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Résumé

Cette thèse, réalisée dans le cadre d’une collaboration avec MocapLab, une entreprise spécialisée en
motion capture, vise à déterminer le cadre mathématique le plus adapté et des descripteurs pertinents
pour l’analyse des trajectoires de mouvement en langue des signes. En nous appuyant sur les principes
du contrôle moteur, nous avons identifié le cadre défini par les formules de Frenet-Serret, incluant les
paramètres de courbure, torsion et vitesse, comme particulièrement pertinent pour cette tâche. Ainsi,
en introduisant de nouvelles approches d’analyse de courbes basées sur le cadre de Frenet, cette thèse
contribue au développement de nouvelles méthodes dans les domaines de l’analyse de données fonction-
nelles et de l’analyse de forme. La première partie de ce travail aborde le défi de l’estimation lisse des
paramètres de courbures de Frenet, en traitant le problème comme une estimation de paramètres d’une
équation différentielle dans SO(d), (d ≥ 1). Nous introduisons un algorithme Expectation-Maximization
fonctionnel qui définit une méthode d’estimation unifiée des variables dans le groupe SE(3), fournissant
des estimateurs lisses, plus fiables et robustes que les méthodes existantes. Dans la deuxième partie, deux
nouvelles représentations des courbes sont introduites : les courbures de Frenet non paramétrisées et
la Square Root Curvatures (SRC) transform, établissant de nouveaux cadres géométriques riemanniens
pour les courbes lisses dans Rd, (d ≥ 1). En utilisant les informations géométriques d’ordre supérieur
et dépendant de la paramétrisation, la Square Root Curvatures transform surpasse la représentation
state-of-the-art Square-Root Velocity Function (SRVF) sur des résultats synthétiques. Étant donné une
collection de courbes, ce type de géométrie nous permet de définir des critères statistiques efficaces pour
estimer les formes moyennes de Karcher sur les espaces de formes riemanniens associés, qui se révèlent
particulièrement performants sur des données bruitées. Enfin, ce cadre développé ouvre la voie à des
applications plus pratiques dans le traitement de la langue des signes, comprenant l’étude des lois puis-
sances sur nos données et le développement d’un modèle génératif pour le mouvement d’un point en
langue des signes.

Mots clés : Analyse de Données Fonctionnelles, Analyse de Forme, Cadre de Frenet-Serret, Analyse de
Trajectoires de Mouvement, Langues des Signes, Groupes de Lie
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Abstract

This thesis, conducted in collaboration with MocapLab, a company specializing in motion capture, aims
to determine the optimal mathematical framework and relevant descriptors for analyzing sign language
motion trajectories. Drawing on principles of motor control, we identified the framework defined by the
Frenet-Serret formulas, including curvature, torsion, and velocity parameters, as particularly suitable
for this task. By introducing new curve analysis approaches based on the Frenet framework, this thesis
contributes to developing novel methods in functional data analysis and shape analysis. The first part
of this thesis addresses the challenge of smoothly estimating Frenet curvature parameters, treating the
problem as parameter estimation of differential equation in SO(d), (d ≥ 1). We introduce a functional
Expectation-Maximization algorithm that defines a unified variable estimation method in the SE(3)
group, providing smoother estimators that are more reliable and robust than existing methods. In
the second part, two new curve representations are introduced: unparametrized Frenet curvatures and
the Square Root Curvatures (SRC) transform, establishing new Riemannian geometric frameworks for
smooth curves in Rd, (d ≥ 1). Leveraging higher-order geometric information and parametrization de-
pendence, the Square Root Curvatures transform outperforms the state-of-the-art Square-Root Velocity
Function (SRVF) representation on synthetic results. Given a collection of curves, this type of geometry
allows us to define efficient statistical criteria for estimating Karcher mean shapes on the associated Rie-
mannian shape spaces, proving particularly effective on noisy data. Finally, this developed framework
opens the door to more practical applications in sign language processing, including the study of power
laws on our data and the development of a generative model for a point motion in sign language.

Keywords : Functional Data Analysis, Shape Analysis, Frenet-Serret Framework, Analysis of Motion
Trajectories, Sign Language, Lie groups
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MocapLab (https://www.mocaplab.com/fr), a Parisian company specializing in motion capture,
stands as one of the leading European entities in this field. Their diverse portfolio encompasses various
research activities, particularly focusing on sign language explored through several projects (SignEveil,
StorySign, Rosetta LIMSI and LISN (2022)). The data generated by MocapLab can be considered a
collection of multivariate Euclidean curves. This type of data, corresponding to the recording of behavior
or phenomena over time or space, can be seen as observations of a function. It has become increasingly
common in recent years across various domains (aircraft trajectories, movement studies, biology, con-
tinuous temperature monitoring, etc.), notably due to the progress made in continuous data acquisition
technologies (sensors, embedded devices, motion capture systems, etc.). The analysis of such complex
data requires sophisticated and specialized mathematical tools, given their inherent high dimensionality
and continuous nature. These challenges have motivated research in functional data analysis (Ramsay
and Silverman, 2005), aiming to establish a dedicated framework for data modeled as functions, and
shape analysis (Srivastava and Klassen, 2016), which seeks to develop statistical tools able to capture
the complex shapes inherent in this type of data, using appropriate mathematical spaces. MocapLab’s
commitment to advancing sign language research, combined with the expertise of the Mathematics and
Modeling Laboratory of Evry (LaMME), has resulted in their collaboration through this present the-
sis, generously supported by grants from Région Ile-de-France as part of the “Paris Region PhD 2020”
project. The thesis aims to contribute significantly to the evolution of the functional data analysis and
shape analysis landscape within a context motivated by sign language motion analysis.
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Chapter 1. Introduction

1 Sign Language Context

Sign Languages (SLs) constitute the primary means of communication for approximately 70 million deaf
individuals worldwide, according to World Federation of the Deaf (https://wfdeaf.org/our-work/). These
languages have more than 200 variations globally, depending on the country. In France, French Sign
Language (LSF) is predominant and considered as the first language for many deaf individuals. Histor-
ically, sign languages faced challenges in gaining recognition as independent natural languages. During
antiquity, the Aristotelian notion that those who cannot speak cannot think hindered the education of
deaf individuals. It was not until the 16th century that educators began working with deaf individuals,
and in 1760, the Abbé de L’Épée established the first school for the deaf in Paris. The 1880 Interna-
tional Congress on Deaf Education marked a turning point, favoring oral methods over sign language in
education. This ban on sign languages persisted until the end of the 20th century. The groundbreaking
work of Stokoe (1960) led to a shift in perception and stimulated further research on sign languages.
This led France to recognize LSF as a full-fledged language in the 2005 French law on disability. Sub-
sequently, linguistic research, university programs, and professional training for sign language-related
professions have proliferated, emphasizing the importance of accessibility in public spaces for individuals
with disabilities. Today, despite progress, outdated beliefs persist, contributing to linguistic neglect and
impacting the cognitive, socio-emotional, and academic development of deaf individuals.

1.1 Sign Language Linguistics

As with spoken languages, sign languages are governed by a linguistic system encompassing syntactic,
morphological, semantic and phonological structures (Emmorey, 2001). SLs are oral languages as in-
volving face-to-face communication: a signer conveys a message in SL, and an observer perceives this
message (Figure B.1). SLs use the visual-gestural modality, involving continuous movements of the face,
hands, signer’s body, and surrounding space to construct a discourse. In addition, signers incorporate
iconicity, characterized by a strong resemblance between the form of signs and their meanings (Sallandre
and Cuxac, 2002). This enables the expression of complex ideas without resorting to a standard lexicon.

Figure 1.1: Sign Language schematic (illustration by Laurent Verlaine, Guitteny and Verlaine (2018)).

2
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1. Sign Language Context

Recently, Yin et al. (2021) has proposed a detailed description of the linguistic features of SL. Among
these features, simultaneity allows transmitting as much information as spoken language within a similar
timeframe, using multiple visual elements to convey different information simultaneously (Sandler, 2012).
While manual components are the primary source of emitted information, facial expressions are crucial
in disambiguating certain signs and/or providing qualifications (e.g., big, small). Another distinctive
aspect of SL involves placing discourse elements in specific locations in the signing space. To recall
these elements later, signers designate their position with a gaze or a pointing gesture, a process known
as referencing, which may induce a modification in sign movement due to changes in direction (e.g.,
directional verbs) (Dudis, 2004). Furthermore, signers use fingerspelling to indicate names, places, or
new concepts from spoken language that lack a dedicated sign (Wilcox, 1992). This involves a set of
manual gestures corresponding to written spelling. Finally, the model proposed by Brentari (1998) breaks
down the articulatory properties of SL into four main phonemic classes: handshape, location, movement,
and palm orientation. Non-manual features, such as eye gaze, head movement, and torso positioning,
can also be included (Johnson and Liddell, 2011). However, there is still no consensus among linguists
regarding the description of SLs, and even the concept of signs can vary according to linguistic theories.

1.2 Current Challenges in Sign Language Processing

The late recognition of sign languages as official languages, coupled with the complexity of SL linguistics
and significant conceptual differences from spoken languages, has led to a considerable lag in understand-
ing underlying mechanisms and processing methods in SL. This lag is evident compared to spoken and
written language knowledge and processing capabilities. Today, most new communication or process-
ing tools are designed for spoken languages. Significant progress, with considerable impact, have been
made in these areas, such as speech recognition and voice assistants (Siri, Google Assistant), automatic
translation between languages (DeepL, Google Translate), and more recently, in the automatic genera-
tion of text (ChatGPT, Bard). However, despite the recent development of promising applications for
SL, like Signily, Spread Signs, SignEveil (by MocapLab), and others, substantial additional efforts are
needed to develop tools for SLs comparable to those available today for spoken languages. There is a
real and urgent social challenge in the development of automatic processing tools for SLs to reduce the
communication barriers faced by signers and the discrimination caused by this delay in technological
advancements. Research on SLs is relatively recent and sparse, primarily focusing on linguistics. How-
ever, innovation in SL technologies requires the involvement of other fields, such as computer science,
statistics, and mathematics.

Today, many challenges still hinder progress in the automatic processing of SL. One primary challenge
lies in representation methods. The absence of a widely adopted written form for SLs leads to the use of
various modalities to address the sign language processing issue. Most research works in SL, particularly
those based on deep learning methods, use video data of signers (Rastgoo et al., 2021). While being
the most straightforward representation method, its high dimensionality makes storing, transmitting,
and encoding costly. Moreover, anonymizing videos (where the signer’s face appears) remains an open
issue (Isard, 2020). Other research studies aim to develop written notation systems representing signs
as discrete visual features linearly or in two dimensions. Universal notation systems like SignWriting
(Sutton, 2014) and HamNoSys (Prillwitz and Zienert, 1990) exist, but none have gained widespread
adoption in the sign language community. Additionally, among the main phonetic classes of sign lan-
guage (handshape, location, movement, and palm orientation), representing the movement component
in writing remains an open problem. Another representation, often referred to as poses, consists of a
skeleton, mesh, or set of points in space representing the signer’s articulation locations. These positions
over time can be acquired with a motion capture system, typically expensive, or estimated directly from
videos (Cao et al., 2019; Wang et al., 2023) with reduced quality and a potential loss of information. The
pose representation is generally more reliable and natural than videos, enabling a more precise movement
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Chapter 1. Introduction

analysis. However, it involves a continuous and multidimensional format that is non-trivial to analyze
and not well-suited for language processing algorithms such as NLP. Moreover, even with this represen-
tation, the question of data anonymization arises. Like spoken languages, where voice characteristics can
reveal the speaker’s identity, a signer’s identity might be discernible through their movements, but little is
known about the motion features that characterize him and how they can be manipulated (Bigand, 2022).

The automatic processing of SLs involves developing methods for typical machine learning tasks:
segmentation, classification, recognition, translation, and generation (Bragg et al., 2019; Yin et al.,
2021). Segmentation in sign language involves detecting meaningful units or identifying sub-entities
composing the signal (similar to phonemes in spoken languages) (Santemiz et al., 2009; Farag and
Brock, 2019; Bull et al., 2020). Recognition involves associating a label with a sign and differs from
translation, which refers to the transition from sign to spoken language. With recent progress in deep
learning, numerous research efforts have been conducted for these tasks, primarily using video data
(Camgöz et al., 2020; Wadhawan and Kumar, 2020). For sign language generation, on the other hand,
most works use poses as representations. Here, the goal is to automatically animate avatars, which can
serve as equivalents to voice assistants for SLs. In existing methods for this task, some generate and
concatenate isolated signs (Stoll et al., 2020) using neural machine translation and generative adversarial
networks, while others (Saunders et al., 2020b,a; Xiao et al., 2020) autonomously decode a sequence using
transformers or recurrent neural networks. However, evaluating the quality of these generative models
remains challenging. Moreover, one main limitation of further development of more efficient methods is
the lack of available data across all the different sign language representations. Rastgoo et al. (2021)
present a comprehensive list of existing datasets for SL research, with most designed for sign classification.
For translation purposes, available continuous sign corpora contain significantly fewer sentence pairs than
similar spoken language datasets (Arivazhagan et al., 2019). Furthermore, many SL datasets discussed
in the literature are either not accessible or subject to strict restrictions and licenses, primarily due to
the ongoing challenge of anonymizing this type of data. Therefore, developing processing methods that
can operate effectively with limited data is particularly interesting in this domain. Finally, a common
limitation in developing models for each of these tasks, highlighted by Yin et al. (2021), is the lack of
an effective and standardized tokenization method for sign language. It is, therefore, crucial, first and
foremost, to gain a better understanding of the properties and complex structure of sign language.

2 Analysis of Sign Language Movement Trajectories
At the core of this thesis, our exploration focuses on the analysis of movement within the four phonemic
classes in SL (hand shape, position, movement, and palm orientation). Our central objective is to
enable a thorough analysis of what could be likened to a “movement signal” in sign language by analogy
with the auditory signal of spoken languages. We seek to define a relevant mathematical framework
to identify primitives, descriptors, and other “kinetic features” of movement in SL, with a particular
emphasis on hand movements, which constitute the primary source of information in SL, although not
exhaustive. The overall goal of our research is to unveil the underlying mechanisms of human movement
in SL, thereby enhancing our current understanding of this gestural language. This approach is crucial
in the context of SL processing. For example, in the creation of authentic avatar animations, given
that humans are particularly sensitive to biological movement and can naturally distinguish between
human and synthesized movement. Additionally, in the context of the written transcription of SL, it is
imperative to decompose the movement component into primitives or descriptive elements. Hence, the
central role of this thesis is to develop mathematical tools and an analysis framework specifically tailored
to this task, contributing to filling current gaps in the understanding of sign language movement. In
this regard, we are fortunate to work with data acquired through motion capture, which is particularly
well-suited to our objective among the various types of SL representation mentioned earlier.
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2. Analysis of Sign Language Movement Trajectories

2.1 Motion Capture Data

Motion capture, or mocap, is a revolutionary technology for recording and reproducing human movements
or other objects using various sensors and/or camera systems. For human movements, mocap involves
tracking trajectories of key points on the moving body over time, directly translating these movements
into an interpretive digital representation (temporal vectors in three dimensions). For over a century,
mocap has evolved from techniques based on images such as chronophotography or rotoscoping to now
focus on advanced approaches like optical, mechanical, and inertial systems.

Figure 1.2: MocapLab’s motion capture system and field for sign language motion acquisition.

The mocap system used by MocapLab is a passive optical system with 50 Vicon cameras in a volume
of 20 m3 to 60 m3 (Figure B.2). Marker-based optical motion capture systems (Vicon, Inc, Optitrack,
Inc) are considered the gold standard for human motion analysis. They use retroreflective markers placed
on objects or the moving body. Infrared cameras then record the position of these markers by reflecting
the infrared light emitted by them. Triangulation between the cameras subsequently reconstructs three-
dimensional trajectories with extremely high precision - theoretically with sub-millimeter precision using
MocapLab’s system. Due to this high precision, this type of mocap system is a powerful tool for creating
realistic virtual content and analyzing human movement. In particular, this has allowed MocapLab
to engage in projects across various domains, including avatar animation for the film industry and
video games (see https://www.mocaplab.com/fr/gallerie), research in biomechanics and medicine, and
sign language linguistics (LIMSI and LISN, 2022; Gibet et al., 2015). They are notably capable of
simultaneously measuring the body, face, gaze direction, and fingers, all while minimally impeding the
signer’s gestures.

The primary goal of mocap is to capture movements precisely to reproduce them realistically in
virtual or study contexts (Figure B.3). However, while passive optical systems offer exceptional spatial
precision, they also pose technical challenges and limitations. Issues such as occlusions, light interference,
and marker confusion can lead to missing or inaccurate data, often requiring a controlled environment
with a specific camera setup to ensure optimal performance. Moreover, the purchase and use of mocap
systems are expensive, limiting the possibility of obtaining a large amount of data for applications such
as deep learning model training. Although there are less costly markerless alternatives, such as Microsoft
Kinect, which uses depth sensors to track movements without physical markers, their precision may not
always be sufficient for many applications. Thus, this type of data is particularly suitable for the detailed
study of human movement but requires analysis methods that do not necessitate a large amount of data.
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Chapter 1. Introduction

Figure 1.3: The signer in motion capture and her avatar (wrist’s drawn trajectory highlighted in yellow).

2.2 Background on Human Movement Trajectories Analysis

Sign language movements are governed not only by linguistic rules but also by principles inherent to
human motion (Benchiheub, 2018). It has been demonstrated that human motion is subject to biome-
chanical constraints and motor control laws. The study of motor control is a complex problem addressed
by various disciplines such as psychology, cognitive science, biomechanics, and neuroscience, and more
recently extended by the application of machine learning techniques to motion data, providing addi-
tional perspectives for analyzing human motion characteristics. A significant portion of research in
human motion analysis focuses on specific movements, where the goal is uniquely defined by the motion
of a well-identified endpoint, referred to as the “end-effector” movement (Polyakov et al., 2009; Carreno-
Medrano et al., 2015). These studies explore these movements’ geometric and kinematic characteristics
and the constraints governing them. In the context of the sign language movement, the movement of
the wrist or hand can be considered an end-effector movement (Endres et al., 2013).

In principle, the human musculoskeletal system allows numerous potential trajectories for a hand
movement towards a goal. Researchers in motor control hypothesize that the human system has de-
veloped optimal control strategies to select between these possibilities through evolution, learning, and
adaptation. Thus, human motion is assumed to be governed by internal and external constraints ensur-
ing the movement’s success. Then, various optimality principles have been proposed in the literature
(Wochner et al. (2020), Oguz et al. (2018)). One of the early principles highlighted by Flash and
Hogan (1985) is the jerk minimization principle. The jerk represents the third derivative of position
with respect to time, i.e., the variation of acceleration. Minimizing jerk aims to reduce abrupt changes
in acceleration, making the movement smoother and more energy-efficient. This principle has led to
other motor control principles, such as the isochrony principle and the two-thirds power law (Viviani
and Flash, 1995). Viviani and McCollum (1983) demonstrated the isochrony principle, showing that
the speed of drawing movements increased proportionally to the trajectory distance, maintaining the
execution time of these complex trajectories independent of movement size. This linear relationship
between speed and trajectory extent has been demonstrated for various actions such as writing or hand
and arm movements (Freund and Btidingen, 1978). The kinematic analysis of circular movements re-
vealed another well-known law of motion, the two-thirds power law (also known as the one-third power
law), suggesting a nonlinear correlation between movement speed and curvature. Originally observed for
planar movements, another version of this law for space movements also involves the torsion parameter
of the movement trajectory. The curvature and torsion of a curve are parameters that fully describe its
geometry. These power laws are formulated as follows:

ṡ(t) = C1κ(s(t))−1/3 (1/3 power law), (1.1)

ṡ(t) = C2
(
κ(s(t))2|τ(s(t))|

)−1/6
(1/6 power law), (1.2)
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3. Approach and Contributions

where C1 and C2 are constants, ṡ is the curvilinear speed and κ and τ the curvature and torsion of the
motion trajectory. They assumed that speed increases in less curved portions of the trajectory and de-
creases inversely in more curved portions. Endres et al. (2013) uses the two-thirds power law to segment
sign language movements. Finally, other kinematic theories of movements are found in the literature,
such as the Sigma-Lognormal model, suggesting that complex human movements consist of overlapping
strokes, each with a lognormal-shaped velocity profile. This theory has been particularly demonstrated
for movements in the signature plane (Ferrer et al., 2020) and extended to three dimensions by Schindler
et al. (2018).

These laws and principles can serve as starting points for the mathematical and statistical analysis of
movement trajectories. Ramsay et al. (1995) uses the Sigma-Lognormal model to propose a functional
data analysis of human finger pinch force data. In a similar functional data analysis framework, Raket
et al. (2016) conducted a biomedical experiment on hand movements. Many other works in this frame-
work do not only study end-effector movement but the entire skeleton movement, mostly using data
acquired by motion capture. Among many others, some seek to align movements temporally (Olsen
et al., 2018; Raket et al., 2016), others to model the spatial and temporal variability of a set of move-
ments (Park et al., 2022), or to analyze their shapes (Celledoni et al., 2016). In most of these works,
movement trajectories are mathematically represented by their three Cartesian coordinates. However,
this representation is known not to be suitable for the analysis of trajectory shapes, as it depends on
all rigid transformations (translations, rotations, scaling, parameterization). Consequently, others use a
more sophisticated representation involving the derivative of the movement trajectory, called the square-
root velocity function (SRVF) (Srivastava et al., 2011), directly on Euclidean curves (Devanne et al.,
2015; Park et al., 2022) or on curves with values in rotations that appear in character animation (Celle-
doni et al., 2016). Finally, more recently, Celledoni et al. (2019) and Yang et al. (2022) proposed using
signatures (Fermanian, 2021) to describe human movements.

3 Approach and Contributions
This thesis aims to propose a mathematical framework tailored to analyze sign language motion tra-
jectories. We restrict the analysis to the movement of a point corresponding to the right wrist. This
choice is justified by the fact that a significant part of sign language communication relies on wrist
movements and by the decomposition into four phonemic classes proposed by Brentari (1998), which
isolates the movement component from the others. Therefore, our analysis falls within the scope of
end-effector movement. Drawing from the previously discussed principles of motor control, we can iden-
tify descriptors that appear particularly pertinent for the analysis of human movement. Among these,
we are interested in the motion trajectory’s speed, curvature, and torsion. The curvature and torsion
parameters in a three-dimensional space are the components of the Frenet-Serret formulas, initially de-
fined by two French mathematicians Jean Frédéric Frenet (1852) and Joseph Alfred Serret (1851). The
framework defined by the Frenet-Serret formulas is particularly powerful for describing the geometry of
a Euclidean curve. This inspired our approach to the problem but raises two main challenging questions:

• How can we derive reliable estimates of curvature and torsion parameters from discrete and po-
tentially noisy numerical data corresponding to wrist motion capture?

• How can we comprehensively understand and analyze the variability inherent in a set of motion
trajectories based on these parameters?

These questions extend beyond their application in sign language, finding relevance in any collection of
Euclidean curves. They embody classical challenges in Euclidean curve shape analysis, where the initial
obstacle lies in identifying a suitable curve representation.
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3.1 Datasets

Throughout the thesis, we worked with two main datasets produced by MocapLab. The first dataset
is from the Rosetta project (LIMSI and LISN, 2022), which includes the translation in LSF of 194
newspaper headlines, descriptions of 28 photographs, and 1200 isolated signs corresponding to the most
common notions in newspaper headlines. All these movements were performed by the same deaf signer.
In this dataset, we isolated 143 well-segmented signs repeated at least 2 times, but only 14 have at least 4
repetitions. The second dataset was captured by MocapLab as part of this thesis. Using LSF dictionaries
LSFPlus, Inc and LeDicoElix, Inc, we selected 60 mono-manual (i.e., involving the movement of a
single hand) signs in LSF. Two signers, a deaf woman (Aliza), and a hearing man (Thomas), performed
approximately 5 repetitions of each sign, returning to an initial position between each repetition, resulting
in a set of 648 movements. Both datasets include the movements of several key points on the signer’s
body, but we consider only the movement of the right wrist in this thesis.

3.2 Contributions

We now list the contributions of this thesis to the aforementioned problems, followed by the description
of the organization of the manuscript. In particular, Chapter 2 is not included in these contributions
as it is a background chapter on mathematical concepts used throughout the manuscript that includes
introductions to differential and Riemannian geometry, matrix Lie groups, functional and shape data
analysis, and the Frenet-Serret framework.

Part I focuses on estimating Frenet curvatures.

▶ Chapter 3 gathers existing methods for estimating Frenet curvatures of a Euclidean curve from
its discrete and noisy numerical observations. These methods involve estimating latent variables
corresponding to either the derivatives of the curve or the Frenet path in a preprocessing step.
They include using the extrinsic formulas of Frenet curvatures and the methods proposed by Park
and Brunel (2019), treating Frenet curvature estimation as a parameter estimation problem of a
differential equation. Our distinctive contribution lies in introducing an alternative approach for
smooth estimation of the Frenet path based on a tracking algorithm. This method proves more
computationally efficient and yields results comparable to existing methods. As a contribution, we
also provide full theoretical descriptions of these different methods and a comprehensive comparison
of them through studies on simulated data.

▶ Chapter 4 tackles the challenge posed by existing methods for Frenet curvatures estimation, all
dependent on estimating latent variables in a distinct preprocessing stage. We introduce a new
method that addresses the estimation of latent variables and parameters in a unified manner by
formulating the problem within the SE(3) group. This method involves the development of a func-
tional Expectation-Maximization algorithm, where the expectation step uses an invariant extended
Kalman filter on the Lie group SE(3), and parameter estimation is formulated within a functional
data analysis framework using penalized expected log-likelihood maximization. The improved ac-
curacy of the estimators obtained with this approach is demonstrated through experiments on
synthetic data and by applying the different methods to wrist movement data in sign language.

Part II is devoted to developing a shape analysis method based on the Frenet-Serret framework.

▶ Chapter 5 establishes a Riemannian geometry framework for smooth curves in Rd, d > 1, based on
Frenet curvatures. We introduce two new representations of a smooth Euclidean curve: the un-
parametrized Frenet Curvatures (FC) directly and the Square Root Curvature Transform (SRC),
inspired by the square root velocity transform of the SO(d)-valued Frenet path. Both represen-
tations consider all geometric features of the shape, providing likely geodesics that avoid artifacts
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encountered by representations using only first-order geometric information, such as the state-of-
the-art Square-Root Velocity Function (SRVF). The Square Root Curvature Transform combines
the strengths of the other two, depending on parametrization like the SRVF and therefore in-
volving a registration step necessary to obtain consistent geodesics in certain cases. Our analysis,
supported by simulated data, demonstrates its relevance to analyzing human motions. This chapter
is published as a paper Chassat et al. (2023) for the ICCV conference.

▶ Chapter 6 addresses the challenge of defining a mean shape of a set of Euclidean curves in Rd, d > 1.
The classical approach to shape analysis considers the Karcher mean in shape spaces defined by
the SRVF, SRC, or FC representations. We compare two distinct approaches for the practical esti-
mation of Karcher means based on Frenet curvatures, considering their sensitivity to observational
noise. The first relies on a robust preprocessing step involving efficient FDA-based estimation of
each Frenet curvatures individually. As an alternative, we introduce a regularization-based ap-
proach inspired by the work of Park and Brunel (2019). In a functional data modeling framework,
they explicitly formulate the problem by providing a statistical characterization of the mean Frenet
curvature parameter through the concept of the mean vector field. Bridging their work with shape
analysis, we demonstrate that their proposed mean parameter estimation regularized criterion ap-
proximates the FC Karcher mean. Leveraging their idea, we define two alternative criteria involving
a step of alignment of individual curvatures. The strengths of estimated means obtained through a
regularization-based approach are demonstrated on noisy simulated data. In the case of less noisy
data, such as our sign language movement trajectories data, the two approaches show marginal
differences, but methods based on Frenet curvatures and considering parametrization appear more
effective. Some of this work has been submitted through the paper Park et al. (2022) as a first
revision of the paper Park and Brunel (2019) but still requires further review.

▶ Chapter 7 stands as an independent chapter demonstrating more practical applications of the
developed tools and framework for motion trajectory analysis in sign language processing based on
the Frenet framework. Using our robust estimators for curvature and torsion of motion trajectories,
we assess the validity of power laws on wrist movement data in LSF. Additionally, we introduce a
generative model for wrist movement in sign language, based on the decomposition of the variability
of a set of trajectories through its mean geometry and non-linear warping functions derived from
the Frenet curvatures parameter. Our discussion extends to future research directions in sign
language processing within the established framework, particularly focusing on motion trajectory
segmentation and clustering in sign language.

The implementation of all the methods defined in this thesis has contributed to the development of
the Python package FrenetFDA available on GitHub (https://github.com/perrinechassat/FrenetFDA)
and detailed in the appendix, which gathers all the necessary tools for performing curve analysis in
dimension less than or equal to 3 based on the Frenet framework.

3.3 Publications

These contributions have resulted in the following peer-reviewed publications and pre-prints. We are
also writing other papers, which we will submit soon.

Conferences Articles

▶ Chassat Perrine, Juhyun Park, Nicolas Brunel. "Shape Analysis of Euclidean Curves under
Frenet-Serret Framework". International Conference on Computer Vision (ICCV), Paris, 2023
(accepted for oral presentation), https://openaccess.thecvf.com/content/ICCV2023/papers/.
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▶ Chassat Perrine, Juhyun Park, Nicolas Brunel. "Analysis of variability in sign language hand
trajectories: development of generative model". Proceedings of the 8th International Conference
on Movement and Computing (MOCO ’22), Chicago, 2022.
DOI: https://doi.org/10.1145/3537972.3537999

Article Under Review

▶ Park Juhyun, Nicolas Brunel, Perrine Chassat. "Curvature and Torsion estimation of 3D func-
tional data: A geometric approach to build the mean shape under the Frenet Serret framework".
Preprint arXiv:2203.02398, 2021.

Articles in Preparation

▶ Chassat Perrine, Juhyun Park, Nicolas Brunel. "Functional Expectation-Maximization Algorithm
on SE(3) for Frenet Curvatures Estimation". (to come).
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2
Literature Review and

Background Material

In this chapter, we present the mathematical concepts essential for understanding the meth-
ods developed in the thesis. This includes an introduction to differential and Riemannian
geometry. We particularly delve into properties related to Riemannian manifolds and matrix
Lie groups. We review existing methods for analyzing the type of data of interest, namely
Euclidean trajectories. This encompasses techniques from functional and shape data analy-
sis. Finally, this chapter introduces the Frenet-Serret framework, forming the basis for the
methods developed in the subsequent chapters.

Abstract

Contents
1 Differential and Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Manifolds, Tangent Spaces, and Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Riemannian Structure on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Functional and Shape Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Shape Analysis of Functional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The Frenet-Serret Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Differential and Riemannian Geometry

The motion trajectories we consider in this thesis are curves in the Euclidean space R3. To compare
their shapes, define distances between them, and describe their geometries, we will see that it is essential
to represent them mathematically in more complex spaces that cannot adequately be described using
traditional Euclidean geometry, which deals with flat and straight-line geometries. Then, we introduce
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differential geometry, a branch of mathematics that focuses on studying smooth, curved, and higher-
dimensional spaces. Differential geometry deals with the properties of these spaces (metrics, distance,
etc.) and provides a mathematical framework for understanding and describing curved geometries.
Moreover, these spaces describe certain invariances that need to be considered when analyzing the
shapes of these trajectories. We present the main spaces, their main structures, and properties that will
be useful in the following. We refer to Boothby (2003); Lang (2006); Tu (2008); Sommer et al. (2020)
for a deeper understanding of these concepts.

1.1 Manifolds, Tangent Spaces, and Submanifolds

A manifold is a mathematical structure that allows one to study and understand spaces with complex
and varying geometries by approximating them with simpler, locally Euclidean structures. Essentially,
a m-dimensional manifold is a topological space M which is locally homeomorphic to Rm. This means
that for each point p ∈ M , there exists an open neighborhood U ⊂ M of p and a homeomorphism
ϕ : U → ϕ(U) such that ϕ(U) is an open set of Rm. The core idea behind this locally Euclidean property
of M is to perform calculations in a more convenient Euclidean space through a coordinate chart (U, ϕ).

Then, one can define a differentiable manifold, which is equipped with a smooth structure defined from
charts and collections of charts referred to as atlases. This structure allows the definition of smooth or
differentiable functions on the differentiable manifold M and the definition of tangent spaces representing
the behavior of functions near points on M . For that, we consider a chart on M , ϕ : U → Rm, where
U is an open subset of M containing a point p. Let γ1 :] − ϵ1, ϵ1[→ M and γ2 :] − ϵ2, ϵ2[→ M be two
C1-curves passing through p, that is γ1(0) = γ2(0) = p. We define an equivalence relation on such curves;
that is: the curves are called equivalent at p if and only if (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0). Then, for any
p ∈ M , a tangent vector to M at p is any equivalence class of C1-curves through p at M modulo this
equivalence relation. The space of tangent vectors at p is called the tangent space of M at p and is
denoted TpM . The tangent space TpM is a vector space of dimension dim(M). The set of all tangent
spaces at every point on M constitutes the tangent bundle of M , denoted TM . For more theoretical and
abstract mathematical definitions of these concepts, we refer to do Carmo (1992); Lang (2006); Sommer
et al. (2020) and references therein.

In contrast to the abstract definition of a manifold, an alternative and more intuitive point of view,
is to envisage manifolds as subsets, like surfaces or shapes, embedded in a larger manifold or in a
larger Euclidean space Rn, which is itself an n-dimensional differentiable manifold. This is referred to as
submanifolds. In practice, many sets are often regarded as submanifolds of larger manifolds, even though
they can be studied intrinsically as manifolds. This is partly due to the following theorem, which is often
used to establish that a set is indeed a manifold. To state this theorem, we first define the concept of
the differential of a map between two manifolds.

Definition 2.1 (Differential of a map between manifolds). Suppose M and N are manifolds and let
f : M −→ N be a smooth mapping. The differential of f at p ∈ M is the linear map dfp : TpM → Tf(p)N
such that for any v ∈ TpM and g : N → R a smooth function:

dfp(v)(g) = v(g ◦ f) .

Theorem 2.1 (Srivastava and Klassen (2016)). Suppose M and N are manifolds of dimensions m and
n, respectively, and let f : M → N be a smooth map, and y ∈ N a regular value of f (i.e. for any point
p ∈ f−1(y), dfp is onto). Then, f−1(y) is a submanifold of M of dimension m − n. Furthermore, the
tangent space of f−1(y) at a point p is given by the kernel of dfp.

As we are particularly interested in function spaces in this thesis, we introduce infinite-dimensional
manifolds, which are mathematical spaces that extend the concept of finite-dimensional manifolds to
infinite-dimensional spaces. These are locally homeomorphic to an open subset of an infinite-dimensional
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Banach or Hilbert space (rather than to Rn, n ≥ 1 as in finite dimension). Similarly to the finite-
dimensional case, an infinite-dimensional manifold is commonly seen as a submanifold of a known Hilbert
or Banach manifold. Then, a similar result as Theorem 2.1 can be stated for the general submanifolds
supposing that M and N are two smooth Banach manifolds and with the additional assumption that
f is transversal over y ∈ N , which means that the differential of f at every point of f−1(y) is onto
(Lang, 2006). In addition, we note here that it is also possible to establish that a set is a manifold by
demonstrating that it constitutes the Cartesian product of two differentiable manifolds.

1.2 Riemannian Structure on Manifolds

So far, the manifold M has only been equipped with a differentiable structure. However, to define dis-
tances between points on a manifold (shapes), we must introduce an additional structure called a Rie-
mannian structure. These distances will then be determined by constructing the shortest paths between
the shapes and measuring the length of these paths, using a Riemannian metric defined infinitesimally
from the elements of the tangent space at a point.

Definition 2.2. A Riemannian metric on a differential manifold M is a smooth inner product ϕ
(symmetric, bilinear, positive definite form) on the tangent space TpM of M . A differential manifold
with a Riemannian metric is called a Riemannian manifold.

Let α : [0, 1] → M represent a path on a Riemannian manifold M . Using the Riemannian metric
ϕ, we can define the length of the path α. Assuming that α is differentiable everywhere on [0, 1] we
consider the velocity vector at t, dα

dt ∈ Tα(t)M , and the length of α is defined as

L[α] =
∫ 1

0

√
ϕ

(
dα

dt
,
dα

dt

)
dt . (2.1)

Then, the distance between any two points p, q ∈ M , a Riemannian manifold, is the minimum length
among the smooth paths on M joining these points. In particular, the path with the shortest length is
called the geodesic between them, and its length defines a proper metric on M .

Recall that the tangent space at a point TpM is a vector space that can be viewed as a linear
approximation of the manifold M in a neighborhood of the point p. Using geodesics, we can then define
a mapping, called the exponential map, which allows us to transfer points between M and TpM and thus
exploit this approximation. Let v ∈ TpM be a tangent vector to M at p. There is a unique geodesic
αv : [0, 1] → M satisfying αv(0) = p with initial tangent vector α̇v(0) = v. Then, the exponential map
expp : U ⊂ TpM → M is defined by expp(v) = αv(1). Where the inverse is defined, locally around
0 ∈ TpM , we define locally the logarithm map logp(q) : M → TpM as the inverse of the exponential
map. Then, the logarithm logp(q) is the smallest vector between p and q in M as measured by the
Riemannian metric and thus we have

dist(p, q) = ∥ logp(q)∥. (2.2)

Note that in an Euclidean space, these maps are simply defined as expp(v) = p+ v and logp(q) = q − p.

Finally, an important point for our application is defining a Riemannian structure and geodesics in
infinite-dimensional spaces of curves on manifolds. We denote M the space of measurable functions
from I → M where M is a manifold. The space M is also a manifold of infinite dimension. Using the
Riemannian metric on M denoted ϕM , we can define a Riemannian metric on M, ϕM as follows: let
f ∈ M, for w1, w2 ∈ TfM

ϕM(w1, w2) =
∫
I
ϕM (w1(s), w2(s))f(s)ds, (2.3)
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where the tangent space TfM is the set

TfM =
{
w : I → TM | ∀t ∈ I, w(t) ∈ Tf(t)M and

∫
I
ϕM (w(t), w(t))dt < ∞

}
.

Then, a map α : I × [0, 1] → M is a geodesic on M if for all t ∈ I, αt = α(t, ·) : [0, 1] → M is a geodesic
on M (see proof in Srivastava and Klassen (2016)).

1.3 Lie Groups

We now introduce Lie groups, which are fundamental entities in differential geometry as they merge
manifold and group properties. In this thesis, we will use Lie groups from two distinct perspectives.
First, we will regard matrix Lie groups as the ambient spaces for our objects. Secondly, we will consider
Lie groups for their actions on manifolds, such as translations, rotations, affine transforms, etc.
Definition 2.3. A Lie group G is a group and a smooth manifold such that the group operations,
combination G×G → G : (g, h) 7→ gh and inversion operation G → G : g 7→ g−1, are smooth mappings.

Then, the group G satisfies under these operations the four group axioms: closure, associativity,
identity, and invertibility. We refer to Stillwell (2008); Chirikjian (2009); Hall (2003); Moskowitz and
Abbaspour (2007) for detailed introductions to Lie theory.

1.3.1 Matrix Lie Group and Lie Algebra

A matrix Lie group is a Lie group whose elements are matrices and whose combination and inversion
operations are, respectively, matrix multiplication and matrix inversion. As a matrix Lie group G is also
a manifold, we can define its tangent space at any point X ∈ G, representing the space of all possible
tangent vectors at that point: TXG. For X,Y ∈ G and A ∈ TXG, we define the left action of the matrix
Lie group onto itself and its associated tangent mapping as

LXY = XY, (LX)∗A = XA . (2.4)
The right action can be defined in a similar way. Then, this left (or right) -translation map defines a
left (or right) -invariant Riemannian metric on any matrix Lie group G, between A,B ∈ TXG, by

⟨A,B⟩X = ⟨(LX−1)∗A, (LX−1)∗B⟩I = ⟨X−1A,X−1B⟩I = Tr
(
(X−1A)TX−1B

)
, (2.5)

and its associated norm is called the Frobenius norm and denoted ∥ · ∥F . In particular, at the identity
element of the Lie group, the tangent space is called the Lie algebra. The Lie algebra, denoted g, is
a p-dimensional vector space over a specific field (here R) that captures the infinitesimal behavior and
algebraic properties of the Lie group. The Lie algebra can be defined by a basis of real matrices Ei for
i = 1, . . . , p. We introduce the Lie algebra isomorphisms,

(·)∨ : g → Rp (“vee”) (2.6)
(·)∧ : Rp → g (“wedge”) , (2.7)

such that E∨
i = ei where {ei}i=1,...,p is the natural basis of Rp. The Lie algebra is equipped with a

binary operation called the Lie bracket, denoted as [·, ·], and defined as the map A,B ∈ g×g 7→ [A,B] =
AB −BA ∈ g. The Lie bracket satisfies the following properties:

1. R-bilinearity: for any elements A,B ∈ g, [A,B] ∈ g.

2. Anti-symmetry: for any elements A,B ∈ g, [A,B] = −[B,A].

3. Jacobi identity: for any elements A,B,C ∈ g, [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0.
The Lie bracket operation on the Lie algebra reflects the group multiplication in the Lie group. In fact,
the Lie group and its Lie algebra are interconnected by some key relations, detailed below, which are
essential for manipulating and working with Lie group objects.

14



1. Differential and Riemannian Geometry

Exponential and Logarithm map. The Lie algebra being geometrically the tangent space to the
Lie group at the identity there are linked by the exponential map, which relates the tangent space to
its corresponding manifold. The exponential map is a mapping from the Lie algebra to the Lie group:
expG : g → G, which provides a way to "undo" the linearization. One can also define the inverse mapping,
the logarithm map from the Lie group to the Lie algebra: logG : G → g. Fortunately, if we consider a
matrix Lie group, the exponential and logarithmic maps are simply the classical matrix exponential and
matrix logarithm given by

X = exp(A) =
∞∑
n=0

1
n!A

n , A = log(X) =
∞∑
n=1

(−1)n−1

n
(X − I)n . (2.8)

Note that, in the logarithm expression, the series is convergent only if ∥X − I∥ < 1. Moreover, as in the
general case of any manifold, the exponential and logarithmic mappings are usually only subjective and
are locally defined around an open neighborhood of 0 in g and an open neighborhood of the identity
element Id in G.

Adjoint representation. The adjoint representation of a Lie group is a mapping that represents
a group element as a linear transformation on the group’s Lie algebra. More specifically, the adjoint
representation of G on g is a mapping AdG : G −→ GL(g) that assigns to each group element X ∈ G a
linear transformation AdG(X) on the Lie algebra g, defined, using the notations (2.6) and (2.7), as

AdG(X)b =
(
X(b)∧X−1

)∨
, (2.9)

where b∧ is an element of the Lie algebra g, and thus b ∈ Rp. The differential of the adjoint representation
AdG of the Lie group G on the Lie algebra g matches the adjoint representation adG of the Lie algebra
g onto itself, also denoted by “·⋏” and defined for a, b ∈ Rp as

adG(a∧)b = a⋏b = [a∧, b∧]∨ . (2.10)

In the following, we will denote by “·⋎” the operation that undoes the adjoint representation of the Lie
algebra, “·⋏”. The adjoint representation has several properties related to commutation; for X ∈ G and
a, b ∈ Rp we have,

X exp(b∧) = exp
(
(AdG(X)b)∧)X , (2.11)

adG(a∧)b = −adG(b∧)a , (2.12)
AdG

(
exp(a∧)

)
= exp(adG(a∧)) = exp(a⋏) . (2.13)

Jacobian matrix. The Jacobian matrix of a Lie group G captures the exponential map’s derivative
at the Lie group’s identity element. It serves as a fundamental tool for differentiating and integrating
functions on Lie groups that are expressed in coordinates. It can be defined as a function of the adjoint
representation as

JG(a) =
∞∑
n=0

(−1)n
(n+ 1)!adG(a∧)n . (2.14)

Baker-Campbell-Hausdorff formula. The Baker-Campbell-Hausdorff (BCH) formula allows one to
approximate the group product in terms of the Lie algebra operations.
Theorem 2.2 (Baker-Campbell-Hausdorff formula). If g is a Lie algebra defined over a field of charac-
teristic 0 and A,B ∈ g, then exp(A) exp(B) = exp(C) for some formal infinite sum C of elements in g.
In particular,

C = log(exp(A) exp(B)) =
∞∑
n=1

(−1)n+1

n

∑
ri+si>0

[A(r1), B(s1), . . . , A(rn), B(sn)]
(∑n

i=1(ri + si))
∏n
i=1 ri!si!
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where [C1, . . . , Cm] denotes the iterated Lie bracket [C1, [. . . , [Cm−2, [Cm−1, Cm]]] . . .], and C(r) denotes
the iteration of r copies of C, i.e [C(2)

1 , C2] = [C1, [C1, C2]].

Proof. See Hall (2003). ■

Concretely, keeping only the first terms, the BCH formula is given by

log (exp(A) exp(B)) = A+B + 1
2[A,B] + 1

12([A, [A,B]] + [B, [B,A]]) − 1
24[B, [A, [A,B]]] + . . . (2.15)

where A,B ∈ g. The BCH formula can also be expressed in Rp by taking the ∨ operator on the equation
(2.15). Let a, b ∈ Rp such that A = a∧ and B = b∧, given the relation (2.10) we have

log
(
exp(a∧) exp(b∧)

)∨ = a + b + 1
2adG(a∧)b + 1

12
(
adG(a∧)adG(a∧)b + adG(b∧)adG(b∧)a

)
+ . . .

= a + b + 1
2a⋏b + 1

12
(
a⋏a⋏b + b⋏b⋏a

)
+ . . .

(2.16)
The BCH formula is guaranteed to converge in a neighborhood of the identity element of any Lie group.
As results, we have exp(A) exp(B) = exp(A+B) if and only if the matrix A and B commute.

1.3.2 Lie Group Actions on Manifolds

In the context of shape analysis, we will focus on specific variations of shapes, which are points on a
manifold, such as rotations, translations, and others. These transformations are mathematically defined
as actions of Lie group elements on the manifold elements. Let M be a manifold and G be a Lie group.
We define the actions of G on M as follows.

Definition 2.4. A left group action of a Lie group G on a manifold M is a map G×M → M , denoted
by (g, p) 7→ g ∗ p, satisfying:
1. g1 ∗ (g2 ∗ p) = (g1g2) ∗ p,∀g1, g2 ∈ G and p ∈ M ,
2. e ∗ p = p,∀p ∈ M .
The right group action can be defined similarly. We say that G acts on M .

If M is a Riemannian manifold, the Lie group G also acts on distances between points on M .

Definition 2.5. A group action of G on a Riemannian manifold M is called isometric if it preserves
the Riemannian metric on M , that is, for p, q ∈ M , d(p, q) = d(g ∗ p, g ∗ q) for all g ∈ G. In this case,
we also say that G acts on M by isometries.

From this group action of G on M we can then define the set of all possible points one can reach in
M using the action of G on a particular point of M . This is called the orbit of p ∈ M under the action
of G and mathematically defined as the set

[p] = G ∗ p = {g ∗ p | g ∈ G}.

Using the orbit, we can define an equivalence relation in M by p is equivalent to q, p ∼ q, if and only if
p ∈ [q]. In particular, we say that the action of G is transitive if for of any p ∈ M,G∗p = M . Otherwise,
we can consider the set of all orbits of G in M , that is, the quotient space M/G defined as

M/G = {[p] | p ∈ M}. (2.17)

The concept of quotient spaces is especially useful in shape analysis to define space where shapes are
invariant to some group transformations. In particular, we can define an inherited distance on the
quotient space from the Riemannian metric on M as follows.
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Definition 2.6. If a group action of G on a Riemannian manifold M is isometric and the orbits under
G are closed, then we can define a distance on the quotient space M/G using the distance on M as

dM/G([p], [q]) = min
g∈G

dM (p, g ∗ q) = min
g∈G

dM (g ∗ p, q),

which is a proper distance satisfying the properties of symmetry, positive definiteness, and triangle in-
equality (Srivastava and Klassen, 2016).

The main actions of finite-dimensional Lie groups that we will consider in this thesis are the action
of the translation group Rd, the rotation group SO(d), and the scaling group R×.

2 Functional and Shape Data Analysis
The core objective of this thesis focuses on the statistical analysis of motion trajectories obtained through
a motion capture system. Motion capture data, in practice, is acquired discretely, with minimal time
intervals between successive position measurements of specific points on the body. As a result, we are
dealing with data that are theoretically continuous, but for which we have only discrete observations.
These are known as functional data. The analysis, representation, and explanation of this type of data
is the aim of the mathematical field of functional data analysis (FDA). This field has developed by
extending tools for multivariate statistics through various works of Ramsay and Dalzell (1991); James
(2002); Müller and Stadtmüller (2005); Reiss and Ogden (2007); Ramsay et al. (2007). Moreover, the
statistical analysis of a collection of functions involves examining their geometries or shapes. This
constitutes a significant part of the large field of shape analysis (Srivastava and Klassen, 2016; Younes,
2010; Srivastava et al., 2011; Pennec et al., 2020; Bauer et al., 2022). In this section, we introduce the
main existing approaches of these two domains that we will use later in the functional and shape analysis
of our data.

2.1 Functional Data Analysis

2.1.1 Smoothing Functional Data

The data we are interested in are discretely observed or recorded as n pairs (ti, yi), where yi represents
the measured value at the specific instant or position ti. Despite the discrete nature of these data
points, their contextual information suggests an inherent continuous structure, represented as a function
t 7→ x(t). Consequently, the initial step in analyzing this type of data involves transforming these discrete
values into a continuous function x(t) that can be evaluated across the entire domain t ∈ T . In cases
where the data points are sufficiently dense and noiseless, straightforward interpolation methods can be
applied. However, when the data lacks density or is affected by noise, a smoothing method becomes
essential (Green and Silverman, 1993). In this context, the underlying model for the observations can
be expressed as follows:

yi = x(ti) + ϵi ,

where ϵi represents the observation error or noise. The objective of smoothing is to estimate the latent
variable x within this model. To achieve this, the main approach in functional data analysis involves
considering a set of mathematically independent basis functions. These basis functions are chosen to
relatively approximate any function through a linear combination of a sufficient number K of these
functions. In mathematical terms, the function x(t) is represented as:

x(t) =
K∑
k=1

ckϕk(t) (2.18)
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where ϕk(t) are known basis functions. Note that the number of basis functions considered influences
the degree of smoothness of the function. Indeed, when K = n, it essentially amounts to interpolation.
Therefore, the parameter K must be optimized or selected based on the considered dataset.

B-spline Basis Functions. The choice of the basis functions also depends on the data. Among the
commonly used basis functions in the literature are Fourier basis, polynomial basis (monomials), wavelet
functions, and B-spline basis. In this thesis, we use the B-spline basis functions known for their flexibility
in approximating and modeling complex shapes (de Boor, 1978; Silverman, 1985). They are defined as
piecewise polynomials characterized by their local support. A B-spline of order p is a collection of
piecewise polynomial functions Bi,p(t) of degree p − 1 that are non-zero on a few adjacent subintervals
defined by a sequence of knots τ0, . . . , τm. They can be constructed with the Cox-de Boor recursion
formula:

Bi,0(t) :=
{

1 if τi ≤ t < τi+1,

0 otherwise.

Bi,p(t) := t− τi
τi+p − τi

Bi,p−1(t) + τi,p+1 − t

τi+p+1 − τi+1
Bi+1,p−1(t).

The degree of the B-spline basis, as well as the placement of knots, must be adjusted to adapt to the
specific characteristics of the data. A common practice is to use equally spaced knots, which works
well when the data points are uniformly distributed. However, if this is not the case, another approach
consists of placing interior knots at the quantiles of the argument distribution, i.e., at every j-th data
point, where j is a fixed number.

Least Square Fitting. Given the observations (ti, yi) and theK basis functions ϕk, we must determine
the value of the coefficients of the basis expansion ck. This is achieved by minimizing the least squares
criterion

c = arg min
c

n∑
i=1

(
yi −

K∑
k

ckϕk(ti)
)2

(2.19)

where c = (c1, . . . , ck) is the vector notation of the K coefficients. By considering the vector y with the
observed values yi and the matrix Φ whose columns are the basis functions ϕk, this criterion can be
expressed in matrix notations as

c = arg min
c

(y − Φc)T (y − Φc) . (2.20)

Then, taking the derivative of the criterion with respect to c yields the solution

ĉ = (ΦTΦ)−1ΦTy, (2.21)

and the vector of fitted values is ŷ = Φĉ. If we are in the case of a weighted smoothing problem, with
a weights symmetric positive definite matrix W , the solution becomes

ĉ = (ΦTW Φ)−1ΦTW y. (2.22)

In particular, this appears when we consider localized basis function estimators. Basically, the idea is
to estimate the function at a point t using a weighted combination of the function observation values at
neighbor points. This extends the previous least squares criterion as

c(t) = arg min
c

n∑
i=1

wi(t)
(
yi −

K∑
k

ckϕk(ti)
)2

(2.23)

where the weight functions wi are defined by a kernel function as wi = Kern((ti−t)/h), and the parameter
h is the bandwidth of the kernel.
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Roughness Penalty. When dealing with noisy or irregularly sampled functional data, it is difficult
to control the degree of smoothness using smoothing methods such as basis smoothing or localized basis
smoothing. To overcome this, the roughness penalty approach consists of adding a penalty term to the
objective function being optimized to balance between fitting the data closely and maintaining a certain
level of smoothness in the estimated function (Green and Silverman, 1993; Chong, 2002). In this way,
the smoothness property is expressed explicitly at the criterion level rather than implicitly in terms of
the number of basis functions used. The penalty term discourages the estimated function from being too
oscillatory, leading to a smoother and more interpretable result. In practice, a popular way to measure
the concept of “roughness” in a function is by considering the square of its second derivative [x′′(t)]2.
Then, the criterion for smoothing with a roughness penalty can be formulated as follows:

minimize
n∑
i=1

(yi − x(ti))2 + λ

∫
[x′′(t)]2dt (2.24)

In this equation, the first term represents the data fitting term, ensuring that the estimated function
x(t) closely matches the observed data points, and the second term,

∫
[x′′(t)]2dt, represents the roughness

penalty. The parameter λ controls the trade-off between data fitting and smoothness. Therefore, the
choice of this parameter is crucial and often requires careful tuning based on the characteristics of the
data and the desired level of smoothness in the estimated function. The roughness penalty term can
also be expressed as a function of the basis decomposition of x as∫

[x′′(t)]2dt = cT
[∫

Φ′′(t)(Φ′′(t))Tdt
]

c = cTRc. (2.25)

Then, the optimal coefficients are obtained by minimizing the criterion

(y − Φc)T W (y − Φc) + λcTRc, (2.26)

leading to the solution
ĉ = (ΦTW Φ + λR)−1ΦTW y. (2.27)

2.1.2 Summary Statistics for Functional Data

We now assume that we have a collection of functions xi(t), i = 1, . . . , N . We can define basic statistics
on this set, such as the mean and standard deviations in a functional version, by analogy with the mul-
tivariate statistical analysis. The mean function is simply the point-wise average across the replications
defined as

x̄(t) = 1
N

N∑
i=1

xi(t) . (2.28)

Similarly, the variance function is defined as

var(x(t)) = 1
N − 1

N∑
i=1

(xi(t) − x̄(t))2 (2.29)

and the standard deviation function is the square root of the variance function. Beyond these basic statis-
tics, covariance and correlation functions summarize the interdependence of functions across different
time points. The covariance function is defined for all t1, t2 as

covx(t1, t2) = 1
N − 1

N∑
i=1

(xi(t1) − x̄(t1)) (xi(t2) − x̄(t2)) (2.30)

19



Chapter 2. Literature Review and Background Material

and similarly, the correlation function is defined as

corrx(t1, t2) = covx(t1, t2)√
var(x(t1))var(x(t2))

(2.31)

These covariance and correlation functions provide insights into how the functions in the collection vary
together across different values of t. If we consider two different collections of functions xi and fi for
i = 1, . . . , N , this is given by the cross-covariance and cross-correlation functions defined as

covf,x(t1, t2) = 1
N − 1

N∑
i=1

(
fi(t1) − f̄(t1)

)
(xi(t2) − x̄(t2)) , (2.32)

corrf,x(t1, t2) = covf,x(t1, t2)√
var(f(t1))var(x(t2))

. (2.33)

Functional Principal Components Analysis. Exploring variability within a dataset can also be
achieved using Principal Components Analysis (PCA). Building upon the principles of PCA for mul-
tivariate data, an extension tailored for functional data is known as functional principal components
analysis (fPCA) (Yao et al., 2005; Reiss and Ogden, 2007). The basic idea is to capture the main modes
of variability in a set of functions by identifying a set of K orthonormal functions ϕk so that the ex-
pansion of each curve in terms of these basis functions provides the best possible approximation of the
curve. Then, the FPCA involves expressing each function as a sum of principal components:

xi(t) = x̄(t) +
K∑
k=1

ξi,kϕk(t) (2.34)

where x̄(t) is the mean function, ξik are the functional principal component scores for the i-th observa-
tion and k-th component, and ϕk(t) are the functional principal components, which are the functions
capturing the main modes of variability. In practice, we compute the full sample covariance matrix K
using the sample covariance function covx(ti, tj) on a discrete grid t1 < . . . < tn. Then, by taking its
singular value decomposition (SVD) K = UΣV T , the principal directions are defined as the K first
columns of the matrix U and the observed principal coefficients as ξi,k = ⟨xi,Uk⟩.

