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Abstract

In this manuscript we study the geometry of some metric spaces called horospherical
product. They are constructed out of two Gromov hyperbolic spaces, and contains both
discrete or continuous examples such as the Diestel-Leader graphs, the SOL geometry or
the treebolic spaces.

In the first part of this manuscript, we consider two proper, geodesically complete,
Gromov hyperbolic, Busemann spaces X and Y. We construct their horospherical
product X Y and, after some metric estimations on specific paths in Gromov hyperbolic
spaces, we describe a family of distances on X x Y. More specifically, we show that
all these distances produce the same large scale geometry for X » Y. This description
allows us to depict the shape of geodesic segments and geodesic lines. The understanding
of the geodesics’ behaviour leads us to the characterization of the visual boundary of X xY'.

For the second part, the two spaces X and Y are endowed with measures. Thanks
to these measures, we manage to achieve the geometric rigidity of self quasi-isometries of
X »Y. More specifically, we show that every self quasi-isometry ® of X x Y is close to a
product map (®X, &), where ®¥ : X - X and ¥ : Y - Y are two quasi-isometries.
To do so, we first develop several metric and measure theoretic tools regarding a specific
family of geodesic called vertical geodesics. These tools include the coarse differentiation,
introduced by Eskin, Fisher and Whyte for the horospherical product of regular infinite
trees and hyperbolic planes. Afterwards, generalising techniques they presented, we
obtain geometric rigidity.

In the last chapter we present an example on how to use this geometric rigidity on X Y’
in order to get informations on its quasi-isometry group. More precisely, we provide a
description of the quasi-isometry group of a family of solvable Lie groups of the form
R X Diag(A1,~As) (N1 x Na), where Ny, N, are nilpotent Lie groups and where A; and Ao
are matrices whose eigenvalues have all positive real parts.
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Résumé en francais

La géométrie d’'un objet mathématique peut étre appréhendée d’'un grand nombre de facons
différentes. Dans ce manuscrit de thése, nous allons explorer la géométrie d’espaces appelés
produits horosphériques, grice notamment a I’étude de différents aspects tels que leurs
distances ou leurs mesures.

Dans la premiére partie, nous nous intéresserons a la forme des géodésiques, autrement
dit, aux manieres de voyager le plus rapidement possible entre deux points de notre espace.
En nous servant de cette description, nous serons en mesure de donner une caractérisation du
bord a l'infini de ces produits horosphériques. Ce bord peut étre compris comme la famille des
directions possibles lorsque I’on choisit de voyager a I'infini.

Dans la deuxiéme partie de ce travail, nous étudierons la géométrie a grande échelle des
produits horosphériques. L’objectif principal de cette partie est de montrer que les quasi-
isométries, c’est a dire des fonctions ne modifiant pas la géométrie a grande échelle, vérifient
une certaine propriété de rigidité géométrique.

Pour pouvoir étre plus précis, explicitons le contenu des différents chapitres composant
ce manuscrit.

Chapitre 2

Soit (X, dx ) un espace métrique. Un triangle géodésique de X est la donnée de trois points

a,b et ¢ de X, les sommets, ainsi que de trois géodésiques reliant les points deux a deux, les
cotés.
Soit § > 0, 'espace X est appelé d-hyperbolique (ou Gromov hyperbolique) si pour tout
triangle géodésique, tout point contenu dans I'un des cotés est a distance plus petite que 6 d’un
des deux autres cotés. En particulier, le triangle géodésique ressemble (a J pres) a un tripode.
Cette hyperbolicité au sens de Gromov est une caractérisation métrique de la courbure négative
d’un espace.

En plus d’étre Gromov hyperbolique, nous demanderons a ce que X soit Busemann,
c’est a dire que I'évolution de la distance entre deux segments géodésiques soit une fonction
convexe. Cette hypothése nous permet de significativement alléger I’écriture des démonstrations
présentes dans ce manuscrit.

Un espace Gromov hyperbolique X est naturellement muni d’'un bord a linfini (bord vi-
suel, ou bord de Gromov) noté 0X. Fixons un point @ € 0X sur ce bord et un point base
w € X. Il en découle alors une fonction de hauteur hx : X — R, définie comme I'opposée
d’une fonction de Busemann, relative a ce couple (a,w). Sil'on imagine que la direction a est
représentée vers le haut, cette fonction de hauteur s x représente I’altitude d’un point de X. Les
géodésiques infinies, voyageant en direction de a sont alors appelées géodésiques verticales.
Ces géodésiques particuliéres jouent un role essentiel dans ’ensemble de ce document.
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Chapitre 3

Dans ce chapitre nous nous concentrons sur la forme des géodésiques d’'un espace hyper-
bolique, ainsi que sur la longueur de chemins ne dépassant pas une certaine hauteur.
Plus précisément, une géodésique est toujours contenue dans un voisinage proche de deux
géodésiques verticales. Cela permet de décomposer cette géodésique en deux temps : en phase
ascendante, puis une phase descendante. La hauteur maximale atteinte par une géodésique re-
liant deux points a et b de X, notée h*, est étroitement liée a la distance entre a et b.
Considérons A > 0. Nous montrons que tout chemin ~ reliant a et b, et dont la hauteur ne
dépasse pas h* — A posséde une longueur /() supérieure a e® + dx (a, b).

Chapitre 4

Etant donnés deux espaces Gromov hyperboliques et Busemann X et Y, munis respective-
ment de leur hauteur hx et hy, nous pouvons définir leur produit horosphérique que I’on note
X xY comme :

XwY :={(z,y) e XxY | hx(z) =-hy(y)}.

Cet espace X x Y est inclus dans le produit cartésien X x Y et peut étre compris comme le rec-
ollement de X et d’une copie de Y que I'on a retournée le long de sa hauteur.

La géométrie Sol, une des huits géométries de Thurston, les graphes de Diestel-Leader
et les 2-complexes de Cayley des groupes de Baumslag-Solitar BS(1,7) sont des produits
horosphériques, dont les deux composantes X et Y sont soit un arbre régulier infini, soit le
plan hyperbolique H?Z.

Nous pouvons visualiser un produit horosphérique comme un espace muni de trois directions,
la direction verticale donnée par la hauteur, la direction de X pour la premiere coordonée et
la direction de Y pour la deuxiéme coordonnée. Une géodésique évoluant dans la direction X
doit alors gagner en hauteur pour ne pas voir sa longueur exploser, cela découle du contréle
sur la longueur d’un chemin du chapitre 3. Dans la direction Y, comme cet espace est retourneé,
une géodésique voyageant dans cette direction doit suffisamment descendre pour ne pas voir sa
longueur exploser.

Ces deux restrictions nous permettent de décrire (a une constante additive uniforme prées) une
famille de distances sur ces produits horosphériques.

Chapitre 5

Gréce a cette description de la distance, nous sommes capable de décrire géométriquement
les segments et rayons géodésiques de X » Y. En particulier, nous montrons que ces géodésiques
sont contenues dans un petit voisinage de la réunion de une, deux ou trois géodésiques ver-
ticales. Cette description rappelle le comportement des géodésiques dans un espace Gromov
hyperbolique, qui sont contenues dans le voisinage de une ou deux géodésiques verticales.
Ayant un description précise des rayons géodésiques, nous en déduisons que le bord visuel de
X » Y estlaréunion du bord visuel épointé de X et du bord visuel épointé de Y.

Le chapitre 5 conclut la premiére partie de ce manuscrit, dans laquelle nous avons exclu-
sivement utilisé des outils métriques tels que I'inégalité triangulaire ou la rigidité des chemins
dans un espace Gromov hyperbolique. Dans la deuxiéme partie, nous approfondissons ces
aspects métriques et nous les combinons avec des outils de mesures nous permettant ainsi
d’avoir des résultats non plus sur les géodésiques, mais sur les quasi-géodésiques des produits
horosphériques.

Une quasi-isométrie est une fonction qui, modulo une constante multiplicative et une con-
stante additive, ne modifie pas la distance d’'un espace. Un des objectifs principaux de cette
deuxiéme partie est de montrer qu'une quasi-isométrie  de X x Y dans lui-méme est proche
d’un couple de quasi-isométries (&~ , ®Y), ott ¥ est & valeurs dans X et &Y est & valeurs dans
Y. C’est ce phénomeéne que I'on appelle rigidité géométrique.
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Chapitre 6

Dans le chapitre 6, premier chapitre de la seconde partie de ce manuscrit, nous introduisons
quelques notations en rapport avec le flot vertical d’'un espace Gromov hyperbolique X. Consid-
érons une ligne de niveau Hy (aussi appelée horosphere) de notre fonction de hauteur hx. La
projection (le long du flot vertical) d’un sous-ensemble U de Hj, sur une autre ligne de niveau
Hj, est I'ensemble des points de H; reliés a U par une géodésique verticale. L’étude de ces pro-
jections, ainsi que de I’évolution de leurs mesures, jouent un role essentiel dans ’obtention du
résultat principal de cette deuxiéme partie.

Pour cette raison, nos espaces X et Y ont besoin d’étre des espaces mesurés en plus d’étre des
espaces métriques.

Chapitre 7

Dans ce chapitre nous développons ’ensemble des outils métriques dont nous aurons besoin

dans le chapitre 9. Le premier d’entre eux porte le nom de chemin e-monotone. Ce sont des
chemins qui ne traversent pas deux fois une méme ligne de niveaux en deux temps éloignés
(éloignement étant notamment restreint par le parametre €). Nous montrons notamment que
ces chemins sont uniformément proches de géodésiques verticales mentionnées précedemment.
Le deuxiéme outil se nomme différentiation grossiére. Cela consiste a découper une quasi-
géodésique (image d’'une géodésique par une quasi-isométrie) en un ensemble de morceaux de
méme longueur. Nous pouvons alors montrer que, dans le cadre d’un produit horosphérique, il
existe une échelle R pour laquelle la majorité de ces morceaux de longueur R sont e-monotones.
Nous en déduisons ensuite que ces morceaux sont proches de géodésiques verticales.
Enfin, nous introduisons les quadrilatéres tetraédriques, une configuration particuliére consti-
tuée de quatre points d’un produit horosphérique. Quatre points a, b, ¢ ,d € X x Y réalisent
cette configuration si deux d’entre eux, disons a et b, sont reliés par des géodésiques verticales
aux deux autres points c et d. Dans ce cas, a et b sont presque sur la méme ligne de niveau et ¢
et d sont presque sur la méme ligne de niveau. Les deux points a et b partagent alors presque la
méme coordonée en X, et ¢ et d la méme coordonée en Y.

L’interét de ce quadrilatére réside dans le fait qu’il impose une méme coordonée en X et
une méme coordonée en Y, sous condition que nos points soient reliés par des géodésiques
verticales. Cependant nous venons de voir que, en un certain sens, presque tous les morceaux
d’une quasi-geodésique sont proches de géodésiques verticales, ainsi I'image d’un quadrilatere
tétraédrique par une quasi-isométrie a de grandes chances d’étre proche d’'un quadrilatere
tétraédrique. Dans le chapitre suivant nous ajoutons des mesures sur nos espaces X et Y, cela
nous permet notamment de manipuler correctement ces notions de " presque tous les morceaux

Chapitre 8

Nos espaces X et Y devant étre considérés comme des espaces mesurés, nous ajoutons

quelques hypothéses liées aux mesures sur ces deux espaces métriques. En particulier, nous
demandons 4 ce que chacun d’eux posséde une mesure ;X , respectivement ¥, désintégrable sur
les lignes de niveaux. C’est a dire que la mesure X d’un ensemble peut étre obtenue comme
I'intégrale des mesures de ses intersections avec les lignes de niveaux de hx.
Une géodésique verticale dont 'image par la quasi-isométrie @ est proche d’une géodésique ver-
ticale est appelé une bonne géodésique verticale. Afin d’utiliser I’échelle R fournie par la differ-
entiation grossiére, nous pavons notre espace X x Y par des boites d’échelle R, que 'on peut se
représenter comme des cube de cété R, dont le flot vertical ne modifie pas les coupes horizon-
tales. Nous en déduisons que dans presque toute ces boites 3, presque tout (pour une mesure
contruite a partir de X et ;1Y) les morceaux de géodésiques verticales sont des morceaux de
bonne géodésiques verticales.



10

Résumé en francais

Chapitre 9

Ce chapitre réalise la démonstration du fait qu'une quasi-isométrie ¢ de X xY vers lui méme
est proche d’une quasi-isométrie appelée produit, de la forme (&%, ®Y), ot ®X et " sont des
quasi-isométrie respectivement de X et de Y. Cette démonstration fait appel a I’ensemble des
outils métriques et de mesure que ’on a développés tout au long des chapitres 7 et 8.

Nous commencons par considérer une boite B d’échelle R dans laquelle presque tous les
morceaux de géodésiques verticales sont des bons segments verticaux. Dans ce contexte, a par-
tir de deux points a et b de B partageant une méme coordonée en X, nous pouvons construire
un quadrilatere tétraédrique dont I'image par ® est proche d’un quadrilatere tetraédrique. Ainsi
nous montrons que ®(a) et ®(b) partagent presque la méme coordonée en X. En réalisant le
méme raisonnement pour les coordonées en Y, nous en déduisons que sur la boite B, la quasi-
isométrie ® est proche d’une quasi-isométrie produit (X, ®Y).

En passant a une échelle plus grande L > R, nous sommes capables de montrer que cette derniere
propriété n’est pas seulement vraie pour une majorité de boites d’échelle L, mais bien pour toutes
ces derniéres. Pour en déduire que ® est proche d’une quasi-isométrie produit sur tout Uespace,
nous considérons deux points a et b de X x Y possédant le méme coordonée en X. Nous con-
truisons ensuite deux suites de boites (Byn)nen €t (Bppn)nen d’échelle croissante de la forme
L, = (1 + B)"L, dont tous les termes contiennent respectivement a ou b. Ici 3 est un nombre
plus petit que 1. Alors, nous pouvons faire coincider ces deux suites a partir d’un certain rang.
Cela nous permet de construire de proche en proche un quadrilatére tétraédrique contenant a et
b, dont 'image par ® est proche d’'un quadrilatére tétraédrique.

Nous en déduisons que ®(a) et P(b) possédent presque la méme coordonée en X, et, aprés un
travail similaire en Y, que ® est proche d’une quasi-isométrie produit sur tout X » Y. Cela
conclut la preuve du résultat principal de ce manuscrit. Le chapitre suivant propose un exemple
d’application de ce résultat, grace auquel nous obtenons une description du groupe de quasi-
isométrie d’une famille de groupes de Lie résolubles.

Chapitre 10

Dans ce chapitre nous considérons les produits horosphériques de groupes de Heintze, qui se
trouvent étre les seules variétés simplement connexes homogénes de courbure négative pincées.
Ces groupes de Heintze sont de la forme R x4 N, ou N est un groupe de Lie nilpotent simple-
ment connexe, et ou la matrice A agit par dérivation au niveau de I’algébre de Lie associée a V.
Ici toutes les valeurs propres de A possédent une partie réelle strictement positive. Le produit
horosphérique de deux groupes de Heintze R x 4, N1 et R x 4, N est alors

(R4, N1)w(Rxa, No) =R xpiaea,,-a,) (N1 x N2).

Grace au théoréme que nous avons démontré dans le chapitre précédent, nous sommes en mesure
de dire qu’une quasi-isométrie ® de ce produit horosphérique dans lui-méme est proche d’une
quasi-isométrie produit ($;, P2 ), ou ®; est une quasi-isométrie de R x 4, IV;. En raffinant notre
étude de ®;, nous montrons qu’il existe ¥;, une fonction bi-Lipschitz de V;, telle que ®; est proche
de (idr, ¥;). C’est ainsi que nous caractérisons le groupe de quasi-isométries de R xpaq(4,,-4,)
(N1 x N2) comme le produit cartésien des groupes de fonctions bi-Lipschitz de N et de No.



Chapter 1

Introduction

In this doctoral dissertation we study geometric aspects of some metric spaces called horospherical
products. Notably, we provide a description of their geodesics (up to uniform finite distance), their
visual boundaries and their self quasi-isometries. These results are obtained using metric and measure
tools developed throughout this thesis, and, for the second part of this manuscript, following techniques
presented by Eskin, Fisher and Whyte in [[10].

1.1 Coarse geometry

1.1.1 Metric spaces and geodesics

Let (X, dx) be a metric space. A geodesic segment of X is the image by an isometry of a closed real
interval into X. A geodesic segment between two points a,b € X, denoted by [a, b], is a shortest path
(with respect to dx) between a and b.

Depending on the intrinsic geometry of X, these geodesic segments may behave in various ways.
They can be unique, infinitely many, dead-ends or extendable towards infinity. The understanding of
their shape or their length provides informations on the metric space (X, dx ). A metric space is called
geodesic if, for any two points z, 2’ € X, there exists a geodesic segment between them.

A geodesic ray is the image by an isometry of the half-line [0; +oo[ into X. Let 7 > 0 and let U be
a subset of X, the r-neighbourhood of U, denoted by N,.(U) is the set of points r-close to U, that is,

N (U):={zxe X |dx(z,U)<r}.
Thanks to this neighbourhood, we consider the following equivalence relation on geodesic rays.

Definition 1.1.1. Let o and oy be two geodesic rays.
ay ~ag < 3r >0 such that oy ¢ N (az) and as ¢ N-(a1)

The visual boundary of X, denoted by 0.X, is the set of equivalence classes of geodesic rays for the
aforementioned relation. This boundary at infinity depicts the different possible directions of geodesic
rays.

1.1.2 Gromov hyperbolic spaces

In Euclidean spaces, the study of triangles naturally follows the study of geodesic segments. The same
idea holds in general metric spaces. Let a, b, c € X be three points, a geodesic triangle consists of three
geodesic segments [a,b],[b,c] and [c,a], when they exist. Using these geodesic triangles, Gromov
introduced a metric characterisation of the negative curvature, generalising Riemannian manifolds with
negative sectional curvature.

11
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Definition 1.1.2.
Let 6 > 0, a geodesic metric space X is d-hyperbolic if and only if for all a,b,c € X, any of the three sides
composing the geodesic triangle [a,b]U[b, c]U[c, a] is contained in the 6-neighbourhood of the two others.

A geodesic metric space is called Gromov hyperbolic if it is §-hyperbolic for some § > 0.

This definition is in fact a coarse generalisation of negative curvature since all simply connected Rie-
mannian manifolds with negative sectional curvature are d-hyperbolic for some J. Moreover, the fam-
ily of Gromov hyperbolic spaces gathers a broad set of discrete objects, such as trees, which are 0-
hyperbolic since their geodesic triangles are all tripods.

1.1.3 Quasi-isometries

Another approach to study the geometry of a metric space (X, dx) is to consider its global structure,
or its structure at infinity. With that in mind, the notion of isometry between X and Y might be
too restricting. Indeed, allowing some controlled perturbation between X and Y, thanks to quasi-
isometries, can give access to new understandings on the large scale geometry of both X and Y.

Definition 1.1.3. Let (X,dx) and (Y, dy) be two metric spaces. A map ® : X — Y is called a (k,c)-
quasi-isometry if and only if:

(1) Forallz,z' € X, k™ tdx (x,2") - c < dy (®(x), ®(2")) < kdx (z,2") +c.
(2) Forally €Y, there exists x € X such that d(®(x),y) < c.
A map verifying (1) is called a quasi-isometric embedding of X .

We say that two metric spaces are quasi-isometric if there exists a quasi-isometry between them.
In [18 Gromov], a mainstay of geometric group theory, Gromov points out the importance of quasi-
isometric invariants in groups. The quasi-isometry classification of groups, or metric spaces, has since
been a wide and prolific research domain (see [[21, Kapovich] for a nice survey on this topic).
This manuscript lies in this field. Notably we provide a description of the quasi-isometry group of a
family of solvable Lie groups, and a geometric description of quasi-isometries of a wide family of metric
spaces called horospherical product.

1.2 Horospherical products

1.2.1 Vertical geodesics and Busemann functions

Let X be a Gromov hyperbolic space, and let us fix a point a € 0.X on the boundary. We call vertical
geodesic ray, respectively vertical geodesic line, any geodesic ray in the equivalence class a, respec-
tively with one of its rays in a. The study of these specific geodesic rays is central in this work.

A metric space (X, dx ) is Busemann if and only if for every pair of geodesic segments parametrized
by arclength v : [a,b] > X and v’ : [a/,b'] - X, the following function is convex:

Dy :[a,b] x[a',b'] > X
(t,t) = dx (v(t),7' (')

The Busemann assumption removes some technical difficulties in a significant number of proofs in
this work. For example, if X is a Busemann space in addition to being Gromov hyperbolic, for all
x € X there exists a unique vertical geodesic ray, denoted by V,, starting at . The construction of
the horospherical product of two Gromov hyperbolic space X and Y requires the so called Busemann
functions. Their definition is simplified by the Busemann assumption. Let us consider 0.X, the Gromov
boundary of X (which, in this setting, is the same as the visual boundary). Both the boundary 90X and
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X u0X, endowed with the natural Hausdorff topology, are compact. Then, given a € 0X a point on
the boundary, and w € X a base point, we define a Busemann function 5, ,,) with respect to a and w.
Let V,, be the unique vertical geodesic ray starting from w.

VaeX, Bguw(r):=limsup(d(z, Vi (t)) - 1)
t—+o00

This function computes the asymptotic delay a point « € X has in a race towards a against the verti-
cal geodesic ray starting at w. We call height function, denoted by h, the opposite of the Busemann
function, h := —B3(4,.,). The horospheres of X with respect to (a,w) € X x X are the level-sets of

B(a,w) (OI‘ of h)

These horospheres depend on the previously chosen couple (a,w) of X x X. Vertical geodesic rays
can be heuristically considered as being "normal" to these horospheres. In the subsequent chapters,
we will study how some measures on horospheres behave under the "vertical flow" provided by these
vertical geodesics.

An ideal triangle of X is a geodesic triangle with one, or several, of its vertices on the Gromov bound-
ary 0X. Its edges can therefore be geodesic rays or geodesic lines of X. These ideal triangles are also
4’-thin for some ¢’ depending only on .

Thereby, considering the ideal triangles that admit the point a € 0X as a vertex, we have that for
all 1,29 € X, the geodesic [x1, 2] is included in the §’-neighbourhood of the two vertical geodesics
Vz, UVy,. It means that the geodesic first follows the path of V;, (with an increasing height /), then once
it (almost) reaches the vertical geodesic ray V,,, it follows its path until x5 (with a decreasing height
h). Coarsely speaking, all geodesic segments are constructed from two portions of vertical geodesics.
This configuration is illustrated on Figure [1.1|for the Log model of the hyperbolic plan H?Z.

a € GHQT 14 QI—]_P/
[z1, 9]
Vi Vi,
)
I CIZ

R?: ds®> = e %*dz? + dz?

Figure 1.1: Vertical geodesic rays in the Log model of H?.

1.2.2 Definition and examples

Let X,Y be two Gromov hyperbolic spaces, let a® € 0X,a" € dY be points on the boundaries and
let w™ € X, w" €Y be base points. Let us denote by A~ := —B(aX wx) and hY = —B(av wv) the two
corresponding height functions. The horospherical product of X and Y, relatively to (aX ,wx ) and
(aY, wY) , denoted by X » Y is defined by:

XwY :={(z,y) e X xY | ¥ (z)+hY (y) =0}
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The set X x Y, can be seen as a diagonal in X x Y. It is constructed by gluing X with an upside down
copy of Y along their respective horospheres.

To study the geometry of a horospherical product X xY’, we make additional assumptions on X and Y.
We require them to be Gromov hyperbolic, Busemann, geodesically complete and proper metric spaces.

1. X is geodesically complete if and only if all geodesic segments of X can be extended into a geodesic
bi-infinite line.

2. X is proper if and only if all closed metric balls of X are compact.

If X and Y satisfy these two additional conditions, the horospherical product X x Y is connected (see

Property 4.1.11).

Example 1.2.1. Let X be a Gromov hyperbolic, Busemann, geodesically complete and proper metric space.
Then X w R is isometric to X. In particular, if V¥ is a vertical geodesic line of Y, X » V'Y is an isometric
embedding of X in X n Y.

The three (non-trivial) first examples of horospherical products appeared independently in the lit-
erature. They correspond to the case where X and Y are either a regular infinite tree 7, of degree m
or the hyperbolic plan H?2.

1. T), » T), is the Diestel-Leader graph DL(m,n). When m = n, this horospherical product is a
Cayley graph of the lamplighter group Z : Z,. See Figure[1.2]for a subset of T3 » 7.

2. H®™ wx H?" is the Lie group R X (1m,n) R? = Sol(m,n), one of the eight Thurston geometries.
By H?>™ we mean the manifold R? endowed with the infinitesimal Riemannian metric ds? =
e 2m%dz? + dz2. The action associated to the aforementioned semi-direct product is described

by (2, (,y)) = (e™*x,e™y).

3. T, » Hy is a Cayley 2-complex of the Baumslag-Solitar group BS(1,m).

Figure 1.2: Small neighbourhood in 75 » 7T5.

The awareness of them being identically constructed from Gromov hyperbolic spaces came later, a
survey on these three examples is provided by Wolfgang Woess in [28].

1.2.3 Some Lie groups as horospherical products

An other approach, is to consider the hyperbolic plan H?™ as the affine Lie group R x,,, R with action
by multiplication (z,x) ~ e™*r, and the Sol geometry Sol(m,n) as the Lie group R x(,, R2. In this
context we have that (R x,;, R) @ (R x, R) = Rx(, ) R2. The natural next step, is to consider which
Lie group can be taken as a component in a horospherical product.

A Heintze group is a Lie group of the form R x4 N with N a nilpotent Lie group, and where all
eigenvalues of A have positive real part. Heintze proved in [20] that any simply connected, negatively
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curved Lie group is isomorphic to a Heintze group.

Moreover, a Busemann metric space is simply connected, hence any Gromov hyperbolic, Busemann
Lie group is isomorphic to a Heintze group. Consequently, Heintze groups are natural candidates for
the two components from which a horospherical product is constructed. Let R x 4, N1 and R x 4, No
be two Heintze groups, we have

(Rxa, Ni)w (Rxay N1) =R xpiaga;,-a,) (N1 x Na),

where Diag(A;,—A3) is the block diagonal matrix containing A; and —As on its diagonal.

In his paper [29], Xie classifies the subfamily of all negatively curved Lie groups R x R™ up to quasi-
isometry. In Chapter [10} we provide a description of the quasi-isometry group of the horospherical
product of two Heintze groups, namely the solvable Lie groups R xpjag(a,,-4,) (N1 X N2).

1.2.4 Quasi-isometry classification and rigidity results

The description of QI groups of classical horospherical products played a crucial role to obtain a QI
classification of some families of metric spaces. Farb and Mosher obtained it for the Baumslag-Solitar
groups BS(1, p).

Theorem. [12, Farb, Mosher, Theorem 7.1]
Given integers m,n > 2, the groups BS(1,m) and BS(1,n) are quasi-isometric if and only if they are
commensurable. This happens if and only if there exist integersr, j,k > 0 such that m = v/ andn = r¥.

Then Eskin, Fisher and Whyte obtained a similar result for horospherical products of trees or hy-
perbolic planes.

Theorem. [10, Eskin, Fisher, Whyte, Theorem 1.3][11|]
The group Sol(m,n) is quasi-isometric to Sol(m',n") if and only if m' /m = n//n.

Theorem. [10, Eskin, Fisher, Whyte, Theorem 1.5][11|]
The metric space T, x T}, is quasi-isometric to T,,,» » T,y if and only if m and m' are powers of a common
integer, n and n' are powers of a common integer, and logm’/logm = logn'/logn.

This result also permitted to answer a question ask by Woess in [25, Soardi, Woess] "Is there a
vertex-transitive graph that is not quasi-isometric with some Cayley graph?". Eskin, Fisher and Whyte
showed that when m and n are coprime integers, 7, x T}, are such graphs. The geometry of horospher-
ical products is crucial in the work of Eskin, Fisher and Whyte, and their proof holds in the context of
either Cayley graphs or Lie groups.

Throughout papers [23] Peng], [24, Peng] and [7, Dymarz], using similar methods, Peng and Dymarz
generalized the description of the quasi-isometries for Lie groups of the form R x R?.

Theorem. [7, Dymarz, Theorem 1] Suppose M is a diagonalizable matrix with det M =1 and no eigen-
values on the unit circle. Let Gy = R xpr R"™. IfT' is a finitely generated group quasi-isometric to Gy
then T is virtually a lattice in R x 5y R™ where M' is a matrix that has the same absolute Jordan form as
M*< for some o € R.

In [23]] and [24], Peng provided a description of the quasi-isometry group of Lie groups of the form
R™ x R™ as a product of Bi-Lipschitz groups.

The main goal of part II is to generalize the methods and techniques developed by Eskin Fisher and
Whyte to a wider set of horospherical products. For this, the space X and Y have to be endowed with
appropriate measures.
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1.2.5 Admissible measures

In order to generalize the proof of Eskin, Fisher and Whyte developed in [[10] and [11]], the horospherical
products have to be equipped with appropriate measures. For this reason, in the second part of this
manuscript, the hyperbolic spaces X and Y are not only metric spaces, but measured metric spaces.
Let us first provide a notation for a disk on a horosphere and for projections along vertical geodesics
on horospheres.

Notation 1.2.2. Let X be a Gromov hyperbolic, Busemann, geodesically complete and proper metric space.
ForallU c X,z € X and z e R:

1. U, :=U nh™Y(2) is the intersection of U with the horosphere at height z.

2. Dy(z):={pe X | h(p) = h(z) and d* (z,p) <1} = No(z)n(Xnh~ (h(z))) is the ball of center
x and radius r on the horosphere at height h(x).

3. 7w, (U):= {p e h"Y(2) | 3V a vertical ray such thatp e V, UnV # @} is the set of points at height
z, linked to U by a vertical geodesic.

We may think of pi. as a projection of U onto the level-set A~ (), but we point out that pi.(z) is
not necessarily a point as there may be several vertical geodesics containing x.
Let X be a Gromov hyperbolic, Busemann, geodesically complete and proper metric space. We detail
here the additional measure-related assumptions on X we use to obtain the geometric rigidity of the
self quasi-isometries of a horospherical product.

Definition 1.2.3. (Admissible horopointed measured metric spaces.)
Let a € OX be a point on the Gromov boundary of X. A Borel measure X on X will be said (X, a)
horo-admissible if and only if the following (E1), (E2) and (E3) are satisfied.

(E1) There exists a direction a € 0X such that i is desintegrable along the height function hg:

For all z € R, there exist a Borel measure uf on X, such that for any measurable set A c X :

X (A) = [ ¥ (4)dz
zeR

(E2) There exist an appropriate radius My, and uniform constant C' > 1 such that V1, x9 € X we have:

C™ iy gy (Dt (£2)) < tijayy (Dt (€1)) < Ctijyy (D (22))

(E3) There existm > 0 and C' > 1 such that for all zy € R, and for all measurable set U c X, and for
all z < zp:

(Y (ra(U)) < ™D 1 XU < O'pd (m.(U))

Such a space (X, a,d, uX) will be called a horopointed admissible metric measured space, or just admis-

sible.

By an appropriate radius M), we mean that (£2) should hold for at least one value My > 2884. If
this is the case, we will show (Lemma that assumption (E2) holds for any M > Mj. Since we
are interested only in large scale geometry, it is not important for us whether such property holds at
small scales.

Briefly speaking, assumption (E1) allows us to decompose the measure of X on its horospheres, as-
sumption ( £2) provides us with a bounded geometry on horospheres and ( £'3) ensures an exponential
contraction of the horospheres’ measures in the upward direction.
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Let (X,a™,dX, ;X)) and (Y,a¥,d¥, 1¥) be two horopointed admissible metric measured spaces. We
endow X » Y with the measure
M += f ke ® /’Lz

see Chapter [8| for details. If the constants involved in assumption (E£3), m for X and n for Y, are
different, we obtain a geometric description of a self-quasi-isometry of X » Y.

1.3 Results of this thesis

Our main results on horospherical products are of two types, giving rise to two separate articles to
be submitted for publication. The first one focuses on the coarse description of distances, geodesics
and the visual boundary of them. The second one presents the results regarding the rigidity of the self
quasi-isometries of a horospherical product. It also gives the description of their quasi-isometry group
in the Lie group context.

1.3.1 Geodesics and visual boundary

There are many possible choices for the distance on X Y. In this manuscript we work with a family
of length path metrics induced by distances on X x Y (see precise definition [4£.1.2). We require that
the distance on X x Y comes from a norm N on R? that is greater than the normalised /; norm. Such
distances are called admissible. Our first result describes admissible distances.

Theorem A. Let d, be an admissible distance on X wY . Then there exists a constant M depending only
on the metric spaces (X n'Y,d,) such that for allp = (p~,p¥ ), q=(¢%,¢¥) e X n Y

(¥, +d" (0 .a") - n(p) - h(a))| < M

Hence, given two admissible distances d and d’, the horospherical products (X x Y, d) and (X w
Y, d’) are roughly isometric, which means there exists a (1, ¢)-quasi-isometry between them, with ¢ > 0.

For the Sol geometry, M.Troyanov presented in [26] a precise description of minimal geodesics (ie:
local geodesic for the Riemannian metric) and of the visual boundary of Sol. In the first part of this
manuscript, we provide a coarse description of the global geodesics, and of the visual boundary of a
broad family of horospherical products. In the case of Sol, we recover, up to an additive constant, Troy-
anov’s description of global geodesics, and we provide the same characterisation of the visual boundary.

Following the characterisation of the distances on horospherical products, we describe the shape of
geodesic segments.

Theorem B. Let X andY be two proper, geodesically complete, 6-hyperbolic, Busemann spaces and let
dy be an admissible distance on X wY . Let p = (pX Y) and q = ( X qY) be two points of X » Y and
let « be a geodesic segment of (X w Y, d,) linking p to q. There exists a constant M depending only on
(X xY,dy), and there exist two vertical geodesics V; = (VlX, Vly) and Vo = (VQX, VQY) such that:

1. If h(p) <h(q)—M thena is in the M-neighbourhood of Vi U (Vi*, V5" ) U Vs
2. If h(p) >h(q)+M then« is in the M-neighbourhood of Vi U (V5*, V) U V5
3. If |h(p) —h(q)| <M then at least one of the conclusions of 1. or 2. holds.

Specifically, V1 and Vs can be chosen such that p is close to V and q is close to Va.
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Figure 1.3: Shape of geodesic segments when h(p) < h(q) — k in X » Y. The neighbourhoods’ shape
are distorted since when going upward, distances are contracted in the "direction" X and expanded in
the "direction" Y.

An example is illustrated on Figure[L.3|for h(p) < h(g) — k. Coarsely speaking, Theorem[B|ensures
that any geodesic segment is constructed as the concatenation of three vertical geodesics. This result
is similar to the Gromov hyperbolic case, where a geodesic segment is in the constant neighbourhood
of two vertical geodesics.

The heuristic comprehension of Theorem in the case h(z) < h(y) -k, is that a geodesic segment trav-
els first along an embedded copy of Y (which is upside down) as a geodesic in it, and afterwards travels
along an embedded copy of X as a geodesic in it. This result leads us to the existence of unextend-
able geodesics, which are called dead-ends. This was already well-known for geodesics in lamplighter
groups.

Consequently to the description of geodesic segments, we obtain that for any geodesic ray k of X x Y,
there exists a vertical geodesic ray at finite distance. Therefore we classify all possible shapes for
geodesic rays and then give a description of the visual boundary of X x Y.

A geodesic is called X -type, respectively Y -type, if it is included in a constant M -neighbourhood of
geodesics in an embedded copy X x V¥ of X in X » Y, respectively in an embedded copy VX n Y of
Y in X x Y, (see Definition [5.3.5|and Figure[1.4). We show that the geodesic lines of X x Y are either
X-type, Y -type or both.

Corollary B.1. Let X andY be two proper, geodesically complete, d-hyperbolic, Busemann spaces. Then
there exists M > 0 depending only on ¢ such that for all geodesic line o : R — X x 'Y at least one of the
two following statements holds.

1. «is a X-type geodesic at scale M of X Y
2. ais aY -type geodesic at scale M of X nY

If a geodesic is both X-type and Y -type at scale M, it is in the M -neighbourhood of a vertical
geodesic of X n Y.

Let 0 € X x Y, the visual boundary of X x Y, with respect to the base point o, is denoted by 9,(X = Y")
and stands for the set of equivalence classes of geodesic rays starting at 0. We have:
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Y — type

\

X — type

Vertical geodesic

Figure 1.4: Different type of geodesics in X x Y.

Theorem C. Let X andY be two proper, geodesically complete, §-hyperbolic, Busemann spaces. We fix
base points and directions on X andY as follows, (wX,a*) e X x 90X, (wY,a¥) e Y x0Y. Let X n Y
be the horospherical product with respect to (w” ,a™) and (wY ,aY). Then the visual boundary of X » Y
with respect to any point o = (OX, OY) is:

Do(X wY) =((0X ~ {a™}) x " }) U ({a™} x (9 ~ {a¥}))
=((0X x {a* U ({a™} x o))~ {(a¥,a")}

{a*} x (Y \ {a'})

X o/ 0x\ [ % a7}

Figure 1.5: Depiction of 9,(X = Y").

This last result is similar to Proposition 6.4 of [26] Troyanov]. However, unlike Troyanov in his
work, we are focusing on minimal geodesics and not on local ones. One can see that this visual boundary
neither depends on the chosen admissible distance d nor on the base point o.

1.3.2 Geometric description of quasi-isometries

To study the quasi-isometry rigidity of horospherical products, we need to refine the metric tools we de-
veloped in part I and to incorporate admissible measures. The main idea is that, along the vertical flow,
the measure on horospheres is exponentially distorded, and since a quasi-isometry "quasi-preserves"
the volume, it cannot alter the vertical direction.
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To be more precise let X and Y be two horo-pointed measured metric spaces. Let us consider their
horospherical product X x Y and let ® be a self quasi-isometry of X x Y. Then ® is called a product
map, if and only if there exists a map ®* and a map ®" such that for all (z,y) € X xY we have either:

B(z,y) = (% (2), ¥ (y))
or &(z,y) = (@Y(y)’ (I)X(x))

Note that in the first case ®X : X - X and in the second case ®X : X — Y. In particular it implies
that ®* and ®Y are height respecting (ie. V2,2’ € X such that h(z) = h(z') we have h (@X(x)) =
h (<I>X (z") )), for ® to be well defined on X xY. Moreover, any product map of height respecting quasi-
isometries (<I>X ) <I>Y) is a quasi-isometry of X » Y (it follows from Theorem @) Our main theorem in
Part II states that, when m # n, any self quasi-isometries of X » Y is close to a product map of quasi-
isometries.

Theorem D (Geometric rigidity).
Let X andY be two horo-pointed measured metric spaces with m > n. Let ® a self quasi-isometry of
X w Y, then there exist two heigh-respecting quasi-isometries ®% : X - X and ®¥ : Y - Y such that:

du (2, (2%, @Y)) < +o00

In particular, ® is close to a height respecting map.

