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PR: Professor; DR: Directeur de recherche; CR: Chargé de recherche; MCF: Mâıtre de conférences
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Sur la géométrie des ensembles d’excursion :

garanties théoriques et computationnelles

———————————————————————————————————————————

Resumé

L’ensemble d’excursion EX(u) d’un champ aléatoire réel X sur Rd à un niveau de seuil u ∈ R est

le sous-ensemble du domaine Rd où X dépasse u. Ainsi, l’ensemble d’excursion est aléatoire, et sa

distribution à un niveau fixe u est déterminée par la distribution de X. Étant des sous-ensembles

de Rd, les ensembles d’excursions peuvent être étudiés en termes de leurs propriétés géométriques

afin d’obtenir des informations spécifiques sur les propriétés de distribution des champs aléatoires

sous-jacents.

Cette thèse examine :

(a) comment les mesures géométriques d’un ensemble d’excursion peuvent être estimées à partir

d’un échantillon discret de l’ensemble d’excursion, et

(b) comment ces mesures peuvent être liées aux propriétés distributionnelles du champ aléatoire

à partir duquel l’ensemble d’excursion a été obtenu.

Chacun de ces points est examiné en détail dans le Chapitre 1, qui fournit un aperçu global des

résultats presentés tout au long du reste de ce manuscrit.

Les mesures géométriques que nous étudions pour les ensembles d’excursion et les sous-ensembles

déterministes de Rd en point (a) sont la mesure de la surface de dimension (d − 1), le reach, et le

rayon de r-convexité. Chacune de ces quantités peut être liée à la régularité du bord de l’ensemble,

qui est généralement difficile à déduire à partir d’échantillons discrets de points. Pour résoudre ce

problème, nous apportons les contributions suivantes au domaine de la géométrie computationnelle :

Dans le Chapitre 2, nous identifions le facteur de biais qui correspond aux algorithmes de comptage

local pour calculer la mesure de la surface de dimension (d− 1) des ensembles d’excursion sur une

grande classe de pavages de Rd. Le facteur de biais dépend uniquement de la dimension d et non

de la géométrie précise du pavage.

Dans le Chapitre 3, nous introduisons un algorithme de comptage pseudo-local pour calculer

le périmètre des ensembles d’excursion en deux dimensions. L’algorithme proposé est convergent

multigrille (multigrid convergent en anglais) et comporte un hyperparamètre réglable pouvant être

choisi automatiquement à partir d’informations accessibles.

Dans le Chapitre 4, nous introduisons le β-reach en tant que généralisation du reach, et l’utilisons

pour prouver la cohérence d’un estimateur du reach des sous-ensembles fermés de Rd. De même,

nous définissons un estimateur cohérent du rayon de r-convexité des sous-ensembles fermés de Rd.
De nouvelles relations théoriques sont établies entre le reach et le rayon de r-convexité.
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Nous étudions également comment ces mesures géométriques des ensembles d’excursion sont

liées à la distribution du champ aléatoire et spécifiquement à son comportement extrémal Dans

le Chapitre 5, nous introduisons l’extremal range : une statistique géométrique locale qui car-

actérise l’étendue spatiale des dépassements de seuil à un niveau fixe u ∈ R. La distribution de

l’extremal range est entièrement déterminée par la distribution de l’ensemble d’excursion au niveau

u. Nous montrons comment l’extremal range est liée distributionnellement aux volumes intrinsèques

de l’ensemble d’excursion. De plus, le comportement limite de l’extremal range aux grands seuils

est étudié en relation avec la notion de stabilité par rapport aux dépassements de seuil (peaks-over-

threshold stability) du champ aléatoire sous-jacent. Enfin, la théorie est appliquée à des données

climatiques disponibles sur une grille spatiale régulière pour mesurer le degré d’indépendance asymp-

totique présent et sa variation dans l’espace.

Des perspectives sur la manière dont ces résultats peuvent être améliorés et étendus sont fournies

dans le Chapitre 6.

———————————————————————————————————————————

Mots-clés : β-reach, champ aléatoire, dépassement de seuil, extremal range, géométrie computa-

tionnelle, géométrie stochastique, inférence géométrique, r-convexité, reach, volume intrinsèque.
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On the geometry of excursion sets:

theoretical and computational guarantees

———————————————————————————————————————————

Abstract

The excursion set EX(u) of a real-valued random field X on Rd at a threshold level u ∈ R is

the subset of the domain Rd on which X exceeds u. Thus, the excursion set is random, and

its distribution at a fixed level u is determined by the distribution of X. Being subsets of Rd,
excursion sets can be studied in terms of their geometrical properties as a means of obtaining

partial information about the distributional properties of the underlying random fields.

This thesis investigates

(a) how the geometric measures of an excursion set can be inferred from a discrete sample of the

excursion set, and

(b) how these measures can be related back to the distributional properties of the random field

from which the excursion set was obtained.

Each of these points are examined in detail in Chapter 1, which provides a broad overview of the

results found throughout the remainder of this manuscript.

The geometric measures that we study for both excursion sets and deterministic subsets of Rd

when addressing point (a) are the (d − 1)-dimensional surface area measure, the reach, and the

radius of r-convexity. Each of these quantities can be related to the smoothness of the boundary of

the set, which is often difficult to infer from discrete samples of points. To address this problem,

we make the following contributions to the field of computational geometry:

In Chapter 2, we identify the bias factor in using local counting algorithms for computing the

(d− 1)-dimensional surface area of excursion sets over a large class of tessellations of Rd. The bias

factor is seen to depend only on the dimension d and not on the precise geometry of the tessellation.

In Chapter 3, we introduce a pseudo-local counting algorithm for computing the perimeter of

excursion sets in two-dimensions. The proposed algorithm is multigrid convergent, and features a

tunable hyperparameter that can be chosen automatically from accessible information.

In Chapter 4, we introduce the β-reach as a generalization of the reach, and use it to prove the

consistency of an estimator for the reach of closed subsets of Rd. Similarly, we define a consistent

estimator for the radius of r-convexity of closed subsets of Rd. New theoretical relationships are

established between the reach and the radius of r-convexity.

We also study how these geometric measures of excursion sets relate to the distribution of the

random field, and specifically its extremal behavior. In Chapter 5, we introduce the extremal range:

a local, geometric statistic that characterizes the spatial extent of threshold exceedances at a fixed
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level threshold u ∈ R. The distribution of the extremal range is completely determined by the

distribution of the excursion set at the level u. We show how the extremal range is distributionally

related to the intrinsic volumes of the excursion set. Moreover, the limiting behavior of the extremal

range at large thresholds is studied in relation to the peaks-over-threshold stability of the underlying

random field. Finally, the theory is applied to climate data available on a regular spatial grid to

measure the degree of asymptotic independence present, and its variation throughout space.

Perspectives on how these results may be improved and expanded upon are provided in Chapter 6.

———————————————————————————————————————————

Keywords: β-reach, computational geometry, extremal range, intrinsic volume, geometric infer-

ence, r-convexity, random field, reach, stochastic geometry, threshold exceedance.
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Preface

At the start of my PhD, the provisional title of this document, decided by my supervisors Elena

Di Bernardino and Thomas Opitz, was On the characterization of spatio-temporal dependence of

extremes of high-resolution gridded data. Our aim was to bring tools from stochastic geometry to

the field of extreme value theory, by means of studying the geometry of the excursion sets of random

fields, i.e., the subregions of the index set on which the random field exceeds a certain threshold.

Such tools might be of interest to scientists studying large spatial or spatio-temporal datasets, where

the available information in space and/or time is dense enough to approximate these excursion sets.

Thus, if our results were to be useful in practice, they should be data-driven solutions for extracting

information about the extremal dependence structure of the random fields modelling the data.

To complete our data pipeline, we had to address two main barriers.

• The first would be to establish methods for extracting information from the discrete data

about the continuous random fields that generated them. For this, we based our search

on existing results in computational geometry such as Gray (1971); Coeurjolly and Klette

(2002); Meschenmoser and Spodarev (2010), and others that study this problem specifically

for random geometric objects, such as Yukich (2015); Biermé and Desolneux (2021). The

culmination of our efforts adds to the repertoire of scientists and engineers several tools that

can be used to extract geometric information from data that describes the excursion sets of

random fields. These tools are novel, and are provided with rich theoretical justifications and

guarantees. In particular, we provide new results for estimating the surface area, reach, and

radius of r-convexity of Euclidean subsets; all of which are widely studied in the literature.

• The second barrier would be to study the geometry of the excursion sets of random fields at

high thresholds, and connect this to the random field’s extremal dependence structure. This

would be greatly assisted by the seminal work of Adler and Taylor (2007), which provides a

detailed analysis of the geometry of excursion sets of random fields at non-extreme thresholds.

Combined with literature dealing with extreme threshold exceedances of random fields (Kac

and Slepian, 1959; Ferreira and de Haan, 2014; Dombry and Ribatet, 2015), we are provided

with a solid background for our analyses. Our newly introduced extremal range can be used

to examine the asymptotic dependence structure of the random fields in question, completing

the pipeline from discrete data to pertinent indicators describing extremal behavior.

ix



At every step in bridging this gap, the geometry of excursion sets takes center stage, both in

relation to the random fields that they represent, and the data by which they are represented. The

remainder of this document details our study of these relationships.
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Chapter 1

General introduction

This manuscript is dedicated to the problem of extracting information about the random phenomena

that underlay observations in spatial datasets. We take a geometric approach to this problem, and

so our analysis bridges a number of concepts from several areas of mathematics, including stochastic

geometry, integral geometry, computational geometry, and extreme value statistics. The principal

purpose of this chapter is thus to provide the necessary tools such that the reader may appreciate the

results despite a lack of expertise in one or more of these subjects. Throughout this introduction,

the main results in each of the following chapters are summarized with the aim of building an

intuition around the ideas that led to their development.

Each of the following chapters, namely Chapters 2 through 5, is an independent research article

that is either published or submitted for publication in an international, peer-reviewed journal.

Section 1.5 provides a brief summary of each article. In addition, a more detailed abstract can be

found at the start of each chapter.

1.1 Definitions and important notions

Let us begin by introducing the objects at the center of our study.

Definition 1.1 (Random fields on Rd). Let (Ω,F ,P) be a probability space. A real-valued random

field on Rd is a function X : Rd × Ω → R that is measurable with respect to the product sigma

algebra. Throughout this document, the term random field is often used and the domain and range

should be understood implicitly.

Definition 1.2 (Excursion sets of random fields). Let X be a real-valued random field on Rd. Let
u : Rd → R be a measurable threshold function that is allowed to vary over Rd. The excursion set

of X is the random set

EX(u) := {t ∈ Rd : X(t) > u(t)}.

This makes EX(u) a random variable with values in B(Rd), the Borel subsets of Rd.
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Figure 1.1: A random field (left) and its excursion set (right; shown in grey) at the chosen threshold.

Intuitively, a random field X is a random d-dimensional surface, and its excursion set is the set of

locations at which X exceeds a deterministic d-dimensional surface u (see Figure 1.1). In general,

u is allowed to vary in space, allowing for “adaptive” thresholds. Often, u is taken to be a constant

function, and so in these cases, we make a slight abuse of notation and use u to denote the constant

image in R.

Excursion set theory has been applied in previous works to a wide variety of real-world phenomena,

ranging from meteorology and wildlife studies (Frölicher et al., 2018; Lhotka and Kyselỳ, 2015;

Eymard et al., 2000; Longuet-Higgins, 1957; Camp et al., 2022), cosmology (Gott et al., 1990; Gott

et al., 2007, 2008; Jennings et al., 2013; Schmalzing and Górski, 1998; Casaponsa et al., 2016),

brain imaging (Adler and Taylor, 2011, Section 5), geology (Roubin and Colliat, 2016), and other

applications to computer vision applications (Bleau and Leon, 2000; Sezgin and Sankur, 2004).

There are several reasons for the ubiquity of excursion set theory in the study of various physical

phenomena. We outline just a few of these reasons.

The first consideration is computer memory, and computational facility. The excursion set EX(u)

of a random field X is sparse in information in the sense that it takes at most n bits of memory

to store binary values at a finite set of sites t1, . . . , tn ∈ Rd corresponding to 1 if ti ∈ EX(u) and 0

otherwise, for i = 1, . . . , n. Contrast this with storing a 32 bit floating-point value to approximate

X(ti) for each i ∈ 1, . . . , n. Thus, for large databases or problems that demand several computations

of the values at t1, . . . , tn, algorithms can be optimized to accept the excursion set as an input, and

large gains in efficiency can be expected.

A second practical consideration is that theory regarding excursion sets is well adapted to data

for which the entire range of observations is not accurately accessible. This can be due to the

low reliability of very large or very small values in data, censoring of the data, or the grouping

of sufficiently large or small observations. In such cases, the excursion set is observable for any

threshold u in a certain range, while strategies using the full information about the random field

might suffer from the censoring, or error in the extremes. Censoring can be a useful strategy to

eliminate outliers, or to ignore extreme regions of data highly prone to error—we will see an example
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of how discretization error may be large in the extremes in Chapter 5, and how excursion set analysis

is used to combat this issue.

A third, crucial point is that the excursion set keeps important information related to the distri-

bution of the underlying random field. There are several works that study how random fields are

connected to their excursion sets (see Adler and Taylor, 2007, and references therein). Other au-

thors have established statistical tests of Gaussianity (Spodarev, 2014; Di Bernardino et al., 2017),

isotropy (see Definition 1.4; Cabaña (1987); Berzin (2021); Abaach et al. (2023)), and marginal

symmetry Abaach et al. (2021) of random fields based entirely on their excursion sets. In Das et al.

(2021), excursion sets are shown to be useful in the extrapolation of random fields outside of the

domain of observation. Many works in extreme value theory are interested in random fields that

exceed high thresholds (see Azäıs and Wschebor, 2009, and references cited), and so in this context,

it is quite natural to study the excursion sets of these random fields for large thresholds u.

A final, significant advantage in working with excursion sets is that they open the door to a

geometric and topological approach to studying random fields, making them amenable to the use of

machine learning techniques. Many statistical procedures used to study spatial random fields exploit

only information from bivariate distribution for pairs of locations but fail to capture and utilize

key geometric properties that characterize stochastic spatial patterns more precisely and provide

information about the parametric models being used. As we will discuss later (see Remark 1.5), there

are certain distributional parameters that play a large role in the distribution of various geometric

measures of the excursion set; see for example Biermé et al. (2019). A geometric approach to

studying random fields allows for new applications of tools in existing stochastic geometry literature.

This is done, for example, in Chapters 2 and 5 of this document.

1.1.1 Geometric measures of excursion sets

The geometric features of excursion sets provide concise, informative summaries of their corre-

sponding random fields, and so a mathematical framework for studying these features is essential.

The framework that lends itself nicely to our study of random fields is integral geometry. At its

core, integral geometry is the study of measures on Euclidean subsets that are invariant under rigid

motion, and integral transformations between them. Length, surface area, and volume are among

the most significant examples of invariant geometric measures. Random sets are constructed by

assigning probability measures to Euclidean subsets, giving rise to deep relationships between the

fields of integral geometry, geometric probability, and stochastic geometry. These connections are

the central focus of the seminal works Matheron (1975) and Santaló (1976) (see also Calka (2019)

for an introduction to the subject and Kendall and Molchanov (2009) for a detailed treatment).

Here we outline a major result in integral geometry that provides us with a finite canonical basis

of rigid motion invariant functions that we can use to measure subsets of Rd. To state the result, we

let R denote the ring of polyconvex sets in Rd, i.e., the smallest set of Euclidean subsets containing

the compact, convex sets that is also closed under finite unions. In addition, a function ϕ : R → R
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is said to be additive if for any A,B ∈ R, it holds that ϕ(A ∪ B) = ϕ(A) + ϕ(B) − ϕ(A ∩ B).

Hadwiger’s characterization theorem states that any additive, continuous, rigid motion invariant

function ϕ : R → R can be expressed as a linear combination of d + 1 canonical basis functions,

known as the intrinsic volumes, Vi : R → R, for i = 0, . . . , d.

While not all intrinsic volumes have an immediately intuitive interpretation, three of them (for

d ≥ 2) correspond to familiar geometric features. The first, V0, measures the Euler characteristic of

the set, a topological invariant providing a notion of connectivity. The last two intrinsic volumes, Vd

and Vd−1, measure the d-volume and half of the (d− 1)-dimensional surface area, respectively. This

framework can be seen as a higher-dimensional analysis of the level crossings of one-dimensional

processes, as in dimension d = 1, V1 corresponds to the sojourn time of the process, and V0

corresponds to the number of up-crossings—both notions having been extensively studied for several

decades (Lévy, 1940; Rice, 1944).

Remark 1.1. We use the term “surface area” generally to refer to the (d− 1)-dimensional surface

area of objects embedded in Rd, for d ≥ 3. More precisely we are referring to the (d−1)-dimensional

Lebesgue measure of the boundary. In general, we write Lk to denote the k-dimensional Lebesgue

measure for k = 0, . . . , d.

The intrinsic volumes often take center stage in literature concerned with the excursion sets

of random fields. They are used, for example, for parametric inference in Biermé et al. (2019);

Di Bernardino et al. (2022). A test for Gaussianity based on the Euler characteristic, V0, is developed

in Di Bernardino et al. (2017). Tests for isotropy based on the surface area, or 2×Vd−1, are developed

in Berzin (2021); Cabaña (1987); Fournier (2018). The authors of Abaach et al. (2021) implement a

test of marginal symmetry based on the statistics of Vd−1. In Di Bernardino and Duval (2022), the

authors use the excursion volume, Vd, to quantify how a small additive perturbation on the Gaussian

random field impacts the intrinsic volumes of the associated perturbed excursion sets. These works

are just some of the many that motivate the study of intrinsic volumes, and in particular, their

statistical properties when used to measure smooth excursion sets.

The books Adler and Taylor (2007) and Azäıs and Wschebor (2009) provide a detailed, theoretical

treatment of the statistics of the intrinsic volumes of smooth excursion sets. The literature on this

subject is quite vast. The renormalized Euler characteristic of excursions of Gaussian random fields

is shown to be asymptotically normal in Estrade and León (2016) as larger domains are considered.

Later, Müller (2017) and Kratz and Vadlamani (2018) show that all of the intrinsic volumes are

asymptotically normal in this sense. A comprehensive summary of previous limit theorems of

intrinsic volumes of excursion sets is provided in Spodarev (2014).

1.1.2 A regularity condition for the existence of the intrinsic volumes

As we have previously noted, the intrinsic volumes are defined for Euclidean subsets in the polycon-

vex ring. However, it is quite restrictive to consider random fields whose excursion sets are almost
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surely polyconvex. The intrinsic volumes can be defined for a more general subclass of Euclidean

sets, namely, the class UPR.
A set B ⊆ Rd belongs to UPR if B can be expressed as a locally finite union of sets with positive

reach. A set A ⊆ Rd has positive reach if there exists an r0 > 0 such that all points within a distance

r0 of A have a unique nearest point in A. The supremum of the values of r0 for which this holds is

known as the reach of A, denoted reach(A) (see Definition 4.2). The class UPR is thus quite large

in that it contains all sets with positive reach and thus all compact C2-smooth submanifolds of Rd

(Thäle, 2008, Proposition 14). Additionally, since a set A is convex if and only if reach(A) = ∞
(Federer, 1959), the polyconvex ring R is included in UPR.
We will not enter into all of the details, but the intrinsic volumes Vi : R → R have well defined

extensions to the more general class UPR, for which we write Vi : UPR → R; we refer the interested

reader to Zähle (1987); Rataj and Zähle (2003); Thäle (2008). It is sometimes assumed in excursion

set literature that the excursion sets belong to the class UPR (Biermé et al., 2019; Cotsakis et al.,

2023b), or that the underlying random field is sufficiently smooth such that the excursion set has

positive reach almost surely (Biermé and Desolneux, 2020; Cotsakis et al., 2023c; Qiao and Polonik,

2018).

The reach of a set quantifies the regularity of its boundary, and the extent to which different

features of the set can be distinguished from each other. In Section 1.4, we elaborate on the reach

as a geometric summary for subsets of Rd, and explore related quantities.

1.1.3 Stationarity and Isotropy

The geometric properties of a subset of Rd that we study are those that are invariant under isome-

tries. Isometries can include translations, rotations, and combinations of the two. Two common

assumptions on the distribution of random fiends reflecting this invariance are those of stationarity

and isotropy.

Definition 1.3 (Stationarity). A random field X is said to be stationary if, for any finite collec-

tion of points in the domain, the joint distribution of X evaluated at these points is invariant to

translations of each point by the same vector. The excursion set EX(u) is said to be stationary if

the binary random field 1{X≥u} is stationary.

Remark that if X is stationary, then EX(u) is stationary for all u ∈ R. The same line of reasoning

holds for isotropy, which is defined as follows.

Definition 1.4 (Isotropy). A random field X is said to be isotropic if it is distributionally invariant

to rotations about the origin. That is, for any finite collection of points in the domain, the joint

distribution of X evaluated at these points is invariant to transforming each point by the same

unitary operation. The excursion set EX(u) is said to be isotropic if the binary random field

1{X≥u} is isotropic.
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This a stronger definition of isotropy than the one given by Adler and Taylor (2007, Equa-

tion (5.7.1)), provided that the random field has finite second moments. The strong isotropy of

Definition 1.4 is required to guarantee that the excursion sets be isotropic.

Although these assumptions have clear geometric interpretations, they are too restrictive to apply

to many real datasets. For example, consider a meteorological dataset over a region that is large

enough to include mountains, plains, forest, and ocean. It would be unreasonable to expect such a

dataset to exhibit either stationarity or isotropy, since the distribution of most weather phenomena

will vary depending on the topography.

In the chapters that follow, we explore how the assumptions of stationarity and isotropy can be

used to construct theoretical and computational guarantees, and what can be done when these

assumptions are relaxed.

Now that we are equipped with the geometric measures that we have discussed so far, we have

the necessary tools to study random fields via the geometry of their excursion sets. The intrinsic

volumes serve as the basis of all additive, continuous, geometric properties of excursion sets. Posi-

tive reach provides sufficient conditions for well-posedness of the excursion sets while acting as its

own informative summary statistic. These statistics are global in the sense that they accumulate

information from the entire excursion set and reduce that information to a single scalar number.

In contrast, local geometric statistics can be defined that vary spatially throughout the set. In

the next section, we introduce a local geometric statistic for studying excursion sets, and use it to

analyze the extremal behavior of the underlying field. Moreover, as we will see, this local statistic

has strong links with the intrinsic volumes for excursion sets that have stationary (i.e., translation

invariant) distributions.

Section 1.1: Summary

• Random fields can be studied through the geometry of their excursion sets.

• Stationarity and isotropy are common assumptions on random fields that reflect a distribu-

tional invariance to rigid transformations.

• The intrinsic volumes are well defined for sets in the class UPR, and provide a natural basis

for all continuous, additive, rigid motion invariant measures.

1.2 Excursion sets at extreme levels

A topic that we will explore in detail is how excursion set geometry can be used to infer the

extremal behavior of random fields. In particular, we are interested in characterizing the extremal

dependence structure, which focuses on how very large values of the random field are related across

the domain Rd. In real datasets, these extremes may represent record-breaking temperatures,
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devastating floods, or extreme stock market fluctuations, and so understanding their structure is of

utmost importance. Extreme value theory (EVT), dating back to Fisher and Tippett (1928), offers

tools to model the probability of observing high (possibly unprecedented) quantiles of random

variables; see Coles (2001); de Haan and Ferreira (2006) for comprehensive introductions to the

subject. These concepts were generalized to random fields in the seminal work of Pickands (1975),

in which the notion of max-stable random fields were introduced.

In environmental applications, there may be devastating consequences due to the occurrence of

simultaneous or compounding extreme events (Dombry et al., 2018; AghaKouchak et al., 2020;

Boulin et al., 2023). It is important in many applications to understand how far-reaching extreme

events are, and how this range might change as different levels of “extreme” are considered. Ex-

isting approaches can be quite costly computationally, especially performing analyses on very large

datasets defined over a dense regular grid. These are precisely the settings in which solutions based

on excursion sets thrive. The standard asymptotic models of random fields used in spatial EVT

typically exhibit what is known as peaks-over-threshold (POT) stability (Ferreira and de Haan, 2014;

Dombry and Ribatet, 2015; Thibaud and Opitz, 2015), a notion related to asymptotic dependence

which means that the distribution of the random field is “stable” when conditioned to exceed a

high threshold at at least one point in the domain. In particular, this implies stability in the dis-

tribution of the excursion sets at high thresholds, and so the distribution of the size or extent of

extreme events (as measured by the intrinsic volumes for example) is also stable in these models.

The rigorous notion of functional regular variation is used to characterize random fields for which

POT stability arises asymptotically as the threshold level tends to infinity.

Despite the popularity of POT stable models, there is strong empirical evidence that many envi-

ronmental processes do not possess this property (Tawn et al., 2018; Huser and Wadsworth, 2022).

Some flexible models for the extremes random fields have been developed that adapt to data that

does not exhibit POT stability, and a few other models are able to flexibly adapt to both situations

of asymptotic dependence and independence (Huser et al., 2017; Huser and Wadsworth, 2022; Zhang

et al., 2022).

Recent works such as Heffernan and Tawn (2004); Heffernan and Resnick (2007); Wadsworth

and Tawn (2022) consider a conditional approach to extreme value theory, where a random vector

or a random field is conditioned to exceed a high threshold at a given index or location, and its

distribution is studied in the limit as the threshold tends to infinity. This approach is backed by the

theory in Dombry and Ribatet (2015), where the limiting distribution is given for a certain class

of asymptotically dependent random fields. For a random field X on Rd, a fixed location s ∈ Rd,
and a constant threshold u ∈ R, the conditioning event {ω ∈ Ω : X(s) exceeds the threshold u} is

equivalent to {ω ∈ Ω : s ∈ EX(u)}. Hence, excursion sets are a natural object to study in the context

of conditional spatial extreme value theory. The relevance of excursion sets in meteorological data

and spatial statistics (Sommerfeld et al., 2018; Bolin and Lindgren, 2015) justifies our simplification

of performing the following analysis using d = 2 for the dimension of the geographical ambient
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space.

1.2.1 The extremal range

In Chapter 5, we create a method for measuring the “rate” at which asymptotic dependence is lost

in asymptotically independent models, when dependence is known to diminish to 0 at high thresh-

olds. Our method is based entirely on excursion set data, and so in no way do we consider only

pairwise observations, thus avoiding a large degree of computational complexity that would arise

from studying all possible pairs of locations. In studying the asymptotic dependence properties via

excursion sets, our analysis lends itself to a natural indicator that can be used in climate extremes.

To be specific about our strategy, we place ourselves in the conditional extreme value theory frame-

work, and study the excursion set, conditioned on containing a certain location in R2. Despite

the motivating use case for asymptotically independent random fields, asymptotic independence is

not a necessary assumption; that is, our methods can be applied to both asymptotically dependent

and independent random fields. To achieve these results, we introduce the extremal range, a local

summary statistic of the conditioned excursion set, which is defined as follows.

Definition 1.5 (Extremal range). Let EX(u) denote the excursion set of a random field X on R2.

Let R̃(u) : R2 × Ω → R ∪ {∞} be a random field defined by

R̃(u)(s) := inf{||t− s|| : t /∈ EX(u)}, (1.1)

for s ∈ R2, where ||·|| denotes the Euclidean norm. Let the extremal range at s at the level u be

defined as the conditional random variable,

R(u)
s := R̃(u)(s) | R̃(u)(s) > 0.

Remark 1.2. If EX(u) is almost surely an open set, or if s ∈ R2 is almost surely not on the

boundary of EX(u), then the conditioning events {R̃(u)(s) > 0}, {s ∈ EX(u)}, and {X(s) > u(s)}
are equal up to a set of probability 0.

Remark 1.3. The extremal range at the threshold level u is well-defined even in the case where the

excursion set EX(u) is non-stationary and non-isotropic (see Definitions 1.3 and 1.4). Therefore,

the distribution of R
(u)
s can depend on s.

The extremal range at s ∈ R2 can be interpreted as the radius of the largest ball, centered at s,

such that exceedance X(t) > u(t) occurs for every t in the ball. The extremal range provides a

direct measure of the extent of extreme events at a prescribed level of rarity. Since we are interested

in the rarest of events, we study its distributional properties for large threshold functions u. This,

in turn, sheds light on the extremal dependence structure of random fields. The extremal range is a

real-valued, conditional random variable, which is more tractable to work with than the conditioned
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excursion sets themselves. Intuitively, if the distribution of R
(u)
s is skewed towards larger values, it

means that there is a large spatial dependence between values of the random field X at locations

near s at the level u. Similarly, if R
(u)
s is distributed near 0, then we expect little spatial dependence

of threshold exceedances at the level u.

One can track the evolution of the distribution of the extremal range as the threshold function

increases according to the marginal distributions of X. For some p ∈ (0, 1), the adaptive threshold

function u = up is taken to be the map of p-quantiles of the margins. If the extremal range at s

at the level up does not tend to 0 in probability as p → 1, then the random field is asymptotically

dependent in the traditional sense; see Proposition 5.4. Equivalently, the extremal range tends to 0

in probability for asymptotically independent models.

Remark 1.4. To clarify an important point, we are more interested in the extremal range at

extreme quantiles of the random field rather than extreme quantiles of the extremal range itself. In

fact, in much of our analysis of the extremal range, we take interest in its median at high quantiles

of the marginal distribution of the random field.

The problem that is intrinsic to EVT arises, in that there are very few observations of the random

field X exceeding very high thresholds. To address this issue, the extremal range at a location

s can be studied at moderately large quantiles of the random field at s, and its behavior can be

extrapolated to larger, possibly unobserved thresholds.

1.2.2 Relationship with the intrinsic volumes

Despite the extremal range being a local statistic, its distribution can be related to the those of

the global intrinsic volumes, for stationary excursion sets satisfying a reach-type condition almost

surely (see Assumption 5.1). Hence, the evolution of the intrinsic volumes at high thresholds sheds

light on the evolution of the extremal range, which in turn relates to the asymptotic dependence

structure of the random field. We highlight some of the main components of this argument, while

postponing many of the details to Chapter 5.

Firstly, we must consider the problem of unboundedness. If a stationary excursion set is defined

on all of R2, then its excursion sets may be unbounded, and their intrinsic volumes may not be

finite. To overcome this issue, we introduce a compact, convex subset T ⊂ R2 that contains a

neighborhood of the origin, and consider the intrinsic volumes Vi(EX(u)∩T ), for i ∈ {1, 2}. These
correspond to the area and half of the perimeter length of the truncated excursion set (including the

portion of the boundary of T contained in EX(u)) for i = 2 and i = 1 respectively. The excursion set

is assumed to be stationary in distribution, so in the case of the surface area measure, the expected

value of V2(EX(u) ∩ T ) is proportional to the Lebesgue measure of T . With that said, the density

of V2 defined as

V ∗
2 (u) :=

E[V2(EX(u) ∩ T )]
V2(T )

,
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and is constant for any choice of T . This is not true for the analogous density of V1, since the

artificial truncation boundary increases the perimeter length of the excursion set. We would like to

keep the portion of the boundary of EX(u) in T and eliminate the portion of the boundary of T

in EX(u). The common strategy is to let T grow to infinity (Schneider and Weil, 2008; Kratz and

Vadlamani, 2018; Biermé et al., 2019). For a real number r ∈ (0,∞), define rT := {r × t : t ∈ T}
to be T simply scaled by a factor of r. The perimeter of rT scales like r while the surface area

scales like r2, and so the ratio of perimeter to area tends to 0 (this is true for a more general class

of growing domains; see Bulinski et al. (2012, Section 2.3)). This ensures that the limiting density

of V1

V ∗
1 (u) := lim

r→∞

E[V1(EX(u) ∩ rT )]
V2(rT )

does not suffer from border effects asymptotically. These densities can be calculated directly from

the so-called kinematic formula (Adler and Taylor, 2007, Theorem 15.9.5), which provides the

expected value of each intrinsic volume of the excursion set when intersected with a compact domain.

In the case of a Gaussian random field, this expression simplifies to the concise expressions in (Biermé

et al., 2019, Equation (11)).

Remark 1.5. Interestingly, for a stationary, Gaussian-type random field X (Di Bernardino et al.,

2022) that is sufficiently regular (satisfying Definition 2.2 in Biermé et al. (2019)), the density

V ∗
1 (u) for constant u depends on the correlation function of the random field only through its

second spectral moment. Moreover, the density V ∗
2 (u) is independent of the correlation function

and depends only on the marginal distribution at the threshold u, since V ∗
2 (u) = P(X(0) > u).

We stated earlier that the rate at which R
(up)
0 → 0 in asymptotically independent models as p→ 1

is related to the intrinsic volumes. More precisely, if there is a non-degenerate limiting distribution

with a well-behaved density near 0, then the quantiles of the extremal range at the level u must

scale like V ∗
2 (up)/V

∗
1 (up) as p→ 1 (see Corollary 5.1).

The extremal range can be studied at several, moderately large thresholds, and its behavior at

extreme thresholds can be extrapolated to higher thresholds according to an appropriate model. To

define such a model, we look to two common examples of random fields.

• For stationary, Gaussian random fields, the ratio V ∗
2 (u)/V

∗
1 (u) can be shown to scale asymp-

totically like the threshold 1/u (up to a constant multiple) as u → ∞. Hence, by previous

arguments, we expect the quantiles of the extremal range to decay at the same rate, which is

proven in Proposition 5.2. We have thus a model for the asymptotic behavior of the quantiles

of the extremal range for Gaussian random fields.

• For random fields exhibiting POT stability, the quantiles of the extremal range stabilize and

converge to constants (see Proposition 5.3 for the limiting distribution).

In Chapter 5, we define a parametric model (see Equation (5.10)) that interpolates between these
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two behaviors. This allows for the extrapolation of the distributional properties of the extremal

range for arbitrarily large threshold exceedances.

There are two main advantages to this approach. The first is that it provides a measure of the

degree to which data is asymptotically independent. Indeed, by fitting the model at moderately

large thresholds, one gains insight on the rate at which the extremal range tends to 0 in probability

as the threshold is increased. Such an approach can be applied to non-stationary data to measure

how the degree of asymptotic dependence varies locally. Likewise, one can conduct local, statistical

tests for asymptotic dependence of the random field based on the model parameters that best

describe real data. The other significant advantage is that we gain a global view of the spatial

extent of extreme events, and how this varies in both space and the severity of the extreme event.

In Chapter 5, we suggest using the median of the extremal range to summarize its distribution,

which serves as a local indicator for the spatial dependence that has a physical intuition. That is,

if there is an extreme event at a site s, then there is a 50% chance that there are extreme events at

all other locations within a distance equal to the median extremal range.

1.2.3 Application to French temperature data

We apply our analysis to real temperature data, which generally varies smoothly across space

(Perkins et al., 2012). The SAFRAN reanalysis dataset that we use (Vidal et al., 2010) includes

twenty-eight years of daily data on a dense 8 × 8 km grid that spans over continental France.

Figure 5.2 depicts the temperature map on June 1st on four different years. Rather than plotting the

absolute temperature, Figure 5.2 shows the temperature on uniform margins, so that the indicator

between 0 and 1 can be interpreted as the severity relative to normal summer temperatures at the

same location. Each color in the plot can be thought of the excursion set at the indicated quantile.

Importantly, stationary margins do not imply that the dependence structure of the random field

is stationary, and so our analysis relating the extremal range to global intrinsic volume densities

does not hold per se. Nonetheless, the extremal range is well defined locally, and we expect its

distribution to vary over space.

The extrapolation model: There are several advantages to the model in Equation (5.10) to

extrapolate the quantiles of the extremal range at high thresholds. We list the main ones below.

• The model applies to both asymptotically independent and asymptotically dependent models.

Gaussian random fields can be modelled as such with θs = 1/2, for all s, and random fields

that exhibit POT stability are modelled by θs = 0. In this way, the parameter θs provides a

notion of the degree to which the random field is asymptotically independent at s, and it allows

interpolating between the common modeling frameworks of classical geostatistics (Gaussian

fields) and extreme value theory (asymptotically stable fields).

• The data need not be assumed stationary nor isotropic.
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• The model is easy to implement using quantile regression on some positive observations of

the extremal range for several moderate values of the threshold u. Many locations can be

considered simultaneously using what is known as generalized additive quantile regression

with the location s and threshold u as covariates.

We perform the strategy using generalized additive median regression to estimate the extrapola-

tion model for the SAFRAN reanalysis data. The same analysis is performed for simulated data

from one of the Regional Climate Models routinely used for studies of climate change impact in

France, provided by the DRIAS web service (http://www.drias-climat.fr/) developed with the

support of the French weather service. The resulting model fits are illustrated in Figures 5.3 and

Figure 5.4. The resulting model parameter θs is plotted in Figure 5.5. Our analysis reveals sig-

nificant distributional differences between the extremes of the simulated and reanalysis datasets,

indicating that this specific Regional-Climate-Model has biases in the spatial extent of extreme

weather events.

Section 1.2: Summary of contributions

• The extremal range at a point s and a threshold u is defined as the radius of the

largest ball centered at s that is completely contained in the excursion set EX(u),

conditioned on this radius being positive (see Definition 1.5).

• In many cases, the quantiles of the extremal range evolve like the ratio of the excursion

set area to the excursion set perimeter as the threshold u is increased. The precise

relationship is elucidated in Theorems 5.1 and 5.2.

• The locality of the extremal range allows for the use on non-stationary, and non-

isotropic random fields.

• The varying degree of asymptotic independence in real French temperature data is

measured over space, as shown in Figure 5.5.

1.3 The problem of discretization

In the development of the analysis in the previous section, we have avoided the treatment of a very

important consideration. That is, in applications, one does not have access to the exact excursion

set, but rather finite data representations. For example, a realization of a random fieldX on a square

grid in R2 might be stored in computer memory as a square matrix of floating-point values. The

excursion set of the same field can be represented by a single n-bit integer, where n corresponds

to the number of elements in the matrix. Extracting the geometric features of the underlying

12
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Figure 1.2: An example of Setting 1.1 applied to the excursion set in Figure 1.1. The points (ξi)i∈I
are arranged in a square lattice. With A = EX(u), the binary, pixelated image on the right depicts
the value of Zi for each ξi, grey corresponding to Zi = 1 and white corresponding to Zi = 0.

excursion set from these data representations is not always straightforward. The importance in

understanding excursion set geometry based on discrete data motivates the following problem: how

can one identify and measure the global, geometric features of a mapping on Rd based on a finite set

of local observations? The answer to this question, of course, depends on a multitude of factors. It

depends on

• the nature of the mapping (is the image set all of R, as in the case of a random field, or is it

{0, 1}, as in the case of an excursion set? Is the mapping random or deterministic?);

• the geometric features of interest;

• the structure of the locations of the observations (are they spaced evenly on a regular grid, or

irregularly positioned? Are the observation locations independent of the mapping?);

• and sometimes the quality (is there noise in the observation, or in the locations themselves?).

For these reasons, it is important that we be very clear about which of these problems we aim to

tackle.

Setting 1.1. Let A ⊆ Rd. For an index set I ⊆ N+, let (ξi)i∈I be a countable sequence of points

in Rd. To each point, we assign a label in {0, 1}, such that the label associated to the point ξi is

given by

Zi :=

1, if ξi ∈ A,

0, if ξi ∈ Ac,

for i ∈ I. Indeed, we can express the set of points paired with their labels as the disjoint union

Ξ := {(ξi, Zi) : i ∈ I} = ΞAc ⊔ ΞA,
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where

ΞAc := {ξi : ξi ∈ Ac} and ΞA := {ξi : ξi ∈ A}.

In general, the set Ξ is known, and one aims to infer geometric information about the set A.

The state of the art in solutions for problems that fall into our general setting belong to the

field of computational geometry, which aims to design and analyze algorithms for solving geometric

problems. These problems typically involve the manipulation and analysis of geometric objects,

such as points, lines, polygons, and other shapes. There are a number of papers that deal with the

general problem of geometric inference of shapes from point cloud data. These works are largely

classified under the subject of computational geometry (see, e.g., de Berg et al. (2008)). Topological

data analysis, pioneered by Edelsbrunner et al. (2002), is a related discipline that focuses more on

characterizing the topology of the set under study (see, e.g., Chazal and Michel (2021) for a concise

introduction to the subject).

To relate our Setting 1.1 to the discussion of excursion sets, we suppose that for a fixed set of

locations ξ1, . . . ξn, the excursion set EX(u) (which takes the place of A) is “observed” at each of the

points. That is, each ξi for i = 1, . . . , n is known to be either inside the excursion set, or outside.

This is well illustrated by the example in Figure 1.2. The global, geometric features that we aim

to identify from the marked points Ξ are the intrinsic volumes, and the reach. Setting 1.1 does not

specify whether A and the points (ξi)i∈I are random or deterministic; neither does it demand that

the points ξi follow any particular structure. The flexibility of Setting 1.1 provides a framework for

the study of several related problems.

1.3.1 The intrinsic volumes of discretized excursion sets

A notable reference that identifies methods for computing all of the intrinsic volumes of sets ap-

proximated by regular grids is Klenk et al. (2006). This work is criticised and improved upon in

Kiderlen (2006) and Meschenmoser and Spodarev (2010). In the aforementioned works, the set in

question is deterministic, whereas in Mrkvička and Rataj (2008), the authors design an algorithm

for computing all of the intrinsic volumes for stationary random sets from binary digital images of

them. Their strategy uses the estimator in Rataj (2006) to compute the d-volume of sets dilated by

various radii, and approximates these measurements by a polynomial, which by the Steiner formula

(Federer, 1959, Theorem 5.6) is related to the intrinsic volumes. Such a strategy falls into the cate-

gory of global shape recognition algorithms which aim to identify and analyze entire shapes or objects

within the image by considering global information about the image as a whole. Contrast this to

local counting algorithms (LCAs) that operate on individual pixels or small local neighborhoods and

accumulate information locally (Gray, 1971; Miller, 1999). The advantage of these algorithms is

their simplicity, which allows for efficient implementation in parallel architecture (Lindblad, 2005).

In Kampf (2014), the authors show that the only intrinsic volumes that can be accurately inferred

from LCAs (see, e.g., Svane (2014b, Definition 2.7)) on pixelated images are Vd and Vd−1.
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Figure 1.3: An example of a partitioning curve (in red) that defines the boundary of the set A ⊂ R2,
and separates the points in ΞA (in black) from those in ΞAc (in white). A local, edge-counting
algorithm yields the length of the blue path along the edges, which can be used as a crude estimate
of the length of the red curve.

For the moment, restricting our focus to local counting algorithms allows us to identify some

interesting characteristics of the problem. When estimating on a regular grid, we say that an

algorithm is multigrid convergent if the estimation error can be made arbitrarily small by choosing

the scale of the grid to be sufficiently small. For example, if each ξi for i ∈ I is assigned to a grid

cell (or voxel in the case of a hyper-cubic lattice, as in the case of Figure 1.2), then counting the

number of elements in ΞA and multiplying by the d-volume of each grid cell provides an estimate

for Ld(A), the d-volume of A. Moreover, this local counting algorithm defines a Riemann sum and

so is multigrid convergent. Estimating the intrinsic volume corresponding to the surface area with

a local counting algorithm is more involved.

Let us consider the specific case of a square grid in R2 and place the ξi’s at the center of each cell.

Then, the natural estimator of the perimeter of A is the length of the boundary of the union of cells

that correspond to points in ΞA (see Figure 1.3). It is shown in Biermé and Desolneux (2021) that

when A is the excursion set EX(u) of an isotropic random field (see Definition 1.4 for isotropy),

this local counting algorithm is not multigrid convergent. The authors show that the expectation of

the estimator converges to 4/π times the true perimeter of A, and that this same bias factor shows

up when considering a hexagonal tiling in R2. This is consistent with Miller (1999), who found the

same bias factor when measuring (uniform-)randomly oriented line segments in R2 for both square

and hexagonal tilings. However, it is noted in Miller (1999) that if the same problem is considered

in three dimensions on a cubic lattice, the bias factor is increased to 3/2.

A major contribution of this thesis is that we unify the results concerning the bias factor of

local counting algorithms for computing the surface area over a general class of tilings in arbitrary

dimension d. Before presenting the result, its implications, and a sketch of its proof in Section 1.3.4,

we start the discussion with several important notions in integral geometry.
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1.3.2 The Crofton formula

In the following, we take M ⊂ Rd to denote a compact, C1-smooth, (d− 1)-dimensional, orientable

manifold. The orientability of M ensures that a consistent outward-pointing normal vector exists

at each point in M . The unit (d− 1)-sphere centered at the origin in Rd is denoted Sd−1.

Often in practice, data is defined over grids, and so although there may not be a bias in the

orientation of the object under consideration, there may be a directional bias in how it is observed.

Thus, it may useful to consider a measure of how much surface area is oriented in a certain direction

of interest.

For example, let µM be a measure on Sd−1 such that for any Borel subset G of Sd−1,

µM (G) := Ld−1 ({s ∈M : ns ∈ G}) , (1.2)

where ns is the unit outward-pointing normal vector ofM at s. In this way, µM provides a selective

surface area measure of M , and µM (Sd−1) = Ld−1(M).

It may be tempting to employ the measure µM in practice when measuring surface area in a

directional sense, but in most cases, it is intractable to work with. For instance, if M has a planar

subset with non-zero Ld−1 measure, then µM has an atom at the orientation of the planar subset.

If instead M is the sphere Sd−1, then µM has no atoms and admits a constant density function.

A more useful approach is to consider the function gM : Sd−1 → [0,∞), defined by

gM (v) :=

∫
Sd−1

|⟨v, s⟩|µM (ds) =

∫
M

|⟨v, ns⟩|Ld−1(ds), v ∈ Sd−1. (1.3)

Intuitively, gM (v) is the Ld−1 measure of M once projected onto (v)⊥, the (d− 1)-dimensional sub-

space of Rd normal to v. Alternatively, remark that gM (v) is invariant to stretching or compressing

M in the direction of v by a non-zero scalar. These intuitions are formalized by the equation

gM (v) =

∫
(v)⊥

L0

(
proj−1

(v)⊥
(s) ∩M

)
ds, (1.4)

where proj−1
(v)⊥

(s) = {s + λv : λ ∈ R}, and L0 is the counting measure. Loosely speaking, the

quantity gM (v) gives some notion of the amount of surface area of M biased in the direction v.

The fundamental property of gM (·) that makes it useful in practice is that its average value over

Sd−1 is proportional to Ld−1(M), and the proportionality constant only depends on the dimension

d. That is, ∫
Sd−1

gM (s)ds =
2π

d−1
2

Γ(d+1
2 )

Ld−1(M). (1.5)

This is a special case of the Crofton formula. In this particular form, it relates an object’s surface

area to the average number of times it is crossed by lines of varying orientations. In terms of the

implications of this equation in stochastic geometry, this collection of lines can be interpreted as a
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single random line, and the expected number of crossings is proportional to the amount of surface

area.

Proof of Equation (1.5). Fix v ∈ Sd−1. Starting from Equation (1.3),∫
Sd−1

gM (s)ds =

∫
Sd−1

∫
Sd−1

|⟨s, s′⟩|µM (ds′)ds

=

∫
Sd−1

∫
Sd−1

|⟨s, s′⟩|dsµM (ds′)

=

∫
Sd−1

|⟨s, v⟩|ds
∫
Sd−1

µM (ds′)

In this final expression, the latter integral equates to µM (Sd−1) = Ld−1(M). The former integral

can be computed explicitly to yield (1.5).

The full Crofton formula relates not only the Ld−1 measure of M and the L0 measure of cross-

ings with lines, but more generally it relates any intrinsic volume of an object to any other lower

dimensional intrinsic volume of crossings of that object with linear subspaces of appropriately cho-

sen dimension. The interested reader is directed to Schneider and Weil (2008, Theorem 5.1.1) and

Chapter 2 of this document.

We suggested earlier that the function gM might help in understanding the bias when directional

biases are introduced. This phenomena is recognized in Svane and Vedel Jensen (2017), and so

the authors examine how the Crofton formula may be used to average directional biases over all

directions to measure the intrinsic volumes of a set, with applications to local stereology in mind.

In many applications, discretization only allows finitely many directions to be considered. In this

setting, Kiderlen and Meschenmoser (2011) determines the error in surface area estimates due to

this discretization procedure.

In the following, we show how the Crofton formula may be used to explicitly calculate the bias

in surface area measurements using LCAs, where the directions of measurement are locally finite.

We start by defining the density of gM in the same way we defined the densities for the intrinsic

volumes in Section 1.2.2.

Definition 1.6. Suppose that M ⊂ Rd is a random set distributed according to a stationary

probability measure. Moreover, suppose that M is almost surely a C1-smooth (d− 1)-dimensional

orientable manifold as before. Let T ⊂ Rd be a compact, convex domain. Then for v ∈ Sd−1, define

g∗M (v) :=
E[gM∩T (v)]

Ld(T )
.

Remark that by stationarity, g∗M does not depend on T .

A useful interpretation of g∗M is given by the following lemma.
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Lemma 1.1. Let M be as in Definition 1.6, and v ∈ Sd−1. Then g∗M (v) is the expected number of

times M intersects a line segment of length 1, oriented parallel with v.

Sketch of proof. Write gM∩T (v) as in Equation (1.4). After taking the expectation, apply Fubini’s

theorem, and remark that the resulting integral is proportional to the d-volume of T .

If M satisfies Definition 1.6 and partitions Rd into two sets A and Ac, then we can enter into the

framework of Setting 1.1. We can then ask, for example, what is the probability that two nearby

points ξi and ξj do not belong to the same partition, i.e., Zi ̸= Zj? If we let q := ||ξj − ξi|| and
v := (ξj − ξi)/q, then under some technical regularity assumptions on M (see Theorem 2.1), it can

be shown that

P(Zi ̸= Zj) = q × g∗M (v) + o(q). (1.6)

This is very relevant to our discussion about local counting algorithms, because this is precisely the

probability of counting the edge between ξi and ξj when approximating the surface area of M from

Ξ.