2.1.3 Phase and Amplitude Variability

A common problem in functional data analysis, rendering these sample statistics less relevant, is the
presence of variations in the temporality of functions within the dataset, known as phase variations
(Marron et al., 2015). The phase of a functional curve refers to its temporal alignment or positioning
in the domain, such as time or space. Phase variability occurs when observed functions exhibit shifts
or misalignments in their temporal patterns. A typical example for scalar functions in R is depicted in
Figure 2.1, where the peaks of each curve are not present at the same time. Consequently, computing a
mean or performing fPCA directly on this set is intuitively not meaningful. Therefore, prior alignment
of functions is necessary to obtain a more comprehensible and coherent data analysis. Various methods
for function alignment have been proposed (Kneip and Gasser, 1992; Liu and Müller, 2004; Tang and
Müller, 2008). In general, alignment is modeled by a warping function γ that modifies the distribution
of points along the curve. Mathematically, this is expressed as the right composition of x by γ, denoted
as x ◦ γ. From the aligned curves (Figure 2.1), we can clearly observe residual variations corresponding
to so-called amplitude variations. These reflect variations in the height or size of observed patterns and
must also be taken into account. Assuming we have a phase alignment algorithm capable of identifying
the set of warping functions {γi} and the set of aligned curves {x̃i}, in this case, the mean of the collection
of functions xi is defined as the previously defined sample mean of the aligned functions. Subsequently,
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fPCA can be performed separately on the aligned functions to identify the main modes of amplitude
variations and on the warping functions to identify the main modes of phase variations (Kneip and
Ramsay, 2008; Happ et al., 2019; Tucker et al., 2019).
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Figure 2.1: Illustration of phase and amplitude variations in a set of scalar functions (left) and corre-
sponding aligned functions with residual amplitude variations (right).

These observations, introduced here in one dimension within the framework of functional data anal-
ysis, highlight the general problem in curve shape analysis, which involves properly identifying and
modeling different types of variations to obtain meaningful statistics across the entire set of curves. This
necessitates, among other things, a method for aligning or registering functions or curves.

2.2 Shape Analysis of Functional Data

As previously introduced, analyzing a collection of curves and computing basic statistics on them first
requires identifying the various types of variations present in these curves. The idea is to isolate what
comes under the inherent shape of the curves or specific patterns from variations in parameterization
(phase) or rigid transformations, known as “shape-preserving”, such as translation, rotation, or scaling.
Shapes are defined as what remains invariant under the action of the reparameterization group, and each
mentioned transformation (Grenander, 1993). From there, the question becomes how to quantify the
similarities and dissimilarities of shapes within a set of curves and how to model the variability of these
shapes. This falls within the broad field of mathematics known as shape analysis (Dryden and Mardia,
1998; Small, 1996; Kendall et al., 1999; Kendall and Le, 2010). Within this field, several methods exist
and differ based on the considered representation of the geometric object defining the shape. Staying
within the case of Euclidean curves in Rd, Glaunès et al. (2008); Younes (2010) proposes shape analysis
methods, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM), in which curves are
represented as a sequence of discrete points. These methods rely on the deformation of points from
one curve to another induced by the action of a diffeomorphism on the ambient space. On the other
hand, Srivastava et al. (2011); Srivastava and Klassen (2016); Bauer et al. (2022) models the geometric
object constituting the shape continuously as a function, even if the actual observations of the curves
are generally discrete. This allows, in some applications, to retain the inherently continuous nature of
the original data and simultaneously model temporal variations if necessary. In this thesis, given our
interest in motion trajectories, time is a significant variable, and we thus consider the case of continuous
objects. Mathematically, the arc-length parameterization uniquely defines the shape of an absolutely
continuous curve x. The arc-length function is defined for all t ∈ [0, 1] as

s(t) =
∫ t

0

∥∥∥∥dx(u)
du

∥∥∥∥2
du (2.35)

and defines a natural parameterization of the curve. The shape of the curve is then the image X of the
function x under this parameterization, X(s(t)) = x(t).
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As illustrated previously in the case of scalar functions, a major step in shape analysis is to align
or register curves with respect to their geometric features. The advantage of continuous modeling of
curves is to use parameterization as a means to align points along the curves. For this purpose, we
need to consider the reparameterization group, Diff+([0, 1]), which represents all boundary-preserving
and orientation-preserving diffeomorphisms of [0, 1] to itself. Diff+([0, 1]) is a Lie group with the group
operation given by composition, the identity element given by the identity function from [0, 1] to [0, 1]
and inverse function well defined as: for γ, γ1, γ2 ∈ Diff+([0, 1])

(γ1 ◦ γ2)(t) = γ1(γ2(t)), γid(t) = t, γ ◦ γ−1 = γ−1 ◦ γ = γid. (2.36)

We refer to these elements as “warping” functions or “re-parametrization” functions. The action of
warping functions on the curve space is by right composition: (x, γ) = x ◦ γ. For more detail on the
geometry of this Lie group we refer to Kac (1990).

2.2.1 Registration of Functional Data with the L2 Norm

We consider two absolutely continuous curves x1 and x2 defined from [0, 1] to Rd. The reparametrization
of x1 by a warping function γ ∈ Diff+([0, 1]) results in the function x1 ◦γ that maps the same points in Rd
as x1 and thus has the same shape. Registering x2 to x1 involves finding the optimal warping function γ
such that for all t ∈ [0, 1], x2 ◦ γ(t) and x1(t) are as close as possible. Therefore, it requires an objective
function quantifying the distance between x2 ◦ γ(t) and x1(t). As x1 and x2 lies in L2([0, 1],Rd), a
natural choice will be the L2 norm, as used in Ramsay and Li (1998); Tang and Müller (2008). We recall
that the L2 norm of x is defined as ∥x∥L2 =

√∫ 1
0 ∥f(t)∥2

2dt. Then, the registration problem amounts to
finding the optimal warping function γ∗ such that

γ∗ = arg min
γ∈Diff+([0,1])

∥x1 − x2 ◦ γ∥2
L2 . (2.37)

However, this objective function has two main limitations: the lack of isometry or symmetry and the
pinching effect. The isometry property defined in Definition 2.4 is not verified by the L2 metric, ∥x1 ◦γ−
x2 ◦ γ∥L2 ̸= ∥x1 −x2∥L2 . This means that the alignment of x2 to x1 will not necessarily be the inverse of
the alignment of x1 to x2. Therefore, this objective function is not well defined for a registration problem.
The second main problem is a degeneracy of the L2 norm, called the “pinching effect”. Basically, the
quantity ∥x1 − x2 ◦ γ∥2

L2 can be made infinitesimally small by squeezing or pinching a large part of x2.
Figure 2.2 of Pennec et al. (2020) illustrate this effect with the example of two scalar functions on [0, 1].

A possible solution to limit this effect is to penalize large warpings using an additional roughness
penalty term in the objective function like

γ∗ = arg min
γ∈Diff+([0,1])

∥x1 − x2 ◦ γ∥2
L2 + λP(γ). (2.38)

Common choices for P(γ) are
∫
γ̇(t)2dt,

∫
γ̈(t)2dt or

∫
∥1 − γ̇(t)∥2

2dt. Although this method limits the
pinching effect, it also restricts the space of solutions for warping functions. Additional illustrations are
available in Pennec et al. (2020); Srivastava and Klassen (2016). The L2 metric does not, therefore,
appear to be suitable for shape analysis of Euclidean curves, being blind to “spikes”.

2.2.2 Pre-Shape and Shape Space

Given these limitations, a common approach in shape analysis is to consider an intermediate mathemat-
ical representation of curves with properties appropriate to shape analysis. Introduced first by Kendall
et al. (1999) with landmarks and then used to define the elastic shape analysis approach, the idea is

22



2. Functional and Shape Data Analysis

Figure 2.2: Figure taken from Pennec et al. (2020) illustrating the pinching effect that appears when
registering the red and blue functions with the L2 norm as an objective function. In each column they
show x1 ◦ γ and x2 ◦ γ (top panel), γ (bottom panel), and the value of ∥x1 ◦ γ − x2 ◦ γ∥2

L2 below them.

to represent a curve x with a mathematical representation R(x) which is invariant under certain trans-
formations. In addition, one of the stakes of such representation is to offer an (infinite-dimensional)
Riemannian manifold structure that brings, as introduced in Section 1.2, powerful and flexible tools
defining metrics and studying the geometry of shapes (Lang, 2006; Sommer et al., 2020). The set of
these representations is called the pre-shape space. The remaining shape-preserving transformations in
the pre-shape space are then removed by using the notion of equivalence class and quotient spaces. This
leads to the definition of the shape space. In this setting, the distance between two curves is defined
through the distance between the mathematical representations modulo any remaining shape-preserving
transformations. This leads to a unified framework for registration, shape comparison, and analysis.

The method most commonly used today for shape analysis of Euclidean curves modeled as continuous
functions involves the representation of curves known as the Square-Root Velocity Function (SRVF)
defined first in Srivastava et al. (2011) and further in Srivastava and Klassen (2016); Su et al. (2017);
Bauer et al. (2021). The framework related to this representation is called the elastic shape analysis.
The term “elastic” underlines the fact that the registration of curves is part of their shape comparisons.

Definition 2.7. The square-root velocity function (SRVF) of x absolutely continuous curve from [0, 1]
to Rd is the mathematical representation of x defined by

q(t) =


ẋ(t)√
∥ẋ(t)∥2

, ∥ẋ∥2 ̸= 0,

0, ∥ẋ∥2 = 0.
(2.39)

In one dimensional case d = 1, this representation is referred to as square-root slope function (SRSF)
and reduces to q(t) = sign(ẋ(t))

√
∥ẋ∥2. Under this representation, the pre-shape space is defined as the

set of all square-root velocity representations of curves in Rd, which is the unit Hilbert sphere inside
L2([0, 1],Rd), and have a structure of Riemannian manifold equipped with the L2 metric. Moreover, this
representation offers several advantages for the shape analysis of curves. The transformation from x to q
is bijective. The reparameterization of x by a warping function γ modifies its SRVF as q ∗γ = (q ◦γ)

√
γ̇,

and this group action preserves the L2 norm, ∥q∥ = ∥q ∗ γ∥. Thus, the action is isometric, and there
is no issue with the pinching effect. Additionally, the L2 norm between two SRVFs is already invariant
to translations of the corresponding curves. Therefore, the shape space S under this representation is
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defined as the quotient space of the pre-shape space with the group Diff+([0, 1]) and SO(d). Then, the
distance between two shapes of curves x1 and x2 is defined under the SRVF representation as

dS(x1, x2) = inf
γ∈Diff+([0,1]),O∈SO(d)

∥q1(t) −O(q2 ∗ γ)(t)∥ . (2.40)

This metric is called an elastic metric and is shown to be a Sobolev-type metric (Srivastava and Klassen,
2016), which also considers geometric information of derivatives. More details on this representation for
Euclidean curves and the associated Riemannian shape analysis framework (geodesic, mean, etc.) will be
given in Chapter 5. Extensions of this elastic shape analysis framework have been developed for curves
with values in manifolds or Lie groups. In particular, we will use the SRV transform of SO(d)-valued
curves in Chapter 5.

The case of this specific representation illustrates the method employed in the field of shape analysis
with continuous objects to establish a suitable framework for statistical analysis of Euclidean curves in
Rd. This method relies on the pre-shape space’s Riemannian framework and the shape space’s definition
as the quotient space by the reparameterization group, allowing for simultaneous curve registration.
Therefore, the choice of representation is a pivotal step that defines the expression of the shape space,
the considered metrics, and consequently, the obtained statistics.

3 The Frenet-Serret Framework
In this thesis, we are particularly interested in the Frenet-Serret framework, which provides a geometric
representation of a curve in Rd. The Frenet-Serret formulas were initially defined in three-dimensional
Euclidean space by two French mathematicians who independently discovered them: Jean Frédéric Frenet
(1852), and Joseph Alfred Serret (1851). They were later extended to arbitrary dimensions d by Camille
Jordan (1874). These formulas describe the kinematic properties of a point moving along a differen-
tiable curve in Euclidean space. Furthermore, they introduce local descriptors of a curve at each point,
capturing essential shape information and exhibiting invariance properties under rigid transformations.
Consequently, the Frenet-Serret framework focuses on the intrinsic geometry of a curve rather than its
global position and represents a powerful tool for analyzing and understanding the geometric properties
of curves, making it a central topic of investigation in this thesis.

We introduce the Frenet-Serret framework for curves of any dimension d. Let F ([0, 1],Rd) be the set
of curves x ∈ AC0

(
[0, 1],Rd

)
d-times continuously differentiable, and with the first d derivatives linearly

independent. F ([0, 1],Rd) is called the set of Frenet curves. In the following, we will restrict the shape
space to be the set

S([0, 1],Rd) = F ([0, 1],Rd)/Diff+([0, 1]) . (2.41)

The Frenet frame e1, e2, . . . , ed associated with X ∈ S([0, 1],Rd) is uniquely defined by applying the
Gram-Schmidt process to the first d derivatives of X. The unit tangent vector is e1(s) = X ′(s), the
(d− 2) next unit vectors are defined by

ej(s) = X(j)(s) −
∑j−1
i=1 ⟨X(j)(s), ei(s)⟩ei(s)∥∥∥X(j)(s) −

∑j−1
i=1 ⟨X(j)(s), ei(s)⟩ei(s)

∥∥∥ (2.42)

and the last one is the cross-product of the first d − 1 vectors. We define the function Q that maps to
s ∈ [0, 1] along the curve the corresponding Frenet frame

Q(s) = [e1(s) | e2(s) | ... | ed(s)] . (2.43)

24



3. The Frenet-Serret Framework

The function Q is a measurable curve from [0, 1] to the Lie group of rotation matrices SO(d) called the
Frenet path.

Theorem 2.3 (Frenet-Serret equation Kühnel (2002)). Let X ∈ S([0, 1],Rd) and Q(s) its associated
Frenet path. Then there are functions θ1, . . . , θd−1 defined on that curve with θ1, . . . , θd−2 > 0, so that
every θi is (d− 1 − i)-times continuously differentiable and

Q′(s) = Q(s)Aθ(s) (2.44)

where θ(s) = (θ1(s), . . . , θd−1(s))T and

Aθ(s) =



0 −θ1(s) 0 . . . 0

θ1(s) 0 −θ2(s)
. . .

...

0 θ2(s)
. . . . . . 0

...
. . . . . . 0 −θd−1(s)

0 . . . 0 θd−1(s) 0


and θi is called the i-th Frenet curvature, and the equation is called the Frenet-Serret equation.

The Frenet-Serret equation with an initial condition Q(0) = Q0 defines an ordinary differential
equation on the Lie group SO(d) where the function s 7→ Aθ(s) has values in the Lie algebra of skew-
symmetric matrices. This equation can also be expressed in function of the time variable t as

dQ(s(t))
dt

= ṡ(t)Q(s(t))Aθ(s(t)) . (2.45)

Lemma 2.1. The action of the translation, rotation, scaling, and reparametrization group on the Frenet
curvatures and the Frenet path are defined as follows. Let x ∈ F ([0, 1],Rd), O ∈ SO(d), a ∈ Rd, L ∈ R×

and h ∈ Diff+([0, 1]). The curve defined by x̃(t) = a + 1
LOx(h(t)) has a Frenet path Q̃(s) = OQ(Ls)

and Frenet curvatures θ̃(s) = Lθ(Ls). Therefore, the Frenet curvatures are invariant under rotations,
translations, and reparametrization.

Theorem 2.4 (Fundamental theorem of the local theory of curves Kühnel (2002)). Let θ1, ..., θd−1 ∈
C∞([0, 1],R) such that θ1, . . . , θd−2 > 0. For a given X0 ∈ Rd and Q0 ∈ SO(d) there is a unique
X ∈ S([0, 1],Rd) parametrized by arc length and satisfying the following three conditions:

• X(0) = X0,

• Q0 is the Frenet frame of X at point s = 0,

• θ1, ..., θd−1 are the Frenet curvatures of X.

Theorems 2.3 and 2.4 state that there is a bijection, up to a translation and a rotation, between the
shape space S([0, 1],Rd), the set of admissible Frenet curvatures H and the set of corresponding Frenet
paths F0, where

H =
{

θ ∈ L2
(
[0, 1],Rd−1

)
| θ1, . . . , θd−2 > 0

}
, (2.46)

F0 =
{
Q ∈ L2([0, 1], SO(d)) such that Q′(s) = Q(s)Aθ(s), Q(0) = Id,θ ∈ H

}
. (2.47)
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Three-dimensional case. Given that the motion trajectories we are interested in are in three dimen-
sions, we specify the Frenet frame in this case. Note that up to now, it is primarily in this dimension
that the Frenet-Serret frame is mainly used, and thus, for which most estimation methods are devel-
oped. For a curve R3 with shape function X : [0, 1] → R3, the three vectors of the associated Frenet
frame are called the tangent vector T , the normal vector N , and the bi-normal vector B, such that
Q(s) = [T (s)|N(s)|B(s)]. The two Frenet curvatures are known as the curvature function, s 7→ κ(s),
and the torsion function, s 7→ τ(s). They have interpretable physical meanings. The curvature function
measures how sharply the curve changes direction at a given point, and the torsion function measures
the degree to which the curve twists and turns as it moves along its path (Carmo, 1976).
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3
Profiled Frenet-Serret ODE Inference

for Frenet Curvatures Estimation

In this chapter, we provide an overview of existing methods used to estimate Frenet cur-
vatures from discrete and noisy numerical data. This includes direct approaches using the
extrinsic formulas of Frenet curvatures, as well as methods proposed by Park and Brunel
(2019), treating curvatures estimation as a parameter estimation problem of a differential
equation. These methods involve smooth estimation of the Frenet path, followed by a least
squares minimization adapted to the geometry of the problem to estimate the curvatures as
parameters of the Frenet-Serret differential equation. We delve into these methods in detail.
As a contribution, we introduce an alternative approach for obtaining a smooth estimation of
the Frenet path inspired by smoothing techniques using tracking algorithms (Wahba, 1978;
Brunel and Clairon, 2015). This method proves to be more computationally efficient and
yields results similar to the existing method. Finally, we present examples using simulated
data to compare these methods and highlight their limitations.
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1 Introduction
We consider the problem of estimating the Frenet curvatures defined in Theorem 2.3. In a d-dimensional
ambient space Rd, these Frenet curvatures are d−1 scalar functions defined on [0, 1] that can be grouped
in one vector-valued function θ : [0, 1] → Rd−1. Assuming that we have potentially noisy observations of
Frenet curvatures, estimating them would correspond to a classical problem of multivariate functional
regression (Ramsay and Silverman, 2005). However, in practice, the Frenet curvatures are not directly
observable. Instead, the available experimental data typically consist of noisy and discrete observations
of the Euclidean trajectory in Rd. Therefore, in this case, intermediate estimates of additional geometric
components of the curve are necessary for estimating the Frenet curvatures.

Methods commonly found in literature (Kim et al., 2013; Sangalli et al., 2009; Lewiner et al., 2005)
are based on the extrinsic formulas of the Frenet curvatures. These ones involve combinations of the
d first derivatives of the Euclidean curve. Hence, these methods rely on nonparametric estimation of
the derivatives from noisy and discrete observations of the trajectory and application of these extrinsic
formulas.

More recent works introduce the idea of regarding the estimation of Frenet curvatures as an ODE
inference problem (Park and Brunel, 2019; Hirsh et al., 2021). Indeed, the vector-valued function θ is
by definition (Theorem 2.3) a structural parameter of the Frenet-Serret differential equation (2.44) on
SO(d): Q′(s) = Q(s)Aθ(s). Compared with the previous approach, this one is more focused on the
functional parameter θ within the geometric Frenet-Serret framework. Basically, the main objective of
an ODE inference problem is to estimate the unknown parameters of the differential equation based on
experimentally observed data of state variables, which may sometimes be only partially observed. Due
to the wide use of differential equations to describe and quantify phenomena in many scientific fields,
the inverse problem of differential equation models is a significant challenge, and numerous different
methods have been proposed to solve it (Ramsay and Hooker, 2017). Compared to the usual setting in
which this problem is studied, our framework introduces two additional constraints: the state variable
Q takes values in the Lie group SO(d), and the parameter θ to estimate is time-varying.

In this context, a classic method to solve this ODE estimation problem is the penalized non-linear
least squares (NLS) procedure (Cao et al., 2012; Chen and Wu, 2008). This method extends the classic
NLS one (Biegler et al., 1986) to the time-varying parameter estimation case by considering a basis
expansion of the parameter θ(s) = Φ(s)c, where Φ(s) represents the basis function expansion, and c
denotes the parameter coefficients. The estimation process involves numerical methods to approximate
the ODE solution and optimization of coefficients c by minimizing the penalized residual sum of squares
from the noisy state observations. This is typically achieved using a Gauss-Newton algorithm. However,
the NLS method, while widely used, is known to face several limitations. It is computationally inten-
sive, requiring numerical approximations, repeated ODE integrations, and nonlinear optimizations with
possible multiple local minima in the residual sum of squares function (Miao et al., 2011).
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Facing these limitations, a family of alternative methods, called collocation methods, has been in-
troduced. They are based on a two-stage estimation procedure, including an intermediate stage of
non-parametric approximation of the state variable before parameters estimation by minimization of a
data fitting criterion, e.g. the residual sum of squares. Consequently, these methods involve the esti-
mation of an additional parameter, the state variable, defined by Ramsay et al. (2007) as a nuisance
parameter, which is often not of primary concern but essential to the further estimation of the structural
parameters of interest. A direct version of these two-stage collocation procedures is to obtain a nonpara-
metric proxy of the state variable by observed data preprocessing without considering the ODE model,
and then use it for estimating the ODE parameters, as proposed by Varah (1982). The extension of this
version, proposed by Ramsay and Silverman (2005), consists of iterating these two steps, enabling the
use of a nonparametric model-based smoother for the state variable approximation that depends on the
previous estimated ODE parameters. This process is commonly referred to as profiling. Different meth-
ods are used to obtain the nonparametric proxy of the state variable; some original collocation methods
use polynomial bases decomposition, Ramsay et al. (2007) define the Generalized Smoothing method
based on a splines basis expansion of the state variable (Qi and Zhao, 2010; Campbell and Chkrebtii,
2013), and alternatively Brunel and Clairon (2015) introduce a tracking approach. However, it should
be noted that these methods are all initially defined within an Euclidean framework.

Park and Brunel (2019) propose Frenet curvatures estimation procedures inspired by these two-stages
ODE estimation methods, which they extend to SO(d)-valued state variable and time-varying ODE
parameter. Their approach relies on the estimation of a nonparametric proxy of the Frenet path and
the use of Lie group ODE approximation for the estimation of Frenet curvatures. Obtaining a smooth
nonparametric estimator of the Frenet path is already not straightforward as it involves estimating
a manifold-valued curve (Kim et al., 2021; Patrangenaru and Ellingson, 2015; Su et al., 2012). In
particular, different methods can be considered depending on the model used for state observations.
In their main algorithm, they assume having noisy discrete observations of the entire Frenet path. In
this context, they adapt the classic local smoothing methods to Lie group data to better handle the
inherent geometric structure. As a contribution, we propose an alternative method for computing this
nonparametric proxy from noisy observations of the Frenet path inspired by the tracking approach
developed by Brunel and Clairon (2015). Both of these smoothing techniques are model-based and thus
require a candidate parameter θ̃. Therefore, they are used in a profiled iterative estimation algorithm,
such as the Generalized Smoothing method of Ramsay et al. (2007). However, in practice, the assumption
of having noisy discrete observations of the entire Frenet path is rarely true. Instead, one typically only
has noisy discrete observations of the Euclidean curve. Hence, we also introduce methods for deriving a
smooth estimator of the Frenet path by preprocessing the Euclidean curve observations. As a result, this
estimator can be used directly to estimate Frenet curvatures in a non-iterative algorithm, like Varah’s
one.

The chapter is structured as follows. Firstly, in Section 2, we introduce the most popular state-of-
the-art method for computing Frenet curvatures based on extrinsic formulas. Next, in Section 3, we
recall some fundamental mathematical concepts related to the Lie group SO(d) and ODE resolution.
Then, in Section 4, we present methods for obtaining a non-parametric estimator of the Frenet path,
depending on the observation model considered. These ones include the methods proposed by Park
and Brunel (2019) and a proposed new alternative that proves more efficient. Finally, we derive the
estimation algorithm of Frenet curvatures in Section 5. We propose some simulation studies in Section 6
to compare the different methods.
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2 Related Work: Extrinsic Formulas of Frenet Curvatures
In practice and in most applications, we observe a noisy and discrete version of the Euclidean trajectory.
Suppose that we have n noisy observations yi ∈ Rd, i = 1, . . . n on a grid t1 < . . . < tn, which satisfy

yi = x(ti) + ϵi (3.1)

where ϵi’s are independent random variables with mean zero and covariance matrix Γ, and t 7→ x(t)
is the time-parameterized curve function. We assume that the arc-length parametrization can be done
relatively easily by a simple estimate of the first time-derivative of the curve x given the observations
(t1, y1), . . . , (tn, yn). The equation (3.1) can then be rewritten using the estimated arc-length grid s1 <
. . . < sn as

yi = X(si) + ϵi (3.2)

where the function X is the shape of the curve with a corresponding Frenet path Q solution of the Frenet-
Serret equation Q′(s) = Q(s)Aθ(s) (Section 3). The most commonly used method in the literature (Kim
et al., 2013; Sangalli et al., 2009; Lewiner et al., 2005) for estimating the Frenet curvatures from this
observations model (3.2) is to employ their extrinsic formulas directly. These formulas are defined in
terms of the curve derivatives of order 1 to d. Therefore, a straightforward method involves using local
polynomial regression to estimate the derivatives first and then computing the Frenet curvatures based
on these extrinsic formulas.

2.1 Derivatives Estimation using Local Polynomial Regression

The direct application of the Frenet equations requires accurate estimates of curve derivatives. Sev-
eral non-parametric regression estimators, such as spline, kernel, or wavelet smoother, are available for
this purpose. However, most standard non-parametric regression techniques are primarily designed for
one-dimensional curves. To extend these methods to multi-dimensional curves, the problem can be refor-
mulated as a simultaneous estimation problem. Here we present the estimation of the derivatives using
a multi-dimensional local polynomial regression. Using local neighborhoods and weighting functions,
local polynomial regression is well adapted to unequally spaced argument values and captures localized
features by avoiding the excessive influence of distant outliers (Fan and Gijbels, 1996).

Let s0 ∈ [0, 1], suppose the (d + 1) first derivatives of X at the point s0 exist. Then, the unknown
regression function X can be locally approximated by a polynomial of order d using the Taylor expan-
sion at s in a neighborhood of s0. This polynomial can be fitted locally by a multi-dimensional local
polynomial regression defined by the following weighted least squares criterion

min
βj∈Rd

n∑
i=1

Kh(si − s0)

yi −
d∑
j=0

βj(si − s0)j

T yi −

d∑
j=0

βj(si − s0)j
 (3.3)

where βj ∈ Rd are the unknown coefficients and Kh(·) = K(·/h)/h is a kernel function that assigns
a weight to each point, parameterized by h the bandwidth controlling the size of the local neighbor-
hood. The criterion (3.3) can be rewritten in matrix notation by denoting Y = (y1, . . . ,yn)T the
full matrix of observations of size n × d, W (s0) = diag{Kh(sj − s0)} the n × n diagonal weight
matrix, B = (β0, . . . ,βd) the d × (d + 1) matrix of coefficients, and the n × (d + 1) design matrix
U(s0) =

(
1Rn , (s − s01Rn), . . . , (s − s01Rn)d

)
, with s = (s1, . . . , sn)T . Then, we have

min
B

{
(Y − U(s0)B)T W (s0) (Y − U(s0)B)

}
. (3.4)
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This problem is a classic least squares minimization problem, Ramsay and Silverman (2005); by taking
the derivatives with respect to the parameterB, we obtain a normal equation for simultaneous estimation,

U(s0)TW (s0)U(s0)B̂(s0) = U(s0)TW (s0)Y . (3.5)

Note that this equation can be equivalently written as the system of the normal equations for each
marginal variable with the same design matrix U and weight matrix W . Then, for q ≤ d, X(q)(s) =
q!β̂q(s).

When fitting multi-dimensional curves, selecting appropriate smoothing parameters is an additional
challenge. We control the overall smoothness of the multidimensional curve, assuming that the degree
of smoothness does not vary significantly across variables. Typically, a 10-fold cross-validation method
is used to select the optimal bandwidth parameter. It consists of dividing the data into 10 folds and
iteratively training and evaluating the model on different combinations of these folds. We minimize the
mean square error between the observations test set and the estimated zero-order derivative evaluated
on the test grid:

K∑
k=1

1
|Tk|

∑
i∈Tk

(yi −X(si;h))T (yi −X(si;h)) , (3.6)

where Tk is the kth index set based on K = 10 random partitions of the observations {yi}i=1,...,n.
Typically, this problem is solved by a grid search minimization over different values of h.

Remark 3.1. To consider the equation (3.2) as the observations model instead of (3.1), we assume that
we are able to obtain a good estimate of the arc-length parametrization. This requires estimating the first
time-derivative of the curve, which can typically be done by applying a local polynomial regression of that
kind using the time parametrization.

2.2 Extrinsic Formulas of Frenet Curvatures from Derivatives Estimators

The extrinsic formulas of the Frenet curvatures θ = (θ1, . . . , θd−1) are, for all i = 1, . . . , n,

θi(s) =
〈
e′
i(s), ei+1(s)

〉
, (3.7)

where ei(s) is the ith unit vector of the Frenet frame, which is defined as a function of the i first
derivatives {X(1), . . . , X(i)} (2.42). For example, in dimension 3, these formulas can be expressed for the
curvature κ and torsion τ directly in function of the Euclidean curve derivatives as

κ(s(t)) = ∥ẋ(t) × ẍ(t)∥
∥ẋ(t)∥3 = ∥X ′(s) ×X ′′(s)∥ , (3.8)

τ(s(t)) = ⟨ẋ(t) × ẍ(t), ...
x (t)⟩

||ẋ(t) × ẍ(t)||2 = ⟨X ′(s) ×X ′′(s), X ′′′(s)⟩
||X ′(s) ×X ′′(s)||2 . (3.9)

Based on the derivatives estimates obtained through the local polynomial regression presented previously
in Section 2.1, one can derive initial estimations of the curvature and torsion using the given formulas.
However, these formulas exhibit high instability and unreliability in practical applications due to their
reliance on derivative ratios and combinations, which are subject to significant numerical errors. To
address this issue, a potential approach for obtaining more likely estimates of the continuous Frenet
curvatures functions is to apply an additional step of penalized B-spline regression to further smooth the
raw data. Despite this, careful consideration should be given to the potential limitations and challenges
associated with these estimators to ensure accurate and reliable results (see Table 3.2).
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3 Mathematical Preliminaries

The Frenet-Serret framework is characterized by the Frenet-Serret differential equation (2.44), written in
the matrix Lie group SO(d). Consequently, we recall some preliminary notions about the group SO(d)
and the resolution of differential equations in a Lie group. In addition, we introduce a few mathematical
concepts in linear quadratic control theory that will be useful later on.

3.1 The Special Orthogonal Group

The special orthogonal group is a particular matrix Lie group, also called rotations group, corresponding
to the set of valid rotation matrices. In dimension d ≥ 2, it is defined as

SO(d) =
{
R ∈ Rd×d

∣∣∣ RRT = Id and det(R) = 1
}
. (3.10)

This set is not a vector space as it is not closed under addition, and the null matrix is not a valid element
of SO(d), but it can be shown to be a non-abelian matrix Lie group. The inverse element in SO(d) is
simply R−1 = RT as RRT = Id. The Lie algebra of the special orthogonal group is the vector space of
dimension d(d−1)

2 , denoted by so(d) and corresponds to the set of infinitesimal rotations. Their matrix
representations correspond exactly to the set of skew-symmetric matrices. Then, for R ∈ SO(d) there is
a ∈ Rd(d−1)/2 such that R = exp(a∧) = ∑∞

n=0
1
n! (a∧)n (2.7).

Lemma 3.1. The geodesic distance between two points R1 and R2 on SO(d) induced by the scale-
dependent left invariant metric (2.5) is given by

d(R1, R2) =
∥∥∥log

(
RT1 R2

)∥∥∥
F
. (3.11)

Three-dimensional case: In the following, we will use in particular the rotations group in the 3-
dimensional space, SO(3), which has specific properties. The Lie algebra so(3) is the 3-dimensional
vector space defined as

so(3) =

a∧ =


a1

a2

a3


∧

=


0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ R3×3

∣∣∣∣∣∣∣∣ a ∈ R3

 . (3.12)

In the case of so(3) the adjoint representation is particularly simple, we have adSO(3)(a∧) = a∧. As a
result, in so(3), the Lie bracket operation corresponds to the cross product of the two vectors,

[a∧, b∧]∨ = adSO(3)(a∧)b = a × b. (3.13)

In other dimensions d > 3, the expressions for the adjoint and the Lie bracket do not have known simple
forms. In addition, the Jacobian of SO(3) is then given by JSO(3)(a) = ∑∞

n=0
(−1)n
(n+1)!(a

∧)n, which can
also be expressed and computed by the useful formulas:

JSO(3)(a) = sin(∥a∥)
∥a∥

I + 1
∥a∥2

(
1 − sin(∥a∥)

∥a∥

)
a∧(a∧)T + 1 − cos(∥a∥)

∥a∥2 a∧ , (3.14)

JSO(3)(a)−1 = ∥a∥
2 cot

(∥a∥
2

)
I + 1

∥a∥2

(
1 − ∥a∥

2 cot
(∥a∥

2

))
a∧(a∧)T − 1

2a∧ . (3.15)
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3.2 Solving Linear Matrix ODE on Lie Group

Since the Frenet-Serret ODE is a linear matrix differential equation on the Lie group SO(d), we focus
on this specific case. Consider the linear matrix ODE defined on the Lie group G as

Ẏ (t) = Y (t)A(t) (3.16)

where Y (t) ∈ G and t 7→ A(t) is a continuous matrix function. First, a fundamental concept for solving an
ODE is the flow over time t, denoted by φ(t, ·) (Hairer et al., 2006). It is the mapping that, to any point
Y0 ∈ G, associates the value Y (t) of the solution with initial value Y (0) = Y0. That is, φ(t, Y0) = Y (t)
if Y (0) = Y0. To express the dependence on the initial time, we can extend the definition of the flow
as φ(t, s, Y0) = Y (s + t) if Y (s) = Y0 so φ(t − s, s, Y0) = Y (t). The essential property of the flow is
the group property, i.e for all s, u, t ∈ [0, 1] and Y0 ∈ G, φ (t− s, s, Y0) = φ (t− u, u, φ (u− s, s, Y0)),
allowing us to express any localized solution coherently to the global solution. This group property of
the flow can be interpreted as a self-prediction property: if s 7→ Y (s) is a solution to equation (3.16),
then for all t, s ∈ [0, 1] such that |t− s| ≤ 1, we have

Y (t) = φ (t− s, s, Y (s)) . (3.17)

To express the flow φ(t, ·) of the equation (3.16), Magnus (1954) proposes to search for a solution of the
form

Y (t) = Y0 exp(Ω(t)) (3.18)

where exp(·) is the matrix exponential map (2.8) and t 7→ Ω(t) is a matrix function defined in the Lie
algebra g.

Theorem 3.1 (Magnus (1954)). The solution of the differential equation (3.16) can be written as Y (t) =
Y0 exp(Ω(t)) with Ω(t) defined by

Ω̇ = d exp−1
Ω (A(t)) , Ω(0) = 0. (3.19)

where the inverse of the derivative of the matrix exponential is given by

d exp−1
Ω (H) =

∑
k≥0

Bk
k! ad(Ω)kH,

with Bk the Bernoulli numbers and ad(Ω)A = [Ω, A] = ΩA−AΩ the adjoint operator defined in (2.10).
As long as ∥Ω(t)∥ < π, the convergence of the d exp−1

Ω expansion is assured.

Proof. (Hairer et al., 2006) Comparing the derivatives of Y (t) = Y0 exp(Ω(t)) (see Lemma 4.1 in Hairer
et al. (2006)),

Ẏ (t) = Y0Ω̇(t)
(
d

dΩ exp Ω(t)
)

= Y0 exp (Ω(t))
(
d expΩ(t)

(
Ω̇(t)

))
,

with (3.16) we obtain A(t) = d expΩ(t)

(
Ω̇(t)

)
. Applying the inverse operator d exp−1

Ω to this relation
yields the differential equation (3.19) for Ω(t). ■

The function Ω(t) is shown to admit the so-called Magnus expansion (Hairer et al., 2006; Iserles
et al., 2000)

Ω(t) =
∫ t

0
A(s)ds− 1

2

∫ t

0

[∫ τ

0
A(s)ds,A(τ)

]
dτ + 1

4

∫ t

0

[∫ τ

0

[∫ σ

0
A(µ)dµ,A(σ)

]
dσ,A(τ)

]
dτ + . . . (3.20)

In practice, to numerically compute the solution of equation (3.16), the Magnus expansion has to be
truncated, and the integrals have to be approximated by numerical quadrature (Blanes et al., 2009). One
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possibility is to use the following second-order approximation based on a midpoint rule and truncating
after the first term, which is valid for small enough intervals |t− s|,

Y (t) = Y (s) exp
(

(t− s)A
(
t+ s

2

))
+O

(
(t− s)2

)
. (3.21)

It defines a numerical approximation of the flow φ(t, ·) in (3.17), which can be seen as an Euler-Lie
method that possesses several interesting features: it respects the SO(d) constraint, has an explicit and
pointwise dependence in A, and the approximation is uniform on SO(d).

3.3 Linear Quadratic Optimal Control

Optimal control is a field of study that deals with finding the best possible control strategy for a dynamic
system, such that a certain objective function is optimized. It is widely used in engineering, economics,
and various other disciplines to optimize the performance of systems. One important class of optimal
control problems is linear quadratic control (LQC), which focuses on linear systems with quadratic cost
functions (Whittle, 1990; Chow, 1986). LQC provides a powerful and tractable framework for analyzing
and designing optimal control strategies. Consider a linear time-variant system described by the state-
space model: {

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = Cx(t) +Du(t)

(3.22)

where x(t) ∈ Rd represents the state vector, u(t) ∈ Rd denotes the control input, and y(t) represents
the output of the system. The matrix functions A ∈ L2([0, T ],Rd×d) and B ∈ L2([0, T ],Rd×d) define the
dynamics, and the matrices C and D the input-output relationship of the system. The goal of linear
quadratic control is to design a control input u(t) that minimizes a quadratic cost function of the form:

J(u) =
∫ T

0

(
x(t)TW (t)x(t) + u(t)TR(t)u(t)

)
dt+ x(T )TPx(T ) (3.23)

where P a positive matrix, W ∈ L2([0, T ],Rd×d) a positive matrix for all t ∈ [0, T ], and R a definite
positive matrix for all t ∈ [0, T ] respecting the coercivity condition:

∃α > 0 : ∀u ∈ L2([0, 1],Rd) ,
∫ T

0
u(t)TR(t)u(t)dt ≥ α

∫ T

0
∥u(t)∥2

2dt.

The term x(T )TPx(T ) is known as the terminal cost and is sometimes (Linear Quadratic Regulator)
supposed to be zero.

Theorem 3.2. Given the system (3.22) and the cost function (3.23), it exists a unique optimal trajectory
xu associated with the unique optimal control u that has the feedback form u(t) = R(t)−1E(t)B(t)xu(t)
where E is the matrix solution of the Riccati ODE:{

Ė(t) = W (t) −A(t)TE(t) − E(t)A(t) − E(t)B(t)U(t)−1B(t)TE(t)
E(T ) = −P

and the minimal cost is equal to: J(u) = −xT0 E(0)x0.

Linear quadratic control offers a trade-off between stability and performance. The choice of the
weighting matrices W and R influences the trade-off between regulating the state variables and minimiz-
ing the control effort. Increasing the weight on the control input improves performance but may result
in less stable behavior.
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4 Non-parametric Proxy of Frenet-Serret ODE Solution Path
As part of the two-stage ODE estimation procedure, we develop non-parametric methods for estimating
the Frenet-Serret ODE solution path, known as the Frenet path. Firstly, we demonstrate how to pre-
process the Euclidean curve observations to obtain a smooth Frenet path estimator without any prior
knowledge of the parameter θ. Secondly, given a parameter candidate θ̃, we introduce two model-based
smoothers of the noisy Frenet path observations. The first smoother is defined and detailed in Park and
Brunel (2019), while the second one is a novel alternative we propose that utilizes a tracking approach.

4.1 Frenet Path Estimation by Preprocessing of Noisy Euclidean Curve Observa-
tions

The Frenet frame is defined (2.42) as the orthonormalization of the d first arc-length-derivatives of the
curve {X ′(s), . . . , X(d)}. Therefore, given the proposed local polynomial regression for estimating the
derivatives in Section 2.1, the Frenet frame Q(s) can be computed for all s ∈ [0, 1] by applying the
Gram-Schmidt orthonormalization procedure to these smooth derivatives estimators (LaPlace, 1820).

However, being primarily interested in estimating the Frenet path and not the derivatives, we can
imagine a version of local polynomial regression that takes directly into account orthogonality constraints.
We define this method here in dimension d = 3. In this case, the Frenet frame is composed of the tangent,
normal and bi-normal vectors, Q(s) = [T (s)|N(s)|B(s)], and is solution of the Frenet-Serret ODE with
the Frenet curvatures parameter θ(s) = (κ(s), τ(s))T . The Taylor expansion of X(s), in a neighborhood
of s0, of order 3 can be rewritten in functions of these Frenet components given

X ′(s0) = T (s0)
X ′′(s0) = κ(s0)N(s0)
X ′′′(s0) = −κ(s0)2T (s0) + κ′(s0)N(s0) + κ(s0)τ(s0)B(s0) .

(3.24)

This clearly shows that the orthogonality constraints of the Frenet frame are translated into

∥X ′∥2 = 1, ⟨X ′, X ′′⟩ = 0, ⟨X ′, X ′′′⟩ + ⟨X ′′, X ′′⟩ = 0 . (3.25)

Then, by incorporating these constraints, the local polynomial regression (3.4) can be turned into a
constrained local polynomial estimation that can be solved by the method of Lagrange multipliers. To
express these constraints, we define

f1(β) = ∥β1∥2 − 1, f2(β) = 2βT1 β2, f3(β) = βT1 β3 + βT2 β2 . (3.26)

Then, the gradients of the Lagrangian function with respect to the parameters β = (β1, β2, β3) and the
Lagrange multipliers λ1, λ2, λ3 must be zeros,

U(s0)TW (s0)U(s0)β = U(s0)TW (s0)Y + λ1∇f1(β) + λ2∇f2(β) + λ3∇f3(β), (3.27)
f1(β) = 0, f2(β) = 0, f3(β) = 0. (3.28)

Since the parameters λ1, λ2, λ3 depend on each other in a rather complicated way, we solve the problem
iteratively for each parameter, in which case an explicit solution exists. In practice, because they are
linked, the problem can be solved only for λ1 and λ2. The optimal selection of the bandwidth parameter
h is then performed in the same way as for the classic local polynomial regression (Section 2.1).

These methods derive a non-parametric estimator of the Frenet path Q̂ directly from noisy obser-
vations of the Euclidean curve (3.2). Assuming the Frenet path estimator is sufficiently smooth and
reliable, Frenet curvatures can be computed directly from it in a second stage with the method detailed
in Section 5.
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4.2 Model-based Smoother of Noisy Frenet Path Observations

In this section, we assume to have noisy observations of the Frenet path as inputs. These Frenet frame
observations are unlikely to correspond to experimental data from real applications but, more likely, to
the outputs of a first pre-processing stage of Euclidean curve observations, as one of those considered in
the previous section, which may still be too noisy for parameter estimation. Hence, we denote {Ui}i=0...n
the noisy and discrete observations of the Frenet path Q at positions s0 < . . . < sn, which can be
expressed as:

Ui = Q(si) exp(Wi), (3.29)
where Wi are random matrices in so(d) (i.e exp(Wi) are random rotations). To simplify the analysis,
we suppose that the matrices Wi are independent and identically distributed, satisfying E[Wi] = 0,
E[exp(Wi)] = Id, and E

[
∥Wi∥2

F

]
= σ2

W < ∞. The density of the noise is assumed to be unknown but
fixed. For the further estimation of Frenet curvatures, we aim to recover the Frenet path Q from the noisy
observations {Ui}i=0...n. Inspired by the profiling procedure of the Generalized Smoothing (Ramsay et al.,
2007) approach, Park and Brunel (2019) propose a model-based smoother of the Frenet path observations
given a parameter candidate θ̃. They are looking for a solution path Q̃(·, θ̃) that solves approximately
the original ODE model with the estimate θ̃ while being close to the data {Ui}i=0...n. Their approach
relies on local smoothing of the approximated ODE flow φθ̃. We propose an alternative method inspired
by the tracking approach defined in Brunel and Clairon (2015), which looks for the solution path Q̃(·, θ̃)
of a perturbed Frenet-Serret ODE parametrized by θ̃ and closed to the data {Ui}i=0...n.

4.2.1 Local Karcher Mean Smoother

To approximate the solution path Q from the noisy observations {Ui}i=0...n, Park and Brunel (2019)
introduces a model-based smoother defined by local smoothing of ODE flows originating from various
initial conditions. They assume that the flow φθ, associated with the previously estimated parameter θ,
is known. Instead of relying on a Frenet path, their approach aims to find a path denoted as t 7→ M(t)
that closely matches the given data and approximately satisfies the self-prediction property: for all i, and
for all t ∈ [0, 1], we should have approximately φθ(t− si, si, Ui) ≈ Q(t). By combining and averaging all
these predictions, we can effectively reduce the prediction error caused by the noise propagation through
the flow φθ. Obviously, the typical arithmetic average is not suitable for this purpose, as it is implicitly
based on Euclidean assumptions. Therefore, they use instead a Karcher mean to determine the optimal
prediction at time t,

Mh(t) = arg min
M∈SO(3)

1
n+ 1

n∑
i=0

Kh(t− si)
∥∥∥log

(
MTφθ(t− si, si, Ui)

)∥∥∥2

F
(3.30)

where the kernel Kh takes into consideration the increasing uncertainty for distant points. This approach
bears similarities to local polynomial smoothing techniques and aligns with the general idea of adapting
smoothing methods to manifolds and other non-Euclidean spaces. In these settings, conventional least
squares estimates are replaced by Fréchet or Karcher means, allowing for more appropriate handling
of the inherent geometric structure and improvement of the smoothing process (Jakubiak et al., 2006;
Samir et al., 2012; Thomas Fletcher, 2013). The Karcher mean in SO(d) does not benefit from a closed-
form expression. However, the following property guarantees its existence and uniqueness and provides
a simple and efficient gradient algorithm for computing it.

Proposition 3.1 (Park and Brunel (2019)). Let R0, . . . , Rn observations in SO(3), with positive weights
wi, such that they are all in a ball of radius min (inj(SO(3)), π/

√
k)/2 where inj(SO(3)) is the injectivity

radius and k is the sectional curvature of SO(3). Then there exists a unique Karcher mean defined as

R̄ = arg min
M∈SO(3)

1
2

n∑
i=0

wi
∥∥∥log(MTRi)

∥∥∥2

F
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The gradient of f(M) = 1
2
∑n
i=0wi

∥∥∥log(MTRi)
∥∥∥2

F
is grad(f(M)) = ∑n

i=0wi log(MTRi), and the se-
quence defined for k ≥ 1, Rk+1 = Rk exp(−grad(f(Rk))) converges to R̄ for any initial guess R0.

Proof. See Le (2004); Rentmeesters and Absil (2011). ■

Given h > 0 and based on the flow approximation (3.21), the smooth nonparametric proxy of the
Frenet path is then estimated at any point t ∈ [0, 1] by,

Mh(t) = arg min
M∈SO(3)

1
n+ 1

n∑
i=0

Kh(t− si)
∥∥∥∥log

(
MTUi exp

(
(t− si)Aθ

(
t+ si

2

)))∥∥∥∥2

F
. (3.31)

This method is particularly interesting because it utilizes a formulation specific to the Lie group SO(d).
As a result, the obtained estimator Mh(t) satisfies the orthogonality constraint of the Frenet frame.
However, the drawback of this method is its high computational cost, requiring a large number of matrix
exponential calculations.

4.2.2 Tracking Smoother

To define a more efficient smoother algorithm, we draw inspiration from the fast spline smoothing
method of Wahba (1978) based on Kalman filtering. Building upon this approach, we propose here, as
a contribution, a new model-based algorithm for smoothing the Frenet path, which proves to be faster
and equally effective as the one described above.

Main Idea. The relation between spline smoothing and tracking of a state-space model was made
very early by Wahba (1978) and exploited in a series of papers (Wecker and Ansley, 1983; Ansley and
Kohn, 1985). The main idea is to express the classic smoothing spline problem in a state space model
formulation. Given some data {Y (t1), . . . , Y (tn)}, the Lg-smoothing spline of degree 2m− 1 to the data
is the solution of the following minimization problem. Find g such that the first 2m− 2 derivatives are
continuous and g minimize:

n∑
i=1

(g(ti) − Yi)2 + λ

∫ 1

0
[Lg(u)]2 du, (3.32)

where Yi = Y (ti), λ must be chosen, and the penalty is defined by a higher-order differential operator L :
g 7→ Lg = g(m)−

∑m−1
k=0 ak(t)g(k), and where t 7→ ak(t) are appropriate smooth functions. With a complex

penalization of this form, although we can still obtain a basis expansion by solving a convex quadratic
problem, this can be computationally challenging, in particular when we have a lot of observations.
Therefore Wahba (1978) did introduce a stochastic differential equation model

Lg(t) = σλ1/2dWt

dt
(3.33)

where dWt/dt is a white noise process. We consider the extended state Gt = (g(t) g′(t) . . . g(m−1)(t))T in
Rm and the time-dependent m×m matrix

At =


0
... Im−1

0
am−1(t) am−2(t) . . . a0(t)

 (3.34)

and we introduce the stochastic differential equation

dGt = AtGtdt+ σλ−1/2emdWt. (3.35)
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where em = (0 . . . 0 1)T ∈ Rm. The trajectory of Gt is then very close to the behavior of the function
g solution of (3.33), as the last dimension of Gt satisfies this equation. If ϕ(t, s) is the fundamental
solution to the linear deterministic ODE Ġ(t) = AtG(t), then the solution to the general linear SDE
(3.35) starting from Gs, s ≤ t is (Sarkka, 2006)

G(t) = ϕ(t− s, s)G(s) +
∫ t

s
ϕ(t, τ)σλ−1/2emdWτ . (3.36)

From the continuous time formulation, we derive an exact discrete-time state-space process on the grid
t1 < · · · < tn {

G(tk+1) = ϕ(tk+1 − tk, tk)G(tk) + uk

Yk = (1 0 . . . 0)G(tk) + ϵk
(3.37)

with uk =
∫ tk+1
tk

ϕ(t, s) [0 0 · · · 1]T dWs ∈ Rm being a Gaussian variable with zero mean and variance
(σ2/λ)U(tk+1, tk). Then, given the parameters λ and σ, the Kalman filtering and smoothing algorithms
can be implemented to perform estimation of the state Gt and, therefore, estimation of the smooth
function g.

Application to the Frenet-Serret Differential Equation. Our objective is to estimate the smooth
Frenet path function s 7→ Q(s) = [e1(s)|e2(s)| . . . |ed(s)] ∈ SO(d) solution of the Lie group Frenet-Serret
differential equation (2.44), from the noisy and discrete observations {Ui}i=0...n (3.29). This problem
bears similarities to the smoothing spline problem (3.32), but it is not defined in a Euclidean ambient
space, unlike Wahba’s method framework. Therefore, we consider the alternative expression of the
Frenet-Serret differential equation in the Euclidean space Rd2 by considering the linear representation
of the state variable q(s) = (e1(s), . . . , ed(s))T in Rd2 . Then, the Frenet-Serret equations take the form
of a linear ordinary differential equation defined in Rd2 ,

q′(s) = (−Aθ(s) ⊗ Id)q(s) , (3.38)

subjects to the additional constraint that the d vectors in Rd composing q(s) are mutually orthonormal.
The data themselves can also be reformulated in a linear manner as ui = (U (0)

i , . . . , U
(d−1)
i )T ∈ Rd2 ,

where U (j)
i is the vector corresponding to the jth column of the matrix Ui. Following the approach of

Wahba (1978) and Brunel and Clairon (2015), we relax the ODE constraint with the introduction of the
following penalized scheme:

q′(s) = (−Aθ(s) ⊗ Id)q(s) + v(s) (3.39)

where the function s 7→ v(s) can be any function in L2. This perturbed ODE model accounts for
several sources of model misspecification, including parameter uncertainty and random measurement
errors. The objective is then to minimize the norm of the forcing function ∥v∥2

L2 while being close to
the observations data {ui}i=0,...,n.

We are looking for the solution path of (3.39), given the known initial condition q(0) = (Q(0)
0 , . . . , Q

(d−1)
0 )T .

The general discrete form of the solution of the linear time-varying differential equation (3.39) is (Sarkka,
2006)

q(si+1) = ϕ(si+1, si)q(si) +
∫ si+1

si

ϕ(si+1, τ)v(si)dτ (3.40)

where ϕ(s, t) is the transition function of equation (3.38) defined as:
ϕ(s, s) = I

ϕ′(s, t) = (−Aθ(s) ⊗ Id)ϕ(s, t)
ϕ(s, t) = ϕ(s, r)ϕ(r, t).

(3.41)
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We denote ui = si+1 − si, vi = (si+1 + si)/2 and consider the mid-point approximation of the transition
matrix function ϕ(si+1, si) ≈ exp(ui(−Aθ(vi)⊗Id)). Thus, we obtain the approximated discrete solution

qi+1 = exp(ui(−Aθ(vi) ⊗ Id))qi +
∫ si+1

si

exp((si+1 − τ)(−Aθ((si+1 + τ)/2) ⊗ Id))vidτ (3.42)

= exp(ui(−Aθ(vi) ⊗ Id))qi + uif(ui(−Aθ(vi) ⊗ Id))vi (3.43)

where the function f(·) of any Rd2×d2 matrix A can be computed remarking that (Higham, 2008)

exp
((

A Id
0 0

))
=
(

exp(A) f(A)
0 Id

)
. (3.44)

The objective of smoothing is then to find a sequence of controls vectors {vi}i=1,...,n−1 in Rd2 such that{
min(vi)i=1,...,n−1

∑n
i=1 ∥ui − qi∥

2 + λq
∑n−1
i=1 ui∥vi∥2

qi+1 = exp(ui(−Aθ(vi) ⊗ Id))qi + uif(ui(−Aθ(vi) ⊗ Id))vi
(3.45)

where λq > 0 is a hyperparameter that controls the amounts of smoothing. In the following we will
denote Ai = exp(ui(−Aθ(vi) ⊗ Id)) and Bi = uif(ui(−Aθ(vi) ⊗ Id)).

