consideration should be also

valid for the four possible rotations of the new marker (0◦, 90◦, 180◦, 270◦).
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• The minimum Hamming distance between a new marker and its possible rotations

should also be greater than τ . This will increase the robustness of the markers in pose

estimation applications.

An iterative process is run in which the threshold τ is reduced to allow the generation of

more tags. The minimum τ value is defined by the user, and its initial value is estimated as

described in [34]. It is important to note that only a single position of a marker is stored in

the dictionary.

The detection part consists of a series of image processing functions applied to the undis-

torted image from the camera to find the good marker candidates. These operations include

local adaptive thresholding, edge detection, and 4-vertex polygon approximation. Once the

markers have been enclosed by a minimum polygon of 4 vertices, and some operations to

reject badly formed detected tags have been run, the marker is projected into a perfect

square shape by warping the detected marker. The resulting image is then binarized and

divided into a grid to transform the image into a code. Finally, to identify to which marker

the detected element belongs to, four possible codes are extracted (one per possible rotation

of the square). Then, a search is performed over all the elements in the dictionary until the

one with the closest distance is found.

With this information (the image region where a code is, and its non-rotated version

from the dictionary), it is possible to extract the four corners of the marker square, and with

them, estimate the projection from the camera plane into the 3D world. This projection

is given by a projection matrix that encodes the pose of the tag with respect to the CCF.

In other words, we obtain the 3D coordinates of the pose of the tag. Finally, if that tag is

pasted over the plane surface, we obtain the 3D coordinates of a point that belongs to the

plane. An example of the results of detection and pose estimation of the tags is shown in

Fig. 4.7 (b).

4.3.3 Ground-truth normal estimation

Once the camera intrinsics parameters are found, the perspective projection matrix that

converts 3D into the 2D points in the image plane is obtained. With it, the camera can be
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used as a measurement device. Particularly, we can estimate the 3D coordinates of points at

which an ArUco tag is placed in the CCF. If we place these markers over a plane surface, we

consequently obtain the poses of points that belong to the plane. The more tags we place, the

more points we obtain. If we know the pose of N points in the plane, with N > 3, it follows

that the normal vector to the surface can be computed. Indeed, let us consider three points

in the plane PA, PB, and PC . Then, two vectors parallel to the plane are
−→
AB = PB −PA and

−→
AC = PC − PA. A unit normal vector to the plane can be obtained by the cross-product of

these vectors, as follows:
−→
n′ =

−→
AB ×

−→
AC

∥
−→
AB ×

−→
AC∥

(4.13)

As mentioned in Sec. 4.2, the same surface point can be addressed towards the camera or

outwards to it. However, we are interested in the vector that points towards the camera. To

find this vector, we need to consider the viewing direction, which can be defined as the vector

that goes from the origin of the CCF towards the plane. This vector can be found with any

3D point of the plane, for instance, PA. Therefore, the viewing direction is −→v = PA − P0,

where P0 is a 3D point filled with zeros (i.e. the coordinates of the origin in the CCF).

Finally, to disambiguate the obtained normal vector, and obtain the ground-truth normal

vector −→n to the plane surface, we have that:

−→n =



−→
n′ if

−→
n′ · −→v < 0

−
−→
n′ a.o.c.

(4.14)

Since the proposed system to estimate the normal vector to the surface is not perfect,

some technique should be added to make the estimation more robust. This step is required

since the calibration result is not perfect, the pixel positions are discrete, and not continuous

in the sensor, the environment and the electronics introduce noise to the intensities, and

the ArUco detector is not perfect neither to estimate the exact position of the center of

the marker. To reduce the estimation error, we have to consider more than three points to

estimate the normal, so that we can find a consensus between the estimated normal vector
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and the fitting error of all the points to the resulting plane. Nonetheless, a large number of

tags is not a good idea neither because we will reduce the effective area that we can use to

estimate normals by using the polarization theory. For the work done in this thesis, we have

decided to use four points, and we establish an optimization routine to find the best normal

out of the measured points.

The optimization routine uses the Cartesian form of a plane surface. Let us consider a

plane surface defined by the normal vector −→n = [n1, n2, n3]
T . Then, the Cartesian formula

of a plane is:
−→n · x+K = 0 (4.15)

where the operation v1 · v2 is the dot product between the vectors v1 and v2, and K is a

constant that can be found if a point that belongs to the plane is known. The coordinates

x = [x, y, z]T are the 3D coordinates of a point that belongs to the plane. Thus, with one

of the points of the plane P , and the normal given by Eq. (4.13), the variable K can be

estimated as:

K = −−→n · x (4.16)

Therefore, the equation of the plane is fully determined as in Eq. (4.15). Then, a distance

function of a point to the plane is given by d (x):

d (x) = |−→n · x+K| (4.17)

The optimization routine will generate a set C containing all the possible triplets from

the N input points, and use them to derive the equation for all the possible planes. For each

triplet of points, this routine computes the distance d (x) for the remaining N − 3 points,

and counts how many of them have a distance smaller than a threshold Ω. The number of

points that fulfils this threshold are the inliers of the set. Finally, the best normal vector will

be the one that has the largest number of inliers. The algorithm implemented to find the

best normal vector to a surface when there are more than three points is detailed in Alg. 3.

The ground-truth normal estimation pipeline can be summarized as:

1. Calibrate the camera using Zhang’s method [122],
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Algorithm 3 Optimization routine to find the best normal vector to a plane.
1: Input: Set of N > 3 points that belong to the plane
2: Create a set C with all the possible combinations of triplets.
3: for each triplet in C do:
4: Compute the plane equation (Eq. (4.15))
5: For the rest of the set C, compute d (x) (Eq. (4.17))
6: Find the number of inliers with Ω
7: Store the number of inliers and the plane equation.
8: end for
9: Extract plane equation with maximum inliers.
10: Output: Best normal vector to plane

2. Generate a set of ArUco tags [34], and print them in black and white,

3. Paste at least 4 tags over the board to which we want to estimate the normal vectors,

4. Use the ArUco detection algorithm to estimate the pose of each tag,

5. From the estimated pose, extract the translation vector of the central point of each of

them, and

6. Compute the normal vector to the surface using Alg. 3.

4.3.4 ROI retrieval

Unless the plane surface to reconstruct is relatively close to the camera, background objects

will appear in the image. Additionally, since the markers to estimate the ground-truth

normal will be placed on the board itself, these areas must be also removed from our image.

These steps are required since our hypotheses for reconstruction is that all the considered

points share the same index of refraction, and they are placed over a plane surface. Any

other object in the scene will necessarily violate one of these hypotheses. Therefore, we need

to remove them. One idea will be to cover the background area with a cloth material, and

then do some image processing to remove unnecessary pixels in the image. Nonetheless, this

does not solve the problem of removing the regions that are covered by the tags.

A more complex, but also more flexible approach, will be to create a mask that auto-

matically adapts to the view of the board we have. This is possible since we know the

configuration of our board (it is us who decided how to place the tags), and since we have

the camera intrinsics parameters. This mask will allow us to consider only the pixels that

are of our interest, and removing the rest.
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As mentioned above, in our work, we have decided to use only four tags since it is more

than the minimum required, and it allows us to have the largest profitable region of the

board. More precisely, we have placed our tags in the corners of the board, and we have

measured with a meter the horizontal and vertical distance of each tag with respect to the

top left corner. For each tag, we have also noted its unique identifier jointly with its center

coordinates in the board frame. All the regions of the board covered by the tags have been

set to zero, and the rest of the board has been set a value of one.

To do the warping, we consider the measured coordinates of the center of each tag, and

the estimated position of that point given by the camera. With the unique identifier of each

tag, it is possible to make the correspondence between a point in the software-created mask,

and the respective central point in the tag. Since we have four tags, we have four pairs

of points, therefore, it is possible to compute the projection matrix that will produce the

perspective warping of our mask into the image.

The projection matrix H is a 3× 3 matrix that will take a point with coordinates xi
1 =

[xi
1, y

i
1, 1]

T and it will convert it into another point with coordinates xi
2 = [ti · xi

2, t
i · yi2, ti]

T ,

where xi
1 is the ith correspondence point in the first view, xi

2 is the corresponding point in

the second view, and ti is a scaling factor. For a pair of points, the projection matrix should

comply with the following relationship:

xi
2 = Hxi

1


tixi

2

tiyi2

t

 = H


xi
1

yi1

1


(4.18)

To compute this matrix, only four pairs of corresponding points are required. This projection

matrix will consider a rotation, translation, and scaling operations of the points in the first

view into the second view. Once the matrix H is obtained, the intensity of a pixel at the

coordinates x1 = [x1, y1, 1] in the image Iin is placed at the coordinates x2 = [x2, y2, 1] in the

image Iout. This operation maps the intensities as follows: Given a transformation matrix H

from the view 1 to the view 2 such that tx2 = Hx1, where t is a scaling factor, the intensity
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from the view 1 Iin is converted into the intensity in the view 2 Iout as follows:

Iout [x2, y2] = Iin [x1, y1] (4.19)

Since this operation may leave blank pixels after the mapping, an interpolation algorithm

is usually added to the pipeline. The output image Iout is the result of warping

In sum, to be able to easily find the useful pixels in the image by software, we need to:

1. Create our pattern of tags on the board, with four tags placed at each corner of the

board,

2. Put the board in a particular position, and measure the coordinates of the central point

of each tag, and note their unique identifier,

3. Create a mask by software, with the board size as image size, and ones in all the places

where the tags are not present,

4. Run the detector on the particular configuration of the board, and extract the tags

IDs, and the coordinate of their central point,

5. Compute the projection mask from the measured coordinates to the camera estimated

coordinates,

6. Do the warping of all the pixels of the original mask to the current board view.

An example of the mask warping is shown in Fig. 4.7.

This mask has a value of one for the valid pixels, and zero elsewhere. Therefore, only the

normals at the pixels where this warped mask has a non-zero value have to be considered

for the error estimation. In other words, the points at which this mask has a value of one

defines our region of interest.

4.4 Effects of the calibration over the normal estimation

In this section, we will summarize the results obtained with the Shape from Polarization

algorithm explained in Sec. 4.2. Our setup consists of a color-polarization camera equipped
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(a) (b) (c)

Figure 4.7: Example of mask used to extract the pixels from the region of interest. A white color corresponds to a valid
pixel, and a black one means that pixel is not useful. (a) Mask created out of the measurements on the real board. Only the
internal region, whose limits is set by the tags positions is valid. (b) Color image captured with the color-polarization camera
of a board with a set of ArUco tags on it. (c) Mask warped to the image captured by the camera.

with the Sony Polarsens IMX250MYR sensor. We use the Fujifilm Fujinon HF16XA-5M

lens which has a focal length of 16mm. The lens aperture has been set to f/8, to meet

the requirements of the polarimetric calibration procedure established in [57], and to have a

camera behavior close to the pin-hole model. The camera has been calibrated geometrically

as described in Sec. 4.3.1, and with our polarimetric calibration algorithm detailed in Sec. 3.2.

The camera focus has been correctly set and fixed for all the experiments.

4.4.1 Experiments

We tested several board materials, made of glass or glossy reflective surfaces as a lacquered

whiteboard. The index of refraction has been set to 1.5 in all the tests, and the tags to

estimate the ground-truth normal to each surface are placed at the four corners of the region

of interest. These regions have a size that varies between [40× 40] and [60× 60] centimeters.

The experiments have been carried our in several lighting conditions, with diffuse light

coming either from the sun in a very overcast day, or LED lights bulbs with diffusers. For

each image, we have performed the pipeline mentioned in the previous sections: we have

detected the tags, we have created and warped the mask to consider only the region of

interest, we have computed the ground truth normal, and we have estimated the normals at

each super-pixel using the polarization theory and the ground-truth normal to disambiguate

them. Then, for each super-pixel, we have computed two metrics to evaluate the quality of

the estimated normal vector by polarization with respect to the ground-truth. These metrics
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(a) (c) (e)

(b) (d) (f)

Figure 4.8: Results of the normal estimation algorithm using physics. (a) Original color image estimated from the measured
intensities. (b) Ground-truth normal vector image to give a reference of the color to expect, only in the region of interest. (c)
and (d) Uncalibrated and calibrated normal vectors estimated from the polarization theory, for the entire scene. Only the
board area is considered for the error estimation. (e) and (f) Uncalibrated and calibrated normal vectors estimated from the
polarization theory, masked to the area of interest.

are the Mean Angular Error (MAE) and the Root Mean Square Error (RMSE), defined as

follow:

MAE =
1

N

N∑
i=1

| arccos
(−→ni · −→ngt

)
| (4.20)

RMSE =

√√√√√√ 1

N

N∑
n=1

∥−→ni −−→ngt∥22 (4.21)

where −→ni is the ith normal vector estimated from the polarization theory, N is the number

of super-pixels in the region of interest, −→ngt is the ground-truth normal, and ∥.∥2 is the L2

vector norm.

In Fig. 4.8 we show the image of the ground-truth normal for all the regions of interest,

and the results obtained without and with the polarimetric calibration of the estimated

normal vectors. The quantitative results of the metrics are shown in Tab. 4.1.

As mentioned above, we assume that the reflection produced by the board is either

76



CHAPTER 4. SHAPE FROM POLARIZATION APPLICATION

Method Reflection type MAE MAE Std.Dev. RMSE

Uncalibrated
Only diffuse 19.8796 4.6641 0.355475

Only specular 25.0383 1.25402 0.431848
Both reflections 14.529 2.68189 0.256998

Polarimetric calibration
Only diffuse 18.4985 4.25462 0.332538

Only specular 25.086 1.13723 0.432282
Both reflections 12.8839 2.49678 0.229201

Table 4.1: Quantitative evaluation of the error in the normal estimation when using polarization physics-based theory. The
index of refraction η is fixed to 1.5 for all the experiments. Only specular and only diffuse are the experiments in which only the
specular and diffuse normals are considered when doing the disambiguation, respectively. The normal estimation algorithms
have been performed using the raw measurements from the camera, and using the measurements corrected by the polarimetric
calibration algorithm, introduced in Sec. 3.2.

diffuse dominant or specular dominant. This is a common hypothesis when doing Shape

from Polarization. Nonetheless, that does not imply that all the pipeline will use only

diffuse or only specular reflection. In fact, it considers all the normals at once, and the one

that produces the less error pixel-wise is the normal that will be used. As a consequence,

there will be pixels whose normal is given by the diffuse reflection formulae, and there will

be pixels that will return a normal computed from the specular equations. The fact of

considering both cases until the disambiguation step is clear in the results of Tab. 4.1. In

that table, we have joined the results of using only diffuse theory and only specular theory.

In both setups, calibrated and uncalibrated, using only one type of reflection increases the

error metrics values with respect to the case in which both reflections are considered. This is

expected, since in the most general case, a reflection is a combination of both specular and

diffuse light [47, 113], but there is always one that has a higher weight than the other one.

Therefore, the DoLP can be approximately assigned to one or another reflectance model. It

is for this reason that there are points of the board where the normal is better estimated

using the diffuse reflection model and others using the specular reflection model.