There is one additional assumption that we will impose on the distribution of the random manifold

M . That is, if M is isotropic, then for any v ∈ Sd−1, and compact, convex T ⊂ Rd, one has

g∗M (v) =

∫
Sd−1 g

∗
M (s)ds

Ld−1(Sd−1)

=

∫
Sd−1 E [gM∩T (s)] ds

Ld−1(Sd−1)Ld(T )

=
E
[∫
Sd−1 gM∩T (s)ds

]
Ld−1(Sd−1)Ld(T )

=
2π

d−1
2

Γ(d+1
2 )Ld−1(Sd−1)

E[Ld−1(M ∩ T )]
Ld(T )

=
Γ(d2)√
π Γ(d+1

2 )
L∗
d−1(M), (1.7)

where we have defined L∗
d−1(M) := E[Ld−1(M ∩ T )]/Ld(T ). The intuition behind this result is that,

given that we have no information about the position and orientation of M , the expected number

of times M crosses a line segment is proportional to the average “amount of M” per unit volume.

Moreover, we have determined this proportionality constant.

1.3.3 Honeycombs

Here, we introduce a generalization of the types of tilings that are frequently used to perform local

counting algorithms to approximate the surface area of (d−1)-dimensional manifolds. We have seen

in Section 1.3.1 that several authors have considered the performance of these algorithms on square

and hexagonal lattices. Regular polygonal tessellations are instances of a larger, well-studied class
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of tessellations known as Voronoi tessellations. The definition of a Voronoi tessellation is simple

enough that we provide it here for completeness.

Definition 1.7 (Voronoi tessellation). For a countable set of points (ξi)i∈I in Rd, the corresponding
Voronoi tessellation is a sequence of Voronoi regions (Ri)i∈I , where Ri is the set of points in Rd

that are at least as close to ξi than any other point ξj , for i ̸= j ∈ I. That is,

Ri := {x ∈ Rd : ||x− ξi|| ≤ ||x− ξj || ,∀j ∈ I}, i ∈ I.

Remark 1.6. The hypercubic voxel tessellation in Rd and the hexagonal tiling in R2 are specific

examples of Voronoi tessellations. It suffices to take the centers of each cell as the seeds (ξi)i∈N.

Suppose that two seeds ξi and ξj for i ̸= j are neighbors in a Voronoi tessellation, meaning that

the intersection Ri ∩ Rj is a non-empty, (d − 1)-dimensional planar surface. In this case, we refer

to the intersection Ri ∩ Rj as the facet separating ξi and ξj . The facet is easily seen to be normal

to the vector spanned between ξi and ξj , passing through their midpoint. In what follows we drop

this last requirement regarding midpoints to define a more general class of tessellations on Rd.

Definition 1.8. We say that a tessellation of compact, convex polytopes is a point referenceable

d-honeycomb if there exists a sequence of points (ξi)i∈I in Rd, such that

• Each polytope in the tessellation contains exactly one point in the sequence

• Any line segment contained in the intersection of two distinct polytopes is normal to the

vector between the two corresponding points in the sequence (ξi)i∈I .

If such a sequence (ξi)i∈I exists, then the sequence of tuples of polytopes paired with their respective

points is called a point-referenced d-honeycomb.

Any Voronoi tessellation in Rd is thus a point-referenced d-honeycomb; and since there is a unique

Voronoi tessellation for every sequence of seeds (ξi)i∈I , it is always possible to construct at least

one point-referenced d-honeycomb with (ξi)i∈I as the sequence of seeds.

Proposition 1.1. All edge-to-edge tilings of regular polygons are point-referenceable 2-honeycombs.

Proof. The sequence of polygon centers satisfies Definition 1.8.

Figure 1.4 depicts an edge-to-edge tiling of regular polygons. It, and its dual (the Voronoi tessel-

lation of its vertices), are both point-referenceable 2-tessellations.

An important property of point-referenced d-honeycombs is that the distances between reference

points and the surface area of the facets can be related to the d-volume occupied by the cells.

Referring to the point-referenced 2-honeycomb in Figure 1.5, the area of the shaded region is equal

to half of the length of the dashed blue line times the length of the solid blue edge. This is because

the shaded region is an orthodiagonal quadrilateral. The analogous statement in Rd is that the
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Figure 1.4: On the left is an edge-to-edge tiling of regular polygons. On the right is the Voronoi
tessellation of its set of vertices. Both tessellations are point-referenceable 2-honeycombs. Retrieved
from Princeton (2023a,b) under the Creative Commons licence.

Figure 1.5: The volume of the shaded region is 1/d times the length of the dashed blue line times
the surface area of the solid blue line. Complements Figure 2.4.
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shaded region is the distance between the two chosen reference points times the surface are of the

facet between them, divided by d. If we repeat the process for other pairs of neighboring cells in the

point-referenced d-honeycomb, the resulting shaded regions themselves form a tessellation. So, by

summing over distinct pairs of reference points contained in some compact, convex set T ⊂ Rd, the
higher-dimensional orthodiagonal quadrilaterals approximate T . This is formalized by the following

proposition.

Proposition 1.2. Let (Ri)i∈N be a sequence of convex polytopes forming a point-referenced d-

honeycomb over Rd with corresponding reference points (ξi)i∈N. Suppose that there exists some

finite constant that is larger than the diameter of each Ri. Let T ⊂ Rd be a compact, convex set

containing a neighborhood of the origin, and let rT := {rt : t ∈ T} for r ∈ R+. Define the index set

IrT ⊂ N of “observed points” by

IrT := {i ∈ N : ξi ∈ rT}.

Then, as r → ∞, one has∑
i,j∈IrT
i ̸=j

||ξj − ξi|| × Ld−1(Ri ∩Rj) = dLd(rT ) +O(rd−1). (1.8)

The proof of Proposition 1.2 is contained in the proof of Theorem 2.2.

1.3.4 The bias in computing the surface area with an LCA

We are now ready to state our main result that unifies the analyses of local counting algorithms

on grids of various geometries. The general geometry that we consider is the point-referenced d-

honeycomb in Proposition 1.2. The asymptotic Equation (1.8) relates the fixed point-referenced

d-honeycomb {(Ri, ξi) : i ∈ N} to a growing domain rT . An equivalent interpretation is that the

domain of observation T stays fixed, while the point-referenced d-honeycomb {(R′
i, ξ

′
i) : i ∈ N},

with ξ′i := ξi/r and R′
i := {t/r : t ∈ Ri}, scales towards the origin as r → ∞. Rewriting (1.8)

accordingly, one obtains∑
i,j∈IrT
i ̸=j

∣∣∣∣ξ′j − ξ′i
∣∣∣∣× Ld−1(R

′
i ∩R′

j) = dLd(T ) +O
(
r−1
)
. (1.9)

Now, with the geometry established, we return to the setting of Definition 1.6, where M is a

random, stationary (d− 1)-dimensional manifold. Moreover, we assume that M partitions Rd into

two sets A and Ac, so that we are in Setting 1.1. Our aim is to identify the bias in using a local

counting algorithm to compute the Ld−1 measure of M ∩ T from the labelled reference points
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(ξ′i)i∈IrT . The output of the local counting algorithm is written

L̂d−1(M ; r, T ) :=
∑

i,j∈IrT
i ̸=j

|Z ′
i − Z ′

j | Ld−1(R
′
i ∩R′

j), (1.10)

with the labels denoted as

Z ′
k :=

1, if ξ′k ∈ A,

0, if ξ′k ∈ Ac,

for k ∈ IrT .

Theorem 1.1 (See also, Theorem 2.2). IfM is isotropic, and (1.6) holds, then, under the conditions

of Proposition 1.2,

E
[
L̂d−1(M ; r, T )

]
−−−→
r→∞

Kd E [Ld−1(M ∩ T )] ,

with

Kd :=
dΓ(d2)√
π Γ(d+1

2 )
.

Proof. Let us begin by taking the expectation of L̂d−1(M ; r, T ). We use (1.6) to write,

E
[
L̂d−1(M ; r, T )

]
=

∑
i,j∈IrT
i ̸=j

P(Z ′
i ̸= Z ′

j)Ld−1(R
′
i ∩R′

j)

=
∑

i,j∈IrT
i ̸=j

(g∗M (vij) + ϵi,j(r))
∣∣∣∣ξ′j − ξ′i

∣∣∣∣Ld−1(R
′
i ∩R′

j), (1.11)

where vij := (ξj − ξi)/ ||ξj − ξi||, and the ϵij ’s are functions that tend to 0 as r → ∞. Now, we

exploit the assumption that M is isotropic to argue that g∗M (vij) is constant for all terms in the

sum. Moreover, by (1.7), this constant can be written in terms of d and L∗
d−1(M). The functions

ϵij(r) converge to 0 uniformly over i and j, since the points ξi and ξj are at a distance of at most

twice the upper bound on the diameter of the polytopes in (Rk)k∈N. Hence,

lim
r→∞

E
[
L̂d−1(M ; r, T )

]
=

Γ(d2)√
π Γ(d+1

2 )
L∗
d−1(M)× lim

r→∞

∑
i,j∈IrT
i ̸=j

∣∣∣∣ξ′j − ξ′i
∣∣∣∣Ld−1(R

′
i ∩R′

j)

=
Γ(d2)√
π Γ(d+1

2 )
L∗
d−1(M)× dLd(T )

=
dΓ(d2)√
π Γ(d+1

2 )
E [Ld−1(M ∩ T )] .

Theorem 1.1 illustrates that the act of approximating a stationary, isotropic, (d− 1)-dimensional
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surface by the facets of a point-referenced d-honeycomb induces a bias. Quite remarkably, this bias

is independent of the precise geometry of the d-honeycomb, and an explicit expression for the bias

is provided in any dimension d. In dimensions 1, 2, and 3, the bias factor Kd takes the values 1,

4/π, and 3/2 respectively.

Implications and related analyses

Theorem 1.1 can be seen to be a generalization of the expected biases for square and hexagonal

tessellations in Biermé and Desolneux (2021, Proposition 5), and the results on first moments in

Miller (1999).

Remark that Voronoi tessellations in dimension d are point-referenced d-honeycombs. Theorem 1.1

treats A as a random set, and the tessellation of points as being fixed. However, the analysis in

the proof of Theorem 1.1 can be slightly modified to show that the bias is the same when A is

deterministic, and the point-referenced d-honeycomb is a homogeneous Poisson-Voronoi tessellation

(see Corollary 2.1).

In an earlier work, Yukich (2015, Section 2.2) remarks that in the same Poisson-Voronoi setting,

the bias factor is independent of the target set A. Later, Thäle and Yukich (2016) points out that in

any dimension, “the surface area asymptotics involve a universal correction factor”. The correction

factor identified by Theorem 1.1 is not explicitly computed in the aforementioned references.

Over a span of over two decades, another cluster of related papers has taken an interest in comput-

ing distances along Delaunay triangulations, that is, the geometric graphs with edges between nodes

if their corresponding Voronoi cells are adjacent. It was first shown in Baccelli et al. (2000, Theorem

3) that approximating the length of a straight line by the distance along a Delaunay triangulation on

R2 results in a bias factor of 4/π when the points are randomly decided by a Poisson point process.

This result has applications in telecommunication systems, in which messages pass between network

stations from the sender to the receiver. Recently, Edelsbrunner and Nikitenko (2021, Equation (1))

gives and expression of this correction factor in higher dimensions. Interestingly, it is the same bias

factor of Kd in Theorem 1.1.

Figure 1.6 illustrates the relationship between the two problems in two dimensions. Notice that

the red path along the Delaunay triangulation and the blue path along Voronoi edges deviate to a

similar extent from the straight line passing from s to t in the diagram. To gain some intuition as

to why these two seemingly unrelated problems yield the same bias factor, consider a local counting

algorithm that counts edges in the Delaunay tessellation if the corresponding facet in the Voronoi

tessellation is intersected by the straight line. Since the right angle property is preserved when

considering the dual tessellation, the analysis follows similarly to the proof of Theorem 1.1, and

the same bias factor is obtained in all dimensions d. The importance of this right angle property is

noted in the discussion of Edelsbrunner and Nikitenko (2021), in which the authors also note that

power diagrams (see, e.g., Aurenhammer (1987)) possess this property.
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Figure 1.6: The red path along the Delaunay edges that correspond to the Voronoi edges that are
intersected by a line segment has the same expected length as the blue path along the Voronoi
edges that correspond to the Delaunay edges that are intersected by the line segment. Adapted
from de Castro and Devillers (2017) with permission from Springer Nature.

(b)(a)

(a)

(b)

Figure 1.7: The bias factor of the perimeter length estimator in Equation (1.10) is roughly
√
2 (resp.

1) for a smooth set yielding the diescretization in (a) (resp. (b)). The orientation of the smooth
sets underlying the images in (a) and (b) can be selected by choosing a point on the edge of a circle,
as shown.

The bias factor Kd on a hyper-cubic lattice

The bias Kd is the ratio of the surface area of a d-dimensional hypercube to the surface area of the

inscribed hypersphere. This can be easily verified by computing the ratio explicitly. Assessing the

performance of the local counting algorithm on a hyper-cubic tessellation provides a better intuition

as to why this is.

Let us first consider the two-dimensional case. Figure 1.7 shows two possible resulting partitions

of pixels when the partition boundary M is a straight line. In panel (a) of Figure 1.7, it is quite

clear that the bias in the length estimate of M is a factor of approximately
√
2 too large. However,

in panel (b) of the same figure, the resulting estimator is much closer to the true length of the

partitioning line.

Selecting the orientation of M uniformly at random is equivalent to selecting a point on the

boundary of the circle in Figure 1.7 uniformly at random. Using the local counting algorithm to
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estimate the circumference of the circle accumulates local contributions along the perimeter. Thus,

the total estimate, for sufficiently fine grid structure, converges to the integral of the bias factor

corresponding to each point along the perimeter of the circle. It is not hard to check that the

local counting algorithm converges to the perimeter length of the bounding square. Dividing by

the length of the interval of integration—the true circumference—yields the average bias factor.

Essentially, by considering the performance of the local counting algorithm on the entire circle, we

are considering all equally weighted orientations of the perimeter simultaneously. This argument is

easily generalized to higher dimensions.

There have been several works that present pixel and voxel based LCAs for estimating the surface

area (Ziegel and Kiderlen, 2010; Lindblad, 2005) as well as other intrinsic volumes (Svane, 2014a)

by considering weighted averages of various voxel-pair configurations. The analysis that we have

provided in Section 1.3 suggests how the bias in the resulting estimator is related to the choice

of weights, by considering the overall contribution of each voxel-pair configuration separately. For

stationary random sets, this amounts to computing g∗M in the orientation of the considered voxel

pair, the distance between the voxel pair, and the frequency at which the voxel pair is repeated

throughout space.

Higher moments

In the proof of Theorem 1.1, we used Fubini’s theorem to distribute the expectation to each term

in the sum of Equation (1.11). This allows us to consider the expected contribution of each edge,

without reference to the positions and orientations of the other edges in the tessellation. In a way,

considering only the first moments allows one to abstract the global geometry of the tessellation,

and utilize only the key property of orthogonality between pairs of neighboring reference points and

the corresponding facet between them. An analysis of the higher moments would be much more

involved. Nonetheless, we prove that the LCA estimator in Equation (1.10) obeys a central limit

theorem in the case where the point-referenced d-honeycomb is a hypercubic lattice and where the

random field obeys certain mixing conditions.

1.3.5 A pseudo-local counting algorithm

We begin with a lemma that motivates a new, multigrid convergent surface area estimation strategy.

Lemma 1.2 (Donchian and Coxeter (1935)). Suppose that M ⊂ Rd is contained in a (d − 1)-

dimensional hyperplane and has finite Ld−1 measure almost surely. Then, for any set of orthonormal

vectors e1, . . . , ed, one has (
d∑

k=1

gM (ek)
2

) 1
2

= Ld−1(M), (1.12)

almost surely.
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Figure 1.8: The blue, piecewise linear path
⋃
j∈J Nj approximates the red curve M in Figure 1.3.

The total length of
⋃
j∈J Nj can be computed via Equation (1.14).

Proof of Lemma 1.2. The unit normal vector to M at the point s ∈M is independent of s. And so

if we denote this vector by nM , then by (1.3), one has

d∑
k=1

gM (ek)
2 =

d∑
k=1

|⟨ek, nM ⟩|2Ld−1(M)2 = ||nM ||2 Ld−1(M)2 = Ld−1(M)2,

almost surely, and the statement holds by taking square roots.

Now, let us return to the framework where M is a smooth (d − 1)-dimensional manifold, not

necessarily flat, with finite Ld−1 measure. In addition, suppose that M is observed over a hyper-

cubic lattice using our local counting algorithm. By only considering only pairs aligned with one

lattice direction parallel to the unit vector v, our counting algorithm will approximate gM (v).

Thus, the d-tuple
(
gM (v1), . . . , gM (vd)

)
can be approximated by performing the counts separately

for each lattice direction v1, . . . , vd. Unfortunately, this d-tuple is not sufficient to calculate Ld−1(M)

in general. However, in the special case that M is contained in a (d − 1)-dimensional hyperplane,

Lemma 1.2 applies.

Recall that our goal of this section is to build a multigrid convergent estimator for the surface area

of excursion sets. Lemma 1.2 provides such a strategy for hyperplanar surfaces, but this cannot be

applied to the excursion set directly. Even worse yet, Lemma 1.2 fails when M is piecewise planar;

the surface area of each planar component ofM would have to be calculated individually, due to the

non-linearity of Equation (1.12). This is greatly simplified in dimension 2, where a piecewise linear

approximation of a C1 smooth curve M can be constructed, and Equation (1.12) can be applied to

each line segment.

In dimension 2, the construction of a piecewise linear approximation of M is relatively straight-

forward. Given a square lattice in R2, suppose that the edges of the square lattice cut the curve M

into segments. Each segment can then be approximated by the straight line from the entry point

in the square cell, to the exit point. In the left panel of Figure 1.8, we show the resulting piecewise

linear curve that approximates the smooth red curve from Figure 1.3.
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Consider the smooth red curve in Figure 1.3. If each cell of the square lattice is decomposed

further into smaller square cells (by refining the grid and adding points to Ξ), then Equation (1.12)

can be applied within the larger cell to obtain an approximation of the vector
(
gMj (e1), gMj (e2)

)
,

where Mj is the portion of the smooth red curve in the large cell with index j in the index set

J enumerating the larger cells. In the right-hand side of Figure 1.8, the blue line segment that

approximates Mj can be labeled Nj , and we see that, in this case,

(
gMj (e1), gMj (e2)

)
=
(
gNj (e1), gNj (e2)

)
(1.13)

Equation (1.13) fails in general if Mj is anywhere tangent to e1 or e2, but this is a minor detail

since, in these cases, the definition of Nj can be modified accordingly such that Equation (1.13)

holds. By Lemma 1.2,

∑
j∈J

√
gMj (e1)

2 + gMj (e2)
2 =

∑
j∈J

L1(Nj) = L1

⋃
j∈J

Nj

 . (1.14)

There is a trade-off in how the sizes of the larger cells are chosen for a given pixel width. If many

large cells are used, then the discrepancy between the length ofM and the length of the union of the

Nj ’s is mitigated. However, if too many are used, and too few pixels are included when computing

Equation (1.12) in each large cell, there are larger discretization effects in each computation. Thus,

the size of the cells on which Equation (1.12) is computed is a hyperparameter of the plug-in

estimator for the length of M . A method for automatically choosing this hyperparameter based on

available information is described in Section 3.4.4.

Chapter 3 covers the analysis of the estimator in Equation (1.14) in detail. Theorem 3.1 provides

the multigrid convergence of the estimator for non-isotropic, non-stationary excursion sets, along

with the rate of convergence. It is shown that the estimator can be used to estimate the perimeter

of excursion sets on growing domains in R2, so long as the pixel size decreases sufficiently fast (see

Proposition 3.2). Finally, the asymptotic normality of the estimator is proven in Theorem 3.2.

The degree to which it is possible to approximate the manifoldM by a union of non-interfering line

segments, is well-summarized by the reach ofM . The reach of M is used to determine the sufficient

rate at which the pixel density increases in the case of a growing domains (see Definition 3.5). In

addition, an accurate estimate of reach(M) would greatly assist in choosing the size of the line

segments used to approximate M . In the next section, we explore methods for obtaining such an

estimate from the discrete data in Ξ.
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Section 1.3: Summary of contributions

• For a (d − 1)-dimensional random surface M that is both stationary and isotropic,

the probability that M intersects a line segment of length q ≪ 1 is, to first order, q

times L∗
d−1(M) times a dimensional constant (see Equation (1.6) and Theorem 2.1).

• Using the LCA in Equation (1.10) to estimate the surface area of a stationary, isotropic

excursion set on a point-referenced d-honeycomb (see Definitions 1.8 and 2.2) induces

a bias factor of Kd, depending only on the dimension d (see Theorems 1.1 and 2.2).

It obeys a central limit theorem for a growing domain of observation when observed

over a hypercubic lattice (see Theorem 2.3).

• With no assumptions of stationarity and isotropy, the newly introduced pseudo-local

counting algorithm in Equation (1.14) is multigrid convergent in dimension 2 with a

known rate of convergence (see Theorem 3.1). By assuming stationarity, the estimator

is asymptotically normal in the case of a growing domain (see Theorem 3.2).

• An implementation of the perimeter length estimator in R is made available on GitHub

along with other useful functions for analyzing binary digital images.

1.4 The reach and related notions

1.4.1 The reach as a geometric quantity

The reach, as mentioned before in Section 1.1.2, is a geometric property of sets that characterizes the

smoothness of the set’s boundary; see Definition 4.2. The reach in itself is an interesting quantity

to study, not only for its useful characterization of sets with well-defined intrinsic volumes, but also

its relation to what is known as the Steiner formula (Federer, 1959, Theorem 5.6). The Steiner

formula states that the d-volume of a set A enlarged by a radius r (by considering all points within

a distance r of A) is polynomial in r up to reach(A). Moreover, the coefficients of this polynomial

depend on the set A only through the intrinsic volumes of A. In geometric data analysis, the reach

is also known as the condition number since it provides a measure of regularity of a set’s topological

boundary.

Several generalizations of the reach have been developed in existing literature. One such gen-

eralization, the β-reach, is introduced in Cotsakis (2023), included as Chapter 4 of the present

manuscript. Other examples include the spherical distortion radius (Aamari et al., 2023), the µ-

reach (Chazal et al., 2009a), and the λ-reach (Chazal and Lieutier, 2005a). Each of these generalized

notions is expressed as an infimum or supremum over some set parametrized by some real parame-
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ter, and identified with the reach for a particular value of the tuning parameter (see Remark 4.3).

Typically, these generalized notions are used as a means of estimating the reach of a set from dis-

crete samples, an endeavour that has been treated extensively in the literature. In fact, we dedicate

Chapter 4 to this area of study.

The reach of a set, like the intrinsic volumes, can be seen as its own geometric summary of sets

in Rd. Indeed, a useful interpretation as pointed out in Aamari et al. (2019) is that the reach is

determined by either a region of high curvature on the boundary, or a “bottleneck structure” where

the set approaches itself closely. Loosely speaking, the reach provides a notion of the scale at which

each part of the set is distinguishable from other parts. Although the reach is not additive as defined

in Section 1.1.1, it serves as a useful measure when summarizing aspects of excursion set geometry.

1.4.2 Equivalent notions of the reach

There are several equivalent formulations of the reach. Here we outline the most common ones:

• Distance to medial axis. The medial axis of Ac is the set of points in Ac having more than

one closest point in A. The reach of A is the shortest distance between A and the medial axis

of Ac.

• Federer’s tangent space formulation. The tangent vectors of A at a point a ∈ A, namely

Tan(A, a), are the vectors u ∈ Rd such that for ϵ > 0, the distance from a + ϵu to A is o(ϵ).

From Federer (1959, Theorem 4.18), the inverse of the reach of a closed set A can be expressed

as

reach(A) = inf

{
||b− a||2

2 dist
(
b− a,Tan(A, a)

) : a, b ∈ A, a ̸= b

}
. (1.15)

• Geodesic distance. For a closed set A ⊂ Rd and a, b ∈ A, let dA(a, b) denote the infimum

of lengths of paths between a and b in A. Then, by Boissonnat et al. (2019, Theorem 1),

reach(A) = sup

{
r ∈ R+ : ∀a, b ∈ A, ||b− a|| < 2r ⇒ dA(a, b) ≤ 2r arcsin

||b− a||
2r

}
. (1.16)

• Global and local decomposition. The weak feature size of a set A is the minimum distance

from A to the set of critical points of the generalized gradient of the function dist(·, A). If A
is a C2 smooth submanifold in Rd, then reach(A) is the minimum of the weak feature size of

A and the minimal radius of curvature of A (Aamari et al., 2019, Theorem 3.4).

A major contribution of Chapter 4 is a new expression for the reach. It is shown in Boissonnat

et al. (2019, Lemma 1) that for a set A of positive reach, a non-increasing function of reach(A)

limits the distance between A and midpoints of certain pairs of points in A. Expanding upon this

result, our Theorem 4.2 shows that the reach may equivalently be expressed as follows.
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• Midpoint distances. The reach of a closed set A is given by

reach(A) = inf

{
g||b−a||

(
dist

(
a+ b

2
, A

))
: a, b ∈ A

}
, (1.17)

where the function g(·)(·) is given in Definition 4.5.

A number of authors have leveraged the various expressions of the reach to define several, more

general quantities. For instance, the µ-reach and the λ-reach, for real parameters λ and µ, are

obtained by computing the shortest distance from A to a filtered version of the medial axis of Ac,

parametrized by either µ or λ Chazal et al. (2009a); Chazal and Lieutier (2005a). The spherical

distortion radius, introduced in Aamari et al. (2023), takes the geodesic distance formulation of the

reach and weakens the condition by only considering points a and b in A if ||b− a|| ≥ δ for some

parameter δ > 0.

Similarly, the midpoint distances formulation of the reach introduced in Equation (1.17) leads to

a relaxation of the reach if one only considers pairs of points a and b satisfying

dist

(
a+ b

2
, A

)
≥ β

for some parameter β ≥ 0. The resulting quantity is called the β-reach (see Definition 4.6). A

significant advantage of the β-reach is its computability for point cloud data. Referring to the

context of Setting 1.1, the β-reach of ΞA is close to the β-reach of A for β much greater than the

Hausdorff distance from ΞA to A. Moreover, the exact β-reach of a countable set of points ΞA can

be calculated numerically for all β in an interval; this is shown on real data in Example 4.8.

Intuitively, the β-reach excludes small-scale features when computing the reach, which leads to a

quantity that is larger than the reach for β > 0. The β-reach, seen as a function of β, is continuous

at β = 0, implying that as smaller features of A are counted, the β-reach converges to the reach.

1.4.3 Obtaining bounds on the reach of a set from a noiseless sample

Existing methods

There has been a focus in recent literature on the estimation of the reach based on a noiseless

sample of points ΞA in Setting 1.1. The statistical framework of Aamari et al. (2019) and Aamari

and Levrard (2019) treats ΞA as a random set distributed on A, and both works suggest estimating

reach(A) based on the formulation of the reach in Equation (1.15), using pairs of points a, b ∈ ΞA.

These works obtain bounds on the minimax rate of convergence for this estimator when A is assumed

to be a C3-smooth manifold without boundary whose tangent spaces are known. Later, Aamari

et al. (2023) establishes an optimal convergence rate for minimax estimators of the reach of Ck-

smooth submanifolds of Rd without boundary assuming that the tangent spaces are known. In

Berenfeld et al. (2022), the authors employ the formulation of the reach in Equation (1.15), along
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with the convexity defect function from Attali et al. (2013), to define an estimator for the reach of

Ck-smooth manifolds for k ≥ 3.

In a more general setting, where the set A is not necessarily a manifold, but assumed to have

positive reach, Cholaquidis et al. (2023) introduces a tractable method for estimating reach(A) from

the set of sample points ΞA. Their approach uses the formulation of the reach in Equation (1.16),

and approximates the geodesic distance function dA by first constructing an ϵ-neighborhood graph

over the points in ΞA and computing the distance along the graph. The choice of the parameter ϵ

is important for guaranteeing convergence rates of the estimator to the true reach.

A converging upper bound for the reach

The advantage of the expression in Equation (1.17) is that there is a very natural extension to

estimating reach(A) from a set of sample points ΞA with no assumptions on A other than closedness.

If the Hausdorff distance between the sets ΞA and A is known to not exceed ϵ > 0, then

reach(A) ≤ inf

{
g||b−a|| (x− ϵ) : a, b ∈ ΞA, x = dist

(
a+ b

2
,ΞA

)
≥ ϵ

}
.

Moreover, it is shown in Theorem 4.4 that this upper bound tends to reach(A) as ϵ → 0, and the

rate of convergence is provided.

1.4.4 r-convexity and its relation to the reach

Another geometric quantity closely related to the reach is the radius of r-convexity, denoted rconv(A)

(see Definition 4.4). It is known that the reach of a compact set is bounded above by the radius of

r-convexity (Cuevas et al., 2012), i.e.,

reach(A) ≤ rconv(A). (1.18)

Equation (1.18) provides an alternative approach to bounding the reach from a sample of points,

in that an upper bound on the radius of r-convexity also bounds the reach from above. Moreover,

in Chapter 4, we provide several sufficient conditions for the reach of a set to be equal to its radius

of r-convexity. The weakest of these assumptions is given in Theorem 4.1, where we show the

equality of reach(A) and rconv(A) for any closed set A whose topological boundary is a C1-smooth,

(d− 1)-dimensional manifold without boundary.

Literature treating the estimation of the radius of r-convexity is limited. In Rodŕıguez Casal and

Saavedra-Nieves (2016), the authors introduce a statistical estimator of the radius of r-convexity

by choosing the largest value of r that does not reject a certain hypothesis test at a prescribed level

of significance.

In Chapter 4, we study a a special case of Setting 1.1 for which it is possible to bound the radius

of r-convexity of a compact set A ⊂ Rd. Our result is not statistical, and so in a non-deterministic
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setting, the bound on the radius of r-convexity holds with probability 1.

We suppose that there is some ϵ > 0 such that a union of balls of radius ϵ centered at the points

in the points (ξi)i∈I covers Rd. The compactness of A implies that the set ΞAc is non-empty. We

show that, in this framework, using the discrete analogue of dilation and erosion commonly used in

computational geometry, a dilation of the set ΞA by a distance r < rconv(A) followed by an erosion

of the resulting set by the same radius r may result in a subset of (ξi)i∈I that is strictly greater

than ΞA (see Figure 4.8 for an example in dimension 2). Since rconv(A) is unknown, the naive (and

false) conclusion is that r > rconv(A).

We adapt the above strategy by appropriately altering the discrete dilation and erosion distances

such that, after applying the manipulations on the set ΞA, obtaining anything that is not contained

in ΞA correctly implies r > rconv(A). The infimum of all such r is an upper bound for rconv(A)

and is shown to converge to rconv(A) as ϵ→ 0 (see Theorem 4.3).

Section 1.4: Summary of contributions

• We introduce the β-reach (see Definition 4.6) for β ∈ [0,∞), and show that it converges

monotonically to the reach as β → 0 for any closed set in Rd (see Theorem 4.2).

• We define an upper bound for the reach of a closed set A ⊂ Rd that is approximated

by discrete samples ΞA, and show that the bound converges to reach(A) with an

explicit rate of convergence as ΞA → A in the Hausdorff metric (see Theorem 4.4).

• We show that the traditional discrete closing operation from mathematical morphol-

ogy does not directly lead to an upper bound on the radius of r-convexity of a closed

set A ⊂ Rd (see Figure 4.8). We modify the discrete closing operation and show that

the result can be used to construct an upper bound for rconv(A). Moreover, we show

that the bound converges to rconv(A) (see Theorem 4.3).

• These bounds and the β-reach are shown to perform well on real, three-dimensional

data (see Example 4.8).

1.5 Organization of the manuscript

Throughout Chapter 1, we have summarized the main findings that are detailed in the rest of this

manuscript. Each following chapter is a self-contained article, either published or under revision

for publication in an international, peer-reviewed journal. At the start of each chapter, we detail

the independent notation used, that may differ slightly from other chapters. We apologize that this

may lead to some redundancy between chapters. Furthermore, a short abstract is provided at the
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beginning of each chapter. Using the harmonized notation introduced in this general introduction,

each chapter is summarized as follows.

• Chapter 2. This chapter is based on the joint work

Cotsakis, R., Di Bernardino, E., & Duval C. (2023). Surface area and volume of

excursion sets observed on point cloud based polytopic tessellations. The Annals of

Applied Probability (to appear). Paper here.

Theorem 1.1 is stated, proven, and expanded upon. Some related analyses are provided,

including bias calculations for random Poisson-Voronoi tessellations. We also establish a

joint central limit theorem for the surface area and volume of excursion sets observed over

hypercubic lattices under certain mixing conditions on the random field.

• Chapter 3. This chapter is based on the joint work

Cotsakis, R., Di Bernardino, E., & Opitz, T. (2023). On the perimeter estimation

of pixelated excursion sets of two-dimensional anisotropic random fields. Scandinavian

Journal of Statistics, 1–34. Paper here.

The statistical properties of the piecewise-linear approximation in (1.14) is studied as a length

estimator for the perimeter of excursion sets of random fields on R2. We prove that this

method is multigrid convergent, even without the assumptions of isotropy and stationarity.

Under slightly stronger assumptions, we prove a convergence result as the size of the domain

grows to cover R2. A Central Limit Theorem is proven for our estimator when multiple

excursion levels are considered simultaneously. Several numerical studies are conducted to

test our methods on simulated random fields.

• Chapter 4. This chapter is based on the work

Cotsakis, R. (2023). Identifying the reach from high-dimensional point cloud data with

connections to r−convexity. Discrete & Computational Geometry (to appear). Paper

here.

We elaborate on the analysis in Section 1.4. Algorithms are presented for bounding the reach

and the radius of r-convexity for a closed subset of Rd. The β-reach is defined and numerical

studies suggest how it can be used in high-dimension to infer the reach of lower dimensional

smooth submanifolds.

• Chapter 5. This chapter is based on the joint work

Cotsakis, R., Di Bernardino, E., & Opitz, T. (2023). A local statistic for the spatial

extent of extreme threshold exceedances. Submitted for publication in an international

peer-reviewed journal. Paper here.
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The extremal range in Definition 1.5 is studied, both in terms of its theoretical properties and

its applicability to daily reanalysis data of French temperatures.

• Chapter 6. We conclude with several perspectives for improvements to the results detailed

in this manuscript.
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Chapter 2

Surface area and volume of excursion

sets observed on point cloud based

polytopic tessellations

This chapter is based on the joint work

Cotsakis, R., Di Bernardino, E., & Duval C. (2023). Surface area and volume of excursion

sets observed on point cloud based polytopic tessellations. Annals of Applied Probability (to

appear). Paper here.

Abstract: The excursion set of a C2 smooth random field carries relevant information in its

various geometric measures. From a computational viewpoint, one never has access to the continuous

observation of the excursion set, but rather to observations at discrete points in space. It has been

reported that for specific regular lattices of points in dimensions 2 and 3, the usual approximation

of the surface area of the excursions does not converge when the lattice becomes dense in the

domain of observation to the desired limit. In the present work, under the key assumptions of

stationarity and isotropy, we demonstrate that this limiting factor is invariant to the locations of

the observation points. Indeed, we identify an explicit formula for the correction factor, showing

that it only depends on the spatial dimension d. This enables us to define an approximation for the

surface area of excursion sets for general tessellations of polytopes in Rd, including Poisson-Voronoi

tessellations. We also establish a joint central limit theorem for the surface area and volume of

excursion sets observed over hypercubic lattices.
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2.1 Introduction

2.1.1 Motivations

The study of random fields through the geometry of their excursion sets has received a lot of interest

in recent literature. This is mainly stimulated by their wide range of applications in domains such

as cosmology, for the study of Cosmic Microwave Background radiation and the distribution of

galaxies (see, e.g., Casaponsa et al. (2016), Schmalzing and Górski (1998), Gott et al. (2007), Gott

et al. (2008)), brain imaging (see Adler and Taylor (2011), Section 5, and the references therein), the

modelling of sea waves (see, e.g., Longuet-Higgins (1957), Wschebor (1985), Eymard et al. (2000)),

the routing algorithms for mobile communications networks (see, e.g., Baccelli et al. (1997), Baccelli

et al. (2000)) or the shape analysis (see, e.g., Lachaud et al. (2023), Lachaud et al. (2020)).

The geometric features considered are referred to as either Lipschitz-Killing curvatures in stochas-

tic geometry, curvature measures in physics and differential geometry, intrinsic volumes or Minkowski

functionals in integral and convex geometry. In stochastic geometry, many studies have been dedi-

cated to computing these objects from the observation of one excursion set of a random field on a

compact domain T in Rd (see, e.g., Adler and Taylor (2007)). The level perimeter and level total

curvature integrals for two-dimensional random fields are investigated in Biermé and Desolneux

(2020). Limit results when the size of T grows to Rd have been established under specific conditions

on the random field (see, e.g., Bulinski (2010), Bulinski et al. (2012), Kratz and Vadlamani (2018),

Meschenmoser and Shashkin (2013), Berzin (2021) or Spodarev (2014)). The main motivation of

this work comes from the following consideration: many articles rely on the assumption that “the

excursion set is observed on T ⊂ Rd”, which is meant to be understood as “the field is continuously

observed over T”. This seems unrealistic, as in practice, for instance in two dimensions where

excursion sets can be viewed as images, they are encoded through a matrix whose entries make a

one-to-one connection with the pixels of the image. Even in cases where the resolution of the image

is very high, the image of the excursion set remains a discretization of the continuous object that is

the excursion set on T . Many methods allow to compute the Lipschitz-Killing curvatures of a set

given in a pixelated image, taking into account the discrete nature of the observations. However,

most of these methods are not multigrid convergent, i.e., the computed values do not converge to

the expected values when the resolution increases. The interested reader is referred for instance

to Guderlei et al. (2007), Meschenmoser and Spodarev (2010), Svane (2014b), Edelsbrunner and

Pausinger (2016). In the present work, we focus on two specific Lipschitz-Killing curvatures for

the excursion sets of a C2 stationary random field in Rd: the (d− 1) and d-dimensional Hausdorff

measures (see their definition in Section 2.1.3). They correspond respectively to what we call in

the sequel surface area (with a slight abuse of language), and volume in dimension d. It has been

observed that local counting algorithms for the expected surface area of the discretized excursion

set do not converge to that of the continuous excursion set. This multigrid convergence fails due to

a dimensional bias factor.
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Over the last two decades, significant efforts have been made to determine this factor for the

estimated surface area of a deterministic Borelian set A of Rd whose approximation is obtained

from a Poisson-Voronoi tessellation. To the best of our knowledge, Yukich (2015) is the first to

remark that in dimension d, the correction factor is independent of the target set A (see Section

2.2). In Thäle and Yukich (2016) it is also pointed out that in any d-dimension, “the surface area

asymptotics involve a universal correction factor”. This correction factor is not explicitly computed

in the aforementioned references. In an earlier work, (Baccelli et al., 2000, Theorem 3) identifies

that there is a 4/π bias factor when approximating straight paths by paths along the corresponding

Delaunay tessellation of a Poisson-Voronoi diagram in dimension 2. This result is motivated by

the telecommunication problem of estimating the path between two network stations modelled by

a Poisson point process. Recently, (Edelsbrunner and Nikitenko, 2021, Equation (1)) gives an

expression of this correction factor as distortions of (d − 1)−dimensional Voronoi scapes, which

are higher dimensional generalizations of these Voronoi paths (see Baccelli et al. (2000)). Some

results on approximations of the surface area of a Euclidean subset A by regular lattices (square,

hypercubic, triangular, hexagonal, . . . ), which cannot be obtained by Poisson-Voronoi tessellation,

have been obtained by Miller (1999). In dimension 2 the article finds the same bias factor of 4/π

for different lattices and in dimension 3 a similar behaviour is observed, with a bias factor of 3/2

for the cubic mosaic. For these regular lattices (square and hexagonal) and in dimension 2, Biermé

and Desolneux (2021) studies the case where the set A is random and is given by the excursion set

of a random field. This same bias factor 4/π appears when one approximates the perimeter length

of the boundary of the excursion set of a random field from its approximation in a regular lattice

(see (Biermé and Desolneux, 2021, Proposition 5)).

The main result of this paper unifies some of the aforementioned results. It gives a general

picture in any d-dimension of the average surface area of the boundary of the excursion set of a

random field approximated by a polytopic tessellations (in the sense of Definition 2.2). This includes

both deterministic lattices and Poisson-Voronoi tessellations (see Figure 2.2). As anticipated in the

above articles (in particular in Yukich (2015), Thäle and Yukich (2016), Edelsbrunner and Nikitenko

(2021), Baccelli et al. (2000)), the bias factor is universal, independent of the chosen tessellation

geometry and depends only on the d-dimension (see Equation (2.22) and (2.14)). In all dimensions,

it is shown that this bias factor is identical to the expected distortion of Voronoi scapes in the dual

problem solved by Edelsbrunner and Nikitenko (2021).

Moreover, thanks to a second order expansion (see Theorem 2.1), it is possible, to derive for

a hypercubic lattice a joint central limit theorem for the approximated surface area and volume

(see Theorem 2.3) by imposing additional strong mixing assumptions on the underlying field. This

limit result is novel among existing limit results since it gives the joint asymptotics of two different

Lipschitz-Killing curvatures, the surface area and the volume, whereas most multivariate limit the-

orems hold for a single curvature measure at multiple levels (see for instance Bulinski et al. (2012),

Di Bernardino et al. (2017)).
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The outline of the paper is the following. In Section 2.1.2 we define the geometric measures

that we consider, as well as the Crofton formula, which is an essential tool to prove the main

result (Theorem 2.1). In Section 2.1.3, the surface area and volume as well as their corresponding

approximations on general point clouds are introduced. Since the bias of the approximate volume is

a well understood deterministic quantity that is asymptotically negligible, Section 2.2 focuses on the

study of the approximated surface area; the main results, which hold for general point clouds in any

dimension (Theorems 2.1 and 2.2), are stated and proved. Section 2.3 restricts to the hypercubic

lattice and proposes under additional strongly-mixing assumptions the joint CLT (Theorem 2.3)

for the approximated surface area and volume. Sections 2.4 and 2.5 contain additional results and

proofs related to Sections 2.2 and 2.3 respectively.

Finally, an Appendix Section includes several examples (see Section 2.A.1), some considerations

on the convergence of the bias factor (see Section 2.A.2) and alternative approaches to recover the

dimensional constant appearing in Theorem 2.1 (see Section 2.A.3).

2.1.2 Geometric measures and the Crofton formula

In the following, ∥ · ∥p denotes the Lp norm; ∥ · ∥∞, the supremum norm; | · |, the absolute value;

1A, the indicator of a set A; and ∂A, the boundary of a set A. The closed ball of radius r centered

at the origin 0 in Rd is denoted Bd
r . Finally, recall that (ei)1≤i≤d denotes the canonical basis of Rd.

Hausdorff measures We first introduce the different measures considered in this article. For

k ∈ {0, . . . , d}, let σk(B) be the k-dimensional Hausdorff measure of a measurable set B ⊂ Rd,

σk(B) :=
πk/2

2kΓ
(
k
2 + 1

) lim
δ→0

σδk(B), (2.1)

where Γ denotes the gamma function and

σδk(B) := inf

{∑
i∈N

diam(Ui)
k : diam(Ui) < δ,

∞⋃
i=1

Ui ⊇ B

}
, (2.2)

where diam(U) := sup{∥u− v∥2, u, v ∈ U} and the infimum is taken over all countable covers of B

by arbitrary subsets Ui of Rd (see, e.g., Schneider and Weil (2008) p.634). The Hausdorff dimension

of B is the unique integer value dB such that σk(B) = 0 if k < dB and σk(B) = +∞ if k > dB

(see, e.g., Rogers (1998)). We have chosen to normalize σk(B) in (2.1) such that for k = {0, . . . , d},
σk(B) corresponds to the k-dimensional Lebesgue measure of B.

In the present work we focus on the measures in (2.1) for k = d− 1 and k = d. They correspond

respectively to what we call surface area and volume in dimension d. In the proofs, two other

measures play an important role: σ0, the counting measure for sets of isolated points, and σ1, the
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measure of length.

Main tool: Crofton formula In the present work, we heavily rely on the Crofton formula. For

a k-dimensional rectifiable set embedded in Rd, this classical result in integral geometry relates the

σk measure of the object with the average number of times it is intersected by randomly oriented

(d − k)-flats. We will be particularly interested in the case of k = d − 1, in which the 1-flats

correspond to randomly oriented lines.

To state the Crofton formula, we first need to introduce the affine Grassmanian A(d,m), for

m ∈ {1, ..., d}, which is the set of affine m-dimensional subspaces of Rd. Since the set A(d, 1) of lines
in Rd plays a crucial role in the Crofton formula we use, we propose a particular parametrization.

It is shown in Schneider and Weil (2008) p.168 that A(d, 1) is equipped with a unique locally finite

motion invariant measure µ1, that is normalized such that

µ1({l ∈ A(d, 1) : l ∩Bd
1 ̸= ∅}) = σd−1(B

d−1
1 ).

For s ∈ ∂Bd
1 and v ∈ vect(s⊥), denote by ls,v the element of A(d, 1) that is parallel with s and

passes through the point v,

ls,v := {v + λs : λ ∈ R}. (2.3)

For each s ∈ ∂Bd
1 , there exists a unitary (rotation) operator θs that maps e1 to s. Therefore, we

define the parametrization φ : ∂Bd
1 × Rd−1 → A(d, 1) satisfying φ(s,u) = ls,vs(u), with

vs(u) := θs ◦

0

u

 ∈ vect(s⊥).

Notice that for E ⊂ A(d, 1),

µ1(E) =
(σd−1 ⊗ σd−1)(φ

−1(E))

σd−1(∂B
d
1)

,

where ⊗ denotes the product measure.

We recall here a particular version of the Crofton formula (Schneider and Weil, 2008, Theo-

rem 5.4.3), which implies that for a manifold M ⊂ Rd satisfying 0 < σd−1(M) < ∞, it holds

that

σd−1(M) =

√
π Γ(d+1

2 )

Γ(d2)

∫
A(d,1)

σ0(M ∩ l) µ1(dl). (2.4)

By writing A(d, 1) in terms of the above parametrization φ, Equation (2.4) takes the form

σd−1(M) =

√
π Γ(d+1

2 )

Γ(d2)

∫
Rd−1

∫
∂Bd

1

σ0(M ∩ ls,vs(u))

σd−1(∂B
d
1)

ds du. (2.5)
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A helpful interpretation of the Crofton formula in Equation (2.5) is as follows: the expected σd−1

measure of the projection of M on a (d− 1)-dimensional hyperplane with uniformly random orien-

tation is simply a constant multiple of σd−1(M).

The Crofton formula can also be exploited to propose algorithms to compute the surface area,

e.g., it is considered in Lehmann and Legland (2012) for objects in 2 and 3 dimension and recently

in Aaron et al. (2022) which provides consistent estimators for the surface area of a compact domain

S from the observation of i.i.d. random variables supported on S. The interested reader is referred

to Appendix 2.A.1 for an illustration of Equation (2.5) on two simple examples.

2.1.3 Approximated volume and surface area of excursion sets observed over a

point cloud

Excursion sets, level surfaces, and associated measures We now apply the previous σd and

σd−1 measures to specific manifolds: the excursion sets and associated level surfaces of d-dimensional

smooth random fields.

Definition 2.1 (σd and σd−1 measures of excursion sets and associated level surfaces). Let {X(t), t ∈
Rd}, for d ≥ 2, be a random field satisfying the following assumption

(A0) X is stationary with positive finite variance and is almost surely twice differentiable. Further-

more, the probability density of
(
X(0),∇X(0)

)
is bounded uniformly on Rd+1.

Let u ∈ R and T ⊂ Rd be a bounded closed hypercube with non empty interior. We consider the

excursion set within T above level u:

ETX(u) := {t ∈ T : X(t) ≥ u} = T ∩ EX(u), where EX(u) := X−1([u,+∞)).

Similarly, the level surfaces within T are defined by

LTX(u) := {t ∈ T : X(t) = u} = T ∩ ∂EX(u), a.s.

Remark that Assumption (A0) guarantees that X admits no critical points at the level u almost

surely, which implies that LTX(u) is a (d− 1)-dimensional manifold possessing a σd−1 measure with

finite first and second moments (see, e.g., Cabaña (1987) and (Adler and Taylor, 2007, Theorem

11.2.1 and Lemma 11.2.11)). In addition, since the considered random field X is of class C2 a.s.,

the random set EX(u) is a C2 submanifold of Rd and its intersection with the compact, convex

hypercube T provides the positive reach property (see Biermé et al. (2019)).

Define the normalized σd and σd−1 measures of the excursion set and associated level surfaces, for
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u ∈ R, as

CTd−1(u) : =
1

σd(T )
σd−1

(
LTX(u)

)
=

1

σd(T )

∫
LT
X(u)

σd−1(ds), (2.6)

CTd (u) : =
1

σd(T )
σd
(
ETX(u)

)
=

1

σd(T )

∫
T
1{X(t)≥u}dt. (2.7)

Assumption (A0) guarantees the existence of the associated densities

C∗
k(u) := E[CTk (u)], for k = d, d− 1, (2.8)

which are independent of the size of the hypercube T .