Theorem 3.3. For any θ, λq, there exists a unique optimal control sequence (vi)i=1,...,n−1 solution of
the minimization problem (3.45), and its exact form is given in the following proof.

Proof. The problem (3.45) can be expressed as a classic Linear Quadratic (LQ) regulator problem. For
that, we introduce the following extended state q̃i ∈ Rd2+1, the extended ODE matrices Ãi and B̃i, and
the observations matrix Y i:

q̃i =
(

qi

1

)
, Ãi =

(
Ai 0
0 1

)
, B̃i =

(
Bi

0

)
, Y i =

(
Id2 −ui

−uTi ∥ui∥2

)
. (3.46)

Solving the problem 3.45 is then equivalent to solving the LQ problem min(vi)i=1,...,n−1 q̃TnYnq̃n +∑n−1
i=1

{
q̃Ti Yiq̃i + vTi (λquiId2)vi

}
q̃i+1 = Ãiq̃i + B̃ivi.

(3.47)

Then, as a result of the existence and uniqueness theorem for the solution to the classic LQ regulator
(Section 3.3, Theorem 3.2), the optimal sequence (vi)i=1,...,n−1 is given by

vi = −Fiq̃i (3.48)
Fi = (λquiId2 + B̃T

i Pi+1B̃i)−1B̃T
i Pi+1Ãi (3.49)

where Pi is solution of the dynamical Riccati equation integrated backward from Pn = Yn,

Pi = ÃT
i Pi+1Ãi + ÃT

i Pi+1B̃i(λquiId2 + B̃T
i Pi+1B̃i)−1B̃T

i Pi+1Ãi + Yi. (3.50)

■

Finally, the Linear Quadratic theory provides an efficient algorithm to obtain a smooth approximation
of the linear Frenet path from noisy observations at the points {s0 . . . , sn}. However, there is no guarantee
in this formulation that the estimated linear state q̂i is composed of d orthonormal vectors. To ensure
this constraint, one can project on SO(d) the d × d matrix reconstructed from the estimated q̂i by
minimizing the Frobenius norm. Then, the nonparametric proxy of the Frenet path at point si is finally
given as

Mλq (si) = projSO(d)q̂i. (3.51)
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5 Profiled Estimation of Frenet Curvatures

Given a smooth and reliable estimate of the Frenet path Q̂, the estimation of the Frenet curvatures
amounts to estimate the time-varying parameters of the corresponding Frenet-Serret differential equation:
Q̂′(s) = Q̂(s)Aθ(s). The estimation of the functional and infinite-dimensional parameter θ implies using
appropriate functional data analysis estimation methods (Ramsay and Silverman, 2005). Basically, the
parameter estimation is done by minimization of a least squares measure of the fit of dQ̂(s)/ds to
Q̂(s)Aθ(s) with respect to θ. In our context, Park and Brunel (2019) adapt the usual least squares
criterion to the SO(d)-valued data constraint and to the estimation of a time-varying parameter.

5.1 Penalized Least Squares Criterion Definition

We consider the flow of the Frenet-Serret ODE that depends on the Frenet curvatures, denoted φθ. From
the self-prediction property of the flow (3.17), the curve t 7→ Q(t) is a solution to Q′(s) = Q(s)Aθ(s) on
[0, 1], if and only if ∫ 1

0

∫ 1

0
d(Q(t), φθ(t− s, s,Q(s)))dtds = 0 (3.52)

where d is a distance on SO(d). Therefore, using the geodesic distance on SO(d) (3.11) and the flow
approximation based on the Magnus expansion (3.21), the error can be measured with the following least
squares criterion

V(Q,φθ) =
∫ 1

0

∫ 1

0

∥∥∥∥log
(
Q(t)TQ(s) exp

(
(t− s)Aθ

(
t+ s

2

)))∥∥∥∥2

F
dtds. (3.53)

Remark 3.2. If we assume having only discrete estimations of the Frenet path on a grid {s0, . . . , sn},
we can define the following discrete criterion instead

n−1∑
i=0

∥∥∥∥log
(
Q(si+1)TQ(si) exp

(
(si+1 − si)Aθ

(
si+1 + si

2

)))∥∥∥∥2

F
(3.54)

which uses a simple discrete second-order scheme of the Frenet-Serret differential equation (3.21).

Regarding our problem, two additional constraints must be taken into account in the definition of
the criterion in a continuous framework. Firstly, as the flow’s approximation is locally valid and to allow
for variation in the prediction error, we incorporate weights according to the distance to initial values s
in evaluating the solution at t. Secondly, as we consider a non-parametric estimation of the functional
parameter θ, we introduce a smooth regularization with the addition of a penalty term. We define then
the weighted criterion

Jh,λ(θ) =
∫ 1

0

∫ 1

0
Kh(t− s)

∥∥∥∥log
(
Q(t)TQ(s) exp

(
(t− s)Aθ

(
t+ s

2

)))∥∥∥∥2

F

dtds+ λ

∫ 1

0
∥θ′′(t)∥2dt (3.55)

where K(·) is a kernel function with compact support, e.g. K(u) = 3
4(1 − u)2

1[−1,1](u) and Kh(u) =
(1/h)K(u/h). The kernel K(·) and the bandwidth h define a prediction horizon for the flow. The
regularization parameters λ is a hyperparameter that controls the amounts of smoothing of θ. Based on
this statistical criterion, the estimation of θ given the Frenet path Q is done by solving

θ̂h,λ = arg min
θ

Jh,λ(θ|Q). (3.56)
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5.2 Frenet Curvatures Estimation Algorithm

In practice, we do not know the exact Frenet path Q, but we are able to estimate a non-parametric proxy
M : [0, 1] → SO(d), based on the smoother algorithms detailed in Section 4 and observations {Ui}i=1,...,n.
The path M approximately satisfies the self-prediction property of the flow: M(t) ≈ φθ(t − si, si, Ui).
Therefore, with a discretization of the integral on a grid {t0, . . . , tm}, we consider the effective criterion:

arg min
θ

1
nm

n,m∑
i,j=0

Kh(tj − si)
∥∥∥∥log

(
M(tj)TUi exp

(
(tj − si)Aθ

(
tj + si

2

)))∥∥∥∥2

F
+ λ

∫ 1

0
∥θ′′(t)∥2dt. (3.57)

5.2.1 Tractable Criterion

The presence of the exponential makes the actual estimation of the parameter θ from the criterion (3.57)
difficult. Therefore, we consider an additional approximation of the term

Lij = log
(
M(tj)TUi exp

(
(tj − si)Aθ

(
tj + si

2

)))
. (3.58)

We denote uij = tj − si and vij = (tj + si)/2 and define the matrix Rij = − 1
uij

log(M(tj)TUi) ∈ Rd×d.
Then, using the BCH formula (2.15) we obtain the approximation

Lij = log (exp (−uijRij) exp(uijAθ(vij))) = uij(Aθ(vij) −Rij) −
u2
ij

2 [Rij , Aθ(vij)] +O(u3
ij). (3.59)

Proposition 3.2. Given the approximation (3.59) of the term Lij, we have

1
nm

n,m∑
i,j=0

Kh(uij)∥Lij∥2
F + λ

∫ 1

0
∥θ′′(t)∥2dt = J̃h,λ(θ; R) +O(h3)

where the tractable criterion J̃h,λ(θ; R) is defined as

J̃h,λ(θ; R) = 1
nm

n,m∑
i,j=0

Kh(uij)u2
ij∥Aθ(vij) −Rij∥2

F + λ

∫ 1

0
∥θ′′(t)∥2dt . (3.60)

Proof. From (3.59), we make the following expansion of the norm of the matrices Lij (if u2
ij ̸= 0)

1
u2
ij

∥Lij∥2
F =

∥∥∥∥(Aθ(vij) −Rij) − uij
2 [Rij , Aθ(vij)] +O(u2

ij)
∥∥∥∥2

F

= ∥Aθ(vij) −Rij∥2
F − uij Tr

(
(Aθ(vij) −Rij)T [Rij , Aθ(vij)]

)
+O(u2

ij)

Then, using this second-order expansion, the criterion is approximated as

1
nm

n,m∑
i,j=0

Kh(uij)u2
ij∥Lij∥2

F

=
n,m∑
i,j=0

u2
ij

nm
Kh(uij)

{
∥Aθ(vij) −Rij∥2

F − uij Tr
(
(Aθ(vij) −Rij)T [Rij , Aθ(vij)]

)
+O(u2

ij)
}

=
n,m∑
i,j=0

u2
ij

nm
Kh(uij) ∥Aθ(vij) −Rij∥2

F −
n,m∑
i,j=0

u3
ij

nm
Kh(uij)

{
Tr
(
(Aθ(vij) −Rij)T [Rij , Aθ(vij)]

)
+O(uij)

}
.

The second term of the right-hand side can be controlled as a O(h3). Indeed, its behavior can be
understood by considering the discretization of the double integral

∫∫
[0,1]2(t − s)3Kh(t − s)F (t, s)dtds,

where (t, s) 7→ F (t, s) is a continuous and bounded matrix function. ■
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5.2.2 Effective Optimization in case d = 3

The last derived criterion J̃h,λ(θ; R) (3.60) can be reformulated, using an elementwise expansion of the
Frobenius norm, as d − 1 independent univariate functional regressions for each of the d − 1 Frenet
curvature. In a three-dimensional space (d = 3), the matrix Rij = − 1

uij
log(M(tj)TUi) is an element of

the Lie algebra so(3) and thus can be written as Rij =
[
(r1
ij , r

2
ij , r

3
ij)T

]∧
. Consequently, in case d = 3,

we obtain the two independent optimization problems

κ̂h,λ1 = arg min
κ∈H

n,m∑
i,j=0

ωij
(
κ(vij) − r3

ij

)2
+ λ1

∫ 1

0
∥κ′′(t)∥2dt (3.61)

τ̂h,λ2 = arg min
τ∈H

n,m∑
i,j=0

ωij
(
τ(vij) − r1

ij

)2
+ λ2

∫ 1

0
∥τ ′′(t)∥2dt. (3.62)

where the weights are defined as ωij = 1
nmKh(uij)u2

ij . It gives rise to the computation of two independent
weighted smoothing splines (with splines of third order), defined at the knots vij , with the pseudo-
observations r1

ij , r
3
ij (see Section 2.1.1).

5.3 Two-Stage Frenet-Serret ODE Inference Algorithms

In light of the previously discussed methods for obtaining a smooth estimator of the Frenet path, we
have introduced two different two-stage procedures for Frenet curvatures estimation. Firstly, if we have
noisy observations of the Euclidean curve (3.2), we can employ the non-iterative two-stage estimation
Algorithm 1. Alternatively, if the available data consist of noisy observations of the Frenet path (such
as experimental data or the outcomes of a noisy preprocessing step on Euclidean curve observations),
the smoothers developed in Section 4 give rise to the iterative two-stage Frenet curvatures estimation
Algorithm 2.

Algorithm 1 Non-iterative two-stage Frenet curvatures estimation algorithm
Require: Euclidean curve noisy observations {yi}i=0,...,n (3.2)

1: Compute the nonparametric estimator of the Frenet path Q̂ using a local polynomial regression
method defined in Section 4.1,

2: Using the smooth obtained estimator Q̂, estimate the Frenet curvatures as

θ̂h,λ = arg min
θ∈H

J̃h,λ
(
θ | Q̂, {Q̂(si)}i=1,...,n

)
.

Algorithm 2 Iterative two-stage Frenet curvatures estimation algorithm
Require: Frenet path noisy observations {Ui}i=0,...,n (3.29), first initial guess of either smooth Frenet

path M̂ (0) or smooth Frenet curvatures θ̂
(0), and fixed h > 0 and λ > 0 (and eventually λq > 0).

1: while convergence do
2: Given the observations {Ui}i=0,...,n and the estimator θ̂

(l), compute the nonparametric proxy of
the Frenet path M̂ (l+1) using one of the model-based smoothers proposed in Section 4.2,

3: Using the smooth obtained proxy M̂ (l+1), estimate the Frenet curvatures as

θ̂
(l+1)
h,λ = arg min

θ∈H
J̃h,λ

(
θ | M̂ (l+1), {Ui}i=0,...,n

)
.
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In both algorithms the prediction error depends on h, λ = (λ1, . . . , λd−1), and eventually the addi-
tional hyperparameter λq required for the tracking-based approach (Section 4.2.2). If the value of h is too
large, integrating across the entire interval can lead to error accumulation, making it more advantageous
to limit the integration to a smaller interval, like 10% when the total length of the curve is 1 (h ≈ 0.1).
The optimal selection of these hyperparameters is made by performing a 10-fold cross-validation by
minimizing the following criterion:

K∑
k=1

∑
i∈Tk

∥∥∥log
(
UTi Q̂

−(k)(si;h, λ)
)∥∥∥2

F
(3.63)

where Tk is the kth index set based on K = 10 random partition of the observations {Ui}i=1,...,n, and
Q̂−(k)(si;h, λ) is the predicted Frenet path reconstructed with parameters θ̂−(k), estimated without the
kth partition dataset, using hyperparameters h, λ and the initial value of Q0.

6 Simulations Studies
We conduct limited simulation studies in dimension d = 3 to assess and compare the performance of the
proposed methods. We define a reference shape with the parameter s 7→ θ(s) = (κ(s), τ(s))T such that{

κ(s) = 2 cos(2πs) + 5
τ(s) = 2 sin(2πs) + 1

(3.64)

and the arc-length function defined from [0, 1] to [0, 1] as s : t 7→ exp(at)−1
exp(a)−1 if a ̸= 0 and s : t 7→ t otherwise.

We choose a ∼ N (0, 1). All simulation models are repeated 100 times. To measure the error between
true and estimated components, we use the L2 norm for Euclidean curves in R3, the SO(3) geodesic
distance for SO(3)-valued curves, denoted d and defined in equation (3.11), and the L2 relative error
norm for scalar functions like Frenet curvatures, denoted re and defined as

re(θ, θ̂) = ∥θ − θ̂∥L2

∥θ∥L2
. (3.65)

6.1 Scenario 1: Algorithm 2 with Frenet path observations

Given the reference shape, s 7→ θ(s) and t 7→ s(t), we generate noisy observations of the Frenet path Q
solution of Q′(s) = Q(s)Aθ(s), with assuming known initial condition Q0, using the model

Ui = Q(si)Ri, i = 1, . . . , n, (3.66)

where Ri follows a Fisher-Langevin matrix distribution with mean I3 and concentration α. We recall
the density of the Fisher-Langevin matrix distribution with mean M and concentration parameter α
(Mardia and Jupp, 1999)

f(R;M,α) =
{

0F1

(
p

2; α
2

4

)}−1

exp(αTr(MTR)).

From the obtained noisy observations {Ui}i=1,...,n, we apply the iterative Algorithm 2 to simultaneously
recover the Frenet path Q and estimate the Frenet curvatures θ. We consider different sample sizes
n = 100, 200 and noise levels α = 10, 20. Each of the two model-based smoothing methods (Karcher
mean or tracking) is compared for each combination of parameters. Using the cross-validation criterion
(3.63), we run a Bayesian optimization of the hyperparameters in h ∈ [0.05, 0.35], λ1, λ2 ∈ [10−9, 10−3]
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and λq ∈ [0.0001, 1]. We fix the number of basis functions in the B-spline basis expansion of κ and τ to
⌈
√
n ⌉ = 10, 15, where n is the sample size. Results are shown in Table 3.1, where, for each simulation,

Q is the true Frenet path, U is the simulated noisy Frenet path, Q̂ is the smooth estimated Frenet path
at the end of the algorithm, (κ̂, τ̂) are the estimated curvature and torsion, and Q̂(θ̂) is the reconstructed
Frenet path by solving the Frenet-Serret ODE with the estimated Frenet curvatures.

n α Smoother d(Q, U) d(Q, Q̂) re(κ,κ̂) re(τ ,τ̂) d(Q, Q̂(θ̂))

100
10 Karcher 0.113 (0.005) 0.038 (0.011) 0.069 (0.037) 0.247 (0.109) 0.043 (0.013)

Tracking 0.035 (0.013) 0.088 (0.080) 0.3 (0.209) 0.037 (0.010)

20 Karcher 0.056 (0.002) 0.020 (0.006) 0.038 (0.014) 0.124 (0.059) 0.022 (0.007)
Tracking 0.017 (0.004) 0.045 (0.028) 0.143 (0.090) 0.019 (0.005)

200
10 Karcher 0.113 (0.003) 0.031 (0.013) 0.061 (0.041) 0.224 (0.119) 0.039 (0.015)

Tracking 0.025 (0.006) 0.060 (0.058) 0.233 (0.186) 0.031 (0.008)

20 Karcher 0.056 (0.002) 0.016 (0.005) 0.034 (0.018) 0.119 (0.060) 0.019 (0.006)
Tracking 0.013 (0.003) 0.036 (0.028) 0.117 (0.074) 0.016 (0.005)

Table 3.1: Estimation errors of scenario 1: Algorithm 2 with Frenet path observations. Means over the
100 repetitions of the simulation and standard deviations in parenthesis.
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(a) n = 100, α = 10
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(b) n = 100, α = 20

Figure 3.1: Estimated curvature (left) and torsion (right) in scenario 1 (Algorithm 2 with Frenet path
observations): comparison between true parameters (black), estimates using Karcher mean smoother
(red) or using tracking smoother (green) for two simulation cases.

In summary, these results indicate that the tracking algorithm excels in smoothing noisy Frenet
frame observations, consistently yielding smaller geodesic distances between the smoothed Frenet path
and the true path compared to the Karcher mean method. The sample size does not significantly impact
the performance of both methods, although a slight reduction in error is observed with larger sample
sizes. Furthermore, both methods exhibit robustness in the presence of high noise levels, performing
even better under such conditions. While the Karcher mean method provides slightly more accurate
estimates of Frenet curvatures, the tracking method yields smaller errors when reconstructing Frenet
paths using the estimated curvatures. This discrepancy in performance may be attributed to the influence
of initial conditions for the reconstruction chosen as Q̂(0). Figure 3.1 shows that Frenet curvatures
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estimation results by the two methods are very similar (case n = 100). Finally, the tracking approach is
approximately 20% faster than the Karcher mean method.

6.2 Scenario 2: Algorithm 1 with Euclidean curve observations

Given the functions s 7→ θ(s) and t 7→ s(t), we consider the observation model

yi = X(si) + ϵi, i = 1, . . . , n

where ϵi ∼ N (0, γ2I3) and the shape function s 7→ X(s) has a Frenet path Q(s) solution of Q′(s) =
Q(s)Aθ(s). We consider different sample sizes n = 100, 200 and realistic noise levels γ = 0.001, 0.005.
Again, the number of basis functions is fixed to ⌈

√
n ⌉ = 10, 15. Then, we compare the following Frenet

curvatures estimation procedures:

• S2.1 Derivatives estimation based on local polynomial regression and use of extrinsic formulas of
Frenet curvatures.

• S2.2 Application of Algorithm 1 from an estimator of the Frenet path Q̂ obtained by Gram-Schmidt
orthonormalization of estimated derivatives.

• S2.3 Application of Algorithm 1 from an estimator of the Frenet path Q̂ obtained with constrained
local polynomial regression.

n γ d(Q, Q̂) ∥X − X̂∥2 re(κ,κ̂) re(τ ,τ̂) d(Q, Q̂(θ̂)) ∥X − X̂(θ̂)∥2

100

0.001
S2.1 - 0.007 (0.001) 0.118 (0.078) 1.807 (1.824) 0.125 (0.050) 0.392 (0.206)
S2.2 0.034 (0.014) 0.007 (0.001) 0.053 (0.032) 0.943 (0.923) 0.045 (0.020) 0.075 (0.044)
S2.3 0.040 (0.016) 0.006 (0.001) 0.049 (0.029) 1.353 (1.148) 0.050 (0.024) 0.087 (0.067)

0.005
S2.1 - 0.028 (0.004) 0.359 (0.312) 1.934 (1.236) 0.276 (0.118) 0.867 (0.473)
S2.2 0.085 (0.049) 0.028 (0.004) 0.148 (0.129) 1.305 (1.136) 0.107 (0.049) 0.184 (0.119)
S2.3 0.088 (0.038) 0.026 (0.004) 0.093 (0.053) 1.555 (1.221) 0.101 (0.034) 0.161 (0.069)

200

0.001
S2.1 - 0.007 (0.001) 0.127 (0.099) 1.740 (1.516) 0.119 (0.081) 0.559 (0.454)
S2.2 0.030 (0.010) 0.007 (0.001) 0.052 (0.031) 1.144 (1.104) 0.045 (0.020) 0.122 (0.093)
S2.3 0.033 (0.009) 0.006 (0.001) 0.044 (0.027) 1.445 (1.101) 0.047 (0.021) 0.141 (0.115)

0.005
S2.1 - 0.029 (0.004) 0.359 (0.291) 2.334 (1.631) 0.272 (0.197) 1.235 (1.091)
S2.2 0.070 (0.033) 0.029 (0.004) 0.157 (0.141) 1.567 (1.989) 0.118 (0.204) 0.344 (0.903)
S2.3 0.075 (0.035) 0.028 (0.004) 0.080 (0.040) 1.777 (1.994) 0.088 (0.039) 0.204 (0.121)

Table 3.2: Estimation errors of scenario 2: Algorithm 1 with Euclidean curve observations. Means over
the 100 repetitions of the simulation and standard deviations in parenthesis.

Results are displayed in Table 3.2 and Figure 3.2. In summary, they reveal that the Gram-Schmidt
method outperforms the constrained local polynomial regression in estimating the Frenet path, although
both methods yield fairly similar results in terms of estimating Frenet curvatures. Conversely, the
extrinsic formulas method demonstrates significantly less effectiveness, as evidenced by the significant
errors observed in both the estimated curvatures (θ̂) and the corresponding Frenet frames (Q̂(θ̂)). In
addition, the results highlight the cumulative effect of errors: the combination of preprocessing errors in
Q and errors in Frenet curvatures estimation leads to a higher overall error in the reconstructed Frenet
path compared to the error between the true and preprocessed Q. This suggests a potential inconsistency
in the final estimate with the true observations of the Euclidean curve, or at least an increasing error
stemming from preprocessing.
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(a) n = 100, γ = 0.001
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(b) n = 100, γ = 0.005

Figure 3.2: Estimated curvature (first row) and torsion (second row) in scenario 2 (Algorithm 1 with
Euclidean curve observations): comparison between true parameters (black), estimates using extrinsic
formulas S2.1 (red), method S2.2 (green) and method S2.3 (purple) for two simulation cases.

6.3 Scenario 3: Algorithm 2 with Euclidean curve observations

In this last scenario, we test the performance of the Algorithm 2 starting from noisy observations of a
Euclidean curve as in the previous scenario. In this case, to apply the algorithm, we need to go through
a data pre-processing stage to obtain pseudo-observations of the Frenet path. For that, as in the pre-
vious scenario, we can use either (S3.1) the Gram-Schmidt orthonormalization of estimated derivatives
(Section 2.1) or (S3.2) the constrained local polynomial regression (Section 4.1). From the obtained
Frenet path pseudo-observations {Q̂(init)(s1), . . . , Q̂(init)(sn)}, we apply the iterative Algorithm 2 to si-
multaneously recover the Frenet path Q̂(smooth) and estimate the Frenet curvatures θ̂. We test each of
the two pre-processing methods with each of the two smoother.

Results obtained using the Karcher mean method for smoothing of Frenet path noisy observations
are printed in Table 3.3 and the ones obtained using the tracking method in Table 3.4. Plots of the
estimated Frenet curvatures are available on Figure 3.3 for the case n = 100. Since, in this scenario, the
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n γ d(Q, Q̂(init)) d(Q, Q̂(smooth)) re(κ,κ̂) re(τ ,τ̂) d(Q, Q̂(θ̂)) d(Q̂(init), Q̂(θ̂))

100
0.001 S3.1 0.034 (0.014) 0.041 (0.016) 0.061 (0.036) 0.836 (0.849) 0.046 (0.020) 0.019 (0.010)

S3.2 0.040 (0.016) 0.046 (0.016) 0.055 (0.031) 1.134 (0.929) 0.051 (0.022) 0.019 (0.013)

0.005 S3.1 0.085 (0.049) 0.086 (0.051) 0.165 (0.100) 1.238 (1.022) 0.096 (0.101) 0.033 (0.048)
S3.2 0.088 (0.038) 0.087 (0.029) 0.094 (0.043) 1.431 (1.088) 0.090 (0.033) 0.022 (0.014)

200
0.001 S3.1 0.030 (0.010) 0.037 (0.012) 0.052 (0.028) 1.087 (1.077) 0.042 (0.016) 0.016 (0.011)

S3.2 0.033 (0.009) 0.040 (0.012) 0.045 (0.026) 1.323 (1.037) 0.045 (0.017) 0.017 (0.011)

0.005 S3.1 0.070 (0.033) 0.079 (0.088) 0.166 (0.152) 1.449 (1.768) 0.104 (0.214) 0.043 (0.104)
S3.2 0.075 (0.035) 0.077 (0.033) 0.085 (0.063) 1.642 (1.694) 0.086 (0.082) 0.029 (0.068)

Table 3.3: Estimation errors of scenario 3 with Karcher mean smoother: Algorithm 2 with Eu-
clidean curve observations. Means over the 100 repetitions of the simulation and standard deviations in
parenthesis.

n γ d(Q, Q̂(init)) d(Q, Q̂(smooth)) re(κ,κ̂) re(τ ,τ̂) d(Q, Q̂(θ̂)) d(Q̂(init), Q̂(θ̂))

100
0.001 S3.1 0.034 (0.014) 0.040 (0.015) 0.072 (0.044) 1.016 (1.023) 0.043 (0.020) 0.009 (0.012)

S3.2 0.040 (0.016) 0.045 (0.019) 0.065 (0.044) 1.358 (1.188) 0.051 (0.024) 0.014 (0.016)

0.005 S3.1 0.085 (0.049) 0.082 (0.037) 0.193 (0.146) 1.478 (1.605) 0.084 (0.040) 0.012 (0.025)
S3.2 0.088 (0.038) 0.086 (0.033) 0.110 (0.074) 1.685 (1.606) 0.089 (0.033) 0.012 (0.012)

200
0.001 S3.1 0.030 (0.010) 0.037 (0.015) 0.056 (0.037) 1.054 (1.030) 0.042 (0.020) 0.014 (0.013)

S3.2 0.033 (0.009) 0.038 (0.013) 0.049 (0.046) 1.324 (1.148) 0.046 (0.020) 0.021 (0.015)

0.005 S3.1 0.070 (0.033) 0.073 (0.040) 0.189 (0.255) 1.787 (2.609) 0.080 (0.052) 0.023 (0.031)
S3.2 0.075 (0.035) 0.075 (0.035) 0.098 (0.080) 1.544 (1.410) 0.080 (0.040) 0.021 (0.017)

Table 3.4: Estimation errors of scenario 3 with tracking smoother: Algorithm 2 with Euclidean curve
observations. Means over the 100 repetitions of the simulation and standard deviations in parenthesis.

data are noisy observations of the Euclidean curve and not of the Frenet path, a preprocessing step is used
to compute Q̂(init). Then, Q̂(smooth) is the smooth Frenet path after iterations and (κ̂, τ̂) the estimated
Frenet curvatures after iterations. The results align with those observed in scenario 1, confirming that the
tracking method generally outperforms the Karcher mean method in Frenet path smoothing. However,
when compared to scenario 2, we observe that the iterative algorithm yields improved results in terms
of Frenet curvatures estimates, especially when employing the Karcher mean method. This highlights
the importance of using an iterative algorithm instead of solely relying on the Frenet path preprocessing
step when working with observed Euclidean curve data. Nonetheless, as already observed in the previous
scenarios, the algorithm minimizes errors concerning the data Q̂(init), which may contain preprocessing
errors, in contrast to the actual observed data yi. Similarly, the smoothing of Q̂(init) into Q̂(smooth) tends
to increase the error concerning the true parameter Q, primarily due to the presence of additional errors
in Q̂(init).
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(a) Karcher mean smoother with n = 100, γ = 0.001
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(b) Karcher mean smoother with n = 100, γ = 0.005
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(c) Tracking smoother with n = 100, γ = 0.001
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(d) Tracking smoother with n = 100, γ = 0.005

Figure 3.3: Estimated curvature (left) and torsion (right) in scenario 3 (Algorithm 2 with Euclidean
curve observations): comparison between true parameters (black), estimates using method S3.1 (green)
and method S3.2 (purple) for two simulation cases and with the two different smoothers.
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7 Conclusion and Limitations

In this chapter, we mainly present the method proposed by Park and Brunel (2019) for estimating Frenet
curvatures from noisy observations of a single Euclidean curve. Viewing this problem as an ordinary
differential equation inference task within a Lie group, they introduce an iterative algorithm involving
state variable smoothing and optimization of the differential equation parameters. By formulating a local
polynomial regression method within the SO(d) Lie group and minimizing the least squares error with
the Frenet-Serret ODE flow, they derive an efficient and reliable algorithm that significantly outperforms
classical methods based on extrinsic formulas. In an effort to enhance the state variable estimation step,
which is the Frenet path, we propose an alternative tracking-based approach. This approach proves to be
faster and more efficient but does not fully address the major issues of the method. Indeed, as highlighted
in our simulations, a significant portion of the error in the final estimates of Frenet curvatures arises from
the preprocessing step required in this problem formulation. Since the method requires observations of
the Frenet frame, it must be estimated in an initial step, introducing a non-negligible error and potentially
leading to estimators inconsistent with real observations. However, this new approach suggests the idea
of rewriting the problem in the form of an expectation-maximization algorithm, which is the subject of
the next chapter.

51





4
Functional EM Algorithm on SE(3)

for Frenet Curvatures Estimation

We aim to develop a statistical estimation method for Frenet curvatures of a Euclidean curve
in R3 directly from its discrete and possibly noisy observations. This problem corresponds to
real-world scenarios where such observations are the only available data. Existing methods
for estimating Frenet curvatures rely on latent variable observations (derivatives or Frenet
paths). Thus, the preprocessing step needed in this case to estimate these variables intro-
duces inherent errors in the “pseudo” observations used for curvatures parameters estima-
tion. The goal of this work is to establish a statistical framework addressing the estimation
of latent variables and parameters in a unified manner. By expressing the Frenet-Serret
equation and trajectory observations as a state-space model in the Lie group SE(3), we pro-
pose an expectation-maximization algorithm for this purpose. The expectation step employs
an invariant extended Kalman filter on SE(3). We then solve the problem of determining
parameters by formulating it as a nonparametric function estimation problem using penal-
ized expected log-likelihood maximization. We demonstrate the improved accuracy of the
estimators obtained with this approach through experiments on synthetic data. Finally, we
compare the proposed approach with existing methods or methods developed earlier in this
thesis for estimating Frenet curvatures on real data corresponding to motion trajectories.
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1 Introduction
As introduced in Chapter 3, our objective is to estimate the continuous function of Frenet curvatures
from discrete and noisy observations of a Euclidean curve. So far, this problem has been tackled using
two main approaches: either relying on extrinsic formulas of Frenet curvatures (Kim et al., 2013; Sangalli
et al., 2009; Lewiner et al., 2005) or assuming that the Frenet path can be accurately estimated from
these observations through a pre-processing step (Park and Brunel, 2019). Although the latter approach
improves results compared to extrinsic formulas, the pre-processing step to obtain “pseudo” observations
of the Frenet path from real Euclidean curve observations poses a major limitation to these methods.
In this case, the estimation algorithms of the Frenet curvatures seek to minimize errors based on these
“pseudo” Frenet path data. Consequently, if the pre-processing error is significant, the estimator of the
underlying parameter θ may not correspond to the initial and real Euclidean curve observations. This
chapter addresses this inconsistency issue by redefining the problem in a unified framework that allows
for the estimation of Frenet curvatures, still as an ODE parameter estimation, but with a direct tracking
of the error with respect to the actually available Euclidean data.

To effectively unify the different estimation steps of the existing algorithms, we need to model the
link between the discrete and noisy Euclidean observations of the curve X, detoned by {yi}i=1,...,n, and
the vector-valued functional parameter of Frenet curvatures θ. These two entities are connected by the
observation model (3.2) and by the two Frenet-Serret differential equations, one on the curve X in Rd

(dX(s)
ds = T (s)) and the other on the Frenet path Q in SO(d) (2.3) due to the orthogonality constraints.

As they are either imperfectly or not observed at all, the variables (X(s), Q(s)) are hidden variables of the
model. Using the idea from Pilté et al. (2017), we can embed these hidden variables (X(s), Q(s)) into a
single entity defined on SE(d), see (4.1) for the formal definition. Subsequently, the model is described by
an observation model and a single differential equation on SE(d) parameterized by the Frenet curvatures.
We aim to estimate the infinite-dimensional parameter θ of this latent variable differential equation, but
we only have incomplete observations of the solution and lack any prior information on the functional
parameter θ. Hence, we need to account for potential model misspecification arising from this structural
uncertainty and the limited information in the available data (Brynjarsdóttir and O’Hagan, 2014; Clairon
and Brunel, 2019). To address this, we introduce stochasticity to capture the uncertainty by perturbing
the latent variable equation into a stochastic differential equation on the SE(d) group. This finally
defines a state space model having a propagation equation defined on a Lie group parameterized by the
infinite-dimensional Frenet curvatures parameter and a Euclidean observation model. Therefore, our
modeling differs from that proposed by Pilté et al. (2017) for tracking the Frenet-Serret frame, where
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they assume nearly constant Frenet curvatures and velocity. In contrast to their formulation, as our
primary focus lies on Frenet curvatures estimation, we consider a functional data modeling framework
to estimate them as smooth functions.

In general, inference and learning of a state-space model is done with the well-known Expectation-
Maximization (EM) algorithm (Dempster et al., 1977; Meng and van Dyk, 1997; Dwivedi et al., 2018).
This algorithm iterates between an Expectation step (E-step), which infers the values of the hidden
states based on the current parameter estimates and observed data, and a Maximization step (M-step),
which maximizes the expected log-likelihood to update the parameter estimates. However, the classical
framework for using the EM algorithm differs from the one defined by our model in two main aspects.

Firstly, the EM algorithm is typically employed to infer a Euclidean latent process, often assumed to
follow a Gaussian distribution. Under these circumstances, inference is usually performed using a classic
Kalman filter (KF) (Kalman, 1960) or an extended Kalman filter (EKF) in the case of a nonlinear
propagation equation (Baras et al., 1988). Subsequently, one might consider the straightforward idea
of firstly linearizing our SE(d) latent process and its associated stochastic equation into a Euclidean
framework, as proposed in Chapter 3. However, this approach leads to an ill-defined model that does
not guarantee the estimated state to be a valid element of the Lie group. To directly incorporate the
inherent geometry of the problem in the inference step, we use instead the Invariant Extended Kalman
Filter (IEKF) defined by Bonnabel (2007). This generalization of the EKF for cases where the state
evolves on a connected unimodular matrix Lie group is derived under different settings in several papers
(Barrau and Bonnabel, 2015, 2017, 2018; Bourmaud et al., 2013, 2015; Zhu et al., 2022; Pilté et al.,
2017). It typically approximates the Lie group latent process as a concentrated Gaussian process on the
Lie group and allows for tracking and smoothing of the hidden variables directly in the Lie group.

Secondly, the classical EM framework is typically used to estimate low-dimensional parameters in
discrete-time settings. In our model, the parameters to estimate include the vector-valued function of
Frenet curvatures θ, resulting in an infinite-dimensional parameter that requires additional constraints
for reliable estimation. In a continuous-time setting, the EM algorithm has been used in the work by
Wang and Weinan (2021) for continuous-time Hidden Markov Models inference or by Liu et al. (2009) for
a mixing density functional parameter estimation using a nonparametric maximum penalized likelihood
method. The penalized likelihood is a statistical approach commonly used for functional parameter
estimation that introduces a regularization term in the likelihood function to handle the complexity
and overfitting issues that may arise in functional parameter estimation and leads to more stable and
well-behaved estimates (Cardot and Sarda, 2005; Du and Wang, 2014; Cole et al., 2013).

Hence, we consider in this work the general problem of the continuous-discrete state space model
inference and learning in the case of a propagation equation defined on a Lie group and parameterized
by a functional parameter, with an incomplete Euclidean observation model. This chapter focuses on
the specific case of estimating Frenet curvatures in a space of dimension 3. We then propose a general
framework and an efficient algorithm, as a variant of the EM algorithm, for inferring the values of the
Frenet path and estimating the Frenet curvatures function. The proposed functional EM algorithm
on SE(3) utilizes the IEKF for filtering and smoothing of the Frenet path and the Euclidean curve,
and compute the maximum penalized likelihood estimate of θ over the function space H (defined in
Section 3 of Chapter 2) using a B-spline basis decomposition method (see Section 2.1.1 of Chapter 2).
This unified method is evaluated using experiments on synthetic data. In addition, we apply the proposed
algorithm to estimate the curvature and torsion functions of real human motion trajectories of the wrist,
acquired with a motion capture system, and compare with methods that are available and/or described
in Chapter 3.

55



Chapter 4. Functional EM Algorithm on SE(3) for Frenet Curvatures Estimation

2 Preliminaries

2.1 The Special Euclidean Group

The special Euclidean group is a particular non-abelian matrix Lie group that represents the set of
rigid transformations, i.e., all possible transformations that preserve distances and angles, which are
translations and rotations. We refer to Section 1.3.1 of Chapter 2 for an introduction to matrix Lie
group and Lie algebra and their main properties and to Section 3.1 of Chapter 3 for the preliminaries
on the Special Orthogonal group SO(d), which represents the rotations. The special Euclidean group
corresponds to the set of valid transformation matrices, sometimes called poses, defined for d ≥ 2 as

SE(d) =
{
T =

(
R X

0T 1

)
∈ R(d+1)×(d+1)

∣∣∣∣∣ R ∈ SO(d), X ∈ Rd
}
. (4.1)

In SE(d), the combination and inverse operations correspond to

T1T2 =
(
R1 X1

0T 1

)(
R2 X2

0T 1

)
=
(
R1R2 R1X2 +X1

0T 1

)
∈ SE(d) (combination) (4.2)

T−1 =
(
RT −RTX
0T 1

)
∈ SE(d) (inversion) (4.3)

The Lie algebra of the special Euclidean group SE(d) is the vector space of infinitesimal transformations
of dimension d(d+1)

2 denoted by se(d) and defined as

se(d) =

ξ∧ =
(

a

ρ

)∧

=
(

a∧ ρ

0T 0

)
∈ R(d+1)×(d+1)

∣∣∣∣∣∣ ξ ∈ Rd(d+1)/2,a ∈ Rd(d−1)/2,ρ ∈ Rd
 . (4.4)

Lemma 4.1. (Duan et al., 2013) The geodesic distance between two points T1, T2 on SE(d), having as
rotation and translation respectively (R1, X1) and (R2, X2), induced by the scale-dependent left invariant
metric (2.5) is given by

d(T1, T2) =
(
∥ log(RT1 R2)∥2

F + ∥X2 −X1∥2
2

)1/2
. (4.5)

Three-dimensional case: In this chapter, we focus on deriving our estimation algorithm specifically
for the case d = 3. This choice is motivated by the specific properties of the Special Euclidean group
in a three-dimensional space. The exponential and logarithm maps have particular representations in
SE(3). For T =

(
R X

0T 1

)
∈ SE(3), there is ξ = (a, ρ)T ∈ R6, with a,ρ ∈ R3, such that

T = exp(ξ∧) =
∞∑
n=0

1
n!

(
a∧ ρ

0T 0

)n
=
(

exp(a∧) JSO(3)(a)ρ
0T 1

)
, (4.6)

ξ∧ = log(T ) = log
((

R X

0T 1

))
=

 log(R)∨ J−1
SO(3)(log(R)∨)X

0T 0

 , (4.7)
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where JSO(3) and J−1
SO(3) are the Jacobian and inverse Jacobian matrix of SO(3) defined in (3.14) and

(3.15). The adjoint representations on SE(3) and se(3) are given by

T = AdSE(3)(T ) =
(

R 03×3

X∧R R

)
∈ R6×6, (4.8)

ξ⋏ = adSE(3)(ξ∧) =
(

a

ρ

)⋏

=
(

a∧ 03×3

ρ∧ a∧

)
∈ R6×6, (4.9)

and we have T −1 = AdSE(3)(T−1).

Barfoot (2017) gives a detailed and complete description of the two Lie groups SO(3) and SE(3)
(Chapter 7), and we refer to it for additional properties relating to them.

2.2 Concentrated Gaussian Distribution on Lie Groups

In this section, we introduce the concept of concentrated Gaussian distribution on Lie groups, a gen-
eralization to Lie groups of the Gaussian distribution in Euclidean space (Wang and Chirikjian, 2006,
2008). Let G be a connected unimodular (i.e. ∀g ∈ G, |detAdG(g)| = 1) matrix Lie group and g its
corresponding Lie algebra. The idea for defining a concentrated Gaussian random variable T on G is to
consider the following parametrization:

T = M exp
(
−ξ∧) , (4.10)

where M ∈ G is a “large” noise-free mean value, and ξ∧ ∈ g is a “small” noisy perturbation. Defining
a Gaussian density on the vector space g will induce a probability density on G. We define the small
perturbation variable ξ as zero-mean multivariate Gaussian random variable on Rp, p(ξ) = N (0,Λ),
where Λ is a p× p covariance matrix. As ξ = log

(
T−1M

)∨, we can apply this change of variable in the
Gaussian probability density of ξ, and assume dT ≈ dξ in cases where ξ is sufficiently small (Wang and
Chirikjian, 2006; Barfoot and Furgale, 2014). Then, in this case, the concentrated Gaussian probability
density is defined as

1 =
∫
G

1√
(2π)p det(Λ)

exp
(

−1
2log

(
T−1M

)∨T
Λ−1 log

(
T−1M

)∨
)
dT =

∫
G
p(T )dT. (4.11)

We say that T is a concentrated Gaussian random variable on G centered at M , and we denote

T ∼ NG(M,Λ), (4.12)

where M is the mean and Λ the covariance matrix of T . In practice, we never need to compute p(T ) as
we can work directly with p(ξ). For example, the expected value of some nonlinear function of T , f(T ),
can be computed given the following,

E[f(T )] =
∫
G
f(T )p(T )dT =

∫
Rp
f(M exp(−ξ∧))p(ξ)dξ. (4.13)

Remark 4.1. In the related literature, the random variable T in G is generally defined as T = M exp(ξ∧)
rather than (4.10), given in this case ξ = log

(
M−1T

)∨. However, as ξ is centered on zero, our formu-
lation is equivalent and used in this chapter for convenience.

Given this definition, we can also extend the concept of the Gaussian process to the concentrated
Gaussian distribution on a Lie group G. A Gaussian process is a stochastic process defined over a
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continuous domain, typically represented as a collection of random variables, such that any finite subset
of those variables has a joint Gaussian distribution. We define the following stochastic process on G,

T (t) = M(t) exp(−ξ(t)∧) , (4.14)

where t 7→ M(t) is a continuous function on G and t 7→ ξ(t) is a Gaussian process of Rp defined as
ξ(t) ∼ GPRp(0, P (t, t′)). Then, we can say that T (t) is a concentrated Gaussian process on G, and we
denote

T (t) ∼ GPG(M(t), P (t, t′)). (4.15)

3 Frenet-Serret State Space Model in SE(3)
Recall the main Frenet-Serret equations in the 3-dimensional space defined in Section 3 of Chapter 2.
Given a curve X : [0, 1] → R3 and its corresponding Frenet path Q : [0, 1] → SO(3) such that s 7→
Q(s) = [T (s)|N(s)|B(s)], they are defined through the following dynamic equations parameterized by
scalar functions on [0, 1], which are the curvature s 7→ κ(s) and the torsion s 7→ τ(s):

dX(s)
ds

= T (s) , dQ(s)
ds

= Q(s)


0 −κ(s) 0

κ(s) 0 −τ(s)
0 τ(s) 0

 , (4.16)

with the additional initial conditions, X(0) = X0 and Q(0) = Q0, corresponding respectively to the initial
position and the initial orientation of the trajectory in the space. In this chapter, we solely consider
the realistic observation model, which assumes that we have only noisy and discrete observations of the
Euclidean curve. We suppose having n noisy observations yi ∈ R3, i = 1, . . . , n on the discretized grid
s1 < . . . < sn on [0, 1], which satisfy

yi = X(si) + ϵi , (4.17)
where ϵi’s are independent random variables with mean zero and constant covariance matrix Γ. In this
case, estimating the Frenet-Serret differential equations in a unified way means being able to obtain an
estimate of the latent variables X and Q and the functional parameters of the differential equation θ
simultaneously from the discrete Euclidean observations {yi}i=1,...,n only. To address this problem, we
follow the idea of Pilté et al. (2017), who suggest expressing this problem in a more uniform way by
embedding the latent variables into a single variable defined on SE(3) and considering the associated
dynamic equation.

3.1 Embedding of Frenet-Serret Equations in SE(3)

From the shape function of the Euclidean curve X and the corresponding Frenet path Q, we define the
variable Z from [0, 1] to the special Euclidean group SE(3) as

Z(s) =
(
Q(s) X(s)
0T 1

)
. (4.18)

The curve s 7→ Z(s) is given in terms of the arc-length parameter and is well defined in SE(3) as for
all s ∈ [0, 1], X(s) ∈ R3 and Q(s) ∈ SO(3). It defines an embedded representation of the position,
orientation, and dynamics in the Euclidean space at each point along the curve. The dynamic equation
of the variable Z inherited from equations (4.16) is

dZ(s)
ds

=
(

dQ(s)
ds

dX(s)
ds

0T 0

)
=
(
Q(s) X(s)
0T 1

)
0 −κ(s) 0 1

κ(s) 0 −τ(s) 0
0 τ(s) 0 0
0 0 0 0

 (4.19)
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By defining the vector ωθ(s) = (τ(s), 0, κ(s), 1, 0, 0)T and using the notation (2.7) the Frenet-Serret
equation on SE(3) can be written as

dZ(s)
ds

= Z(s)ωθ(s)∧, Z(0) = Z0 =
(
Q0 X0

0T 1

)
. (4.20)

The noisy observations of the Euclidean curve {yi}i=1,...,n can also be expressed as a function of Z by

ỹi = Z(si)u + ϵ̃i (4.21)

where u = (0, 0, 0, 1)T and ỹi, ϵ̃i ∈ R4 are the augmented vectors ỹi =
(

yi

1

)
and ϵ̃i =

(
ϵi

0

)
.

In this model, rewritten in SE(3) by the equations (4.20) and (4.21), the latent variable of the
problem is the state Z(s) ∈ SE(3), ∀s ∈ [0, 1]. This state variable is non-Euclidean, and its propagation
is described by a differential equation on the Lie group SE(3) parameterized by the infinite-dimensional
time-varying parameter θ of interest. In particular, and contrary to the assumptions made by Park and
Brunel (2019) introduced in Chapter 3, in this setting (4.20, 4.21), the state is highly partially observed.
Therefore, the usual methods for ODE estimation discussed in the introduction of Chapter 3 (Ramsay
and Hooker, 2017; Ramsay et al., 2007; Brunel and Clairon, 2015) may lead to difficulties in obtaining
accurate estimates due to limited information content in the observations.

3.2 Definition of the Propagation Model

The equation (4.20) that defines the dynamics of our model is completely deterministic (i.e., does not
inherently model stochasticity), but the structural parameters of the model are infinite-dimensional and,
as we mention, a large proportion of the model’s components are unknown and unobserved. In this
setting, we must take into account the potential misspecification of the model due to its structural un-
certainty. Otherwise, as shown in Brynjarsdóttir and O’Hagan (2014), this can lead to biased parameter
estimates and inaccurate state predictions.

3.2.1 Accounting for Model’s Misspecification

Brynjarsdóttir and O’Hagan (2014) emphasizes the importance of carefully modeling the available prior
information related to the model when accounting for the model discrepancy to obtain realistic parameter
estimates. In our case, the specific form of the matrix ωθ(s)∧ must be preserved to ensure that the
solution effectively corresponds to a Euclidean trajectory and its corresponding Frenet path. In other
words, we must maintain the form of a Frenet-Serret equation by keeping the constant terms in the
matrix ωθ(s)∧ at their specific values (0 or 1). Different methods could be considered to incorporate the
uncertainty of the parameters in the model based on this prior information. For example, Clairon and
Brunel (2019) consider adding a forcing function that represents the potential model’s misspecification.
We choose here to apply stochasticity to capture the model’s uncertainties due to the unknown structural
parameters, although the system is typically not inherently stochastic (Pilté et al., 2017). As our dynamic
equation is defined over a matrix Lie group, a process noise cannot simply be added as in the Euclidean
setting, but standard addition may be replaced with group multiplication as well explained in detail in
Barrau and Bonnabel (2018). We then consider the following perturbed model, defined by a stochastic
differential equation on the matrix Lie group SE(3):

dZ(s)
ds

= Z(s) (ωθ(s) + Lw(s))∧ (4.22)

where w(s) is a continuous centred white noise process in R2 with covariance matrix Σ, and L ∈ R6×2 is a
time-invariant dispersion matrix maintaining the form of the Frenet-Serret equation, such that L1,2 = 1,
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L3,1 = 1, and all other coefficients are null. Basically, the only variables in the vector ωθ(s) that are
assumed to be noisy in this formulation are the components of the vector θ(s) = (κ(s), τ(s))T , and the
considered process noise w(s) directly models the noise on these Frenet curvatures. We recall that the
white noise w(s) is mathematically defined through its integral,

∫ s2
s1

w(s)ds = B(s1) −B(s2), with B(s)
a 2-dimensional Brownian motion such that for s < t, B(t) −B(s) ∼ N (0, (t− s)Σ). Based on this, the
continuous white noise process w(s) is sometimes expressed as a Gaussian process with a zero constant
mean function and a specific form of the covariance function defined with the Dirac delta function δ as

w(s) ∼ GP(0,Σδ(s− s′)). (4.23)

The proposed observation and propagation models defined by equations (4.21) and (4.22), represent
a partially observed stochastic differential equation on SE(3), considering potential uncertainties in the
parameters. In addition, we assume a prior initial state distribution Z(0) = Z0 ∼ NSE(3)(µ0,P0). Then,
the model (4.24) defines our Frenet-Serret continuous-discrete state space model in SE(3){

dZ(s)
ds = Z(s) (ωθ(s) + Lw(s))∧ w(s) ∼ GP(0,Σδ(s− s′))
ỹi = Z(si)u + ϵ̃i ϵ̃Ti = (ϵTi , 0), ϵi ∼ N (0,Γ) .

(4.24)

3.2.2 Induced State Prior Distribution

In the case of an SDE on Rd that is linear and driven by a Gaussian noise process, the solution will
also have a Gaussian distribution (Sarkka, 2006). However, if the SDE is nonlinear or defined in a more
complex space than Rd, as in our setting, the distribution of the solution may not be Gaussian and can be
more complex to determine analytically. In such cases, numerical methods or approximation techniques
may be employed to estimate the distribution of the solution, as proposed in Barrau and Bonnabel (2018)
through discretization schemes of the SDE or in Barfoot (2017) through approximations in a continuous
formulation. These approaches rely on the idea of linearizing the Lie group equation. Let µ(s) denote
the solution of the deterministic Frenet-Serret ODE (4.20) and Z(s) the solution of the SDE (4.22),
which are both defined from [0, 1] to SE(3). We introduce the variable ξ : [0, 1] → R6 as

ξ(s) = log
(
Z(s)−1µ(s)

)∨
. (4.25)

The vector ξ(s) ∈ R6 represents the small deviation or perturbation in the Lie algebra between the
solution obtained from the deterministic model’s ODE and the solution obtained from the perturbed
model’s SDE. From this modeling, the variable Z(s) is then expressed as Z(s) = µ(s) exp(−ξ(s)∧).
Assuming by hypothesis that the error variable ξ(s) remains small, we can derive the linearization of
the SDE (4.22) over Z(s) proposed in the following Lemma (Barrau and Bonnabel, 2017).

Lemma 4.2. Consider the stochastic differential equation (4.22) with the initial condition Z(0) = Z0
such that Z0 ∼ NSE(3)(µ0,P0), where µ0 ∈ SE(3) and P0 ∈ R6×6. This SDE can be linearized into the
two following dynamical equations: a mean dynamics over the function µ(s) ∈ SE(3) and a perturbation
dynamics over the matrix function P (s) ∈ R6×6:

dµ(s)
ds

= µ(s)ωθ(s)∧ , (4.26)

dP (s)
ds

= −ωθ(s)⋏P (s) − P (s)ωθ(s)⋏T + LΣLT , (4.27)

with initial conditions µ(0) = µ0 and P (0) = P0, assuming that the left-invariant error log
(
Z(s)−1µ(s)

)∨
remains small for all s ∈ [0, 1].
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Proof. Consider the previously defined left-invariant error between Z(s) and µ(s), which is ξ(s) =
log

(
Z(s)−1µ(s)

)∨. This error variable is assumed by hypothesis to be relatively small so that we can
consider the following approximation,

Z(s) = µ(s) exp(−ξ(s)∧) = µ(s)
(
I − ξ(s)∧)+O

(
∥ξ(s)∧∥2

)
. (4.28)

From Ito’s product rule (Jacod and Shiryaev, 2013), we can also obtain an approximation for dZ(s) as

d
(
µ(s) − µ(s)ξ(s)∧) = dµ(s) − (dµ(s))ξ(s)∧ − µ(s)dξ(s)∧ − dµ(s)dξ(s)︸ ︷︷ ︸

=0

, (4.29)

where the last term is null because µ is non-stochastic. By replacing, in the SDE on Z(s) (4.22), the
terms by these two approximations (4.28) and (4.29) we obtain

dµ(s)
ds

− dµ(s)
ds

ξ(s)∧ − µ(s)dξ(s)∧

ds
= µ(s)(I − ξ(s)∧)(ωθ(s) + Lw(s))∧ +O

(
∥ξ(s)∥2

)
.

As µ(s) is defined as the solution of (4.26), we can manipulate the perturbed system (4.22), using the
definitions of the adjoint representation and the Lie bracket (2.10), into the following pair of equations:

(Mean) dµ(s)
ds

= µ(s)ωθ(s)∧

(Perturbation) dξ(s)
ds

= −
(
ωθ(s)∧ξ(s)∧ − ξ(s)∧ωθ(s)∧)∨ − Lw(s) + (ξ(s)∧Lw(s)∧)∨ +O

(
∥ξ(s)∥2

)
= −ωθ(s)⋏ξ(s) − Lw(s) +O

(
∥ξ(s)∥2∥w(s)∥2

)
+O

(
∥ξ(s)∥2

)
The mean dynamic equation is deterministic given the parameter θ. For the perturbation dynamics,
by neglecting terms of order O

(
∥ξ(s)∥2∥w(s)∥2) + O

(
∥ξ(s)∥2) (see Barrau and Bonnabel (2017)) the

remaining pertubation dynamical equation is a linear time-varying SDE driven by a Gaussian noise
process. From Theorem 2.6 in Sarkka (2006), its solution is a Gaussian process with mean function
m(s) ∈ R6 and covariance function P (s) ∈ R6×6 defined as solutions of

dm(s)
ds

= −ωθ(s)⋏m(s) (4.30)

dP (s)
ds

= −ωθ(s)⋏P (s) − P (s)ωθ(s)⋏T + LΣLT . (4.31)

Therefore, by neglecting terms of order O
(
∥ξ(s)∥2∥w(s)∥2)+ O

(
∥ξ(s)∥2), the solution ξ(s) can be ap-

proximated by a Gaussian process GP(m(s), P (s, s′)). As we suppose Z(0) ∼ GPSE(µ(0) = µ0, P (0) =
P0) and ξ(0) = log

(
Z(0)−1µ(0)

)∨, we have ξ(0) ∼ N (0,P0) (see Section 2.2). Therefore, m(0) = 0 and
thus the mean function m(s) remains null for all s ∈ [0, 1]. Hence, the error variable ξ(s) is approxi-
mated by the Gaussian process GP (0, P (s, s′)) and so the perturbation dynamics is fully described by
the equation (4.31). ■

From the linearization of (4.22) derived in Lemma 4.2, we have obtained an approximation of the vari-
able ξ(s) = log

(
Z(s)−1µ(s)

)∨ by the Gaussian process GP (0, P (s, s′)). Therefore, given the definition of
the concentrated Gaussian distribution on Lie group (Section 2.2), we approximate also the distribution
of the solution Z(s) of the SDE (4.22) by a concentrated Gaussian process on SE(3) (Section 2.2) with
mean µ(s) and covariance function P (s, s′). We denote

Z(s) approx∼ GPSE(µ(s), P (s, s′)) . (4.32)
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From (4.31), the cross-covariance function is given as (Sarkka, 2006)

P (s, s′) = ϕ(s, 0)P0ϕ(s′, 0)T +
∫ min(s,s′)

0
ϕ(s, t)LΣLTϕ(s′, t)Tdt, (4.33)

where ϕ(s, t) is the transition function defined as:
ϕ(s, s) = I

ϕ′(s, t) = −ωθ(s)⋏ϕ(s, t)
ϕ(s, t) = ϕ(s, r)ϕ(r, t).