The goal of the second part of this doctoral dissertation is to provide the proof of this Theorem. The
first step consists in a description of a specific configuration of four points of X x Y linked by vertical
geodesic segments, which are called coarse vertical quadrilateral. In Lemma(7.3.2] we show that in such
a configuration, two points almost share the same X-coordinate and the two other almost share the
same Y -coordinate.

Let us consider @ a self quasi-isometry of X » Y. Then, using the coarse differentiation method devel-
oped by Eskin, Fisher and Whyte, we are able to provide a suitable scale R for ®, such that almost all
vertical geodesic segments of length R are sent close to vertical geodesic segments by ®.

To make use of this suitable scale, we tile X x Y with boxes. We first define boxes at scale R de-
noted by B, respectively by BY, in X, respectively in Y. Let zy € R and let C ¢ X, be a cell such
that D¢ c C ¢ Doc, with C a uniform constant to be determined later. A box BX(C) c X at scale R,
constructed from a cell C, is defined by:

BX(C)= U #X().

ze[z0-R;z0]

This means that a point z is in the box B~ (C) if its height is in [29 — R, zo[ and if there is a vertical
geodesic from z to C.

Then a box B of X x Y is defined as the horospherical product B := BX x BY (pictured on Figure
of two boxes. Given R, the spaces X and Y can easily by tiled by boxes at scale R. The product tiling
of X x Y restricted to X x Y gives a tiling of X x Y by boxes of the form B = BX « BY .

From there, we show that, in almost all boxes B at scale R, the images by ® of almost all vertical
geodesic segments are close to vertical geodesic segments. Hence, a coarse vertical quadrilateral is sent
close to a coarse vertical quadrilateral, on which we use the aforementioned Lemma|7.3.2|to prove that
® is close to a product map on the box B.

Then, for a bigger scale L >> R, we tile a box at scale L with boxes at scale R. Thanks to the as-
sumption m > n, we manage to unify the previously obtained quasi-isometry products on most of the
boxes at scale R in order to obtain a quasi-isometry product on the box at scale L. Hence, we prove
that the quasi-isometry @ is close to a product map on all boxes at scale L. Afterwards, we extend this
product map construction on the whole space.
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Figure 1.6: Boxin X x Y

Remark 1.3.1. A major technical issue in this proof is to manage the notion of "almost all" vertical geodesic
segments having a certain property. The desintegrable measure . of assumption (E1) is not suited for
this role since it concentrates the measure of a box on its bottom part. Therefore we introduce another
desintegrable measure A, constructed from p, which (almost) equally weights the level-sets of the height
function h in boxes.

This measure lambda’™, together with a similar lambda® , permits to define properly a measure (later
denoted 1)) on the family of vertical geodesics contained in a box B.

When we understand the boundaries of X and Y, Theorem [D] permits to give a description of the
quasi-isometry-group of X » Y. In the last chapter of this dissertation, we detail such a description for
the horospherical product of two Heintze groups.

Let R x 4, N1 and R x 4, No be two Heintze groups, in Chapter [10]we show that this couple of Heintze
group is admissible, and that the condition m # n is equivalent to tr(A;) # tr(Asz). Hence we apply
our main results, and with a small refining on quasi-isometries structure, we obtain the following char-
acterisation of the quasi-isometry group of the solvable Lie groups R xpj,q(4,,-4,) (V1 x N2).

Recall that for F' a metric space, QI(F') / ~ is the group of self quasi-isometry of F', up to finite distance.
(This equivalence relation is required since a quasi-isometry only has a coarse inverse.) Recall also that
Bilip(F') stands for the group of self bi-Lipschitz maps of F'. Then we have:

Theorem E. Iftr(A;) #tr(As):
QI (R %Diag(4,,-45) (N1 x N2)) [~ = Bilip (N1) x Bilip (N>) (L.1)

We know that, if two spaces E and F' are quasi-isometric, their respective quasi-isometry group
are isomorphic. Consequently, if the descriptions we provided are different, £ and F' are not quasi-
isometric.

1.4 Possible further developments

This work takes place in a program of ()1 classification of solvable Lie groups suggested by Eskin and
Fisher in [8]. Our understanding of this topic could be further developed in several ways. First, the
methods developed by Irene Peng in [23] could potentially adapt in the horospherical product of two
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Heintze groups R x N; and R x Ny, which would provide us with a characterisation of QI(R” x (N7 x
N. 2)) a much broader family of solvable Lie groups.

With a deep understanding on the bi-Lipschitz application groups involved, it would be a step forward
in the quasi-isometry classification of solvable Lie groups.

Secondly, we only treated the case m # n in our main theorems, which follows ideas of [[10]. The
case m = n, which contains a lot of interesting examples, is much harder. Following the ideas of [11]]
for the horospherical product of two horopointed metric spaces might provide the wanted generalisa-
tion.

A possible direction is the geometric study of multiple horospherical product such as {(z,y,z) €
X xY xZ | hx(z)+hy(y) + hz(z) = 0}. Such horospherical products of trees have already been
studied in [1]]. The techniques developed for the study of geodesic and virtual boundary, with some
adaptations, might hold in this wider context.

Another development would be to remove the Busemann assumption. This assumption is not verified
by finitely generated groups (other than free groups), and a description of some of their quasi-isometry
group would be interesting in the view of their quasi-isometry classification. The Busemann assump-
tion make the proofs less technical, which is appreciable since the proof are already quite technical.
The generalisation would follow the same ideas, with an additional layer of coarse convexity. However
even connectedness of a horospherical product is unclear without the Busemann assumption.

1.5 Structure of the manuscript

This thesis is divided into two major parts. Here is a framework of the first part, devoted to geodesics
and visual boundary.

e In Chapter 3| present an estimate on the length of paths avoiding horoballs in hyperbolic spaces,
namely Lemma [3.2.5] which will be central in our control of the distances on X Y.

e In Chapter[d we define the horospherical products and give an estimate of their distance through

Theorem [£.3.4]

e Last, in Chapter|[5], we prove the main results of Part I. Theorem [A]follows from Corollary
The description of geodesic lines of Theorem [B|follows from Theorem [A] and gives us the tools
to prove Theorem|[C

The second part, about geometric rigidity of self quasi-isometries, is summarized as followed.

o In Chapter [/| we generalize methods presented by Eskin, Fisher and Whyte. In particular we
display the coarse differentiation in our context, and we discuss particular quadrilateral config-
urations of X =Y.

e Chapter[8|focuses on developing all the measure theoretical tools required to achieve the rigidity
results.

e Then, in Chapter[9] we follow the structure of the proof proposed by Eskin, Fisher and Whyte in
[10], invoking technical Lemmas of previous chapters when required.

o In the last Chapter we present an application of our theorem by providing a description of the
quasi-isometry group of a family of solvable Lie groups.



Part 1

Geodesic and visual boundary of
horospherical product
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Chapter 2

Context

2.1 Gromov hyperbolic spaces

The goal of this section is to recall what is a Gromov hyperbolic space and what are vertical geodesics
in such a space. Let H be a proper geodesic metric space, and d be a distance on H. A geodesic line,
respectively ray, segment, of H is the isometric image of a Euclidean line, respectively half Euclidean
line, interval, in H. By slight abuse, we may call geodesic, geodesic ray or geodesic segment, the map
o : I - H itself, which parametrises our given geodesic by arclength.

Let § > 0 be a non-negative number. Let z, y and z be three points of H. The geodesic triangle
[z,y] U [y, z] U [z, x] is called 0-slim if any of its sides is included in the §-neighbourhood of the re-
maining two. The metric space H is called d-hyperbolic if every geodesic triangle is d-slim. A metric
space H is called Gromov hyperbolic if there exists d > 0 such that H is a -hyperbolic space.

An important property of Gromov hyperbolic spaces is that they admit a nice compactification thanks
to their Gromov boundary. We call two geodesic rays of H equivalent if their images are at finite Haus-
dorff distance. Let w € H be a base point. We define 0,,H the Gromov boundary of H as the set of
families of equivalent rays starting from w. The boundary 0,, H does not depend on the base point w,
hence we will simply denote it by 9H. Both OH and H UdH, are compact endowed with the Hausdorff
topology. For more details, see [16], Ghys, De La Harpe] or chap.IIl H. p.399 of [3, Bridson, Haefliger].

2.2 Vertical geodesics with respect to a boundary point

In this section we fix § > 0, H a proper, geodesic, d-hyperbolic space, w € H a base pointand a € 0H a
point on the boundary of H. We recall the definition of the Busemann function with respect to a and
w.

Ve H, Bu(x,w) =sup{limsup(d(z, k(t)) —t) | k € a, starting from w}.
t—+o00

We define the height on H as the opposite of the Busemann function.

Definition 2.2.1 (height with respect to @ € OH and w € H). Let a € OH be a direction in H and let
w € H be a base point. Then we define:

Ve H, huw(r)=-Bu(z,w).
Let us write Proposition 2 chap.8 p.136 of [16l Ghys, De La Harpe] with our notations.

Proposition 2.2.2 ([16]], chap.8 p.136). Let H be a hyperbolic proper geodesic metric space. Let a € OH
and w € H, then:

25
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1. lim h(a,w)(x) = +00
2. liHll)h(a,w) (:L‘) =—o00,Vbe OH \ {a}

3. Va,y,z € H,|Ba(7,y) + Ba(y, 2) = Ba(z, 2)| < 2000.
Furthermore, a geodesic ray is in a € H if and only if its height tends to +oo.

Corollary 2.2.3. Let H be a hyperbolic proper geodesic metric space. Let a € OH and w € H, and let
a:[0,+00[— H be a geodesic ray. The two following properties are equivalent:

1 tEIfio h(a,w)(a(t)) = +00
2. a([0,+00]) € a.

Proof. As for any geodesic ray « : [0, +oo[— H there exists b € H such that a([0,+00[) € b, this
proposition is a particular case of Proposition[2.2.2} O

We will picture our hyperbolic spaces in a way similar to the Log model for the hyperbolic plane.
We send a € OH upward to infinity and OH \ {a} downward to infinity. We then call vertical the
geodesic rays that are in the equivalence class a.

Definition 2.2.4 (Vertical geodesics with repsect to a € 0H). A geodesic of H which satisfies one of the
properties of Corollary[2.2.3is called a vertical geodesic relatively to the point a.

An important property of the height function is to be Lipschitz.
Proposition 2.2.5. Leta € 0H and w € H. The height function h, := —3,(-, w) is Lipschitz:
Va,y € H,|hw)(2) = hiaw (¥)| < d(z,y).
Proof. By using the triangle inequality we have for all x,y € H:
~h(auw)(7) = Ba(w,w) = sup{ligfolip(d(x, k(t)) —t) | k vertical rays starting at w}

<d(z,y)+ Sup{litmfup(d(y, k(t)) —t) | k vertical rays starting at w}
<d(x,y) + Ba(y, w) <d(,y) = hauw)(Y)-

The result follows by exchanging the roles of x and y. O

From now on, we fix a given a € 0H and a given w € H. Therefore we simply denote the height
function by h instead of /(g 4,)-

Proposition 2.2.6. Let « be a vertical geodesic of H. We have the following control on the height along o:
Vti,ta € R, to =t — 2000 < h(a(t2)) - h(a(t1)) < ta —t1 +2006.
Proof. Letty,ts € R, then:
h(a(t2)) - h(a(t)) = B(a(t1),w) - Bla(t), w)
= Ba(tr), olt2)) - (B(a(ta), w) - Blatr), w) + Ba(t), alt)) ).
The third point of Proposition [2.2.2 applied to the last bracket gives:

ﬁ(a(tl), a(tg)) —-2000 < h(a(ty)) - h(a(ty)) < B(a(tl), Oé(tg)) +2000. (2.1)
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Since t — a(t + t2) is a vertical geodesic starting at «(t2) we have:

Bla(tr),a(ts)) = sup { limsup (d(a(t1),k(t)) - t)|k vertical rays starting at a(tg)}
t—>+o0

> lim Sllop (d(a(tl), a(t+ tz)) - t)

t—+

> limsup (|t +t2 — t1| — ) > to — 1, for t large enough.

t—>+o0

Using this last inequality in inequality we get to — t1 — 2000 < h(a(te)) — h(a(t1)). The result
follows by exchanging the roles of ¢; and ¢s. O

Using Proposition with ¢; = 0 and ¢2 = ¢, the next corollary holds.

Corollary 2.2.7. Let « be a vertical geodesic parametrised by arclength and such that h(a(0)) = 0. We
have:

VteR, [h(a(t)) -t < 2000.

In the sequel we want to apply the slim triangles property on ideal triangles, hence we need the
following result of [5, Coornaert, Delzant, Papadopoulos].

Property 2.2.8 (Proposition 2.2 page 19 of [B]). Let a,b and c be three points of X U0X. Let ., 3,7y be
three geodesics of X linking respectively b to c, c to a, and a to b. Then every point of « is at distance less
than 246 from the union 3 U .

2.3 Busemann spaces

We recall here some material from Chap.8 and Chap.12 of [[22] Papadopoulos] about Busemann spaces.
Busemann spaces are metric spaces where the distance between geodesics are convex functions. To
make it more precise, a metric space X is called Busemann if it is geodesic, and if for every pair of
geodesics segments parametrised by arclength v : [a,b] - X and 7' : [a/,b'] - X, the following
function is convex:

Dy i [a,b] x [a',b'] > X
(t,1) = dx (v(1),7' ().

As an example, all CAT(0) spaces are Busemann spaces. However, being C AT'(0) is stronger than
being Busemann convex by Theorem 1.3 of [[15] Foertsch, Lytchak, Schroeder]. As an example, strictly
convex Banach spaces are all Busemann spaces, but they are CAT(0) if and only if they are Hilbert
spaces. Something interesting in Busemann spaces is that two points are always linked by a unique
geodesic (see 8.1.4 p.203 of [22] Papadopoulos] for further details). The next proposition gives us
informations on the height functions.

Property 2.3.1 (Prop. 12.1.5 in p.263 of Papadopoulos [22]). Let § > O be a non negative number. Let
H be a proper §-hyperbolic, Busemann space. For every geodesic o, the function t — —h(«(t)) is convex.

From now on, H will be a proper, Gromov hyperbolic, Busemann space. The Busemann hypothesis
implies that the height along geodesic behaves nicely. This means that we can drop the constant 2000
from Corollary [2.2.7] It is the main reason why we require our spaces to be Busemann spaces.

Proposition 2.3.2. Let H be a §-hyperbolic and Busemann space and let V : R — H be a path of H.
Then 'V is a vertical geodesic if and only if 3¢ € R such that Vt e R, h(V (t)) =t +c.
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Proof. Let V be a vertical geodesic in H. By Property we have that t » —h(V (1)) is convex.
Furthermore, from Corollary [2.2.7} we get [h(V (t)) — t| < 2008. Thereby the bounded convex function
t =t —h(V(t)) is constant. Then there exists a real number ¢ such that V¢ e R, h(V(t)) =t +c.

We now assume that there exists a real number ¢ such that V¢ € R, h(V(t)) = ¢ + c. Therefore, for
all real numbers ¢; and t5 we have d(V (1), V (t2)) > Ah(V(t1),V (t2)) = [t1 — t2|. By definition V
is a connected path, hence |t1 - ta| > d(V/(t1), V (t2)) which implies with the previous sentence that
lt1 - ta| = d(V(t1),V (t2)), then V is a geodesic. Furthermore tEErnoo h(V(t)) = +oc0, which implies by

definition that V' is a vertical geodesic. t

A metric space is called geodesically complete if all its geodesic segments can be prolonged into
geodesic lines. By adding the hypothesis of geodesically completeness on a hyperbolic Busemann space
H we get that any point of H is included in a vertical geodesic line.

Property 2.3.3. Let H be a §-hyperbolic Busemann geodesically complete space. Then for all x € H there
exists a vertical geodesic V, : R - H such that V,, contains x

Proof. Let us consider in this proof w € H and a € 0H, from which we constructed the height h of our
space H. Then by definition we have h(q ) = h. Proposition 12.2.4 of [22, Papadopoulos] ensures the
existence of a geodesic ray R, € a starting at «. Furthermore as H is geodesically complete R, can be
prolonged into a geodesic V, : R - H such that V,,([0; +oo[) € a. Hence V}, is a vertical geodesic from
Definition 2.2.41 O

In this section we defined all the objects we will use in hyperbolic spaces. We will now focus on
proving length estimates on specific paths. They will appear in Section[d]as the projection of geodesics
in a horospherical product.



Chapter 3

Metric estimates in Gromov hyperbolic
Busemann spaces

3.1 Metric description of geodesics

This section focuses on length estimates in Gromov hyperbolic Busemann spaces. The central result
is Proposition [3.2.5] which presents a lower bound on the length of a path staying between two horo-
spheres. Before moving to the technical results of this section, let us introduce some notations.

Notation 3.1.1. Unless otherwise specified, H will be a Gromov hyperbolic Busemann geodesically com-
plete proper space. Let v : I — H be a connected path. Let us denote the maximal height and the minimal
height of this path as follows:

h*(v) =sup{h(v(1))} 5 B (y) =inf {A(y(1))}.
tel tel

Let x and y be two points of H, we denote the height difference between them by:

Ah(z,y) = [h(x) = h(y)|
We define the relative distance between two points x and y of H as:

dr(wa y) = d(x7y) - Ah(w7y)'

Let us denote V a vertical geodesic containing x, we will assume it to be parametrised by arclength. Thanks
to Proposition [2.3.4 we choose a parametrisation by arclength such that Vt € R, h(V;(t)) =t +0.

The relative distance between two points quantifies how far a point is from the nearest vertical
geodesic containing the other point. Next lemma tells us that in order to connect two points a geodesic
needs to go sufficiently high. This height is controlled by the relative distance between those two
points.

Lemma 3.1.2. Let H be a d-hyperbolic and Busemann metric space, let x and y be two elements of H
such that h(z) < h(y), and let o be a geodesic linking x toy. Let us denote z = o (Ah(x,y) + %dr(x, ).

x1:=V, (h(y) + %dr(x,y)) the point of V. at height h(y) + %dr(x,y) andy; =V, (h(y) + %dr(aj,y))
the point of V,, at the same height h(y) + %dr(x, y). Then we have:

1. W () 2 h(y) + %dr(l‘, y) — 960
2 d(z,x1) <1446
3. d(z,y1) <1446

4. d(zy,y) < 2883.

29
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A
h L2 @
Ta| =240 <246, b2

h(l’)-l—to ,,,,,,, 3 (t) y3
Ch(y) + Sy -k VR
%dr(z’,y)
LAfhf""h(y) —————————————————————
A8l

Figure 3.1: Proof of Lemmam

Proof. The lemma and its proof are illustrated in Figure Following Property the triple of
geodesics o, V, and V}, is a 24¢-slim triangle. Since the sets {t € [0,d(z,y)]|d(a(t),V;) < 240}
and {t € [0,d(z,y)]|d(a(t), V) < 246} are closed sets covering [0, d(x,y)], their intersection is non
empty. Hence there exists tg € [0,d(z,y)], 2 € V; and y2 € Vj, such that d(«(to),z2) < 246 and
d(a(to),y2) < 240. Let us first prove that ¢ is close to Ah(x,y) + %dr(a:, y). By the triangle inequality
we have that:

to — d(z,x2)| = [d(x, a(to)) — d(z, z2)| < d(z2, a(t)) < 240.
Let us denote x3 := V,,(h(x) +to) the point of V,, at height h(x) +to, and y3 = V,,(h(y) + d(x,y) —to)
the point of V}, at height h(y) + d(x,y) — to. Then by the triangle inequality:
d(a(t0)7x3) < d(a(to), CUQ) + d(x27 $3) = d(O[(t()), ]32) + ’d(mwTQ) - d(.’l?, $3)|
<d(a(ty),z2) + |d(z, z2) — to| < 480. (3.1)
In the last inequality we used that d(x, z3) = to, which holds by the definition of x3. We show in the

same way that d(a(tg),y3) < 480. By the triangle inequality we have d(x3,y3) < 96J. As the height
function is Lipschitz we have Ah(x3,y3) < d(z3,y3) < 96, which provides us with:

1 1
Edr(m, y) + Ah(z,y) —to| = §‘dr(x, y) + Ah(z,y) + h(y) — h(x) - 2t0|

1 1 966
= 5lh(y) +d(z,y) —to - (h(z) +to)| = 5 Ah(s, ys) < — < 483. (3.2)

In particular it gives us that d(z, a(tg)) < 480. We are now ready to prove the first point using inequal-
ities and (3.2):
Rt (o) >h(a(to)) > h(xs) = Ah(a(ty),z3) > h(z) +to — 48

1 1
>h(z) + édr(:c,y) +Ah(z,y) —966 > h(y) + §dr(m,y) - 964, as we have h(z) < h(y).
The second point of our lemma is proved as follows:
d(z,x1) <d(z,a(ty)) +d(a(ty),x1) <486 + d(a(ty), z3) + d(x3, 1)

<965 + |to + h(x) - (%dr(x, y) + h(y))‘ _ 965+ |to - (Ah(:c, y) + %dr(x,y)) < 1445,
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The proof of 3. is similar, and 4. is obtained from 2. and 3. by the triangle inequality. t

The next lemma shows that in the case where h(z) < h(y) a geodesic linking x to y is almost
vertical until it reaches the height h(y).

Lemma 3.1.3. Let H be a §-hyperbolic and Busemann space. Let x and y be two points of H such that
h(x) < h(y). We define x' := V. (h(y)) to be the point of the vertical geodesic V. at the same height as y.
Then:

|d(z,y) - d(z',y)| < 544. (3.3)

Proof. Since H is §-hyperbolic, the geodesic triangle [z,y] U [y, 2] U [2/,2] is §-slim. Then there
exists p1 € [x,2'], p2 € [2',y] and m € [z,y] such that d(p;,m) < § and d(p2,m) < 6. Hence,
h™([z',y]) — & < h(m) < h*([x,2"]) + 0. Let R, and R, be two vertical geodesic rays respectively
contained in V,, and V}, and respectively starting at 2’ and y. Then Property used on the ideal
triangle R, U R, U [z, y] implies that h™([2, y]) > h(y) — 240, therefore we have h*([z,2']) = h(y).
Then h(y) — 25 < h(m) < h(y) + ¢ holds. It follows that m and 2’ are close to each other:

d(m,z") <d(m,p1) +d(p1,z") <6+ Ah(p1,z") <8+ Ah(pr,m) + Ah(m,y) + Ah(y,z")
<d+d(pr,m)+255 +0 < 270. (3.4)

Then we give an estimate on the distance between = and m:
|d(x,m) — Ah(z,y)| = |d(z,m) - d(x,z")| < d(m,z") < 274. (3.5)
However d,(x,y) = d(x,y) — Ah(z,y) and d(z,y) = d(x,m) + d(m,y), therefore:
dr(x,y) =d(x,m)+d(m,y) — Ah(z,y). (3.6)
Combining inequalities and we have |d,(x,y) — d(m,y)| < 276. Then:
|d-(x,y) —d(z',y)| <276 + d(x',m) < 544.

We are now able to prove the estimates of the next section.

3.2 Length estimate of paths avoiding horospheres

Consider a path v and a geodesic « sharing the same end-points in a proper, Gromov hyperbolic,
Busemann space. We prove in this section that if the height of v does not reach the maximal height
of the geodesic «, then « is much longer than a. Furthermore, its length increases exponentially with
respect to the difference of maximal height between v and «. To do so, we make use of Proposition 1.6
p400 of [3, Bridson, Haefliger], which we we recall here. Let us denote by I(¢) the length of a path c.

Proposition 3.2.1 ([3]]). Let X be a 6-hyperbolic geodesic space. Let ¢ be a continuous path in X. If [p, q]
is a geodesic segment connecting the endpoints of c, then for every x € [p, q]:

d(z,im(c)) < d|logy l(c)| + 1.

This result implies that a path of X between p and g which avoids the ball of diameter [p, ¢] has
length greater than an exponential of the distance d(p, q).

From now on we will add as convention that § > 1. For all §; < §3 a d;-slim triangle is also d2-slim,
hence all §;-hyperbolic spaces are d2-hyperbolic spaces. That is why we can assume that all Gromov
hyperbolic spaces are d-hyperbolic with ¢ > 1. It allows us to consider % as a well defined term, we
hence avoid the arising of separated cases in some oof the proofs. We also use this assumption to
simplify constants appearing in this document. The next result is a similar control on the length of
path as Proposition [3.2.1] but we consider that the path is avoiding a horosphere instead of avoiding a
ball in H.
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B(y, Ah(yo,Y))

Figure 3.2: Proof of Lemma@

Lemma 3.2.2. Let 6 > 1 and H be a proper, geodesic, -hyperbolic, Busemann space. Let x and y €
H and let V,, respectively V,,, be a vertical geodesic containing x, respectively y. Let us consider ty >
max(h(z),h(y)) and let us denote xo := V,(to) and yo := Vy(to), the respective points of V,, and V;, at
the height to. Assume that d(xg, o) > 7680.

Then for all connected path~ : [0,T] - H such thaty(0) =z, v(T') = y and h* () < h(xo) we have:

() > Ah(x,20) + Ah(y,yo) + 97386935 d(x0.90) _ 945, (3.7)

For trees (when § = 0) this Lemma still makes sense. Indeed, if § tends to 0 then the length of the
path described in this Lemma tends to infinity, which is consistent with the fact that such a path does
not exist in trees. The proof would use the fact that in Proposition [3.2.1we have d(z,im(c)) = 0 when
0 = 0 since 0-hyperbolic spaces are real trees.

Proof. One can follow the idea of the proof on Figure We will consider v to be parametrised by
arclength. Let B(xz, Ah(xzg,2z)) ¢ H be the ball of radius h(zg) — h(x) centred on x, and let m ¢
B(x, Ah(xg,x)) be a point in this ball. Then:

dr(m,z) =d(m,x) — Ah(m,x) < Ah(z,z9) — Ah(m,x) < Ah(z9,m).

Let us first assume that h(m) > h(z), then:

h(zo) —h(m) _ h(wo) , h(m) _

. . 5 <h(ao). (8)

h(m) + —df(rg’w) < h(m) + —Ah(zo’ m)

<h(m) +

By Lemma [3.1.2| we have:

d(vx (h(m) N W) Vi (h(m) . W)) < 2885,
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We now assume that 2(m) < h(x), then:

h(w)+Msh(x)+C“$T’mgh(x)+w

5 < h({L‘o)

Then Lemma provides us with:

d (Vz (h(:n) : W) Vi (h(x) : %’3))) < 2885,

Since H is a Busemann space, the functiont — d(V,(t), V;,,(t)) is convex. Furthermore t — d(V,.(t), V. (t))

isbounded on [0; +oo[ as H is Gromov hyperbolic, hence t - d(V,.(t), V;,,(t)) is a non increasing func-
tion. Therefore both cases h(m) < h(z) and h(z) < h(m) give us that:

d(a:o, Vi (h(0)) ) = d(Vx (h(z0)), Vm(h(xo))) < 2885. (3.9)

In other words, all points of B(z, Ah(xg,z)) belong to a vertical geodesic passing nearby x. By the
same reasoning we have Vn € B(y, Ah(yo,y)) :

d(y0, Vi (A(0)) ) < 2880. (3.10)

Then by the triangle inequality:

d(Vin(h(20)), Va(h(10))) > =d(0, Vin (A(0)) ) + (0, y0) = (30, Vi (A(30)) )
> 7680 — 2885 — 2888 > 1926. (3.11)

Specifically d(Vi,(h(x0)), Va(h(y0))) = d(Vin(h(z0)), Vi(h(x0))) > 0 which implies that m # n.
Then B(xz, Ah(zo,x)) N B(y, Ah(yo,y)) = @. By continuity of v we deduce the existence of the two
following times ¢, < t, such that:

ty = inf{t € [0,T] | d((t),z) = Ah(x,x0)},
ty =sup{t € [0,T] | d(v(t),y) = Ah(y,y0)}-

In order to have a lower bound on the length of v we will need to split this path into three parts:

Y =N0,ta] U Ntw ty] © Y[ty T]-

As v is parametrised by arclength and d(y(0),v(¢:)) = Ah(z,z¢) we have that:

L(V10.421) = Ah(z, o). (3.12)

For similar reasons we also have:

L (e, 71) = AR(y, yo)- (3.13)

We will now focus on proving a lower bound for the length of 4, ¢,

We want to construct a path 7" joining x1 = V., )(h(w0)) to y1 = Vi, )(h(20)), that stays below
h(zo) and such that ¢, ; 1 is contained in 7". Let 1 := V) (h(w0)) and y1 == Vi, ) (h(20)). We
construct 7' by gluing paths together:

v from ~(t;) to y(ty)

, Vit,) fromzytoy(ty)
’)/ =
Vi@, from~y(ty)toys
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Applying inequalities and used on () and () we get:
d(zg,x1) < 2889, (3.14)
d(yo,y1) < 2884. (3.15)

In order to apply Propositionto 7" we need to check that there exists a point A of the geodesic
segment [21,y1] such that h(A) > h(zo). Applying Lemma[3.1.2]to [21, y1] and since h(z1) = h(y1)
we get:

b ([z1,1]) > M + h(zo) — 960 = M + h(2) — 960.

Thanks to the triangle inequality and inequalities (3.14) and (3.15):

B ([, ]) » 00 T0) - d(””f;’ 1) = AW0 ) |y (45) - 966 > —d(I”Q’ 00) 4 ) - 3845,

Since by hypothesis d(z,yo) > 7680, there exists a point A of [z1, y1 ] exactly at the height:
d
h(A) = M + (o) - 3845,
We can then apply Proposition [3.2.1]to get:

S|logo(1(Y )|+ 1> d(A,~") > Ah(A, x0) > w +h(zo) — 3849 — h(xp)

> d(x()a 3/0)
2

— 38490.

Since ¢ > 1, last inequality implies that [(v") > 2-3859254(20.90)_ Now we use this inequality to have a
lower bound on the length of vz, ¢,

(Mity7) 2 1Y) = Ah(3(t2), 0) = AR(y(ty), yo)
> 27389925 40000)  AR(y(ty), 0) - Ah(y(ty). 50)- (3.16)

We claim that [ ('y‘[t%ty]) > Ah(y(tz),z0) + Ah(y(ty), yo) — 480, hence:
L(V(tarty) 2 973802 354(x000) _ 945, (3.17)
which ends the proof by combining inequality with inequalities and (3.13).

Proof of the claim. Inequality with m = y(t;) and n = v(t,) gives d(z1,y1) > 1926. We want

to prove that " ([y(tz),7(ty)]) > h(x1) — 246. First, by Lemma [2.2.8| we have that [(t),y(ty)] U
V. (40)YUV4(1,) is @ 240-slim triangle. Then there exist three times ¢, ¢ and t2 such that d (V'Y(tac) (t1), ’y(to)) <

249 and such that d (V,y(ty)(tQ), v(to)) < 246. Then:
[t = ta| = Ah (Vyi,) (1), Ve, (82)) < d (Vi) (1), Vige, ) (12))
<d (V'y(tx)(tl)7 ’y(to)) +d (’y(to), V'y(ty)(t2)) < 486. (3.18)

We will show by contradiction that either t1 = h(V,(,)(t1)) 2 h(zo) or t2 = h(Vy () (t2)) > h(z0).
Assume that t; < h(xo) and t3 < h(x(). Then by the triangle inequality:

A(Vy ) (t1)s Vi) (82)) 2 d(Vae, ) (B2), Vi) (£2)) = d(Vaaa) (B2), Vi (£1))
> d(VV(ty)(tg), V. (1,)(t2)) — 48, since |t1 — ta| < 485 by equation (3.18).



3.2. LENGTH ESTIMATE OF PATHS AVOIDING HOROSPHERES 35

As H is a Busemann space, the function ¢ d(VW(tw)(t), Vy(ty)(t)) is non increasing (convex and
bounded function). Furthermore, h(xg) > t2 hence:

486 > d(V,y(tI)(tl), V’y(tz)(tQ)) > d(V,y(tz)(tQ), V,y(ty)(tg)) — 486
> d(V,y(tx)(h(ﬂfo)), Vv(ty)(h(lio))) — 486 > d(SEl,yl) - 486

> d(wo,y0) — d(zo, 21) — d(yo,y1) — 485 > d(z0,y0) — 6244, by inequalities ([3.14)) and ({3.15)),
> 494, since d(z0,yo) > 7680 by assumption,

which is impossible. Therefore ¢; > h(xzg) or t2 > h(zg). We assume without loss of generality that
t1 > h(xp), then:

AR(Y(t0), Va(e,y (t1)) < d((t0), Ve, (1)) < 246,

which implies:

R ([v(ta) s Y (ty)]) 2 h(v(t0)) 2 b (Vyra) (t1)) = AR(Y(t0), Vyra) (t1)) = h(ao) — 246,

and gives us:

LVt t,1) 2 B ([ (), v (8)]) = B(Y(Ee)) + AT ([ (), v (8y)]) = B(v(ty))
> h(zo) = 246 = h((t2)) + h(xo) - 246 — h(~(ty))
> Ah(y(tz), o) + Ah(Y(ty), yo) — 484. (3.19)

O]

Next lemma shows that we are able to control the relative distance of a couple of points travelling
along two vertical geodesics. We recall that for all a,b € H, d,.(a,b) = d(a,b) - Ah(a,b).

Lemma 3.2.3 (Backwards control). Let 6 > 0 and H be a proper, §-hyperbolic, Busemann space. Let Vi
and Vs be two vertical geodesics of H. Then for all couple of times (t1,t2) and forallt € [0, %dr(Vl (t1), Va(te) )]

@ (Vi (11 a0, Va(02)) ~ 1) Vo (b2 + S (Vi) Vata)) - ) ) - 2] < 2855

Proof. To simplify the computations, we use the following notations, D := t5 + %dr(Vl(tl), Va(t2))
and A = |t; — t3|. The term A is the difference of height between V;(t1) and Va2(t2) since vertical
geodesics are parametrised by their height. Then we have to prove that V¢ € [0, %dT(Vl (t1), Va(t2))],
|d(Vi(D-A-t),Va(D-t))—2t| < 2880. We can assume without loss of generality that ¢; < ¢2. Lemma
[3.1.2)applied with z = V4 (t1) and with y = Va(t2) gives us d(Vi(D), Va(D)) < 2884. Furthermore, the
relative distance is smaller than the distance, hence d,.(V1(D), Va(D)) < 2884. Now, if we move the
two points backward from Vi (D — A) and V5(D) along V; and V5, we have for ¢ € [0, D]:

A (Vi(D — A1), Va(D 1)) =d(Vi(D - A~ ), Va(D - 1)) - A (3.20)
<d(Vi(D-A-1),Vi(D-A)) +d(Vi(D-A),Va(D))
+d(Va(D),Va(D - 1)) - A,
furthermore V; and V5 are geodesics, then:
<t+d(Vi(D - A),Vi(D)) +d(Vi(D), Va(D)) +t - A
<t+ A+2885+t— A <2t + 2886. (3.21)

Let us consider a geodesic « between V7 (¢1) and Va(t2). Since H is a Busemann space, and thanks to
Lemmaf.1.2we have d (Vi(D - A - t),a(D - A -t - t)) < 1446 and d (Vo(D - t),a(D — t1 + t)) <
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h A
D
Va(D —t)
to Va(t2)
i1 Vi(tr)

Figure 3.3: Proof of Lemma

1444. Then the second part of our inequality follows:

0y (Vi(D ~ A~ ), Vo(D - 1)) =d(Vi(D ~ A 1), Va(D ~ £)) - A
>d(a(D-A-t;-t),a(D -t +1))
—dVi(D-A-t),a(D-A-t;-t))
—d(Vo(D-t),a(D -t +t)) - A
>d(a(D-A-t;—t),a(D—-t; +t)) — 2886 — A
>2¢ + A — 2885 — A > 2 — 2880. (3.22)

O]

The next lemma is a slight generalisation of Lemma The difference being that we control the
length of a path with its maximal height instead of the distance between the projection of its extremities
on a horosphere.

Lemma 3.2.4. Let § > 1 and H be a proper, 6-hyperbolic, Busemann space. Let x,y € H such that
h(x) < h(y). Let a be a path connecting x toy with h* («) < h(y) + %dr(azy) — AH and where AH is
a positive number such that AH > 5554. Then:

() > d(z,y) + 272302588 _9AH - 245,

Proof. This proof is illustrated in Figure Since h* () > h(y) we have that 1d,(z,y) > AH.
Applying Lemmawith Vi=Vy, Vo=V, t1 = h(x), ta = h(y) and t = AH we have:

d, (v (h(;v) . %dr(x, y) - AH) v, (h(y) . %dT(x,y) _ AH)) _onH| <2885

Then we have:

dy, (Vm (h(:];) + %dr(az, y) — AH) Vy (h(y) + %dr(x,y) - AH)) >2AH - 2889.
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h(y) + %dr(xay) — AH

h(y)

h(z)

Figure 3.4: Proof of Lemma

Furthermore, Lemma applied on V, (h(z) + 3d,(z,y) - AH) and V, (h(y) + 3d,(z,y) - AH)
gives (notice that the only difference between the two sides of the following inequality is the height in
the vertical geodesic V;):

d, (vx (h(a:) . %dr(m, y) - AH) v, (h(y) . %dT(x, y) - AH))
<d (Vx (h(y) . %dr(x, y) - AH) v, (h(y) . %dr(x, y) - AH)) + 545,
Then:

d (vx (h(y) ) %dr(:v,y) - AH) v, (h(y) N %d,.(:g, y) - AH)) S OAH - 3426 > 7685, (3.23)

Let us denote tg = h(y) + %dr(x, y) - AH. Thanks to inequality (3.23) the hypothesis of Lemma@
holds with zo = V,, (h(y) + %dr(az, y) — AH) and yo =V, (h(y) +5dr(7,y) - AH). Applying this
lemma on « provides:
1(c) > Ah(z, 0) + Ah(y, yo) +273%622590w0) _ 945
1 1

> h(y) + 5dr(2,y) = A = h(x) + h(y) + Sdr(2,y) = A ~ h(y) + 9-386935d(70.40) _ 945

> Ah(y, ) + dy(y, ©) - 2AH + 273862354Ux0.v0) _ 945

>d(z,y) -2AH + 9386055 (2AH-2885) _ 95 by equation (3.23).

> d(z,y) + 27530258 _oAF - 246,

O

This previous lemma tells us that a path needs to reach a sufficient height for its length not to
increase to much. We give now a generalisation of Lemma [3.2.4] where the path reaches a given low
height before going to its end point. This proposition will be the central result for the understanding
of the geodesic shapes in a horospherical product.
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h+(a) - AH@
h(y) - \
Ah(z,y)

h(m)------- /

Figure 3.5: Proof of Proposition@

Proposition 3.2.5. Let 0 > 1 and H be a proper, §-hyperbolic, Busemann space. Let x,y, m € H such
that h(m) < h(x) < h(y) and let o : [0,T] — H be a path connecting x to y such that h™ () = h(m).
With the notation AH = h(y) + %dr(x,y) - h* () we have:

I(a) > 2Ah(z,m) +d(z,y) + 27892525 _ 1 _max(0,2AH) - 17006.