4.4.2 Discussion

From Tab. 4.1, it can be noted that the results obtained after calibration outperform the

uncalibrated setup. Indeed, the fact of correcting the measurements by model fitting allows

for compensating the lens distortion and the filter properties. Even though the calibration

does not affect too much the base sensor measurements, we can see that when dealing with

a SfP problem, this small correction is responsible for an improvement of 12.8% in the MAE
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Index of refraction MAE MAE Std.Dev. RMSE
η = 1.3 15.2286 3.09944 0.271558
η = 1.7 13.0311 2.31398 0.230977

Table 4.2: Evolution of the error in the normal metrics introduced by a bad index of refraction under a calibrated setup.

and 12.13% in the RMSE. Additionally, we can see that the standard deviation in the error

has also been reduced, which is an expected effect of the calibration procedure. Indeed, after

correcting the measurements in the sensor, two pixels that receive the same input light will

produce readout values that are closer than a similar arrangement without calibration. This

is translated as a reduction in the difference between the normal vectors of a plane, thus,

a smaller distribution of values in the estimation errors. We should note that the sensor is

already of high quality, so achieving improvement through calibration represents a significant

step forward in the field of 3D reconstruction.

While the calibration algorithm produces improved results, it is important to note that

the error remains relatively high compared to other methods. One of the main sources of

this error is the sensing noise. To avoid sensor saturation, we have set up the exposure

time and the sensing gain to a value that is enough to have measurements without reaching

the maximum sensor readout value. Nonetheless, since each pixel has a different filter,

the amount of light that passes through them is different. Additionally, since the sensor

noise effect is relatively more prominent when the measurement is lower than when it is

higher, avoiding saturation means that our measurements will be noisy. Then, this noise

is transferred to the polarization measurements. Furthermore, there are two points that

also justify this large error metrics values. Firstly, the index of refraction is not known

with precision, and it changes depending on the wavelength. As a consequence, there is

a deformation in the estimation of the normal field of the board due to that uncertainty.

To show this point, we have attached the normal metrics for the calibrated setup, for the

indexes of refraction η = 1.3 and η = 1.7 in Tab. 4.2.

The other point to consider is the error due to the diffuse-dominant and specular-

dominant model consideration. As mentioned above, the measured light is a combination of

diffuse and specular light, and there are two different mathematical models to describe their

behavior. Therefore, in the measured DoLP there is a part of that component that belongs

to the diffuse behavior, and another one that belongs to the specular one. Consequently, the
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measured AoLP and DoLP are a combination of both models. To exemplify this situation, let

us consider the zenith angle computation. If the DoLP is a combination of two contributions,

the value to be used for each model (diffuse or specular) will be lower than the measured

one, hence there will be a modification of the output normal zenith angle. Similarly, the

AoLP given by each model is different, but there is no equivalent formula to relate to this

angle with the normal azimuth. Instead, there is a set of four discrete possibilities between

the AoLP and the azimuth angles.

A better formulation might be to separate the incoming light into the specular and

the diffuse components, and to do a normal estimation for each model separately. Then,

the model whose DoLP is the strongest can be used to estimate the normal vector field1.

Nonetheless, the separation of the light into diffuse and specular components is a challenging

problem to solve, and even though the problem has been addressed in several works using

color [56, 67, 78, 119] and polarization images [47, 49, 102, 106, 113], there is still no generic

solution for any situation or that does not need special lighting devices. The analysis and

the effects of this separation is out of the scope of this thesis. We leave this topic as a clue

to explore in the future.

4.5 Conclusions

In this chapter, we have given an in-depth description of a method to reconstruct the normal

vectors to a surface by using the polarization theory. In this contribution of the thesis, we

have covered all the required formulas to estimate the normal vectors from the polarization

theory, we have presented the inverted functions of the Fresnel equations for both types of re-

flections, and we have considered the different types of materials and reflections. To the best

of our knowledge, there is no document that describes the normal estimation from polariza-

tion at this level of detail. We have run experiments with the color-polarization camera, with

and without calibration of the sensor, and we have found that there is an improvement in the

reconstruction quality when a calibrated setup is used. This chapter served to objectively

1We should use the strongest value since it means that we will use the signal with the highest SNR value.
If the model is correctly computed, then the two models should give the same normal vector.
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evaluate the influence of the calibration in the most common polarization application: the

SfP algorithm. For doing so, we developed a methodology that systematically allows us to

estimate the ground-truth normal of a plane surface, estimate the ambiguous normals from

the polarization constraints, and then disambiguate them by using the ground-truth data.

Despite the high quality of the sensor, the presence of small parameter dispersion in the pix-

els and the use of a lens introduce a significant error that requires correction. Although the

experiment setup has been carefully built, the error in the final reconstruction is still high.

This error has several sources such as the sensing noise, the approximate value of the index of

refraction, and the usage of the reflection-dominance model. This last source of error is due

to the diffuse and specular components. If it has been possible to divide the information into

diffuse and specular components, the resulting DoLP would have been smaller for each case,

introducing a change in the zenith angle. This point is still a big challenge in the computer

vision domain. There is no straightforward solution to split the input light into these two

components, and to determine the corresponding diffuse and specular Stokes vector.

80



Chapter 5

Deep-learning depth estimation with

polarization cues

Nowadays, data-driven approaches have proven to be more accurate than optimization algo-

rithms based on hand-crafted designs for hard perception problems. Since the polarization

data provides valuables geometrical constraints, we aim to use them in an important and

challenging perception task: monocular depth estimation. In this chapter, we will describe

our methodology that integrates the polarization cues into visual features to improve the

results of a texture-based monocular depth estimation neural network. Furthermore, we

include tests of the baseline networks, and of our method, concluding that our network

correctly integrates the polarization measurements without degrading the baseline network

performance.

5.1 Introduction

One of the main tasks of an autonomous navigation robotic system is to be able to understand

the environment in which it is immersed, and to detect any obstacles as it moves. One of the

foundations in this task is depth estimation. Different active sensors have been developed to

ease this task, such as the Microsoft Kinect [123], or the LiDAR [110], but either the depth

range is not large, or the information is scattered. Additionally, when the sensor measurement

is based on the reflection of a light ray, it becomes hard to have correct depth measurements
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for transparent or highly reflective objects. Since the properties of the polarization state for

this type of materials impose geometrical constraints to the objects in the scene, we aim to

improve the monocular depth estimation by using the color and polarization data. In this

chapter, we design a deep neural network to outperform the depth estimation produced by

algorithms that make exclusive use of color images in these hard conditions.

As in the rest of this thesis, we aim to bring more tools to the community that eases the

integration of the polarization state into texture-based algorithms. We are convinced that

there is a method to do so, in a systematic way, without penalizing the performance of the

system that already works solely with color images. In general, texture-based algorithms fail

when a surface is made of a single color, or of highly reflective materials, or if the object is

transparent. In these types of objects, the polarization state of the light provides important

clues to estimate the normal vectors as we have seen in Chapter 4. Therefore, we are looking

for a system that can estimate depth whenever the texture information is not enough, but at

the same time, do not degrade the performance of the system whenever the color information

can correctly determine the depth.

Some previous works try to accomplish an improvement in depth estimation by using

polarization, but the developed systems have different limitations. Berger et al. [10] and

Blanchon et al. [11] use monochrome polarization cameras, thereby part of the texture

information is lost during the acquisition, limiting the accuracy they could get. Both works

make use of the azimuth constraint to quantify the orientation error of the normal vector

to the surface estimated by the network with respect to the AoLP. Although effective, they

only consider the specular reflections by doing a thresholding operation to the DoLP.

Other data-driven algorithms that make use of the polarization state of the light limit

their usage to a particular environment, and condition. Ba et al. [8] introduce a supervised

deep-neural network to estimate the normal field to a single object surface. In this case, the

provided results do not vary by changing the lighting condition, but the network must receive

an image with a single object to analyze. Similarly, Deschaintre et al. [26] present a data-

driven approach to jointly estimate the normal field, the Spatially Varying Reflectance, and

the depth map of a single object. Kondo et al. [53] developed a Polarimetric Bidirectional

Reflectance Distribution Function to simulate the polarization state of the light using a
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renderer, and with it, create images of random objects to train data-driven algorithms. This

way, the acquisition problem is simplified since the images can be synthesized with ground-

truth without user efforts. Although accurate, the system is aimed at analyzing the normal

vector field of a single object at the time.

Finally, some developed algorithms have acquisition conditions far away from practical

applications, as the one from Ichicaka et al. [45]. They use the sun to create a known Stokes

vector and by measuring the change of the polarization state, they are able to reconstruct

the normal vectors of a single object. The counterpart of this algorithm is that the method

requires at least two measurements at two different moments of the day, during a clear day,

and these images should be taken several hours apart.

The objective that we pursuit in this work of the thesis is to find a multi-modality fusion

network that allows to:

1. Take the best of each modality to outperform the texture-based only algorithm,

2. Do close-to-real-time estimation of the depth. Therefore, a network with the minimum

number of parameters possible, and

3. Assimilate the polarization data in a simple, systematic way, by using the polarization

constraints.

Due to its training robustness and wide adoption in the computer vision community, we

have decided to use as backbone the work from Godard et al. [36], which is a depth estimation

network for urban scenes. In the rest of this chapter, we will detail the network architecture

and the dataset we will use, the loss function designed to consider the polarization data

constraints, and the training process we have implemented.

5.2 Deep learning-based depth estimation using a color-

polarization fusion network

In this section, we detail our deep learning architecture designed to do depth estimation

from monocular color-polarization images. The pipeline that we have developed is based on
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the monocular depth estimation network Monodepthv2 [36].

Monodepthv2 is a self-supervised approach, i.e. no ground-truth data is required to train

the network. The training process is guided by the input images, and a set of geometrical

constraints that guide the network towards a correct depth estimation. Indeed, two im-

ages are compared (either from a stereo setup either from a monocular setup) through the

projection of one image into the other one, using the Structural Similarity Index Measure

(SSIM) to quantify the reconstruction error. Since the polarization state also constraints

the geometry of the problem, it is a good candidate to improve the results obtained by the

baseline network.

Secondly, Monodepthv2 has served as a base for other works by using either color-only

cameras, or polarimetric cameras [11, 26, 58, 60, 89, 100, 112, 120], but either the improve-

ment is marginal, or they were unable to highlight the improvements of the results where

generally texture-only methods fail. To the best of our knowledge, there is no method that

shows how the estimation over reflective, transparent or textureless surfaces are improved in

the depth estimation sense. Additionally, for multi-modal methods (i.e. those that combine

color and polarization), they do not show that the newer method performs similarly or better

than the color-only method in the regions where the performance was already satisfactory.

We aim to show that it is possible to add the polarization constraints to a texture-based

network to outperform the original results. In what follows, we will give the details of the

candidate deep learning network we develop, and include the experiments used to evaluate

its performance.

5.2.1 The baseline model architecture

The base network model Monodepthv2 is inspired by the general U-Net model [92], which

consists of a feature encoder-decoder architecture with skip connections. This means infor-

mation from the encoder is copied and added to the corresponding size feature vector in

the decoder, providing spatial cues into the decoder reconstruction. The encoder model is

a ResNet-18 [39], and the decoder used is based on the depth estimator introduced in [37].

This architecture has five skip connections between the encoder and the decoder. The main

aspects carried out by Godard et al. [36] are:

84



CHAPTER 5. DEEP-LEARNING DEPTH ESTIMATION WITH POLARIZATION
CUES

1. A pose encoder is used to estimate the pose transformation between two consecutive

frames.

2. Pixel-wise, the loss is the minimum of all the SSIM values computed for all the times t

considered, with respect to the reference frame. This allows to not penalize the network

when there are occluded pixels.

3. An auto-masking is performed to avoid using points that do not move between frames.

This is required since the disparity estimation through geometry assumes that there

is a relative movement in the pixels between two consecutive frames. Therefore, if the

camera is stopped, or if there are objects that move at the same speed as the camera,

this hypothesis is violated.

4. To avoid texture copy and depth “holes” in the output image, the loss is computed

at the different layers of the depth decoder at the final output resolution. Thus, the

output of each layer is first re-scaled to the output resolution, and then the loss is

computed as if it is the output image. The result of this operation for all the decoder

layers are added together to get the final loss value.

5. ResNet-18 has been chosen as the encoder architecture to obtain faster depth estima-

tions than those that use the architecture ResNet-50. Even though the former has

less trainable parameters than the latest, the results obtained with this architecture

outperforms the others.

The network architecture of Monodepthv2 is shown in Fig. 5.1, and the appearance loss

sketch is illustrated in Fig. 5.2.

5.2.2 Color-polarization monocular depth estimation architecture

We aim to improve this network by integrating the polarization data.

Since we would like to use two different modalities (color and polarization), a fusion

mechanism has to be chosen. The first solution one might think is to take all the polarization

data (either the polarization channels as intensities, or the DoLP and AoLP), concatenate
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Figure 5.1: Monodepthv2 network architecture components. (a) An encoder-decoder with skip connection architecture is
used to estimate the depth out from a single input color image. (b) Two images of the same scene at different time instants t
and t′ are used to estimate the pose transformation between them using a pose encoder. This information is used to estimate
the reconstruction loss.

Figure 5.2: Sketch that explains how the introduced appearance loss works [36]. The reference frame is the image in the
middle. Then, one image before and one after the time of the reference image are considered. In the instant before, an occluded
pixel projected in the reference frame will give a large value in the SSIM loss. Nonetheless, for the instant after, the Structural
Similarity Index Measure will give a low value for the same point. Between these two possibilities, the introduced loss considers
only the minimum SSIM value.

them, and input this block of data to the network. Nonetheless, this type of approach

generally does not maximize the performance that can be obtained if the network structure

is adapted to the problem to solve [8]. Therefore, an adapted combination mechanism

has to be developed. In the literature, there exists mainly three widely accepted fusion

architectures: early fusion, middle fusion and late fusion [14].

Early fusion: the data is mixed in a certain way before entering the encoder network for

feature extraction. This fusion mechanism is performed in general through operations that

contain learnable parameters as the network, and these parameters are adjusted during the

training process. All the fused data pass through a single encoder. Nonetheless, since the

fusion is produced at early stages of the feature extraction process, the semantic information
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that can be extracted is of low level, and in general, this type of fusion does not produce

large improvement gains. Also, it is the fusion mechanism that does not modify the base

network architecture, and it adds the lowest number of parameters to the training process.

Late fusion: the data from each modality passes through different encoders. The weights

for each modality can be shared between them, but it is not a common practice since each

modality requires to extract different type of patterns from the inputs. Once the input

modalities have passed through the encoders, the high-level feature maps are fused into a

single one that is then passed to the decoder module. In this architecture, the fused maps

contain high-level features of the input images, but they are frequently hard to interpret,

and it is not evident to find a good mathematical relationship to correctly combine them.

The type of operations implemented in this fusion model are generally more complex than

for the early fusion, which means a larger number of parameters are added to the network,

resulting in slower responses in the forward pass.

Middle fusion: as for the late fusion model, the data from each modality is inputted to

an independent encoder, but in this case, the feature maps in the encoder at the different

hierarchical levels are fused. This means that at each network layer of the encoder, the corre-

sponding feature maps are fused with a certain fusion architecture. Then, the output of the

fusion modules are either combined into a single feature map and given to the decoder input,

or passed to the decoder at the same feature size decoder layer to continue the estimation

process. This last mechanism is similar to the skip connections process, but the transferred

information has been processed by the fusion module. The middle fusion is the heaviest

fusion architecture in terms of parameters and forward pass time. Nonetheless, it ensures a

complete mixture of the data at all the levels in the network, avoiding information loss while

the data passes from one layer to another. A representation of each fusion architecture for

an encoder-decoder network is shown in Fig. 5.3.