(4.34)

In this section, we propose to model the estimation problem of the Frenet-Serret framework’s param-
eters through the inference of the state space model defined in (4.24). We aim to estimate the hidden
state Z(s) and learn the parameter values Θ = {θ,Σ,Γ,P0,µ0} of this proposed model. In a full Eu-
clidean setting, this problem is typically addressed using an Expectation-Maximization (EM) algorithm
(Dempster et al., 1977; Meng and van Dyk, 1997; Dwivedi et al., 2018), which involves an Expectation
step (E-step) and a Maximization step (M-step). The E-step infers the posterior distribution of the
hidden states based on the current parameter estimates and observed data, while the M-step maximizes
the expected log-likelihood to update the parameter estimates. The algorithm iteratively repeats these
steps until convergence, determined by a predefined threshold for the change in parameter estimates or
likelihood values. However, since our continuous dynamics operate on the Lie group SE(3) while our dis-
crete observations are in Euclidean space R3, and since some of our parameters are infinite-dimensional,
we propose an adapted version of the EM framework accordingly in the following sections.

4 Latent Variables Estimation using an Invariant Extended Kalman
Filter/Smoother on SE(3)

The classic algorithm for inferring the hidden state in a state space model is the well-known Kalman
Filter (KF), originally introduced by Kalman (1960), which sequentially updates the state estimate based
on the measurements and system dynamics. Its direct use is adapted to the restricted case of a linear
Gaussian state space model. To handle the case of a state space model governed by a non-linear dynamic
equation, an extension known as the Extended Kalman Filter (EKF) uses a linearization of the dynamics
at each time step around the current estimated state. It assumes a Gaussian approximation of the true
state’s posterior distribution at each time point given the previous observations and linearizes the error
system through a first-order Taylor expansion of the non-linear functions (Särkkä, 2010; Särkkä and
Sarmavuori, 2013). This version is well-adapted to the non-linear system defined in Euclidean space, as
the error corresponds to the simple difference between the true and estimated state. For a system defined
in a matrix Lie group, Barrau and Bonnabel (2017) propose a version of the EKF that inherently respects
the group structure, named the Invariant Extended Kalman Filter (IEKF). The idea, compared with the
classic version of the EKF, is to use a representation of uncertainty that is consistent with the Lie group
structure in the approximation of the state’s posterior distribution and the error’s definition. The IEKF
algorithm is, therefore, well-suited to our setting (4.24). We describe it more precisely in this section
and apply it for the estimation of the posterior distribution of our model hidden state Z(si) given the
i previous observations y1:i = {y1, . . . ,yi} and a set of parameter Θ. Moreover, updating the optimal
parameters in the maximization step of the EM algorithm requires having the posterior distribution of
the hidden state given all the observations y1:n = {y1, . . . ,yn}. To achieve this, we propose also, in this
thesis, an Invariant Extended Kalman Smoother (IEKS).
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4. Latent Variables Estimation using an Invariant Extended Kalman Filter/Smoother on SE(3)

4.1 Invariant Extended Kalman Filter

The EKF supposes first to make an approximation of the posterior state distribution (Särkkä, 2010). In
the IEKF algorithm, we assume the state posterior filtering distribution to be a concentrated Gaussian
distribution on Lie groups (Section 2.2) (Bourmaud et al., 2015; Barrau and Bonnabel, 2018). We denote,

p(Z(s)|y1, . . . ,yi) ≈ NSE(3)(µt(s),P t(s)), s ∈ [si−1, si) , (4.35)

where µt : [0, 1] → SE(3) and P t : [0, 1] → R6×6 are the mean and covariance functions of the tracking
distribution. At si−1 ∈ [0, 1], we write the conditional random variable Z(si−1)|y1:i−1 = Zi−1|i−1. Given
the distribution parameters at time step si−1, µt

i−1|i−1 and P t
i−1|i−1, and the observation yi at time

step si, the IEKF provides the values of distribution parameters at time step si, which are µt
i|i and

P t
i|i. It consists of a propagation step defined by the equations (4.37) and (4.38) derived in Section 4.1.1

and an updating step (4.43) defined in Section 4.1.2.

The essential ingredient for defining the IEKF’s equations is to approximate the system error through
the left-invariant error defined in a vector space. By definition of the concentrated Gaussian distribution
on SE(3), we have from (4.35)

Zi−1|i−1 ≈ µt
i−1|i−1 exp

(
−ξt∧

i−1|i−1

)
, (4.36)

where the Lie algebraic error ξt
i−1|i−1 = log

(
(Zi−1|i−1)−1µt

i−1|i−1

)∨
∼ N (mt

i−1|i−1 = 0,P t
i−1|i−1)

locally approximates the error between true and estimated states as the left-invariant error on SE(3).

4.1.1 Propagation

This section aims to propagate the parameters µt and P t between two consecutive measurement points
si−1 and si. Along the lines of the EKF, our aim is to linearize the error system by employing a first-
order approximation of the non-linear functions around the estimated state. Precisely, Lemma 4.2 shows
that by considering the first-order approximation of the system error, exp(−ξt∧

i−1|i−1) = I − ξt∧
i−1|i−1 +

O(∥ξt∧
i−1|i−1∥2), we can linearize the system between two differential equations: one defining the mean

propagation and the other the covariance propagation. Then, the propagation step consists of integrating
the differential equations

dµt(s)
ds

= µt(s)ωθ(s)∧ , (4.37)

dP t(s)
ds

= −ωθ(s)⋏P t(s) − P t(s)ωθ(s)⋏T + LΣLT , (4.38)

from initial conditions µt(si−1) = µt
i−1|i−1 and P t(si−1) = P t

i−1|i−1 to the time instance si. The
propagated mean and covariance are given as µt

i|i−1 = µt(si) and P t
i|i−1 = P t(si), respectively. In the

same way as in (4.30), the mean Lie algebraic error is propagated by the equation (Sarkka, 2006)

dmt(s)
ds

= −ωθ(s)⋏mt(s). (4.39)

However, as the initial condition is mt
i−1|i−1 = 0R6 , to the first order we will have mt

i|i−1 = 0R6 .

4.1.2 Update

To update the propagated mean µt
i|i−1 and covariance P t

i|i−1 by incorporating the new measurement
ỹi, we begin by examining the linearization of the observation model with respect to ξt

i|i−1, as detailed
in the following proposition.
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Proposition 4.1. The observation model in (4.24) can be expressed as a function of ξ(s) = log
(
Z(s)−1µ(s)

)∨,
where µ(s) is a solution of (4.26), which is given by

ŷi = −Hξ(s) + ϵ̂i , (4.40)

where H = ( 03×3 I3 ) ∈ R3×6, ŷi = µQ(s)T (yi − µX(s)) ∈ R3 and ϵ̂i = µQ(s)T ϵi ∈ R3 such that
ϵ̂i ∼ N (0, µQ(s)TΓµQ(s)). The parameters µQ(s) ∈ SO(3) and µX(s) ∈ R3 are respectively the rotation
matrix and translation vector of µ(s) ∈ SE(3) as defined in (4.1).

Proof. We linearize the observation model using the first-order approximation of the exponential map,

ỹi = Z(s)u + ϵ̃i = µ(s) exp
(
−ξ(s)∧)u + ϵ̃i = µ(s)

(
I − ξ(s)∧)u + ϵ̃i +O

(
∥ξ(s)∧∥2

)
.

This equation can be rearranged as

µ(s)−1ỹi − u = −ξ(s)∧u + µ(s)−1ϵ̃i +O
(
∥ξ(s)∧∥2

)
,

and the equation (4.40) is then obtained by identifying the vectors’ first 3 components in this equality. ■

From Proposition 4.1 we have
ŷi = −Hξt

i|i−1 + ϵ̂i . (4.41)

Since (4.41) is a linear equation with respect to ξt
i|i−1 ∈ R6, we can use the conventional update equations

of the Kalman filter to update the Lie algebraic error into the posterior distribution. Consequently, we
obtain ξt−

i|i ∼ N (mt−
i|i,P

t−
i|i), where the values of mt−

i|i and P t−
i|i are computed as follows:

Si = HP t
i|i−1H

T + µt
Q
T

i|i−1Γµt
Qi|i−1

Ki = P t
i|i−1H

TS−1
i

mt−
i|i = 0R6 +Ki(ŷi +H0R6)

P t−
i|i = (I −KiH)P t

i|i−1

(4.42)

To satisfy the concentrated Gaussian distribution assumption Zi|i = µt
i|i exp(−ξt∧

i|i) ∼ NSE(3)(µt
i|i,P

t
i|i)

we must have E[ξt
i|i] = 0R6 at the end of the updating step. However, we have mt−

i|i ̸= 0R6 after the
update (4.42). Hence, we set mt

i|i = 0R6 and we perform the following reparametrization,

µt
i|i = µt

i|i−1 exp
(

−
[
mt−

i|i

]∧)
= µt

i|i−1 exp
(
− [Kiŷi]∧

)
= µt

i|i−1 exp
([
Kiµ

t
Q
T

i|i−1(µt
X i|i−1 − yi)

]∧)
,

(4.43)
which gives the update equation of µt. For the covariance matrix, we consider P t

i|i ≈ P t−
i|i. Note that

filtering functions, µt and P t, are therefore not continuous at the measurement times.

4.2 Invariant Extended Kalman Smoother

We also propose to extend the Extended Kalman Smoother on SE(3) as an Invariant Extended Kalman
Smoother (IEKS) to obtain an approximate smoothing solution to the filtering model. Again, we make
the assumption that the smoothing solution follows a concentrated Gaussian distribution on SE(3)
parametrized by the mean µs and covariance function P s,

p(Z(s)|y1, . . . ,yn) ≈ NSE(3)(µs(s),P s(s)), s0 ≤ s ≤ sn. (4.44)
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From Särkkä and Sarmavuori (2013), the Kalman smoothing solutions, ξs and P s, of the continuous-
discrete linearized Gaussian model of the variable ξt, are given by the equations for τ ∈ [si−1, si]

D(τ) = P t(τ)C(τ)TP t(si)−1 (4.45)

ms(τ) = mt(τ) +D(τ)
(
ms(si) − mt(si)

)
= D(τ)ms(si) (4.46)

P s(τ) = P t(τ) +D(τ)
(
P s(si) − P t(si)

)
D(τ)T , (4.47)

where D is the smoothing gain parameterized by the solution C(s) of

dC(s)
ds

= −ωθ(s)⋏C(s) , (4.48)

integrated on [si−1, si], from the initial condition C(si−1) = I. These smoothing parameters are com-
puted backward with the terminal conditions ms(sn) = mt

n|n = 0R6 and P s(sn) = P t
n|n. Therefore,

given (4.46), we have for all τ ∈ [s0, sn], ms(τ) = 0R6 . By analogy with the IEKF, we define the
smoothing mean µs by using the Lie group structure to express the error between µs(si) and µt(si)
through the left-invariant error. Therefore, we define the following equation for the smoothing solution.
For τ ∈ [si−1, si],

µs(τ) = µt(τ) exp
(
D(τ) log

(
µt(si)−1µs(si)

))
, (4.49)

which is computed backward from µs(sn) = µt
n|n.

The maximization step of the EM algorithm also requires knowledge of the cross-covariance function
P s(s, s′). This one can be computed by considering a discretization scheme of the smoothing covariance
differential equation of a Gaussian linear model (Särkkä and Sarmavuori, 2013), verified by P s(s),

dP s(s)
ds

=
[
−ωθ(s)⋏ + LΣLTP t(s)−1

]
P s(s) + P s(s)

[
−ωθ(s)⋏ + LΣLTP t(s)−1

]T
− LΣLT . (4.50)

In practice, we must run the tracking algorithm first and store the estimated values so that we can
use the smoothing algorithm thereafter. The computational complexity and memory requirements are
then of the order of O(63n) and O(62n) (Hartikainen and Särkkä, 2010).

5 Parameter Inference by Maximization of the Penalized Expected
Log-Likelihood

In this section, we aim to update the estimation of our model’s parameters Θ = {θ,Σ,Γ,P0,µ0}, given
the posterior distribution of our model’s hidden state (4.24), p(Z(s)|y1:n), obtain through the IEKF
and IEKS. For this, first note that this work deals with the parameter estimation of a single curve.
Therefore, the total amount of information involved is insufficient to obtain a reliable estimate of the full
covariance matrix Σ, and we can only consider estimating a single constant variance σ2, assuming the
standard model for the error (Ramsay and Silverman, 2005). Then, in the following, we are looking for
this simpler form of the white noise covariance matrix, Σ = σ2I, which will also simplify the derivation
of the parameter optimization criterion.

5.1 Complete Data Log-Likelihood

The complete data log-likelihood of the Frenet-Serret state space model (4.24) is defined by

L(Θ) = log(p(Z0:n,y1:n; Θ)) = log
(
p(Z0:n; Θ)

n∏
i=1

p(yi|Zi; Θ)
)

= log (p(Z0:n; Θ))+
n∑
i=1

log (p(yi|Zi; Θ)) ,

(4.51)
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where Z0:n = (Z(s0), . . . , Z(sn)) and Θ = {θ, σ,Γ,P0,µ0} the set of parameters to learn. The first term
accounts for the error in the propagation model defined by the SDE (4.22), and the second one for the
error in the measurements model (4.21).

5.1.1 Error in Propagation Model

From Lemma 4.2, by denoting by P the full covariance matrix such that Pij = P (si, sj) ∈ R6×6, and
the error vector by ξ0:n = (ξ(s0), . . . , ξ(sn))T , where ξ(si) = log(Z(si)−1µ(si))∨ is assumed to remain
sufficiently small, we have p(Z0:n; Θ) approx∼ NSE(3)(µ0:n,P) and thus

p (Z0:n; Θ) ≈ 1√
(2π)6n det (P)

exp
(

−1
2ξT0:nP−1ξ0:n

)
. (4.52)

Proposition 4.2. The distribution of Z0:n can be re-expressed as

p(Z0:n; Θ) ≈ 1√
(2π)6n det(W)

exp
(

−1
2eT0:nW−1e0:n

)
, (4.53)

where e0 = ξ(s0) = log
(
Z(s0)−1µ(s0)

)∨, W = diag(P0,W1, . . . ,Wn), and for i > 0,

Wi =
∫ si

si−1
ϕ(si, t)σ2LLTϕ(si, t)Tdt , (4.54)

ei = ξ(si) − ϕ(si, si−1)ξ(si−1) = log
(
Z(si)−1µ(si)

)∨
− ϕ(si, si−1) log

(
Z(si−1)−1µ(si−1)

)∨
. (4.55)

Proof. From the covariance differential equation (4.27) one can show that P = CWCT (Barfoot (2017)
section 3.4 ), where the matrix C and its inverse are defined by

C =



I 0 . . . 0
ϕ(s1, s0) I

ϕ(s2, s0) ϕ(s2, s1)
. . .

...
...

. . . . . .
ϕ(sn, s0) ϕ(sn, s1) . . . ϕ(sn, sn−1) I


, C−1 =



I 0 . . . 0
−ϕ(s1, s0) I

0 −ϕ(s2, s1)
. . .

...
. . . . . .

0 . . . 0 −ϕ(sn, sn−1) I


given the transition matrix function ϕ(·, ·) defined by the equations (4.34). Then P−1 = CT−1W−1C−1

is block-tridiagonal and the 6 × 6 dimensional block matrices are
P−1
i,i+1 = −ϕ(si+1, si)TW−1

i+1
P−1
i,i = W−1

i + ϕ(si+1, si)TW−1
i+1ϕ(si+1, si)

P−1
i,i−1 = −W−1

i ϕ(si, si−1)

and P−1
0,0 = P0

−1. Then, by denoting e0:n = C−1ξ0:n ∈ R6n the distribution of Z0:n can be re-expressed
as (4.53). ■

In the Proposition 4.2, the variable ei is expressed in terms of µ(si), µ(si−1) and ϕ(si, si−1), which
depend on the unknown parameter θ. Therefore, to obtain a convenient expression for the estimation of
θ, we derive an approximation of the error ei that isolates this parameter in the following proposition.

Proposition 4.3. Given the notation ui = si−si−1 and vi = si+si−1
2 , the error of the propagation model

ei ∈ R6 at a time step i > 0, defined in (4.55), is approximated as

ei = ui (ωθ (vi) − ri) +O
(
u2
i

)
, (4.56)

where ri = − 1
ui

log
(
Z(si)−1Z(si−1)

)∨ ∈ R6 represents the raw observation of ωθ (vi).
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Proof. First, we can approximate the transition matrix ϕ(si, si−1) with the Magnus approximation (3.21)
of the associated differential equation:

ϕ(s, t) = exp
(

−(s− t)ωθ

(
s+ t

2

)⋏)
+O

(
(s− t)2

)
= Ad

(
exp

(
−(s− t)ωθ

(
s+ t

2

)∧))
+O

(
(s− t)2

)
.

Using the notation ui = si − si−1 and vi = si+si−1
2 we derive an approximation of the propagation error,

ei = log
(
Z(si)−1µ(si)

)∨
−Ad

(
exp

(
−uiωθ (vi)∧

))
log

(
Z(si−1)−1µ(si−1)

)∨
+O

(
u2
i

)
= log

(
Z(si)−1µ(si)

)∨
+ log

(
exp

(
−
(
Ad
(
exp

(
−uiωθ (vi)∧

))
log

(
Z(si−1)−1µ(si−1)

)∨
)∧))∨

+O
(
u2
i

)
= log

(
Z(si)−1µ(si)

)∨
+ log

(
exp

(
−uiωθ (vi)∧

)
µ(si−1)−1Z(si−1) exp

(
uiωθ (vi)∧

))∨
+O

(
u2
i

)

= log

Z(si)−1 µ(si) exp
(
−uiωθ (vi)∧

)
µ(si−1)−1︸ ︷︷ ︸

=I+O(u2
i )

Z(si−1) exp
(
uiωθ (vi)∧

)
∨

+O
(
u2
i

)

= log
(
Z(si)−1Z(si−1)

)∨
+ uiωθ (vi) +O

(
u2
i

)
(using the BCH formula (2.16))

= ui (ωθ (vi) − ri) +O
(
u2
i

)
where ri = − 1

ui
log

(
Z(si)−1Z(si−1)

)∨. ■

In the model introduced in Section 3.2.1, we assume that only the components of ωθ (vi) which
correspond to θ(vi) are noisy. Therefore, given the formulation of ei derived in Proposition 4.3, only
these corresponding components in ei are supposed to be noisy and the other are assumed to be constants
equal to zero. Once more, this allows the form of the Frenet-Serret differential equation to be preserved.
As a result, we can reduce the error to the 2-dimensional vector ẽi = Lei ∈ R2 and its covariance to the
2-dimensional matrix LTWiL = σ2W̃i by keeping only the supposed non-zero and random components:

ẽi = LTei = ui
(
θ(vi) − LTri

)
+O

(
u2
i

)
, W̃i = LT

∫ si

si−1
ϕ(si, t)LLTϕ(si, t)TdtL. (4.57)

The distribution of Z0:n can then be written using ẽi and W̃i as

p(Z0:n; Θ) ≈ 1√
(2π)6(n+1)|P0|

∏n
i=1 |σ2W̃i|

exp
(

−1
2eT0 P0

−1e0 − 1
2σ2

n∑
i=1

ẽTi W̃
−1
i ẽi

)
. (4.58)

5.1.2 Error in Observation Model

From the observation model (4.21), the distribution of yi given Z(si) is a multidimensional Gaussian
distribution of mean X(si) and covariance Γ,

p (yi|X(si); Θ) = 1√
(2π)3|Γ|

exp
(

−1
2 (yi −X(si))T Γ−1 (yi −X(si))

)
. (4.59)
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Finally, the complete data log-likelihood is written

L(Θ) = −6(n+ 1)
2 log(2π) − 1

2 log(|P0|) − 1
2log

(
Z(s0)−1µ0

)∨T
P0 log

(
Z(s0)−1µ0

)∨

− 2n log(σ) − 1
2

n∑
i=1

log(|W̃i|) − 1
2σ2

n∑
i=1

u2
i (θ(vi) − r̃i)T W̃−1

i (θ(vi) − r̃i)

− 3n
2 log(2π) − n

2 log(|Γ|) − 1
2

n∑
i=1

(yi −X(si))T Γ−1 (yi −X(si)) . (4.60)

5.2 Expected Complete Data Log-Likelihood

As the state Z is unknown, we cannot directly use the previously derived log-likelihood function to learn
the parameters. We must consider the expected complete data log-likelihood given the observations y1:n,
and compute the optimal parameter Θ as solutions of the maximization problem

Θk+1 = arg max
Θ

E
[
L(Θ)

∣∣∣y1:n,Θk
]
. (4.61)

By considering only the terms of L(Θ) in (4.60) that depend on at least one parameter of Θ, we can
turn the problem into the following minimization problem

Θk+1 = arg min
Θ

Q(Θ; Θk) (4.62)

where

Q(Θ; Θk) = log (|P0|) + E
[
log

(
Z(s0)−1µ0

)∨T
P0

−1 log
(
Z(s0)−1µ0

)∨ ∣∣∣y1:n,Θk
]

+ 4n log(σ) +
n∑
i=1

log(|W̃i|) + 1
σ2

n∑
i=1

E
[
ẽTi W̃

−1
i ẽi

∣∣∣y1:n,Θk
]

+ n log(|Γ|) +
n∑
i=1

E
[
(yi −X(si))T Γ−1 (yi −X(si))

∣∣∣y1:n,Θk
]
. (4.63)

Remark 4.2. In order to compute these conditional expectations, we recall the following general formula
of the expectation of a quadratic form using the trace application (Kendrick, 1981), which will be useful
in the following:

E
[
XTW−1X |Y

]
= E [X |Y ]T W−1E [X |Y ] + Tr

(
W−1V [X |Y ]

)
. (4.64)

Given the formula (4.64) we must be able to compute the terms E
[
log

(
Z(s0)−1µ0

)∨ |y1:n

]
, E [ẽi |y1:n ],

and E [(yi −X(si)) |y1:n ] in order to derive a convenient expression of Q(Θ; Θk) for the estimation of
optimal parameters.

5.2.1 Conditional Expectation on Propagation Model

Let’s look at the conditional distribution of the propagation model error ẽi. From (4.57) we have,

E [ẽi |y1:n ] = ui
(
θ(vi) − LTE [ri |y1:n ]

)
, (4.65)

where ri = − 1
ui

log
(
Z(si)−1Z(si−1)

)∨. From Section 4 we have obtained p(Z(s)|y1:n) = NSE(µs(s),P s(s)).
However, ri is a non-linear function of the compounded variables Z(si)−1Z(si−1), and approximate the
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distribution of the compound of two concentrated Gaussian random variables on a Lie group is a complex
problem investigated by Wang and Chirikjian (2008); Barfoot and Furgale (2014). We propose in this
work to derive an approximation of the variable ri as a function of the smoothing mean parameter µs

that is more convenient for computing the conditional expected value.

Proposition 4.4. The conditional distribution of the propagation error ẽi defined in (4.57) can be
approximated as

E [ẽi |y1:n ] ≈ ui
(
θ(si) − LT r̄i

)
, V [ẽi |y1:n ] ≈ LTV [ηi |y1:n ]L , (4.66)

where r̄i := − 1
ui

log
(
µs(si)−1µs(si−1)

)∨ ∈ R6 is a deterministic parameter and ηi ∈ R6 is a random
variable which depends on the hidden states Z(si−1), Z(si), defined as

ηi := log
(
Z(si)−1µs(si)

)∨
−Ad

(
µs(si)−1µs(si−1)

)
log

(
Z(si−1)−1µs(si−1)

)∨
, (4.67)

with mean zero and conditional variance

V [ηi |y1:n ] = P s(si) −Ad
(
µs(si)−1µs(si−1)

)
P s(si−1, si) − P s(si−1, si)TAd

(
µs(si)−1µs(si−1)

)T
+Ad

(
µs(si)−1µs(si−1)

)
P s(si−1)Ad

(
µs(si)−1µs(si−1)

)T
. (4.68)

Proof. We have,

ri = − 1
ui

log
(
Z(si)−1µs(si)µs(si)−1µs(si−1)µs(si−1)−1Z(si−1)

)∨

≈ − 1
ui

log
((
Z(si)−1µs(si)

) (
µs(si)−1µs(si−1)

)
exp

(
− log

(
Z(si−1)−1µs(si−1)

)))∨

= − 1
ui

log
((
Z(si)−1µs(si)

)
exp

(
−Ad

(
µs(si)−1µs(si−1)

)
log

(
Z(si−1)−1µs(si−1)

)) (
µs(si)−1µs(si−1)

))∨

= − 1
ui

log
(
exp

(
η̂∧
i

) (
µs(si)−1µs(si−1)

))∨

where

exp
(
η̂∧
i

)
= exp

(
log

(
Z(si)−1µs(si)

))
exp

(
−Ad

(
µs(si)−1µs(si−1)

)
log

(
Z(si−1)−1µs(si−1)

))
. (4.69)

We can apply the BCH formula to find

η̂i = log
(
Z(si)−1µs(si)

)∨
−Ad

(
µs(si)−1µs(si−1)

)
log

(
Z(si−1)−1µs(si−1)

)∨

− 1
2

(
log

(
Z(si)−1µs(si)

)∨
)⋎

Ad
(
µs(si)−1µs(si−1)

)
log

(
Z(si−1)−1µs(si−1)

)∨
+ ...

By considering only the first-order term we have

η̂i = ηi +O
(
∥ log (Z(s)µs(s))∨ ∥2

)
, (4.70)

where the random variable ηi is defined by

ηi := log
(
Z(si)−1µs(si)

)∨
−Ad

(
µs(si)−1µs(si−1)

)
log

(
Z(si−1)−1µs(si−1)

)∨
.
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The random variable ηi is a linear function of the random variable log
(
Z(s)−1µs(s)

)∨, for which we have
the complete continuous posterior distribution given the observations y1:n, obtained in the inference step
(Section 4). Its expected mean and covariance are given by the following equations:

E [ηi |y1:n ] = E
[
log

(
Z(si)−1µs(si)

)∨
|y1:n

]
−Ad

(
µs(si)−1µs(si−1)

)
E
[
log

(
Z(si−1)−1µs(si−1)

)∨
|y1:n

]
= 0R6

V [ηi |y1:n ] = P s(si) −Ad
(
µs(si)−1µs(si−1)

)
P s(si−1, si) − P s(si−1, si)TAd

(
µs(si)−1µs(si−1)

)T
+Ad

(
µs(si)−1µs(si−1)

)
P s(si−1)Ad

(
µs(si)−1µs(si−1)

)T
.

Then, by applying again the BCH formula on the expression of ri we obtain the following approximation
by keeping only the first-order terms,

ri = − 1
ui

log
(
µs(si)−1µs(si−1)

)∨
− 1
ui

ηi +O
(
∥ log (Z(s)µs(s))∨ ∥2

)
,

corresponding to a deterministic mean term r̄i := − 1
ui

log
(
µs(si)−1µs(si−1)

)∨ ∈ R6 plus the random
error term − 1

ui
ηi ∈ R6. Therefore, the propagation error ẽi defined in (4.57) can be approximated as

ẽi = ui
(
θ(si) − LT r̄i

)
+ LTηi +O

(
∥ log (Z(s)µs(s))∨ ∥2

)
, (4.71)

which gives the approximated expectation and variance formulas stated in the proposition. ■

Remark 4.3. Considering the variable η̂i defined in (4.69), one could explore deriving a Monte Carlo
approximation for its conditional distribution to directly estimate the conditional distribution of the
propagation error. In practice, we find that this method yields results quite comparable to the analytical
approach presented in the proof of the Proposition 4.4. Nevertheless, for computational efficiency, we
opt for the analytical approximation in our experiments.

5.2.2 Conditional Expectation on the Observation Model

The approximation used for the conditional distribution of the observation error in (4.63) is derived in
the following proposition.

Proposition 4.5. The conditional distribution of the observation error yi − X(si) ∈ R3 of the model
(4.24), given the observations y1:n, can be approximated as

E [yi −X(si) |y1:n ] = yi − µs
X(si), V [yi −X(si) |y1:n ] = µs

Q(si)HP s(si)HTµs
Q(si)T . (4.72)

Proof. We first consider the error in R4 as a function of Z(si)|y1:n and a first-order approximation of
the exponential map as done previously in Section 4,

ỹi − Zi|nu = ỹi − µs(si) exp
(
−ξs(si)∧)u = ỹi − µs(si)

(
I − ξs(si)∧)u +O

(
∥ξs(si)∧∥2

)
= ỹi − µs(si) + µs(si)ξs(si)∧u +O

(
∥ξs(si)∧∥2

)
.

The first 3 components of the error are then

yi −Xi|n = yi − µs
X(si) + µs

Q(si)Hξs(si) +O
(
∥ξs(si)∧∥2

)
, (4.73)

where H =
(

03×3 I3
)

and ξs(si)|y1:n ∼ N (0,P s(si)). ■
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Finally, given the equations (4.64), (4.66), (4.68) and (4.72), the function Q(Θ,Θk), which corre-
sponds to the relevant terms of the expected complete data log-likelihood, is written as

Q(Θ; Θk) = log (|P0|) + log
(
µs(s0)−1µ0

)∨T
P0

−1 log
(
µs(s0)−1µ0

)∨
+ Tr

(
P0

−1P s(s0)
)

+ 4n log(σ) +
n∑
i=1

log(|W̃i|) + 1
σ2

n∑
i=1

u2
i (θ(vi) − LT r̄i)T W̃−1

i (θ(vi) − LT r̄i) + Tr
(
W̃−1
i LTV [ηi |y1:n ]L

)
+ n log(|Γ|) +

n∑
i=1

(yi − µs
X(si))TΓ−1(yi − µs

X(si)) + Tr
(
Γ−1µs

Q(si)HP s(si)HTµs
Q(si)T

)
. (4.74)

5.3 Learning Optimal Parameters

In the set of parameters to optimize, we have the Frenet curvatures functional parameter θ that is
infinite-dimensional and assumed to be smooth. To impose the desired smoothness constraint on this
specific parameter, a commonly used approach is to introduce a penalty term in the likelihood function,
known as penalized likelihood (Liu et al., 2009; Cardot and Sarda, 2005; Du and Wang, 2014; Cole
et al., 2013). By incorporating this penalty into the objective function, the estimation of parameters is
influenced to align with the desired properties, leading to improved accuracy and reliability in inference.
This allows for control over the complexity of the model and helps prevent overfitting by encouraging
more appropriate parameter estimates (Ramsay and Silverman, 2005). We choose as the roughness
function the integrated squared second derivative of θ scaled by σ2,

R(Θ) = 1
σ2

∫ 1

0
∥D2θ(s)∥2ds = 1

σ2

∫ 1

0

(
[D2κ(s)]2 + [D2τ(s)]2

)
ds. (4.75)

Note that this is equivalent to penalizing the two components of θ(s) = (κ(s), τ(s))T separately. We
then consider two regularization parameters to allow for adjusting the smoothing rate of each Frenet
curvature independently,

Rλ(Θ) = λ1
σ2

∫ 1

0
[D2κ(s)]2ds+ λ2

σ2

∫ 1

0
[D2τ(s)]2ds , (4.76)

where λ = (λ1, λ2) ∈ R∗
+

2. Our minimization problem is therefore relaxed to the minimization of the
following penalized criterion

Q̃λ(Θ; Θk) = Q(Θ; Θk) + Rλ(Θ). (4.77)

5.3.1 Learning Propagation Model Parameters

The propagation model parameters are {µ0,P0,θ, σ}. First, setting the gradients of Q̃λ(µ0,P0; Θk)
with respect to µ0 and P0 to zero respectively, gives the optimal values

µ0
k+1 = µs(s0), P0

k+1 = P s(s0). (4.78)

Next, the computation of the optimal variance parameter σ relies on the determination of the unknown
mean parameter θ, necessitating its estimation as a preliminary step. This last one is supposed to
be a smooth vector function in R2. Therefore, we decomposed each scalar function Frenet curvature
composing θ using a B-spline basis function expansion (Section 2.1.1),

κ(s) =
K1∑
k=1

c
(1)
k Φ(1)

k (s), τ(s) =
K2∑
k=1

c
(2)
k Φ(2)

k (s). (4.79)

71



Chapter 4. Functional EM Algorithm on SE(3) for Frenet Curvatures Estimation

In practice, we choose the same number of basis functions for each component, K1 = K2 = K, as we
have the same number of observations and have already considered two different smoothing parameters.
Then the vector-valued function θ can be expressed in a matrix form as

θ(s) = ΦT (s)c , (4.80)

where Φ(s) is the block diagonal matrix Φ(s) = diag
(
Φ(1)(s),Φ(2)(s)

)
∈ R2K×2, with for i = 1, 2,

Φ(i)(s) =
(
Φ(i)

1 (s), . . . ,Φ(i)
K (s)

)T
∈ RK are the known B-spline basis functions vectors of each component,

and the coefficient vector c =
(
c

(1)
1 , . . . , c

(1)
K , c

(2)
1 , . . . , c

(2)
K

)T
∈ R2K is the concatenation of the unknown

basis coefficients. The roughness penalty term (4.76) can then be written also in matrix form as cTR(λ)c,
where R(λ) is 2K × 2K matrix defined as

R(λ) =
(
λ1
∫ 1

0 D
2Φ(1)(t)D2Φ(1)(t)Tdt 0

0 λ2
∫ 1

0 D
2Φ(2)(t)D2Φ(2)(t)Tdt

)
. (4.81)

The minimization problem of θ and σ is now a minimization problem over c and σ of the criterion

Q̃λ(c, σ; Θk) = 4n log(σ) +
n∑
i=1

log(|W̃i|)

+ 1
σ2

[
n∑
i=1

(Φ(vi)Tc − LT r̄i)Tu2
i W̃

−1
i (Φ(vi)Tc − LT r̄i) + Tr

(
W̃−1
i LTV [ηi |y1:n ]L

)
+ cTR(λ)c

]
.

(4.82)

It is crucial to highlight that the weights W̃i, defined in (4.57) as

W̃i = LT
∫ si

si−1
ϕ(si, t)LLTϕ(si, t)TdtL ,

are dependent on the mean parameter θ (due to the transition function ϕ(si, t)), and consequently, on
the coefficients c. This places us within the context of a generalized linear model (McCullagh and Nelder,
1960). In this scenario, the prevailing approach to optimizing the mean parameter involves an iterative
algorithm that alternates between computing the weights and optimizing the coefficients, assuming the
weights to be fixed. Given the estimation of coefficients, the weights W̃i can be computed using their
formulas (4.57). In practice, we observe that a simple middle point approximation of the integral in the
expression of W̃i is already sufficient. Then, given the weights and fixed smoothing parameters λ, the
optimal coefficients ĉλ are computed by

ĉλ =
(
ΦTW̃ Φ + R(λ)

)−1
ΦTW̃ r̂ , (4.83)

where W̃ = blockdiag
(
u2

1W̃
−1
1 , . . . , u2

nW̃
−1
n

)
and r̂ =

(
r̄T1 L, . . . , r̄

T
nL
)T

∈ R2n. Then, given the optimal
coefficients ĉλ, we minimize (4.82) with respect to σ, and we obtain σ̂λ as an implicit function of λ and
ĉλ,

σ̂2
λ = 1

2n

[
n∑
i=1

(Φ(vi)T ĉλ − LT r̄i)Tu2
i W̃

−1
i (Φ(vi)T ĉλ − LT r̄i) + Tr

(
W̃−1
i LTV [ηi |y1:n ]L

)
+ ĉTλR(λ)ĉλ

]
.

(4.84)
The next optimal parameters are then

θk+1(s) = Φ(s)T ĉλ, Σk+1 = σ̂λI. (4.85)
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5.3.2 Learning Observation Model Parameter

We still have to compute the optimal observations covariance matrix Γ. Keeping only the terms of
Q̃λ(Θ; Θk) that depend on it, we have

Q̃λ(Γ; Θk) = n log(|Γ|) +
n∑
i=1

(yi − µs
X(si))TΓ−1(yi − µs

X(si)) + Tr
(
Γ−1µs

Q(si)HP s(si)HTµs
Q(si)T

)
.

(4.86)
Therefore, by setting its gradient with respect to Γ to zero, the optimal observations covariance matrix
is

Γk+1 = 1
n

n∑
i=1

[
(yi − µs

X(si))(yi − µs
X(si))T + µs

Q(si)HP s(si)HTµs
Q(si)T

]
. (4.87)

5.4 Optimization of the Smoothing Parameter

The optimal selection of the hyperparameter λ = (λ1, λ2) is crucial in minimizing our prediction error.
To achieve this, the commonly used criterion for smoothing parameter optimization is the generalized
cross-validation (GCV). However, in our specific case, the GCV score or its extensions tailored for
dependent noise tend to favor excessively small values of λ due to the inherent smoothness of our
observations. Consequently, in our numerical studies, we have employed k-fold cross-validation as an
alternative, aiming to minimize

k∑
j=1

∑
i∈Tj

∥∥∥yi − X̂−(j)(si;λ)
∥∥∥2
, (4.88)

where Tj is the jth index set based on k = 5 random partition of the observations {y1, . . . ,yn}, and
X̂−(j)(si;λ) is the predicted curve, defined as the Euclidean part of the solution of the ODE (4.20),
solved with parameters θ̂

−(j) and the initial value µ̂0
−(j), which are estimated by the EM algorithm

without the jth partition data set and using the hyperparameters λ. Furthermore, this criterion is more
consistent with the theoretical foundations of our problem, as it corresponds to the definition provided
by the initial ordinary differential equation (4.20). However, with this parameter optimization method
for λ, for each candidate value, the EM algorithm must be run k times (the number of partitions in the
cross-validation). Thus, this significantly increases the computation time.

6 Simulation Studies
To assess the performance of the proposed algorithm and the influence of the individual parameters,
we have run simulations on synthetic data. For comparison, we use the same reference shape as in the
simulations of Chapter 3, which is s 7→ θ(s) = (κ(s), τ(s)), where{

κ(s) = 2 cos(2πs) + 5 ,
τ(s) = 2 sin(2πs) + 1 ,

(4.89)

and the arc-length function defined from [0, 1] to [0, 1] as s : t 7→ exp(at)−1
exp(a)−1 , where a ∼ N (0, 1), a ̸= 0.

An important point with the EM algorithm is that it requires an initial value for the various pa-
rameters. Moreover, the initialization of parameters must be carefully handled, as it can considerably
speed up the convergence of the EM. Here the parameters to initialize from available observations of
the Euclidean curve {yi}i=1,...,n are Θ = {θ,Σ,Γ,P0,µ0}. In addition, we still have assumed, in this
algorithm, that the arc-length grid is known, so it must be estimated as a preprocessing step as well.
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Using a local polynomial regression of {yi}i=1,...,n, introduced in Section 2.1, one can obtain a reason-
ably reliable and smooth estimate of the arc-length function and the shape of the curve X̂(0). Then, the
covariance Γ of the observation noise can be initialized as

Γ(0) = 1
n

n∑
i=1

(
yi − X̂(0)(si)

) (
yi − X̂(0)(si)

)T
. (4.90)

To initialize the initial value µ0, we can simply use the Gram-Schmidt orthonormalization
process of the estimated derivatives at s = 0. The initial covariance matrix P 0, on the other hand,

cannot be properly estimated from the data and will be thus set to a chosen value. The same applies to
the variance of the propagation model σ as it accounts for the misspecification of the model due to the
unknown parameter θ. However, if we know the performance of the algorithm chosen to initialize θ, it
can serve as a reference for selecting the associated initial value σ(0). Specifically, the initialization of
Frenet curvatures θ can typically be done by using one of the algorithms proposed in Chapter 3.

All simulation models are repeated 80 times. We select the optimal hyperparameters λ1, λ2 ∈
[1e−09, 1e−03], with 30 iterations of Bayesian optimization based on the cross-validation criterion (4.90).
The 80 simulations are run in parallel. The computation time, using a machine equipped with 96 CPUs
and 376 GiB of RAM, is around 27 hours for a curve with 100 sample points. To evaluate the per-
formance of the proposed EM algorithm we use similar metrics as in Chapter 3, that is, the geodesic
distance d on SE(3) defined in (4.5) and the L2 relative error re defined in equation (3.65). We compare
the true state variable Z with the estimated one by tracking and smoothing Ẑ. Then, we compare the
true Frenet curvatures κ and τ with the estimates κ̂ and τ̂ . As an additional measure of the accuracy of
Frenet curvatures estimation, we assess the discrepancy between the reconstructed state using estimated
parameters Ẑ(θ̂) and the others.

6.1 Simulation Model with Deterministic State Variable

Given the reference shape, s 7→ θ(s) and t 7→ s(t), we generate noisy observations of the Euclidean curve
as

yi = X(si) + ϵi, i = 1, . . . , n ,

where ϵi ∼ N (0, γ2I3) and the shape function s 7→ X(s) is part of the state variable Z(s) solution of
the deterministic ODE (4.20), Z ′(s) = Z(s)ωθ(s)∧.

6.1.1 Scenario 1: Influence of Variance Parameter σ Initialization

In this scenario, we want to test the influence of the chosen initial value for the variance parameter σ
when the model to initialize θ is fixed. Hence, given the true parameter θ, we simulate a smooth noisy
initial guess θ̂

(0) using the model:

θ̂
(0) = arg min

θ̂∈H

n∑
i=0

∥θ(si) + ζi − θ̂(si)∥2
2 + λ

∫ 1

0
∥θ̂

′′(t)∥2dt , (4.91)

where ζi ∼ N (0, I2) and λ = 10−8. We fix P̂
(0)
0 = (0.01)2I6 and µ̂

(0)
0 and Γ̂(0) are initialized as proposed

above. We fix n = 100, γ = 0.001, and the number of basis functions to 10. Then, we run the proposed
EM algorithm for the values of σ(0) = 0.001, 0.01, 0.1. Results are displayed in Table 4.1 and Figure 4.1.
We observe quite similar errors as a function of the value of σ(0), which, therefore, does not seem to have
a strong influence on the final estimate in this case.

74



6. Simulation Studies

σ(0) d(Z, Ẑ) re(κ,κ̂) re(τ ,τ̂) d(Z, Ẑ(θ̂)) d(Ẑ, Ẑ(θ̂))

0.001 0.021 (0.008) 0.031 (0.013) 0.132 (0.058) 0.038 (0.010) 0.0012 (0.0006)
0.01 0.017 (0.005) 0.025 (0.010) 0.111 (0.041) 0.035 (0.008) 0.0012 (0.0004)
0.1 0.017 (0.005) 0.026 (0.010) 0.118 (0.052) 0.035 (0.009) 0.0011 (0.0003)

Table 4.1: Estimation errors of scenario 1: influence of variance parameter initialization.
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Figure 4.1: Estimated curvature (first row) and torsion (second row) in scenario 1 (Influence of variance
parameter σ initialization): comparison between true parameter (black), initial guess (red), estimates
using σ(0) = 0.001 (green), σ(0) = 0.01 (purple) and σ(0) = 0.1 (orange).

6.1.2 Scenario 2: Influence of Sample Size and Noise Level

Let’s now test the performance of the proposed EM algorithm as a function of the sample size and the
noise level. For that, we consider the same generative model for θ̂

(0) as before (4.91). We fix σ(0) = 0.05,
P̂

(0)
0 = (0.01)2I6 and again µ̂

(0)
0 and Γ̂(0) are initialized as proposed above. We run the algorithm for

the different combinations of sample size n = 100, 200 and noise level γ = 0.001, 0.005. The number of
basis function for θ̂ is ⌈

√
n ⌉ = 10, 15. Results are printed in Table 4.2 and plotted in Figure 4.2. We

observe that varying the number of points has no significant impact on the results. On the other hand,
the higher the initial noise level of the trajectory, the less satisfactory the final result, which is coherent.
Additionally, we have set a maximum of 200 iterations for the EM algorithm due to computational time
constraints, which is almost always reached. Therefore, presumably, with more iterations, these errors
could be further reduced.

n γ d(Z, Ẑ) re(κ,κ̂) re(τ ,τ̂) d(Z, Ẑ(θ̂)) d(Ẑ, Ẑ(θ̂))

100 0.001 0.017 (0.005) 0.023 (0.010) 0.120 (0.053) 0.035 (0.008) 0.001 (0.0003)
0.005 0.042 (0.012) 0.043 (0.019) 0.163 (0.066) 0.053 (0.011) 0.001 (0.0003)

200 0.001 0.014 (0.004) 0.021 (0.008) 0.109 (0.048) 0.034 (0.008) 0.001 (0.0002)
0.005 0.038 (0.011) 0.040 (0.015) 0.171 (0.083) 0.049 (0.012) 0.001 (0.0002)

Table 4.2: Estimation errors of scenario 2: influence of sample size and noise level.
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Figure 4.2: Estimated curvature (first row) and torsion (second row) in scenario 2 (Influence of sample
size and noise): comparison between true parameter (black), estimates using n = 100, γ = 0.001 (red),
n = 100, γ = 0.005 (green), n = 200, γ = 0.001 (purple) and n = 200, γ = 0.005 (orange). Initial guesses
for θ are plotted in red on Figure 4.1.

6.1.3 Scenario 3: Influence of Frenet Curvatures Initialization

As in practice, we do not know the true parameter θ, we must initialize the Frenet curvatures parameter
directly from the observations of the Euclidean curve {yi}i=1,...,n. Hence, in this simulation scenario,
we test the performance of the EM algorithm using various available methods for computing the first
guess θ̂

(0) introduced in Chapter 3. Results of Table 3.2 show that the penalized least squares method
gives nearly similar results regardless of the method used to compute the Frenet path. Therefore here,
we compare only the method based on extrinsic formulas and the least squares method based on Gram-
Schmidt orthonormalization for computing θ̂

(0) from {yi}i=1,...,n:

• S3.1 Derivatives estimation based on local polynomial regression and use of extrinsic formulas of
Frenet curvatures to estimate θ̂

(0).

• S3.2 Frenet path estimation using Gram-Schmidt orthonormalization of estimated derivatives and
use of the penalized least squares criterion to estimate θ̂

(0).

We fix σ(0) = 0.1, P̂
(0)
0 = (0.01)2I6, n = 100 and γ = 0.001. All results are displayed on Table 4.3. For the

case γ = 0.001, they are also plotted on Figure 4.3. We observe that the EM algorithm improves errors
in the estimates of Frenet curvatures and the Frenet path in all cases in comparison with the methods
studied in Chapter 3. However, this improvement is quite significant when starting with estimates
from extrinsic formulas but much less so when starting with estimates from the least squares criterion
minimization given Gram-Schmidt Frenet path estimates. This shows that the criterion proposed in
Chapter 3 as an improvement to the method based on extrinsic formulas can be sufficiently good in
certain cases to be used directly as an estimation method for θ. Furthermore, we note that the error
obtained with EM often depends on the initialization method in this case. However, once again, we have
chosen a maximum of 200 iterations for EM for computational time reasons. However, EM requires more
iterations if the initial guess parameter is less accurate. We can, therefore, imagine obtaining errors in
case S3.1 similar to those in case S3.2 by increasing the number of possible iterations for the EM.
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γ d(Z, Ẑ) re(κ,κ̂(0)) re(τ ,τ̂ (0)) d(Z, Ẑ θ̂(0)
) re(κ,κ̂) re(τ ,τ̂) d(Z, Ẑ(θ̂))

S3.1 0.001 0.049 (0.019) 0.129 (0.087) 1.601 (1.243) 0.257 (0.229) 0.049 (0.034) 1.127 (1.195) 0.058 (0.021)
0.005 0.117 (0.048) 0.308 (0.224) 1.936 (1.701) 0.620 (0.728) 0.219 (0.213) 1.671 (1.588) 0.127 (0.045)

S3.2 0.001 0.033 (0.008) 0.061 (0.031) 0.704 (0.449) 0.063 (0.014) 0.046 (0.020) 0.608 (0.456) 0.050 (0.014)
0.005 0.075 (0.029) 0.139 (0.079) 1.131 (1.173) 0.153 (0.080) 0.131 (0.090) 1.125 (1.123) 0.107 (0.048)

Table 4.3: Estimation errors of scenario 3: influence of Frenet curvatures initialization.
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(b) S3.2

Figure 4.3: Estimated curvature (first row) and torsion (second row) in scenario 3 in the case γ = 0.001.
S3.1, comparison between true parameter (black), initial guesses estimated using extrinsic formulas
(blue), and estimates by the EM (green). S3.2: comparison between true parameter (black), initial
guesses estimated using penalized least squares (red), and estimates by the EM (green).

6.2 Simulation Model with Random State Variable

With the ultimate aim of estimating the Frenet curvatures of motion trajectories, we have introduced
the propagation model (4.22) as a relaxation of the true model (4.20) that accounts for misspecification.
However, the proposed EM algorithm for inferring the parameters of the state space model (4.24) can
also be used in theory for state variables generated by a random model like the SDE (4.22). In order to
test the ability of the proposed algorithm to correctly estimate the parameters in this case, we consider
the following data generative model:

yi = X(si) + ϵi, i = 1, . . . , n ,

where ϵi ∼ N (0, γ2I3), and the shape function s 7→ X(s) is part of the random state variable Z(s)
solution of the stochastic differential equation

dZ(s) = Z(s) (ωθ(s) + Lζ(s))∧ ds ,

where s 7→ θ(s) and t 7→ s(t) defined the reference shape (4.89) and ζ(s) ∼ GP(0, k(s, s′)) where k(s, s′)
is a Matern kernel with a length scale l = 0.5 and a parameter ν = 1.5, 2.5. We fix the sample size
n = 100 and noise level γ = 0.001. The number of basis functions for θ̂ is 15. We denote µ the solution
of the ODE (4.26) with the parameter θ and Z(init) the solution of the SDE. The results displayed in
Table 4.4 clearly show that the proposed model does not work in this case. We observe an identification
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issue between the introduced smooth noise ζ(s) and the mean parameter θ(s) in this context. As we
have only one noisy observation of the parameter, the model is unable to differentiate between the mean
parameter and the smooth noise. The estimated mean parameter corresponds to the sum of the true
mean parameter and the smooth noise defined by a Gaussian process. Furthermore, the propagation
model, as defined in this chapter (4.24), is supposed to be perturbed by white noise rather than a smooth
perturbation defined by a Gaussian process. Consequently, the filtering and smoothing algorithms are
not suitable for this scenario.

ν d(Z(init), Ẑ) d(µ, Ẑ) re(κ,κ̂) re(τ ,τ̂) d(Z(init), µ̂(θ̂)) d(µ, µ̂(θ̂)) d(Ẑ, µ̂(θ̂))

1.5 1.482 (1.339) 2.859 (0.610) 1.244 (0.753) 3.568 (1.705) 1.573 (1.344) 2.755 (0.675) 0.311 (0.499)
2.5 1.389 (1.324) 2.797 (0.564) 1.230 (0.718) 3.761 (1.767) 1.469 (1.336) 2.755 (0.553) 0.251 (0.370)

Table 4.4: Estimation errors of scenario: simulation model with random state variable.

7 Application to Sign Language Motion Trajectories
Frenet curvatures appear in the literature as particularly interesting parameters for studying and ana-
lyzing human motion (Lacquaniti et al., 1983; Maoz et al., 2009; Pollick et al., 2009; Flash and Berthoz,
2021). Different laws emphasize specific relationships among these parameters, depending on the type
of human movement considered. Consequently, when testing the applicability of these laws for a specific
type of motion, it becomes crucial to have precise, realistic, robust, and minimally biased estimators for
these Frenet curvatures. In this context, we evaluate the performance of the different methods proposed
in this chapter and the previous one for estimating Frenet curvatures of real data corresponding to wrist
motion trajectories in sign language. Specifically, we focus on 6 French sign language gestures being
“mono-manual”, i.e. executed with a single hand (in this case, the right hand), which correspond to
words "dimanche", "toujours", "autrefois", "avril", "train", and "avoir l’air". The signer repeated each
of these 6 signs approximately 5 times, leading to a set of 32 trajectories (part of the second datasets
detailed in Section 3.1). Motion data was captured using Mocaplab’s advanced motion capture system at
intervals of 0.01 seconds. Manual segmentation was applied to identify individual signs and repetitions.
Note that we consider only isolated signs, where the signer returns to a “zero” position between each
repetition, which significantly simplifies the segmentation process. Compared to experiments conducted
with synthetic data, the wrist motion trajectories of sign movement are generally much more complex.
Consequently, variations in curvature and torsion are more pronounced. Moreover, despite the high effi-
ciency of Mocaplab’s motion capture system and techniques, resulting in minimally noisy data, the arc
length functions often deviate significantly from the identity function. Consequently, the corresponding
discretization grids are irregular. These elements pose additional challenges in estimating Frenet curva-
tures within a functional data analysis framework. We compare the Frenet curvatures estimation results
obtained with each of the following 4 estimation methods.

1. Use of extrinsic formulas based on derivatives estimated with a local polynomial regression (Chap-
ter 3 Section 2).

2. Use of the penalized least squares criterion based on Frenet path “pseudo” observations (Chapter 3
Section 5, Algorithm 1).

3. Use of the iterative Algorithm 2 with tracking based smoother of Frenet path and the penalized
least squares criterion (Chapter 3 Section 4.2.2 and Section 5)

4. Use of the EM algorithm developed in this chapter based on an initial guess of θ obtained with
the method 2.
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When necessary, the “pseudo” observations of the Frenet path are estimated as a preprocessing step by
the Gram-Schmidt orthonormalization of the curve’s derivatives (Chapter 3 Section 4). In the synthetic
data experiments, we select a number of B-spline basis functions and place the knots regularly on the
grid [0, 1]. In this case, to deal with the irregular observations grid, one out of every 4 points in the
irregular grid corresponding to the observations is selected as a knot. Consequently, using this method,
we place more knots in areas with a higher density of points, which are generally regions displaying a
more complex shape in the observations. For all methods, the hyperparameters are selected with 30
iterations of a Bayesian optimization based on the corresponding cross-validation criteria in the ranges
h ∈ [0.05, 0.15] and λ1, λ2 ∈ [10−30, 10−5].

To evaluate the quality of the estimates of the Frenet path and Frenet curvatures by each of the
considered methods, we compare the L2 and SRVF (2.7) distances between the true movement trajec-
tory captured with the system and the trajectories reconstructed from the estimators. In Figure 4.4, the
trajectories are reconstructed by solving the Frenet-Serret equation based on the obtained θ̂. In Fig-
ure 4.5, the trajectories are reconstructed by integrating the first vector (tangent vector) of the estimated
Frenet path (in the case of method 2 by Gram-Schmidt, in the case of method 3 by the tracking-based
smoother, and in the case of method 4 by the IEKF). Additionally, for one trajectory of each of the 6
signs, we display the 4 different estimates of θ̂ and the corresponding reconstructed 3D curves based on
these estimators.

