
HAL Id: tel-04600167
https://theses.hal.science/tel-04600167

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning-Based Multivariate Time Series
Analysis For Health Monitoring And Prognostics Of

Complex Systems
Etienne Jules

To cite this version:
Etienne Jules. Machine Learning-Based Multivariate Time Series Analysis For Health Monitoring And
Prognostics Of Complex Systems. Machine Learning [cs.LG]. Université Clermont Auvergne, 2024.
English. �NNT : 2024UCFA0017�. �tel-04600167�

https://theses.hal.science/tel-04600167
https://hal.archives-ouvertes.fr

UNIVERSITÉ CLERMONT AUVERGNE
École Doctorale Sciences Pour l’Ingénieur de Clermont-Ferrand, ED SPI

PHD THESIS MANUSCRIPT

Machine Learning-Based Multivariate Time
Series Analysis for Health Monitoring and

Prognostics of Complex Systems
–

Etienne JULES

Université Clermont Auvergne, Clermont Auvergne INP, CNRS,
Institut Pascal

Presented and publicly defended on February 13, 2024 in the presence of the
following jury members :

President :

Engelbert Mephu-Nguifo Professor, Université Clermont Auvergne

Rapporteurs :

Piero Baraldi Professor, Politecnico di Milano, Italy

Christian Gogu Professor, ISAE-Supaéro

Examiners :

Zeina Al Masry Associate professor, FEMTO-ST Institute

Bruno Sudret Professor, ETH Zurïch, Switzerland

Thesis director and co-supervisor:

Jean-Marc Bourinet Professor, Université Clermont Auvergne

Co-supervisor:

Cécile Mattrand Associate professor, Université Clermont Auvergne

2

Résumé en Français

Avec les progrès rapides des technologies de mesure, l’acquisition continue de données de monitoring
est devenue possible. Ces données se présentent principalement sous la forme de séries temporelles
multivariées (STM). L’accès à ces STM surveillées sur de longues périodes de la vie d’un système
complexe offre de nombreuses possibilités pour développer des connaissances approfondies sur la
dynamique sous-jacente de ce système. En ingénierie, le domaine du prognostic and health mon-
itoring (PHM), peut bénéficier de l’accès à ces STM. Le PHM vise à garantir des conditions de
fonctionnement satisfaisantes des systèmes physiques tout au long de leur durée de vie. Dans cette
thèse, les tâches spécifiques du PHM liées à l’apprentissage des STM sont étudiées. Les méthodes
d’apprentissage automatique appliquées aux SCM sont explorées pour résoudre ces tâches. L’accent
est mis sur les réseaux de neurones en raison de leurs progrès récents et de leurs performances
dans divers domaines d’application. Parmi les quatre tâches du PHM, à savoir : la détection des
anomalies, le pronostic de la durée de vie restante (RUL), l’identification des modes de défaillance
et l’évaluation de l’état de santé, cette dernière est étudiée plus en détail dans cette thèse. Elle
implique la construction d’un indicateur d’état de santé (HI), c’est-à-dire une grandeur évoluant
dans le temps et indiquant l’état de dégradation du système. Il est en effet avancé dans ce manuscrit
que cette tâche est centrale pour le PHM et qu’elle peut aider à résoudre ses autres tâches plus spé-
cifiques. Une nouvelle méthode d’apprentissage du HI utilisant l’apprentissage par similarité avec
un réseau de neurones siamois et une fonction perte par contraste est proposée. Cette méthode est
spécifiquement conçue pour favoriser la monotonie des HI, qui est une propriété cruciale que ces
dernièrs doivent satisfaire. Cette méthode est testée sur deux jeux de données publiques fournissant
des signaux provenant respectivement de turbines d’avion et de roulements à billes. Ces expéri-
ences valident la conception de notre méthode pour contraindre la monotonie du HI et montrent
une amélioration par rapport aux travaux existants. La méthode proposée fournit donc des HI
monotones, mais aussi un espace de représentation latent où les échantillons des signaux mesurés
peuvent être projetés. Cet espace latent est de faible dimension et représente typiquement des
échantillons proches les uns des autres s’ils partagent des niveaux de dégradation similaires. Sur la
base de cette nouvelle approche d’apprentissage du HI, deux méthodes sont proposées pour prédire
le RUL, c’est-à-dire le temps qu’il reste à une instance du système étudié pour entrer en défaillance.
La première méthode est basée sur la prédiction des futures valeurs de HI couplée à une estimation
du seuil de défaillance, toutes deux réalisées dans le cadre d’une approche intégrée combinant des
méthodes issues des processus stochastiques et des réseaux de neurones. La deuxième méthode pro-
posée utilise plutôt l’espace latent appris lors de la précédente phase de construction des HI, pour
prédire directement le RUL avec des réseaux neuronaux récurrents et probabilistes. Enfin, une nou-
velle proposition d’utilisation des trajectoires de HI est développée pour l’identification du mode de
défaillance. Cette proposition prospective utilise une méthode existante de clustering de séries tem-
porelles univariées, à savoir le clustering agglomératif avec comme métrique de distance le dynamic
time warping (DTW). Ces trois propositions d’utilisation de l’espace latent ou des trajectoires de
HI montrent des résultats prometteurs ouvrant la voie à de futures perspectives.

4 Résumé en Français

Abstract

With the rapid advancements in sensing technologies and the development of robust data storage
infrastructure, the continuous acquisition of monitoring data has become feasible. These data
mainly result as collections of multivariate time series (MTS) which feature several variables that
exhibit temporal variations. The accessibility to these MTS monitored over long periods of complex
systems’ life present valuable opportunities to gain profound insights into these systems’ underlying
dynamics. In engineering, the field of prognostic and health management (PHM) can benefit from
having access to such MTS. PHM aims to ensure the satisfactory operational conditions of physical
systems throughout their lifespan. MTS issued from the monitoring of the evolution of these systems’
signals can indeed help at providing robust prediction regarding their future states. In this thesis,
the specific tasks of PHM related to MTS learning are studied. The methods of machine learning
and inferential statistics applied to MTS are explored to solve these PHM tasks. A focus on deep
learning and neural networks is applied due to their recent advancements and performances in
various domains. Among the four tasks of PHM, namely, anomaly detection, remaining useful
life (RUL) prognostic, failure mode identification and health assessment, the latter is studied in
more details in the present thesis. It involves the construction of a health indicator (HI), i.e. a
quantify of interest evolving with time and indicating the current degradation status of the system.
It is indeed argued in this work that this task is central to PHM and can help at solving the
other more specific tasks. A novel similarity-based HI learning method using similarity learning
with a siamese neural network and a new contrastive loss is proposed. This method is specifically
designed to enforce the monotonicity of the resulting HI which is a crucial property this latter must
satisfy. This method is tested on two public datasets providing monitored signals on turbofans and
rolling bearings respectively. These experiments validate the design of our method for enforcing
monotonicity and shows improvement compared to existing works. The proposed method thus
provides with monotonous HI trajectories, but also a learnt latent space where samples of the
monitored signals from the system can be projected. This latent space is low-dimensional, and
typically represents samples that share similar levels of degradation close together. Based on this
novel HI learning approach, two methods are proposed for predicting the RUL, i.e. the time left
for an instance of the system under study to reach failure. One method is based on the forecasting
of partial HI trajectories coupled with a failure threshold estimation, both of which are carried out
in an integrated approach combining stochastic process modelling and neural network approaches.
The second proposed method rather uses the learnt latent space of the previously developed HI
learning method, to directly predict the RUL with probabilistic recurrent neural networks. Finally,
a new proposed usage of HI trajectories is developed for achieving failure mode identification,
another important PHM task. This prospective proposition makes use of an existing univariate
time series clustering method, namely agglomerative clustering with dynamic time warping as a
distance metric. These three proposals of using either the latent space or the HI trajectories of the
proposed HI learning model, show promising results and open for discussions and future reachable
perspectives.

6 Abstract

Remerciements

Ce manuscrit documente les travaux de recherche que j’ai effectué durant ma thèse qui aura duré
un peu plus de trois années. Je me dois désormais de remercier ici toutes les personnes qui ont
contribué à leurs manières au succès de cette thèse de doctorat.

Tout d’abord, je remercie tous les membres du jury: Engelbert Mephu-Nguifo, Zeina Al Masry,
Bruno Sudret et en particulier les rapporteurs Piero Baraldi et Christian Gogu pour avoir pris
le temps d’évaluer mes travaux, et d’y avoir apporté de précieuses critiques, ajustements et per-
spectives, que cela soit dans leurs rapports, pour les rapporteurs, ou lors de la soutenance pour
l’ensemble des membres du jury.

Je tiens également à remercier très chaleureusement mon directeur de thèse Jean-Marc Bourinet
et ma co-encadrante Cécile Mattrand pour leur accompagnement lors de ces trois années. Que cela
soit pour leurs disponibilités, leurs apports méthodologiques et organisationnels, leurs expertises
scientifiques, leurs relectures pour les articles et ce présent manuscrit ainsi que leur soutien moral
lors des phases les plus critiques du doctorat, tous ces différents apports qui furent d’une grande
aide pour parvenir avec succès au terme de ce doctorat. Je les remercie également de m’avoir permis
d’intervenir lors de travaux dirigés et travaux pratiques dans leurs cours de statistiques et proba-
bilités ainsi que d’apprentissage automatique et apprentissage profond.

Je remercie aussi à cet égard Katyanne Farias de m’avoir permis d’encadrer ses travaux dirigés
et travaux pratiques en algorithmique et programmation lors de ma deuxième année.

Je remercie Francesco Canceliere, doctorant, pour m’avoir initié aux méthodes des filtres par-
ticulaires et avec qui j’ai eu la chance de collaborer sur ce sujet, une collaboration qui a mené à une
communication écrite et orale lors d’une conférence internationale à Bologne en novembre 2023.

Je remercie tout le personnel administratif et technique de SIGMA Clermont, UCA et EDSPI
pour leurs aides quotidiennes et sans qui aucune activité de recherche pourrait avoir lieu, un remer-
ciement particulier à celles et ceux avec qui j’ai eu l’occasion d’échanger : Jacqueline Mabedene,
Franziska Fisher, Sabine Sadargues, Virginie Mendes, Olivier Bullat, Véronique Sébert.

Je remercie également tous mes collègues doctorants pour le soutien mutuel et les moments
conviviaux qu’on a pu partager qui sont aussi d’une importance cruciale dans la réussite de mon
doctorat.

Finalement, je remercie mes proches, amis, colocataires et ma famille pour avoir su me soutenir
dans les moments les plus difficiles et profiter avec moi dans les moments les plus gratifiants de ces
trois années de thèses.

8 Remerciements

Contents
I Introduction 13

I–1 General context . 13
I–1.1 Machine learning . 14
I–1.2 Application context: Prognostics and Health Management 14

I–1.2.1 Anomaly detection . 16
I–1.2.2 Failure mode identification . 17
I–1.2.3 Health assessment . 17
I–1.2.4 RUL prognostics . 18

I–2 Motivations and objectives . 19
I–3 Structure . 20
I–4 Publications and communications . 21

II Machine learning and multivariate time series: theoretical and practical con-
siderations 23
II–1 Time series and their acquisition in PHM . 23

II–1.1 Time series . 23
II–1.2 Context of time series acquisition in PHM 25

II–2 Machine learning on time series . 28
II–2.1 General consideration on machine learning 29
II–2.2 Learning settings: focus on the degree of supervision 31
II–2.3 Downstream learning tasks on MTS . 36
II–2.4 Learning models and estimation of their parameters 40

II–2.4.1 Model’s overview . 41
II–2.4.2 Optimisation or parameters estimation for learning models 44

II–2.5 A focus on neural networks . 45
II–2.5.1 Overall presentation and use for time series 45
II–2.5.2 Theoretical considerations . 46

II–3 Conclusion . 49

III Overview of health indicators in PHM: construction methods and uses 51
III–1 Review of HI construction methods . 51

III–1.1 HI properties: what is a good HI? . 51
III–1.2 Construction methods . 56

III–1.2.1 Time series preprocessing . 56
III–1.2.2 HI construction . 59

III–2 Review on HI-based RUL prognostics . 63
III–2.1 HI forecasting . 65

III–2.1.1 Function fitting . 66
III–2.1.2 Curve matching . 67
III–2.1.3 Stochastic process model . 68
III–2.1.4 Machine learning methods . 71

10 Contents

III–2.1.5 New hybrid approaches . 73
III–2.2 Threshold estimation . 73

IV Health indicator construction: proposed approach 77
IV–1 Similarity learning . 78

IV–1.1 Similarity learning . 78
IV–1.2 Siamese neural networks . 78
IV–1.3 Contrastive triplet loss . 79

IV–2 SNN triplet loss based HI . 82
IV–2.1 Health indicator construction . 82

IV–2.1.1 Preprocessing and time windowing 83
IV–2.1.2 Definition of the SNN architecture and HI definition 84
IV–2.1.3 Definition of the loss function of the SNN and selection of training

samples . 85
IV–2.1.4 Additional considerations . 89

IV–3 Experiments . 91
IV–3.1 Turbofan . 91

IV–3.1.1 Preprocessing . 92
IV–3.1.2 Siamese neural network . 94
IV–3.1.3 Training . 94
IV–3.1.4 Hyperparameters fine-tuning . 94
IV–3.1.5 Final training for performance evaluation 96
IV–3.1.6 Performance evaluation and discussion 96

IV–3.2 Bearing . 101
IV–3.2.1 Preprocessing . 103
IV–3.2.2 Siamese core neural network . 106
IV–3.2.3 Training . 108
IV–3.2.4 Hyperparameter fine-tuning . 109
IV–3.2.5 Performance evaluation and discussion 109

IV–4 Conclusion . 115

V Usages of HI for prognosis and health management tasks 117
V–1 Failure mode identification . 118

V–1.1 Time series clustering . 118
V–1.2 Dynamic time warping . 118
V–1.3 Agglomerative clustering . 119
V–1.4 Experiments . 120

V–1.4.1 Application to turbofan dataset 120
V–1.4.2 Application to bearing dataset . 123

V–2 RUL Prognosis . 126
V–2.1 HI forecasting combined with failure threshold estimation: a particle-filter

based approach . 126
V–2.1.1 Particle filter . 126
V–2.1.2 Surrogate-based PF . 127
V–2.1.3 Algorithm Details . 128
V–2.1.4 Threshold estimation and RUL prognostic 132

11

V–2.2 HI learning as pretext task for self-supervised RUL prognosis 135
V–2.2.1 Self-supervised learning . 135
V–2.2.2 Proposed approach: self-supervised RUL prognosis with HI con-

trastive learning as pretext task 136
V–2.2.3 Probabilistic recurrent NN and mean-variance estimation 137

V–2.3 Experiments . 139
V–3 Conclusion and perspectives . 145

V–3.1 Conclusions . 145

VI Conclusion 147
VI–1 Summary of the thesis . 147
VI–2 Limitations and perspectives . 150

VI–2.1 Perspectives on HI learning with SNN and contrastive loss 150
VI–2.2 Perspectives in using HI learning for RUL prediction and failure mode iden-

tification . 151
VI–3 Epilogue . 152

12 Contents

I
Introduction

I–1 General context

With the rapid advancements in sensing technologies and the development of robust data storage
infrastructure, the continuous acquisition of monitoring data has become feasible. These data are
predominantly gathered from sensors, but may also involve human interventions. They mainly
result as collections of multivariate time series (MTS) which feature several variables that exhibit
temporal variations.
The accessibility to these MTS monitored over the lifespan of a complex system presents valuable
opportunities to gain profound insights into its underlying dynamics. It also enhances our ability
to infer past, present, and future states of the system.
Numerous scientific domains focus on the analysis of MTS as a central aspect of their research. Earth
system sciences, including climatology, meteorology, hydrology, geology, seismology, and vulcanology
utilise such data, see e.g [43, 193, 228]. Environmental sciences employ MTS to investigate species
population dynamics in ecology, see e.g. [157, 182, 182, 126, 48, 147, 73]. Health sciences leverage
them to study complex patterns, such as in electroencephalogram (EEG) recordings of patients
[128, 130, 24]. Even social sciences, such as long-term sociological and economic studies conducted
on population scale, employ MTS analysis [72, 119, 134, 17]. In the present work, the domain of
application is rooted in engineering sciences, which also heavily relies on the analysis of MTS, see e.g.
[16, 35, 12]. In engineering, a primary objective for managing complex physical systems is to ensure
their satisfactory operational conditions throughout their lifespan. To achieve this, it is essential to
monitor the evolution of the system’s health status and provide robust prognoses regarding future
states. This field of engineering science is known as prognosis and health management (PHM) [159,
96, 236].
PHM involves the analysis of multiple quantities of interest (QoIs), which are monitored throughout
the life of the system and manifest themselves as MTS. These QoIs are captured by various sensors,
generating a significant amount of data. Consequently, specialised techniques and tools are required
to extract relevant information from these MTS, which possess specific characteristics. MTS have
potential length variations and irregular sampling frequencies. They share information between
variables, that encapsulate the behaviour of the system under study, which makes the different
MTS variables potentially interdependent. In addition, each variable of these MTS may exhibit
different properties such as stationarity, linearity or Gaussianity, and inversely, non-stationarity,
non-linearity or non-Gaussianity. These properties require a special attention in the modelling of
the MTS and developed analysis methods, which are at the core of the field of MTS learning.

14 Chapter I. Introduction

I–1.1 Machine learning

2) LEARNING TASK

1) CONTEXT

EXPERT

KNOWLEDGE

DATA

3) MODEL

 OUTPUT INPUT

4) OPTIMISATION

GOAL

PARAMETERS

Figure I.1: Diagram for visualising the four elements of machine learning

In the field of data science, learning refers to specific algorithms that aim to produce desired out-
comes based on data and statistical tools, without humans explicitly programming how to produce
the results. Therefore, it can be seen as if the “machine” is learning by itself, giving rise to the term
machine learning. To realise such an algorithm, the amalgamation of four fundamental elements is
needed, as shown in Figure I.1. The first element encompasses the context of application, which
includes the data to be processed, as well as any a-priori knowledge pertaining to the context. This
knowledge includes known relationships between different variables in the data, information about
the data extraction process, and other relevant contextual information. The second element consists
in the definition of the specific learning task that necessitates resolution, entailing the exact nature
of the knowledge to be extracted by the model. The model itself constitutes the third element, and
must be fully defined by a mathematical composition of operations with multiple parameters. It is
designed in direct correlation with the objective at hand and the characteristics of the data it oper-
ates on. The fourth element is the optimisation procedure, which entails the search for the optimal
parameters of the model to effectively perform the learning task as much as the model complexity
allows for. While in numerous machine learning methods, model and optimisation are intertwined,
it is essential to discern between the two for a comprehensive overview of the state-of-the-art of
MTS learning.
An introduction to the first element of machine learning, i.e. the context of application, for the scope
of this thesis is necessary before diving into the three other elements. The next section therefore
frames this context of application.

I–1.2 Application context: Prognostics and Health Management

Prognostics and health management (PHM) is a field that plays a key role in ensuring the reliability
and optimal performance of complex systems. It encompasses a range of techniques and methodolo-
gies aimed at predicting the future health condition and potential failures of such systems [184]. The
overarching goal of PHM is to enable timely decision-making for maintenance and asset manage-
ment, ultimately enhancing system availability, reliability, sustainability and reducing operational
costs. PHM involves three distinct stages: data acquisition, data analysis, and decision-making

I–1. General context 15

[236] which are depicted in Figure I.2.
In the data acquisition stage, relevant sensor data and information about the system under consid-

Step 1 :

 Monitoring

Step 2 :

Data analysis

Healthy

Degraded RUL

A

B

C

D

Failure
mode

Step 3 :

Decision making

Maintenance

 planning

Device

 repacement

Spare parts

 ordering

Operating condition

 improvement

!
Prevention

policy

DATA

Figure I.2: Diagram illustrating the three steps of PHM

eration are collected. Such data can be of various types, such as vibrations, temperatures, pressures,
fluid flows or other measurable parameters, depending on the specific application domain [144]. The
data acquisition stage requires careful planning to ensure accurate and reliable measurements, as
well as the selection of appropriate sensors.
Once the data has been acquired, the data analysis stage begins. This stage involves processing,
modelling, and extracting meaningful insights from the collected data. Various fields of mathemat-
ics and computer science, such as signal processing, statistical analysis and machine learning, are
employed to uncover patterns, trends, and anomalies in the data. The data analysis stage e.g. aims
to identify early indicators of potential failures or deterioration in the health of the system. This is
where MTS learning, the focus of our research, comes into play [236].
The final stage of PHM is decision-making. Based on the analysis and insights gained from the
data, decisions are made regarding maintenance actions, repairs, component replacements, or other
appropriate interventions. The goal is to optimise maintenance schedules, minimise downtimes, and
maximise the operational lifespan of the system. Decision-making in PHM often involves a com-
bination of human expertise and automated decision support systems that integrates the findings
from data analysis with domain knowledge and operational requirements.
In this manuscript, we will solely focus on the data analysis stage within PHM, leveraging MTS
learning techniques to address key challenges and tasks. However, understanding the context of
data acquisition and decision-making is crucial, as it provides a holistic perspective and facilitates

16 Chapter I. Introduction

the development of effective data analysis methodologies. Subsequently, we will delve into the main
data analysis tasks within PHM, namely anomaly detection, failure mode identification, health
assessment, and remaining useful life (RUL) prognostics. The following sections try to provide
comprehensive explanations of these four essential tasks.

I–1.2.1 Anomaly detection

X

Y

TIME

Figure I.3: Illustration of anomaly detection task in PHM

Anomalies refer to deviations from the expected behaviour of a system or its components.
Anomaly detection plays a crucial role in identifying abnormal patterns or events that may indicate
the presence of faults, malfunctions, or potential failures [11]. It enables early detections of emerging
faults or degradations in the system’s health, making proactive maintenance interventions possible
to return to normal condition and minimizing the risk of unexpected failures. Data being in the
form of MTS, it is therefore the field of anomaly detection in time series that is put to contribution.
Anomaly detection can be formulated in two different machine learning tasks, as follows.
If enough data samples are available for both normal and abnormal conditions, and that each of these
data samples is appropriately labelled normal or abnormal, then the formulation of the anomaly
detection task takes the form of classification, i.e. a supervised setting.
However, in most situations, and especially with complex systems, it is challenging to label data
as normal or abnormal. The task is therefore often formulated in an unsupervised setting where
only data samples in normal condition are available [5]. The task then consists in learning the
distribution of the normal data samples. A sample that deviates significantly from this distribution
is then considered as an anomaly. With high dimensional data such as multivariate time series,
learning distribution is not feasible, so dimension reduction or representation learning are used to
detect anomaly in lower dimension spaces. An illustration of this idea is depicted in Figure I.3

I–1. General context 17

I–1.2.2 Failure mode identification

SIGNALS

TIMECOMPONENT

SIGNALSSIGNALS

COMPONENT

A BFAILURE
MODE

Figure I.4: Illustration of failure mode identification task in PHM

Failure mode identification is a critical task aimed at understanding the specific modes or types
of failures that a system or its components may exhibit, see Figure I.4 for a graphical illustration. It
involves the categorisation and characterisation of these different failure modes, which can arise due
to various factors such as, e.g. ageing, wear or tear, and that are determined by environmental and
operational conditions. Failure mode identification provides valuable insights into the root causes
and mechanisms of failures, enabling targeted maintenance and mitigation strategies. The field
of MTS learning contributes to this task by formalising it as an MTS classification (supervised)
or clustering (unsupervised) problem, depending on whether the data samples of the context are
labelled with the appropriate failure mode or not [69]. These two different settings make two different
end goals, where one asks for each new sample to assign it to a predefined failure mode, while the
second must first separate existing samples into different modes and then assign new samples to
these modes. The second setting is interesting for one that has wishes to discover potential failure
modes for a complex system with little information on the internal degradation dynamics.