Based on the details given above, to better exploit the multi-modality of color and po-

larization data, we will use an architecture with at least two encoders, with either a middle

or a late fusion model. This is because the features that can be extracted from the polar-
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Figure 5.3: Fusion architectures. (a) Early Fusion: the combination of the different modalities is done before the feature
extraction process. (b) Late fusion: the mixture of the multi-modality data is done at higher representation levels. (c) Middle
fusion: the data is combined at different hierarchical levels of the network.

ization and the color data are not the same. Furthermore, we would like a network that is

capable of distinguishing which modality provides the most relevant data for each object.

Therefore, we need to have two encoders to extract the corresponding features, and then find

a proper method to weight and fuse these features. Thereby, we will not consider an early

fusion method. Physically, this decision is taken because the polarization parameters (the

AoLP and the DoLP) are independent of the intensity. Therefore, it makes sense to have a

branch that extracts the most from the textures, and another that takes advantage of the

polarization, and then fuse the corresponding features of each modality.

Since we do not know which features are the most valuable for each modality (either

low or high representation level features), we will start with a middle fusion architecture,

because the migration to a late fusion architecture would be straightforward. This way, we

will be also able to test both architectures.

5.2.3 Transformer-based or Convolution-based Neural Networks ?

The next question is which deep learning architecture for the encoder and the fusion module

must be used to extract the most out of the input data in terms of features. Unfortunately,
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there is no straightforward answer to this question. On the other hand, since the final result

does not strongly depend on the decoder, we have decided to keep the original decoder of

the Monodepthv2 network.

Regarding the encoder block, we can identify two categories of commonly used archi-

tectures: Convolution-based Neural Networks and Transformers-based Neural Networks. In

the former case, the layer blocks are based on combinations of convolution, pooling, acti-

vation, and normalization operations. The convolution operations serve to filter the input

feature map, the pooling serves to reduce the number of parameters in the network, and

the normalization serves to reduce the spatial resolution of features. For a long time, this

type of networks formed the state-of-the-art in terms of deep data-driven algorithms. One

of the most known architecture is the Residual Neural Network, also known as ResNet [39].

Recently, a new network architecture called Transformers has been developed [107]. It is

currently considered as the best performing architecture. Although the original concept was

aimed at solving language interpretation tasks, it is now widely used to solve various com-

puter vision tasks [28]. Nonetheless, this new type of network are data hungry, meaning that

large datasets with large training times are required to outperform their predecessors. One

of the state-of-the-art transformer for vision tasks is the Swin Transformer [69].

Regarding the fusion blocks, there exists three main mechanisms that can be used:

Convolution-based, transformers-based, attention-based. The first two cases are similar net-

works as the ones presented before, but with less operations, or slightly modified versions

of the entire networks. The attention mechanisms are sub-networks generally used to find

weights to balance the contribution of different areas in the feature map. An attention mech-

anism can be defined as self-attention if the weights are computed based on the same input

image, or cross-attention, if the weights are based on the feature map coming from another

modality. There is no general rule of thumb to decide for one method or another. Nonethe-

less, it would be interesting to test a cross-fusion module in which the feature maps of one

modality are used to find the weights for the other modality. This methodology might be

used to determine the spots in which a certain modality does not contain valuable features

for the depth estimation.

In sum, our network will follow a middle fusion architecture, with one type of network
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for the encoder, one type of network for the fusion module, and the same decoder as for

the original Monodepthv2. There are several possible combinations to chose an encoder

and a fusion block, but there is not too many clues to narrow down this choice. In terms

of development, we aim to build a system in which these two parts of the network can be

replaced easily in order to test different combinations.

5.2.4 Training data

As for any deep learning network algorithm, a good set of data is required. In our case,

since we want to do depth estimation from color-polarization images, we need to have a

set of registered triplets of color, polarization, and ground-truth depth images. When we

mention registered, we mean that three modalities have to be projected into a common

reference frame. For the type of imaging sensor we aim to use, the color and polarization

data are registered by definition. Nonetheless, the depth to color projection is required, and

for that, a geometrical calibration algorithm has to be run. Additionally, the data needs

to be synchronized in time, which is not an obvious task1. Finally, the amount of data

required to train a depth estimation network needs to be large enough to allow the network

to learn the most generic characteristics of the considered scenes. If there are not enough

diverse information, the network will tend to memorize the answers to the shown scenes,

producing good accuracy during training, but with a bad performance during testing. This

phenomenon is known as over-fitting.

As mentioned in Sec. 2.3, there is no standard, high quality benchmark that all the

polarization imaging researchers can use to evaluate their algorithms. Due to this, the

authors of each paper create their own set of data, which is generally not large, not always

available, and without the ground truth data for several applications (classification, object

detection, navigation, scene segmentation, depth estimation, etc). This also makes it difficult

to compare with other works in the same domain.

1Data synchronization means that the image capturing process done by a set of sensors must start at the
same time. To do so, a triggering signal needs to be created and send to all the devices, the images should
be captured after the signal has been received. Additionally, the cameras need to be configured accordingly,
and the triggering signal generally sent through a specific connector, or through a specific Ethernet protocol,
which are not included in all the available cameras.
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(a) (b) (c)
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Figure 5.4: Cromo Dataset sample. (a) Color image. (b) Demosaiced polarization channel 0◦. (c) Demosaiced polarization
channel 45◦. (d) Depth from COLMAP. (e) Demosaiced polarization channel 90◦. (f) Demosaiced polarization channel 135◦.

Recently, the CroMo dataset [108] has been released, which is a large-size dataset with

registered depth, color and polarization images, and the parameters result of the camera

geometric calibration. The acquisition rig consists of a pair of color-polarization cameras,

indirect Time-of-Flight (iToF) sensor, structured light depth sensor, and an Inertial Measure-

ment Unit (IMU) sensor. All the measurements have been projected into the left-polarization

camera image plane. The captured scenes comprise a kitchen, a park, house facades, and a

bus station. For each environment, acquisitions have been done in different days. The depth

map has been retrieved from the structured light depth sensor, and it has been refined using

the COLMAP pipeline [94]. For the work proposed in this thesis for depth estimation, we

will use the color data, the polarized data, and the depth data. A sample from the dataset

of these modalities is shown in Fig. 5.4.

It is important to note that the color images have been gamma corrected with a value

γ = 2.2 approximately. That is why the color images look brighter than the polarization

images2.

2This detail has not been included either in the paper or in the dataset documentation
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For the evaluation of our algorithm, we also selected the recent dataset from Baltaxe

et al. [9]. This dataset contains color, AoLP, and DoLP measurements taken with an

RGB-polarimetric camera, LiDAR measurements for depth, and GNSS sensor for global po-

sitioning. The authors provide a dataset split into train, validation, and test sets containing

respectively 6116, 778, and 778 images. Even though smaller than CroMo, this dataset

provides accurate depth samples of urban scenes with traffic signs, a large number of cars,

people, and road pavements, captured with a car moving in the city. In contrast, CroMo

depth measurements are obtained through COLMAP and the sequences were collected by

a person walking in a variety of environments. These two datasets provide complementary

information to evaluate the approaches in different conditions.

5.2.5 The input image encoding

The next important step is to determine the input data the network will need to perform its

task. This data must be representative and informative regarding the type of problem we

want to solve. If the information is insufficient or ambiguous, the results may not meet the

expected level of performance. From the Monodepthv2 implementation, it is confirmed that

for a variety of situations, the texture information provides important clues for determining

the depth from a single color image. Therefore, this information should be kept, and it will

be the input to one of our network branches. Our second modality, the polarization, has

already been explored in the literature, and there is no universally adopted input format

for this data. Some authors decided to use the full polarization parameters (AoLP, DoLP,

and intensity) as inputs [11, 48, 72]. Others choose to include the raw intensities from the

polarization channels [8, 12, 53, 59, 60], and there are authors that use the physics theory

to estimate the ambiguous normal maps as input priors [8, 32, 127]. After considering the

different options, we have narrowed the input formats to two. The first one is the same as

adopted in [60]:

Ipol = (ρ, cos (2ϕ) , sin (2ϕ)) , (5.1)

where ρ is the DoLP, and ϕ is the AoLP. Throughout this thesis, we use a color-polarization

camera, and it is important to note that the DoLP and the AoLP are dependent on the
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wavelength. Therefore, we will observe a different value for these parameters in each color

channel. Nonetheless, for the visible spectrum, this difference is not too large, therefore, we

can combine the signals to reduce the number of input channels. To keep data consistency, we

will sample the DoLP and the AoLP as follows: firstly, we take the maximum DoLP from the

three channels, and then we choose the AoLP that corresponds to that DoLP. Additionally,

we have noted that when the intensity signal is low, some pixels exhibit a DoLP higher than

1, which has no physical meaning. These outlier values are obtained because the signal value

is comparable to that of the noise signal. To avoid taking the measurements of such pixels,

we set their DoLP value to zero before searching for the maximum value. By following

this procedure, we can reduce the number of inputs, while not penalizing too much the

performance.

The data representation of Eq. (5.1) is interesting because the obtained image contains 3

channels as for the RGB data, it represents the polarization information only, and it considers

the periodicity of the AoLP. Therefore, no specific operation is required in the network model

to correctly integrate this circular variable.

The second representation that we think may work is the division by polarization channels

only, without computing the AoLP nor the DoLP. When using this data, the works from

[12, 59] produce better results than those that make use of the polarization parameters.

For the specularity removal network, Lei et al. [59] justify this fact by claiming that the

operations in the raw intensities are linear whilst in any pre-processed image (for instance,

converting the intensities into the RGB space) they are not. As a matter of completeness, we

aim to test this second input encoding to evaluate the performance of the obtained network.

Thereby, the network input in this case would consist in a multi-channeled image, in which

each channel corresponds to the raw values of all the pixels with the same polarization filter

orientation. An example of the two input encoding is shown in Fig. 5.5. As it can be noticed

in Fig. 5.5, the first encoding method from Eq. (5.1) seems to have more noise than the second

one. This is expected since the DoLP and the AoLP are computed based on the difference of

two polarization channels, as explained in Sec. 2.2.1. Nonetheless, the former case contains

purely the polarization data, and there is no overlapped information with the color channel.

In the intensity concatenation case, the intensities have several values in common, and the
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(a) (b) (c)

Figure 5.5: Possible network input encoding for the polarization encoder. (a) Original color image. (b) Polarization
parameters image form Eq. (5.1). In this image, the absolute value of the sine and cosine functions are considered to avoid
doing a color shift to represent negative values. (c) Color image obtained of concatenating the channels I0◦ , I45◦ , and I90◦ .

intensities contain texture information that is already included in the RGB input image. On

the other hand, having less noise, and the hypothesis of linearity between the measurement

and the incident light may be beneficial for the network to learn the polarization features.

It is for this reason that both inputs encoding are potential candidates to fairly represent

the polarization state of the light.

Concerning the network evaluation, the depth provided with both datasets will be used as

a reference. It is important to note that, as mentioned in the documentation of the datasets,

all the depths of value zero are either missing points, or invalid measurements, thus they

will not be considered for evaluating the results. For the CroMo dataset, we decided to

use the series of the environment station, referenced as 20201028-111403 as the test set.

This is because it comprises several objects of interest for the polarization that can be easily

evaluated also by visual inspection: flat surfaces, glasses, water, and planar columns. All

the metrics will be computed at every iteration of the training process, and the best model

obtained after N epochs will be kept. From the dataset of Baltaxe et al. , we will use the

provided split as test set.

In sum, we will test the two above-mentioned input encoding for the polarization data,

and the results given by the network will be evaluated against the corresponding depth

images. Only the valid depth pixels will be taken into account for the model evaluation, and

the series station - 20201028-111403 from the CroMo dataset, and the test split from

Baltaxe et al. will be used as test set.
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5.2.6 Loss

The loss function constrains the output signal to comply with certain laws during the

problem-solving process. For instance, these laws can be geometric equations that bounds

two points in an image, or a physical property of the variables we are manipulating. Nonethe-

less, this function should comply with certain mathematical properties. It should be differ-

entiable, and it should have a minimum value (at least locally) to which the results provided

by the network should converge. This minimum value will be reached if the set constraints

are perfectly matched by the network outcome. In other words, this loss function should

quantify the error between the estimation given by the network and the expected value of

this estimation.

The shape of this loss depends on what the network is aimed to estimate. In the case

considered for this thesis, we seek to estimate the distance of the objects present in a scene

with respect to the camera coordinate frame by using a single color-polarization image.

Concerning the color-only methods, depth estimation is carried out by using a loss with

mainly two components: a smoothing term, and a Structural Similarity term. The smoothing

component aims to produce smooth surfaces transitions, whilst keeping the objects edges.

In general, first and second order prior smoothing functions [37, 117] are considered. The

equations for first and second order smoothing terms are the following:

L1
smooth = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt|, (5.2)

L2
smooth = |∂2

xd
∗
t |e−|∂2

xIt| + |∂2
yd

∗
t |e−|∂2

yIt|, (5.3)

where d∗t = dt/d̄t is the mean-normalized inverse depth, It is the intensity image at the

current time t, and ∂iX and ∂2
i X are the first and second order partial derivatives of X with

respect to the spatial axis i. Considering three neighbor pixels {a, b, c} in the i axis direction

(i.e., x-axis and y-axis directions), these functions are defined as:

∂iX = X (a)−X (b) , (5.4)

∂2
i X = X (a)− 2X (b) +X (c) . (5.5)
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The Structural Similarity Index Measure (SSIM) loss aims to minimize the reprojec-

tion error. This component penalizes the artifacts at the object edges, and leads to better

accuracy. This function is defined as [36]:

Lrepr = min
t′

pe (It, It′→t) (5.6)

where t′ → t indicates the pose transformation between the image taken at the time t′ and

the one taken at time t. The error pe (I1, I2) is defined as:

pe (I1, I2) =
α

2
[1− SSIM (I1, I2)] + (1− α) ∥I1 − I2∥1 (5.7)

The factor α changes the relative weight between the structural dissimilarity, and the

per pixel reprojection deviation. In the original Monodepthv2 paper, this value was set to

α = 0.85.

There exists some loss functions that are commonly found in the polarization imaging

field when using deep learning algorithms. If the normal field is estimated, and the ground-

truth normal field is known, the cosine similarity can be used [8, 60]. When estimating the

depth in a self-supervised manner, the AoLP is compared with respect to the azimuth of the

normal to the surface [10, 11, 124]. This last normal is computed from the gradient of the

depth map estimated by the network.