From Figure 4.5, we observe that the EM algorithm significantly reduces the error made in estimating
the tangent vector. This suggests that the Frenet path used for estimating θ is more reliable in this
case. However, the error on the curves reconstructed from θ̂ is not reduced as much by this method
(on Figure 4.4, 1st quartile and median lower than other methods but 3rd quartile higher than that
of methods 2 and 3). This can partly be explained by the phenomenon visible in Figure 4.8 for the
sign "dimanche". Indeed, we observe that the initial trajectory contains a very small loop in the middle
that the other methods have completely smoothed out. The method based on the EM algorithm seems
to attempt to fit this small loop but does not fully succeed. At this point, even though the algorithm
accurately estimates the Frenet path, the local estimation error of curvature and torsion, which are
too smooth, affects the overall shape of the reconstructed curve and thus the L2 distance. This may
be due to the number of knots placed at that location to estimate θ̂. Indeed, because of this small
loop, there is a sharp curvature peak, which may be too smoothed. Therefore, it can be assumed that
adding more knots could reduce these different errors. Furthermore, we see in Figure 4.8 that the torsion
estimates from the EM algorithm seem to have much more variability than the torsion estimates from
the other methods. This is potentially due in part to a much better estimation of the other vectors of
the Frenet frame (normal and binormal), the quality of which significantly influences that of the torsion.
These vectors are generally not always well estimated by the Gram-Schmidt method. Finally, we note
that on these data, there is very little difference between methods 2 and 3. Indeed, since the data are
already very noiseless, the iterative algorithm with intermediate Frenet path smoothings is unnecessary.
Furthermore, comparing the method based on extrinsic formulas with the others confirms the results
obtained on simulated data in Chapter 3.
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Figure 4.4: L2 (left boxplot) and SRVF (right boxplot) distances between the true recorded trajectory
and the reconstructed one from Frenet curvatures estimates by each of the four methods.
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Figure 4.5: L2 (left boxplot) and SRVF (right boxplot) distances between the true recorded trajectory
and the integrated tangent vector estimated by the methods.
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Figure 4.8: Estimation results for one trajectory of each of the 6 signs. Top: Reconstructed trajectories
from the Frenet curvature estimates by each method (1: blue, 2: red, 3: orange, 4: green) and the true
captured trajectory in black. Bottom: Each method estimated curvatures (left) and torsions (right).
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8 Conclusion and Perspectives
We have developed a Frenet curvatures estimation method that eliminates the need for a preprocessing
step and and allows for the estimation of the corresponding trajectory and Frenet path in a unified
manner. This is achieved through an original Expectation-Maximization algorithm. Specifically, starting
with the problem of estimating the parameters of the Frenet framework, we propose a novel formulation
of the classic EM algorithm that adapts to the estimation of Lie group-valued latent variables and
time-varying parameter estimation. The results of the proposed experiments demonstrate that this
unified formulation generally outperforms other methods from Chapter 3 in terms of Frenet curvatures
estimation. However, we have also shown that the method initially proposed by Park and Brunel (2019)
proves sufficient to obtain good estimates in cases where the trajectory geometry is not too complicated,
and there is not too much noise. Furthermore, the results highlight a clear improvement in the estimation
of the Frenet path provided by this new method. It appears that the major remaining limitations lie
more in the θ estimation method. Due to the functional framework, the estimation of this parameter
depends on many hyperparameters that require proper adjustment (number of basis functions, knot
placement, smoothing parameters). Currently, a more extensive optimization of these hyperparameters
is limited by the computational time required for the method, which is largely due to the search for
the optimal smoothing parameter λ by cross-validation. Therefore, there is room for improvement by
accelerating and optimizing the code.

Moreover, in the formulation of the perturbed model (4.22), the perturbation accounting for the
possible uncertainty of the parameter θ is modeled by a white noise Gaussian process, representing
thus independent noise. This approach may not be well-suited for estimating a parameter known to be
functional and exhibiting smoothing properties. Consequently, the works of Álvarez et al. (2009, 2011)
suggest considering a non-parametric model for the perturbation, such as a Gaussian process modeling
an unknown perturbation function. Typically, the covariance function is defined by a kernel function
and encodes prior knowledge about the smoothness of the parameter. Hartikainen and Särkkä (2011)
and Hartikainen et al. (2012) then demonstrate how these non-linear latent force models can be reduced
to state-space models driven by white noise and then estimated in a similar manner to the approach
proposed in this chapter. This method could be applied to our problem and would likely be more
relevant to the physical model it represents. However, it would need to be extended to the case of non-
Euclidean variables. Nevertheless, this extension would further complicate the derivation of formulas
for optimizing the parameters. Thus, the complexity of the model and equations, limiting the extension
of the method to any dimension d and requiring significant computation time, prompts consideration.
This suggests that alternative approaches for estimating Frenet curvatures, such as deep learning-based
methods, might be more efficient and effective for practical use. However, these approaches remain to
be explored and have not yet been proposed in the literature to our knowledge.
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5
Riemannian Geometry of Curves under

Frenet Curvatures Representation

Geometric frameworks for analyzing curves are common in applications as they focus on
invariant features and provide visually satisfying solutions to standard problems such as
computing invariant distances, averaging curves, or registering curves. We show that for
any smooth curve in Rd, d > 1, the generalized curvatures associated with the Frenet-Serret
equation can be used to define a Riemannian geometry that takes into account all the geo-
metric features of the shape. This geometry is based on a Square Root Curvature Transform
that extends the square root-velocity transform for Euclidean curves (in any dimensions) and
provides likely geodesics that avoid artefacts encountered by representations using only first-
order geometric information. Our analysis is supported by simulated data and is especially
relevant for analyzing human motions. We consider trajectories acquired from sign language,
and show the interest of considering curvature and also torsion in their analysis, both being
physically meaningful.
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1 Introduction
Identifying and comparing different types of visual objects is a fundamental task in machine learning
and computer vision problems (Lähner et al., 2016; Eisenberger and Cremers, 2020; Koestler et al.,
2022). The shape is one of the essential features of objects that allow us to understand and characterize
them. Nowadays, it is much easier to obtain data in the form of shapes, typically as dense point
clouds or landmarks. The main task in shape analysis is to define a proper framework to compare and
quantify the variation of the shapes. However, the shape space is generally nonlinear, and extracting
meaningful information or features is complex. One of the successful approaches to shape analysis utilizes
a Riemannian framework of differential geometry, where a metric can be defined between the shapes,
which is invariant with respect to shape-preserving transformations such as translation and rotation.
For instance, this gives rise to geodesic distances that are naturally invariant to smooth and optimal
deformations through geodesic paths between the shapes (Lang, 2006). This approach is very versatile
as it can be adapted to various kinds of manifold-value data and can be designed to emphasize important
geometric information to be preserved. As a consequence, several choices of metrics are possible, such
as the class of invariant Sobolev metrics, often called elastic, for the analysis of curves (Bauer et al.,
2021). In this work, we are concerned with curves that often arise in the application as trajectories
(function of time) or motions (animation, activity recognition) and with the definition of a framework
to compare their shapes. The differential geometry of Euclidean curves is among the simplest (with
respect to higher dimensional manifolds), and relatively simple Riemannian metrics are available with
different mathematical representations of curves (Younes, 1998). Quite remarkably, the introduction
of the Square Root Velocity (SRV) transform (Srivastava et al., 2011) that consists of a particular
representation of the shape of a curve enables us to define a so-called elastic Riemannian distance, which
has proven to be useful for the statistical shape analysis of 2D and 3D curves in applications. The
SRV possesses interesting properties such as a principled theoretical framework, efficient computation,
and generalization to higher dimensions (Bauer et al., 2022). Nevertheless, a limitation of the SRV
transform and the corresponding elastic distance is the restrictive use of the first-order derivative, while
the geometry of 3-D (or d-D) curves depends on the derivatives until order d. Indeed, it is well-known
that a 3D curve is characterized by its curvature and its torsion: this is particularly critical when we
consider trajectories or human movements, where the curvature and torsion can have a physical meaning.

2 Related works and contributions
As we will recall in Section 3, the full geometry of a curve can be given either by the Frenet curvatures
(standard curvature and torsion in 3D) or by the path of Frenet frames. There have been few attempts
to directly deal with the Frenet curvatures: most of the works have been produced in 2D curves as an
alternative representation, Srivastava and Klassen (2016). Nevertheless, the potential for applications
has not been investigated. In Needham (2019), the elastic shape analysis framework has been considered
for 3D curves based on the Frenet frames, but the link to the physical parameters has been overlooked.
We can also mention the shape analysis of curves on Lie groups with application in computer animation,
Celledoni et al. (2016). Outside the Riemannian framework, an attempt has been made to use a direct
curvature-based interpolation of curves (Saba, 2012; Surazhsky and Elber, 2002).

In this work, we introduce two representations of Euclidean curves for their shape analysis that use
their complete geometry through Frenet curvatures. We provide the full development of the Riemannian
frameworks associated with these two representations. As a consequence and in comparison with existing
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Figure 5.1: Geodesic paths between two 2D scaled spirals with different number of spins: SRVF (1st
row) and SRC (2nd row).

methods, our approaches also give explicit formulas for geodesics and geodesic distances. The first
representation considered is based directly on unparametrized Frenet curvatures. We show through
experiments that it defines a shape analysis framework that lacks elasticity. As the main contribution,
we propose the definition of a second representation, called the Square-Root Curvature (SRC) Transform,
which takes into account reparameterization and defines a metric on the space of shapes through the
quotient space with the group of diffeomorphisms. One can imagine that the classical method associated
with the SRVF, defining a Sobolev elastic metric (Bauer et al., 2022), already implicitly uses all the
geometric information necessary for a relevant curve analysis. We show here with simple examples that
this is not the case. Through experiments on synthetic data, we compare the methods, and illustrate
the limitations of the SRVF one, due to its lack of use of geometric information. To be able to judge
and compare the quality of these metrics, we compare consistent sets of curves characterized by specific
features. The SRC method shows a special strength in defining a framework that remains consistent
with these sets. The straightforward example of geodesics between helices with different numbers of
spins (Figure 5.1 in 2D and Figure 5.2 in 3D) shows that, in contrast, this is not the case for the SRVF
method. In addition, we highlight the interest of these Frenet curvatures-based representations in the
real application case of human motion trajectory analysis.

3 Riemannian Geometry on Shape Space
We introduce useful notations and we review the main approach for constructing tractable representations
of the shape of a curve and deriving a Riemannian geometry.

3.1 Shape Analysis of Euclidean Curves

We consider absolutely continuous curves that are smooth, open, and with values in some Euclidean
space Rd, we denote this set as AC

(
[0, 1],Rd

)
. These curves are typically parametrized by a variable

t that can usually be interpreted as time. Nevertheless, from a (statistical) shape analysis point of
view, we focus on the geometric shape of curves that do not depend on a specific parametrization or
standard transformations such as translations, rotations, scaling, or reparametrizations. To distinguish
between parametrized curves that differ only by translation, we consider the set of absolutely continuous
curves where x(0) = 0, denoted by AC0

(
[0, 1],Rd

)
. The natural and intrinsic parametrization that

uniquely defines the shape of a curve x is the arc-length parametrization, defined with the arc length
function s(t) =

∫ t
0 ∥ẋ(u)∥du, for t ∈ [0, 1]. In order to remove the scaling variability, the total length

of the curve s(1) is set to 1. Under this parametrization, the shape X : [0, 1] 7→ Rd of the curve is
the image of the function x such that x(t) = X(s(t)). As we want to study shapes independently of
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Figure 5.2: Geodesic paths between two scaled 3D circular helices with different number of spins: SRVF
(1st row) and SRC (2nd row).

their parameterizations, we introduce the reparametrization group Diff+([0, 1]), of smooth orientation
preserving diffeomorphisms of the interval [0, 1] onto itself. This group acts on the space of absolutely
continuous curves by right composition, and this action only alters the parametrization of the curve, not
the inherent shape X. Therefore, X represents the equivalent class [x] that contains all the possible time
reparametrization of x. The space of such shapes (or unparametrized curves) is often mathematically
defined as the quotient space

S([0, 1],Rd) = AC0
(
[0, 1],Rd

)
/Diff+([0, 1]). (5.1)

The purpose of shape analysis of curves is to define a distance function dS on S and a framework to
perform a complete statistical analysis on a set of curves in S (e.g. mean, classification, or Principal
Component Analysis etc.). One of the main challenges in defining this distance is to choose an ap-
propriate mathematical representation of the curves that can be made invariant to all shape-preserving
transformations - translation, rotation, scaling, and reparametrization. Moreover, one of the stakes of
such representation is to offer an (infinite-dimensional) Riemannian manifold structure that brings pow-
erful and flexible tools for studying the geometry of shapes or statistical properties notably thanks to
the tangent space of the manifold (Lang, 2006; Sommer et al., 2020). In Srivastava and Klassen (2016),
a list of the few possible representations is given - coordinate functions, curvatures, angle function,
and square-root velocity function (SRVF) - and a framework for curve analysis is derived for the last
two ones. While the angle representation is unparameterized, the SRVF representation depends on the
parametrization, which is shown to be very useful as a tool for the registration of points across curves.
As a consequence, the parameterization group Diff+([0, 1]) must be eliminated by using a quotient space.
The classical approach is to define the Riemannian metric on the shape space through a metric on the
space of parametrized representations that is invariant to reparametrization: ∀h ∈ Diff+([0, 1])

dAC0(x0, x1) = dAC0(x0 ◦ h, x1 ◦ h). (5.2)

In that case, the distance on S is defined as the infimum over all possible reparametrization. For
X0, X1 ∈ S,

dS(X0, X1) := inf
h∈Diff([0,1])

dAC0(x0, x1 ◦ h). (5.3)

In the following, we will denote with a dot the derivation with respect to the time variable, and with a
prime the one with respect to the arc-length parameter.
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3.2 Square Root Velocity Framework

The square-root velocity function framework is the most commonly used representation for curve shape
analysis in Rd, (Srivastava et al., 2011; Srivastava and Klassen, 2016). The square-root velocity function
(SRVF) of x ∈ AC0

(
[0, 1],Rd

)
, denoted by RSRVF(x) = q, is defined as

q(t) = ẋ(t)√
∥ẋ(t)∥

. (5.4)

Noting that the unit tangent vector of the curve x is equal to T (s(t)) = ẋ(t)
∥ẋ(t)∥ = X ′(s(t)), the SRVF can

also be expressed in terms of this tangent vector and the curvilinear speed as

q(t) =
√
ṡ(t)T (s(t)) . (5.5)

The SRV transform is a bijection withAC0
(
[0, 1],Rd

)
and its explicit inverse is x(t) =

∫ t
0 q(u)|q(u)|du.

As we consider length-normalized curves, the SRVFs have a unit L2 norm, and their set is the convenient
unit Hilbert sphere, a Riemannian submanifold of L2([0, 1],Rd) (with the L2 inner product). Then, the
L2 metric on SRVF induces a Riemannian metric on AC0

(
[0, 1],Rd

)
where geodesics are given by the

shorter arcs on great circles between SRV functions. The action of Diff+([0, 1]) on AC0
(
[0, 1],Rd

)
is

reflected on q by the group action denoted by ∗ and defined as

(q ∗ h)(t) =
√
ḣ(t)q(h(t)) (5.6)

and if the curve is rotated by a matrix O ∈ SO(d), its SRVF gets rotated by the same matrix. The key
property of this representation is the invariance of its associated distance under the action of Diff+([0, 1])
and SO(d):

∥O(q0 ∗ h) −O(q1 ∗ h)∥L2 = ∥q0 − q1∥L2 . (5.7)
The metric can be used to define a proper distance on the shape space S([0, 1],Rd)

d
(SRVF)
S (X0, X1) := inf

O∈SO(d)
h∈Diff([0,1])

cos−1⟨q0, O(q1 ∗ h)⟩ . (5.8)

Then, given the optimal warping function h∗, the geodesic path on the shape space is taken between q0
and q1 ∗ h∗ and given by

α
(q)
S (τ) = 1

sin(ϑ) (sin((1 − τ)ϑ)q0 + sin(τϑ)O(q1 ∗ h∗)) , (5.9)

where ϑ = cos−1⟨q0, O(q1 ∗ h∗)⟩.
The definition of this distance on the shape space under the SRVF representation can be interpreted

as the following registration problem

h∗, O∗ = arg min
O∈SO(d)
h∈Diff([0,1])

∫ 1

0

∥∥∥∥q0(t) −Oq1(h(t))
√
ḣ(t)

∥∥∥∥2

2
dt . (5.10)

In Brunel and Park (2019), this registration problem has been reformulated with the unit tangent vector
and the arc length functions. By defining γ = s1 ◦h ◦ s−1

0 ∈ Diff+([0, 1]) the optimization problem (5.10)
amounts to finding the optimal diffeomorphism of Diff+([0, 1]) that acts on the arc-length parameter s
and solves the minimization problem:

γ∗, O∗ = arg min
O∈SO(d)
γ∈Diff([0,1])

∫ 1

0
∥T0(s) −OT1(γ(s))

√
γ′(s)∥2

2ds . (5.11)
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It should be noted, in this reformulation, that the object OT1(γ(s))
√
γ′(s) does not represent the same

shape as X1(s) in the shape space. Here the element γ of Diff+([0, 1]) is not used as a reparametrization
of the curve but to deform the element of S([0, 1],Rd). Under this point of view, the set of unit tangent
vectors that can be reached by deforming the vector T (s), with the group action T ∗ γ defines an equiv-
alence class of shapes associated with that one, as in the setting of deformable templates of Grenander’s
theory (Younes, 2010, 2018).

Finally, the choice of a parametrized curve representation for shape analysis, discussed in Srivastava
and Klassen (2016), can be seen as the problem of choosing a good geometric representative of the shape
as a template and defining an associated registration problem. Hence, an appropriate choice may be
seen as a matter of modeling and should be done in interaction with the type of data analyzed and the
dimension of the space. In the next sections, we use h to refer to functions of Diff+([0, 1]) that act on
the time variable t and γ for ones that act on the arc-length variable s.

4 Exhaustive Geometric Information with Frenet Representation
Based on these previous observations and with the intention of developing a more suitable framework for
the analysis of three-dimensional curves, Brunel and Park (2019) proposed a direct extension of the SRVF
method, which considers not only the tangent vector as the geometric representation of the curve but
the whole Frenet-Serret frame in three dimensions. Their idea is to use an exhaustive description of the
geometry of curves by incorporating higher-order information about the geometry in the representation.
To exploit this idea, we propose to study suitable representations based on this Frenet-Serret framework.

4.1 Direct Extension of the SRVF with the Frenet Frame

From the detailed Frenet-Serret framework in Section 3, one can think of the direct extension of the
square-root velocity function (5.5) that simply consists in replacing the tangent vector with the entire
Frenet frame. The representation of a parametrized curve x ∈ F ([0, 1],Rd) will be then

RQ(x)(t) =
√
ṡ(t)Q(s(t)). (5.12)

This representation is used in Brunel and Park (2019) to define a new alignment method on S. They
extend the SRVF registration problem (5.11) by using the Frobenius distance between the Frenet frames
instead of only the L2 distance of the unit tangent vectors. They show to have obtained more precise
results with their method than the SRVF one. From the previous theorems, it is clear that this representa-
tion uniquely defines a parametrized curve x ∈ F ([0, 1],Rd). Indeed, for all t ∈ [0, 1], RQ(x)(t) ∈ GLd(R)
and if we consider the Frobenius norm on GLd(R), we have 1

d∥RQ(x)(t)∥ =
√
ṡ(t), as Q(s(t)) ∈ SO(d).

Then the Euclidean curve x can be reconstructed from RQ(x) by integration along the time variable of
the first vector of 1

d∥RQ(x)(t)∥RQ(x)(t) = ṡ(t)Q(s(t)).

The set of such mathematical representations RQ is a subset of the set of measurable curves from
[0, 1] to GLd(R) such that the curve t 7→ RQ(x)(t)

1
d

∥RQ(x)(t)∥ = Q(s(t)) is a Frenet path and therefore an element
of F0. One could attempt to show that the set of representations RQ is a manifold if the set of Frenet
path F0 is one. However, we can show from the Frobenius theorem that F0 is not a manifold. The set
F0 corresponds to the set of solutions of the first-order ordinary differential equations on SO(d) defined
for s ∈ [0, 1], with fixed initial conditions Q(0) = Id,

Q′(s) = Vθ(s,Q(s)) ,

where Vθ : [0, 1]×SO(d) → TSO(d) is a time-dependent vector field, defined by Vθ(s,Q(s)) = Q(s)Aθ(s) ∈
TQ(s)(SO(d)) with θ ∈ H. We denote by D the subbundle of the tangent bundle TSO(d), defined by
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D = span{Vθ : [0, 1] × SO(d) | θ ∈ H}. Then, the Frobenius theorem (Warner, 1983; Lyons, 2016; Lang,
2006) states that the subbundle D is integrable if and only if it is involutive. By definition D is involutive
if, for any two vector fields V 1

θ and V 2
θ in D, the Lie bracket [V 1

θ , V
2

θ ] is also in D. However, for any
Q ∈ L2([0, 1], SO(d)), we have

[V 1
θ , V

2
θ ](Q(s)) = V 1

θ (V 2
θ (Q(s))) − V 2

θ (V 1
θ (Q(s))) = Q(s) (Aθ2(s)Aθ1(s) −Aθ1(s)Aθ2(s)) ,

and we can easily show that the matrix B = Aθ2(s)Aθ1(s) − Aθ1(s)Aθ2(s) no longer has the form a
matrix Aθ with θ ∈ H. Indeed if we look at the coefficient Bi,i+2, for 1 < i < d− 1, we have

Bi,i+2 =
d∑
j=1

a1
i,ja

2
j,i+2 = θ1

i θ
2
i+1 ,

which is not equal to zero a priori. Then [V 1
θ , V

2
θ ] does not take values in D, and D is not involutive

by definition. Therefore, from the Frobenius theorem, D is not integrable. This means that F0, the set
of integral curves defined from D, is not a manifold. Given this last result and since we are looking, in
this work, for a mathematical representation of a Euclidean curve that allows us to define a complete
Riemannian framework for shape analysis (geodesic, distance, mean), we do not consider further the
representation RQ.

4.2 Unparametrized Frenet curvatures

A possible representation of a parametrized curve, already suggested in Srivastava and Klassen (2016);
Surazhsky and Elber (2002); Saba (2012), which keeps the idea of encoding more geometric information,
is the unparametrized Frenet curvatures and the arc-length function pair

Rθ(x)(t) =
(√

ṡ(t), θ(s(t))
)
. (5.13)

We denote by Ψ([0, 1]) the set of square root velocity functions of length-normalized arc-length functions.
This set is well-studied in the literature (Marron et al., 2015; Tucker et al., 2013). It is the unit sphere of
the Hilbert space L2([0, 1],R) and therefore a Riemannian manifold equipped with the L2 metric. Then,
the geodesic distance between two elements in Ψ([0, 1]) is

dΨ
(√

ṡ0,
√
ṡ1
)

= cos−1
(〈√

ṡ0,
√
ṡ1
〉)

(5.14)

and the geodesic path connecting them is given by

αΨ(τ) = sin((1 − τ)ϑ)
sin(ϑ)

√
ṡ0 + sin(τϑ)

sin(ϑ)
√
ṡ1 , (5.15)

where ϑ = dΨ(
√
ṡ0,

√
ṡ1). Moreover any element of Diff+([0, 1]) is uniquely represented by an element of

Ψ([0, 1]).

Proposition 5.1. The set of Frenet curvatures H is a Riemannian submanifold of L2([0, 1],Rd−1).

Proof. The set M = {x ∈ Rd−1|x1, . . . , xd−2 > 0} is an open subset of the Riemannian manifold Rd−1.
Then it is itself a differentiable Riemannian manifold with the standard inner product of Rd−1, and
for any point p ∈ M the tangent space Tp(M) is Rd−1. The set of Frenet curvatures H is the set of
measurable curves from [0, 1] to the Riemannian manifold M and thus also a manifold (Tixiang (1989)).
Its tangent space is L2([0, 1],Rd−1) and it can be equipped with the L2 Riemannian metric. ■
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Consequently, the geodesic distance on H is simply the L2 norm

dH(θ0,θ1) = ∥θ0 − θ1∥L2 (5.16)

and the geodesic path is the straight line connecting them

αH(τ) = (1 − τ)θ0 + τθ1. (5.17)

Proposition 5.2. The map Rθ : F ([0, 1],Rd) → Ψ([0, 1]) × H, defined above, is a bijection.

Proof. The element of Ψ([0, 1]) uniquely defines the arc-length function by s(t) =
∫ t

0(
√
ṡ(u))2du. As

mentioned before, we have a bijection between the unparametrized Frenet curvatures in H and the
unparametrized curve in the shape space S (Theorem 2.3, Theorem 2.4). Then, from X ∈ S, the initial
parametrized curve is simply x(t) = X(s(t)). ■

The set of such Rθ is the Cartesian product of Ψ([0, 1]) and H and, therefore, is also a Riemannian
manifold equipped with the product metric dΨ ⊕dH (Mehmet, 2005). The induced metric on F ([0, 1],Rd)
under the representation Rθ is

dθ(x0, x1) = dΨ
(√

ṡ0,
√
ṡ1
)

+ dH(θ0,θ1) . (5.18)

In order to define a distance on the shape space S from that one, we must quotient out the space
Diff+([0, 1]). The action of Diff+([0, 1]) on Ψ([0, 1]) is the same as (5.6), and the Frenet curvatures are
invariant under reparametrization of the corresponding parametrized curve (Lemma 2.1). Moreover,
by simply taking h∗ = s−1

1 ◦ s0 ∈ Diff+([0, 1]), we have
√
ṡ1 ∗ h∗ =

√
ṡ0, and thus the distance on

Ψ([0, 1])/Diff+([0, 1]) between s0 and s1 is zero. Hence, the induced distance on the shape space, between
X0, X1 ∈ S, under the representation Rθ is defined as

d
(θ)
S (X0, X1) := dH(θ0,θ1) = ∥θ0 − θ1∥L2 (5.19)

and the geodesic path connecting them is

α
(θ)
S (τ) =

(√
ṡ0, αH(τ)

)
, (5.20)

where αH is defined in equation (5.17). This immediate representation by the Frenet curvatures appears
in the experiments not to be sufficiently elastic (Figure 5.3). It has somewhat the same weakness as
the angle representation proposed in Srivastava and Klassen (2016), the Frenet curvatures being already
independent of the parametrization.

4.3 Square Root Curvatures Transform

To overcome the “non-elasticity” issue of the representation defined above, we propose a second frame-
work for shape analysis based on Frenet curvatures which uses, like the square root velocity function,
the parametrization as a tool to register the curves and define a more “elastic” method. The latter is
inspired by the square-root velocity transform of SO(d)-valued curves.

Definition 5.1 (SRV Transform for curves on SO(d)). Let P ∈ C∞([0, 1], SO(d)). The Square Root
Velocity transform of P is the map

q(P )(t) =
LP (t)−1Ṗ (t)√

∥Ṗ (t)∥F
= P (t)T Ṗ (t)√

∥Ṗ (t)∥F
, (5.21)

where ∥.∥F is the Frobenius norm associated with the scalar product on the Lie Algebra of skew-symmetric
matrices ⟨A,B⟩ = 1

2 tr(ATB) = −1
2 tr(AB), and LP (t)−1 is the left action of SO(d) onto itself as defined

in equation (2.4).
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Let x ∈ F ([0, 1],Rd) and Q(t) ∈ C∞([0, 1], SO(d)) be its associated Frenet path. Using the Frenet-
Serret differential equation of Q, Q′(s) = Q(s)Aθ(s), the SRV Transform of the Frenet path is

q(Q)(t) =
√
ṡ(t) Aθ(s(t))√

∥Aθ(s(t))∥F
. (5.22)

Proposition 5.3. For θ ∈ H, we have

∥Aθ(s(t))∥F = ∥θ(s(t))∥2 . (5.23)

Proof. We recall that the vector θ(s) = (θ1(s), . . . , θd−1(s)) is a (d − 1)-dimensional vector of R. The
matrix Aθ(s) is skew-symmetric with the superdiagonal equal to −θ(s), the subdiagonal equal to θ(s),
and all the other coefficients null. Observe that

∥Aθ(s(t))∥2
F = 1

2tr
(
Aθ(s)TAθ(s)

)
= −1

2tr
(
Aθ(s)2

)
= −1

2

d∑
i=1

d∑
j=1

a(s)ija(s)ji .

We differentiate three cases depending on i:
if i = 1 : ∑d

j=1 a(s)1,ja(s)j,1 = a(s)1,2a(s)2,1 = −θ1(s)2

if i = d : ∑d
j=1 a(s)d,ja(s)j,d = a(s)d,d−1a(s)d−1,d = −θd−1(s)2

otherwise: ∑d
j=1 a(s)i,ja(s)j,i = a(s)i,i−1a(s)i−1,i + a(s)i,i+1a(s)i+1,i = −θi−1(s)2 − θi(s)2

and then we have,

∥Aθ(s(t))∥2
F = −1

2

d∑
i=1

d∑
j=1

a(s)ija(s)ji = 1
2

d−1∑
i=2

θi−1(s)2 + 1
2θd−1(s)2 + 1

2

d−1∑
i=2

θi(s)2 + 1
2θ1(s)2

=
d−1∑
i=1

θi(s)2 = θ(s)Tθ(s) = ∥θ(s)∥2
2 .

■

Based on the SRV Transform of a Frenet path and Proposition 5.3, we propose a new transformation
of a parametrized curve, which we have called the Square-Root Curvatures (SRC) transform.

Definition 5.2 (Square-Root Curvatures Transform). Let x ∈ F ([0, 1],Rd). We consider its associated
arc-length function s(t) and Frenet curvatures θ(s(t)) defined as in Theorem 2.3. Then we define its
square-root curvatures transform to be the map

c(t) =
√
ṡ(t) θ(s(t))√

∥θ(s(t))∥
. (5.24)

The set of such square-root curvatures transforms is

C =
{
c ∈ L([0, 1],Rd−1) | c1, . . . , cd−2 > 0

}
, (5.25)

which is the same as the set of admissible Frenet curvatures H. We have already shown in the previous
section that this set is a Riemannian manifold equipped with the L2 metric. Therefore, the geodesic
distance between c0, c1 ∈ C is the L2 distance between them, and the geodesic path is a straight line.
We define the following representation of a parametrized curve x ∈ F ([0, 1],Rd), from its Square-Root
Curvatures transform, by

RSRC(x)(t) =
(√

ṡ(t), c(t)
)
. (5.26)
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Proposition 5.4. The map RSRC : F ([0, 1],Rd) → Ψ([0, 1]) × C, defined above, is a bijection.

Proof. This is again a result of Theorem 2.3 and Theorem 2.4. To get x from RSRC(x), it should
be noted firstly that c(t)∥c(t)∥ = ṡ(t)θ(s(t)). From that, the skew-symmetric matrix function of the
Frenet-Serret ODE can be reconstructed. By solving the corresponding Frenet-Serret ODE one gets the
associated time parametrized Frenet path Q(t). Then, using the first component of RSRC(x), we get
x(t) = X(s(t)) =

∫ t
0 ṡ(u)T (s(u))du. ■

The set of such square root curvature representations RSRC is the Cartesian product Ψ([0, 1]) × C
and therefore a Riemannian manifold with the product metric dΨ ⊕ dC . This representation is, by
definition, invariant under the action of SO(d). Then, the corresponding shape space is the quotient
space Ψ([0, 1]) × C/Diff([0, 1]). Let’s x ∈ F ([0, 1],Rd) and h ∈ Diff([0, 1]). The SRC representation of
x̃ = x ◦ h is

RSRC(x̃) =
(√

ṡ ∗ h, c ∗ h
)

= RSRC(x) ∗ h (5.27)

where ∗ is the group action defined in (5.6).

Proposition 5.5. The metric on F ([0, 1],Rd) induced by the Riemannian metric on Ψ([0, 1])×C defined
by dSRC := dΨ ⊕ dC is invariant under the action of Diff+([0, 1]).

Proof. Let h ∈ Diff+([0, 1]), x0, x1 ∈ F ([0, 1],Rd) with (
√
ṡ0, c0), (

√
ṡ1, c1) ∈ Ψ([0, 1]) × C their corre-

sponding square-root curvature transform. Under this representation the induced distance on F ([0, 1],Rd)
is

dSRC(x0 ◦ h, x1 ◦ h) = dΨ(
√
ṡ0 ∗ h,

√
ṡ1 ∗ h) + dC(c0 ∗ h, c1 ∗ h) .

Let us show that the action of Diff+([0, 1]) on Ψ([0, 1]) and on C is by isometry with respect to the L2

metric. For Ψ([0, 1]) we have〈√
ṡ0 ∗ h,

√
ṡ1 ∗ h

〉
=
∫ 1

0

〈√
ṡ0(h(t))ḣ(t),

√
ṡ1(h(t))ḣ(t)

〉
dt =

∫ 1

0

〈√
ṡ0(u),

√
ṡ1(u)

〉
du , u = h(t)

and with the same change of variable, we have for C,

∥c0 ∗ h− c1 ∗ h∥2
L2 =

∫ 1

0

∣∣∣∣∣
√
ḣ(t)

√
ṡ0(h(t)) θ0(s0(h(t)))√

∥θ0(s0(h(t)))∥
−
√
ḣ(t)

√
ṡ1(h(t)) θ1(s1(h(t)))√

∥θ1(s1(h(t)))∥

∣∣∣∣∣
2
dt

=
∫ 1

0

∣∣∣∣∣√ṡ0(u) θ0(s0(u))√
∥θ0(s0(u))∥

−
√
ṡ1(u) θ1(s1(u))√

∥θ1(s1(u))∥

∣∣∣∣∣
2
du , u = h(t)

=
∫ 1

0
|c0(u) − c1(u)|2 du .

Then dSRC is invariant under the action of Diff+([0, 1])

dSRC(x0 ◦ h, x1 ◦ h) = dΨ(
√
ṡ0 ∗ h,

√
ṡ1 ∗ h) + dC(c0 ∗ h, c1 ∗ h)

= dΨ(
√
ṡ0,

√
ṡ1) + dC(c0, c1) = dSRC(x0, x1) .

■

The distance on the shape space S under the representation RSRC, between two elements X0, X1 ∈ S,
is defined as

d
(SRC)
S (X0, X1) := inf

h∈Diff+([0,1])
dSRC(x0, x1 ◦ h). (5.28)

From the optimal wrapping function h∗ the geodesic path on S between them is

α
(SRC)
S (τ) =

(
sin((1−τ)ϑ)

sin(ϑ)
√
ṡ0 + sin(τϑ)

sin(ϑ) (
√
ṡ1 ∗ h∗) , (1 − τ)c0 + τ(c1 ∗ h∗)

)
, (5.29)

96



5. Experiments

where ϑ = dΨ(
√
ṡ0,

√
ṡ1 ∗ h∗). The registration problem consider here is to find the minimizer h∗ over

Diff+([0, 1]) such that

h∗ = arg min
h∈Diff+([0,1])

∫ 1

0
∥c0(t) − (c1 ∗ h)(t)∥2 + ∥

√
ṡ0(t) − (

√
ṡ1 ∗ h)(t)∥2dt . (5.30)

Using the reformulation principle of Brunel and Park (2019), this registration problem is shown to be
equivalent to finding γ∗ ∈ Diff+([0, 1]) such that

γ∗ = arg min
γ∈Diff+([0,1])

∫ 1

0

∥∥∥∥∥ θ0(s)√
∥θ0(s)∥

−
√
γ′(s) θ1(γ(s))√

∥θ1(γ(s))∥

∥∥∥∥∥
2

+ ∥1 − γ′(s)∥2ds . (5.31)

Note that this reformulation has the form of a penalized registration problem. The second term repre-
sents a penalty term on γ and ensures a certain smoothness of the warping function. In this framework,
the deformable templates are the square-root normalized curvatures which encode more geometric infor-
mation than the unit tangent vector.

Remark 5.1. One can consider the equivalent weighted penalized registration problem, where the second
term is weighted by a certain σ > 0, without changing the global shape analysis framework under this
representation.

Remark 5.2. In Park et al. (2022), we have used the following distance∫ 1

0

∥∥θ0(s) − γ′(s)θ1(γ(s))
∥∥2 + σ∥1 − γ′(s)∥2ds . (5.32)

This distance corresponds to the representation ṡ(t)θ(s(t)) instead of the square root curvature transform
c(t). This is another possibility that has more or less the same properties, except that in this formulation,
the action of Diff+([0, 1]) on H is not by isometry with the L2 metric. Although the penalty term helps
avoid the pinching effect that may result from this, the corresponding metric will not be symmetric. This
is why we prefer to consider here what we have defined as the square root curvature transform. However,
it may be more stable for numerical applications, as the reconstruction map of the curve is more direct
without the normalization part.

5 Experiments
In this section, we report the experimental results of the proposed methods, comparing them with the
SRVF method. We use both synthetic and real data.

Remark 5.3. In this work, we assume that the Frenet curvatures are perfectly known; however, this is
rarely the case in practice. This is the main limitation of shape analysis methods that rely on Frenet
curvatures, as estimation of the Frenet curvatures is not straightforward. We refer here to the methods
proposed in Chapter 3 and Chapter 4 for smooth estimation of Frenet curvatures from various types of
observations, as well as the references contained therein.

5.1 Experiments with synthetic curves

We use synthetic data to highlight the differences between the methods discussed above (SRVF, SRC, and
Frenet curvatures). The computations related to the SRVF method are made with the package fdasrsf.
The registration problems are solved with a dynamic programming algorithm (Bertsekas, 1995). We
consider three types of synthetic curves: spirals in R2 (Section 5.1.2), circular helices in R3 (Section 5.1.3),
and loops in R2 characterized by a curvature function with one large peak (Section 5.1.1). For each one,
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we propose to visualize the geodesic paths under each method (SRVF, SRC, Frenet curvatures) between
two particular curves chosen to have either significantly different characteristics (significantly different
numbers of spins for the two spirals and helices, and peaks of curvature quite far apart for the two loops),
or conversely slightly closer ones. We also display, in both cases, the evolution of the curvatures of the
curves along the geodesic. In addition, for each type of the curve, we generate a set of 20 random curves
from which we compute the matrices of pairwise distances utilizing the three different distances again.

The following results highlight the advantages of the SRC representation of Euclidean curves in
defining a curve shape analysis framework: being sufficiently “elastic” to avoid the occurrence of artefacts
along the geodesic or in the mean (Section 5.1.1), and being consistent when analyzing a set of curves
sharing a particular geometry (Section 5.1.1, 5.1.2 and 5.1.3).

5.1.1 Loop in R2

We consider the simple case of a set of 20 curves in R2 with a single large peak of curvature. This one is
created by generating curvature functions on [0, 1] with one peak of maximum value 60.5, width 0.15, and
location chosen randomly between 0.1 and 0.9. These curves have the shape of a loop made with a wire,
where the loop is more or less close to the right or left wire end, depending on the location of the curvature
peak. We compare the three methods through the pairwise distance matrices in Figure 5.5, through the
geodesic paths computed between two of these curves with close peak locations in Figure 5.4 and between
two more distant peaks in Figure 5.3. The corresponding deformations through the variations of the
curvature along the different geodesic paths on Euclidean curves are shown in these figures and highlight
the strengths and weaknesses of each method. First, it reveals "non-elasticity" of the unparametrized
Frenet curvatures method: in the middle of the geodesic path in Figure 5.3 and 5.4, we have two peaks of
curvature and, therefore, a completely different shape without any loop. This explains the inconsistency
of the heatmap under this method (Figure 5.5). Therefore, we clearly see with this result that the simple
Frenet curvature representation is not sufficient and that considering a representation that allows for
registration of the points along the curve seems to be a more than necessary criterion to have a coherent
shape analysis framework. Conversely, there is an elastic deformation of the curvature with the SRC
transform, and shapes along the geodesic are consistent in both cases with the set of curves considered,
which is well summarized on the corresponding heatmap where all distances are rather close to zero. For
the SRVF method, the chosen example with distant peaks of curvature (Figure 5.3) exhibits artifacts
along the geodesic, with small loops at the edges of the middle curve. However, when considering closer
peaks of curvature (Figure 5.4), the SRVF geodesic paths show more coherent curves, each having a
single peak of curvature. This significant difference in curve shapes along SRVF geodesic paths between
both cases may explain the observed inconsistency in the SRVF heatmap (Figure 5.5), where distances
are not monotonous with respect to the spacing between curvature peaks, leading to unreliable results.

Figure 5.3: Geodesic paths (left) between two loops with curvature peaks located at 0.27 (red) and 0.78
(blue) and corresponding curvatures (right) of each curve along the geodesics: SRVF (1st row), SRC
(2nd row), and Frenet curvatures (3rd row).
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Figure 5.4: Geodesic paths (left) between two loops with curvature peaks located at 0.31 (red) and 0.59
(blue) and corresponding curvatures (right) of each curve along the geodesics: SRVF (1st row), SRC
(2nd row), and Frenet curvatures (3rd row).

Figure 5.5: Matrices of pairwise distances computed under each method (SRVF, SRC, and Frenet cur-
vatures) from a set of 20 loops, with random locations of curvature peak, plotted on the top.

5.1.2 Spiral in R2

We consider a curvature function of the type t 7→ a log(t + 2), where a ∈ R∗
+. This curvature defines

a curve having a shape of a helix with more or less spins depending on the value of the coefficient a.
We show in Figure 5.7 the geodesic paths computed under each framework between two spirals with a
similar number of spins and in Figure 5.6 with a significantly different number of spins. In this case
of spirals, the SRC and Frenet curvatures methods give really similar results and appear to be really
consistent in the shape of the curves along the geodesic. On the contrary, the curves along the SRVF
geodesic are no longer spirals in the case of Figure 5.6. They are more coherent along the SRVF geodesic
in Figure 5.7 between two spirals with a less different number of spins, but the curvatures still show a
peak at the end that is not present in the two considered curves. In both figures, we see that methods
based on a representation using the Frenet curvatures are more suitable and consistent in this case.
Again, we generate 20 spirals by selecting a random coefficient a between 7 and 37. The corresponding
heatmaps under each framework are displayed in Figure 5.8. The distance matrices show that the Frenet
curvatures-based methods calculate distances globally close to zero within this set. They, therefore, seem
to capture that the curves share a common geometry. This is less the case for the SRVF distance matrix,
which seems to well partition the spirals according to the number of spins, but the distances are not
always monotone as a function of these ones.
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Figure 5.6: Geodesic paths (left) between two spirals with a different number of spins and correspond-
ing curvatures (right) of each curve along the geodesics: SRVF (1st row), SRC (2nd row), and Frenet
curvatures (3rd row).

Figure 5.7: Geodesic paths (left) between two spirals with a similar number of spins and correspond-
ing curvatures (right) of each curve along the geodesics: SRVF (1st row), SRC (2nd row), and Frenet
curvatures (3rd row).

5.1.3 Circular helix in R3

We also propose an example in 3-dimension with the special case of circular helices. A three-dimensional
circular helix is characterized by having a constant curvature and torsion. Again, the three geodesic
paths are compared in the case of similar (Figure 5.9) or different numbers of spins (Figure 5.10). The
analysis and comparison of the three methods for helices in R3 are almost identical as in the case of
spirals in R2. Again, the geodesic under the Frenet curvature representation is very similar to SRC,
and both methods conserve the specific geometry of a helix along the geodesic. Conversely, within both
geodesic paths under SRVF method, the curves lose the characteristic geometry of the helix as curves no
longer have a constant curvature and torsion. In that case, the 20 random circular helices, Figure 5.11,
are generated from a random number of spins, and they are all of unit length. We observe again that
the SRVF framework is a bit more coherent between helices with a similar number of spins in Figure 5.9.
Here also, in three dimensions, the Frenet curvatures-based methods define a shape analysis framework
well adapted to this particular geometry.

5.2 Application to sign language motion data

It appears that curvilinear velocity and Frenet curvatures are particularly relevant parameters for the
analysis of human motion. Several laws involving these parameters can be found in the literature
(Lacquaniti et al., 1983; Maoz et al., 2009; Pollick et al., 2009; Flash and Berthoz, 2021); among others,
the power laws state a special relationship between the curvature, the torsion, and the velocity of a
point trajectory representing human motion. Therefore, using a method that conserves the shape of
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Figure 5.8: Matrices of pairwise distances computed under each method (SRVF, SRC, and Frenet cur-
vatures) from a set of 20 random spirals plotted on the top.

(a) curvature

(b) torsion

Figure 5.9: Geodesic paths (left) between two circular helices in 3D with a similar number of spins and
corresponding curvatures (right) of each curve along the geodesics: SRVF (1st row), SRC (2nd row), and
Frenet curvatures (3rd row).

these parameters is of particular interest in this application. We demonstrate here with the case of wrist
trajectories in sign language, acquired with a motion capture system by the company MocapLab. We
compute the geodesic paths, under each of the frameworks, between the arbitrarily chosen red and blue
curves within the set of several repetitions of the sign "Femme" and "Europe", shown respectively in
Figure 5.12 and Figure 5.15, with the corresponding time-parameterized Frenet curvatures. Figure 5.13
and 5.16 highlight the benefits of considering a representation that depends on the parameterization,
enabling registration before geodesic computation. However, solely relying on the tangent vector as a
representative object (SRVF) proves inadequate in finding the optimal reparametrization to align torsions
accurately. This limitation could adversely affect subsequent SRVF method analyses, such as computing
the mean, leading to the emergence of new minimums, maximums, and zeros in the torsion functions along
the SRVF geodesic. These characteristic points are vital in observing the laws of motion. Consequently,
it is preferable to use a method, like the proposed SRC method, which directly optimizes the optimal
alignment from these parameters while preserving these characteristics. In Figure 5.16, we observe that
the alignment obtained by the SRC method better preserves the curves’ geometry, compared to the
SRVF geodesic path. Additionally, the artefacts present in the synthetic curve experiments, resembling
peaks of Frenet curvatures at the boundaries, are also noticeable in this case.
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(a) curvature

(b) torsion

Figure 5.10: Geodesic paths (left) between two circular helices with a different number of spins and
corresponding curvatures (right) of each curve along the geodesics: SRVF (1st row), SRC (2nd row), and
Frenet curvatures (3rd row).

Figure 5.11: Matrices of pairwise distances computed under each method (SRVF, SRC, and Frenet
curvatures) from a set of 20 random circular helices plotted on the top.
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Figure 5.12: Trajectories of right wrist while signing "Femme" in sign language: 3D curves (left), arc-
length parametrized curvatures (top right), torsions (bottom right). The blue and red ones are used to
compute the geodesic in Figure 5.13.

Figure 5.13: Comparison between time-parametrized curvature and torsion along the geodesic path
under SRVF (left), SRC (middle), and Frenet curvatures (right).

Figure 5.14: Comparison of estimated warping functions h (left) and γ (right) to compute Figure 5.13.
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Figure 5.15: Trajectories of the right wrist while signing "Europe" in sign language: 3D curves (left),
arc-length parametrized curvatures (top right), torsions (bottom right). The blue and red ones are used
to compute the geodesic in Figure 5.16.

Figure 5.16: Comparison between time-parametrized curvature and torsion along the geodesic path
under SRVF (left), SRC (middle), and Frenet curvatures (right).

Figure 5.17: Comparison of estimated warping functions h (left) and γ (right) to compute Figure 5.16.
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6 Conclusion

We have developed a new geometric framework for shape analysis of Euclidean curves in Rd. This one
is based on the square-root curvature transform of a Euclidean curve and the associated Riemannian
framework. This representation encodes more geometric information of the curves, giving results easier
to interpret than existing methods. Our experiments show that, even in dimension 2, this representation
gives results more consistent with the underlying geometry of the curves. The main limitation lies in
the estimation of the Frenet curvatures from real and noisy data which is much more computationally
expensive and more unstable than the estimations required by the SRVF-based method. Nevertheless,
recent smooth statistical estimators can be used for computing the SRC (Sangalli et al., 2009; Park
et al., 2022), as the ones we detailed in Chapter 3 and Chapter 4. We believe our method is particularly
interesting for motion trajectory analysis and could be developed further in the future as a tool for the
generation, segmentation, and classification of complex trajectories.
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6
Statistical Frenet-Serret Mean Shape

The statistical analysis of a population of curves in Rd involves defining a mean shape and
modeling variations around it. The classical approach to shape analysis considers the Karcher
mean in the shape space, defined as a Riemannian manifold associated with a specific repre-
sentation of curves. In this framework, three Karcher means in the space of SRVF, square-root
curvature (SRC) transforms, and Frenet curvatures (FC) can be considered. We highlight the
statistical challenge inherent in computing these Karcher means based on unknown param-
eters in a typical application scenario where only noisy observations of curves are available.
We compare an approach based on preprocessing, involving efficient FDA-based estimation
of each Frenet curvatures individually, with a regularization-based approach derived from
the works of Park and Brunel (2019), utilizing a unique criterion. Drawing on their statisti-
cal characterization of the mean Frenet curvatures parameter, we define three optimization
criteria leading to three distinct mean shapes, two of which approximate the FC and SRC
Karcher means. Finally, we assess and compare the different means and estimation methods
using simulated data and examples of sign language movement trajectories.
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1 Introduction

In this chapter, we delve into the challenge of analyzing a population of curves in Rd under the Frenet-
Serret framework, inspired by the principles of functional data analysis. Over recent years, there has
been a growing interest in multivariate functional data analysis due to the surge in data represented as
multivariate curves. Various domains have highlighted this interest, ranging from registering multivariate
growth curves (Carroll et al., 2020), employing multivariate functional mixed modeling for spectroscopy
data (Zhu et al., 2017), to solving complex issues like cross-correlating multivariate human gesture
tracking (Zhang et al., 2020). Our motivating example deals with the sign language movement signals
automatically captured by a motion capture system. These types of movement are challenging to study
as they are meaningful but are difficult to characterize without specific knowledge in the field. Our aim
is to develop statistical tools to extract “primitives” or templates specific to the nature of the signals
studied. Achieving this involves identifying commonalities among curves and quantifying significant
variations within the curve population. Hence, like any statistical analysis, establishing a representative
mean for the population and assessing deviations from this mean is crucial.

Statistically analyzing a curve population often involves examining their geometric variations through
shape analysis. Shapes, treated as points on a manifold, represent what remains invariant under rigid
transformations of Euclidean space and then are formally equivalence classes under appropriate group
actions. Diverse methods for constructing infinite-dimensional shape spaces have been proposed, as
discussed in Chapter 5 and in existing literature (Younes, 2010; Srivastava et al., 2011). Shape analy-
sis focuses on finding a curve representation better suited for comparing distinct curves, transforming
the statistical analysis into that of these new objects. The shape space is established as a Rieman-
nian manifold, with a proper Riemannian distance and geodesic for direct curve comparisons based on
these representative objects. Adapting classical statistical methodologies is essential due to the non-
Euclidean properties of shape spaces, where the natural extension of the usual mean is defined as a
Karcher mean (Karcher, 1977). Some of these concepts, particularly under the square-root velocity
function (SRVF) representation, have been proposed for analyzing functional data variations, especially
in one-dimensional curve registration (Kurtek et al., 2012). Its extension to multi-dimensional curves
is discussed in Srivastava and Klassen (2016). In Chapter 5, we introduce two new representations of
Euclidean curves using the Frenet-Serret framework: the unparametrized Frenet curvatures (FC) and the
Square-Root Curvature (SRC) transform. Both representations define a Riemannian geometry on shape
space. Within the classical shape analysis framework, this chapter introduces the associated theoretical
Karcher means for both representations, defining two new mean shapes that fully exploit curve geometry
through the Frenet-Serret framework. Therefore, these mean shapes can be effectively compared with
the state-of-the-art SRVF mean shape.

However, the primary focus of this chapter is to address statistical challenges associated with esti-
mating these means in practical scenarios. In a typical application setting, only Euclidean curves are
observed discretely and potentially with noise. Consequently, none of these representations (SRVF, SRC,
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Frenet curvatures) are directly accessible and must be accurately estimated beforehand. While this might
not be a central concern in the literature that only involves the SRVF representation, it becomes crucial
when dealing with representations based on Frenet curvatures due to their estimation complexity and
sensitivity to observation noise. Indeed, computing the SRVF only requires estimating the first curve’s
derivative, a task efficiently accomplished with classical FDA techniques. In contrast, as discussed in Sri-
vastava and Klassen (2016) and Part I of this thesis, estimating Frenet curvatures necessitates estimating
the d first derivatives, a process prone to instability even in scenarios with minimal observation noise.
Therefore, this chapter introduces and compares two approaches to accurately approximate these means
while accounting for potential noise. The first approach, commonly employed in shape analysis, involves
estimating Frenet curvatures in an efficient preprocessing step. This implies individually estimating
Frenet curvatures for each curve in the population using an efficient criterion that adequately models
constraints associated with estimating a functional parameter in infinite dimensions. If the preprocessing
method proves effective or the data exhibits minimal noise, applying Karcher mean formulas to these
estimators is expected to yield satisfactory results. However, in other cases, independently estimating
each representation can introduce bias, thereby impacting the quality of means.

Consequently, in this chapter, we present an alternative approach based on directly modeling global
noise through the definition of a unique criterion with regularization for estimating the mean parameter.
This alternative approach is introduced in Park and Brunel (2019). They treat multidimensional curves
as a special case of multivariate functional data, drawing inspiration from standard assumptions in FDA
(Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Wang et al., 2016). These approaches assume
a common structure, often defined by a mean function and a variance function, enabling variability
decomposition through functional principal component analysis. Successful applications of these ideas
to motion data have been demonstrated (Goldsmith and Kitago, 2016; Backenroth et al., 2018). While
this linear approximation is powerful for extending univariate tools to multivariate ones (Chiou et al.,
2014; Happ and Greven, 2018), it can sometimes obscure key features in such data (Dai and Genton,
2018). Recent developments in FDA focus on generalizations beyond Euclidean data by allowing for non-
standard features, such as data on a manifold or in a general metric space (Lin and Yao, 2019; Dubey and
Müller, 2019; Petersen and Müller, 2019). Thus, Park and Brunel (2019) propose an alternative statistical
characterization of the common structure based on the geometric features of curves, namely Frenet paths
and curvatures. Specifically, they introduce the notion of the mean vector field associated with the Frenet-
Serret differential equation, thereby statistically characterizing the mean Frenet curvature parameter.
By placing their approach within a shape analysis framework, we demonstrate that the optimization
criterion they propose approximates a regularized optimization criterion for the mean Karcher in the
space of unparametrized Frenet curvatures. Exploiting this approach, we derive two new optimization
criteria with regularization, having “elastic” properties and thus, defining more relevant mean Frenet
curvatures and associated mean shapes. In particular, we show that one of the proposed new criteria
approximates the Karcher mean in the space of SRCs through this “regularization-based” approach.

Subsequently, we develop an efficient estimation algorithm in each case. Finally, as an extension,
we demonstrate that this last approach can be adapted to spherical curves through a straightforward
reformulation of the Frenet framework, providing a mean curve lying on the sphere. We provide a
detailed comparison of these different means and approaches for estimating them based on experiments
conducted with simulated curves, and we demonstrate the significance of these Frenet-based mean shapes
and methods in the study of a set of sign language motion trajectories.

2 Mean Characterization within a Shape Analysis Framework
In this section, we present the classical framework used in shape analysis to define the mean shape of a
population of curves in Rd. We consider a population of N curves in Rd defined by the set of functions
E = {x1, . . . , xN}, such that for all k = 1, . . . , N , xk ∈ L2([0, 1],Rd).
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2.1 Shape Variations in a Population of Curves

Defining the mean shape of such a set of functions E , first requires properly identifying the distinct types
of variations. This is a fundamental concept in functional data analysis. Typically, variability in a set
of functional data is decomposed into two types of variations: phase variations and amplitude variations
(Ramsay and Silverman, 2005). This is easily understandable and visible in the case of scalar functions
from [0, 1] to R (Figure 2.1). Amplitude variability involves changes in the magnitudes of specific features,
like a peak, while disregarding their timing. On the other hand, phase variability refers to variations in the
timing of these features without accounting for their magnitudes. We refer to Section 2.1.3 of Chapter 2
for more details on this point in the case of scalar functions. For a set of multidimensional functions, this
interesting separation of variability can be interpreted more as a separation between phase variations
and shape variations. Indeed, we recall here that the shape of the curve is defined as what is left invariant
under reparametrization. For regular curves xk, the shape function Xk is identified with the arc-length
parameterized curves as xk(t) = Xk(sk(t)), k = 1, . . . , N . The arc-length parametrization should not be
confused with the standard representation of phase variation in the functional data. Suppose that xk is
given as xk(t) = x(hk(t)), where hk are time-warping functions. As ẋk(t) = ẋ(hk(t))ḣk(t), by change of
variables, the corresponding arc-length function can be expressed as

sk(t) =
∫ t

0
∥ẋ(hk(t))ḣk(t)∥ dt =

∫ hk(t)

0
∥ẋ(u)∥ du = s(hk(t)) .