The independence of C∗
d from the size of T is trivially verified using that X is stationary and

Fubini-Tonelli theorem which give immediately that the density of the normalised volume satisfies

C∗
d(u) =

1

σd(T )
E
[ ∫

T
1{X(t)≥u}dt

]
= P(X(0) ≥ u). (2.9)

Furthermore, note that we consider in (2.6) the σd−1 measure of LTX(u) = T ∩ ∂EX(u) and not

of ∂ETX(u). Therefore, from Definition 2.1 and Proposition 2.5 in Biermé et al. (2019), we get via

kinematic formulas that E[CTd−1(u)] is equal to the surface area density. Indeed we do not add the

artificial contribution of ∂T to the level surfaces in Definition 2.1. Notice that the density C∗
d−1(u)

can be explicitly obtained for certain specific random fields. Two classical examples (the isotropic

Gaussian and chi-square random fields) are presented in Appendix 2.A.1.

The random quantities in (2.6)-(2.7) can only be used as approximations of C∗
d(u) and C∗

d−1(u)

if we observe the excursion set ETX(u) on the whole domain T . In practice, or at least numerically,

images of excursion sets are not objects defined on all T but discretely encrypted objects, i.e., for

each point of a discrete grid. Then, quantities in (2.6)-(2.7) are never empirically accessible. In the

remainder of this section we propose computable counterparts of C∗
d(u) and C

∗
d−1(u) based on the

observation of the excursion set on a general point cloud (i.e., based on the knowledge of which

points fall in the excursion set).

Polytopic tessellations based on point clouds For an arbitrary point cloud, we describe the

set of tessellations of Rd that are permissible for the construction of our estimates for C∗
d(u) and

C∗
d−1(u).

Definition 2.2. Let H be a set of convex, closed polytopes that tessellates Rd in such a way

that satisfies the following condition. To each P ∈ H, one can assign a reference point P • ∈ P

such that for any two adjacent cells P1, P2 ∈ H, the intersection of their boundaries is normal to

the vector spanned between P •
1 and P •

2 . We say that H is point-referenceable, and that the set
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(a) Hexagones and trun-
cated triangles lattice

(b) Square lattice (c) Voronoi tessellation

Figure 2.1: Three examples of tilings in T2 (see Definition 2.2) with a particular choice of reference
points shown as light-blue circles. The resulting structures are point-referenced 2-honeycombs.

of pairs Ḣ = {(P, P •) : P ∈ H} is a point-referenced d-honeycomb. Let Td denote the space of

point-referenceable d-honeycombs, so that H ∈ Td.

Recall that the interiors of the polytopes in a tessellation do not intersect, i.e., σd(P1 ∩ P2) =

0, for any different P1, P2 ∈ H. However, if two polytopes P1 and P2 are adjacent in H, then

σd−1(P1 ∩ P2) > 0.

Remark 2.1. The set of point-referenceable d-honeycombs Td in Definition 2.2 contains a wide

variety of tessellations. For example, the Voronoi diagram of any point cloud in Rd is in Td. It

contains also d-honeycombs that cannot be realised as a Voronoi diagram as, for example, the

Archimedean tessellations or the tiling of R2 in Figure 2.1 (a). Simple examples of tessellations of

R2 that are not in T2 are Pythagorean tilings and, of course, tilings with curved tiles. Tessellations

similar to the point-referenceable d-honeycombs are used in finite element analysis in (Eymard et al.,

2000, Definition 9.1).

Figure 2.1 provides some examples of point-referenceable tessellations of R2. Notice that regular

triangular and regular hexagonal lattices can be seen as limiting cases of the tessellation in Figure 2.1

(a); furthermore, as depicted, it is not a Voronoi tessellation. Figure 2.1 (b) represents the well-

known square lattice, and panel (c) depicts the Voronoi tessellation of an arbitrary point cloud.

Estimates for CTd (u) and CTd−1(u) For a given point cloud in Rd, that can be random, it is

always possible to construct a point-referenced d-honeycomb (see Definition 2.2) with the point

cloud as its reference points (take the Voronoi diagram, for example). Thus, for each element of

Td there is at least one corresponding point cloud, and to each point cloud in Rd there is at least

one corresponding element of Td. We propose the following estimates for the quantities in (2.6)

and (2.7) based on the knowledge of at which points in the point cloud the random field X exceeds

the level u.
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Figure 2.2: For each of the point-referenced 2-honeycombs in Figure 2.1, a portion of the level

curve {X = u} is illustrated as a dotted line. The estimator C
(Ḣ,T )
d−1 (u) in (2.10) corresponds to the

length of the resulting blue curve that separates the reference points in the same way as the curve
{X = u}.

Definition 2.3. Let T ⊂ Rd be a compact domain with non empty interior. Let H ∈ Td, and

let Ḣ = {(P, P •) : P ∈ H} be a corresponding point-referenced d-honeycomb in the sense of

Definition 2.2. Let HT ⊂ H be the set of polytopes P in H such that P ⊆ T . We define an

estimator of CTd−1(u) in (2.6) as

C
(Ḣ,T )
d−1 (u) :=

1

σd(T )

∑
P1,P2∈HT

P1 ̸=P2

σd−1(P1 ∩ P2)1{X(P •
1 )≤u<X(P •

2 )} (2.10)

and of CTd (u) in (2.7) as

C
(Ḣ,T )
d (u) :=

1

σd(T )

∑
P∈HT

σd(P )1{X(P •)≥u}. (2.11)

Computing the quantities in Definition 2.3 only requires the knowledge of the excursion set ETX(u)

on the reference points of a point-referenced d-honeycomb i.e., a black and white image indicating at

which points P •, for P ∈ HT , the field is above level u. In Equation (2.10), since the role of P1 and

P2 is symmetric, both 1{X(P •
1 )≤u<X(P •

2 )} and 1{X(P •
2 )≤u<X(P •

1 )} are evaluated in the sum. Notice

that it is crucial that the cells P ∈ H are closed to ensure that for adjacent cells σd−1(P1 ∩P2) > 0.

Figure 2.2 provides an illustration of the behaviour of the estimate in (2.10) for the point-referenced

2-honeycombs in Figure 2.1.

It is easy to see that C
(Ḣ,T )
d (u) in (2.11) is, in general, biased. Indeed, it follows from the

stationarity in Assumption (A0) that

E[C(Ḣ,T )
d (u)] =

σd

(⋃
P∈HT P

)
σd(T )

C∗
d(u). (2.12)
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Nevertheless, the bias factor σd
(⋃

P∈HT P
)
/σd(T ) ≤ 1 is deterministic and it only relies on the

structure of the point-referenced d-honeycomb. It is nearly unity if sup{diam(P ) : P ∈ H} ≪
diam(T ) and it is exactly unity for tessellations that satisfy

⋃
P∈HT P = T . This can be easily

obtained for simple tessellations such as the hypercubic one, specifically described in Section 2.3.1.

This is why we focus our attention to the bias in (2.10) for the (d − 1)-volume of LTX(u). In this

case, the bias factor does not approach unity as the tile sizes become negligibly small with regards

to the size of T , as previously observed e.g., in Biermé and Desolneux (2021) and Miller (1999) for

some periodic tessellations and in Thäle and Yukich (2016) for Poisson-Voronoi mosaics. Explicit

calculations of the bias have been made for square and hexagonal tilings in dimension 2 (Biermé

and Desolneux (2021)) and cubic lattices in dimension 3 (Miller (1999)). The approach in Miller

(1999) is adapted to the d-dimensional hypercubic setting in Appendix 2.A.3 (see Equation (2.50)).

Based on a preliminary result on crossings (see Theorem 2.1), our Theorem 2.2 provides a general

formula for this limiting factor that holds in arbitrary dimension d, for a large subset of point-

referenced d-honeycombs.

2.2 Approximated surface area

Assumptions We require additional assumptions related to the regularity of the derivatives of

X in univariate directions.

(A1) Fix w ∈ ∂Bd
1 . Assume that Y := {X(tw), t ∈ R} is such that Y (0)

∣∣{Y ′(0) = 0} has a

bounded density, i.e., that the one dimensional density function of the heights of the local

extrema of Y is bounded, and that ∥Y ′′∥∞,[0,1] := supt∈[0,1] |Y ′′(t)| ∈ L2.

(A2) Let LX(u) := X−1({u}), w ∈ ∂Bd
1 and ε ∈ (0, 1). Assume that E[σ0(LX(u)∩ lw,0 ∩ [0, 1]d)1/ε]

is finite, where lw,0 is defined in (2.3).

Note that if the random field X is isotropic, the vector w ∈ ∂Bd
1 appearing in (A1) and (A2) can

be chosen arbitrarily. Assumption (A1) permits to apply Lemma 2.1 to the unidirectional process

Y . The aforementioned lemma controls the probability that a one-dimensional field crosses a level

u more than once in a small time interval. Assumption (A2) is technical and allows for a Hölder

control in the proof of Theorem 2.1.

Remark that Assumptions (A1) and (A2) are satisfied, for example, by Gaussian random fields,

and more generally, some Gaussian mixture models discussed in Di Bernardino et al. (2022). This

general model consists of scale mixture models of the form Λ×W , and location mixture models of

the form Λ+W , for some random variable Λ independent of the Gaussian random field W . To see

that Assumption (A1) is satisfied by both mixture models, remark that their one-dimensional cross

sections are mixture models with the same latent variable Λ. The critical points of the mixture

model are those of the Gaussian process, and their height distribution can be made to have bounded

density with suitable choice of Λ (see (Cheng and Schwartzman, 2018)). As the second derivative
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is again a mixture model, the second moment of its supremum on [0, 1] can be shown to be finite if

E[Λ2] <∞ by the Borell-TIS inequality (Adler and Taylor, 2007, Theorem 2.1.1). Assumption (A2)

is seen to hold for all ϵ ∈ (0, 1), since the moments of the number of level crossings N of a the mixture

process on [0, 1] are finite when conditioning on Λ (Kratz, 2006). In addition, the random variable

E[N1/ϵ |Λ] is bounded, and hence integrable.

A first result on crossings The following key result provides a first order approximation of the

probability of crossings for the isotropic random field X in a given arbitrary direction. This result

plays a central role in deriving a formula for the expected surface area of the limiting approximation

of an excursion set by elements of a point-referenceable d-honeycomb in the sense of Definition 2.2

(see Theorem 2.2 below).

Theorem 2.1. Consider a scalar q ∈ R+ and a fixed w ∈ ∂Bd
1 . Let X be an isotropic random field

satisfying Assumption (A0). Then for any fixed u ∈ R,

lim
q→0

1

q
P
(
X(0) ≤ u < X(qw)

)
=
C∗
d−1(u)

βd
, (2.13)

where

βd =
2
√
π Γ(d+1

2 )

Γ(d2)
(2.14)

is a dimensional constant and the limit in (2.13) is approached from below. Moreover, if X also

satisfies Assumptions (A1) and (A2) for w and some ε ∈ (0, 1), then there exists a constant K ∈ R+

such that for all q ∈ R+,

0 ≤
C∗
d−1(u)

βd
q − P

(
X(0) ≤ u < X(qw)

)
≤ Kq2−ε. (2.15)

The proof of Theorem 2.1 is based on the Crofton formula in (2.5).

Proof of Theorem 2.1. Firstly, we prove Equation (2.13). We apply Equation (2.5) to the (d − 1)-

manifold LX(u) ∩Bd
1 ,

σd−1

(
LX(u) ∩Bd

1

)
=

√
π Γ(d+1

2 )

Γ(d2)

∫
∂Bd

1

∫
vect(s⊥)

σ0(LX(u) ∩Bd
1 ∩ ls,v)

σd−1(∂B
d
1)

dv ds, (2.16)

with ls,v as in (2.3). The quantity in (2.16) is a positive random variable in L1, and thus by taking

the expectation, we get

E
[
σd−1

(
LX(u) ∩Bd

1

)]
=

√
π Γ(d+1

2 )

Γ(d2)

∫
∂Bd

1

∫
vect(s⊥)

E
[
σ0(LX(u) ∩Bd

1 ∩ ls,v)
]

σd−1(∂B
d
1)

dv ds.
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w
v

x0

x0

Figure 2.3: In dimension 3, the unit ball is represented; the red vector is a possible w ∈ ∂B3
1 and

the green vector, a possible v ∈ vect(w⊥) ∩ B3
1 . The two endpoints x0 and x0, marked in blue,

describe the segment lw,v.

By the isotropy of X, we obtain

E
[
σd−1

(
LX(u) ∩Bd

1

)]
=

√
π Γ(d+1

2 )

Γ(d2)

∫
vect(w⊥)

E
[
σ0(LX(u) ∩Bd

1 ∩ lw,v)
]
dv, (2.17)

for lw,v as in (2.3).

For v ∈ vect(w⊥) ∩Bd
1 , define lw,v := Bd

1 ∩ lw,v. Then lw,v either contains a single point, or it is

a line segment in Rd with orientation w. Define

nq =

⌊
σ1(lw,v)

q

⌋
,

where ⌊·⌋ denotes the floor function. Define x0 := v− σ1(lw,v)
2 w and x0 := v+

σ1(lw,v)
2 w to be the

two endpoints of the line segment lw,v. Figure 2.3 provides a graphical visualisation to aid this

construction.

Now define xj := x0 + jqw for j ∈ {0, ..., nq}, each of which being an element of lw,v. With this

construction, it follows that

nq−1∑
j=0

(
1{X(xj)≤u<X(xj+1)} + 1{X(xj)>u≥X(xj+1)}

) a.s.−→ σ0(LX(u) ∩ lw,v), (2.18)

as q → 0. The left-hand side of (2.18) is a count of the number of elements in LX(u)∩lw,v, which ap-

proaches the exact value from below almost surely. This construction is well known in the literature

as the discretization method. The interested reader is referred for instance to (Kratz, 2006, Section

2.1) and references therein. In particular, by using the stationarity of X in Assumption (A0), the

monotonicity of the convergence in (2.18) implies

2nqP
(
X(0) ≤ u < X(wq)

)
−→
q→0

E[σ0(LX(u) ∩ lw,v)].
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Moreover, this convergence is uniform for v ∈ vect(w⊥), so

P
(
X(0) ≤ u < X(wq)

) ∫
vect(w⊥)∩Bd

1

2nqdv −→
q→0

∫
vect(w⊥)

E[σ0(LX(u) ∩ lw,v)]dv.

By (2.17), this simplifies to

P
(
X(0) ≤ u < X(wq)

) ∫
vect(w⊥)∩Bd

1

nqdv −→
q→0

1

βd
E
[
σd−1

(
LX(u) ∩Bd

1

)]
.

Since 0 ≤ σ1(lw,v)/q − nq < 1 and P
(
X(0) ≤ u < X(wq)

)
−→
q→0

0, it holds that

P
(
X(0) ≤ u < X(wq)

) ∫
vect(w⊥)∩Bd

1

σ1(lw,v)

q
dv −→

q→0

1

βd
E
[
σd−1

(
LX(u) ∩Bd

1

)]
.

By noticing that
∫
vect(w⊥)∩Bd

1
σ1(lw,v)dv = σd(B

d
1), one obtains

1

q
P
(
X(0) ≤ u < X(wq)

)
−→
q→0

1

βdσd(B
d
1)
E
[
σd−1

(
LX(u) ∩Bd

1

)]
=
C∗
d−1(u)

βd
.

This proves the first order approximation in (2.13).

To show that
C∗
d−1(u)

βd
q ≥ P

(
X(0) ≤ u < X(qw)

)
(2.19)

for all q > 0, suppose that there exists a t ∈ R+ such that

C∗
d−1(u)

βd
t < P

(
X(0) ≤ u < X(tw)

)
.

Then, for all n ∈ N+, {X(0) ≤ u < X(tw)} ⊆ {X(0) ≤ u < X( tnw)} ∪ . . . ∪ {X(n−1
n tw) ≤ u <

X(tw)}, leading under (A0) to

C∗
d−1(u)

βd
<

1

t
P
(
X(0) ≤ u < X(tw)

)
≤ n

t
P
(
X(0) ≤ u < X( tnw)

)
.

Keeping t fixed and having n→ ∞ contradicts the convergence in (2.13). Thus, (2.19) holds for all

q ∈ R+.

We proceed by showing (2.15). For fixed q > 0, there can only be a difference between the

expression in (2.18) and its limit—both taking values in N0—if at least one of the two following

conditions hold,

(i) There exists a j ∈ {0, . . . , nq − 1} such that the line segment with endpoints xj and xj+1

contains two points s1 ̸= s2 such that X(s1) = X(s2) = u.
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(ii) The line segment with endpoints xnq and x0 contains a point s such that X(s) = u.

The probability of event in (i) is bounded above by nqK2q
2 for some K2 ∈ R+, under (A1) by

applying Lemma 2.1 with p = 2. Furthermore, by using Markov’s inequality and (Beutler and

Leneman, 1966, Theorem 3.3.1), the probability of event (ii) is bounded above byK1q for someK1 ∈
R+. Let A denote the event σ0(LX(u) ∩ lw,v) >

∑nq−1
j=0

(
1{X(xj)≤u<X(xj+1)} + 1{X(xj)>u≥X(xj+1)}

)
,

then applying Hölder’s inequality together with (A2) implies

E
[
σ0(LX(u) ∩ lw,v)

]
− 2nqP

(
X(0) ≤ u < X(qw)

)
= E

[∣∣∣σ0(LX(u) ∩ lw,v)− nq−1∑
j=0

(
1{X(xj)≤u<X(xj+1)} + 1{X(xj)>u≥X(xj+1)}

)∣∣∣]
≤ E

[
σ0(LX(u) ∩ lw,v)1{A}

]
≤
(
E
[(
σ0(LX(u) ∩ lw,v)

) 1
ε
])ε

P(A)1−ε

≤
(
E
[(
σ0(LX(u) ∩ lw,v)

) 1
ε
])ε (

nqK2q
2 +K1q

)1−ε
≤
(
E
[(
σ0(LX(u) ∩ lw,v)

) 1
ε
])ε (

σ1(lw,v)K2 +K1

)1−ε
q1−ε

≤
(
E
[(
σ0(LX(u) ∩ lw,v)

) 1
ε
])ε (

2K2 +K1

)1−ε
q1−ε.

Furthermore, note that

∣∣∣E[σ0(LX(u) ∩ lw,v)]− 2
σ1(lw,v)

q
P
(
X(0) ≤ u < X(qw)

)∣∣∣
=
∣∣∣E[σ0(LX(u) ∩ lw,v)]− 2nqP

(
X(0) ≤ u < X(qw)

)
+ 2
(
nq −

σ1(lw,v)

q

)
P
(
X(0) ≤ u < X(qw)

)∣∣∣
≤
(
E
[(
σ0(LX(u) ∩ lw,v)

) 1
ε
])ε (

2K2 +K1

)1−ε
q1−ε + 2P

(
X(0) ≤ u < X(qw)

)
≤
(
E
[(
σ0(LX(u) ∩ lw,v)

) 1
ε
])ε (

2K2 +K1

)1−ε
q1−ε + 2K1q.

Summarizing, we have shown that∣∣∣qE[σ0(LX(u) ∩ lw,v)]− 2σ1(lw,v)P
(
X(0) ≤ u < X(qw)

)∣∣∣ = O(q2−ε),

for all v ∈ vect(w⊥) ∩Bd
1 . By integrating over v and taking the absolute value, one preserves∣∣∣ ∫

vect(w⊥)∩Bd
1

(
qE
[
σ0(LX(u) ∩ lw,v)

]
− 2σ1(lw,v)P

(
X(0) ≤ u < X(qw)

))
dv
∣∣∣ = O(q2−ε). (2.20)
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Evaluating the integral, and again applying
∫
vect(w⊥)∩Bd

1
σ1(lw,v)dv = σd(B

d
1), one obtains

∫
vect(w⊥)∩Bd

1

(
qE
[
σ0(LX(u) ∩ lw,v)

]
− 2σ1(lw,v)P

(
X(0) ≤ u < X(qw)

))
dv

= q

∫
vect(w⊥)

E
[
σ0(LX(u) ∩ lw,v)

]
dv − 2σd(B

d
1)P
(
X(0) ≤ u < X(qw)

)
=

2q

βd
E
[
σd−1

(
LX(u) ∩Bd

1

)]
− 2σd(B

d
1)P
(
X(0) ≤ u < X(qw)

)
= 2σd(B

d
1)
(C∗

d−1(u)

βd
q − P

(
X(0) ≤ u < X(qw)

))
,

where the second equality follows from (2.17). Thus, by (2.20), we obtain the desired result

∣∣∣C∗
d−1(u)

βd
q − P

(
X(0) ≤ u < X(qw)

)∣∣∣ = O(q2−ε).

Remark 2.2. Theorem 2.1 can also be very useful for sample simulations. To have a rapid eval-

uation of the surface area of excursion sets of a given random field satisfying above assumptions,

it is not necessary to generate the whole isotropic random field on Rd but only i.i.d. r.v. with the

same bivariate distribution as
(
X(0), X(q e1)

)
, for q small enough. Then, the numerical first order

approximation of the surface area would be

βd
P̂
(
X(0) ≤ u < X(qe1)

)
q

.

This induces an error of the order q1−ε according to Equation (2.15). This approach can be compared

for instance with the tedious computations encountered when using tube formulas (see, e.g., Adler

and Taylor (2007)) to obtain an exact value of the expected surface area (see also Biermé and

Desolneux (2020)).

A related result Notice that Theorem 2.1 fully identifies the limit of the level crossing and relies

on classical assumptions. Another result on level crossings can be obtained by adapting a result in

Leadbetter et al. (1983) to dimension d (see Proposition 2.1 below). For clarity, the proof of this

adaptation in general dimension d is given in Section 2.4.

Proposition 2.1 (A d−dimensional formulation of (Leadbetter et al., 1983, Theorem 7.2.4) ). Let

X : Rd → R be a continuous stationary random field such that X(0) and Xq :=
1
q (X(qe1)−X(0))

have a joint density denoted gq(u, z) that is continuous in u for all z and all sufficiently small

q > 0, and that there exists a function p(u, z) such that gq(u, z) → p(u, z) uniformly in u for fixed

z as q → 0. Assume furthermore that there is a function h(z) such that
∫∞
0 zh(z)dz < ∞ and
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gq(u, z) ≤ h(z) uniformly for all u, q. Then, it holds that

lim
q→0

P (X(0) ≤ u < X(qe1))

q
=

∫ ∞

0
z p(u, z)dz.

Remark that it is difficult to apply Proposition 2.1 in practice, since computing the asymptotic

joint density p is not easy outside of specific cases such as the Gaussian one. Moreover, it requires

that the convergence of the density of Xq as q → 0 is established. Even if it is clear that Xq

converges almost surely to ∂1X(0), where ∂1X denotes the partial derivative of X in the direction

e1, having the convergence of the corresponding densities is much more delicate to establish (see,

e.g., Boos (1985) or Sweeting (1986)). If d = 1, Leadbetter et al. (1983) explains that “In many

cases, the limit p(u, z) is simply the joint density of (X(0), ∂1X(0)).” This holds for example, for

Gaussian processes. Translating this in dimension d ≥ 1, if we write pX(0)(u) for the density of

X(0), we see that

lim
q→0

P (X(0) ≤ u < X(qe1))

q
= pX(0)(u)E

[
∂1X(0)1{∂1X(0)>0}|X(0) = u

]
. (2.21)

Correction factor for the approximated surface area The following theorem provides the

explicit formula for the bias of the approximated surface area in any dimension d and for arbitrary

point-referenced d-honeycombs in Definition 2.2 whose polytopes do not grow too large near ∞.

In this way it generalizes and unifies existing results (see, e.g., (Biermé and Desolneux, 2021,

Proposition 5) for the square and hexagonal tiling in dimension 2 and Miller (1999) for the triangular

tiling in dimension 2 and hypercubic lattice in dimension 3). Furthermore, Theorem 2.2 applies to

Poisson-Voronoi tessellations, as shown in Corollary 2.1.

Theorem 2.2. Let T ⊂ Rd be a compact domain with non empty interior containing the origin.

Let X be an isotropic random field on Rd that satisfies Assumption (A0).

i) Let H ∈ Td (see Definition 2.2) and let Ḣ be a corresponding point-referenced d-honeycomb.

Define D(H) := sup{diam(P ∩ T ) : P ∈ H} and δH := {δP : P ∈ H} for δ ∈ R+. Let

C
(Ḣ,T )
d−1 (u) be as in Definition 2.3. Suppose that limδ→0D

(δH) = 0. Then, it holds

E
[
C

(δḢ,T )
d−1 (u)

]
−→
δ→0

2d

βd
C∗
d−1(u), (2.22)

where δḢ := {(δP, δP •) : (P, P •) ∈ Ḣ} is Ḣ linearly rescaled by δ, βd is as in (2.14), and

C∗
d−1(u) is as in (2.8).

ii) Furthermore, if ξ is a point process on Rd that is independent of X, let Vξ be the Voronoi dia-

gram in Td generated from the points in ξ. Reference the polytopes in Vξ by their corresponding

points in ξ and denote the resulting point-referenced d-honeycomb by V̇ξ. If D(δVξ) P→ 0 as
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δ → 0, then

E
[
C

(δV̇ξ,T )
d−1 (u)

]
−→
δ→0

2d

βd
C∗
d−1(u).

Remark 2.3. The universal correction factor 2d/βd in Theorem 2.2 is equal to 4/π ≈ 1.27 for d = 2;

3/2 for d = 3; and 16/(3π) for d = 4. The correction factor 4/π can be found in (Baccelli et al., 2000,

Theorem 3) for the Poisson-Voronoi paths in dimension 2. One can show that 2d/βd ∼
√

2d/π,

as d → ∞, where ∼ indicates that the ratio of the two expressions tends to 1. Furthermore,

(Edelsbrunner and Nikitenko, 2021, Table 1) provides the same correction factor as the expected

distortion of higher dimensional generalizations of Voronoi paths introduced in Baccelli et al. (2000),

called Voronoi scapes. Given a Voronoi diagram in Rd and a (d − 1)-dimensional set S with finite

surface area, the authors define the resulting Voronoi scape as the union of (d− 1)-cells in the dual

Delaunay tessellation that correspond to the edges in the Voronoi diagram that are intersected by

S. The authors in Edelsbrunner and Nikitenko (2021) show that when S is randomly oriented with

respect to the Voronoi diagram, the expected ratio of the surface area of the Voronoi scape to that

of S is 2d/βd. This result can be seen as the dual of Theorem 2.2 applied to Voronoi tessellations,

which says that C
(δV̇ξ,T )
d−1 (u) is the surface area density of the Voronoi faces corresponding to Delaunay

edges that are intersected by LTX(u).

Proof of Theorem 2.2. First, we establish Equation (2.22) where the point-referenced d-honeycomb

Ḣ is deterministic. The estimator C
(δḢ,T )
d−1 (u) in (2.10) is written

C
(δḢ,T )
d−1 (u) =

1

σd(T )

∑
P1,P2∈H

(P1 ̸=P2),(δP1,δP2⊆T )

σd−1(δP1 ∩ δP2)1{X(δP •
1 )≤u<X(δP •

2 )}.

By the linearity of the expectation, for δ > 0,

E[C(δḢ,T )
d−1 (u)] =

1

σd(T )

∑
P1,P2∈H

(P1 ̸=P2),(δP1,δP2⊆T )

σd−1(δP1 ∩ δP2)P
(
X(δP •

1 ) ≤ u < X(δP •
2 )
)
. (2.23)

Let P1, P2 ∈ H be such that P1 ̸= P2 and σd−1(P1 ∩ P2) > 0, i.e., such that P1 and P2 are adjacent

in H. Then as δ → 0, clearly ||δP •
2 − δP •

1 ||2 → 0, and so by Equation (2.13) in Theorem 2.1,

P
(
X(δP •

1 ) ≤ u < X(δP •
2 )
)

||δP •
2 − δP •

1 ||2
−→
δ→0

C∗
d−1(u)

βd
. (2.24)

Moreover, if one restricts to neighbouring polytopes P1 and P2 in H such that δP1, δP2 ⊆ T , then

D(δH) → 0 implies that the convergence in (2.24) is uniform as T remains fixed, i.e.,

sup

{∣∣∣P(X(δP •
1 ) ≤ u < X(δP •

2 )
)

||δP •
2 − δP •

1 ||2
−
C∗
d−1(u)

βd

∣∣∣ : P1 neighbours P2, δP1, δP2 ⊆ T

}
−→
δ→0

0.
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ΛQ1,Q2

ΛQ2,Q1

h1

Q•
2

Q•
1

Figure 2.4: A pentagonal cell Q1 in a point-referenced 2-honeycomb is partitioned into five pyramids
(triangles in the case d = 2) each with summit Q•

1. A sixth pyramid ΛQ2,Q1 with summit Q•
2 is

drawn in the cell Q2, which shares its base Q1 ∩Q2 with the pyramid ΛQ1,Q2 contained in Q1. The
height of the pyramid ΛQ1,Q2 is marked h1.

Therefore, Equation (2.23) can be written

E[C(δḢ,T )
d−1 (u)]−

C∗
d−1(u)

βdσd(T )

∑
P1,P2∈H

(P1 ̸=P2),(δP1,δP2⊆T )

σd−1(δP1 ∩ δP2)||δP •
2 − δP •

1 ||2 −→
δ→0

0.

With the change of variables Q1 = δP1 and Q2 = δP2, we have

E[C(δḢ,T )
d−1 (u)]−

C∗
d−1(u)

βdσd(T )

∑
Q1,Q1∈(δH)T

Q1 ̸=Q2

σd−1(Q1 ∩Q2)||Q•
2 −Q•

1||2 −→
δ→0

0. (2.25)

For adjacent Q1, Q2 ∈ (δH)T , denote by ΛQ1,Q2 the d-dimensional hyperpyramid with base Q1∩Q2

and vertex Q•
1 (see Figure 2.4).

The d dimensional analogue of the area of a triangle implies that σd(ΛQ1,Q2) =
1
dσd−1(Q1∩Q2)h1,

where h1 is the distance from Q•
1 to the hyperplane containing Q1∩Q2. Now, σd(ΛQ1,Q2∪ΛQ2,Q1) =

1
dσd−1(Q1 ∩Q2)||Q•

2 −Q•
1||2, and so∑

Q1,Q1∈(δH)T

Q1 ̸=Q2

σd−1(Q1 ∩Q2)||Q•
2 −Q•

1||2 =
∑

Q1,Q2∈(δH)T

Q1 adjacent to Q2

d σd(ΛQ1,Q2 ∪ ΛQ2,Q1)

= 2d
∑

Q1,Q2∈(δH)T

Q1 adjacent to Q2

σd(ΛQ1,Q2) = 2d σd

( ⋃
Q1,Q2∈(δH)T

Q1 adjacent to Q2

ΛQ1,Q2

)
.

Since every point in T at distance of at least 2D(δH) from the boundary of T is contained in a
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ΛQ1,Q2 for some Q1, Q2 ∈ (δH)T , and ΛQ1,Q2 is contained in Q1 ⊆ T ,

lim
δ→0

⋃
Q1,Q2∈(δH)T

Q1 adjacent to Q2

ΛQ1,Q2 = T.

Thus, by the continuity of the measure σd,∑
Q1,Q1∈(δH)T

Q1 ̸=Q2

σd−1(Q1 ∩Q2)||Q•
2 −Q•

1||2 −→
δ→0

2d σd(T ), (2.26)

and by (2.25),

E[C(δḢ,T )
d−1 (u)] −→

δ→0

2d

βd
C∗
d−1(u).

This proves (2.22). Now if the tessellation is produced from a point process ξ and if D(δVξ) P→ 0 as

δ → 0, then (2.22) implies that

E[C(δV̇ξ,T )
d−1 (u) | ξ] P−→ 2d

βd
C∗
d−1(u), δ → 0. (2.27)

What remains to be shown is that the convergence in (2.27) holds in L1. First, remark that the

sequence in (2.24) converges to its limit from below by Theorem 2.1. Remark also that the sequence

in (2.26) converges to its limit from below. These two remarks, together with the convergence in

probability in (2.27), imply that

sup
δ>0

E[C(δV̇ξ,T )
d−1 (u) | ξ] = 2d

βd
C∗
d−1(u), a.s.

Therefore, the convergence in (2.27) holds in L1 and E
[
E[C(δV̇ξ,T )

d−1 (u) | ξ]
]
−→
δ→0

2d
βd
C∗
d−1(u) as desired.

Remark 2.4. In the second part of Theorem 2.2, the assumption that the point process ξ—that

generates the point cloud of sample locations—is independent of X is crucial. Otherwise, for any

realization X, it would be possible to build a dependent point-referenced d-honeycomb adapted to

the realized LTX(u) such that E
[
C

(δV̇ξ,T )
d−1 (u)

]
−→
δ→0

C∗
d−1(u) and no corrective constant is required (see

Cotsakis et al. (2023c), for d = 2). More precisely, for a square lattice, the strategy developed in

Cotsakis et al. (2023c) avoids this asymptotic bias (see (Cotsakis et al., 2023c, Remark 3) for further

details) at the cost of an introducing an hyperparameter. On the contrary, with a deterministic

point-referenced d-honeycomb, the dimensional constant 2d/βd is unavoidable.

In the following corollary, we apply Theorem 2.2 to Poisson-Voronoi tessellations. The interested

reader is also referred to (Thäle and Yukich, 2016, Theorem 1.1).
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Corollary 2.1. Let T ⊂ Rd be a compact domain with non empty interior containing the origin.

Let X be an isotropic random field on Rd satisfying Assumption (A0), and let ξ be a homogeneous

Poisson point process on Rd with unit rate, independent of X. Let Vξ be the Poisson-Voronoi

tessellation constructed from ξ, thus making V̇ξ a random point-referenced d-honeycomb. With

δ > 0 and C
(δV̇ξ,T )
d−1 (u) defined as in Definition 2.3, it holds that

E
[
C

(δV̇ξ,T )
d−1 (u)

] δ→0−→ 2d

βd
C∗
d−1(u).

Proof. By Theorem 2.2, one only needs to show that D(δVξ) P→ 0 as δ → 0, where D(δVξ) =

sup{diam(δP ∩ T ) : δP ∈ δVξ}. Let M > 0, denote by AM the event {D(δVξ) > M} and set

T + 1 = {r ∈ Rd, d(r, T ) ≤ 1}. Note that if δP ∈ δVξ is such that diam(δP ∩ T ) > M , then there

exists r ∈ δP ∩ T such that (r + Bd
M
3

) ∩ δξ = ∅. To see this, consider that if diam(δP ∩ T ) > M ,

then there exists r ∈ δP such that d(r, δP •) > M
3 , and by the definition of the Voronoi diagram,

d(r, δP •) ≤ d(r, δP̃ •) for all δP̃ • ∈ δξ. It follows that

AM = {D(δVξ) > M} ⊂
{
∃r ∈ (T + 1) :

(r
δ
+Bd

M
3δ

)
∩ ξ = ∅

}
⊂

⋃
y∈ M

12δ
Z∩T+1

δ

{
(y +Bd

M
6δ

) ∩ ξ = ∅
}
.

It follows from the stationarity of ξ and the compactness of T that

P(AM ) ≤ σd(T + 1)12d

Md
P
(
Bd

M
6δ

∩ ξ = ∅
)
=
σd(T + 1)12d

Md
e
− πd/2

Γ( d2+1)
(M
6δ )

d

→ 0 as δ → 0.

Remark 2.5 (Convergence of the bias factor). Theorem 2.2 i) offers insight about the limiting

value of E
[
C

(δḢ,T )
d−1 (u)

]
as δ → 0. However, this result does not imply the convergence of the bias

factor to 2d/βd. It can be shown by slightly modifying the proofs of Theorems 2.1 and 2.2 that

E

[
C

(δḢ,T )
d−1 (u)

CTd−1(u)

∣∣∣ CTd−1(u) > 0

]
−→
δ→0

2d

βd
, (2.28)

with X an isotropic random field on Rd satisfying Assumption (A0) and Ḣ a point-referenced d-

honeycomb as in Theorem 2.2 i). A sketch of the proof of the convergence in (2.28) is provided in

Appendix 2.A.2.
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2.3 Joint central limit theorem for the hypercubic lattice

In this section we prove a joint central limit theorem for the approximated volume and surface

area of excursion sets of d−dimensional isotropic smooth random fields observed over a hypercubic

lattice. Firstly, we rewrite estimates in (2.10)-(2.11) in this specific setting.

2.3.1 Estimators for the hypercubic lattice

For i ∈ Zd and δ ∈ R+, let Vi(δ) := δi+[0, δ]d. Define δG := {Vi(δ) : i ∈ Zd} ∈ Td (see Definition 2.2)

and the point-referenced d-honeycomb

δĠ := {(Vi(δ), δi) : i ∈ Zd}.

Define

G(δ, T ) := {δi : i ∈ Zd, Vi(δ) ⊆ T} ⊂ δZd. (2.29)

Then, referring to Definition 2.3, we write

C
(δĠ,T )
d (u) =

δd

σd(T )

∑
t∈G(δ,T )

1{X(t)≥u}, (2.30)

and

C
(δĠ,T )
d−1 (u) =

δd−1

σd(T )

d∑
j=1

∑
t∈G(δ,T )

t+δej∈G(δ,T )

∣∣1{X(t)≥u} − 1{X(t+δej)≥u}
∣∣. (2.31)

In the following, without loss of generality, we assume that T is centered at the origin. Further-

more, we suppose that 0 < δ ≤ 1 is chosen such that T = [−δN, δN ]d for some N ∈ N+, which

implies that
⋃
P∈(δG)T P = T , and that the Card(G(δ, T )) = (2N)d and σd(T ) = (2Nδ)d. Remark

that this constriction implies that the deterministic bias ratio in Equation (2.12) is exactly unity.

In the sequel we simplify the notation of Equations (2.30)-(2.31) by writing C
(δ,T )
d (u) and C

(δ,T )
d−1 (u),

respectively. Furthermore, we write T = TN when the dependence in N needs to be explicitly

specified.

2.3.2 The dominant role of the L1-norm for the hypercubic lattice

Note that, CTd−1(u) in (2.6) can be rewritten, by the Crofton formula in (2.5), as, a.s.,

CTd−1(u) =
1

σd(T )

∫
LT
X(u)

σd−1(ds) =

√
π Γ(d+1

2 )

σd(T )Γ(
d
2)

∫
Rd−1

∫
∂Bd

1

σ0(L
T
X(u) ∩ ls,vs(u))

σd−1(∂B
d
1)

ds du. (2.32)
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A first intuition is that when δ gets small, the estimated surface area (2.31) gets close to (2.32).

However, this is incorrect and we show in the following result that when δ gets small our estimate

is close in the L1 sense to the following random variable

C̃Td−1(u) :=
1

σd(T )

∫
LT
X(u)

∥∇X(s)∥1
∥∇X(s)∥2

σd−1(ds). (2.33)

The difference between (2.32) (left side) and (2.33) is the ratio ∥∇X(s)∥1/∥∇X(s)∥2 that induces

the asymptotic bias. A similar competing behavior between the L1 and L2 norms was already

visible in Equation (2.21) which leads to

lim
δ→0

E
[
C

(δ,T )
d−1 (u)

]
= pX(0)(u)E [∥∇X(0)∥1|X(0) = u] , (2.34)

with C
(δ,T )
d−1 (u) as in (2.31). Furthermore, by using the well-known Coarea formula (see, e.g. (Adler

and Taylor, 2007, Equation (7.4.14))), C̃Td−1 in (2.33) can be rewritten as

C̃Td−1(u) :=
1

σd(T )
lim
ϱ→0

1

2ϱ

∫
T
1{|X(t)−u|≤ϱ}||∇X(t)||1 dt. (2.35)

Then, from (2.35), one gets

E[C̃Td−1(u)] =
1

σd(T )

∫
T
dt lim

ϱ→0

1

2ϱ

∫ u+ϱ

u−ϱ
E
[
||∇X(t)||1

∣∣ X(t) = x
]
pX(0)(x) dx

= pX(0)(u)E [∥∇X(0)∥1|X(0) = u] .

Equation (2.34) should be put in parallel with the desired limit given by Rice’s formula (see,

e.g., (Azäıs and Wschebor, 2009, Equation (6.27)) or (Berzin et al., 2017, Proposition 2.2.1) (with

j = 1) written for a stationary process), i.e.,

E[CTd−1(u)] = pX(0)(u)E[∥∇X(0)∥2|X(0) = u], (2.36)

with CTd−1(u) as in (2.6). This difference of norms in the limits in (2.34) and (2.36) motivates the

presence of the dimensional constant βd relating the L1 and L2 norms (see main Theorem 2.3 and

Equation (2.14)).

Taking inspiration from the relationship between (2.6) and (2.32), the following proposition pro-

vides a similar result for C̃Td−1 in (2.33) (item i) and a L1 control between the estimator C
(δ,T )
d−1 and

C̃Td−1 (item ii) as δ → 0. To this end, we introduce the following technical assumption.

(A3) Fix j ∈ {1, . . . , d}. Let f(t) := (X(t), ∂jX(t)) for t ∈ Rd, where ∂jX denotes the partial

derivative of X in the direction ej . Fix u ∈ R, and let U ⊂ R2 be a neighbourhood containing
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the point (u, 0). Suppose that the density of f(0) is bounded uniformly on U . Define

W := sup
t∈[0,1]d

max
1≤k≤d

{
|∂kX(t)|, |∂k∂jX(t)|

}
and suppose that E[W 2 | f(0) = s] <∞ for all s ∈ U .

Similarly, suppose that for some interval I ⊂ R containing u, the marginal density of X(0) is

bounded uniformly on I, and that E[supt∈[0,1]d ||∇X(t)||2 | X(0) = s] <∞, for all s ∈ I.

This conditional expectation E[W 2 | f(0) = s] is defined via the limit procedure in (Feller, 1966,

Section III.2). The associated condition in (A3) is used in the proof of the key Lemma 2.3 in

Section 2.4. It guarantees the integrability of the function w2 g(w, u+ ϵ, ϵ), for small ϵ values, where

g is the joint probability distribution of W , X(0), and ∂jX(0). It allows for the use of techniques

similar to the ones used in Leadbetter et al. (1983) (see the proof of Proposition 2.1 in Section 2.4).

Lemma 2.3 is used in the proof of the following proposition.

Proposition 2.2. Let X be a random field on Rd as in Assumption (A0). It holds that

i) C̃Td−1(u) =
1

σd(T )

∑d
j=1

∫
vect(e⊥j ) σ0(L

T
X(u) ∩ lej ,v) dv, a.s.

ii) If, furthermore, X satisfies Assumptions (A1) and (A2) for w = ej, for each 1 ≤ j ≤ d, and

for some ε ∈ (0, 1), and (A3), then there exists a constant K such that for all δ ∈ (0, 1)

E
[∣∣∣C(δ,T )

d−1 (u)− C̃Td−1(u)
∣∣∣] ≤ Kδ1−ε. (2.37)

The proof of Proposition 2.2 in postponed to Section 2.5.1. Remark that isotropy is not required

in Proposition 2.2.

2.3.3 Strong alpha mixing random fields

We present and discuss sufficient hypotheses to prove the asymptotic normality in Theorem 2.3,

below. We impose some spatial asymptotic independence conditions for the random field X which

also apply to integrals of continuous functions over the level-curves of X (such as the surface area

in (2.6)). To this end, mixing conditions are particularly appropriate (see for instance Cabaña

(1987), Iribarren (1989)).

Definition 2.4 (Strongly mixing random field). Let X := {X(t) : t ∈ Rd} be a random field

satisfying Assumption (A0), and let σU := σ{X(t) : t ∈ U} for a subset U ⊂ Rd, i.e., the σ−field

generated by {X(t) : t ∈ U}. We define the following mixing coefficient for Borelian subsets

U, V ⊂ Rd,

α(U, V ) := sup
A∈σU , B∈σV

{|P(A ∩B)− P(A)P(B)|}. (2.38)
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Further we define

α(s) := sup{α(U, V ) : d2(U, V ) > s},

where d2(U, V ) := inf{||u− v||2 : u ∈ U, v ∈ V }. A random field X is said to be strongly mixing if

α(s) → 0 for s→ ∞.

Existing results that establish asymptotic normality of geometric quantities classically rely on the

continuous observation of X on T and on a quasi-association notion of dependence (see Bulinski

and Shashkin (2007), Meschenmoser and Shashkin (2011), Bulinski et al. (2012), Spodarev (2014))

or are specific to Gaussian random fields (see Meschenmoser and Shashkin (2013), Müller (2017),

Kratz and Vadlamani (2018)). There are also results for fields observed on the fixed lattice grid

Zd in Reddy et al. (2018), where the notion of clustering spin model is introduced and is implied

by either mixing assumptions or quasi-association. Finally, it is worth noting that Bulinski (2010)

proposes a limit theorem for the empirical mean of X observed on a grid with vanishing size and

large T , i.e., the same grid of observation G(δ, T ) as in the present work.

Corollary 3 in Dedecker (1998) (see also Bolthausen (1982)) proposes minimal α-mixing conditions

to get central limit results for stationary random fields observed on the fixed lattice Zd. However,

we can not rely on such results as we are interested in non-trivial functionals of the field and we

aim at imposing the conditions on the underlying field X and not on the observed sequence on the

varying lattice δZd. Instead, to establish Theorem 2.3 below, we heavily rely on the inheritance

properties of mixing sequences: if a random field X is strongly alpha-mixing (see Definition 2.4),

so is any measurable transformation of it. The latter property does not hold for quasi-association

properties. Examples of mixing random fields include Gaussian random fields (see Doukhan (1994)

Section 2.1 and Corollary 2 for an explicit control of (2.38)), and therefore any transformation of

Gaussian random fields such as Student or chi-square fields, or Max-infinitely divisible random fields

(see Dombry and Eyi-Minko (2012)). We refer the reader to Bradley (2005) for other examples of

processes satisfying various mixing conditions.

2.3.4 Joint Central Limit Theorem

In the following,
L−→ denotes the convergence in law. Taking advantage of the results of Sec-

tion 2.2 and adapting the results of Iribarren (1989), we state the following joint limit result for the

approximated volume and surface area.

Theorem 2.3 (Joint central limit theorem for C
(δ,TN )
d and C

(δ,TN )
d−1 ). Let X be an isotropic random

field satisfying Assumptions (A0), (A1), (A2) for some ε ∈ (0, 1), and (A3). Assume that X is

strongly mixing as in Definition 2.4 and that for some η > 0, the mixing coefficients satisfy the rate

condition

+∞∑
r=1

r3d−1α(r)
η

2+η < +∞, (2.39)
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and E[σd−1

(
LX(u) ∩ [0, 1]d

)2+η
] < +∞. Let (TN )N≥1 be a sequence of hypercubes in Rd such that

σd(TN ) = (2Nδ)d. Define

C(δ,TN )(u) :=
(
C

(δ,TN )
d (u), C

(δ,TN )
d−1 (u)

)t
and C∗(u) :=

(
C∗
d(u),

2d

βd
C∗
d−1(u)

)t
,

with Cd (resp. Cd−1) as in (2.30) (resp. in (2.31)) on the hypercubic lattice G(δ, T ) in (2.29), C∗
k(u)

as in (2.8), where (·)t denotes the matrix transposition and βd is as in (2.14). Then, there exists a

finite and positive definite covariance matrix Σ(u) such that, it holds√
σd(TN )

(
C(δ,TN )(u)− C∗(u)

)
L−→ N2

(
0,Σ(u)

)
,

as δ → 0, Nδ → ∞, and (Nδ)dδ1−ε → 0, with ε as in Assumption (A2), with variances

Σ(1,1)(u) =

∫
Rd

Cov(1{X(0)≥u},1{X(t)≥u})dt,

Σ(2,2)(u) =

∫
Rd

[
pX(0),X(t)(u, u)E

[
||∇X(0)||1||∇X(t)||1

∣∣ X(0) = X(t) = u
]

−
(
pX(0)(u)E

[
||∇X(0)||1

∣∣ X(0) = u
])2]

dt.

and covariances Σ(1,2)(u) = lim
N→∞

σd(TN )Cov(C
TN
d (u), CTNd−1(u)).

The mixing condition (2.39) come from (Iribarren, 1989, Proposition 1 (ii)), by choosing q = 2.

This mixing rate condition relies on the dimension d of the field X, the moment condition on

σd−1

(
LX(u) ∩ [0, 1]d

)
and the decay behavior of the mixing coefficient α(s), as s→ ∞.

Proof of Theorem 2.3. Let CTN (u) :=
(
CTNd (u), C̃TNd−1(u)

)t
, with CTNd (u) as in (2.7) and C̃TNd−1(u) as

in (2.33). We decompose√
σd(TN )

(
C(δ,TN )(u)− C∗(u)

)
=
√
σd(TN )

(
C(δ,TN )(u)− CTN (u)

)
+
√
σd(TN )

(
CTN (u)− E[CTN (u)]

)
+
√
σd(TN )

(
E[CTN (u)]− E[C(δ,TN )(u)])

)
+
√
σd(TN )

(
E[C(δ,TN )(u)]− C∗(u)

)
:= I1 + I2 + I3 + I4.

From Proposition 2.3, we get that first coordinates of I1 and I3 go in probability to zero. The

second coordinates are handled with Proposition 2.2. It follows that I1
P−→ 0 and I3

P−→ 0, for

Nδ → ∞, δ → 0 and (Nδ)dδ1−ε → 0 as N → ∞, with ε as in Assumption (A2).

The joint central limit theorem under mixing conditions (see Theorem 2.4, for n = Nδ) for the

random vector CTN (u) gives that I2
L−→ N2

(
0,Σ(u)

)
. The given asymptotic variances come from

Cotsakis et al. (2023c) (see Equation (11)), Equation (2.33) and covariances in Bulinski et al. (2012).

Notice that C
(δ,T )
d (u) in (2.30) does not generate any bias for the volume measure σd (see (2.9)),
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so the first coordinate of I4 is trivially equal to zero. The second coordinate of I4 is obtained via

Corollary 2.2. Then, by Slutsky’s Theorem, we obtain the result.

All auxiliary results necessary for the proof of the joint central limit theorem for (C
(δ,TN )
d , C

(δ,TN )
d−1 )

are provided in Section 2.5.2.