Proof. This proof is illustrated in Figure 3.5 We first assume that AH > 8500, we postpone the other
cases to the end of this proof. Let V, and V},, be vertical geodesics respectively containing = and m.
We call 21 = V,(h(y)) and m1 = V;,(h(y)) the points of V, and V}, at height h(y). First, Lemma[3.1.3|
provides |d(z1,y) —dr(x,y)| < 540. Then we consider a geodesic triangle between the three points z1,
mq and y. Lemmatells us that h* ([z1,y]) > h(y) + %dr(xl, y) — 960 > h(y) + %dT(:J:, y) — 1234.
Since [x1,y] is included in the §-neighbourhood of the two other sides of the geodesic triangle, one of
the two following inequalities holds:

1) b ([a1,ma]) > h(y) + %dT(x, y) - 1246
2) 1 ([, ) 2 h(y) + 5 (,9) - 1245

We first assume 1) that h*([z1,m1]) > h(y) + 3d,(z,y) — 1246, hence:
d(z1,m1) > dr(x,y) — 2480. (3.24)

Let us denote mg = V,,,(h(z)) the point of V;,, at height hA(x). By considering the 2J-slim quadrilat-
eral between the points z, z1,mg, m; we have that [x1, m1] is in the 20- neighbourhood of [z1,z] U
[, mo] U [mg, m]. Furthermore d,(z,y) > 2(h" (o) — h(y)) + 2AH > 2AH > 17000 by assumption,
then h* ([xz1,m1]) > h(y) + %dr(ac, y)—1246 > h(y) +7266. Since h* ([x1,2]) = h* ([mo,m1]) = h(y)
we have that A" ([xz,mo]) > h*([z1,m1]) — 2 > h(y) + 7246. Moreover:

dr(z,mo) = d(z,mp) > h*([x,mg]) = h(z) > h(y) — h(z) + 7246 > Ah(z,y) + 7240,
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which allows us to use Lemmaon V. and V,,, with ¢ = %dr(:v,mo) - Ah(z,y) >0and t; =ty =
h(x). It gives:

dy (Vi (1) + Ah(,9)), Vin (h() + Ah(z,))) = du(,m0) + 28h(z, )| < 2886,
which implies in particular:
dr(VI(h(y)), Vm(h(y))) +2AN(z,y) - 2885 < d, (z,m0). (3.25)

Combining inequalities and we have d(x,mg) = d,(z,mp) > d,(z,y) + 2Ah(z,y) — 5369.
Lemma [3.1.3|used on = and m then gives:

dr(x,m) > d(xz,mg) — 546 > d.(z,y) + 2Ah(x,y) — 5900. (3.26)

Let us denote o the part of « linking x to m and a the part of « linking m to y. We have:

B (1) <h*(a) < h(y) + %dr(x, y) - AH < h(z) + Ah(z,y) + %dr(:c,y) _AH

<h(z) + % (20h(z,y) + do(2,1)) - AH < h(z) + % (d,(,m) + 5908) — AH, by inequality (3.26).

<h(z) + %dr(a:, m) + 2955 - AH < h(z) + %dr(a:, m) - AH,

with AH' = AH - 2956. By assumption AH > 8500, hence AH’ > 5554 which allows us to apply
Lemma|(3.2.4{on . It follows:

I(ay) 2d(z,m) + 275302520 _ oA [’ — 245
>Ah(z,m) + dy(z,m) + 2785255 9N — 6148, since AH' = AH — 2956,
>Ah(z,m) +d.(z,y) - 5908 + 9 82595 A0 9 A — 6148, by inequality
>Ah(z,m) +dy(2,y) + 27525258 _ oA — 12040,

We use in the following inequalities that [(a2) > d(m,y) > Ah(m,y), we have:

() > 1) +1(a2) > Ah(z,m) +dp(z,y) + 27825258 _ oA — 12046 + Ah(m,y)
> 9Ah(z,m) + Ah(z,y) + dr(z,y) + 275252550 _ oA — 12045
> 9Ah(z,m) + d(z,y) + 27525258 _9AH 12045
> 2AR(z,m) +d(z,y) + 2750255 _1 _9AH - 17004,
> 2Ah(z,m) +d(z,y) + 9 83095 AH _q _ max(0,2AH) - 17000, since AH > 8506 > 0,

which ends the proof for case 1).

Now assume that 2) holds, which is A*([m1,y]) > h(y) + 3d,(z,y) — 1245. It implies d(mq,y) >
dr(x,y) — 2480, then:

1 1
W (az) <h™(@) <h(y) + 5dr(z,y) - AH < h(y) + 5dr(ma,y) +1246 - AH
1
<h(y) + 5dr(mi,y) - AH",

with AH" = AH - 1246. Lemmal3.1.3|provides us with:

dy(m,y) > d(mi,y) — 546 > d,(x,y) — 3020. (3.27)
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Since AH > 8500, we have AH" > 7266 which allows us to apply Lemmaon ag. It follows that:

I(as) 2d(y,m) + 27302580 _oA[" — 245
>Ah(y,m) +d,(y,m) + 9-0%495 M0 _ oA [ — 9725, since AH" = AH — 1245,
>Ah(y,m) +d,(z,y) + 9 65495 A0 _9AFT - 5744, by inequality (3.25).

Hence:

() > 1(a1) +1(az) > Ah(z,m) + Ah(y,m) + dr(z,y) + 27542555 _oAH — 5746
> 29AR(z,m) + Ah(y, ) + dy(z,y) + 27542520 _oAH — 5745
> 2Ah(z,m) +d(z,y) + 254258 _9AH — 5745
> 2Ah(z,m) + d(z,y) + 2750252 _ 1 _max(0,2AH) - 17000.
There remains to treat the case when AH < 8508, where AH = h(y)+ %dr(x, y)—h*(a). Let n denote
a point of v such that A(n) = A" («). If m comes before n, we have [(«) > d(z,m) +d(m,n)+d(n,y).

Otherwise n comes before m and we have [(«) > d(z,n) + d(n,m) + d(m,y). Since h(m) < h(x) <
h(y) < h(n) we always have:

() > Ah(z,m) + Ah(m,n) + Ah(n,y)
> Ah(x,m) + Ah(m,z) + Ah(z,y) + Ah(y,n) + Ah(y,n)
> 2Ah(z,m) + Ah(z,y) + 2(h* () = h(y))
> 2Ah(x,m) + Ah(z,y) +d,(x,y) —2AH > 2Ah(m,x) + d(z,y) — 17000.

Furthermore A H < 8506, then 2‘8502%AH < 1. Therefore:
() 22Ah(m,z) +d(x,y) + 9 85095 AH _ 1 _ max(0,2AH) - 17000,

which ends the proof for the remaining case. O



Chapter 4

Horospherical products

4.1 Definitions

In this part we generalise the definition of horospherical product, as seen in [10, Eskin, Fisher, Whyte]
for two trees or two hyperbolic planes, to any pair of proper, geodesically complete, Gromov hyperbolic,
Busemann spaces. We recall that given a proper, 6-hyperbolic space H with distinguished a € 0H and
w € H, we defined the height function on H in Definition from the Busemann functions with
respect to a and w.

Definition 4.1.1 (Horospherical product). Let X and Y be two §—hyperbolic spaces. We fix the base
points wx € X, wy € Y and the directions in the boundaries ax € 0X, ay € 0Y. We consider their
heights functions X and Y respectively on X and Y. We define the horospherical product of X and Y,
denoted X »Y = X x Y, by:

XnY = {(pX7py) eXxY [ hx(px)+hy(py)= 0}.

From now on, with slight abuse, we omit the base points and fixed points on the boundary in the

construction of the horospherical product. The metric space X » Y refers to a horospherical product
of two Gromov hyperbolic Busemann spaces. We choose to denote X and Y the two components in
order to identify easily which objects are in which component.
One of our goals is to understand the shape of geodesics in X x Y according to a given distance on it.
In a cartesian product the chosen distance changes the behaviour of geodesics. However we show that
in a horopsherical product the shape of geodesics does not change for a large family of distances, up to
an additive constant.

We will define the distances on X x Y = X x Y as length path metrics induced by distances on
X xY. Alot of natural distances on the cartesian product X x Y come from norms on the vector
space R?. Let NV be such a norm and let us denote d = N(dx,dy ), which means that for all couples

(px.py), (gx.qv) € X x Y we have that dn((px,py )., (ax,qv)) = N(dx(px.ax),dy (py.av)).
The length I () of a path v = (7x,7y ) in the metric space (X xY, dN) is defined by:

ng—1
In(y)= sup ( > dN(’Y(&)ﬁ(@n))) :
96@([t1,t2]) =1
Where O([t1,12]) is the set of subdivisions of [¢1,?2]. Then the N-path metrics on X » Y is:

Definition 4.1.2 (The N-path metrics on X «Y). Let N be a norm on the vector space R?. The N -path
metric on X w'Y, denoted by d.., is the length path metric induced by the distance N (dx,dy) on X x Y.
Forallp and q in X ©'Y we have:

dw(p,q) =inf{in(7)|y path in X xY linking p to q}. (4.1)

41
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Any norm N on R? can be normalised such that N(1,1) = 1. We call admissible any such norm
which satisfies an additional condition.

Definition 4.1.3 (Admissible norm). Let N be a norm on the vector space R? such that N(1,1) = 1. The
norm N is called admissible if and only if for all real a and b we have:

N(a,b) > 2 ; b, (4.2)

Since all norms are equivalent in R2, there exists a constant C '~ > 1 such that:

a+b
5

N(a,b) <Cn (4.3)

As an example, any /, norm with p > 1 is admissible.

Property 4.1.4. Let N be an admissible norm on the vector space R?. Let vy := (yx,7y) c X x Y bea
connected path. Then we have:

lX(’YX);rlY(’YY) SlN(’y)SCNZX(’YX);lY(PYY).

Proof. Let := (vx,7y) : [t1,t2] = X x Y be a connected path and 6 a subdivision of [¢1, 2], then by
the definition of the length:

ng—1 ng—-1
In(y) 2 Zl dn(v(0:),7(0i+1)) = Zl N(dx(’YX(ei),’YX(HiH)),dy(q/y(ei)’fyy(eiﬂ)))
ng—1
> Z %(dX(’YX(gi)77X(9i+1)) +dy(’yy(0i),’)/y(0i+1))), since NV is admissible.
i=1
ng~1 ng—1
z%( Z; dx (v (6:),7x (0i11) ) + Z; dy(yy(ei),w(em))),

Any couple of subdivision #; and 62 can be merge into a subdivision € that contains 6; and 5. Fur-
thermore the last inequality holds for any subdivision 6, hence by taking the supremum on all the

subdivisions we have: Ix(vx) +1ly(yy)
x(rx) tiv(yy
In(v) 2 2 '

Furthermore, we have that Va,b e R, N(a,b) < CNaTer, hence:

ng—1 ng—1 ng—1
; dn(7(0:),7(0i41)) < %( Z; dx (7x(0:),7(0is1)) + Z; dY(W(Qi)ﬁY(@m)))
Ix(vx) +1x(yx)

<Cpn 5

Since last inequality holds for any subdivision 6, we have that ([ () < C NM.

The definition of height on X and Y is used to construct a height function on X « Y.

Definition 4.1.5 (Height on X » Y'). The height h(p) of a point p = (px,py) € X »Y is defined as
h(p) = hx(px) = —hy (py).

On Gromov hyperbolic spaces we have that de distance between two points is greater than their
height difference. The same occurs on horospherical products given with an admissible norm. Let x
and y be two points of X » Y, and let us denote Ah(p, q) := |h(p) — h(q)| their height difference.
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Lemma 4.1.6. Let N be an admissible norm, and let d the distance on X Y induced by N. Then the
height function is 1-Lipschitz with respect to the distance d, i.e.,

Vp,ge X nY, dw(p,q) > Ah(p,q). (4.4)

Proof. Since N is admissible we have:

02 dx (px,qx) +dy (py,qy) . Ah(px,qx) + Ah(py,qy)
- 2 - 2

= Ah(px,qx) = Ah(p, q).

dN (pa

Following Proposition |2.3.2] we define a notion of vertical paths in a horospherical product.

Definition 4.1.7 (Vertical paths in X x Y). Let V : R - X n Y be a connected path. We say that V is
vertical if and only if there exists a parametrisation by arclength of V' such that h(V (t)) =t for all t.

Actually, a vertical path of a horospherical product is a geodesic.

Lemma 4.1.8. Let N be an admissible norm. Let V : R - X w Y be a vertical path. ThenV is a geodesic
of (X xY,dy).

Proof. Letty,t; € R. The path V is vertical therefore Ah(V (t1), V (t2)) = [t1 —t2|. Since V is connected
and parametrised by arclength, we have that:

lt1 = ta| = In (Vi[i 1) 2 due(V (£1), V (12))
> Ah(V(tl), V(tg)) = |t1 — t2|.

Then dN(V(tl), V(tg)) = |t1 - tg

, which ends the proof. O

Such geodesics are called vertical geodesics. Next proposition tells us that vertical geodesics of
X nY are exactly couples of vertical geodesics of X and Y.

Proposition 4.1.9. Let N be an admissible norm and let V = (Vx,Vy) : R - X xY be a geodesic of
(X xY,dyw). The two following properties are equivalent:

1. V is a vertical geodesic of (X x Y, dy)
2. Vx and Vi are respectively vertical geodesics of X andY .

Proof. Let us first assume that V' be a vertical geodesic, we have for all real ¢ that h(Vx (¢)) = h(V (1)) =
t, hence Vit1,t2 € R:

dx(VX(tl),Vx(tg)) > Ah(Vx(tl), VX(tg)) = ’tl —t2|. (4.5)

Similarly we have that dy (Vy (t1), Vi (t2)) > |t1 — to|. Using that N is admissible and that V is a
geodesic we have:

(V1) V(1) - 22X V) e (V) T (1)

< QdN(V(tl), V(tz)) - |t1 - t2| = |t1 - t2|.

—dy (Vv (t1), Vv (t2))
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Combine with inequality we have that d X(VX(tl), VX(tg)) = |t — to|, hence Vx is a vertical
geodesic of X. Similarly, Vy is a vertical geodesic Y.

Let us assume that Vx and Vy are vertical geodesics of X and Y. Let ¢, t2 € R, we have:

ng—1
LV V)= s (S dN<v<el->,v<eM>>)

ng—1
= sup ZN(dX(VX(ei)aVX(HiJrl))adY(VY(Gi)aVY(HHI))))
96@([t1,t2]) =1

ng—1

- sup ZN(Ah(VX(Qi),VX(9i+1)),Ah(Vy(0i),Vy(0¢+1))))
0cO([t1,t2]) \ i=1

ng—1
= sup [N(L1) ¥ Ah(VX(Gi)aVX(QHI)))
96@([t1,t2]) =1

= N(L,1)AR(Vx (t1), Vx (t2)) = [t1 - to|, since N(1,1) = 1.
Where O([t1,t2]) is the set of subdivision of [¢1, t2]. Hence the proposition is proved. O

This previous result is the main reason why we are working with distances which came from ad-
missible norms.

Definition 4.1.10. A geodesic ray of X »'Y is called vertical if it is a subset of a vertical geodesic.

A metric space is called geodesically complete if all its geodesic segments can be prolonged into
geodesic lines. If X and Y are proper hyperbolic geodesically complete Busemann spaces, their horo-
spherical product X » Y is connected.

Property 4.1.11. Let X and Y be two proper, geodesically complete, 6-hyperbolic, Busemann spaces. Let
X x'Y be their horospherical product. Then X x Y is connected, furthermore %(d x +dy) < dxwy <
QCN(dX + dy).

Proof. Let p = (px,py) and ¢ = (gx,qy) be two points of X x Y. From Property [2.3.3] there exists a
vertical geodesic V), such that py is in the image of V,,., and there exists a vertical geodesic V. such
that gx is in the image of V.. Let ¢§- be the point of V},. at height 2(gy ). Let a.x be a geodesic of X
linking px to gx and let o, be a geodesic of Y linking g3 to gy. We will connect z to y with a path
composed with pieces of ax, a4, V,, and Vi, .

We first link (px,py) to (¢x,¢y ) with ax and V. It is possible since V,,, is parametrised by its
height. More precisely we construct the following path ¢;:

¥t € 0, d(px, ax)], e1(t) = (ax (1), Vo (- h(ax(1)))).

Since Vj, is parametrised by its height, we have h(Vj, (- h(ax(t)))) = —h(ax(t)) which im-
plies ¢1(t) € X w Y. Furthermore, using the fact that the height is 1-Lipschitz, we have Vti,to €
[0,d(px,qx)]:

dy (Vi (= h(0x (12))). Vi (= h(ox (82)))) = [ (1)) — (e (12))] € dix (evx (11), erx (2)).

Hence c1y : t = Vp, (= h(ax(t))) is a connected path such that [(c1y) < l(ax) < dx(px,qx).
Hence ¢; is a connected path linking (px,py) to (¢x,q; ). Using Property on ¢ provides us
with:

In(er) < %(z(cl,y) +1(ax)) < Onl(ax)

<Cndx(px,qx)
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Figure 4.1: Example of horospherical product which is not connected. The number in a vertex is the
height of that vertex.

We recall that by definition ¢3- = V},,, (h(qy)). We show similarly that ¢y : ¢ — (qu (-h(a4 (1)), o4 (t))
is a connected path linking (¢x, ¢3-) to (¢x, gy ) such that:

l(c2) < Ondy (ay,qv) < Cn(dy (ay,py) +dy (py.qv))
= On(Ah(py,qy) +dy (py,qy)), since gy =V, (h(qy))
<2CNdy (py,qy ).

Hence, there exists a connected path ¢ = ¢; U cg linking p to ¢ such that:

I(c) < Cndx(px,ax) +2Cndy (py, qv) < 2Cn(dx (px,ax) +dy (py,av)). (4.6)
]

However if the two components X and Y are not geodesically complete, X x Y may not be con-
nected.

Example 4.1.12. Let X andY be two graphs, constructed from an infinite line Z (indexed by 7.) with an
additional vertex glued on the 0 for X and on the -2 for Y. Their construction are illustrated in Figure
They are two 0-hyperbolic Busemann spaces which are not geodesically complete. Let wx € X be the
vertex indexed by 0 in X, and let wy € Y be the vertex indexed by —2 in' Y. We choose them to be the
base points of X andY . Since 0X and OY contain two points each, we fix in both cases the point of the
boundary ax or ay to be the one that contains the geodesic ray indexed by N. On figure[4.1 we denoted
the height of a vertex inside this one. Then the horospherical product X xY taken with the {1 path metric
is not connected. Since some vertices of X andY are not contained in a vertical geodesic, one may not be

able to adapt its height correctly while constructing a path joining (pf(l,p%; 1)) to (pfg _1),p%/2 1 )

It is not clear that a horospherical product is still connected without the hypothesis that X and
Y are Busemann spaces. In that case we would need a "coarse" definition of horospherical product.
Indeed, the height along geodesics would not be smooth as in Proposition 2.3.2] therefore the condition
requiring to have two exact opposite heights would not suits.

4.2 Examples

A first example of horospherical product is the family of Diestel-Leader graphs. They are by construc-
tion horospherical products of two trees.
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Definition 4.2.1 (Diestel-Leader graph D L(n,m)). Letn > 2 andm > 2 be two integers. Let T}, be then-
homogeneous tree and I, be the m-homogeneous tree. The two graphs'l,, and T, are 0-hyperbolic proper
geodesically complete Busemann spaces. The Diestel-Leader graph DL(n,m) is defined by DL(n,m) =
T, xTh,.

We see T}, and T}, as connected metric spaces with the usual distance on them. By choosing half of
the /1 path metric on DL(n,m), this horospherical product becomes a graph with the usual distance on
it. Indeed, the set of vertices of D L(n,m) is then defined by the subset of couples of vertices of T}, x T},
included in DL(n,m). In this horospherical product, two points (py, pm) and (gn, gm ) of DL(n,m)
are connected by an edge if and only if p,, and g, are connected by an edge in T;, and if p,,, and g, are
connected by an edge in 7},,. Furthermore, when n = m, there is a one-to-one correspondance between
DL(n,n) and the Cayley graph of the lamplighter group Zy 2 Z, see [27, Woess] for further details.

The Sol geometry is the Riemannian manifold with coordinates (x,y,z) € R3 and with the Rieman-
nian metric ds? = dz? + e?*dx? + e **dy?. It is the horospherical product of two hyperbolic planes, it is
described in [28] Woess]. Let us consider H? the Log model of the hyperbolic plane, defined as the Rie-
mannian manifold with coordinates (z, z) € R? and with the Riemannian metric ds? = dz* + e **dx?.
We fix w = (0,0) as the base point of H and the "upward" direction a as the point on the boundary. In
that case the height function in regards to (a,w) taken on a point (x, z) € H is h(q ) (7, 2) = 2. We
now look at the horospherical product H? x H? := {(z1, 21, 72, 22) € R? x R?|21 = —25} taken with the
£2 path metric. Since the second and the fourth variable are exactly opposite, we merge them into one.
Hence we have that H? x H? is isometric to the space {(z1, 2, z1) € R?} with the metric

ds? = d2? + e 2 dx? + dz? + 27 dal = 2dz + e 2P da? + ** dxd.
Changing the coordinates by dividing z; and x2 by two tells us that this space is isometric to Sol.

Depending on the case, we either used the ¢; path metric or the /5 path metric. Proposition [4.3.5]
tells us that it does not matter, up to an additive uniform constant. Quasi-isometric rigidity results
have been proved in the Diestel-Leader graphs and the Sol geometry with the same techniques in [[10]
Eskin, Fisher, Whyte] and [11} E,F;W].

The horospherical product of a hyperbolic plane and a regular tree has been studied as the 2-complex of
Baumslag-Solitar groups in [2} Bendikov, Saloff-Coste, Salvatori, Woess]. They are called the treebolic
spaces. The distance they choose on the treebolic spaces is similar to ours. In fact our Proposition[4.3.4]
and their Proposition 2.8 page 9 (in [2]]) tell us they are equal up to an additive constant. Rigidity results
on the treebolic spaces were brought up in [12| Farb, Mosher] and [[13| F,M].

The previous examples were already known, however our construction still works for many other
spaces. As an example, a geodesically complete manifold with a curvature lower than a negative con-
stant could be used as the component X or Y in the horospherical product.

4.3 Length of geodesic segments in X x Y

From now on, unless otherwise specified, X and Y will always be two proper, geodesically complete,
0-hyperbolic, Busemann spaces with § > 1, and N will always be an admissible norm. Let p and ¢ be
two points of X xY’, and let & be a geodesic of X 1Y connecting them. We first prove an upper bound
on the length of a by computing the length of a path v c X ~ Y linking p to ¢

Lemma 4.3.1. Let p = (px,py) and q = (qx, qy ) be points of the horospherical product X wY . There
exists a path vy connecting p to q such that:

IN(y) <dr(py,ay) +dr(px,qx) + Ah(p,q) + 11520Cy .
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Proof. Without loss of generality, we assume h(p) < h(g). One can follow the idea of the proof on
Figure We consider V), and V,,, two vertical geodesics of X containing px and ¢gx respectively.
Similarly let V},,, and V,,,. be two vertical geodesics of ¥ containing py and gy respectively. We will
use them to construct . Let A; be the point of the vertical geodesic (V,,V}, ) ¢ X Y at height
h(p) - %dr (py,qy) and A be the point of the vertical geodesic (V),,, V) € X xY at the same height
h(p)—%dT (py, gy ). Let Az be the point of the vertical geodesic (Vj,, V, ) at height h(q)+%dr (px,ax)
and A4 be the point of the vertical geodesic (Vj,, V;, ) at the same height h(q) + %dr (px,qx)- Then
7~ := 1 U9 U~z U4 U~y is constructed as follows:

- 71 is the part of (V},,, V}, ) linking p to A;.

- 72 is a geodesic linking A; to As. Such a geodesic exists by Property [£.1.11]
- 73 is the part of (V},,., V;, ) linking A3 to As.

- 74 is a geodesic linking A3 to A4. Such a geodesic exists by Property [£.1.11]
- 75 is the part of (V. , Vi, ) linking Ay to q.

In fact A; and Aj are close to each other. Indeed, the two points Ay = (A x,A1y) and Ay =
(A2 x, Asy ) are characterised by the two geodesics (V) , V), ) and (V,,, V4, ). Then, because —h(q) =
Y(qy) <Y (py), Lemmaapplied onpy and gy inY givesus dy (A1 )y, Azy ) < 2884. Furthermore
Propertyprovides us with d,, < 2Cn(dx + dy ), however we have that A; x = Ay x hence:

du (A, Ay) < 5765Cx. 47)
Lemma [3.1.2)applied on px and ¢x provides similarly:

dy(As, Ay) < 5766C (4.8)
which gives us:

In(y) =ln (1) +In(v2) +In(73) + In(7a) + In(75)
=du(p, A1) + du (A1, A2) + du (A2, A3) + dw (A3, Ag) + du (A4, q)

Since 71, 3 and 75 are vertical geodesics, we have:
=Ah(p, Al) + dN(Al, AQ) + Ah(AQ, Ag) + dN (Ag, A4) + Ah(A4, q)

1 1 1
=5 (v, qy) + du(A1, A2) + 5dr(py, gv) + 5 dr (px, 4x) + Ah(p, q)
1
+dwu(As, Ag) + §dr(pX7QX)
<d.(py,qy) +dr(px,qx) + Ah(p, q) + 11525Cy, by inequalities and (4.3).
O

We are aiming to use Proposition on the two components ax ¢ X and ay c Y of « to obtain
lower bounds on their lengths. We hence need the following lemma to ensure us that when « is a
geodesic, the exponential term in the inequality of Proposition will be small.

Lemma 4.3.2. Let C' = 28536Cy + 2%°! and let e : R — R be a map defined by Vt € R, e(t) =
L1207 2 max(0,t). Then Vt € R:

1. e(t) > -7C?
2. (e(t) <28530CN ) = (t<3C?).

Proof. For all time ¢, we have that e(t) = %207% —-2max(0,1) < %2071'f —2t =: e1(t). The derivative of

epise|(t) = 10%#207% — 2, which is non negative V¢ > C'log, (@CQ) and non positive otherwise.
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Figure 4.2: Construction of the path v when h(p) < h(q) for Lemmam

Then Vt € R:

9 20 2 2C 2
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Since C' > ﬁ we have 3C? > Clog,(C3) > Clog, (ﬁﬁ), then e is non decreasing on
[Clogy(C?); +0o[. We show that e1 (3C?) > 28536Cy:

log2(03)

61(302)Zel(ClogQ(CS))ZéQC H  9C10g,(CF) = C(C - 610g,(C)).

Since C' > 2%°! we have C - 61og,(C) > 1 and since C' > 28535Cy we have that e;(3C?) > C'x 1 >
28535Cy which provides Vt € [3C2; +oo[ we have e (t) > 28535Cy. Furthermore Vt € R, e (t) =
e(t), hence Vt € [3C?; +oo[ we have e(t) > 28536Cy which implies point 2. of this lemma. O

The following lemma provides us with a lower bound matching Lemma4.3.1| and a first control on
the heights a geodesic segment must reach.

Lemma 4.3.3. Letp = (px,py) and q = (gx,qy) be two points of X Y such that h(p) < h(q). Let
a = (ax,ay) be a geodesic segment of X m Y linking p to q. Let Co = (28536Cy + 2%°1)2, we have:

1. 1) > Ah(p, q) + dr(py,qv) + dr(px . qx ) — 15Co
2. h"(a) > h(q) + %dr(px,qx) -3C)
3. h™(a) <h(p) - 1d,(py,qv) + 3Co.

Proof. Let us denote AH* = h(q) + 3d,(px,qx) — h*(e) and AH™ = h™ () = (h(p) - 5dr (v, av)).
Let m be a point of « at height h™(«) = h(p) — %dr(py, qy) + AH™, and n be a point of « at height
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h*(a) = h(q) + 3dr(px,qx) - AH". Then Proposition3.2.5 used on ax gives us:
l(ax) >2Ah(px, mx) +d(px, qx) + 27 80252H" _ 1 _2max(0, AH") - 17006
>2h(px) -2 (h(px) - %dr(l?y, av) + AH—) +d(px,qx) + 2750258 g
- 2max(0, AH") — 17004

>d,(py,qy) +dr(px,qx) + Ah(p,q) + 9 85005 AH" _q _ 2max(0,AH") -2AH™ —17000.

Since h(py ) > h(qy) and h(ny) = h(qy ) - %dr (px,aqx)+AHY, Propositionused on ay provides

similarly:
l(ay) > dy(px,4x) + de(py qy) + Ah(p,q) + 275025 1 - 2max(0, AH™) - 2AH* ~ 17006,
Hence by Property [4.1.4}

1 _
In(a) > 5(1(0@() +1(ay)) 2d(px, qx) + de(py, qy) + Ah(p, q) — 17006 + 275312551
+ 27831958 _ 9 max(0,AH™) - 2max(0, AH*) 1. (4.9)

Furthermore, we know by Lemma [4.3.1|that Iy (o) < Ah(p, q) + dr(px., qx) + dr(py, qy) + 11526Cl.
Since Cy > 1 we have:

28520Cy >27 851258 _ 9 max (0, AH™) + 27812525 _ 9 max(0, AHY) - 1.

Let us denote S := max{AH ™, AH"}. Therefore we have 9-851255 _ 2max(0,5) - 1< 28525Cy. By
assumption § > 1 hence 27891255 ~ 2 max(0, §) < 28536C . Furthermore, for C = 28536Cy +2%1, we

have both 278! > % and % > % Then we have %2% -2max(0,5) < 28530Cy. Lemmaprovides
S < 3C? = 3Cy which implies points 2. and 3. of our lemma. Lemmaalso provides us with:

~14C) <27 8125 8 _ 9 max (0, AH ™) + 278512525 _ 9 max(0, AH™).

Last inequality is a lower bound of the term we want to remove in inequality (4.9). The first point of
our lemma hence follows since 17006 + 1 < Cj. O

We recall that by definition:

Vpx,ax € X, dr(px,qx) = dx(px,ax) - Ah(px, qx)
Vpy,qv €Y, dr(py,qv) = dy (py,ay) - Ah(py.qy)
Hence combining Lemma [£.3.1]and [4.3.3| we get the following corollary.

Corollary 4.3.4. Let N be an admissible norm and let Cg = (285306C y +2851)2. The length of a geodesic
segment « connecting p to q in (X x'Y, dy) is controlled as follows:

v () - (dx (px,qx) + dy (py, qv) - Ah(p, q))| < 15Cy,

which gives us a control on the N -path metric, for all points p and q in X «'Y we have:

|dw(p. q) = (dx (px,ax) + dy (py,av) = Ah(p,q))| < 15Co.

This result is central as it shows that the shape of geodesics does not depend on the /N-path metric
chosen for the distance on the horospherical product.

Corollary 4.3.5. Letr > 1. Forallp and q in X »'Y we have:

‘dw,ér (p,q) - dw7g1 (p7q)| < 30(57065 + 2851)2‘
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Proof. The ¢, norm inequalities provide us with:

Vdx" +dy" <dx +dy < 2%1 Vdx" +dy".

Hence we have %ﬁ (dx +dy) < /dx" +dy" < dx + dy. Then the ¢, norms are admissible norms
with Cy, <2, which ends the proof. O

The next corollary tells us that changing this distance does not change the large scale geometry of
XxY.

Corollary 4.3.6. Let N; and Ny be two admissible norms. Then the metric spaces (X nY,dy n,) and
(X xY,dy n,) are roughly isometric.

The control on the distances of Lemma[4.3.4|will help us understand the shape of geodesic segments
and geodesic lines in a horospherical product.
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Shapes of geodesics and visual boundary
of X xY

5.1 Shapes of geodesic segments

In this section we focus on the shape of geodesics. We recall that in all the following X and Y are
assumed to be two proper, geodesically complete, J-hyperbolic, Busemann spaces with § > 1, and NV is
assumed to be an admissible norm.

The next lemma gives a control on the maximal and minimal height of a geodesic segment in a
horospherical product. It is similar to the traveling salesman problem, who needs to walk from z to
y passing by m and n. This result follows from the inequalities on maximal and minimal heights of

Lemma [4.3.3] combined with Lemma[4.3.1]

Lemma 5.1.1. Let p = (px,py) and q¢ = (qx,qy) be two points of X w Y such that h(p) < h(q).
Let N be an admissible norm and let « = (ax,ay ) be a geodesic of (X x Y,d,) linking p to q. Let
Co = (28536Cx + 2%51)2, we have:

1. | () = (h(p) - 1dr(py.qv))| < 4Co

2. |h* (@) = (h(q) + 3d,(px, qx))| < 4Co.

Proof. Let us consider a point m of « such that A(m) = h™(«) and a point n of « such that h(n) =
h*(«). Then m comes before n or n comes before m. In both cases, since h(m) < h(p) < h(q) < h(n)
and by Lemma we have:

In(@) 2 Ah(p,q) +2(h(p) = b~ (a)) +2(h" () - h(q))
> Ah(p,q) +2(h(p) - h" (@) + d,(px, gx) — 6Co, by Lemma[4.3.3]
Furthermore Lemma [4.3.1 provides Iy (o) < Ah(p, q) + dr (px,qx) + dr (Py, qv) + Cp , hence:

Ah(p,q) +dr-(px,qx) +dr(py,qy) + Co 2 Ah(p,q) + 2(h(p) - b (a)) + dr(px, qx) - 6Co,

which implies (h(p) - %dr (py,qv)) — h™ (@) < 4Cp. In combination with the third point of Lemma
[43.3]it proves the first point of our Lemma 5.1.1] The second point is proved similarly. O

Lemma 5.1.2. Let N be an admissible norm and let Cy = (28535Cy + 2%°1)2. Let p = (px,py) and
q = (qx,qy) be two points of X Y. Let o = (avx, vy ) be a geodesic of (X n Y, d,) linking p to q. Then
there exist two points a = (ax,ay), b = (bx,by) of a such that h(a) = h(p), h(b) = h(q) with the
following properties:

1. If h(p) < h(q) — 7Cy then:
(@) h™(a) = h™ ([, a]) and ™ (@) = h*([b,y])

51
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Figure 5.1: Notations of Lemma5.1.2

(b) |d(py,ay) —d.(py,qy)| < 16Cq and d,(px,ax) < 22Cy
(c) |dr(gx,bx) - dr(px,qx)| < 16Cy and d,(qy,by) < 22Cy
(d) |du(a,b) - Ah(a,b)| < 13C,.

2. Ifh(q) < h(p)-7Cy then (a), (b), (c) and (d) hold by switching the roles of p and q and switching
the roles of a and b.

3. If|h(p) — h(q)| < 7Cy at least one of the two previous conclusions is satisfied.

Lemma is illustrated in Figure[5.1] Its notations will be used in all section 5

Proof. Let us consider a point m of « such that A(m) = h™(«) and a point n of « such that h(n) =
h* (). We first assume that m comes before n in « oriented from p to ¢. Let us call a the first point
between m and n at height A (p) and b the last point between m and n at height 2 (q). Property (a) of our
Lemma is then satisfied. Let us denote o the part of « linking p to a, aa the part of « linking @ to b and
a3 the part of o linking b to g. We have that m is a point of ov; and that n is a point of a3. Inequalities 2.
and 3. of Lemmal4.3.3Jused on o provide Iy (a1) > d(p,m)+d(m,a) > 2Ah(p,m) > d,(py, qv ) -6Co
and similarly Iy (a3) > d,(px,qx) — 6Co. Furthermore we have Iy(a2) > Ah(p,q). Combining
In(on) =In(a) = In(a2) - In(3) and Lemmal4.3.1] we have:

In(a1) <Ah(p,q) +dr(px,qx) + dr(py,qv) + Co — Ah(p,q) — dr(px,qx) + 6Cp
< dr(py, qY) +7C). (5.1)

We have similarly that [y (a3) < d.(px,qx) + 7Cp and that di(a,b) = Ix(a2) < Ah(p,q) + 13C. It
gives us |dw(a,b) — Ah(p,q)| < 13Cj, point (d) of our lemma. Furthermore, using Lemma [5.1.1on «
and oy provides:

(@) - (k) - 5dr v av) )| < 160,

i (@) - (hp) = Sy o) )| < 4.

Since h™(a) = h™ (1) we have:

|dr(py,ay) —d(py,qy)| < 16Co, (5.2)
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which is the first inequality of (b). Using the first point of Lemma on o in combination with
inequality (5.1) gives us:

dr-(py,qy) + 7Co 2ly(a1) > Ah(p,a) + d.(px,ax) + dr-(py,ay) — 15Cy
Zdr(px, ax) + dr(py, ay) - 1500
>d, (px,ax) +d-(py,qy) — 31Co, by inequality (5.2).

Then d, (px,qx) < 38C) the second inequality of point (b) holds. We prove similarly the inequality
(¢) of this lemma. This ends the proof when m comes before n. If n comes before m, the proof is still
working by orienting « from ¢ to p hence switching the roles between p and gq.

We will now prove that if A(p) < h(q) — 7Cy then m comes before n on « oriented from p to q.
Let us assume that h(p) < h(q) — 7C. We will proceed by contradiction, let us assume that n comes
before m, using h(m) < h(p) < h(q) < h(n) it implies:

In(@) 2dw(p,n) + du(n,m) +du(m,q) > Ah(p,n) + Ah(n,m) + Ah(m,q)
>Ah(p,q) + Ah(g,n) + Ah(m,p) + Ah(p,q) + Ah(g,n) + Ah(m, p) + Ah(p, q)
>2Ah(p,q) + Ah(p,q) + 2Ah(m,p) + 2A(gq,n)
>14Cy + Ah(p, q) +2(h(p) = h™(a)) +2(h" (a) - h(q))-

However Lemmaapplied on « provides h* () > h(q) + %dr(px, qgx)—3Coand h™(«) < h(p) -
%dr(py, qy ) + 3Cy. Then:

In(a) 214Co + Ah(p, q) + d,(px,qx) + dr(py,qv) — 12Ch
>Ah(p,q) +dr(px,qx) + dr(py, qv) +2Co,

which contradict Lemmal4.3.1} Hence, if h(p) < h(q) - 7Co, the point m comes before the point n and
by the first part of the proof, 1. holds. Similarly, if 4(q) < h(p) — 7Cp then n comes before m and then
2. holds. Otherwise when |h(p) — h(q)| < 7Cp both cases could happened, then 1. or 2. hold. O

This previous lemma essentially means that if p is sufficiently below ¢, the geodesic « first travels
in a copy of Y in order to "lose" the relative distance between py and gy, then it travels upward using
a vertical geodesic from a to b until it can "lose" the relative distance between px and gx by travelling
in a copy of X. It looks like three successive geodesics of hyperbolic spaces, glued together. The idea is
that the geodesic follows a shape similar to the path v we constructed in Lemma [4.3.1] The following
theorem tells us that a geodesic segment is in the constant neighbourhood of three vertical geodesics.
It is similar to the hyperbolic case, where a geodesic segment is in a constant neighbourhood of two
vertical geodesics.