It follows that xk(t) = x(hk(t)) = X(s(hk(t)) = X(sk(t)), that is, the shape of the curve is preserved
under time warping. In this work, we distinguish between phase (hk) and shape (Xk) variation. An
additional source of variability in E can arise from the varying lengths of curves {l1, . . . , lN}, where
lk = sk(1). This work assumes that the curves within E all have a comparable meaningful start and
end. Therefore this source of variability is not meaningful for computing the mean shape, and thus we
consider instead the set of length normalized curves Ẽ = {x̃1, . . . , x̃N}, where x̃k(t) = xk(t)/lk. Rescaling
does change the geometry only through a scaling factor: X̃k = Xk/lk, and the effect of scaling on Frenet
framework components is detailed in Section 3 of Chapter 2. From now on, all curves are supposed to
be scaled to the unit length. Moreover, the geometric shape of the curves in E can be the same modulo
rigid transformations such as translations or rotations. However, these rigid transformations are not of
direct interest when we compare the inherent shape of the curves. Then, these additional variabilities
are not included in what we call shape variations and must be modeled separately.

2.2 Karcher Mean Shape under Specific Riemannian Geometries

Having identified some important types of variation in the functional data set E , we seek to define an
appropriate mean shape. For all xk ∈ E , we have xk ∈ L2([0, 1],Rd) (d ≥ 2). The set of square-integrable
functions L2 is a Hilbert space that is also a Riemannian manifold equipped with the L2 inner product:
for x1, x2 ∈ L2,

⟨x1, x2⟩ =
∫ 1

0
⟨x1(t), x2(t)⟩2dt, (6.1)

and whose tangent space is Tx1(L2) = L2. Karcher (1977) introduced a widely used approach for
establishing a mean on a manifold, utilizing the centroid of a density as its representative point.

Definition 6.1 (Karcher Mean, Karcher (1977)). Let M be a Riemannian manifold. The Karcher mean
µ of a probability density function f on M is defined as a local minimizer of the cost function:

ρ(p) =
∫
M
d(p, q)2f(q)dq,

where dq denotes the reference measure used in defining the probability density f on M . The value of ρ at
the Karcher mean is called the Karcher variance. Now, if we consider rather a finite set of independent
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random samples from the density f : p1, . . . , pk ∈ M , one can define the sample Karcher mean of these
points µ̂ as the local minimizer of the function:

ρk(p) = 1
k

k∑
i=1

d(p, pi)2,

where d is the geodesic distance on M .

The Karcher mean on a Riemannian manifold can be computed numerically with the following
iterative algorithm.

Algorithm 3 Karcher mean on a Riemannian manifold M (Srivastava and Klassen, 2016)
Let p1, . . . , pk ∈ M . Let µ0 be an initial estimate of the Karcher mean. Set j = 0.

1: For each k = 1, . . . , N , compute the tangent vector vi such that vi = exp−1
µj (pi).

2: Compute the average direction v̄ = 1
N

∑N
k=1 vi.

3: If ∥v̄∥ is small, then stop. Else, update µj in the update direction using µj+1 = expµj (ϵv̄), where
ϵ > 0 is small step size (typically 0.5).

4: Set j = j + 1 and return to 1.

Given this definition, we can then define the mean curve of E directly as the Karcher mean function
in the Riemannian manifold L2([0, 1],Rd), defined as the minimizer of

arg min
x∈L2

(
N∑
k=1

∫ 1

0
(xi(t) − x(t))2dt

)
. (6.2)

This problem can be solved separately for each time point, given the cross-sectional or simply arithmetic
sample mean of {x1(t), . . . , xN (t)} that is

x̄(t) = 1
N

N∑
k=1

xk(t), for all k ∈ [0, 1]. (6.3)

The arithmetic mean shape can then be defined as the shape µ(arithm) of the mean: x̄(t) = µ(arithm)(s̄(t)),
where t 7→ s̄(t) is the arc-length function of x̄. However, this simple cross-sectional mean of E in
L2([0, 1],Rd) does not take into account potential variations in phase and shape among the curves.
Ignoring these variations can lead to a distorted or misleading mean representation, as the averaging
process does not appropriately account for these inherent differences and is dependent on rigid transfor-
mations. As outlined in Chapter 5, the focus of shape analysis is, therefore, to define the shape space
as a Riemannian manifold from an appropriate mathematical representation of the curves that remains
invariant under shape-preserving transformations (translation, rotation, scaling, and reparametrization).
The Karcher mean is then derived from this Riemannian geometry. This principle is used by Srivastava
et al. (2011) to define an alternative elastic mean shape of E based on the SRVF representations of
curves.

Karcher mean in the SRVF shape space. Suppose that xk ∈ AC0([0, 1],Rd) for all k = 1, . . . , N .
Using the geodesic distance d(SRVF)

S defined in equation (5.8), the SRVF mean µ(SRVF) ∈ AC0([0, 1],Rd)
is defined as

µ(SRVF) = arg min
µ

N∑
k=1

d
(SRVF)
S (xk, µ)2. (6.4)
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In practice, this comes down to computing the Karcher mean in the space of square-root velocity func-
tions. Let qk = RSRVF(xk) be the SRVF of the curve xk ∈ E . The problem that is effectively solved is
then

q∗
µ = arg min

qµ

N∑
k=1

inf
Ok∈SO(d)

hk∈Diff([0,1])

∫ 1

0

∥∥∥∥qµ(t) −Okqk(hk(t))
√
ḣk(t)

∥∥∥∥2

2
dt, (6.5)

and µ(SRVF) = R−1
SRVF(q∗

µ). It can be computed numerically using Algorithm 3. The tangent vectors in
step 1 are computed as follows: find the optimal (O∗

k, h
∗
k) that minimizes the distance between qµj and

qk, set q∗
k = O∗

k

√
ḣ∗
k(qk ◦ h∗

k), and compute:

vk = ϑk
sin(ϑk)

(q∗
k − cos(ϑk)qµj), where cos(ϑk) = ⟨qµj , q

∗
k⟩.

Moreover, the exponential map is given by expqµ(ϵ∥v̄∥) = cos(ϵ∥v̄∥)qµ + sin(ϵ∥v̄∥) v̄
∥v̄∥ .

The Karcher means defined in this section are formulated in terms of parameters or mathematical
representations of individual curves, such as the SRVF. However, they presume precise knowledge of
these parameters, which is not always the case in real-world scenarios. Especially when dealing with
noise in discrete curve observations, the calculation of these means relies on statistical estimators for
these representations, introducing potential non-negligible estimation errors that can significantly impact
the quality of the means. This preprocessing step, necessary to obtain estimators of the individual curve
representations under consideration, is typically not a primary focus in the literature on shape analysis,
as the estimation of the curve’s first derivative for SRVF computation is generally considered sufficiently
robust, employing classical smoothing techniques. However, in our context, the objective is to define
a mean shape based on the individual Frenet curvatures of a set of curves. As previously noted by
Srivastava and Klassen (2016) and emphasized in Chapter 3 and Chapter 4, due to their dependence
on higher-order derivatives, Frenet curvatures are particularly sensitive to observation noise. Therefore,
deriving mean shapes from the Frenet curvatures of curves poses a statistical challenge that necessitates
a cautious and robust approach within the framework of functional data modeling, given that Frenet
curvatures are functions in an infinite-dimensional space.

3 Direct Estimation of Frenet-based Mean Shapes by Preprocessing
In Chapter 5, we introduce two Riemannian geometries under specific shape representations of a Eu-
clidean curve x ∈ Rd based on its Frenet curvatures, each with distinct strengths and weaknesses. These
mathematical representations are the unparametrized Frenet curvatures Rθ (5.13) and the square-root
curvatures transform RSRC (5.26). We demonstrate that each induces a specific distance on the shape
space through the geodesic distance on the corresponding Riemannian manifold. Therefore, we can the-
oretically define the two corresponding Karcher mean shapes of the population of curves E . In practice,
a direct method for computing these Karcher means, given the statistical challenge of estimating Frenet
curvatures, is to consider the statistical estimation of the individual Frenet curvatures of each curve in
an efficient pre-processing step.

3.1 Karcher Mean in Frenet Curvatures Space

Suppose that for all k = 1, . . . , N , xk ∈ F ([0, 1],Rd) is a Frenet curve. Given the distance d(θ)
S , defined

in equation (5.19), the called Frenet curvatures mean shape µ(θ) is defined as

µ(θ) = arg min
µ

N∑
k=1

d
(θ)
S (xk, µ)2. (6.6)
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Again, this comes down to computing the Karcher mean in the Riemannian manifold of Frenet curvatures
H. Let θk ∈ H be the Frenet curvatures of xk ∈ E , supposed here to be known. Then, we search for the
optimal θ∗

µ that solve

θ∗
µ = arg min

θµ

N∑
k=1

∫ 1

0
∥θµ(s) − θk(s)∥2

2ds, (6.7)

and set µ(θ) = R−1
θ (θ∗

µ), with any parameterization as we are only interested in defining the mean
shape. The numerical computation of this mean does not require any alignment step and can be done
directly with Algorithm 3 given the exponential map and its inverse: let θ1,θ2 ∈ H, v ∈ Tθ1(H), we have
expθ1(v) = θ1 + v and exp−1

θ1
(θ2) = θ2 − θ1.

3.2 Karcher Mean in Square Root Curvatures Space

Suppose that for all k = 1, . . . , N , xk ∈ F ([0, 1],Rd) is a Frenet curve. Given the distance d(SRC)
S , defined

in equation (5.28), the SRC mean shape µ(SRC) is defined as

µ(SRC) = arg min
µ

N∑
k=1

d
(SRC)
S (xk, µ)2. (6.8)

In this case, as we are only interested in defining the mean shape function, we can use the reformulation
principle of Brunel and Park (2019) (5.31) and directly solve the following problem

θ∗
µ = arg min

θµ∈H

N∑
k=1

inf
γk∈Diff+([0,1])

∫ 1

0

∥∥∥∥∥∥ θµ(s)√
∥θµ(s)∥

−
√
γ′
k(s)

θk(γk(s))√
∥θk(γk(s))∥

∥∥∥∥∥∥
2

2

+ ∥1 − γ′
k(s)∥2

2ds , (6.9)

where θk are the Frenet curvatures of xk ∈ E , supposed to be known. Then the mean µ(SRC) is recon-
struct by solving the Frenet-Serret ODE with the parameter θ∗

µ. In practice, the numerical computation
of θ∗

µ can also be done with Algorithm 3. An additional step for computing the optimal warping func-
tion γk ∈ Diff+([0, 1]) solutions of the registration problems in (6.9) must be done before step 1 of the
algorithm. Then the tangent vectors are computed as vk =

√
γ′
k(s)

θk(γk(s))√
∥θk(γk(s))∥

− θµ(s)√
∥θµ(s)∥

.

These two Karcher means (Frenet curvatures and SRC) and the SRVF one reflect the strengths and
weaknesses of each of the corresponding Riemannian geometries. Indeed, computing these means on
the synthetic data examples from Chapter 5 used to compute the pairwise distance matrices, where the
exact Frenet curvatures functions of the curves are known, effectively summarizes the earlier analysis,
as illustrated in Figure 6.1. Only the SRC mean shape is consistent, in all cases, with the shapes of the
considered curves.

3.3 Preprocessing of Individual Frenet Curvatures

As mentioned earlier, in a typical application scenario, the Frenet curvatures θk are not known, and the
corresponding curves, xk ∈ E , are only observed discretely and with noise. Therefore, the previously
defined Karcher means associated with the FC and SRC representations cannot be directly employed. In
this section, the proposed method to approximate these Karcher means (FC and SRC) while accounting
for observation noise involves first estimating each individual vector-valued function of Frenet curvatures
in a preprocessing step. This preprocessing step must be particularly effective since the estimation of
Frenet curvatures is highly sensitive to observation noise.
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(a) Karcher means of loops considered in Figure 5.5 (b) Karcher means of spirals considered in Figure 5.8

(c) Karcher means of helices considered in Figure 5.11

Figure 6.1: Karcher means under SRVF representation (green), SRC representation (blue) and Frenet
Curvatures representation (pink) on the three cases of synthetic data considered in Chapter 5.

Various methods are proposed in the literature to estimate Frenet curvatures for a single curve.
The most common method relies on a smooth estimation of the first d derivatives of the Euclidean
curve, followed by the application of the extrinsic formulas of Frenet curvatures from the derivatives
(Kim et al., 2013; Sangalli et al., 2009; Lewiner et al., 2005). Park and Brunel (2019) propose more
efficient and robust alternatives based on smooth estimation of the Frenet path, followed by minimizing
a least squares criterion adapted to the geometry of the problem and the Lie group SO(d) in which the
variables lie. In this thesis, these methods are thoroughly detailed in Chapter 3. Additionally, we propose
in Chapter 4 a promising alternative method to estimate latent variables in the Frenet framework directly
from observations of the Euclidean curve using an Expectation-Maximization algorithm in the Lie group
SE(3). We do not delve into these various methods again in this chapter. Moreover, this preprocessing
method involves estimating the Frenet curvatures of each curve individually and independently of each
other. Consequently, their means will reflect the strengths and weaknesses of each of these estimation
methods highlighted in the simulation studies of Part I.

The scope of this chapter is not to re-compare these methods through mean calculations but to
introduce different global approaches to approximate Karcher means defined from Frenet curvatures.
Thus, in this chapter, to compare this method based on the preprocessing of individual Frenet curvatures
with the methods introduced in the following section, we consider the estimation method introduced by
Park and Brunel (2019) (Algorithm 1 of Chapter 3) and summarized here. First, the d first derivatives
of the curve xk ∈ E are estimated using a local polynomial regression, and then an estimator of the
Frenet path Q̂k is computed with the Gram-Schmidt orthonormalization process. Given this estimator,
the estimator of the Frenet curvatures θ̂k is done by solving the following minimization problem,

θ̂k;h,λ = arg min
θ

Jh,λ(θ|Q̂k), (6.10)

where

Jh,λ(θ|Q̂k) =
∫ 1

0

∫ 1

0
Kh(t− s)

∥∥∥∥log
(
Q̂k(t)T Q̂k(s) exp

(
(t− s)Aθ

(
t+ s

2

)))∥∥∥∥2

F
dtds+ λ

∫ 1

0
∥θ′′(t)∥2dt ,

(6.11)
K(·) is a kernel function with compact support, e.g. K(u) = 3

4(1−u)2
1[−1,1](u) andKh(u) = (1/h)K(u/h).

The kernel K(·) and the bandwidth h define a prediction horizon for the flow. The regularization pa-
rameters λ is a hyperparameter that controls the amounts of smoothing of θ. This estimation method
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is demonstrated in Part I, in comparison with others, to be sufficient for obtaining good estimators in
cases where there is not too much noise or the geometry of the curve is not too complex. In other cases,
it may tend to provide a somewhat overly smoothed estimator.

Finally, by applying this Frenet curvatures estimation method on each curve in E individually, the FC
and SRC Karcher means can be approximated by using the formulas (6.6) and (6.8) given the estimators{

θ̂1, . . . , θ̂N
}

. In the following, we will denote these approximated mean shapes as µ̂(θ) and µ̂(SRC).

4 Estimation of Frenet-based Mean Shapes in a Unified Functional
Data Modelling Framework

Unlike the classical framework of shape analysis presented in Section 2, the initial objective of Park and
Brunel (2019) was not on defining a proper metric on the shape space to define a Karcher mean. They
were interested in developing a statistical characterization of a mean shape that enables the identification
of the mean geometry and mean Frenet curvatures. Therefore, in their initial formulation, they do not
assume the existence of a generative model for the mean shape or the mean parameter in relation to
individual Frenet paths or curvatures but directly exploit the characteristic features of the Frenet paths
as the solution of the ODEs, and consider the ODE as a model constraint.

However, we propose here to make the link between their definition and the shape analysis framework.
By bridging this gap, we demonstrate that, through their formulation of the mean Frenet curvatures
parameter optimization criterion, Park and Brunel (2019) attempt to approximate the Karcher mean in
the shape space defined by Frenet curvatures representations (5.13), employing a regularization approach
(Section 4.2). In fact, they provide an alternative approach to estimating Frenet-based Karcher means
by directly modeling noise through the characterization of the mean parameter within a functional
data modeling framework. Building upon these observations, we leverage their idea and formulation by
proposing new methods to approximate Frenet-based mean shape definitions that exhibit more “elastic”
properties (Section 4.3 and Section 4.4). In particular, we introduce a similar regularization approach to
estimate the Karcher mean in the space of SRCs from noisy observations where curvatures parameters
are not known (Section 4.4).

4.1 Statistical Characterization of Mean Frenet Curvatures via the Mean Frenet
Vector Field

This section presents the statistical characterization and definition of the mean Frenet curvatures pa-
rameter proposed by Park and Brunel (2019).

4.1.1 Problem Formulation

Recall that any curve xk ∈ E can be expressed as xk(t) = Xk(sk(t)), where sk(t) =
∫ t

0 ∥ẋk(u)∥ du is
the corresponding arc-lenght function. The shape function Xk is associated with a Frenet-Serret ODE
parametrized with respect to the functional parameter θk corresponding to the Frenet curvatures:

Xk(s) = Xk0 +Qk0

∫ s

0
Tθk(u) du , Q′

k(s) = Qk(s)Aθk(s) .

Consequently, one can identify the shapes with the Frenet paths Q = {Q1, . . . , QN}, or equivalently
with the set of Frenet curvatures Θ = {θ1, . . . ,θN}. The aim is then to derive a mean parameter θ̄ (and
mean Frenet path Q̄) for E as a measure of centrality that corresponds to the mean shape defined as

X̄(s) = X̄0 + Q̄0

∫ s

0
Tθ̄(u) du , Q̄′(s) = Q̄(s)Aθ̄(s) ,
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which is independent of the variations in translations, rotations, and scalings. This parametrization
of curves shows that the quotient space of arclength parametrized curves (under the group action of
Euclidean motions) can be identified as the space of Frenet paths F0 (defined in (2.47)). Hence, working
with a population of Frenet paths can be sufficient to define a mean shape.

A fundamental concept in solving ordinary differential equations lies in the concept of the flow over
time t, which was introduced in Section 3.2 of Chapter 3. Here, we are dealing with a Frenet-Serret ODE
that is parameterized by Frenet curvatures θk. The corresponding flow of this ODE, denoted as φθk(t, ·),
is defined as φθk(t, Q0) = Qk(t), where Qk(0) = Q0 ∈ SO(d). As the mapping t 7→ Qk(t) represents the
Frenet path solution of the Frenet-Serret ODE, its dependency on the parameter θk inherently extends
to the flow of the ODE as well. Therefore, one can see that the geometrical features θk define the vector
field Q 7→ QAθk(s), and that the observable features such as Frenet paths are in fact the corresponding
flows φθk .

4.1.2 Mean Frenet Curvatures Definition

Taking these observations into account, Park and Brunel (2019) propose a method for defining the
mean shape through the mean Frenet curvatures parameter, which involves averaging the vector fields
Q 7→ QAθk(s). They introduce the notion of a mean vector field, defined on SO(d), such that its solution
paths are close to the individual Frenet paths Qk, k = 1, . . . , N . In other words, the mean vector field
corresponds to the flow that provides a best approximation to all the individual flows.

As already introduced in Section 5 of Chapter 3, the group property of the flow, which can be
interpreted as the self-prediction property (3.17), defines the following characterization between the
solution of the ODE and the corresponding flow: the curve s 7→ Q(s) is a solution to Q′ = QAθ if and
only if ∫ 1

0

∫ 1

0
d (Q(t), φθ (t− s, s,Q(s)))2 dsdt = 0, (6.12)

where d(·, ·) is a distance defined on SO(d). Therefore, as we want to replace θk by a common θ̄,
we require that the mean flow φθ̄ should minimize the self-prediction errors for all the trajectories
simultaneously. The individual error is measured by

V(Qk, φθ) =
∫ 1

0

∫ 1

0
d (Qk(t), φθ (t− s, s,Qk(s)))2 dsdt . (6.13)

Definition 6.2. Let Qk ∈ SO(p), k = 1, . . . , N be the independent and identically distributed random
Frenet paths with the same distribution as Q, associated with parameters θk ∈ H satisfying Q′

k = QkAθk .
The mean parameter for the Frenet path Q is defined as

θ̄ = arg min
θ∈H

E{V(Q,φθ)} .

A noticeable feature of their formulation through the ODE flow is that they do not use the infinites-
imal characterization of the differential equation based on the derivative.

The essential ingredients of this mean parameter definition based on the self-prediction criterion
(6.13) are the distance function d and the representation of the flow φθ. The choice of these needs
to be adapted to the underlying sample space. The Frenet differential equation is defined on the Lie
group SO(d). Therefore, ensuring the orthogonality constraint requires special treatment in developing
a numerical algorithm to solve an ODE and also in tackling a parameter estimation problem in ODE, as
numerical errors can accumulate and induce an uncontrolled bias. The extension of the theory of ODEs
from Euclidean space to Lie groups or manifolds is well developed (Hairer et al., 2006). In particular,
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the rotation group SO(d) is a Lie Group that is also a differentiable manifold, with many remarkable
properties that are essential in tackling the numerical problems (Absil et al., 2010). These backgrounds
are introduced and detailed in Section 3 of Chapter 3.

4.2 Mean Parameter Estimation using the Geodesic Distance on SO(d)-valued Curves

Suppose that we have a sample of Frenet paths {Q1, . . . , QN} with the corresponding parameters
{θ1, . . . ,θN}. Park and Brunel (2019) develop an empirical criterion to construct an estimator of the
mean parameter θ̄ from the previous definition, in the spirit of a nonparametric function estimation
problem. Their criterion depends on their specific choice for the distance on the space of SO(d)-valued
curve in the self-prediction criterion (6.13), that is, the SO(d) geodesic distance on the unparametrized
Frenet paths. But also, it depends on the approximation of the flow they considered, which is based
on the Magnus expansion. We detail the construction of their criterion in this section and demonstrate
how it can be approximated as a weighted and regularized optimization criterion for the Karcher mean
in the space of unparameterized Frenet curvatures H (6.6).

4.2.1 Estimation Criterion

From the Riemannian metric on SO(d) (3.11), the geodesic distance in the space of measurable functions
from [0, 1] → SO(d) is defined as follows. Given P1, P2 ∈ L2([0, 1], SO(d)),

d1(P1, P2)2 =
∫ 1

0
∥ log(P1(t)TP2(t))∥2

Fdt. (6.14)

In addition, as detailed in Section 3 of Chapter 3, the flow can be approximated from Theorem 3.1 as,
for all t, s ∈ [0, 1] such that |t− s| ≤ 1,

φθ(t− s, s,Qk(s)) = Qk(s) exp(Ω(t− s, s; θ)) , (6.15)

where Ω is the Magnus expansion (3.20). By combining this choice of distance with the flow approxima-
tion, the criterion (6.13) can be expressed as, for k = 1, . . . , N

V1(Qk, φθ) =
∫ 1

0
d1(Qk, φθ(·, s,Qk(s)))2ds (6.16)

=
∫ 1

0

∫ 1

0

∥∥∥log
(
Qk(t)TQk(s) exp (Ω(t− s, s; θ))

)∥∥∥2

F
dtds . (6.17)

To allow for varying degrees of precision in the self-prediction, we incorporate weights according to the
distance to initial values s in evaluating the solution at t and define a weighted criterion:

ℓ̆
(1)
N,h(θ) = 1

N

N∑
k=1

∫ 1

0

∫ 1

0
Kh(t− s)∥ log

(
Qk(t)TQk(s) exp (Ω(t− s, s; θ))

)
∥2
F dsdt , (6.18)

where K(·) is a kernel function with compact support, e.g. K(u) = 3
4(1 − u)21[−1,1](u). The scaled

kernel is denoted by Kh(u) = (1/h)K(u/h). The kernel K(·) and the bandwidth h define a prediction
horizon for the flow. In addition, we introduce a smooth regularization for functional parameter θ with
a penalty term

Pλ(θ) = λ∥θ′′∥2
2 = λ

∫ 1

0
∥θ′′(t)∥2dt , (6.19)

and define the empirical criterion as Ĭ (1)
h,λ (θ) = ℓ̆

(1)
h (θ) + Pλ(θ).
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Definition 6.3. Let {Q1, . . . , QN} be a sample of Frenet paths with parameters of Frenet curvatures
θ1, . . . ,θN . For a fixed h and λ, the sample mean vector field (or Frenet curvatures) is defined as the
parameter θ̆

(1)
h,λ which minimizes the global prediction error Ĭ (1)

h,λ (θ):

θ̆
(1)
h,λ ∈ arg min

θ∈H
Ĭ (1)
h,λ (θ) . (6.20)

This definition can be viewed as a generalization of the mean in the scale-space view in nonparametric
curve estimation (Chaudhuri and Marron, 2000; Wei and Panaretos, 2018).

Remark 6.1. If the set of curves E is composed of a single curve x0, the empirical criterion Ĭ (1)
h,λ (θ)

defined here to find the mean parameter corresponds to the one defined in Section 5 of Chapter 3 for the
estimation of the Frenet curvatures θ0 associated with the curve x0. Therefore, in this case, the mean
Frenet curvatures parameter is simply defined as the Frenet curvatures of the only curve composing E.
Note that it corresponds to the estimation criterion of the Frenet curvatures of a single curve used in
Section 3 in the preprocessing step.

From the definition of the mean Frenet curvatures θ̆
(1)
h,λ we can also define the mean Frenet path

Q̆
(1)
h,λ(t) = exp(Ω(t, 0, θ̆ (1)

h,λ)) and the corresponding mean shape X̆ (1)
h,λ obtained by integrating the gradient.

However, it is rather difficult to compute this corresponding mean or to analyze it. Since the expression
of Ω is generally intractable, we further derive a consistent approximation to the flow by truncating the
Magnus expansion, see Hairer et al. (2006). In particular, we use the approximation of order 2 introduced
in equation (3.21), which used a simple quadrature rule with the midpoint and a truncation after the
first term of the Magnus expansion: Qs+h = Qs exp

(
hAθ

(
s+ h

2

))
, i.e. φθ(h, s,Qs) − Qs+h = O(h2).

Using this approximation of the flow, we introduce an approximation, I (1)
h,λ (θ) = ℓ

(1)
N,h(θ) + Pλ(θ), to the

criterion Ĭ (1)
h,λ and θ̆

(1)
h,λ valid for small h where

ℓ
(1)
N,h(θ) = 1

N

N∑
k=1

∫ 1

0

∫ 1

0
Kh(t− s)

∥∥∥∥log
(
Qk(t)TQk(s) exp

(
(t− s)Aθ

(
s+ t

2

)))∥∥∥∥2

F
dsdt .

The following proposition shows that, at first approximation, this approach is tractable and can be easily
understood in terms of the geometry of the curves.

Proposition 6.1. Let Q1, . . . , QN be Frenet paths with parameters θk, k = 1, . . . , N in H, satisfying
∥θk∥2

2 ≤ π
2 . Then, there exists B > 0, such that for all ∥θ∥2 ≤ B,

Ĭ (1)
h,λ (θ) − I (1)

h,λ (θ) = O(h3).

Proof. Because the Qks are Frenet paths, the main point is to provide a tractable approximation for the
geodesic distance ∥ log (exp (−Ω(t− s, s; θk)) exp (Ω(t− s, s; θ))) ∥2

F . If ∥θk∥2
2 ≤ π

2 and ∥θ∥2
2 ≤ π

2 , we can
use the Magnus expansion of Ω. The objective is to show that Ω can be replaced by the first terms of
the Magnus expansion for small t− s. Indeed, for all s, we have Ωθ(s+ h, s) − Ω[m]

θ (s+ h, s) = O(h2m)
where Ω[m]

θ is the truncation at level m:

∆(θ,θk) = log (exp (−Ω(t− s, s; θk)) exp (Ω(t− s, s; θ)))
= log

(
exp

(
−Ω[m](t− s, s; θk) +R

[m]
k

)
exp

(
Ω[m](t− s, s; θ) +R[m]

))
For small t− s, the Baker-Campbell-Hausdorff, defined in Theorem 2.2, states that

log (exp ((t− s)B(s)) exp ((t− s)C(s))) =
∑
n≥1

(t− s)nzn (B(s), C(s))
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with zn (B(s), C(s)) a homogeneous Lie polynomial of order m. The main term is z1 = B(s) +C(s) and
z2 = 1

2 [B(s), C(s)]. This means that

∆(θ,θk) =
∑
n≥1

(t− s)nzn
(

− 1
t− s

Ω(t− s, s; θk),
1

t− s
Ω(t− s, s; θ)

)

=(t− s)
( 1
t− s

Ω(t− s, s; θ) − 1
t− s

Ω(t− s, s; θk)
)

+ (t− s)2
[ 1
t− s

Ω(t− s, s; θ), 1
t− s

Ω(t− s, s; θk)
]

+ (t− s)3 ∑
n≥0

(t− s)nzn+3 (Ω(t− s, s; θk),Ω(t− s, s; θ))

=(t− s)
( 1
t− s

Ω(t− s, s; θ) − 1
t− s

Ω(t− s, s; θk)
)

+ (t− s)2G(θ,θk)

where G is a smooth bounded function (because ∑n≥0(t−s)nzn+3 (Ω(t− s, s; θk),Ω(t− s, s; θ)) is also a
smooth and bounded function). For order m = 1, for any θ, we have 1

t−sΩ[1](t−s, s; θ) = 1
t−s

∫ t
s Aθ(u)du.

From Theorem 4.2 in Iserles et al. (2000), truncating at order 1 provides an approximation of order 2,
meaning that

1
t− s

{
Ω(t− s, s; θ) −

∫ t

s
Aθ(u)du

}
= C(θ) (t− s) (6.21)

(with C(·) bounded function). By using the approximation in (6.21), we obtain a first-order approxima-
tion, i.e.

∆(θ,θk) = (t− s)
( 1
t− s

∫ t

s
Aθ(u)du− 1

t− s

∫ t

s
Aθk(u)du

)
+ C(θ) (t− s)2 + (t− s)2G(θ,θk)

= (t− s)
( 1
t− s

∫ t

s
Aθ(u)du− 1

t− s

∫ t

s
Aθk(u)du

)
+ C1(θ,θk) (t− s)2

We propose to replace the integrand with a simple quadrature. This is the computational basis for the
geometric integration of ODE in Lie groups (see Iserles et al. (2000)). This approximation is derived
from the simple midpoint quadrature rule for integrating

1
t− s

∫ t

s
Aθ(u)du = Aθ

(
s+ t− s

2

)
+ c∥θ′∥∞ × (t− s)

Our final approximation is then

∆(θ,θk) = (t− s)
(
Aθ

(
s+ t− s

2

)
−Aθk

(
s+ t− s

2

))
+ (t− s)2 {C1(θ,θk) + c∥θ′∥∞

}
.

The same approximation shows that∣∣∣Ī (1)
h,λ (θ) − I (1)

h,λ (θ)
∣∣∣ ≤

∫∫
Kh(t− s)∥∆(θ,θk)∥2dtds

≤
N∑
k=1

C2(θ,θk)
∫ 1

0

∫ 1

0
Kh(t− s)|t− s|3dtds

≤ σ3
Kh

3
N∑
k=1

C2(θ,θk)

When h → 0, the convergence of θ 7→ Ĭ (1)
h,λ (θ) to θ 7→ I (1)

h,λ (θ) is then uniform on a bounded set in H. ■
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4.2.2 Limitations

The criterion considered by Park and Brunel (2019) for the estimation of the mean parameter θ̄ is the ap-
proximated criterion I (1)

h,λ (θ) = ℓ
(1)
N,h(θ)+Pλ(θ). In the proof of the Proposition 6.1, we have obtained the

simpler approximation of order 2 of the expression ∆(θ,θk) = log
(
Qk(t)TQk(s) exp

(
(t− s)Aθ

(
s+t

2
)))

,
that is,

∆(θ,θk) = (t− s)
(
Aθ

(
t+ s

2

)
−Aθk

(
t+ s

2

))
+ (t− s)2C2(θ,θk). (6.22)

Therefore the criterion ℓ
(1)
N,h(θ) can be approximated, using Proposition 5.3, as

ℓ
(1)
N,h(θ) = 1

N

N∑
k=1

∫ 1

0

∫ 1

0
Kh(t− s)

∥∥∥∥(t− s)
(
Aθ

(
t+ s

2

)
−Aθk

(
t+ s

2

))
+ (t− s)2C2(θ,θk)

∥∥∥∥2

F
dsdt

= 1
N

N∑
k=1

∫ 1

0

∫ 1

0
Kh(t− s)(t− s)2

∥∥∥∥(Aθ

(
t+ s

2

)
−Aθk

(
t+ s

2

))∥∥∥∥2

F
dsdt+O

(
h3
)

= 1
N

N∑
k=1

∫ 1

0

∫ 1

0
Kh(t− s)(t− s)2

∥∥∥∥θ( t+ s

2

)
− θk

(
t+ s

2

)∥∥∥∥2

2
dsdt+O

(
h3
)

Then, the used criterion I (1)
h,λ (θ) is approximated for small h as

I (1)
h,λ (θ) = σ2

Kh
2

N

N∑
k=1

∥θ − θk∥2
L2 +O(h3) + λ

∫ 1

0
∥θ′′(t)∥2dt. (6.23)

Interestingly, this shows that the mean parameter defined through the mean of vector fields and obtained
by minimization of I (1)

h,λ (θ), can be approximated for small h by the empirical mean of the individual
Frenet curvatures. However, the criterion I (1)

h,λ (θ) is defined based on Frenet paths parameterized by
arc-length. The approximation derived in equation (6.23) can then be interpreted as a weighted and
penalized criterion for the computation of the Karcher mean in the space of unparameterized Frenet
curvatures H (6.6). Consequently, with this approximation, it becomes evident that the estimated mean
shape proposed in Park and Brunel (2019) shares the same drawbacks of lack of elasticity highlighted
with the unparametrized Frenet curvatures Riemannian geometry (Figure 6.1), as it does not account
for parametrization in its original formulation. Indeed, in their framework, Frenet paths are considered
parametrized by arc length and, therefore, already independent of any time-reparametrization of the
Euclidean curves. However, the modeling within a functional data framework they propose is particularly
interesting from a statistical perspective because it introduces an alternative approach to approximating
Karcher means by defining a unique criterion for estimating the mean parameter from Frenet paths
observations, thus modeling the overall noise of the data in a unified manner.

4.3 Mean Parameter Estimation using an "Elastic" Geodesic Distance on SO(d)-
valued Curves

To obtain an estimation criterion for the mean parameter with more “elastic” properties (more similar
to frameworks defined by the SRVF or the SRC), we propose in this section a first extension of their
approach by changing the distance on SO(d)-valued curves considered in the derivation of the self-
prediction criterion (6.13).

120



4. Estimation of Frenet-based Mean Shapes in a Unified Functional Data Modelling Framework

4.3.1 Choice of the Distance

As highlighted in Chapter 5 and suggested by Srivastava and Klassen (2016), it is essential to adopt a
curve representation that is dependent on the parameterization to establish a more elastic metric or cri-
terion, facilitated by the registration problem that parameterization necessitates. For time-parametrized
curves x0 and x1 ∈ L2([0, 1],Rd), the registration problem is motivated by finding the most appropriate
warping function h ∈ Diff+([0, 1]) such that the two curves x1(h(t)) and x0(t) look similar. Then, we
have

x0(t) = X0(s0(t)) , x1(h(t)) = X1(s1(h(t))) ,

and the corresponding time-parametrized Frenet paths are Q0(s0(t)) and Q1(s1(h(t))). In order to use
the idea and framework developed by Park and Brunel (2019) and detailed in the previous section, it
is natural to express the registration problem between x0 and x1 in terms of the Frenet paths. As
their framework is developed with arc-length parametrized Frenet paths, we consider the reformulation
principle (Brunel and Park, 2019) s1 ◦ h = γ ◦ s0, where γ ∈ Diff+([0, 1]). With this reformulation, the
registration problem now consists of finding the optimal γ ∈ Diff+([0, 1]) such that the two Frenet paths
Q0(s0(t)) and Q1(γ(s0(t))) look similar. Now, note that the Frenet path s 7→ Q̃1(s) = Q1(γ(s)) is a
solution of the following Frenet-Serret ODE (Brunel and Park, 2019):

Q̃′
1(s) = Q′

1(γ(s))γ′(s)
= Q1 (γ(s))Aθ1(γ(s))γ′(s)
= Q̃1(s)Aθ̃1

(s) ,
(6.24)

and so we have
θ̃1(s) = θ1(γ(s))γ′(s) . (6.25)

Therefore, the flow of this ODE also satisfies the self-prediction property (3.17): for all u, s ∈ [0, 1] such
that |u− s| ≤ 1, we have

Q̃1(u) = Q1(γ(u)) = φθ̃1
(u− s, s, Q̃1(s)) = φθ1(γ)γ′(u− s, s, Q̃1(s)) . (6.26)

This suggests to consider the elastic distance on the measurable curves from [0, 1] → SO(d) defined, for
P1, P2 ∈ L2([0, 1], SO(d)), as

d2(P1, P2)2 = inf
γ∈Diff+([0,1])

∫ 1

0
∥ log(P1(u)TP2(γ(u)))∥2

Fdu . (6.27)

4.3.2 Estimation Criterion

By using this distance d2 and the flow approximation given by the Magnus expansion (Theorem 3.1),
the criterion (6.13) can be expressed as, for k = 1, . . . , N ,

V2(Qk, φθ) =
∫ 1

0
d2(Qk, φθ(·, s,Qk(s)))ds (6.28)

= inf
γ∈Diff+([0,1])

∫ 1

0
d1(Qk, φθ(γ)γ′(·, s,Qk(s)))ds (6.29)

= inf
γ∈Diff+([0,1])

∫ 1

0

∫ 1

0

∥∥∥log
(
Qk(t)TQk(s) exp

(
Ω(t− s, s; θ(γ)γ′)

))∥∥∥2

F
dtds . (6.30)

Then the two estimation criteria V1 and V2 are related by

V2(Qk, φθ) = inf
γ∈ΓS

V1(Qk, φθ(γ)γ′) . (6.31)
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The relation (6.25) defines a “spatial” or geometric registration based on the family of deformations
defined as θ 7→ γ · θ = γ′θ ◦ γ, for any increasing diffeomorphism γ. This is a group action, i.e. for all
γ1, γ2 diffeomorphisms, and any Frenet curvatures θ ∈ H, we have

(γ2 ◦ γ1) · θ = γ2 · (γ1 · θ) . (6.32)

Note that the stretching action by warping does not permit transforming any geometry into another.
Indeed, if θ0 and θ1 are two generalised curvatures in a 3-dimensional space, such that the torsion τ0 > 0
and τ1 < 0, then we cannot find γ such that γ′τ1(γ) = τ0 (Brunel and Park, 2019). Thus, our mean
parameter is identified as the solution to a constrained minimization problem.

Following the derivation of the criterion Ĭ (1)
h,λ (θ) (6.18) proposed by Park and Brunel (2019), we define

the new criterion Ĭ (2)
h,λ,σ(θ) = ℓ̆

(2)
h,σ(θ) + Pλ(θ) for the estimation of the mean parameter where Pλ(θ) is

a penalty term on θ defined as in (6.19),

ℓ̆
(2)
h,σ(θ) = 1

N

N∑
k=1

inf
γk


∫∫

[0,1]

Kh(t− s)∥ log
(
Qk(t)TQk(s) exp (Ω(t− s, s; θ · γk))

)
∥2
F dsdt+ P̃σ(γk)

 ,
(6.33)

and P̃σ(γk) is an additional penalty term to ensure the smoothness of the optimal warping functions
γk ∈ Diff+([0, 1]) and control the amount of warping with the coefficient σ > 0. This penalty term is
defined as

P̃σ(γ) = σ

∫ 1

0
∥γ′(s) − 1∥2ds. (6.34)

Definition 6.4. Let {Q1, . . . , QN} be a sample of Frenet paths with parameters of Frenet curvatures
θ1, . . . ,θN . For a fixed h, λ and σ, the sample mean vector field (or Frenet curvatures) is defined as the
parameter θ̆

(2)
h,λ,σ which minimizes the global prediction error Ĭ (2)

h,λ,σ(θ):

θ̆
(2)
h,λ,σ ∈ arg min

θ∈H
Ĭ (2)
h,λ,σ(θ) . (6.35)

As previously mentioned, we can also define the mean Frenet path Q̆
(2)
h,λ,σ(t) = exp

(
Ω(t, 0, θ̆ (2)

h,λ,σ)
)

and the corresponding mean shape X̆
(2)
h,λ,σ obtained by integrating the gradient. For their practical

computation, we consider the same approximation of the flow as previously, using the Magnus expansion,
leading to the approximated criterion I (2)

h,λ,σ(θ) = ℓ
(2)
h,σ(θ) + Pλ(θ), where the first term in ℓ

(2)
h,σ(θ) is∫∫

[0,1]

Kh(t− s)
∥∥∥∥log

(
Qk(t)TQk(s) exp

(
(t− s)Aθ

(
γk

(
s+ t

2

))
γ′
k

(
s+ t

2

)))∥∥∥∥2

F
dsdt . (6.36)

Then, Proposition 6.1 is also true for the criterions I(2)
h,λ,σ(θ) and Ĭ(2)

h,λ,σ(θ) and verified by the same
demonstration. By denoting ∆(2)(θ,θk) = log

(
Qk(t)TQk(s) exp

(
(t− s)Aθ

(
γk
(
s+t

2
))
γ′
k

(
s+t

2
)))

we can
derive, similarly to the previous case, the approximation

∆(2)(θ,θk) = (t− s)
(
γ′
k

(
s+ t

2

)
Aθ

(
γk

(
s+ t

2

))
−Aθk

(
s+ t

2

))
+ (t− s)2C2(θ,θk) . (6.37)

Therefore, the criterion I(2)
h,λ,σ(θ) can be approximated as

I(2)
h,λ,σ(θ) = 1

N

N∑
k=1

inf
γk∈Diff([0,1])

{
2σ2

Kh
2∥θk − θ · γk∥2

L2 + σ

∫ 1

0
∥γ′

k(t) − 1∥2dt

}
+ λ

∫ 1

0
∥θ′′(t)∥2dt+O(h3).

(6.38)
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The approximation of the criterion I(2)
h,λ,σ(θ) obtained in (6.38), has the form of a weighted and

regularized criterion for the optimization of a “elastic” Karcher mean in the space of Frenet curvatures
H. Therefore, given this new estimated mean parameter, we expect to obtain a mean shape closer to
the Karcher mean in the SRC space. Indeed, as mentioned in Remark 5.1, the registration problem
considered here differs from the SRC one (5.31) only in the template under consideration and deformed:
here this is θ, and not θ

∥
√

θ∥ as in the case of the SRC transform. Furthermore, a significant difference
arises in that the group action (θ · γ)(s) = θ(γ(s))γ′(s) is not symmetric with respect to the L2 norm,
unlike the group action of Diff+([0, 1]) on the SRC transform. However, one approach to address this
issue would be to consider an L1 norm instead, under which the group action θ · γ becomes symmetric.

4.4 Mean Parameter Estimation using the "Elastic" SRV Distance on SO(d)-valued
Curves

In this section, we aim to define a criterion for optimizing the mean parameter based on the “regularization-
based” approach of Park and Brunel (2019), which approximates the parameter corresponding to the
Karcher mean in the space of SRCs. For this purpose, we choose this time to use the SRV distance on
SO(d)-valued curves to derive the explicit expression of the self-prediction criterion (6.13).

4.4.1 Choice of the Distance

We have introduced the SRV Transform for curves on SO(d) in Definition 5.1 of Chapter 5, that is, for
P ∈ L2([0, 1], SO(d)), q(P )(t) = P (t)T Ṗ (t)/

√
∥Ṗ (t)∥F . This gives rise to the SRV distance between two

parametrized curves on SO(d) (Bauer et al., 2021):

d(P1, P2)2 = ∥ log(P1(0)TP2(0))∥2
F +

∫ 1

0
∥q(P1)(u) − q(P2)(u)∥2

Fdu. (6.39)

By approaching the problem from time-parametrized curves as before, we extend this distance on the
quotient space L2([0, 1], SO(d))/Diff([0, 1]), that is,

d3(P1, P2)2 = ∥ log(P1(0)TP2(0))∥2
F + inf

γ∈Diff([0,1])

∫ 1

0
∥q(P1)(u) − q(P2 ◦ γ)(u)∥2

Fdu. (6.40)

4.4.2 Estimation Criterion

Again, this new distance can be used to derive an explicit expression of the self-prediction criterion
(6.13), instead of the geodesic distance used to derive the estimation criteria Ĭ (1)

h,λ (θ) and Ĭ (2)
h,λ,σ(θ). In

this case, the self-prediction error criterion V3(Qk, φθ) is written as

V3(Qk, φθ) =
∫ 1

0
d3(Qk, φθ(·, s,Qk(s)))ds (6.41)

= inf
γ∈Diff+([0,1])

∫ 1

0

∫ 1

0
∥q(Qk)(t) − q(φθ(γ)γ′(·, s,Qk(s))(t)∥2

F dtds. (6.42)

Now, instead of considering the Magnus approximation of the flow, we can directly notice that from
the definition of the flow we have φθ(γ)γ′(t − s, s,Qk(s)) = Q̃(t) such that Q̃′(t) = Q̃(t)Aθ̃(t) with
θ̃(t) = θ(γ(t))γ′(t) and Q̃(s) = Qk(s). Thus, the SRV transform of the flow can be expressed as

q
(
φθ(γ)γ′(t− s, s,Qk(s)

)
= Aθ̃(t)√

∥Aθ̃(t)∥F
=
√
γ′(t) Aθ(γ(t))√

∥Aθ(γ(t))∥F
, (6.43)
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which no longer depends on the variable s. Therefore, the self-prediction error criterion V3(Qk, φθ) is
simply

V3(Qk, φθ) = inf
γ∈Diff+([0,1])

∫ 1

0

∥∥∥∥∥q(Qk)(t) −
√
γ′(t) Aθ(γ(t))√

∥Aθ(γ(t))∥F

∥∥∥∥∥
2

F

dt . (6.44)

From this, we can define the estimation criterion Ĭ(3)
h,λ,σ(θ) = ℓ̆

(3)
h,σ(θ)+Pλ(θ) of the mean parameter with

ℓ̆
(3)
h,σ(θ) = 1

N

N∑
k=1

inf
γk


∫

[0,1]

∥∥∥∥∥q(Qk)(t) −
√
γ′
k(t)

Aθ(γk(t))√
∥Aθ(γk(t))∥F

∥∥∥∥∥
2

F

dtds+ P̃σ(γk)

 . (6.45)

Definition 6.5. Let {Q1, . . . , QN} be a sample of Frenet paths with parameters of Frenet curvatures
θ1, . . . ,θN . For a fixed h, λ and σ, the sample mean vector field (or Frenet curvatures) is defined as the
parameter θ̆

(3)
h,λ,σ which minimizes the global prediction error Ĭ (3)

h,λ,σ(θ):

θ̆
(3)
h,λ,σ ∈ arg min

θ∈H
Ĭ (3)
h,λ,σ(θ) . (6.46)

We define then the corresponding mean Frenet Path Q̆
(3)
h,λ,σ(t) = exp

(
Ω(t, 0, θ̆ (3)

h,λ,σ)
)

and the mean
shape X̆ (3)

h,λ,σ. In this case, unlike the previous two ones, we do not need an additional approximation,
as we already have an expression as a function of θ. Moreover, for k ∈ J1, NK, Qk is a solution of the
Frenet-Serret ODE, Q′

k(s) = Qk(s)Aθk(s), and consequently, its SRV transform can be expressed as:

q(Qk)(s) = Qk(s)TQ′
k(s)√

∥Q′
k(s)∥F

= Aθk(s)√
∥Aθk(s)∥F

. (6.47)

Then, using the Proposition 5.3, the criterion Ĭ(3)
h,λ,σ(θ) can simply be expressed as

Ĭ(3)
h,λ,σ(θ) = 1

N

N∑
k=1

inf
γk


∫ 1

0

∥∥∥∥∥ θk(t)√
∥θk(t)∥2

−
√
γ′
k(t)

θ(γk(t))√
∥θ(γk(t))∥2

∥∥∥∥∥
2

2
dt

+ σ

∫ 1

0
∥1 − γ′

k(t)∥2dt

}
+ λ

∫ 1

0
∥θ′′(t)∥2dt . (6.48)

The obtained equation (6.48) defines a regularized criterion for the optimization of the functional pa-
rameter θ corresponding to an estimator of the Frenet curvatures of the Karcher mean shape in the
shape space defined by the SRC transforms (6.8). In this case, the group action is symmetric under
the L2 norm, which was not the case with the criterion Ĭ (2)

h,λ,σ. Given raw and noisy observations of
individual parameters θk, this “regularization-based” approach offers a unique estimation criterion that
correctly expresses the necessary optimization constraints due to the infinite dimension of the mean pa-
rameter. Therefore, this constitutes an alternative approach to the “preprocessing-based” one introduced
in Section 3, which requires N independent optimization problems.

4.5 Estimation Algorithms

Based on the statistical criteria developed in the previous sections, the estimation of the mean parameter
θ(p) from given Frenet paths Q = {Q1, . . . , QN}, in each case p = {1, 2, 3}, is done by solving,

θ̂
(p)
h,λ,σ (·) = arg min

θ
I(p)
h,λ,σ (θ) . (6.49)
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4.5.1 Cases of I(1)
h,λ and I(2)

h,λ,σ

We need to solve the nonparametric estimation problem (6.49), but in practice, we solve this by dis-
cretization. Suppose that Qk, k = 1, . . . , N is available at finite grid points ski, i = 1, . . . , nk. Then we
discretize the integral on a grid 0 = tk1 < tk2 < · · · < tkmk = 1 and minimize for I(1)

h,λ:

min
θ∈H

1
N

N∑
k=1

1
nkmk

nk,mk∑
i,j=1

Kh(tkj − ski)
∥∥∥log

(
Qk(tkj)TQk(ski) exp

(
(tkj − ski) Aθ

(
tkj + ski

2

)))∥∥∥2

F
+ λ∥θ′′∥2

2 (6.50)

and for I(2)
h,λ:

min
θ∈H

1
N

N∑
k=1

inf
γk

1
nkmk

nk,mk∑
i,j=1

Kh(tkj−ski)
∥∥∥log

(
Qk(tkj)TQk(ski) exp

(
(tkj − ski) Aθ·γk

(
tkj + ski

2

)))∥∥∥2

F
+σ∥1−γ′

k∥2
2+λ∥θ′′∥2

2.

(6.51)
As done in Chapter 3, because the presence of the exponential makes the optimization difficult, we

use an additional approximation that provides a simple algorithm and simplifies the analysis of our
estimator. We have shown in Section 5 of Chapter 3 that by denoting ukij = tkj − ski, vkij = tkj+ski

2 ,

Lkij = log
(
Qk(tkj)TQk(ski) exp (ukijAθ (vkij))

)
and Rkij = − 1

ukij
log

(
Qi(tkj)TQi(ski)

)
,

we can derive the following approximation:

N,nk,mk∑
k,i,j=1

1
Nnkmk

Kh(ukij)∥Lkij∥2
F =

N,nk,mk∑
k,i,j=1

1
Nnkmk

Kh(ukij)u2
kij∥Aθ(vkij) −Rkij∥2

F +O(h3) . (6.52)

This motivates us to introduce the new approximated criteria,

Ĩ(1)
h,λ (θ; R) =

N∑
k=1

nk,mk∑
i,j=1

1
Nnkmk

Kh(ukij)u2
kij∥Aθ(vkij) −Rkij∥2

F + λ

∫ 1

0
∥θ′′(t)∥2dt , (6.53)

Ĩ(2)
h,λ,σ (θ; R) =

N∑
k=1

inf
γk∈Diff+([0,1])

nk,mk∑
i,j=1

1
Nnkmk

Kh(ukij)u2
kij∥γ′

k(vkij)Aθ(γk(vkij)) −Rkij∥2
F

+ σ

∫ 1

0
∥1 − γ′

k(t)∥2dt+ λ

∫ 1

0
∥θ′′(t)∥2dt . (6.54)

Using Proposition 5.3, we can replace in the previous criteria the Frobenious norm on Aθ by the Euclidean
norm on the relevant components θ. We define the weights ωkij = (1/Nnkmk)Kh(ukij)u2

kij , and denote
by rkij the vector corresponding to the first sub-diagonal of the matrix Rkij , that is rkij = LTR∨

kij where
L is defined as in (4.22) and ∨ is the operator introduced in (2.6). Then we obtain

Ĩ(1)
h,λ,σ (θ; R) =

N∑
k=1

nk,mk∑
i,j=1

ωkij∥θ(vkij) − rkij∥2
2 + λ

∫ 1

0
∥θ′′(t)∥2dt . (6.55)

Ĩ(2)
h,λ,σ (θ; R) =

N∑
k=1

inf
γk

nk,mk∑
i,j=1

ωkij∥γ′
k(vkij)θ(γk(vkij)) − rkij∥2

2 + σ

∫ 1

0
∥1 − γ′

k(t)∥2dt+ λ

∫ 1

0
∥θ′′(t)∥2dt .

(6.56)
This gives rise to the computation of vector-valued smoothing splines (with splines of third order),
defined at the knots vkij , with the pseudo-observations rkij (see Section 2.1.1 of Chapter 2). The only
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difference with respect to the classical smoothing splines is the presence of the weights ωkij . In the
second case, before computing the mean function using a B-spline decomposition, we need to solve the
N alignment problems:

inf
γk∈Diff+([0,1])

nk,mk∑
i,j=1

ωkij∥γ′
k(vkij)θ(γk(vkij)) − rkij∥2

2 + σ

∫ 1

0
∥1 − γ′

k(t)∥2dt. (6.57)

Since θ is also unknown, the alignment problem that is generally considered in this case is the “inverse”
one. In other words, we solve instead the following problem:

inf
γk∈Diff+([0,1])

nk,mk∑
i,j=1

ωkij∥θ(vkij) − (rkij · γk)(vkij)∥2
2 + σ

∫ 1

0
∥1 − γ′

k(t)∥2dt. (6.58)

However, the two alignment problems (6.57) and (6.58) are not equivalent here as the group action
(θ · γ)(s) = θ(γ(s))γ′(s) is not symmetric with the L2 norm. Therefore, by considering (6.58) instead of
(6.57) in the criterion (6.56), we make an additional approximation.

For the alignment of the raw estimates based on the problems (6.58), one can use various methods
proposed in the literature (Kneip and Ramsay, 2008; Tucker et al., 2013; Tucker, 2018). The simplest
one is to use a weighted Karcher mean algorithm, which we have implemented as detailed in Algorithm 4.

Algorithm 4 Alignment Algorithm - Weighted Karcher Mean
Given observations (rk)k=1,...,N , set the initial values y(0)

k = rk, ν(0) = ri, where i = arg min1≤i≤N ∥ri −∑
k ωky

(0)
k ∥. For ℓ ≥ 1, iterate the following steps until convergence ∥

∑
k ωky

(ℓ)
k − ν(ℓ−1)∥ < ϵ:

1: Update γk: γ(ℓ)
k = arg minγ ∥ν(ℓ−1) − (y(ℓ−1)

k ◦ γ)γ̇∥2 for k = 1, . . . , N with a dynamic programming
algorithm.

2: Update yk: y(ℓ)
k = (y(ℓ−1)

k ◦ γ(ℓ)
k )γ̇(ℓ)

k for k = 1, . . . , N
3: Update ν: ν(ℓ) = ∑

k ωky
(ℓ)
k

At step 1 of this algorithm, a standard Dynamic Programming algorithm (Bertsekas, 1995) is used
to find the optimal warping functions.