Remark 2.6. The regime restriction (Nδ)dδ1−ε → 0 (where ε can be small) is imposed by Propo-

sition 2.2 and Proposition 2.3. It can be improved by requiring more stringent assumptions: e.g.,

if X is quasi-associated (see Bulinski and Shashkin (2007) and Bulinski et al. (2012)) and under a

decay assumption for its correlation function (see Appendix 2.A). However, improving the rate in

Proposition 2.2 seems much more delicate and is out of the scope of the present work.

Generalizing Theorem 2.3 to point clouds other than hypercubic lattices requires that one first

identifies the associated random variable when δ gets small, i.e., an analog to (2.33), and that one

proves an analog of (2.37). In this sense, this asymptotic result is lattice-dependent and generalizing

it to general tessellations is also an interesting open point.

2.4 Additional results and proofs associated to Section 2.2

2.4.1 Auxiliary lemmas on crossings

The following technical lemma controls the probability that a one-dimensional random process

crosses the level u more than once on a small interval of length t.

Lemma 2.1 (Level crossings of random processes). Let Y = {Y (s) : s ∈ R} be a one-dimensional

stationary random process with twice continuously differentiable sample paths. Suppose that the prob-

ability density function of Y (0)
∣∣{Y ′(0) = 0} is uniformly bounded by M <∞ and that ∥Y ′′∥∞,[0,1] ∈

Lp for some p > 1
2 . For u ∈ R, let Y −1(u) := {s ∈ R : Y (s) = u}. Then, there exists a constant

K ∈ R+ such that

P
(
Card

(
Y −1(u) ∩ [0, t]

)
≥ 2
)
≤ Kt

3p
p+1 ,

for all t ∈ [0, 1].

Proof of Lemma 2.1. If there are to exist two points s1, s2 ∈ [0, t], s1 < s2 such that Y (s1) =

Y (s2) = u, then by Rolle’s theorem, there exists a c ∈ [s1, s2] such that Y ′(c) = 0. Moreover, by

Taylor’s theorem,

Y (s2) = u = Y (c) +
(s2 − c)2

2
Y ′′(η),

for some η ∈ [c, s2], which implies 2|Y (c)−u| ≤ t2∥Y ′′∥∞,[0,1], where as Y is twice continuously differ-

entiable, ∥Y ′′∥∞,[0,1] <∞ almost surely. It implies that for any x ∈ (0, 1), {Card
(
Y −1(u) ∩ [0, t]

)
≥

2} ⊆ {∥Y ′′∥∞,[0,1] ≥ (2/t2)x} ∪ {∃c ∈ [0, t] : Y ′(c) = 0, |Y (c)− u| ≤ (t2/2)1−x}.

60



To control the probability of the first event, Markov’s inequality gives

P
(
∥Y ′′∥∞,[0,1] ≥ (2/t2)x

)
= P

(
∥Y ′′∥p∞,[0,1] ≥ (2/t2)px

)
≤
( t2
2

)px
E[∥Y ′′∥p∞,[0,1]].

As for the second event, we write

P
(
∃c ∈ [0, t] : Y ′(c) = 0, |Y (c)− u| ≤ (t2/2)1−x

)
= P

(
Card

(
{c ∈ [0, t] : Y ′(c) = 0}

)
≥ 1
)
P
(
|Y (s)− u| ≤ (t2/2)1−x | Y ′(s) = 0, s ∈ [0, t]

)
≤ E

[
Card

(
{c ∈ [0, t] : Y ′(c) = 0}

) ]
P
(
|Y (s)− u| ≤ (t2/2)1−x | Y ′(s) = 0

)
.

By Theorem 3.3.1 in Beutler and Leneman (1966), E[Card({c ∈ [0, t] : Y ′(c) = 0})] = tE[Card({c ∈
[0, 1] : Y ′(c) = 0})]. In addition, P

(
|Y (s) − u| ≤ (t2/2)1−x | Y ′(s) = 0

)
≤ 2M(t2/2)1−x as Y is

stationary and Y (0)
∣∣{Y ′(0) = 0} has bounded density. In total, we have shown that

P
(
Card

(
Y −1(u) ∩ [0, t]

)
≥ 2
)
≤
( t2
2

)px
E[∥Y ′′∥p∞,[0,1]]+

2ME[Card({c ∈ [0, 1] : Y ′(c) = 0})]t
( t2
2

)1−x
.

Thus, optimizing in x leads to x := 3/(2p+ 2) ∈ (0, 1), if p > 1
2 , and to the result.

The following lemma provides a bound on the crossing probability for general, possibly anisotropic,

random fields.

Lemma 2.2. Let X be a random field on Rd satisfying (A0). Fix t ∈ Rd and u ∈ R. Then,

P (X(0) ≤ u < X(t)) ≤ C∗
d−1(u)∥t∥2.

Proof of Lemma 2.2. Let t denote the line segment in Rd whose endpoints are 0 and t. Define

KX(u) := {LX(u) − λt : λ ∈ (0, 1)} to be the set of points that are at a distance of at most ||t||2
from LX(u) in the direction of −t (see Figure 2.5 for an illustration of the set KX(u) in R2). By

the assumption of stationarity it holds that

P (X(0) ≤ u < X(t)) ≤ P
(
t ∩ LX(u) ̸= ∅

)
= P (0 ∈ KX(u)) = E

[
σd
(
KX(u) ∩Bd

r

)
σd(Bd

r )

]
,

for all r ∈ R+. If we denote r+ := r + ||t||2 for r ∈ R+, then

σd

(
KX(u) ∩Bd

r

)
≤
∫
LX(u)∩Bd

r+

〈
t,

∇X(s)

||∇X(s)||2
〉
σd−1(ds) ≤

∫
LX(u)∩Bd

r+

||t||2 σd−1(ds)

= ∥t∥2σd−1

(
LX(u) ∩Bd

r+

)
, a.s.
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t

Figure 2.5: In dimension 2, for the level curve LX(u) in black, KX(u) is the area covered by solid
red line segments. Note that the line segment t (in blue) crosses LX(u) (in black) if and only if
0 ∈ KX(u).

Taking the expectation and sending r → ∞ yields the result, since σd(B
d
r )/σd(B

d
r+) → 1.

Definition 2.5. Define the map πj : Rd → Rd to be the orthogonal projection onto the (d − 1)-

dimensional subspace vect(e⊥j ). That is, for S ⊆ Rd,

πj(S) =
{∑
i ̸=j

siei : s ∈ S
}
= {v ∈ vect(e⊥j ) : lej ,v ∩ S ̸= ∅},

with lej ,v as in (2.3).

The following lemma allows to obtain the rate of convergence of a Riemann sum used in Propo-

sition 2.2. The techniques used in the proof can be used to bound the probability that a random

manifold intersects a small region of space.

Lemma 2.3. Let X be a stationary random field on Rd satisfying Assumption (A0) and (A3). Fix

j ∈ {1, . . . , d}. For v ∈ vect(e⊥j ), denote nv := σ0(LX(u) ∩ lej ,v ∩ [0, 1]d), with lej ,v as in (2.3).

Then, there exists a constant K ∈ R+ such that for all δ ∈ [0, 1),

P
(

sup
v1,v2∈πj([0,δ]d)

∣∣nv1 − nv2

∣∣ > 0

)
≤ Kδ.

Proof of Lemma 2.3. Note that nv seen as a function that maps v ∈ vect(e⊥j ) into N0 is almost

surely piecewise constant on πj([0, 1]
d). The discontinuities occur at points in πj(H1 ∪ H2 ∪ H3),

where H1 := f−1((u, 0)) ∩ [0, 1]d—recall from Assumption (A3) that f = (X, ∂jX), H2 := {s ∈
LX(u) : sj = 0}, and H3 := {s ∈ LX(u) : sj = 1} (see Figure 2.6 for an example with d = 2).

For i ∈ {1, 2, 3}, we aim to show that P
(
πj([0, δ]

d)∩πj(Hi) ̸= ∅
)
is of the order of δ, which implies

the desired result.
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0    1    2    3    4

Figure 2.6: On the left a representation of the piecewise constant function nv of v ∈ vect(e⊥1 )
computed for the excursion set represented in grey on the right. The points in blue are in H1 and
the points in green are in H2 and H3.

We begin with the case of H1. By stationarity, we apply the union bound,

P
(
πj([0, δ]

d) ∩ πj(H1) ̸= ∅
)
≤ ⌈1/δ⌉P

(
[0, δ]d ∩H1 ̸= ∅

)
, (2.40)

where ⌈·⌉ denotes the ceiling function.

By Taylor’s theorem, for each t ∈ [0, δ]d, there exists an s ∈ [0, δ]d such that f(t) = f(0) +

⟨t,∇f(s)⟩. If [0, δ]d ∩H1 ̸= ∅, then (u, 0)− f(0) = ⟨t,∇f(s)⟩, for some s, t ∈ [0, δ]d.

Let us denote by M1 ∈ R+ the constant which uniformly bounds the density of f(0) on U , and

M2 the constant which bounds the marginal density of X(0) on I (see Assumption (A3)).

For δ ≤ 1, we bound the variation of f(0) by writing

||(u, 0)− f(0)||∞ ≤ ||t||1W ≤ dδW.

Therefore, we obtain

P
(
[0, δ]d ∩H1 ̸= ∅

)
≤ P

(
||(u, 0)− f(0)||∞ ≤ dδW

)
.

let g(w, x, ẋ) be the joint probability distribution of W , X(0), and ∂jX(0). Note that

P
(
||(u, 0)− f(0)||∞ ≤ dδW

)
=

∫ ∞

0

∫ u+δwd

u−δwd

∫ δwd

−δwd
g(w, x, ẋ) dẋdxdw

= (2dδ)2
∫ ∞

0

∫ w/2

−w/2

∫ w/2

−w/2
g(w, u+ 2dδz, 2dδż) dżdzdw,
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where a change of the variables x = u + 2dδz and ẋ = 2dδż was used. Now, by the dominated

convergence theorem,

lim
δ→0

1

δ2
P
(
||(u, 0)− f(0)||∞ ≤ dδW

)
= lim

δ→0
4d2

∫ ∞

0

∫ w/2

−w/2

∫ w/2

−w/2
g(w, u+ 2dδz, 2dδż) dżdzdw

= 4d2
∫ ∞

0
w2g(w, u, 0) dw ≤ 4d2M1E[W 2 | f(0) = (u, 0)],

which is finite by (A3). Thus, P
(
[0, δ]d ∩H1 ̸= ∅

)
= O(δ2), and by (2.40), P

(
πj([0, δ]

d) ∩ πj(H1) ̸=
∅
)
= O(δ), as desired.

Now, we consider the case of H2 (the case of H3 being identical). Using similar arguments as in

the case of H1, we readily obtain

lim
δ→0

1

δ
P
(
πj([0, δ]

d) ∩ πj(H2) ̸= ∅
)
= lim

δ→0

1

δ
P
(
[0, δ]d ∩H2 ̸= ∅

)
≤ lim

δ→0

1

δ
P
(
|u−X(0)| ≤

√
dδ sup

t∈[0,1]d
||∇X(t)||2

)
≤ 2

√
dM2E

[
sup

t∈[0,1]d
||∇X(t)||2

∣∣ X(0) = u
]
<∞.

Thus, P
(
πj([0, δ]

d) ∩ πj(H2) ̸= ∅
)
= O(δ) as desired.

2.4.2 Proof of Proposition 2.1

First note that

{X(0) ≤ u < X(qe1)} = {X(0) ≤ u < X(0) + qXq} = {X(0) ≤ u} ∩
{
1

q
(u−X(0)) < Xq

}
.

It follows that

1

q
P (X(0) ≤ u < X(q)) =

1

q
P
(
X(0) ≤ u, Xq > q−1(u−X(0))

)
=

1

q

∫ u

−∞

∫ ∞

1
q
(u−x)

gq(x, y)dydx =
1

q

∫ ∞

0

∫ u

u−qy
gq(x, y)dxdy =

∫ ∞

0
z

∫ 1

0
gq(u− qzv, z)dvdz,

using the change of variable v = u−x
qy , z = y (x = u− qzv, y = z). From the assumptions, we derive

that gq(u − qzv, z) → p(u, z) pointwise as q → 0, and the dominated convergence theorem applies

and leads to the result.
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2.5 Additional results and proofs associated to Section 2.3

2.5.1 Proof of Proposition 2.2

Firstly, we prove the first item in Proposition 2.2. Let (A1, . . . , Ak) be a sequence of polytopes

residing in (d − 1)-dimensional hyperplanes in Rd. For i ∈ {1, . . . , k}, let ni ∈ Rd denote the unit

normal vector to Ai. We aim to show

k∑
i=1

d∑
j=1

|⟨ni, ej⟩|σd−1(Ai) =
d∑
j=1

∫
vect(e⊥j )

σ0

(( k⋃
i=1

Ai

)
∩ lej ,v

)
dv, (2.41)

with lej ,v as in (2.3). By noticing that for all v ∈ vect(e⊥j ),

σ0

(( k⋃
i=1

Ai

)
∩ lej ,v

)
=

k∑
i=1

1{Ai∩lej ,v ̸=∅},

we see that it suffices to show that for each pair of indices (i, j) ∈ {1, . . . , k} × {1, . . . , d},

|⟨ni, ej⟩|σd−1(Ai) =

∫
vect(e⊥j )

1{Ai∩lej ,v ̸=∅} dv. (2.42)

Equation (2.42) is evident, since both sides of the equality describe the σd−1 measure of the projec-

tion of Ai onto the hyperplane vect(e⊥j ). Note that
∑d

j=1 |⟨ni, ej⟩| = ||ni||1.
Let us consider t ∈ LX(u) and ∇X(t)/||∇X(t)||2 be the unit normal vector to LX(u) at t. Notice

that LTX(u) is a C1 smooth manifold. Then, one can consider a set of points ti ∈ LX(u), for

i ∈ {1, . . . , k} and build a sequence of polygons tangent to the surface LTX(u) in these points.

For this choice of Ai, the left-hand side of Equation (2.41) can be seen as a Riemann sum that

approximates the integral expression for C̃Td−1(u) in (2.33), when k goes to infinity. This proves

item i).

Now, we prove the second item in Proposition 2.2. For g ∈ G(δ, T ) in (2.29), let Zg := 1{X(g)≥u}.

Equations (2.30)-(2.31) can be rewritten as

C
(δ,T )
d (u) =

δd

σd(T )

∑
g∈G(δ,T )

Zg =
1

(2N)d

∑
g∈G(δ,T )

Zg,

C
(δ,T )
d−1 (u) =

δd−1

σd(T )

d∑
j=1

∑
g∈G(δ,T )

g+δej∈G(δ,T )

1{Zg ̸=Zg+δej
}.
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Set G := G(δ, T ) ∩ [0, 1]d and nv := σ0(LX(u) ∩ lej ,v ∩ [0, 1]d), suppose that we have established

E
[∣∣∣δd−1

∑
g∈G

1{Zg ̸=Zg+δej
} −

∫
vect(e⊥j )∩[0,1]d

nvdv
∣∣∣] = O

(
δ1−ε

)
, (2.43)

for all j ∈ {1, . . . , d}. Then, by stationarity and the triangle inequality,

E
[∣∣∣δd−1

∑
g∈G(δ,T )

1{Zg ̸=Zg+δej
} −

∫
vect(e⊥j )

σ0
(
LTX(u) ∩ lej ,v

)
dv
∣∣∣] = O

(
(Nδ)dδ1−ε

)
so the desired result holds by summing over the d dimensions and again applying the triangle

inequality together with the first item. Therefore, it suffices to show (2.43). This is done in two

steps. First, we show that (recall Definition 2.5)

E
[∣∣∣δd−1

∑
g∈G

1{Zg ̸=Zg+δej
} − δd−1

∑
v∈πj(G)

nv

∣∣∣] = O(δ1−ε). (2.44)

Second, we show that

E
[∣∣∣δd−1

∑
v∈πj(G)

nv −
∫
vect(e⊥j )∩[0,1]d

nsds
∣∣∣] = O(δ1−ε). (2.45)

Let M (δ) :=
(
σ0(G)

)1/d
= ⌊δ−1⌋ + 1 be the number of rows in the grid G that is contained in

[0, 1]d. By construction, M (δ)δ ≤ 1 + δ for all δ ∈ R+.

To see that (2.44) holds, we use the triangle inequality to write

E
[∣∣∣δd−1

∑
g∈G

1{Zg ̸=Zg+δej
} − δd−1

∑
v∈πj(G)

nv

∣∣∣] ≤ δd−1
∑

v∈πj(G)

E
[∣∣∣ ∑
g∈G∩lej ,v

1{Zg ̸=Zg+δej
} − nv

∣∣∣]. (2.46)

Moreover, for fixed v ∈ πj(G),
∑

g∈G∩lej ,v
1{Zg ̸=Zg+δej

} approaches nv from below, and both quanti-

ties take values in N0. If the two quantities are distinct, then there must be two elements of LX(u)∩
[0, 1]d ∩ lej ,v with a spacing of less than δ. Let A

(v)
1 denote the event

{∑
g∈G∩lej ,v

1{Zg ̸=Zg+δej
} ̸=

nv
}
. With (·)j denoting the projection onto the jth component, note that

A
(v)
1 ⊂

M(δ)−1⋃
i=0

{
Card

(
[iδ, (i+ 2)δ] ∩

(
LX(u) ∩ lej ,v

)
j

)
≥ 2

}
,

since any two points in R with a spacing of less than δ will be contained in an interval [iδ, (i+ 2)δ]

for some i ∈ Z. It follows from Assumption (A1), Lemma 2.1 with p = 2, and the definition of M (δ)
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that P(A(v)
1 ) = O(δ). This fact, with Hölder’s inequality yields for the ε defined in (A2),

E
[∣∣∣ ∑

g∈G∩lej ,v

1{Zg ̸=Zg+δej
} − nv

∣∣∣] = E
[∣∣∣ ∑

g∈G∩lej ,v

1{Zg ̸=Zg+δej
} − nv

∣∣∣1
A

(v)
1

]
≤ E[ nv 1

A
(v)
1

] ≤
(
E[n1/εv ]

)ε P(A(v)
1 )1−ε = O(δ1−ε).

By the stationarity of X, each of the (M (δ))d−1 terms in (2.46) is identical, and as M (δ)δ ≤ 1 +

δ, (2.44) follows immediately. We continue by showing (2.45). For v ∈ vect(e⊥j ), define the event

A
(v)
2 :=

{
sups∈v+πj([0,δ]d) |nv − ns| > 0

}
. Then, the triangle inequality gives

E
[∣∣∣δd−1

∑
v∈πj(G)

nv −
∫
vect(e⊥j )∩[0,1]d

nsds
∣∣∣] ≤ δd−1

∑
v∈πj(G)

E
[∣∣∣nv − δ1−d

∫
v+πj([0,δ]d)

ns ds
∣∣∣]

= δd−1
∑

v∈πj(G)

E
[∣∣∣nv − δ1−d

∫
v+πj([0,δ]d)

ns ds
∣∣∣1
A

(v)
2

]
≤ δd−1

∑
v∈πj(G)

(
E
[∣∣∣nv − δ1−d

∫
v+πj([0,δ]d)

ns ds
∣∣∣ 1ε ])εP(A(v)

2 )1−ε

≤ δd−1
∑

v∈πj(G)

((
E
[
n

1
ε
0

])ε
+
(
E
[∣∣∣δ1−d ∫

v+πj([0,δ]d)
ns ds

∣∣∣ 1ε ])ε)P(A(v)
2 )1−ε

≤ δd−1
∑

v∈πj(G)

((
E
[
n

1
ε
0

])ε
+
(
δ1−d

∫
v+πj([0,δ]d)

E
[
n

1
ε
s

]
ds
)ε)

P(A(v)
2 )1−ε

≤ δd−1
∑

v∈πj(G)

2
(
E
[
n

1
ε
0

])εP(A(v)
2 )1−ε,

where we used Jensen inequality for the penultimate inequality and the fact that

σd−1(πj([0, δ]
d)) = δd−1 for the last inequality. Of the (M (δ))d−1 terms in the sum over πj(G),

there are (M (δ) − 1)d−1 terms such that v + πj([0, δ]
d) ⊂ πj([0, 1]

d). For these terms, by sta-

tionarity, P(A(v)
2 ) = P(A(0)

2 ) ≤ K1δ for some K1 ∈ R+ by Lemma 2.3. For the remaining

M (δ)d−1 − (M (δ) − 1)d−1 terms in the sum, the bound P(A(v)
2 ) ≤ 1 suffices. Thus,

E
[∣∣∣δd−1

∑
v∈πj(G)

nv −
∫
vect(e⊥j )∩[0,1]d

nsds
∣∣∣]

≤ 2δd−1
(
(M (δ) − 1)d−1(K1δ)

1−ε +
(
M (δ)d−1 − (M (δ) − 1)d−1

))(
E
[∣∣n0∣∣ 1ε ])ε = O

(
δ1−ε

)
and (2.45) holds which completes the proof.
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2.5.2 Auxiliary results for the proof of the joint central limit theorem

Analogously to (2.37), the following result provides an L1 control of the approximation error of the

first coordinate of I1 (i.e., the estimated volume) in the proof of Theorem 2.3. To this end, notice

that we cannot directly apply an approximation inequality such as Proposition 4 in Biermé and

Desolneux (2021) as the function y 7→ 1{y≥u} appearing in the definition of the volume in (2.7) is

not Lipschitz.

Proposition 2.3. Let X be an isotropic random field satisfying Assumption (A0). Let CTd (u) as

in (2.7) and C
(δ,T )
d (u) as in (2.30). It holds that

E
[∣∣∣C(δ,T )

d (u)− CTd (u)
∣∣∣] ≤ Kδ, (2.47)

where K ∈ R+ is a constant independent of δ and σd(T ).

Remark 2.7. Proposition 2.3 provides a control of the discretization error in the computation of

the volume. This error is of the same order as in Proposition 2.2 (item ii). This control can be

greatly improved by asking more stringent assumptions: e.g., if X is quasi-associated (see Bulinski

and Shashkin (2007) and Bulinski et al. (2012)) and under a decay assumption for its correlation

function. In this setting, the bound in (2.47) can be improved to get an upper bound in L2 with a

faster rate in δ(σd(T ))
−1 instead of δ. The interested reader is referred to the Appendix 2.A.

Proof of Proposition 2.3. Remark that

∣∣∣C(δ,T )
d (u)− CTd (u)

∣∣∣ =
∣∣∣∣∣∣ δd

σd(T )

∑
t∈G(δ,T )

(
1{X(t)≥u} −

1

δd

∫
t+[0,δ)d

1{X(s)≥u} ds

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

σd(T )

∑
t∈G(δ,T )

∫
t+[0,δ)d

(
1{X(t)≥u} − 1{X(s)≥u}

)
ds

∣∣∣∣∣∣
≤ 1

σd(T )

∑
t∈G(δ,T )

∫
t+[0,δ)d

∣∣1{X(t)≥u} − 1{X(s)≥u}
∣∣ ds.

Therefore, by Lemma 2.2, it holds that

E
[∣∣∣C(δ,T )

d (u)− CTd (u)
∣∣∣] ≤ 1

σd(T )

∑
t∈G(δ,T )

∫
t+[0,δ)d
P (X(t) < u ≤ X(s)) + P (X(t) ≥ u > X(s)) ds

≤ 1

σd(T )

∑
t∈G(δ,T )

∫
t+[0,δ)d

2C∗
d−1(u)∥t− s∥2 ds ≤ 2

√
dC∗

d−1(u)δ.

Corollary 2.2 below describes the behaviour of the second coordinate of the term I4 in our main
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Theorem 2.3, by using the second order approximation in Theorem 2.1 for the specific hypercubic

point-referenced d-honeycomb δĠ in Section 2.3.1.

Corollary 2.2. Consider a discrete regular hypercubic grid G(δ, T ) as in (2.29). Let X be an

isotropic random field satisfying Assumptions (A0), (A1) and (A2) for some ε ∈ (0, 1). Let C∗
d−1(u)

be as in (2.8) and C
(δ,TN )
d−1 (u) as in (2.31). Then, it holds that

√
σd(TN )

(
E[C(δ,TN )

d−1 (u)]− 2d

βd
C∗
d−1(u)

)
→ 0

for Nδ → ∞, (Nδ)d/2δ1−ε → 0 with βd as in (2.14) and ε as in Assumption (A2).

Proof. It is a direct consequence of (2.31) the stationarity and isotropy of X, Equation (2.15) in

Theorem 2.1, and the fact that by construction Card(G(δ, T )) = (2N)d and σd(TN ) = (2Nδ)d.

Finally, we focus on the term I2 in the proof of Theorem 2.3. The following theorem establishes a

joint central limit theorem for the vector
(
CTnd (u), C̃Tnd−1(u)

)
in the case where Tn is a sequence of

hypercubes in Rd such that Tn ↗ Rd as n→ ∞. Our result is based on techniques used in Iribarren

(1989).

Theorem 2.4. Let u be a fixed level in R. Assume that X is strongly mixing as in Definition 2.4

such that for some η > 0, the mixing satisfies the rate condition

+∞∑
r=1

r3d−1α(r)
η

2+η < +∞,

and E[σd−1

(
LX(u) ∩ [0, 1]d

)2+η
] < +∞. Let CTn(u) :=

(
CTnd (u), C̃Tnd−1(u)

)t
. Let (Tn)n≥1 be a

sequence of hypercubes in Rd such that σd(Tn) = (2n)d. Then there exists a finite covariance matrix

Σ(u) such that, if Σ(u) > 0,√
σd(Tn)

(
CTn(u)− E[CTn(u)]

) L−→ N2

(
0,Σ(u)

)
,

as n→ ∞.

Proof. Let t = (t1, t2) ∈ R2 and Vi(1) be as in Section 2.3.1. Write

ξi := t1

∫
LX(u)∩Vi(1)

∥∇X(s)∥1
∥∇X(s)∥2

σd−1(ds) + t2σd
(
EX(u) ∩ Vi(1)

)
,

for i ∈ Zd, which makes ξ := {ξi : i ∈ Zd} a stationary random field on Zd. It is straightforward

to see that ξ inherits the mixing property of the random field X and that the mixing coefficients

of ξ satisfy αξ(n + ⌈
√
d⌉) ≤ αX(n) for all n ∈ N+, since the diameter of Vi(1) is

√
d. Notice also
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that |ξi| ≤ ||t||2
(√
dσd−1

(
LX(u)∩ Vi(1)

)
+ σd

(
EX(u)∩ Vi(1)

))
≤ ||t||2

(√
dσd−1

(
LX(u)∩ Vi(1)

)
+1
)

almost surely, so the 2 + η moment of ξi is finite. Finally, since

⟨t, CTn(u)⟩ =
∑
i∈Zd

ξi 1{Vi(1)⊂Tn},

the proof is completed with an application of Proposition 1 and Lemma 1 in Iribarren (1989) and

the Cramér-Wold device.

2.A Supplementary results

2.A.1 Examples

We begin with two simple examples that illustrate the use of the Crofton formula in Equation (2.5).

Example 2.1. Let d = 2, Equation (2.5) takes the form:

σ1(M) =
1

4

∫ ∞

−∞

∫ 2π

0
σ0(M ∩ ls(θ),v) dθ dv, (2.48)

where s(θ) := (cos(θ), sin(θ)). Let M be a circle of radius R in R2. For all θ ∈ [0, 2π), the function

fθ(v) := σ0(M ∩ ls(θ),v) is equal to 2 on an interval of length 2R, and 0 elsewhere. Therefore, we

easily recover

σ1(M) =
1

4

∫ 2π

0

∫ ∞

−∞
fθ(v) dv dθ =

1

4

∫ 2π

0
4R dθ = 2πR.

Example 2.2. Let M be the boundary of a a square K with side-length a. As ∂K =
⋃4
i=1 sidei,

using the additivity of (2.48), it suffices to consider only a single side of the square. Without loss

of generality, let us suppose that side1 is horizontal. Then, the function fθ(v) := σ0(side1 ∩ ls(θ),v)
is equal to 1 on an interval of length a| sin θ|, and 0 elsewhere. Thus, we easily recover that

σ1(side1) =
1

4

∫ 2π

0

∫ ∞

−∞
fθ(v) dv dθ =

1

4

∫ 2π

0
a| sin θ| dθ = a

2

∫ π

0
sin θ dθ = a.

We now present two classical examples where the density C∗
d−1(u) in (2.8) can be explicitly ob-

tained. The interested reader is referred to Exercises 6.2.c and 6.3 in Azäıs and Wschebor (2009)

and to Biermé et al. (2019).

Example 2.3. Let X = {X(t), t ∈ Rd}, be an isotropic Gaussian field, with zero mean, unit

variance and second spectral moment λ finite satisfying Assumption (A0). Then we get

C∗
d−1(u) =

√
λ

π
e−

u2

2
Γ
(
d+1
2

)
Γ
(
d
2

) .
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Let X(K) = {X(K)(t), t ∈ Rd} be an isotropic chi-square field satisfying Assumption (A0) with

K ∈ N+ degree of freedom such that X(K)(t) = X1(t)
2 + . . .+XK(t)2 where X1(t), . . . , XK(t) are

K i.i.d. stationary isotropic Gaussian random fields defined as above. Then one can get

C∗
d−1(u) =

√
λ
(u
2

)K−1
2
e−

u
2

Γ
(
d+1
2

)
Γ
(
K
2

)
Γ
(
d
2

) .
2.A.2 Convergence of the bias factor

In this appendix, we provide a short justification for Equation (2.28). The Crofton formula in (2.5)

applied to a random manifold M can be written in terms of the conditional expectation,

σd−1(M) =

√
π Γ(d+1

2 )

Γ(d2)

∫
Rd−1

∫
∂Bd

1

E
[
σ0(M ∩ ls,vs(u)) | σd−1(M)

]
σd−1(∂B

d
1)

ds du, a.s. (2.49)

By slightly modifying the proof of Theorem 2.1 so as to leverage (2.49), one obtains

1

q
P
(
X(0) ≤ u < X(qe1) | CTd−1(u)

) L1

−→
q→0

CTd−1(u)

βd
.

Likewise, by slightly adjusting the proof of Theorem 2.2 accordingly, one writes

E
[
C

(δḢ,T )
d−1 (u) | CTd−1(u)

] L1

−→
δ→0

2d

βd
CTd−1(u).

Equation (2.28) follows.

2.A.3 Further elements on the dimensional constant βd

Here, we provide an alternative justification for the value of the bias factor 2d
βd

in (2.22) for the

simple case of the hypercubic lattice by adapting in any dimension d the methodology proposed for

instance by Miller (1999).

Remark that the (d−1)-dimensional surface LX(u) is C
1, and so it can be approximated arbitrarily

well by a union of (d − 1)-dimensional hyperplanar surfaces. Then, the expectation of C
(δĠ,T )
d−1

in (2.31) is linear over these hyperpanar surfaces. Thus, it suffices to consider the bias in the

estimate of the σd−1 measure of a single hyperplanar surface with orientation vector distributed

uniformly on ∂Bd
1 . It is not difficult to see that the contribution to C

(δĠ,T )
d−1 of a hyperplanar surface

with orientation vector r ∈ ∂Bd
1 is ||r||1 times its σd−1 measure. Thus, the expected bias factor

should be the average value of ||r||1, when r is distributed uniformly on ∂Bd
1 . Indeed,

1

σd−1(∂B
d
1)

∫
∂Bd

1

||r||1 σd−1(dr) =
2d

βd
. (2.50)
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Chapter 3

On the perimeter estimation of

pixelated excursion sets of

two-dimensional anisotropic random

fields

This chapter is based on the joint work

Cotsakis, R., Di Bernardino, E., & Opitz, T. (2023). On the perimeter estimation of

pixelated excursion sets of two-dimensional anisotropic random fields. Scandinavian Journal

of Statistics, 1–34. Paper here.

Abstract: We are interested in creating statistical methods to provide informative summaries of

random fields through the geometry of their excursion sets. To this end, we introduce an estimator

for the length of the perimeter of excursion sets of random fields on R2 observed over regular

square tilings. The proposed estimator acts on the empirically accessible binary digital images of

the excursion regions and computes the length of a piecewise linear approximation of the excursion

boundary. The estimator is shown to be consistent as the pixel size decreases, without the need

of any normalization constant, and with neither assumption of Gaussianity nor isotropy imposed

on the underlying random field. In this general framework, even when the domain grows to cover

R2, the estimation error is shown to be of smaller order than the side length of the domain. For

affine, strongly mixing random fields, this translates to a multivariate Central Limit Theorem

for our estimator when multiple levels are considered simultaneously. Finally, we conduct several

numerical studies to investigate statistical properties of the proposed estimator in the finite-sample

data setting.
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3.1 Introduction

Random fields play a central role in the study of several real-world phenomena. In many applica-

tions, the excursion set of a random field (i.e., the subset of the observation domain on which the

random field exceeds a certain threshold) is observed—or partially observed—and its geometry can

be used to make meaningful inferences about the underlying field. Such techniques have been used

in disciplines such as astrophysics (Gott et al., 1990; Ade et al., 2016), brain imaging (Worsley et al.,

1992), and environmental sciences (Angulo and Madrid, 2010; Lhotka and Kyselỳ, 2015; Frölicher

et al., 2018). In certain cases, for example in landscape ecology, land-use analysis, and statistical

modeling, understanding the geometry of excursions is of primary importance (McGarigal, 1995;

Nagendra et al., 2004; Bolin and Lindgren, 2015).

Lipschitz-Killing curvatures (abbreviated LKCs; also known as intrinsic volumes) form a rich,

well-known class of geometric summaries of stratified manifolds. Hadwiger’s characterization theo-

rem states that LKCs form a basis for all rigid motion invariant valuations of convex bodies, which

makes them central in the study of the geometry of random sets (Schneider and Weil, 2008). From

a theoretical point of view, probabilistic and statistical properties of the LKCs of excursion sets

have been widely studied in the last decades (Adler and Taylor, 2007). For Gaussian random fields,

the Euler-Poincaré characteristic (a well-studied, topological LKC) is studied in Estrade and León

(2016) and Di Bernardino et al. (2017); the excursion volume (another LKC, better known as the

sojourn time for one-dimensional processes) is studied in Bulinski et al. (2012) and Pham (2013).

The reader is also referred to Müller (2017) and Kratz and Vadlamani (2018) for a joint analysis of

LKCs and to Meschenmoser and Shashkin (2013) and Shashkin (2013) for functional central limit

theorems.

LKCs have recently been used to create several statistical procedures including parametric infer-

ence (Biermé et al., 2019; Di Bernardino and Duval, 2022) and tests of Gaussianity (Di Bernardino

et al., 2017), isotropy (Cabaña, 1987; Fournier, 2018; Berzin, 2021), and symmetry of marginal

distributions the underlying fields (Abaach et al., 2021). Di Bernardino et al. (2020) quantifies

perturbation via the LKCs and provides a quantitative non-Gaussian limit theorem of the per-

turbed excursion area behaviour. To further emphasize their importance, LKCs of excursions have

deep links to extreme value theory; these insights are summarized in Adler and Taylor (2007) and

Azäıs and Wschebor (2009). LKCs can thus provide meaningful and parsimonious summaries of

the spatial properties of the studied random fields.

In this manuscript, we focus on the two-dimensional setting—specifically, random fields defined

on R2 endowed with the standard Euclidean metric. In this case, there are exactly three LKCs that

can be leveraged to describe excursion sets of random fields in R2: the excursion volume (i.e., the

area), half the value of the perimeter of the excursion set, and the Euler-Poincaré characteristic

(which is equal to the number of connected components minus the number of holes of the excursion

set).
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Analyzed jointly with information on the area and Euler characteristic of an excursion set, the

perimeter provides valuable information about the fragmentation of the excursion set. Examples can

be found in medical imaging where certain diseases can change fragmentation patterns in biological

tissues (Yao et al., 2016; Jurdi et al., 2021), or in ecology where suitable habitats of species are often

characterized by exceedances of variables describing favorable conditions, and where edge effects

near the boundary the excursion sets play an important role (Debinski and Holt, 2000; Taubert et al.,

2018). In spatial risk analysis, the perimeter can give information about the length of the interface

between a high-risk zone (associated with exceedances of the threshold level) and moderate-to-low

risk zones.

Most of the results presented in the previous literature are based on the empirically inaccessible

knowledge of the continuous random field X on a compact domain T ⊂ R2. In practice, spatial

data are often observed only at sampling locations on a discrete grid {si,j : i, j ∈ N0} ∩ T , and in

such cases, the values of the random field at intermediate points between the sampling locations

are not empirically accessible. This regular lattice setting is popular, for example, in the areas

of remote sensing, computer vision, biomedical imaging, surface meteorology. The datum at the

sampling location si,j could conceivably be a floating point number representing the value of the

random field at si,j , however, it may be the case that this level of precision is not available. One

can also consider the more general case where the accessible information at the sampling location

si,j is a boolean value corresponding to whether the random field evaluated at si,j falls within

a predetermined interval—normally [u,∞) for fixed u ∈ R. In this general case, one obtains a

pixelated representation of the excursion set of X at the fixed level u.

From these sparse-information, binary digital images of excursion sets, we aim in the present work

to infer the second Lipschitz-Killing curvature, i.e., the perimeter of the excursion set, for a fixed

level u. The perimeter is a particularly difficult quantity to estimate, since, in a digital image, the

boundary of an object is comprised of vertical and horizontal pixel edges, which obviously does not

correspond to the object’s true boundary. There exists a number of algorithms for computing the

perimeter of objects in hard segmented (i.e. binary) digital images, many of which are summarized

in Coeurjolly and Klette (2002) with further developments made in de Vieilleville et al. (2007). It

seems, however, intractable to evaluate the performance of these algorithms on excursion sets of

two-dimensional random fields. Biermé and Desolneux (2021) studies how the integrated perimeter

of excursion sets over a set of levels changes when considering discretized versions of the underlying

stationary, isotropic random fields (i.e., those with translation- and rotation-invariant distributions).

This gives rise to a perimeter estimator for a single level, complete with its own probabilistic

analysis for isotropic random fields (Biermé and Desolneux, 2021). The estimator is further analyzed

and given explicit covariance formulas in Abaach et al. (2021) for the case of complete spatial

independence. Although this particular perimeter estimator is quite natural to study, it suffers

from certain defects; namely, an intrinsic inadequacy for anisotropic random fields.

We introduce a class of estimators for the perimeter of objects in binary digital images, one
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of which being particularly suitable for estimating the perimeter of excursion sets of anisotropic

random fields on R2. The elements of the class are uniquely associated to the choice of norm that

is used to measure a piecewise linear approximation of the excursion’s boundary. The estimator

derived from the work of Biermé and Desolneux (2021) arises as the element of the proposed class

associated to the 1-norm. The novel estimator associated to the 2-norm (the primary focus of this

paper) possesses the desirable property of multigrid convergence (i.e., strong consistency as the pixel

size tends to zero; see Theorem 3.1), which we extend to convergence in mean (see Proposition 3.1).

These general results hold under weak assumptions about the smoothness of the random field that

do not include Gaussianity, nor isotropy. As the domain grows to cover R2, sufficient conditions are

given such that the error in the estimation is of smaller order than the fluctuations of the perimeter—

making the limiting distributions of the perimeter and the estimator identical. In particular, by

further supposing that the underlying random field is affine and strongly mixing (notions described

in Section 3.3.2), the estimator associated to the 2-norm is asymptotically normal with the same

asymptotic variance as perimeter itself (see Theorem 3.2).

The organization of the paper is as follows. Section 3.2 specifies key notions including: excursion

sets, the hypotheses on the underlying random fields, the regular grid on which the excursion

sets are observed, and the novel class of considered perimeter estimators. In Section 3.3, the

statistical properties of the perimeter estimate based on the 2-norm are discussed for a fixed domain

(Section 3.3.1) and for a sequence of growing domains (Section 3.3.2). Section 3.4 provides extensive

numerical results to support and illustrate the theory developed in Section 3.3. Proofs and auxiliary

notions are postponed to Section 3.5. We conclude with a discussion section. Some supplementary

elements are provided in the Appendix Section.

3.2 Definitions and Notation

Let us begin by introducing some notation. Calligraphic font is used to denote sets of isolated

points in R2. For a set S ⊂ R2, its boundary is denoted ∂(S); its cardinality #(S); and its Lebesgue

measure ν(S). We use H1 to denote the one-dimensional Hausdorff measure, and Ck to denote

the space of real-valued functions on R2 with k continuous derivatives. Between the nomenclatures

sample paths and trajectories, we choose to use the former when describing the realizations of a

random field.

The following assumption ensures that the random objects that we consider are well defined.

Assumption 3.1. The real-valued random field X = {X(s) : s ∈ R2} defined on a probability space

(Ω,F ,P) has C2 sample paths.

Definition 3.1. Denote the excursion set of X at the level u ∈ R by EX(u) := {s ∈ R2 : X(s) ≥ u}.
For compact T ⊂ R2, we denote the restriction of EX(u) and ∂

(
EX(u)

)
to T by

EX(T, u) := T ∩ EX(u) and E∂X(T, u) := T ∩ ∂
(
EX(u)

)
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(a) (b) (c)

Figure 3.1: Panel (a): a C2 realization of a stationary, centered, Gaussian random field X with
covariance function rX(h) = exp(−||h||22) is depicted in the square-shaped observation window
T = [−2.5, 2.5]2 (generated using the R package RandomFields (Schlather et al., 2017)). Underneath
the sample path, the curves E∂X(T, u) are drawn for different values of u. Panel (b) (resp. panel
(c)): the dark region EX(T, u) is shown for u = 0 (resp. u = 0.5).

respectively. Finally, the quantity of interest in this paper:

P TX(u) := H1
(
E∂X(T, u)

)
.

In Figure 3.1 (a), a C2 sample path of a Gaussian random field X is depicted in a square domain

T with the contours E∂X(T, u) drawn on the domain for various levels u. In Figure 3.1 (b) and (c),

EX(u) is represented by the dark regions, for two different levels u.

In what follows, let

T := [−t, t]2 ⊂ R2, (3.1)

for fixed t > 0. Before proceeding, it is helpful to specify additional assumptions on the considered

random fields.

Assumption 3.2. Let X1 and X2 denote the partial derivatives of X in the two principle Cartesian

directions in R2, and let X11 and X22 denote the corresponding second order partials. For any u ∈ R,
the following three conditions hold almost surely:

1. X has no critical points in T at the level u.

2. The restriction of X to each face of the square boundary ∂(T ) has no local extrema at the level

u.

3. For k ∈ {1, 2}, there are no s ∈ T such that X(s)− u = Xk(s) = Xkk(s) = 0.

Together, Assumptions 3.1 and 3.2 ensure that the random field X is almost surely suitably regular

at the level u in T as defined in Adler and Taylor (2007, Definition 6.2.1). The third condition of

Assumption 3.2 is made to be slightly stronger than item (C) in Definition 6.2.1 of Adler and Taylor
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(2007) so that the suitably regular condition holds even after a permutation of the two principal

Cartesian directions. This is useful when considering the set

YTX(u) :=
⋃
k=1,2

{s ∈ E∂X(T, u) : Xk(s) = 0}. (3.2)

Indeed, under Assumptions 3.1 and 3.2, it follows directly from Adler and Taylor (2007, Lemma 6.2.3)

that

#
(
YTX(u)

)
<∞, a.s. (3.3)

Recall that the reach of a set S ⊂ Rd is given by

reach(S) := sup{δ ≥ 0 : ∀y ∈ Sδ ∃!x ∈ S nearest to y}, (3.4)

where Sδ =
{
y ∈ Rd : ∃ x ∈ S s.t. ||x− y||2 ≤ δ

}
is the dilation of the set S by a radius δ ≥ 0 (see,

e.g., Definition 11 in Thäle (2008)). Equations (3.3) and (3.4) will be useful later (see, for example,

Remark 3.4).

Recall that a curve γ ⊂ R2 is connected if it cannot be expressed as the union of two disjoint

nonempty closed sets in R2. For sets B ⊆ A ⊆ R2, B is maximally connected in A if B is connected

and there does not exist a connected C ⊆ A such that B ⊂ C.

Definition 3.2. Let ΓTX(u) be the set of maximally connected subsets of E∂X(T, u).

Assumption 3.3. The random variables P TX(u) and #
(
ΓTX(u)

)
are in L1(Ω), the space of integrable

random variables, for all u ∈ R.

We emphasize that none of the assumptions stated thus far restrict to stationary or isotropic

random fields. Although stationarity is assumed in Theorem 3.2 and Corollary 3.2, these results

and all other results are applicable to anisotropic random fields—a crucial point that we investigate

numerically in Section 3.4.2.

In what follows, we study a novel estimator of the random quantity P TX(u) for arbitrary but fixed

u ∈ R, based only on the random field ZX(·;u) = {ZX(s;u) : s ∈ R2} defined by

ZX(s;u) := 1{s∈EX(u)} = 1{X(s)≥u}, s ∈ R2.

Note that ZX(s;u) has dependent Bernoulli margins with parameter P
(
X(s) ≥ u

)
. We will assume

that ZX(·;u) is empirically accessible only at sampling locations on a regular grid, one that is

defined in Section 3.2.1 below.

77



ϵ

T

s0,0

s0,1

s0,2

s1,0

s1,1

s2,0

Figure 3.2: An illustration of the quantities defined in Definition 3.3. The positions of the elements
of G(T,ϵ) in R2 are shown as circles, and the subset {si,j : i, j ∈ I(T,ϵ,m)} with m = 2 is highlighted
in red. Here, M = 6, and the side length of T is

√
ν(T ) = (M − 1)ϵ = 5ϵ.

3.2.1 Sampling locations on a regular grid

Definition 3.3. Fix ϵ > 0, and define a square grid of points in R2 as

G(T,ϵ) :=
{
si,j : i, j ∈ N0

}
∩ T, with si,j := (−t+ iϵ,−t+ jϵ) ∈ R2, (3.5)

and with T and t as in Equation (3.1). Let M be the number of rows (which is consequentially

identical to the number of columns) of G(T,ϵ). Define the index set

I(T,ϵ) := {0, . . . ,M − 1} ⊂ N0

and the random matrix ζ
(T,ϵ)
X (u) with binary elements

ζ
(T,ϵ)
X,i,j(u) := ZX(si,j ;u) = 1{X(si,j)≥u}, (3.6)

for i, j ∈ I(T,ϵ). For m ∈ N+, let us define

I(T,ϵ,m) := {i ∈ I(T,ϵ) : i ≡ 0 (mod m)}.

Notice that G(T,ϵ) = {si,j : i, j ∈ I(T,ϵ)}. We provide an illustration of G(T,ϵ) in Figure 3.2, where

the elements with indices in I(T,ϵ,m), with m = 2, are highlighted in red. We highlight that our

proposed estimator for P TX(u) will be based only on the sparse observations ζ
(T,ϵ)
X,i,j(u) for i, j ∈ I(T,ϵ)

(see Section 3.2.2).

Remark 3.1. The data matrix ζ
(T,ϵ)
X (u) in (3.6) can be represented as a binary digital image as

depicted in Figure 3.3 (b). In this framework, M corresponds to the pixel density or grid size of

the image (an integer number of pixels per distance of 2t, the side length of T ), and ϵ corresponds

to the pixel width. The quantities are related by |Mϵ− 2t| ≤ ϵ.
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(a) (b)

Figure 3.3: Panel (a): EX(T, 0.5), as shown in Figure 3.1 panel (c), superposed with the elements

of the grid G(T,ϵ) shown as black circles. Here, ϵ ≈ 0.32. Panel (b): the binary matrix ζ
(T,ϵ)
X (0.5), de-

fined in (3.6), represented as a binary digital image (dark pixels corresponding to 1, and white to 0).

3.2.2 Definition of the estimators

Here, we introduce a class of estimators of P TX(u) that use only the information contained in ζ
(T,ϵ)
X (u),

defined in (3.6). Loosely speaking, ζ
(T,ϵ)
X (u) is separated into submatrices, and in each submatrix

the length of the line segment that approximately separates the 1’s from the 0’s is computed. In

this way, the estimator obtained depends on the choice of norm used.

Definition 3.4. With || · ||p denoting the p-norm, for p ∈ N+, define

P̂
(p)
X (ϵ,m;T, u) := ϵ

∑
a∈I(T,ϵ,m)

∑
b∈I(T,ϵ,m)

∣∣∣∣(NX,h(a, b;u), NX,v(a, b;u)
)∣∣∣∣

p
, (3.7)

where

NX,h(a, b;u) :=

(a+m−1)∧(M−1)∑
i=a

(b+m−1)∧(M−2)∑
j=b

|ζ(T,ϵ)X,i,j(u)− ζ
(T,ϵ)
X,i,j+1(u)|, a, b ∈ I(T,ϵ,m),

and

NX,v(a, b;u) :=

(a+m−1)∧(M−2)∑
i=a

(b+m−1)∧(M−1)∑
j=b

|ζ(T,ϵ)X,i,j(u)− ζ
(T,ϵ)
X,i+1,j(u)|, a, b ∈ I(T,ϵ,m).

Continuing from the framework discussed in Remark 3.1, NX,v (resp. NX,h) counts the number

of pixels in a subrectangle—of size at most m × m pixels—of T that differ in shade from the

neighbouring pixel to the right (resp. above). In other words, NX,v (resp. NX,h) provides a count

of significant vertical (resp. horizontal) pixel edges in the subrectangle.

By considering the estimator in (3.7) with norm p = 1, one recovers the estimator that is exten-

sively studied in Biermé and Desolneux (2021) and Abaach et al. (2021). It counts the number of

pixel edges that separate pixels of different color, and rescales the count by ϵ. Thus, P̂
(1)
X (ϵ,m;T, u)
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(a) (b) (c)

Figure 3.4: Panel (a): the curve E∂X(T, u) is shown in relation to the points in G(T,ϵ) in (3.5). Points

in the dark regions are assigned a value of 1 in the matrix ζ
(T,ϵ)
X (u), and points in white are assigned

a value of 0. The points outlined in red have indices in I(T,ϵ,m) with m = 2. In effect, P̂
(1)
X (ϵ;T, u)

is calculated by counting the pixel edges shown in green (see panel (b)), whereas P̂
(2)
X (ϵ, 2;T, u) is

calculated by summing the lengths of the blue piecewise linear curves (see panel (c)).

will not depend on m, so we write P̂
(1)
X (ϵ;T, u) in place of P̂

(1)
X (ϵ,m;T, u).