In this thesis, we propose a contribution to the loss by using the polarization constraints,

that does not depend on the reflection type. We propose a new loss term, that is similar

to the one proposed by Smith et al. [97]. That paper proposes a comparison between the

azimuth of the normal vector and AoLP that is reduced to test the colinearity of two 3D

vectors. As explained in Sec. 4.2, the normal vector from any type of reflection contains

a π-ambiguity with respect to the AoLP ϕ, since it is not possible to distinguish from the

electric field orientation, if the normal azimuth is equal to either ϕ or to ϕ+π. Nonetheless,

if we project the electric field onto a plane perpendicular to the direction of propagation,

the two possible vectors are on the same line, and the projection of the normal vector onto

the same plane is colinear to both of them. Considering that the vectors are in 2D, we can

96



CHAPTER 5. DEEP-LEARNING DEPTH ESTIMATION WITH POLARIZATION
CUES

write the colinearity constraint for the diffuse reflection as follows:

n (x)⊙


cos (ϕ (x))

− sin (ϕ (x))

0

 = 0, (5.8)

where n (x) is the normal vector to the surface at the point x, ϕ (x) is the AoLP at the same

point, and ⊙ is the dot product operator. Similarly, we can write the colinearity constraint

for the specular reflection as:

n (x)⊙


cos (ϕ (x)− π/2)

− sin (ϕ (x)− π/2)

0

 = 0, (5.9)

Thus, to be able to use these equations, it is required to know if the incoming light is

diffuse or specular, which is a challenging task for a generic scene. For the work in this thesis,

we will create a mask of specular- and diffuse-dominant points following a similar approach

as in [11]. Differently from that work, we will consider the two reflection types instead of

only specular cases. Then, a point will be considered specular-dominant if its DoLP is higher

than a threshold value β, and it will be considered diffuse-dominant in any other case. Then,

our final polarization loss is:

Lpola = γ |MLspec + (1−M)Ldiff | (5.10)

where Ldiff is the left-side of Eq. (5.8), and Lspec is the left-side of Eq. (5.9). The |.| is the

absolute value operation, and γ is a weight factor to balance this component loss contribution

with respect to the other components, and M is a specular pixels mask, such that:

M =

1 ρ > β

0 a.o.c.

(5.11)

where β is a threshold value, and ρ is the DoLP. By using this mask, at each pixel, only one
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Figure 5.6: DoLP as a function of the zenith angle for different values of the Index of Refraction (IoR), and for the specular
and diffuse reflections.

of the reflection models will contribute to the loss functions. The threshold value has been

set to β = 0.3. This decision is not random, but taken based on the relationship between

the zenith angle and the DoLP. This relationship has been shown and explained in Sec. 4.2,

and in Fig. 5.6 we can see all the functions in a single plot, for different index of refraction

values, and the threshold value.

If the reflection is classified as diffuse we will cover a range of zenith angles [0, 80] degrees

without error, and if it is classified as specular, this range will be [25, 80] degrees. Therefore,

the regions in which the classification may fail will be the range [0, 25], and [80, 90]. Changing

the threshold will also result in a change in the ranges where incorrect classifications may

occur. In our future works, we aim to find a method to determine a better estimate of the

diffuse and specular light proportions to further improve this loss function.

One may think that this classification is not necessary and that a good compromise

and better solution would be to find the minimum value between the two loss components,

similarly to what is done in [124]. However, performing such an operation may constraint the

network to produce an incorrect result just to achieve the minimum loss value between the

two loss components. Better results are obtained if classification is done before computing

the loss. Additionally, this loss does not need to consider the periodicity of the angles, and

with two cases, the four possibilities are covered.

In sum, the proposed system will have the following characteristics:
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1. The architecture follows a middle-fusion model. One encoder will receive only the color

information, and the other one will receive polarization based information.

2. The decoder architecture is the same as the one used in [36].

3. The encoder and the fusion module are not fixed, but the code will ensure a plug-

and-play architecture that facilitates network architecture changes and the search of a

combination of high-performance modules.

4. We will use on one hand the CroMo dataset [108], and we will use the polarization

images from the dataset to train, and the depth dataset to quantify the results. On

the other hand, we will test the network over the dataset from Baltaxe et al. with the

train, validation, and test set split given by the authors.

5. The loss will have three components: first order smoothness L1
smooth, reconstruction

error Lrepr, and our polarimetric loss Lpola. The three contributions will be added with

corresponding weights. These weights will be the hyper-parameters of the network,

that will be tuned with the aim of producing the best network optimization results.

5.2.7 Perspective or orthographic projection ?

In the classical SfP problem, most authors assume the orthographic projection hypothesis.

This hypothesis assumes that all the light rays arrive parallel to the sensor surface. Nonethe-

less, most systems do not use an orthographic lens. In general, they use a perspective lens,

and it is assumed that the scene projects in an orthographic way. Nonetheless, this happens

only around the center of the sensor area. As we move to the borders of the sensor of a cam-

era equipped with a perspective lens, this hypothesis is violated. A sketch of the difference

between the orthographic and the perspective projection is given in Fig. 5.7.

For the compensation of this effect in data-driven algorithms, Lei et al. [60] propose a

solution to the usage of perspective cameras, that consists in including the viewing encoding

as network input. This new data is supposed to be assimilated by the network and to

let it "understand" from which direction the light is coming. Even though it produces an
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Figure 5.7: Sketch of the orthographic and the perspective projection principle. (a) Perspective projection. (b) Orthographic
projection.

improvement in the network accuracy, there is no real proof that the network is integrating

the viewing encoding.

More recently, Pistellato and Bergamasco [82] introduced a geometrical model that ex-

plains how the light rays are projected over the DoFP sensitive area, and the effective filter

axis seen by the polarized light. Briefly, starting from the camera coordinate frame of a

perspective camera, and by using the intrinsics parameters of the camera obtained through

geometric camera calibration, the authors construct a coordinate frame whose Z axis matches

the direction of propagation of the light. Since this direction is different for each pixel, there

exists a rotation matrix Ri that transforms a point or a vector from the Local Coordinate

Frame (LCF) i to the global camera coordinate system.

The rotation matrix Ri serves to convert the filter axis of a pixel into an effective filter

whose axis is perpendicular to the direction of propagation of the light. This will convert

each of the polarization states into a polarization state in the LCF, allowing to work as if the

light is under the orthographic projection. Once the calculations done, the normal vector

obtained from the polarization should be moved to the global camera coordinate system to

obtain the final solution. This is done though the matrix RT
i . A sketch of the coordinate

system transformation is shown in Fig. 5.8.

To correctly make use of the polarization measurements, we must consider the perspective

projection of the light onto the sensor. By doing so, we will ease the network assimilation
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Figure 5.8: Sketch that explains how the LCF transformation works. (a) Camera Coordinate Frame for a perspective
camera. In this system, the light arrives with a certain angle to the surface of the filter, thus the filter orientation with respect
to the Camera Coordinate system does not match the effective angle by which the light is filtered. (b) The coordinate system
is rotated by a rotation matrix Rj such that the filter axis is such that it matches the effective angle of the filter. This rotation
matrix depends on the jth pixel position. In this case, the light propagation direction matches the z-axis of the local coordinate
system, so we are under the orthographic projection hypothesis.

of the polarization cues and constraints. This will be done by using the model developed by

[82], since it has been well proven, and it does not modify the network architecture. Indeed,

the proposed model is applied before entering to the network, and the backward pass is

applied after computing the final normal vector. In our case, the model application is done

as follows:

1. Compute the pixel matrices Ai, and the rotation matrix Ri as explained in [82] per

pixel. Since the calibration parameters are unique, this is done only once.

2. For each input image, correct the intensity measurements by doing:

I′i = AidealA
+
i Ii, (5.12)

where Ii are the stacked measurements from the camera for the ith pixel, A+
i is the

pseudo-inverse of the pixel matrix estimated in the Local Coordinate Frame, Aideal is

the pixel matrix considering that the sensor is ideal, and I′i are the corrected measure-

ments in the local coordinate frame. The matrix Ai is estimated using Eq. (2.8) from

Sec. 2.1.3, where the different filter orientations are the ones estimated as in Eq. (13)

of the paper [82].
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3. Estimate the Stokes vector in the local coordinate frame of each pixel by considering

the camera as ideal, with the corrected measurements I′i.

4. Compute the input encoding to the network with the Stokes vector of the previous

step.

5. In the loss function, compute the normal vector from the depth. Since this depth is

given in the camera coordinate frame, the normals are in the camera coordinate frame

too.

6. Use the rotation matrix Ri to rotate the previously obtained normal vector into the

local coordinate frame.

7. Compute the loss of Eq. (5.10), between the AoLP and the normal vector previously

obtained, which are both in the corresponding local coordinate frame.

To accelerate the training time, we have preprocessed the CroMo dataset with the steps

in Items 1 and 2.

5.3 Experiments

In this section, we show the results obtained with two already existing depth estimation

methods. One of them is the baseline Monodepthv2 [36], and the second one is the work from

Blanchon et al. [11], in which they have added a loss contribution to the Monodepthv2 code

to consider the polarization state of the light while keeping the base network architecture.

Differently from our case, they work with a monochrome camera, and they only consider

specular reflections. Furthermore, we include the results of our network, developed based on

the constraints given in the previous section.

5.3.1 Implementation details

In what follows, we will detail the network architecture developed to do monocular depth

estimation using color-polarization images. An overview of the entire architecture is shown in

Fig. 5.9. This network consists of two Convolution-based encoders to do feature extraction at

102



CHAPTER 5. DEEP-LEARNING DEPTH ESTIMATION WITH POLARIZATION
CUES

Estimated 
depth 

Color 
data 

Polarization 
data 

+ 

F 

+ 

F 

+ 

F 

+ 

F 

+ 

F 

+ + + + 

Linear projection of 
flattened patches 

Norm 

Multi-head 
attention 

Norm 

MLP 

+ 

+ 

Transformer Encoder 

L x 

Image patches 

(a) (b)

Figure 5.9: (a) Proposed network architecture. This network is composed of two encoders (one per modality) based on
CNN. The fusion module F takes the feature map from the polarization branch, and it modifies it such that the areas of interest
will have larger values than the regions that are not of interest. Then, the output of this fusion module is added to the output
of the corresponding feature map of the color branch. This addition is entered to the following convolutional layer. (b) The
fusion module F is a transformer, that will apply a self-attention mechanism to the polarization data. This way, the areas of
interest will have large values, and the areas with no valuable value will have low values.

different hierarchical levels. We have two ResNet-18 encoders as in the original Monodepthv2:

one for the color data, and one for the polarization data. The polarization feature maps are

passed through a fusion module to find the areas with the most valuable features. The output

of this module is added to the corresponding feature map of the color branch, and this result

is given to the next convolutional layer of the RGB encoder. This architecture preserves the

performance of the color-only depth estimation network. Indeed, if there is no important

data from the polarization branch, the original color feature map is left untouched. Only

when the polarization data is valuable, the color branch will benefit from it. The fusion

module follows the structure of a Visual transformer [28] encoder. This block will apply

the self-attention mechanism to the polarization branch, weighting the different regions of

the input feature map depending on the relevance of that data to the final objective task.

By doing so, we expect to lower the values of the feature map in the regions where there

is no valuable polarization information, and to provide important clues where the color

information is not enough to solve for the distance. For each fusion module, we have chosen

a patch size of 16 as in the original model, a set of L = 12 consecutive encoder blocks, 12

attention heads, and an embed dimension of 768.
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To the original Visual Transformer, we have added a 2D convolution operation to adapt

the number of channels to the required value to combine this feature map with the corre-

sponding color map. Furthermore, to be flexible to any input image size, we have added

a padding operator that is applied to the transformer block input. This padding will add

enough zeros in the last columns and rows to make the image divisible by the selected patch

size. Then, the added columns and rows are removed before providing the final output image.

In our architecture, there is an independent weighting module for each hierarchical level

of the encoder. This is required since each feature map has a different size, thus a single

transformer module cannot adapt to all of them.

As input encoding, we use the equation Eq. (5.1), since it is the one that correctly

separates the intensity information from the polarization information. Finally, the hyper-

parameter for the loss in Eq. (5.10) has been set to γ = 0.001.

5.3.2 Evaluation

In this section we evaluate the performance of the baseline algorithms, and the proposed

one. For the baseline methods, we include the results obtained with the publicly available

weights, and with the weights trained with the images from the CroMo and Baltaxe et

al. datasets. Regarding the code from [11], monochrome polarization images has to be

considered as inputs. To obtain these images, we do the average of the color channels to

obtain an equivalent polarization image (I0◦ , I45◦ , I90◦ , I135◦) in gray levels. The models

have been evaluated with the test set mentioned above (station - 20201028-111403, and

the corresponding test set from Baltaxe et al. ). The chosen evaluation metrics are the

ones commonly adopted for the depth estimation algorithms [17]. Given an estimated depth

image d̂, the corresponding ground-truth image d, and considering we have N pixels from

which we are going to evaluate the performance of the depth estimator, the depth metrics

are defined as follows:
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• Absolute relative error (ARE):

ARE =
1

N

N∑
i=1

|di − d̂i|
di

(5.13)

• Square Relative Error (SRE):

SRE =
1

N

N∑
i=1

(
di − d̂i

)2
di

(5.14)

• Linear Root Mean Square Error (RMSE):

RMSE =

√√√√√√ 1

N

N∑
i=1

(
di − d̂i

)2
(5.15)

• Log Scale Invariant Mean Square Error:

MSElog =
1

N

N∑
i=1

(
log
(
d̂i

)
− log (di) + α

(
d̂i, di

))2
(5.16)

where α
(
d̂i, di

)
is in charge of the scale alignment. It is defined as

1
N

∑N
i=1 log

(
d̂i

)
− log (di).

• Accuracy under threshold:

δ = max

(
di

d̂i
,
d̂i
di

)
< τ (5.17)

where τ is a predefined threshold. In general, we find that δ < 1.25, δ < 1.252. and

δ < 1.253 are common threshold values.

The default training configuration from Monodepthv2 is: Adam optimizer, input image

size 640 × 192, learning rate of 10−4, and disparity smoothness weight 1e − 3. We have

trained the models over 50 epochs, with a batch size of 16. All the tested code has been
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developed in Python programming language, with PyTorch as deep learning library. For fair

comparisons, we have added additional code to fix the initial state of the training process at

the same point at every run. This enables reproductibility through successive training runs.

We have trained the models on a computing server running CentOS 7 with a single NVIDIA

A100 40Gb GPU card. Our model inference time is 42.4 ms, whilst for Monodepthv2 it is 6.7

ms, and for the P2D model, it is 11.2 ms. These times have been computed as the median

inference time over the test set. The difference in inference time between Monodepthv2

and P2D is due to the difference in the encoder architectures which are a ResNet-18, and a

ResNet-50, respectively. In our case, we follow a middle fusion architecture with two ResNet-

18 encoders, plus a transformer module to balance the polarization contribution. Despite the

increased computational load compared to baseline methods, we maintain a frame rate of

over 20 fps. We leave as future works the evaluation of a late fusion architecture. In Fig. 5.10

we show some results of the models for a sample image, and the ground-truth depth image.

In Tab. 5.1 we summarize the metrics results of the different trained models. In this

table, we have included the results of the two models with the corresponding weights given

by the authors, and we also did a full training with the CroMo dataset. The two evaluated

models have not been chosen arbitrarily but with a clear objective. The model Monodepthv2

is a network that does depth estimation based on textures only. The code from P2D works

similarly, but is based mainly on the polarization information. Even though the total light

intensity data is given as part of the inputs, the color information is not present. Therefore,

the two baseline networks produce alike outputs, based on only one of the modalities. Our

model takes the best of two worlds, and it extracts polarization features and color features

separately, and as shown in Tab. 5.1, using polarization and color information simultaneously

outperforms both baseline algorithms.