Theorem 5.1.3. Let N be an admissible norm. Letp = (px,py ) and q = (qx,qy ) be two points of X Y
and let o be a geodesic segment of (X xY, d,) linking p to q. Let Co = (28535Cx + 2851)2, there exist
two vertical geodesics Vi = (V1 x,Viy) and Vo = (V3 x, Vo y') such that:

1 If h(p) <h(q)-T7Cy then « isin the 196C,Cn-neighbourhood of Vi U (V1 x,Vay) U Vs
2. If h(p)>h(q)+7Cy then a is in the 196CoCn-neighbourhood of Vi u (Vo x, Vi y) u Vs
3. If |h(p) —h(q)| <T7Cy then at least one of the conclusions of 1. or 2. holds.

Specifically Vi and Vy can be chosen such that p is close to V1 and q is close to V5.

Figure pictures the 196C,Cny-neighbourhood of such vertical geodesics when h(p) < h(q) —
7Co. When |h(p) — h(q)| < 7Cy, there are two possible shapes for a geodesic segment. In some cases,
two points can be linked by two different geodesics, one of type 1 and one of type 2.
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Figure 5.2: Theorem The neighbourhood’s shapes are distorted since when going upward, dis-
tances are contracted in the "direction" X and expanded in the "direction" Y.

Proof. Let m = (mx,my ) be a point of « such that h(m) = h™(«), and n = (nx,ny) be a point of «
such that h(n) = h*(c). Then by Lemmal5.1.1] we have:

1
Ah(p,m) - §dr(py,QY) < 4C). (5.3)

We show similarly that:

1
Ah(g,n) - §dr(px7 qx)| < 4Cy. (5.4)

In the first case we assume that h(p) < h(q) - 7C. With notations as in Lemma and by inequality
(5.1), we have that Iy ([p, a]) < d.(py,qy) + 7Co, hence:

In([p,m]) =In([p,a]) - In([a,m]) < dr(py, qy) + 7Co — Ah(a, m)
1
Sidr(pY7 qy ) + 11Cy, since Ah(p,m) = Ah(a,m). (5.5)
It follows from this inequality that:
dX(an mX) :2dX><Y(pa m) - dY(pY7 mY) < 2dy (pv m) - dY(pYa mY)
1
<2y ([p,m]) - dy (py,my) < dr(py,qy) +22Co - Ah(p,m) < Sdr (py, ay) +26C0.
Then:
1
dr(px,mx) =dx (px,mx) = Ah(p,m) < 5dr(py, qv) + 260 = Ah(p,m)
<30C), by inequality ([5.3)).

Similarly d, (py, my) < 30Cq. Let us consider the vertical geodesic V,,,, of X containing myx, and the
vertical geodesic V,,,, of Y containing py. Let us denote p'y the point of V},,, at the height i(p). Since
dy(px,mx) < 30C, Lemmaapplied on px and mx provides dx (px,p’y) < 31Cy. We will then
consider two paths of X. The first one is o; x = [px,mx], the part of ax linking px to mx. The
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second one is [mx, p’y ] a piece of vertical geodesic linking m x to p’y. We show that these two paths

have close length. Using Property [4.1.4) with inequalities (5.3) and (5.5) provides us with:

Ix([px,mx]) <2ln([p,m]) - Iy ([py,my]) <2 (%dr(py,QY) + 1100) - Ah(p,m)

< Ah(p,m) +30Cy
Furthermore Ix ([px,mx]) > Ah(p,m) and we know that x ([mx, p’y]) = Ah(p,m), hence:

lx ([px.mx]) = Ix ([mx, px])| < 30Co

We already proved that their end points are also close to each other d(px,p’y) < 31C). Since § < Cy,
the property of hyperbolicity of X gives us that a; x isin the (31+30+1)Cy = 62Cyp-neighbourhood of
[mx,py ], apart of the vertical geodesic V;,, . . We show similarly that «; y is in the 62Cy-neighbourhood
of V... Since N is an admissible norm, Property gives us that o isin the 124CyC'y-neighbourhood
of (Viny,Vpy ). We show similarly that as, the portion of « linking n to ¢, is in the 124CyCy-
neighbourhood of (V,,V, ). We now focus on as, the portion of « linking m to n. Let us denote
[mx,nx] the path s x and [my, ny ] the path ap y. Then Lemmaprovides us with:

< 80,. (5.6)

1 1
[Ah(m.n) = (Ah(p.0) + 5dr(oyav) + 3 (px.0x)
However from Lemma[4.3.1and since 11525Cy < Cp:

lN(OZQ) =lN(a) - lN(Oél) - lN(Oég)
<Ah(p,q) + d(px,qx) + dv(py,qy) + Co — Ah(p,m) — Ah(n,q)

1 1
<Ah(p,q) + 54 (px,ax) + §dr(pY7 qy) + 9Co, by inequalities 1D and 1D
It follows from this inequality and the fact that N is admissible that:

dx(mx, nX) < 2lN(a2) - dY(va nY) < 2Ah(p, Q) + dr(an QX) + dr(pYa QY) +18C - Ah(mv n)
< Ah(m,n) + 34C), by inequality ([5.6)).

Thus:
dr(mx,nx) =dx(mx,nx) - Ah(m,n) < 34Cy.

In the same way we have d,(my,ny) < 34Cy. Let us denote n'y the point of V;,, . at the height h(nx).
Since d,(px, mx) < 34Cy, Lemma applied on mx and nx provides:

dx(mx, n/X) < 35C) (5.7)

Hence we have proved that as x and [mx,n'y| have their end points close to each other. Let us
now prove that these paths have close lengths. We have that [x ([mx,ns]) = Ah(m,n), and from

inequalities (5.3) and (5.4) we have:
Ix([mx,nx]) < 2 (a2,.x) = by ([my,ny]) = 2(In (@) = In(a1) = In(as) ) = Ah(m, n)

< 2(1500 +Ah(p, q) + dr(px,qx) + dr(py, qy) — Ah(p,m) - Ah(n, Q)) — Ah(m,n)
2(Ah(p, ) +dr(px,ax) + dr(py.ay) = Ah(p,m) - Ah(n, )) = Ah(m,n)
<2(Ah(p,q) + Ah(p,m) + Ah(n,q) + 16Co) = Ah(m,n) + 30C) < Ah(m,n) +62C

IN

Aslx([mx,nx]) > Ah(m,n) we obtain:

Ix ([mx,nx]) - Ix([mx,nx])| < 62Co (5.8)
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Then by similar arguments as for the path o x, inequalities and show that oy x is in the
(35+ 62+ 1)Cy = 98C) neighbourhood of V,,, . Similarly we prove that o y is in the 98C( neigh-
bourhood of V,,,.. Since IV is an admissible norm, Property gives us that aw is in the 196CyCy -
neighbourhood of (V. , Vi, ).

In the second case, we assume that h(q) < h(p) — 7Cy. Then by switching the role of p and ¢, Lemma
gives us the result identically.

In the third case, we assume that |h(p) — h(q)| < 7Cy. Then Lemma tells us that one of the
two previous situations prevail, which proves the result. O

5.2 Coarse monotonicity

We will see that the following definition is related to being close to a vertical geodesic.

Definition 5.2.1. Let C' be a non negative number. A geodesica: I - X wY of X xY is called C-coarsely
increasing if Vt1,to € I:

( ta>t1+C ) = ( h(a(tg)) > h(Oé(tQ)) )
The geodesic « is called C-coarsely decreasing if Vt1,to € I:
( ta>t1+C ) = ( h(a(tz)) < h(Oé(tQ)) )

The next lemma links the coarse monotonicity and the fact that a geodesic segment is close to
vertical geodesics.

Lemma 5.2.2. Let N be an admissible norm and let Co = (28536Cy + 281)2. Let p = (px,py) and
q = (gx,qy) be two points of X w Y and let « be a geodesic segment of (X wY,d,) linking p to q. Let
m € « andn € o be two points in X w Y such that h™(«) = h(m) and h*(«) = h(n). We have:

1 If h(p) < h(q)—"TCy, then o is 17Cy-coarsely decreasing on [p,m] and 17Cy-coarsely increasing
on [m,n] and 17Cy-coarsely decreasing on [n, q].

2. If h(p) = h(q) + 7Cy, then o is 17Cy-coarsely increasing on [p,n] and 17Cy-coarsely decreasing
on [n,m] and 17Cy-coarsely increasing on [m, q].

3. If |h(p) —h(q)| <T7Cy then the conclusions of 1. or 2. holds.

Proof. Assume that h(p) < h(q) — 7Cy. Then from inequality in the proof of Theorem
In([p,m]) < %dr(py, @y ) +11C). Furthermore Lemmagives us that ‘Ah(p,m) - %dr(py, qy)’ <

4CY. Then:
In([p,m]) < Ah(p,m) + 15C. (5.9)

We will proceed by contradiction, assume that [p, m] is not 15C)-coarsely decreasing, then there exists
i1 € , i9 € a such that h(iy) = h(i2) and [([i1,i2]) > 15C). Hence:

In(Ipym]) 2 In([p,ia]) + In([i1, i2]) + v ([i2,m]) 2 Ah(p,iv) + In([in, 2]) + Ah(iz, m)
> Ah(p,m) + 15C,

which contradicts inequality . Then [p, m] is 15Cy-coarsely decreasing. We show in a similar way
that [m, n] is 17Cy-coarsely increasing and that [n, q] is 15Cy-coarsely decreasing. This proves the
first point of our lemma. The second point is proved by switching the roles of p and q. We now assume
|h(p) - h(q)| < 7Cy, as in the proof of Theorem[5.1.3|the inequality or a corresponding inequality
holds, which ends the proof. O



5.3. SHAPES OF GEODESIC RAYS AND GEODESIC LINES 57

5.3 Shapes of geodesic rays and geodesic lines

In this section we are focusing on using the previous results to get informations on the shapes of
geodesic rays and geodesic lines. We first link the coarse monotonicity of a geodesic ray to the fact
that it is close to a vertical geodesic. Let A > 1 and ¢ > 0, a (A, ¢)-quasigeodesic of the metric space
(X wY,dy) is the image of a function ¢ : R > X x Y verifying that V¢;,t5 € R:

M—csdm(qb(tl),qb(tz)) <At —to| +c (5.10)

Lemma 5.3.1. Let N be an admissible norm and let Cy = (28535Cy + 28°1)2. Let o = (ax,ay) be a
geodesic ray of (X Y, dy) and let K be a positive number such that « is K -coarsely monotone. Then ax
and ay are (1,26C) + 8 K')-quasigeodesics.

Proof. Let t1 and t5 be two times. Let us denote p = (px,py) = a(t1) and ¢ = (¢x,qy) = a(tz). We
apply Lemma on the part of « linking p to ¢ denoted by [p, q]. By K-coarse monotonicity of « we
have that d(p, a) xuy,n < K and d..(b, q) < K. Hence using d) of Lemmal5.1.2}

Ah(p,q) < dw(p,q) < du(p,a) +dw(a,b) + du(b,q) < K + Ah(a,b) +13Cy + K
< Ah(p,q) + Ah(p,a) + Ah(b,q) + 13Cy + 2K < Ah(p,q) + 13Cp + 4K.

Furthermore, dx (px,qx) > Ah(px,qx) = Ah(p,q) and dy (py,qy) > Ah(p,q). Since N is an
admissible norm we have:

Ah(p> q) < dX(pX7 QX) = 2dX><Y(p> q) - dY(pYa QY) < 2dl><1 (pa q) - dY(va QY)
<2Ah(p,q) +13Cy + 4K — Ah(p,q) < Ah(p,q) + 13Cy + 4K.

Hence:
dN(pv(I) _2600 -8K < dX(pX7QX) < dN(p7Q) +26CO +8K7

By definition we have px = ax(t1), ¢x = ax(t2) and du(p, q) = |t1 —t2|- Then ax isa (1,26Cy+8K)-
quasigeodesic ray. We prove similarly that ay is a (1,26C) + 8 K )-quasigeodesic ray. O

We will now make use of the rigidity property of quasi-geodesics in Gromov hyperbolic spaces,
presented in Theorem 3.1 p.41 of [5, Coornaert, Delzant, Papadopoulos].

Theorem 5.3.2 ([B])). Let H be a §-hyperbolic geodesic space. If f : R — H is a (\, k)-quasi geodesic,
then there exists a constant k > O depending only on 6, \ and k such that the image of f is in the k-
neighbourhood of a geodesic in H.

Lemma 5.3.3. Let N be an admissible norm and let T} and Ty be two real numbers. Let o = (ax, ay ) :
[T1,+00[— X xY be a geodesic ray of (X w Y,dy). Let K be a positive number such that o is K-
coarsely monotone. Then there exists a constant k > 0 depending only on K, § and N such that « is in the
k-neighbourhood of a vertical geodesic ray V : [Ty; +0o[—~ X w Y and such that dw(a(T1), V (T2)) < k.

Proof. We assume without loss of generality that tlim h(a(t)) = +oo. Let Cy = (28535C y +2%51)2, by
—400

Lemma[5.3.1] oy is a (1,26Cy + 8K )-quasi geodesic ray. Then Theorem 5.3.2]says there exists kx > 0

depending only on 26C) + 8K and ¢ such that ax is in the k x-neighbourhood of a geodesic Vx. Since

C depends only on 6 and N, kx depends only on K, § and N. Then tlim h(a(t)) = +oo gives us
—+400

tlim h(Vx(t)) = +oo which implies that V is a vertical geodesic of X. We will now build the vertical
—+00

geodesic we want in Y. We have tlim h(ay(t)) = —oo and by Lemma 5.3.1
—+00

Ah(ay (1), ay (t2)) - 26C, — 8K < dy (ay (t1), ay (t2)) < Ah(ay (t1), ay (t2)) + 26Co + 8K.
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Since Y is Busemann, there exists a vertical geodesic ray (3 starting at ary (7} ). Since 3 is parametrised
by its height, ary U B is also a (1,26C) + 8 K')-quasi geodesic, hence there exists ky and Vy depending
only on K, 6 and N such that ay U f3 is in the Ky -neighbourhood of V. Since tlim h(Vy (t)) = +oo,

Vy is a vertical geodesic of Y.
Furthermore, by Property[4.1.11] d,, < 2Cn(dx +dy ), hence there exists  depending only on K, § and
N such that « is in the k-neighbourhood (for d) of (Vx, Vi), a vertical geodesic of (X x Y, d, ). Since

h(a(t)) > h(a(T}1)) - 26Co — 8K =: M, « is in the k-neighbourhood of (VX([M — k;+o0[), Vo (] -

oo; —M + /@])) which is a vertical geodesic ray.

We will now show that the starting points of o and V' are close to each other. Let us denote 77 a
time such that dy(a(71), V(1Y) < &, then Ah(a(T1), V(TY)) < k, hence |T] — M| < 26Cy + 8K + k.
Then by the triangle inequality:

du(@(T1), V(M = 1)) <du(a(Ty), V(T{)) + du(V (T7), V(M - )
<k +26C) +8K + k+ Kk =26C) + 8K + 3k

Let us denote £’ := 26Cy + 8K + 3k > k and T := M — k. Hence a : [T1;+00[—> X x Y is in the
r'-neighbourhood of a vertical geodesic ray V : [T5 : +0o[—> X x Y, we have dw((T1),V (T3)) < K
and ' depends only on ¢ and K. O

Lemma 5.3.4. Let N be an admissible norm and let « : R™ — X w'Y be a geodesic ray of (X x Y, dy).
Then o changes its 17Cy-coarse monotonicity at most once.

Proof. Let a: R* - X xY be a geodesic ray. Thanks to Lemmaa changes at most twice of 17Cy-
coarse monotonicity. Indeed, assume it changes three times, applying Lemma on the geodesic
segment which includes these three times provides a contradiction. We will show in the following that
it actually only changes once.

Assume « changes twice of 17Cy-coarse monotonicity. Then o must be first 17Cy-coarsely increas-
ing or 17Cy-coarsely decreasing. We assume without loss of generality that « is first 17Cp-coarsely
decreasing. Then there exist t1,t9,t3 € R such that « is 17Cy-coarsely decreasing on [«(t1), a(t2)]
then 17C)-coarsely increasing on [«(t2), a(t3)] then 17Cy-coarsely decreasing on [«(t3), a(+00)[.
Hence Lemma applied on [a(t3), a(+00)[ implies that there exists £ > 0 depending only on ¢
(since the constant of coarse monotonicity depends only on §) and a vertical geodesicray V = (Vx, Vy')
such that [a(t3), a(+00)[ is in the k-neighbourhood of V. Since h* ([a(t3), a(+00)[) < +00, we have
that tE{rnw h(a(t)) = —oco, hence there exists t4 > t3 such that h(a(t4)) < h(a(t1))—7Cp. Then Lemma

tells us that « is first 17Cy-coarsely increasing, which contradicts what we assumed. O

We have classified the possible shapes of geodesic rays. Since geodesic lines are constructed from
two geodesic rays glued together, we will be able to classify their shapes too.

Definition 5.3.5. Let N be an admissible norm and let & = (ax,ay) : R - X wY be a path of
(X xY,dy). Let k > 0.

1. « is called X -type at scale k if and only if:

(a) ax isin a k-neighbourhood of a geodesic of X
(b) oy is in a k-neighbourhood of a vertical geodesic of Y .

2. o is called Y -type at scale k if and only if:

(a) ay isin a k-neighbourhood of a geodesic of Y

(b) ax isin a k-neighbourhood of a vertical geodesic of X .
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A

w7

Y — type

X — type

Vertical geodesic

Figure 5.3: Different type of geodesics in X x Y.

The X-type paths follow geodesics of X, meaning that they are close to a geodesic in a copy of X
inside X » Y. The Y -type paths follow geodesics of Y.

Remark 5.3.6. In a horospherical product, being close to a vertical geodesic is equivalent to be both X -type
and Y -type.

Theorem 5.3.7. Let N be an admissible norm. There exists k > 0 depending only on § and N such that
forany a:R - X Y geodesic of (X wY,d.) at least one of the two following statements holds.

1. «is a X -type geodesic at scale k of (X x Y, d)
2. avis a 'Y -type geodesic at scale k of (X n Y, d,)

Proof. It follows from Lemma [5.3.4] that o changes its coarse monotonicity at most once. Otherwise
there would exist a geodesic ray included in « that changes at least two times of coarse monotonicity.
We cut « in two coarsely monotone geodesic rays « : [0,+00[—> X x Y and g : [0, +00[—> X x Y
such that up to a parametrisation a1(0) = a2(0) and @ U a2 = a. By Lemma [5.3.3] there exists 1
and k9 depending only on ¢ such that o is in the x;-neighbourhood of a vertical geodesic ray V; =
(Vi1,x,Vi,y) : [0;+00[— X x Y and such that o is in the xo-neighbourhood of a vertical geodesic
ray Vo = (Vo x,Vay) : [0;+00[— X w Y. This lemma also gives us dw(c1(0),V1(0)) < 1 and
du(2(0),V2(0)) < k.

Assume that tE]Jfrnoo h(Vix(t)) = tl}g}x} h(Va,x(t)) = +oo, then they are both vertical rays hence are
close to a common vertical geodesic ray. Furthermore tlgnoo h(Viy(t)) = tE]Jrrnoo h(Vay(t)) = —oo in

that case. Let Wy be the non continuous path of Y defined as follows.

| Viy(-t) Vte]-o0;0]
Wy (1) ‘{ Vor(t) Vi €0 oo

We now prove that Wy : R — Y is a quasigeodesic of Y. Let ¢; and {2 be two real numbers. Since
Viy and Va y are geodesics, dy (Wy (t1), Wy (t2)) = |t1 —ta] if t; and ¢ are both non positive or both
positive. Thereby we can assume without loss of generality that ¢; is non positive and that ¢ is positive.
We also assume without loss of generality that |¢1| > |t2]. The quasi-isometric upper bound is given by:

dy (Wy (t1), Wy (t2)) = dy (Vi,y (-t1), Va,v (t2))
<dy(Viy(-t1),Vi,y(0)) +dy (V1,y(0),Vay (0)) + dy (Va,y(0), Vay (t2))
< [t1] + K1 + Ko + [t

< |t1 - to| + K1 + Ko, since t; and ty have different signs.
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It remains to prove the lower bound of the quasi-geodesic definition on Wy-.
dy (Wy (t1), Wy (t2)) = dy (Vi,y (=t1), Va,y (t2))

> %dm(‘/l(_tl), Va(t2)) —dx (Vi x (~t1), Va,x (t2))
N

> ﬁdm(a(tl),a(tg)) _

K1+ K9

—dx(Vix(~t1),Vax(t2)).  (5.11)
The Busemann assumption on X provides us with:

dx (Vi,x(~t1), Va,x (t1)) < dx(V1,x(0), Va,x (0)) < K1 + K.

Since « is a geodesic and by using the triangle inequality on (5.11) we have:

t1 -t K1+K
dy (Wy (t1), Wy (t2)) > L dx (Vi x(~t1), Vax (=t1)) = dx (Va,x (~t1), Vo, x (£2) ) = ——
QCN CN
|t1 — 1o ( 1 )
>—— - Ah(Voy(-t1),Voy(t2) - [ =— +1 .
20N ( 2.y (=t1), Vav ( 2) Cn +1) (K1 + K2)
Assume that Ah(Vg,y(—tl), Vz,y(tQ)) < ‘115;2‘, then:
lt1 - to ( 1 )
dy (Wy (t1), Wy (t2)) > -\=+1 .
y(Wy (t1), Wy (t2)) 1Cn Cn +1) (k1 + K2)
Hence Wy isa (ﬁ, (& + 1) (k1 + K]Q)) quasi-geodesic, which was the remaining case. Since x; and

k2 depend only on ¢ and N, there exists a constant " depending only on ¢ and N such that V; y uVs y
is in the k’-neighbourhood of a geodesic of Y. The geodesic « is a Y-type geodesic in this case.
Assume tlim h(Vi x(t)) = tlim h(Va,x(t)) = —oo, we prove similarly that « is a X-type geodesic.
—+400 —+00
O

If a geodesic is both X-type at scale x and Y -type at scale , then it is in a k-neighbourhood of a
vertical geodesic of X » Y.

5.4 Visual boundary of X Y

We will now look at the visual boundary of our horospherical products. This notion is described for
the Sol geometry in the work of Troyanov [26] Troyanov] through the objects called geodesic horizons.
We extend one of the definitions presented in page 4 of [26] Troyanov] for horospherical products.

Definition 5.4.1. Two geodesics of a metric space X are called asymptotically equivalent if they are at
finite Hausdorf{f distance from each other.

Definition 5.4.2. Let X be a metric space and let o be a base point of X. The visual boundary of X is the
set of asymptotic equivalence classes of geodesic rays o : R* — such that «(0) = o, it is denoted by 0, X .

We will use a result of [22] Papadopoulos] to describe the visual boundary of horospherical products.

Property 5.4.3 (Property 10.1.7 p.234 of [22]]). Let X be a proper Busemann space, let q be a point in X
and letr : [0, +oo[—> X be a geodesic ray. Then, there exists a unique geodesic ray ' starting at q that is
asymptotic tor.

Theorem 5.4.4. Let N be an admissible norm. We fix base points and directions (wy,ax) € X x 0X,
(wy,ay) € Y x9Y. Let X » Y be the horospherical product with respect to (wx,ax) and (wy,ay ).
Then the visual boundary of (X n 'Y, d,) with respect to a base point o = (0x,0y ) is given by:

Do(X = Y) =((0X  {ax}) x {ay })U ({ax} x (9 ~ {ay}))
=((9x x {ay}) U ({ax} x 9Y)) » {(ax, av)}
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The fact that (ax, ay ) is not allowed as a direction in X Y is understandable since both heights
in X and Y would tend to +oc0, which is impossible by the definition of X x Y.

Proof. Let « be a geodesic ray. Lemma implies that there exists ¢y € R such that « is coarsely
monotone on [t(, +oo[. Then Lemmatells us that a([¢p, +0o[) is at finite Hausdorff distance from
a vertical geodesic ray V' = (Vx, V), hence « is also at finite Hausdorff distance from V.

Since X is Busemann and proper, Property ensure us there exists V- a vertical geodesic ray such
that Vx and V are at finite Hausdorff distance with V (0) = ox. Similarly, there exists Vi a vertical
geodesic ray of Y with V{/(0) = oy such that V3 and Vy. are at finite Hausdorff distance.
Furthermore, there is at least one vertical geodesic ray V' = (Vj, V5 ) in every asymptotic equiva-
lence class of geodesic rays, hence 0,X x Y is the set of asymptotic equivalence classes of vertical
geodesic rays starting at 0. Therefore, an asymptotic equivalence class can be identified by the couple
of directions of a vertical geodesic ray. Then 0,X Y can be identified to:

((0x ~ {ax}) x {ay}) U ({ax} x (9  {ay})).

the union between downward directions and upward directions, which proves the theorem. O

Example 5.4.5. In the case of Sol, X and Y are hyperbolic planes Ha, hence their boundaries are 0X =
OHy = S* and OY = S*. Then 0,50l can be identified to the following set:

(8"~ A{ax}) x {ay } U{ax} x (8"~ {ay}). (5.12)

It can be seen as two lines at infinity, one upward {ax} x (Sl N {ay}) and the other one downward
(Sl N {aX}) x{ay}.

It is similar to Proposition 6.4 of [26] Troyanov].
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Chapter 6

Notations on horospherical products

In this chapter we recall some material about horospherical products.

In order to lighten the notations, we will not fully describe the multiplicative and additive constants
involved in inequalities. We will use the following notations instead.

Notation 6.0.1. Let A, B € R and e a parameter (set, real numbers, ...). Let us denote:
1. A <. B if and only if there exists a constant M (e) depending only on e such that A < M (e)B
2. Az, BifandonlyifB=<. A<, B

If the constant M is a specific integer such as 2, we will simply denote A < B, and similarly A > B,
A = B. The notation <, might also appear for parameters in several results of this paper. In this context
it means that there exists a constant depending only on e such that the implied result holds.

A metric space is called geodesically complete if all its geodesic segments can be extended into
geodesic lines. Hence, in a Gromov hyperbolic and Busemann space, with respects to a € 90X, any
point is included in a vertical geodesic line (not necessarily unique).

We recall Lemma [3.2.3] of Part L.

Lemma 6.0.2.
Let X be a proper, 6-hyperbolic, Busemann space. Let V| and Vy be two vertical geodesics of H. Let
t1,t € R and let us denote D := 5d,.(Vi(t1),Va(t2)). Then for allt € [0, D]

|d,(Vi(t1 + D —t),Va(ta + D —t)) - 2t| < 2885 (6.1)

Corollary 6.0.3. Let V7, V5 be two vertical geodesics of X. Then there exists a height haiy(V1,V2) € R
from which V| and V3 diverge from each other:

LVt 2 ha(V1,Va), d(Vi(t),Va(t)) <51
2.Vt < haie(Vi,Va), [d(Vi(t), Va(t)) -2t <51

This corollary is illustrated in Figure
We list here some notations we will use in later sections.

Notation 6.0.4. Let X be a proper, geodesically complete, 5-hyperbolic, Busemann space.

1. Let us denote the r-neighbourhood of U for allU c X and for allr > 0 by
N(U) ={xe X |d(xz,U) <1} (6.2)
2. Forall x € X let us denote by V,. the unique vertical geodesic ray such that V,(0) = x.
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hdiv(‘/l) ‘/2)

Figure 6.1: Figure of Lemmam

3. For a subset A c X, let us denote
- s . o
h™(A):= ;16112 (h(z)) ; h*(A): i’ljg (h(z)). (6.3)
4. Fora subset A c X and a height z € R, we denote the slice of A at the height z by A, := Anh™!(2).
Therefore the horospheres of X are denoted by X, for z € R.

5. Given a point p € X and a radiusr € R, let us denote the ball of radius r included in the horosphere
Xn(p) by Dr(p) :={x € X [ h(z) = h(p) and d(z,p) <7} = B(p,r) N Xp(p).

6. VzeR, VU c X, Vr > 0, the r-interior of U in X, is defined by

Int,(U):={peU|d(p,q)2r, Vge X,\U}.

Vertical geodesics of X can be understood as being normal to horospheres of X.

Definition 6.0.5 (Projection on horospheres).
Let X Gromov hyperbolic, Busemann, proper, geodesically complete metric space. Then for all A c X and
all z < h™(A)

T (A)={r e X, |V, n A+ T} (6.4)

The definition of this projection along the vertical flow is illustrated in Figure The following
Lemma shows that the projection of a disk on a horosphere is almost a disk, It will be used in further
Sections.

Lemma 6.0.6. Let X be a Gromov hyperbolic, Busemann, proper, geodesically complete metric space. Let
2o € R andp € X . Then for M > 2885 we have that for all z < zy and for all p, € 7,({p})

D2(zo—z)fM(pz) c 71'z(-DM(p)) c D2(zofz)+M(pz)-



<0

Figure 6.2: Projection of A on X .

T.(p)
2(2 — ZO) + M

Figure 6.3: Proof of Lemma
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Proof. This Lemma is a corollary of Lemma[6.0.2] and is illustrated in Figure[6.3] Let M = 288 be the
constant involved in Lemma[6.0.2]

Let us prove the first inclusion. Let z € DQ(ZO_Z)_M(pZ), then d(x,p,) <2(z0 — z) — M. Let us denote
V. a vertical geodesic containing = and V), a vertical geodesic containing p and p.. We apply Lemma

witht; =t2 =2, Vi =V, and V5 =V, then D = %. Moreover

d(z,p.)
2

M
z+D=z+ §z+(zo—z)—?§zo.

Therefore, by the Busemann convexity of X, the distance between vertical geodesic ray is convex and
bounded, hence decreasing. Therefore

d(Vi(20),p) = d(Va(20), Vp(20)) < d(Vi(z + D), Vp(z + D))
<M , by Lemmal6.0.2used with ¢ = 0,

which means that z € 7.( Dy (p)).
Let us now prove the second inclusion, which is

72 (Dar(p)) € Do(ag—zysna(p:)- (6.5)
Let 7 € 7.(Dar(p)), then d(Vi(20), Vp(20)) < M. Therefore by the triangle inequality
d(z,p.) = d(Va(2), Vp(2)) < d(Vi(2), Ve (20)) + d(Va(20), Vp(20)) + d(Vi(20), Vp(2))
<(z0-2)+M+(20-2)=2(20-2)+ M
Hence x € Do)+ (D2)- O

We recall that given a proper, d-hyperbolic space X with distinguished @ € 0X and w € X, we
defined the height function on X in Definition from the Busemann functions with respect to
a€dX andw e X.

Definition 6.0.7 (Horospherical product). Let X and Y be two §—hyperbolic spaces. We fix the base
points wX € X, w¥ €Y and the points in the boundaries ™ € 0X, a¥ € dY. We consider their height
functions b and hY respectively on X and Y. We define the horospherical product of X andY by

XNY::{(&X,CLY)€X><Y|hX(aX)+hY(aY):O}.

This construction, illustrated in Figure can also be seen as the union of the direct products
between opposite horospheres in X and YV

XNY:UszY_Z.
zeR

From now on, with a slight abuse, we omit the reference to the base points and points on the bound-
aries in the construction of the horospherical product. Notations[6.0.4 can be extended to horospherical
products.

Notation 6.0.8. Let X andY be two proper, hyperbolic, geodesically complete, Busemann spaces. Then:

1. We denote the r-neighbourhood of U, for allU c X «'Y and for allr > 0, by

N (U)={pe X Y | du(p,U) <7} (6.6)

2. The difference of height between two pointsa,b € X xY is still denoted by Ah(a,b) = |h(a)—h(D)|.
3. We still denote, forall z e R and Ac X wY, by A, := Anh™1(2) the "slice" of A at the height 2.
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Figure 6.4: Horospherical product X « Y.

4. We still denote, for allT >0 andpe X n Y, by
Dr(p) = {z e X [ h(p) = h(x) and dw(p,x) <7} = B(p,7) 0 (X 2 V)
the ball of radius r in the height level set containing p.

We also provide two more definitions that will be used in future sections. First a projection on
level-sets of the height function.

Definition 6.0.9. Let zp,z € R and let U c (X wY'),,. Then we define the projection of Uon (X xY),
by

o (U) := {p € (X YY), | 3V a vertical geodesic such thatp e V and V nU # @}

Then we define X -horospheres and Y -horospheres as horospheres of hyperbolic spaces embedded
in X » Y, illustrated in Figure

(4
NI

X — horosphere = X_j,) x {y}

Figure 6.5: X-Horosphere in X x Y.

Definition 6.0.10. The set H ¢ X x Y is called

1. an X -horosphere if there exists y € Y such that H = X w {y} = X_p,) x {y}
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2. aY -horosphere if there exists x € X such that H = {z} nY = {x} x Y_

From now on, we will work in a horospherical product X »Y" of two proper, geodesically complete,
0-hyperbolic and Busemann spaces.



Chapter 7

Metric aspects and metric tools in
horospherical products

Through out this section we fix two constants k£ > 1 and ¢ > 0. We recall the notions of quasi-isometry
and quasi-geodesic.

Definition 7.0.1. ((k, ¢)-quasi-isometry)
Let (E,dg) and (F,dp) be two metric spaces. A map ® : E — F is called a (k, ¢)-quasi-isometry if and

only if:
1. Forallz,z' € E, k7 ldg(z,2") — c < dp (®(x), ®(2")) < kdg(z,2") +c.
2. Forally € F, there exists v € E such that d(®(x),y) < c.

A map verifying 1. is called a quasi-isometric embedding of E.

Definition 7.0.2. ((k, c)-quasigeodesic)
Let E be a metric space. A (k,c)-quasigeodesic segment, respectively ray, line, of F is a (k,c)-quasi-
isometric embedding of a segment, respectively [0; +oo[, R, into E.

In Lemma 2.1 of [17], Gouézel and Shchur prove that any (k, ¢)-quasigeodesic segment is included
in the 2¢-neighbourhood of a continuous (%, 4¢)-quasigeodesic segment sharing the same endpoints.
Therefore, without loss of generality, we may consider that all quasi-geodesic segments are continuous.

This section gathers several geometric results on horospherical products, including the generali-
sation in our context of Lemmas 4.6, 3.1 and the coarse differentiation previously obtained by Eskin,
Fisher and Whyte in [10]. Proposition[7.1.4] Corollary[7.1.5|and Proposition [7.3.2] of this section will be
especially useful in the following proofs.

At first, a reader who is more interested in the rigidity result on horospherical product can take
these propositions for granted and jump to the next sections.

When A X, B, and e = (X » Y, d) is a horospherical product, we shall write A <,, B as a short-cut,
and similarly <., >, and M (%) for a constant depending only on the metric horospherical product
(X Y, d).

7.1 c-monotonicity

We introduce e-monotone quasigeodesics. They happen to be close to vertical geodesics.

Definition 7.1.1. (s-monotone quasigeodesic)
Lete >0 andlet: [0, R] > X xY be a quasigeodesic segment. Then « is called e-monotone if and only

if
Vit € [0,R], (h(a(t1)) = h(a(t2))) = (|t ~ 12| < ) (7.1)
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- &Y(Sl)

v

Figure 7.1: Proof of Theorem

Since « is assumed to be continuous, a 0-monotone quasigeodesic has monotone height, h o o
is either decreasing or increasing. We first show that in X » Y, the projections on X and Y of an
e-monotone quasigeodesic are also quasigeodesics.

Theorem 7.1.2. Lete > 0, R > % and o = (a,a") : [0,R] » X wY be an e-monotone (k,c)-
quasigeodesic segment. Then there exists a constant M (x, k, c¢) (depending only on w, k and c) such that
o and oV are (4k, MeR)-quasigeodesics.

A portion of the proof of Theorem is illustrated in figure

Proof. We know that Vp; = (p{( , p%/) Po = (p§ , pg) € X xY we have (this is the admissible assumption
we made on the norm underneath the distance d)

dx (pt,p3 ) +dy (p.pY)
2

dw (php?) 2 (72)

Therefore we have that X satisfies the upper-bound assumption of quasigeodesics
Vsi,s9 € [0,R], dx (aX(sl),ozX(sQ)) <2dy(a(s1),a(s2)) < 2k|s1 — so| + 2¢

We want to find an appropriate ¢’ > ¢ such that o™ satisfies the lower-bound condition of a (4k, c’)-
quasigeodesic. Let ¢’ > ¢ and let us assume that aX does not satisfy the lower-bound condition of a
(4k, ¢")-quasigeodesic, we will show that this provides us with an upper-bound on ¢’. Indeed, consider
s1, 82 € [0, R] such that

1
0<dx (aX(Sl),OéX(Sz))SE|31—82|—C’ (7.3)
therefore by the Lipschitz property of h

Ah (aX(sl),aX(SQ)) <dx (aX(sl),aX(SQ)) < ﬁ|31 —s9|-C.