Figure 3.4 illustrates the behavior of the estimator in Equation (3.7) constructed with two different

norms; the norms associated to p = 1 and p = 2. In addition, Table 3.1 provides the corresponding

terms in Equation (3.7) for this example, for each a, b ∈ I(T,ϵ,2) = {0, 2, 4}, for both p = 1 (second-

last column) and p = 2 (last column).

The estimator in (3.7) with norm p = 2 approximates the length of E∂X(T, u) by the total length

of a set of line segments that approximate the curve (see Figure 3.4 (c)). The number of possible

orientations of each line segment grows with m; so does the length of each line segment, which,

loosely speaking, is on the order of mϵ. Therefore, it is not surprising that P̂
(2)
X (ϵ,m;T, u) depends

on m, and our statistical analysis in Section 3.3 therefore takes place in the regime where m is large

and mϵ is small. In Section 3.4.4, we provide an adaptive method to select the hyperparameter m

when ϵ is given as a feature of the data.

3.3 Main Results

The focus of this section is to prove convergence results for the estimator P̂
(2)
X (ϵ,m;T, u). The

statistical analysis is separated into two regimes. In Section 3.3.1, we consider the domain T

to be fixed and decrease the pixel width while sending m to infinity. Section 3.3.2 studies the

behaviour of the estimator on a sequence of growing domains. In particular, in Section 3.3.2, we

study the asymptotic relationships between ϵ, m, and the Lebesgue measure of the sequence of

domains, and provide sufficient conditions for good convergence properties. We conclude with a

multivariate Central Limit Theorem in the case where multiple levels (u1, . . . , uk) are considered

simultaneously under the assumption that the underlying random field X is affine and strongly

mixing (see Section 3.3.2 for the theorem and the notions of affinity and strongly mixing).
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Table 3.1: P̂
(p)
X (ϵ,m;T, u) in (3.7) computed for the discretized excursion set in Figure 3.4. The

last two columns correspond to the terms
(
NX,v(a, b;u)

p + NX,h(a, b;u)
p
)1/p

for p = 1 and p = 2.

Summing each term yields P̂
(p)
X (ϵ,m;T, u), as shown in bold in the final row.

a ∈ I(T,ϵ,m) b ∈ I(T,ϵ,m) NX,h(a, b;u) NX,v(a, b;u) p = 1 p = 2

(column) (row)

0 0 2 0 2 2

0 2 1 0 1 1

0 4 1 2 3
√
5

2 0 2 1 3
√
5

2 2 0 2 2 2

2 4 0 0 0 0

4 0 0 0 0 0

4 2 1 0 1 1

4 4 1 1 2
√
2

P̂
(p)
X (ϵ,m;T, u) : 14ϵ 11.89ϵ

3.3.1 On a fixed domain with decreasing pixel width

Here, we are interested in the behaviour of the estimator P̂
(2)
X (ϵ,m;T, u) in the case where the

domain T = [−t, t]2 is fixed, and the spacing between the locations of the observations in the

matrix ζ
(T,ϵ)
X (u) tends to 0. We proceed to show that the resulting perimeter estimate converges

almost surely to P TX(u) and give the rate of convergence.

Theorem 3.1. Let (mn)n≥1 be a non-decreasing sequence in N+ tending to ∞ as n → ∞. Let

(ϵn)n≥1 be a sequence in R+ such that mnϵ
2/3
n converges to a constant C ∈ R+ and that the vertices

of T are contained in G(T,ϵn) for all n ∈ N+. Then, under Assumptions 3.1 and 3.2, for fixed u ∈ R,
it holds that

gn
∣∣P̂ (2)
X (ϵn,mn;T, u)− P TX(u)

∣∣ a.s.−→ 0, n→ ∞,

where (gn)n≥1 is any non-decreasing sequence such that gn = o(mn).

The proof of Theorem 3.1 is postponed to Section 3.5.

Remark 3.2. Theorem 3.1 is a statement about the multigrid convergence (see, for instance,

Definition 2 of Coeurjolly and Klette (2002)) of P̂
(2)
X (ϵn,mn;T, u) to P TX(u) as n → ∞ for almost

all sample paths of the random field X. The speed of this convergence is O(1/mn).

Theorem 3.1 requires that the vertices of T are in G(T,ϵn) for all n ∈ N+, for example as depicted in

Figure 3.2. This prevents the possibility of there being long segments of E∂X(T, u) that remain close

to the border of T so as to not pass between elements of G(T,ϵn). In addition, it is supposed that the
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sequence (mn)n≥1 is asymptotically equivalent to (ϵ
−2/3
n )n≥1, which gives the fastest possible rate

of convergence of P̂
(2)
X (ϵn,mn;T, u) to P TX(u). By relaxing this condition, we obtain the following

corollary.

Corollary 3.1. Under the conditions of Theorem 3.1, if the requirement that mnϵ
2/3
n → C is relaxed

to mnϵn → 0, it holds that

P̂
(2)
X (ϵn,mn;T, u)

a.s.−→ P TX(u), n→ ∞.

The proof is postponed to Section 3.5. The following proposition shows that convergence in L1(Ω)

holds under slightly stronger assumptions. The proof can also be found in Section 3.5.

Proposition 3.1. Let (mn)n≥1 be a non-decreasing sequence in N+ tending to ∞ as n → ∞. Let

(ϵn)n≥1 be a sequence in R+ such that mnϵn → 0 as n→ ∞, and that the vertices of T are contained

in G(T,ϵn) for all n ∈ N+. Then under Assumptions 3.1, 3.2, and 3.3,∣∣P̂ (2)
X (ϵn,mn;T, u)− P TX(u)

∣∣ L1

−→ 0, n→ ∞,

for any fixed u ∈ R.

Remark 3.3. It is shown in Proposition 5 of Biermé and Desolneux (2021) that for a random field

X satisfying Assumption 3.1, if, in addition, X is stationary, Gaussian, isotropic, and the supremum

of the first and second order partial derivatives of X in the domain T are in L1(Ω), then

E[P̂ (1)
X (ϵ;T, u)] → 4

π
E[P TX(u)], (3.8)

as ϵ → 0. Proposition 3.1 is a stronger result under weaker assumptions on X. With neither

Gaussianity, stationarity, nor isotropy imposed on X, it holds that

E[P̂ (2)
X (ϵ,m;T, u)] → E[P TX(u)],

as ϵ → 0 and m → ∞ under the constraint mϵ → 0. Thus, the estimator P̂
(2)
X (ϵ,m;T, u) does not

suffer from the asymptotic bias factor of 4/π.

3.3.2 On a growing domain with decreasing pixel width

In this section, the performance of P̂
(2)
X (ϵn,mn;Tn, u) is investigated for sequences (ϵn)n≥1, (mn)n≥1,

and (Tn)n≥1 satisfying ϵn → 0, mn → ∞, and Tn ↗ R2 as n→ ∞. To manage the added complexity

of the sequence of growing domains, first define

Tn := {ns : s ∈ T},
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EX(u)

T

Figure 3.5: Illustration of the notions of reach and resolution in Definition 3.5. The reach of EX(T, u)
is greater than the radius, rgreen, of the small green circles with solid border. The reach of T \EX(u)
is also greater than rgreen. Moreover, the minimum distance between points in YTX(u), highlighted in
purple, exceeds 2rgreen. Therefore, EX(u) is resolved by rgreen in T (see Definition 3.5). Conversely,
it is clear that EX(u) is not resolved in T by the radius of the larger orange circles with dashed
border.

such that Tn is a dilation of the fixed domain T = [−t, t]2. The side length of the square domain

Tn is then 2tn. The challenge then becomes determining sufficient asymptotic relations for the

sequences (ϵn)n≥1 and (mn)n≥1 to ensure desirable statistical properties of our estimator.

Asymptotics for the pixel width

We relate the domain size with an appropriate pixel width by defining resolution in the context of

excursion sets of random fields, inspired by the notion of optical resolution.

Definition 3.5. Define the random variable

ΛTX(u) := min
{
reach

(
EX(T, u)

)
, reach

(
T \ EX(u)

)
, reach

(
YTX(u)

)}
.

For λ ∈ R+, we say that “ EX(u) is resolved by λ in T ” whenever the random event {λ < ΛTX(u)}
occurs.

This makes ΛTX(u) a random geometrical description of EX(u) in the domain T : ΛTX(u) is the

supremum of the set of λ ∈ R+ such that one can roll a ball of radius λ along both sides of the curve

E∂X(T, u), and that the distances between points in YTX(u) are all at least 2λ. Figure 3.5 clarifies

some of the notions introduced in Definition 3.5. This definition allows us to relate the domain size

with the pixel width, since the estimation error can be bounded in the case where EX(u) is resolved

by mnϵn in Tn (see the proof of Theorem 3.1).

Remark 3.4. Under Assumptions 3.1 and 3.2, the random sets EX(T, u) and T \ EX(u) have

positive reach almost surely, since EX(u) and E−X(u) have a twice differentiable boundary every-

where in T , almost surely, for all u ∈ R. The intersection of these sets with the compact rectangle

T guarantees that the reach of each intersection is positive (Biermé et al., 2019, p. 541). The
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minimum distance between points in YTX(u) is positive by Equation (3.3) and the compactness of

T . Therefore, ΛTX(u) in Definition 3.5 is almost surely positive for all u ∈ R. Equivalently, for any
u ∈ R,

P
(
lim inf
λ→0

{
λ < ΛTX(u)

})
= 1,

i.e., with probability 1, there exists a sufficiently small positive λ that resolves EX(u) in T .

With the notion of resolution established, we state an important convergence result for the se-

quence of growing domains (Tn)n≥1 under general regularity assumptions.

Proposition 3.2. Let X be a random field satisfying Assumptions 3.1, 3.2, and 3.3. Let (mn)n≥1 be

a non-decreasing sequence in N+ such that mn/n → ∞. Let (ϵn)n≥1 be a non-increasing sequence

in R+ satisfying ϵn = O
(
m

−3/2
n

)
. Moreover, suppose that 2t is an integer multiple of ϵn for all

n ∈ N+, and P
(
mnϵn < ΛTnX (u)

)
→ 1 as n→ ∞. Then for any u ∈ R,

P̂
(2)
X (ϵn,mn;Tn, u)− P TnX (u)√

ν(Tn)

P−→ 0,

as n→ ∞.

The proof of Proposition 3.2 is postponed to Section 3.5.

Remark 3.5. One example of a sequence (ϵn)n≥1 satisfying the constraints in Proposition 3.2 is

constructed by letting ϵn be the largest element in the sequence (2t/k)k≥1 such that ϵn ≤ m
−3/2
n

and P
(
ΛTnX (u) ≤ mnϵn

)
≤ 1/n, where ΛTnX (u) is defined in Definition 3.5. Such a sequence (ϵn)n≥1

exists since P(ΛTnX (u) ≤ 0) = 0 for all n ∈ N+ as discussed in Remark 3.4. The idea is to have

the sequence λn := mnϵn tend to 0 faster than the quantiles of ΛTnX (u), which is difficult to verify

analytically. However, in practice, for a given realization of EX(u), one can estimate ΛTX(u) by first

estimating the reach of the sets EX(T, u) and T \EX(u) (Aamari et al., 2019; Cotsakis, 2023) and

the vector coordinates of the points in YTX(u), defined in (3.2).

Proposition 3.2 establishes that for a large class of random fields, as the domain grows and the grid

spacing decreases, the error in the perimeter estimation is negligible compared to the side length of

the domain. Such a comparison is made possible by the conditions on the sequences (mn)n≥1 and

(ϵn)n≥1, since the indexing variable n is proportional to the side length of Tn.

Asymptotic normality of the perimeter estimator

In this section, we prove a multivariate Central Limit Theorem for our estimator as stated in

Theorem 3.2 below, based on the results from Iribarren (1989). The interested reader is also

referred to Cabaña (1987).

First, we recall two important notions regarding the random fields for which the theorem applies.

Recall that a random field X = {X(s) : s ∈ R2} is said to be affine if it is equal in distribution
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to {Y (As) : s ∈ R2}, where Y is stationary, isotropic, and A is a positive-definite 2 × 2 matrix.

Consequentially, the resulting X is stationary but may be anisotropic. Note that it is common

in geostatistics literature to use the nomenclature geometric anisotropy when referring to affine

random fields (Chiles and Delfiner, 2009).

In the case of X affine, a useful expression for E[P TX(u)], when it exists, is provided in Cabaña

(1987, Section 1.1); that is,

E[P TX(u)] =
ellipse(λ1, λ2)

2π
E[P TY (u)], (3.9)

with λ1 and λ1 denoting the eigenvalues of A, and ellipse(a, b) denoting the perimeter of an ellipse

with semi-minor and semi-major axes a and b.

Recall that X is said to be strongly mixing, or uniformly mixing, if there exists a function ψ(ρ) :

R+ → R+ tending to 0 as ρ → ∞, such that for any two measurable sets S1, S2 ⊂ R2 that satisfy

inf{||s1 − s2||2 : s1 ∈ S1, s2 ∈ S2} =: ρ > 0, and for any events A1 and A2 in the the sigma

fields generated by {X(s) : s ∈ S1} and {X(s) : s ∈ S2} respectively, it holds that |P(A1 ∩ A2) −
P(A1)P(A2)| < ψ(ρ).

Under the assumption that the underlying random field is affine and strongly mixing, we prove

the multivariate central limit theorem for our estimator. The proof of Theorem 3.2 is postponed to

Section 3.5.

Theorem 3.2. Let X be a stationary, affine, strongly mixing random field satisfying Assump-

tions 3.1–3.3. With ∇X denoting the gradient of X, suppose that the joint density function of

(X,∇X) is bounded. Let k ∈ N+ and fix the vector u := (u1, . . . , uk) ∈ Rk such that ui ̸= uj for

1 ≤ i < j ≤ k. Let the sequences (mn)n≥1 and (ϵn)n≥1 satisfy the constraints in Proposition 3.2 for

all uj, with j = 1, . . . , k. Let

P̂
(2)
X (ϵn,mn;Tn,u) :=

(
P̂

(2)
X (ϵn,mn;Tn, u1), . . . , P̂

(2)
X (ϵn,mn;Tn, uk)

)
and

P TnX (u) :=
(
P TnX (u1), . . . , P

Tn
X (uk)

)
.

Then there exists a finite, non-degenerate (i.e., full-rank) covariance matrix Σ(u) such that

P̂
(2)
X (ϵn,mn;Tn,u)− E[P TnX (u)]√

ν(Tn)

d−→ Nk

(
0,Σ(u)

)
, n→ ∞, (3.10)

with E[P TnX (uj)] as in (3.9) for all uj, j = 1, . . . , k. The elements of Σ(u) are of the form

Σij(u) =

∫
R2

Hs(ui, uj) ds, (3.11)
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where

Hs(ui, uj) =gs(ui, uj)E
[
||∇X(0)||2||∇X(s)||2

∣∣ X(0) = ui, X(s) = uj

]
− f(ui)f(uj)E

[
||∇X(0)||2

∣∣ X(0) = ui

]
E
[
||∇X(s)||2

∣∣ X(s) = uj

]
,

with f denoting the marginal density function of X, and gs, the joint density function of
(
X(0), X(s)

)
.

As seen in the proof of Theorem 3.2, the rescaled limiting Gaussian distribution of our perimeter

estimator—in our pixelated framework—coincides with that of P TnX (u), the true perimeter in the

continuous framework.

Corollary 3.2, stated below, provides a succinct set of conditions on X that imply the result of

Theorem 3.2. In particular, the additional assumption of Gaussianity of the underlying random

fields is introduced.

Corollary 3.2. Suppose that there exists a positive-definite matrix A such that the random field X

is equal in distribution to {Y (As) : s ∈ R2}, for some C2, stationary, isotropic, centered, Gaussian

random field Y with covariance function r(h), h ∈ R2. Define

Ψ(s) = max
{
|r(s)|, |r1(s)|, |r2(s)|, |r11(s)|, |r22(s)|, |r12(s)|

}
,

for s ∈ R2, where ri := ∂r/∂si and rij := ∂2r/(∂si∂sj) for i, j ∈ {1, 2}. Suppose further that

Ψ(s) → 0 as ||s||2 → ∞,
∫
R2 |Ψ(s)| ds < ∞, and

∫
R2 r(s) ds > 0. Then the result of Theorem 3.2

holds.

The proof can be found in Section 3.5. We remark that a vast literature exists on the asymptotic

distribution of level functionals of Gaussian random fields (Wschebor, 1985; Meschenmoser and

Shashkin, 2013; Shashkin, 2013; Di Bernardino et al., 2017; Beliaev et al., 2020; Di Bernardino and

Duval, 2022), in which case, the asymptotic variance-covariance matrix in (3.11) can be written by

projecting the Gaussian functionals of interest onto the Itô-Wiener chaos (the interested reader is

referred, for instance, to Kratz and León, 2001; Estrade and León, 2016; Müller, 2017; Kratz and

Vadlamani, 2018; Berzin, 2021).

3.4 Simulation studies

In this section, we illustrate finite sample performances of our estimator P̂
(2)
X (ϵ,m;T,u) on simulated

data. More precisely, we wish to showcase the results of Proposition 3.1 and Theorem 3.2. Fur-

thermore, we aim to compare the estimators constructed from the norms p = 1 and p = 2 in (3.7).

Our simulation studies are implemented both for anisotropic (see Section 3.4.2) and isotropic (see

Section 3.4.3) random fields. In addition, we provide an adaptive method for choosing the hyper-

parameter m for the estimator P̂
(2)
X (ϵ,m;T, u) (see Section 3.4.4). The random fields used in each

simulation are elements of the class in Example 3.1 below.
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Example 3.1. Let Y be a stationary, isotropic, centered, Gaussian random field with a Matérn

covariance function

r(h) :=
21−ν

Γ(ν)

(√
2ν||h||2

)ν
Kν(

√
2ν||h||2), h ∈ R2,

where Kν is the modified Bessel function of the second kind and ν = 2.5. To clarify, the range

parameter in the covariance function is fixed as 1.

Let {X(s;σ1, σ2, θ) : s ∈ R2} be a random field equal in distribution to {Y (As) : s ∈ R2}, where

A :=

σ1 0

0 σ2

 cos θ sin θ

− sin θ cos θ

 , (3.12)

σ1, σ2 ∈ R+, σ1 ≥ σ2, and θ ∈ [0, π). In this way, X(·;σ1, σ2, θ) is affine with affinity parameters

k = (1−σ22/σ21)1/2 and θ (Cabaña, 1987). Notice that X(·;σ1, σ2, θ) is also Gaussian with covariance

function given by rX(h) = r(Ah). Although A is not necessarily positive-definite, there exists a

unique positive-definite matrix B with eigenvalues σ1 and σ2 such that ||Ah||2 = ||Bh||2 for all

h ∈ R2. Note also that σ1 = σ2 if and only if X is isotropic, in which case, X does not depend on θ.

Throughout Section 3.4, X(·;σ1, σ2, θ) and Y denote the random fields in Example 3.1. The

former is sometimes abbreviated as X, and the dependence on σ1, σ2, and θ should be understood

implicitly. The results in this section can be reproduced using the code made available at https:

//github.com/RyanCotsakis/excursion-sets.

3.4.1 A proxy for the true perimeter

In what follows, the R package RandomFields is used to generate realizations of random fields on

regular grids. However, when simulating the random field X(·;σ1, σ2, θ) in this way, it is impossible

to infer the exact value of P TX(u) for any level u ∈ R due to the discretization of the domain T . To

overcome this issue, a proxy is used for the true perimeter. In Appendix B of Biermé and Desolneux

(2021), the authors introduce an estimator that they show to be multigrid convergent for P TX(u),

for any u ∈ R. Moreover, the estimator takes as its arguments the values of X, a random field with

C2 sample paths, evaluated on a regular grid, i.e., X(si,j) for i, j ∈ I(T,ϵ)—precisely the output of

the simulation from the RandomFields package. For a pixel width of ϵ, denote this estimator by

P̃X(ϵ;T, u). Notice that P̃X(ϵ;T, u) requires more information than P̂
(2)
X (ϵ,m;T, u). While P̃X has

access to the value of X evaluated on the regular square tiling G(T,ϵ), defined in (3.5), P̂
(2)
X only has

access to the binary black-and-white matrix ζ
(T,ϵ)
X (u), defined in (3.6).

Convergence of P̃X(ϵn;T, u) to P TX(u) in L1(Ω) follows from the same arguments that we use in

the proof of our Proposition 3.1. Therefore, for any sequence (hn)n≥1,∣∣hn − P̃X(ϵn;T, u)
∣∣ L1

−→ 0 ⇐⇒ hn
L1

−→ P TX(u) (3.13)
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(a) θ = π/8 (b) θ = π/4 (c)

θ θ

Figure 3.6: Illustration of the effect of anisotropy on the perimeter length estimation. The
anisotropic random field X(·; 2, 0.5, θ) is described in Example 3.1. Here, T = [−2.5, 2.5]2 and
ϵ = 5/255. Panels (a, b): a realization of EX(T, 0.5) shown as the dark region for the correspond-
ing value of θ. The matrix A, defined in (3.12), maps the drawn ellipse to a circle. Panel (c):
for several θ ∈ [0, π/2], 200 independent realizations of X are simulated, and the mean values of

(π/4)P̂
(1)
X (ϵ;T, 0.5)− P̃X(ϵ;T, 0.5) (green squares) and P̂

(2)
X (ϵ, 11;T, 0.5)− P̃X(ϵ;T, 0.5) (blue circles)

are plotted.

as n→ ∞.

3.4.2 The anisotropic case

None of the assumptions established thus far prohibit anisotropy. In fact, all of the results developed

in Section 3.3 are applicable to all of the random fields parameterized as in Example 3.1. In Sec-

tions 3.4.2, 3.4.2, and 3.4.2, we consider such random fields that are anisotropic (i.e., parametrized

by σ1 ̸= σ2). To avoid confusion, we consistently choose (σ1, σ2) = (2, 0.5).

Mean perimeter estimate as a function of the angle θ

The random fields X in Example 3.1 parametrized by (σ1, σ2) = (2, 0.5) and several θ ∈ [0, π/2]

are simulated in the domain T = [−2.5, 2.5]2, discretized into 256 × 256 pixels. With ϵ denoting

the resulting pixel width, the performances of the estimators (π/4)P̂
(1)
X (ϵ;T, u) and P̂

(2)
X (ϵ,m;T, u)

with m = 11 are compared at the level u = 0.5. For each of the several values of θ chosen in

[0, π/2], 200 independent replications of X(·; 2, 0.5, θ) are simulated in the domain T and the mean

error in the estimates of P TX(0.5) is plotted for each of the two estimators: the sample means

of (π/4)P̂
(1)
X (ϵ;T, 0.5) − P̃X(ϵ;T, 0.5) (shown in green) and P̂

(2)
X (ϵ, 11;T, 0.5) (shown in blue), and

P̃X(ϵ;T, 0.5) − P̃X(ϵ;T, 0.5) (shown in black) in Figure 3.6 (c). Notice that E
[
(π/4)P̂

(1)
X (ϵ;T, 0.5)

]
depends on θ, since E

[
P TX(0.5)

]
= 19.4 for all θ. The latter expectation is computed via Equa-

tion (3.9) and the Gaussian Kinematic Formula in Adler and Taylor (2007, Theorem 15.9.5). The

sample average of P̂
(2)
X (ϵ, 11;T, 0.5) − P̃X(ϵ;T, 0.5) shown in Figure 3.6 is nearly 0 for all θ, thus

supporting our claim that that our estimator adapts to anisotropic random fields.
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(a) n = 2 (b) n = 3 (c)

Figure 3.7: The case of decreasing pixel width with the domain T = [−2.5, 2.5]2 fixed. Here, u = 0.5;
Mn, mn, and ϵn are given in (3.14); and X in Example 3.1, parametrized by (σ1, σ2, θ) = (2, 0.5, 0),
is anisotropic. Panel (a): the excursion set (shown as the dark region) is generated using M2 ×M2

pixels, and the dashed red lines have a spacing of 2ϵ2, where ϵ2 is the pixel width. Panel (b): the
size of the image (measured in pixels) is M3 ×M3, and the dashed red lines have a spacing of 3ϵ3,

where ϵ3 is the pixel width. Panel (c): the approximation of P̃X(ϵn;T, 0.5) by (π/4)P̂
(1)
X (ϵn;T, 0.5)

(green squares) and by P̂
(2)
X (ϵn,mn;T, 0.5) (blue circles) is shown for different values of n. For each

n, the MAE of the approximations are calculated from 500 independent replications of the process
X.

Convergence in mean in the anisotropic case

Let ⌊·⌋ denote the floor function. For n ∈ N+, fix the domain T = [−2.5, 2.5]2 and let

Mn = ⌊10n3/2⌋, mn = n, and ϵn = 5/(Mn − 1), (3.14)

so that the constraints in Theorem 3.1 and Proposition 3.1 are satisfied. Let X(·; 2, 0.5, 0) be the

random field in Example 3.1 associated to (σ1, σ2, θ) = (2, 0.5, 0). As noted in Remark 3.1, the

quantity Mn should be interpreted as the pixel density of the discretized domain T , and ϵn should

be understood as the corresponding pixel width. Figure 3.9 provides two illustrations of EX(u),

with u = 0.5, in the domain T ; one containing M2 ×M2 pixels, and another containing of M3 ×M3

pixels. In this study, E[P TX(0.5)] = 21.3 (computed via Equation (3.9) and the Gaussian Kinematic

Formula in Adler and Taylor (2007, Theorem 15.9.5)).

To illustrate the convergence of P̂
(2)
X (ϵn,mn;T, 0.5) to P TX(0.5) in L1(Ω), the left-hand side of

Equation (3.13) is shown numerically with hn = P̂
(2)
X (ϵn,mn;T, 0.5). Figure 3.7 shows how the

mean absolute error (MAE) of the approximation of P̃X(ϵn;T, 0.5) (the proxy for P TX(0.5); see

Section 3.4.1) by the estimator P̂
(2)
X (ϵn,mn;T, 0.5) (shown in blue) approaches 0 as n→ ∞. There

is no convergence result for the estimator (π/4)P̂
(1)
X (ϵn;T, 0.5) (shown in green) since it is not

well-suited for anisotropic random fields.
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(a) (b)

Figure 3.8: An illustration of the asymptotic normality of our estimator for the anisotropic random
field X(·; 2, 0.5, π/4) in Example 3.1. We simulated 200 independent replications of the vector

P̂
(2)
X (ϵ,m;T,u) with u = (0, 0.5, 1), T = [−15, 15]2, m = 7, ϵ = 30/1023. Panel (a): the margins of

P̂
(2)
X (ϵ,m;T,u)−E[P TX(u)], rescaled using the sample variances, plotted on a normal qq-plot. Panel

(b): the squared Mahalanobis distance of P̂
(2)
X (ϵ,m;T,u) to E[P TX(u)], calculated via the sample

covariance matrix of P̂
(2)
X (ϵ,m;T,u), plotted against the quantiles of a χ2(3) random variable with

3 degrees of freedom.

Asymptotic normality in the anisotropic case

To illustrate the Central Limit Theorem for multiple levels (see Theorem 3.2), we compute P̂
(2)
X (ϵ,m;T,u)

in a large domain T = [−15, 15]2 divided into 1024 × 1024 pixels, with m = 7, u = (0, 0.5, 1), and

X as in Example 3.1 with (σ1, σ2) = (2, 0.5) and θ = π/4. Figure 3.8 shows how the distribu-

tion of the random vector P̂
(2)
X (ϵ,m;T,u) is close to a 3-variate normal distribution with mean

E[P TX(u)] = (793, 700, 481) (computed via Equation (3.9)).

For each component ui of u, we test the null hypothesis that P̂
(2)
X (ϵ,m;T, ui) follows a Gaussian

distribution using the Shapiro-Wilk test. The resulting p-values from the tests are 0.39, 0.49, and

0.31, respectively. Thus, the hypothesis of Gaussianity cannot be rejected at a significant level

for any margin of P̂
(2)
X (ϵ,m;T,u). Using the R package mvnormtest (Jarek, 2012), we test the

null hypothesis that P̂
(2)
X (ϵ,m;T,u) follows a multivariate normal distribution with a multivariate

Shapiro-Wilk test. The test statistic corresponds to a p-value of 0.14, hence, multivariate normality

cannot be rejected at a significant level.

3.4.3 The isotropic case

In what follows, Y denotes the isotropic random field in Example 3.1. This isotropic case allows for

a fair comparison between the estimators (π/4)P̂
(1)
Y (ϵ;T, u) and P̂

(2)
Y (ϵ,m;T, u).

Convergence in mean in the isotropic case

The experiment in Section 3.4.2 is repeated for the isotropic random field Y . Figure 3.9 summarizes

the new results. The MAE of the approximation of P̃Y (ϵn;T, 0.5) by P̂
(1)
Y (ϵn;T, 0.5) (shown in green)
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(a) n = 2 (b) n = 3 (c)

Figure 3.9: The case of decreasing pixel width and fixed domain T = [−2.5, 2.5]2, where u = 0.5;
Mn, mn, and ϵn are given in (3.14); and Y is the isotropic random field in Example 3.1. See the
caption of Figure 3.7 for a more detailed description of each panel.

(a) (b)

Figure 3.10: An illustration of the asymptotic normality of our estimator when considering the
isotropic random field Y in Example 3.1. We simulated 200 independent replications of the vector

P̂
(2)
Y (ϵ,m;T,u) with u = (0, 0.5, 1), T = [−15, 15]2, m = 7, ϵ = 30/1023. See the caption of

Figure 3.8 for a description of each panel.

tends to a positive value, so by (3.13), (π/4)P̂
(1)
Y (ϵn;T, 0.5) does not converge to P TY (0.5) in L

1(Ω),

even though E
[
(π/4)P̂

(1)
Y (ϵn;T, 0.5)

]
→ E

[
P TY (0.5)

]
as n→ ∞ (see Equation (3.8)). The interested

reader is referred to Theorem 3 in Biermé and Desolneux (2021). For reference, E[P TY (0.5)] = 15.6

(computed via the Gaussian Kinematic Formula in Adler and Taylor (2007, Theorem 15.9.5)).

Asymptotic normality in the isotropic case

We repeat the experiment in Section 3.4.2, which tests the asymptotic normality of our estimator,

but now with Y as the underlying random field. The p-values corresponding to the Gaussianity

tests for the levels u = 0, 0.5, and 1 are 0.80, 0.68, and 0.43, respectively. For the multivariate

normality test, the resulting p-value is 0.37. The same diagnostic plots in Section 3.4.2 are provided

in Figure 3.10 for this isotropic case.
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(a) (b) (c)

Figure 3.11: Illustration of the influence of the hyperparameter m. The mean absolute percentage
error (MAPE) of several perimeter estimators is calculated for 1000 independent replications of the
stationary, isotropic, Gaussian random field Y in Example 3.1, with T = [−10, 10]2, u = 0, and
ϵ = 20/511. The proxy P̃Y (ϵ;T, 0) is used to represent the true perimeter P TY (0) for each sample
path (see Section 3.4.1). Panel (a): one particular realization of EY (0) is depicted in T . Shown for
scale in the top-left of the image is a line segment with length 30ϵ. Panel (b): the points plotted in

black correspond to the MAPE of P̂
(2)
Y (ϵ,m;T, 0) for various values of m. The green horizontal line

(0.35%) corresponds to the MAPE of (π/4)P̂
(1)
Y (ϵ;T, 0), which obviously does not depend on m.

The red horizontal line (0.22%) corresponds to the MAPE of P̂
(2)
Y (ϵ,mT

Y ;T, 0), with m
T
Y as in (3.15).

Panel (c): the values of mT
Y computed from the 1000 independent replications of Y .

3.4.4 Hyperparameter selection

In practice, sampling locations often have a fixed spacing, and it is not possible to further decrease

the grid spacing in the discretization. In these cases, the pixel width ϵ is a feature of the data. So, to

use P̂
(2)
X (ϵ,m;T, u) (for an arbitrary modelX), the hyperparametermmust be chosen appropriately.

As a rule-of-thumb, empirical studies suggest that it is reasonable to choose

m = mT
X :=

⌊
Cϵ−2/3

⌋
, (3.15)

with

C :=
1

3

(
ν(T )

Ncc +Nholes

)1/3

,

where Ncc (resp. Nholes) corresponds to the number of connected components (resp. holes) of

EX(T, u). For a sequence (ϵn)n≥1 tending to 0, the corresponding sequence (mn)n≥1 determined

by (3.15) satisfies the asymptotic relationship required by Theorem 3.1.

In practice, the quantities Ncc and Nholes can be estimated by considering the sites in G(T,ϵ)

to be either 4-connected or 8-connected, and colouring each site based on its corresponding value

in ζ
(T,ϵ)
X (u).

Figures 3.11 and 3.12 showcase the performance of P̂
(2)
Y (ϵ,mT

Y ;T, 0), with m
T
Y as in (3.15), for two

different levels of discretization of the isotropic random field Y in Example 3.1.
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(a) (b) (c)

Figure 3.12: See the caption of Figure 3.11 for a description of each panel. In this case, T =

[−2.5, 2.5]2 and ϵ = 5/511. The MAPE of (π/4)P̂
(1)
Y (ϵ;T, 0) is 1.13%, and that of P̂

(2)
Y (ϵ,mT

Y ;T, 0)
is 0.22%.

(a) (b)

Figure 3.13: Illustration of perimeter estimation for several levels u. The stationary, isotropic,
Gaussian random field Y in Example 3.1 is considered on T = [−2.5, 2.5]2 with a discretization of

ϵ = 5/511. Panel (a): the sample mean of 500 independent replications of P̂
(2)
Y (ϵ,mT

Y ;T, u) plotted in
red for several values of u, shown against E[P TY (u)] in black (computed via the Gaussian Kinematic
Formula in Adler and Taylor (2007, Theorem 15.9.5)). Panel (b): the MAE of the approximation

of P̃Y (ϵ;T, u) by P̂
(2)
Y (ϵ,mT

Y ;T, u) (red circles) and (π/4)P̂
(1)
Y (ϵ, ;T, u) (green squares).

3.4.5 Behaviour of the perimeter estimator as a function of the level u

Differently from our previous numerical studies, we illustrate the behaviour of P̂
(2)
Y (ϵ,mT

Y ;T, u) as

a function of the level u in Figure 3.13, where Y is the isotropic random field in Example 3.1. The

same is done for an anisotropic field X in Figure 3.14.

3.5 Proofs

This section provides detailed justifications for the theoretical results stated thus far. The following

definition is used throughout this section.

Definition 3.6. For s ∈ R2, define the set B
(l)
s := [0, l)2 + s, where “ + ” in this context denotes
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(a) (b) (c)

Figure 3.14: The same experiment as depicted in Figure 3.13, but using the stationary, anisotropic,
Gaussian random field X(·; 2, 0.5, 0) in Example 3.1. Panel (a): E[P TX(u)], shown in black, is
calculated via Equation (3.9) and the Gaussian Kinematic Formula in Adler and Taylor (2007,

Theorem 15.9.5). Panel (b): the MAE of the approximation of P̃X(ϵ;T, u) by P̂
(2)
X (ϵ,mT

X ;T, u) (red

circles), (π/4)P̂
(1)
X (ϵ, ;T, u) (green squares), and P̂

(1)
X (ϵ, ;T, u) (dark green triangles). Panel (c): the

MAE associated to P̂
(2)
X (ϵ,mT

X ;T, u) shown again on a more appropriate y-axis scale.

the Minkowski sum. Let ϵ > 0 and m ∈ N+. Define

VTX(ϵ,m;u) := {si,j ∈ G(T,ϵ) : i, j ∈ I(T,ϵ,m), B(mϵ)
si,j ∩ E∂X(T, u) ̸= ∅}.

The following lemma allows us to bound #
(
VTX(ϵ,m;u)

)
, which amounts to an upper bound on

the number of nonzero terms in the sum given by Equation (3.7). See Figure 3.16 in the appendix

for an illustration that complements Lemma 3.1.

Lemma 3.1. Let X be a random field satisfying Assumption 3.1. For any ϵ > 0 and m ∈ N+,

#
(
VTX(ϵ,m;u)

)
≤ 4
(P TX(u)

mϵ
+#

(
ΓTX(u)

))
, a.s.

Proof. The squares of side length mϵ in the set B := {B(mϵ)
si,j : i, j ∈ I(T,ϵ,m)} are disjoint and cover

T . For each γ ∈ ΓTX(u), it is possible to find connected subsets of γ, namely βγ,1, . . . , βγ,Mγ , that

satisfy

γ =

Mγ⋃
i=1

βγ,i,

where

Mγ :=
⌊H1(γ)

mϵ

⌋
+ 1,

and for all i ∈ {1, . . . ,Mγ},
H1(βγ,i) ≤ mϵ.
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(Case 1)

si,j si+1,j

mnϵn

(Case 2)

si,j si+1,j

mnϵn

Figure 3.15: (Case 1) The curve γ shown in black is bounded by the planar arcs of radius mn0ϵn0

shown in blue. (Case 2) Here, γ shown in black is not connected, and the only point in YTX(ω)(u) ∩
B

(mnϵn)
si+1,j is highlighted in purple.

Each βγ,i can intersect at most 4 elements of B. Since

E∂X(T, u) =
⋃

γ∈ΓT
X(u)

Mγ⋃
i=1

βγ,i,

it follows that

#
(
VTX(ϵ,m;u)

)
= #

(
{b ∈ B : b ∩ E∂X(T, u) ̸= ∅}

)
≤ 4

∑
γ∈ΓT

X(u)

Mγ ≤ 4
(P TX(u)

mϵ
+#

(
ΓTX(u)

))
, a.s.

Proof of Theorem 3.1. Let ω ∈ Ω be such that ΛTX(ω)(u), defined in Definition 3.5, is positive (note

that almost any ω ∈ Ω will suffice, as discussed in Remark 3.4). There exists n0 ∈ N+ such that

EX(ω)(u) is resolved by mnϵn in T for all n ≥ n0 (see Definition 3.5). Fix si,j ∈ VTX(ω)(ϵn,mn;u)

and n ≥ n0. Let γ := B
(mnϵn)
si,j ∩ E∂X(ω)(T, u). It follows from our construction that YTX(ω)(u) ∩ γ

contains at most one element, since the spacing between points in YTX(ω)(u) is larger than the

diameter of B
(mnϵn)
si,j . It also follows from our construction that γ is either connected, or the union

of two maximally connected subsets. To see this, note that the planar curvature of γ does not

exceed 1/(mn0ϵn0) since mn0ϵn0 is smaller than the reach of both EX(ω)(T, u) and T \ EX(ω)(u).

Therefore, the curve is bounded by the planar arcs of radiusmn0ϵn0 as shown in Figure 3.15 (Dubins,

1961). We aim to bound the absolute difference between the length of γ and its contribution to

P̂
(2)
X(ω)(ϵn,mn;T, u). To this end, the two cases shown in Figure 3.15 are considered separately.

Case 1: The curve γ is connected (see the left panel of Figure 3.15). The closure of γ can be
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parametrized by a continuous injective vector function x : [0, 1] → R2. For α ∈ [0, 1], define

TVk(α; si,j) :=

∫ α

0
|x′k(s)| ds, k ∈ {1, 2}, (3.16)

so that TVk(1; si,j) corresponds to the total variation of γ in the kth principle Cartesian direc-

tion of R2. As a consequence of the coarea formula (Adler and Taylor, 2007, Equation (7.4.15)),

the quantity ϵnNX(ω),h(i, j;u) (see Definition 3.4) is a Riemann sum that approximates the

definite integral TV1(1; si,j). The total error can therefore be bounded above by∣∣ϵnNX(ω),h(i, j;u)− TV1(1; si,j)
∣∣ ≤ 4ϵn, (3.17)

as suggested by Figure 3.17, found in the appendix. Analogously,∣∣ϵnNX(ω),v(i, j;u)− TV2(1; si,j)
∣∣ ≤ 4ϵn.

Let

l̂n(si,j) := ϵn
∣∣∣∣(NX(ω),v(i, j;u), NX(ω),h(i, j;u)

)∣∣∣∣
2
, (3.18)

and we achieve the following bound by the triangle inequality∣∣∣l̂n(si,j)− ∣∣∣∣(TV1(1; si,j),TV2(1; si,j)
)∣∣∣∣

2

∣∣∣ ≤ 4
√
2ϵn. (3.19)

It is clear that

||x(1)− x(0)||2 ≤
∣∣∣∣(TV1(1; si,j),TV2(1; si,j)

)∣∣∣∣
2
, (3.20)

since the computation of the left-hand side of Equation (3.20) involves the same integral as

in (3.16) but without the absolute values. In addition, let

l(α; si,j) :=

∫ α

0
||x′(s)||2 ds

denote the length of x(s) for s ∈ [0, α]. It follows from the definition of the derivative and the

reverse triangle inequality that for all α ∈ (0, 1),∣∣∣∣ ∂∂α ∣∣∣∣(TV1(α; si,j),TV2(α; si,j)
)∣∣∣∣

2

∣∣∣∣ ≤ ∣∣∣∣(x′1(α), x′2(α))∣∣∣∣2 = ∂

∂α
l(α; si,j).

Therefore, ∣∣∣∣(TV1(1; si,j),TV2(1; si,j)
)∣∣∣∣

2
≤ l(1; si,j). (3.21)

Since the curvature of γ is bounded above by the inverse of ΛTX(ω)(u), we apply a well known
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result from Schwartz (Dubins, 1961) that guarantees that

l(1; si,j) ≤ a(si,j), (3.22)

where a(si,j) is the length of the smallest planar arc with radius mn0ϵn0 that has endpoints

x(0) and x(1). The Taylor expansion of the sine function shows the existence of K ∈ R+

independent of si,j and n such that∣∣∣a(si,j)− ||x(1)− x(0)||2
∣∣∣ ≤ K||x(1)− x(0)||32 ≤ K(

√
2mnϵn)

3. (3.23)

Assembling the bounds demonstrated in Equations (3.20), (3.21), and (3.22), we get

||x(1)− x(0)||2 ≤
∣∣∣∣(TV1(1; si,j),TV2(1; si,j)

)∣∣∣∣
2
≤ l(1; si,j) ≤ a(si,j),

which in combination with (3.23) implies∣∣∣l(1; si,j)− ∣∣∣∣(TV1(1; si,j),TV2(1; si,j)
)∣∣∣∣

2

∣∣∣ ≤ K(
√
2mnϵn)

3. (3.24)

Now, combining Equations (3.24) and (3.19) by the triangle inequality yields∣∣∣l̂n(si,j)− l(1; si,j)
∣∣∣ ≤ K(

√
2mnϵn)

3 + 4
√
2ϵn. (3.25)

Case 2: The curve γ has two connected components (see the right panel of Figure 3.15). Similarly

to Case 1, we parametrize the closure of each maximally connected subset of γ with continuous

injective vector functions x : [0, 1] → R2 and y : [0, 1] → R2. For α ∈ [0, 1], define

TVk(α; si,j) :=

∫ α

0

(
|x′k(s)|+ |y′k(s)|

)
ds, k ∈ {1, 2}.

With l̂n(si,j) defined as in (3.18), Equation (3.19) holds. Now, consider the curve γ̃ :=

(B
(mnϵn)
si,j ∪B(mnϵn)

si+1,j )∩E∂X(ω)(T, u), which is γ in union with the middle section in the adjacent

box B
(mnϵn)
si+1,j (where we have assumed, without loss of generality, that the “middle section” is

in the box to the right). It is clear that γ̃ is connected, so its closure can be parametrized by

the continuous injective vector function z : [0, 1] → R2. Define

T̃Vk(α; si,j) :=

∫ α

0
|z′k(s)| ds, k ∈ {1, 2}

and

l̃(α; si,j) :=

∫ α

0
||z′(s)||2 ds.
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By the same arguments that led to Equation (3.24), it holds that

0 ≤ l̃(1; si,j)−
∣∣∣∣(T̃V1(1; si,j), T̃V2(1; si,j)

)∣∣∣∣
2
≤ K(

√
2mnϵn)

3, (3.26)

where K ∈ R+ is independent of si,j and n. Let

l(1; si,j) :=

∫ 1

0

(
||x′(s)||2 + ||y′(s)||2

)
ds

be the total length of γ. Then l̃(1; si,j) = l(1; si,j) + l(1; si+1,j), and∣∣∣∣(T̃V1(1; si,j), T̃V2(1; si,j)
)∣∣∣∣

2
≤
∣∣∣∣(TV1(1; si,j),TV2(1; si,j)

)∣∣∣∣
2

+
∣∣∣∣(TV1(1; si+1,j),TV2(1; si+1,j)

)∣∣∣∣
2

by the triangle inequality. Therefore, (3.26) can be written as(
l(1; si,j)−

∣∣∣∣(TV1(1; si,j),TV2(1; si,j)
)∣∣∣∣

2

)
+(

l(1; si+1,j)−
∣∣∣∣(TV1(1; si+1,j),TV2(1; si+1,j)

)∣∣∣∣
2

)
≤ K(

√
2mnϵn)

3. (3.27)

By the arguments in Case 1 that led to Equation (3.21), it follows that

l(1; si+1,j) ≥
∣∣∣∣(TV1(1; si+1,j),TV2(1; si+1,j)

)∣∣∣∣
2
,

and by the same arguments,

l(1; si,j) ≥
∣∣∣∣(TV1(1; si,j),TV2(1; si,j)

)∣∣∣∣
2
.

Therefore, both (3.24) and (3.25) follow from Equation (3.27).

Following from Equation (3.25), we have

∣∣P̂ (2)
X(ω)(ϵn,mn;T, u)− P TX(ω)(u)

∣∣ = ∣∣∣∣ ∑
si,j∈VT

X(ω)
(ϵn,mn;u)

(
l̂n(si,j)− l(1; si,j)

)∣∣∣∣
≤

∑
si,j∈VT

X(ω)
(ϵn,mn;u)

∣∣l̂n(si,j)− l(1; si,j)
∣∣

≤ #
(
VTX(ω)(ϵn,mn;u)

)
2
√
2(Km3

nϵ
3
n + 2ϵn).
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By Lemma 3.1,

gn
∣∣P̂ (2)
X(ω)(ϵn,mn;T, u)− P TX(ω)(u)

∣∣
≤ 8

√
2gn

(P TX(ω)(u)

mnϵn
+#

(
ΓTX(ω)(u)

))(
Km3

nϵ
3
n + 2ϵn

)
= 8

√
2
gn
mn

(
P TX(ω)(u) +mnϵn#

(
ΓTX(ω)(u)

))(
Km3

nϵ
2
n + 2

)
, (3.28)

which tends to 0 as n→ ∞. This convergence holds for almost every ω ∈ Ω, since ΛTX(u) is almost

surely positive.

Proof of Corollary 3.1. The last expression in Equation (3.28) tends to 0 under the relaxed con-

straint on (ϵn)n≥1 if gn ≡ 1 for all n ∈ N+.

Proof of Proposition 3.1. If a sequence is uniformly integrable, convergence in L1(Ω) is equivalent to

convergence in probability. Therefore, by Corollary 3.1, it suffices to show that
(
P̂

(2)
X (ϵn,mn;T, u)

)
n≥1

is bounded above by an element of L1(Ω) uniformly in n. Note that for each n ≥ 1,

P̂
(2)
X (ϵn,mn;T, u) ≤ P̂

(1)
X (ϵn;T, u), a.s.

since the 2-norm is inferior to the 1-norm. Now, consider the quantity

Gn := #
(
{s ∈ G(T,ϵn) : B(ϵn)

s ∩ E∂X(T, u) ̸= ∅}
)
,

which represents the number of pixels of side length ϵn that the curve E∂X(T, u) intersects. Almost

surely, P̂
(1)
X (ϵn;T, u) is at most 4ϵn (the perimeter of one pixel) times Gn. By the same arguments

used to prove Lemma 3.1, we have for all n ≥ 1,

Gn ≤ 4
(P TX(u)

ϵn
+#

(
ΓTX(u)

))
, a.s.

and

P̂
(2)
X (ϵn,mn;T, u) ≤ P̂

(1)
X (ϵn;T, u) ≤ 4ϵnGn ≤ 16

(
P TX(u) + sup

n
(ϵn)#

(
ΓTX(u)

))
, a.s.

which is in L1(Ω) by Assumption 3.3.

Proof of Proposition 3.2. Let

Wn :=
P̂

(2)
X (ϵn,mn;Tn, u)− P TnX (u)√

ν(Tn)
.

Given that EX(u) is resolved by mnϵn in Tn for fixed n ∈ N+, Equation (3.28) holds with gn =
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1/
√
ν(Tn), implying

|Wn| ≤
8

mn

√
2

ν(Tn)

(
P TnX (u) +mnϵn#

(
ΓTnX (u)

))(
Km3

nϵ
2
n + 2

)
=

8
√

2ν(Tn)

mn

(
P TnX (u)

ν(Tn)
+mnϵn

#
(
ΓTnX (u)

)
ν(Tn)

)(
Km3

nϵ
2
n + 2

)
, (3.29)

where K ∈ R+ is independent of n. Note that for any n ∈ N+,

Tn =
n2⋃
i=1

T (i)
n ,

for a family of sets (T
(i)
n )i=1,...,n2 , each of which being congruent to T1. Then

E
[
P TnX (u)

ν(Tn)

]
= E

[∑n2

i=1 P
T

(i)
n

X (u)

n2ν(T1)

]
= E

[
P T1X (u)

ν(T1)

]
<∞

and

E
[
#
(
ΓTnX (u)

)
ν(Tn)

]
≤ E

[∑n2

i=1#
(
ΓT

(i)
n
X (u)

)
n2ν(T1)

]
= E

[
#
(
ΓT1X (u)

)
ν(T1)

]
<∞,

by Assumption 3.3. This implies that both

lim sup
n→∞

P TnX (u)

ν(Tn)
and lim sup

n→∞

#
(
ΓTnX (u)

)
ν(Tn)

are finite almost surely. Therefore, the final expression in (3.29) tends to 0 almost surely, since√
ν(Tn)/mn → 0 by assumption. Now, denote the random event An := {mnϵn < ΛTnX (u)}, and let

ACn denote its complement. Since P(An) → 1 as n→ ∞ by assumption, it holds that for any η > 0,

P(|Wn| > η) ≤ P(|Wn| > η | An)P(An) + P(ACn ) → 0

as n→ ∞.