In Fig. 5.10, we have marked some areas of interest with colored rectangles. These areas

(insulators, monochrome, planar surfaces, highly reflective) are of interest since they possess

important polarization cues to disambiguate the results when there is a lack of texture in the

color images. This information can be seen in the DoLP and the AoLP shown in Fig. 5.12.

In these images, the windows, the water, and the planar surfaces present a color gradient in

the AoLP value, and a DoLP value that changes based on the material, which is not the case
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Qualitative results of the trained networks with the CroMo dataset. The input image corresponds to one
sample of the test set. The drawn rectangles are just to bring the attention to the points of interest where polarization
information generally provides valuable cues (water, flat single color surfaces, glasses). (a) Color image used as input for the
Monodepth2 and the color branch of the proposed network. (b) Input encoding for the P2D algorithm. (c) Input encoding for
the polarization branch of the proposed algorithm. To be able to correctly visualize the image, the absolute value of the cosine
and sine function have been used. (d) Results obtained with the pre-trained weights of the Monodepthv2, provided by the
authors [36]. (e) Results with the pre-trained weights of the P2D network [11], provided by the authors. (f) Ground-truth depth
image. (g) Results obtained obtained after training the Monodepth2 network with the CroMo dataset. (h) Results obtained
obtained after training the P2D network with the CroMo dataset. (i) Results obtained obtained after training the proposed
method network with the CroMo dataset.

for the color images. None of the tested networks perform well in those regions, even if one

of them receives as input the polarization state of the light. In Fig. 5.11 we show the results

obtained with a sample image from the dataset of Baltaxe et al. . Particularly in this image,

we can see how the cars windshields, and the far field objects are better reconstructed when

the polarization data is correctly integrated with the texture information, in contrast to the

results obtained with Monodepthv2.
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Dataset Model name Trained ? ARE SRE RMSE MSElog δ < 1.25 δ < 1.252 δ < 1.253

CroMo
Monodepthv2 No 0.418 20.393 51.155 0.591 35.04 % 61.18 % 69.81 %

Yes 0.302 12.105 36.928 0.302 51.43 % 70.78 % 83.80 %
P2D No 0.928 30.667 54.702 0.976 17.46 % 34.89 % 51.40 %

Yes 0.358 13.650 38.835 0.364 37.67 % 65.71 % 79.49 %
Ours Yes 0.274 10.845 34.463 0.254 57.19 % 73.61 % 86.23 %

Baltaxe et al. [9]
Monodepthv2 No 0.150 3.003 16.965 0.068 77.50 % 92.42 % 97.49 %

Yes 0.079 1.479 11.435 0.022 91.73 % 97.60 % 99.30 %
P2D No 0.449 13.099 27.727 0.293 34.39 % 62.73 % 80.72 %

Yes 0.235 6.074 25.812 0.167 58.28 % 83.07 % 92.08 %
Ours Yes 0.072 1.422 11.513 0.021 93.08 % 97.73 % 99.16 %

Table 5.1: Quantitative results of the evaluated models (Monodepthv2 [36], P2D [11], and proposed) over two different
datasets. When the model has not been trained, the weights given by the authors have been used. When trained, we have used
the configuration mentioned in the original corresponding paper. Numbers in bold black indicate the best result, and numbers
in bold blue means the second-best result.

(a) (b) (c) (d)

Figure 5.11: Qualitative evaluation of the re-trained models over in [9]. (a) Color image. (b) Output from the Monodepthv2.
(c) P2D algorithm; and (d) the proposed algorithm.

From both, qualitative and quantitative evaluation, we can see that the pretrained net-

works do not outperform the trained networks. In general, a data-driven algorithm is strongly

dependent on the data with which it has been trained. In the case of images, changing the

camera lens, the sensor dimensions, sensor noise, the pixel sensitivity, and the type of envi-

ronment used during training will introduce visual effects that the deep learning network is

not capable to understand. This is why a training process is required from either the pre-

trained weights, either from scratch. Since for our model we do not have pretrained weights

for the polarization encoder, we also trained all the models from scratch with the CroMo

dataset to make a fair comparison of their performance.

From the trained versions, we can see that the Monodepth2 model provides a good

performance considering that it is only using the color information of the light. In Fig. 5.10

we can distinguish several objects as the columns behind the pool, part of the building, and

slightly the tree. Nonetheless, there are several inconsistencies, such as the borders of the

swimming pool are not sharp, the roof below the first stage disappears behind the right

column, and the end of the pool close to the tree vanishes. The P2D approach does not

produce satisfactory results either, which can be caused by several aspects. Firstly, the color
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(a) (b) (c)

Figure 5.12: Polarization parameters of the sample image used to test the networks. (a) Color image. (b) DoLP as a
gray-scale image. A white color means a Degree of Linear Polarization of 100 %, and a black color means a DoLP of 0%. (c)
AoLP colored with the HSV palette.

information is not provided as input, but the gray-scale intensity. This reduces the amount

of texture information that can be extracted from the image. The polarization information

is given at the input, without any processing. Particularly, the periodicity of the AoLP is

not considered either by the network operations or by the input encoding. As a consequence,

there will be several strong variations in the color when the measured angle is close to zero.

Our proposed method improves several of these aspects. The columns and the roof of the

first stage are present in the depth image, and the estimation of the depth for the pool is

geometrically consistent. Additionally, a larger area of the building is reconstructed, and the

transitions between objects are sharp.

From the quantitative evaluation in Tab. 5.1, we also observe that the proposed method

outperforms the other models for all the considered metrics.

5.3.3 Ablation study

In order to validate our methodology, we conducted several ablation studies. Our method

contains the following improvements:

• A loss that encapsulates the polarization, and both reflection types (diffuse and spec-

ular),

• Two independent encoders, bounded by a transformer-based weighting module,

• A perspective to orthographic reprojection stage.
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Model name ARE SRE RMSE MSElog δ < 1.25 δ < 1.252 δ < 1.253

M.1 0.292 11.339 36.613 0.249 53.92 % 73.54 % 85.39 %
M.2 0.290 11.876 37.882 0.275 55.27 % 72.76 % 84.96 %
M.3 1.064 36.026 59.790 1.266 14.06 % 26.09 % 37.50 %
M.4 0.440 18.883 45.793 0.464 40.78 % 61.18 % 73.57 %
M.5 0.354 16.525 43.394 0.469 46.09 % 65.27 % 75.66 %
M.6 0.300 10.746 36.319 0.270 51.07 % 71.66 % 85.72 %
M.7 0.287 9.922 35.761 0.266 53.01 % 71.58 % 85.11 %
M.8 0.307 11.550 36.748 0.319 49.99 % 70.03 % 82.67 %

Monodepthv2 0.302 12.105 36.928 0.302 51.43 % 70.78 % 83.80 %
Proposed 0.274 10.845 34.463 0.254 57.19 % 73.61 % 86.23 %

Table 5.2: Ablation study results. Numbers in bold black indicate the best result, and numbers in bold blue means the
second-best result.

Thus, we verify the influence of each part independently. The results of these tests are

included in Tab. 5.2. Visualizations for different scenes are shown in Figs. 5.13 and 5.14.

Architecture modifications: The first test corresponds to the model M.1, in which

the transformer block has been replaced by a direct connection. In other words, the output

of the transformer block has been set equal to the input to it. A consequence of removing

this block is that the self-attention mechanism is removed, which is in charge of finding

the regions of interest where the polarization data can contribute to the final results. Even

though the quantitative results are good, the visual results present several inconsistencies

when using this model.

Loss contribution: For these tests, we keep the proposed network architecture, and then

we remove our loss contribution to see how the optimization process changes during the model

training. The results corresponding to this test are the ones of model M.2. This test confirms

that our model complies with our main premise: adding the polarization information should

preserve the performance of the baseline, color-based network. Moreover, we see that all

the metrics provide better results when the polarization data is added than when only the

color data is used. In our case, the polarization data provides geometrical constraints that

are learned by the model. This data is processed by the Convolutional encoder to extract

features, but those features are filtered by the transformer encoder. This last block will

weight the features, and if they do not provide valuable information, they will be assigned
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Figure 5.13: Results obtained with the different models of the ablation study. Part 1

a value close to zero. Next, the filtered features are mixed to the color data. Therefore, the

only effect of including the polarization data is to improve the original results.

Perspective consideration: Our model also considers the perspective projection pro-

duced by the camera lens. Thus, for the model M.3 we have removed the preprocessing

step that converts the filter orientations to the local coordinate frame, and from the loss, we

have removed the step in which the normal vectors are moved to this coordinate system to

make the comparison between the azimuth angle, and the AoLP. This model perfectly shows

the effect of not considering the perspective projection effect in the polarization data. Even
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Figure 5.14: Results obtained with the different models of the ablation study. Part 2

though the model architecture is exactly the same as the proposed one, the outcomes are

completely different. The metrics are degraded with respect to the full model, and we can

see inconsistencies in the output images. Notably, the relative value between far and close

objects is deteriorated when the perspective projection is not considered.
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Loss contribution weight: We have observed that the loss contribution can have a value

up to four times the Structural similarity loss value. This might bias the network results to

tend to ignore the texture-based information all the time. Thereby, we have made tests for

different γ values, in which the model M.4 corresponds to a value of γ = 1, M.5 corresponds

to a value of γ = 0.1, M.6 corresponds to a value of γ = 0.01, and the proposed method

has a value of γ = 0.001. The models obtained with these different values of the hyper-

parameter γ confirm our hypothesis. When γ = 1, the polarization contribution mainly

guides the training process, and the result is a network that outcomes dark images. This

is an indication that the model has found a local minima far away from the convergence

point. An explanation to this effect might be that the images of the polarization parameters

are noisy as shown in Fig. 5.12. These images include more noise than the intensity images

since the AoLP and DoLP images are obtained after doing the difference of two polarization

channels. This operation is equivalent to computing the gradient of the intensities, an

operation that tends to increase the level of noise with respect to the original images. Thus,

having a loss function based on these observations only will not guide the model toward a

general solution. Therefore, the polarization measurements should be incorporated in the

loss to improve the results, but other terms have to be included to compensate the fact

that the inputs have a low Signal-to-Noise ratio. It is for this reason that as we reduce

the strength of the polarization contribution, the performance metrics of the network start

increasing. From the results shown in Fig. 5.14, we see that we start with dark images when

γ = 1, and we start having some little gradients when γ = 0.1. Next, when γ = 0.01, the

images start estimating a depth similarly to the final model, and when the γ = 0.001 the

proposed model is obtained.

Reflection type: We have tested the effects over our model if only one reflection type

is considered. To do so, we use the function M as the diffuse- and specular-dominant

separation mask, and remove one of the two loss contributions. In other words, in Eq. (5.10)

we considered two cases: one in which we removed the term (1−M)Ldiff , and the other

one where it is the term MLspec which is removed. These models are named M.7 and M.8

respectively. From the quantitative point of view, neither of the models has been able to
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perform as well as the proposed method. This result is expected since the added information

is less when considering one reflection than when considering both of them. Considering the

qualitative results, we see that the results obtained with the specular part only are worse

than for the diffuse light, and that the diffuse results are similar to those obtained with

the proposed method. This is because the diffuse component considers the regions with a

DoLP between 0 and 0.3, which correspond to most of the regions of the scene. We can

also see that far away regions are less described by this model than by the proposed one.

On the contrary, when keeping only the specular reflection data, the number of pixels that

reflect specular light is less than the number that reflect diffuse light. This is due to only

highly reflective regions, such as the water and the glasses, will reflect highly polarized light.

Furthermore, this polarization level will happen only when the viewing angle is close to the

Brewster angle, which is not always the case. Therefore, the polarization contribution is less

frequent in these cases, thus producing results closer to the ones obtained with color-only

images.

5.4 Conclusions

In this chapter, we have presented a methodological path to incorporate the polarization

state of the light in a deep learning network. Particularly, we aim to improve an already

existing algorithm that estimates the scene depth based only on textures, by integrating the

polarization information in the pipeline. Some works have tried to address this problematic,

but their results are not optimal, and they do not show the estimation improvements in

the areas in which color-based methods generally fail. Throughout this chapter we have

analyzed the different network options, and tools already available to create our own method.

We have detailed all the required functions, and we have shown the results obtained with

two data-driven algorithms to establish our baseline, and to stress the weak points that we

want to address with our model. Then, we have chosen a configuration of a deep learning

network to do depth estimation by jointly using color and polarization information. We

have evaluated all the models quantitatively and qualitatively, and we have shown that our

method surpasses the baselines. Our model does not degrade the performance of the baseline
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model which makes use of the color information only. Our loss considers both, diffuse and

specular reflections, and the perspective reflection over conventional cameras. Taking into

account these considerations is essential to produce outperforming polarization algorithms.

As stated before, the baseline algorithms are not able to correctly reconstruct flat surfaces

such as water, glass, or highly reflective surfaces. Our algorithm improves these results

by achieving a perfect balance between the contributions of the two modalities: color and

polarization. Indeed, through the transformer encoder, our network can dynamically decide

where is the most useful polarization information to correctly reconstruct the scene depth,

and since this information is simply added to the color encoder, we do not degrade the

performance of the original color-based network.
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Chapter 6

Conclusion

Robots are more and more present in our daily life. This is mainly because the target markets

have grown in the last years, and because the price of the components with which they are

made have become more affordable. Vacuum cleaners, lawn mowers, humanoids, mobile

telepresence, autonomous driving cars, aerial and ground robots for video recording or scene

analysis are the ones that almost everybody has seen or heard. Thanks to the increased

computing resources available today compared to the past, these machines now incorporate

more complex algorithms and often operate with greater independence from humans. To

accomplish their task, the robots need to sense their surroundings in different manners and

fuse the data coming from sensors with the aim of accomplishing their mission in a safe and

accurate way. Of the different available sensors, vision is the one that provides the richest

information about the environment, but many of those algorithms limit their usage to the

visible spectrum since it is the same range of frequencies that humans can see. Thereby, the

obtained images are easier to interpret for us than non-visible modalities such as infrared or

polarization. Nonetheless, using other modalities complements the information that cannot

be disambiguated by using only visible light. Particularly, with the polarization state, the

light is completely described since we consider its intensity, its color, and the way it moves

as it travels.

In this thesis, our main objective is to show how the polarization data can be used to

do 3D scene reconstruction, and how we can modify already existing algorithms that make

use of visible colors only to outperform their results by using the polarization data. Our
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first contribution in this sense is the development of a calibration algorithm able to fit a

complete pixel model to the measured data. By doing so, we correct the distortions in the

measurements due to parameter dispersion, manufacturing errors, and lens deformations.

Differently from other algorithms, our aim is to facilitate the usage of this modality with

the DoFP sensor. It is for this reason that our method simplifies the acquisition setup

by estimating the light parameters during the calibration procedure, and by being more

flexible with the acquisition conditions while keeping the system accuracy. With our proposed

method, the required time to do the polarimetric camera calibration is reduced.