<

1
Zdw(a(sl), a(s2)) + i -, since ais a (k,c)- quasigeodesic.  (7.4)
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Corollary of the first part of this manuscript gives us the existence a constant M (») depending
only on X, Y and the underlying norm of d, such that

dy (o (s1),0" (s2)) (7.5)

de(a(s ), 04(32)) dX( X(sl) OéX(SQ)) Ah(a(sl) (32)) M

>dy(a(s1), a(s2)) - 2dX( X(sl),aX(SQ))—M, byLemma

>dy((s1), a(s2)) - —|31 — 89| +2¢" = M, by assumption (7.3),

>dy(a(s1),a(s2)) - %d (a(s1),a(s2)) - i +2c¢' = M, since a is a (k, ¢)-quasigeodesic,
Z%dm(a(Sl),a(SQ))—g+20,—M, since k > 1. (7.6)

Without loss of generality, we may assume that max (h (¥ (s1)),h(a¥ (s2)) ) = h(a¥(s2)). Ap-
plying Lemma on the geodesic [ay(sl), OéY(SQ)] of Y gives us

h* ([CYY(Sl),OéY(SQ)]) >h (OzY(SQ)) + %(dy (ay(sl),aY(SQ)) - Ah (aY(31)7O[Y(82)) ) - M(x)

However o is a continuous path between o (s1) and o¥ (1), then by Proposition [3.2.1] there exists
S0 € [s1, $2] such that

h (aY(so)) >h (aY(SQ)) + %(dy (ay(s1),ay(32)) - Ah (ay(sl),ay(SQ)) )
- dlog, (dy (ay(sl),aY(SQ)) ) - M(x)

Therefore by inequalities and

h(a¥ (s0)) 2h (a (s2)) + ldw (afs1),(s2)) - édm (als),a(s2)) - > +c - S+ Lo

4 8 2
—510g2(dy( Y(s1),a¥ (52))) M()

>h (aY(SQ)) + éd"“ (a(s1),a(s2)) - 6log, (dy (ay(sl),aY(SQ)) )+ gc' - M(x,c)

However 2d,, > dx + dy > dy, hence
h (aY(so)) >h (ay(SQ)) + éd"“ (a(s1),a(s2)) - dlogy (alN (a(s1),a(s2)) ) + gc' - M(»,c) (7.7)

Furthermore, there exists g € R depending only on ¢ such that Vr > rg, %7’ - 0logy(r) > %OT holds.
Therefore, one of the two following statements holds:

a) dy (a(s1),a(s2)) <ro
(b) %dw (a(s1),a(s2)) = dlogs (dw (a(s1),a(s2))) > %dm (a(s1),a(s2))

We will deal with the first case (a) at the end of the proof. Let us assume that d, (a(s1),a(s2)) > 79
hence (b), then by inequality

h (aY(Sg)) >h (O[Y(SQ)) + %dw (a(s1),a(s2)) + gc’ - M(»,c) (7.8)

Then either du(a(s1),(s2)) < M(x,c) (up to multiplying by 10 the constant M), or h(a* (s)) >

h(a¥ (s2)). In the case du(a(s1),a(s2)) < M(x,c), then |s; — sa| <4 1 since a is a quasigeodesic,

X

and therefore ¢’ < . 1 following assumption lb hence a* is a quasigeodesic segment. In the other
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case we have h(a¥ (s9)) > h(a (s2)), therefore there exists s{ € [s1,s0] such that (¥ (s})) =
h (a¥ (s2)), since o is continuous. Hence

du(a(s]), a(s2)) 2%| - So|l—c> 1(]31 — So| +|so — s2|) = M(c), since « is a quasigeodesic,
2%( (a(sh), a(s0)) + duw (a(so),a(SQ))) - M(k,c), since « is a quasigeodesic,
2%( (a(sh), a(s0)) + Ah(a(so), a(sz))) - M(k,c), byLemmalf4d.1.6
>%A (a(s0),a(s2)) = M(k,c), since h(a(s))) = h(a(s2)),
5k2d (a(s1), a(s2)) + ic _M(k,e;%), by @3). (7.9)

Moreover assumption implies |s1 — s2| > 4kc’. Then
1 /
du(a(s1),a(s2)) > E|Sl —s9|—c>4c -¢

Combined with inequality (7.9) it gives us

1
du(a(s)),a(s2)) > %c’ - M(k,c,»)

Since  is e-monotone and because h (o (s])) = h (¥ (s2)), we have

1
eR >dy(a(s)), a(s2)) > 5%0' - M(k,c,x)
Hence
¢ <M(k)eR+ M(k,c,w)

We proved that if aX does not verify the lower bound inequality of being a (4k, ¢')-quasigeodesic
then ¢/ < M(k)eR + M(k,c, ). Furthermore R > 1, then there exists M (k,c,x) such that o is a
(4k, MeR)-quasigeodesic. Similarly we show that o is a (4k, MeR)-quasigeodesic segment of Y.

For case (a), let us assume that each couple of times (s1, s2) € [0, R]? that contradicts the lower-bound
hypothesis of a (4k, MeR)-quasigeodesic verifies that d.((s1),a(s2)) < ro. Then « is a (4k,7¢)-
quasigeodesic, with ry depending only on d. Therefore « is in both cases a (4k, MeR)-quasigeodesic,
with M depending only on k,cand X = Y. O

In the sequel we denote by dpg the Hausdorff distance induced by dy. In the the proof of Lemma
[7.1.4we use a quantitative version of the quasigeodesic rigidity in a Gromov hyperbolic space, provided
by the main theorem of [I7, Gouézel, Shchur].

Theorem 7.1.3. ([17])
Consider a (k, C')-quasigeodesic segment v in a 0-hyperbolic space X, and -y a geodesic segment between
its endpoints. Then the Hausdorff distance dyg (o, 7y) between a and v satisfies

dug (o, 7) < 92k2(C +0)

This quantitative version allows us to have a linear control with respect to C' on the Hausdorff
distance, which is mandatory in our cases since C' < ¢ R. Combining this rigidity with the fact that pro-
jections X and oY are also e-monotone provides us with the existence of vertical geodesic segments
close to a.
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()
=5 R

Figure 7.2: Proof of Proposition

Proposition 7.1.4. Lete > 0, R > %, and o : [0, R] - X x'Y be an e-monotone (k, c)-quasigeodesic
segment. Then there exists a vertical geodesic segment V : [0, R] - X xY such that

dHff(im(a),im(V)) <keo ER (7.10)
Figure[7.2]is an illustration of the proof.

Proof. By Theorem o is a (4k, MeR)-quasi-geodesic in X which is 6-hyperbolic, hence by
Theorem there exists a geodesic ¥~ with the same endpoints as o such that

dHﬁ‘(im (aX) ,im (VX) ) ke ER.

Let us denote x; := X (0) and 3 := o™ (R). The quasigeodesic o is also e-monotone. Furthermore
Proposition 2.2 page 19 of [5, Coornaert, Delzant, Papadopoulos] gives us that 4, which links 1 to
X9, is included in the 24§-neighbourhood of two vertical geodesic rays V4 and V5 such that V1 (0) = 3
and V5(0) = 9. Let us denote 7 := h* (’yX), and let us recall that Vt1,ty € R* and for i € {1,2} we
have A (V;(t1), Vi(t2)) = |t1 — t2|- Let us also denote by slight abuse v* := im (%), & :=im (o),
Vi :=im (V1|[0,r—h(:c1)]) and V5 := im (V2|[0,T—h(a:2)])- Since 7 = h* ('yX) =h* (V1) = h* (V3) we have

dHff(’YX,Vl U V2) <5 1.
Hence by the triangle inequality
dHﬂ‘(O[X, Viu VQ) ke, eR. (7.11)

Without loss of generality we can assume that h(21) < h(x2). Furthermore v is continuous, therefore
there exists a point of ¥~ close to both vertical geodesics (less than 248 apart). Furthermore X is
Busemann convex, hence the distance between the two vertical geodesics is decreasing. Therefore

dX<V1 (r-h(z1)), Vg(T—h(;Ug))) <5 1. We will use the e-monotonicity of «” to prove that 7 ~ h(x5).
Let us denote by 2} a point of o such that h(z}) = h(z2) and such that dx (2], V1) 1.5 €R. Since
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o’ is e-monotone and a (4k, MeR)-quasigeodesic we have that dy (2], 72) <k . € R, hence using the

triangle inequality we have
dX(Vl(h(372) - h(fﬂl)),m) < dx(Vl(h(sz) - h(xl))uxll) +dx (), 2)
ke ER (7.12)

Let g; €im (’yX) be the closest point to x; at height h(z2). Then we have:
1. dx(gl,vl(h(xg) - h(azl))) <51

2. dx(g1,22) 2 2(h* (v~) - h(z2))

We recall that 7 = h* (y*), then dx (g1, 22) > 27 — 2h(z2) > 0, hence

1 1 1
|7 = h(x2)| < §dx(917372) < §dx(917 Vi(h(w2) - h(ﬂfl))) + §dX(V1(h(ﬂ?2) - h(xl)),m)
<k ER, by definition of g; and inequality ([7.12]).

Hence V5[o,7-(x,)] IS @ vertical geodesic segment of length <, . 5 € R. Furthermore, dx (V1 (7-h(z1)), Va(7-
h(z2))) <s. Therefore by the triangle inequality, any point of Vy|(g r_j(z,)] is (up to a multiplicative
constant) e R-close to Vi (7 — h(z1)). Therefore dg(Vi U Vo, Vi) =i ¢ 5 €R. Therefore, by the triangle
inequality we can improve inequality as follows

digr(0™, V1) < di (™, Vi UV3) + die (Vi 0 Vo, 1)
<k €R, by inequality (7.11).

We deduce similarly that ¥ is included the Me R-neighbourhood of a vertical geodesic segment V.
Therefore, « is included in the Me R-neighbourhood of the vertical geodesic segment (V1,V5)). O

As a corollary, we show that the height function along an e-monotone quasigeodesic is a quasi-
isometry embedding of a segment into R.

Corollary 7.1.5. Let o : [0,R] — X x Y be an e-monotone (k,c)-quasigeodesic segment. Then there
exists a constant M (k, c, ) such that the height function verifies Vt1,to € [0, R]

1
E|t1 —to| - MeR < Ah(a(t1),a(ts)) < klty —to| + MeR (7.13)

Proof. Let t1,t2 € [0, R]. The quasigeodesic upper-bound inequality is straightforward since h is 1-
Lipschitz and « is a (k, ¢)-quasigeodesic.

Ah(a(ty),a(tz)) < du(alty),a(te)) < klt1 —to| + c.

To achieve the lower-bound inequality we use Proposition [7.1.4] hence there exists a vertical geodesic
segment V : [0, R] > X =Y and a constant M (k, ¢, d) such that

duer(im (), im(V)) < MeR. (7.14)
Forie {1,2}, let s; € [0, R] be such that dy(«(t;),V (s;)) < MeR. Then by the triangle inequality

Ah(a(t), a(ts)) > AR(V (s1), V(s2)) - 2MeR

= |s1 — s2| —2MeR, since V is vertical.
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h

Ah> e

Figure 7.3: Subdivision of a quasi-geodesic.

However we can achieve the lower-bound inequality on |s; — s2|
|s1 = 82| =dw((V(s1),V(s2)) > du(a(t1),a(t2)) —2MeR, by the triangle inequality,
1
> %ltl —to|—c—-2MeR, since « is a quasigeodesic.

Which provides us with

1
Ah(a(tl),a(tg)) > |81 - 82| -2MeR > E|t1 - t2| -5MeR.

7.2 Coarse differentiation of a quasigeodesic segment

The coarse differentiation of a quasigeodesic « consists in finding a scale > 0 such that a subdivision
by pieces of length r of & contains almost only e-monotone components (which are therefore close to
vertical geodesic segments).

Proposition [7.2.2| provides us with the existence of such an appropriate scale .

Lemma 7.2.1. Letk >1,¢ >0 and e > 0. There exists M (k, c, ) such that forallr > M, N > M and
for all non e-monotone, (k, c)-quasigeodesic segment o : [0,7] > X x'Y we have

N-1 : :
ZE) Ah (a (‘%) ,Q ( G 4]-\[1)7“)) - Ah(a(0), (1)) 2g,ex €T (7.15)
iz

Proof. Since « is non e-monotone, there exist ¢1,t3 € [0, 7] such that
h(a(t1)) =h(a(ts)) and |t1 —t3|>er (7.16)

We can assume without loss of generality that A(a(0)) < h(a(t1)) < h(a(r)) with ¢; < t3. Since «
is a (k, ¢)-quasigeodesic we have d.(a(t1), a(t3)) > %T — ¢. By Corollary [4.3.4| of the first part of this

manuscript, there exists M (x) such that d., < dx + dy + M. Then at least one of the two following
inequalities holds:
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L dx (a®(t1), 0™ (t3)) 2w 55— M(%,c)
2. dy( Y(tl) ozY(tg)) > ri—M(N c)

Let us assume that the first inequality is true. By Lemmaapphed to the geodesic segment |« [ X(t1), a0 ( tg)]
we have

h* ([0X (1), 0¥ (13)]) 2dx (¥ (11), 0™ (3)) = AR (o (11), 0™ (t3)) - 966
ZdX (OzX(tl), aX(tg)) - 960

Hence by Proposition and the assumed inequality, there exists ¢o € [¢1,t3] such that

Ah(a(tl) alty)) = ——5log2 (d (a(t1), a(tg))) - M(x,c)

> E —dlogy(r) — M(x,c)
Similarly, assuming the second inequality provides us with the same lower-bound on Ah(a(t1), a(t2)).
Furthermore there exists M (&, x, ¢) such that for r > M we have %87’ >0 logy(r) + M (™, c), hence

er

(Oé(tl) O[(tg)) >n % (7.17)

Furthermore Vi € {1, 2,3} there exists n; € {0, ..., N — 1} such that

n;r <t < (n; + 1)r
N N

Computing the sum of the successive differences of heights provides us with

ZAh( ( ) ((]}1) ))
2Ah( 0), (W)) Ah( (n];r)va(%)%m(o‘(%ﬂ)’a(%))
+Ah( (W) a(r))

>Ah(a(0),a(t)))+Ah(a(ty),a(ts)) + Ah(a(ta),a(t3)) + Ah(a(ts),a(r))

-6 (% + c) , because h is Lipschitz, « is a quasigeodesic and by the triangle inequality,
> Ah(a(0), a(r)) + 28h(a(ty), a(t2)) - 6 (% N c)  since h(a(ty)) = h(a(ts)).

Using inequality (7.17) we have

Ng ( (N) a((‘]jvl)T))—Ah(a(O),a(r))z ;_2_%_6

>k ewm €T, since we assumed N > M (k,c,x,¢).
O
The next lemma asserts that, at some scale, most segments of a quasigeodesic are e-monotone.

Proposition 7.2.2. Letk > 1,¢ > 0,e > 0 and let S be an integer. There exists M (k,c,n, &) such that
forrg > M and N > M the following occurs. let us denote by L = N°rq. Let o : [0,L] - X n Y be a
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(k, c)-quasigeodesic segment. For all s € {0, ..., S} we cut av into segments of length N°r¢, and we denote
by As the set of these segment, that is

Ag = {a ([kN*ro, (k+ 1)N°ro]) [k € {0, ..., N°7* 1} },
and let 65(a) be the proportion of segments in As which are not e-monotone

_ #1{B € A,|B is not e-monotone}
hala) = myy : (7.18)

Then
S 1
> 05 () <o = (7.19)
s=1 €
Proof. The idea is to cut v into N segments of equal length, then to apply Lemma to the elements
of this decomposition which are not e-monotone. Afterwards we decompose every piece of this decom-
position into IV segments of equal length to which we apply Lemma|[7.2.1if they are not e-monotone.
The result follows by doing this sub-decomposition S times in a row. To begin with, we need to deal

with « being e-monotone or not. Hence dg(«) = 0 or 1 and in either case thanks to Lemma we
have

1\2)1 Ah(a (jNS‘lro) Lo ((F+ 1)NS—1r0) ) 2w Ah((0),a(L)) + ds(a)eL. (7.20)

Then for all j € {0,..., N — 1} such that oz([jNS_lro, (7+ l)NS_lrg]) is not e-monotonous
N-1

> Ah(a (kN + iN*"'rg) ,a ((k+ D)Nrg + jN"'rg))
k=0

G . _ el
zk,c,NAh(a(jNS 17“0),04((3 + 1)NS 1r0)) + N

which happens Ndg_;(«) times. Therefore we have that

N2-1
S Ah(a (iNSfQTO) o ((i+ 1)N3727‘0) ) 2w AR((0),a(r)) + 6s(a)eL + Nés_l(a)%
=0

2k e AR((0),a(r)) + (85(a) + dg-1 () )eL.

By doing this another S — 2 times we obtain

NS-1 S
Z(:) Ah(a(irg) , a ((i+1)rg) ) 2k cwAh((0), a(r)) + L ;55(04).

Furthermore we have the following estimate using the Lipschitz property of h

NS-1 NS-1

Z{; Ah(a (irg) e ((i+1)rg) ) < Z{; du(c (irg) ;o ((i + 1)ro) )

< NS(krg+c¢) <2kL, withrg>

El ey

Hence

S 1 1
Y 05() Shem —2kL Sp e — (7.21)
= eL €
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7.3 Height respecting tetrahedric quadrilaterals

In this subsection we show that a coarse tetrahedric quadrilateral whose sides are vertical geodesics,
has two vertices on the same X-horosphere, and the other two on the same Y'-horosphere (see [6.0.10
for the definition of such horospheres). We call such a configuration a tetrahedron configuration.

Definition 7.3.1. (Orientation) We define the orientation function on the paths of X x Y as follows. For
allT >0and~:[0,T] > X xY we have

tifh(v(0)) < h(v(T)), upward

L ifh(1(0)) > h(4(T)),  downward (7.22)

orientation(y) = {

Proposition 7.3.2. (Tetrahedron lemma)

Letay, az, b1, by e X mY. Let D > 1 and fori,j € {1,2}, let Vj; : [0,1;;] = X n Y be vertical geodesic
segments linking the D-neighbourhood of a; to the D-neighbourhood of b;, and diverging quickly from
each other. More specifically, we assume for all i,j € {1,2}:

(a) d(V;j(0),a;) <D
(b) d(Vij(lij),b5) < D

(©) d(Vir (1), im(Vig)) > 1’5—0 _D, Vte[0,1n]

(@ d(Vaj(1aj = ), im(V))) > === D, ¥ee [0, 1]

If foralli,j € {1,2}, l;; > 2D and the vertical geodesic segments V;; share the same orientation, then
there exists a constant M (») such that one of the two following statements holds:

1. The four vertical geodesics V;; are upward oriented and as is in the (M D)-neighbourhood of the X -
horosphere containing a1, and by is in the (M D)-neighbourhood of the Y -horosphere containing by .
Otherwise stated, we have dy (a} ,a} ) < MD and dx (b7, b5 ) < M D.

2. The four vertical geodesics V;; are downward oriented and as is in the (M D)-neighbourhood of the
Y -horosphere containing a1, and bs is in the (M D)-neighbourhood of the X -horosphere contain-
ing by. Otherwise stated, we have d x (a{(, ag() <MD and dy (b%/, bg) <MD.

Proposition is illustrated in Figure [7.4]

Proof.
For all ,j € {1,2} let us denote by

a; = (a;x,ay); bj = (bX bY); Vij = (V-X VY). (7.23)

i J oY i > g
The hypothesis (a) gives us
d(Vi1(0),Vi2(0)) <d(Vi1(0), a;) + d(ai, Viz(0)) < 2D (7.24)
By hypothesis (b)
d(Vi;j(l15), Vo (l25)) < 2D

Without loss of generality we can assume that for all 4, j € {1,2} orientation(V;;) =1, which means
that h(a;) < h(b;). Then Vi, j € {1,2} and ¢ € [0, ;1] we have h(V;;(t)) =t + h(V;;(0)), hence

(Vi (1)) =t +h(V;;(0))
h(Vij (1)) = ~t = h(V;5(0))
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Vi (t) /-~ X — horosphere
x e
!

Figure 7.4: A coarse vertical quadrilateral of Propositionm

Since X and Y are Busemann convex spaces, Vi,j € {1,2}
t—dy (Vfl/(t), Vzg(t)) is convex on [0, min(l;1,l;2)].
t>dx (Vl)j((llj -t), VQ)]-((lgj - t)) is convex on [0, min(ly;,l2;)].

These two applications are also bounded by 2D on the end-points of the intervals, hence on all the
intervals. Therefore

Vt € [0,min(li1, li2)], dy (Vi (£), Vi3 (t)) < 2D (7.25)
vVt e [0,min(ly;,1a5)], dx (ij(zlj —t),vz)j(lgj -t))<2D

We can assume without loss of generality that [1; < l9; and that [12 < l25. Then

dx (V7Y (0), Vi) (Ia1 —11)) < 2D (7.26)
dx (Vi5 (0), Vs (I22 — 112)) < 2D (7.27)

Let us denote Aly = lo; — 11 and Al = l9g — 112, our goal is to show that these two real numbers are
sufficiently close. We have Vi, j € {1,2}

Ah(ai, bj) -2D < lij < Ah(ai, bj) +2D
By subtracting these inequalities we get

—h(ag) + h(al) —4D <191 - 111 £ —h(ag) + h(al) +4D
—h(ag) + h(al) —4D <l9o— 115 < —h(a2) + h(al) +4D

Then |Al; — Alg| < 8D. However

dx (V5 (AlL), Vay (Alr)) <dx (Vi (Al), Viy (0)) +dx (VY (0), Vi3 (0))
+dx (Vi3 (0), Vas (Alz)) + dx (Vs (Ala), Vay (Aly)).
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By the inequalities (7.26) and (7.27) we obtain

dx (Vs (Al1), Vis (Al)) <2D + dx (ViY (0), Vi3 (0)) + 2D + |Aly - Al
<4D +2D +8D <14D. (7.28)

By using assumption (c¢) and the characterisation of the distance on horospherical products we have
Al
1—01 <dyw (Vzl(All), VQQ(All))
<dx (Vi) (Alr), Vi (Aly)) +dy (Vah (Aly), Vay (Aly))
— Ah (Va1 (Aly), Vag(Aly)) + M(x), by Corollary[d3:4]
<dx (V3 (Aly), Vsy (Al1)) +2D + M, by inequality
<16D + M, by inequality (7.28),

which provides us with Al; < 10(16D + M + D) = 170D + 10M. We have

-D+

dx (af',a3") < dx (af, Vi (0)) + dx (VX (0), V31 (0)) + dix (V&Y (0),a3)
<dx (VX (0), Vi (Al)) +dx (Vi) (Aly), Vi (0)) +2D
<2D+170D +10M +2D < 174D +10M , by inequality (7.26).

From this inequality we deduce that |h(a1) — h(a2)| < 174D + 10M <, D. Similarly we deduce the
following inequalities.

dy(b%/vb%/) = D’
|h(b1) - h(b2)| < D.

O]

Four points which satisfies the assumption of Proposition [7.3.2] are called a vertical quadrilateral
with nodes of scale D.

7.4 Orientation and tetrahedric quadrilaterals

From now on we fix a (k, ¢)-quasi-isometry ® : X xY — X xY. The second tetrahedron configuration
consists of two points on an X-horosphere and pairwise linked to two points on a Y -horosphere by
four vertical geodesic segments.

The following proposition states that if two points on an X -horosphere are sufficiently far from
each other, if two points on an Y -horosphere are sufficiently far from each other and if the vertical
geodesic segments have c-monotone images under a (k, ¢)-quasi-isometry @, then all the images of
the vertical geodesic segments by ® share the same orientation.

We first show that their exists a constant M (k, ¢, x) such that the concatenation of two consecutive
e-monotone quasigeodesic segments sharing the same orientation is an M c-monotone quasigeodesic
segment. This result will only be used in the proof of Proposition[7.4.2]

Lemma7.4.1. Letk>1,¢>0,D >0, >0,T > Ds;fc andlety:[0,T] » XwY andvy': [0,T] » XnY
be two e-monotone, (k, c)-quasigeodesic segments such that:

1. orientation(~y) = orientation(v")

2. du(v(T),7'(0)) <D
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Let#4:[0,2T] - X =Y be the concatenation of v and ~'

. (1) ift €[0,T]
V(@) = { fvy’(t—T) ift €|T, 27T (7.29)

Then there exists M (k,c,x) such that 7 is an Me-monotone, (k, M<T)-quasigeodesic segment.

Proof. We can assume without loss of generality that v and 4 are upward oriented, we first show that
there exists M (k, ¢, ) such that 7 is M e-monotone. Let t1, t5 € [0,27] such that h(F(t1)) = h(F(t2)).
Ifboth ¢; and tg are in [0, T'] or both are in | T', 2T'], there is nothing to do since y and 7 are e-monotone.
Then we can assume without loss of generality that ¢; € [0,7'] and t5 €]T,2T]. Since v is upward
oriented we have h(y(0)) < h(y(T")), therefore, because ~ is e-monotone and continuous, we have

h(y(t1)) < h(y(T)) + €T, (7.30)

otherwise, by continuity there exists ¢} in [0, ¢1] such that h(v(t])) = h(~y(T')) contradicting the e-
monotonicity. Two cases arise:

(@) AR(Y'(t2=T),7'(0)) <eT
(b) Ah('(t2-T),7'(0)) > T

Let us consider the first case (a). We know that h(v(t1)) = h(5(t1)) = h(7(t2)) = h(7'(t2 = T)) and
that Ah(7(T"),~'(0)) < D, then by the triangle inequality we have

Ah(y(t1),7(T)) = Ah(y/(ta = T),7(T)) < Ah(y/(ta = T),7'(0)) + Ah(+/(0),7(T)) <eT + D
According to Corollary hisa (k, MeT)-quasi-isometry along e-monotone quasigeodesics. Hence
lt = T| < kAR(y(t1),7(T)) + MeT < (k+ M)eT + kD < (2k + M)eT, quadby assumption on 7,

lta = T| < kAR(y'(t2 = T),7'(0)) + MeT < (k + M)eT

Therefore by the triangle inequality we obtain [t — to| < (3k + M)e(2T).
We consider now the second case (b). By Corollary[7.1.5] h is a (k, MeT')-quasi-isometry, therefore

1
Ah(y (t2-T),7'(0)) 2 E|t2 =T|-MeT

Furthermore, ' is upward oriented, hence we have that h(y'(0)) < h(7'(t2 —= T')), otherwise, as for
~.,by continuity one can construct ¢} € [t2,7 + T"] contradicting the e-monotonicity of 7'. Hence we
have

1
(Y (t2 =T)) 2 h(v/(0)) + Zt2 = T| = MeT
In combination with inequality it provides us with

h(y(t1)) < h(V(T)) +eT < h(7'(0)) + D + €T
<h(y'(ta-T)) - %|t2 -T|+D+(1+M)eT

However h(~(t1)) = h(7'(t2—T)) by definition of ¢; and ¢, therefore 0 < —%|t2 =T|+D+(1+M)eT,
which gives

|t2—T| < (1+M)k€T+kD <3MEeT. (7.31)
Hence

ALY (t2 =T),7'(0)) < dw (Y (t2 = T),~'(0)) < kfta = T| + ¢ < (3MKE? + 1)eT
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Since h(7'(t2 = T)) = h(y(t1)), thanks to the triangle inequality we obtain

Ah(y(t1),7(T)) < Ah(y(t1),7'(0)) + AR(~'(0),7(T))
<(BME?+1)eT + D < (3ME?* + 2)eT (7.32)
Both inequalities and in combination with the fact that h is a (k, MeT')-quasigeodesic
segment provide us with
Ity —to| = [t1 = T| + |T — to| < k(3ME? +2)eT + MeT + 3MkeT
9k> M
2

<93 MeT < e(2T) , sincek>1, M >1.

In the view of cases (@) and (b) we conclude that 7 is 9k;M e-monotone.

To prove that 4 is a (k,3MeT')-quasigeodesic segment, we must check the upper-bound and lower
bound required. Let ¢1,t2 € [0,27], as for the e-monotonicity property, since v and ~' are (k, ¢)-
quasigeodesics, we can assume that ¢; € [0,7] and t5 €]T,2T]. By the triangle inequality, the upper-

bound is straightforward.

d(Y(t1),7(t2)) = du(y(t1),7' (82 = T))
< dw(v(t1),7(T)) + du((T),7(0)) + du (7(0), 7' (t2 = T))
<Sk(T-t1)+c+D+k(te-T)+c=kl|ta—t1|+2c+ D
< kltg —t1]+ 3T, by the assumed lower bound on 7.

Last inequality holds because v and 7 are (k, ¢)-quasigeodesics. To prove the lower-bound we will
proceed similarly as for the e-monotonicity. We have

du(F(t1), 3(t2)) = du(y(t2),7'(t2 = 7))
> Ah(’y(tl), v'(t2=T)), since h is Lipschitz.
Similarly to inequality we have
h(v'(ta =T)) 2 h('(0)) - €T. (7.33)
Therefore
Ab(y(t1),7'(t2 = T)) 2 h(y'(t2 = T)) = h(7(11))
=(h(7'(t2 = T)) +£T) = h(7'(0)) + ~(7'(0)) = h(+(T)) + h(y(T)) = (h(7(t1)) = €T') - 2T
=|(h(v(t2 = 1)) + T') = h(y'(0)| + [A(A(T)) = (h(7(t1)) - €T))|
+h(7'(0)) = h(y(T)) - 2¢T , by inequalities and (7:33),
>|h('(t2 = T)) = h(7'(0))| + [R(v(T)) = h(y(t1))| - D — 4T, by the triangle inequality,

1 1
Z%|t2 -T|-MeT + E|T —t1| - MeT — D —4eT, because his a (k, MeT')-quasigeodesic.

Hence
du(3(t1),7(t2)) 2AR(7(t1), (t2 = 1))
> %(t2 —t1) =D - (2M +4)eT > %(t2 ) = TMeT.
Which is the lower-bound we expected and proves that 7 is a (k, 7MeT')-quasigeodesic. O

Proposition 7.4.2. Leth € Randletk > 1, ¢ > 0 and e > 0. Let ® be a self (k,c)-quasi-isometry
of XwY. Let D > 1 and R > %. Fori,j € {1,2} let a;, bj be four points of X x Y verifying
d(ai,a2) > 10kMeR +2kc and d(by,ba) > 10kMeR + 2kc, where M is the constant involved in Lemma
and let V; j : [0, R] = X w Y be four vertical geodesic segments linking the D-neighbourhood of a;
to the D-neighbourhood of b;, such that:
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Figure 7.5: Case (a) in proof of Proposition

h(V11(0)) = h(V22(0)) = h(ar) = h(az) = h
h(Vir(R)) = h(Vaz(R)) = h(b1) = h(b2) = h + R

h(Vi2(0)) = h(V21(0)) = b+ R

h(Viz(R)) = h(Va1(R)) = h
e ®oVj; ise-monotone

Then the following statement holds:

orientation(@ o Vn) = orientation(q) o Vgg)

Proof. Up to the additive constant [, one can consider V7,1 U V51U V52UV 5 as a coarse quadrilateral
composed with a; and b; as its vertices, and with V; ; as its edges. To make the proof easier to follow,
we shall use a vector of arrows to describe the orientations of the edges of the quadrilateral in play as
follows:

Orientation(vl,l, ‘/2,1, ‘/2,27 ‘/1,2) = (Ta l> T, l’)

Similarly, we consider orientations of the image of V7 1 U Va1 U Voo U Vi 2 by ® as the successive
orientations of the paths ® o V; ;. We will proceed by contradiction to prove the lemma. Let us assume
that orientation(Q) o VLl) # orientation(q) o Vg,g). We can assume without loss of generality that
orientation(q)(VLl)) =1, therefore orientation(CD(VQ,Q)) =].
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Hence there are four possible orientations for <I>(V1,1 uVaiuVasu VLQ):

@ (neh k) (LD © (LLED) @ (L

Let us consider the case (a) (illustrated in Figure , we have orientation(®(V2,1)) =1 and
orientation(CD(VLQ)) =1. Hence we have

orientation(®(V;2)) = orientation(®(Vi1)) = orientation(@(Vm))
Furthermore ® is a (k, ¢)-quasi-isometry and both V; 2(R) and V; 1(0) are close to a1, hence
du(@(Vi2(R)), ©(V1,1(0))) < k2D + ¢
Similarly we have
du(@(Vi,1(R)), ©(V2,1(0))) < k2D + ¢

Then by Lemma there exists M (k,c,») such that the concatenation of ®(V;2), ®(V;1) and
®(Va,1) is an Me-monotone (k, MeT)-quasigeodesic. Therefore by Proposition there exists a
constant M (k,c,») and a vertical geodesic segment V' such that

dug(V,2(Vig) u®(Vi1) u®(Va1)) < MeR (7.34)

Furthermore, applying Proposition on ® (V3 2) provides us with the existence of a vertical geodesic
segment V' such that

dug(V', ®(Va2)) < MeR. (7.35)

Moreover dy(V2,2(0),V51(R)) < 2D (the two points are close to as) and dw(Va2(R), V1,2(0)) <
2D (the two points are close to by), therefore V and V' are two vertical geodesics with endpoints
(k2D +c¢)+2MeR close to (a2 ) and ®(b2). Thereby, these two vertical geodesic segments stay close
to each other, we have

dug(V, V') < (k2D +¢) + 2MeR < 3Me, by assumption on R.

Then, we show by the triangle inequality that ®(a;) is close to ®(V522).
du(®(a1), ®(Va2)) < du(®(a1), V) + dug(V, V') + dug(V', @(Va2)) < 5MeR (7.36)
However, the assumption d(a1, a2) > 10kMeR + 2kc gives us that a; is sufficiently far from V5 5
Vt e [0, R], du(a1, Va2 (t)) > Ah(ar, Vap(t)) =t

and, d, (al, V272(t)) >dy (al, ag) —dy (ag, V272(t)) > 10kMeR + 2kc - t.

Therefore
Vt € [0, R], du(®(a1),®(Va2(t))) 2 k' du(ar1, Va2(t)) - ¢

S t+10kMeR + 2kc -t
2k

Which contradicts inequality . Thereby, in case (@), oV ; and oV 5 share the same orientation.
The other three cases (b), (c¢) and (d) are treated similarly. We first show that <I>(V171 uVa1UVa U V1,2)
is in the Me R-neighbourhood of two vertical geodesic segments which, depending on the case, have
endpoints

—c=5MeR,
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(b) close to ®(ay) and ®(as).
(c) close to ®(by) and P(b2).
(d) close to ®(a1) and ®(by).
Which, depending on the case, contradicts the fact that:
(b) du(b1,Va2(t)) >5MeR.
(©) du(a1,Vap(t)) >5MeR.

(d) du(b2,Vi,1(t)) >5MeR.
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Chapter 8

Measure and Box-tiling

8.1 Appropriate measure and horopointed admissible space

In the setting of horospherical product, an important characteristics is that they are union of products
of horospheres.

As such, if one wants to endow them with a measure, it makes sense that the measure should
disintegrate along these horospherical product, and should be related somehow to the measures and
the geometries of the initial spaces and its horospheres.

The properties we present are satisfied when our initial space are Riemannian manifolds for in-
stance, or graphs of bounded geometry. We will also see in Section [10] that Heintze group are another
set of spaces which satisfies them, making our requirements sound.

Definition 8.1.1. (Admissible horopointed measured metric spaces.)

Let (X, d) be a 6-hyperbolic, Busemann, proper, geodesically complete, metric space, and let a € 0X be a
point on the Gromov boundary of X. A Borel measure X on X will be said (X, a) horo-admissible if and
only if (E'1), (E2) and (E3) are satisfied.

(E1) (There exists a direction a € 0X such that) u”* is desintegrable along the height function h,, that is
For all z € R, there exists a Borel measure /Li( on X, = h™'(2) such that for any measurable set A c X
X (A) = [ 1 (A2)dz
zeR
(E2) Controllable geometry for the measures j12 on horospheres, there exists My > 2885 such that
V1,22 € X, we have Mi((xl) (D (1)) xx Mi((m) (D (22))
(E3) There exists m > 0 such that for all zo € R, and for all measurable set U c X,
Vz <z, €m0 X (U) xx il (o (U)

The space (X, a,d, i) will be called a horo-pointed admissible metric measured space, or just admissible.

The assumption (E£2), in combination with Lemma provides us with a uniform control on the
measure of disks of any radius.

Lemma 8.1.2. Letr > My. Then for all x € X we have

fin(zy (Dr(2)) %x €™2

89
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h(x) + —”'QMO

h(z) + 3
h(z) + —’“_QMO

h(z)

Figure 8.1: Proof of Lemmam

Proof. The proof is illustrated in Figure Let V be a vertical geodesic line containing x and let
My > 2886 be the constant involved assumption (E£2). Let us denote x; the point of V,, at the height

h(x)+ % and let 5 be the point of V,, at the height h(x) + %. Applying Lemmawith p =11,

2o = h(x) + % and z = h(x) provides us with

Dr(x) = D2(z0—z)—Mo (.T) C Th(z) (DMO (331)) .

Similarly, applying Lemma with p = x9, 20 = h(z) + % and z = h(z) provides us with
Th(z) (Dao(22)) € Dy(). Furthermore by assumption (£3) then assumption (£2) we have

(7'+1\/IO

tiney () (Do (1)) xx ™2 ) (Dagy (21)) xx €2,

since My depends only on X. Similarly we have MhX(;g) (Wh(x) (D, (xg))) <x €™3, therefore by the

two previously obtained inclusions we have pu,(,) (Dr (7)) Xx ems, O

Heuristically, the next lemma asserts that the measure of the boundary of a disk is small in com-
parison to the measure of the disk.

Lemma 8.1.3. Let My be the constant involved in assumption (E5) and let M be the constant involved
in Corollary Let zp € R, g € X,, and C c X, be a set containing Dy, (x¢) and contained in
Do, (o). Then for all z; < zg, and for all v < 2|21 — 29| — 2Mo — M we have

iz, (It (721(0))) 2w 2, (72, (C))

This Lemma might seems to contradict Lemma|8.1.2] however the r-interior of a disk of radius R is
very different from a disk of radius R — r on horospheres, for R sufficiently greater than 7.

Proof. Let us denote J := Int, (72 (C)). By definition we have

Wi(C) NJi={ze wi(C)|dX (:B,’]Ti(c’)c) <r} (8.1)
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At the height 21 + 5, let 21 € 71' (C) \ 7'(' (J) then, at the height 21, there exists 2] € 72 (C) \ J

such that z; € V.. Furthermore by the characterlsatlon 1} there exists x5, € 7 (C )¢ such that
d(x},xb) <r. Then by Lemma [6.0.3] there exists M (&) such that

dy (Vxé (21 + g) Vi, (z1 + g)) - dx (Vxé (21 + g) ,xl) <M, (8.2)

With Vi, (z1 + g) € Wﬁ o (C)¢. Therefore by the triangle inequality and Lemma 6.0.6

T
d(.’El, §(+ (1"0))> d(l‘l,vl (Zl+2))+d(vx'2 (Zl+§)7ﬂ-i+ (l'[)))
22|20—21|—’I“—M0—M

Since last inequality holds for all x; € 7T (C) \ 7T (J ), we have

D2‘20—21|—T—M0—M(7T§+% (w0)) © Wi% ()
Therefore by Lemma[6.0.6
Dajy—s|-mo-nr (T2 (x0)) € J
Moreover, .J c mX (C) c Doz |+ Mo (72 (20)), hence by Lemma

ui(J) Xy elzo—z1m Xx ,ui (ﬂi(C))

O]

In order to achieve a rigidity result on horospherical products, we will need another measure \*
in the same measure class as pX.

Definition 8.1.4. (measure \X of X)
Let X be an admissible horopointed space. The measure \X on X is defined from a set of weighted measure
AX on the level set X . :

1. VzeR, )\fz mz'ug(

2. For all measurable set Ac X, \X(A):= [ X (A,)dz,
zeR

where m is the constant involved in (E3).

For the Log model of the hyperbolic plane, this measure AX turns out to be the Lebesgue measure
on R?, and the measure ;X is the Riemannian area. Up to a multiplicative constant, the measure A% is
constant along the projections. By assumption (E£3), the following property is immediate:

Property 8.1.5. For all measurable set U c X we have
Va1, 20 <™ (U), A (72, (U)) xx AL (72, (U)) (8.3)

Otherwise stated we have the following relation between two push-forwards of the measure on horospheres
Ty * )\ig XX Ty * )\‘2

Following the fact that height level sets of X x Y are direct products of horospheres, we define
desintegrable measures on the horospherical products from the desintegrable measures on X and Y.
We recall that Vz € R

(X®Y), =X, xY_,
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Definition 8.1.6. (Measure 1 on X xY)
Let (X, X)) and (Y, i¥") be two admissible spaces. Then for all measurable set U ¢ X xY, we define the
measure 1 on X x Y by

pxwy (U) = fuf@ufz(Uz)dz.
R

For all measurable set U c¢ X x Y we have

MXMY(U)Z[ f ,u‘ZX(Ug)du}fz dz,

R eY_,
where U := {z € X | (z,y) € U, }. (This measure might be not well defined).