Proof of Theorem 3.2. The Central Limit Theorem in Iribarren (1989) for P TnX (u) at the fixed level

u ∈ R is implied by the constraints on X. The result is proven for a single level u, but as noted

in the Discussion of Kratz and Vadlamani (2018) and in Shashkin (2013), the Cramér-Wald device

can be used to extend the arguments to the multivariate setting.

The Central Limit Theorem for the perimeter is then written as follows. For any u ∈ Rk satisfying
the given constraints, it holds that

P TnX (u)− E[P TnX (u)]√
ν(Tn)

d−→ Nk

(
0,Σ(u)

)
, n→ ∞. (3.30)
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Equation (3.10) is obtained by combining Equation (3.30), Proposition 3.2, and Slutsky’s theorem.

By writing P TX(u) = limϵ→0 1/(2ϵ)
∫
T 1{|X(s)−u|<ϵ}||∇X(s)||2 ds, (see, for instance, Proposition 6.13

in Azäıs and Wschebor (2009)), it is easily checked that for u1, u2 ∈ R,

E[P TX(u1)] = ν(T )f(u1)E
[
||∇X(s)||2

∣∣ X(s) = u1
]

and

E[P TX(u1)P TX(u2)] =
∫
T

∫
T
gs2−s1(u1, u2)

× E
[
||∇X(s1)||2||∇X(s2)||2

∣∣ X(s1) = u1, X(s2) = u2
]
ds1ds2,

where f denotes the marginal density function ofX, and gs, the joint density function of
(
X(0), X(s)

)
.

Hence the result in (3.11).

Proof of Corollary 3.2. Under the given constraints, it is clear that Assumption 3.1 is satisfied. Also

following from the hypotheses, the gradient of X and the Hessian matrix of X are independent with

Gaussian entries, and thus the conditions of Theorem 11.3.3 of Adler and Taylor (2007) are satis-

fied. Therefore, X is almost surely suitably regular (Adler and Taylor, 2007, Definition 6.2.1) over

bounded rectangles, which implies the conditions of Assumption 3.2. The expectations E
[
P TnX (u)

]
and E

[
#
(
ΓTnX (u)

)]
are shown to be finite in Adler and Taylor (2007, Theorem 13.2.1) and Beliaev

et al. (2020) respectively, implying the conditions of Assumption 3.3. Therefore, Proposition 3.2

holds, which in combination with the Central Limit Theorem in Berzin (2021, Theorem 4.7) yields

the result.

Discussion

We have shown for a large class of random fields that P̂
(p)
X (ϵ,m;T, u) with p = 2 is a consistent

and asymptotically normal estimator for P TX(u). Our numerous simulation studies showcase the

various cases where it is advantageous to use the norm p = 2 as opposed to p = 1. An obvious

example is when X is not known to be isotropic. For p > 2, we do not expect P̂
(p)
X (ϵ,m;T, u) to have

desirable properties, since there is a bias introduced for certain orientations of the curve E∂X(T, u).

There is a natural extension of P̂
(p)
X (ϵ,m;T, u) to random fields defined on Rd, with d > 2, and

it is plausible that analogous results hold in this multivariate setting. Results such as the central

limit theorems in Shashkin (2013), Müller (2017), and Kratz and Vadlamani (2018), which hold in

arbitrary dimension, will be useful to study the Gaussian fluctuations of our estimate.

Future work might also investigate the rate at which ΛTX(u) tends weakly to 0 as T ↗ R2, which

would provide a more explicit constraint on the rate at which ϵn → 0 in Proposition 3.2.
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Furthermore, we plan to study how the proposed perimeter estimate can be used to build a test

statistics for isotropy testing based on the length of level curves of smooth random fields. This

future analyse could enrich the existing literature of isotropy testing based on functionals of level

curves (Wschebor, 1985; Cabaña, 1987; Fournier, 2018; Berzin, 2021).

The proposed estimator works with observations available at a set of locations forming a regular

grid. A large variety of datasets possess this format, such as outputs of various types of models

(e.g., climate, hydrology), remote sensing data, or imaging data (e.g., in medecine). However,

geostatistical spatial data are sometimes not observed on regular grids, such as meteorological data

observed over a network of weather stations not organised in any grid structures. In such cases,

one could first apply a deterministic or stochastic interpolation method (e.g., bilinear interpolation,

geostatistical kriging) to pre-process data to make them available on a regular grid, and then use

the grid-based estimator.

In this paper, we have focused on perimeter estimator properties in the case of a single replicate

of the random field with one or several fixed levels u. Properties of estimators of Lipschitz–Killing

curvatures, including the perimeter, could further be studied when the level u tends towards the

upper endpoint of the marginal distribution of X. This setting is relevant for extreme-value theory

of stochastic processes (de Haan and Ferreira, 2006, Chapters 9–10). Jointly with decreasing pixel

size and increasing domain T , we would further have to control the rate at which the perimeter

tends towards zero as u increases, where ultimately the excursion set is almost surely empty. The

combination of the results obtained for our perimeter estimator with asymptotics of the exact

perimeter for increasing level u (Adler and Taylor, 2007) could be useful to establish asymptotic

results and appropriate estimators for the perimeter and for other excursion-set geometrical features

at extreme thresholds.

Appendix

Here, we provide two figures; one to complement Lemma 3.1, and the other, Equation (3.17).
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Figure 3.16: An illustration to aid Lemma 3.1. With m = 2, the curve E∂X(T, u) shown in

black intersects 13 elements of {B(mϵ)
si,j : i, j ∈ I(T,ϵ,m)}, which are highlighted in blue. Thus,

#
(
VTX(ϵ,m;u)

)
= 13.

mnϵn

ϵn

si,j

Figure 3.17: The approximation of TV1(1, si,j) in (3.16) by ϵnNX(ω),h(i, j;u) (see Definition 3.4).

The black curve γ is shown in B
(mnϵn)
si,j , which we outline in dashed red. The definite integral

TV1(1, si,j) is represented by the grey area, and is approximated by ϵnNX(ω),h(i, j;u) = 7ϵn, the
area under the blue curve. The absolute error of this approximation is clearly bounded above by
4ϵn as stated in Equation (3.17). Highlighted in purple is a point in YTX(ω)(u) (see Equation (3.2)).
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Chapter 4

Computable bounds for the reach and

r-convexity of subsets of Rd

This chapter is based on the work

Cotsakis, R. (2023). Identifying the reach from high-dimensional point cloud data with

connections to r−convexity. Discrete & Computational Geometry (to appear). Paper here.

Abstract: The convexity of a set can be generalized to the two weaker notions of positive reach

and r-convexity; both describe the regularity of a set’s boundary. For any compact subset of Rd,
we provide methods for computing upper bounds on these quantities from point cloud data. The

bounds converge to the respective quantities as the sampling scale of the point cloud decreases,

and the rate of convergence for the bound on the reach is given under a weak regularity condition.

We also introduce the β-reach, a generalization of the reach that excludes small-scale features of

size less than a parameter β ∈ [0,∞). Numerical studies suggest how the β-reach can be used in

high-dimension to infer the reach and other geometric properties of smooth submanifolds.

4.1 Introduction

A number of concepts from convex geometry generalize from convex sets to much larger classes of

sets. A classic example from Federer (1959) is the extension of kinematic formulas (in particular,

Steiner’s formula) for convex sets to sets with positive reach (see Definition 4.2). Another example

is the notion of the convex hull of a set, which can be weakened to the r-convex hull, for r > 0.

This weak notion of a convex hull, instead of being expressed as the intersection of half-spaces,

is expressed in terms of intersections of the complements of open balls of radius r. The resulting

intersection is said to be r-convex (see Definition 4.4), which differs subtly from the notion of reach,

and these differences have been studied in Colesanti and Manselli (2007) and Cuevas et al. (2012)

for example. Both the reach and the radius of r-convexity—ranging from 0 to ∞ inclusive—can
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be seen as measures of the degree to which a set is convex. This paper introduces methods of

computing upper bounds for these quantities from point cloud data in several, general settings.

There is a vast literature on properties of r-convex sets, dating from Perkal (1956). Their relations

to other classes of sets that generalize convexity have been studied in Serra (1984); Walther (1999);

Colesanti and Manselli (2007); Cuevas et al. (2012). The use of r-convexity in image smoothing has

been suggested in Serra (1984); Walther (1999); Cuevas et al. (2007) as well as for set estimation

in Mani-Levitska (1993); Cuevas et al. (2007); Pateiro López (2008); Cuevas (2009); Cuevas et al.

(2012); Aaron et al. (2022). In other literature, the r-convex hull of a set is referred to as its double

offset (Chazal et al., 2007, 2009b; Kim et al., 2019). In Cuevas and Rodŕıguez-Casal (2004), the

authors use a rolling-type condition (weaker than r-convexity) to improve the rate of convergence

of their set boundary estimator. Efforts towards estimating the largest r such that a set is r-convex

have been made in Rodŕıguez Casal and Saavedra-Nieves (2016); the authors test the uniformity

of a point cloud on its r-convex hull using the statistical test of uniformity proposed in Berrendero

et al. (2012).

The reach is a popular measure of convexity largely due to its link with the Steiner formula;

for the larger the reach of a set, the larger the interval on which the volume of a dilation of the

set is polynomial in the dilation radius (Federer, 1959, Theorem 5.6). Positive reach is a common

hypothesis to guarantee convergence rates of statistical estimators of geometric quantities (Chazal

and Lieutier, 2008; Thäle, 2008; Cuevas, 2009; Rataj and Zähle, 2019; Biermé et al., 2019; Cotsakis

et al., 2023c). In the field of geometric data analysis, the reach constitutes a commonly used

measure of regularity of a set’s boundary, and is hence also referred to as the condition number

Niyogi et al. (2008). In topological data analysis, a set’s reach is shown to quantify the ability

to infer its homology from point cloud data (Kim et al., 2019; Niyogi et al., 2008; Lieutier, 2004;

Chazal and Lieutier, 2005b).

The statistical estimation of the reach has been of particular interest in recent literature. Both

Aamari et al. (2019) and Aamari and Levrard (2019) suggest estimating the reach of a smooth

submanifold of Rd by measuring distances between it and its tangent spaces—a strategy inspired

by the formulation of the reach in (Federer, 1959, Theorem 4.18). These works obtain bounds on

the minimax rate of convegence for this estimator when the manifold is C3-smooth, and when its

tangent spaces are known. Following up to these works, Aamari et al. (2023) establishes an optimal

convergence rate for minimax estimators of the reach of Ck-smooth submanifolds of Rd without

boundary. The rates that they establish adapt to the smoothness of the manifold, and to the type

of phenomenon that limits the reach (see Remark 4.8). In Berenfeld et al. (2022), the convexity

defect function from Attali et al. (2013) is used to define an estimator for the reach of Ck-smooth

manifolds. Convergence rates of their estimator are given for k ≥ 3. In Cholaquidis et al. (2023),

the authors introduce a complete and tractable method for estimating the reach from point cloud

data involving the computation of graph distances in a spatial network defined over the point cloud.

Their approach is based on the formulation of the reach introduced in (Boissonnat et al., 2019,
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Theorem 1).

Other strategies for estimating the reach involve a prior estimation of the medial axis (see Def-

inition 4.3) (Dey and Zhao, 2003; Dey and Sun, 2006). The λ-medial axis (Chazal and Lieutier,

2005a), µ-medial axis (Chazal et al., 2009a), and (λ, α)-medial axis (Lieutier and Wintraecken,

2023) are all generalizations of the medial axis, and the reach can conceivably be approximated

by the minimal distance from a set to the estimate of the medial axis of its complement. Such a

strategy is suggested in Cuevas et al. (2014) for the λ-medial axis, where the authors heavily rely

on the notion of r-convexity in their construction.

A number of other authors have taken an interest in the mathematical properties of the reach. In

Poliquin et al. (2000), sets of reach r are identified with the r-proximally smooth sets introduced

in Clarke and Wolenski (1995), implying that the reach can be characterized by the gradients

of the distance-to-set function. A number of insightful connections between the reach and other

geometrical properties of sets are made in Colesanti and Manselli (2007). Vietoris–Rips complexes

are studied in relation to the reach in Attali and Lieutier (2015), and in the same work, the authors

prove that the reach of a set can only increase if intersected by sufficiently small balls. An alternative

characterization of the reach, involving pairwise geodesic distances, is provided in Boissonnat et al.

(2019). The authors also study the relationship between midpoints of pairs of points in a set, and

the reach (Boissonnat et al., 2019, Lemma 1). We base the construction of our bound for the reach

on this result (see Theorem 4.2).

This paper makes steps towards providing computationally tractable methods for bounding the

reach and r-convexity of subsets of Rd given point cloud data that represent the underlying sets.

Firstly, we establish some facts about the reach of closed subsets of Rd. We prove that the radius

of r-convexity and the reach are equivalent for compact subsets of Rd whose topological boundary

is a C1-smooth, (d − 1)-dimensional manifold without boundary (see Theorem 4.1). In addition,

for closed subsets of Rd, we introduce the β-reach (see Definition 4.6), a quantity that loosely

represents the reach of a set when features of size less than β ∈ [0,∞) are ignored. Indeed, the

β-reach converges to the reach from above as β ↘ 0 (see Theorem 4.2).

These ideas are used to create methods of inferring bounds on the reach and r-convexity of sets

from point cloud data. For general, closed subsets of Rd (possibly having finite d-volume, and

having no smoothness conditions on their topological boundaries), we provide an upper bound of

the r-convexity of the set based on samples of the set and its complement at sampling locations

that extend over Rd. We show that, as the spacing between sampling locations diminishes, this

bound converges to the largest r such that the set is r-convex (see Theorem 4.3). An example on

real data in 3 dimensions shows that this method identifies regions where the underlying set is not

locally r-convex, for r > 0, with a test specificity of 100%. Similarly, for any closed set A ⊆ Rd, we
define an upper bound on the reach based on a set of points known to reside in A. As the set of

points converges in the Hausdorff metric to A, we show that the bound converges to the reach of A,

and provide the rate of convergence in terms of the Hausdorff distance between A and the sample
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points (see Theorem 4.4). A regularity condition on the β-reach of A, for β near 0, is used to show

the convergence of our upper bound with a rate. In practice, both the β-reach of a point cloud and

the upper bound on the reach can be computed efficiently in high-dimension. If the number of data

points is held fixed, the computational complexity of the method increases only linearly with the

dimension of the ambient space d.

The organization of the paper is as follows. Section 4.2 introduces the notation that we use

throughout the document, explores the relationships between the reach and r-convexity, and intro-

duces the β-reach. Section 4.3 describes the three methods that we propose for inferring bounds

and approximations for the reach and r-convexity of general compact subsets of Rd from point cloud

data. The bounds for the r-convexity and reach are studied in Sections 4.3.1 and 4.3.2 respectively.

Section 4.3.3 elaboates on how the β-reach of point clouds can be used to approximate the β-reach

of the sets that they represent. In Section 4.4, we provide numerical studies that underline the

computability of our methods. An application of the methods on real data is given in Section 4.4.1.

In Section 4.4.2, the methods are tested against simulated data for which the reach and r-convexity

are known, and empirical rates of convergence are provided. Some technical proofs and auxiliary

results are postponed to Section 4.5.

4.2 Definitions and important notions

The sets that we study in this paper are subsets of Rd, endowed with the Euclidean metric ||·||. For
a set S ⊆ Rd, let ∂S denote its topological boundary, let cl(S) := S ∪ ∂S denote the closure of S,

and let Sc denote the complement of S in Rd. Denote the closed ball with radius r ∈ R+ centered

at s ∈ Rd by B(s, r) := {t ∈ Rd : ||t− s|| ≤ r}. For t ∈ Rd, denote the distance between t and a

non-empty set S by δS(t) := inf{||t− s|| : s ∈ S}.

4.2.1 Set dilation, set erosion, and combinations of the two

Definition 4.1 (Operations on subsets of Rd). We recall the Minkowski addition of two sets A,B ⊆
Rd,

A⊕B := {x+ y : x ∈ A, y ∈ B}.

The Minkowski difference is given by

A⊖B := {x ∈ Rd : {x} ⊕B ⊆ A} = (Ac ⊕ (−B))c,

where Ac denotes the complement of A in Rd, and −B := {−x : x ∈ B}. For r ∈ R, let

Ar :=

A⊕B(0, r), for r ≥ 0,

A⊖B(0,−r), for r < 0,
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denote either the dilation or erosion of a set A, depending on the sign of r. Finally, define the

set A•r := (Ar)−r. In mathematical morphology literature, A•r is referred to as the closing (resp.

opening) of A by B(0, |r|) if r > 0 (resp. r < 0).

For r ≥ 0 and A ⊆ Rd closed, it follows from Definition 4.1 that Ar (also known as the r-offset of

A in, e.g., Chazal et al. (2007)) denotes all the points in Rd within a distance r of the set A. The

set A−r denotes all the points in A a distance of at least r from ∂A.

With these notions established, the Hausdorff distance between two closed sets A,B ⊆ Rd is

defined as dH(A,B) := inf{r ∈ R+ : A ⊆ Br, B ⊆ Ar}.

Lemma 4.1. Let r, s > 0, and let A ⊆ Rd. The following identities hold:

(a) (Ar)
c = (Ac)−r,

(b) A ⊆ A•r,

(c) (Ar)s = Ar+s,

(d) (Ar)−s ⊇ Ar−s,

(e) (A−r)s ⊆ As−r.

Proof of Lemma 4.1. Fix r, s > 0. The identity in (a) follows directly from Definition 4.1. Item (b)

is proved by contradiction. Let a ∈ A and suppose a ∈ (A•r)
c = (Ar)

c ⊕ B(0, r). Then there is a

p ∈ (Ar)
c such that a ∈ B(p, r) ⇔ ||p− a|| ≤ r ⇔ p ∈ B(a, r) ⇔ p ∈ Ar; thus, a contradiction. To

prove (c), remark that B(0, r) ⊕ B(0, s) = B(0, r + s) and that Minkowski addition is associative.

To prove (d), consider the case where r ≥ s, then (Ar)−s = (Ar−s+s)−s = ((Ar−s)s)−s = (Ar−s)•s ⊇
Ar−s. For the case r < s, write (Ar)−s = (Ar)r−s−r = ((Ar)−r)r−s = (A•r)r−s ⊇ Ar−s. To show (e),

consider the complements of the sets in (d) and apply (a) repeatedly.

4.2.2 The reach and related concepts

Definition 4.2 (The reach). Recall from Federer (1959) that the reach of a set A ⊆ Rd is given by

reach(A) := sup
{
r ∈ R+ : ∀y ∈ Ar ∃!x ∈ A nearest to y

}
.

If reach(A) > 0, then A is said to have positive reach.

It follows from Definition 4.2 that if A has positive reach, then A is closed (Federer, 1959). In the

remainder of this document, A denotes a closed set. A useful notion related to the reach of A is the

medial axis of Ac, originally proposed in Blum (1967).

Definition 4.3 (The medial axis). Let O ⊆ Rd be open. Its medial axis M(O) is the set of points

in O with at least two closest points in ∂O.
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reach(A) rconv(A)

Figure 4.1: The closed set A (in grey) has rconv(A) > reach(A). The set A can be expressed as the
complement of a union of open balls of radius rconv(A) whose centers lie outside the dotted black
curve. The dotted red line is the medial axis M(Ac).

The reach of a closed set A can be alternatively expressed as

reach(A) = inf{||a− x|| : a ∈ A, x ∈ M(Ac)}. (4.1)

Connections to r-convexity

Definition 4.4 (r-convexity). A set A ⊆ Rd is said to be r-convex for r ∈ R+ if it is closed and

A•s = A for all s ∈ (0, r) (see, e.g., Perkal (1956)). Define the quantity rconv(A) := sup{r ∈ R+ :

A•r = A}.

An equivalent definition of r-convexity is as follows: a set A ⊆ Rd is r-convex if and only if it can

be expressed as the complement of a union of open balls of radius r.

Theorem 4.1. Let A be closed in Rd. It holds that

reach(A) ≤ rconv(A). (4.2)

Moreover, if ∂A is a C1-smooth (d− 1)-dimensional manifold without boundary, then

reach(A) = rconv(A). (4.3)

Equation (4.2) is proven in Cuevas et al. (2012, Proposition 1) for compact A. Nonetheless, we

reprove the statement for closed A in the proof of Theorem 4.1, which we postpone to Section 4.5.

The novelty in Theorem 4.1 is that it provides a class of subsets of Rd for which the reach and

r-convexity are equal. This class contains Serra’s regular model (Serra, 1984, p. 144) as a subclass,

as shown by (Walther, 1999, Theorem 1).

To see that the r-convexity and the reach of a set are indeed distinct notions for general subsets

of Rd, Figure 4.1 provides an example of a closed set A for which reach(A) < rconv(A). This shows

that the C1-smooth condition cannot be weakended to piecewise C1-smooth. Consider also the

following remark.
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Remark 4.1. Any closed subset of Rd contained in a (d− 1)-dimensional affine linear subspace is

r-convex for all r > 0. This is easy to see since the complement of the set in the (d−1)-dimensional

affine linear subspace is open, and is the union of open (d − 1)-balls of radius less than r. Each

(d − 1)-ball can be expressed as the intersection of the affine linear subspace with an open ball of

radius r in Rd; therefore, the closed subset in question can be expressed as the complement of a

union of open balls of radius r and is hence r-convex.

Recently, a counterexample to Borsuk’s conjecture that r-convex sets are locally contractible, was

published in Cholaquidis (2023). The conjecture is easily seen to be false by mapping a closed set in

Rd−1 that is not locally contractible to a (d− 1)-dimensional hyperplane in Rd under an isometry.

Here, we provide some corollaries to Theorem 4.1 that provide alternative sets of sufficient con-

ditions for the equality of the reach and the r-convexity. The first applies to sets in Serra’s regular

model (Serra, 1984).

Corollary 4.1. Let A ⊂ Rd be non-empty, compact, and path-connected. If rconv(cl(Ac)) > 0, then

reach(A) = rconv(A).

The proof of Corollary 4.1, which relies heavily on Theorem 1 in Walther (1999), is postponed to

Section 4.5. Likewise, we prove the following result in Section 4.5.

Proposition 4.1. Let A be a closed set in Rd and let ϵ ∈ R+. Then reach(Aϵ) = rconv(Aϵ).

The β-reach

We show in Theorem 4.2 below, that the reach of a set can be formulated in terms of pairs of points

in the set, and the distance to the set from their midpoints. We define a parametrized version of

the reach by restricting to pairs of points whose midpoints are sufficiently far from the set. The

so-called β-reach is constructed from the following family of functions.

Definition 4.5 (Spherical cap geometry). Define for α ∈ [0,∞) and x ∈ [0, α/2],

gα(x) :=

α2

8x + x
2 , x > 0,

∞, x = 0,
(4.4)

and its inverse for r ≥ α/2,

g−1
α (r) := r −

√
r2 − α2

4
. (4.5)

See Figure 4.3 for a geometric interpretation of the function in (4.4) and its inverse in (4.5).

Evidently from the figure, this function is derived from the height of a spherical cap; it is written

about in Attali et al. (2013); Attali and Lieutier (2015); Berenfeld et al. (2022); Boissonnat et al.

(2019); Divol (2021) in reference to the reach.
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Figure 4.2: gα(x) in Definition 4.5 plotted for several values of α.
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Figure 4.3: A geometric interpretation of gα(x) in Definition 4.5.

Definition 4.6 (The β-reach). For a closed set A ⊆ Rd and β ∈ [0,∞), let the β-reach of A be

defined as

reachβ(A) := inf

{
g||a2−a1||(x) : a1, a2 ∈ A, x = δA

(
a1 + a2

2

)
≥ β

}
,

where g||a2−a1||(x) is defined in (4.4). Recall that δA : Rd → R maps each point in Rd to its distance

from A. See Figure 4.4 for a visual aid.

By restricting to pairs of points a1, a2 ∈ A in Figure 4.4 that yield x ≥ β, the β-reach of A is the

largest lower bound of the resulting values of g||a2−a1||(x). If one does not restrict the size of x (i.e.,

for β = 0), then this largest lower bound is precisely reach(A). This is formalized by the following

theorem.

Theorem 4.2. Let A be closed in Rd. The map β 7→ reachβ(A) for β ∈ R+ is non-decreasing;

moreover,

lim
β↘0

reachβ(A) = reach0(A) = reach(A). (4.6)

Proof of Theorem 4.2. In the following, we assume that A is not convex, for if it is convex, then all
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A

a1 a1+a2
2

a2

Figure 4.4: For β ∈ [0,∞), the β-reach of A (see Definition 4.6) is the largest lower bound of
g||a2−a1||(x) (see Definition 4.5), for the pairs a1, a2 ∈ A satisfying x ≥ β.

p

A
a1

a1+a2
2

a2

g−1
||a2−a1||(δA(p))

Figure 4.5: The interior of the large ball centered at p does not intersect A, so the distance from
the midpoint (a1 + a2)/2 to the set A is at least g−1

||a2−a1||(δA(p)). This construction is used in the
proof of Theorem 4.2.

of the quantities in (4.6) are infinite and the theorem holds (Federer, 1959). The non-decreasing

property is seen immediately via the inclusion{
(a1, a2) ∈ A2 : δA

(
a1 + a2

2

)
≥ β2

}
⊆
{
(a1, a2) ∈ A2 : δA

(
a1 + a2

2

)
≥ β1

}
,

for all β1, β2 ∈ R satisfying β1 < β2.

Now, we start by proving the second equality in (4.6). The proof is largely supplied by Lemma 1

of Boissonnat et al. (2019) which provides

reach(A) ≤ g||a2−a1|| ◦ δA
(
a1 + a2

2

)
, (4.7)

for all a1, a2 ∈ A, since gα(x) is non-increasing in x. What remains to show is that reach(A) is the

largest lower bound in (4.7); i.e., if r > reach(A) then there exist a1, a2 ∈ A such that r exceeds the

right-hand side of (4.7). Let r > reach(A) and let r̃ ∈ (reach(A), r). By the definition of reach(A)

(Definition 4.2), ∃p ∈ Ar̃ and a1, a2 ∈ A such that ||a1 − p|| = ||a2 − p|| = δA(p) ≤ r̃. Since the
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interior of B(p, δA(p)) does not intersect A, we have

δA

(
a1 + a2

2

)
≥ g−1

||a2−a1||(δA(p)),

(see Figure 4.5) and

g||a2−a1|| ◦ δA
(
a1 + a2

2

)
≤ δA(p) ≤ r̃ < r.

This proves that reach0(A) = reach(A).

Finally, we show the first equality in (4.6). The non-decreasing property gives limβ↘0 reachβ(A) ≥
reach0(A). Now, it suffices to show the reverse inequality. For any ϵ > 0, there exists a1, a2 ∈ A

satisfying

g||a2−a1|| ◦ δA
(
a1 + a2

2

)
< reach0(A) + ϵ.

Any such pair (a1, a2) must satisfy δA
(
a1+a2

2

)
> 0, and so for β ∈

(
0, δA

(
a1+a2

2

))
, it holds that

reachβ(A) < reach0(A) + ϵ. Thus, limβ↘0 reachβ(A) ≤ reach0(A).

Remark 4.2. For any α ∈ [0,∞) and x ∈ [0, α/2], one has gα(x) ≥ x (see Figure 4.2). Thus, for

any closed set A and β ∈ R+,

reachβ(A) ≥ β.

Intuitively, this means that the β-reach excludes small, reach-limiting features of the set that have

scale less than β.

The values of β for which reachβ(A) = β are the distances from the critical points of the generalized

gradient function (Chazal et al., 2009a) to the set A.

Remark 4.3. Other generalizations of the reach are constructed similarly to the β-reach, in that

they formulate the reach as an infimum or supremum over some set, and add or remove elements in

the set using some real parameter (in our case, β). For example, (Boissonnat et al., 2019, Theorem 1)

expresses the reach of a set A ⊂ Rd as the supremum over a subset of R+ that satisfies a certain

condition relating to A. By “continuously” weakening the condition with a parameter δ ∈ [0,∞),

the authors in Aamari et al. (2023) introduce the spherical distortion radius as the supremum of

the larger subset of R+ satisfying the weaker condition parametrized by δ. The spherical distortion

radius is identified with the reach for δ = 0. In an earlier work, Chazal et al. (2009a) introduces

the µ-reach by considering the shortest distance from an element in the set to the µ-medial axis,

a filtered version of the medial axis by considering regions where the generalized gradient function

(Lieutier, 2004) is less than some µ ∈ (0, 1]. The β-reach, the µ-reach, and the spherical distortion

radius, are all generalizations of the reach that exclude “small-scale” features as decided by the

corresponding parameter β, µ, or δ.

One significant advantage of the β-reach is its computability for high-dimensional point cloud

data (see Section 4.3.3). In this setting, the formulation of the reach in terms of the β-reach for
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Figure 4.6: (a): The construction of reachβ(A) for β > 0 with A, the union of two rays in Rd that
originate from the same point. (b): The β-reach profile of A shown as a solid line. The lower bound
with slope 1 is shown as a dashed line.

β = 0 can also be used to construct an upper bound for the reach of any compact A ⊂ Rd (see

Section 4.3.2).

For a closed set A ⊆ Rd, one can study the map β 7→ reachβ(A) for β ∈ [0,∞), which we refer to

as the β-reach profile of the set A. We will see in Section 4.3 that a set’s β-reach profile provides

pertinent information regarding the estimation of the reach from point cloud data, especially through

its first-order approximation at β = 0.

Some exemplary sets and their β-reach profiles are considered in the several examples that follow.

Example 4.1 (The β-reach of a corner). For two line segments in Rd with ends joined by an angle

θ ∈ (0, π), the β-reach of their union is β
2

(
1 + sec2

(
θ
2

))
, for sufficiently small β > 0. See Figure 4.6

for an illustration.

Example 4.2 (The β-reach of an arc). The β-reach of a circular arc of angle at most π is equal to

the radius of the arc, for sufficiently small β > 0.

Example 4.3 (The β-reach of a bottleneck structure). If the reach of a set A ⊂ Rd is determined

by a bottleneck structure like those described in Aamari et al. (2019), then reachβ(A) = reach(A)

for β ∈ [0, reach(A)]. This is the case, for example, when A is a finite set of points in Rd.

Example 4.4 (The β-reach of a C2-smooth curve). Let h : R → R be a C2-smooth function with

h′(0) > 0. Suppose that the graph of the function f : [−1, 1] → R defined by f(x) := h(x2) obtains

its maximal curvature at x = 0. Then, the graph A := {(x, f(x)) : −1 ≤ x ≤ 1} ⊂ R2 satisfies

reach(A) =
1

2h′(0)
(4.8)
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Figure 4.7: (a): The construction of reachβ(A) for β > 0 with A, a paraboloid embedded in Rd.
(b): The β-reach profile of A shown as a solid line. The lower bound with slope 1 is shown as a
dashed line.

and

reachβ(A)− reach(A) ≤
(
1

2
− h′′(0)

4h′(0)3

)
β + o(β), (4.9)

for sufficiently small β > 0. Proofs for Equations (4.8) and (4.9) are provided at the end of

Section 4.5. Figure 4.7 depicts a special case of this example with h(x) = x/2.

4.3 Methods for point cloud data

In practice, one might be interested in identifying bounds on the reach and r-convexity of a set A ⊆
Rd from a discrete sample of A without noise. The goal of this section is to provide computational

methods for bounding the reach and the r-convexity from above, and to produce methods for

approximating these quantities. The three main settings that we consider are:

(a) One has access to a point cloud that extends over Rd in the sense that Rd can be covered by

balls of fixed radius ϵ centered at each point. Moreover, one knows the partition of the points

that lie in A ⊆ Rd, and those that lie in Ac. See Section 4.3.1 for a treatment of this setting.

(b) One has access to a set of points for which it is known that A ⊆ Rd can be covered by balls

of fixed radius ϵ centered at each point. Here, ϵ is known. See Section 4.3.2.

(c) The set A is a submanifold of Rd of dimension m < d. One has access to a set of points that

is known to be contained in A. See Section 4.3.3.

The mathematical results that we present in this section hold in arbitrary dimension d. Neverthe-

less, the computational complexity of the method described in Section 4.3.1 for setting (a) increases

quite drastically as higher dimensions are considered (see Remark 4.6).
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The method that we present for setting (b), described in Section 4.3.2, involves computing a

nearest neighbor search for each midpoint of pairs of points in the dataset. This can be achieved

in O(dN3) time by naievely searching each of the N points for the nearest neighbor to each of the

O(N2) midpoints. Improvements to the nearest neighbor search using binary space partitioning

data structures such as k-d trees (Bentley, 1975) or ball trees (Omohundro, 1989; Liu et al., 2006)

improve the time complexity of the overall strategy to O(N2 logN) if d is kept fixed. This can be

related to the desired precision ϵ, since the number of points N necessary to cover A with balls of

size ϵ is Ω(ϵ−m), where m is the Hausdorff dimension of A.

Calculating the β-reach profile of the manifold in setting (c) has the same time complexity as

the method for setting (b). Thus, an isometric embedding of a manifold of fixed dimension m into

Rd affects the computational complexity of the method linearly in d. Contrast this with existing

methods that aim to approximate the reach by first approximating the medial axis Cuevas et al.

(2014); Chazal and Lieutier (2005a); Chazal et al. (2009a); Dey and Zhao (2003); Dey and Sun

(2006); Lieutier andWintraecken (2023), where in high dimension, accessing the medial axis becomes

computationally challenging. The relationship between d, m, n, and our method’s performance is

elaborated on in Remark 4.10 in Section 4.3.3.

4.3.1 An upper bound for the r-convexity of a set

In this section, we introduce a method for identifying when sets are not r-convex, for r > 0, with a

true negative rate of 100%. Given a test radius r > 0, and points labeled as either residing in A or

Ac, our method identifies if r > rconv(A) with perfect specificity. This establishes an upper bound

for rconv(A), and by Equation (4.2), an upper bound for reach(A). Moreover, as more samples are

included to decrease the Hausdorff distances to the sets A and Ac, we show that this upper bound

converges to rconv(A).

Here, we define operations analogous to dilation and erosion, for discrete sets of points.

Definition 4.7. Let P be a point cloud in Rd, i.e., a countable subset of Rd. For a set Â ⊆ P, we

make a slight abuse of notation and denote for r ∈ R,

Âr :=

{p ∈ P : δ
Â
(p) ≤ r}, for r ≥ 0,

{a ∈ Â : δP\Â(a) > −r}, for r < 0.

Remark 4.4. We emphasize that for a point cloud P, a subset Â ⊆ P, and a real number r ∈ R,
Definition 4.7 implies that Âr ⊆ P. Contrast this with the set Â⊕B(0, |r|), which is not contained

in P for r > 0.

Let us illustrate the operations in Definition 4.7 using the example in Figure 4.8. The set A ⊂ R2

occupies the bottom left corner of the domain, just until the dashed line. When sampled on a

square lattice P, one obtains the image in panel (a); each pixel is centered on a point in P, and
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(c)(b)(a)

Figure 4.8: An example where (Âr)−r in (c) is strictly larger than Â in (a), while the underlying
set A is r-convex. The boundary ∂A is shown as a dashed line and r is three times the pixel width.
The point cloud Φ is a square lattice of points, and pixels are centered on the elements of Φ.

grey if the point lies in A. Dilating the grey pixels Â by r = 3 × (pixel width), one obtains the

grey pixels in panel (b), Âr. If one then erodes Âr by r (equivalent to dilating P \ Âr by r and

taking complements), one obtains the grey pixels in panel (c), (Âr)−r. Notice, however, that there

is a point in (Âr)−r that is not in Â. This might be surprising since we chose a set A such that

A•r = A. This illustration shows that naively testing for r-convexity using the discrete dilation and

erosion operations mistakenly classifies sets as not r-convex, when indeed they are.

The following theorem shows how to correctly identify sets as not being r-convex, and gives an

upper bound for the r-convexity of a set that is tight in some sense.

Theorem 4.3. For n ∈ N+, let P(n) be a point cloud in Rd, and suppose that

ϵn := sup
{
δP(n)(q) : q ∈ Rd

}
(4.10)

is finite. Let A be a compact subset of Rd, and for n ∈ N+, define Â(n) := A ∩ P(n) and the

corresponding bound,

r̂(ϵn)(Â(n)) := inf
{
r > ϵn : (Â

(n)
r−ϵn)−(r+ϵn) ⊈ Â(n)

}
. (4.11)

It holds that

inf
n∈N+

r̂(ϵn)(Â(n)) ≥ rconv(A). (4.12)

Moreover, if ϵn → 0 and dH(Â
(n), A) → 0 as n→ ∞, then

lim
n→∞

r̂(ϵn)(Â(n)) = rconv(A). (4.13)

Theorem 4.3 provides a method for correctly identifying which subsets of Rd are not r-convex. If

a dilation of the the discretization Â(n) by r − ϵn followed by an erosion of r + ϵn produces a set

that is not contained in Â(n), then rconv(A) ≤ r. See Figure 4.9 for an example of a set A for which

(Â
(n)
r−ϵn)−(r+ϵn) ⊈ Â(n). The precise regions where r-convexity does not hold are highlighted by the
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(b)(a)

Figure 4.9: (a): A set A is shown as a pixelated image in grey. The set of grey pixel centers is Â(n).

(b): The set (Â
(n)
r−ϵn)−(r+ϵn) contains the dark grey pixels, which are not contained in Â(n). Thus,

r ≥ rconv(A). Here, r is nine times the pixel width.

method.

Remark 4.5. Note that r̂(ϵn)(Â(n)) in (4.11) can be computed using entirely available information,

since ϵn in (4.10) is a feature of the point cloud P(n) and not of the unknown set A. In particular,

there is no need to estimate dH(Â
(n), A) for the construction of r̂(ϵn)(Â(n)). A binary search algo-

rithm, along with the discrete dilation operations in Definition 4.7, are sufficient for the numerical

calculation of r̂(ϵn)(Â(n)).

Remark 4.6. The requirement that P(n) extends over all of Rd (see Equation (4.10)) allows for a

mathematical simplification and is not needed in practice. In real applications, one only requires

that dH(P(n), T ) = ϵn for some compact T ⊂ Rd that contains Arconv(A)+2ϵn . In the case where A is

lower dimensional than the embedding space Rd, one can add any finite number of points uniformly

distributed on T to P(n), and they will almost surely not belong to A. However, the number of

points needed for a given precision ϵn scales like ϵ−dn times the Lebesgue measure of T , which is

computationally expensive in high dimension.

The proof of Theorem 4.3 is quite technical, and so we postpone it to Section 4.5. Nevertheless,

Figure 4.10 provides an intuitive illustration that helps to understand Equation (4.12). This is an

example of a worst-case scenario, in that a dilation of Â(n) by any more than rconv(A)− ϵn results

in all of P(n) being consumed. The dilation radius rconv(A)− ϵn is maximal in the sense that, by

dilating any less, there is guaranteed to be at least one element of P(n) that is not in the dilation.

The distance between this one remaining element of P(n) and the other points in (P(n)\Â(n))∩Â(n)
r−ϵn

might be anywhere up to r+ ϵn, where r− ϵn ∈ (0, rconv(A)− ϵn) is the dilation radius. Therefore,

an erosion by at least r + ϵn is necessary to guarantee that the resulting set is a subset of Â(n). In

this sense, the bound in (4.12) is tight.

The following result from Rodŕıguez Casal and Saavedra-Nieves (2016), while interesting on its

own, is instrumental in the proof of Equation (4.13).
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Figure 4.10: A discrete dilation of the set Â(n) (black points) by the length of the green arrows
(rconv(A)− ϵn) followed by a discrete erosion by the length of the longer blue arrow (rconv(A)+ ϵn)
leaves all of the white points out of the resulting set. The boundary of Arconv(A)−ϵn is shown as a
dashed line.

Proposition 4.2 (Lemma 8.3 in Rodŕıguez Casal and Saavedra-Nieves (2016)). Let r ∈ R+ and

let A ⊂ Rd be a closed set satisfying rconv(A) < r. The set A•r \A contains an open subset of Rd.

The relationship between Proposition 4.2 and Equation (4.13) is that, for r > rconv(A), as the

granularity of the point cloud P(n) increases, the open subset in A•r \A fills with points that remain

in (Â
(n)
r−ϵn)−(r+ϵn) for ϵn sufficiently small. Thus,

lim
n→∞

r̂(ϵn)(Â(n)) < r,

and since r ∈ (rconv(A),∞) is arbitrary, the limit is at most rconv(A). Equality then holds by

Equation (4.12). The full proof of Theorem 4.3 and an alternative proof of Proposition 4.2 are

provided in Section 4.5.

Remark 4.7. Equation (4.13) is provided without a rate of convergence. This is due to the fact that

Proposition 4.2 provides no guarantees on the size of the open subset that can be found in A•r \A
for r > rconv(A). To provide a rate of convergence, a deeper analysis is needed to understand the

rate at which the size of the largest open ball in A•r \ A decreases as r ↘ rconv(A). Conversely,

the bound that we construct for the reach in Section 4.3.2 converges to the reach at an explicit rate

(see Theorem 4.4 below).

4.3.2 An upper bound for the reach of a set

We have already seen that r̂(ϵn)(Â(n)) in (4.11) is an upper bound for the reach by Equations (4.2)

and (4.12). In this section, we introduce another computable bound for the reach based on the

expression for the β-reach in Definition 4.6. The context in which one can apply this bound was

introduced as setting (b) at the start of Section 4.3: a countable set of points Â(n) is known to be

included in a compact set A ⊂ Rd, and its Hausdorff distance to A is known to be at most ϵn.

A regularity condition is imposed on the set A in terms of its β-reach profile near 0; it is used
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Figure 4.11: Hypothetical β-reach profiles of sets that would not satisfy Assumption 4.1. (a): The
β-reach profile is neither constant nor strictly increasing on any neighborhood of 0. (b): The limit
in (4.14) is infinite.

to prove the rate at which our upper bound converges to reach(A) as Â(n) → A in the Hausdorff

metric.

Assumption 4.1. Suppose that the set A ⊂ Rd is compact, not convex, and that there exists δ > 0

such that the map β 7→ reachβ(A) for β ∈ R is either constant or strictly increasing on [0, δ]. In

addition, suppose that

KA := lim
β↘0

reachβ(A)− reach(A)

β
(4.14)

exists and is finite.

Assumption 4.1 allows for most compact, non-convex sets in Rd, excluding some pathological

counterexamples such as hypothetical sets admitting the β-reach profiles in Figure 4.11, or the

counterexample constructed in Cholaquidis (2023). The behaviour of the β-reach profile near 0

is entirely determined by features of negligible size, so Assumption 4.1 will hold for any compact,

non-convex set whose boundary is locally well-behaved. Assumption 1 is seen to hold in all of

Examples 4.1, 4.2, and 4.3 in Section 4.2.2, which shows that smoothness is not a necessary condition.

Theorem 4.4. Let A ⊆ Rd be closed. For each n ∈ N+, let Â(n) be a countable subset of A.

Suppose that Â(n) → A in the Hausdorff metric. i.e., there is a sequence (ϵn)n≥1 in R+ tending to

0 as n→ ∞ such that ϵn ≥ dH(Â
(n), A) for all n ∈ N+. For each n ∈ N+, define the corresponding

bound on reach(A) by

r̂ch
(ϵn)

(Â(n)) := inf

{
g||a2−a1||(x− ϵn) : a1, a2 ∈ Â(n), (4.15)

x = δ
Â(n)

(
a1 + a2

2

)
≥ ϵn

}
,

120



where g||a2−a1|| is defined in (4.4). Then,

r̂ch
(ϵn)

(Â(n)) ≥ reach(A), (4.16)

for n ∈ N+. Furthermore, if A satisfies Assumption 4.1, then

lim sup
n→∞

r̂ch
(ϵn)

(Â(n))− reach(A)
√
ϵn

≤ (2 +KA)
√
reach(A), (4.17)

where KA is defined as in (4.14).

Proof of Theorem 4.4. If A is convex, then for all a1, a2 ∈ A,

δ
Â(n)

(
a1 + a2

2

)
≤ dH(Â

(n), A) ≤ ϵn,

and so both sides of the inequality in (4.16) are infinite (Federer, 1959). Now, suppose that A is

not convex. Let n ∈ N+, and write,

reach0(A) = inf

{
g||a2−a1|| ◦ δA

(a1 + a2
2

)
: a1, a2 ∈ A

}
≤ inf

{
g||a2−a1|| ◦ δA

(a1 + a2
2

)
: a1, a2 ∈ Â(n)

δ
Â(n)

(a1 + a2
2

)
≥ ϵn

}
.

(4.18)

The equality in (4.18) is an application of Definition 4.6, and the inequality holds since the infimum

is taken over a smaller subset. For any a1, a2 ∈ A, there exists a projection of a1+a22 onto A, namely

aπ ∈ A, satisfying ∣∣∣∣∣∣∣∣aπ − a1 + a2
2

∣∣∣∣∣∣∣∣ = δA

(a1 + a2
2

)
.

By the triangle inequality and the fact that ϵn ≥ dH(Â
(n), A),

δ
Â(n)

(a1 + a2
2

)
≤ δ

Â(n)(a
π) +

∣∣∣∣∣∣∣∣aπ − a1 + a2
2

∣∣∣∣∣∣∣∣ ≤ ϵn + δA

(a1 + a2
2

)
.

Rearranging gives,

δ
Â(n)

(a1 + a2
2

)
− ϵn ≤ δA

(a1 + a2
2

)
. (4.19)

Since g||a2−a1|| is non-increasing, the rightmost expression in (4.18) cannot decrease when δA
(
a1+a2

2

)
is replaced by δ

Â(n)

(
a1+a2

2

)
− ϵn. Thus,

r̂ch
(ϵn)

(Â(n)) ≥ reach0(A) = reach(A),
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(
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2

) ϵn

Figure 4.12: Visual aid for Equation (4.21). The real numbers δ
Â(n)

(p1+p2
2

)
and δA

(p1+p2
2

)
are

contained in their respective intervals, positioned relative to δA
(
a1+a2

2

)
. Ticks have a spacing of ϵn.

where the latter equality is an application of Theorem 4.2.

Now, we proceed to show (4.17). Recall the equality in (4.18), and split the analysis into two

cases.

Case 1: There exists a1, a2 ∈ A such that a1 ̸= a2 and reach(A) = g||a2−a1|| ◦ δA
(
a1+a2

2

)
.

For this pair a1, a2 ∈ A there exists p1, p2 ∈ Â(n) satisfying ||p2 − a2|| , ||p1 − a1|| ≤ ϵn. This

implies ∣∣∣∣∣∣∣∣p1 + p2
2

− a1 + a2
2

∣∣∣∣∣∣∣∣ ≤ ϵn. (4.20)

Equation (4.20) tells us that the two midpoints are close, and so their distances to A cannot

differ by more than the distance between them. i.e.,∣∣∣∣δA(a1 + a2
2

)
− δA

(
p1 + p2

2

)∣∣∣∣ ≤ ϵn.

Since Equation (4.19) holds for p1, p2 ∈ A, and δA
(p1+p2

2

)
≤ δ

Â(n)

(p1+p2
2

)
, we also have

δA

(
a1 + a2

2

)
− ϵn ≤ δ

Â(n)

(
p1 + p2

2

)
≤ δA

(
a1 + a2

2

)
+ 2ϵn, (4.21)

by the triangle inequality (see Figure 4.12).

Now, suppose that n is sufficiently large such that 2ϵn < y := δA
(
a1+a2

2

)
. Then, by (4.21),

x := δ
Â(n)

(p1+p2
2

)
− ϵn > 0 and so

r̂ch
(ϵn)

(Â(n)) ≤ g||p2−p1||(x) =
||p2 − p1||2

8x
+
x

2

≤ (||a2 − a1||+ 2ϵn)
2

8x
+
x

2

≤ (||a2 − a1||+ 2ϵn)
2

8(y − 2ϵn)
+
y + ϵn

2
. (4.22)

The second inequality in (4.22) holds since ||p2 − p1|| ≤ ||a2 − a1||+2ϵn, and the final inequal-

ity holds by Equation (4.21).
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Recall that reach(A) = ||a2−a1||2
8y + y

2 . The difference between this and the final expression

in (4.22) is of the order O(ϵn), which is stronger than required.

Case 2: reach(A) < g||a2−a1|| ◦ δA
(
a1+a2

2

)
for all distinct a1, a2 ∈ A.

By Assumption 4.1, for all sufficiently large n, the function reachβ(A) is strictly increasing for

β in a neighborhood of βn :=
√
reach(A)ϵn + 2ϵn. For each of these values of n, define

Ψn := {(a1, a2) ∈ A2 : δA

(
a1 + a2

2

)
≥ βn},

which is compact by Assumption 4.1, and the continuous map fn : Ψn → R+ by

fn
(
(ψ1, ψ2)

)
= g||ψ2−ψ1|| ◦ δA

(
ψ1 + ψ2

2

)
.

Remark that reachβn(A) = infψ∈Ψn fn(ψ), and so there is an element ψ∗
n := (ψ∗

1n, ψ
∗
2n) ∈ Ψn

for which

reachβn(A) = fn(ψ
∗
n).

By Definition 4.6, reachβ(A) ≤ fn(ψ
∗
n) for β = δA

(ψ∗
1n+ψ

∗
2n

2

)
. The β-reach profile of A is thus

constant on the interval
[
βn, δA

(ψ∗
1n+ψ

∗
2n

2

)]
by Theorem 4.2, but by Assumption 4.1, any such

interval must have length 0. Therefore,

βn = δA

(
ψ∗
1n + ψ∗

2n

2

)
.