To show the effects of our calibration algorithm over a concrete application, we have

developed a Shape from Polarization pipeline based on the polarization state physics. To

the best of our knowledge, for the very first time, we have done a complete description of the

SfP algorithm, by considering the effect of the different types of reflections and materials. We

have provided all the required formulas based on Fresnel equations, and we have included

their inversed versions. Furthermore, we have shown that jointly the polarization state

and the calibration enable more accurate normal estimation at different orientations of a

plane surface than an uncalibrated setup. With this application, we have demonstrated the

power as well as the limitations of the geometrical constraints set by the electromagnetic

waves theory. When an application makes use of specific materials from which we know an

approximate shape, and index of refraction, the normal vector can be estimated with a single

picture. When not too much information about the object is known, assumptions need to

be made (for instance, reflection type, incoming light polarization state, or concavity). In

the simple but effective method developed, we have shown that, even if the sensor is of good

quality, the calibration algorithm is able to introduce an improvement of more than 12%

when running the SfP application, which is not negligible. Thus, the calibration pipeline is

a requirement for this modality, and sensing methodology.

Finally, we have a possible Deep Learning network that can be used to estimate the

distance to the objects with respect to the camera coordinate frame. This application is of

importance since it allows us to estimate a possible danger close to our robot. Therefore,

accuracy is vital. Due to the type of geometrical constraints and its independence on the

light intensity, polarization is a perfect candidate to improve the quality of texture-based
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CHAPTER 6. CONCLUSION

networks that perform this task. In the Chapter 5 of this thesis, we have analyzed the pros

and cons of a well-adopted deep learning network to do self-supervised, monocular depth

estimation: Monodepthv2. We have analyzed its components, its loss function, and we

have adapted a polarization contribution that can improve the performance of the baseline

network. The proposed loss term is independent of the material, and the reflection type

of the objects present in the scene. We have carefully built an architecture that does not

degrade the original network performance, and it improves the reconstruction quality where

the color information is not enough. Differently from other approaches, we have introduced a

geometrical model to consider the effects of the perspective projection over the polarization

measurements. The contribution of this consideration has been shown in our ablation studies

in which we confirm that this correction is mandatory to obtain outstanding results when

using the polarization information. We have shown results of two baseline networks, which

consist of the original Monodepthv2 network, and a version of it that considers only specular,

polarized reflections. Our proposed method provides better quantitative and qualitative

results than both baselines. Our algorithm performs better mainly in the regions where

polarization provides valuable clues that are generally hard to analyze by texture-based

algorithms. To the best of our knowledge, there is not any work that makes use of the

polarization state, and at the same time, stress the fact that they improve the results in

these type of materials. Generally, these works show the global accuracy gain over the test

set, without specifying the accuracy at some challenging elements.

One important point to note is that the results shown with our deep learning network

are based on an uncalibrated setup. Indeed, we are using a third party dataset that did not

calibrate the camera in the sense of the polarimetric measurements, and since our camera

does not have the same configuration as theirs, it is impossible to do the training with

calibration. Therefore, we are unable to estimate the error gap of our data-driven algorithm

as we did in Chapter 4.

Despite our contributions, there are still several improvements to carry out in our future

work. The proposed loss function in Chapter 5 is computed based on a factor that depends

on the detection of the type of reflection at each pixel. In this work, we have considered

a mask computed by doing a thresholding operation on the DoLP. The required operation
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to do this separation is more complex, and most works that do specular and diffuse light

separation produce the intensity separation, and not the polarization parameters separation.

Our immediate line of research is aimed at obtaining a diffuse and specular separation for

the polarization parameters.

As we mentioned above, the depth estimation neural network is done with a dataset that

does not consider sensor calibration. Based on the results presented in Chapter 4, the results

obtained with the neural network can be further improved if we use a calibrated camera.

Indeed, the calibration will correct the AoLP and DoLP polarization measurements, which

will modify the values computed in the loss function. Therefore, the training process will be

guided differently when using uncalibrated and calibrated setups. By using the developed

toolkit, we aim to do the polarimetric camera calibration, and create a dataset with our

camera to analyze the effect of the calibration over the training process.

Finally, we aim to extend the applications included in our software to reach a wider

public. Namely, we intend to add a deep learning library to the compilation process, and

with it, open the door to the development of data-driven applications for the robotics field.
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Appendix A

Explanation of angle of linear

polarization estimator error

A.1 Base theory

The polarization state of a light source is defined by its 4D Stokes vector S. If the polarization

analyzer has only linear filters, then only the first three components of this vector can be

measured. This is the case of our camera, thus, S3 will not be considered. In other words,

we are interested in the linear Stokes vector S = [S0, S1, S2]
T . From this vector, the Angle

of Linear Polarization α and the Degree of Linear Polarization ρ can be computed as:

α =
1

2
atan

(
S2

S1

)
ρ =

√
S2
1 + S2

2

S0

. (A.1)

In order to measure the Stokes vector, and therefore, its linear components, at least three

measurements with a linear polarizer at three different orientations are required. In the case

of a RGB DoFP sensor, a set of 2 × 2 pixels with the same color filter can be used for this

purpose. Each pixel of this set has a linear polarization filter oriented at 0◦, 45◦, 90◦, and

135◦. If these filters are perfectly placed at these orientations, and the pixel qualities are
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ideal, then the Stokes vector can be computed from these measurements as:


S0

S1

S2

 =


I0 + I45 + I90 + I135

2

I0 − I90

I45 − I135

 , (A.2)

where I0, I45, I90, and I135 are respectively, the intensity measurements of the pixels whose

filter has an orientation of 0◦, 45◦, 90◦, and 135◦. This equation can be demonstrated by

using Eq. (3.5) in Sec. 3.2.1. Indeed, when the camera is ideal, Ti = 0.5, Pi = 1.0, and

θi = i, for i = {0◦, 45◦, 90◦, 135◦}. As a consequence, the identity shown in Eq. (A.2) allows

to measure the AoLP α directly from the super-pixel intensities.

Nevertheless, in the general case, the pixels and the filters are not ideal, and the filter

orientations are not perfect. Therefore, using Eqs. (A.1) and (A.2) to estimate α brings an

error that must be quantified. In order to demonstrate the shape of this error, we need to

remember two set of mathematical properties:

- Sine and cosine properties:

sin
(
π
2
+ θ
)
= cos (θ) sin

(
3π
2
+ θ
)
= −cos (θ)

cos
(
π
2
+ θ
)
= −sin (θ) cos

(
3π
2
+ θ
)
= sin (θ)

sin (π + θ) = −sin (θ) cos (π + θ) = −cos (θ)

(A.3)

- Taylor expansion of sine and cosine functions up to order 2, around θ = 0:

sin (θ) ≃ θ cos (θ) ≃ 1− θ2

2
(A.4)

where θ is measured in radians.

Additionally, when a pixel and its polarization filter are not ideal, the relationship between

the Stokes vector and the measured intensity is given by Eq. (3.2). This equation has been
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copied here for convenience:

Ii = Ti

[
1

Pi

cos (2θi) sin (2θi)

]
S0

S1

S2

 , (A.5)

where Ii is the measured pixel intensity, Ti is the pixel gain, Pi is a factor that mod-

els the non-ideality of the pixel micro-filter, and θi is the micro-filter orientation, for i =

{0◦, 45◦, 90◦, 135◦}.

A.2 Demonstration

To demonstrate the error equation in the estimated AoLP, we compute the error in the

measured Stokes components when the pixels are considered ideal.

Ŝ1 = I0 − I90

Ŝ2 = I45 − I135
(A.6)

Considering the pixel model of Eq. (A.5), and assuming that the micro-filter with orien-
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Figure A.1: AoLP estimator error plot.
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tation i has an error ∆θi with respect to its ideal orientation, we obtain:

Ŝ1 =

[
T0

[
1

P0
cos (2∆θ0) sin (2∆θ0)

]
−

T90

[
1

P90
cos (π + 2∆θ90) sin (π + 2∆θ90)

]]
S0

S1

S2


(A.7)

Using the sine and cosine properties, and grouping terms gives:

Ŝ1 =
[
A B C

]
S0

S1

S2

 , (A.8)

with
A =

T0

P0

− T90

P90

B = T0cos (2∆θ0) + T90cos (2∆θ90)

C = T0sin (2∆θ0) + T90sin (2∆θ90)

Since the angle error can be considered close to zero, then the corresponding Taylor expan-

sions in Eq. (A.4) can be used to replace the sine and cosine functions. Moreover, by doing

the matricial multiplication we obtain:

Ŝ1 = AS0 + [T0 + T90 − 2T0∆θ20 − 2T90∆θ290]S1+

[2T0∆θ0 + 2T90∆θ90]S2.

(A.9)

If the angle errors are between [−10◦, 10◦], the corresponding range in radians is [−0.1745, 0.1745].

Thus, if we square this range, we obtain a range of values [0, 0.03]. The orientation errors due

to manufacturing problems have values less than the given example, therefore, the second

order variables can be neglected.

Ŝ1 = AS0 +G
′
S1 +K1S2. (A.10)
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with:
G

′
= T0 + T90

K1 = 2T0∆θ0 + 2T90∆θ90.

Similarly, Ŝ2 can be obtained as a function of the Stokes components.

Ŝ2 = DS0 −K2S1 +G
′′
S2. (A.11)

where:
D =

T45

P45

− T135

P135

G
′′
= T45 + T135

K2 = 2T45∆θ45 + 2T135∆θ135.

It follows that the estimated AoLP α̂ is equal to:

α̂ =
1

2
atan

(
Ŝ2

Ŝ1

)
=

1

2
atan

(
DS0 −K2S1 +G

′′
S2

AS0 +G′S1 +K1S2

)
(A.12)

Remembering that S1 = S0ρ cos (2α), and S2 = S0ρ sin (2α), where ρ is the degree of linear

polarization, and α is the real angle of linear polarization of the incoming light, Eq. (A.12)

becomes Eq. (A.13).

α̂ =
1

2
atan

(
D −K2ρcos (2α) +G

′′
ρsin (2α)

A+G′ρcos (2α) +K1ρsin (2α)

)
(A.13)

This equation converges to the true AoLP α if the pixels and the filters are ideal, i.e., Pi = 1,

Ti = 0.5, and ∆θi = 0, for i = {0◦, 45◦, 90◦, 135◦}. In a real case, slight deviations from these

values will appear. The sources of these deviations are the manufacturing process of the

sensor, and the lens added to the camera. As mentioned in Sec. 3.2.2, considering a small

region around the center of the sensor reduces the deviations caused by the lens.

Analyzing this equation, it is possible to conclude that:
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- The deviations in the pixel parameters will make the other Stokes parameters to influ-

ence the AoLP measurement.

- The deviations in the orientations of the micro-polarizers, denoted by ∆θi, for i =

{0◦, 45◦, 90◦, 135◦} will introduce an error based on the value of the complementary

Stokes parameter (for the measurement of S1, a deviation in the orientation of the

micro-polarizers will introduce an error based on the value of S2, and an error based

on S1 in the measurement of S2).

- For measurements of the same light at different AoLP, the deviations in the non-

ideality factor Pi and the gain Ti will produce a constant shift in both, numerator and

denominator, of Eq. (A.13).

- The values of K1 and K2 should be close to zero, and this can happen in two situa-

tions: either the pixel parameters are almost ideal and therefore the orientation errors

are almost zero, or the pixels orientation error are almost the same, but in opposite

directions. The second case can be understood by looking at the definitions of these

variables. For instance, K1 = 2T0∆θ0 + 2T90∆θ90, where T0 and T90 are positive num-

bers, and in general, they are close to 0.5. Therefore, if ∆θ0 ≃ −∆θ90, then K1 will

have a very tiny value. Similarly, K2 will be almost zero when ∆θ45 ≃ −∆θ135. Finally,

it can be seen that the errors in the orientations can be compensated if they are in

opposite directions.

In all the cases, the errors will produce sine-like functions, since they will change the ratio

of the sine to the cosine functions. Nevertheless, the effect of each parameter to the final

shape of the error is different. The error in the orientations can change only the minimum

and maximum values in the estimation error function, and the factors Ti and Pi can create

sine shaped error functions and additionally change the position of its extreme values.

A.3 Experiments

In this section, the error function has been computed for several set of samples. The samples

to which the functions are fitted have been captured using the RGB-polarization sensor with
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the following lenses:

- Lens 1: Fuji-film HF8XA-5M - F1.6/8mm

- Lens 2: Fuji-film HF12XA-5M - F1.6/12mm

- Lens 3: Fuji-film HF16XA-5M - F1.6/16mm

- Lens 4: Fuji-film HF25XA-5M - F1.6/25mm

Additionally, all the lenses have been correctly focused on the light source used, and their

F-number have been set to 3, which is higher than 2.8. This configuration have been chosen

to comply with the recommendations given by [57].

To run this experiment, the AoLP estimator as described in the Sec. 3.2.2 has been used.

Then, with a uniform unpolarized light source and a rotative linear polarization filter, a

linearly polarized light is generated. The position of the filter is changed progressively in

the range [0◦, 180◦], with a step of 5◦. The reference angle of linear polarization of each

sample have been measured from the rotative mount of the linear filter. Additionally, the

AoLP is estimated with the implemented algorithm for each of these samples. Finally, the

error between the reference value and the estimation is computed and plotted in Fig. A.2.

To avoid a constant shift in the measurements due to misalignment, since the first reference

angle is zero, the first estimated angle have been subtracted from all the estimations. By

using a least-squares optimizer, the pixel parameters have been found for each set of samples

taken with the different lenses. These parameters are shown in Tab. A.1. For creating this

data, the degree of linear polarization used is ρ = 0.97.

As shown in Fig. A.2, estimating the AoLP by doing the circular average of the measure-

ments given by the central pixels produces a maximum error of 0.65◦. This upper limit is

valid for all the tested lenses.

Tab. A.1 shows all the pixel parameters obtained by least-squares optimization of Eq. (A.13)

with the real data. From this table it is possible to confirm the effective pixel values are not

far away from the ideal ones. Particularly, the maximum orientation error is ∆θ0 = 1.47◦.

Nonetheless, as explained in the previous section, this error is compensated by the com-

plementary pixel orientation which is in this case ∆θ90 = −1.32◦. Additionally, the values
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Figure A.2: Error in the estimated AoLP, and curve fitted of Eq. (A.13) for different cases. (a) Lens 1. (b) Lens 2. (c)
Lens 3. (d) Lens 4

Lens model Parameter i = {0, 45, 90, 135}

Ti

Lens 1 [0.525, 0.542, 0.548, 0.499]

Lens 2 [0.53, 0.58, 0.57, 0.49]

Lens 3 [0.53, 0.48, 0.49, 0.51]

Lens 4 [0.52, 0.49, 0.44, 0.45]

Pi

Lens 1 [1.009, 0.992, 1.067, 0.922]

Lens 2 [0.96, 1.06, 1.03, 0.91]

Lens 3 [1.04, 0.88, 0.97, 0.95]

Lens 4 [1.09, 1.05, 0.95, 0.98]

∆θi

Lens 1 [0.109, 0.114,−0.192, 0.092]

Lens 2 [−0.42,−0.94, 0.37, 1.31]

Lens 3 [1.47,−1.07,−1.32, 1.54]

Lens 4 [0.07, 0.17, 0.07, 0.16]

Table A.1: Parameters obtained by non-linear optimization for Eq. (A.13).
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exposed in this table show that the different lenses influence the pixel parameters. Indeed,

the figures have similar shapes, but the corresponding maximum values are not the same, and

they are located at different positions. This is because the corresponding pixel parameters

have changed for each case.