I–1.2.3 Health assessment

Health assessment plays a crucial role in evaluating the overall condition and performance of a
system or of its components. It involves the quantitative description of a health indicator to assess
the system’s operational status, potential degradations, or deviations from the desired performance
[98], as shown in Figure I.5. As opposed to the previous tasks, health assessment aims to provide
a holistic view of the system’s health and identify any signs of deterioration or abnormalities that
may impact its reliability or functionality. Health assessment enables maintenance decision-making,
including determining the need for maintenance actions, scheduling inspections or initiating repairs.
The purpose of health assessment is to identify the position of the system on some degradation
trajectories. It can be formalised as the development of a health indicator (HI) whose values are

18 Chapter I. Introduction

SIGNALS

HEALTH

 INDICATOR

TIMECOMPONENT

Figure I.5: Illustration of health assessment task in PHM

assessed at regular time steps. In terms of MTS learning, it corresponds to a task of extrinsic
regression, i.e. determining the value of a quantity of interest that is not measured (the HI value)
via other quantities of interest that are measured (the data sample). It can be defined in a supervised
setting if the HI values are available for enough data samples, alternatively the HI label can be set
via hypotheses, i.e. linear evolution from 0 to 1. Unsupervised settings similar to the ones used
for anomaly detection are also possible. The operation then consists in reducing the dimension of
the data samples in a lower dimensional space and evaluating the HI as the distance between the
normal condition data sample distribution and the data sample to be tested.

I–1.2.4 RUL prognostics

SIGNALS

TIMECOMPONENT

FAILURE

CURRENT

TIME

?

Figure I.6: Illustration of RUL prognostics task in PHM

RUL prognostics aims to estimate the remaining operational lifespan of a system or of its com-
ponents. It involves the prediction of the time remaining until a failure or a predefined performance
threshold is reached. Figure I.6 gives an illustration of this task. RUL prognostics is crucial for

I–2. Motivations and objectives 19

effective maintenance planning, as it enables timely interventions to prevent unexpected failures,
optimise maintenance schedules and maximise the utilisation of system assets. RUL prognostics
can take into account various factors, including operating conditions, maintenance history and the
severity of degradation. This task can be formalised in two different ways. First, in the continu-
ation of the health assessment task, it can be an intrinsic regression task, and more precisely the
forecasting of a HI until it reaches a predefined failure threshold. Secondly, skipping the health
assessment task, it can also be represented as an extrinsic regression, i.e. predicting an unknown
quantity (remaining time until failure) based on other quantities (MTS data samples).

I–2 Motivations and objectives

The four tasks of the PHM data analysis phase, presented above, have different end goals. However,
one of them seems to be connected to all the other tasks. Indeed, health assessment, which enables
to continuously assess an indicator of health, is on some different aspects linked to the other tasks.
First, it is a more complete task than anomaly detection. While the latter is only about detecting
an abnormal behaviour, heath assessment proposes to quantify the deviation from the normal be-
haviour. Therefore, anomaly detection can be performed from the knowledge of a HI. Secondly, as
mentioned above, the task of RUL prognostics can also be formulated as the forecasting of a HI,
therefore the health assessment task is here directly needed. Finally, the failure mode identification
can be based on the entire historical evolution of a component and, in that sense, a HI trajectory
is a perfect representation of the historical measurements in a reduced dimensional space. One
can then imagine failure mode identification as a classification or clustering task based on one or
multiple HI trajectories.
Based on this analysis, the core of this PhD thesis is to explore the analysis of PHM data focusing
on health assessment. The main objective is then to thoroughly explore the health assessment task
and propose a new generic method for it. Additionally, this work explores the possibility of using
the HI resulting from health assessment for the other tasks of failure mode identification, RUL
prognostics and anomaly detection.
To achieve the mentioned objectives, a thorough investigation of the literature on the subject is
realised, centred around these two research statements (RS):

RS1 What are the current limitations of current health assessment methodologies?

RS2 How does the PHM literature relate health assessment to other tasks in PHM?

Based on the results of this literature exploration, a new generic method for health assess-
ment that attempts to overcome the limitations identified via RS1 is proposed. And, based on
the outcomes of RS2, this work proposes a new usage of HI for failure mode identification and
improvements in the usage of HI for RUL prognostics.

20 Chapter I. Introduction

I–3 Structure

After a brief reminder of the main theoretical and practical concepts of machine learning and MTS,
a thorough review of the literature aiming at answering the two research statements is outlined. The
present work then proposes solutions to contribute to the field of prognosis and health management
in the identified research directions.

More precisely, the following parts of this thesis manuscript are organised as follows:

Chapter II presents some elements of theory and practice for machine learning, especially for
handling MTS data. The main types of learning tasks on MTS are discussed, as well as the
most common and successful learning methodologies for solving them, including modelling
practices and optimisation procedures.

Chapter III introduces the review of the literature oriented on the two research statements pre-
sented in Section I–2. It first explores the expected properties of a useful health indicator.
Then, a review of the different health indicator construction methods is presented as a cate-
gorisation of different approaches, with examples for each category. Each approach is discussed
in relation to its ability to provide HIs compliant with the expected properties. It is found
that a particularly important property, i.e. monotonicity, is acknowledged to be crucial while
almost never constrained in most existing approaches. Finally, a review of the different uses
of HI for the other PHM tasks is presented. The task of RUL prognostics is unsurprisingly
the most studied in this direction, as the HI concept was firstly designed to perform it. The
other tasks, however, seldom relies on HI construction. Nevertheless, it is found that HI
construction induces to extract general features from the data and that these features as well
as the obtained HI could be used to solve the other tasks of anomaly detection and failure
mode identification.

Chapter IV presents our proposed approach for HI learning. It undertakes to tackle the main
current limitation identified in the preceding review. The monotonicity of the HI is integrated
as a constraint directly in the model optimisation, without any additional hypothesis on the
particular form of the evolution of the HI. Moreover, the approach is framed in a contrastive
self-supervised setting aimed at finding a representation space where distances can be seen as
distances in terms of health, and therefore used as HI. This framing involves the projection
of data samples in a representation space composed of learned features related to the system
degradations.

Chapter V explores the idea of using the HI curves learned previously to solve other tasks of PHM
than health assessment. It first focus on exploring an often dismissed possibility of using them
for identifying failure modes with classical uni-variate time series clustering techniques. Then
this chapter explores the possible usage of the HI trajectories and the representation space
learned in the previous chapter for RUL prediction. A first method based on the combination
of particle filtering and neural networks is proposed for this task. Then a second approach
based on self-supervised learning and probabilistic neural networks is explored.

Chapter VI Concludes the thesis and open some interesting perspectives.

I–4. Publications and communications 21

I–4 Publications and communications

Journal articles :

• Engineering Applications of Artificial Intelligence: Similarity learning for predic-
tive maintenance: health indicator construction based on siamese neural net-
works and contrastive loss, Etienne Jules, Cécile Mattrand and Jean-Marc Bourinet,
(under review)

International conference publications :

• Proceedings of 2023 7th ICSRS: Remaining useful life prediction of turbofans with
virtual health indicator: a comparison of particle filter-based approaches, Eti-
enne Jules, Francesco Cancelliere, Cécile Mattrand and Jean-Marc Bourinet (waiting
for publication)

International conferences - oral communications :

• ECCOMAS, June 2022, Oslo: Health indicator learning for predictive mainte-
nance based on a triplet loss and deep siamese network, Etienne Jules, Cécile
Mattrand and Jean-Marc Bourinet

• ICRE, November 2023, Bologna: Remaining useful life prediction of turbofans
with virtual health indicator: a comparison of particle filter-based approaches,
Etienne Jules, Francesco Cancelliere, Cécile Mattrand and Jean-Marc Bourinet

Seminars :

• INPxIAE, January 2023, Estimation de l’état de santé de roulements à partir
de séries temporelles, Etienne Jules

• Journée scientifique des doctorants de l’EDSPI 2021: Learning multivariate time
series, Etienne Jules, Cécile Mattrand and Jean-Marc Bourinet

Posters :

• Journée scientifique des doctorants de l’EDSPI 2021: Learning multivariate time
series, Etienne Jules, Cécile Mattrand and Jean-Marc Bourinet (best poster award)

22 Chapter I. Introduction

II
Machine learning and multivariate time series:
theoretical and practical considerations

II–1 Time series and their acquisition in PHM

II–1.1 Time series

A time series, also named signal, can be defined as an ordered set of values, or data points, indexed
by time, i.e. each data point represents the value at a specific time of one, or multiple, quantities
of interest. If the data points of such a time series are single values, then it is called a univariate
time series (UTS), while if the elements are vectors of several values, it is referred to as a multi-
variate time series (MTS). Because time series are actual monitored measurements, they cannot be
continuous in the strict sense and are therefore discrete in nature, although they can be modelled,
i.e. interpolated or regressed, by continuous functions.

A time series can be viewed as a realisation of a discrete-time or continuous-time stochastic
process. It can also be referred to as a trajectory. A stochastic process may be introduced as a
collection of random variables (univariate case) or vectors (multivariate case) {Xt, t ∈ T} indexed
by a parameter t varying in an index set (finite or not) T :

X : T → V(Ω,F ,P, E)

t→ Xt : Ω→ E

ω → Xt(ω)

Where V(Ω,F ,P, E) denotes for the vector space of E-valued random variables, or vectors, defined
on the probability space (Ω,F ,P). If E = R, or Rd where d is the number of variables, the stochastic
process is said real valued.
For a fixed t ∈ T , Xt is a random variable and Xt(ω), ω ∈ Ω is a realisation of such a variable.
Another possible definition of a stochastic process is given by:

X : (Ω,F ,P)→ ET

ω → Xω : T → E

t→ Xω(t)

With such a definition, for a given outcome ω ∈ Ω, Xω is a function of time and is called a trajectory,
or sample path. A sample of discrete values along this trajectory corresponds to a time series. A
visual interpretation of a real-valued stochastic process is given in Figure II.1

24
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

is a
random
variable

is a
function

on

is a random
process

Figure II.1: Illustration of a stochastic process when considering T as a representation of
time.

An important property of stochastic processes is stationarity. A stochastic process is said to
be strictly stationary if its joint probability distribution is invariant in time, that is:

∀t1, t2, . . . , tn, τ ∈ T with τ > 0 and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn :

FXt1 ,Xt2 ,...,Xtn
(xt1 , xt2 , . . . , xtn) = FXt1+τ ,Xt2+τ ,...,Xtn+τ (xt1+τ , xt2+τ , . . . , xtn+τ)

where FXt1 ,Xt2 ,...,Xtn
(xt1 , xt2 , . . . , xtn) = P(Xt1 ≤ xt1 , Xt2 ≤ xt2 , . . . , Xtn ≤ xtn) denotes for the

joint cumulative distribution of the subset of variables {Xt1 , . . . , Xtn}.
This property can be challenging to verify in practice, if at all possible, so it is often sufficient to
consider wide sense stationarity. A stochastic process is said to be wide-sense stationary if its first
and second-order moments, i.e. mean and autocovariance are constant through time. This may be
formalised as follows:

∀t ∈ T, µX(t) = E[Xt(ω)] = µX

∀t, t′ ∈ T, γX(t, t′) = E[(Xt(ω)− µx)(X ′
t(ω)− µx)] = γX

Time series inherit the property of their underlying stochastic process.es Stationary stochastic
processes, and by extensions stationary time series, have been largely described and studied in the
statistic’s literature. However, in practice, in the real world, one often has to manipulate non-
stationary time series and can therefore not blindly rely on classical stationary stochastic process
theories and tools.

II–1. Time series and their acquisition in PHM 25

Additionally, when considering real case scenarios, one often has access to multiple signals issued
from the same system and thus mutually dependent. With MTS, another difficulty thus arises in
capturing potential dependences between variables. This greatly increases the complexity of
precise and grounded statistical models needed for understanding the behaviours of such multivari-
ate stochastic processes.

These two challenges, non-stationarity and multi-variability of real case time series, must
then be taken into consideration. Classical stochastic process theory might be underdeveloped at
the moment to fully model such time series, therefore incorporating the use of deep learning theo-
ries and tools for solving tasks involving MTS has become of particular interest and is a favoured
research direction in this work.

II–1.2 Context of time series acquisition in PHM

(a) Context of PHM

As mentioned in the introductory chapter, in PHM, when the phase of signal analysis has arrived,
knowing the context of acquisition of the data, i.e. the signals or time series, is of prime impor-
tance. According to a vast number of works on the subject, most of the challenges in the PHM
data analysis phase are actually a direct consequence of the monitoring phase [190, 98, 236]. More
precisely, in a recent paper attempting to compile an overview of PHM development [236], the
current challenges encountered are summarised. Among them, four challenges are directly linked
to the monitoring phase of PHM: missing and anomalous data, lack of labelled data, data scarcity
and high variability of unmeasured operational and environmental condition during the monitoring
process. These mentioned challenges are all determinant for improving the PHM development and
must be taken into consideration in the monitoring stage, but they are also challenges to which the
data analysis phase must adapt to. It is therefore crucial to understand the context of monitoring
before diving into the data analysis phase.

In this thesis, the core of our research is nevertheless not to adapt to all the potential defect
in the monitoring phase. More precisely, the available MTS are considered complete, i.e. with no
missing values or anomalies. The data scarcity, lack of labelled data and variability of unmeasured
operational and environmental condition are also not at the core of the thesis, and thus not pri-
oritised in the development of proposed solutions. Nevertheless, in the concrete application case
studied in the thesis, these challenges do arise, they can be considered as missing knowledge on
the data and therefore treated as uncertainties. Accounting for uncertainties is therefore another
challenge that this work attempt to face, which related to the field of uncertainty quantification.

The last important consideration on MTS data treated in this work is the following: the signals
are considered as being synchronised and regularly sampled. The synchronisation reflect the fact
that every variable of a MTS are monitored at the same time instants. The hypothesis of regular
sampling is detailed in the next paragraph, which introduces considerations on the different sampling
types.

26
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

(b) Sampling types

Let first consider MTS acquired from multiple instances of a studied system, denoted S. These
instances are considered to be run until failure, and are thus also called run-to-failures (RtF). The
number of recorded instances of the system is hereafter denoted n and d is the number of monitored
variables. An essential characteristic of time series, either UTS or MTS, is the duration between
each of their measurements, i.e. their sampling. We here differentiate four classes of sampling types,
see Figure II.2.

Uniform sampling Here, the time duration between two consecutive measurement is consistent
throughout the series with a sampling frequency fs = 1

Ts
. With such a sampling, the MTS

acquired from n instances can be defined as follows:

S = {s(k)(t)}k∈K, t∈Tk(T (k))

with K = {1, . . . , n}; Tk(T (k)) = {0, Ts, . . . , T (k)}

where s(k)(t) ∈ Rd are the values recorded for the d signals at time t and where T (k) is the
time of failure of the kth instance of the studied system.

Subseries-uniform sampling Let first define a subseries as a shorter series included in a longer
one which contains all the elements of the latter between two given time instants. Given this
definition, a time series can be sampled irregularly on a global scale but uniformly considering
a smaller scale, i.e. when regarding subseries. More precisely, a sampling can be considered
subseries-uniform if there are two time deltas — ∆L the subseries length and ∆G the gap
between subseries starting times — and a sampling frequency fs, such that every subseries of
size ∆L, starting from the one at t = 0 and each spaced by ∆G, are uniform with sampling
frequency fs. See Figure II.2 for a visual interpretation. With such a sampling, the MTS
acquired from n instances can be defined as follows:

S = {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki

with K = {1, . . . , n}; Ik(T (k)) = {0, . . . , I(k)};
Tki = {i∆G, i∆G + Ts, i∆G + 2Ts, . . . , i∆G +∆L − Ts, i∆G +∆L}

With I(k) = T (k)−∆L
∆G

.

Subseries-semi-uniform sampling This sampling type is similar to the subseries-uniform sam-
pling except that ∆G, the gap between subseries starting time is not consistent throughout
the time series. No notations are introduced for time series with such a sampling. This type
of sampling is indeed not considered in this work. However, in cases where the irregularity
in precise time deltas ∆G is marginal or compensated by a regularity in operation cycles,
they can be considered as subseries-uniform. For instance, monitoring the ten first seconds
of electrical signals of batteries for each charging cycle would lead to time gaps between each
subseries of ten seconds to not be regular, but it can still be considered as regular in terms
of operation cycle.

Irregular sampling If it belongs to none of the three previous cases, a monitoring is considered
as irregular. However, similarly as for the previous case, if a time series is monitored such
that Ts is not constant throughout the series but that the irregularity of Ts are marginal

II–1. Time series and their acquisition in PHM 27

realisation of

 stochastic

 process

time series with uniform sampling sampling period

realisation of

 stochastic

 process

time series with subseries-uniform sampling

realisation of

 stochastic

 process

time series with subseries-semi-uniform
sampling

realisation of

 stochastic

 process

time series with irregular sampling

 sampling period

 sampling period

Figure II.2: Time series with different sampling types on a continuous stochastic process
realisation.

or compensated by a regularity in operation cycle, the sampling can be considered uniform.

28
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

For instance, monitoring specific signals of a aircraft’s engine after each take-off would lead
to different time duration between each measurement, but could be considered a uniform
sampling in terms of operation cycle.

The sampling type of MTS is directly determined by the monitoring strategy, which can gen-
erally be either continuous or event-based, i.e. where measurements are obtained when triggered
by special events. This latter strategy can lead to irregular or subseries-semi-uniform time series,
while continuous monitoring lead to uniform or subseries-uniform time series.

We acknowledge the existence of solutions for learning on MTS that are not synchronised or
irregularly sampled, e.g. reservoir computing [214, 160, 106, 236, 49], but it is out of the scope of
this thesis. This latter is restricted to MTS with synchronised and uniform or subseries uniform
sampling.

To resume, this section aims at giving an overview on the type of data, MTS, and their consid-
ered context of acquisition in the present work. One important idea that emerges is that these MTS
are often scarce, i.e. there is often a low number n of instances, or RtF, for which a MTS is avail-
able. These MTS also depend on unknown variables and unmeasured operating and environmental
conditions. This lack of information necessarily induces that the model processing these data will
produce output that are also imprecise. These imprecisions must therefore be taken into account by
quantifying the uncertainties of the outputs produced by models processing these MTS. Another
important idea that must be put forward is that MTS monitored from real-world systems are often
non-stationary. It is especially true in PHM, whose goal is to actually study degradations of the
system, and to detect changes in the system behaviour, i.e. non-stationarities. Finally, the different
variables of a MTS can be mutually dependent and also depend on the previous values of
the MTS. There are, therefore, three major difficulties to take into account in this work which are
the non-stationarities of the MTS, the interdependence of the multiple signals composing these
MTS, and the uncertainties stemming from the low number of observed instances, the presence
of unobserved variables and variable operating and environmental conditions.

II–2 Machine learning on time series

To extract valuable knowledge shared along the different variables of a MTS related to the character-
istics and evolution of a system, special methods are required. These methods arise from inferential
statistics and machine learning, and are discussed in this chapter. But, first and foremost, extract-
ing information from data, e.g. learning, can be classified in different type of problems, and, when
applied to MTS, this classification is further detailed.

II–2. Machine learning on time series 29

II–2.1 General consideration on machine learning

In this section, the focus is on presenting the main concepts of machine learning in the general case
of supervised learning. Supervised learning is a special case and other settings such as unsupervised,
semi-supervised or self-supervised are important for this work, these latter will be defined later.

As mentioned in the introductory chapter, ML is the composition of four elements, starting with
the context, that includes the data that need to be learned on, their meaning in the real world, and
how they were obtained. This element is here represented by the dataset D, composed of several
examples or instances composed of numeric values of different variables:

D = {(xi, yi) ∈ X × Y, 1 ≤ i ≤ N} (II.1)

Here (xi, yi) represent an example i, with xi and yi the numeric values of explanatory variables
and explainable variables respectively. X ⊆ Rn and Y ⊆ Rm are respectively the input and output
space, which can also be called explanatory variables space and explainable variable space. N is
the number of available examples.

This notation of the dataset is practical for supervised learning, but before another element of
ML is introduced, i.e. the learning task, the separation of example variables into explanatory and
explainable variables is purely artificial. This is precisely the role of the learning task to determine
this separation. Indeed, in a supervised learning context, the learning task is always down to pre-
dict some explainable variables only with the knowledge of some explanatory variables. The precise
nature of the learning task is actually determined by the definition of the explainable variable space
Y. If Y = R then the learning task is a regression, if Y = Rm then it is a multivariate regression.
If Y =

{
− 1, 1

}
the task is called binary classification and Y =

{
1, 2, . . . , e

}
with e > 2 is the

definition of multi-class classification.

Now that the context and learning task are defined, the model, the third element of ML as
presented in Chapter I, can be introduced. The model is the mathematical object that is aimed at
mapping the explanatory variable X to the explainable ones Y. Consider the unknown following
function:

f : X → Y (II.2)

x 7→ y = f(x) (II.3)

where x and y here denote for the explanatory and explainable variables of both available examples
(D) and unknown examples. The model can thus be defined as a functional or hypothesis space as
follows:

F =

{
f̃ : X → Y

x 7→ y = f̃(·; θ|θh , θh)

}
(II.4)

s.t. ∃ θ∗h ∈ Θh, ∃ θ∗|θ∗h ∈ Θ|θ∗h ; f̃(·; θ∗|θ∗h , θ
∗
h) ≈ f(·)

here θ|θh and θh respectively represent the parameters and the hyperparameters of the model f̃ . Θh

is the hyperparameter space and Θ|θh is the parameter space conditioned on θh. θ∗|θh and θ∗h for their
part represent the optimal values of θ|θh and θh for approximating f . The model is thus defined by

30
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

a hypothesis space F , a set of functions f̃ that can be embodied by varying the values of parameters
θ and hyperparameters θh. We here differentiate between parameters and hyperparameters. The
difference between θh and θ|θh is that fixing the values for the former will only restrict the hypothesis
space to a thinner space: Fθh ⊂ F , while fixing the values for θ|θh is only possible if θh are already
fixed, and directly restrict the hypothesis space to a single value f̃(· ; θ|θh , θh). To give a simple
example, if the model is considered to be the set of all polynomial functions, then the order of the
polynomial function is a hyperparameter, it only restricts the hypothesis space. The coefficients of
the polynomial, however, when entirely set, completely define the polynomial function.
Now that these notions of parameters and hyperparameters is clarified, it becomes obvious that θ
is conditioned on θh, emphasised by the notation θ|θh in Eq. (II.4).

Finally, the last element of ML now comes into play, which is the optimisation. It is by essence
in the supervised setting an algorithm that aims at finding, for the model F , the values θ̂h and
θ̂|θh which respectively approximate θ∗h and θ∗|θh defined above. For this, the available data D is
used for adjusting and assessing the fitness of successive parameters and hyperparameters values
explored during the algorithm. Before the optimisation, the dataset D is typically divided in three
subsets called training, validation and testing sets and respectively denoted as Dtrain, Dval and
Dtest. Dtrain is directly used to adjust the parameters, θ|θh , given any hyperparameters values
θh, during the optimisation process. Dval is used during the optimisation procedure to assess the
quality of the parameters and hyperparameters combination and therefore helps in selecting the
best hyperparameters. Finally, Dtest is used at the end of the optimisation to simulate unknown
data examples and therefore helps in estimating the generalisation capabilities of the model, i.e. to
what extent the model is able to map the explanatory variables X to the explained variables Y.
The optimisation is actually split in two different parts. A first optimisation algorithm O1 aims
at finding, for the model Fθh , the best parameters θ̂|θh given θh and Dtrain. Additionally, this
optimisation procedureO1 often depends on its own hyperparameters defining its proper mechanism,
they are here denoted as θ′h. O1 typically defines a measure that quantifies how real values of the
explainable variables y = f(x) are close to the predicted values ỹ = f̃(x, θ|θh , θh). This measure is
called the loss function ℓ and can be defined for a single example or a set of examples, respectively
as follows:

ℓi(θ|θh,θh) = ℓ(yi, f̃(xi, θ|θh , θh)) , (xi, yi) ∈ D (II.5)

ℓDI (θ|θh,θh) =
∑
i∈DI

ℓ(yi, f̃(xi, θ|θh , θh)) , DI = {(xi, yi) ∈ D, i ∈ I} (II.6)

O1 typically, through successive iterations, uses ℓDtrain(θ|θh , θh) to explore the parameter space Θ|θh
and find:

θ̂|θh ≈ θ
∗
|θh = arg min

θ|θh

lDtrain(θ|θh , θh) (II.7)

the estimated optimal parameters given θh and θ′h. Here, ℓDtrain(θ|θh , θh), when normalised by the
number of examples in Dtrain, is called the empirical risk Remp.
The second optimisation algorithmO2 encapsulatesO1 and uses the successive resulting ℓDtrain(θ̂|θh , θh)

and ℓDval
(θ̂|θh , θh) for finding the estimated optimal hyperparameters θ̂h and θ̂′h through successive

application of O1 with different values of these hyperparameters. This meta-optimisation O2 is
often referred to as fine-tuning.