4.5.2 Case of I (3)
h,λ,σ

Since the data assumed to be available are Frenet paths {Q1, . . . , QN}, using the criterion I (3)
h,λ,σ for

estimating θ requires an additional preprocessing step to compute the SRV transforms of the Frenet paths
{q(Q1), . . . , q(QN )}. For k ∈ J1, NK, Qk is a solution of the Frenet-Serret ODE, Q′

k(s) = Qk(s)Aθk(s),
and consequently, as we have seen, its SRV transform can be expressed in two ways:

q(Qk)(t) = Qk(t)TQ′
k(t)√

∥Q′
k(t)∥F

= Aθk(s)√
∥Aθk(s)∥F

. (6.59)

Hence, we can think of two different methods for obtaining an estimate of q(Qk). The first approach
involves estimating the first derivative of the SO(d)-valued function s 7→ Qk(s) based on its potentially
noisy observations. This is not straightforward and will require local polynomial regression methods
adapted to curves on manifolds such as those proposed in Bickel and Li (2007); Hinkle et al. (2012,
2014). Alternatively, a second method for estimating q(Qk) is to employ its expression as a function
of θk. The estimation of θ̂k can be carried out using one of the methods proposed in Part I or by
directly using the formula of the raw Frenet curvatures derived previously and also used in the EM
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algorithm of Chapter 4, that is, for small h > 0, θ̂k(s+ h) = 1
h log

(
Qk(s+ h)TQk(s)

)
. We then obtain

the approximated criterion

Ĩ (3)
h,λ,σ (θ) =

N∑
k=1

inf
γk

mk∑
j=1

1
Nmk

∥∥∥∥∥∥γ′
k(tj)

θ(γk(tj))√
∥θ(γk(tj))∥2

− θ̂k(tj)√
∥θ̂k(tj)∥2

∥∥∥∥∥∥
2

2

+σ
∫ 1

0
∥1−γ′

k(t)∥2dt+λ
∫ 1

0
∥θ′′(t)∥2dt .

(6.60)
Again, optimizing the parameter θ from this latter criterion can be done with a B-splines smoothing
algorithm and a similar alignment algorithm as Algorithm 4 adapted to this different group action.

4.5.3 Optimization of Hyperparameters

Our prediction error depends on h, λ, σ. We decide to fix σ > 0. The hyperparameter λ is chosen to
be a vector in Rd−1, that is, one regularization parameter for each Frenet curvatures. In particular, in
three dimensions, we have λ = (λ1, λ2). If h is too big, we integrate along the whole interval, and the
errors accumulate, then it is better to restrict to a smaller interval. In our numerical studies, we select
optimal parameters h, λ with a 10-fold cross-validation minimizing for each criterion the errors:

case p = 1:
1

KN

K∑
ℓ=1

N∑
k=1

1
|Tℓ|

∑
i∈Tℓ

∥∥∥∥log
(
Qk(ski)T FSODEsol

(
ski ; θ̂

−(ℓ)
h,λ

))∥∥∥∥2

F
, (6.61)

case p = 2:
1

KN

K∑
ℓ=1

N∑
k=1

1
|Tℓ|

∑
i∈Tℓ

∥∥∥∥log
(
Qk(ski)T FSODEsol

(
ski ; θ̂

−(ℓ)
h,λ · γ−1

k

))∥∥∥∥2

F
, (6.62)

case p = 3:

1
KN

K∑
ℓ=1

N∑
k=1

1
|Tℓ|

∑
i∈Tℓ

∥∥∥∥q(Qk)(ski) − q

(
FSODEsol

(
· ; θ̂

−(ℓ)
h,λ · γ−1

k

))
(ski)

∥∥∥∥2

F
, (6.63)

where Tℓ is the ℓth index set based on K = 10 random partition of the observations {Qk(ski)}, k =
1, . . . , N, i = 1, . . . , nk and FSODEsol(s, θ̂−(ℓ)

h,λ ) is the solution, evaluated at point s, of the Frenet-Serret
differential equation solved with parameters θ̂

−(ℓ)
h,λ which is estimated without the ℓth partition dataset

and using hyperparameters h, λ. The differential equation is solved each time with the initial condition
Q̄0 = arg minQ∈SO(d)

∑N
k=1 ∥ log(QTQk(0))∥2

F .

4.6 Extension for Mean Shape of Spherical Curves in S2

Our formulation does not require a specific structure on the Euclidean curves. Nevertheless, it is of
interest if our method is applicable to structured data such as curves on a manifold. Of course, it is
possible to estimate the Frenet curvatures without additional knowledge on the manifold. However,
since curvature and torsion for spherical curves in S2 are intrinsically related, direct estimation does not
necessarily respect the constraints, but a constrained optimization is not obvious in this setting either.
It turns out that, instead of modifying the algorithm, we can reformulate the problem under our Frenet
framework for the spherical curves in three-dimensional space.

We consider a curve α on a sphere of radius R and center (0, 0, 0). By definition we have ∥α(t)∥ = R
for all t ∈ [0, 1]. We now consider the curve parametrized by arc length. As for all s ∈ [0, L], ∥α(s)∥ = R,
we have ⟨α(s), α(s)⟩ = R2 so 2⟨α(s), α′(s)⟩ = 0, thus α(s) is orthogonal to α′(s) for all s. We denote
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β := α′. We define the spherical unit normal as γ(s) = (1/R)α(s) ∧ β(s). Since ∥α(s)∥/R = 1 = ∥β(s)∥
for all s and the two are orthogonal, ∥γ(s)∥ = 1 too.

Definition 6.6. Define the geodesic curvature of a spherical curve α : [0, L] −→ S2 parametrised by
arclength to be

kg(s) = ⟨α′′(s), γ(s)⟩ .

The geodesic curvature measures the failure of a curve to be a geodesic.

Proposition 6.2. (Frenet-Serret formula for spherical frames) Let α : [0, L] −→ S2, unit sphere, be a
spherical curve parametrised by arclength. Let β(s) = α′(s) and γ(s) = α(s)∧β(s). The vectors (α, β, γ)
define the spherical frame and satisfy the following equation with kg(s) = ⟨α′′(s), γ(s)⟩

α′(s) = β(s)
β′(s) = −α(s) + kg(s)γ(s)
γ′(s) = −kg(s)β(s)

Proof. The first equation is by definition. Since β has constant norm we know it is orthogonal to its
derivative. We know that α′′.γ = kg by definition. Differentiating β we obtain β′ = α′′, so β′.α = α′′.α.
By differentiating the equality α.α′ = 0 we obtain

0 = α′.α′ + α.α′′ = 1 + α.α′′

so α.α′′ = −1. Finally, we want to compute γ′. By differentiating γ.α = 0 we have

0 = γ′.α+ γ.α′ = γ′.α+ γ.β = γ′.α.

Moreover γ is orthogonal to γ′. Therefore we need to compute γ′.β. We differentiate γ.β = 0,

0 = γ′.β + γ.β′ = γ′.β + γ.(−α+ kgγ) = γ′.β − γ.α+ kg = γ′.β + kg.

Therefore γ′.β = −kg. ■

This proposition implies that if one knows the initial position and direction, a given geodesic curvature
function kg(s) determines a unique spherical curve parametrised by arclength. Therefore, we can directly
apply our algorithm with the Frenet frame for spherical curves to obtain an estimate of the geodesic
curvature k̂g. Then we reconstruct the curve by solving the spherical Frenet-Serret ODE above. This
method ensures that the estimated mean is in S2.

5 Simulations Studies

We conduct simulation studies in R3 to assess the performance of the proposed methods in identifying
mean geometry (curvature, torsion) and mean shape in finite samples. We compare the 7 means consid-
ered in the chapter. First, we have the arithmetic mean µ(arithm) (6.3) (abbreviated "Arithm", plotted
in red) and the SRVF Karcher mean µ(SRV F ) (6.4) (abbreviated "SRVF", plotted in green) defined in
Section 2. Then, we have the two means computed with the “preprocessing-based” approach, defined in
Section 3: the approximated Frenet curvatures Karcher mean µ̂(θ) (abbreviated "FC", plotted in pink)
and the approximated SRC Karcher mean µ̂(SRC) (abbreviated "SRC", plotted in cyan). Finally, we
have the three means defined in Section 4 with the “regularization-based” approach, X(1), X(2), X(3),
obtained from the three corresponding mean parameters defined in Definition 6.3, Definition 6.4 and
Definition 6.5 (abbreviated "V1", "V2" and "V3", plotted in blue, purple, and orange respectively).
We recall here that the means µ̂(θ) and V 1 both approximate the Frenet curvatures Karcher mean (6.6),
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and the means µ̂(SRC) and V 3 both approximate the SRC Karcher mean (6.8).

For computing the means V1, V2, and V3, the framework proposed by Park and Brunel (2019),
along with the extension presented here, assumes the availability of Frenet paths observations. However,
such observations are rarely readily accessible and typically derived from Euclidean curves through pre-
processing steps. In Chapter 3, we introduced two methods for estimating Frenet paths from Euclidean
curves as a preprocessing step: the Gram-Schmidt orthonormalization of curve derivatives estimated
using local polynomial regression or the constrained local polynomial regression of Frenet vectors. Both
methods are shown to be quite equivalent. In these simulations, we are using the Gram-Schmidt or-
thonormalization of curve derivatives estimated by local polynomial regression to estimate the Frenet
paths used as "pseudo" observations for consistency with the Frenet paths estimation method used in
the “preprocessing-based” approach. The selection of optimal hyperparameters for individual Frenet
curvatures estimation in the “preprocessing-based” approach of Section 3, and mean parameters estima-
tion in the “regularization-based” approach of Section 4 are done with a Bayesian optimization using the
corresponding cross-validation criteria. The SRVF mean is computed using the python package fdasrsf.

5.1 Curves Simulated from a Generative Model on Frenet Curvatures

We define a generative model of curves in R3 from Frenet curvatures parameters. The population of
Frenet curvatures is generated by adding amplitude and phase variability to reference parameters. That
is, given the reference parameters κ(ref)(s) = 1

3 exp(4 sin(5s − 0.75) + 0.25) and τ (ref)(s) = 8s − 3, for
s ∈ [0, 1], we generate each individual parameters θk = (κk, τk)T with the model{

κk(s) = akκ
(ref)(γ(s ; bk))

τk(s) = ckτ
(ref)(γ(s ; bk))

where ak ∼ N (1, σκ), ck ∼ N (0, στ ), bk ∼ N (0, σγ), and γ(s ; bk) = exp(bks)−1
exp(bk)−1 if bk ̸= 0, otherwise

γ(s ; bk) = s. Then, given the parameters θk, the Frenet path Qk and the curve Xk are constructed
by solving the Frenet-Serret equations. First, we consider two populations of N = 20 curves. The
first one has only amplitude variability in the population of parameters {θk}k=1,...,N , that is σγ = 0.
In the second population, we add phase variability with σγ = 2. In both cases we fix σκ = 0.2 and
στ = 1.5. The two populations are plotted in grey in Figure 6.2 and Figure 6.3. In the spirit of the 2D
loops example discussed in Chapter 5, the curves generated here take the form of 3D loops, where the
loop’s localization along the curve depends on the phase variability of the curvatures and the variability
in torsions influences whether the loop is more or less planar. The 7 means of these populations are
computed and plotted in colors on the same figures. The hyperparameters are optimized in the ranges
h ∈ [0.02, 0.1], λ1, λ2 ∈ [10−15, 10−8].

5.1.1 Influence of Sample Size and Noise Level

In practice, curves may be available in the form of noisy observations. Thus, starting from the population
of 20 curves generated with variability in both amplitude and phase of Frenet curvatures, we consider
the following observation model:

yki = Xk(si) + ϵki, k = 1, . . . , N, i = 1, . . . , nk,

where ϵki ∼ N (0, σ2
yI). In addition to testing the robustness of different means to noise and the number of

discretization points, this simulation explores the significance of considering an explicit statistical model
for the mean parameter estimation as proposed in the “regularization-based” approach of Section 4. This
approach provides a unified framework for estimating both the mean and raw individual curvatures,
whereas the “preprocessing-based” approach of Section 3 requires individual estimates of curvatures,
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which can introduce bias. We consider the different sample sizes nk = 100, 200 for all k = 1, . . . , N
and noise levels σy = 0.01, 0.005. The selection of optimal hyperparameters is done in the ranges
h ∈ [0.02, 0.15], λ1, λ2 ∈ [10−15, 10−5].

5.1.2 Influence of Random Shape-Preserving Transformations

In the case of real data, curves often have additional variations that do not change the intrinsic shape of
the curve, known as shape-preserving transformations, such as translation, rotation, any parameteriza-
tion, and variable length or scale. By definition, the average shape of a population of curves should not
be affected by these variations. Therefore, to test the robustness of the various estimation methods of
the mean shape to these variations, we propose to add variations of this type to the population of curves
considered in Figure 6.3, having phase and amplitude variability in their Frenet curvatures. For each
curve Xk, k = 1, . . . , N , we generate a random rotation Rk ∼ F(I3, α) simulated from a Fisher-Langevin
distribution (3.66) with mean identity and concentration α = 5, a random length lk ∼ U(1, 10) and a
random parameterization hk(t) = ak sin(2πt) + t is ak ̸= 0, otherwise hk(t) = t, where ak ∼ U(−1.2, 1.2).
Then, given the discrete regular time-grid t1 < . . . < tnk , with nk = 100 for all k, the considered curves
are

yki = lkRkXk(hk(ti)), k = 1, . . . , N, i = 1, . . . , nk.

Without adding observation noise, we compute the 7 different means of this random population. The
selection of optimal hyperparameters is done in the ranges h ∈ [0.03, 0.12], λ1, λ2 ∈ [10−15, 10−8].

5.1.3 Results

In the case of the population having only amplitude variability in Frenet curvatures, the various means
displayed in Figure 6.2 demonstrate that FC, SRC, V1, V2, and V3 means are nearly identical. This is
particularly apparent when looking at the shapes of the corresponding curvatures and torsions. In this
scenario, alignment during mean curvature and torsion computation is typically unnecessary, resulting
in V1 and V2 means having the same formulation and V3 being very similar. Additionally, in both cases,
Figure 6.2 (amplitude variability only) and Figure 6.3 (amplitude and phase variability), the estimated
means FC and SRC match the estimated V1 and V3 means respectively, as expected in these noise-free
scenarios due to the approximations of the optimization criteria done and the powerful preprocessing
method considered for computing the FC and SRC means. Thus, in noise-free scenarios, the difference
between the two approaches is not significant. Furthermore, in both cases, we observe that arithmetic
and SRVF mean shapes are inconsistent with the population’s shapes. These two means exhibit two
peaks of curvature, contrary to the single peak seen in all population curves, and, in the second case,
inconsistent torsion shapes. This confirms the results and observations done in Chapter 5, showing that
methods based on Frenet curvatures to define a mean shape are more consistent as they encode more
information about the geometry.

Subsequently, observations with noisy data of the population having amplitude and phase variability
in Frenet curvatures (Section 5.1.1) highlight the interest of the “regularization-based” approach pro-
posed in Section 4 through the different criteria developed for mean shape estimation. By comparing
the mean FC with the mean V1, and the mean SRC with the mean V3, the Table 6.1, Table 6.2, and
Table 6.3 showing the distance between estimated parameters in the noise-free and noisy cases, demon-
strate that means computed with a “regularization-based” approach are more robust in the presence of
noise. This confirms the conjecture that individual estimation of Frenet curvatures as a preprocessing
step introduces a bias in the computation of Karcher means, which is limited by the unified formulation
proposed in the criteria of Section 4. These conclusions are also visible in Figure 6.4 and Figure 6.5.
Curvatures and torsions in Figure 6.5 appear less noisy and disparate in the case of means V1, V2, and
V3. Regarding the tables, they provide only an indication of the result since the L2 distance depends
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Figure 6.2: In grey: population of curves (top) and corresponding curvatures (bottom left) and torsions
(bottom right) generated by adding amplitude variability to reference Frenet curvatures parameters.
In color: 7 means and corresponding estimated curvature and torsion.

on the curve’s parameterization, and for the arithmetic and SRVF means, curvatures and torsions cor-
respond only to estimates. However, it appears that means based on Frenet curvatures are more stable
concerning noise levels than the arithmetic and SRVF means. Moreover, as shown in Figure 6.4, the
obtained means are smoother than the latter. This is mainly due to the implementation in which Frenet
curvatures are estimated in a functional data framework, either smoothly with a B-spline decomposition.

Finally, by adding random shape-preserving transformations to the initial population visible in Fig-
ure 6.3, it appears from the results in Figure 6.6 that the SRVF and arithmetic means are not completely
stable under these transformations. This instability is expected from the arithmetic mean but surprising
from the SRVF one, which is theoretically well-defined concerning these transformations. It is likely due
to the implementation. Specifically, in the SRVF case, the necessary reparameterization alignment is
noise-sensitive, leading to different outcomes and significantly affecting the final mean. For means based
on Frenet curvatures, there is no significant difference here between both estimation approaches. They
are stable under these transformations. Additionally, comparing in Figure 6.7 the mean curvatures and
torsions estimated by criteria V2 and V3, we observe that the estimates are less stable in the case of
criterion V2. This is likely due to the fact that the reparameterization alignment problem in this case is
not symmetrical, thus adding instability.
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Figure 6.3: In grey: population of curves (top) and corresponding curvatures (bottom left) and torsions
(bottom right) generated by adding amplitude and phase variability to reference Frenet curvatures
parameters. In color: 7 means and corresponding estimated curvature and torsion.

n σy Arithmetic SRVF FC SRC V1 V2 V3

100 0.005 0.024 (0.004) 0.320 (0.165) 0.365 (0.188) 0.526 (0.218) 0.271 (0.162) 0.492 (0.243) 0.439 (0.231)
0.01 0.044 (0.006) 0.745 (0.266) 0.472 (0.141) 0.567 (0.251) 0.340 (0.130) 0.513 (0.253) 0.455 (0.229)

200 0.005 0.030 (0.003) 1.100 (0.365) 0.677 (0.282) 0.859 (0.485) 0.367 (0.199) 0.689 (0.423) 0.683 (0.400)
0.01 0.058 (0.004) 1.787 (0.477) 0.870 (0.261) 0.914 (0.396) 0.510 (0.281) 0.792 (0.405) 0.717 (0.364)

Table 6.1: Estimation errors on Euclidean curve: L2 distance between estimated mean of noiseless
population (Figure 6.3) and estimated mean of noisy population (Section 5.1.1). Means and standard
deviations in parenthesis over the 100 repetitions of the simulation.

n σy Arithmetic SRVF FC SRC V1 V2 V3

100 0.005 52.52 (9.50) 80.45 (20.78) 43.95 (4.48) 46.83 (16.57) 36.85 (5.21) 51.34 (12.95) 41.30 (13.23)
0.01 66.96 (12.12) 101.01 (29.04) 72.66 (7.86) 61.40 (19.27) 62.65 (7.49) 77.14 (14.88) 56.78 (11.67)

200 0.005 99.65 (35.91) 136.78 (30.65) 86.34 (13.28) 89.42 (36.76) 62.85 (15.05) 95.80 (22.06) 71.51 (18.69)
0.01 119.36 (44.29) 245.16 (37.10) 112.63 (16.55) 103.15 (31.49) 91.99 (15.54) 125.23 (25.29) 89.58 (19.68)

Table 6.2: Estimation errors on curvature: L2 distance between estimated mean of noiseless population
(Figure 6.3) and estimated mean of noisy population (Section 5.1.1). Means and standard deviations in
parenthesis over the 100 repetitions of the simulation.
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n σy Arithmetic SRVF FC SRC V1 V2 V3

100 0.005 328.29 (60.64) 210.27 (23.31) 54.64 (10.09) 150.20 (15.54) 42.81 (15.75) 149.85 (40.53) 129.63 (40.33)
0.01 332.56 (58.41) 194.92 (13.09) 57.16 (11.08) 149.74 (16.51) 43.16 (17.64) 152.01 (38.54) 121.53 (36.05)

200 0.005 694.17 (211.85) 573.37 (68.76) 102.51 (15.53) 263.54 (35.88) 70.55 (29.16) 255.95 (81.27) 234.71 (87.99)
0.01 672.97 (139.42) 574.42 (15.07) 96.99 (17.65) 257.74 (34.02) 67.58 (29.07) 236.34 (73.39) 187.89 (68.96)

Table 6.3: Estimation errors on torsion: L2 distance between estimated mean of noiseless population
(Figure 6.3) and estimated mean of noisy population (Section 5.1.1). Means and standard deviations in
parenthesis over the 100 repetitions of the simulation.

Figure 6.4: Case n = 100, σy = 0.01: 7 estimated means of the noiseless population in color and
corresponding 100 estimated means of the noisy simulated populations (Section 5.1.1) in grey.
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Figure 6.5: Case n = 100, σy = 0.01: curvature and torsion of estimated means of the noiseless population
in color and corresponding 100 curvatures and torsions of estimated means of the noisy simulated pop-
ulations (Section 5.1.1) in grey. Comparison between "preprocessing-based" and "regularization-based"
approaches for approximation of Frenet curvatures Karcher mean (FC and V1), and SRC Karcher mean
(SRC and V3).

133



Chapter 6. Statistical Frenet-Serret Mean Shape

Arithmetic SRVF FC SRC V1 V2 V3

Error on X 0.497 (0.152) 0.503 (0.288) 0.100 (0.069) 0.212 (0.057) 0.009 (0.003) 0.104 (0.107) 0.069 (0.043)
Error on κ 102 (30) 108 (31) 0.254 (0.028) 3.075 (2.637) 0.308 (0.164) 6.688 (9.491) 4.791 (2.971)
Error on τ 377 (139) 199 (28) 12.78 (4.57) 14.69 (4.04) 12.85 (5.01) 32.22 (10.39) 18.82 (5.90)

Table 6.4: L2 distances between estimated means of the initial population (Figure 6.3) and estimated
means of randomly transformed populations by shape-preserving transformations (Section 5.1.2). Means
and standard deviations in parenthesis over the 100 repetitions of the simulation.

Figure 6.6: Means over randomly transformed population with shape-preserving transformations (Sec-
tion 5.1.2): 7 estimated means of the initial population (Figure 6.3) in color and corresponding 100
estimated means of the noisy simulated populations in grey.
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Figure 6.7: Case of randomly transformed population with shape-preserving transformations (Sec-
tion 5.1.2): curvature and torsion of estimated means of the initial population in color and corresponding
100 curvatures and torsions of estimated means of the simulated populations in grey. Comparison be-
tween mean X(2) (V2) and mean X(3) (V3).
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5.2 Curves on the Sphere

This scenario studies the special case of a population of curves lying on the manifold S2. We con-
sider the generative model for curves on S2 described in Dai and Müller (2018). For k = 1, ..., N , the
sample curves xk are generated as xk : [0, 1] −→ S2, xk(t) = expµ(ref)(t) (∑20

ℓ=1 ξℓϕℓ(t)) with µ(ref)(t) =
exp[0,0,1] (cos(ω(t))φ(t), sin(ω(t))φ(t), 0) the reference function in S2, and the arbitrary chosen func-
tions ω(t) = 10t + 0.5, φ(t) = 5(t + 1). For ℓ = 1, ..., 20, ξℓ are generated by independent Gaus-
sian distributions with mean zero and variance 0.07ℓ/2. The functions ϕℓ(t) are defined on [0, 1] as
ϕℓ(t) = 2−1/2Rt[Φℓ(t/2),Φℓ((t+ 1)/2), 0]T , where Rt is the rotation matrix from [0, 0, 1] to µ(ref)(t), and
{Φℓ}20

ℓ=1 is the orthonormal Legendre polynomial basis on [0, 1]. We finally add a random parametrization
defined by γ(s ; bk) = exp(bks)−1

exp(bk)−1 if bk ̸= 0, otherwise γ(s ; bk) = s, where bk ∼ N (0, 2.5). The measure-
ments are then obtained, given the regular grid t1 < · · · < tnk with nk = 100 for all k = 1, . . . , N ,
as

yki = xk(γ(ti, bk)), k = 1, . . . , N, i = 1, . . . , nk.

In this case, we first compute the 7 different means without additional constraints for spherical curves.
In addition, we compute, using the estimation criteria defined in Section 4, the 3 means based on the
reformulation of the frame proposed in Section 4.6. Finally, for comparison, the arithmetic and SRVF
mean shapes are also computed from the population of curves parameterized by arc length. The selection
of optimal hyperparameters is done in the ranges h ∈ [0.03, 0.1], λ1, λ2 ∈ [10−15, 10−8].

Reference Arithmetic Arithmetic arc-length SRVF SRVF arc-length FC SRC

1.0 (0.0) 1.164 (0.287) 1.0 (0.045) 1.0 (0.069) 1.0 (0.035) 1.0 (0.018) 1.0 (0.02)

V1 V2 V3 V1 sphere V2 sphere V3 sphere

1.0 (0.02) 1.0 (0.053) 1.0 (0.047) 1.0 (0.001) 1.0 (0.001) 1.0 (0.001)

Table 6.5: Mean and standard deviation of the distances from each point along the curve to the center
of the sphere.

Figure 6.8 and Table 6.5 demonstrate that considering the appropriate coordinate system and for-
mulation for spherical curves, as proposed in Section 4.6, leads to mean shapes, using each of the three
criteria, which lie on the sphere and are, therefore, more relevant. Indeed, means obtained without
adding constraints related to spherical curves are not perfectly spherical. Furthermore, in the latter
case, means based on Frenet curvatures are again more consistent with the geometry of the considered
population of curves than the SRVF mean. Adapting the SRVF method to manifold data is also possible,
and we refer to Su et al. (2014).

In terms of computational cost, in the setting of these simulations (20 curves, 100 sample points,
30 iterations of Bayesian optimization) and using a machine equipped with 96 CPUs and 376 GiB of
RAM, the arithmetic mean is computed in ≈ 8e−5 seconds, the SRVF mean in ≈ 15 seconds. For
the “preprocessing-based” approach, the FC and SRC means are computed in ≈ 1h15, including the
time of the preprocessing step. In the case of methods using a “regularization-based” approach, the
mean V1 is computed in ≈ 50 minutes, the mean V2 in ≈ 1h30, and finally, the mean V3 in ≈ 40
minutes. These times are given as an indication insofar as the computation times of these algorithms
depend greatly on the parameters of the simulation. Furthermore, these calculation times could be
accelerated by parallelizing the code whenever possible. This has not been done here because we are
already parallelizing the 100 repetitions of each simulation.
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Figure 6.8: Spherical curves (Section 5.2): the 7 means without additional constraints are plotted in
plain lines, and the 3 means using the "regularization-based" approach with adapted frame to spherical
curves and the SRVF and arithmetic mean of arc-length parametrized curves are plotted in dotted lines.

6 Application to Sign Language Motion Trajectories
We are interested in analyzing a set of trajectories corresponding to repeated movements of the same
sign in French Sign Language. As mentioned in the previous chapters, based on the literature on human
motor control, Frenet curvatures appear to be particularly interesting parameters for studying and
describing this type of movement. Therefore, we believe that using a statistical analysis method based
on these parameters for such a curve population is more relevant. We propose to compare the 7 mean
shapes defined in this chapter on this type of movement. That being said, although it forms the basis of
statistical analysis of a population, it is not easy to quantify the quality of a mean and to compare the
different possible definitions of the mean shape other than qualitatively. We consider the data described
in Section 3.1. We propose to compute, for each sign, the 7 means of Aliza’s movement trajectories,
the 7 means of Thomas’s movement trajectories, and finally, the 7 means of the union of these two sets.
Compared to experiments with synthetic data, as mentioned in the application of Chapter 4, we have
to deal with different irregular observation grids of trajectories in a population for estimating the mean
Frenet curvatures within a functional data analysis framework. To address this, we consider, for each
curve, a sub-grid corresponding to one out of every 4 points from the initial observation grid. Then,
the knots grid used to define the B-spline decomposition of the mean parameters is defined by merging
these different sub-grids. For all methods, the hyperparameters are selected with 30 iterations of a
Bayesian optimization based on the corresponding cross-validation criteria in the ranges h ∈ [0.05, 0.15]
and λ1, λ2 ∈ [10−30, 10−5]. We show the obtained means for 5 signs. The sign “train” in Figure 6.9, the
sign “avoir l’air” in Figure 6.10, the sign “essayer” in Figure 6.11, the sign “avril” in Figure 6.12 and
the sign “autrefois” in Figure 6.13. We display the curves scaled to unit length. For better visualization
and appreciation of the shapes, the grids are adjusted for each of the 3D curves and are not common to
all. Indeed, without this, it is difficult to discern anything in still images like those presented here. We
keep the same color code for the different means as the one used in the simulated data. Initial recorded
trajectories and corresponding parameters are plotted in grey.
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(a) Recorded trajectories of Thomas (first 5) and of Aliza (last 5).

(b) Means on Thomas and Aliza trajectories.

(c) Means on Thomas trajectories.

(d) Means on Aliza trajectories.
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(e) Curvatures of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).
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(f) Torsions of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).

Figure 6.9: Sign "train".
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(a) Recorded trajectories of Thomas (first 5) and of Aliza (last 5).

(b) Means on Thomas and Aliza trajectories.

(c) Means on Thomas trajectories.

(d) Means on Aliza trajectories.
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(e) Curvatures of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).
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(f) Torsions of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).

Figure 6.10: Sign "avoir l’air".
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(a) Recorded trajectories of Thomas (first 6) and of Aliza (last 5).

(b) Means on Thomas and Aliza trajectories.

(c) Means on Thomas trajectories.

(d) Means on Aliza trajectories.
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(e) Curvatures of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).
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(f) Torsions of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).

Figure 6.11: Sign "essayer".
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(a) Recorded trajectories of Thomas (first 5) and of Aliza (last 6).

(b) Means on Thomas and Aliza trajectories.

(c) Means on Thomas trajectories.

(d) Means on Aliza trajectories.
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(e) Curvatures of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).
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(f) Torsions of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).

Figure 6.12: Sign "avril".
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6. Application to Sign Language Motion Trajectories

(a) Recorded trajectories of Thomas (first 5) and of Aliza (last 5).

(b) Means on Thomas and Aliza trajectories.

(c) Means on Thomas trajectories.

(d) Means on Aliza trajectories.
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(e) Curvatures of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).
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(f) Torsions of recorded and means trajectories: Thomas and Aliza (1st), Thomas only (2nd), Aliza only (3rd).

Figure 6.13: Sign "autrefois".
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Applying the 7 different definitions and/or methods for computing means on sign language wrist
motion trajectories confirms the results and observations obtained from the simulated data while high-
lighting new challenges or limitations. In most cases, very similar approximation of the FC and SRC
Karcher means are obtained with the “preprocessing-based” and “regularization-based” approaches, as
seen in Figure 6.9 on the sign "train". Indeed, as the data is almost entirely noise-free, this confirms the
results observed with noise-free simulated data.

Furthermore, it is observed that several signs ("train" Figure 6.9, "essayer" Figure 6.11, "autrefois"
Figure 6.13) exhibit circular motion trajectories with geometry not far from that of loops or helices used
in Chapter 5. This type of geometry often appears in sign language, notably with a possible varying
number of spins, which could correspond to nuances in the meaning of the word (such as "very" or
"fast"). In these cases, as observed in Chapter 5, Frenet-based means are more coherent for this type of
geometry, while Arithmetic and SRVF sometimes yield inconsistent results (see means on Aliza trajec-
tories in Figure 6.13). Thus, this justifies developing these new Frenet-based means for sign language
motion analysis. This geometry type also suits the unparametrized Frenet curvatures Karcher mean ap-
proximation methods (FC and V1) well due to the relatively flat curvature. In contrast, for less curved
geometries such as the "avril" sign (Figure 6.12), the SRVF mean seems quite relevant.

The plots of Frenet curvatures offer another way to judge the quality of means. In some cases,
clear patterns are found in the curvatures of captured trajectories that are absent in certain mean Frenet
curvatures. Arithmetic and SRVF means, in several cases, exhibit excessively high and pointed curvature
or torsion peaks (Figure 6.9, Figure 6.10, Figure 6.13, Figure 6.12). In the case of signs "avril" and "avoir
l’air" these plots clearly highlight the limitation of the Frenet curvatures Karcher mean (FC and V1),
which smooth curvature peaks due to the absence of alignment. Furthermore, for the "avoir l’air" sign
(Figure 6.10), it is observed that the mean V2 is less effective than V3. This could result from less
well-posed (non-symmetric) alignment in the V2 criterion. Here, a significant regularization is added
for Frenet curvatures alignment in the V2 criterion; otherwise, significant pinching effects occur (see
Section 2.2.1 in Chapter 2).

An important aspect to note is that there is sometimes a significant difference in the geometry of
the shape between Thomas’s and Aliza’s movements, which is reflected in the mean shapes. There are
fairly distinct means across the three sets, and sometimes mean shapes on the union of trajectories
from Thomas and Aliza seem suboptimal (e.g., "avril" sign Figure 6.12). This underscores the impact of
sign segmentation on mean computations. The issue here is that trajectories not only contain the sign
movement but also the return-to-initial-position movement of the hands. Given that Thomas is taller
than Aliza, curvature plots clearly show that these sections (at the edges) with nearly flat curvature are
longer in Thomas. This justifies the importance of a method with alignment (SRVF, SRC, V2, V3). In
several cases, SRC, V2, or V3 means exhibit consistent geometry in the middle but inconsistencies at
the edges (curvature too flattened at the direction change to return to the initial position), and thus, the
final mean shape seems unreliable. Furthermore, in these cases, SRVF and Arithmetic mean resemble
Thomas’s movement more. It appears that they give more importance to the beginning and end of the
movement, which spatially occupies more space but does not contain the sign information. In contrast,
Frenet-based methods resemble Aliza’s movements (see the sign "avoir l’air" Figure 6.10).

7 Conclusion
In this chapter, we compare different definitions of the mean shape of a set of Euclidean trajectories and
various methods for estimating these means. In particular, we highlight the difference between estimation
methods inspired by the field of shape analysis and those defined from a more FDA perspective. The
former involves two steps: an efficient preprocessing step to compute the considered representations and
then the use of the Karcher mean in the corresponding shape space. The latter relies on defining a
unique regularized statistical criterion to optimize the mean parameter within a functional data analysis

142



7. Conclusion

framework. We show that both approaches are not completely equivalent, especially in the case of noisy
data, where the latter limits the bias that individual preprocessing adds in the other case. Regarding
the definition of the mean shape itself, results on simulated data, but especially on real data, clearly
demonstrate the need for methods including a registration step, such as the SRVF mean, the SRC mean,
and V2 and V3 means. Moreover, in the sign language movements considered here, circular geometries
are prevalent, for which methods based on Frenet curvatures are particularly relevant. Therefore, we
believe that these methods, although more computationally expensive, are better suited to this problem
than the SRVF-based method.

However, in some cases on sign language motion trajectories, SRC or V3 methods are not very
satisfactory. It should be noted that they depend on the estimation method used for Frenet curvatures.
Therefore, an improvement in results could be possible by estimating Frenet curvatures with the EM
algorithm developed in Chapter 4, either in the “preprocessing-based” approach or in the “regularization-
based” approach. In this latter case, it will require an adapted method involving iterations encompassing
tracking and smoothing the Frenet paths with the EM algorithm and estimating the mean parameter with
the criterion defined in this chapter. Furthermore, these limitations can also be due to sign segmentation.
Therefore, one may question how to obtain segmentation only for the part of the sign that carries the
meaning and does not include transitions from one position to another. Only deaf individuals would be
capable of performing such segmentation, and even then, the continuous nature of the movement makes
the boundary between transition and sign movement unclear. Therefore, an alternative will involve
developing methods less sensitive to segmentation, meaning less dependent on precise knowledge of the
start and end of each movement. For this purpose, we have thought of considering a partial alignment
independent of the start and end during the Frenet curvatures alignment step, inspired by the work
introduced in Bryner and Srivastava (2022). These points will be the subjects of future works.
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7
Toward Sign Language Processing via

Motion Trajectories Analysis

In this chapter, we demonstrate applications of the tools and framework for motion trajec-
tory analysis developed in this thesis, based on the Frenet framework, in the context of sign
language processing. Firstly, using our robust estimators for curvature and torsion of motion
trajectories, we assess the validity of power laws on wrist movement data in LSF. Subse-
quently, we introduce a generative model for wrist movement in sign language. This model
relies on decomposing the variability of a set of trajectories through its mean geometry and
non-linear warping functions proposed in Chapter 6. Lastly, we discuss our future research
directions in sign language processing within the developed framework, particularly focusing
on motion trajectory segmentation and clustering in sign language.
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1 Kinematic Power Laws
Different types of human movement have been studied in neuroscience and motor control theory with
the aim of developing a predictive model for voluntary human motion. It is widely accepted that the
central nervous system selects specific movements to follow an optimal trajectory, minimizing certain
costs. Among various cost functions or optimality laws studied in the literature, power laws relating
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Chapter 7. Toward Sign Language Processing via Motion Trajectories Analysis

movement kinematics to the geometry of the trajectory have been explored (Flash and Berthoz, 2021).
Specifically, these laws assert that the movement speed is a power function of the degree of curvature of
the trajectory, described by Frenet curvatures. Notably, the 2/3 or 1/3 power laws relate the radius of
curvature (inverse of curvature function) or, respectively, directly the curvature to the movement speed.
The 2/3 power law, initially demonstrated for “constrained” arm movements (Lacquaniti et al., 1983),
has been extensively studied and observed in a wide range of activities (Zago et al., 2018), such as elliptic
trajectories in 2D (Viviani and Flash, 1995) and 3D space (Maoz et al., 2009), walking paths (Hicheur
et al., 2005), force trajectories, eye movements, as well as in monkey movements (Abeles et al., 2013)
and crawling motions of Drosophila larvae (Zago et al., 2016). Consequently, some researchers consider
these laws as fundamental biological or kinematic constraints governing how organisms execute curved
movements. Deviations from the 2/3 exponent have been observed at specific points of trajectories or
for specific shapes. A generalization of this law, known as the 1/6 power law, incorporating the torsion
variable, has been proposed by Pollick et al. (2009); Maoz et al. (2009) for three-dimensional movements.
As we develop robust and accurate algorithms for curvature, torsion, and speed parameter estimations
in this thesis, we explore whether our data from wrist movements in French sign language also follow
these empirical laws. We consider here the 1/3 (equivalent to the 2/3 power law) and 1/6 power laws
that are directly expressed as functions of the Frenet curvatures and the arc-length first derivative. We
recall here their formulations:

ṡ(t) = C1κ(s(t))−1/3 (1/3 power law), (7.1)

ṡ(t) = C2
(
κ(s(t))2|τ(s(t))|

)−1/6
(1/6 power law), (7.2)

where C1 and C2 are constants, ṡ is the curvilinear speed and κ and τ the curvature and torsion functions.
Before looking at whether our data fit these laws, it is interesting to understand where they are derived
from. Let’s recall the extrinsic formulas of functional parameters curvature and torsion in a 3-dimensional
space:

κ(s(t)) = ∥ẋ(t) × ẍ(t)∥2
∥ẋ(t)∥3

2
, τ(s(t)) = det(ẋ(t), ẍ(t), ...

x (t))
||ẋ(t) × ẍ(t)||22

.

Knowing that ṡ(t) = ∥ẋ(t)∥2, we have

ṡ(t)3κ(s(t)) = ∥ẋ(t) × ẍ(t)∥2, (7.3)
ṡ(t)6κ(s(t))2|τ(s(t))| = | det(ẋ(t), ẍ(t), ...

x (t))| . (7.4)

Therefore, we observe from equations (7.1) and (7.3) that the 1/3 power law models the function t 7→
∥ẋ(t) × ẍ(t)∥, representing the area enclosed by the shape, by a constant. This corresponds to the
movements often referred to as constant equi-affine speed movements. In the same way, we observe from
equations (7.2) and (7.4) that the 1/6 power law models the function t 7→ | det(ẋ(t), ẍ(t), ...

x (t))| by a
constant as well. The determinant function models the volume enclosed by the shape, thus generalizing
the previous type of movements as the spatial equi-affine speed movements in 3-dimensional space (Maoz
et al., 2009). Note that this modeling induced by the 1/6 power law is only possible locally, given
that the torsion function changes sign and vanishes locally. Basically, these power laws are tested using
linear regression analysis to identify the exponent of the power functions that most accurately capture
the relation between Frenet curvatures and curvilinear speed at each point along the trajectory. To
transform these laws into a linear form, we simply use the logarithm function and then consider the
regression equations:

log(ṡ(t)) = log(C1) + β1 log(κ(s(t))), (7.5)

log(ṡ(t)) = log(C2) + β2 log
(
κ(s(t))2|τ(s(t))|

)
. (7.6)
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1. Kinematic Power Laws

β log(C) MSE R2

1/3 power law -0.551 (0.204) 5.908 (0.646) 0.434 (0.250) 0.516 (0.193)
1/6 power law -0.246 (0.068) 6.265 (0.603) 0.417 (0.231) 0.538 (0.164)

Table 7.1: Linear regressions (7.5) and (7.6) results. Mean and standard deviation in parenthesis of the
estimated regression coefficients (β), intercepts (log(C)), mean square errors (MSE), and R-squares (R2)
over all the wrist trajectories of French sign language movements in the data set described in Section 3.1
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Figure 7.1: Plot of the 1/3 power law (first row) and the 1/6 power law (second row) regression results
for one trajectory of movement in LSF of signs "dimanche", "train", "avoir l’air", "bus" (left to right).
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Figure 7.2: Plot of the functions assumed to be constant, or of little influence, by the 1/3 (first row) and
1/6 (second row) power law models for the several trajectories of movement in LSF of signs "dimanche",
"train", "avoir l’air", "bus", going from the left column to the right.

This analysis employs the logarithm of curvature or curvature and torsion values as the predictor variable
and the logarithm of curvilinear speed values as the outcome variable.
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Based on our estimators, we propose testing the two linear regression models (7.5) and (7.6), corre-
sponding to the 1/3 and 1/6 power law, respectively, on the dataset described in Section 3.1. The results
are summarized in Table 7.1. For 4 of these signs, we illustrate the linear regressions in Figure 7.1, and
in Figure 7.2, we plot the two functions modeled by constants in each of these laws. The regression
coefficients β in each case are far from the expected values according to the laws, with high standard
deviations. In the case of the 1/3 power law, Figure 7.1 shows a case where β is positive. Although
the 1/6 power law seems to describe the data slightly better than the 1/3 power law, these two linear
regression models are clearly not complex enough to capture the relationship between these parameters
in our data (results of mean square errors and R-squares in Table 7.1). Furthermore, Figure 7.2 shows
that the functions modeled by constants in these laws exhibit significant variations in these data, which
seem to depend notably on the sign considered. These observations mean that these variables contain
important information about the motion trajectories and their variability and thus must be taken into
account. Finally, it appears that these power laws, although observed in various human movements, do
not correspond to sign language motions. It should be noted that in recent years, these laws have been
controversial, especially by Marken and Shaffer (2017), who characterize them as a “behavioral illusion”,
resulting from observations forced by mathematical relationships among these parameters. They specifi-
cally discuss the impact of omitting descriptive variables corresponding to the functions t 7→ ∥ẋ(t)×ẍ(t)∥
and t 7→ det(ẋ(t), ẍ(t), ...

x (t)) can have in these cases. In fact, by fitting these laws with time-varying
coefficient functions in place of constants log(C1) or log(C2), we find slopes closer to 1/3 and 1/6. That
being said, Endres et al. (2013) use the 1/3 power law for unsupervised segmentation of wrist move-
ments in Israeli sign language data into motion primitives. They segment a sign into “primitives” by
seeking multiple fittings of the law with different coefficients and intercepts along the sign’s trajectory.
Indeed, this makes more sense looking at the plots of the 1/3 power law regressions in Figure 7.1. Thus,
although not sufficient to fully describe these movements, this paper confirms the significance of parame-
ters involved in this law (curvilinear speed and Frenet curvatures) for analyzing human motion. Finally,
an interesting perspective would be to consider more complex functional regression models on a broad
dataset, aiming to explore a nonlinear relationship between the parameters directly.

2 Generative Model of Wrist Movements
In this thesis, we have developed a framework based on the Frenet-Serret representation, allowing the
decomposition of the geometry of a three-dimensional curve into its curvature and torsion functions. In
Chapter 6, we present a model for the variability of a set of curves using nonlinear warping functions
and average curvature, torsion, and arc length. Inspired by the work of Tucker et al. (2013), where they
propose a generative model of scalar functions based on the SRVF representation, we have developed a
generative model of sign language wrist movements using the Frenet-based analysis framework introduced
in this thesis. For this, we apply principal component analyses to the identified descriptive components
of the movement and impose a joint probability model on the principal coefficients of these components.
Developing a generative model for sign language wrist trajectories can have several applications and
benefits for the field. Firstly, it can augment data and enhance learning processes by generating additional
realistic samples, addressing the limitations of sign language datasets. Furthermore, it can contribute
to a deeper understanding of underlying models and structures of wrist trajectories in sign language,
improving recognition systems and overall comprehension of sign language movements. Additionally, it
can be used to synthesize new realistic sign language gestures for animated conversational avatars in
entertainment, virtual reality, or education contexts. Finally, it can serve as a means to address the
question of the anonymization of sign language movements. An initial version of this generative model
was published in the conference article Chassat et al. (2022). Here, we present an enhanced version.
In the original article, we used the V2 mean (Chapter 6) and associated warping functions. Since its
publication, we have developed methods based on SRC (or V3 mean), which, as shown in the Chapter 6
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results, are more robust and well-defined. Therefore, we use the SRC mean and associated alignment
functions to develop our model. Additionally, the initial article only modeled the phase variability of
Frenet curvatures, not their amplitude variations, as evident in the results. Hence, in this work, we
propose a model that also considers this source of variation.

2.1 Variability Separation of Motion Trajectories

A motion trajectory x : [0, tf ] → R3 can be broken down into its duration tf , length l, position in space
Z(0) ∈ SE(3) with a rotation component Q(0) ∈ SO(3) and a translation component x(0) ∈ R3, and
intrinsic shape. Describing the shape using its Frenet curvatures θ(s) = (κ(s), τ(s))T and the arc-length
function s(t) scaled to unit length, we obtain the following curve reconstruction scheme from these
components:

1. Solve the Frenet-Serret ODE Q′(s) = Q(s)Aθ(s) with the initial condition Q(0) = Q(0).

2. Reconstruct the trajectory t 7→ x(t) as

x(t) = x(0) + l

∫ s(t)

0
T (u)du for t ∈ [0, tf ]. (7.7)

Thus, given a set of N motion trajectories E = {x1, . . . , xN}, we can decompose the variability into a first
“rigid transformation” part, consisting of lengths {lk}k=1,...,N , durations {tf k}k=1,...,N , and positions in
space {Z(0)

k }k=1,...,N , and a second “intrinsic” part, comprises arc-length functions and Frenet curvatures.
Moreover, as introduced in Chapter 5 and Chapter 6, variations in the intrinsic part can be subdivided
into variations in parameterizations and variations in residual shapes. Specifically, these components
can be described by arc length functions {sk}k=1,...,N , aligned Frenet curvatures {θ̃k}k=1,...,N (describing
“amplitude variability” of the shapes), and warping functions {γk}k=1,...,N used for alignment (describing
“phase variability” of the shapes). It’s important to note that this decomposition depends inherently
on the chosen definition of mean Frenet curvatures, defined in Chapter 6. Indeed, considering means
µ(θ) or X(1) results in θ̃k = θk and γk = id for all k. However, considering means µ(SRC), X(3), or X(2)

leads to θk(s) = θ̃k(γk(s))γ′
k(s), where the warping function γk depends on the chosen mean’s definition.

Finally, given the mean Frenet curvatures computation algorithms of Chapter 6, the motion trajectories
are separated into the following components:

1. a mean Frenet curvatures parameter µθ,

2.
{

θ̃k
}

set of aligned Frenet curvatures ⊂ L2([0, 1],R2),

3. {γk} set of optimal warping functions ⊂ Diff+([0, 1]),

4. {sk} set of scaled arc length functions ⊂ Diff+([0, 1]),

5.
{
Z

(0)
k

}
set of positions in SE(3),

6.
{
tf k
}

set of durations in R, and,

7. {lk} set of lengths in R.

2.2 Analysis and Modeling of Components

One standard way to analyze variability components is through principal component analysis (PCA),
which provides a parsimonious decomposition of the variability (Jolliffe, 2002). Basically, it consists of
transforming variables that are correlated into new variables that are decorrelated from each other and
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orthogonal, which we call principal components. However, the PCA is originally defined for Euclidean
data. Among the components describing the variability in our trajectories that we have identified, most
are elements of more complex spaces, functional space or Lie group, and thus require adapted versions
of PCA for their analysis (see Section 2.1.2 of Chapter 2).

2.2.1 Analysis of Warping Functions

Two of the components, {sk} and {γk}, are warping functions in the space Diff+([0, 1]). However, as
Diff+([0, 1]) is an infinite-dimensional and nonlinear manifold, we consider instead the space Ψ([0, 1])
which represents the square root of the derivatives of elements in Diff+([0, 1]), i.e. we represent γ ∈
Diff+([0, 1]) by ψ =

√
γ′ ∈ Ψ([0, 1]). Any element of Diff+([0, 1]) is uniquely represented by an element

of Ψ([0, 1]): γ(t) =
∫ t

0 ψ(s)2ds. As already introduced in Chapter 5, Ψ([0, 1]) is the unit sphere S∞ of
the Hilbert space L2([0, 1],R) and a Riemannian manifold equipped with the L2 metric (Marron et al.,
2015; Tucker et al., 2013). The geodesic distance between two elements in Ψ([0, 1]) is defined in equation
(5.14). Therefore, the mean of a set of warping functions can be defined by the Karcher mean in the
space Ψ([0, 1]): given ψ1, . . . , ψN ∈ Ψ([0, 1]),

µψ = arg min
ψ∈Ψ([0,1])

N∑
k=1

dΨ([0,1])(ψ,ψk), and µγ =
∫ t

0
µψ(s)2ds ∈ Diff+([0, 1]). (7.8)

This Karcher mean can be computed in practice using the Algorithm 3 define in Chapter 6, where the
tangent vectors in step 1 are computed as

vk = ϑk
sin(ϑk)

(ψk − cos(ϑk)µψ), with cos(ϑk) = ⟨µψ, ψk⟩,

and the exponential map is given as expµψ(ϵ∥v̄∥) = cos(ϵ∥v̄∥)µψ + sin(ϵ∥v̄∥) v̄
∥v̄∥ . The tangent vec-

tors {vk} are elements of the tangent space Tµψ(Ψ([0, 1])) =
{
v ∈ L2 |

∫ 1
0 v(t)µψ(t)dt = 0

}
. Given that

Ψ([0, 1]) is a nonlinear space, direct application of functional principal component analysis (fPCA)
is not feasible. Therefore, Tucker et al. (2013) propose to make the analysis in the tangent space
at the mean point Tµψ(Ψ([0, 1])). Within this tangent space, we define a sample covariance function
(t1, t2) 7→ 1

N−1
∑N
k=1 vk(t1)vk(t2), which is in practice computed using a finite number of points n, re-

sulting in a n × n sample covariance matrix Kψ. Performing singular value decomposition (SVD) on
Kψ, i.e., Kψ = UψΣψV T

ψ , yields the estimated principal components of {ψk}: the p principal directions
Uψ,j and the observed principal coefficients ckj = ⟨vk, Uψ,j⟩ for j = 1, . . . , p. The warping functions can
be reconstructed from this decomposition as γ̃k(s) =

∫ s
0 expµψ(∥ṽk∥)(t)2dt where ṽk = ∑p

j=1 ckjUψ,j .

Using this method, we compute the means and perform the functional principal components analysis
of the two sets {sk} and {γk}, and we denote µs and µγ their respective means, and c(s),U (s) and
c(γ),U (γ) their respective ps and pγ principal components.

2.2.2 Analysis of Aligned Functions

The aligned Frenet curvatures {θ̃k} are vector-valued functions in L2([0, 1],R2). So, in comparison
with Tucker (2018)’s work, we need to analyze a set of bivariate functions observed in practice on a
discrete grid of size n. However, as explained in Ramsay and Silverman (2005), computing the principal
components analysis of bivariate functions results in computing standard PCA on the concatenated
vectors with the two variables, curvature and torsion. Then, we denote the concatenated vectors fk =
(κ̃k,1, . . . , κ̃k,N , τ̃k,1, . . . , τ̃k,N ) and define their sample covariance operator as

Kθ = 1
N − 1

N∑
k=1

(
(fk − fµθ

)(fk − fµθ
)T
)

∈ Rn×n.
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Taking the SVD, Kθ = UθΣθV T
θ , we obtain the estimated principal components of {θ̃k}: the pθ

principal directions Uθ,j and the observed principal coefficients c(θ)
kj = ⟨vk, Uθ,j⟩ for j = 1, . . . , pθ.

2.2.3 Analysis of Rigid Transformations

To fully analyze the variability within a set of motion trajectories, we also need to consider variability
in positions in space, lengths, and durations. The last two components are simply scalars so that we
can perform a standard principal component analysis on vectors (lk, tf k) ∈ R2. On the other hand,
positions {Zk} lie in the non-Euclidean space SE(3), but the standard principal component analysis is
only applicable to Euclidean data. In such cases, a method called “tangent PCA” involves projecting
points in SE(3) onto the tangent space at the Frechet mean and subsequently conducting a standard
PCA of these tangent vectors. Other generalizations of PCA to manifold-valued data are studied in
Fletcher et al. (2004); Huckemann et al. (2010). Finally, we obtain two other sets of PCA coefficients:
the pltf principal coefficients c(ltf ) and the pZ principal coefficients c(Z).

Note that, in practice, the positions {Zk} considered are not the initial positions xk(0) and initial
Frenet frames Qk(s(0)). Indeed, we observed that these quantities are extremely dependent on the
estimation errors of the Frenet path and the Frenet curvatures, which are generally not well estimated
at the boundaries. Therefore, we consider instead, for the translation part, the position in R3 of the
centers of mass of each curve. For the rotation part, we consider the rotation matrices aligning each
curve to the reconstructed mean trajectory, estimated by Procustes analysis.

2.2.4 Joint Gaussian Modeling of Components

Inspired by the framework used by Tucker et al. (2013) for deriving their generative model, we induce a
distribution on the set of motion trajectories by imposing a probability model on the PCA coefficients
of the different variability components. Basically, we model the coefficients c(θ), c(γ), c(s), c(ltf ), c(Z)

as multivariate normal random variables. Their joint covariance matrix is a square matrix of shape
pθ + pγ + ps + pltf + pZ and models the correlation between the different variables.

2.3 Results

We apply our generative model on two sets of sign language wrist trajectories corresponding to the signs
"train" and "essayer," for which the different means are displayed in Figure 6.9 and Figure 6.11, respec-
tively. Finding suitable methods and metrics to assess the quality of the model is not straightforward as
we do not have a law or feature to confirm that the movements generated correspond to human gestures.
To have an element of comparison, we have also chosen to generate trajectories with a generative model
based on the SRVF representation. This model, available in the fdasrsf Python library, operates as
follows: the mean SRVF is computed from individual SRVFs, and then an fPCA is performed on the
tangent space at this mean point. Subsequently, tangent random vectors are generated using a Gaussian
model. In this case, only the shapes of the generated curves are compared, as the final length is not
modeled in this generative model; therefore, the curves generated by this model are scaled to unit length.
The results are visible in Figure 7.3 and Figure 7.4. For each sign, we generate 10 new trajectories with
both models. The 3D grids are adapted to each curve and not common to all. Indeed, without this
adaptation, it is sometimes challenging to appreciate the shape of certain trajectories.
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(a) Initial trajectories

(b) Generated trajectories with our Frenet-based generative model.

(c) Generated trajectories with the SRVF-based generative model.
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(d) Initial (left), aligned (middle) and generated (right) curvatures.
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(e) Initial (left), aligned (middle) and generated (right) torsions.
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(f) Initial (left) and generated (right) arc-lengths.
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(g) Initial (left) and generated (right) warping functions.

Figure 7.3: Generative model results of sign "train".
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2. Generative Model of Wrist Movements

(a) Initial trajectories

(b) Generated trajectories with our Frenet-based generative model.