As a conclusion, it is possible to confirm that using the ideal values of the pixels pa-

rameters introduces an error in the estimation of the AoLP, and this error depends on the

measured angle, and the actual pixel parameters. Even though the pixels can be ideal,

placing a lens between the light to measure and the sensor will introduce an error in the

measured Stokes vector that is reflected as a change in the effective pixel parameter values.

To minimize these deviations, a better estimation of the Stokes vector must be used.

This better estimation can be obtained by doing calibration to find the real values of the

pixel parameters.
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Pola4All: Acquisition, development, and

integration platform

When working in any project, it is important to develop software tools that can help the

every day work. The time invested when doing this, can reduce and ease the work to do

later on. To comply with this objective, it is necessary to be able to identify and to see in

advance, the type of tasks which we will have to deal with, and which of them are going

to be done repeatedly. Additionally, the source code should be organized in such a manner

that it allows easy addition or suppression of components without compromising the other

functionalities. Finally, to optimize our time, if there are several ways to perform a task, we

should choose the set of instructions that runs it in the shortest time.

In this appendix, we describe a complete software toolkit with a graphical user interface

that we have developed during this thesis. This software allows us to work with the color-

polarization camera in a very simple manner. It can also serve to develop computer vision

tasks oriented towards robotics applications. We present its code base, its source code

organization, its components, and the algorithms included in it.

B.1 Motivation

Nowadays in the market, there exist several camera models that make use of a polarization

sensor of the type DoFP. Lucid Vision Phoenix [109], Flir Blackfly [30], jAi Go [46], and
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Basler Ace [1] are some of the examples that are powered by the Sony Polarsens polarization

sensor (either RGB, either monochrome). Each camera can be divided into three main

components: the sensor itself, the electronic board that makes the interface between the

sensor and the acquisition machine, and the related software that is able to communicate

with the camera, retrieve the images from the sensor, and process them.

We have identified several weak points in all these systems. Firstly, the electronic board

is not common to all the available cameras. Each of them includes a set of functionalities

that are not the same among manufacturers. Furthermore, even though the common API

GeniCam [5] is generally used for industrial cameras, the way the electronic board is ini-

tialized, the specific connection configuration, and the set of particular instructions included

with each camera remain specific to each manufacturer. Regarding the software provided

by the manufacturer, it only allows to work with the camera produced by the manufacturer.

Additionally, even though the sensor is the same, each manufacturer decides whether to

include or not polarimetric processing algorithms. For instance, the Basler AG cameras do

not provide any consideration for polarization in their software (not even the interpolation

nor the split by polarization channel), and Lucid Vision includes up to the computation of

the AoLP and the DoLP in their software. Although some manufacturers may include some

polarization algorithms in it, the latest research outcomes are not included in their software,

and we cannot modify their software suites since they are closed source.

For all these reasons, we created a new software toolkit that aims to overcome all the

previously mentioned difficulties. This software is thought to work with any camera available

in the market that makes use of a DoFP technology. The architecture of the software is

split in two main blocks: one that makes the interaction with the physical camera and it

creates a common interface to communicate with it, and another block that contains all

the polarization related processing (camera configuration, polarization algorithms, results

display, calibration, and data analysis). The chosen algorithms have been developed to take

the minimum possible time (for instance, the calibration data loading and the calibration

step take 8 seconds each).

The switch from one camera to another (even if they are from different manufacturers)

is done in the first block by changing a single variable on start-up. If the available camera
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is not included in our software, the only required step is to write a software driver with the

most basic instructions (initialization, change acquisition parameters, and retrieve images).

Once done, the rest of the software does not change.

Finally, the communication between the camera and the graphical user interface is done

using the middleware Robot Operating System (ROS), which enables the usage of the camera

with a more complex robotics system. The entire code has been made publicly available in

GitHub [90]. In the rest of this chapter, we will detail the developed software properties, and

the implemented algorithms, and we will show the different outcomes we can obtain with it.

B.2 The software

In what follows, we briefly describe the software, including its basic components and the

implemented image-processing algorithms. The objective is to contribute to the commu-

nity by providing several tools integrated with a single, common Graphical User Interface

(GUI) software that can interact with any color-polarization camera available on the market.

Additionally, this software is meant to provide access to all the developed algorithms that

showcase the power of polarization information, making it easier for anyone interested in

working with polarization modality to get started.

This software has been developed in C++ [23] to achieve faster execution speeds than

in other languages, such as Python, and using Object Oriented Programming (OOP). All

the code has been well documented, thus people interested in a deeper understanding of the

algorithms can easily understand how they work. Three main libraries have been used for

this project:

• OpenCV [16]: An open-source library that includes several algorithms for Computer

Vision tasks, and it eases large matrices manipulations.

• Robot Operating System (ROS) [87]: A framework for Robotics applications that en-

ables the creation of distributed systems, and establishes an abstraction layer between

the sensors and the top-level applications.

• Qt5 [21]: A framework that serves to create graphical user interfaces. It is for free
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when it is not for commercial use, which is our case.

The library is composed of several modules designed to be independent so as to enable

easy maintenance and debugging. All the modules are integrated and connected in the main

program file, giving a structure like a star: the main program is in the middle, and the other

modules are around it. With such a structure the addition or removal of a functionality

is straightforward. Regarding the architecture of the code, it is composed of two general

components: the camera server, and the Graphical User Interface (GUI) client. They are

detailed in the documentation of the library repository, and in what follows we will summarize

its components and functionalities.

B.2.1 Core components and basic processing

B.2.2 Camera server

The first module is a ROS package that works as a camera server. This server will interact

directly with the physical camera, getting images from it, and changing (or querying) its

parameters as the pixel gain, exposure time, and frame rate. Then, the captured images

are sent through a communication channel called topic in the ROS nomenclature. When

information is sent through a topic it is said that the information has been published in the

topic. Once a topic is made available, a client can connect to it to receive the data. In that

case, it is said that the client has subscribed to the topic. Only the topic name and the type

of data it transports need to be known to establish the connection between the server and

the client. Furthermore, several applications can subscribe to a single topic, and receive the

same data each time it is published.

The ROS server will publish only raw images from the camera, without any processing

made on it. This way, the user gets the most basic information the camera can provide, and

it is not affected by any manufacturer-dependent algorithm, as in general, these algorithms

are not open source. Another functionality implemented in the server is that the client can

request the camera parameters as well as change them. This is done through services in the

ROS nomenclature, which means that the user in the client side can request information or

set information synchronously with the server, and the execution will be blocked until the
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operation is finished. This functionality is not the same as when the user receive images.

The images are sent to the client as soon as they are captured by the camera, and the first

one is informed when this happens. The last image received is stored locally in the client

side, and when the user request the image, only a data copy needs to be executed. This

avoids communication hangs and late graphical responses in the client side, since the image

transfer takes time.

Regarding the code organization of the server, an abstraction layer has been included

in the code to ease the addition of new camera models to the server side. If a new camera

model wants to be added to the server, three steps must be followed:

1. A C++ class has to be created that implements some basic functions detailed in the

interface file IPolarizationCamera. Mainly, they are camera initialization, functions to

change the acquisition parameters, and captured image retrieval.

2. A string that identifies the new class model has to be included in a variable that

contains the list of driver options.

3. The particular instance of the camera model has to be included in the CameraHandler

file, in the constructor function. Then, the new camera driver will be used when the

corresponding camera model is selected.

This is required to be able to dynamically select the correct driver to use. When starting

the server, the provided identifier as argument will inform the software the connection type

to be used. The advantage of using ROS is that, once the raw image is sent through the

topic, the software needs no information about the camera model. Furthermore, ROS allows

a remote connection between the server and the client. As a consequence, a small embedded

computer with a WiFi connection can be connected to the camera, and the images can be

retrieved in a local computer connected to the same network, where the GUI application is

running. The architecture of the interaction between the client and the server is illustrated

in Fig. B.1.

At the moment of writing this thesis, the software counts with two drivers implemented.

One for the Basler acA2440-75ucPOL camera, which is a USB3 color polarization camera

147



B.2. THE SOFTWARE

Basler USB driver Template Driver 
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Figure B.1: Software communication architecture. Each camera model has its own driver code. Those drivers are imple-
mentations of a common class called IPolarizationCamera, which defines a set of functions, transversal to any camera model.
Then, the ROS server interacts with each camera by using only the functions defined in the common interface. The GUI talks
to this server through the ROS client module. Thereby, it does not need to know which camera we are using, and how it works.
The way to exchange information is always the same for it.

powered by the Sony Polarsens IMX250MYR sensor. This driver can be used with the

ID BaslerUSB. The second driver is called Template, which can be accessed with the ID

TemplateDriver. This last case is used for the development of new algorithms when a camera

is not available physically, or the algorithms want to be tested with reference images. It can

also be used as an example of how to implement a new driver. This particular piece of

software is an implementation of the interface IPolarizationCamera, that only reads a fixed

image stored on disk. Each time the server requests a new image, a copy of it is returned.

The instructions about how to install, compile and run the server code are included in

the README file of the GitHub repository, publicly available in [90].

B.2.3 Camera client and base polarization processing

The second component of the software is the Graphical User Interface (GUI), which works

as a client of the ROS server. A complete view of it, and the options included on it is shown

in Fig. B.2 Each functionality in the software has been developed as a Widget of the Qt

framework [21], which is a graphical element that can contain other basic graphical elements.

This interface allows the user to perform all the required tasks involving the camera such as

changing the acquisition parameters, and the super-pixels filter configuration. It also enables

image processing, raw image display, sensor calibration, and plotting functions to analyze

the calibration performance. The core functionalities and processing techniques included
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Figure B.2: Developed graphical user interface. (a) Widget that will appear each time the button Change filters configura-
tion in the MainWindow is pressed. This widget allows us to change the position of the linear polarization filters of the camera
we have. (b) Widget that shows the images obtained after applying a set of operations, depending on the selected visualization
mode. The images are updated each time a new image from the camera is received. (c) Load / save widget interface. (d)
Matplotlib widget interface. (e) Camera parameters widget interface. (f) Real-time parameters computation widget. (g) Save
image widget interface. (h) Visualization mode widget interface.

are:

Raw split images: It produces as output four images. Each of them corresponds to the

set of pixels that have the same polarization filter orientation, independently of the color

filters. This transformation is the separation of the image by polarization channels.

Polarized color images: It produces as output four images. They are the corresponding

demosaiced version of the output from the Raw split images mode. The algorithm used over

each image is the conventional Bayer interpolation algorithm.

Original color: Only one image is returned. This outcome is equivalent to the image

captured with a conventional color camera. It corresponds to the first component of the

Stokes vector S0, which comes from doing the average of the polarization channels (i.e., from
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the average of the output images of the Raw split images mode). The obtained image is then

demosaiced.

Stokes images: After separating the input image by polarization channel, the Stokes

components images can be obtained by applying Eq. (2.9). Since the polarization state of

the light depends on the frequency of the light, the Stokes vectors are split by color channel.

As a consequence, this function will provide 3 × 4 = 12 images. Four color channels are

considered since the Bayer patterns consist of 2 × 2 arrangements of red, green, green, and

blue color filters.

Raw I - Rho - Phi: As also explained in Sec. 2.1, the Stokes vector can be represented

as a function of three physical parameters: the total received intensity I, the degree of

linear polarization ρ, and the angle of linear polarization ϕ. The equations to compute these

variables as a function of the Stokes vector are given in Eq. (2.1). Again, for each color

channel, these three physical parameters can be computed, and that is the reason why 12

images are also returned in this mode. Since each parameter has a different interval of values,

all of them have been normalized to be in the range [0, 255].

I - Rho - Phi: In the Raw I - Rho - Phi mode, all the images are single channeled, thus

they are displayed in gray-scale. Particularly for the Angle of Linear Polarization (AoLP),

this is not an adequate representation, since it is a circular variable. A proper representation

would be one that assigns the same color to the maximum and minimum values in the range

[0, 255]. In this mode, this is done by creating a color palette based on the Hue Saturation

Value (HSV) color space. Let X be a gray-scale value in the range [0, 255]. The HSV palette

is defined as a function that assigns a 3D vector Chsv to each value X, such that:

Chsv =

[
179X

255
, 255, 255

]T
(B.1)

Then, the obtained three-channeled image is converted from the HSV to the RGB color

space. On the other hand, the Degree of Linear Polarization (DoLP) is colored using the Jet

palette, which maps blue colors to low values, green colors to middle values, and red colors
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to high values. As in the Raw I - Rho - Phi mode, 12 images are returned in this mode.

Fake colors: When dealing with polarization imaging, a correspondence is established

between the Hue Saturation Value (HSV) color space and the intensity, Degree of Linear

Polarization, and Angle of Linear Polarization [116]. Since the AoLP is a circular variable, it

is considered to be the hue of the color. The saturation is the purity of that color, meaning

that a saturation of 100% is a pure color, and a saturation of 0% means that it is a gray-

level value. Similarly, the DoLP indicates the "purity" of the polarized light: if it is totally

unpolarized, ρ is equal to zero, and if it is totally linearly polarized, ρ is equal to 1. Finally,

if a conventional color image is considered, and the value channel is extracted from it in the

HSV space, a gray-scale version of the original image is obtained. This information is similar

to the total intensity measured by the I parameter. Thus, a color image can be obtained if

the I, ϕ, and ρ images are stacked together, considered to be in the HSV space, and then

converted back to the RGB space. The result obtained in this way is called a fake color

image. The colors obtained with this processing algorithm have the following properties:

• Unpolarized light is represented by gray-scale colors.

• Highly polarized light will be colored.

• The colors in the image depend mainly on the AoLP, thus, to the surface orientation.

This processing is interesting since it helps to quickly identify the objects that reflect

polarized light. As explained before, the polarization parameters depend on the frequency,

thus the fake color images are separated by color channel. Therefore, this operation returns

four color images.

B.2.3.1 White-balance module

The observed light by a camera depends on two parameters: the observed object reflectance,

and the illumination of the color [79]. Thus, a white-balance algorithm needs to be used in

order to restore the true colors in the scene. In some polarization cameras, and particularly

in the Basler RGB-polarization camera, this type of algorithm is not correctly implemented.
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Thus, our software includes an implementation of a white-balance algorithm. It consists on a

gain applied to each color channel to correct the pixel intensities proportion, and restore the

true color in the environment the image is taken. In our implementation, the automatic white

search is done globally, and not in a user-defined region of interest (ROI). The algorithm

computes the average of all the color channels of a single orientation, and it searches for

the pixels whose average is the highest. If there is a white piece in the scene, even with

the color gains unbalanced, the average of the white will be the highest. Thus, the pixel

whose average is the highest is considered as white. Then, the highest channel value is left

untouched (gain equal to 1), and the other channel gains are computed such that their values

equal the highest channel value. This algorithm of automatic white balance is constrained

to work with no high-level saturated images. If it does not produce satisfactory results, it

can be deactivated and the different gains can be set manually.