II–2. Machine learning on time series 31

Hyperparameters

MODEL

Training data

Fine tuning

Optimisation

Parameters

Testing data

Validation data

Model
performance

 estimated
expected risk

Objective
function

Figure II.3: Schematic of the optimisation procedure in ML

When the optimisation procedure is finished, one can estimate the expected risk R:

R̃ = ℓDtest(θ̂|θ̂h
, θ̂h) ≈ R =

∫
X×Y

ℓ(y, f̃(y)p(x, y)dxdy (II.8)

The end goal of optimisation is therefore to minimise Remp and R̃. But R̃ being available only after
the optimisation procedure — Dtest being supposed to simulate unknown data, it cannot be used
for optimising — the goal is therefore often reduced to minimise the loss of the validation dataset
Dval. In the supervised context R̃ is also called the objective function which is noted J(θ|θh , θh) and
it can be defined in any specific ML setting. The general optimisation procedure in ML is depicted
in Figure II.3

II–2.2 Learning settings: focus on the degree of supervision

Now that the foundational notions of ML have been introduced in the previous section, focusing on
a supervised setting, this section aims at describing different settings for a more complete tour of ML
and for introducing important concepts used in this work. It is first important noting that machine
learning problems are often categorised into two different categories, illustrated on Figure II.4, and
defined hereafter:

32
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

Supervised learning problems aim at finding a relationship between data variables that are seen as
inputs, i.e. explanatory variables, and data variables that are seen as outputs, i.e. explained
variables or labels. The learning is thus supervised by the quality of the predictions found
for outputs via the inputs [37] as presented in Subsection II–2.1.

Unsupervised learning problems, on the other hand, aim at finding relationships between data
variables solely seen as inputs, these data are both explanatory and explained by themselves
[55]. The data context can thus be defined as follows:

D = {xi ∈ X , 1 ≤ i ≤ N} (II.9)

The learning is thus not supervised by the quality of the prediction for any particular variable
of the data. Other criteria are therefore used for “supervising” the learning, depending on
what the outputs of the model are, which are not labels. The model in unsupervised learning
can very generically be defined as:

F =

{
f̃ : X → O

x 7→ o = f̃(x′, θ|θh

}
(II.10)

where O denotes for the model’s output space, which depends on the precise unsupervised
task. In this setting, there is no generic formulation for the objective function J(θ|θh , θh) as
opposed to the supervised setting where it is defined by R̃. There are indeed no loss functions
introduced in unsupervised ML, that compare expected output with the one actually produced
by the model. Examples of specific tasks in this setting are given later in Subsection II–2.3:
clustering, representation learning or dimensionality reduction.

However, these two categories are effectively two edges on a continuum of supervision. In-
deed, recent framing of learning problems have emerged and can be placed somewhere in between
supervised and unsupervised:

Self-supervised learning consists in framing an unsupervised learning problem such that pseudo-
labels or known relationships between the data samples can be automatically extracted and
used for supervision during the learning phase [61]. There are typically two types of approach
in this setting, illustrated on Figure II.5 and described hereafter.
In the first type of approach, denoted here as reconstruction learning, the outputs are
intrinsically generated from the input data X. For instance, corrupting the original data with
perturbations and framing the task as reconstructing the original data examples from the
perturbed one. The original data become the explained variables and the perturbed data are
the explanatory variables. This setting, that is closer to supervised than unsupervised, can
be formalised as follows:

F =

{
f̃ : X ′ → L , f̃ ′ : L → X

x′ 7→ l = f̃(x′, θ|θh , θh) , l 7→ x = f̃ ′(l, θ′|θh , θh)

}
(II.11)

where X ′, X and L respectively represent the perturbed data space, data space and latent
space. Depending on the context, only f̃ or f̃ ′ can be of interest, or both can be. It is also
possible not to necessitate a latent space L, in which case f̃ and f̃ ′ are combined as a single
function. For the rest, this setting is similar to the supervised one. X ′ corresponds to the
input variables of the supervised setting and X correspond to the output ones (Y). The

II–2. Machine learning on time series 33

MODEL

IN OUT

MODEL

OUTIN

Supervised learning

Unsupervised learning

Figure II.4: Illustration of supervised and unsupervised learning setting

optimisation formulation is then similar to the supervised learning setting, but additional
constraints can be added to it on the latent space.
The other type of approaches, called contrastive learning, uses knowledge of similarity
and dissimilarity between the examples to learn a representation of these latter in a space of
reduced dimension where these known relationships should be emphasised, e.g. by a distance
metric that respect these similarities. To this end, pair of dissimilar examples, or triplets of
two similar and one dissimilar examples, are successively compared to achieve the learning
task. This setting, that is closer to unsupervised than supervised, can be formalised as follows:

F =

{
f̃ : X → L

x → l = f̃(x, θ|θh , θh)

}
(II.12)

s.t. x, x′ ∈ X , r ∈ R : d(l, l′) = r̃ ≈ r (II.13)

where r is a relevance score that indicate the degree of similarity between x and x′, and d is
a distance metric that can be fixed or parameterised and is then part of the model. R is the
relevance score space and can be finite, e.g. {−1, 1} with −1 and 1 respectively denoting for
a dissimilar or similar pair. It can also be infinite and bounded, e.g. [−1, 1] with the same
signification for −1 and 1 but where r can take any value in between. More details on the
contrastive learning setting are given in Chapter IV where it is used for HI construction.
Self-supervised can be useful for dimensionality reduction, representation learning, feature

34
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

MODEL

OUTIN

MODEL

IN OUT

Similarity

 of samples

Self-supervised learning

C
on

tr
as

tiv
e

 le
ar

ni
ng

R
ec

on
st

ru
ct

io
n

 le
ar

ni
ng

Figure II.5: Illustration of self-supervised learning setting

extraction, or data denoising. These self-supervised learning problems are often used as
pretext tasks that allow a model to extract general and relevant features from the data,
features that can be exploited to solve downstream tasks, most often in a supervised setting
[61].

Semi-supervised learning is a similar setting as supervised learning, directly influenced by a
context of application in which a large amount of data is unlabelled. This means that the
goal of the learning task is still to map inputs to outputs as in supervised learning, but output

II–2. Machine learning on time series 35

data, i.e. the labels yi ∈ Y are not available for each input data xi ∈ X :

D =
{

(xi, yi) ∈ X × Y, 1 ≤ i ≤M (xj) ∈ X , 1 ≤ j ≤ N ≥M
}

(II.14)

Usually, only a few samples of input data, M , are given with their own labels. Semi-supervised
undertakes to first fit a model on available pairs of inputs and outputs. Then the model is
used to create pseudo-labels on the remaining inputs deprived of true labels. Usually, the
process of pseudo-labelling is iterative, pseudo-labels are associated with a confidence level
and only pseudo-labels with high confidence are used as labels for the next iteration, the
model is refined with the originally available pairs of samples and labels, as well as the
newly generated pairs of samples and pseudo-labels. This process, illustrated in Figure II.6,
is repeated until the confidence of pseudo-labels converges [194]. This setting only differs
from the supervised one in its particular iterative optimisation process, where more and more
unlabelled data examples are assigned a pseudo-label at each iteration. The only difference in
the model definitions is that semi-supervised learning necessitates a confidence score for each
predicted label in order to decide which pairs of examples and pseudo-labels can be added to
the training data for the next iteration:

F =

{
f̃ : X → Y × C

x 7→ (y, c)

}
(II.15)

Where C denotes for the confidence score space. This one can be e.g. C = [0, 1] for a discrete
Y space (classification) where each c represents the confidence as a probability, or C = R for a
continuous Y space (regression) where each c represents the variance of a normal distribution
around the predicted value

36
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

MODEL

OUTIN

MODEL

OUT

MODEL

OUTIN

IN

Semi-supervised learning

Figure II.6: Illustration of semi-supervised learning setting

II–2.3 Downstream learning tasks on MTS

This section discusses the fundamental learning problems on MTS: clustering, classification, repre-
sentation, and regression. Each of these problems serves a distinct purpose and offers insights into
different aspects of the data. The description of the main types of learning tasks is thus carried

II–2. Machine learning on time series 37

on, with a particular attention on where they belong to on the supervision spectrum. Additionally,
the context of MTS data is now introduced, the data space of model inputs X in particular is now
denoted S as the space of MTS or MTS subseries of d variables and of length l.

(a) Clustering

A, B or C ?

A B

B A

C A

B C

(b) Classification

Figure II.7: Illustration of the clustering and classification tasks

Clustering
Clustering involves grouping similar MTS instances s(k) ∈ S or segments s(k)(i) ∈ S together
based on their inherent characteristics or patterns, as shown on Figure II.7a. It belongs to
the far edge of unsupervised learning in the supervision spectrum. It helps identify hidden
structures within the data by discovering clusters or subgroups that exhibit similar behaviours
across the variables. It therefore requires a discrete univariate output indicating the cluster κ
to which a data sample belongs [162], κ ∈ O = {1, . . . ,Kf̃} where Kf̃ the number of clusters
depending on the model f̃(·, θ|θh , θh). This learning setting can be expressed as follows:

D = {s(k) ∈ S}k∈K or {s(k)(i) ∈ S}k∈K;i∈Ik(T (k)) (II.16)

F =

{
f̃ : S → O = {1, . . . ,Kf̃}

s → κ = f̃(s, θ|θh , θh)

}
(II.17)

Clustering can be particularly useful for exploratory data analysis, anomaly detection, and
identifying patterns in MTS data [178], thus providing a comprehensive understanding of the
system under study and uncovering meaningful relationships and dependencies that may not
be evident through an individual variable analysis alone.

Classification
Classification, by contrast, focuses on assigning MTS instances to predefined classes or cat-
egories, also called labels, based on their characteristics, as shown on Figure II.7b. It is, in
that sense, the supervised version of clustering. Let us denote, Y = {1, . . . ,K} where K the

38
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

number of classes. This setting, that can be expressed as follows:

D = {(s(k), y(k)) ∈ S × Y}k∈K (II.18)

or (II.19)

D = {(s(k)(i), y(k)) ∈ S × Y}k∈K; i∈Ik(T (k)) (II.20)

F =

{
f̃ : S → Y

s → y = f̃(s, θ|θh , θh)

}
(II.21)

is particularly useful when the objective is to classify new instances into known classes or
predict their behaviour based on historical data, in particular when this behaviour is highly
dependent on the class of the instance under study. By tackling classification tasks, one can
make predictions about the nature of an instance of the system under study and thus more
adequate decisions based on the characteristics and patterns observed in MTS data. This
enables the identification of specific states or events based on the behaviour of the variables,
which can be valuable in various domains, such as engineering [229, 63] or healthcare [132].

Representation
Representation learning aims at projecting input data into a different space of higher or lower
dimension. It can be thought of as an unsupervised learning problem, but is often set up as
a self-supervised learning one. In contrast to clustering and classification, the output space,
also called latent space L of a representation learning task is expected to be continuous and
not discrete. This setting is particularly adequate for dimensionality reduction, where the
purpose is to combine the existing dimension into a lower number of dimension while still
explaining most of the variance between the data samples or emphasising known relationships
and similarities. In a context where the data consist of MTS, the data samples have dimensions
equal to the number of variables d times the number of time steps l, these dimensions are often
cumbersome to process and redundant. Representation learning tasks, such as dimensionality
reduction, are therefore of particular interest, even as a preprocessing or pretext task [50],
which is the reason the output space is called latent space. The representation learning
setting, illustrated on Figure II.8, can be formulated as follows:

D = {s(k) ∈ S}k∈K or {s(k)(i) ∈ S}k∈K; i∈Ik(T (k)) (II.22)

F =

{
f̃ : S → L ; L = RL

s → ℓ = f̃(s, θ|θh , θh)

}
(II.23)

where L is the dimension of the latent space L. Representation learning can be thought of as
the non-supervised version of multivariate regression, which is presented hereafter.

Regression
Regression involves predicting or modelling the relationship between variables in an MTS.
Regression tasks are framed in a supervised or semi-supervised setting. In the context of MTS
analysis, regression can be further categorised into two distinct types: extrinsic regression and
intrinsic regression.

Extrinsic Regression refers to modelling the relationship between a MTS that is considered
to be composed of explanatory variables X = S and different signals or variables that
are presumed to be explainable by the former Y = S ′ as illustrated in Figure II.9a.

II–2. Machine learning on time series 39

Figure II.8: Illustration of representation learning

By establishing a relationship between the MTS and the extrinsic variables, valuable
insights can be gained regarding the system dynamics and its response to external factors
or other internal conditions. The extrinsic regression of time series can be formulated
as follows:

D = {(s(k), s′(k)) ∈ S × S ′}k∈K or {(s(k)(i), s′(k)(i)) ∈ S × S ′}k∈K; i∈Ik(T (k)) (II.24)

F =

{
f̃ : S → S ′

s → s′ = f̃(s, θ|θh , θh)

}
(II.25)

where s and s′ are MTS issued from two different stochastic processes. A common
setting of extrinsic regression is to defined one or several QoIs of the system under
study as the variables to be explained, and other internal signals of the system as
well as additional external signals as the explanatory variables. Extrinsic regression
models are often employed in areas such as environmental monitoring, where the MTS
variables are influenced by external factors like weather conditions, pollution levels, or
socio-economic indicators [186].

Intrinsic Regression focuses on addressing specific tasks within the MTS domain, such as
missing values imputation, forecasting and backcasting, denoising, smoothing or trend
extraction. These tasks involve predicting or estimating the values of variables within
the MTS based on historical observations of the same MTS potentially corrupted by
noise. Intrinsic regression models take into account the temporal dependencies and
relationships between the variables to make accurate predictions. An illustration of
intrinsic regression, and more particularly forecasting, is given on Figure II.9a. This

40
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

setting can be expressed, in the context of forecasting as follows:

D = {(s(k), s′(k)) ∈ Sl × Sl′}k∈K (II.26)

F =

{
f̃ : Sl → Sl′

s → s′ = f̃(s, θ|θh , θh)

}
(II.27)

where s and s′ are time series issued from the same realisations of a common stochastic
processes, and where, in the context of forecasting, Sl denotes for MTS of length l

and Sl′ for MTS of length l′ which are the future of Sl. Missing values imputation
aims to fill in the gaps or missing values within an MTS, enabling to maintain the
continuity and integrity of the data. Forecasting involves predicting future values of the
MTS variables, allowing for proactive decision-making and trend analysis. Backcasting,
on the other hand, entails estimating past values of the MTS variables, which can be
valuable for historical analysis or data reconstruction. Denoising of smoothing denotes
for the identification and adjustment of potentially erroneous or noisy data, while trend
extraction refers to the retrieval of general trends in a MTS ignoring small fluctuations
and seasonality that are less significant. By utilising intrinsic regression techniques, one
can gain a deeper understanding of the temporal behaviour of the MTS variables and
make informed predictions or estimations.

(a) Extrinsic regression (b) Intrinsic regression (here forecasting)

Figure II.9: Illustration of the MTS extrinsic and intrinsic regression tasks

II–2.4 Learning models and estimation of their parameters

As presented just above, a learning model f̃ is essentially a computational model, i.e. a functional
of inputs x, which is parameterised by parameters θθh , and produces outputs y. This functional
can be linear or non-linear on x and deterministic or stochastic. The nature of the model, and its
architecture, are partially determined by the problem to be solved. If one wishes to predict the
class of any data record in a dataset, its model needs to be designed in such a way that it outputs
some representation of a class, i.e. one-hot representation. And the same holds for any other prob-
lem, it determines the model to output a specific mathematical object. Similarly, the nature and
characteristic of the data to be processed also partially determines the architecture of the model.

II–2. Machine learning on time series 41

Nevertheless, there remains a large a degree of freedom in how to design the model, in terms of
architecture and hyperparameters. Some are tailored for specific learning problems and others are
so general that they can adapt to any of those.
This section first aims at giving a brief overview of some generic existing modelling methods with
a focus on MTS learning in a first part. Mathematical definitions and details are omitted since
such methods have not been particularly reused in the present work, except the state space model
(SSM). The bibliography on the specific usage of such learning models for PHM related tasks is
outlined later in Chapter III. In a second part of this section, a brief overview of generic optimisation
or parameter estimation is given, similarly as for the first part of this section, the mathematical
definitions and details are omitted. Neural network models are purportedly kept out of this section,
and dedicated to the entire next section, as they will be the basis of future developments.

II–2.4.1 Model’s overview

Linear deterministic models, such as linear regression the simplest form of, SVM (Support Vec-
tor Machines) [183], PCA (Principal Component Analysis) [18, 212], offer simple, lightweight,
computationally efficient and interpretable models. However, they lack the possibility to fit
complex non-linear problems, such as the one often encountered in MTS learning. Linear
models, specially crafted for time series, do exist however, they mainly aim at applying linear
interaction with respect to time, i.e. dependency between current observation and the ones at
previous time lags. These models, however, differ from the classical linear models presented
here for their stochastic nature and distinct modelling approaches, which are more related to
stochastic process theory, they are therefore introduced later in autoregressive-models.

Kernel methods, introduce non-linearity to linear models by mapping original data into a trans-
formed and higher-dimensional feature space [183], a solution known as the "kernel trick".
A kernel function k : X × X → R applied in the original space X , is in fact equivalent to an
inner product in a higher dimensional space. These kernel functions can therefore be inter-
preted as similarity or distance measures [169] in this higher dimensional space. They enable
linear models to capture intricate nonlinear dependencies in the data, more precisely, they
allow linear models to solve the problem at hand in a higher-dimensional space, where linear
separation or regression is possible. While kernel methods have efficiently adapted linear
techniques for non-linear problems, their application for MTS has not been very practical so
far, but quite fruitful for UTS [3, 221]. However, some existing works have investigated this
modelling approach for MTS and discovered specific kernel models that perform better than
classical kernels in MTS [38, 187]. Nevertheless, these investigations remain a minority in
MTS modelling for machine learning, and kernel-SVM are thus more used in UTS learning
tasks.

Decision trees, represent a very different modelling approach that employs the hierarchical struc-
ture of a tree, or directed acyclic graph, that recursively separates input samples based on
their data features, providing interpretable decision-making flowcharts [90]. Decision trees are
interpretable and can handle both categorical and numerical data, making them very handy
for situations of poorly structured data. This modelling technique has the particularity of
not requiring a fixed architecture with parameters to be optimised, the precise architecture of

42
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

the tree is built during the optimisation process. If classical decision tree can solve some UTS
learning tasks like forecasting they are not of particular interest for learning on MTS, but
recent developments attempt to adapt decision trees to such data [143, 171]. Additionally,
decision trees are often used as base learners in an encapsulating modelling approach, proved
to be efficient in time series forecasting, described hereafter.

Ensembling, is a modelling technique that seek to enhance existing methods, just like kernel
methods. It combines multiple individual models to improve the overall predictive perfor-
mance [165], hence the individual models do not necessarily need to be experts model but
can be basic weak learners. By leveraging the wisdom of multiple models, ensembling aims
to achieve higher accuracy and robustness. Ensemble modelling is quite straightforward, the
only model hyperparameters are the size of the ensemble, the nature of the individual models
and the ones defining the aggregation method of the ensemble. The main differences between
ensembling methods therefore rely more on their specific optimisation procedure than their
modelling. Because they can be weak learners or expert models depending on their sizes,
decision trees are the most used individual models for ensembling [165]. They give the most
famous and performant ensemble techniques: random forest [15], Adaboost [168] and gradi-
ent boosting trees [30, 84]. The latter one, proved to be very efficient for processing time
series data, especially in forecasting tasks, as shown in the M5 forecasting competition where
gradient boosted trees were used by most of the highest ranking models [74]. The recent
efforts to adapt basic decision trees to temporal data and the high performance of ensembling
techniques using decision trees, indicates a promising potential of these methods to learn on
MTS.

Gaussian processes, are stochastic processes whose collection of random variables are such that
any subset of them has a multivariate normal distribution [173]. An interesting property of
Gaussian processes is that they are fully defined by their means and covariance functions.
Particularly, the latter are at the core of Gaussian process modelling and can be related to
kernel methods. If Gaussian processes’ foundational theory relies on stochastic processes and
therefore is of particular interest for studying time series data [161], it is also largely used and
developed in a more general continuous regression framework regardless of its indexation on
time, in that sense it is often referred to as kriging [36]. For this work, however, their rooting in
stochastic process modelling is what make Gaussian processes a referential modelling practice
for learning on time series data [52].

Bayesian networks , is another important modelling method used in machine learning. They
represent probabilistic relationships between variables through directed acyclic graphs. More
precisely, they represent the conditional dependencies between variables. Each node of the
graph represents a variable, be it an observed data variable, a latent variable, a noise, or
other hypotheses variable [66]. Each branch going from one node to another represents the
conditional dependency of the target node on the parent one. It is a very generic method
for modelling in machine learning, the ones encompassed in one specific variant: dynamic
Bayesian networks (DBN), are especially utilised in stochastic process modelling, which are
of particular interest for this work. Various attempts have been proposed to model different
types of stochastic processes as dynamic Bayesian network (DBN) [142, 89, 133]. If DBNs can
be thought of as a generalisation of more particular concepts it can represent, in particular

II–2. Machine learning on time series 43

hidden Markov models or Kalman filter models [133], these particular concepts have been
mostly developed before or aside of the Bayesian networks theory and have their own theories
and practices. These latter include the remaining types of model described hereafter.

Autoregressive (AR) models, aim at representing a stochastic process realisation as a function
of its time-lagged values and time-lagged values of a white noise [137]. AR moving average
(ARMA) models are the linear case of such models and mostly limited to model correctly
stationary univariate stochastic processes [137]. Extended formulation of ARMA attempt
at bypassing these limitations with varying degrees of success. Vector ARMA (VARMA)
allows the representation of multivariate stochastic processes by representing a realisation of a
stochastic process not as an ordered collection of values, but as vectors where each dimension is
mutually interacting [116]. Autoregressive Integrated Moving Average (ARIMA) models [137]
enable to take into account non-stationarity in terms of the process’ mean, i.e. only a trend of
the mean can be represented. Similarly, seasonal ARIMA (SARIMA) can model a seasonality
in the mean evolution [94]. In that sense, ARIMA and SARIMA do succeed in partially
solving the limitation of stationarity with classical ARMA. Nevertheless, ARMA models and
their extensions can not model non-stationarity of higher moment statistics of a stochastic
process like the variance, for instance. It still has also the limitation caused by its simple
modelling approach, that is, it can only depict linear relationships between time-lagged values.
Moreover, ARIMA models have been mainly developed for modelling a stochastic process of a
single observation of time series and therefore lack methods for describing a dynamic system
if multiple realisations of a similar stochastic process are available. Non-linear versions of
AR models also exist, Nonlinear autoregressive with exogenous input (NARX) is a generic
formulation of such models where the dependances between time-lagged values can be non-
linear, moreover this modeling approach is particularly adapted to MTS because it accounts
for exogenous (or extrinsinc) inputs, that is different variables of a MTS [120].

State-space models (SSM), At their core, describe the evolution of latent, unobservable states
usually through discrete time steps, coupled with observed measurements that are influenced
by these states [6]. A SSM consists of two key components: the state equation and the
observation equation. The state equation defines the evolution of latent states according
to a stochastic process. The observation equation links the observed measurements to the
underlying states through a linear or nonlinear relationship, possibly subject to measurement
noise. The combination of these equations constitutes a dynamic system that can capture
a wide range of temporal behaviours. If the future state of the process depends only on its
current state and not on the sequence of states that preceded it, then the SSM is referred
to as a hidden Markov model (HMM), i.e. its states’ equation satisfies the Markov property
[118]. In that case, the state equation represents a Markov chain. A Markov chain can
be constructed as a Bayesian network but can not be thought of as a state-space model
as it does not necessitate the construction of a latent variable. Markov chain models are
often used to model situations where the system’s dynamics are fully observable and can be
directly represented by the sequence of states, whereas HMMs find applications in scenarios
where the underlying states are unobservable, and the observations are noisy or incomplete.
The relationship depicted in the observation and state equations of a SSM can be linear and
Gaussian (i.e. noises are considered as white noise) in which case the model is referred to

44
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

as linear Gaussian SSM or Kalman filter models [207]. More complex SSM can also be built
and optimised on with non-linear state and observation equations, which are more adapted
to complex cases of MTS modelling [39, 156].