Remark 8.1.7. A couple (X,Y") of horo-pointed admissible spaces is itself called admissible if the measure
pxwy of Definition[8.1.4 is well defined.

From now on we fix two horo-pointed metric spaces X and Y, with m > 0 the constant of assump-
tion (E3) for X and n > 0 the constant of assumption (E3) for Y. We will assume in Section [9.3|and
afterwards that (X,Y") is an admissible couple with m > n.

We define similarly a measure Ax,y on X x Y.

Definition 8.1.8. (Measure A on X ©Y")
Let (X, 11”X) and (Y, 1Y) be two admissible spaces. Then for all measurable subset U ¢ X x Y’

Ay (U) = / A @AY (U.)dz = f em X g Y (U,)dz
R R
For all measurable subset U c X x Y we have

AXNY(U):f f ME(UY)dAY, | dz.
R

eY_,

From now on, we will simply denote by p the measure 1 xy and by A the measure Ax,y .

8.2 Box-tiling of X

In this subsection we tile a proper, geodesically complete, Gromov hyperbolic and Busemann space X
with pieces called boxes.

Definition 8.2.1. (Box at scale R)

Let X be admissible horo-pointed space. Let My be the constant of (E2), let R > 0, let x be a point
of X and let C(x) be a subset of X}, containing Dy, (x) and contained in Doy, (). Then, the box
B(z,C(x), R) is defined by

B(z,C(x), R) := U T (C(x))

ze[h(z)-R,h(z)[

We will often omit the parameter C(z) in the notation of a box. Later we depict an appropriate
choice for these spaces C(x). The idea of the tiling is first to distinguish layers of thickness R, then to
decompose each of these layers into disjoint boxes using a tiling of disjoint cells C(x) as the top of these
boxes. In the Log model of the hyperbolic plane, when the cell C(z) is a segment of an horosphere,
the associated box is a rectangle of R%. In [10]], Eskin, Fisher and Whyte tile the hyperbolic plane with
translates of such a rectangle. However the space we consider might not be homogeneous, therefore we
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will tile Gromov hyperbolic spaces with boxes which are generically not the translate of one another.
We recall that ;. refers to the r-neighbourhood of a subspace.

A subset of a metric space X is k-separated if and only any two of its elements are at least at distance
k. A maximal such set for the inclusion is called maximal separating set. We shall denote by D(X) such
a set.

One easily sees that a maximal separated set is then k covering. That is the union of the metric ball
of radius k centred at the points of D(X) cover the whole space.

To construct a box tiling of X we first fix a scale R > 0. Let My be the constant involved in
assumption (FE2), then we chose a 2Mj-maximal separating set D (X, r) of the horospheres X, g,
with n € Z. Such maximal separating sets exist since X is proper and so are X, . Let us call nuclei
the points in these maximal separating sets. For every nucleus x € D(X,g), we fix a cell C(x) such
that Dy, (z) c C(x) c Doy (). Therefore, given two different nuclei z, 2" € D (X, r), we have
Dy, (z) n Dy, (2") = @. We choose these cells such that they are ji,,p measurable and such that they
tile their respective horospheres:

VneZ, || C(z)=Xug.
xED(XnR)

As an example, one can take Voronoi cells:
VC(z) = {p € Xprld(p,z) <d(p,z’), forallz’ e D (X,r)}

These cells might not be disjoint, but a point p € X, is contained in a finite number of Voronoi cells
since X is proper. Therefore, by choosing (for example thanks to an arbitrary order on D (X,r)) a
unique cell containing p, and removing p from the others, there exists a tiling X,,p by cells C(z).
Now, for all n € Z and for all z € D (X,,g) we define the box B(x, R) at scale R of nucleus x by

B(xz,R) := U m-(C(z))

ze[(n-1)R;nR[

(n—1)Rx- —*/-,-/- S

Figure 8.2: Box-tiling

In this definition, we chose [(n — 1) R;nR[ for the boxes” heights. It is an arbitrary choice, one
could prefer to use |(n—1)R;nR] as these heights intervals. Moreover, to construct the horospherical
product of X and Y, we will use intervals of the form [...;...[for X and ]...;...]for Y.

We recall that the cells C(x) tile the horospheres X,,z. Furthermore there exists a unique vertical
geodesic ray leaving each point of X. Consequently we have a box tiling of X at scale R:

xX=1] || B@R) (8.4)

nez xED(XnR)
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The next lemma explains that any box contains and is contained in metric balls of similar scales.

Lemma 8.2.2. There exists a constant M (X)) such that, for all x € X andr > M there exist two boxes
B (%) and B(3r) verifying

B(g) c B(z,r) c B(3r)

Proof is illustrated in Figure

h a
h(iCo)

Figure 8.3: Proof of Lemma

Proof. Let C(x) be a subset of Xj,(,) containing D(z, My) and contained in D(z,2Mp). Let us denote

by B (%) the box at scale § constructed from the cell C(x). For all " € B (%) let us denote by z :=
Var(h(z)) the point of V, at the height h(z), we have

dx(z',7) <dx (a:', ac") +dx (a:",a:) <=+2My<r, forr>4My,

N3

which gives us that 2’ € B(x,r). To prove the second inclusion, let us denote by V. the unique (since X
is Busemann convex) vertical geodesic ray leaving x. Let 2 € im(V},) such that h(z¢) = h(x) +2r and
C(xo) be a subset of Xj,(,,) containing D(z¢, M) and contained in D(xo,2M ). Then we claim that
B(z,r) is included in the box of radius 3r constructed from the cell C(z¢). Let 2" € B(x, ), we recall
that d,(2/,z) = dx(2',x) - Ah(2/,x). By Lemma [3.1.2 we have that d(V,(h(z) + 2r), Vyr (h(z) +
2r)) <960 = M sincer > dx (2',z) > 3d, (2, z) and since the distance between two vertical geodesics
is decreasing in the upward direction. Therefore V. (h(z) + 2r) € C(xg). Furthermore Ah(zo,z") <
Ah(xg,x) + Ah(z,2") < 3r, hence x’ € B(3r). O

8.3 Tiling a big box by small boxes

Let R > 0 and N € N, next result shows that a box at scale N R can be tiled with boxes at scale R.

Proposition 8.3.1. Let My be the constant of assumption (E2). Let R > 0 and N € N. Let BX be a box
at scale N R, and let us denote by h™ := h~ (BX) the lowest height of BX. Then there exists a box tiling at
scale R of BX. Otherwise stated for allk € {1,..., N} there exists D, (BX) c Bi&kR such that:

1. Forallz € Dy, (BX), there exists a cell C(x) such that Dy, (z) < C(x) c Dy, (2).
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N
2. Wehave || || BX(x,C(x),R) = BX.
k=1 zeDy (BY)

Proof. To tile the box BX we first tile by cells all of its level sets at height b~ + kR. Let k € {1,..., N},
and let Dy, (BX) be an 2My-maximal separating set of Intyy, (B})L(_JrkR). Then:

1. Forall 2,z € Dy (BX) with 2 # 2" we have Dy, (2) 0 Dy (2') = @.

2. Intpy, (B")L(_‘FkR) c U D2, (JU)
Furthermore Ny, (Intaz, (Bi-yir)) € B, pp and for all @ € Intyy, (Bi<,, ) we have Dy, (2) c
B;X ., r- Therefore

|_| DMo(x) c BhX*+k:R c U D3M0(x) (8.5)
zeDy, (BX) zeDy, (BX)

For all x € Dy, (BX), we define
C(z):={pe BX . r|d(p,z) < d(p,z') forall 2’ € Dy, (BX)} .

As discussed at the beginning of Section 8.2] these cells might intersect each other on their boundaries.
However, a point contained in different cells can be removed in all of them except one, making them
disjoint. The choice of cells on which we remove boundary points can be made thanks to an arbitrary
order on the finite set D, (BX )

By the inclusions , for all x € Dy, (BX) we have Dy, (z) c C(x) c D3y, (x) and

|_| C(z) = BhX—+kR'
JZGDk(BX)

Furthermore, since vertical geodesic rays are uniquely determined by their starting point (because X
is Busemann), a tiling with cells provides us with a box tiling:

Ll BY(2,C(2), ) = U B
2eD (BX) ze[h~+(k-1)R;h~+kR[
Taking the union on k € {1, ..., N} provides us with the conclusion. O

8.4 Box-tiling of X x Y

The boxes B of a horospherical product X » Y are constructed as the horospherical products of boxes
B*X x BY . Therefore they induce a tiling of X Y. Such boxes are illustrated by Figure

Definition 8.4.1. (Box of X » Y at scale R)
Let X andY be two admissible spaces. A set B c X nY is called box at scale R of X n'Y if there exists
BX a box at scale R of X and BY a box at scale R of Y such that:

1. b~ (BY) =-h*(BY)
2. B:=B*uwBY ={(z,y) e BX x BY |hx(x) = -hy(y)}
Let us point out that in the last definition, the box of Y is in fact defined by

BY (y,R) := U m(C(v)). (8.6)
ze]-nR;(1-n)R]

This choice on the boundaries of the height intervals allows a precise match for the height inside

the two boxes. Furthermore, one can see that given a box-tiling of X and a box-tiling of Y, the natural
subsequent tiling on X x Y provides the box tiling of X x Y by restriction.
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Figure 8.4: Boxin X x Y

Proposition 8.4.2. (Box-tiling of X x Y at scale R)
Let X andY be two admissible spaces. Let R be a positive number and let us consider the two following
box tilings of X and Y :

X=|| || B*aR)

neZ zeD(X,Rr)

v=11 U B"(R)

nez yED(YnR)

Then the boxes of X » Y constructed from boxes at opposite height in X and Y are a box tiling of X x Y.
We have

XwuY=|] L BX(x,R) w BY (y, R)
nez (x7y)€'D(XnR)X'D(§/(17n)R)

Proof. Let us consider the box tilings of X and Y:

x=1] U B%uR)

nez IED(XRR)

Y= LI B"(R)

nez yED(}/nR)

We first show that the intersection of two distinct boxes is empty. Let ny,ns € R, 1 € D (X,,R),
2 € D(Xy,r), 11 €D (Y(l_m)R) and yo € D (X(l_m)R) such that (z1,y1) # (22,y2). Then we have
either 21 # x5 or 31 # yo. Let us consider the case 1 # 29, then BX (21, R) # BX (29, R), and since
they are two tiles of the box tiling of X, we have BX (z1, R) n BX (z2, R) = @. Therefore

V(pip1) € BY (21, R) w B (y1, R), V (303 ) € B (2, R) % BY (y2, R) we have i # p3.
Hence (p%,pY) # (p5, py ), which gives us
(B* (w1, R) w BY (y1,R)) n (B* (w2, R) » B (y2, R)) = @.

The case when y; # y2 provide us with the same conclusion. Then we prove that the whole space
X nY is covered by the horospherical product of boxes. Let p = (pX , py) € X x Y. There exists
n € Z such that (n - 1) R < h(p) < nR, hence there exist z € D(X,g) and y € D(Y(1_,)r) such that
p~ € BX(x,R) and p¥ € BY (y, R). Therefore p € BX (x, R) » BY (y, R). O
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8.5 Measure of balls, boxes and neighbourhoods

The results of this sections focus on estimates on the measure 4 of balls and boxes.

Lemma 8.5.1. There exists M (x) such that for allv > M and all box B at scaler of X x'Y" we have
w(B) = ™" (8.7)

Proof. Without loss of generality we can assume that i (B) = [0;7[. Let us denote by C* the cell of
B¥ and C" the cell of BY. Then

w(B) = f p=(B)dz = [ Mf (Bf)uf (Bf)dz, since B, = Bg( x Bzfz
0 0

X f emr=2) X (CX) "y (CY) dz, by assumption (E£3) and definition of boxes,

0
T

X emrfe("_m)zdz, by Lemma[8.1.2

0
e _ on”

mr

m-n
However m > n, hence for r > ﬁ we have %emr > e"". Therefore

mr nr mr
—€

e (&

>, e
m-n  2(m-n)
O
Combining Lemmas and[8.5.1] we get the next corollary.
Corollary 8.5.2. There exists M () such that for anyr > M and anyp € X x Y we have
€2’ <, w(B(p,r)) < e3mr (8.8)

Therefore we have the following estimate between ball measures.

Corollary 8.5.3. There exists M () such that for anyro > 11 > M and forallp;,ps e X nY

exp (%|7°2 —r1lm)u(B(p1,m1)) < u(B(p2,72)) < exp (6]r2 = r1|m ) pu(B(p1,71))
Corollary 8.5.4. There exists M (x) such that for anyrg >y > M and forall Ac X nY
Ny (4)) = €21 (G, (4))
Furthermore, if there exists z € R such that A c X, we have
1 (Nu(A)) 2w pe (N (A4) n X2)
In particular, forallpe (X xY),

p(B(p, M)) 2w p1z (Dar(p))

Proof. Since X xY is a proper metric space, by a covering lemma of [19] Heinonen], there exists a set
Z c A such that:

1. The balls B(p,r1) for p € Z are pairwise disjoint.
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2. We have the following inclusions:

LI B(p,r1) € Niy (A) € U B(p,5m1)

pEZ pEZ
Therefore NV,.,(A) ¢ U B(p,5r1 + (ra —11)).
peZ

Moreover, if A c X, for 11 = M we have

|_| Dy(p) c Ny (A)n X, U Dsn(p),

peZ peZ

andforall pe Z, u.(B(p,5M)) 2w 1 2w pz(Dspr(p)). Hence
(N (4)) 2w 3 1(B(p,5M))

peZ

R %Hz(D5M(P)) “u MUz (NM(A) sz)

A (k,c)-quasi-isometry ® : X x Y - X Y "quasi"-preserve the measure y.

Lemma 8.5.5. For all (k,c)-quasi-isometry ® : X nY — X xY and for all measurable subsetU c X xY’
we have

H(Nigerny (U)) 2o (N3 ((0)))

Proof. Since X Y is a proper metric space, by a classical covering lemma of [19, Heinonen] there
exists a set Z c U such that:

1. The balls B(p, k(c+ 1)) for p € Z are pairwise disjoint.

2. We have the following inclusions:

|_Z|B(p,k‘(c+ 1)) € Ni(erny(U) € UZB(p’5k‘(0+ 1))

Since P is a (k, ¢)-quasi-isometry, ®(7) verifies:
1. The balls B(q, 1) for g € ®(Z) are pairwise disjoint.

2. We have the following inclusions:

| | B(g,1)cNi(®(U))c U B(q,5k*(c+1) +¢)

qe®(Z) qe®(Z)

Using Corollary on each ball of Z and ®(7) provides us with the wanted inequalities. O

8.6 Set of vertical geodesics

We defined in[2.2.4)a notion of vertical geodesics on the hyperbolic space X. For z a point of X, there
exists a unique vertical geodesic ray starting from x in X, therefore, there is a one to one correspon-
dence between portions of vertical geodesic rays in a box B, and the points at the bottom of BX. A
vertical geodesic segment of B~ is defined as the intersection of a vertical geodesic and BX. We recall
that vertical geodesics are parametrised by arclength by their height.

Let B be a box at scale R of X. Let us denote by VB the set of vertical geodesic segments of
B. A geodesic segment v € VB¥ intersects only in one point z the bottom of B, and v is the only
vertical geodesic segment of VB intersecting = by the Busemann assumption on X.
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Definition 8.6.1. (Measuren on VBX)
Let BX be a box at scale R of X . The measure n\)/(BX on VBX is defined on all measurable subsetU c VB

by
g (U) = )‘i)z(*(BX)( {1(h(BY)) |y e U} ) (8.9)

In particular, we say that U is measurable if {’y(h_ (BX )) |veU } is measurable. Since the measure
A is almost constant along projections, the measure on the set of vertical geodesic segment is related to
the height of the boxes. Specifically we show that up to a multiplicative constant, the measure of a box
is equal to the measure of its set of vertical geodesic segments multiplied by its height, as for rectangles
in R2. In the sequel we might omit the index of the measure 7.

Property 8.6.2. Let B~ be a box at scale R of X and let us denote h™ := h™(BX) and h* := h*(BY).
We have for all z € [h™,h*[:

1. nX(VBX) Xx /\f(Bf) Zx ™
2. M(BY) 2x RAX(BX) 2x RpX (VBYX) xx Re™

Proof. Let x € X be such that C(x) is the cell of BX. We know that D, (z) c C(x) c Doy, (), hence

by Lemma we have
X o
Hiyz) (C(@)) =x 1 (8.10)

Then
¥ (VBY) = Nt (B nh 7' (h7)), by definition,
Xx /\5(85) Zx A (C(z)) xx ™ ik, (C(z)), by Property[8.1.]
mh*

~Xx e )

which proves the first point. The second point follows from the fact that the measures A, are constant
by projections on height level sets, up to the multiplicative constant M (X).

h* h*

AX(BX):fAf(Bth—l(z))dz:fAf(TrZ(C(x)))dz
h~ h~

h+
Xx f)\hX+(C(m))dz, by Property [8.1.5
e

X R)\ii (C(:L‘)) X Remh+
U

A vertical geodesic V = (VX,VY) c X Y is a couple of vertical geodesics of X and Y. Therefore,
there is a bijection between the set of vertical geodesic segments V1B of a box B := BX x BY and
VBX xVBY.

Definition 8.6.3. Let 3 be a box at scale R of X » Y. We define the measure nyp on VB as
X Y
nMvB = Mypx ® Ny (8.11)

In the notation of measures on sets of vertical geodesic segments, we might omit the reference to
the corresponding sets. The measures 7y, respectively n‘)/(BX, 17‘1;83/, will simply be denoted by 7,
respectively X, n¥ .
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Property 8.6.4. For each box B at scale R of X nY we have for all z1,2z9 € [h™,h*[:
1. n(VB) 2, €™ e 2 AX (BX)/\Y (BYZQ)

-22

2. M(B) =« Ry (VB) = R\ (BX)AY,(BY,)

-z2 —2z9
Proof. The first point follows from deﬁmtlonn 8.6.3land Propertyapplied on BX and BY . The proof
of the second point is similar to the proof of Property 3.6.2]

[)\X®)\Y (BX < BY,) dz-[)\X (BX)AY,(BY.)dz

f)\X Bh ))\Y+(B h+)dz, by Property [8.1.5

f i VBX VBY)dz, by definition of 7,

h+
<. n(VB) f 1dz = Ry (VB)
J

Then applying twice Property [8.6.2| provides us with the result. O
Let B be a box at scale R. Let z € [h_(B); h+(B)[ and let U c B,. Then we denote Vp(U) the set

of vertical geodesic segments of V' B intersecting U, it is in bijection with

{(z,y) € By x BYg| (v (2),72.(y)) e U}

We need the following property stating that the measure of a given subfamily of vertical geodesics
can be computed on any level of our box.

Property 8.6.5. Let B be a box at scale R of X w Y. Then for all z € [h_(B); h+(B)[ and for all
measurable subset U, c B,

n(VB(Uz)) ~m )\z(Uz)
Proof. Without loss of generality we can assume that [h_(B ); h+(B )[ = [0 : R[. By definition we have

Y X
nVe(l)): / f {(xy)EBXXBY|7TX(9C)7T-Z(ZJ))€U}(xo’yo)d)‘—Rd)‘o

o EBO yoEBY

= [ 1 (@) 7 (w0 )an

o EBO yoEBY

= f / 1y, (775(370), y)d (ﬂ'YZ * )\)_/R) dX\g’, with a pushforward of \Y 5 by 7¥_,

= f / 1y, (ﬂ'i((xo), y) AN d( « A ) by Fubini’s Theorem,
yeBY, \voeBy

= / [ 1y, (ac, y)d (WZ * )\é() d (7{2 * A}_/R) . with a pushforward of A by 7,
yeBY, \eeBX
X f / 1y, (z,y) )\Xd)\)_/Z, by using Property [8.1.5] twice,
yeBY, zeBX
X )\Z(Uz).
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8.7 Projections of set of almost full measure

Let us denote by p* : X xY - X ; (z,y) » xand by p¥ : X xY - X ; (x,y) ~ y the projections
on the two coordinates of X x Y. We also denote by slight abuse the projection on a set of vertical
geodesic segments p~ : VB - VBX ; (vX,0¥) » 0¥ and p* : VB - VBY ; (vX,vY) = 0¥, Given
a a subset U c BB, we might simply denote by UX, respectively UY, its projection on X, respectively
on Y, and similarly for subsets of V B.

In this section, we show that if a subset of a box has almost full measure, then most of the fibers
with respect to these projections also have almost full measure.

Let 0 < « < 1, let V; c VB be a measurable subset. Let us denote for all v* € VBX
G (UX) = {UY cVBY | (UX,UY) eVp} = (p¥) (pX (UX) n(VB 1))
GX = [ e VEY [ (67 () > (1-va) (1)}

The set G~ is the set of vertical geodesics in VBX whose fibers have almost full intersection with
VB~ Vl.
The following lemma asserts that almost all fibers have almost full intersection with VB \ V.

Lemma 8.7.1. Let 0 < a < 1 and let V) c VB be a measurable subset such that n(V1) < an(VB), then
7 (67) 2 (1- V™ (v5¥)
Proof. By construction we have

U & ") =wB-Wn)"

vXeVBX

To prove the Lemma we proceed by contradiction. Let us assume that 1 (GX ) < (1 - \/a)nx (VBX ),
then n™ (VBX ~\ G¥) > Jan™ (VBYX). Therefore

()= [ 1y @0)dn(v)
VB

= / / 1y, (vX, vy) dn¥ (v¥)dnX (v™), by definition of 1,

VBX VBY

= f f Lygr gy (vX) (UY) dn¥ (v¥)dn® (v™), by definition of G¥ (UX) ,
VBX vVBY

- f P (VBY G (v¥)) dn* (%) 2 f 7 (VBY < GY (v%)) dn* (v%)
vBX VBX\GX

Furthermore, when v* € VBX \ G¥ we have that n* (G¥ (v*)) < (1 - a)n* (VBY), hence
" (VBY N GY (v%)) > an® (VBY). Therefore

n(V1) > f Van' (VBY) dn* (v¥)
VBX\GX
>/an” (VB )n* (VB \ G¥X)
Zx/a\/any (VBY) nX ( VBX) , by the contradiction assumption,
>an(VB), ,since VB is a product,

which contradicts n (V1) < an (VB). O
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In the previous Lemma we only used the fact that the set of vertical geodesic segments V' 3 was the
product of its projections endowed with a product measure 7. We will use it once one the product of
two measured spaces endowed with a product measure in the proof of Proposition

We recall that for any U ¢ X w Y we denote VB(U) = {v € VB | im(v) nU # @}. Similarly for
all Vi c VB we denote V1 (U) :={v eV} |im(v) nU + @&}.

The next Lemma is a local version of Lemmal[8.7.1] Let V; c VB. Let M > 0 be a constant, let a € B and
let us denote VD := VB (Dy;(a)) and Vi D := Vi (Dys(a)). For all v = (vX,0Y) € Vg, let us denote

by
EY (v :={vY e VDY | (¥, 0¥)eiD} = (p¥)7! (pX (UX) Nn(VD~ VlD))
FX = {oX e VDX |9Y(BY (v¥)) > Van* (VDY)}.

Lemma 8.7.2. Let0 < a < 1. Ifn(V1D) < an(V D) then
X (F¥X) < Van™ (VDY) (8.12)
Proof. Let us proceed by contradiction. We assume that

™~ (FX) > Van™ (VDY) (8.13)

Then we have

"7(V1D) = f [ HVID(UX,’UY)dndeX

vXeVDX vYeV DY

= f f Ly (pxy (0" )dn* dn™
vXeVDX vYeV DY

= f n* (EY(UX)) dnX, by the definition of EY (v),
vXeV DX

2 f 77Y (EY(UX))dT]X, since FX c VDY,
vXeFX

>/an™ (VD¥)an* (VDY) > an(VD),
which contradicts assumption on V' D. Hence n* (FX) < /o™ (VD). O

The following lemma asserts that for almost all points of the box, almost all vertical geodesics
passing through the disc Dy, () do not belong to V;.

Lemma 8.7.3. There exists a constant0 < au(») < 1 such that for all0 < o < (=) the following statement
holds. Let My be the constant involved in assumption (E2) and let B be a box at scale R. If there exists
Vi c VB such that n (V1) < an(VB). Then

n(Vi(Day(2))) 3 !
)\({:U el | 2 (VB(Da () > }) <ail(B) (8.14)

Proof. Without loss of generality we may assume that h(B) = [0; R][. Let us denote

Ui (Vl(DMo(x))) > o)

U={x€5’| 1 (VB(Dagy (2))) }

(8.15)
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We proceed by contradiction, let us assume that A(U) > ai/\(B). In this case there exists z € [0; R[
such that \,(U,) > a%)\Z(Bz). Let U c U, be a 2M; maximal separating set of U,. We have that
LI Dy, (z) is a disjoint union and that U, ¢ U Dapy, («). Then we have

zeU!, zeU;

Az( L] DMo<w>) T A Day () = X e (Daggy () 22 200))

2€U! el oy Az (Dan (7))
% . Az (Danrg(z)), by Lemmal8I2

zeU.

> Az( U DzMo(fc)) > A; (Uz)

zeU,

> ai)\z (B), by assumption on U,. (8.16)

However Vx € U] we have n (Vi (D, (2))) > 04%17 (VB(Dasy(x))), therefore

(o))

X0 ai)\z( U DMO(x)), by Lemma [8.6.5]

zelU!

>atal), (B) =/a), (B), by inequality
%w Van (VB), by Lemma

Since n (V1) 2 n (V1 ( U D, (x))) and since \/a > M (x)a for a < #, it contradicts the assump-
zeU!’

tions of the lemma. O

Let us point out that in this Lemma, we first showed that on a fixed level-set, most of its point were
surrounded by almost only of vertical geodesic not in V;. This remark will be relevant in the proof of
Proposition[9.3.1

The three next lemmas are estimates on the quantity of Y-horospheres verifying specific properties.
They are used in section[9.4] Let B be a box, « € Blet U c BB and let us denote by

H, = {z}wB" ={(z,y) |y e B, h(y) = -h(x)} = (»™) ' (2),
a Y-horosphere of B. Let us denote by
EY (z):= {ye BY | (x,y) € U} =p" (P Nx)nU®) = (H, nU)Y
fons {x e BX |\, (B (2)) > Va¥ (HY) and h(z) > h™(BY) + g}
The set EX is in bijection with the "bad" Y -horospheres H above the middle of B, the ones which
have more than /a fraction of their measure A\ in U,

The following lemma asserts that almost all Y -horospheres in the upper half of the box have almost
full measure.

Lemma 8.7.4. If\(U) > (1 - @) A(B) with0 < « < 1, then we have

AE(EX) < Var* (BY)
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v

Figure 8.5: Large X -Horosphere in X x Y.

Proof. Without loss of generality we can assume that h(B) = [0; R[. We proceed by contradiction, let
us assume that A% (EX ) > /o)X (BX ) Then we compute the measure of U*:

AU = f Moo\ (USdz= f f A\ (fyeYo.|(z,y)e Uc})d)\X(l‘)dz by definition,

R
:ffAYZ((HImUC)Y)dAf(x)dZ
0 Bx
R
zffAYZ((HxnUC)Y)dAf(a;)dz, since EX ¢ BY,
0 BX
R
> Va / f Y, (HY)d)X(z) |dz, by the definition of £
0 [Bx

- Ja f [AY, (BY.) \X (EX)]dz, by the definition of H,,

>\/_\/_f AY BY AX (BX)dZZOé)\(B), by assumption on E-X,

which contradicts the assumption on U. O
For all U c B we denote Sh(U) and call shadow of U the set of points of B below U such that
Sh(U) :={p e B| 3V € VB containing p and intersecting U on a point p’ such that h(p") > h(p)}.
For S a subset of X, we shall call large Y -horosphere the subset Hg defined by

Hg:=8wxY = (p*)(S).

Let My be the constant involved in assumption (E2). Let us denote by FX c BX the subset
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Y= {x e BX | A(Sh(Hp,, () 1U°) > a3\ (Sh(Hp,, (x))) and h(z) > h™(BY) + g}

The set F¥X is in bijection with the "bad" Y -horospheres H that are above the middle of the box B.

By "bad" we mean the ones which have more than a7 fraction of the measure ) of their shadow in U°.
In the following lemma, we show that the shadow of almost all the Y -horospheres in the upper half
of the box have almost full measure.

Lemma 8.7.5. There exists a constant0 < a(») < 1 such that for all0 < o < (™) the following statement
holds. If A(U) > (1 — &) A(B), then we have

N(FX) < ai ¥ (BY)

Proof. Without loss of generality we can assume that h(B) = [0; R[. We proceed by contradiction, let

us assume that A% (FX) > ai X (BX). Therefore, there exists zo € [%, R[ such that

XX L\ X (X
)‘zo(FZo)Za4)\ZO(BZO)'

Let Z be a 2M-maximal separating subset of F’ Z)o( . Then we have

AU) 2\ (Sh ( || HDMO(x)) N UC) = > M Sh(Hp, ) nU®), since this is a disjoint union,
xeZ Tl

>ai %)\(Sh (HDMO(JC)) ) X at Z; 20z (HDMO(x))’ by definition of F;, and Proposition[8.1.3}
Te xTre

However )\ZO(HDMO(QC)) X (D, (%))AY,, (BY,,) since Hp,, () = Dy (z) x BY,,, hence

)‘(U ) Dqu42:0 Z /\ (DMo(x))/\—zo(B—zo
reZ
wa4z0)\_20 —20 Z)\ (D2 (), by Lemmal[8:1.2]
reZ

>aiz20AY, (BY,,)A (UZDQMO x)) > aiz\, (BY, )AX(FX), by definition of Z,
HHS

>ai 04420)\ (BY ))\X (BX), by assumption on Fz)g,

-20

>/ a— )\,ZO(B,ZO))\X(BX) %\/EA(B), since 2 > g and by Property [8.6.4,

-20

which contradicts the assumptions on U for « < W O

The following lemma asserts that the projection on a level-set of almost all the Y -horospheres have
almost full measure.

Lemma 8.7.6. If \(U) > (1 - «) \(B), then there exists a constant M (x) such that for any large Y -

horosphere HDMO(I) withx € B\ Fx asin Lemma|8.7.5, and for 1 > Mp > M2ai > 0, there exists P a
level set of the height function in B, such that

1
)‘h(P) (P N Sh(HDMO (x)) n UC) <x a4)\h(P) (P n Sh(HDMO(:L")))
Furthermore, P and H can be chosen such that pR < d..(P, H) < 2pR.

Proof. We proceed by contradiction, let us assume that such a plan P does not exist, then computing the
measure A ofSh(HDM0 ())NUNBy()-2pR:h( H)-pR)] contradicts the fact that )\(Sh(HDMO (2))NU°) <

i by Lemma and since we integrate on a sufficiently large portion of [0, R] (p > M ai). O
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In the following lemma we show that almost all level-sets admit a point with large X -horospheres
and Y -horospheres.

Lemma 8.7.7. There exists a constant 0 < () < 1 such that forall0 < « < a(w) the following statement
holds. Let U c B be such that A\(U) > (1 — a)\(B). Then there exists U’ c U such that:

L AU") 2 (1-a7) A(B)

2. Forallz € h(U") there exists (xo z, yo,-) € U, such that forall (x1,y1) € U, we have (x1,yo,.) € U,
and (zg 2, y1) € U..

Proof. We may assume without loss of generality that 4(B) = [0, R[. Let us denote by
Hy = {z e [0, BR[| - (U2) 2 (1- ) A- (B.)}

Then we claim that Leb( Hy/) > (1 —ai ) R. To prove this claim we proceed by contradiction. Let us as-
sume that Leb(Hy ) < (1 - ai) R, then Leb([0, R[~NHy) > ot R. Furthermore, for all 2 [0, R[~Hy
we have A, (U;) < (1 - ai) Az (B:), hence

Az (Bz N Uz) 2 O‘i/\z (Bz) (8.17)
Therefore, by computing the measure of B \ U we have

A(BU) = f A (B U.)dz > f A (B U.)dz
z€[0,R[ z¢([0,R[~Hy)

> / ail, (B.)dz, by inequality (8.17),
ze([0,R[~Hy)

1
>xa2\(B), by the contradiction assumption and Property

which contradicts the assumption on U for o small enough. Hence Leb(Hy) > (1 - 04%) R.
Let us denote for z € [0; R[

UY := {mer | ($,y)eU}
H={ze[0,R[|IyeBY, , XX (UY) > (1-ai) XY (BY)}

—z

In particular, for all y € BY, we have UY c UZX, and by the definition of

AU) = f f)\X(Uy)

2€[0,R[ yeBY,

We claim that Leb(H) > ( 1- ai) R. To prove this claim, we also proceed by contradiction. Let us

assume that Leb(H) < (1 —ai ) R, then Leb([0, R[~H) > a1 R. Furthermore for all = € [0, R[~H we
have that

vyeBY, , X (UY) < (1-a¥) X (BY)

Therefore, by the definition of U, we have that Vy € BY,

AX ({x€B§|(:U,y)¢U})2ai)\§ (Bf) (8.18)
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Hence, by computing the measure of B \ U we have

AB )= [ [ A (e UF|(ny) e UY) anV.dz
ZE[O,R[ yEBYz
> f f X ({weUZX|(w,y)¢U})d)\}_;dz

ze([0,R[~ 1) v<BY

f [ ai/\f (BX)d\Y.dz, by inequality B:18),
ze([0,R[~H ) v<BY
P (B AN (BY)d:

ze([0,R[~H)
> Xoiai A(B) = az) (B), Dby the contradiction assumption and Property [8.1.5,

v

=

which contradicts the assumption A (B \U) < a\ (B), for a < Let us denote for all 2 € B

U*:={yeB, | (z,y)eU}
H' = {2 € [0,R[ |3 e BY | A (U7) > (1-a¥) A (BY.))

1
M ()2

We show similarly that Leb(H") > (1 - ai) R, therefore Leb(H n H' n Hy) > (1 - 30&) R

For all z € H n H' there exists (0 -, Yo, ) € B, such that for all (x1,y;) € U, we have
AE(U™) 2 (1-a7) 25 (BY) (8.19)
A (U™) > (1-a)AY, (BY,) (8.20)
Let us define for all z € Hy n Hn H', U} := (U** x UY*#). Then we have:
1. U cU

2. \,(UL) =\, (U= xUY=)nU,) > (1 - 30&)&(8) by inequalities 8.19|), 8.20I) and by the
definition of Hy;.

3. For all (z1,y1) € U, we have (z1,y0,.) € U, and (z ., y1) € U,

Let (z1,y1) € UL, then (z1,y0,.) € U’ hence (x¢z,y0,.) € U'. Furthermore we have that Leb(Hy N
HnH)>(1- 304%)R, hence Leb([0, R[N\(Hyn Hn H')) < 3a.1R. Therefore

ABAU) = [ ((BNU.)dz

z€[0,R[

- / As (Ba s (U0 x UY)) dz
ze([0,R[N(HynHNH"))

< f (30&) A:(B.)dz, by construction of U,

ze([0,R[N(HynHnH'"))
5X9a%)\(3), by the measure of [0, R[\(Hy n H n H') and by Property [8.1.5]
Hence \(U') > (1 —ai ) A(B), since ai > 9M(X)0z% (c small enough in comparison to a constant
depending only on X). O

These points (zg -, Yo,.) will play a key role in the definition of the product map close to a given
self quasi-isometry in Theorems and
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8.8 Divergence

Two distinct vertical geodesics in a §-hyperbolic and Busemann space diverge quickly from each other.
However this statement, based on Corollary 6.0.3, depends on the pair of geodesics. The next lemma
aims at making this more precise for X an admissible horo-pointed space. More specifically we are
going to look at a point « and at all the vertical geodesic passing by a point of the disc centred at z
of radius M (the (E2) constant) along the horosphere at height h(z), that is V Dy, (x). Let V be a
geodesic containing x, we want to quantify the vertical geodesics in V Dy, () which start diverging
from the vertical geodesic Vj between the heights h(z) — [ and h(x) + . We shall denote this set by
Div(Vp):

Div(Vp) :={V € VD () | |hpiv(Vo, V) = h(x)| < 1}
Lemma 8.8.1. With the above notations we have
0™ (V Dy (2)\Div(V0)) <x € ™ (V Dagy () )

Proof. We might, by slight abuse of notations, intersect a set of vertical geodesics segments £ c VB
with a subset F' c B, it means that we consider the intersection between F' and the union of the images
of E. For example:

VDo (%) 0 Bpzy = Dy (2)-

Any vertical geodesic segment V' € V Dy, («) did not start to diverge from the vertical geodesic Vp
at the height h(x), we have hpi,(V, V) < h(z). Therefore, all the vertical geodesic segments which
did not start to diverge at the height h(z) — I, denoted by V Dy, (2)\Div(Vp), are still My-close to

Wh(x)—l(x):

(V Dy (@)\Div(V0) ) 0 Biayt © Dasy (mnay-1(x)) (8.21)
We use Lemma [6.0.6| with zo = h(z) and z = h(z) - [, which gives
Dot to (Th(ay-1 (€) ) € Tnay-1 (Dagy (2)) = VDasy (@) 0 By (8.22)

Therefore
X (VD (@)\Div(Vo)) Nyt (V Dty (2)\Div (Vo) 0 Bryay-1)

“x , by Property[8.6.5]
X (VD (z)) XX (VDagy (2) 0 Blyay1)
(=)
Miey—t (Do (Th(ay-1(2))
< Xh(x) Dty (7o) ) , by inequality [8:21]
May-1(V Dato (2) 0 Biyay1)
Matay—t (Do (Thzyi()
h(x) (Do (T2 ) by inequality [8.22]

eyt (Daioagy (Thgay-1 (2) )

Moreover by the definition of A* and Lemma

Ny (Dot (Th(ay 1)) Fincey-1 (Dt (Thay1) .
= = — <x e ™, (8.23)
)\h(az)—l (D2l—Mo(7rh(z)—l (2) )) Fh(z)-1 (D2Z—Mo(7rh(w)—l (2) ))
Therefore
(VD (2)\Div(Vo)) .,
<x €
nX(VDMo(x))
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Heuristically, the previous lemma asserts that most of the vertical geodesics segments passing close
to a point z, start diverging from each other close to the height h(z).

We now provide an estimate on the exponential contraction of the measure i along the vertical
direction.