B.2.3.2 Polarimetric camera calibration module

This module is an implementation of our polarimetric camera calibration algorithm described

in Chapter 3. The calibration algorithm is used to compute a series of matrices that are

applied to the raw images by a correction function. This functionality is aimged to rectify the

measurement errors due to manufacturing imperfections, and polarization distortions due to

the lens. In this way, two super-pixels of the same color channel that receive the same light

source will provide the same output measurements. The obtain the calibrated image, if the

calibration matrices have been computed beforehand, given a raw image from the camera,

the correction function will return another image, with the same structure as the input, but

with all the pixel measurements adjusted by the corresponding pixel matrices.

B.2.4 Polarization processing algorithms

Differently from Sec. B.2.3 where basic polarimetric operations can be done, in this module

two applications of the polarization concepts are implemented.

The first one is the simulated polarization filter. As explained in Sec. 2.1, each super-

pixel allows for computing the Stokes vector S = [S0, S1, S2]
T of the incident light. Now, let
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us consider a light, described by the Stokes vector Sin that passes through a linear polarizer.

This filter is oriented at an angle θ and modeled by a Mueller matrix M, as explained in

Sec. 2.1. Therefore, the effects of a linear polarizer in front of a normal camera can be

simulated by computing Eq. (2.7). Thus in this functionality, the inputs are a raw image

from the camera and the orientation of the filter θ that one would like to simulate. Then,

this algorithm returns two images: the input image, and the filtered image after applying

Eq. (2.7) to all the super-pixels. This technique is commonly used in photography to remove

annoying polarized reflections from the environment. In a real system with a RGB camera,

the filter is physically placed on top of the lens, and turned until the reflection is removed.

Once captured, no further modifications of this type can be done over the image. With this

software, the filter and its effects are simulated after the image has been captured, and the

exact angle for reflection removal can be found. The theory tell us that this orientation

corresponds to the AoLP of the incident light, shifted by 90 degrees.

The second functionality of this module is the polarized specularity removal. It is an

extension of the simulated polarization filter, explained above. In the previous case, all the

pixels are affected by a single polarization filter. But, in the FoV of the camera, there might

be several objects that produce this type of reflection, with different AoLP. To erase them

all at once, let us consider the Stokes vector of the observed light. This vector can be split

into two other Stokes vectors: one that represents totally unpolarized light and another that

represents a totally linearly polarized light S = Sunpol + Spol such as:


S0

S0ρ cos (2ϕ)

S0ρ sin (2ϕ)

 = (1− ρ)


S0

0

0

+ ρ


S0

S0 cos (2ϕ)

S0 sin (2ϕ)

 . (B.2)

Removing the polarized reflection means erasing the component corresponding to Spol.

This is equivalent to computing the Sunpol vector. This functionality returns two images:

the input and the filtered images, both demosaiced. In contrast to the previous case, this

functionality does not require the user to enter an angle to each filter. The filtering is done

based on the measured DoLP at each super-pixel.
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Figure B.3: Raw image of an urban scene used as a reference for all the algorithms implemented in the toolkit Pola4All.

B.3 Experiments

In this section, we show and discuss the results of the different processing algorithms. To be

able to compare the polarization properties through the developed software library toolkit,

we adopt the same test image of an urban scene in all the experiments. This image, corre-

sponding to the raw image obtained from the camera, is shown in Fig. B.3.

B.3.1 Basic polarimetric representation

The raw image is a single-channel matrix, formed by all the pixel measurements. The light

that arrives at each pixel is filtered by color, and by polarization. Then, each channel

must be extracted and interpolated to obtain the 12 corresponding channels ([R,G,B] ×

[I0, I45, I90, I135]).

As the first step, this raw image can be split by polarization filter orientation. Thus,

four images are obtained, and this functionality corresponds to the Raw split images mode.

Each of these images contains all the pixels that are filtered by linear polarization filters with

the same orientation, independently of the color filter. Therefore, each image contains the

required information to apply an interpolation algorithm and with it, obtain the correspond-

ing color image. This last behavior is obtained by using the mode Polarized color images

of the software. Since the raw measurements of the camera are used, they are not white-

balanced. Thus, the resulting images exhibit a greenish aspect. An example of one of the
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(a) (b) (c) (d)

Figure B.4: (a) Raw, mosaiced version of the reference image, for the polarization channel 0◦. (b) Demosaiced version
of the reference image, without white-balance, for the 0◦ polarization channel. (c) White-balanced, demosaiced images for the
polarization channel 0◦. (d) White-balanced, demosaiced images for the polarization channel 135◦.

raw images, its corresponding demosaiced version, and the same image after white-balance

is shown in Fig. B.4. The correction is performed using the white balance feature presented

in Sec. B.2.3.1. For this testing image, the gains have been chosen manually, with a value of

2 for the red and blue channels, and with a value of 1 for the green channel. These are the

first cases in which the polarization can be seen clearly. If the light received by the camera

is polarized, then the response of each filter will be different. As explained in Sec. 2.1, the

intensity of a linearly polarized light will describe a sine wave shape when it passes through

a linear polarizer that rotates (due to the gain produced by this type of optical device). This

sine wave reaches its maximum value when the orientation of the filter is equal to the angle

of the linearly polarized light and it decreases as the filter rotates. The intensity reaches

a minimum when the orientation of the filter is shifted by π/2 radians with respect to the

Angle of Linear Polarization of the light.

In the case of the color-polarization camera, four filter orientations are considered. If

any of these orientations matches with the AoLP of the incoming polarized light, then the

corresponding image will have a bright spot, and the one that is shifted by π/2 radians will

produce a dark spot at the same position. This can be seen over the windshields of the cars

in the Fig. B.4 (d). Since these surfaces made of an insulator material produce specular

reflections, the measured light is partially linearly polarized. The orientations at which the

dark spots appear is 135◦. This means that the AoLP of the incoming light is close to 45◦,

and it is highly linearly polarized. If a conventional camera is used, and a linear polarizer is

placed in front of it with an orientation of 135◦, the polarized specular reflection is removed,

and it will be possible to see through the glass.
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(a) (b) (c)

(d) (e) (f)

Figure B.5: Polarization images for the red channel. (a) (b) (c) S0, S1, S2 components of the Stokes vector. (d) (e) (f)
Total intensity, Raw AoLP, and Raw DoLP.

From the raw split images, it is also possible to compute the images of the linear compo-

nents of the Stokes vector. As mentioned before while explaining the software functionalities,

since this vector depends on the frequency, each Stokes parameter is separated by color chan-

nel. Due to its similarity, only the images for the red channel are shown in Fig. B.5 (a) to

(c). In the S1 and S2 images, the brighter the pixel, the higher the Stokes vector value. Since

these two parameters can have negative values, the absolute value of S1 and S2 are shown.

As drawn from the previous case, the windshields present highly polarized reflections in the

±45◦ directions. That is why they appear whiter in the S2 image. Other regions in the

images emit a very low degree of polarization, and as a consequence, they are represented

by dark colors in the S1 and S2 images. The S0 image corresponds to the red channel of the

original color image. Once the Stokes vector for each color channel have been computed,

the physical variables AoLP, denoted by ϕ, the DoLP, denoted by ρ, and the total intensity,

denoted by I, can be calculated per color channel. The resulting images for the red channel

are shown in Fig. B.5 (d) to (f).

These images are a good representation of all the objects that reflect linearly polarized
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Figure B.6: Left image: Angle of Linear Polarization of the red channel, colored with the HSV palette. Right image:
Degree of Linear Polarization of the red channel, colored with the Jet palette.

light. Note that a pixel value in the AoLP image has a meaning only if its corresponding

pixel in the DoLP image has a non-zero value. In this set of images, it is possible to confirm

that the road, the windshields, part of the body of the car, and some door glasses have a large

DoLP. Thus, these features are extremely valuable and can be used, for example, in Deep

Learning models to improve the accuracy of the network results over these objects. However,

this representation has a problem: it does not consider the AoLP as circular, with a period

of 180◦. As a consequence, the maximum and minimum values are represented by different

gray-scale values, although they should be equal. Particularly, when the measured angle is

close to 0◦, or to 180◦, oscillations between them may happen due to noise. Therefore, the

robustness of an implemented algorithm may be undermined if circularity is not considered.

To better represent the value changes, a circular color palette can be used for the AoLP,

and a linear color palette for the DoLP. This colorization method is obtained by using the

I - Rho - Phi mode. The results are shown in Fig. B.6 for the red channel. The AoLP

and the DoLP have been colored as explained in Sec. B.2.1. The images presented so far

constitute the richest polarization information the camera can provide: red, green, blue, and

the polarization parameters ρ and ϕ. Nine single-channeled images are generated. Thus,

a more compact version of this information may be required. For doing so, the fake colors

representation can be used. The resulting image for the red channel is shown in Fig. B.7. As

previously stated, in this representation, colored regions indicate partial or total polarization,

while gray regions represent unpolarized areas.
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(a) (b)

Figure B.7: (a) White-balanced, color image. (b) Fake colors image representation for the red channel.

(a) (b) (c) (d)

Figure B.8: Specularity removal application results. (a) Unfiltered, total intensity. (b) (c) Filtered image by simulating a
linear polarization filter oriented at 60◦, and 120◦, respectively. (d) Polarized specularity removal by filtering with the Degree
of Linear Polarization.

B.3.2 Polarimetric applications

Finally, two useful algorithms have been included in the software. They make direct applica-

tion of the polarization concepts: the linear polarization filter simulation, and the specularity

removal. These functionalities aim to reduce undesired reflections in the color image. In the

case of the linear polarization filtering, since each super-pixel allows for computing the Stokes

vector, then this vector can be converted to any other Stokes vector by using Mueller ma-

trices, as explained in Sec. 2.1. Particularly, an ideal linear polarizer oriented at an angle θ

can be software simulated, and the results are shown in Fig. B.8 (b) and (c) for the angles

θ = 60◦ and θ = 120◦, respectively.

As it can be noted, the choice of one angle or another will either reinforce or erase

the windshields reflections. In conventional photography, this technique is applied using

a physical filter that is turned until the bright spots are removed from the scene. The

disadvantage of that method is that once captured, the filter effect cannot be modified

anymore. With a color-polarization camera, this filtering can be done offline, by choosing

the exact angle required to erase the undesired reflections.
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The previously explained technique is not ideal when several objects are reflecting light

at different Angle of Linear Polarization. As mentioned in Sec. B.2.4, a second specularity

removal algorithm is implemented by combining the Degree of Linear Polarization and the

total intensity of the incident light. This is equivalent to filtering the light at each super-pixel

with a linear polarization filter oriented at an angle θ = ϕ + π/2, where ϕ is the Angle of

Linear Polarization of the received light at that pixel. The filtered image is shown in Fig. B.8

(d). One can note that most reflections from the shiny surfaces, such as the windshield, the

road and the door glasses, have been removed.

B.3.3 Calibration

All the results obtained so far have been generated using an uncalibrated camera. If more

accurate measurements are required, then the camera needs to be calibrated. The calibration

problem can be solved by taking several images of a uniform and linearly polarized light. If

the light source is uniform but unpolarized, it can be polarized using a linear polarization

filter. By turning the filter, the light received by the camera at each filter position will have

a different AoLP. A sample of a polarized light source with an AoLP of 40◦ is shown in

Fig. B.9 (a) to (c), for the 0◦, 45◦ and 90◦ polarization channels, respectively.

The calibration procedure will compute the pixel parameters given the model defined in

[91], i.e., (Ti, Pi, θi). In this model: Ti is the pixel gain; Pi is a parameter that accounts for

the non-ideality of the micro-polarization filter implemented on the pixel; θi is the effective

orientation of the micro-polarization filter of the pixel; i is the position of the pixel considered.

From Mueller calculus, these parameters have an ideal value of (Ti, Pi) = (0.5, 1.0) for all i,

and θi ∈ {0◦, 45◦, 90◦, 135◦}. However, in general, each pixel will have a set of parameters

that will be different from these ideal values. Thus, the calibration algorithm allows for

compensating these differences.

To assess the acquisition quality, the different plot functions of the software can be

used. With these plots, it is possible to determine if the acquisition is correct, and if the

camera measurements are valid. It can also assess the quality of the sensor and confirm the

effectiveness of the correction on the camera measurements.

Among the available plots, the histograms of the intensity, the DoLP and the AoLP of the
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incident light can be computed from the image currently displayed by the software. These

plots can be visualized only if the software is connected to the camera. This information

allows to evaluate the quality of the calibration results. If not errors occured during the

calibration procedure, after correction, the three parameters (intensity, DoLP and AoLP)

will have a narrower distribution than the uncalibrated case. The difference between the two

cases depends on the sensor quality, and the level of distorsion introduced by the lens. The

histograms of these variables, before and after calibration are depicted in Fig. B.9 (d) to

(i). They have been computed with the same sample image, mentioned before, of a Uniform

Linearly Polarized with an AoLP of 40◦.

A real-time plot of these three parameters (intensity, DoLP, and AoLP) can also be

done for a given row of pixels of the sensor. These graphs are displayed in the last two

columns of Fig. B.9, and they correspond to the measurements before and after applying

the calibration. These plots illustrate the vignetting effect and show how calibration can

reduce its impact over the three polarization parameters. It is important to note that this

correction is obtained since the pixel model used considers the polarization parameters of

the pixel, and not only the unbalanced sensing gain. A simple gain correction will only affect

the intensity image, but not the AoLP nor the DoLP images.

Finally, the consequence of applying the calibration can be observed in the reference

urban scene image. In our developed software, the correction by calibration can be enabled

or disabled using the checkbox Correct pixel gain, located in the top right region of the

GUI. The effects of the calibration over the intensity, AoLP, and DoLP images are shown

in Fig. B.10. Particularly from these images, the contribution of the calibration can be

observed mostly in the AoLP and the intensity images. In the scene, there are several walls

that act as planes. Thus, they should reflect the same AoLP, which translated to the fact

that they should have the same color. This happens only after calibration, mainly in the

building situated in the far region of the image, and in the walls on both sides of the road.

In the intensity image, since the pixel model includes a gain factor, the vignetting effect is

also corrected with this system, making the darker areas in the borders to be as bright as

the center of the image.
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PLATFORM

(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Figure B.9: Calibrated camera quality evaluation. All the plots are computed before (second and forth columns) and
after (third and fifth columns) calibration. (a), (b), and (c) are the demosaiced, RGB polarization channels 0◦, 45◦, and 90◦,
respectively. The images correspond to a uniform, linearly polarized light source used for the calibration, with an AoLP of
40◦. (d) and (g) Intensity histograms. (e) and (h) AoLP histograms. (f) and (i) DoLP histograms. (j) and (m) Intensity
measurements plots over a single row of pixels. (k) and (n) AoLP measurements plots over a single row of pixels. (l) and (o)
DoLP measurements plots over a single row of pixels.

(a) (b) (c)

(d) (e) (f)

Figure B.10: Calibration effects over the polarization images, for the red channel. Top row: uncalibrated images. Bottom
row: calibrated images. (a) (d) Total intensity. (b) (e) Angle of Linear Polarization, colored with the HSV palette. (c) (f)
Degree of Linear Polarization, colored with the Jet palette.
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