Lévy processes, refer to a class of stochastic processes with independent and stationary incre-
ments [10]. They are non-stationary by construction, due to their random increments. These
processes are therefore additive and do possess the Markovian property. They can therefore
be modelled as DBN, but are clearly not studied in this framework. They are particularly
useful when studying complex and chaotic dynamical systems . Machine learning models
based on Lévy process have found application in finance or environmental sciences [10] and,
more interestingly for this work, in predictive maintenance to model machinery degradation
processes where they are often refered to Wiener process and combined with non-linear drift
functions [101, 175, 188, 189].

II–2.4.2 Optimisation or parameters estimation for learning models

The models themselves however are not performing well by nature, they needs to be optimised,
and to have their parameters appropriately estimated to solve at best the problem at hands. An
important common ground of parameter estimation processes is that they somehow need a stopping
criterion. If for some specific cases an optimal solution can be found and recognised, generally there
is no evidence for such an achievement. These optimisation techniques rely then on performance
indicators, often called loss function and presented in Subsection II–2.1. These loss functions need
to be minimised, and stopping criteria vary from a threshold value above which we consider a solu-
tion satisfying to a threshold on the rate of improvement of successive solutions, i.e. convergence,
or the absence of loss improvement of new solutions.
For each model, several optimisation methods exist, but any optimisation method cannot be used
for any model. Sometimes a model and its parameter estimation procedure are so tightly related
that separating the two is not really valuable. This separation is here made in a conceptual attempt
at encompassing various existing learning approach in a relatable scheme.
For linear models the optimisation of parameters can always be formulated as a convex, linear or
quadratic, optimisation [32], and special methods are available for this kind of optimisation, such as
interior point method [136]. These models however can also be optimised using other optimisation
algorithm like gradient descent or least-squares based methods.
Least-squares based methods directly aim at minimising the sum of squares of the errors (or
residuals) and they take the form of iterative algorithms that use derivatives and often second
derivatives of the model with respect to its parameters to improve the model. It can not guarantee
convergence, but if it converges, in the best case, it will be toward the optimal solution, or at least
to a local optimum [80]. The most used least-squares based methods are the Gauss-Newton [203]
and Levenberg-Marquart [129] algorithms.
Gradient descent is a more general optimisation method in the sense that it aims at minimising
any cost function, or loss function, and not just the squared residuals. [164]. It is also an iterative
method, but that only use the gradient (first derivative) of the loss function as a guide for exploring
the space of solutions. At each step, the gradient of the loss function for each parameter at its
current value indicates the direction where better solutions can be found.
Each of these methods implies searching for optimal parameters in a explicit and rational fashion
that can ensure at least a local optimum. These methods can be improved by so-called regulari-

II–2. Machine learning on time series 45

sation techniques [179]. These latter often impose some conditions on the solution of parameters,
like upper and lower bounds, norms, or sparseness. They can be interpreted as hypotheses on the
form of the solution, or as a way to facilitate the finding of an optimal solution. In that sense they
can also be regarded as heuristic, i.e. a method that can find approximate solution of problems for
which well-defined classical methods do not exist or are computationally prohibitive. [58]. The ideal
or true solution does not necessarily follow from this heuristic or can even potentially be disfavoured
or avoided, but in most cases it enables one to find acceptable solutions in a reduced amount of
time.
If heuristics are just a way of improvement for the optimisation methods mentioned above, some
parameters estimation approaches rely solely on heuristics and are therefore called heuristic opti-
misation. In general, however, relying on heuristics alone is not advisable, as heuristics often have
no convergence properties and are extremely context-dependent. [177].
For optimising models when none of the above techniques are adequate, i.e. the problem cannot be
solved entirely in a reasonable amount of time neither by linear nor quadratic programming, least-
squared methods, gradient methods nor available heuristic, one might still resort to meta-heuristic
methods. Meta-heuristic search methods are upper level general methodologies that can be used
as guiding strategies in designing underlying heuristics to solve optimisation problems [42]. The
most famous meta-heuristic methods are inspired from natural phenomena that they try to mimic:
i.e. ant colony [44], particle swarm [85], genetic algorithm [127] or simulated annealing [46]. These
approaches often rely on iterative procedures of probabilistic exploration of the solution space, sim-
ulation of potential candidate solutions and assessment of performance of these solutions. A very
common type of meta-heuristic optimisation is, in that sense, the Monte-Carlo based parameter
estimation [115].

II–2.5 A focus on neural networks

In this section a focused overview on neural networks (NN) models is given, as it is the type of
model explored for solving the PHM tasks in this thesis.

II–2.5.1 Overall presentation and use for time series

Neural networks (NN), is another modelling method, inspired by the structure of animal’s brain.
It consists of interconnected layers of artificial neurons. Each neuron computes a linear mapping
between its parameters and its inputs and apply a non-linear activation function to this mapping.
Each layer’s output is the input of the next one. The resulting model yields complex non-linear
interaction between variables of the input data which renders it really opaque to human understand-
ing, i.e. it is generally not interpretable [56] even though recent development undertakes to tackle
this issue. This very generic modelling approach can capture complex nonlinear relationships among
input variables and, or with, output predictions, which makes them very efficient in practice. It
encompasses some specific NN architecture which distinguish themselves by the nature of the layers
they use. In particular, NN have gained significant attention due to their ability to handle large-
scale datasets and solve intricate problems like image [91] and speech recognition [41] or natural
language processing (NLP) [196]. This last domain of application raised significant attention and
development to specific neural network architectures. First, recurrent neural networks (RNN) have

46
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

been developed and specialised in the processing of sequential data, which makes them of particular
interest for UTS and MTS data. A new NN-based NLP paradigm has recently emerged, known as
the attention mechanism [195], leading to transformers, which are present in most high-performing
large-language models (LLM). Interest in the use of attention mechanisms for time series data
learning has therefore been raised [109, 209, 222] due to their performance in the sequential data
contexts of NLP. To learn about MTS, investigating NN and their sequence-specific modes: RNN
and attention mechanisms, is of particular interest.

II–2.5.2 Theoretical considerations

(a) Modelling

As mentionned above, a NN is a combination of subsequent layers of neurons. A layer, possesses
multiples neurons, each linearly combining the inputs of the layer with its own parameters to obtain
a single value that is then passed through an activation function a to produce the output of the
neuron. A single neuron, also called perceptron or unit, here denoted u is defined as follow:

y =u(x) (II.28)

=a(
n∑
i=1

wixi + b) (II.29)

With y and x respectively the output and inputs of the neuron, w and b respectively the weights
and bias of the neuron, i.e. its parameters.
The most simple type of NN layer is a dense layer, it is composed of nu neurons also called units.
That each takes as input the layer’s input. The dense layer l is therefore defined as follow:

y =l(x) (II.30)

=[pj(x)]
nu
j=1 (II.31)

With y and x respectively the outputs and inputs of the layer, and uj a neuron. Finally, the
most simple form of NN architecture is the multi-layer perceptron (MLP) which is composed of Nl

subsequently connected dense layers, i.e. the first layer outputs are the second layer inputs, and
similarly until the last layer. A MLP is then defined as follow:

y =MLP (x) (II.32)

=l(Nl) ◦ l(Nl−1) ◦ · · · ◦ l(k) ◦ · · · ◦ l(1)(x) (II.33)

With y and x respectively the outputs and inputs of the MLP, and l(k) a layer of neurons. An
example of a MLP architecture is given in Figure II.10.

More complex architectures of MLP exist, and are also used in this work, this complexity can
arise by connecting layers to multiple subsequent ones, or by using different types of layers. Can
e.g. be mentioned recurrent and convolutional layers.

Recurrent layers consist of layers that treat inputs that are sequential, i.e. the input has a
dimension of variables and a time dimension, and the variables are fed to the layer, time step per
time step. The recurrent layer has the particularity of using its previous time-step outputs as inputs

II–2. Machine learning on time series 47

Input Hidden Layer 1 Hidden Layer 2 Output Layer

1

1 1

Nl

Nlw w w

1

1

1

2

2

Figure II.10: Example of MLP architecture with 2 layers, 3 neurons per hidden layer, one
input and one output.

INPUTS

OUTPUT

INPUTS
(t=0)

OUTPUT OUTPUT

INPUTS
(t=T)

OUTPUT

INPUT
(t=1)

Recurrent cell "Unrolled" Recurrent cell

Figure II.11: Illustration of a recurrent neuron.

to the current time step. Many types of recurrent layers that produce different types of outputs, e.g.
states or memories, exist. They go beyond the classical implementation, long-short term memory
(LSTM) and gated recurrent unit (GRU) can e.g. be cited. The aim of this section however is not
to describe in details these latter. A visual representation of a recurrent neurons can nevertheless
be found in Figure II.11

Convolutional layers consist of layers whose neurons are convoluted through the inputs instead
of simply mapping all the inputs to the neurons parameters. This reduces drastically the number of
parameters per layer, and can be very efficient for large and multi-dimensional inputs like images.
Once again, this type of layer is not more thoroughly described as it is not the aim of this section,
but a visual representation of a convolutional neuron can be found in Figure II.12
Some other types of layer, which have no parameters, also exist, they only aim at facilitating

the learning procedure, improving the generalisation ability of the NN, or facilitating transition
between different types of parameterised layers. Can be cited, e.g. dropout layers, pooling layers or
flattening layers. Dropout aims at randomly filtering some of its input before being propagated to
the next layer, and is helpful for improving generalisation and can hence be seen as a regularisation
technique. Pooling layers aim at reducing the size of inputs / outputs transiting in-between each
parameterised layer by aggregating the ones that are adjacent, via average, maximum or minimum
operations, these layers hence reduce the number of parameters of the NN, and are also improving

48
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

INPUTS
OUTPUTS

Figure II.12: Illustration of a convolutional neuron.

the generalisation ability especially for convolutional neural networks (CNN). Flattening layers aims
at transforming layer’s output that are not in the form of vectors, into vectors. Convolutional and
recurrent layers typically have non-vector outputs, respectively multi-dimensional tensors (2 or 3
dimensions) and time-distributed vectors (equivalent of matrices). These flattening layers are thus
necessary for transitioning from recurrent or convolutional layers to dense ones.

The main idea to bear in mind, is the inter-connection of more or less wide layers in more or
less deep neural network architecture. The precise architecture of a NN is always challenging to
optimise, some experimental and theoretical results exist privileging the choice for certain types of
layers and, to some extent, their inter-connection, depending on the situations and data contexts.
Nevertheless, the precise development of an architecture is also often based on trials and errors,
and on hyperparameters tuning. These modeling hyperparameters can include e.g. the number of
layers, the number of neurons in each layer or their activation functions.

(b) Optimisation

On top of its specific modelling approach, NN also stands out of other ML methods for its particular
parameter optimisation procedure. Indeed, once the NN architecture is defined, the next step is the
training of the NN. This step aims at finding the best parameters for each parameterised layer of the
architecture. This procedure, as for many other ML methods involve a loss function as defined in
eqs. (II.5) and (II.6). This loss describes the objective function of the NN, which is to be minimised,
it encapsulates the goal of the learning task the NN ought to solve, by a comparison between the
output of the NN and an expected value for this output. This loss must then be carefully crafted
for an optimal task solving. An important part of the current thesis is dedicated to the crafting of
such a loss function in Chapter IV, thus it is relevant to state here the importance of this concept
for a clear understanding of Chapter IV.
In NN, the loss function is used in a batch gradient descent optimisation procedure. Minimising
a loss function ℓDtrain(θ|θh) depending on some parameters θ|θh in mathematics can be thought as
trivial, if ℓDtrain(θ|θh) is differentiable and convex. It only requires to find θ|θh values for which the
gradient of ℓDtrain(θ|θh) is null, and compare the loss values for each of these parameters values to

II–3. Conclusion 49

find the general minimum of ℓDtrain(θ). However, when the number of parameters increase, as well
as the size of Dtrain this procedure becomes computationally infeasible, plenty of local minimums
can exist, as well as saddle points and local maximums. Additionally, possible parameters values
combinations are infinite. This is where batch gradient descent comes into play. This consists in
repeatedly applying the following procedure:

1. Evaluate the loss on a randomly sampled subset, also called batch, Dbatch of Dtrain, with the
current combination of parameters values θ̂θh

2. Compute the gradient ∇θ|θh [ℓDbatch
](θ̂θh) relatively to each parameter in θ|θh

3. Update each parameter in θ|θh by slightly changing their value in θ̂θh in the direction that
decrease the loss, indicated for each parameter by the opposite of gradient ∇θ|θh [ℓDtrain](θ̂|θh).

The amplitude of the change in the loss decrease direction is called the learning rate r, this learning
rate which evolves during the training is controlled by a so-called optimiser. Different optimisers
specially crafted for NN exist; this thesis does not focus on the choice of such optimiser and rather
consistently uses an optimiser that proved efficient in NN: the adaptive estimation of first-order
and second-order moments Adam [88]. This optimiser is only sensitive to the initial learning rate
chosen r which is an optimisation hyperparameter. The size of the batches nB = |Dbatch| is also an
optimisation hyperparameter.
One of the reason why NN are very efficient is linked to its layered architecture. This latter lead to
a mathematical function that is a nested composition of simple differentiable functions as shown in
Eq. (II.32). The activation functions are indeed required to be fully differentiable. This, first enable,
by using simple non-linear activation functions (e.g. sigmoid), to approximate complex functions
and thus leads to the NN ability of simulating particular complex phenomenons. Secondly, this
nested composition of function renders the update of parameters by stochastic gradient descent
very efficient and therefore allow for a model with a huge amount of parameters. Indeed by using
the chain rule (f ◦ g(x))′ = f ′ ◦ g(x)g′(x), and by updating the layers parameters sequentially and
starting with the last one in the architecture, one can easily compute the loss gradient relative to a
specific layer’s parameters. It only requires to focus on computing the gradient with respect to the
current layer’s parameters to have f ′ ◦ g(x) and multiplying this results with g′(x) the derivative
of the next layer in the architecture, i.e. the layer previously updated and for which the derivative
has already been computed. This parameter update process is called back-propagation and is the
classical way of applying the batch gradient descent during NN training.

II–3 Conclusion

To summarise, machine learning methods for solving the specific problems defined in Subsection II–
2.3 are combinations of modelling and optimisation techniques. The optimisation objective function
is determined by both the model and the learning task, while solely the model output is determined
by the learning task. The model is also partially determined by the context of the application and
more particularly the data it needs to process. In this work, the type of data of interest are MTS
monitored from sensors on complex physical systems that experience degradation, and necessarily
the models and optimisation tools that are explored, are determined by this context, this holds

50
Chapter II. Machine learning and multivariate time series: theoretical and

practical considerations

true for the presented overview of modelling and optimisation methods presented in this chapter.
Moreover, in Subsection II–1.2, several challenges linked to the context of interest in this work were
emphasised: uncertainty quantification, interdependence of MTS variables as well as their time lags
and non-stationarity of the MTS under study.
The context of this thesis work and the theoretical foundation being now presented, the next
chapter will focus on the overview of the literature, guided by the two research statement defined
in Section I–2.

III
Overview of health indicators in PHM: construction
methods and uses

III–1 Review of HI construction methods

As explained previously in Section I–2, the particular interest of this work is to exploit MTS and
related methods of prognostic and health management (PHM) in a health assessment centric man-
ner. That is, considering the task of constructing a reliable and robust health indicator (HI) able
to precisely depict the degradation trajectory as a core task of PHM from which all the other tasks
of PHM could be derived. With these considerations, this chapter aims at giving an overview, as
exhaustive as possible, of how the task of health assessment is defined, the current methods used
to solve it, and how it is connected to other PHM tasks in the literature. In the first section, a
precise definition of health indicators is given, as well as the properties that are expected for a
health indicator to be efficient, see III–1.1. Then III–1.2 gives a review of existing methods for
health assessment. Subsequently III–2 gives a review of methods that use health assessment as a
pre-task for RUL prognostic.

III–1.1 HI properties: what is a good HI?

In PHM, a health indicator is defined as a quantitative metric that assesses the system’s operational
status, potential degradations, or deviations from the desired performance. It takes the general form
of a real number value that is indexed and evolves through time. At each time step, a new esti-
mation of the degradation is thus given by a HI [98]. Considering the entire lifetime of a system
k under study, a HI is thus a time series that takes a value HI(k)(0) = HI

(k)
0 at time t = 0 and a

value HI(k)(T (k)) = HI
(k)

T (k) at failure time t = T (k).
Now, to be informative, this HI needs as much as possible to satisfy some properties. Indeed, any
time series monitored from a system cannot be considered as a HI.

A first proposal of general properties that a HI must satisfies has been given by [34]. In their
works, the authors propose the three following properties: monotonicity, prognosability and trend-
ability.
Monotonicity reflects the fact that a system degradation is considered to not experience self-
healing without any human interventions. The HI must then continuously evolve in the same
direction, i.e. increase or decrease with relation to time. This can of course be discussed, for in-
stance as in the case of batteries that can experience short term self-healing when it is not used [210],

52
Chapter III. Overview of health indicators in PHM: construction methods and

uses

this latter example is given by the authors of [34] to moderate the necessity of absolute monotonic-
ity. The same idea could hold for different devices that can experience overheating, for instance:
under a hypothesis of continuous operating condition, a device close to fatal overheating due to the
operation can be considered as highly degraded, while if a pause in the operation is performed the
device is actually cooling and self-healing. Nevertheless, under a hypothesis of relatively constant
operating condition, monotonous degradations of any system are an observable necessity, and thus
it should be reflected in a HI that is monotonous. As a matter of fact, we could not find a single pub-
lication on the topic of HI construction that measures HI performance without taking into account
the property of monotonicity. It can therefore be considered as the most important property of a HI.

The second proposed property in [34] is prognosability. The authors define it as the variance
of the critical degradation values in a population of systems. Indeed, a wide spread of values for
critical degradations among different instances of the system under study renders the task of ex-
trapolating the HI to failure more difficult. This property is therefore crucial in a context where the
HI is used as a pre-task for RUL prognostic, hence its name, prognosability. But even on a purely
theoretic ground, having a consistent range of values a HI can take from perfectly healthy to critical
degradation is mandatory for a HI to be informative.

Finally, the third property proposed in [34] is trendability, and is defined as the degree to
which a population of systems lead to HIs that can be described by the same functional form.

These three properties have been reused numerous times in the literature [9, 108, 152], but their
nomenclature and precise definitions have evolved. Consequently, some other properties, deriving
from these three, have also emerged.

Prognosability as defined in [34] has indeed been derived in [8] and [138] respectively as scale-
similarity and failure consistency.

For trendability, the term is used in a different sense as the one proposed in [34]. It has been
used as a property expressing a correlation between the HI value and time, e.g. in [97]. This new
use of trendability can now be commonly found, e.g. in [138], since it has been reported in that
sense in a influent review on the domain [98]. This new definition of trendability becomes very close
to the property of monotonicity, and may be viewed as a variation of this latter.

Finally, a last property that emerged in the literature and that is different to all the previously
mentioned one is robustness: it expresses the absence of random fluctuation, a.k.a. noise, that
might be due to e.g. the stochasticity of the degradation processes or the variation of operational
conditions [98].

Due to the evolving terminology and definitions surrounding the properties of HI in the lit-
erature, this work has made certain choices for clarification purposes. Monotonicity usage and
definition is consistent through the literature and is thus kept as in the definition of [34, 9, 108,
152, 98]. The term prognosability in [34] on the contrary does not precisely reflect the idea it

III–1. Review of HI construction methods 53

attempts to define, thus the term failure consistency proposed in [138] has been preferred. The term
trendability as used in [34] for defining the similarity of functional form is found to be misleading,
as it is now used in the sense reported in [98] and the term prognosability is thus assigned for this
property. Indeed, the prognostics of future HI values of a system’s instance is rendered easier if all
instances have similar HIs sharing the same functional form. Prognosability hence seems a more
adequate name for this property than for the previous one. Finally, robustness was kept untouched
and is used as presented above.

To resume, here are the definitions given for each of the retained HI properties in this work:

Monotonicity defines the consistency of evolution of the HI in the same direction. More precisely,
in this work, the HI of an instance k of a system is seen as a degradation value that evolves
from an initial healthy value of HI(k)0 = 0 and that reach a final failure value higher than
HI

(k)

T (k) > 0. The monotonicity is therefore expressed as the monotonous increase of the HI.

Failure consistency expresses the fact that a HI construction model applied to a specific system,
produces, for each instance of the system, a HI whose values at failure time are similar.

Prognosability expresses the fact that a HI construction model applied to a specific system,
produces, for each instance of the system, a HI that can be predicted using the HI from the
other instances of the system as examples to train the prediction model. That is, that every
instance produce HIs with the same functional form.

Robustness expresses the absence of random fluctuation, a.k.a. noise, that might be due to e.g.
the stochasticity of the degradation processes or the variation of operational conditions.

Additionally, a summary of the terminology used in the literature and used in the present work
is given in Table III.1, as well as the mathematical definitions used in this work for these properties.
Some further details must be expressed on the mathematical definitions of these properties in
Table III.1:

Mon in the monotonicity criteria mathematical definition which is the same as the one pro-
posed in [34], NdHIt>0 and NdHIt<0 are the number of times the difference between two
consecutive HI values are positive and negative, respectively. Additionally, one should note
that computing this indicator on the raw HI can be misleading, especially if the HI is noisy.
Hence, it is advised first to denoise the HI or compute the dHIt on more than one step, i.e.
dHIt = HI(t) −HI(t −∆t) with ∆t > 1. In this work, we use ∆t ≈ 0.05T where T is the
total length of the HI. A value of 1 or −1 indicates that HI(t) is strictly monotonously
increasing or decreasing, respectively. The closer to zero, the less monotonous the HI.

FC the proposed mathematical definition of failure consistency in this work is an original one,
directly related to the prognosis task. It stands for the mean amount of time t(k)Th before a
HI curve HI(k) reach the failure threshold value Th relative to the HI total amount of time
T (k). The threshold value Th is here set as the minimum, over all the n computed HIs, of the
maxima values of each HI. If, on one hand, FC is close to one, it means all HI curves reach a
common threshold at the end of life and are therefore consistent in terms of failure. On the
other hand, if FC is close to zero, then a common threshold reached by all the HI curves at
their end of life cannot be found. An illustration of the computation procedure can be found
in Figure III.1

54
Chapter III. Overview of health indicators in PHM: construction methods and

uses

Faiure
value

Figure III.1: Illustration for the failure consistency computation

Pro in the prognosability criteria mathematical definition, also used in e.g. [9], {
−−−→
HI(k)}k∈K are

vector projections of {HI(k)(t)}k∈K; t∈Tk(T (k)) in a RM space, where M = max
k∈K

(T (k)) is the

number of time step of the longest HI. All the HI trajectories are linearly projected so that the
M th value of their projection is equal to their HI value at failure time HI(k)(T (k)). Because
all the HI except the longest one have less than M time steps, their projection’s values are
linearly interpolated. If Pro is close to one, then the HI curves are highly correlated, and
the prognosis is made easier. In contrast, if Pro is close to zero, then at least one curve
significantly differs from the others and leads to a much more complex prognosis task. An
illustration of the computation procedure can be found in Figure III.2

M M

HI
projection

Real
values

Linear
interpolations

Figure III.2: Illustration for the prognosability computation

Rob in the robustness criteria mathematical definition, also used in [29, 223, 152], HI(k)(t) is
decomposed into a trend THI(k)(t) and a residual RHI(k)(t). The locally estimated scatter plot
smoothing (LOESS) [33] is used for extracting the trend, THI(k)(t) while the residuals are the
differences between the HI and its trend. To be performed, LOESS needs one parameter which
is the window length lw defining the localised subset of HI(k)(t) values needed to compute
THI(k)(t) for all t, similarly to a sliding window operation. In this work, we used a window

III–1. Review of HI construction methods 55

size of five percent of the total HI(k) length, wl = 0.05I(k) where T (k) is the time of failure
for the kth instance of the studied system. A value of zero indicates a perfect robustness of
HI(k), while an increasing value indicates a decreasing robustness. Furthermore, a value of
e.g. 0.1 would indicate that the residuals account for 10% of the HI values on average.

term used in
[34]

different term
in the litera-
ture

term used in
this work

mathematical formulation in this work

monotonicity monotonicity
[9, 108, 152,
98]

monotonicity
Mon(HI(k)) =

N
dHI

(k)
t >0

N
dHI

(k)
t

−
N
dHI

(k)
t <0

N
dHI

(k)
t

dHI
(k)
t = HI(t)−HI(t− 1)

prognosability scale-
similarity
[8], failure
consistency
[138]

failure con-
sistency

FC({HI(k)}k∈K) =
1

n

n∑
k=1

t
(k)
Th

T (k)

where t
(k)
Th : HI(k)(t) ≤ Th , t < t

(k)
Th

and Th = min
k

({max
t

(HI(k)(t))}k∈K)

trendability - prognosability

Pro({HI(k)}nk=1) = min
i ̸=j

i,j∈[1,n]

(rij(HI(i), HI(j)))

rij(HI(i), HI(j)) = Corr[
−−−→
HI(i),

−−−→
HI(j)]

- trendability
[97, 138, 98]

- -

- robustness
[98]

robustness
Rob(HI(k)) =

1

T (k) + 1

T (k)∑
t=0

|RHI(k)(t)|
THI(k)(t)

HI(k)(t) = THI(k)(t) +RHI(k)(t)

Table III.1: The different terminologies of HI properties in the literature and the chosen ones
in the present work, associated with their mathematical definitions

If measurable signals comply with these properties, they can be directly used as HI. They are
called Physical Health Indicator (PHI). Sometimes statistical features of measurable signals can
comply with HI properties and therefore can also be considered as PHI. Usually, finding a robust
PHI necessitates an expert knowledge on the system’s physics under study, it also has the drawback
of being extremely context-dependent. In most cases, anyway, no single physical or measurable
quantity of interest (QoI) is known to represent the degradation state of a complex component
operated under various conditions. One should therefore construct a Virtual Health Indicator (VHI).
That is, a quantity obtained via a data driven selection and aggregation of multiple monitored

56
Chapter III. Overview of health indicators in PHM: construction methods and

uses

signals. The interest in this work is focused on this second type of HI for their usefulness in the
study of complex physical systems and for their potential multi-context applicability. Hence, from
now, we use HI to denote VHI.