Lemma 8.8.2. There exists M (») such that the following holds. Let hy € R, let U c (X xY')y, be a
measurable subset. Let A > M and let A c (X wY),-a be a measurable subset. Suppose also that all
vertical rays V intersecting U intersect A. Then

Hho-A (A) Zn e(m_n)Aﬂho (U)

Proof. Since m; A (U) < A we have

tino-a (Thy-a(U)) < pihg-a (A)

Where 7" is defined in Notations We recall that for all z € X, UY = {y e Y | (2,9) € U}. By
definition

1o (U) = iy, ® 115, (U) = fﬂYhO(Ua};)d/‘hXO(x) (8.24)

Xhg

For all 7 € UX let us denote U, := {(x,y) e U | y e UY }, then
(Ua)" =0 = {yeY | (z,y) U}

Furthermore U;f c tho [ﬂ'X_hO (Ug )], hence

/ﬁfho (U;/) < ,u),/ho (ﬂ}/ho [w{,ho (U;/)]) X e"AuX,hO [WX,,LO (Ug)] , by assumption (E3),
which gives us,
1in (U) < ena f uX,hO [WX,,LO (Uf)] thXO (z), by definition ofjp, . (8.25)
UXx

However we have
X Y X Y
WX—hO(U;/) = (mhy-a(Uz)) = (WhO—A(U))ﬂi( L (@) (8.26)
-

= {y € (W}’ZO-A(U))Y | (mif)_A(a:),y) € w;O_A(U)}

Hence

n n Y
o) 20 [, [ a @)l |, by @29 and @620
Ux ’
nA Y w Y X X
=e f 1A-hg [(ﬂ'hg—A(U))m/:I iy, * py (2)
”ffo—A(UX)

n. —-m. X Y .

%, "B mA f /‘X—ho [(ﬂ'hO_A(U))x,] d,ui(O_A(x'), by assumption (E3).
W§07A(UX)

=" g (mh-a (0))

Furthermore, as said at the beginning we have fu5,-a (7’[’;;0_ A(U)) < ftho-n (A), therefore

g (4) 2 €72, (U,
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In the next Lemma we transfer a control on the measure p to a control on the measure 7.

Lemma 8.8.3. Let My be the constant involved in assumption (E2), B be a box and z € h(B). Let
A c (B), and let E c B such that h*(E) < h(A). Then, if there exists Q > 1 such that u (N, (E)) <
Q7 i (Mg, (A)), we have that

1 (VN (E)) 2 Q7' (VNag, (A))
Proof. Let Z c E be a 2Mjy-maximal separating set, we have:
1. The balls B(p, My) for p € Z are pairwise disjoint.

2. We have the following inclusions:

I_le(p’ Mo) c N, (E) < UZB(P73M0)

The radius 3M is required since we cover all Ny, (E') and not only E. Furthermore, all balls and disks
of radius M, have comparable measure ;1 by assumption (£2) and Corollary , therefore

1Ny (E)) R #Z 2 Z;u(B(p,Mo)) i ZZMh(p)(DMo(p)) (8.27)
pe pe

Moreover, for all v € V E, there exists p € Z such that v n D3y, (p) # @. Consequently we have
VN, (E) ¢ U V D3y, (p), hence
peZ

n (VN (E)) < Y n(VDsa, (p)) 2x Y Angp) (VDaagy(p)), by Property[8:6.5,
peZ peZ

< 3 Ay (VDorte ™)) My (VDers, (7)) -
peZ

Furthermore, disks of radius r are included in rectangles of width 27, hence

n (VN (E)) < > eh(p)(m_"),uh(p) (VDsprro(p)), by the definition of Ay,
peZ

< @) (m=n) 5~ tih(py (VD3agy(p)),  because h* (E) < h(A),
peZ

<MD= (E) | by inequalities (8:27).
Using similar arguments we obtain
1 (VN (A)) 2 Anay (VN (A)) 2 "0 (VINa, (A))
Combined with the assumption p (N, (E)) < Q71 (N, (A)) we have
1 (VN (4)) 2 O Qu (Wi, (B)) 20 Q7' (VN (E))
O]

Heuristically, if a set F is sufficiently small and below a set A, then the set of vertical geodesic
segments intersecting & will also be small.



Chapter 9

Proof of the geometric rigidity

The aim of this chapter is to present a proof of our key result.

Theorem 9.0.1. Assume thatm >n andlet®: X Y — X wY be a (k,c) quasi-isometry. Then there
exist two quasi-isometries ®% : X - X and ® :Y - Y such that

d,x,(<1>, (¥, ") ) <o 1

Although this statement is similar to the statement in the case of Sol and Diestel-Leader, our broader
setting of admissible spaces requires additional key arguments, such as lemma [8.1.3] and therefore re-
lies heavily on the previous sections.

To make the exposition of the various statements in this chapter smoother, we made the following
abuse of notation. In a statement, when a parameter, say 6, need to be sufficiently small, we will write
it by "For € <,, 1 we have .." instead of "There exists a constant M (x) such that if § < ﬁ, then .."
From now until the end of this chapter we consider & : X xY — X Y a (k, ¢)-quasi-isometry with
fixed constants k£ > 1 and ¢ > 0.

9.1 Vertical geodesics with s-monotone image

In order to construct a product map, the key idea is to use the quadrilateral lemmas of Section [7.4] on
the image by the quasi-isometry ® of a quadrilateral in X » Y. To do so we need to locate which
vertical geodesic segments are sent close to vertical geodesic segments. Thanks to Proposition [7.1.4]it
is sufficient to look for vertical geodesic segments with an e-monotone image under @, where 0 < e < 1
is a parameter to be determined later (depending on &, k and c). We call good these vertical geodesic
segments.

Notation 9.1.1. We recall that we denote VI3 the set of vertical geodesic segments of the box B. Let us
denote by V9B the set of good vertical geodesic segments and V°B the set of bad vertical geodesic segments,
that is

V9B:={vyeVB|® o~ isc-monotone}
VB = {’y eVB|®oyis not&?—monotone} =VB\VIB

In the following lemma, we prove the existence of an appropriate scale on which almost all boxes
possess almost only good vertical geodesics. We shall denote by 7 := 1y, n™* := n\)/(BX andnY := n%//By.

Proposition 9.1.2. For 0 < 6 <,, 1, there exist two positive constants M (k,c,n,e) and M'(k,c, %) such
that forallrg > M, N > M? and S > ];4—9 and boxes B at scale L := Nsro, there exist kg € {1,...,S}, a
box tiling | | B; = B at scale R = N*orq and 1, c I such that:

iel

111
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1 )\( U Bi) > (1-6)\(B) (Boxes indexed by I, cover almost all B)
1€ly
(VbB:
2 Viel, n(V75:)

ni(VB;)

where 1; = nyg,.

< 0 (almost all vertical geodesic segments in I3; have e-monotone image)

Proof. We recall from Lemma the definition of d5(«) for a quasi-geodesic segment «.
A= {a ([kN®ro, (k+ 1)N°ro]) |k € {0,..., N°5 — 1}},
Then () is the proportion of segments in Ag which are not e-monotone:

_ #{p € A,|$ is not e-monotone}
ds(a) := Y : (9.1)

Using Proposition on every vertical geodesic segment in B we have that Yo e VB

S 1
> 05(@) Zupe = (9.2)
s=1 €

We now integrate the inequality (9.2)) with respect to 1 over VB to get

ék@ / @&(@)dn:i(ﬁ / 5s<a>dn).

aeVB aeV B

Consequently there exists kg € {1, ..., S} such that

1
n(VB)

1
/ Oko (@) dn) <y o c = <« 0, by assumption on S. (9.3)
acVB ¢

From now on we denote R := N*07. There are % layers of boxes at scale R in B. We average dj, («)
along all o € V B:

1 1 R §%<—1
”(VB)M& 5ky (@) dry :”(VB)OJB T & dua(a(lkF: Gk DRD)
L
:n(és)% ,;)%43 Sk (([kR; (k +1)R]))dn (9.4)

Let us denote by By} := Bn h_l([k‘R; (k+ 1)R[) the k-th layer of BB. Since vertical geodesic segments
of X wY are couples of vertical geodesic segments, V B[ is in bijection with VB[),(;] x VBE;:] which is
itself in bijection with Bli(R x Bz/( k+1)R S explained in Section Let us denote by f this bijection.

[ By = Bl x BY 1ym

ar (aX(kR),aY(—(k +1)R))
Forall v e VB and forall k € {0, .., £ — 1} we have &, (a([kR; (k+1)R])) = 0 or 1, hence

Ok (([kR; (k +1)R])) = Lyugs, ([ R; (k +1)R]) )

_ ]lf(vbB[k])(aX((k +1)R), ay (-kR))
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Therefore

[ dra(aUkRs (k4 )Ry

aeV B

- f 1y (v (@ (G + 1D R), 0¥ (<kR) Jdn ™ dy”
(aX,aY)eVBXxVBY

= f ]lf(VbB[k]) (772(}%(@7 wzf(kH)R(y))d)\é(d)\f . by definition X and n",
(z,y)eB()f XBYL
2 f ﬂf(VbB[k]) (:c’7 y’)d/\fRd/\}j(kH)R, by Property [8.1.5 (9.5)

(1,79')631§RXBY(1¢+1)R

Let | ;s B; be the box tiling at scale R as in Proposition and for all k € {0,...,N — 1} let us
denote by Ij, c I the indices of the boxes B; which tile Bj;). Then we have VB3] = Llies, VB; and
VPB(i) = Uier, VBi. Therefore for all (z,y) € Big x BY .15

L (o) () = L (Uer, vwi)(m’y) = 2 Ly (2:9)

ielk

Hence from inequality (9.5) we have

/ Ok (a([kR; (k+ 1)R])d77 & / Z ]]'f(VbBi)(m’ y)d)‘i(Rd)‘}—/(kH)R
aeVB (I’y)EBIi(RXBz/(kH)R i€l},
Y[ L@ )N s
leIk(x,y)eBkXRxBf(kH)R
=2 / Lyop, (@)dn; = Y n; (V°B;)
iEIkCMGVBi i€l

In combination with inequality we have

1

> . byP ,
> Z )\(B) ni(VBi) y Property[8.6.4]

(VPB:
Let us denote by I the set of indices ¢ of boxes B; such that M >0,and I, := I \ I;,. Thus

ni(VB;)

defined I, satisfies the second part of our proposition, and we are left with proving that ii also satisfies

the first part. To do so we assume by contradiction that A ( U Bi) > 0\ (B), then

’iEIb
A(B:) mi(VB;
: f Ok () 2 Z (B)U(VB , since [ c 1,
”(VB)%VB T, A(B) mi(VB;)
5 A(5)
Zn 91&1;(8) , by the definition of I,
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which contradicts inequality l) for 6 <, 1. Therefore )\( U Bi) < OX(B), hence )\( U Bi) >
i€l i€ly
(1-0)X(B).

Let B be a box at scale R. Let us denote the upward and downward oriented vertical geodesic
segments by

VIB:={V e VIB|h(®oV(0)) < h(®oV(R))}
VB = {V e VIB|h(® oV (0)) 2 h(®oV(R))}

We are now going to show that in a given box B; with 7 € I, almost all vertical geodesic segments
share the same orientation.

Lemma 9.1.3. For( < 2 kom0 ke 1, and for R >, ¢ % we have that if B is a box at scale R such
thatn (VbB) < 6n(VB), then one of the two following statements holds:

1. n(V'BnVIB) > (1-3vV0)n(VB)
2 n(V'BnVIB) > (1-3vV0)n(VB)

In the proof, we first characterise a set of vertical geodesic segment whose images share the same
orientation, then we show that this set has almost full measure.

Proof. Without loss of generality we can assume that h(B) = [0, R[. Let us denote by
GY (vY) ={v" e VBY | (v¥,07) e VIB}
GX = {o¥ eVBY |9 (G (v))) 2 (1- VO (VBY)}
By construction we have

U & (v*)=(vB)”

vXeVBX
Applying Lemma|[8.7.1| with V; := V9(B) and a := 6 we get
¥ (GX) > (1-Vo)n* (VvBY) (9.6)

Let vX : [0, R] = X and v5 : [0, R] - X be two vertical geodesic segments of G, then

N’ (G (1)) 2 (1-VO)y" (VBY)
N (G (v3)) 2 (1= V)" (VBY)
Hence
0" (GY () nGY (v3)) = (1-2V0)n" (VBY) (9.7)

Let v} ,v) € GY (v{*) nGY (v3') and let us denote by V; ; := (v;", U]Y) with 4, j = 1, 2. By definition

of vl and v}, the quasigeodesic segments ® (Vi) are e-monotone.
two cases occur. As a first case let us assume that

dx (v (0),v3 (0)) > VOR
dy (vi (0),v3 (0)) > VOR

Let M be the constant involved in Proposition [7.4.2l For R > 4kc and € < % we have that

VOR > 10kMeR + 2ke, hence we can apply Proposition |7.4.2| on Vi1 and V5 9, which gives us that
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they share the same orientation.

The second case, that is when either dy (vi* (0),v5 (0)) < VOR or dy (v} (0),v3 (0)) < VOR, is
treated thanks to an auxiliary geodesic segment. Hence without loss of generality we focus on the case
dx (vf((O), vg((())) < V/OR and consider a geodesic segment v3 € G verifying dx (v(0), vg((O)) >
VOR and dx (v3(0),v5(0)) > VOR. To prove its existence, we consider the measure of

GX\ VBx(D\/aR(vf((O)) uD\/aR(véX(O))) (9.8)
Let My be the constant of assumption (E£2). By Lemmawe have for all 7 > r9 > My and for all
[r1-ra]

x € X that po(Dy, (z)) 2w €™ 2 po(Dyy(x)), therefore

Ao (D\/@R(vf((O))) 5Nemﬁ§ﬁR Ao (DR(vf((O))) < e_m%)\o (DR(vf{(O))) , since 6 < }l (9.9)

Furthermore, by Lemmal6.0.6the bottom of BB contains a disk of radius 2R — My, hence by Lemma|8.1.2]
we have nX (VBX) <X Ao (DQR(Uf((O))). Combined with inequality we have

_mE
Ao (D\/ER(Uf((O))) <. e MapX (VBX) .
The same formula holds for v3° instead of v;‘. By inequality we have that

T(GY) 2 (- Vo S (VBY) 2 L (vY),

hence there exists M (x) such that
1 R
™ (GY N Vix (D (v (0)) U D (03 (0)))) 2(5 ~2Me if)nx (VvBY)
>0, forR> 4 In(4M +1).
m

Therefore there exists Ug( € GX such that

dx (vi(0),v3 (0)) >VOR
dx (v3°(0),v3 (0)) >VOR
Applying twice Lemma first on V71 and V3 3, then on V5 5 and V3 3, we get that the <I>(V171) has

the same orientation as ® V3’3) which has the same orientation as <I>(V2’2). Therefore (ID(VM) and
<I>(V272) share the same orientation.

Let us fix vgX € BX and v} € GY (vf( ) Then every image of a vertical geodesic segment V' €

) XgG . {v¥} x (GY (vg") nGY (v)) shares the same orientation as the image of (v, v} ). Further-

more
o U 0@ ()na ()= [ (@ ()0 0 )ant
vXeGX v XeGX
> f (1—2\/§)nY(VBY)d77X, by inequality (9.7),
vXeGX

=(1-2v0)n" (VBY)n* (GY)
2(1 - 2\/5)77Y (VBY) (1 - \/é)nX (VBX) , by inequality
>(1-3V0)n(VB),

which proves the lemma. O
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9.2 Factorisation of a quasi-isometry in small boxes

The Proposition gives us two scales R and L such that all boxes at scale L can be tiled with boxes
at scale R. Moreover, almost all of them, that is the B; for ¢ € I, contained almost only vertical geodesic
segments with e-monotone image under ®.

Amap f: X xY - X xY is called a product map if there exist two maps f~ and f¥ such that
we have either Vp = (pX,p¥) e X x Y, f(p) = (fX (pX),fY (py)) or Vp = (pX,p¥) e X Y,
F) = (") £ (%)),

In particular, when we denote by (X, f¥') a product map, we implicitly assume that h(z) + h(y) = 0
implies h (f*(2)) +h (¥ (y)) = 0.

Theorem 9.2.1. For0< 0 <e <, 1, g >y %ﬂ N >, 1 and for S >, we have that for any i € I,

1
X o 62’
there exists a product map ®; = (QJ,L-X, @}/), and U] c B; such that:

IIYUAR (1 —eé)A(Bi)
2. Forall (z,y) e U], d(fb(m,y), é)z(a:,y)) <kem ER.

In particular we have Ah (®(z,y), &;(x, Y)) Skem R

Since almost all the points in a good box are surrounded by almost only good vertical geodesic
segment (Lemma|8.7.3), we show that given two points sharing the same X coordinates, we can almost
always construct a quadrilateral verifying the hypotheses of Proposition

Lemma 9.2.2. Let M be the constant of assumption (E2). For0 < 6 <,, 1 and for R >, %, let B be a box
at scale R of X w Y. Let us assume the existence of a subset U of B such that:

(a) MU) > (1-0)\(B)
(b) Forallz e U, n(VE(Dr,(2))) < VOn (Va(Day()))
Then we have:

1. Forallay,as € U such that a{( = af, there exist by, by € B and four vertical geodesic segments ; ;
linking a; to b; such that a1, az, by and by form a vertical quadrilateral with nodes of scale D = O R.

2. Fori,je{1,2}, ®(v; ;) has e-monotone image under ®.

By Lemma [8.7.3] the boxes B;, with i € I, verify the assumptions of this Lemma. Moreover, we
recall that a vertical quadrilateral satisfy the assumptions of Proposition[7.3.2]

Proof of Lemmal9.2.2 Let M be the constant of assumption (E2). Let aj,ap € U. For i € {1,2} let us
denote V D; := Viz (D, (a;)) and VP D; == Vi (D, (a;)). Forall v = (v, vY) € Vg and all i € {1,2}
let us denote by:

1. EY (vX)={Y eVDY | (v¥,0Y) e VPD;}

2. FX = {oX e VDX |9V (BY (v)) 2 079" (v DY)}

(2

Thanks to Lemma (8.7.2, applied with Vi := VB, a := v/0 and a = a;, we have that
X (FX) <019* (VDY) (9.10)

Let us take aq and a9 in U such that a{( = ag(, then VDf( = VD?:
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L X (VDI\FX 0 F)) > (1-200)n* (VDY)

2. Forallz e VDX\(F{ u F5¥) and i € {1,2} we have nY(EiY(vX)) < Giny(VDZY).

The sets V DX\ (F;X u F5Y) enclose the vertical geodesics segments in B~ passing close to a = a3’

such that almost all the induced vertical geodesic segments around a; and as in B are good (ie. have
e-monotone images under the quasi-isometry ®).

Since we have a sufficient proportion of good vertical geodesic segments, we will be able to find several
of them that intersect the same neighbourhood in two different points sufficiently far from each other. If
h(af( ) < OR, the construction of the quadrilateral of Propositionwith D = 0R is straightforward
since the four points a1, a2, by and by would be R close, hence without loss of generality we may
assume that h(a;) > O R. Moreover, as we did before we can also suppose that h(B) = [0, R].

We apply Lemma [6.0.6| with zo = h(a1) and z = h(a1) — OR to get the following inclusions:

D3yr-nto (Thian)-or (a1)) € Thiany-or (Dary (a1)) € Dagrensy (Thiar)-or (a1 ) (9.11)

We now suppose by contradiction that any couple of good vertical geodesic segments does not diverge
quickly. This means that they stay My-close until they attain a height lower than A (a{( ) —OR. Therefore

Th(ar)-or (VD \(FX UFY)) € Dag (Tnay)-or (a1))
Thanks to the inclusions we have VDa\ Mo (Th(ar)-6 r(a)) c VD, hence, combined with
Property [8.6.5| we obtain
X X
" (VDINEX U F5)  Niany-a (Poto (Tagany-or (o))

nX (VDY) - )\hX(al)ng (D2or (Th(ar)-or (a1)))
SMem(M(rQOR)’

by Lemma[3.1.2

which, for R large enough in comparison to %, contradicts the fact that o (V D\ (FX u F5%)) >
(1- 204 )X (V DY), the first conclusion of the previously used Lemma m Hence there exists a
couple of vertical geodesic segments VX and V;* of V DX\ (F;X U F5Y) diverging quickly from each
other. Furthermore we have 77Y(Eiy (vY)) < Giny(VDlY ), hence there exists segments V; and VY
such that (V;*, V") e VZ(Dyr(ar)) and (V5¥, V) ) € V)é’(DM(QQ)).

Let us define b* = VX (h(al) - %d (a{c, a‘;)), so that by and b3 are at the height where V;* and V;*
diverge. Then let us define b = b} = Vi¥' (~h(a1) + %d(a{(,ag()) and v;; = (V;X, VJY) to ensure
that the vertical geodesic segments of the quadrilateral ;17 U 12 U 92 U 7721 have close endpoints.
Furthermore by construction, they diverge from each other and have e-monotone image under ®. [J

In the next proofs, we will be using Proposition on each of the four images ®(;;), which will
provide us with a new quadrilateral (¢ + ) R close to ® (711 U712 Uy22 U21) on which the assump-
tions of Lemma[7.3.2] are verified.

Finally we deduce that on a good box, the quasi-isometry ® is close to a product map.

Proof of Theorem[9.2.1} Let i € I, and B3; a good box (defined in Lemma(9.1.2). Then following Lemma
we have 7;(V°B;) < 0n;(VB;). Therefore by Lemma one of the two following statements
hold:

1. n(V'BnVIB) > (1-3V0)n(VB)
2. n(V*BnV9B) > (1-3V0)n (VB)

Let us first assume that the dominant orientation is upward. Let us choose V; = VB~ (VTB nVIB ), the
vertical geodesics which have neither dominant orientation nor e-monotone image by ®. By Lemma
3.7.3| used with « := 62, we have that there exists U; c BB; such that:
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L MU 2 (1-VO)NBy)
2. For p e U; we have (Vi (D, (%)) > 10 (VB(Dag (2))) V0.

Let us apply Lemma with U := U; and a := /0, then there exists U’ c U; of almost full mea-
sure such that Vz € h(U"), 3(x0.z,v0,2) € B such that V(x1,y;) € UL, we have (z1,y0.) € U’ and
(z02,y1) € U'. Let a,ap € U’ such that aX = aé(. By Lemma applied on ag and a, there exist
b1, b2 € B; and four vertical geodesics V;; in V1BV such that by and by form a coarse vertical quadri-
lateral 7" with ag and a, where V;; are the edges of T'. Proposition gives a constant M (k, ¢, x) and
four vertical geodesic segments Me R-close to the four sides of ®(7"). Furthermore we assumed that
the dominant orientation is upward, hence the images of the four sides are all upward oriented. Hence

thanks to Proposition[7.3.2] we get

dx (®(a0)™, ®(a)™) <pem eR
Then for all @ € U’ such that a* = agf

dx (®(ao)™, ®(a)™) <gem eR (9.12)
We show similarly that for all a € U’ such that ¥ = a} we have

dy (®(a0)”,®(a)") <k cn eR. (9.13)

Let us define the product map ®; := (i)ZX, @ZY) : X xY > X wY.Forall z € h(U'), let (x0,z,v0,2) €
U! be the points involved in Lemma [8.7.7] and for all z € [0, R[\h(U’), let us fix an arbitrary point
(20,2, Y0,2) € (B;) .. We can therefore define for all x € X

F (@) = Vil (1o 020, 10.2)):
Then for all (z,y) € U’ the triangle inequality gives
dx (87 (), (2.9)%) = dx (Ve yoy (h 0 @(0.2.90.)). B, )™ )
<dx (Vila oy (R0 @(20.2,30.:)), 0, 0,:) ) + dx (B2, 0.2) ¥, (2, p)¥)  (9.14)

Furthermore, as the distance between two points of the same vertical geodesics is equal to their differ-
ence of height, we can write the following equality

dx (VaXayo ) (o @(202,902)), ®(2,902)" ) = A ((2,90.2) ™, (20,2, 90,) ™)
We combine it with inequality (9.14), and then use the Lipschitz Property of h to get

dx (7 (z), 2(z,y)*) < AR (®(z,90,.) ™, 2(20,2. 10,:) ) + dx (D(z,90,2) ™, @(2,9)¥)
< dX (CI)(:L‘a yO,z)X7 q)(:EO,Z’ yO,Z)X) + dX (<I>(:17, yO,Z)Xa CD(:B’ y)X)
<kew 2¢R, by inequality (9.12).

Similarly, ®) (y) is defined by
(i)zy(y) = V¢}/&$Oﬁz7y)(h ° q)(l”o,z, yO,z))-

and we show similarly that dy (@f(y), ®(2,y)") <k, eR. Furthermore for all (z,y) € U; we have
h (@f((a:)) =-h (éz/(y)), hence ®; := (&, ®Y): X mY — X uY is a well defined product map.
Then we chose U/ := U’ to conclude the proof.

The downward orientation case is dealt in the same way by switching the definitions of qSZX and @Z O
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9.3 Shadows and orientation

We use the fact that m > n to prove that ® is orientation preserving, hence the upward orientation is
dominant, on each good box at scale R.

Proposition 9.3.1. Assume that m > n. For R >, % the product map P, of Theorem is orientation
preserving for each i € I ;.

We recall that given a box B, the shadow of a subset U c BB, we denote by Sh(U), the set of points
of B below U in the following sens:

Sh(U) :={p e B| 3V € VB containing p and intersecting U on a point p’ such that h(p") > h(p)}.

And we remind the reader that given a subset S c X, the large Y-horosphere given by S and denote
by Hg c X x Y, is the set

Hg:=5w»Y

Let us denote B = B; for i € I,. Thanks to Theorem there exist U = U; with A(U) > (1 - o1 ).
We consider two parameters p; and py with 1 > p2 >, p1 > 0%. The relations between them will be
specified later. Hence Lemma applies with o = Hi, and it gives us a Y -horosphere H,,, such that

A (Sh(HDMO(xO)) N Uc) > g6\ (Sh(HDMO(xO)))

Then we apply twice Lemmawith o= 0%, and p = p; for i € {1,2} to get two planes P; and P»
such that for i € {1,2}

1
)‘h(PZ)(P’L N Sh(HDMO(IO)) N Uc) <y 016 )‘h(Pl)(PZ N Sh(HDMO(IO)))’

and such that p; R < Ah(P;, Hy,) < 2p;R.

The next lemma will gives us the existence of two subsets below a Y-horosphere H, which are
sufficiently big (for the measure p in comparison to the horosphere) and sufficiently apart from each
other so that any path linking them must get close to H.

Lemma 9.3.2. Let My (k,c,x) be a constant depending on k,c and the metric measured spaces X nY'.
In the settings above, for R >, p%, there exist S1 and S, two subsets of P, N Bsuch that for j € {1,2} we
have:

1. Vsy €51, 89 €59, dx(S{(, Sg() > ;2 R.
1
2. )‘h(Pg)(Sj N UC) x 0@)\;1(132)(5]').

3. fin(py) (S7) 2w exp (5™ p2R) pun(rry (Noso (H))-

4. Any path ~y joining Sy and Sz of length [(~y) < M pa R intersects Ng,, r(H ).

Proof. For j € {1,2}, let us denote by Q; := P; n Sh(HDMO(:ro))- We tile Q¥ with the top of boxes as

in a box tiling. More precisely, let M be the constant involved in assumption (E2), and let Z c Q7
be an 2My-maximal separating set of Q7. Then there exists a set of disjoint cells {C(z) | 2 € Z} such
that:

1. Vo e Z, D(z, My) c C(z) c D(z,2My)

2. Qi( = UerC(x)
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Figure 9.1: Configuration of Lemma

A BX
HX
mRIT ey
p2 R
""" S(a)
>

Figure 9.2: Construction of S(z)¥ in Lemma
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Thanks to this tessellation, we tile ()1 with the large horosphere He () = C(7) x th(Pl) =C(z)x QY.
Furthermore for any two points x1,29 € Z

My (Hean) = Noiey (Ca)) My (Buge,)
X )‘hX(Pl)(C(f’:?)))‘th(Pl) (th(pl)) , by Lemmal8.1.2

= Ah(a)(HC(aca))

Therefore A (Q1) xu A\Y (QY)#Z. We tile Q2 by projections of the tessellation of Q1, these projections
look like stripes on ()2

Q2 = I—éﬁf)b((Pz)(C(m)) X th(PQ) (9.15)

Let us denote these stripes by S(z) := 71'})5(132)(6(.%)) X th(PQ) for all x € Z. For all x1,29 € Z,
dx(x1,72) > My, hence by Lemma@ V(sy,s))eS(zr)and V (s3°, s ) € S(x2) we have

dx (57,85 ) 2 2AR(Py, Py) = My = 2p2R - 2p1 R~ Mo — M (9.16)
2(M0 +M)
P1 '

>2(py—2p1)R, for R> (9.17)

Furthermore we have by construction that
X X o X X
Ah(Pz) (Wh(Pz)(C(xl))) ~x )‘h(Pg) (ﬂ-h(PQ)(C(xQ)))

Therefore A\j,(p,)(S(21)) Xu Ap(p,) (S(72)), and by the tessellation , An(py) (Q2) )‘Z(Pg) (QN#2Z.
By Lemma used with « := (9%, we get

. gl
Ah(Py) (Q2NU) < 076 Ny p,) (Q2) -
Moreover, for all 21,22 € Z we have Ay (p,)(S(71)) Xu Ap(p,)(S(72)) and the set of stripes S(z) for
xeZ (ZlX) tile the set Q2. Therefore there exists Z' ¢ Z such that #7’ > (1 - 95) #7 and such that

for all € Z' we have Ay py) (S(z) NU®) < 052\ (py) (S(2)).
We are now able to define Sy and Ss. Let 1, 22 € Z be distinct and, for j € {1, 2}, let us denote by S
the following subset of S(x;)

S5 1= iy (C(21)) % Tntarpy e (BY ) ) (9.18)

By Lemma [8.1.3| applied with » = M paR, z9 = —h™B and z; = —h(P,), we have MZ(PQ) (th(Pz)) X

MZ(PQ) (IntMPQR (Bth(PQ) ) ), therefore

L (Py) (S5) Xu tn(py) (S(25)) (9.19)

The first point of the Lemma holds by inequality (9.17), and the second point holds because we choose
x1 and zo in Z'.

Let us now prove the third point. Let 3o € Y the nucleus of the cell of B, we have BY, = 7Y (C(0)).
Then by Lemma|6.0.6|applied with p = yo, 20 = h* and z = h(H) - po R we have

Dajt—n(Pa)-216 (T ) (40)) € By € Do () o (7 ) (40))
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It follows that for x € Z
7ThX(Pz)(C(JU)) x D%/(\h*—h(H)|—p2R)—MO (ﬂg/h(Pg)(yO)) cS(x)
< Theey) (C(2)) X D h(ary-pa )+t (Ton( ) (¥0))

By Lemma|6.0.6l W})L((PQ)(C(.%‘)) resembles a disk of radius 2|h(Py) — h(P)| + My = 2(p2 — p1) R + M.
Lemma|8.1.2gives ,uhX(PQ) (W})L((PQ)(C(:I:))) = em™(P2=P)E  Again by Lemma [8.1.2applied on

Dy (i )paryento (Tonceny (30))
we have

By (S()) % P2 RN () =p212)

Similarly Q2 resembles a product Da,, rinz, * th( Py’ hence

Hh(P2) (Q2) = emp2 R n(|h”—h(H)|-p2R)

Therefore we obtain an estimate of # 2

) (Q2) ¢
Nh(Pg)(S(x)) i

Applying Lemma|[8.8.2 with A = Q2, U = Nay,(H) and A = py R gives

(9.20)

fh(py) (@2) Zw exp ((m = n)p2R)) pn(ry (N, (H)) -

In combination with inequalities (9.19) and (9.20) we have for j € {1,2}

Lh(pPy) (S7) Zwexp((m —n)p2 R = mp1 R) pip ) (NMO(H))
o nPQR) tin ey (Nag, (H)),

> exp(

where the last inequality holds since (m —n)pz —mp1 > *5™ py when p; < = ps. Therefore the third
conclusion of this Lemma holds.

Let us prove the fourth conclusion. Let v be a path joining s1 € Sy and s € Sy such that [(y) < M pyR.
By inequality , dx (s7,55°) > 2p2R — 4p1 R. By Lemmathere exists a constant M’ (§) such
that the geodesic segment [s{(, 35(] contains a point s3 within 4p; R — M'(8) < 5p1 R of H* = {x0},

for R > %. Therefore by Proposition [3.2.1

(7Y 3 2005 (%),

However, every 6-hyperbolic space with ¢ < 1 is also 1-hyperbolic. Therefore we can assume without
loss of generality that > 1. Then we have

l(fyX) > 90X (v¥.s3) > odx (v*HX)-5p R

Hence logy (M psR) > d (v, H™ ) - 5p1 R. Furthermore, there exists M'(k, ¢, x) such that for R > %
we have logy (M p2R) < p1 R. In this case

d(v*,HY) <6pR
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Therefore there exists ¢ € R such that Ah(y(t), H) < 6p1 R. Let us now look at v¥. Two cases arise,
we have either v (¢) € Sh (th(PQ)) oryY (t) ¢ Sh (th(&)).

In the first case, there exists y € HY such that 4 (¢) € Vj,. Furthermore Ah(v(t), H) < 6p1 R, hence
dy (’yy(t), HY) = Ah (vy(t), HY") < 6p1 R and consequently dy (v*, H'') < 6p1 R. Which proves
d(v,H)<6p1R.

In the second case, when v¥ () ¢ Bth( P2’ by our claim we have that the vertical geodesic ray

Vv (1) starting at 7Y (t) intersect Y_p(p,) in a point y such that dy (y, SY U SY) > MpyR. Therefore

MpaR>1(7) 2 51(2") 2 3 (ds17(1)) + (1), 52))
S 2Mp2R

> MpaR,
5 P2

which is absurd, hence the second case when v¥ () ¢ th( P) does not occur. Therefore we always
have that v intersect the 6p; R-neighbourhood of H. O

Proof of Proposition[9.3.1 Let us be in the settings above. Let us assume by contradiction that P is
orientation reversing, which means that there exists $X: X - Y and ¥ : Y - X such that for all
(x,y) € B we have ®(z,y) = (dY (y), ¥ (2)).

Forall p € X xY such that d, (p, d(Hn U)) < p1 R there exists ¢ € HNU such that d (p, @(q)) <pR.
Therefore by the triangle inequality

d(p,®(q)) <d (p, @(q)) +d (CiD(q)7 <I>(q)) <ken PLR+€R, by Theoreom[9.2.1]since ¢ € U,

<k,em P1I, sincee < pyq.

Hence there exists M (k, ¢, ) such that N, p(®(H nU)) ¢ Nasy, r(®(H nU)). We show similarly
that for j € {1,2}

Nle((I)(SjI"IU)) CNMPIR((i)(SjﬂU)). (9.21)
Let M’(x) be the constant involved in Corollary|[.5.4] Then

1 (Nsipy r(2(H))) <p e €7 14 (Niere(R(H))), by Corollary[53}
<pew €SFPIEM Y (NV(H)), by Lemmal[85.5
< SO (Mg (1))
X esklem,uh(H) (Numr(H)), by the second part of Lemma[8.5.4]
< esklemuh(H) (Namo(H)), Dby the first part of Lemmal[8.5.4]

Combined with 2. of Lemma [9.3.2 we have

1 (N r(D(H))) <y e mom) G BieShonfimy, o (85)
< e_(m_")%ZReSklemuh(pQ) (S;nU), thanks to 2. of Lemmal[9.3.2]
<w e_(m‘”)%R,uh(PQ) (N1(S;nU)), since p; < %,
X0 e_(m_”)%Ru (Mar(SjnU)), byLemmal854
< e MM ERY Ny ipere(S; 0 U))
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Hence using Lemma on Ny (S;nU)

H (Ngkle(CI)(H))) Zk,c,m 6_(m_n)%RM (-/\[M’+1((I)(Sj N U)))

M
S6_(m_n)%RM(NpIR((I)(SjF‘IU))), for R > E,

< 6_(m_”)%2R,u (NMle(‘i)(Sj N U))) , by inequality

Sk,e,m 6_(m_n)%2R6Mp1Rmu (NMI(@(S]- N U))) , by Lemmal85.4
<kem e_(m_")%gR;z (NMI(@(SJ- N U))) , since pj < %,
ke m 6_(m_n)%2Rugo (./\/‘M/(@(Sj N U))) , by the first part of Lemma|[8.5.4]

where % := ®(P,). Since ® is orientation reversing, we can now apply Lemmawith Aj= @D(Sj n
U), E = Nugpr(®(H)) and Q = ™ F R e have that

1 (VN (80850 0))) 2p e €D F Ry (VN (E)) .

Then, as pointed out below Lemma [8.7.3] we can apply it on a A; with V; = V E/. Hence there exist
Ua, c Aj such that:

A (Ua,) 2 (1= emMRRY N (A)).
- For all p € U, most of the vertical geodesic in Dy, (p) do not intersect E.

By Property [8.6.5 we have
Ay Wity (B(S; 0 1)) 2p e ™D FEN (72 (Mg (E))).

Hence by the definition of A
¥ m-n)£2 ™
Mz (NMO ((I)(Sj n U))) Zk,c,m 6( )% RMZ}) (7['50 (NMO (E))) : (9.22)

Let us denote E' := Ny, (2(S; nU) ~ Ua,;). Since ® is MeR-close to ® on U by Theorem , we
have (similarly as in inequality (9.21)) that

Nowr (971 (E')) € Nutoyr (07 (E'))

Therefore

#(Noir (7 (E))) Skee 11 (Natprr (271 (E')))
<pope €OMPLET Y, (Mecre (<I>_1 (E'))). by the first part of Lemma[8.5.4
Kpope €OMPLET Y, (M (E")), byLemma
Sk e,m SMprtim ), (NMO (E')) , by the second part of Lemma[8.5.4]

o e_(m_”)%2Ref’.Mpll%L,u;g0 (Nt (‘i)(Sj nU))), by inequality D22}

P2 )
. o(m—n) 13RHh(P2) (N, (S;nU)),  since py < %7

)&y

<k

=k
<k,cm e(m_")%Ruh(p2) (N (S5)),  since S; n U have almost full measure in S;.

Following the second conclusion of Lemma there exists a constant M (x) such that Aj,(p,)(S; N
Uc) < MQS%/\h(pﬂ(Sj).
We apply twice Lemma for j = 1,2 with (V1,m) = (N, (S]X) x N, (S]Y) ,,uh(p2)), Vo=U°n
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Noir (Ci)’l (E’)) and o := €(m_n)%R,U,h(P2)+M9$. Let us denote GY (pX) = {pY e VY| (pX,pY) € Vo},
we have that

Hine) ({pX e Vi [ 1l py) (G (pX))}) = (1 B 6_(m_n)%R) ey (V1)

Since "M MR 1 @3z < %, there exists sy € (S;nU)~ &1 (E')and sy € (SynU)~d~ (E') such
that s = sY.