Again by Assumption 4.1,

reachβn(A) =
||ψ∗

2n − ψ∗
1n||

2

8βn
+
βn
2

= reach(A) +KAβn + o(βn).

Therefore,

||ψ∗
2n − ψ∗

1n||
2 = 8βn reach(A) + (8KA − 4)β2n + o(β2n)

= 8
√
ϵn
(
reach(A)

)3/2
+ (16 + 8KA − 4) reach(A)ϵn + o(ϵn).

As seen in Case 1, Equation (4.22),

r̂ch
(ϵn)

(Â(n)) ≤ (||ψ∗
2n − ψ∗

1n||+ 2ϵn)
2

8(βn − 2ϵn)
+
βn + ϵn

2

= reach(A) + (2 +KA)
√
reach(A)

√
ϵn + o(

√
ϵn).
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Remark 4.8. The split of the proof of Theorem 4.4 into two cases is natural in the context

of reach estimation. Recall Theorem 3.4 in Aamari et al. (2019): For a compact set A with

0 < reach(A) < ∞, there is either a bottleneck structure (two distinct points a1, a2 ∈ A such

that ||a2 − a1|| = 2δA
(
a1+a2

2

)
= 2 reach(A)) or an arc-length parametrized geodesic of A with

curvature 1/reach(A). The convergence rate developed in Case 1 applies to sets whose reach is

decided by a bottleneck structure, and that of Case 2 applies to sets whose reach is decided by a

region of high curvature.

Remark 4.9. In Aamari et al. (2023), the authors provide a minimax optimal rates of convergence

for statistical estimators of the reach. The authors proceed by assuming that A ⊂ Rd is a Ck-smooth

manifold without boundary, with k ≥ 3. The minimax rates in (Aamari et al., 2023, Theorem 6.6)

are expressed in terms of k, the number of continuous derivatives of the underlying manifold.

It is not surprising that our bound on the reach—for sets satisfying the very general Assump-

tion 4.1—does not converge to the reach at the optimal rates given in Aamari et al. (2023). Never-

theless, we do observe a similar phenomenon in that the rate of convergence derived for a set whose

reach is determined by a bottleneck structure (O(ϵn) in Case 1 in the proof of Theorem 4.4) is faster

than the rate when the reach is determined by a region of high curvature (O(
√
ϵn) in Case 2).

4.3.3 The β-reach profiles of high-dimensional point clouds

Here, we tackle the problem of approximating the reach of smooth manifolds of low dimension

embedded in high-dimensional Euclidean space. As discussed in the introduction, this setting is the

focus of many works. Given a C1-smooth manifold M ⊂ Rd of dimension m < d, we suppose that

one has access to a set of points M̂ ⊂M from which one would like to infer reach(M).

The β-reach profile of a point cloud can be obtained by considering pairs of points in the point

cloud and computing the distance from their midpoint to the closest neighbor in the point cloud.

Of course, the β-reach profile of M̂ is not identical to that of M , however, we argue here that it

provides a good approximation for the values of β away from 0.

Recall that the bounds developed in Sections 4.3.1 and 4.3.2 are for subsets of Rd that possibly

have positive d-volume. This means that a point cloud Â contained in a set A ⊂ Rd can recede a

distance ϵ := dH(Â, A) from the topological boundary of A. Thus, the distance from a point in Ac

to A can be up to ϵ shorter than the distance to the nearest point in Â. Conversely, for a smooth

manifold M embedded in Rd, projection of an element p ∈ Rd onto M is along a vector normal to

M at the projection in M . Thus, the distance from p to its nearest point in M̂ is more similar to

the length of the projection vector, so in this setting, the bounds constructed previously are overly

robust. Moreover, existing algorithms for computing a mesh from point cloud data can be leveraged

to improve quality of the estimate of the distance to the nearest point in M , thus improving the

estimate of the β-reach.
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(b)(a)

Figure 4.13: (a): The point cloud M̂ in Example 4.5. (b): The mesh M(M̂) computed with the
Python library pyvista.
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Figure 4.14: The exact β-reach profile (see Definition 4.6) of M̂ in Example 4.5 and Figure 4.13 (a)
is shown as the blue solid curve. Using the formulation in (4.23), and the mesh in Figure 4.13 (b),
one may compute an improved approximation (green dashed curve) to the β-reach of the underlying
manifold M (red dotted curve).

Example 4.5 (3-dimensional point cloud on a 2-dimensional manifold). Let M ⊂ R3 be a com-

pact subset of a two-dimensional paraboloid, where its reach is decided by a point of maximal

curvature at the vertex (reach(M) = 4). Let M̂ ⊂ M be a realization of 1500 points uni-

formly distributed on M (see Remark 4.13 in Section 4.5) shown in Figure 4.13 (a). Using the

Python library pyvista Sullivan and Kaszynski (2019), we construct a mesh M(M̂) over the point

cloud M̂ (see Figure 4.13 (b)). By computing the distances of midpoints of pairs of points in

M̂ to the mesh M(M̂), rather than the nearest neighbor in M̂ , we obtain the modified β-reach,
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Figure 4.15: The exact β-reach profile of M̂ in Example 4.6 is shown as the blue solid curve. The
β-reach of the underlying manifold M (a 3-dimensional paraboloid embedded in Rd, with d ≥ 4) is
shown as a red dotted curve.

reachMβ (M̂) := inf

{
g||a2−a1||(x) : a1, a2 ∈ M̂, (4.23)

x = δ
M(M̂)

(
a1 + a2

2

)
≥ β

}
.

The β-reach of M can be computed exactly as reachβ(M) = 4 + β
2 , for β between 0 and some

positive constant. As seen in Figure 4.14, this is well approximated by reachβ(M̂) for β > 1.3, and

by reachMβ (M̂) for β > 0.4; both approximations are efficiently computable from the point cloud

M̂ .

To estimate reach(M) from the β-reach profiles in Example 4.5, one can perform a linear regression

on reachMβ (M̂), for β in the range where the curve appears linear, and estimate the reach as the

model intercept.

Although the manifold M in Example 4.5 is derived from a simple paraboloid, this example is

representative of other two-dimensional manifolds whose reach is determined by a region of high

curvature.

The following two examples emphasize the applicability of this method in higher dimensions.

Example 4.6 (d-dimensional point cloud on a 3-dimensional manifold). Let d ≥ 4, and letM ⊂ Rd

be a compact subset of the three-dimensional paraboloid defined by x21 + x22 + x23 − 12x4 = 0 and

xi = 0, for i = 5, . . . , d, such that the reach of M is decided by a point of maximal curvature at the

origin. It can be shown that reachβ(M) = 6 + β
2 , for β between 0 and some positive value.

Let M̂ ⊂ M be a realization of 3000 points, uniformly distributed on M (see Remark 4.13 in

Section 4.5). The Python package pyvista does not currently have methods for computing meshes

in dimension higher than 3, so in this example, we do not compute reachMβ (M̂) in (4.23). Mesh
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Figure 4.16: The exact β-reach profile of M̂ in Example 4.7. The β-reach of the underlying manifold
M is shown as a red dotted curve. Here,M is the union of two 3-dimensional hyperspheres of radius
2 embedded in Rd.

generation in higher dimension is itself an active field of research (Boissonnat et al., 2008, 2009;

Edelsbrunner, 2001). Nonetheless, we plot the exact β-reach profile of M̂ in Figure 4.15.

Remark 4.10. The dimension of the ambient space d ≥ 4 in Example 4.6 does not affect the

shape of the β-reach profile of the point cloud M̂ , computed purely in terms of distances between

the points, and distances to midpoints. These distances are preserved under isometries to higher

dimensional spaces. However, the number of points in M̂ plays a role in the shape of the β-reach

profile through the Hausdorff distance between M̂ and the underlying manifold M . The exact

relationship between the number of points in M̂ and the Hausdorff distance dH(M̂,M) cannot be

made precise with no prior knowledge of how the points are distributed on M—which also plays

a role in the shape of the β-reach profile of M̂ . Nonetheless, the dimension of M determines to a

large extent the number of points needed to ensure that dH(M̂,M) is less than a given tolerance.

Example 4.7 (Two 3-dimensional hyperspheres). Let d ≥ 4, and let M ⊂ Rd be the union of two

three-dimensional hyperspheres of radius 2 whose centers are 12 units apart. Let M̂ ⊂ M be a

realization of 3000 points uniformly distributed on M . The β-reach profiles of M and a realization

of M̂ are shown in Figure 4.16.

Example 4.7 highlights a few nice features of the β-reach profile. That is, it adapts very well to

situations where the reach is determined by a bottleneck structure, as is the case for a hypersphere.

For β ∈ (2, 4], the β-reach is no longer determined by the radius of the hypersphere, but by half

the distance between the surfaces of the spheres (in this case, (12 − 2 − 2)/2 = 4 units). Thus,

the β-reach profile also provides information about the large scale features of the data. Notably, it

gives the scales at which it becomes possible to distinguish these features from one another.

Finally, recall from Remark 4.2 that one can read from the plot information about the critical

points of the generalized gradient function. In the case of Example 4.7, the distances from the three
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(a)

(b)

Figure 4.17: (a): The point cloud data P̂ in Example 4.8 is used to guarantee that the r-convexity
of the underlying surface of the plane P does not exceed th chosen test radius r = 0.03. The areas
of the plane responsible for this restriction on the r-convexity are highlighted in red. (b): The
pyvista mesh M(N̂) constructed from N̂ ⊂ P̂ , the points at the nose of the plane.

critical points to M are 2, 2, and 4.

4.4 Numerical studies

In this section, we test the methods for bounding the reach and r-convexity introduced in Section 4.3

against numerical data. First, in Section 4.4.1, we study the performance of our methods on real

data. Then, in Section 4.4.2, we test the convergence results in Theorems 4.3 and 4.4.

4.4.1 Aircraft data

The real data in Example 4.8, below, is studied using the tools developed in this document. After a

short description of the data, we perform several analyses using the tools developed in Section 4.3.

Example 4.8 (Aircraft data). Provided in Baorui et al. (2022) is a point cloud dataset that

is sampled over the surface of a commercial aircraft (the white points in Figure 4.17 (a)). The

diameter of the raw point cloud data (which corresponds to the length of the plane) is 0.749 units.

Denote the surface of the aircraft by P and the approximating point cloud by P̂ .

We are also interested in the nose of the aircraft, N ⊂ P , the surface of the first 0.056 length units

of the aircraft. A two-dimensional mesh approximating N̂ := N ∩ P̂ is shown in Figure 4.17 (b).

It is possible that in an engineering practice, one may want to identify which regions of a point

cloud are not r-convex for a predefined value of r. Panel (a) of Figure 4.17 highlights in red the

regions of the plane that are certainly not r-convex for the choice of r = 0.03.

The surface of the plane P is known to be two-dimensional, and so a cubic lattice of points

φ with lattice spacing a = 0.004 superimposed over P̂ will almost surely not intersect P . The

discrete dilation and erosion operations in Definition 4.7 are well defined using the larger point cloud

P := φ∪ P̂ . The red points in Figure 4.17 (a) are the elements of the discrete set (P̂r−ϵ)−(r+ϵ) ∩φ,
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Figure 4.18: The exact β-reach profile of N̂ in Example 4.8 is shown as the blue solid curve.
Using the formulation in (4.23), and the mesh in Figure 4.17 (b), one may compute an improved
approximation (green dashed curve) to the β-reach of the underlying (unknown) manifold N .

with ϵ :=
√
3a/2 = sup{δP(q) : q ∈ R3}. Since this set is not empty, one has that P is a proper

subset of P•r. In addition, by (4.2), one has conclusive evidence that reach(P ) ≤ r.

This example illustrates that, with this method, one can identify the regions responsible for

limiting the r-convexity (and thus the reach), with a test specificity of 100%. One can improve the

sensitivity of the test by decreasing the lattice spacing a. Then, other regions that are not r-convex

(such as the interiors of the horizontal and vertical stabilizers) would be identified as such.

Remark that the nose of the plane is marked in red, due of course to a region of high curvature.

By considering only the smooth manifold N in Example 4.8, corresponding to the nose of the plane,

we can approximate the β-reach profile of N by reachβ(N̂) in Definition 4.6, or by reachMβ (N̂) in

Equation (4.23) using a linear nearest neighbor search.

The resulting β-reach profiles are shown in Figure 4.18. From the figure, the reach is clearly seen

to be much smaller than 0.03 as indicated by the r-convexity experiment. Assuming that the β-

reach profile of N maintains a constant slope near 0 as seen before in Figure 4.14, the approximation

reach(N) ≈ 0.012 can be read from Figure 4.18.

There are two main issues with using the reach bound in (4.15) on the aircraft data in Example 4.8.

First, it is expected to produce a large overestimate of reach(N) since N is a smooth manifold (see

the discussion in Section 4.3.3). In addition, it is impossible to know the Hausdorff distance beween

N and its approximating point cloud N̂ . Nevertheless, one can obtain a good approximation by

considering the persistence diagram of growing balls centered at the points in N̂ . The largest of the

death-times of the topological features corresponds to the smallest radius for which the union of balls

is homotopic to a point. This is likely to corespond closely to the Hausdorff distance dH(N, N̂), and

is thus a good choice for ϵ in (4.15). The persistence diagram, generated from the Python module

ripser Bauer (2021), gives that the largest death-time is ϵ = 0.0065. From this, one calculates

r̂ch
(ϵ)
(N̂) = 0.022.
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(b)(a)

Figure 4.19: Realizations of the random set Û (n) in Example 4.9. (a): n = 2. (b): n = 10.

Although the reach bound in (4.15) is less appropriate to use in this setting, we will see in the

following section that it (and the r-convexity bound in (4.11)) is highly applicable when studying

binary images.

4.4.2 Numerical convergence of reach and r-convexity bounds

In stochastic geometry literature, the excursion set of a random field is the subset of its domain

on which the random field surpasses a predefined threshold (see Adler and Taylor (2007) for a

comprehensive reference). The set in Figure 4.9, for example, is one realization of the excursion set

of a stationary, isotropic Gaussian random field sampled on a square lattice.

The following two examples are meant to imitate the discretized excursion set of C2 continuous

random fields on square lattices (see, e.g., Biermé and Desolneux (2021); Cotsakis et al. (2023a,c)).

A key feature of both examples, is that the reach and r-convexity of the sets are known, and

so we can study the convergence of the bounds in Theorems 4.3 and 4.4 as the grid of sampling

points becomes more fine. Each example illustrates one of the two cases mentioned in Remark 4.8

concerning the relationship between the reach, regions of high curvature, and bottleneck structures.

Example 4.9 (Reach determined by curvature). Let U := {(x, y) ∈ R2 : y ≤ x2/2} ∩ B(0, 10). It

is easy to check that reach(U) = rconv(U) = 1. Moreover, the reach is determined by a point of

maximal curvature at (0, 0) ∈ U .

Let (P(n))n≥1 be a sequence of square lattices over R2 with lattice spacing an = 0.7/n, and

independent, uniformly random position and orientation. For n ∈ N+, let Û (n) := U ∩ P(n) be the

set U sampled on P(n). Figure 4.19 depicts square subsets of realizations of Û (2) and Û (10) shown

as binary images.

Example 4.10 (Reach determined by a bottleneck structure). Let W := {(x, y) ∈ R2 : |y| ≥
x2/2 + 1} ∩ B(0, 10). One has reach(W ) = rconv(W ) = 1, which is half the distance between its

two connected components.

For the sequence of square lattices (P(n))n≥1 in Example 4.9, let Ŵ (n) := W ∩ P(n). Figure 4.20

depicts square subsets of realizations of Ŵ (2) and Ŵ (10) shown as binary images.
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(b)(a)

Figure 4.20: Realizations of the random set Ŵ (n) in Example 4.10. (a): n = 2. (b): n = 10.

(b)(a)

Figure 4.21: (a): The mean and 95% confidence interval for the values of r̂(an/
√
2)(Û (n)) (squares)

and r̂ch
(
√
1.25an)

(Û (n)) (circles) for 50 independent realizations of Û (n) in Example 4.9 (b): The

mean and 95% confidence interval for the values of r̂(an/
√
2)(Ŵ (n)) (squares) and r̂ch

(
√
1.25an)

(Ŵ (n))

(circles) for 50 independent realizations of Ŵ (n) in Example 4.10.

Remark 4.11. The choice to use sets with a reach of 1 in Examples 4.9 and 4.10 does not limit

their generality. The importance lies in the scale of the sampling lattice P(n) relative to the reach,

and the ratio of the two tends to 0 as n→ ∞ in both examples.

The following observation makes the gernerality of these examples even clearer: to consider the

lattice of sampling points at various scales and orientations is equivalent to considering a fixed

lattice and various scales and orientations of the underlying sets U and W .

For each n ∈ {2, . . . , 12}, we compute 50 independent realizations of Û (n) and 50 independent

realizations of Ŵ (n). For each of the resulting discrete sets, we compute the bounds of r-convexity

and reach in (4.11) and (4.15) respectively. The means of the bounds are plotted in Figure 4.21

with empirical 95% confidence intervals, computed from the Harrell-Davis quantiles (Harrell and

Davis, 1982). Panels (a) and (b) correspond to the results for the replications of Û (n) and Ŵ (n)

respectively.

For the r-convexity bound, ϵn = an/
√
2 is chosen since dH(P(n),R2) = an/

√
2, for n ∈ N+. For

the reach bound, we set ϵn =
√
1.25an. The justification of this choice is quite technical, so we

postpone the discussion to Remark 4.14 in Section 4.5.
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Figure 4.22: The quantities used in the proof of Theorem 4.1. Sending ϵ → 0 leads to the largest
circle intersecting ∂A if it is to always intersect B(a1, ϵ).

A linear regression on the log-log plot of the sample means of the data in Figure 4.21 (a) shows

that

E[̂r(an/
√
2)(Û (n))] ≈ 1 + 1.71n−0.59 and E[r̂ch

(
√
1.25an)

(Û (n))] ≈ 1 + 1.54n−0.62.

These empirical convergence rates — O(ϵ0.59n ) for the bound on rconv(U) and O(ϵ0.62n ) for the bound

on reach(U) — are both slightly faster than the predicted rate of O(
√
ϵn) established in (4.17) for

the bound on the reach. Since the reach of U is determined by a region of maximal curvature, the

convergence rate is governed by the analysis in Case 2 in the proof of Theorem 4.4.

For the data in panel (b) of Figure 4.21,

E[̂r(an/
√
2)(Ŵ (n))] ≈ 1 + 2.81n−1.20 and E[r̂ch

(
√
1.25an)

(Ŵ (n))] ≈ 1 + 0.65n−1.50.

Again, these empirical convergence rates are faster than the anticipated rate of O(ϵn) established

for the bound on the reach in Case 1 (i.e., when the reach is determined by a bottleneck structure)

in the proof of Theorem 4.4.

4.5 Proofs and technical results

Here, we provide proofs and auxiliary lemmas that support the results in Sections 4.2 and 4.3.

Proof of Theorem 4.1. We begin by showing (4.2). Suppose that r ∈ (0, reach(A)). By Lemma 4.1,

A ⊆ A•r, so it suffices to show that Ac ⊆ (A•r)
c. Let x ∈ Ac. If x ∈ (Ar)

c, then clearly,
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x ∈ (Ar)
c ⊕B(0, r) = (A•r)

c. If x ∈ Ar \A, then by Federer (1959, Corollary 4.9),

δ(Ar)c(x) = r − δA(x) < r,

and so x ∈ (Ar)
c⊕B(0, r) = (A•r)

c, which proves (4.2). What remains to be shown is that if ∂A is

C1-smooth and (d− 1)-dimensional, then rconv(A) ≤ reach(A). This inequality is shown via proof

by contradiction. Suppose that

(i) r > reach(A) and

(ii) A•r = A.

By (i), there exists p ∈ A r+reach(A)
2

with no unique point in A closest to p. In particular, since A

is closed, there exists two non-identical points a1, a2 ∈ ∂A ⊆ A such that ||p− a1|| = ||p− a2|| =
δA(p) < r. Let n1 be the unit normal vector to ∂A at a1, pointing towards p. Since a1 is a limit

point of A, one has Ac ∩ B(a1, ϵ) ̸= ∅ for all ϵ > 0. By (ii), Ac =
⋃
x∈(Ar)c

B(x, r), and so for all

ϵ > 0, there exists x ∈ (Ar)
c such that

(iii) B(x, r) ∩B(a1, ϵ) ̸= ∅ and

(iv) B(x, r) ∩A = ∅.

The boundary ∂A is C1-smooth at a1, so it is easily checked that for ϵ close to 0, the locations x that

satisfy both (iii) and (iv) are necessarily contained in a small neighborhood around a1 + rn1 (see

Figure 4.22). That is, there exists a mapping θ : ϵ 7→ θ(ϵ) ∈ R+ that tends to 0 as ϵ→ 0, such that if

x ∈ (Ar)
c and ϵ ∈ R+ satisfy (iii) and (iv), then x ∈ B(a1+rn1, θ(ϵ)). Note that ||(a1 + rn1)− a2|| <

r since a2 ∈ B(p, δA(p)) ⊂ B(a1 + rn1, r). Choose ϵ such that θ(ϵ) < r − ||(a1 + rn1)− a2||. Then

for any x ∈ (Ar)
c ∩B(a1 + rn1, θ(ϵ)),

||x− a2|| ≤ ||x− (a1 + rn1)||+ ||(a1 + rn1)− a2||

≤ θ(ϵ) + ||(a1 + rn1)− a2|| < r.

This contradicts (iv).

Lemma 4.2. Let U be an open set in Rd, and let r ≥ 0. Then,

cl(U)•r = cl(U) =⇒ U•r = U.

Proof of Lemma 4.2. By Lemma 4.1, item (b), U ⊆ U•r ⊆ cl(U)•r. Note also that U•r is open.

Suppose that cl(U)•r = cl(U). Then U•r is an open subset of cl(U) that contains all of the interior

points of cl(U). Therefore, U•r = U .
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Lemma 4.3. Let A ⊆ Rd be closed. It holds that

rconv(cl(Ac)) = sup{r ∈ R : A•−r = A}.

Proof of Lemma 4.3. By Lemma 4.2 and item (a) in Lemma 4.1,

{r ∈ R : cl(Ac)•r = cl(Ac)} ⊆ {r ∈ R : (Ac)•r = Ac} = {r ∈ R : A•−r = A}.

Therefore, rconv(cl(Ac)) ≤ sup{r ∈ R : A•−r = A}. Now we show the reverse inequality. Let

r, r̃ ∈ R+ satisfy r > r̃ > rconv(cl(Ac)). By Proposition 4.2, cl(Ac)•r̃ \ cl(Ac) contains a ball

of radius ϵ for some ϵ ∈ (0, r). Now, let δ = min(ϵ, 2(r − r̃)). Note that (Ac)δ/2 ⊇ cl(Ac), and

so by Lemma 4.1, ((Ac)δ/2)•r−δ/2 = ((Ac)r)−(r−δ/2) ⊇ cl(Ac)•r−δ/2 ⊇ cl(Ac)•r̃, which contains

the ball of radius ϵ. Now, eroding by δ/2 preserves a ball of radius ϵ − δ/2 ≥ ϵ/2. That is,

(((Ac)δ/2)•r−δ/2)−δ/2 = (Ac)•r contains a ball of radius ϵ/2 that does not intersect cl(Ac), and so

(Ac)•r ̸= Ac which implies the desired A•−r ̸= A by Lemma 4.1, item (a).

Proof of Corollary 4.1. If rconv(A) = 0, then by Theorem 4.1, reach(A) = 0 and we are done. Now

assume rconv(A) > 0 and rconv(cl(Ac)) > 0, then by Lemma 4.3, there exists δ > 0 such that

A•r = A for all r ∈ (−δ, δ). Theorem 1 in Walther (1999) states that ∂A is (d− 1)-dimensional and

C1-smooth, which implies Equation 4.3 in our Theorem 4.1.

Proof of Proposition 4.1. By Theorem 4.1, it suffices to show that if ∂(Aϵ) is not C
1-smooth, then

reach(Aϵ) = rconv(Aϵ) = 0. Indeed, if there is a point c on the boundary of Aϵ =
⋃
a∈AB(a, ϵ)

that does not have a continuous derivative, then c is at the boundary of two distinct balls of radius

ϵ, contained in Aϵ. In other words, c is at cusp that points inwards towards the interior of Aϵ.

Suppose that Aϵ is r-convex for some r > 0. Then there is an open ball of radius r, with c as

one of its limit points, that does not intersect either of the two balls with c on their boundaries.

This is not possible, since there is exactly one ball of radius ϵ tangent to the ball of radius r at

c, and so our assumption of r-convexity is false. Thus, we conclude rconv(Aϵ) = 0, and by (4.2),

reach(Aϵ) = 0.

Remark 4.12. Remark that (Aϵ)•−ϵ = Aϵ. Therefore, if the hypotheses of Proposition 4.1 are

strengthened to those of Corollary 4.1, then the proof of Proposition 4.1 holds by applying Theorem 1

in Walther (1999) followed by our Theorem 4.1.

Here, we present an auxiliary lemma, and use it in our proof of Proposition 4.2 in Section 4.3.1.

Lemma 4.4. For closed A ⊆ Rd and r ∈ R+, it holds that

A•r =
{
p ∈ Rd : ∀x ∈ B(0, r), B(p+ x, r) ∩A ̸= ∅

}
. (4.24)
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Proof of Lemma 4.4. By manipulating the expressions in Definition 4.1, one obtains

A•r =

 ⋃
y∈(A⊕B(0,r))c

B(y, r)

c

, (4.25)

which reads: the elements of A•r are the p ∈ Rd such that p is not contained in any closed ball of

radius r that does not intersect A. This statement is equivalent to: p /∈ A•r if and only if there

exists a closed ball of radius r that contains p but does not intersect A. Thus, we have shown that

(A•r)
c is equal to the complement of the RHS of (4.24), which proves the desired result.

Proof of Proposition 4.2. Let r̃ ∈ (rconv(A), r) and fix p ∈ A•r̃ \ A. Since A is closed, there is an

open neighborhood containing p that does not intersect A. Choose ϵ ∈ R+ such that B(p, ϵ)∩A = ∅.
There exists a sufficiently small δ ∈ (0, ϵ) such that for every y ∈ B(p, δ + r), there exists an

x ∈ B(0, r̃) that satisfiesB(p+x, r̃)\B(p, ϵ) ⊂ B(y, r). Since p ∈ A•r̃, one has thatB(p+x, r̃)\B(p, ϵ)

contains an element of A by Lemma 4.4. By inclusion, B(y, r) contains a point in A as well.

Let z ∈ B(p, δ). We have shown that z is in the right-hand side of (4.24), since, for all x ∈ B(0, r),

one has y := z+x ∈ B(z, δ+r) by the triangle inequality, and so by previous arguments, B(z+x, r)

contains an element of A. Therefore, by Lemma 4.4, z ∈ A•r. But z is not in A since B(p, δ) ⊆
B(p, ϵ) ⊆ Ac. Therefore, z ∈ A•r \A and so B(p, δ) ⊆ A•r \A.

Proof of Theorem 4.3. We begin by showing (4.12). Let n ∈ N+ and fix p ∈ P(n) \ Â(n). If

ϵn ≥ rconv(A), then (4.12) holds trivially. Now, let r ∈ R+ be such that ϵn < r < rconv(A) so that

A•r = A. We aim to show that p /∈ (Â
(n)
r−ϵn)−(r+ϵn).

Indeed, by the r-convexity of A, there exists x ∈ (Ar)
c such that ||x− p|| < r. In addition,

B(x, ϵn) ∩ Ar−ϵn = ∅, so there exists q ∈ P(n) \ Â(n)
r−ϵn such that ||q − x|| ≤ ϵn. Therefore, by the

triangle inequality, ||q − p|| ≤ r+ϵn, which implies δP(n)\Â(n)
r−ϵn

(p) ≤ r+ϵn. Thus, p /∈ (Â
(n)
r−ϵn)−(r+ϵn)

as desired.

Now, to prove (4.13), first fix r > rconv(A). To simplify notation, let δn := dH(Â
(n), A). By

Proposition 4.2, there exists an open subset O ⊆ A•r \ A that contains a closed ball of radius

δn0 +3ϵn0 for sufficiently large n0 ∈ N+. Let n ≥ n0. The spacing between points in the point cloud

P(n) is sufficiently small such that there exists q ∈ O−(δn+2ϵn)∩P(n). Importantly, this implies that

q ∈ (Ar)−(r+δn+2ϵn) ∩ P(n). By Lemma 4.1, for all s > r, we have

(Ar)−(r+δn+2ϵn) ⊆ ((Ar)•(s−r))−(r+δn+2ϵn) = (As)−(s+δn+2ϵn),

and therefore q ∈ (As)−(s+δn+2ϵn) ∩ P(n). Notice that As ∩ P(n) ⊆ Â
(n)
δn+s

, which implies (As)
c ⊇

P(n) \ Â(n)
s+δn

and thus

(As)−(s+δn+2ϵn) ∩ P(n) ⊆ (Â
(n)
δn+s

)−(s+δn+2ϵn).

Summarizing, we have shown that there is a point q in (Â
(n)
δn+s

)−(s+δn+2ϵn) that is not in Â
(n). By
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the change of variables s̃ := s+δn+ϵn, it follows that (Â
(n)
s̃−ϵn)−(s̃+ϵn)\Â(n) ̸= ∅ for all s̃ > r+δn+ϵn,

which implies r̂(ϵn)(Â(n)) ≤ r + δn + ϵn.

Sending n → ∞ yields limn→∞ r̂(ϵn)(Â(n)) ≤ r, and since r ∈ (rconv(A),∞) was chosen freely,

limn→∞ r̂(ϵn)(Â(n)) ≤ rconv(A). This result, along with (4.12), gives the convergence in (4.13).

Proof of Equations (4.8) and (4.9). The reach of A is equal to the inverse of the curvature of f at

x = 0 (Aamari et al., 2019, Theorem 3.4). Equation (4.8) holds since the curvature of f at x = 0

is f ′′(0) = 2h′(0).

Now we show (4.9). Without loss of generality, suppose h(0) = f(0) = 0. For x in a small

neighborhood of 0, consider the symmetric points a1 = (x, f(x)) and a2 = (−x, f(x)) in A, and

remark that

g||a2−a1|| ◦ δA
(
a1 + a2

2

)
=

x2

2f(x)
+
f(x)

2
, (4.26)

since δA
(
a1+a2

2

)
= f(x) for sufficiently small x. Thus, the β-reach, for β = f(x), satisfies

reachf(x)(A) ≤ g||a2−a1|| ◦ δA
(
a1 + a2

2

)
. (4.27)

There is a δ > 0 such that h has an inverse on [0, δ], and so for β ∈ [0, δ], choose x such that

f(x) = β. Remark that

x2 = h−1(β) =
β

h′(0)
− β2h′′(0)

2h′(0)3
+ o(β2),

by Taylor’s theorem. Plugging into (4.26) and applying (4.27), one obtains (4.9).

We believe that the inequality in (4.27) can be strengthened to an equality. This would provide

the exact value of KA in (4.14) for A in Example 4.4.

Remark 4.13 (Generating points uniformly on the graph of a function). In Examples 4.5 and 4.6,

we generate points on the graph of a function uniformly with respect to the Riemannian metric.

This can be achieved as follows. Let G ⊂ Rm+1 be the graph of a C1-smooth function f : T → R,
where T ⊂ Rm is compact. To simulate points uniformly on G, it suffices to simulate the points

on T with the appropriate probability density, and map the points up to G by the function f . The

appropriate density on T is given by

λ(t) := c

√
1 + ||∇f(t)||2,

for t ∈ T , where ∇f denotes the gradient of f , and c is a normalizing constant. This is true since

λ(t)/c is the determinant of the Jacobian of the map induced by f from T to G. If X is distributed

randomly on T with density λ, then the image of X in G is uniform in G.

Remark 4.14 (The choice of ϵn for the reach bound in Section 4.4.2). In Section 4.4.2, we choose

ϵn =
√
1.25an when computing r̂ch

(ϵn)
(Û (n)) in Example 4.9 and r̂ch

(ϵn)
(Ŵ (n)) in Example 4.10,
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an

√
1.25an

Figure 4.23: The grey points and the white points can be seperated by a curve with arbitrarily
small curvature (arbitrarily large reach). The midpoint of two grey points may be up to a distance
of

√
1.25an from another grey point, while remaining arbitrarily close to the separating curve.

where an denotes the lattice spacing of the square grid on R2. Although this choice of ϵn leads to

dH(Û
(n), U) > ϵn, or dH(Ŵ

(n),W ) > ϵn with positive probability, it is sufficient for the result of

Theorem 4.4 in this two-dimensional case.

Let us take the case of U for example. The condition dH(Û
(n), U) > ϵn can be weakened to

“midpoints of pairs of points in Û (n) are no further from Û (n) than ϵn plus the distance to U”, and

the result of Theorem 4.4 still holds. Figure 4.23 depicts a situation where, for a very fine grid

(an ≪ 1), the midpoint of two points in Û (n) is a distance of
√
1.25an from another point in Û (n),

while its distance to U is negligible. This worst-case scenario justifies the choice of ϵn =
√
1.25an.
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Chapter 5

A local statistic for the spatial extent

of extreme threshold exceedances

This chapter is based on the joint work

Cotsakis, R., Di Bernardino, E., & Opitz, T. (2023). A local statistic for the spatial extent

of extreme threshold exceedances. Submitted for publication in an international peer-reviewed

journal. Paper here.

Abstract: We introduce the extremal range, a local statistic for studying the spatial extent of

extreme events in random fields on R2. Conditioned on exceedance of a high threshold at a location

s, the extremal range at s is the random variable defined as the smallest distance from s to a

location where there is a non-exceedance. We leverage tools from excursion-set theory to study

distributional properties of the extremal range, propose parametric models and predict the median

extremal range at extreme threshold levels. The extremal range captures the rate at which the

spatial extent of conditional extreme events scales for increasingly high thresholds, and we relate

its distributional properties with the bivariate tail dependence coefficient and the extremal index

of time series in classical Extreme-Value Theory. Consistent estimation of the distribution function

of the extremal range for stationary random fields is proven. For non-stationary random fields,

we implement generalized additive median regression to predict extremal-range maps at very high

threshold levels. An application to two large daily temperature datasets, namely reanalyses and

climate-model simulations for France, highlights decreasing extremal dependence for increasing

threshold levels and reveals strong differences in joint tail decay rates between reanalyses and

simulations.
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5.1 Introduction

Assessing the spatial and temporal correlation of extreme events is an important modeling step in

applications of environmental statistics where extreme risks arise from concurrence and compound-

ing of extremes (Dombry et al., 2018; AghaKouchak et al., 2020). We here focus on assessing the

spatial contiguity of extreme events based on excursion sets with the aim to avoid strong parametric

assumptions and high numerical cost when inferring spatial extremal dependence properties from

large datasets on regular grids. Analysis of excursion sets has become valuable in spatial statistics

(e.g., Bolin and Lindgren, 2015; Sommerfeld et al., 2018) and computer vision (e.g., Bleau and

Leon, 2000; Sezgin and Sankur, 2004), especially for data on regular grids, such as climate model

output, remote sensing data or medical images. We use the framework of Extreme-Value Theory

(EVT, de Haan and Ferreira, 2006), useful to formulate general tail-regularity assumptions and

enable statistical extrapolation towards very high and even yet unobserved quantiles. The standard

asymptotic models in spatial EVT exhibit asymptotic dependence where the limiting dependence

structure of threshold exceedances is characterized by peaks-over-threshold stability (Ferreira and

de Haan, 2014; Dombry and Ribatet, 2015; Thibaud and Opitz, 2015). However, strong empiri-

cal evidence from many environmental processes advises against this property (Tawn et al., 2018;

Huser and Wadsworth, 2022). Often, spatial dependence between threshold exceedances is lost as

thresholds are increased, and it may ultimately vanish in the case of asymptotic independence.

More flexible subasymptotic models have been proposed to accommodate asymptotic independence

or even both situations of asymptotic (in)dependence (Huser et al., 2017; Huser and Wadsworth,

2022; Zhang et al., 2022).

Here, we use a setting borrowing from the idea of spatial conditional extremes (Heffernan and

Tawn, 2004; Wadsworth and Tawn, 2022) to better understand spatial joint tail decay behavior near

a location of interest. The tail dependence coefficient limu→1 P(F2(X2) > u | F1(X1) > u) of two

random variables Xi ∼ Fi, i = 1, 2, is a conditional probability that is a routinely used exploratory

and diagnostic tool to assess the strength of bivariate extremal dependence (Coles et al., 1999). In

spatial statistics, however, one usually has access to observations for a relatively large number of

locations, and so methods of assessing extremal dependence based only on pairwise observations

exclude pertinent information about multivariate, or spatial dependence structure, and numerical

computation may become very costly for data available on regular grids with a large number of

locations. There have been a number of methods to overcome this issue. Wadsworth and Tawn

(2022); Simpson et al. (2023), for example, propose a parametric inference method based on a

spatial extension of the multivariate conditional extremes model of Heffernan and Tawn (2004),

which also relies on conditioning on an exceedance in one of the variables. Other works based

on the conditional extremes model are limited in their applicability to high-dimensional datasets.

As noted by Wadsworth and Tawn (2022), it is common in environmental data for the spatial

dependence to weaken as the considered threshold increases. One interpretation of this phenomenon,

the inspiration for the statistics introduced in this paper, is that the spatial extent of extreme events
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tends to decrease with an increase in the threshold level. Thus, in this paper, we focus on the size

and other geometric properties of excursion sets of continuous planar random fields—the regions

where the random fields exhibit threshold exceedances.

There is a vast literature concerning the geometric features of excursion sets of random fields; see

Adler and Taylor (2007) for a comprehensive introduction. For smooth random fields, geometric

summaries of excursion sets, namely their intrinsic volumes, carry pertinent information about the

asymptotic dependence structure at extreme thresholds (Di Bernardino et al., 2022). In this paper,

we introduce a new local statistic, the extremal range. The extremal range at a site s ∈ R2 is

defined as the largest radius r around s such that all locations within r are extreme, conditioned on

a threshold exceedance at s. We will explore how the extremal range relates to the intrinsic volumes

of the excursion set and to the notion of asymptotic dependence defined by a positive value of the

tail dependence coefficient.

The extremal range can be seen as a spatial analogue to the extremal index (Moloney et al.,

2019), a popular asymptotic statistic for time series extremes that allows for interpretation as the

reciprocal of the average number of consecutive time steps over which an extreme cluster spans. In

this sense, both quantities provide a notion of the size of clusters of extremes. However, several

notable distinctions can be made. Firstly, we consider two-dimensional Euclidean space and not

one single time dimension with regular discrete time steps. In one dimension, the distributional

properties of the extremal range and its asymptotics at high thresholds can be obtained by studying

sojourn times of one dimensional stochastic processes (Berman, 1971, 1982; Kratz, 2006; Pham,

2013; Dalmao et al., 2019). Where the classical extremal index is equal to unity in the case of

asymptotic independence and therefore not informative, the extremal range can be used to quantify

the degree of asymptotic dependence for asymptotically independent random fields. An important

practical difference further stems from the fact that edge effects at the boundary of the observation

window play a more important role in the spatial setting than in the temporal one. Thus, for

spatial environmental datasets, care needs to be taken when computing the extremal range when

the surrounding data is censored or unavailable.

Our results are organized as follows. Section 5.2 introduces the extremal range and notations.

In Section 5.3, we express the cumulative distribution function of the extremal range through the

intrinsic volumes of the excursion regions. In Section 5.4, we study the asymptotic behavior of the

extremal range for common random field models as the threshold at the conditioning location s

is increased, and propose a parametric model for the quantiles of the extremal range. Inference

methods for estimating the extremal range and its quantiles are described in Section 5.5, and are

applied to French temperature data by using a generalized additive quantile regression framework

in Section 5.6. Some technical definitions and examples are postponed to Appendix 5.A. Finally,

proofs and supporting lemmas for the theory established in Sections 5.3, 5.4, and 5.5 are provided

in Appendix 5.B.
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5.2 The extremal range and relevant notations

Let (Ω,F ,P) be a probability space and let X : Ω × R2 → R be a random field defined on R2,

the Euclidean plane, endowed with the Euclidean metric ||·|| and Lebesgue measure L(·). For a

study domain S ⊆ R2, let ∂S denote its topological boundary. For x ∈ R2, denote the distance

between x and a non-empty set S by dist(x, S) := inf{||x− s|| : s ∈ S}. Throughout this paper,

u : R2 → R denotes a deterministic threshold that is allowed to vary in space, and we focus on the

binary random field of excursion indicators {X(t) > u(t)}t∈R2 . This is expressed in terms of the

following definition.

Definition 5.1 (Excursion set). Let X be a random field on R2 and u : R2 → R be a threshold

function that may vary in space. Define the excursion set of X to be

EX(u) := {t ∈ R2 : X(t) > u(t)}.

Definition 5.2 (Extremal range). For r > 0 and s ∈ R2, let B(s, r) := {t ∈ R2 : ||t− s|| ≤ r}
denote the closed ball of radius r centered at s. Let R̃(u) : Ω×R2 → R+ ∪{0,∞} be a random field

defined by

R̃(u)(t) := sup
{
r ∈ R+ : B(t, r) ⊂ EX(u)

}
= dist

(
t, (EX(u))

c), t ∈ R2.

Let s ∈ R2 satisfy u(s) < x∗(s), with x∗(s) := inf{x ∈ R : P(X(s) > x) = 0} denoting the upper

end-point of the marginal density of X at s. Define the extremal range at s, denoted R
(u)
s , to be

the random variable whose pushforward measure is given by

P(R(u)
s ∈ A) = P

(
R̃(u)(s) ∈ A | X(s) > u(s)

)
, A ∈ B(R).

Remark 5.1. As discussed in Moloney et al. (2019), the inverse of the so-called extremal in-

dex quantifies the average size of clusters of threshold exceedances for time series, i.e., for one-

dimensional discrete random processes. Analogously, the extremal range provides a notion of the

size of the clusters of sites that exhibit threshold exceedances for continuous, two-dimensional ran-

dom fields.

The definitions below are relevant to establish the main results for the extremal range.

Definition 5.3 (Erosion and dilation). For two nonempty sets A,B ⊆ R2, let A ⊕ B := {x + y :

x ∈ A, y ∈ B} be the Minkowski sum of A and B. For r ∈ R, and S ⊆ R2 let

Sr :=

S ⊕B(0, r), for r ≥ 0,(
Sc ⊕B(0,−r)

)c
, for r < 0,

denote respectively the set dilation and the set erosion, depending on the sign of r.
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Definition 5.4 (Connected components of the level set). Let T ⊂ R2 be compact and define N
(u)
T

to be the number of connected components of the level curve ∂EX(u) ∩ T .

Definition 5.5 (Lipschitz-Killing curvature densities). For a set S ⊂ R2, let χ(S) denote the

Euler-Poincaré characteristic of S (equal to the number of connected components of S minus the

number of holes in S) and let ℓ(∂S) denote the perimeter length of S (the one-dimensional Hausdorff

measure of its boundary). Recall that L denotes the Lebesgue measure. For a compact set T ⊂ R2

with positive Lebesgue measure, assuming the limits exist, define the curvature densities,

C∗
0 (EX(u)) := lim

n→∞

E[χ(EX(u) ∩ nT )]
L(nT )

,

C∗
1 (EX(u)) := lim

n→∞

E[ℓ(∂(EX(u) ∩ nT ))]
2L(nT )

,

C∗
2 (EX(u)) := lim

n→∞

E[L(EX(u) ∩ nT )]
L(nT )

,

where nT is the result after linearly rescaling T by n.

Note that C∗
i (EX(u)), for i = 0, 1, 2, are the limiting normalized intrinsic volumes of the excursion

set EX(u) seen on large domains (Schneider andWeil, 2008, Theorem 9.3.3). They play an important

role in determining the shape of the distribution function of the extremal range; a topic that we

investigate in the following section.

5.3 Linking the extremal range and intrinsic volumes

Proposition 5.1. Suppose that the random field X is continuous and stationary, and that u is

constant and less than x∗(0). For any compact set T ⊂ R2 with L(T ) > 0, the distribution function

of R
(u)
0 is given by

P
(
R

(u)
0 ≤ r

)
= 1−

E
[
L
(
EX(u)−r ∩ T

)]
E
[
L
(
EX(u) ∩ T

)] , (5.1)

for r ≥ 0, and P
(
R

(u)
0 < 0

)
= 0, where the subscript −r denotes set erosion by a radius of r (see

Definition 5.3, Equation (5.1)).

The proof of Proposition 5.1 is provided in Appendix 5.B.1. The extremal range has close links

with the spherical erosion function (Serra, 1984; Ripley, 1988), which describes the distribution

function of the distance of a uniform random point in a set to the set’s boundary. Proposition 5.1

states that the eroded excursion set EX(u)−r carries information about the distribution of R
(u)
s

through its area when intersected with a compact set T . Areas of excursion sets and their erosion

can be efficiently estimated with routine algorithms, such that Equation (5.1) can be used for

estimating the distribution function of R
(u)
0 in the stationary setting by replacing expectations with

empirical estimates.
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Next, we show that under certain regularity conditions, a polynomial expression of the Lebesgue

measure of an eroded set in terms of its Lipschitz-Killing curvatures (see Definition 5.5) can be

obtained as corollary to the well-known Steiner formula (Federer, 1959, Theorem 5.6). The most

general case for which this is known to hold is when the complement of the considered set has

positive reach (see Definition 5.9 in Appendix 5.A.1).

Assumption 5.1. Suppose that for the random field X paired with the threshold function u, the

excursion set EX(u) is a stationary random set. In addition, for any compact, convex T ⊂ R2 with

positive Lebesgue measure, suppose that

• the densities in Definition 5.5 exist, are finite, and are independent of T ;

• EX(u)
c ∩ T is almost surely a positive reach set;

• E[N (u)
T ] <∞ (see Definition 5.4).

Under Assumption 5.1, the random field X is not necessarily stationary, as u is not necessarily

a constant function in space. What is necessary instead is that the excursion set at the level u be

stationary. An important, easily verifiable consequence of this is that C∗
2 (EX(u)) = P(X(0) > u(0)).

The condition that EX(u)
c∩T is positive reach implies a certain regularity or smoothness of ∂EX(u).

Conversely, compact subsets of R2 with a C2 smooth boundary have positive reach (Thäle, 2008,

Proposition 14). Assumption 5.1 also implies that EX(u) is almost surely open, as its complement

must be closed to satisfy the positive reach property. Examples of random fields that satisfy the

last item in Assumption 5.1 are the Gaussian fields discussed in Beliaev et al. (2020). However,

Gaussianity is not a necessary condition for our results, except for Proposition 5.2 focusing on

results for such fields. A final remark on Assumption 5.1 is that it allows for the random fields X

and X − u to be discontinuous with positive probability.

An important property of the extremal range under Assumption 5.1 is asserted by the following

Lemma, which we prove in Appendix 5.B.1.

Lemma 5.1. Under Assumption 5.1, P(R(u)
0 ≤ r) is continuous in r, for r > 0.

The main result of this section is the following first-order approximation of the distribution func-

tion of the extremal range. The proof of Theorem 5.1 can be found in Appendix 5.B.1.

Theorem 5.1. Under Assumption 5.1, for r > 0, it holds that

P(R(u)
0 ≤ r)

r
−−−→
r→0

2C∗
1 (EX(u))

C∗
2 (EX(u))

. (5.2)

Theorem 5.1 shows that the distribution of the extremal range follows a first-order Taylor expan-

sion for positive values of the radius r near 0. Moreover, the linear coefficient is provided by the

limit on the right-hand side of Equation (5.2). By studying how this coefficient behaves for large

thresholds, we gain insight about the spatial extent of high threshold exceedances.
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5.4 The asymptotic behavior of the extremal range

We study the asymptotic behavior of the extremal range as the threshold function u tends to

the location-wise upper endpoint of the distribution of X everywhere in space. By studying the

extremal range, we aim to capture information about the dependence structure of the random field

X. Therefore, we use the threshold function up : R2 → R defined below as a location-wise quantile,

such that it naturally adapts to the margins of the random field X.

Definition 5.6. For p ∈ (0, 1) and a random variable Y : Ω → R, let qp(Y ) ∈ R denote the

p-quantile of Y , i.e., qp(Y ) := inf{r ∈ R : P(Y ≤ r) ≥ p}. Now, define the adaptive threshold up by

the mapping up(s) := qp(X(s)), for s ∈ R2.

Theorem 5.1 allows us to study how the extremal range decreases as the considered threshold

increases, i.e., as p→ 1. This important result is summarized in the following corollary.

Corollary 5.1. Suppose that Assumption 5.1 holds for the threshold function up, for all sufficiently

large p ∈ (0, 1). Then a function g : (0, 1) → R satisfies

lim
p→1

g(p)
C∗
2 (EX(up))

2C∗
1 (EX(up))

=
1

K
, (5.3)

for some K ∈ R+, if and only if

lim
p→1

lim
r→0

P(g(p)R(up)
0 ≤ r)

r
= K. (5.4)

Proof. Theorem 5.1 tells us that for any p,

lim
r→0

P(g(p)R(up)
0 ≤ r)

r
=

2C∗
1 (EX(up))

g(p)C∗
2 (EX(up))

.

Sending p→ 1 yields the desired result.

An interpretation of Corollary 5.1 is that the probability density function of g(p)R
(up)
0 just to the

right of 0 approaches 1 if and only if g(p) is asymptotically equivalent to 2C∗
1 (EX(up))/C

∗
2 (EX(up))

as p → 1. In this sense, Corollary 5.1 shows how R
(up)
0 scales as p → 1. We are not able to use

Corollary 5.1 to establish a non-degenerate limit distribution of
[
2C∗

1 (EX(up))/C
∗
2 (EX(up))

]
R

(up)
0

as p → 1; it is not always possible to exchange the order of the limits in Equation (5.4). A

counterexample is provided in Appendix 5.A.2.