III–1.2 Construction methods

III–1.2.1 Time series preprocessing

Whilst constructing a HI of a system from multiple signals monitored on it, it is often required to
first preprocess these signals. In this work, only operations that are applied to individual signals,
i.e. to any variable j ∈ 1, . . . , d of a MTS, and that do not combine them, are considered to be
preprocessing. Operations where multiple signals are aggregated or combined are considered as
being part of the HI construction model itself and not a preprocessing step. In some cases raw time
series do not require any preprocessing, e.g. [208, 124, 87, 103, 220, 60], but generally three recurrent
preprocessing operations can be found in the literature related to HI construction methods: feature
extraction, denoising and filtering. Most often, at least one of these three preprocessing tasks
is necessary before the construction of a HI. A summary of which preprocessing operations are
performed in some influent HI based approaches is given in Table III.2.

Feature extraction Denoising Filtering References
- - - [208, 124, 87, 103, 220, 60]
- - 1 [180, 111, 131]
1 - - [99, 153, 218]
1 2 - [192]
- 1 - [29, 28]
1 - 2 [8, 62, 148, 9, 97, 68, 138]

Table III.2: Preprocessing steps and their order of application in the HI construction meth-
ods.

Feature extraction encompasses any transformation of raw signals that produces new and
more informative signals, facilitating subsequent HI learning. These operations include the evalu-
ation of common statistical and temporal measures on given time windows of length l, e.g. mean,
standard deviation, kurtosis, and skewness [62, 97, 8, 150, 148, 138]. This type of feature extraction
is represented on Figure III.3 for illustration purpose and is the most used for its simplicity of
implementation. Time windows are either defined by the nature of the recorded MTS in the case
of MTS with subseries-uniform sampling, or empirically constructed by a sliding window operation,
with ∆ the sliding step, in the case of MTS with uniform sampling, as shown on figs. III.3 to III.5.
More complex measures on the frequency domain, e.g. centre frequency, mean frequency or total
energy and energy ratio of specific frequency bands can also be used [150, 97, 62]. These extracted
features can be qualified as frequential and are obtained in practice by a two-step procedure depicted
on Figure III.4. First, on similar time windows as previously explained, is applied to the signal,
either an operation which transforms the signal in the frequency domain, i.e. a Fourier transform,
or an operation which decomposes the signal into several components. A trend-seasonal-residual
decomposition, an Empirical mode decomposition (EMD), discrete wavelet transform (DWT), or

III–1. Review of HI construction methods 57

any other operation that consist in filtering some frequency bands of the signal can be considered.
Then, specific measures related to the new representation domain of the signal are applied, e.g.
centre-frequency or total energy of frequency bands.
Finally, the transformation of the signals mentioned before, or more complex ones, is also included
in feature extraction. The followings can be cited in that sense: the decomposition of signals in
several intrinsic modes by means of EMD [47, 100], the Hilbert-Huang transform [181] or discrete
wavelet transform [62, 40], transformations of signals in the frequency domain, e.g. the Fourier
transform [146, 219], or in the time-frequency domain e.g. by means of continuous wavelet trans-
form[218] or short-time Fourier transform [197, 217, 227, 234]. This type of extraction is depicted
on Figure III.5.

Window length:
Raw signal

Statistic / measure

e.g. mean, std,

kurtosis

Sliding step:

Feature extraction:
Temporal statistics

Figure III.3: Feature extraction with classical temporal statistics

Filtering or feature selection is another preprocessing practice applied on raw signals or on
extracted features, whose purpose is to only keep signals or features that comply with properties
required for a HI, i.e. monotonicity, trendability, prognosability, robustness or failure con-
sistency. The underlying idea is then to obtain a HI based on signals or features which satisfied
the above-mentioned properties of a HI. For instance, consistently used feature selection criteria
are the monotonicity or trendability scores, whose high values lead to selection of the signal

58
Chapter III. Overview of health indicators in PHM: construction methods and

uses

Sliding step:

Feature extraction:
Frequential statistics

Window length:
Raw signal

Statistic /
measure

ON

Fourrier
transform

Frequency
multi-bands

decomposition

Frequency spectra
 Multi frequency bands

Overall frequency
spectrum: Mean frequency,

Specific frequency
spectrum

e.g. frequency band energy
or ratios

Figure III.4: Feature extraction with frequential statistics

or feature [180, 8, 62, 148, 9, 97, 68, 138]. If these two scores compute two different things like
mentioned in Subsection III–1.1, they both evaluate a similar property which is the monotonicity.
Other HI properties are also used to select features during this preprocessing step, that is the case
for robustness, e.g. in [8, 138], or prognosability and failure consistency, e.g. in [9, 138]. Never-

III–1. Review of HI construction methods 59

Sliding step:

Feature extraction: Signal
transform

Window length:
Raw signal

Fourrier
transform

Frequency
multi-bands

decomposition

Multi frequency bands

Time-frequency
transform

Spectrograms

Frequency

 spectra

Figure III.5: Feature extraction with transformations of signal subseries

theless, the monotonicity property is always accounted for and is therefore acknowledged by the
literature as the most important or obvious property a HI must satisfy.

Finally, the last preprocessing practice consists in denoising or smoothing the raw signals
or extracted features [29, 28, 192]. The objective is to remove the measurement noise or outliers
in the signals under study, therefore increasing the robustness of the HI obtained subsequently.
Similarly, this practice can also be used as a "post-processing" step on the final HI, to make it more
robust to noise.

III–1.2.2 HI construction

After the preprocessing step, the obtained signals need to be merged into a single HI, combining
partial and diverse information about the equipment degradation state contained in individual sig-
nals or extracted features. This step is the core of HI construction. The existing approaches for

60
Chapter III. Overview of health indicators in PHM: construction methods and

uses

Figure III.6: Classification of HI construction methods.

this operation can be classified according to Figure III.6. Two distinct strategies are available:
fusion-based and similarity-based strategies. These two different paradigms are illustrated on
Figure III.7

(a) Fusion-based approach

A fusion-based strategy consists in learning a single function f which maps the data of each
system’s instance k, with k = 1, . . . , n, resulting from the preprocessing step, noted X

(k)
t ={

X(k)(t)
}
t∈Tk(T (k))

, into a univariate signal HI(k)(t) = f(X(k)(t)) ∈ R. X
(k)
t can be of different

natures depending on the preprocessing procedure. If the raw data are MTS with subseries-uniform
sampling and that preprocessing is deprived of any feature extraction, then X

(k)
t are also MTS

with subseries-uniform sampling. If the preprocessing includes feature extraction of temporal or
frequential statistics, then X

(k)
t are uniform MTS. Finally, if the feature extraction consists of a

signal transform, X(k)
t are time-indexed series of the new representation of the signals resulting from

this transform.

III–1. Review of HI construction methods 61

Fusion

 based

Multi frequency bands

Frequency

 spectra

Spectrograms
 Subseries

Model Similarity

 based

Distance

Representations

Figure III.7: Representation of the two different HI construction paradigms: fusion-based
and similarity-based.

The fusion-based approach comes in two different flavours, quite as similarly as in machine
learning, with supervised and unsupervised techniques.

Supervised refers to approaches whose mapping function f is optimised to produce HI(k)(t)
as close a possible to a theoretical HI ĤI(k)(t) for any given X(k)(t). For this approach, ĤI(k)(t)
needs to be predefined either by a known PHI or a HI degradation hypothesis, e.g. a linear HI with
̂HI(k)(0) = 0 to ̂HI(k)(Tk)) = 1. A convolutional neural network (CNN) in [218] and a recurrent

neural network (RNN) in [62] are e.g. trained with an assumed linear HI. In the context of LI-Ion
batteries, [87, 103, 77] resort to an existing and robust PHI, the battery capacity, as supervisor of
their mapping model respectively being: a perceptron, a long-short time memory (LSTM) neural
network (NN) and a Gaussian process. The main drawback of both approaches is the need for a
PHI as a supervisor, which may not exist, or an assumption about the evolution of degradation
which may not necessarily be consistent with the real but unknown physical degradation process.

To alleviate this shortcoming, unsupervised fusion-based methods have been developed and
can further be grouped into three classes: analytical data fusion, dimension reduction and
model optimisation.

62
Chapter III. Overview of health indicators in PHM: construction methods and

uses

The most common approach is analytical data fusion, where the fusion model f(X(t)(k))

is analytically designed from expert knowledge. [99] e.g. proposes a pair-wise linear fusion whose
weights are based on relative entropy, while [8] uses an adaptive linear fusion with dynamic weights
evolving with time according to inter-features distances.

Dimension reduction techniques like principal component analysis (PCA) [131] or linear local
embedding (LLE) [68] are also used as fusion models by applying them to the preprocessed features
in order to reduce their dimension to one.

Analytical data fusion and dimension reduction based approaches are not mathematically
driven to produce a monotonous HI, or to satisfy any other HI properties. They therefore rely
on the preprocessing step, especially the feature selection, to ensure that the HI satisfies some
expected properties, e.g. monotonicity.

By contrast, other unsupervised fusion-based strategies that enable constraints enforcement
on the HI, have thus been developed. They are often referred to as optimisation models. They
consist in optimising the parameters of their fusion model given one or several HI performance
indicators as optimisation objectives, i.e. monotonicity or failure-consistency. [111, 180] use e.g. a
linear fusion model optimised for maximising the width of the entire HI value range and minimising
the HI polynomial fitting error as well as the width of the end-of-life HI value range. However,
most works on the topic focus on optimising on HI’s properties such as the scale-similarity of
HI’s end values but no work is found on incorporating monotonicity, which can be explained by
the difficulty to integrate ranking constraints between data samples in a convex, linear or quadratic
optimisation problem. More recently, Genetic algorithms (GA) have been proposed as a different
approach of HI fusion model optimisation with complex objective functions. They allow one to
explore a more diverse set of fusion models, thanks to their ability to define a function space, where
not only numerical parameters vary, but also the candidate non-linear functions used in the model
itself. Most importantly, they allow the definition of complex objective functions, that only require
low computational complexity but no property on its derivative, as it can be the case for gradient
based optimisation. These objective functions can then easily integrate constraints of monotonicity
or failure-consistency, for instance. [208] proposes e.g. a generic approach using GA to create a
HI construction model and [138] proposes GA for automatically extracting the relevant features
from the measured signals as well as for the HI construction model, both approaches successfully
incorporated monotonicity constraints in the objective functions of their GA.

(b) Similarity-based approach

As an alternative to fusion-based strategies, the HI construction can be set up in a completely
different way, by using a similarity-based approach. It consists, firstly, in a representation
learning problem, i.e. learning a projection of the data obtained after the preprocessing step,
X

(k)
t =

{
X(k)(t)

}
t∈Tk(T (k))

, in an embedding space, a.k.a. latent space. As mentioned above,

X(k)(t) can be vectors, MTS subseries of dimension d or they can be sets of d representation of
the original signals. In any case, the goal of representation learning is to embed them in a space of

III–2. Review on HI-based RUL prognostics 63

dimension e which must be lower than the original dimension and in which these subsamples are
separable in terms of their degradation level. The HI is then constructed based on the distance
between data samples taken at different times, projected in this representation space. Two different
approaches exist: learning the representation space, either only on healthy data, t ∈ {0, . . . , τ (k)}
with τ (k) << T (k), or on the entire dataset, t ∈ {0, . . . , T (k)}. In the first case, the HI will be the
distance between a data sample projection at time t and the closest healthy sample projection. In
the second case, the HI will be the distance between a sample projection at time t and the sample
projection of the same component at time t = 0. In [97] the authors e.g. use a self-organising
map as the representation learning model and train it only on healthy data while [220] and [60],
e.g., both use RNN based auto-encoders as representation learning model and train them on the
entire dataset. Alternatively, in [9] the authors use an auto-associative kernel regression (AAKR)
as their representation model, and train it only on healthy data. The drawback of these methods
are again the absence of monotonicity constraint in the model. They only rely on feature filtering
for satisfying the monotonic property of the obtained HI.

If fusion-based strategies have been developed to the point of integrating the monotonicity
constraint or any other constraint relative to the HI properties, thanks to the recent development of
genetic algorithm approaches, few works have been found on similarity-based approaches in that
direction. Currently, only the works of [150] attempt to tackle this issue. However, recent advances
in deep learning models, such as in representation learning, similarity learning or contrastive learning
could be beneficial to similarity based health indicator construction model. As a matter of fact,
the authors of [150] use recent advances in deep representation learning, more precisely variational
auto-encoder (VAE) to incorporate, in the loss function of a NN optimisation, a constraint of
monotonicity. More precisely, a reconstruction self-supervised setting was used to encode MTS
subseries in a unidimensional latent space of a VAE. The monotonicity constraint is then applied
on the latent space during the training. Each subseries is fed to the VAE in parallel with its closest
subseries in the past, the former’s latent value is then constrained to be higher than the former’s
one. The unidimensional latent space projections of the MTS subseries is thus used as the HI.
Inspired by this work, and by recent works of contrastive learning, i.e. the representation learning
of time series by means of siamese neural networks (SNN) and triplet loss proposed in [50], we thus
propose in Chapter IV a new methodology for HI construction based on SNN and triplet loss with
the incorporation of a monotonicity constraint.
Moreover, the use of similarity learning tools, enables the learning of meaningful representation of
the raw signals that could potentially be used for the other predictive maintenance tasks, i.e. RUL
prognosis, failure mode classification and anomaly detection.

III–2 Review on HI-based RUL prognostics

An overview of the current methods, and their limitations, for HI construction has been given in the
previous section. To pursue our examination of PHM data analysis methods in a health assessment
centric way, this section focuses on a PHM task that is notably facilitated by the construction of an
HI: the RUL prognostic. Indeed, although an HI can be a valuable outcome for PHM in itself, the
idea of constructing one first appeared in the literature for solving the RUL prediction task [114].
Consequently, this section will give an outline of RUL methods which rely on a health index. But

64
Chapter III. Overview of health indicators in PHM: construction methods and

uses

firstly, it is important to recall that also non-HI based RUL prediction approaches also exist, but
that these latter are not in the scope of the current work. Nevertheless, the two following paragraph
aim at briefly presenting both paradigms.

(a) Non-HI-based RUL prognosis

Before diving in the HI-based RUL estimation methods, this paragraph briefly discusses the methods
that are non-HI-based, often referred to as direct RUL prediction.
RUL prognosis has originally been solved via the direct monitoring of a degradation measure (PHI)
or the construction of a VHI. A more precise description of HI-based RUL prognosis is given in
the next paragraph. Nevertheless, recently, the breakthrough of deep learning, also enables to
construct complex model that can map the current monitoring data of an instance to its RUL
prediction. The advantages of this non-HI-based approach is of course the simplicity of setting up
the model because it circumvents the construction of HI models, forecasting models and threshold
estimations. The idea is to map, for any time t, the last few measurements of monitored signals
(possibly preprocessed) to the current time until failure. This also gives the advantage of not
needing the full history of measurements for making a prediction, which can be the case in certain
HI-based approaches. Many architectures and techniques of NN have been applied to learn such
mappings, can be cited e.g., multi-layer perceptrons [211], convolutional neural networks [67, 105,
199, 235], recurrent neural networks [67, 199] and attention mechanisms [23, 226]. The primary
disadvantage of this approach is the requirement for a substantial quantity of data – specifically,
a considerable number of instances of the system under investigation that have been monitored
and ran to failure. Additionally, disregarding the HI modelling step, if convenient for the sake of
simplicity, also increases the opacity of the model, which is already at a high level considering the
ML method used, i.e. deep learning.

(b) HI-based RUL prognosis

The subject of interest in this work is the HI-based RUL estimation methods. The latter are the
most numerous in the literature, for the main reason that the non-HI-based methods have appeared
only recently, as mentioned in the previous paragraph. HI-based methods have the advantage of
going through the process of HI construction, which can in itself give important informations about
the different degradation dynamics that occur in the system under study. They are therefore more
explainable than the direct deep learning based approaches. Other advantages can be awarded to
this approach, but first a brief explanation on the principles of HI based RUL prognosis is necessary.

1. Elaborating a forecasting model, that can predict a HI trajectory given its history.

2. Proposing a failure threshold estimation model, that can give a threshold value above which
the system’s instance under study is considered failed.

The present section gives an overview of the different methods existing in the literature to address
both challenges.

III–2. Review on HI-based RUL prognostics 65

III–2.1 HI forecasting

As mentioned just before, once the HI model is available, the HI trajectories of observed instances
ran to failures can be obtained, denoted as:

HI = {HI(k)(t)}k∈K, t∈Tk(T (k))

Additionally, the HI model can give HI values for any instance κ observed until a given time τ . The
goal is now to build a model able to forecast the evolution of a specific HI trajectory given its past
values.

The forecasting task can be formalised as follows: for any instance κ, whose incomplete HI tra-
jectory is {HI(κ)(t)}t∈Tk(τ) with Tk(τ) = {0, Ts, . . . , τ} for any value of 0 < τ < T (κ), it is desired
to find the future values of the HI trajectory {HI(κ)(t)}t∈T +

k (τ) with T +
k (τ) = {τ, τ +Ts, . . . , τ +h}

for any horizon h > 0. Because the time of failure T (κ) is unknown, the forecasting horizon h can
be viewed as infinite.

As observed in [202], two main settings have been proposed so far for this task:

Individual model In this setting, all instances are studied separately, one single model is con-
structed for each instance, the model parameters are then estimated only via past observations
of the trajectory {HI(κ)(t)}t∈Tk(τ).

General model In this setting, the HI of all instances are considered to share some similarities
but with particular differences for each trajectory. From a statistical point of view, they
can be thought as particular realisations of a same stochastic process. Therefore, both the
already observed trajectories in the set HI and the historical values of the current trajectory
{HI(κ)(t)}t∈Tk(τ) are used to predict the future values of the latter.

The HI forecasting task has been studied with different type of approaches, which have in turn
been classified given different taxonomies. The recent review on RUL prognostic [98] attempts
to clarify the different type of approaches. The classification given hereafter is partially inspired
from this review, but some changes can be emphasised for the reason that this review study RUL
prediction approaches regardless of the fact that they are HI-based or not and also ignoring the
difference between individual model en general model settings. In their review, [98] differentiate
between physics model-based approach, statistical model-based approach and artificial intelligence
based approach. In this work, we decide to classify the approaches based on their mathematical
formulation of the forecasting problem rather than the precise nature of the methods used to solve
it, as it has been done in [98]. Four categories are therefore used to classify HI forecasting model in
this work:

• Function fitting

• Curve matching

• Machine learning

• Stochastic process

66
Chapter III. Overview of health indicators in PHM: construction methods and

uses

III–2.1.1 Function fitting

Function fitting models encompass models whose goal is to provide, for any particular incomplete
trajectory of an instance κ until t = τ , a function f̃Θ(κ) : R → R, t 7→ f̃Θ(κ)(t) indexed on time
and parameterised by Θ(κ). The functional form of f̃Θ(κ) is chosen based on expert-knowledge and
known physical dynamics of the system under study. More precisely, these functional forms can
follow some known law of degradation, e.g. Paris-Erdogan in [213, 149] or Forman law in [141] for
crack-growth application. Alternatively, researchers can infer these functional forms by observing
existing trajectories; for example, polynomial [4] or exponential models [124] can be implemented.
For this category of HI forecasting, only an individual model setting is considered, the optimal
parameters Θ(κ) are determined by historical values of the trajectory of the instance κ, usually via
least squares minimisation, as follows:

Θ(κ) = min
Θ

τ∑
t=0

|HI(κ)(t)− f̃Θ(t)| (III.1)

Once the function f̃Θ(κ) is fitted, it is trivial to give a prediction of the HI value for any future time
t = τ + h, with h a potentially infinite horizon. A schematic overview of this type of approach is
represented in Figure III.8.

Parameterised
function

Parameters estimation

(MSE)

set of HI
trajectories

HI
forecasting

FPT

FPT

FPT

Figure III.8: Schematic view of function fitting HI forecasting.

In practice, with this approach, as for any approach in the individual model setting, a sufficient
amount of known points of the trajectory must be observed before starting to ensure a correct
estimation of the parameters Θ(κ). Moreover, at the start of life of a system, the degradation

III–2. Review on HI-based RUL prognostics 67

evolves slowly and is challenging to identify. A common solution to bypass this problem is to detect
when a HI value indicates a significant increase in the degradation compared to past values. The
time when such a HI value appear is called the first prediction time (FPT), it is denoted here
tFP and most often defined by an arbitrary rule. For example, the authors of [4] start to predict
HI values when an observed HI value increased by 10% w.r.t. an HI value measured at a predefined
time lag in the past, while the authors of [102] wait for the HI to be higher than thrice the variance
of previous recorded values. In this context, the approach then consists for any τ ≥ tFP to estimate
Θ(κ). At each time step, new measurements of the HI trajectory are known, and therefore, given
that the functional form is well-fitted to the system under study, the predictions are improved. This
category includes only deterministic approaches, and therefore do not enable one to quantify the
uncertainties. When these latter are taken into account in this modelling approach, that is, in the
model parameters or from the measurement noise, the model can be designed as a stochastic process
which belong to the category defined below in Subsection III–2.1.3.

III–2.1.2 Curve matching

Curve matching approaches differ from function fitting in the sense that they rely on all the observed
complete trajectories, and the more there is the better. The underlying idea is based on the
comparison of each new trajectory {HI(κ)(t)}τt=0, observed until time τ , with all the available
complete trajectories in the set HI. To do so, usually, each trajectory is only considered up to time
τ and a distance or similarity measure is computed between the new trajectory and every observed
ones:

d({HI(κ)(t)}t∈Tκ(τ), {HI
(k)(t)}t∈Tk(τ)), k ∈ K (III.2)

Once all the observed trajectories have been compared, they are weighted based on their similarity
with the new partial trajectory, to give the weights: {wk}k∈K. Then a calibrated function is de-
signed to combine and merge together the observed trajectories in HI according to their respective
weights {wk}k∈K. The result of this function can be a new trajectory or a trajectory distribution.
It is interesting noting that this approach can be used without failure threshold estimation. In such
situation, the RUL is directly forecasted by merging the RUL of the observed trajectories at time
t = τ according to their respective weights {wk}nk=0. A schematic overview of this type of approach
is represented in Figure III.9.

In this category of approaches, can be cited [220] where the authors propose to compare the HI
trajectories based on Euclidean distance, then the RUL is directly predicted by the best matching
trajectory, which may rather be viewed as trajectory selection than combination. The authors in
[121, 60] use a similar trajectory comparison technique, but rather predict the RUL as the average
of all observed trajectories weighted by their respective similarity to the current trajectory. The
authors of [53, 113] also resort to a weighted average of observed trajectories based on similarity, but
where the similarity measure has been obtained respectively by cosine distance and by a combination
of Euclidean and cosine distances. The authors in [131] use a clustering technique (K-NN) to split
the observed trajectories into several clusters, then the new partial trajectory is assigned to one
cluster, and the trajectories of this latter are used for prediction. [154] also recently proposed a
method called RULClipper in case of noisy HIs. It first consists in determining the envelope of
each trajectory, the similarity of two trajectories is then based on the area of intersection of their
respective envelopes.