Let us denote by §; := ®(s;(h([%))) for j € {1,2}. By construction we have 5; € A;, then V. Dy, (s;)
contains almost only vertical geodesic segments which do not intersect £. Since 55 = 35, and by
Lemma we can find two vertical geodesics v1 € V Dy, (s1) and vg € V Dy, (s2) which do not
intersect E' = Ny, r(®(H)), and such that s; = s3". Since v] and v) meet (up to an additive con-
stant) at the height -2y + %dy(§1, 39), there exist M (J) such that the concatenation of v; and vy is
(1, M (0))-quasigeodesic linking §; to $o.

Let us denote by 7 := ®™1(v; Uwy), then 7 is a (k, ¢ + M )-quasigeodesic. By Lemma 2.1 of [17], there
exists a 2k-Lipschitz, (k,4(M + c))-quasi-geodesic 7' in the 2(M + ¢)-neighbourhood of +, linking
®71(31) to @71(82). Let us denote s = ®71(31) and s, = ®71(32). Because 7' is 2k-Lipschitz, and
since ®~! is a (k, c)-quasi-isometry we have

1(7') < 2kdy (51, 82) < k2du(s], sh) + ¢ (9.23)

Furthermore, 7' does not intersect the %(chlR - 2¢) - c-neighbourhood of H since ®~! is a quasi-
isometry. Moreover 5; and s; are eR close to each other, that is

du (55, 57) = du (271 (D(55)), 55)
< kdu(D(55), P(5;)) <kem R, since s; € U. (9.24)
Consequently by the triangle inequality we get
du(87,55) < dwu(s],s1) +du(s1,52) + du(s2,55)
<pem ER+dw(s1,52), since ®'(s;) e U (9.25)
Furthermore s} = 53, therefore by CoroHary with M = 15C, we obtain

dw(s1,82) <dx (s{(, s‘;) + M <2paR+ M, Dby the first point of Lemma9.3.2

Combined with inequalities (9.23) and (9.25) we get

M
1(Y) ko 2k2(203R + M + 26R) + ¢ <pc0 p2R,  for R> ——.
P2

For j € {1,2}, let v; := [s;,s}], by inequality we have [(7j) <kcw €R. Hence the path ~",
constructed as the concatenation of 71, 7' and 7, is a path linking s; € S; to sy € So, of length
1(7y) =kem p2R since € < po. Furthermore, by construction, 7" does not intersect the 7p1 R — 3¢ —
2MeR > 6p1 R-neighbourhood of H. This contradicts the fourth point of Lemma[9.3.2] therefore ® is
orientation preserving. O

9.4 Factorisation of a quasi-isometry in big boxes

In Sectionwe proved that for all i € I, @, is close to a quasi-isometry product d; = (é)lX ) éf) on
a set of almost full measure U; c ;. In this section we prove that ® is close to ® on all boxes at scale
L on a set of almost full measure. This is a step-forward since this is true on all boxes at scale L and
not only a significant number of them.
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Theorem 9.4.1. For0 <0 <, ., 1, for L >, % and for all box B at scale L, there exists M (k,c,x),U € B
and a (k, M~\/0L)-quasi-isometry product map ® = (@X, @Y) such that:

1L AU) 2 (1-05)A(B)

2. du (P, Ppy) <u VOL

Let B be a box at scale L, let i € I, and for all i € I, let U; c B; be as in Theorem [0.2.1} where Uj is
the subset of B; on which @ is close to a product map ®;. Let us denote by W c B the "good" set of B

W:=|_|U¢

i€ly

where "good" means the set on which @ is close to a product maps on boxes at scale R. We introduce
the application P which quantifies the portion of a geodesic segment which is not in W.

Definition 9.4.2. Let~y: [0, L] > X wY be a vertical geodesic segment. We denote the measure of points
inynWe by
P(v) :=Leb (v 1(W®)) (9.26)

The value of P(7) is related to y being e-monotone.

Lemma 9.4.3. For 0 < € <, ., Vo <kem 1, there exists M (, k,c) such that for all vertical geodesic
segmentsy: [0,L] - X »Y we have

P(v) < VOL = & o~ is M/6-monotone.

Proof. Letty,to € [0, L] such that ®(h(v(t1))) = #(h(y(t2))) and such that ¢, > ¢;. Let us decompose
[t1,t2] into segments of length /OR. without loss of generality we can assume that to — t; > VOR.

Let us denote N := [%EJ I := [ty + iv/OR,ty + (i + 1)\V/OR] for any i € {0,...,N -1} and Iy :=

[t1 + (N = 1)VOR, t5]. We have

N

[tl, tQ] = |_| Iz

=0

Then foralli € {0, ..., N} let us choose s; € I; such that v(s;) € W if possible, and any s; € I; otherwise.
Let us denote by J the set of odd indexes in {0, ..., N'}, we split .J into the following sets:

Jo:={j € J|~v(sj) and v(s;+2) are both in the same box and in W'}
Ji:={jeJ|v(sj) and v(s;+1) are in different boxes}

Ji:={j € J|v(sj+1) and v(s;+2) are in different boxes}
Jy={jeJ|I; c W}

Jyi={j €| Ijs2c W

We claim that
J=Jou(JiuJiuJouJj)

To prove it, one can see that two cases arise when an odd index j is not in Jy. The first case is when
v(s;) and y(s; + 2) are not in the same box, which leads to the fact that either j € J; or j € J]. The
second case happens when y(s;) or y(s;+2) are not in W, which leads to either I; ¢ W€ or I o c W°.
Therefore, we proved that an odd index is either in Jy or in J; U J] U Jy U J3.
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By the assumption P(7y) < VL, hence we have that #.J, < % = % and similarly that #.J;, < %.

Furthermore there are less than % boxes intersecting v, therefore #.J; < % < % and #J] < %, hence

L
#(J1uJ{uJauJ3) S4E
-t L

2OR R

We see that the "good" indexes are in majority compared to the "bad" indexes. We now use that fact to
prove that |ty — t;| is smaller than \/AL. Let us denote ¢(t) := h o ® o y(t) for all ¢ € [0, L]. We assume
that IV is odd, the case where N is even is treated identically. By assumption ¢(t1) = ¢(t2) therefore

0=q(t1) - q(t2) = q(t1) —q(s1) + Z] (q(si) = q(si+2)) + a(sn) — q(t2)

=q(t1) —q(s1) + Y (q(si) —q(siv2)) + Y, (a(si) = q(sir2)) +q(sn) — q(ta) (9.27)

iE.]O ieJN JO

#Jo=#J - #(J1uJ{ v U} >

However we proved that #.Jy is much bigger than #(J \ Jy), and for any i € Jy, q(s;) — q(si+2) is a
positive number by the upward orientation of the quasi-isometry on W. Therefore we will show that
|t1 — t2| must be small for this equality to hold. First, we have to consider that Vi € {0,..., N}

l(Ii+1) < |Si - Si+2| < l(IZ) + l(IHl) + l(I,H_Q)
=>\/§R < |Si - Si+2| < 3\/§R
=|q(s:) = q(si+2)| <hcpm VoOR

Hence for all i € J \ Jy we have q(s;) — q¢(Si+2) Zk.cx —v/0R. Furthermore for all i € .Jy, s; and $;.2
are in the same box and in W, therefore by Corollary there exists M (k, ¢, x) such that

q(si) —q(sir2) > %|sZ = Siva| = MeR 2 ¢ \/5R; since V0 > 2Me.
Combined with equality
02 e VORHJy — VORH(J1 U U Jo U J3) = |ta —t1| - VOL
Hence [ta—t1| <1, .« V/OL, which proves that there exists M (k, ¢, ») such that v is M+/f-monotone. [J

Let M be the constant involved in Lemma and let ¢’ := 2M /0 Thanks to the previous lemma,
we show that almost all vertical geodesic segments of boxes at scale L have e-monotone images under
o.

Let us denote by V9B c VI the set of vertical geodesic segments of V3 whose image by ¢ are
¢’-monotone.

Lemma 9.4.4. For L >, . % and for any box B at scale L we have that
n(VIB) > (1-V0)n(VB) (9.28)

Proof. Lemma tells us that P(y) > V0L for all v € V®B. Computing the measure X of W¢ we

have

L L
A(W®) = [ A (W) dz %, f 7 (Vg (WE))dz, by Proposition[f63)
0 0

L L

xwff]lvs(wzc)(’y)dn(fy)dz Xw[f]lvg(wg)(’Y)dZdﬁ(’Y); by Fubini Theorem. (9.29)
0 VB VB 0
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However we have .
0 ifzeny (W)
]lVB(WZC)(’Y) = { 1 ifze 7—1(Wc) (9.30)

Therefore Ly, wey(7) = L,-1(we)(2). With inequality it gives us

L L
A(We XN‘/‘/‘]l,Y—l(Wc)(Z)dZdn(’}/)Z f/]lvq(wc)(z)dzdn(’y), since V’Bc VB
VB 0

VbB 0
> fLeb(v‘l(Wc))dn('VF fP(v)dn(v) (9.31)
VB VB

Let us assume by contradiction that 7 (V98) < (1-/68)n (VB), hence we have (V*B) > Von (VB).
Therefore by inequality

AW 20 (VPB)VOL > Von (VB) VOL
2w OA(B),

which contradicts Proposition O

As in Section[9.2] we deduce that, in boxes which have almost only vertical geodesic segment with
2M+/6-monotone image, ® is close to a product map. Let us denote &’ := 2M~/0 and 6’ := 2M /6,
then for 0 < 0 <, ... 1 we have that ' <<’ < /0.

Proof of Theorem[9.4.1 The proof is similar to Theorem The Lemma [9.4.4] plays the role of the
second conclusion of Lemma with ¢’ instead of ¢. In a box at scale L, almost all vertical geodesic
segment have £’-monotone image by ®.

Then, because &’ <k,eom Vo' , Lemma provides us with a dominant orientation. In combination
with Lemma we get Lemma which provides us with the vertical tetrahedrons. Then we
make use of them, as in the proof of Theorem to construct the quasi-isometry product $.

In a box at scale R, the upper-bound ¢R on the distance between ® and d is achieved since 0 < ¢, and
in our box at scale L, it is achieved since 8’ < £’. O

This is a step forward since now, Theorem holds for all boxes at scale L, and not only a
significant proportion of boxes at scale R.

9.5 A quasi-isometry quasi-respects the height

In this section we fix two points at the same height, at an arbitrary distance, and we estimate the
difference of height between their respective images under ®.

Theorem 9.5.1. For0 < 6 <y, .. 1, there exists M (k,c,x,0) (here M depends also on 0) such that for all
pand qin X wY with h(p) = h(q) we have

Ah(®(p), ®(q)) < 0d(p,q) + M (9.32)

To do so we construct two sequences of growing boxes, until they cover the two given points, then
we apply successively Theorem[9.4.1lon each of these boxes. The next lemmas ensure us that estimates
made on a box spread to the following box in the growing sequence.

Definition 9.5.2. (Rectangle) Let 0 < 0 <} .. 1 be as in Theorem ze€Rand P :=(XwxY),a
level-set of the height function. The rectangle R(L) c P is the intersection of P with a box B(2L) which

has h*(B) = z+ L. Let R* (L) denote the thickening of R(L) along the height by the amount 05 L. More
precisely we have R (L) := B(2L) nh7! ([z - 0§L, Z+ QéL]).
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Lemma 9.5.3. For0< 0 =<y .. 1, L > . % and every rectangle R(L) c P there exist U ¢ R*(L) and
a product map $:U - X wY such that:

1 AU) 2 (1= MO3) M(R* (L))
2. d(q)‘U, (i)) Zk,e,m GéL

1
3. Almost all vertical geodesic segments have M 63 -monotone image under P.

Proof. Let U’ be the U of Theorem and let us define the set U of this lemmaas
U=Unh™ ([z _OSL, 2+ Q%L])
Then first point holds
AU <A ((U)°) < MH%)\(B), by Theorem [9.4.1] applied on B(2L),
<k 05 f Ao(Bo)dt, by Property[8.1.5,

[z—L,z+L[

<om 0F (07303 ) 2LA0(Bo) <kem U5 A (R*(L)), by Property[EL3,

The second point also holds by Theorem and since 05 > /6. The third and last point holds by
Lemma[9.4.4] O

Now we tile P successively with rectangles of exponentially growing size, from the constant L :=
% of Theorem until one of these widened rectangles contains the two previously given points p

and q. Let L = (1 + 016 )/ L for all j € N*. For all j > 0 we tile P with a family of rectangles (Rj’k)keN
at scale L;. For all p e X x Y let us denote by B;[p] the unique box of the j’th tiling containing p, and
let R;[p] be the rectangle of the j’th tiling contained in B;[p]. For all rectangles R j, Lemma[9.5.3]
provides us with a subset U, ¢ R} . Let us denote by

+o0
Uj = U Uk
k=1
Hence for any p € Uj and g € R;T[p] nU;

AR(®(p), (q)) < 205 L;

Thanks to the following Lemma, we can control the difference of height of the image by ® of two
points taken in consecutive rectangles.

Lemma 9.5.4. Foranyp e U; andq € R}, [p] nU;

o=

Ah(q)(p),q)(q)) 5k,c,w 0 Lj

Proof. Leta = (pX,q"), since M 05 < 1, there exists an X -horosphere H which intersects both R} [p]n
U; and R}r [a]nUj, let us denote these intersections by p; and a; respectively. By construction we have

Ah(p,p1) <0
Ah(a,m) <0

ool= 0ol

L; (9.33)
L; (9.34)

The points py and a; are in the same box at scale L, 1, and surrounded by "good" vertical geodesic since
they are in U;. Therefore we can construct a coarse quadrilateral containing p; and a;. To do so, for
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i=1,2,let7{,73 cY be two vertical geodesic segments leaving Dy, (pY ) = Dag,(ad ), let v X c Y
be a geodesic segment leaving near Dy, (p{( ) and ¥ c X be a vertical geodesic segment leaving
Dy, (af), where My is the constant of assumption (F2). Then consider the four vertical geodesic
segments of X x Y

vi = (V5,0
¥ = (Y5, 0).

Most of such vertical geodesic segments have M 0% -monotone image under (Lemmaused thanks
to the third point of Corollary [9.5.3) and are diverging from each other (Lemma [8.8.1), hence without
loss of generality, ; and ~y/ can be chosen that way. We parametrise them by arclength starting at the
height of p; and a;. Furthermore, p; and a; are in the same box at scale L;,; with p}/ = a}/, hence we
have

dw(p1,a1) <dx (p{(, a{() - M(x), by Corollary[4.34]
<2Ljy1 — M +2My, by the definition of a box at scale L;,1.

Therefore, by Lemmaapplied with z; = p{( and z9 = a{( we have
dx (7 (Lje1)s () (L)) = 1

Furthermore dy (7} (L;+1), (7)Y (Ljs1)) = 0, hence du(7i(Lj+1),7/(Lj+1)) = 1. Consequently,

applying Proposition with D = M5 R on the coarse vertical quadrilateral ® (71 U~y U2 U~S5)
gives

A(®(p1)), ®(a1)) <pen O5L;.

Similarly we can find as € Ri[a] nUj and g2 € R;[q] n U; on the same Y -horosphere such that

AR(®(g2)), ®(a2)) <k.cm H%LJ’. Which, in combination with inequalities and , ends the
proof. O

Then we prove that the estimate is still true when taking the second point in the associate subspace
Ujs1 of the wider rectangle.

Lemma 9.5.5. Foranya € R} [p]nUj andbe R} [p] nUjn

AR(®(a), (b)) <hem 05 L;

Proof. Since the projections of U; and Uj+1 on P cover almost all Rj.1[p], we canfinda’ € Ujn R}, [p]

and b’ € Uj;1n R}, 1 [p] on the same vertical geodesic, which implies dy (a', b") < 205 L. Furthermore

Lemma applied on a and a’ gives
AR(®(a), ®(a’)) <gem O5L;
Similarly we have Ah(@(b’ ), (IJ(b)) <k.em QéLjH. Therefore by the triangle inequality:

Ah(®(a),®(b)) < Ah(®(a),(a’)) + Ah(D(a"), @(V')) + AR(D(V'), (b))
<how 03 L;+ 03 Lis <05L;, since (1+07) L; <2L;

We now construct the sequence of growing rectangles, and prove Theorem
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Proof of Theorem[9.5.] We have both:

Rolp] € Ri[p] c Ra[p] c ...
Rolq] € Ri[q] c Ra[q] c ...

Let N € Nbe such that Ly _; < du(p, ¢) < L. The N’th tiling can be chosen such that Ry [p] = Ry [¢].
Now for 0 < j < N, pick p; € Rj[p] nUj and ¢; € Rj[q] n U;. We may assume that py = ¢n. Hence
computing the difference of height between ®(pg) and ®(qo) we have

N-1 N-1
AR(®(po), ®(q0)) < D AR(P(p)), P(pji1)) + Y. Ah(®(gji1),®(g;)), since py = qn,
=0 =0
N-1 | N-1 | N
< 08 Lj. = Z 03 (1+9ﬁ) Ly, by Lemmal[9.5.5
=0 =0
95

1 .
= — LN 2w 076du(p,q), since Ly Xu du(p,q)-

16

Moreover, pg € Ry[p] and qo € Ro[q], hence
AR(®(p), ®(po)) < du(P(p), ®(po)) < kLo +c < 2kLyg
And similarly Ah(®(g), ®(qo)) < 2kLo. Therefore by the triangle inequality

Ah(®(p), ®(q)) <AL (®(p), P(po)) + A (2(po), P(q0)) + Ah (P (q0), P(q))
5k,c,me%6dm (pa Q) + LO-

Corollary 9.5.6. Any vertical geodesic ray V of X nY satisfies, for allty,t2 € R
h(®oV(t1))=h(®oV(t2)) = [t1—tof <penl

Proof. Suppose V is a vertical geodesic segment parametrised by arclength. Suppose 0 < ¢; < ¢3 are such

that h(®(V (t1))) = h(®(V (¢2))). We apply Theoremon d L withp = &(V(t1)), ¢ = ®(V(t2)),

where 0 is here fixed and depends only on k, ¢ and the metric measured space (X x Y, dy). Then we
have

AWV (1), V(t2)) <k.em 076 ]t1 — ta] + M(6) = 0lt1 — to] + M(k, ¢, ) (9.35)
However Ah(V (t1),V (t2)) = [t1 — t2|, hence

(1 - Hﬁ) |t1 _t2| Zk,e,m M(/{?,C, M) ke, 1

. 1
Hence ‘tl - tg‘ <k 1 since 016 < % O

This is stronger than being e-monotone since it true on all R.

9.6 Factorisation of a quasi-isometry on the whole space

Finally, we provide the proof of the Theorem which states that ® is close to a product map ® on
the whole space X x Y.
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Proof of Theorem[9.0.1 We first pick an arbitrary vertical geodesic VX of X and an arbitrary vertical
geodesic V) of Y. Then we work with the two embedded copies X := X V' and Yy := V5¥ u Y of
XandY in X x Y. Let p € X Y, there exist a unique a € X and a unique b € Yy such that p* = o
and p¥ = bY. We can construct a coarse vertical quadrilateral () containing p and a as in Lemma
Thanks to Corollary[9.5.6] we know that ®(Q) is in the M (k, ¢, »)-neighbourhood of a coarse vertical
tetrahedron Q" on which we use Proposition This gives us

dx (2(p)", 2(a)™) <.e 1 (9.36)
AR (®(p)™*, ®(a)™) <pewm 1 (9.37)
Similarly we have dy (®(p)*, ®(b)"") <)« 1. Let us denote
XX > X
x> (:1;, VOY(—h(x)))X
By rewriting inequality we have
dx (2(p)%, &% (%)) =dx (2(p)¥, & (%)) = dx (2(0)*, (Vi (-h(a*))) ")
=dx (2(p)*,® (a)") <p e 1
Similarly by denoting & := & (VX (~h(y)),y)" forall y € Y, we have
dy (2(p)", @Y (p")) e 1 (9.38)

The last problem is that given a point p, the heights of &% (pX ) and &Y (pY) may differ. As in the
proof of Theorem[9.2.1] inequality guaranties that they are sufficiently close, which allows us to
chose ®* and &Y such that for ® := (X, ®¥") we have

d (q)(p)?(i)(p)) Zk,c,m 1
Ah(@(p%(i)(p)) Zk,c,m 1

We now prove that X and ¥ are quasi-isometries. Let 2, 2" € X, then

dx (8 (2), 8% (2")) Spem dx (@ (2,15 (-R(2))) " @ (2,1 (-n(2)) ")
<d (@ (2,15 (-1(2))), @ (2", V' (-h(z"))))
< kdy ((x, %Y(—h(x))) , (a:', VOY(—h(a;')))) +c

<kdx(x,2") +dy (Vg (=h(2)),Vy (=h(z"))) + ¢+ M(k,c,x), by Corollary[d3.4}
<kdx(z,2") + Ah(x,2") +c+ M < (k+1)dx(x,2") +c+ M.

Similarly

dx (¢ (), (2"))

s o (@ (2, V5 (<h())) ", @ (2, V) (<h(a'))) ™)

> 2d, (@ (2, V) (<h(2))) . @ (2, Vi (~h(x")))) = dy (@ (2, V] (~h(x)))" , @ (2, Vg (-h(z")))")

v
S

dx (z, x/) —c—dy (éy (V()Y(—h(a:))) , Y (VOY(—h(:c)))) —2M, by the triangle inequality,
> —dx (a:,a:') —c—-2M.

The proof that P isa quasi-isometry is similar. O



Chapter 10

Some solvable Lie groups as
horospherical products

In this chapter, we provide a characterisation of the quasi-isometry group a the horospherical product
of two Heintze groups. See Theorem for the precise description.

10.1 Admissibility of Heintze groups

In this section we show that a Heintze group satisfies the conditions required to apply our main rigidity

result[0.0.1]

Definition 10.1.1. (Heintze group)
A Heintze group is a solvable Lie group S = N x4 R where N is a connected, simply connected, nilpotent
Lie group, and A is a derivation of Lie(N) whose eigenvalues all have positive real parts.

Heintze obtained in is work [[20] that any negatively curved homogeneous manifold is isometric to
a Heintze group.

Remark 10.1.2. A Heintze group equipped with a left-invariant metric has a strictly negative sectional
curvature, see [20] for further details. From now on we fix g a left-invariant metric on N x 4 R with maximal
sectional curvature —1. Since N x4 R it is simply connected, it is a C AT (-1)-space.

From now on we fix the metric g such that S = N x4 R is a CAT(-1) space. Therefore S is a 0-
hyperbolic, Busemann, proper, geodesically complete metric space. Moreover, we show that S satisfies
all three assumptions of Definition The assumption (FE1) holds thanks to the decomposition
S = N x4 R. We have for all (n,z) € N x4 R, g, ») = exp(-zA)(gn )n exp(-zA)" @ dz?, where gy is
the restriction of g to the nilpotent Lie group N. Let us denote by g, := exp(-zA)gn exp(-zA)! a left
invariant metric on N, then let us denote by y := 1, the measure on S induced by g and by p. := g,
the measure on N induced by g.. Then for all measurable subset U c S we have

()= [ 10 2dug(n2) = [ [ 10(n =), (1)dz
S R N
:/Mz(Uz)dza
R

where U, := {n € N|(n,z) € U}. Assumption (E2) holds with constant My = 1 since gy, . is left-
invariant, and assumption ( E3) arises from the fact that det(g.) = exp(—2z tr(A))det(g). Therefore,
any Heintze group is an admissible horo-pointed space.
Let us denote S7 := N3 XA, R and Sy := Ny XA, R, then

S1 w8y =(NyxNg)xgR,
with A the matrix diag( A1, —As2).

133
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10.2 Precision on the components of the product map

We first refine Theorem for Heintze groups.

Remark 10.2.1. For any vertical geodesics V of (N1 x No) x4 R there exist n1 € N1, no € Ny and an
arclength parametrisation of V' such that V (t) = (n1,n2,t).

Let @ € QI((N1 x N2) x4 R) be a (k, ¢)-quasi-isometry. By Theoremthere exist 1 : 91 — S
and <i>2 1S9 — S5 such that
A (P, (D1, P2)) <p e 1

Lemma 10.2.2. Let i € {1,2}, then for any vertical geodesic V € S;, there exists a vertical geodesic V'
such that

dHff (qA)l(V)a V,) 5k c,M 1

Proof. Since S; = N; x4, R is a Gromov hyperbolic space, there exists M (k, ¢, x) such that image of a
vertical geodesic by d;isina M- -neighbourhood of a geodesic «y of .S;. By Corollary'y is a vertical
geodesic, hence for V' :=  we have dyg (<I> V), v’ ) <kem L. O]

Let n € N; and let us denote by V}, the vertical geodesic V,, : R - S; ; t — (n,t). By Lemma(10.2.2
there exists a vertical geodesic V! such that

dHff((i)’L(Vn)aVé) Zk,em 1 (10.1)

Furthermore V), is unique since it is an infinite geodesic of the Heintze group S;. We define a map
W, : N; = N; as the following

Forallne N, ¥;(n) = P(V,(0)), (10.2)

where P : N; x4, R — N; is the natural projection on N;.
The goal of this subsections is to prove the following theorem.

Theorem 10.2.3. There exists tg € R such that for the aforementioned U; we have
du (@, (U1, Vs, idp +10)) <k e L.

We first show <i>z and W; are related.
Lemma 10.2.4. Leti € {1,2}. There exists f; : R > R such that for all (n,t) € S;

ds,(®i(n, 1), (Wi(n), fi(#))) <hem 1

Proof. Let f; : R — R;t — h(®;(en;,t)). Then by Theoremwe have that h(i)i(n,t)) = fi(t) for
all n € N;. Therefore by the definition of ¥; we have (¥;(n), f;(t)) = V,/(fi(t)). Hence

ds, (®i(n, 1), (Wi(n), fi(1))) = ds, (Di(n,1), Vu(fi(1))) - (10.3)
However by inequality (10.1), there exists s; € R such that
ds, (®i(n, 1), Vi(51)) Shes 1 (10.4)

Furthermore we know that
1zp e ds, (Bi(n,t), V() 2 A (9i(n,t), Vi (s1)) = |fi(t) = 4] (10.5)
Therefore
ds, (i(n,t), Vi(fi(1))) < ds, (®i(n, 1), Vii(s¢)) +ds, (Vii(st), Ve(fi(t))) by the triangle inequality,
= ds, (®i(n,t), V(s)) + |fi(t) = s¢| ke 1 by inequalities and (10.5).
Combined with equality it provides us with dg, (i)z(n, t), (¥;(n), fz(t))) ke 1 O
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Corollary 10.2.5. (Quasi-isometries quasi-preserve the horosphere volume)
Lett € R, r > 0 and n € N;. Then the map ®; = (V;, f;) quasi-preserves the volume of any disk
D := D,(n,t)

1y (D) Xp e iy (N1 (24(D)))

Proof. By Lemma there exists M (k, ¢, ) such that ®; is M-close to ®;. Therefore, there exists
k',c’ depending only on k, c and S1 x Sy such that ®; is a (k', ¢')-quasi-isometry.
We first exhibit Z a 2(k’c’ + 1)-maximal separating set of D. Then ®;(Z) verifies:

1. The disks D (p) with p € ®;(Z) are pairwise disjoints.

2. U Di(p)c M (2i(D))c U  Dopgrrerstyrersi(p)
pe®;(Z) pedi(2)

Furthermore by Lemma|[8.1.2] we have V(n,t) € Z
115 (Drer (1, 8)) R 117" (Daprer (1))
M?Z(t)(D1(‘1>i(n7f))) Xk cym M;?j(t)(D%'(k'c'+1)+cf+1(<1>i(na t)))
Therefore
17 (D) Ree #2 Zhe 17 (N1 (84(D)))

Lemma 10.2.6. (Quasi-isometries quasi-translate the height)
Let f; : R — R be the function involved in Lemma Then forallt e R

[t = (fi(t) = fi(0))] <kem 1

Proof. We recall that for all t € R, f;(t) :== h ((i)i(eNi,t)). Letn € N;, 7 > 0, t € R, and let us denote
U c N; such that D, (n,0) = (U,0). Then we have

(U, 0) = 2D, 55 (1 ) (10.6)
However ®;(U,0) = (T;(U), £i(0)) and (U, t) = (T;(U), fi(t)), therefore
13 0y N1 (2i(U.0))) = u ) (M(W4(U), £i(0)))
= 2tr(A)(fi(t)- fz(O)) S; )(Nl(\l’i(U),fi(t)))
_ 2AGO-£0)) S o Vi (@:(0.0))) (10.7)
Furthermore by Lemma[10.2.5 we have
o' (U,0) =k 17 ) (N1 (2:(U,0)))
15 (U ) R 1y (N1 (@4(U, 1))
In combination with equalities and (10.7), it provides us with
15" (U, 0) = XA 1y (U, £) 2y 0 25 (N(@4(U 1))
_ eZtF(Ai)tthr(Ai)(fi(o)_fi(t))ui(o) (Nl(&)i(U,O)))
2tr(Ai)te2tr(Ai)(fi(0)*fi(t))MOSi (U,0)

Rk,e,m €
Hence we have e2tr(4:)t Xk, e2tr(Ai)(fi(t)_fi(0)), which, composed with the logarithm, gives us

[t = (fi(t) = £i(0))] <k.em 1. (10.8)
]
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Corollary 10.2.7. There exists tg € R such that fori € {1,2} and for all (n,t) € N; xR

dsi (i)z(n, t), (\Ifl(n), t+ to)) Sk:,c,m 1

Proof. The proof is a direct application of Lemmas|10.2.4|and [10.2.6| by taking ¢ := f;(0). O

In this corollary ¢y depends on ®.

Proof of Theorem Using Lemma [10.2.7|on N7 and N2 provides us with Theorem [10.2.3 O

10.3 Hamenstiadt distance and Product map of Bi-Lipschitz functions.

As presented in section 5.3 of [6], the parabolic visual boundary of N; x R may be identified with the
Lie group N; endowed with this A;-homogeneous Hamenstadt distance.

Definition 10.3.1. (Hamenstddt distance) For any n,m € N;, we define their Hamenstddt distance as
d = ! li 2s-d
(n,m) :=exp ~3 S_grnoo( s —dg,((n,-s), (m, —s)))
We denote Bilip(N ) the group of Bi-Lipschitz functions of N for the Hamenstédt distance.

Bilip(V;) := {¥ : (N;,dir) - (Ni,dp) | 3k > 1, ¥ is a (k,0)-quasi-isometry} .

Two quasi-isometries ® and &’ are said to be equivalent when they are at finite distance from each
other.

P~d' = supde(®(z), (7)) < +o00
x
In this section we prove the following characterisation of the quasi-isometry group of S7 x Sy =
(Nl X Ng) XA R.

Theorem 10.3.2. Let Ny x4, R and N2 x4, R be two Heintze group, let ® € QI((N1 x Ng) x4 R) and
let Uy, Uy be as in Theorem[10.2.3 we have the following isomorphisme.

£ QI((N1 x Np) x4 R)/~ - Bilip(V7 ) x Bilip(N2)
P (U, Vs5)

This distance is related to the height divergence of vertical geodesic in the following way.

Lemma 10.3.3. (Extended Backward Lemma) Let n,m € Ny, let V : t = (n,t) and let W : t = (m,t),
then

dH(nu m) Xk,c,w exp (hDiv(‘/v W))
See Corollary[6.0.3|for the definition of hps, (V, W).

Proof. By the Corollarythere exists a height hp;, (V, W) € R such that V and W diverge from each
other at the height hp;, (V, W). Hence there exists M (k, ¢, ) such that for all s1 < s9 < hpi (V, W)

d(V(Sg), W(Sg)) -M< dSi(V(Sl)a W(Sl)) + 2|52 - 81| < dsi(V(Sg),W(Sg)) + M.
Therefore

exp (dgi(V(sl), W(sl)) + 2|89 - 31|) Xk, cm €XP (dsi (V(SQ), W(SQ))) , (10.9)
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Let us denote hg := hpiy(V, W). Then we can compute de Hamenstédt distance dg(n,m)

dp(n.m) = exp (—% lim (25 - dsi(V(—s)W(—s))))
Rk e XD (—% Tim (25— ds, (V(ho), W (ho)) = (2o + 25))) by inequality (T0.9),
Zh.en €XD (—% Tim (= ds, (V(ho), W (ho)) - 2h0))
e (dsi(V(ho), W (ho)) N ho) _ exp(dsi(V(ho), W (ho))

2 2
Zk,em €Xp (ho) by definition of hp;, (V, ).

)exp(ho)

We show that the aforementioned maps ¥; are bi-Lipschitz.

Theorem 10.3.4. Let V; be the map ofTheorem Then W, is a bi-Lipschitz map on (N;, d ), with
dy the Hamenstddt distance.

Proof. Letn,m € N; and let V : t = (n,t) and W : ¢ = (m,t) be two vertical geodesics of N; x4, R.
Then by the Lemma|[10.3.3| we have

di(n,m) Xgcu exp (hpi (V,W))
Since ®; := (V;,idg + o) is a (K, ¢')-quasi-isometry, we have:
1. ds,((¥i(n), hpie (V,W) + 1), (Ui(m), hpiy (V, W) +t0)) gem 1
2. Vs> hpiw (V,W), ds,((¥i(n),s +to), (Ti(m),s+10)) <pewm 1

Furthermore, for all n € N;, ®;(V;,) = Vi, (n) hence ®;(V;,) is a vertical geodesics of S;. Then there
exists M (k, ¢, x) such that

(hpiv(V,W) +tg) = M < hpiy (2:(V), @:(W)) < (hpiy (V, W) +to) + M.
Consequently Lemma [10.3.3] provides us with

dig (Vi(n), ¥;(m)) Xk,em €xp (hDiV(V\Pi(n)v W\Ili(m))) = exp (hpiv (‘fi(V), ‘i)z(W)))
Rk, €xp(to) exp (hpiv (V,W))
Zk.en €xp(to)dp(n,m), by Lemmal[10.3.3
Where ¢y depends only on ®. Hence, V; : (Ni, dH) - (Ni, dH) is bi-Lipschitz. O]
Proof of Theorem[10.3.2: Let W1, W5 be as in Theorem|[10.2.3] and let f be the application

£ QI((N1 x Na) x4 R)/~ - Bilip(N ) x Bilip(V2)
P (U, Uy)
We first show that this application is well defined. Let ®, ®' € QI( (/N1 x N2) x 4 R) be such that ¢ ~ &,

which means that d, (P, ®) <j ., 1.
By Theorems|10.2.3{and|10.3.4, there exist ¥;, ¥/ € Bilip(JV;) such that:

1. d((I), (\Illa\IJQ,idR)) =k,c,x 1

2. f(®)=(¥y,¥7)
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3. d(®, (U], Uh,idR)) <p e 1
4. f(27) = (¥}, ¥5)
By the definition of ¥; and U}, for all n € N we have
Ui(n) =P (V,(0))
Wi(n) =P (V/(0)

Where V! the unique vertical geodesic close to i)z(Vn) and V" the unique vertical geodesic close to
P! (V,,). However ® ~ @', then ®;(V;,) and ®;(V;,) are M-close to each other for some M (k, ¢, ),

therefore dug(V,,,V,') <k.cn 1. However these vertical geodesics are unique, then V,, = V. Conse-

quently, ¥;(n) = Wi(n), hence ¥; = U/, therefore f is well defined.

Let us now prove that f is injective. Let ® and @' be two quasi-isometries of (N7 x Na) x4 R such that
f(®) = f(@"). Then by Theorem[10.2.3|and by the triangle inequality

du (®, @) < due (@, (U1, U, idR)) + due (U1, Ua,idR), ) <4 0,07 1.

Hence ® ~ &', which proves that f is injective.

Let U; € Bilip(Ni, dH), our goal is to show that (¥;,idg) is a quasi-isometry of (IV; x4 R,dg,). Let
(n,tn), (m,ty) € S;. By Lemma applied on n and m, there exists a constant M (k, ¢, ») such
that

In (dpr(n,m)) = M < hpiy (Va, Vin) <In(dg(n,m)) + M. (10.10)
Similarly, by Lemma [10.3.3applied on ¥;(n) and ¥;(m)
In (dg (¥;(n), ¥i(m))) = M < hoiw (Va,(n)> Vo, (my) < (di(Wi(n), ¥i(m))) + M. (10.11)

However by Theorem|10.3.4l U; € Bilip(N;, dpr ) hence dg(n,m) < dg(¥;(n), ¥;(m)). Therefore by
inequalities (10.10) and (10.11) we have

‘hDiv (Vna Vm) — hpiv (V\I/l-(n)v V‘Pz(m))‘ <1 (10.12)

Moreover by Lemma we can characterise the distance between two points thanks to the height
of divergence of their associated vertical geodesics. Let us denote hg = hpiy (Vy, V). By inequality

and by Lemmal[6.0.2} if ko > max(t,, t,,) we have both:
s, ((1,0). (. £20)) = (1t = Bl + [t ol 55 1
s, (@), ta). (i(m), ) = (1t ~ ol + lt — hol)| =5 1
Consequently by the triangle inequality there exists M () such that
ds, ((nyt0), (Mytm)) = M < ds,((Zi(n), tn), (¥ (M), 1)) < ds, (0, tn), (M, 1)) + M
Similarly, if ho < max(y, tm) we have both:
s, (10, O, 1)) = (Jon —11)] 551
s, (3 (). ), (i(m), ) = (1t )| 25 1
Hence again

dsi((n,tn), (m,tm)) -M< dgi((\I/i(n),tn), (\Ifz(m),tm)) < dgi((n,tn), (m,tm)) +M



10.3. HAMENSTADT DISTANCE AND PRODUCT MAP OF BI-LIPSCHITZ FUNCTIONS. 139

Therefore (¥, idg) is a (1, M )-quasi-isometry of V; x R, hence (¥, ¥s,idR) is also a (1, M )-quasi-
isometry, which provides us with f(Wq, Wy, idg) = (¥1, ¥3). Hence f is surjective, and finally bijec-
tive.

Let us now prove that f isa morphism. Let ®,®’ € QI((NV;xN2)x 4R). Furthermore, d,, (', (¥}, ¥4, idg)) <
1,hence dy (P o @', ® o (¥, V), idg)) < 1 since ¥ is a quasi-isometry. Moreover, dy (®, (¥1, VUy,idg)) <
1, therefore by the triangle inequality

du (D0 @, (U1, s, idg) o (T}, Uh,idg)) < 1.
However
(U1, Uy, idR) o (U], U5, idg) = (U1 0 U], Uy 0 U, idR),
which provides us with
dw (Do @', (U1 0 U], Ty 0 Whidg)) < 1.
Consequently f(® o ®') = (Vg o U], Uy o Wh). O

In this proof we showed that ® ~ (U1, ¥y, idR), therefore any quasi-isometry is in the equivalence
class of an (1, M )-quasi-isometry.
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