5.4.1 Non-degenerate limit distributions of the extremal range

Here, we study certain cases of widely used spatial random field models where the extremal range

is known to have a non-degenerate limit distribution at high thresholds after appropriate rescaling.
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This will serve as basis for defining parametric statistical models for the extrapolation behavior of

the extremal range at extreme conditioning thresholds. The random fields that we will consider in

this section are stationary, so we choose a threshold function u that is constant throughout space.

To ease notation, we write u to denote both the constant mapping u : R2 → R and its image in R.

Gaussian random fields

For a smooth, stationary Gaussian process Y on R, if one is to condition on the event {X(0) > u}
for some large threshold u ∈ R, one can show using tools developed in Kac and Slepian (1959) that

the connected component of the excursion set containing 0 is a random interval with expected length

asymptotically equivalent to 1/u. By analogy, after appropriately rescaling in the spatial dimension,

one finds that the limit process is a random parabola with deterministic shape. These insights are

formally generalized for the two-dimensional case in the following proposition formulated for smooth

standard Gaussian fields, for which a proof is given in Appendix 5.B.2.

Proposition 5.2. Suppose that X is a stationary, isotropic, centered Gaussian random field on R2

with covariance function

ρ(h) = 1− α

2
||h||2 + o(||h||2), α > 0, (5.5)

for h in a neighbourhood of 0. Then P(uR(u)
0 ∈ ·) converges to a non-degenerate probability distri-

bution, as u→ ∞.

A stationary, isotropic Gaussian random field with unit variance and C1-smooth sample paths has

the covariance function in (5.5) with α equal to its second spectral moment; see Leadbetter et al.

(1983, page 151) and Cambanis (1973). The isotropic, Matérn covariance function

ρ(h) =
21−ν

Γ(ν)

(√
2ν ||h||
l

)ν
Kν

(√
2ν ||h||
l

)
, ν, l > 0,

with Kν denoting the modified Bessel function of the second kind, satisfies (5.5) for ν > 1 and

α =
ν

l2(ν − 1)
.

For a random field X as described in Proposition 5.2, the expressions for C∗
1 (EX(u)) and C

∗
2 (EX(u))

are computed in Biermé et al. (2019) using the Gaussian Kinematic Formula (Adler and Taylor,

2007, Theorem 15.9.5). By the results of Gordon (1941) concerning the Mill’s ratio of the Gaussian

distribution,

2C∗
1 (EX(u))

C∗
2 (EX(u))

=

√
αe−u

2/2

2(1− Φ(u))
∼
√
πα

2
u,

where Φ denotes the standard Gaussian cumulative distribution function, and α is as in (5.5).
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Therefore, by using Corollary 5.1 with g(p) = up(0), the probability density of uR
(u)
0 just to the

right of 0 approaches
√
πα/2, as u→ ∞. If one were to show in addition the uniform convergence

of the density of the extremal range, one may conclude that
√
πα/2 is the limiting value as r → 0

of the limiting density, as u→ ∞.

In practice, a useful approximation of the distribution function R
(u)
0 for large u and small r for

Gaussian random fields is therefore

P(R(u)
0 ≤ r) ≈

√
πα

2
ur,

where an estimate α̂ of the second spectral moment α based on a parametric covariance function

ρ(h) could be plugged in to obtain an estimate for spatial data corresponding to relatively smooth

spatial surfaces.

Regularly varying fields

Here, we recall the core elements of the theory of regularly varying random fields, and the related ℓ-

Pareto processes from Ferreira and de Haan (2014); Dombry and Ribatet (2015), commonly used as

models for spatial processes conditioned on high threshold exceedances of a certain cost functional.

Let T be a compact domain satisfying rT := sup{r ∈ R+ : B(0, r) ⊆ T} > 0. Let X be a

continuous, stationary random field defined on R2, and let X|T be the random field X restricted to

the domain T . Let C0 be the set of continuous functions from T to [0,∞), excluding the constant

function 0. Let S = {x ∈ C0 : ||x||T = 1}, where ||x||T := supt∈T x(t).

In Appendix 5.A.3, we recall from Dombry and Ribatet (2015) what it means for a random field

to be regularly varying with exponent α and spectral measure σ on S. The limiting behaviour

of these random fields at high thresholds can be well described by ℓ-Pareto random fields (see

Lemma 5.5 in Appendix 5.B.3); more recently also called r-Pareto random fields with r standing for

risk (de Fondeville and Davison, 2022). These random fields are characterized by a cost functional

ℓ : C0 → [0,∞) that is homogeneous of order 1, i.e., ℓ(ux) = uℓ(x) for all x ∈ C0 and u > 0. The

precise definition of an ℓ-Pareto random field is provided in Definition 5.10 in Appendix 5.B.3. For

now, we borrow the notation of Dombry and Ribatet (2015) and write Pℓα,σℓ for the set of ℓ-Pareto

random fields with exponent α and spectral measure σℓ.

For regularly varying X, it is possible to express the limit distribution of the extremal range in

terms of two different constructions of ℓ-Pareto processes.

Proposition 5.3. Suppose that X|T is regularly varying with exponent α > 0 and spectral measure

σ on S. Define the cost functionals f and g mapping from C0 to [0,∞) by f : x 7→ ||x||T and

g : x 7→ x(0), and let YT ∈ Pfα,σf , and Y0 ∈ Pgα,σg . Here, σf (A) := σ(S ∩ A)/σ(S) and σg(A) :=
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1
c

∫
S x(0)

α1{x/x(0)∈A}σ(dx) for A ∈ B(C0), with c :=
∫
S x(0)

ασ(dx). Then, for r ∈ (0, rT ),

lim
u→∞

P(R(u)
0 ≤ r) = 1−

E
[
L
(
(EYT (1) ∩ T )−r

)]
L(T−r)P(YT (0) > 1)

= P
(
∃t ∈ B(0, r) s.t. Y0(t) ≤ 1

)
. (5.6)

The proof of Proposition 5.3 is postponed to Appendix 5.B.3.

5.4.2 Connections with the tail dependence coefficient

Taking a more non-parametric perspective, we continue using the threshold function up as defined

in Definition 5.6 that adapts to non-stationary random fields.

Recall that for two sites s1, s2 ∈ R2, the tail dependence coefficient function of a spatial random

field X is defined as χ(s1, s2) := limp→1 χp(s1, s2), where,

χp(s1, s2) :=
P (X(s1) > up(s1), X(s2) > up(s2))

1− p
= P (X(s1) > up(s1) | X(s2) > up(s2)) .

Here, we use the following definition of asymptotic (in)dependence. The random field X is said

to be asymptotically independent if χ(s1, s2) = 0 for all s1 ̸= s2, and asymptotically dependent if

χ(s1, s2) > 0, for all s1, s2 ∈ R2. The asymptotic dependence of X forces the asymptotic behavior

of R
(u)
s as u→ ∞. Indeed, if X exhibits asymptotic independence, then we have immediately that

R
(u)
s

P−→ 0, as u→ ∞. This simple observation is a corollary of the following proposition.

Proposition 5.4. Let X be any random field on R2. For all s ∈ R2 and all p ∈ (0, 1),

P
(
R

(up)
0 ≤ ||s||

)
≥ 1− χp(s, 0).

Proof. The event {R̃(up)(0) > ||s|| , X(0) > up} is contained in the event {X(s) > up, X(0) > up}.
Therefore, P

(
R̃(up)(0) > ||s|| , X(0) > up

)
≤ P

(
X(s) > up, X(0) > up

)
. A division by P(X(0) > up)

(equal to 1− p if X(0) has a continuous distribution function) implies P
(
R̃(up)(0) > ||s|| | X(0) >

up
)
≤ P

(
X(s) > up | X(0) > up

)
, and the result holds by taking compliments.

Therefore, asymptotic dependence is a necessary condition for R
(up)
0 to have a non-degenerate

limit distribution as p → 1. However, it is not sufficient. In Appendix 5.A.2, we study a random

field for which R
(up)
0

P−−−→
p→1

0; the following theorem makes an important link between the extremal

range and the tail dependence coefficient, and establishes that in this specific case, χ(0, s) = 1 for

all s ∈ R2.

Theorem 5.2. Let X be an isotropic random field, and suppose that for p ∈ (0, 1), Assumption 5.1

is satisfied for the threshold function up. Let h be a real function of p ∈ (0, 1) such that

h(p)
C∗
2 (EX(up))

C∗
1 (EX(up))

−−−→
p→1

∞.
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Then, for any fixed s ∈ R2, χp(s/h(p), 0) −−−→
p→1

1.

Proof. Assumption 5.1 provides an alternative set of hypotheses to support the result of Cotsakis

et al. (2023a, Theorem 2.1) which states that for p ∈ (0, 1) and s ∈ R2,

1

q
P
(
X(qs) ≤ up(qs), X(0) > up(0)

)
−−−→
q→0

C∗
1 (EX(up))

π
||s|| ,

and the limit is approached from below. Thus, for any q ∈ R+, a division by 1− p yields

1− χp(qs, 0)

q
≤ C∗

1 (EX(up))

C∗
2 (EX(up))π

||s|| .

By setting q = 1/h(p), we find that

1− χp(s/h(p), 0) ≤
C∗
1 (EX(up))

h(p)C∗
2 (EX(up))π

||s|| −−−→
p→1

0.

The desired result holds since χp ∈ [0, 1] for all p ∈ (0, 1).

Remark 5.2. Recall that 2C∗
1 (EX(up))/C

∗
2 (EX(up)) is the limit value in Theorem 5.1, giving the

first-order approximation of the cumulative distribution function of the extremal range. For many

random fields, this is seemingly the rate at which space should be rescaled as p → 1 if one is to

expect the tail dependence coefficient and the distribution function of the extremal range to stabilize

to values strictly between 0 and 1.

5.4.3 A parametric model for the extremal range

We have seen that tail dependence coefficient determines whether a random field is asymptoti-

cally dependent or independent according to our definition. While it is natural to study pairwise

exceedances in discrete data, an attractive alternative is to describe the spatial dependence of con-

tinuous data using the extremal range. The extremal range tends to 0 in probability as higher

thresholds are considered for asymptotically independent random fields; see Proposition 5.4. The

rate of this convergence provides an alternative, more precise notion of extremal independence. To

formalize this idea, we propose the following assumption on the random field X.

Assumption 5.2. For each s ∈ R2, the distribution of R
(up)
s is non-degenerate for p ∈ (0, 1), and

there exists θs ∈ [0,∞) such that for all a > 0 and α ∈ (0, 1),

qα(R
(up′ )
s )

qα(R
(up)
s )

−−−→
p→1

a−θs ,

where p′ = 1− (1− p)a.
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Assumption 5.2 is equivalent to demanding that the quantile functions qα(R
(u)
0 ), for α ∈ (0, 1), u ∈

R+, are regularly varying in u after X is transformed to have standard exponential margins. The

indices of regular variation are allowed to vary throughout space. For asymptotically independent

models, the quantile function qα(R
(up)
s ) tends to decrease as p→ 1, and so one expects θs to be large.

However, for asymptotically dependent models, the same quantile function approaches a positive

constant as p → 1, in which case, one can expect θs = 0. Contrary to other popular measures of

asymptotic dependence, θs distinguishes between varying degrees of asymptotic independence. A

consistent, local estimator for θs is defined in Section 5.5.2, thus providing a measure of the spatial

asymptotic independence at high thresholds.

In addition, Section 5.5.3 outlines how linear quantile regression can be used to extrapolate or

interpolate the quantiles of the extremal range when the excursion sets are observed at multiple

levels.

Remark 5.3. The Gaussian (resp. regularly varying) random fields studied in Section 5.4.1 satisfy

Assumption 5.2 with θs = 1/2 (resp. θs = 0) for all s ∈ R2. Therefore, Assumption 5.2 can be

applied to both asymptotically dependent and asymptotically independent models.

5.5 Inference

5.5.1 Empirical CDF of the extremal range for stationary fields

The results developed in Sections 5.3 and 5.4 lead to natural statistical procedures for estimating the

extremal range. We begin by describing a simple procedure for strongly mixing sequences of random

fields that are assumed to be stationary and identically distributed. Independent replications of the

random field are trivially strongly mixing.

Proposition 5.5. Let T ⊂ R2 be compact, and suppose that rT := sup{r ∈ R+ : L(T−r) > 0} > 0.

Let X1, . . . , Xn be a strongly mixing sequence of random fields defined on T , each equal in distribution

to the stationary random field X (Rosenblatt, 1956). Define

R̃
(u)
i (t) := dist

(
t, (EXi(u))

c), (5.7)

for some threshold u ∈ R satisfying P(X(0) > u) > 0, and

F̂n(r) :=



∑n
i=1 L({t ∈ T−r : 0 < R̃

(u)
i (t) ≤ r})∑n

i=1 L(EXi(u) ∩ T−r)
, if

n∑
i=1

L(EXi(u) ∩ T−r) > 0

0 , if
n∑
i=1

L(EXi(u) ∩ T−r) = 0,

for r ∈ (0, rT ). It follows that F̂n(r)
P−−−→

n→∞
P(R(u)

0 ≤ r), uniformly for r ∈ (0, rT ).
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Proof. Fix r ∈ (0, rT ) and u ∈ R. By the strongly mixing assumption, the sequences
(
L({t ∈ T−r :

0 < R̃
(u)
i (t) ≤ r})

)
i≥1

and
(
L(EXi(u) ∩ T−r)

)
i≥1

are mean-ergodic, and so we write

F̂n(r) =
1
n

∑n
i=1 L({t ∈ T−r : 0 < R̃

(u)
i (t) ≤ r})

1
n

∑n
i=1 L(EXi(u) ∩ T−r)

P−−−→
n→∞

E
[
L({t ∈ T−r : 0 < R̃(u)(t) ≤ r})

]
E
[
L(EX(u) ∩ T−r)

]
=

∫
T−r

P
(
0 < R̃(u)(t) ≤ r

)
dt∫

T−r
P
(
X(t) > u

)
dt

=
P
(
R̃(u)(0) ≤ r, X(0) > u

)
P
(
X(0) > u

) = P
(
R

(u)
0 ≤ r

)
.

Uniform convergence follows from the continuity of the limiting distribution function (see Lemma 5.1)

and Dini’s theorem (Friedman, 2007, p.199).

Proposition 5.5 therefore provides a convenient way to estimate the empirical distribution function

of the extremal range under the assumption of stationarity for a series of time-replicated spatial

fields.

5.5.2 Consistent estimation of the tail decay rate of the extremal range

Recall that under Assumption 5.2, the quantiles of the extremal range are parameterized by an index

of regular variation θs for each site s in the study domain, which we call tail decay rate. We propose

a local estimator for this quantity and show that it is consistent, providing the corresponding rate

of convergence.

Definition 5.7. Let X1, . . . , Xn be n realizations of the random field X. For p ∈ (0, 1), define the

empirical median of R
(up)
s to be

q̂50%
(n)(R

(up)
s ) := argmin

x∈R+

{
n∑
i=1

∣∣x− R̃
(up)
i (s)

∣∣1
{R̃(up)

i (s)>0}

}
,

with R̃
(up)
i (s) as in (5.7). For p1, p2 ∈ (0, 1), p1 ̸= p2, define

θ̂s
(n)

(p1, p2) =
log
(
q̂50%

(n)(R
(up2 )
s )

)
− log

(
q̂50%

(n)(R
(up1 )
s )

)
log(− log(1− p1))− log(− log(1− p2))

. (5.8)

If R̃
(up)
i (s) = 0, ∀i = 1, . . . , n, for either p = p1 or p = p2, then both θ̂s

(n)
(p1, p2) and the empirical

median q̂50%
(n)(R

(up)
s ) are understood to be 0.

Proposition 5.6. Let X1, . . . , Xn be n independent realizations of the random field X, satisfying

Assumption 5.2. Fix p0 ∈ (0, 1), and let (pn)n≥1 be a sequence in (0, 1) tending to 1 such that

n(1− pn) → ∞ as n→ ∞. Then, for each s ∈ R2, the estimator defined in (5.8) satisfies

θ̂s
(n)

(p0, pn)
P−−−→

n→∞
θs,
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where θ̂s
(n)

(p0, pn) is defined in Definition 5.7, and θs is defined in Assumption 5.2.

The proof of Proposition 5.6 can be found in Appendix 5.B.4. The estimator in (5.8) can be viewed

as the slope of a median regression with response log
(
q̂50%

(n)(R
(up)
s )

)
and covariate log(− log(1−p)).

This motivates the following median regression approach for predicting the median extremal range

at very extreme probability levels p close to 1.

5.5.3 Extrapolation for non-stationary data using median regression

As we have seen previously, under Assumption 5.1, the random excursion set EX(u) is stationary.

This implies that the distribution of R
(u)
s is invariant in the spatial location s, allowing one to extract

information from the entire spatial domain to gain insights on the behavior of the extremal range at

s. When EX(u) is non-stationary, it is likely that there is insufficient information to infer the entire

distribution of R
(u)
s (especially when P(X(s) > u(s)) is small). Thus, it is reasonable to instead

estimate a summary statistic of R
(u)
s . The median, q50%(R

(u)
s ), is an appropriate statistic to estimate

for several reasons: it is robust to censorship of large observations and to strongly discretized small

values arising with data available on pixel grids; the median commutes with monotonic rescalings;

one does not require the existence of moments of the distribution of the extremal range; the behavior

of the median is controlled under Assumption 5.2 with α = 1/2.

Definition 5.8. The Median Extremal Range (MER) at a site s ∈ R2 at the threshold up(s), for

p ∈ (0, 1), is defined as

MER(s; p) := q50%(R
(up)
s ).

Suppose that for several realizations X1, . . . , Xn of X, the excursion set is observed at several high

thresholds u(1), . . . , u(k). That is, we observe the sets EXi(u
(j)) for (i, j) ∈ {1, . . . , n} × {1, . . . , k}.

Under Assumption 5.2,

log
(
MER(s; p′)

)
− log

(
MER(s; p)

)
log
(
− log(1− p′)

)
− log

(
− log(1− p)

) −−−→
p→1

−θs, (5.9)

for any a ∈ (0, 1) (see Assumption 5.2). Thus, plotted on a log-log plot, the slope of the graph

of the MER(s; p) against − log(1 − p) tends to a constant −θs, as p → 1. This justifies the use

of quantile regression to estimate the median of our empirical observations of log R̃(up)(s) against

log
(
− log(1−p)

)
for several p ∈ (0, 1) moderately close to 1. In this way, the height of the resulting

regression line provides a model for the median of logR(up)(s). Exponentiating the regression

line provides a model for the MER(s; p) for arbitrarily large p ∈ (0, 1) and therefore allows us

to extrapolate extremal-range properties at very high quantile levels for which only few or no

exceedances at all are available in the data. Another important benefit of median regression that

we can include covariates, such as the spatial coordinates, into the intercept and slope, and we can

estimate nonlinear covariate effects thanks to generalized additive quantile regression, as highlighted

in the following data application.
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5.6 Application to gridded temperature data

We use the estimation methods introduced in Section 5.5 to identify the local spatial extent of

extremes of daily average temperatures in climate model outputs and provide insights into their

spatial patterns. Temperature is a weather variable that is known to vary relatively smoothly in

space (Perkins et al., 2012). We study two datasets available for mainland France for a regular pixel

grid at 8km resolution in the metric Lambert-II projection. The primary dataset is based on the

SAFRAN reanalysis (Vidal et al., 2010) and spans the 1991–2020 period excluding 1997 and 1998.

Reanalysis is climate model simulation conditioned on observational data, and is routinely used in

climate-change impact studies as a proxy for real weather and climate. We compare our results for

the reanalysis model to those obtained for temperatures simulated for the historical period 1951–

2005 using a couple of Global-Circulation-Model and Regional-Climate-Model (IPSL-WRF ), one of

the reference models provided by the French weather service for studying climate change impacts

(http://www.drias-climat.fr/), with data available on the same spatial grid as the SAFRAN

reanalysis. We perform the same analyses for each of the two datasets, so that any differences in

the results are due to statistical uncertainties (that we assess), and to fundamental differences in

the distributional properties of the datasets.

We consider only data for summer months (June 1 to August 31) and assume temporal station-

arity. We first estimate up(s), the p-quantile of X(s), for p ∈ {0.85, 0.86, . . . , 0.98}, using standard

methods, for each location s separately. As we have preselected the summer months, during which

the majority of temperature extremes typically manifest, it is justifiable to use a set of quantile

levels including values that are relatively low for extreme-value analysis. This provides an estimate

of the excursion set EX(up) for each day; see Figure 5.2. For each p and each pixel inside an

excursion set, we estimate R̃(up) using the fast marching method (Sethian, 1996) implemented in

the R package fastmaRching (Silva and Steele, 2014). To manage the absence of temperature data

outside of France, we define our estimate of R̃(up)(s) to be the smallest distance from s to a site s′ in

mainland France with X(s′) ≤ up(s
′). In terms of boundary effects, this is equivalent to considering

the modified excursion set EX(up)∪ T c with T corresponding to mainland France. The histograms

of the empirical distribution of extremal ranges R̃(up)(s)—provided that R̃(up)(s) > 0—is shown

in Figure 5.1 for the quantile levels p = 0.85 and p = 0.98, for all locations pooled together. We

see a clear shift towards generally smaller extremal ranges at the higher threshold, which means

that dependence strength seems to decrease with the quantile level. Moreover, reanalysis data tend

to have clearly larger extremal ranges than simulation data at both quantile levels, which hints at

structural differences in the geometries of extremes among these two types of data, with generally

smaller spatial clusters of extremes in the simulation data.

Next, we more precisely estimate the tail decay behavior of the extremal range and its spatial vari-

ability. Operating under Assumption 5.2, we estimate the parameters of a model for the MER(s; p);
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Figure 5.1: Histograms of estimated extremal ranges at two quantile levels for SAFRAN reanalysis
(left) and IPSL-WRF simulations (right).

see Definition 5.8. The model, as suggested by (5.9), is given by

log
(
MER(s; p)

)
= βs − θs log(− log(1− p)), (5.10)

where the model parameters βs and θs are allowed to vary over space.

Using the set of estimates of R̃(up) for all p and all pixel-days in an excursion set, we use

log R̃(up)(s)—provided that R̃(up)(s) > 0—as the response variable in a generalized additive me-

dian regression with covariates s and x := log
(
− log(1− p)

)
. We implement a generalized additive

model with spline tensor products defined over spatial coordinates for the parameters βs and θs,

such that the their estimates vary smoothly in space (Wood, 2017), i.e., we perform a quantile re-

gression with space-varying intercept and slope parameters. This modeling strategy would further

allow for incorporating other covariates, such as altitude, or time to account for temporal trends.

We provide several diagnostic plots to illustrate the quantile regression fit. Figure 5.3 shows a

satisfactory fit of the regression line for the SAFRAN data at two pixels s1, s2 with quite different

intercept β̂s and slope θ̂s. Figure 5.4 provides maps of the estimates of the MER(s; p) based on

model (5.10) for two values of p. Standard deviations of estimates are computed using a block

jackknife based on blocks given by years, where the whole chain of estimation is repeated for

each jackknife sample. The resulting estimates of the MER(s; p) correspond well with certain

topographical features, even though this information was not provided to the model. The extremal

range tends to be larger in planar regions, while it tends to be smaller in mountainous regions, and

near the Atlantic coast to the East.

Moreover, all jackknife-based estimates of the negative slopes θs, i.e., of the tail decay rate,

were positive, such that the signal against asymptotic dependence is significant around all pixels

s. Figure 5.5 depicts the estimates of θs for the model (5.10), and their standard deviations. This

parameter quantifies the joint tail decay rate near each location; see Section 5.4.3. As discussed
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Figure 5.2: Realizations of nested excursion sets EX(up) for p ∈ {0.85, 0.86, . . . , 0.98}, for each of
the four indicated dates in the SAFRAN reanalysis.
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Figure 5.3: Illustration of median regression of the extremal range for SAFRAN reanalysis data.
Fitted regression lines (red) of the model (5.10) for the log-median of the extremal range at the
two sites s shown in the map on the right. For p ∈ {0.85, 0.86, . . . , 0.98}, we record a small blue
point for all days where R̃(up)(s) > 0, i.e., where X(s) > up(s). For each p, the empirical median

of log R̃(up)(s) is plotted as a larger green point to aid with visual diagnostic of the model fit.
Multiplicity of points at discrete values is not shown.

previously, θs ≤ 0 implies asymptotic dependence, whereas θs > 0 is a strong indicator of asymptotic

independence, as the implication is in the reverse direction (see Proposition 5.4).

The results obtained for IPSL-WRF simulated temperatures differ quite drastically from those

obtained for the SAFRAN reanalysis data. Estimated extremal ranges are substantially smaller

for simulated temperatures and show less spatial variability and also differences in spatial patterns.

Unless these differences arise from non-stationarity in time, our study demonstrates that the IPSL-

WRF climate model has strong biases in the extremal range of temperatures when compared to the

observation-based SAFRAN reanalysis.

5.7 Conclusion

The extremal range, particularly the evolution of the MER(s; p) as p ∈ (0, 1) tends to 1, quantifies

the degree of asymptotic independence locally at the site s. It aids flexible exploratory analysis of

dependence in spatial extremes beyond the mathematically elegant but rigid framework of asymp-

totically stable dependence in max-stable processes and other regularly varying processes. We have

opted for the median as a summary parameter that allows for simple interpretation as a level that is

on average exceeded in half of all cases of marginal exceedance at the reference location. It further

allows for relatively robust estimation since it is less influenced by pixellization biases arising for

small extremal ranges at lower quantiles and by boundary effects arising for large extremal ranges

at higher quantiles. The proposed quantile regression approach further offers the possibility to in-
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Figure 5.4: Estimates of the MER(s; p) with relative standard errors (in %) for the SAFRAN re-
analysis dataset for p = 0.95 (first row) and p = 1− 1/92 ≈ 0.989 (second row, corresponding to a
one-year return level). The same quantities are computed for the IPSL-WRF simulated tempera-
tures for p = 0.95 (third row) and p = 1 − 1/92 ≈ 0.989 (fourth row). Color scales are the same
across datasets and quantile levels.
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Figure 5.5: Estimates of the tail decay rate θs and its standard error for the SAFRAN reanalysis
data (first row) and the IPSL-WRF simulated data (second row). The estimate is the negative
slope of the model line in Figure 5.3. The larger θs, the less asymptotic dependence there is at the
site s; see Section 5.4.3. Color scales are the same for the two datasets.
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clude other covariates to model and explain non-stationary extremal dependence, such as temporal

trends due to climate change. Our estimation methods scale well even for large gridded datasets

with hundreds of thousands of pixels. By contrast with the common bivariate statistics defined as

a function of spatial distance, our approach avoids the rather arbitrary and heuristic selection of

location pairs to be considered for inferential purposes.

Data on regular grids at relatively high resolution, such as climate model output, provide a good

approximation of the framework of continuous geographic space underpinning the concept of the

extremal range. If data are not in this form, interpolation techniques such as kriging, piecewise linear

interpolation based on Delaunay triangulation, or more sophisticated basis-function methods, could

be applied first before conducting estimation of the extremal range.

While our focus was on descriptive statistics here, the extremal range could also be useful for

generative modeling based on spatial random fields, for example by using MER(s; p) as a goodness-

of-fit diagnostics or as a covariate in the dependence structure.

The extremal range is a tool at the intersection of spatial EVT, stochastic geometry and topological

data analysis. Further research in this area could help foster a high-dimensional statistical learning

toolbox for studying complex structures in large volumes of climate data.

Appendix

5.A Technical definitions and examples

5.A.1 Positive reach

Definition 5.9. (Federer, 1959) The reach of a set S ⊆ R2 is given by sup{r ∈ R : ∀x ∈ Sr, ∃!s ∈
S nearest to x}. A subset of R2 is termed positive reach if its reach is positive.

Recall from Federer (1959) that a closed set is convex if and only if its reach is infinite. Therefore,

the empty set is trivially a positive reach set.

5.A.2 A case where asymptotic dependence is not captured by the extremal

range

Let E ∼ Exp(1), θ ∈ Unif([0, 2π]), and U ∼ Unif([0, 1]2) be independent, and consider the station-

ary, isotropic random field {X(t)}t∈R2 defined by

X(t) = E

1−
∑
s∈Z2

1{||s+U−ERθ(t)||<3−E}

 ,

where Rθ(t) is the image of t rotated by an angle θ about the origin. Notice that X satisfies

Assumption 5.1, for if the excursion set is not empty, it is the complement of the union of disks of
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radius 3−E with centers on a randomly oriented square grid with spacing E−1. If for some p ∈ (0, 1)

we have X(0) > up, then E > up and X(R−θ(U)/E) = 0 ≤ up. Thus, R̃
(up)(0) < ||U || /E <

√
2/up

which tends to 0 as p→ 1. Thus, R
(up)
0

P−−−→
p→1

0. It is not hard to check that

C∗
2 (EX(up))

C∗
1 (EX(up))

−−−→
p→1

∞,

contrary to the behaviour of R
(up)
0 .

5.A.3 Regularly varying random fields

The process X|T is said to be regularly varying with exponent α and spectral measure σ on S if

there exists a function a : R+ → R+ such that a(u) → ∞ and

uP
(

1

||X||T
X|T ∈ A, ||X||T > ra(u)

)
−→ r−ασ(A)

as u → ∞, for all r > 0 and A ∈ B(S) satisfying σ(∂A) = 0 (see Definition 1 in Dombry and

Ribatet (2015)). If X|T is regularly varying with exponent α and spectral measure σ, we write

X|T ∈ RVα,σ(C0).

5.B Proofs and auxiliary results

5.B.1 Proofs for Section 5.3

Proof of Proposition 5.1. Since R
(u)
0 is almost surely non-negative, it suffices to check that (5.1)

holds for r ≥ 0. Note that by the continuity of X, the excursion set EX(u) is open, and so the

events {R̃(u)
0 > r} and {B(0, r) ⊂ EX(u)} are equal. Furthermore,

P
(
R

(u)
0 > r

)
= P

(
B(0, r) ⊂ EX(u) | X(0) > u(0)

)
=

L(T )P
(
B(0, r) ⊂ EX(u)

)
L(T )P

(
X(0) > u(0)

)
=

E
[ ∫

T 1{B(t,r)⊂EX(u)}dt
]

E
[ ∫

T 1{X(t)>u(t)}dt
] =

E
[
L
(
{t ∈ T : B(t, r) ⊂ EX(u)}

)]
E
[
L
(
EX(u) ∩ T

)]
=

E
[
L
(
EX(u)−r ∩ T

)]
E
[
L
(
EX(u) ∩ T

)] .

Lemma 5.2. Suppose that X and the corresponding threshold function up for some p ∈ (0, 1) satisfy

Assumption 5.1. Then Equation (5.1) holds with up in place of u for any compact T ⊂ R2 with

positive Lebesgue measure, and any r ≥ 0.
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Proof. The proof corresponds exactly with that of Proposition 5.1.

Proof of Lemma 5.1. Let r > 0 and let T ⊂ R2 be compact with positive Lebesgue measure. Define

A := {s ∈ R2 : dist(s, EX(u)
c) = r}, and let x ∈ A. For each ϵ ∈ (0, r), the ball B(x, ϵ) contains

an open ball B̃ of radius ϵ/2 such that for all y ∈ B̃, one has dist(y,EX(u)
c) < r. In particular,

B̃∩A = ∅, and so the Lebesgue density of A at x cannot exceed 3/4. By the Lebesgue differentiation

theorem, the Lebesgue density of A at s is 1 for almost every s ∈ A. Since there are no elements of

A for which this holds, L(A) = 0.

Suppose the statement of the Lemma is false. Then, there exists an r > 0 such that P(R̃(u)(0) =

r | X(0) > u) > 0, or equivalently, P(R̃(u)(0) = r) > 0. By stationarity and Fubini’s theorem,

0 < P(R̃(u)(0) = r) = E
[ ∫

T
1{R̃(u)(s)=r} ds

]
= E

[
L(A)

]
.

Hence, we have arrived at a contradiction, as P(L(A) > 0) = 0.

The following lemmas are useful in the proof of Theorem 5.1 given below.

Lemma 5.3. Let A ⊆ R2 and let T ⊂ R2 be compact, and let r > 0. The following identities hold.

• L(Ac ∩ T ) = L(T )− L(A ∩ T ),

• (A ∩ T )−r = A−r ∩ T−r =
(
(Ac ∩ T )r

)c ∩ T−r.
Proof. The first item holds by the additivity of the Lebesgue measure, and the two facts (Ac ∩T )∩
(A ∩ T ) = ∅ and (Ac ∩ T ) ∪ (A ∩ T ) = T .

Now to prove the second item, note that (Sc)r = (S−r)
c for any set S ⊆ R2 (Cotsakis, 2023,

Lemma 1). Now, by De Morgan’s laws,

(
(A ∩ T )−r

)c
= (Ac ∪ T c)r =

⋃
x∈Ac∪T c

B(x, r) =

( ⋃
x∈Ac

B(x, r)

)
∪
( ⋃
y∪T c

B(y, r)

)
= (Ac)r ∪ (T c)r = (A−r)

c ∪ (T−r)
c = (A−r ∩ T−r)c.

This proves the first equality by taking complements. For the second equality, write

(
(Ac ∩ T )r

)c ∩ T−r = (A ∪ T c)−r ∩ T−r =
(
(A ∪ T c) ∩ T

)
−r = (A ∩ T )−r.

Lemma 5.4. Let T ⊂ R2 be compact. It holds for r > 0 that

L(EX(u) ∩ T−r)− L((EX(u) ∩ T )−r) ≤
9πr

4

(
ℓ(∂EX(u) ∩ T ) +N

(u)
T r

)
, (5.11)

where N
(u)
T is as defined in Definition 5.4.
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Proof. By Lemma 5.3, the LHS of Equation (5.11) is equal to the Lebesgue measure of (EX(u) ∩
T−r) \ EX(u)−r. Remark that for r > 0,

(EX(u) ∩ T−r) \ EX(u)−r ⊆ (∂EX(u))r ∩ T−r ⊆ (∂EX(u) ∩ T )r.

By following the construction in (Cotsakis et al., 2023c, Lemma 1), let γ(i) be the ith connected

component of ∂EX(u) ∩ T . It is possible to write

γ(i) =

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j),

with ℓ(β(i,j)) ≤ r for j ∈ {1, . . . , ⌊ℓ(γ(i))/r⌋+ 1}. Now,

∂EX(u) ∩ T =

N
(u)
T⋃
i=1

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j),

and so

(∂EX(u) ∩ T )r ⊆
N

(u)
T⋃
i=1

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j)r .

With the length of each β(i,j) is bounded by r, it follows that each β
(i,j)
r is contained in a ball of

radius 3r/2. Therefore,

L
(N

(u)
T⋃
i=1

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j)r

)
≤
(
ℓ
(
∂EX(u) ∩ T

)
r

+N
(u)
T

)
π(3r/2)2

=
9πr

4

(
ℓ(∂EX(u) ∩ T ) +N

(u)
T r

)
.

Proof of Theorem 5.1. Let T ⊂ R2 be a compact, convex set, and fix r > 0. By Lemma 5.3, for all

r > 0,

L
(
(EX(u) ∩ T )−r

)
= L(T−r)− L

(
(EX(u)

c ∩ T )r ∩ T−r
)

= L(T−r)− L
(
(EX(u)

c ∩ T )r
)
+ L

(
(∂T )r ∩A(r,T )

)
,

for some A(r,T ) ⊂ R2. Now, EX(u)
c ∩ T has positive reach almost surely, and for each positive r
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smaller than the reach of EX(u)
c ∩ T , there is a corresponding set A(r,T ) such that

L
(
(EX(u) ∩ T )−r

)
= L(T−r)−

(
L(EX(u)c ∩ T ) + ℓ

(
∂(EX(u)

c ∩ T )
)
r + χ(EX(u)

c ∩ T )πr2
)

+ L
(
(∂T )r ∩A(r,T )

)
= L(T−r)− L(T ) + L(EX(u) ∩ T )− L(EX(u) ∩ T−r) + L(EX(u) ∩ T−r)

− ℓ
(
∂(EX(u) ∩ T )

)
r − χ(EX(u)

c ∩ T )πr2 + L
(
(∂T )r ∩A(r,T )

)
,

almost surely. Therefore,

lim sup
r→0

∣∣∣∣L(EX(u) ∩ T−r)− L
(
(EX(u) ∩ T )−r

)
r

− ℓ
(
∂(EX(u) ∩ T )

)∣∣∣∣ ≤ 2ℓ(∂T ), (5.12)

almost surely. Together, Assumption 5.1 and Lemma 5.4 verify the hypotheses of the reverse Fatou

lemma applied to (5.12), and so one achieves

lim sup
r→0

∣∣∣∣E
[
L(EX(u) ∩ T−r)

]
− E

[
L
(
(EX(u) ∩ T )−r

)]
r

− E
[
ℓ
(
∂(EX(u) ∩ T )

)]∣∣∣∣ ≤ 2ℓ(∂T ),

and by Lemma 5.2,

lim sup
r→0

∣∣∣∣E
[
L(EX(u) ∩ T−r)

]
P(R(u)

0 ≤ r)

E
[
L(EX(u) ∩ T )

]
r

−
E
[
ℓ
(
∂(EX(u) ∩ T )

)]
E
[
L(EX(u) ∩ T )

] ∣∣∣∣ ≤ 2ℓ(∂T )

L(T )P(X(0) > u)
,

by a division of E
[
L(EX(u) ∩ T )

]
. Recall that T is arbitrary and so can be taken arbitrarily large

such that its perimeter length is negligible to its area. This implies

lim
T↗R2

lim
r→0

E
[
L(EX(u) ∩ T−r)

]
P(R(u)

0 ≤ r)

E
[
L(EX(u) ∩ T )

]
r

=
2C∗

1 (EX(u))

C∗
2 (EX(u))

. (5.13)

The result holds since, for any T ,

E
[
L(EX(u) ∩ T−r)

]
E
[
L(EX(u) ∩ T )

] =
L(T−r)
L(T )

−−−→
r→0

1.

5.B.2 Proof of Propostition 5.2

In Kac and Slepian (1959), it is shown that for a one-dimensional centered Gaussian process

{Y (t)}t∈R having the stationary covariance function in (5.5), it holds that

u
(
Y (t/u)− u

)
| {Y (0) = u, Y ′(0) > 0} d−−−→

u→∞
−α
2
t2 + ξαt,
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where the convergence holds for the finite dimensional distributions of the process (in t), and ξα is

some random variable that depends on α and the sense of the conditioning on the event Y (0) = u,

but not on t. Therefore, u
(
Y (t/u)− u

)
| Y (0) > u converges in the same sense to −α

2 t
2 + ξ1t+ ξ2,

where ξ1 and ξ2 are random variables, and ξ2 > 0 almost surely.

Now, focusing on the two-dimensional random field X, we see that X evaluated on any one-

dimensional affine linear subspace of R2 is a Gaussian process, and so the analysis in the preceding

paragraph applies to these processes. Therefore, seen as a process in t,

u
(
X(t/u)− u

)
| X(0) > u

d−−−→
u→∞

−α
2
||t||2 + ⟨ξ̃α, t⟩+ ξ, (5.14)

for some random vector ξ̃α that depends on α but not on t, and for some almost surely positive

random variable ξ. One can show that ξ ∼ Exp(1) independently of α and t.

Now,

uR
(u)
0

d
= sup

{
r ∈ R+ : B(0, r/u) ⊂ EX(u)

}
| X(0) > u

d
= sup

{
r ∈ R+ : B(0, r) ⊂ uEX(u)

}
| X(0) > u

d
= sup

{
r ∈ R+ : B(0, r) ⊂ EX(·/u)(u)

}
| X(0) > u.

Equation (5.14) implies that EX(·/u)(u) | X(0) > u converges to a random disk containing the origin

as u→ ∞, which finishes the proof.

□

5.B.3 Proofs and definitions for Section 5.4.1

Definition 5.10 (Definition 4 in Dombry and Ribatet (2015)). The random field W : Ω× T → R
is an ℓ-Pareto random field with exponent α ∈ R+ and spectral measure σℓ if

• P(W ∈ C0) = 1,

• P(ℓ(W ) > u) = u−α, for all u > 1,

• W/ℓ(W ) and ℓ(W ) are independent, and

• σℓ(A) = P(W/ℓ(W ) ∈ A) for A ∈ B(C0).

In this case, we write W ∼ Pℓα,σℓ

The link between regularly varying random fields and ℓ-Pareto random fields is made by the

following lemma.

Lemma 5.5 (Theorem 3 in Dombry and Ribatet (2015)). Let X|T ∈ RVα,σ(C0) with exponent

α > 0 and spectral measure σ on S. Let ℓ : C0 → [0,∞) be a homogeneous cost functional that is
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continuous at the origin, and is nonzero on a subset of S with positive σ measure. Let W ∼ Pℓα,σℓ
where

σℓ(A) :=
1

c

∫
S
ℓ(x)α1{x/ℓ(x)∈A}σ(dx), A ∈ B(C0),

with c :=
∫
S ℓ(x)

ασ(dx). Then,

P(u−1X|T ∈ A | ℓ(X|T ) > u) −−−→
u→∞

P(W ∈ A), A ∈ B(C0).

Proof of Proposition 5.3. We begin by showing the second equality in (5.6). By the continuity of

X, the excursion set EX(u) is open, and so the events {R̃(u)
0 > r} and {B(0, r) ⊂ EX(u)} are equal.

Also, EX(u) = EX/u(1), and so for r < rT ,

P(R(u)
0 > r) = P(B(0, r) ⊂ EX(u) | X(0) > u) = P(B(0, r) ⊂ EX/u(1) | X(0) > u) (5.15)

−−−→
u→∞

P(B(0, r) ⊂ EY0(1)) = 1− P
(
∃t ∈ B(0, r) : Y0(t) ≤ 1

)
.

The convergence in (5.15) holds by Lemma 5.5. To show the first equality in (5.6), remark that

(EYT (u) ∩ T )−r = EYT (u)−r ∩ T−r. Also, recall from Proposition 5.1 that

P(R(u)
0 > r) =

E
[
L
(
EX(u)−r ∩ T−r

)]
E
[
L
(
EX(u) ∩ T−r

)] =
E
[
L
(
(EX/u(1) ∩ T )−r

)
| ||X||T > u

]
E
[
L
(
EX/u(1) ∩ T−r

)
| ||X||T > u

]
−−−→
u→∞

E
[
L
(
(EYT (1) ∩ T )−r

)]
E
[
L
(
EYT (1) ∩ T−r

)] =
E
[
L
(
(EYT (1) ∩ T )−r

)]
L(T−r)P(YT (0) > 1)

.

5.B.4 Proof of Propostion 5.6

We start by decomposing

θ̂s
(n)

(p0, pn) =
An −Bn
C −Dn

,

where

An = log
(
q̂50%

(n)(R
(upn )
s )

)
, Bn = log

(
q̂50%

(n)(R
(up0 )
s )

)
C = log(− log(1− p0)), Dn = log(− log(1− pn)).

We begin by showing

− An
Dn

P−−−→
n→∞

θs. (5.16)

Under Assumption 5.2, for any α ∈ (0, 1), the function hα(x) := qα(R
(up(x))
s ) with x > 0 and

p(x) = 1 − e−x is regularly varying with index −θs. Thus, by the Karamata characterization
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theorem, xθshα(x) is slowly varying. For ϵ > 0, and α ∈ (0, 1), there exists xα,ϵ ∈ R+ such that

−ϵ log x < θs log x+ log hα(x) < ϵ log x,

for all x > xα,ϵ. Equivalently,

log hα(x)

log x
∈ (−θs − ϵ,−θs + ϵ),

for all x > xα,ϵ. Let n ∈ N, and let An denote the event {R̃(upn )
i (s) > 0, for at least one i =

1, . . . , n}. By the assumption that n(1 − pn) → ∞ as n → ∞, we have P(An) → 1. Choose

α ∈ (0, 1/2) and α ∈ (1/2, 1). Notice that for x = − log(1− pn) = exp(Dn), one has p(x) = pn, and

α− α = P
(
hα(x) < R

(upn )
s < hα(x)

)
≤ P

(
hα(x) < q̂50%

(n)(R
(upn )
s ) < hα(x) | An

)
≤

P
(
hα(x) < q̂50%

(n)(R
(upn )
s ) < hα(x)

)
P(An)

=
P
(
log hα(x)
log(x) < An

Dn
< log hα(x)

log(x)

)
P(An)

.

As seen previously, for n (or equivalently x) large enough, one has

P
(
log hα(x)

log(x)
<
An
Dn

<
log hα(x)

log(x)

)
≤ P

(
An
Dn

∈ (−θs − ϵ,−θs + ϵ)

)
.

The left-hand side is bounded below by P(An)(α− α) which can be made arbitrarily close to 1 by

choice of α, α, and n. This proves (5.16).

Since Dn → ∞ as n→ ∞, the statement of the proposition holds since Bn converges to a constant

log
(
q50%(R

(up0 )
s )

)
in probability as n→ ∞. □
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Chapter 6

Perspectives

Here, we provide some outlook on possibilities for this work to be expanded upon in future research.

The numerous tools and concepts that we have introduced in this manuscript have largely been

studied independently of each other. Here, we provide several suggestions for how these works may

be bridged together.

For a stationary random field X, the quantiles of the extremal range at the level u ∈ R are seen to

behave like the ratio of the expected area of the excursion set EX(u) to the expected perimeter of

EX(u) (see Corollary 5.1). This relationship is not leveraged in the case study of French temperature

data, where instead, the parameters of the model for the median of the extremal range at a point

s are inferred by measuring the distance from s to the excursion boundary on days that exhibit a

threshold exceedance at s. To leverage the established relationship between the intrinsic volumes of

the excursion set and the extremal range, one may estimate the perimeter and area densities locally

using the pseudo-local counting algorithm in Definition 3.4, or by using a local counting algorithm

(see Definition 2.3) and correcting for the bias (see Theorem 2.2). The ratio of these estimated local

densities may also be used to infer the model parameters in (5.10) that describe the asymptotic

behavior of the median extremal range.

In addition, it would be interesting to study how the distribution of the reach of the excursion set

EX(u) intersected with a compact set T behaves as u tends to the upper endpoint of the distribution

of X. Alternatively, one may be interested in the setting in which the threshold u is fixed, but T

grows to cover all of Euclidean space as described in Section 3.3.2. This would shed light on the

asymptotic behavior of ΛTX(u) in Definition 3.5, which characterizes the applicability of the pseudo-

local counting algorithm for perimeter estimation in Definition 3.4. Such studies may be carried

out numerically using the theory concerning the reach developed in Chapter 4.

Areas of future research also include:

• An investigation of the variance of local counting algorithms on point-referenced

d-honeycombs. Theorem 2.2 relates the limiting expected surface area estimate to the true

expected surface area for excursion sets observed over the convex, polytopic tessellations in
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Definition 2.2. The linearity of the expectation allows one to separate the analysis into the

contributions of pairs of neighboring points. As mentioned in Section 1.3.4, a study of the

higher moments would be more involved, since this linearity argument would cease to hold.

Nevertheless, such an analysis may lead to variance reduction techniques for local counting

algorithms.

• The tessellations for which Theorem 2.2 holds. Point-referenced d-honeycombs, the

tessellations defined in Definition 2.2, restrict the reference points to be contained in each

cell. This feature of point-referenced d-honeycombs is not used explicitly in the proof of

Theorem 2.2. Moreover, if this property is relaxed, then the resulting class of sets is closed

under taking the dual tessellation. The class of tessellations which can be expressed as a power

diagram (see, e.g., Aurenhammer (1987)) is a subclass of this larger class of tessellations. It

is unclear if there are tessellations that are point-referenceable, but cannot be expressed as a

power diagram of a set of points with appropriately associated radii.

• A pseudo-local counting algorithm for perimeter estimation. The perimeter estimator

introduced in Chapter 3 is studied only on two-dimensional excursion sets (see Definition 3.4).

Seeing as how this estimator is inspired by Lemma 1.2, which holds in arbitrary dimension,

it is likely that the natural, higher dimensional analogue of the estimator is almost surely

multigrid convergent to the true (d − 1)-dimensional surface area. The reason for which our

result of almost sure consistency, Theorem 3.1, is stated for two-dimensional excursion sets is

because the proof involves a piecewise linear approximation of the boundary of the excursion

set, where the pieces are delimited by the square subregions of side length m (in the notation

of Definition 3.4). In dimension d > 2, similar piecewise linear constructions exist, but for

technical reasons, they are more difficult to work with when following the lines of the proof

of Theorem 3.1.

• A non-parametric β-reach extrapolation method. The β-reach profiles in Section 4.3.3

provide the exact β-reach of a point cloud that approximates a Euclidean subset for β in an

interval. For β sufficiently far from 0, the β-reach of the point cloud is close to that of the

underlying set. The continuity of the β-reach at β = 0 (see Theorem 4.2) suggests that the

reach of the underlying set might be deduced from the β-reach profile of the approximating

point-cloud for values of β away from 0. It would be interesting to investigate how machine

learning techniques may be used in relation to the one-dimensional β-reach profile to obtain

a new, non-parametric estimate of the reach.

• A toolbox for studying the extremes of random fields. As mentioned previously in

Section 5.7, the extremal range opens the door for the extremal behavior of random fields to be

studied using existing tools in computational geometry. For instance, the GitHub repository

https://github.com/RyanCotsakis/excursion-sets provides some tools for extracting ge-

ometric properties from two-dimensional excursion sets. Integrating these existing tools with
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methods for analyzing the extremes of random fields may benefit climate scientists, and other

researchers working in spatial statistics. Finally, such analyses may be performed in higher

dimensions, as the extremal range has a natural, higher dimensional analogue that obeys the

theory developed in Chapter 5.
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Lévy, P. (1940). Sur certains processus stochastiques homogènes. Compositio Mathematica, 7:283–
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