68
Chapter III. Overview of health indicators in PHM: construction methods and

uses

set of HI
trajectories

Trajectory similarity
function

Observed
data

Merging function

HI
forecasting

Observed trajectory
weighting

New
partial

trajectory

Figure III.9: Schematic view of curve matching HI forecasting.

The main issue with these above introduced approaches is, of course, the need for a high amount
of observed run-to-failures trajectories, which is particularly crucial in this setting as the precise
observed trajectories are directly used as RUL predictors.

III–2.1.3 Stochastic process model

In this category, are included all the approaches that attempt to model HI trajectories as realisations
of a specific stochastic process, hence it includes the stochastic process based approaches described
in Subsection II–2.4.1. Herein, both individual and general models settings can be used.

(a) Individual models

For individual models, the goal is to find, for any particular instance κ with a trajectory until t = τ , a
stochastic process Xω(t) that best explains the observation, i.e. the trajectory. The model chosen to
represent the stochastic process can incorporate some physical law, e.g. by defining a trend following
this latter. Nevertheless, as opposed to pure physical models, random fluctuations are taken into
account and parameterised by the stochastic process model. As a result, Xt is expressed by a
deterministic component, e.g. a deterministic trend with parameters Θ and a stochastic component
with parameters Ω, e.g. mean and variance of noise or stochastic trend. Overall, the model is
denoted Xω(t; Θ

(κ),Ω(κ)). The parameters Θ(κ) and Ω(κ) are estimated from historical values of the
trajectory. For the deterministic parameters Θ(κ), MSE-based optimisation is often used, while for
the probabilistic parameters Ω(κ) following probability distributions, maximum likelihood estimation
(MLE), is preferred:

Ω̃(κ) = argmax
Ω

L
(
{HI(κ)(t)}t∈Tk(τ), Θ̃

(κ)|Ω
)

(III.3)

where L
(
{HI(κ)(t)}t∈Tk(τ), Θ̃

(κ)|Ω
)

is the likelihood of the observed HI for Θ̃(κ) and given Ω.

III–2. Review on HI-based RUL prognostics 69

Once Xt(ω; Θ
(κ),Ω(κ)) is correctly fitted, the advantage is that it is possible not only to get a

single prediction of the HI value for any future instant t = t+h, with h > 0, but also a full distribu-
tion of probabilities for the values of the HI at these instants, which enables a prediction within a
confidence interval. It is important to note that this approach often necessitates to simulate the tra-
jectory until it reaches the desired time horizon t+ h. This diminishes the real capacity to forecast
to an infinite time horizon h, as it is obviously not possible to simulate infinitely. In practice, the
forecasting step is coupled with an estimation procedure of failure threshold, see Subsection III–2.2,
thus giving a stopping criterion for the simulation. A schematic overview of this type of approach
is represented in the top of Figure III.10.

Because they base the estimation of parameters only on past values of the current trajectory,
individual models suffer from the same limitation as function fitting models when few values have
been observed. They therefore rely on the same solution of setting a FPT, see Subsection III–2.1.1.
Many possible stochastic process-based models exist, as described in Subsection II–2.4.1, and are
particularly adapted for the task at hand. A simple approach proposed in [231] consists of a
noisy linear degradation model with a time-varying slope following a white noise process. Gaussian
processes have also been investigated, [14] e.g. uses them to model HI trajectories. Therein, the
authors define a GP with no trend, that is, with no deterministic parameters, and a mixed covariance
function composed by the sum of three kernels: RBF, polynomial and white noise. This work is
particularly interesting for its monotonic constraint on the GP and its warping between 0 and 1.
Other modelling tools involve mainly Markovian stochastic processes, authors in [93] e.g. propose
a linear state-space model (SSM) to predict the HI degradation. the same model was used in [153]
and was optimised with N4SID a state-space identification algorithm. The authors of [97] use a non-
linear SSM with states following a Paris-Erdogan evolution with a time-varying parameter following
a normal distribution. The parameters of their model are calibrated with resorting to a MLE at
FPT and then via a particle filter approach for each new measurement available. Lévy processes
have also been used in that context. [68] e.g. uses diffusion process with non-linear drift optimised
with MLE and [225] follows a similar approach with a non-linear drifted Brownian motion, a MLE
based parameters initialisation at FPT, and a unscented particle filter parameters update.

(b) General models

As mentioned at the beginning of Subsection III–2.1, general stochastic processes, now denoted as
Xω(t; Θ,Ω) improve the individual approach, in the sense that they also use trajectories of already
observed instances gathered in the set HI to estimate the parameters of the model. In practice, HI
is used to both set the deterministic parameters Θ and to estimate a prior probability distribution
of the stochastic parameters Ω. An empirical distribution of Ω may be obtained from the individual
estimation of Ω by MLE for every HI in the set HI. Once a new trajectory is being observed, at
any instant t = τ , the distribution of the stochastic parameters Ω might be updated using the Bayes
rule:

P (Ω|{HI(κ)(t)}t∈Tk(τ); Θ) =
P ({HI(κ)(t)}t∈Tk(τ); Θ|Ω)P (Ω)

P ({HI(κ)(t)}t∈Tk(τ); Θ)
∝ P ({HI(κ)(t)}t∈Tk(τ),Θ|Ω)P (Ω)

(III.4)

70
Chapter III. Overview of health indicators in PHM: construction methods and

uses

Stochastic process
model

Initialise

parameters

Prior

function

distribution

Posterior
distribution

New observed
data

Observed

HI

trajectories

New observed
data

FPT

HI
forecasting

Trajectory distribution

No FPT !

New

partial

trajectory

General
model

individual
models

Observed HI trajectories

Stochastic process
model

HI
forecasting

Update

parameters

Update

Prior

Set

parameters

Parameters

estimation

Figure III.10: Schematic views of stochastic process based HI forecasting.

Once the posterior distribution of Ω is updated, it replaces the previous prior P (Ω) and so on;
and enables in turns a prediction on future HI values distribution, similarly as for individual models.
A schematic overview of this type of approach is represented at the bottom of Figure III.10. A great
advantage of this approach is that it does not need a FPT to start predicting future HI values. It
also allows exploiting as much as possible already observed curves, for predicting a new one, an
aspect which is completely ignored in individual models setting.
This general model framework has been e.g. used in [54] where the HI is modelled by a exponential
function with probabilistic parameters following a multivariate normal distribution. First, each
logged observed trajectory is fitted to the logged exponential model, i.e. resulting in a linear model
in the log-space. Then, these fitted parameters for each trajectory serve to estimate the distribution
of parameters. The parameters update is realised at each new measurement available within a pure
Bayesian framework. A general stochastic process model approach is also proposed in [176] where
the HI are considered as realisations of a diffusion process with a non-linear drift; the drift being
proportional to a “unit-to-unit” parameter following a normal distribution whose parameters are
estimated from the MLE based on the observed trajectories. In [101], the authors propose to
model the HI with Wiener processes whose drift is also proportional to a “unit-ot-unit” parameter

III–2. Review on HI-based RUL prognostics 71

following a normal distribution, the model parameters are initialised with MLE and the unit-to-unit
parameter distribution is updated through time with a Monte-Carlo simulation approach for each
new measurement available.

III–2.1.4 Machine learning methods

Machine learning approaches encompass all the ML methods, that are not specialised for modelling
stochastic process, but are here customised to perform time series forecasting in a supervised manner.
The general formulation of supervised machine learning which can found in II.4 is adapted: The
input and output data X and Y are no longer variables of different natures, i.e. explanatory and
explained variables. They are here composed of the same variable, or QoI, but at different time
instants. X groups the past values of the QoI from the present to a certain past horizon hp, and Y
are the future values of the QoI from the present up to a certain future horizon hf . Whilst the QoI
is the HI, it could be read:

f̃
(
HI(t− hp), . . . ,HI(t); Θ|Θh

,Θh

)
= HI(t+ 1), . . . ,HI(t+ hf) ∀t (III.5)

The exact same models and optimisation procedure of classical machine learning algorithm are used,
only the way input and output data are set up is changed. In practice, for setting hp, a balance
must be found between, a large hp which can improve the model precision by taking into account
more past history, and a small hp that decreases the risk of overfitting if the dataset is too small.
Moreover, a larger hp also induces a further FPT, that is, at least hp values of the new trajectory
must be observed to start the prediction. For hf , it is in practice impossible to set it such that the
time of failure T (k) of any instance k is always included in the future time horizon. Therefore, a
small value is often preferred, i.e. hf = 1, and once the model has been learned, the forecasting is
performed in a iterative manner, where the forecasted value is used as input in the next iteration,
until the failure threshold is reached. Similarly as for the statistical approaches, ML models can be
implemented in an individual or a general setting. Nevertheless, there is, in general, no parameter
updating when new measurements are available, and ML methods are less suited than stochastic
processes for estimating uncertainty. A schematic overview of this type of approach is represented
in Figure III.11

Different ML models have been proposed to forecast HI values, of which support vector regres-
sion can be cited with e.g. [13] and [122] that respectively use SVR and least-square SVR (LS-SVR)
with a RBF kernel. Neural networks are of course also a frequent solution to the issue. Recurrent
neural networks (RNN) in particular, which are specialised in processing sequential data have nat-
urally been used for this task, [216] e.g. use LSTM neural networks, [151, 27] rather use gated
attention unit (GAU) neural networks, a special implementation of recurrent neural network with
attention mechanism incorporated inside the neuron cell, while [233] propose a new consolidated
memory GRU neural network. The previously cited examples of approaches are developed in a in-
dividual models setting, which is often the case for ML based HI-forecasting. Because they are used
for fitting only one trajectory, they require less complex models and faster training time. However,
the major drawback is that they must be continuously re-trained after each new HI measurements
to keep being accurate, which might be prohibitive for application in real time. Moreover, as men-
tioned before, they do not take into account observed trajectories ran to failure in the set HI.
That is why, general models of HI forecasting can also be developed with ML approaches. [224]

72
Chapter III. Overview of health indicators in PHM: construction methods and

uses

Observed
data

New
partial

trajectory X
Y

Data set building

Parameter
estimation

(supervised
learning)

ML Model

OUT

IN

General
model

individual
models

set of HI
trajectories

Observed data

HI
forecasting

New
partial

trajectory

X
Y Parameter

estimation

(supervised

learning)
ML Model

OUT

IN

Data set building

HI
forecasting

Figure III.11: Schematic view of machine learning based HI forecasting.

e.g. use deep sequence-to-sequence recurrent neural network trained with observed run-to-failures
trajectories. If enough of these latter are available, this approach enables to ignore the current
trajectory measurements for training and therefore does not need retraining at each measurement.
The main drawback here is that the specificities of the new trajectory are not taken into account.
This analysis of the existing ML methods brings out the observation that classical supervised ML
approaches are not well suited for the task of learning a model based on observed run-to-failures
trajectories while also taking into account the new partial trajectory. Indeed, ML approaches are
rather used in direct RUL estimation, as mentioned at the beginning of Subsection III–2.1.

As a matter of fact, the issue of taking into account both measurements from observed run-to-
failures instances and the new instance has also emerged in the direct RUL setting. An ensemble
framework has thus been proposed in [78] that can potentially solve this issue. The authors propose
dense NN as weak learners of ensembling approaches, firstly trained separately, with one NN for
each observed instances, and then aggregated for forecasting a particular trajectory κ according to
their ability to correctly fit this latter. A similar idea developed in Chapter V is partially inspired by
this work but also by some specific methods proposed as hybrid approaches considering the current
classification of methods.

III–2. Review on HI-based RUL prognostics 73

III–2.1.5 New hybrid approaches

It comes naturally that the proposed classification of approaches here is not perfectly accurate, some
particular approaches do not really fit in one precise category but are dispatched in at least two of
them. They can be considered in a sense as hybrid approaches. A setting of particular interest is the
hybrid approach between stochastic processes and ML methods. The stochastic process modelling
setting, especially considered with a general model, is indeed particularly interesting for defining
a generic stochastic process whose parameters are first initialised by observed trajectories HI and
then refined at low cost by the new partially observed trajectory. It also enables a statistically
grounded way of quantifying uncertainty in prediction. However, these approaches have limitations
in defining an adequate function space that could fit any HI trajectories from the set HI, especially
if these latter experience diverse modes of failure and thus different degradation dynamics. This is
particularly true for the approaches in [176, 101] where the proposed Wiener and diffusion process
need to be defined with a non-linear drift function that must take a particular quite restrictive
form, here power and exponential functions. ML models and particularly NN are useful for defining
wide and complex functional forms. Recently [21] therefore proposes a state space model whose
state equation is defined by a dense NN, i.e. a MLP. The authors, as a matter of fact, propose
a hybrid approach with state-space stochastic process modelling coupled with a ML model. They
use a particular particle filtering approach to recursively update the parameters of an ensemble of
MLP which, in effect, simulated a stochastic process model. This proposed approach is restricted
to singular models in [21], however, by taking inspiration from [78] as mentioned in Subsection III–
2.1.4, an ensemble of MLP can be initialised by all observed trajectories HI to expand the approach
to a general model setting. This particular idea is developed later on in Chapter V and constitutes
an original contribution of this thesis.

III–2.2 Threshold estimation

To finally enable RUL estimation, once the forecasting model of the HI is available, the last missing
piece is a threshold HI value, that indicates a failed state. In the case of PHI with understandable
physical meaning, a threshold can be set by expert knowledge. But in the case of VHI issued from
complex systems, no precise physical meaning can be given to any HI value. To estimate a failure
threshold, one must therefore rely on already observed HI trajectories and especially their values at
the end of life of their respective system’s instances. As mentioned in III–1.1 an important property
in HI construction is failure-consistency, i.e. the fact that HI trajectories from different instances
of the same system, reach similar values at the end of their lives. If this property is of paramount
importance, it is for this threshold estimation step. Indeed, if all instances reach the same value at
the end of their lives, this value can be set as the threshold. Unfortunately, failure-consistency is
never perfectly complied with, especially when dealing with complex systems with multiple potential
mode of failure. Threshold estimation techniques must then be developed to enable more reliable
RUL predictions. This threshold estimation can be deterministic, a single value is considered as
the threshold. Or it can be probabilistic, the threshold is considered as a random variable that
can take a value following a specific probability distribution. Generally speaking, this threshold
estimation task seems under-considered in the literature, to the best of the authors’ knowledge it
is never mentioned in any review on subject of PHM or RUL prognostics [107, 175, 98, 155, 184].
Yet, an attempt of listing the different approaches is given hereafter.

74
Chapter III. Overview of health indicators in PHM: construction methods and

uses

(a) Deterministic constant threshold

Because of its simplicity, the deterministic constant threshold is often the default choice in the
existing work. It can be set manually when the HI trajectories have a very high failure consistency,
or an understandable physical meaning, as in e.g. [14, 200, 198, 97, 153, 110]. It can also be based
on the final values of observed trajectories. For instance, one could derive a threshold as the mean
or minimum of the final values of HI. When dealing with complex systems, however, getting HI
trajectories that are both monotonic and failure consistent can be very challenging, and when fail-
ure consistency is not met, defining a constant deterministic threshold can lead to inaccurate RUL
estimations.

These deterministic constant thresholds, however, if simple to implement, are of little help when
dealing with cases where failure-consistency is not met. These cases often arise when studying
complex systems with multiple failure modes and monitored with highly multivariate time-series
that necessitate VHI that have no physical meaning [75, 26, 204]. These cases thus need improved
failure threshold estimation methods.

(b) Improved threshold estimation

As mentioned before, the task being under-considered, more sophisticated approach are rare in the
literature. Nevertheless, two aspects of the problem have been studied and improved compared to
the classical deterministic constant threshold: from deterministic to probabilistic and from constant
to adaptive.

A probabilistic threshold can be defined as a probability distribution of the threshold, instead
of a single value of the HI above or below which failure is considered. It helps at better capturing
uncertainties in the remaining useful life and can lead to more accurate prognostics. Usually, a
parameterised probability distribution is assumed for the failure threshold and then the parameters
are estimated with MLE based on the last HI values of the observed HI trajectories in HI. For
example, [139] use a gamma distribution, [204] a gaussian one and [104] a truncated gamma distri-
bution.

In the case of an adaptive threshold, at each new measurement of the currently observed trajec-
tory, the threshold value is subjected to evolve, be it a deterministic or probabilistic threshold. This
setting helps at refining the RUL prognostics at each new observed HI value. This strategy can be
observed e.g. in [70] where a deterministic threshold is continuously updated by applying a one-class
SVM to determine a hyperplane that separates normal to abnormal values in a hyperspace obtained
with kernel functions. This hyperplane is considered as the failure threshold, and the OC-SVM is
continuously retrained as more HI value are observed. In [26, 117, 208] the authors also resort to an
adaptive threshold but with a different approach. They consider a unique parameterised degrada-
tion model for all observed instances and fit this latter for each available HI trajectories with MLE.
When a new instance HI trajectory is partially observed, the model is also fitted on it. Addition-
ally, this partial trajectory is approximated by a weighted average of all the observed trajectories,
where the weights are optimised with MSE minimisation. The obtained weights can be considered
as similarity values between the partial trajectory and each observed one. These latter, are finally

III–2. Review on HI-based RUL prognostics 75

used to estimate a failure threshold as the weighted average of historical HI trajectories last values.
This strategy was originally proposed in [26] and then enhanced in [208] that turned the thresh-
old as a probabilistic one following a Gaussian distribution with the mean equal to the previous
deterministic threshold and a variance estimated by the empirically on the historical HI trajectories.

The idea of an adaptive probabilistic threshold seems like the best option for one who wishes
to better quantify uncertainty and refine a RUL estimation as more HI values are observed. The
methodology proposed in [26, 117, 208] is thus used in this work and is adapted to the proposed
RUL estimation approach in Chapter V. More particularly, it is adapted to a Monte-Carlo-based HI
forecasting with particle filter, which is a common strategy in the literature. Our proposed adap-
tation of the probabilistic adaptive failure threshold can thus be reused in numerous HI forecasting
settings using particle filters and is therefore an important contribution of this thesis.

76
Chapter III. Overview of health indicators in PHM: construction methods and

uses

IV
Health indicator construction: proposed approach

As mentioned in Subsection III–1.2.2, two main types of approach exist for constructing a HI model
of a physical system whose multiple parameters are monitored to collect MTS. It was also found
that few of them enforce monotonicity constraints on the constructed HIs.
The fusion-based strategy has nevertheless benefited from some recent developments in that
direction, in particular with GA approaches that enabled to incorporate some monotonicity con-
straints during the optimisation or learning procedure, more precisely as a constraint in the objective
function of the HI model [208, 138]. Even more recent developments, with deep learning tools, have
also been proposed in the fusion-based setting for incorporating monotonicity constraint inside the
loss of the NN [150]. However, the second main setting of HI model construction, a.k.a. similarity-
based strategy has not yet, to the best author’s knowledge, benefited from the development of
recent proposition incorporating monotonicity constraint during the optimisation or learning.
It is important to point out that this similarity-based strategy, when adapted to deep learning,
which does not need to prove its performance in extracting complex patterns in data any more,
does enable the introduction of monotonicity constraint. This idea is the core contribution of this
chapter, as one solution to overcome the existing limitations of recently proposed methods raised
in the bibliography made in Chapter III.
More specifically, in this chapter, we propose a similarity-based HI construction approach, built
upon a contrastive learning setting, by means of a siamese neural network (SNN) as the representa-
tion learning model. An adapted training samples selection and a specific constraint incorporated
directly in the contrastive loss function are proposed to enforces monotonicity of the resulting HI. No
additional hypothesis on the evolution of the HI is therefore needed, which is a clear improvement
from the literature and makes the proposed method very generic and adaptable to any physical
system. The proposed method neither focuses on a particular and fixed deep learning architecture
nor on a specific signal preprocessing technique. It is rather based on a generic methodology using
similarity learning, SNN and contrastive loss applied to the problem of HI construction, which can
be easily adapted to any input data and application context. Firstly, an overview of the concepts
and methods from deep similarity learning and contrastive learning, used in the present work, is
given in Section IV–1. The enhancement of these methods to fit the HI construction problem is
then presented in Section IV–2. Next, the application of the proposed methodology to two datasets
used for RUL prediction is presented in Subsection IV–3.1 and Subsection IV–3.2 with a detailed
assessment of the performance obtained. Additionally, because it also proposes an approach based
on deep self-supervised learning with a monotonicity constraint, the work of [150] is thoroughly
compared to the proposed method.

78 Chapter IV. Health indicator construction: proposed approach

IV–1 Similarity learning

This section recalls the main concepts of similarity learning and focuses on its deep learning version:
the SNN and contrastive triplet loss.

IV–1.1 Similarity learning

Similarity learning or metric learning is a field of machine learning that aims to infer a distance
function between samples of a given dataset directly from this latter [92]. In mathematics, a distance
function, a.k.a. a metric, d : D ×D → R where D is a given set, must satisfy the four properties
defined by eqs. (IV.1) to (IV.4) for any pair of elements (a, b) ∈ D [59].

Non-negativity: d(a, b) ≥ 0 (IV.1)

Identity of discernable: d(a, b) = 0⇔ a = b (IV.2)

Symmetry: d(a, b) = d(b, a) (IV.3)

Triangle inequality: d(a, c) ≤ d(a, b) + d(b, c) (IV.4)

It is worth noting that a function meeting all the aforementioned criteria except for Eq. (IV.2) is
labelled as a pseudo-distance. Unlike the concept of classical and analytical distance metrics, such
as Euclidean or Manhattan distances, which rely on defined mathematical expressions of d, the
principle of similarity learning is to infer the function d as dθ(a, b) = f(a, b; θ) where θ is a set
of parameters estimated from a given data set {x(j)}nj=1 where x(j) ∈ D such that dθ satisfies the
properties of eqs. (IV.1) to (IV.4) or alternatively of eqs. (IV.1), (IV.3) and (IV.4) for a pseudo-
distance. Typically, such a learned metric is sought to better compare the elements of D with
respect to a specific task, e.g. clustering, ranking, matching predefined similarity judgments. A
simple yet illustrative example of learned distance metrics is the Mahalanobis pseudo-distance [163]
given by Eq. (IV.5):

dmaha(a, b) =
√

(a− b)TM(a− b) (IV.5)

where a and b are assumed to be identically distributed from a joint probability distribution of
covariance matrix M . The distribution being unknown in practice, the covariance matrix M is
therefore estimated from a given dataset issued from the same distribution. The estimation M̂ of
M therefore stands for the θ parameters of the dθ metric as defined above.
Similarity learning has proven to be effective for clustering high-dimensional objects such as images
[170, 215, 82, 232], but also for recommendation systems [112, 81], ranking objects [22] or face
verification [170]. The recent breakthrough of deep learning has opened several opportunities in
the area of similarity learning. Among all, self-supervised contrastive learning approaches based on
SNN [19, 31, 170] have emerged and offer an appealing setting for HI learning.

IV–1.2 Siamese neural networks

As discussed in Subsection II–2.5, Neural Networks (NN) are machine learning models whose math-
ematical architectures, which depend on the learning task to be performed, generically consist in
stacking and interconnecting multiple layers of neurons. Each neuron linearly combines its inputs

IV–1. Similarity learning 79

and parameters, the result of which is passed through a so-called activation function which gives the
final output of the neuron, then forwarded as input to the neurons of the next layer. Parameters of
NN, i.e. weights and biases, are typically optimised using stochastic gradient descent to minimise
a loss function when fed with example data. Unlike a classical NN, an SNN is composed of two or
more identical NN, i.e. clones of a given neural architecture, which all have the same parameters,
see Figure IV.1. It means that whilst training a SNN, its clone NNs, i.e. subnetworks, are updated
simultaneously. The output layer of each subnetwork generates comparable vectors in an embed-
ding or latent space of size e, where e is the number of neurons or outputs in the output layer.
In this latent space, a comparison operation of two or more input samples is performed either by a
classical distance, such as the Euclidean distance, or by a neural distance layer. Figure IV.1 shows
the standard architecture of a SNN with two identical subnetworks. By construction, a SNN can
be used for dimensionality reduction [230] or similarity learning [19, 31]. The particularity of the
SNN architecture and the learning task it must perform requires a particular form of loss function,
called contrastive loss, which is described in the next section.
It is due noting that using a valid metric or pseudo metric in the comparison layer ensures that
the learned metric dθ is a pseudo-metric. Indeed, the identity of discernable defined in Eq. (IV.2)
cannot be ensured, as the NN subnetworks are not necessarily bijective functions.
An important point to bear in mind, is that it is the shared parameters of the SNN’s subnetworks
that completely condition the ability of the distance function used in the latent space to solve the
task at hand, which is to discriminate samples.