(c) Generated trajectories with the SRVF-based generative model.
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(d) Initial (left), aligned (middle) and generated (right) curvatures.
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(e) Initial (left), aligned (middle) and generated (right) torsions.
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(f) Initial (left) and generated (right) arc-lengths.
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(g) Initial (left) and generated (right) warping functions.

Figure 7.4: Generative model results of sign "essayer".
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The results from our model for the sign “train” reveal a faithful reproduction of the circular geometry
in the initially captured trajectories, with multiple loops forming circles with radii relatively close to each
other. In contrast, the curves generated by the SRVF-based model also exhibit circular loops but with
more variable radii, encompassing both very small and large loops. This aligns with the previously
observed trends in the mean shapes. The outcomes for curvatures and torsions are reasonably accurate,
effectively capturing phase variability. However, some of the generated curvatures and torsions may
appear less smooth than those in the initial movements, and the amplitude variability of the curvatures
is somewhat attenuated.

For the sign “essayer”, the SRVF-based generative model also demonstrates good performance. The
simulated trajectories from our generative model better capture the variability of the initial trajectories
compared to the SRVF-based model, which predominantly captures the shape of Thomas’s movements.
However, in the 10 signs generated by our model, the amplitude variability of the curvatures does not
entirely match that of the initial signs. This discrepancy can be attributed to the smoother warping
functions generated, given that the curvatures of the new trajectories are determined by the model
θ̃k(γk(s))γ′

k(s). The observed variations in the generated arc length and warping functions mirror those
of the original trajectories. Regarding torsion, the results appear satisfactory in representing the under-
lying patterns.

Our model demonstrates promising and encouraging results in the two presented examples. However,
accurately evaluating the model’s quality remains challenging, relying predominantly on qualitative as-
sessments. To conduct a more comprehensive evaluation, a potential approach involves undertaking a
study with a group of deaf individuals and an extensive sign corpus to determine if they can correctly
identify signs from the generated movements. However, this study is currently limited as our current
approach focuses only on the movements of a single point on the body (in this case, the wrist), whereas
sign language involves movements of the entire body and facial expressions. Future work should, there-
fore, focus on developing a model capable of analyzing the simultaneous movement of multiple points on
the body. For this, a simple approach could involve applying the current model independently to each
point, but this would likely yield inconsistent results. An alternative strategy could be considering the
simultaneous multivariate alignment of curvature and torsion of trajectories of different points on the
body (defined during motion capture by the marker placement on the body). However, developing this
approach requires additional time and could be the subject of future research work.

3 Exploring Future Works
We plan to explore methods for classifying and clustering signs using the descriptors and distances based
on the Frenet framework introduced in this thesis. A subject for an internship was opened last year on
this topic but remained unfilled due to a lack of applicants. Nevertheless, it is a subject we intend to
explore in our future work. One of the issues we aim to address concerns determining an interesting
segmentation for a sign language movement trajectory. Specifically, we seek to identify a limited num-
ber of trajectory segments, fewer than the number of signs, which can decompose any sign movement
trajectory into a few of these segments. These segments can be regarded as letters in written languages
or phonemes in spoken languages, forming building blocks to compose any sign. Therefore, we aim to
develop a clustering method that maximizes the length of these segments while minimizing the total
number of segments across all signs, i.e., the number of clusters. To achieve this, we could fully exploit
both datasets of MocapLab (Section 3.1), which have been only partially used so far.

Regarding segmentation, one approach could be to use motor control principles to obtain potential
segmentations. For example, by decomposing the velocity signal into a sum of log-normal profiles,
or using multiple regressions of the two-thirds power law, as proposed by Endres et al. (2013), or by
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drawing inspiration from the works of Despinoy et al. (2016) who use the idea of persistence to segment
the velocity profile. However, initial clustering tests based on our SRC distance suggest that it may not be
directly suitable for this task. We applied a simple hierarchical clustering method to the approximately
10 repetitions of the 5 signs, for which we displayed the averages in Chapter 6. Figure 7.5 and Figure 7.6
show the dendrograms of these clusterings considering the entire trajectory and when removing 20% of
the time at the beginning and end of the trajectories, using the SRVF and SRC distance respectively. It
is observed that the SRVF distance seems more effective for this task, even if it is slightly less performant
when removing transitional movements to the initial position at the beginning and end. It appears that
the SRVF distance can even sometimes differentiate repetitions by Thomas (rep 1 to 5) from those by
Aliza (rep 6 to 10), simply based on wrist movement. This interesting result reveals a limitation of our
distance compared to the SRVF distance for this clustering task. Indeed, the SRVF distance has the
advantage of always being between 0 and 1, which is not the case for the SRC distance. The SRVF
representation of a curve always has a unit L2 norm, whereas the L2 norm of the SRC representation
corresponds to

∫ 1
0
√

∥θ(t)∥dt, making SRC representations less suitable for direct comparisons.
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Figure 7.5: Dendrograms generated through hierarchical clustering using the complete linkage criterion
applied to the SRVF pairwise distance matrices on the set of repeated trajectories of signs "autrefois"
(1), "avril" (2), "train" (3), "avoir l’air" (4), "essayer" (5): distances taken on 100% of the trajectories
and on the 80% in the middle of the trajectories.
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(b) SRC on 80%

Figure 7.6: Dendrograms generated through hierarchical clustering using the complete linkage criterion
applied to the SRC pairwise distance matrices on the set of repeated trajectories of signs "autrefois" (1),
"avril" (2), "train" (3), "avoir l’air" (4), "essayer" (5): distances taken on 100% of the trajectories and on
the 80% in the middle of the trajectories.

This suggests potential future theoretical work to improve our distance. On the other hand, it also
suggests that we could potentially achieve good results with the SRVF distance for this problem.

156







Conclusion and Perspectives

The primary goal of this thesis, centered on developing tools to analyze sign language motion trajecto-
ries, has led us to formulating a new general mathematical framework for functional data shape analysis.
Leveraging the power laws of motor control involving the trajectory’s curvature, torsion, and velocity
parameters, we identified the Frenet-Serret framework as potentially relevant to motion trajectory anal-
ysis. The development of a shape analysis framework of Euclidean curves from these parameters had
been suggested by some, but it had never been fully explored or defined, primarily due to the challenge
of estimating Frenet curvatures from discrete numerical observations of a curve.

In this context, within a functional data modeling framework, this thesis introduces a new EM al-
gorithm for estimating these parameters. Compared to existing methods that inspired its development,
our proposed algorithm provides more reliable estimators of Frenet curvatures and Frenet paths. These
estimators are both smooth and capable of adapting to very fine geometric variations (e.g., small loops).
Nevertheless, the two-step estimation methods, initially proposed by Park and Brunel (2019), for which
we provide a comprehensive description and analysis in this thesis, along with an alternative method for
smoothing the Frenet path, also prove relevant and robust in the case of low-noise data. These methods
outperform the commonly used method based on the extrinsic formulas of curvatures. They estimate
Frenet curvatures within a functional data framework with a B-spline decomposition that, however,
involves many hyperparameters to optimize and is not effective at the boundaries. Although the EM
algorithm is slightly more effective at the boundaries due to simultaneous optimization of the initial con-
dition, this remains a significant problem for the subsequent use of these estimators. We believe that a
potential improvement to the EM model would be formulating the problem as a latent force model, espe-
cially since it would better correspond to the physical model we consider and our assumption that Frenet
curvatures are smooth parameters. However, this would significantly complicate the model formulation,
which is already quite complex despite several simplifications, such as restricting it to a 3-dimensional
space (and not arbitrary) and assuming a standard model for the error. Thus, extending this model to
any dimension seems challenging and potentially not optimal, especially considering the high computa-
tional cost of the EM algorithm. Therefore, we believe that an interesting work for future research would
be to explore the use of deep neural networks for this task, given that we can simulate a large amount of
data (solution of the Frenet-Serret differential equation). This approach could potentially offer increased
computational efficiency and even superior performance in terms of results. Nevertheless, the estimation
algorithms proposed in this thesis have paved the way for the development of new shape analysis methods.

From the reliable and smooth estimators of the Frenet-Serret framework parameters, this thesis
defines a new framework for the shape analysis of smooth curves in Rd (d ≥ 1), fully exploiting the
geometric information of the curves. Specifically, we introduce two new curve representations based on
these parameters: the unparametrized Frenet Curvatures (FC) and the Square Root Curvature Trans-
form (SRC), inspired by the SRV transform of Frenet paths into the group SO(d). These representations
establish a Riemannian geometry on the shape space, providing explicit formulas for distances and asso-
ciated geodesics, invariant under the action of the reparametrization group. This perspective challenges
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the field of functional data shape analysis, where the state-of-the-art SRVF representation is considered
the most advanced and effective method. The results obtained in this thesis demonstrate that the SRC
representation is particularly interesting, combining the strengths of both FC and SRVF. The advan-
tages of using higher-order geometric information, beyond first-order information like SRVF, are evident
in geodesics and Karcher means presented in this thesis. Unlike the FC representation but similar to
the SRVF representation, the SRC depends on parametrization. Thus, we confirm the importance of
considering a parametrization-dependent representation, allowing point alignment along the curve by
quotienting the reparametrization group and defining an “elastic” shape analysis framework. However,
these three representations are relevant, and the choice of the “best” representation may depend on the
context and the type of data/curves under consideration. In particular, SRVF may be more suitable in
certain applications due to its simplicity of estimation. From these representations, we can define the
mean shape of a set of curves using Karcher means in the associated shape spaces they define. However,
this thesis also suggests reconsidering how these mean shapes are calculated. In this regard, we propose
to view the problem of estimating the mean shape from a statistical perspective based on the statistical
characterization of mean Frenet curvatures proposed by Park and Brunel (2019) in a functional data
modeling framework. Given the identified limitations of their statistical criterion for estimating these
mean parameters, we propose two alternative criteria that, geometrically, have the same strengths as
the SRC Karcher mean. Given the difficulty of Frenet curvatures estimation, this is particularly relevant
in this context. These regularization-based criteria to approximate the Karcher means are shown in the
thesis to be especially effective in the case of a set of noisy curves, as they reduce the bias and error
due to the individual estimations of each Frenet curvatures required in a preprocessing-based approach.
However, these criteria could be further improved using the EM algorithm proposed in the thesis to es-
timate Frenet curvatures and Frenet paths. Additionally, based on results from simulated data and sign
language movements, it appears that the main limitation of the Frenet-based representations and means
that we define still lies in the quality of Frenet curvatures estimators. This could explain the inconclusive
first results obtained in clustering sign language movement trajectories using the SRC distance, where
the SRVF distance performs quite well. Another potential advantage of the SRVF representation for
this problem is that it always has a unit L2 norm, unlike the SRC, suggesting further research on our
distance and representation. Furthermore, experiments on motion data have also highlighted the interest
in future development of methods for estimating a partial mean or partial matching, not assuming that
the beginning and end are the same for each curve in the considered set. We have started working on this
topic and believe it can be useful in various applications. Recent papers have emerged in this research
direction, including Antonsanti et al. (2022) in the context of LDDMM, to which I have contributed.

Finally, these tools offer a new framework for analyzing sign language motion trajectories. Although
initially inspired by the power laws of motor control, we demonstrate that these are insufficient to
capture the variations in curvature, torsion, and speed parameters in the case of right wrist movements
in sign language. This thesis also introduces a generative model for wrist movement trajectories based
on the three parameters of curvature, torsion, and speed, rather than the three Cartesian coordinates.
This model shows promising results and is particularly interesting, given a potential way of addressing
both the challenge of limited sign language databases and the anonymization issue of motion capture-
acquired movements. While the proposed applications in this thesis for sign language processing are
still limited, we discuss ideas for future research to exploit fully, for this purpose, the new mathematical
framework proposed and the MocapLab data at our disposal. In particular, we are considering methods
for segmenting and clustering motion trajectories based on these parameters, as well as applying these
methods simultaneously to the movements of several points since sign language is not just a movement of
the wrist. Finally, we believe that it is essential, for the future development of sign language processing
methods, to collaborate closely with deaf people, who alone are aware of the real needs and the quality
of the tools being proposed.
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Finally, more generally, this type of wrist movement trajectory is becoming increasingly common
nowadays, especially with the development of virtual reality (metaverse, virtual reality controllers, etc.).
We believe the curve analysis framework developed in this thesis, based on the Frenet-Serret framework,
could also be relevant in these contexts. Among other things, the new distances we have proposed,
being differentiable, could be employed as loss functions in deep learning models using such data. This
could offer advantages in terms of performance and learning efficiency compared to commonly used loss
functions. Additionally, considering the use of the curvature, torsion, and speed descriptors we have
proposed, rather than simple Cartesian coordinates, to train a neural network could be a relevant ap-
proach. This might be particularly advantageous when only the shape of the trajectory is of interest in
the considered problem, as these descriptors provide a more meaningful representation of the geometric
features of movements, potentially improving the network’s ability to learn complex relationships. Fi-
nally, we sincerely hope that our open-source implementation of the methods developed in this thesis
can contribute to such future research works.
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A
Python Package FrenetFDA

Overview
All the methods and algorithms developed and detailed in this thesis have been implemented in the
Python package FrenetFDA, available on GitHub (https://github.com/perrinechassat/FrenetFDA). This
package combines various methods for estimating parameters within the Frenet framework for Euclidean
curves and shape analysis methods based on these parameters. Some methods are specifically designed
for 3-dimensional curves, which, nevertheless, cover the majority of real-world data cases where these
methods can be useful. The implementation relies on several libraries. B-spline smoothing uses the
scikit-fda library, and polynomial regression smoothing uses the scikit-learn library. Certain meth-
ods for Special Euclidean and Special Orthogonal Lie groups, as well as tangent PCA on these groups,
are implemented with the Geomstats library. All methods related to the SRVF representation of a
curve use the fdasrsf library. Additionally, curve alignment is implemented using dynamic program-
ming (Bertsekas, 1995) in C++. To achieve this, we slightly modified the implementation found in the
fdasrsf library to adapt it to the group action (f ◦ γ)γ′. Bayesian optimizations are performed using
the scikit-optimize library. For visualization tools, we use the plotly library. Finally, we frequently
employ the scipy and numpy libraries. Since, in most of the experiments conducted, we parallelize var-
ious simulations, most functions do not contain directly parallelized sections. Therefore, there is room
for code optimization in this regard.

Architecture
FrenetFDA/

processing_Euclidean_curve/

unified_estimate_Frenet_state_space/

EM_Frenet_state_space.py ▷ Expectation-maximization algorithm for Frenet
curvatures and Frenet path estimation (Chapter 4).

iek_filter_smoother_Frenet_state.py ▷ Invariant extended Kalman filter for
tracking and smoothing of the Frenet path in SE(3) (Chapter 4).

estimate_Frenet_curvatures.py ▷ Frenet curvatures extrinsic formulas (Chapter 3).
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Appendix A. Python Package FrenetFDA

estimate_Frenet_path.py ▷ Gram-Scmidth orthogonalization and constrained local
polynomial regression to estimate the Frenet path (Chapter 3).

preprocessing.py ▷ Local polynomial regression to estimate time derivatives and
arc-length function (Chapter 3).

processing_Frenet_path/

estimate_Frenet_curvatures.py ▷ Penalized least square criterion to estimate Frenet
curvatures given Frenet path observations (Chapter 3).

smoothing.py ▷ Karcher mean based smoother and tracking based smoother of a Frenet
path (Chapter 3).

shape_analysis/

generative_model.py ▷ Generative model proposed for motion trajectories in Chapter 7.
riemannian_geometries.py ▷ Classes SRVF, SRC, and Frenet_curvatures including all

shape analysis methods (distance, Karcher mean, geodesic path, etc.) (Chapter 5).
statistical_mean_shape.py ▷ Statistical criteria for mean shape estimation (Chapter 6).

utils/

Lie_group/

SE3_utils.py ▷ Methods related to the Special Euclidean group SE(3) (Chapter 2).
SO3_utils.py ▷ Methods related to the Special Orthogonal group SO(3) (Chapter 2).

Frenet_Serret_utils.py ▷ Functions to solve the Frenet-Serret differential equation.
alignement_utils.py ▷ Alignment algorithms based on group actions and parameters

considered (Chapter 5 and Chapter 6).
curves_utils.py ▷ Tools for centering and rotating Euclidean curves.
smoothing_utils.py ▷ B-spline and local polynomial smoothing algorithms.
visualization.py ▷ Tools for plotting 2D and 3D curves.

164



B
Introduction en Français

Cette thèse se consacre à l’analyse mathématique du mouvement de la langue des signes à partir de don-
nées de capture de mouvement (motion capture). MocapLab (https://www.mocaplab.com/fr), une en-
treprise parisienne spécialisée dans la capture de mouvement, est l’une des principales entités européennes
dans ce domaine. Leur portfolio diversifié regroupe plusieurs activités de recherche, se concentrant par-
ticulièrement sur la langue des signes explorée à travers plusieurs projets (SignEveil, StorySign, Rosetta
LIMSI and LISN (2022)). Les données générées par MocapLab peuvent être considérées comme une
collection de courbes euclidiennes multivariées. Ce type de données, correspondant à l’enregistrement de
comportements ou de phénomènes dans le temps ou l’espace, peut être vu comme des observations d’une
fonction. Il est devenu de plus en plus courant ces dernières années dans divers domaines (trajectoires
d’avions, études de mouvement, biologie, enregistrement continue de la température, etc.), notamment
en raison des avancées dans les technologies d’acquisition de données continues (capteurs, dispositifs
embarqués, systèmes de capture de mouvement, etc.). L’analyse de ces données complexes nécessite
des outils mathématiques sophistiqués et spécifiques, étant donné leur dimensionnalité élevée inhérente
et leur nature continue. Ces défis ont motivé la recherche en analyse de données fonctionnelles (Ram-
say and Silverman, 2005), visant à établir un cadre dédié pour les données modélisées sous forme de
fonctions, et en analyse de forme (Srivastava and Klassen, 2016), qui cherche à développer des outils
statistiques capables de capturer les formes complexes inhérentes à ce type de données, en utilisant des
espaces mathématiques appropriés. L’engagement de MocapLab dans la recherche sur la langue des
signes, associé à l’expertise du Laboratoire de Mathématiques et de Modélisation d’Évry (LaMME), a
conduit à leur collaboration à travers cette thèse, généreusement soutenue par des subventions de la
Région Île-de-France dans le cadre du projet “Paris Region PhD 2020”. L’objectif de la thèse est de
contribuer de manière significative à l’évolution des domaines de l’analyse de données fonctionnelles et
de l’analyse de forme, dans un contexte motivé par l’analyse du mouvement de la langue des signes.

1 Contexte de la Langue des Signes

Les Langues des Signes (LS) constituent le principal moyen de communication pour environ 70 millions
de personnes sourdes dans le monde, selon la Fédération Mondiale des Sourds (https://wfdeaf.org/our-
work/). Ces langues comptent plus de 200 variations à travers le monde, en fonction des pays. En France,
la Langue des Signes Française (LSF) est prédominante et considérée comme la langue principale pour
de nombreuses personnes sourdes. Historiquement, les langues des signes ont eu du mal à être reconnues
comme des langues indépendantes. Pendant l’Antiquité, la notion aristotélicienne selon laquelle ceux qui
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ne peuvent pas parler ne peuvent pas penser entravait l’éducation des personnes sourdes. Ce n’est qu’au
XVIe siècle que les éducateurs ont commencé à travailler avec les personnes sourdes, et en 1760, l’abbé
de L’Épée a fondé la première école pour les sourds à Paris. Le Congrès International sur l’Éducation
des Sourds de 1880 a marqué un tournant en favorisant les méthodes orales plutôt que la langue des
signes dans l’éducation. Cette interdiction des langues des signes a persisté jusqu’à la fin du XXe siècle.
Le travail novateur de Stokoe (1960) a entraîné un changement de perception et a stimulé des recherches
approfondies sur les langues des signes. Cela a conduit la France à reconnaître la LSF comme une langue
à part entière dans la loi française sur le handicap de 2005. Par la suite, la recherche linguistique, les
programmes universitaires et la formation professionnelle pour les professions liées à la langue des signes
se sont multipliés, mettant l’accent sur l’importance de l’accessibilité dans les espaces publics pour les
personnes en situation de handicap. Aujourd’hui, malgré les progrès, des croyances obsolètes persistent,
contribuant à la négligence linguistique et impactant le développement cognitif, socio-émotionnel et
académique des personnes sourdes.

1.1 Linguistique de la Langue des Signes

Tout comme les langues parlées, les langues des signes sont régies par un système linguistique englobant
des structures syntaxiques, morphologiques, sémantiques et phonologiques (Emmorey, 2001). Les LS
sont des langues orales impliquant une communication en face-à-face : un signeur transmet un message
en LS, et un observateur perçoit ce message (Figure B.1). Les LS utilisent la modalité visuo-gestuelle,
impliquant des mouvements continus du visage, des mains, du corps du signeur et de l’espace environnant
pour construire un discours. De plus, les signeurs incorporent l’iconicité, caractérisée par une forte
ressemblance entre la forme des signes et leurs significations (Sallandre and Cuxac, 2002). Cela permet
l’expression d’idées complexes sans recourir à un lexique standard.

Figure B.1: Schéma de la Langue des Signes (illustration de Laurent Verlaine, Guitteny and Verlaine
(2018)).

Récemment, Yin et al. (2021) a proposé une description détaillée des caractéristiques linguistiques
de la langue des signes. Parmi ces caractéristiques, la simultanéité permet de transmettre autant
d’informations qu’une langue parlée dans un laps de temps similaire, en utilisant plusieurs éléments
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visuels pour transmettre différentes informations simultanément (Sandler, 2012). Alors que les com-
posants manuels sont la principale source d’information émise, les expressions faciales sont cruciales
pour dissiper certaines ambiguïtés de signes et/ou fournir des qualifications (par exemple, grand, petit).
Un autre aspect distinctif de la langue des signes implique le placement d’éléments de discours à des em-
placements spécifiques dans l’espace de signe. Pour rappeler ces éléments plus tard, les signeurs désignent
leur position avec un regard ou un geste de pointage, un processus connu sous le nom de référencement,
qui peut induire une modification dans le mouvement du signe en raison de changements de direction
(par exemple, verbes directionnels) (Dudis, 2004). De plus, les signeurs utilisent l’épellation par gestes
manuels pour indiquer des noms, des lieux ou des concepts nouveaux de la langue parlée qui n’ont pas de
signe dédié (Wilcox, 1992). Cela implique un ensemble de gestes manuels correspondant à l’orthographe
écrite. Enfin, le modèle proposé par Brentari (1998) décompose les propriétés articulatoires de la langue
des signes en quatre classes phonémiques principales : la forme de la main, l’emplacement, le mouvement
et l’orientation de la paume. Des caractéristiques non manuelles, telles que le regard, les mouvements de
la tête et la position du torse, peuvent également être incluses (Johnson and Liddell, 2011). Cependant,
il est essentiel de noter qu’il n’y a toujours pas de consensus parmi les linguistes concernant la description
des langues des signes, et même le concept de signes peut varier en fonction des théories linguistiques.

1.2 Défis Actuels dans le Traitement de la Langue des Signes

La reconnaissance tardive des langues des signes en tant que langues officielles, associée à leur com-
plexité linguistique et à leurs différences conceptuelles significatives par rapport aux langues parlées, a
conduit à un retard considérable dans la compréhension des mécanismes sous-jacents et des méthodes
de traitement en LS. Ce retard est évident par rapport aux connaissances et aux capacités de traitement
des langues parlées et écrites. Aujourd’hui, la plupart des nouveaux outils de communication ou de
traitement sont conçus pour les langues parlées. Des progrès significatifs, avec un impact considérable,
ont été réalisés dans ces domaines, tels que la reconnaissance vocale et les assistants vocaux (Siri, Google
Assistant), la traduction automatique entre langues (DeepL, Google Translate), et plus récemment, dans
la génération automatique de texte (ChatGPT, Bard). Cependant, malgré le développement récent
d’applications prometteuses pour les LS, comme Signily, Spread Signs, SignEveil (par MocapLab), et
d’autres, des efforts supplémentaires substantiels sont nécessaires pour développer des outils pour les LS
comparables à ceux disponibles aujourd’hui pour les langues parlées. Il y a un défi social réel et urgent
dans le développement d’outils de traitement automatique pour les LS afin de réduire les barrières de
communication auxquelles sont confrontés les signeurs et la discrimination causée par ce retard dans
les avancées technologiques. La recherche sur les LS est relativement récente et limitée, se concentrant
principalement sur la linguistique. Cependant, l’innovation dans les technologies des LS nécessite la
participation d’autres domaines tels que l’informatique, les statistiques et les mathématiques.

Aujourd’hui, de nombreux défis entravent encore le progrès dans le traitement automatique des LS.
Un défi majeur réside dans les méthodes de représentation. L’absence d’une forme écrite largement
adoptée pour les LS conduit à l’utilisation de diverses modalités pour aborder le problème du traite-
ment de la langue des signes. La plupart des travaux de recherche en LS, en particulier ceux basés sur
des méthodes d’apprentissage profond, utilisent des données vidéo de signeurs (Rastgoo et al., 2021).
Bien que ce soit la méthode de représentation la plus directe, sa grande dimensionalité rend le stockage,
la transmission et l’encodage coûteux. De plus, l’anonymisation des vidéos (où le visage du signeur
apparaît) reste un problème ouvert (Isard, 2020). D’autres études de recherche visent à développer
des systèmes de notation écrite représentant les signes comme des caractéristiques visuelles discrètes de
manière linéaire ou en deux dimensions. Des systèmes de notation universels tels que SignWriting (Sut-
ton, 2014) et HamNoSys (Prillwitz and Zienert, 1990) existent, mais aucun n’a été largement adopté
par la communauté des langues des signes. De plus, parmi les principales classes phonétiques de la
langue des signes (forme de la main, emplacement, mouvement et orientation de la paume), représenter
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le composant mouvement dans l’écriture reste un problème ouvert. Une autre représentation, souvent
appelée poses, consiste en un squelette, une maille ou un ensemble de points dans l’espace représentant
les emplacements d’articulation du signeur. Ces positions dans le temps peuvent être acquises avec un
système de capture de mouvement, généralement coûteux, ou estimées directement à partir de vidéos
(Cao et al., 2019; Wang et al., 2023) avec une qualité réduite et une perte potentielle d’informations.
La représentation de la pose est généralement plus fiable et naturelle que les vidéos, permettant une
analyse plus précise du mouvement. Cependant, elle implique un format continu et multidimensionnel
qui n’est pas trivial à analyser et ne convient pas bien aux algorithmes actuels de traitement du langage
naturel (NLP). De plus, même avec cette représentation, la question de l’anonymisation des données se
pose. Tout comme pour les langues parlées, où les caractéristiques vocales peuvent révéler l’identité du
locuteur, l’identité d’un signeur peut être discernable à travers ses mouvements, mais peu d’informations
sont disponibles sur les caractéristiques du mouvement qui le caractérisent et sur la manière dont elles
peuvent être manipulées (Bigand, 2022).

Le traitement automatique des LS implique le développement de méthodes pour des tâches typiques
d’apprentissage automatique : segmentation, classification, reconnaissance, traduction et génération
(Bragg et al., 2019; Yin et al., 2021). La segmentation en langue des signes consiste à détecter des unités
significatives ou à identifier des sous-entités composant le signal (similaire aux phonèmes dans les langues
parlées) (Santemiz et al., 2009; Farag and Brock, 2019; Bull et al., 2020). La reconnaissance consiste
à associer une étiquette à un signe et diffère de la traduction, qui fait référence à la transition de la
langue des signes à la langue parlée. Avec les progrès récents dans l’apprentissage profond, de nombreux
efforts de recherche ont été menés pour ces tâches, utilisant principalement des données vidéo (Camgöz
et al., 2020; Wadhawan and Kumar, 2020). Pour la génération de la langue des signes, la plupart
des travaux utilisent des poses comme représentation. L’objectif ici est d’animer automatiquement des
avatars, qui peuvent servir d’équivalents aux assistants vocaux pour les LS. Dans les méthodes existantes
pour cette tâche, certaines génèrent et concatènent des signes isolés (Stoll et al., 2020) en utilisant la
traduction automatique neuronale et des réseaux génératifs antagonistes, tandis que d’autres (Saunders
et al., 2020b,a; Xiao et al., 2020) décodent de manière autonome une séquence à l’aide de transformateurs
ou de réseaux neuronaux récurrents. Cependant, évaluer la qualité de ces modèles génératifs reste un
défi. De plus, une limitation majeure pour le développement ultérieur de méthodes plus efficaces est le
manque de données disponibles pour toutes les différentes représentations de la LS. Rastgoo et al. (2021)
présentent une liste complète des ensembles de données existants pour la recherche sur la LS, la plupart
étant conçus pour la classification des signes. À des fins de traduction, les corpus de signes continus
disponibles contiennent beaucoup moins de paires de phrases que des ensembles de données similaires
pour les langues parlées (Arivazhagan et al., 2019). De plus, de nombreux ensembles de données en
LS discutés dans la littérature ne sont pas accessibles ou sont soumis à des restrictions strictes et des
licences, principalement en raison du défi persistant d’anonymiser ce type de données. Par conséquent,
développer des méthodes de traitement qui peuvent fonctionner efficacement avec des données limitées
est particulièrement intéressant dans ce domaine. Enfin, une limitation commune dans le développement
de modèles pour chacune de ces tâches, soulignée par Yin et al. (2021), est le manque d’une méthode de
tokenisation efficace et normalisée pour la langue des signes. Il est donc crucial, avant tout, de mieux
comprendre les propriétés et la structure complexe de la langue des signes.

2 Analyse des Trajectoires de Mouvement en Langue des Signes
Au cœur de cette thèse, notre exploration se concentre sur l’analyse du mouvement au sein des quatre
classes phonémiques en LS (forme de la main, emplacement, mouvement et orientation de la paume).
Notre objectif central est de permettre une analyse approfondie de ce qui pourrait être assimilé à un
“signal de mouvement” en langue des signes, par analogie avec le signal auditif des langues parlées.
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Nous cherchons à définir un cadre mathématique pertinent pour identifier les primitives, les descripteurs
et autres “traits cinétiques” du mouvement en LS, en mettant particulièrement l’accent sur les mou-
vements des mains ou du poignet, qui constituent la principale source d’information en LS, bien que
non exhaustive. L’objectif global de notre recherche est de révéler les mécanismes sous-jacents du mou-
vement humain en LS, améliorant ainsi notre compréhension actuelle de cette langue gestuelle. Cette
approche est cruciale dans le contexte du traitement de la LS. Par exemple, dans la création d’animations
d’avatars authentiques, étant donné que les êtres humains sont particulièrement sensibles au mouvement
biologique et peuvent naturellement faire la distinction entre le mouvement humain et le mouvement
synthétisé. De plus, dans le contexte de la transcription écrite de la LS, il est impératif de décomposer
le composant mouvement en primitives ou éléments descriptifs. Ainsi, le rôle central de cette thèse est
de développer des outils mathématiques et un cadre d’analyse spécifiquement adaptés à cette tâche,
contribuant à combler les lacunes actuelles dans la compréhension du mouvement en langue des signes.
À cet égard, nous avons la chance de travailler avec des données acquises par capture de mouvement,
particulièrement bien adaptées à notre objectif parmi les différents types de représentation de la LS
mentionnés précédemment.

2.1 Données de Capture de Mouvement

La capture de mouvement, ou mocap, est une technologie révolutionnaire permettant d’enregistrer et
de reproduire les mouvements humains ou d’autres objets à l’aide de divers capteurs et/ou systèmes de
caméras. Pour les mouvements humains, la mocap consiste à suivre les trajectoires de points clés sur
le corps en mouvement au fil du temps, traduisant directement ces mouvements en une représentation
numérique interprétative (vecteurs temporels en trois dimensions). Pendant plus d’un siècle, la mocap
a évolué des techniques basées sur des images telles que la chronophotographie ou le rotoscopie pour se
concentrer désormais sur des approches avancées telles que les systèmes optiques, mécaniques et inertiels.

Figure B.2: Système de capture de mouvement de MocapLab et espace d’acquisition des mouvements
en langue des signes.

Le système de mocap utilisé par MocapLab est un système optique passif composé de 50 caméras
Vicon dans un volume de 20 m3 à 60 m3 (Figure B.2). Les systèmes de capture de mouvement op-
tiques basés sur des marqueurs (Vicon, Inc, Optitrack, Inc) sont considérés comme la référence pour
l’analyse du mouvement humain. Ils utilisent des marqueurs rétro-réfléchissants placés sur des objets
ou le corps en mouvement. Des caméras infrarouges enregistrent ensuite la position de ces marqueurs
en réfléchissant la lumière infrarouge qu’ils émettent. La triangulation entre les caméras reconstruit
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ensuite des trajectoires tridimensionnelles avec une précision extrêmement élevée - théoriquement avec
une précision sub-millimétrique en utilisant le système de MocapLab. En raison de cette haute précision,
ce type de système de mocap est un outil puissant pour créer du contenu virtuel réaliste et analyser le
mouvement humain. En particulier, cela a permis à MocapLab de participer à des projets dans divers
domaines, notamment l’animation d’avatars pour l’industrie cinématographique et les jeux vidéo (voir
https://www.mocaplab.com/fr/gallerie), la recherche en biomécanique et en médecine, et la linguistique
des langues des signes (LIMSI and LISN, 2022; Gibet et al., 2015). Ils sont notamment capables de
mesurer simultanément le corps, le visage, la direction du regard et les doigts, tout en entravant au
minimum les gestes du signeur.

Figure B.3: Le signeur en capture de mouvement et son avatar (trajectoire dessinée par le poignet mise
en évidence en jaune).

L’objectif principal de la mocap est de capturer des mouvements de manière précise pour les repro-
duire de manière réaliste dans des contextes virtuels ou d’étude (Figure B.3). Cependant, bien que les
systèmes optiques passifs offrent une précision spatiale exceptionnelle, ils posent également des défis et
des limitations techniques. Des problèmes tels que les occultations, les interférences lumineuses et la
confusion des marqueurs peuvent entraîner des données manquantes ou inexactes, nécessitant souvent
un environnement contrôlé avec une configuration de caméra spécifique pour garantir des performances
optimales. De plus, l’achat et l’utilisation de systèmes mocap sont coûteux, limitant la possibilité
d’obtenir une grande quantité de données pour des applications telles que l’entraînement de modèles
d’apprentissage profond. Bien qu’il existe des alternatives sans marqueurs moins coûteuses, comme
Microsoft Kinect, qui utilise des capteurs de profondeur pour suivre les mouvements sans marqueurs
physiques, leur précision n’est pas toujours suffisante pour de nombreuses applications. Ainsi, ce type
de données est particulièrement adapté à l’étude détaillée du mouvement humain mais implique des
méthodes d’analyse qui ne nécessitent pas une grande quantité de données.

2.2 Contexte sur l’Analyse des Trajectoires de Mouvement Humain

Les mouvements en langue des signes sont régis non seulement par des règles linguistiques, mais aussi
par des principes inhérents au mouvement humain (Benchiheub, 2018). Il a été démontré que le mou-
vement humain est soumis à des contraintes biomécaniques et à des lois de contrôle moteur. L’étude du
contrôle moteur est un problème complexe abordé par diverses disciplines telles que la psychologie, les
sciences cognitives, la biomécanique et les neurosciences, et plus récemment étendu par l’application de
techniques d’apprentissage automatique aux données de mouvement, fournissant des perspectives sup-
plémentaires pour analyser les caractéristiques du mouvement humain. Une partie significative de la
recherche en analyse du mouvement humain se concentre sur des mouvements spécifiques, où l’objectif
est uniquement défini par le mouvement d’un point final bien identifié, appelé le “end-effector move-
ment” (Polyakov et al., 2009; Carreno-Medrano et al., 2015). Ces études explorent les caractéristiques
géométriques et cinématiques de ces mouvements et les contraintes qui les régissent. Dans le contexte
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du mouvement en langue des signes, le mouvement du poignet ou de la main peut être considéré comme
un “end-effector movement” (Endres et al., 2013).
En principe, le système musculosquelettique humain permet de nombreuses trajectoires potentielles pour
un mouvement de la main vers un but. Les chercheurs en contrôle moteur émettent l’hypothèse que le
système humain a développé des stratégies de contrôle optimal pour choisir entre ces possibilités par
l’évolution, l’apprentissage et l’adaptation. Ainsi, on suppose que le mouvement humain est régi par
des contraintes internes et externes assurant le succès du mouvement. Divers principes d’optimalité ont
ensuite été proposés dans la littérature (Wochner et al. (2020), Oguz et al. (2018)). L’un des premiers
principes mis en évidence par Flash and Hogan (1985) est le principe de minimisation des à-coups ou
secousses. Les à-coups sont représentés par la troisième dérivée de la position par rapport au temps,
c’est-à-dire la variation de l’accélération. Minimiser les à-coups vise à réduire les changements abrupts
d’accélération, rendant le mouvement plus fluide et plus économe en énergie. Ce principe a conduit
à d’autres principes de contrôle moteur, tels que le principe d’isochronie et la loi de la puissance des
deux tiers (Viviani and Flash, 1995). Viviani and McCollum (1983) a démontré le principe d’isochronie,
montrant que la vitesse des mouvements de dessin augmentait proportionnellement à l’amplitude de la
trajectoire, maintenant le temps d’exécution de ces trajectoires complexes indépendant de la taille du
mouvement. Cette relation linéaire entre la vitesse et l’étendue de la trajectoire a été démontrée pour
diverses actions telles que l’écriture ou les mouvements de la main et du bras (Freund and Btidingen,
1978). L’analyse cinématique des mouvements circulaires a révélé une autre loi bien connue du mouve-
ment, la loi de la puissance des deux tiers (également connue sous le nom de loi de la puissance d’un
tiers), suggérant une corrélation non linéaire entre la vitesse du mouvement et la courbure. Initialement
observée pour les mouvements planaires, une autre version de cette loi pour les mouvements spatiaux
implique également le paramètre de torsion de la trajectoire de mouvement. La courbure et la torsion
d’une courbe sont des paramètres qui décrivent entièrement sa géométrie. Ces lois de puissance sont
formulées comme suit :

ṡ(t) = C1κ(s(t))−1/3 (loi de puissance 1/3), (B.1)

ṡ(t) = C2
(
κ(s(t))2|τ(s(t))|

)−1/6
(loi de puissance 1/6), (B.2)

où C1 et C2 sont des constantes, ṡ est la vitesse curviligne et κ et τ sont la courbure et la torsion de
la trajectoire de mouvement. Ils supposent que la vitesse augmente dans les portions moins courbées
de la trajectoire et diminue de manière inverse dans les portions plus courbées. Endres et al. (2013)
utilise la loi de la puissance des deux tiers pour segmenter les mouvements en langue des signes. En-
fin, d’autres théories cinématiques des mouvements se trouvent dans la littérature, telles que le modèle
Sigma-Lognormal, suggérant que les mouvements humains complexes consistent en des traits superposés,
chacun ayant un profil de vitesse en forme de log-normale. Cette théorie a été particulièrement démon-
trée pour les mouvements de signature dans le plan (Ferrer et al., 2020) et étendue en trois dimensions
par Schindler et al. (2018).

Ces lois et principes peuvent servir de points de départ pour l’analyse mathématique et statistique
des trajectoires de mouvement. Ramsay et al. (1995) utilise le modèle Sigma-Lognormal pour proposer
une analyse de données fonctionnelles de force de pincement du doigt humain. Dans un cadre simi-
laire d’analyse de données fonctionnelles, Raket et al. (2016) a mené une expérience biomédicale sur les
mouvements de la main. De nombreux autres travaux dans ce cadre n’étudient pas seulement le “end-
effector movement”, mais l’ensemble du mouvement du squelette, utilisant principalement des données
acquises par capture de mouvement. Parmi beaucoup d’autres, certains cherchent à aligner temporelle-
ment les mouvements (Olsen et al., 2018; Raket et al., 2016), d’autres à modéliser la variabilité spatiale
et temporelle d’un ensemble de mouvements (Park et al., 2022), ou à analyser leurs formes (Celledoni
et al., 2016). Dans la plupart de ces travaux, les trajectoires de mouvement sont mathématiquement
représentées par leurs trois coordonnées cartésiennes. Cependant, cette représentation n’est pas adaptée
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à l’analyse des formes de trajectoire, car elle dépend de toutes les transformations rigides (translations,
rotations, mise à l’échelle, paramétrisation). Par conséquent, d’autres utilisent une représentation plus
sophistiquée impliquant la dérivée de la trajectoire de mouvement, appelée fonction de vitesse à racine
carrée (SRVF) (Srivastava et al., 2011), directement sur les courbes euclidiennes (Devanne et al., 2015;
Park et al., 2022) ou sur des courbes avec des valeurs en rotations qui apparaissent dans l’animation de
personnages (Celledoni et al., 2016). Enfin, plus récemment, Celledoni et al. (2019) et Yang et al. (2022)
ont proposé d’utiliser des signatures (Fermanian, 2021) pour décrire les mouvements humains.

3 Approche et Contributions
Cette thèse vise à proposer un cadre mathématique adapté à l’analyse des trajectoires de mouvement de la
langue des signes. Nous limitons l’analyse au déplacement d’un point correspondant au poignet droit. Ce
choix est justifié par le fait qu’une partie significative de la communication en langue des signes repose sur
les mouvements du poignet, ainsi que par la décomposition en quatre classes phonémiques proposée par
Brentari (1998), qui isole la composante mouvement des autres. Par conséquent, notre analyse s’inscrit
dans le cadre du mouvement de l’effecteur final. En nous appuyant sur les principes précédemment
discutés du contrôle moteur, nous pouvons identifier des descripteurs qui semblent particulièrement
pertinents pour l’analyse du mouvement humain. Parmi ceux-ci, nous nous intéressons à la vitesse, à
la courbure et à la torsion de la trajectoire de mouvement. Les paramètres de courbure et de torsion
dans un espace tridimensionnel sont les composantes des formules de Frenet-Serret, initialement définies
par deux mathématiciens français, Jean Frédéric Frenet (1852) et Joseph Alfred Serret (1851). Le cadre
défini par les formules de Frenet-Serret est particulièrement puissant pour décrire la géométrie d’une
courbe euclidienne. Cela a inspiré notre approche du problème mais soulève deux principaux enjeux :

• Comment dériver des estimations lisses et fiables des paramètres de courbure et de torsion à
partir de données numériques discrètes et potentiellement bruitées correspondant à la capture de
mouvement du poignet ?

• Comment comprendre et analyser la variabilité inhérente à un ensemble de trajectoires de mouve-
ment à partir de ces paramètres ?

Ces questions dépassent leur application au traitement de la langue des signes, trouvant une perti-
nence pour toute collection de courbes euclidiennes. Elles représentent des défis classiques en analyse
de forme de courbes euclidiennes, où l’obstacle initial réside dans l’identification d’une représentation de
courbe appropriée.

3.1 Jeux de données

Tout au long de la thèse, nous avons travaillé avec deux principaux jeux de données produits par Mo-
capLab. Le premier provient du projet Rosetta (LIMSI and LISN, 2022), qui comprend la traduction
en LSF de 194 gros titres de journaux, des descriptions de 28 photographies et 1200 signes isolés cor-
respondant aux notions les plus courantes des gros titres de journaux. Tous ces mouvements ont été
réalisés par le même signeur sourd. Dans ce jeu de données, nous avons isolé 143 signes bien segmentés
répétés au moins 2 fois, mais seulement 14 sont répétés au moins 4 fois. Le deuxième a été capturé par
MocapLab dans le cadre de cette thèse. En utilisant les dictionnaires LSF LSFPlus, Inc et LeDicoElix,
Inc, nous avons sélectionné 60 signes monomanuels (c.-à-d. impliquant le mouvement d’une seule main)
en LSF. Deux signeurs, une femme sourde et un homme entendant, ont effectué environ 5 répétitions
de chaque signe, revenant à une position initiale entre chaque répétition, donnant un ensemble de 648
mouvements. Les deux jeux de données comprennent les mouvements de plusieurs points clés du corps
du signeur, mais nous ne considérons que le mouvement du poignet droit dans cette thèse.
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3.2 Contributions

Nous présentons maintenant les contributions de cette thèse aux problèmes mentionnés précédemment
et l’organisation du manuscrit. En particulier, le Chapitre 2 de la thèse n’est pas inclus dans ces contri-
butions car il s’agit d’un chapitre de référence sur les concepts mathématiques utilisés tout au long du
manuscrit qui comprend des introductions à la géométrie différentielle et riemannienne, aux groupes de
Lie matriciels, à l’analyse des données fonctionnelles et de forme, et au cadre de Frenet-Serret.

La Partie I de la thèse se concentre sur l’estimation des courbures de Frenet.
▶ Le Chapitre 3 rassemble les méthodes existantes pour estimer les courbures de Frenet d’une courbe

euclidienne à partir de ses observations numériques discrètes et bruitées. Ces méthodes impliquent
l’estimation de variables latentes correspondant soit aux dérivées de la courbe, soit au chemin de
Frenet dans une étape de prétraitement. Elles incluent l’utilisation des formules extrinsèques des
courbures de Frenet et les méthodes proposées par Park and Brunel (2019), traitant l’estimation
des courbures de Frenet comme un problème d’estimation de paramètres d’une équation différen-
tielle. Notre contribution distinctive réside dans l’introduction d’une approche alternative pour
l’estimation lisse du chemin de Frenet basée sur un algorithme de tracking. Cette méthode se
révèle plus efficace du point de vue computationnel et produit des résultats comparables à ceux
des méthodes existantes. En contribution, nous fournissons également des descriptions théoriques
complètes de ces différentes méthodes et une comparaison approfondie à travers des études sur des
données simulées.

▶ Le Chapitre 4 aborde le défi posé par les méthodes existantes d’estimation des courbures de Frenet,
toutes dépendantes de l’estimation de variables latentes dans une étape distincte de prétraite-
ment. Nous introduisons une nouvelle méthode qui traite l’estimation des variables latentes et des
paramètres de manière unifiée en formulant le problème dans le groupe de Lie SE(3). Cette méth-
ode implique le développement d’un algorithme d’espérance-maximisation fonctionnel, où l’étape
d’espérance utilise un filtre de Kalman étendu invariant sur le groupe de Lie SE(3), et l’estimation
de paramètres est formulée dans le cadre de l’analyse de données fonctionnelles en utilisant la max-
imisation pénalisée de la vraisemblance attendue. L’amélioration de la précision des estimateurs
obtenus avec cette approche est démontrée par des expériences sur des données synthétiques et en
appliquant les différentes méthodes aux données de mouvement du poignet en langue des signes.

La Partie II de la thèse est consacrée au développement d’un cadre d’analyse de forme basée sur le cadre
de Frenet-Serret.

▶ Le Chapitre 5 établit un cadre de géométrie riemannienne pour les courbes lisses dans Rd, d > 1,
basé sur les courbures de Frenet. Nous introduisons deux nouvelles représentations d’une courbe
euclidienne lisse : les Courbures de Frenet non paramétrées (FC) et la Transformée de Courbures
à Racine Carrée (SRC, Square Root Curvatures transform), inspirée par la transformée de vitesse
à racine carrée du chemin de Frenet à valeurs dans SO(d). Les deux représentations prennent en
compte toutes les caractéristiques géométriques de la forme, fournissant des géodésiques probables
qui évitent les artefacts rencontrés par les représentations utilisant uniquement des informations
géométriques du premier ordre, comme la fonction de vitesse à racine carrée (SRVF). La Trans-
formée de Courbures à Racine Carrée combine les points forts des deux autres, dépendant de la
paramétrisation comme le SRVF elle implique une étape d’étirement et recalage nécessaire pour
obtenir des géodésiques cohérentes dans certains cas. Notre méthode, soutenue par des données
simulées, démontre sa pertinence pour l’analyse des mouvements humains. Ce chapitre est publié
sous forme d’article Chassat et al. (2023) pour la conférence ICCV 2023.

▶ Le Chapitre 6 aborde le défi de définir une forme moyenne d’un ensemble de courbes euclidiennes
dans Rd, d > 1. L’approche classique en analyse de forme considère la moyenne de Karcher dans
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les espaces de formes définis par les représentations SRVF, SRC ou FC. Nous comparons deux
approches distinctes pour l’estimation pratique des moyennes de Karcher basées sur les courbures
de Frenet, en tenant compte de leur sensibilité au bruit des observations. La première repose
sur une étape de prétraitement robuste impliquant une estimation efficace de chaque courbure de
Frenet individuellement dans un cadre d’analyse de données fonctionnelles. En alternative, nous
introduisons une approche basée sur la régularisation inspirée du travail de Park and Brunel (2019).
Dans un cadre de modélisation de données fonctionnelles, ils formulent explicitement le problème en
fournissant une caractérisation statistique du paramètre moyen des courbures de Frenet par le biais
du concept de champ vectoriel moyen. En reliant leur travail à l’analyse de forme, nous démontrons
que leur critère de régularisation pour l’estimation du paramètre moyen approche la moyenne de
Karcher des FC. En exploitant leur idée, nous définissons deux critères alternatifs impliquant une
étape d’alignement des courbures individuelles. Les points forts des moyennes estimées obtenues
par une approche basée sur la régularisation sont démontrés sur des données simulées bruitées.
Dans le cas de données moins bruitées, telles que nos trajectoires de mouvements en langue des
signes, les deux approches montrent des différences marginales, mais les méthodes basées sur les
courbures de Frenet et tenant compte de la paramétrisation semblent plus efficaces. Une partie de
ce travail a été rédigée dans l’article Park et al. (2022) en tant que première révision de l’article
Park and Brunel (2019), mais nécessite encore un examen approfondi.

▶ Le Chapitre 7 se présente comme un chapitre indépendant démontrant des applications plus pra-
tiques des outils et du cadre développés pour l’analyse des trajectoires de mouvement dans le
traitement des langues des signes basé sur le cadre de Frenet. En utilisant nos estimateurs ro-
bustes pour la courbure et la torsion des trajectoires de mouvement, nous évaluons la validité des
lois de puissance sur les données de mouvements du poignet en LSF. De plus, nous introduisons un
modèle génératif pour le mouvement du poignet en langue des signes, basé sur la décomposition
de la variabilité d’un ensemble de trajectoires à travers sa géométrie moyenne et des fonctions de
déformation non linéaires dérivées du paramètre de courbures de Frenet. Notre discussion s’étend
aux futures directions de recherche dans le traitement des langues des signes dans le cadre établi,
se concentrant particulièrement sur la segmentation et le clustering des trajectoires de mouvement
en langage des signes.

Par ailleurs, l’implémentation de toutes les méthodes définies dans cette thèse a contribué au développe-
ment du package Python FrenetFDA, disponible sur GitHub (https://github.com/perrinechassat/FrenetFDA)
et détaillé en annexe de la thèse, regroupant tous les outils nécessaires pour effectuer une analyse de
courbe en dimension inférieure ou égale à 3 basée sur le cadre de Frenet.

3.3 Publications

Ces contributions ont donné lieu aux publications et pre-prints suivants. D’autres articles sont également
en cours de rédaction et seront soumis dans les prochains mois.

Articles de Conférences

▶ Chassat Perrine, Juhyun Park, Nicolas Brunel. "Shape Analysis of Euclidean Curves under
Frenet-Serret Framework". International Conference on Computer Vision (ICCV), Paris, 2023
(accepted for oral presentation), https://openaccess.thecvf.com/content/ICCV2023/papers/.

▶ Chassat Perrine, Juhyun Park, Nicolas Brunel. "Analysis of variability in sign language hand
trajectories: development of generative model". Proceedings of the 8th International Conference
on Movement and Computing (MOCO ’22), Chicago, 2022.
DOI: https://doi.org/10.1145/3537972.3537999
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Article en Cours de Révision

▶ Park Juhyun, Nicolas Brunel, Perrine Chassat. "Curvature and Torsion estimation of 3D func-
tional data: A geometric approach to build the mean shape under the Frenet Serret framework".
Preprint arXiv:2203.02398, 2021.

Articles en Préparation

▶ Chassat Perrine, Juhyun Park, Nicolas Brunel. "Functional Expectation-Maximization Algorithm
on SE(3) for Frenet Curvatures Estimation". (à venir).
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Titre: Analyse de Données Fonctionnelles et Analyse de Formes dans le cadre de Frenet-Serret
: Application à l’Analyse de Trajectoires de Mouvement de Langue des Signes
Mots clés: Analyse de Données Fonctionnelles, Analyse de Forme, Cadre de Frenet-Serret,
Analyse de Trajectoires de Mouvement, Langues des Signes, Groupes de Lie

Résumé: Cette thèse vise à déterminer le
cadre mathématique le plus adapté et des
descripteurs pertinents pour l’analyse des
trajectoires de mouvement en langue des
signes. En nous appuyant sur les principes
du contrôle moteur, nous avons identifié le
cadre défini par les formules de Frenet-Serret
comme particulièrement pertinent pour cette
tâche. Ainsi, en introduisant de nouvelles
approches d’analyse de courbes basées sur
le cadre de Frenet, cette thèse contribue au
développement de nouvelles méthodes dans
les domaines de l’analyse de données fonc-
tionnelles et de l’analyse de forme. La pre-
mière partie de ce travail aborde le défi de
l’estimation lisse des paramètres de courbu-
res de Frenet, en traitant le problème comme
une estimation de paramètres d’une équation
différentielle dans SO(d), (d ≥ 1). Nous in-
troduisons un algorithme EM fonctionnel qui
définit une méthode d’estimation unifiée des
variables dans le groupe SE(3), fournissant
des estimateurs lisses, plus fiables et robustes

que les méthodes existantes.
Dans la deuxième partie, deux nouvelles
représentations des courbes lisses dans Rd

sont introduites, dont la Square Root Curva-
tures (SRC) transform, établissant un nouveau
cadre géométrique riemannien qui utilise les
informations géométriques d’ordre supérieur
et dépend de la paramétrisation, surpas-
sant alors la représentation state-of-the-art
Square-Root Velocity Function (SRVF) sur des
résultats synthétiques. Étant donné une col-
lection de courbes, ce type de géométrie nous
permet de définir des critères statistiques ef-
ficaces pour estimer les formes moyennes de
Karcher sur les espaces de formes rieman-
niens associés, qui se révèlent particulière-
ment performants sur des données bruitées.
Enfin, ce cadre développé ouvre la voie à des
applications plus pratiques dans le traitement
de la langue des signes, comprenant l’étude
des lois puissances sur nos données et le
développement d’un modèle génératif pour le
mouvement d’un point en langue des signes.

Title: Functional and Shape Data Analysis under the Frenet-Serret Framework: Application to
Sign Language Motion Trajectories Analysis
Keywords: Functional Data Analysis, Shape Analysis, Frenet-Serret Framework, Analysis of
Motion Trajectories, Sign Language, Lie groups

Abstract: This thesis aims to determine the
optimal mathematical framework and rele-
vant descriptors for analyzing sign language
motion trajectories. Drawing on principles
of motor control, we identified the frame-
work defined by the Frenet-Serret formulas as
particularly suitable for this task. By intro-
ducing new curve analysis approaches based
on the Frenet framework, this thesis con-
tributes to developing novel methods in func-
tional data analysis and shape analysis. The
first part of this thesis addresses the chal-
lenge of smoothly estimating Frenet curva-
ture parameters, treating the problem as pa-
rameter estimation of differential equation in
SO(d), (d ≥ 1). We introduce a functional EM
algorithm that defines a unified variable es-
timation method in the SE(3) group, provid-
ing smoother estimators that are more reli-
able and robust than existing methods.

In the second part, two new representations
of smooth curves in Rd, (d ≥ 1) are intro-
duced, including the Square Root Curvatures
(SRC) transform, establishing a new Rieman-
nian geometric framework. It outperforms the
state-of-the-art Square-Root Velocity Function
(SRVF) representation on synthetic results us-
ing higher-order geometric information and
parametrization dependence. Given a collec-
tion of curves, this type of geometry allows
us to define efficient statistical criteria for es-
timating Karcher mean shapes on the associ-
ated Riemannian shape spaces, proving par-
ticularly effective on noisy data. Finally, this
developed framework opens the door to more
practical applications in sign language pro-
cessing, including the study of power laws on
our data and the development of a generative
model for a point motion in sign language.
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