IV–1.3 Contrastive triplet loss

The idea of contrastive loss as well as SNN comes with the dimensionality reduction task. A pro-
jection from high to low dimensional spaces is considered valuable when it maps inputs considered
dissimilar to distinct enough vectors in the output space, and inputs considered similar to closely
related vectors. A loss function should thus be designed such that, a SNN minimising it produces
a mapping function that reaches the aforementioned objective. A general formulation of the con-
trastive loss has been given by [65] for a SNN composed of two clones, therefore fed by sample pairs.
It can be referred as duet contrastive loss and reads:

L(θ) =
Np∑
j=1

L(θ, Y (j), (X1, X2)
(j)) (IV.6)

where: L(θ, Y (j), (X1, X2)
(j)) =

Np∑
j=1

(1− Y (j))LS(d
(j)
θ) + Y (j)LD(d

(j)
θ) (IV.7)

and: d(j)θ = dθ(X
(j)
1 , X

(j)
2) (IV.8)

where Np is the number of training pairs, θ represents the parameters of the SNN, (X1, X2)
(j)

stands for an input sample pair, d(j)θ the in-between Euclidean distance of the latter’s projection in
latent space, and Y (j) corresponds to the binary label indicating if the pair is similar (Y (j) = 0) or
dissimilar (Y (j) = 1). The partial loss functions LS and LD, respectively for a couple of similar and
dissimilar inputs, are expressed in eqs. (IV.9) and (IV.10) as proposed by the authors of [65]. They
are functions of d(j)θ and are respectively activated for a pair of similar (Y (j) = 0) and dissimilar

80 Chapter IV. Health indicator construction: proposed approach

Hidden layer

Data sample A

Hidden layer

Hidden layer

Data sample B

Hidden layer

Comparison layer

Results
Fo

rw
ar

d
pr

op
ag

at
io

n
w

ith

B
ack-propagation on

 via

Loss:

Shared

 parameters

Latent space

Projected sample A Projected sample B

Figure IV.1: Generic representation of a SNN.

samples (Y (j) = 1).

LS(d
(j)
θ) =

1

2
(d

(j)
θ)2 (IV.9)

LD(d
(j)
θ) =

1

2
max(0,m− d(j)θ)2 (IV.10)

where m > 0 is a margin parameter. Here, when a pair of similar samples is passed through the
SNN, it is penalised by LS for a high in-between distance of the pair. Inversely for a dissimilar pair
the SNN is penalised by LD for an in-between distance lower than m.

In the contexts of face reidentification and image clustering, recent works [170, 201] have pro-
posed a new version for the contrastive loss, adapted to triplets rather than pairs of samples. This
triplet loss reads:

L(θ, (A,P,N)(j)) = max(0, dθ(A
(j), P (j))− dθ(A(j), N (j)) +m) (IV.11)

IV–1. Similarity learning 81

where (A,P,N)(j) is a triplet of samples, A denoting the anchor (a reference sample to be compared
to), P a positive sample (expected close or similar to the anchor), andN a negative sample (expected
dissimilar or distant from the anchor). The role of m in eqs. (IV.10) and (IV.11) is similar and
crucial for the training of SNN. It enforces the SNN to push the negative samples far from the anchor
sample in the latent space, while also relaxing this constraint once the negative is sufficiently far.
When dθ(A

(j), N (j)) − dθ(A(j), P (j)) in Eq. (IV.11) or d(j)θ in Eq. (IV.10) becomes greater than m

for a given triplet (A,P,N)(j), then L is set to zero, hence the model does not update its weights.
If the loss reaches zero for every possible triplet, then the positive and negative samples would be
perfectly separable in the SNN latent space. In practice, a zero loss is seldom reached because of the
complexity of real data, but driving the loss close to zero makes the positive and negative samples
more separable, improving their clusterability. An overview of SNNs trained with triplet loss for
image similarity learning is represented in Figure IV.2. Furthermore, if one is able to estimate the
extent to which P (j) and N (j) should be distant, the margin m in Eq. (IV.11) can be defined as
follows for each triplet (A,P,N)(j):

m(j) = f(r, (A,P,N)(j)) (IV.12)

where r is a relevance score function which relates to the similarity of two samples in the application
context, and f is the margin function that computes the margin m(j) for a specific triplet and the
relevance function r. This leads to a variant of the original triplet loss, called adaptive triplet loss
introduced in [64], where the following version of f was proposed:

f(r, (A,P,N)) =

∣∣∣∣r(A,P)− r(A,N)

max
X,Y

r(X,Y)

∣∣∣∣ (IV.13)

The function r is context-dependent and is defined later in this chapter in Subsection III–1.2.2
when applying contrastive loss to the context of HI learning. With contrastive triplet loss, [170,
201] have achieved state-of-the-art results on face reidentification and image similarity learning for
classification or clustering. Triplet loss has since raised interest for training SNN and has been used
in many applications, e.g. dimensionality reduction [185], knowledge distillation or NN compressing
[140], fMRI-based brain disorder classification [76], enzyme function classification [125], video-based
emotion recognition[95] or intention detection in spoken languages [158]. Yet, to the best of the
authors’ knowledge, no work has been done on using SNNs trained with triplet loss in order to learn
a distance metric for similarity-based HI construction. This chapter therefore focuses on filling in
this gap in the literature, hoping to provide a new path for further works in this direction. The
next section develops this idea and describes the proposed loss functions as well as the preparation
of the (A,P,N)-samples, referred to as triplet selection. This point is of paramount importance for
training SNN with triplet loss and is guided by the user on the application context.

82 Chapter IV. Health indicator construction: proposed approach

D
istance layer

positive

P

negative

N

d (A';P')

d (A';N')

P'

N'

Normal propagation on the shared layers with three samples A, P, N

Backpropagation on Loss

Shared weights

anchor

 A

A'

A'
 P'

N'

A'

P'

N'

Learning

Figure IV.2: Original triplet loss with image inputs.

IV–2 SNN triplet loss based HI

This chapter proposes novel similarity-based methods for HI construction whose distance metric dθ
is learned with a SNN and triplet loss. The proposed HI should further ease the RUL estimation
and therefore meet some requirements which are recalled hereafter.

IV–2.1 Health indicator construction

Let us consider that sensors record several variables of multiple instances from a given system or
device throughout their lifetimes. We assume that the collected MTS can capture the underlying
physical degradation phenomena of the monitored system. This section outlines our contribution to
the health assessment task with a novel methodology for processing these MTS with the objective
of producing a HI that gives the health state of the system at any time. It relies on learning
a distance metric dθ between subseries of a MTS using contrastive loss based SNN. It must be

IV–2. SNN triplet loss based HI 83

recalled that, among other considerations, the constructed HI must increase monotonically with
time from a perfectly healthy state at the beginning of the system’s use to a degraded or failed state
at the end of its life. Three strategies for enforcing the monotonic constraint during model training
have been studied and will be presented below. An overview of the proposed approach is given in
Figure IV.3 and relies on three major steps:

• preprocessing of data and time windowing,

• definition of the SNN architecture,

• definition of the loss function of the SNN and selection of training samples.

Distance

HI value

Time

6) Similarity based HI construction

D
istance

1) Sensor monitoring

2) Time windowing

4) Triplet
selection 5) Distance metric learning with SNN and triplet loss

3) Samples
preprocessing

Core NN Core NN Core NN

Figure IV.3: Overview of HI construction based on SNN and triplet loss.

IV–2.1.1 Preprocessing and time windowing

The raw MTS of the n instances of the studied system are denoted {s(k)(t)}k∈K, t∈Tk(T (k)) where
s(k)(t) ∈ Rd are the values recorded for the d signals at time t and where T (k) is the time of failure of
the kth instance of the studied system. These MTS should first be preprocessed. This preliminary
and optional step aims at denoising the data and extracting useful features, in order to further
ease the similarity learning. One should refer to references listed in Table III.2 for more details on
possible techniques. Additionally, MTS, if uniformly sampled, also must be windowed during the
preprocessing to be transformed in MTS with subseries-uniform sampling, which is a prerequisite
of any NN-based method. Raw or preprocessed MTS {s(k)(t)}k∈K, t∈Tk(T (k)) are therefore split
into subseries {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki of equal length where Ik(T (k)) = {0, . . . , I(k)}, I(k) =
T (k)−∆l

∆G
, and where s(k)(i) = {s(k)(t = i ·∆G), . . . , s

(k)(t = i ·∆G +∆l)} is the ith subseries of the
kth instance of the studied system, ∆l is the window length and ∆G is the sliding step of the sliding

84 Chapter IV. Health indicator construction: proposed approach

window operation. This process is illustrated in Figure IV.4. s(k)(i) are assumed to be stationary, in
contrast to the whole time series from which they are extracted. The values of ∆G and ∆l depend
on the application context and are therefore discussed in Section IV–3.

Window length:

Sliding step:

Figure IV.4: The sliding window operation.

IV–2.1.2 Definition of the SNN architecture and HI definition

The choice of architecture for the clone networks NNθ that compose the SNN depends on the
preprocessing step of the multivariate time series and is therefore application-dependent. This
point is further discussed in Section IV–3.
As far as the objective of the proposed SNN is to learn a distance function dθ between any two
subseries s(k)(i) and s(k)(j), the HI we proposed merely reads:

HI(ti)
(k) = HI

(k)
i = dθ(s

(k)(0), s(k)(i))

= d

(
e
(k)(0)
θ , e

(k)(i)
θ

) (IV.14)

where ti = i · ∆G + ∆l, d denotes for the metric used in the distance layer in Figure IV.2,
e
(k)(0)
θ and e(k)(i)θ denotes for the representations of the two subseries s(k)(0) and s(k)(i) in the latent

space. Under the hypothesis that the subseries {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki contain information
on the degradation state of the system, the aim is to train the SNN such that the representation of
these subseries in its latent space reflect this degradation state. More precisely, the aim is that the
distance dθ between two subseries of the same system at two significantly different instants reflect

IV–2. SNN triplet loss based HI 85

the difference of degradation of the system at these two instants, thus the subseries representations
at these two instants must have significantly different statistical contents. Therefore, for the healthy
state, at i = 0, HI(k)(0) = 0 is desired, whereas at i = I(k), when the system can no longer operate
in standard conditions, HI(k)(I(k)) is expected to be the highest value for any i.

IV–2.1.3 Definition of the loss function of the SNN and selection of training
samples

This step is the major contribution of this chapter, and three different strategies are proposed to
reach the objective, i.e. learn a distance dθ that enables to represent the health status of the system
as per Eq. (IV.14).

(a) Naive strategy

This first naive approach, described precisely in Algorithm 1, consists in applying a classical triplet
loss, as defined in Eq. (IV.11), and a basic selection of each triplet samples (A,P,N) of the training
set as follows: For each epoch and for every sample in {s(k)(i)} considered as an anchor A, a positive
sample P = s(k)(p) is randomly chosen in the neighbourhood of A defined by the hyperparameter η
to be fine-tuned. The negative sample is chosen away of the neighbourhood of A, see Figure IV.5
for a visual illustration. We here briefly remind that an epoch correspond to all the training steps
necessary for a NN to have seen all the training samples. A NN is commonly trained over several
dozens of epochs. Here an epoch correspond to a training cycle of the SNN where every sub-series
that possibly can is considered once as an anchor.

This approach is the strategy that is the closest to the original idea of triplet loss, where only the
similarity of samples in the same neighbourhood is ensured. However, it is not necessarily expected
that this approach leads to a monotonous HI. Indeed, the possible issue with this naive strategy is
that, the ordering of (A,P,N) in time is not enforced by the classical triplet loss. It only ensures
that dθ(A,P) < dθ(A,N), but N and P can both be selected in the past or future of the anchor.
The model has therefore no incentives to map the samples to a latent space where A, P and N are
somehow placed relatively to their monitoring time.

(b) Anchor-at-start strategy

A second strategy, described by Algorithm 2, is here proposed. This strategy guides more precisely
the selection of (A,P,N) triplets during the model training to meet the monotonicity constraint.
The loss function is the same as in Eq. (IV.11). In contrast with the naive strategy where every
sample is in turn considered as an anchor A, here every sample s(k)(i) is in turn considered as a
negative N . The anchor A is always randomly chosen in the past of N = s(k)(i), in the neighbour-
hood of the system life beginning. The positive P is then chosen between A and N in a so-called,
“semi-hard ” neighbourhood defined by both hyperparameters η and λ, see Figure IV.6 for a visual
representation. λ > 0 is a crucial hyperparameter to be fine-tuned, it defines the minimal time dis-
tance λη a positive P must have with the negative N . If λ = 0 then P is in the neighbourhood of N
and the separation of the two is hard. If λ is too high, then P is very far from N and the separation

86 Chapter IV. Health indicator construction: proposed approach

Time step

Signals

signal -

signal -

A

N

P

Figure IV.5: Naive strategy for adapting triplet loss to HI construction.

is too simple, thus the distance metric is not precise. λ must then be carefully tuned to correctly de-
fine the “semi-hard” margin with which the learning of an accurate distance metric can be performed.

With this approach, a ranking constraint is also enforced, with dθ(A,P) < dθ(A,N) which
correspond to the order of monitoring times tA < tP < tN . This approach does not necessitate the
introduction of another sample to form a quadruplet instead of a triplet. Additionally, this approach
focuses only on comparing samples at any monitoring time with their respective ancestors at the
monitoring start, which is what the SNN model is used for in the end for the HI construction.

(c) Double-negative strategy

Finally a third approach, described by Algorithm 3 relies on the construction of a quadruplet
SNN inputted with four samples (A,P,Np, Nf) selected among the subseries {s(k)(i)} rather than
a triplet. For every sample in {s(k)(i)} considered as an anchor A, a positive sample P = s(k)(p)

is randomly chosen in the neighbourhood of A defined by the hyperparameter, η similarly as the
previous approach. Then, two negatives subseries Np = s(k)(np) and Nf = s(k)(nf) are randomly
chosen away from A’s neighbourhood in its past and future. Besides the initial goal of triplet loss

IV–2. SNN triplet loss based HI 87

Algorithm 1 Naive triplet selection for one epoch.
n is the number of signals s(k)

S is the list of list of sub-signals s(k)(i) ▷ S[k][i] = s(k)(i)

η is an integer and the neighbourhood hyperparameter
Triplets is an empty list of quadruplets
for k ∈ 1 : n do

s(k) ← S[k][:]

I(k) ← len(s)

for i ∈ 1 + 2η : I(k) − 2η do
a← s(k)[i]

indp ← random_uniform_pick([i− η, i− 1]
⋃
[i+ 1, i+ η])

indn ← random_uniform_pick([1, i− 2η]
⋃
[i+ 2η, I(k)])

p← s(k)[indp]

n← s(k)[indn]

Triplets.insert((a, p, n))
end for

end for

Algorithm 2 Anchor-at-start triplet selection for one epoch.
n is the number of signals s(k)

S is the list of list of sub-signals s(k)(i) ▷ S[k][i] = s(k)(i)

η is an integer and the neighbourhood hyperparameter
λ is an integer and the semi-hard margin hyperparameter
Triplets is an empty list of triplets
for k ∈ 1 : n do

s(k) ← S[k][:]

I(k) ← len(s)

for i ∈ 1 + (2 + λ)η : I(k) do
n← s[i]

inda ← random_uniform_pick([1, 1 + η])
indp ← random_uniform_pick([i− (λ+ 1)η, i− λη])
a← s(k)[inda]

p← s(k)[indp]

Triplets.insert((a, p, n))
end for

end for

88 Chapter IV. Health indicator construction: proposed approach

Time step

Signals

P NA

signal -

signal -

Figure IV.6: Anchor at start strategy for adapting triplet loss to HI construction.

of separating anchor and positive samples from negative ones in the SNN latent space, the idea
is to force the learned metric distance d to respect the ordering of Np, A and Nf in time, that
is d(Np, A) < d(Np, Nf), see Figure IV.7. To do so, the original loss function in Eq. (IV.11) is
modified as follows:

L(θ, (A,P,Np, Nf)
(j)) =max(0, dθ(A

(j), P (j))− dθ(A(j), N (j)
p) +m)

+ Lpen(θ, (A,Np, Nf)
(j))

(IV.15)

Lpen(θ, (A,Np, Nf)
(j)) = max(0, dθ(A

(j), N (j)
p)− dθ(N (j)

p , N
(j)
f) +mpen) (IV.16)

The first term in Eq. (IV.15) is the same as in Eq. (IV.11) with Np instead of N , responsi-
ble for the separation of positive and negative samples. The second term, denoted Lpen defined in
Eq. (IV.16) and embodying the same mathematical form as in Eq. (IV.11), is a penalisation term, in
turn responsible for the correct ordering of Np, A and Nf . Indeed, Np is first forced to be projected
far from A compared to P with the classical loss, and then simultaneously close to A compared to
Nf with the additional penalisation. This forces the SNN to always project Nf and Np as the most
further away samples and A somewhere in between. This way, it is expected to obtain monotonous

IV–2. SNN triplet loss based HI 89

HI(t) curves. A new margin parameter mpen is introduced in Eq. (IV.16), an hyperparameter to
be fine-tuned that acts similarly in Lpen as m does in L.

In this approach, the combination of loss and selection strategy leads to a ranking constraint
with dθ(A,P) < dθ(A,Np) < dθ(Np, Nf) which corresponds to the order of monitoring times tNp <

tA < tNf
and tNp < tP < tNf

. Only the ordering of A and P is undefined, which is not a major
issue since both are constrained to be represented close to each other. The only drawback, however,
is the introduction of a supplementary negative sample, which leads to a quadruplet SNN that is
more computation-demanding.

Time step

Signals

P

signal -

signal -

Npast Nfuture

A

Figure IV.7: Double negatives strategy for adapting triplet loss to HI construction.

IV–2.1.4 Additional considerations

(a) Adaptive margin implementation

As mentioned previously in Subsection IV–1.3, the triplet loss with adaptive margin m should be
preferred if one can provide information on how the positive and negative samples are dissimilar from
each others, as it would improve the supervision given to the SNN’s training. Here, the selection of
triplets or quadruplets is guided by their degree of closeness in time. Hence, we propose an adaptive

90 Chapter IV. Health indicator construction: proposed approach

Algorithm 3 Double-negative quadruplet selection for one epoch.
n is the number of signals s(k)

S is the list of list of sub-signals s(k)(i) ▷ S[k][i] = s(k)(i)

η is an integer and the neighbourhood hyperparameter
Quadruplets is an empty list of quadruplets
for k ∈ 1 : n do

s(k) ← S[k][:]

I(k) ← len(s)

for i ∈ 1 + 2η : I(k) − 2η do
a← s(k)[i]

indp ← random_uniform_pick([i− η, i− 1]
⋃
[i+ 1, i+ η])

indnp ← random_uniform_pick([1, i− 2η])
indnf

← random_uniform_pick([i+ 2η, I(k)])
p← s(k)[indp]

np ← s(k)[indnp]

nf ← s(k)[indnf
]

Quadruplets.insert((a, p, np, nf))
end for

end for

margin for a given triplet sample (A,P,N) where r and f in Eq. (IV.12) are expressed as follows:

r(s
(k)
i , s

(k)
j) = |i− j| (IV.17)

f(r, (A,P,N)(k)) =
r(P (k), N (k))

I(k)
(IV.18)

where (A,P,N)(k) is a triplet from {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki . The relevance score r and the
margin function f indicate that the further apart P and N are in their recording time, the further
apart they should be in the SNN embedding space, thus the larger the margin m should be.

(b) HI denoising

To improve the HIs obtained with the proposed methodology, a denoising step can be applied on the
HI curves HI(t) to extract the trend, hereafter noted THI(t). Similarly to the trend and residual
decomposition performed for the robustness measure computation in Subsection III–1.1, LOESS is
used for this denoising step. However, a slightly modified version of LOESS is here used with two
differences:

(a) only neighbour points in the past of HI(t) are used to estimate THI(t) in contrast with the
classical LOESS where neighbour points around HI(t), both in the past and future, are used.
The goal is to avoid THI(t) values to be partially determined by future HI values, which in a
context of prognostics for real-time cases would not be possible, and thus would overestimate
the real performance of the proposed approach.

IV–3. Experiments 91

(b) the window length wl used for LOESS in Subsection III–1.1 for the robustness measure is set
to five percent of the total HI length. However, here, for similar reasons as (a), it is not
possible to know in advance the total length of a HI, therefore, in a similar spirit, for each
t, wl is set to five percent of the number of past HI values, i.e. 0.05t. This implies a weaker
smoothing at the beginning of the HI, but as t increases, so is the quality of the smoothing.

IV–3 Experiments

The previous sections of this chapter has laid out in details the proposed machine learning based
methodology for constructing a model of health indicator given monitored measurements as MTS.
This method has the ability to constrain monotonicity during the model learning without making
any other assumptions on the HI trajectory evolution, e.g. linear or exponential. The proposed
method, based on the contrastive learning theory, and more particularly the combination of SNN
and contrastive losses, is a core contribution of this thesis to the field of PHM. In the following
sections, this method is applied on two datasets widely used in the PHM community, usually for
RUL prediction.
Firstly, Subsection IV–3.1 presents the experiment based on the Turbofan dataset, originally pub-
lished in [166]. This dataset provides a relatively high amount of MTS issued from aircraft engine
simulated with the C-MAPSS tool. C-MAPSS (“Commercial Modular Aero-Propulsion System Sim-
ulation”) is a software for the simulation of realistic large commercial turbofan engine data. Because
of the availability of a relatively large number of system instances monitored data, this experiment
is focused on highlighting the efficiency of the method for enforcing monotonicity of the HI. Es-
pecially, proving that the two improved strategies (anchor-at-start and double-negatives) are
better than the naive strategy.
In Subsection IV–3.2, the second experiment uses the bearing dataset originally published in [135].
This dataset provides one with a reduced number of instances of MTS issued from bearing undergo-
ing an accelerated degradation. This dataset, although it presents only two dimensions in its MTS,
is far more complex than the previous one, for its high-frequency sampling and the length of its
generated MTS.

This experiment is rather focused on comparing the two improved strategies on a more chal-
lenging problem than that presented in Subsection IV–3.1. Additionally, a comparison is performed
against a proposed method in the literature, that aimed at the same objective of enforcing mono-
tonicity during the learning of a ML model, and without any additional assumptions on the evolution
of the HI trajectories [150]. This latter is, to the author’s knowledge, and at the time of writing of
this chapter, the only attempt in the literature to build a HI model with this particular aim.

IV–3.1 Turbofan

The turbofan engine dataset provides monitoring data from simulated turbofans issued from the
CMAPSS simulation software. It has originally been published in [166]. is divided into 4 different
subsets of increasing difficulty. Details on the number of engines monitored, number of operating
conditions and failure modes are given for each dataset in Table IV.3. In the simulation of the

92 Chapter IV. Health indicator construction: proposed approach

Figure IV.8: Illustration of the turbofans simulated by CMAPSS

engines the following parameters are used as inputs: Fuel flow, fan efficiency, fan flow modifier,
fan pressure-ratio, low pressure compressor (LPC) efficiency, LPC flow, LPC pressure-ratio, high
pressure compressor (HPC) efficiency, HPC flow, HPC pressure-ratio, high pressure turbine (HPT)
efficiency, HPT flow and LPT efficiency. The outputs summarised in Table IV.1 are generated.
Finally the operating conditions were controlled by the parameters summarised in Table IV.2

For each engine, there are thus 21 monitored signals and 3 operating condition signals, for a total
of 24 dimensions in the multivariate time series, with a sampling frequency of one value per flight
simulation. The monitored signals all represent a specific physical measure of the turbofan engine,
e.g. temperature or pressure at critical points of the engine, core or fan speed. For the multiple
operating condition subsets (FD002 and FD004), one of the six available operating conditions is
randomly affected for each engine flight simulation, i.e. one per time step for each engine.
In our analysis we select the third dataset (FD003), where it is possible to test not only the HI
construction method, but also for later exploring the HI-based failure model clustering thanks to
the existence of two failure modes, see Chapter V.

IV–3.1.1 Preprocessing

In order to balance the importance of each of the 24 variables, a standard normalisation is first
performed for each variable. As presented in Subsection IV–2.1, for each system instance, the entire
multivariate time series {s(k)(t)}k∈K, t∈Tk(T (k)) where K = {1, . . . , n} and n = 100 have to be divided
into sub-signals {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki of size l. The sub-signals s(k)(i)(t) are then considered
as the sample units for the triplet selection. For this purpose, a sliding window operation with
a sliding step ∆G = 1 and a window length ∆L = 15 steps is performed here. The value of 15

steps has been obtained by trial and error by the author: higher values ([20, 30, 50]) did not result
in a significant improvement of the results while lower values ([5, 10]) did hinder these latter. A
schematic view of this operation is given in Figure IV.4. No additional preprocessing step is applied
here.

IV–3. Experiments 93

Symbol Description Unit
T2 Total temperature at fan inlet °R
T24 Total temperature at LPC outlet °R
T30 Total temperature at HPC outlet °R
T50 Total temperature at LPT outlet °R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) -

Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio -
farB Burner fuel-air ratio -

htBleed Bleed Enthalpy -
Nf_dmd Demanded fan speed rpm

PCNfR_dmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

Table IV.1: Outputs produced by CMAPSS during the turbofans simulation

Description Min. Max. unit
throttle resolver angle (TRA) 20 100 degree

Mach number 0 0.84 -
Altitude 0 42000 ft.

Table IV.2: Operating condition parameters in CMAPSS during the turbofans simulation

Data-set # runs # operating con-
ditions

failure modes

FD001 100 1 1
FD002 260 6 1
FD003 100 1 2
FD004 249 6 2

Table IV.3: Turbofan dataset.

94 Chapter IV. Health indicator construction: proposed approach

IV–3.1.2 Siamese neural network

In this application case, because input samples are MTS, the core NN of the SNN is firstly featured
with recurrent layers for processing the sequential dynamics of the time series. Secondly, dense
layers are stacked for compressing the samples into vectors of size e in the embedding space. The
number of neurons for each new recurrent layer is set as the double of its input dimension, starting
with 48, twice the dimension of the input samples. The number of recurrent layers nr is left as an
hyperparameter of the model. The recurrent layer implementation can come in different flavours, the
most used ones being SimpleRNN, LSTM and GRU. While it is expected that GRU and LSTM
obtain better performances than SimpleRNN in cases of longer time series, the relatively short
ones used here (15 steps) might not necessitate the use of the more computationally demanding
recurrent cell (GRU and LSTM). The type of recurrent layer is nevetheless considered as an
hyperparameter here. The transition between recurrent and dense layers is many-to-vector, with
every neuron output of every time step of the last recurrent layer flattened as an input vector for the
first dense layer. The size of the first dense layer input and last dense layer output, are respectively
determined by the last recurrent layer and the hyperparameter e, which is the size of the embedding
space. To obtain the number Nh of neurons per hidden dense layers, we use the formula proposed
in [123]:

Nh = ⌊
√
NiNo⌋ (IV.19)

where Ni and No are respectively the input and output sizes of a dense NN with a single layer.
Similarly, this formula is adapted to fit networks with more hidden layers in our work:

Nh;k = ⌊(Nh;k−1)
1− 1

nl−k+2 · (No)
1

nl−k+2 ⌋, k ∈ [1, . . . , nhd] (IV.20)

where Nh;0 = Ni is the input size and nhd is the number of layers. The number of hidden dense
layers nhd in the SNN core architecture is a hyperparameter of the model.

IV–3.1.3 Training

The models are trained on 80 out of the 100 available turbofan runs in the dataset. The 20 leftover
ones are used as both the validation and testing set. The training is stopped after 50 epochs without
any improvement of the loss on the validation set. The training is performed via a stochastic
gradient optimisation algorithm (a.k.a. optimiser) called adam and presented in Chapter II. Two
hyperparameters are crucial to fine-tune for this optimiser, the batch size nB and the learning rate
r. The batch size is simply the number of samples inside a batch, and the learning rate is the
amplitude of the parameters’ adjustment in the direction of the loss gradient.

IV–3.1.4 Hyperparameters fine-tuning

The values of the hyperparameters summarised in Table IV.4 are optimised via different grid searches
on all three strategies, naive, double-negative and anchor-at-start. The hyperparameters to
be optimised during this fine-tuning as well as the different values tried during the grid search are
also summarised in the table.
Because the number of hyperparameters is quite high, a grid search on all the hyperparameters

IV–3. Experiments 95

combined would lead to a very high number of trials, with one complete SNN training (until con-
vergence of the loss) per trial:

Naive : 37 = 2187 trials

Anchor-at-start : 5× 37 = 10935 trials

Double-negative : 5× 37 = 10935 trials

For a total of: 24057 trials

To drastically reduce the number of trials, several hypotheses are made. The first hypothesis
is that the hyperparameters of the core neural network, are not dependent on the other hyper-
parameters, i.e. the optimiser hyperparameters, the hyperparameter of samples selection and the
hyperparameters relative to the strategy for enforcing monotonicity. Secondly, the optimiser hyper-
parameters are not dependent on the hyperparameter of samples selection and the hyperparameters
relative to the strategy for enforcing monotonicity. It results from these two hypotheses that for
each of the three strategies, the fine-tuning is divided in three grids. First, the core NN hyperpa-
rameters (4 hyperparameters with 3 possible values) are optimised via a grid search with all the
other hyperparameters fixed at any values that will be later tested. Then the optimiser parame-
ters (2 hyperparameters with 3 possible values) are optimised with all the other parameters fixed
(the core NN hyperparameters are fixed with their previously found optimal values). Finally, the
hyperparameter of samples selection and the hyperparameters relative to the strategy for enforcing
monotonicity are optimised, which results in the following number of trials:

Naive : 34 + 32 + 3 = 93 trials

Anchor-at-start : 34 + 32 + 3× 5 = 105 trials

Double-negative : = 34 + 32 + 3× 5 = 105 trials

For a total of: 303 trials

During the grid searches, all the combinations of all the possible values for each hyperparameter
are tried by training a model for each of these combinations, following the training procedure
explained in Subsection IV–3.1.3. Usually, during a fine-tuning, the criteria for selecting the best
hyperparameters is the loss on the validation test. Here, however, we are more interested in the
monotonicity criterion of the obtained HI. For each trained model, all the HI trajectories for the
validation set are computed and the mean monotonicity values for all these trajectories is used as
the criteria for selecting the best hyperparameters values. Later on in this section, the link between
the loss and the final monotonicity of HI is studied.
The fine-tuning for each strategy yield a similar architecture represented in Figure IV.9, the only

difference being the type of recurrent neuron cell. The double negative and naive strategies
obtain their best results with simple RNN cells, while the anchor at start strategy performs
better with LSTM cells. The rest of the hyperparameters values can be found in Table IV.4

96 Chapter IV. Health indicator construction: proposed approach

Input

RNN 48
neurons

RNN 96
neurons

RNN-Dense transition:

many-to-vector

Dense
346

neurons

Dense
83

neurons Dense
20

neurons

Nb time

 steps: 15

Dimension:

24

Dimension:

1440

Output

Embedding
space

dimension:
20

Nb time

 steps: 15

Dropout 0.3

Figure IV.9: Core NN architecture for the Turbofan dataset with optimised hyperparameters.

IV–3.1.5 Final training for performance evaluation

Once the hyperparameters values are found, for each SNN-based strategy, five runs with the same
hyperparameters are trained. The HI trajectories of the training and testing sets are then computed.
The HI performance criteria are subsequently computed on the training and testing trajectories
separately for each run, and then averaged for each strategy. The use of multiple runs is made for
counter the randomness arising from the weight and biases initialisationn and the inherent random
triplet selection strategies. More than five runs could have been performed for each strategy, but
would have required significantly more computing time. It turned out that the randomness arising
from parameters initialisation and triplet selection does not seem to hinder the conclusion we are
drawing from this experiment.

IV–3.1.6 Performance evaluation and discussion

(a) Loss and monotonicity evolution during the learning

We first analyse how losses and monotonicity values respectively assessed on the training and testing
sets evolve w.r.t. the number of epochs.
To do so, for each SNN based strategy, i.e. naive, anchor-at-start and double-negative, and
for each run, the loss and monotonicity values are recorded for each epoch whilst optimising the
parameters θ of the SNN-based models. If our proposed approach works in aiming at constraining
the monotonicity, a correlation should be observed between a decreasing loss and an increasing

IV–3. Experiments 97

Hyperparameters Trial values
Optimal values

Anchor
at start

Double
nega-
tive

Naive

Model Core NN

e: SNN embedding size 5,10,20 20
nhd: number of hidden
dense layers

[1-3] 2

nr: number of recurrent
layers

[1-3] 2

Type of recurrent layers GRU, LSTM, Simple RNN LSTM Simple
RNN

Simple
RNN

Optim.

Optimiser
r: Optimiser learning
rate

0.01, 0.001, 0.0001, 0.0001

nB: Batch size 16,32,64 64
samples
selection

η: Temporal neighbour-
hood for triplet selection

5,10,15 10

Anchor-
at-start

λ: semi-hard margin [1-5] 1 -

Double-
negative

mpen: loss penalisation
margin

0.1, 0.3, 0.5, 0.7, 1 - 0.3 -

Table IV.4: Hyperparameters of the method optimised for the turbofan dataset.

monotonicity. To this end, loss and the opposite monotonicity values are then averaged over the
five runs and drawn w.r.t. a time index expressed in percentage of the total amount of epochs.
Before being drawn, their respective means and standard deviations are used to normalise, or
center-reduce, the values. Results are plotted on Figure IV.10, left-end side.

(1) It is first expected that losses decrease with the number of epochs, a proof that the model is
learning. It is nevertheless also expected that the validation loss start to stagnate or increase
after a certain number of epochs, thus triggering the end of the training. This is exactly what
is being observed in Figure IV.10 for the three proposed strategies, only proving that the
training works as expected.

(2) Since our proposed SNN-based strategies are designed to enforce monotonicity, we should
observe that the loss of the model is correlated with the monotonicity criteria. For a decreasing
loss, we thus expect an increasing monotonicity, and thus a decreasing opposite monotonicity.
The observations once again come to corroborate these expectations. However, the anchor-
at-start strategy and even more significantly the double-negative strategy seem to perform
better than the naive one.

(3) To analyse in details these performance differences, the evolution of the Pearson correlation
between loss and the opposite of the monotonicity criterion is plotted on the right-side of
Figure IV.10 for each SNN-based strategy versus the number of epochs. More precisely the
curves of correlation between the following pairs of values are plotted: (training loss, testing
loss), (training loss, -training monotonicity), (training loss, -testing monotonicity). Each point
of a correlation curve indicates the current correlation between the values up to this point.

98 Chapter IV. Health indicator construction: proposed approach

From these plots, it is clear that the naive strategy does not clearly lead an improvement in
the loss to be correlated with an improvement in monotonicity, except at the very beginning
of the training. When reaching 40% of total training time, we can even witness a clear inverse
correlation where the loss is slightly improving while the monotonicity is drastically worsened.
For the two other strategies, however, the loss and monotonicity are significantly correlated.
It is particularly interesting to see that for the anchor-at-start strategy, the monotonicity
on the testing set seems more correlated to the loss on the same set than the monotonicity
on the training set and vice versa, especially at the end of the training when an overfitting
phenomenon is observed. For the double-negative strategy, the correlation between the loss
and monotonicity is unquestionable during the entire training, except on a short-phase during
the middle part of the training. For the anchor-at-start strategy, if the correlation is also
high, a short period of decorrelation can be witnessed at the beginning of the training. A
general conclusion of these observations is that the two strategies for enforcing monotonicity
proposed here are effective, with a clear advantage for the double-negative strategy.

(b) HI performance criteria

For better visualisation, only HI curves of the testing data-sets obtained with the run having the
best monotonicity value for each of the three proposed strategies are represented in Figure IV.11.
However, Table IV.5 gives the associated performance measures averaged over all the five runs on
both the training and testing sets for the three strategies.

Dataset Strategy Mon Rob Pro Fco

Training

Naive
Raw 0.770 0.123 0.739 0.651
Denoised 0.774 0.104 0.736 0.657

Anchor at
start

Raw 0.820 0.207 0.752 0.910

Denoised 0.831 0.162 0.754 0.922

Double
negative

Raw 0.846 0.109 0.797 0.911

Denoised 0.851 0.090 0.793 0.902

Testing

Naive
Raw 0.725 0.125 0.782 0.708
Denoised 0.728 0.105 0.778 0.724

Anchor at
start

Raw 0.805 0.162 0.859 0.901

Denoised 0.812 0.130 0.858 0.914

Double
negative

Raw 0.850 0.114 0.841 0.956
Denoised 0.855 0.095 0.842 0.954

Table IV.5: Performance indicators on turbofan dataset. Monotonicity and robustness are
averaged over their respective (training, testing) sets.

From the results in Table IV.5, one should note that the double-negative strategy performs
slightly better than the anchor-at-start one which in turn performs better than the naive strat-
egy. In particular, on the testing dataset, the denoised HIs of the double-negative strategy reach
the best scores on monotonicity and robustness, while their raw HIs have the best failure consis-
tency. Anchor-at-start strategy only outperforms double-negative for the prognosability criterion

IV–3. Experiments 99

(a) Naive

(b) Anchor-at-start

(c) Double-negative

Figure IV.10: Graphs issued from the analysis of loss and monotonicity evolution during the
learning

on the testing set. Regarding monotonicity, anchor-at-start and double-negative strategies lead
to a value higher than 0.8. More generally, anchor-at-start and double-negative strategies are
systematically better than the naive strategy in terms of monotonicity. These monotonicity values
match with the findings obtained on the previous analysis. Moreover they can be connected to
the obserbed HI trajectories in Figure IV.11 where for the naive strategy, long HI plateaus can be
observed at the end of life of turbofans hence hindering monotonicity critarion. These plateaus are
far less obvious on the HI trajectories obtained with anchor-at-start and almost nonexistent with

100 Chapter IV. Health indicator construction: proposed approach

Naive strategy

(a) Raw (b) Denoised

Anchor at start strategy

(c) Raw (d) Denoised

Double negative strategy

(e) Raw (f) Denoised Legend

Figure IV.11: HI curves on turbofan testing dataset (20 out of 100 turbofan runs), the x-axis
and y-axis represent the time step and the HI value, respectively.

double-negative. This result indicates that the proposed methods for enforcing monotonicity in
these two strategies are efficient, with still a net advantage for the double-negative strategy.

For failure consistency measures, values higher than 0.9 are obtained for anchor-at-start and
double-negative strategies, and are significantly lower for the naive strategy, once again showing
the superiority of the two improved strategy. This indicates that the HI curves have values at the
end-of-life that are similar.

For prognosability anchor-at-start and double-negative are also significantly higher than
the naive strategy, which indicates that for these two improved strategies, curves from different
instances of the same systems have similar evolutions.

IV–3. Experiments 101

Figure IV.12: Image of bearings issued from the experimental platform of [135] and their
degradations

Finally, with values of robustness measurement close to 0.1, these HIs are only blurred with
a relative percentage error accounting for about 10% of the HI values in average. An interesting
observation is that the denoising step seems to often improve the score of the HI curves for each
performance measures, and these latter are never significantly lower after the denoising step.

All of these observations indicate that the RUL prognostics based on these HIs could be con-
siderably eased. These good performance results can be directly visualised from the test HI curves
obtained with the single best model for each strategy plotted in Figure IV.11. HI curves constantly
increase, are of similar shapes and reach similar values at the end of lives of turbofan especially for
the double-negative strategy.

IV–3.2 Bearing

The Femto bearing dataset [135] consists of bi-variate time series {s(k)(t)}k∈K, t∈Tk(T (k)) with s(k)(t) ∈
Rd, d = 2, measuring horizontal and vertical vibration signals recorded by accelerometers on n = 17

rolling bearings subjected to different operating conditions until failure. The experimental platform
is illustrated in Figure IV.13. It controls the operating conditions which are combinations of the
rotating speed of the bearing inner ring compared to the fixed outer ring, handled by the rotating
module (yellow in Figure IV.13), and the radial force applied on the outer ring, handled by the load
module (blue in Figure IV.13). Images of the tested bearings can be found in Figure IV.12. The
details on the operating conditions among the bearings are given in Table IV.6. The time series
of bearing vibrations are directly recorded in the form of sub-signals {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki
where s(k)(i) ∈ R2 × R2560 thus of length ∆l = 2560 corresponding to 100msec sampled at 25.6kHz,
each sub-signal spaced by ∆G = 10sec.

(a) Dataset specific difficulty

As opposed to the previous dataset, this one poses great challenges due to several factors:

102 Chapter IV. Health indicator construction: proposed approach

Figure IV.13: Image of bearings issued from the experimental platform of [135]

Condition
Rotating speed

(rpm)
Radial force (N) Bearings

1 1800 4000
1_1, 1_2, 1_3,
1_4, 1_5, 1_6,

1_7

2 1650 4200
2_1, 2_2, 2_3,
2_4, 2_5, 2_6,

2_7
3 1500 5000 3_1, 3_2, 3_3

Table IV.6: Femto bearing dataset.

Only 17 run-to-failures are available. This is a very low amount for generalising degradation
trajectories for this type of bearing. Moreover, these bearings have different operating condi-
tions, which increase the potential differences in terms of degradation kinetics and degradation
scenarios between each run-to-failure.

The length of run-to-failures are greater and less equally distributed than for the previous
dataset. For comparison, the turbofan datasets has lengths varying from 150 to 500 time
steps for the raw MTS, while the bearing dataset has lenghts varying from 200 to 2800 sub-
signals. This fact combined with the low number of run-to-failures lead to a particularly
complex situation where of the number of samples is significantly lower than the dimension
of the samples: 17 samples for dimensions varying from 200 × 2560 × 2 to 2800 × 2560 × 2,
i.e. roughly one to fifteen millions, here 2 denotes for the number of signals, i.e. vertical and
horizontal vibrations.

The high frequency sampling of 25.6kHz is also a factor that increase the complexity with
inherently more potential noise in the data.

IV–3. Experiments 103

The inherent complex dynamic of bearings . This point is from our experience the most
important and irreducible challenge of this application case. Rolling bearings are known to
be very complex systems with a multitude of potential failure modes. Bearing degradations
are often triggered by grease ageing. And the associated failure modes can include; cage
failure, abrasive of adhesive wear, indentation of spalling. This dataset does not provide
with the failure modes associated to each bearing that could be obtained with post-mortem
inspections of the failed bearings.

IV–3.2.1 Preprocessing

For this experiment, the data is directly given in the form of sub-signals {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki
and the complete time series {s(k)(t)}k∈K, t∈Tk(T (k)) are therefore unavailable. Hence, the sliding win-
dow operation is not necessary, as it has already been established by the experiment. In contrast
with the previous dataset, the number of time steps l per sub-signals is much larger because of the
high sampling frequency, i.e. l = 2560. Moreover, it is expected that the high frequency content is
of crucial importance for estimating the bearing health state. In order to further ease the learning
of the SNN model, a two-step preprocessing is proposed in this work.

(a) Raw signal denoising

A first step of wavelet denoising is proposed with a discrete Meyer mother wavelet ψ, as this
procedure has already proven to be efficient for denoising high frequency time series of bearing
vibrations [1].

Discrete wavelet denoising consists in repeatedly applying a band-pass filter and a low-pass fil-
ter to the signal, thus dividing the signal into several sub-signals, each corresponding to a certain
frequency band. The band-pass filter at each level j of the decomposition is a level-scaled wavelet
function ψj and the low-pass filter is the corresponding level-scaled scaling function ϕj , see Fig-
ure IV.14a for a schematic overview. At each level j of decomposition, the result of the band-pass
filter and the low-pass filter are:

H(t) =

+∞∑
k=−∞

s(k)ψj;k(2t− k) (IV.21)

L(t) =
+∞∑

k=−∞
s(k)ϕj;k(2t− k) (IV.22)

where ψj;k corresponds to the j-scaled wavelet function shifted by k defined as 1√
2j
ψ(t−k2

j

2j
) and

ϕj;k is the corresponding scaling function for the same level j and shift k. s(k) at the level 0 is the
signal to denoise and at the level j it is the result of the preceding low-pass filter Lj−1(t). Once the
signal is decomposed to its maximum decomposition level J = ⌊log2(

len(signal)
len(ψ(t))−1)⌋, a thresholding

function is applied to each sub-signal in order to remove or quiet the values below the threshold, as
represented in Figure IV.14b.
The thresholding function and threshold value are set using the BayesShrink thresholding method
[25]. Denoised sub-signals per frequency band are thus obtained as shown in Figure IV.14b. Fi-

104 Chapter IV. Health indicator construction: proposed approach

nally, the complete denoised signal is obtained by repeatedly applying the inverse discrete wavelet
transform (IDWT) between the two denoised sub-signals with the lowest frequency bands until all
sub-signals are merged back together, as shown on the right side of Figure IV.14a. Denoised versions
of the raw vibration signals are thus obtained.

H[n]

S

L[n]

H[n]L[n]

H[n]L[n]

H[n]L[n]
IDWT

DWT

DWT

DWT

DWT

IDWT

IDWT

IDWT

(a) Discrete wavelet transform and its inverse.
(b) Thresholding functions for wavelet denois-
ing.

Figure IV.14: Wavelet denoising.

(b) Time-frequency representation

Because of the aforementioned high-frequency sampling of the sub-signals {s(k)(i)(t)}k∈K, i∈Ik(T (k)), t∈Tki ,
on top of the denoising operation, a preprocessing method able to extract complex time-frequency
features is applied. Inspired by the work of [218, 71], we resort to the continuous wavelet transform
(CWT) to turn our bi-dimensional sub-signals into two complex time-frequency image representa-
tions. The CWT consists of the convolutions of scaled versions of a mother wavelet, each scale
corresponding to a certain frequency and each convolution step corresponding to a certain position
in time. CWT thus produces coefficients CWTx(t, a) indicating how much amplitude the frequency
fa (corresponding to scale a) contains at time t. By applying this transform with J scales on each
signal for every sample of each bearing, we obtain two matrices of size l × J per sample, one for
vertical vibrations and one for horizontal vibrations. These matrices are composed of the coefficients
CWTx(t, a) and can be represented as images, an example of an obtained image from CWT on a
bearing signal vibration is given in Figure IV.15.

The continuous wavelet transform of a signal x(t) can be written as follow:

CWTx(t, a) =
1√
a

∫ +∞

−∞
x(τ)ψ(

τ − t
a

)dτ

where ψ(t) is the mother wavelet, a the scale variable associated to a pseudo frequency fa = fc
a∆ , fc

the central frequency of ψ(t) and ∆ the sampling frequency of x(t). For each time t and for each
pseudo-frequency fa we thus obtain a coefficient CWTx(t, a) indicating how much amplitude the
frequency fa contains around time t. In order to choose the optimal scales {aj}Jj=0, where J is the

IV–3. Experiments 105

number of scales in the transform, we rely on the following rules derived from [191]:

a0 =
fc
fmax

(IV.23)

aJ =
fc
fmin

(IV.24)

δj =
log2(

aJ
a0
)

J
(IV.25)

aj = a02
j·δj ,∀j ∈ (1, . . . , J) (IV.26)

where fmax and fmin are respectively the maximum and minimum frequencies scanned by the CWT.
In order to reduce the computational burden of our model, the size of matrices to be obtained is

Figure IV.15: Illustration of a time frequency image obtained by CWT of bearing vibration
signal.

fixed to 128 × 128 values. J = 128 was therefore chosen as the number of scales in the CWT.
Matrices of 256×128 were therefore obtained, which were then transformed into compressed images
of 128×128 grayscale pixels were the values of the pixels represents the CWT coefficient, the darker
the pixel, the higher the CWT coefficient. It is worth mentioning that fmax and fmin values used

106 Chapter IV. Health indicator construction: proposed approach

were 8500Hz and 20Hz, respectively. The maximum frequency was chosen manually by trial and
error in order to remove the high frequencies that are mostly noisy. The minimum frequency was
chosen so that it is slightly lower than the frequency of a full rotation of the bearing inner ring.
The minimum rotating speed during the recording of the bearing vibration signals being of 1500
rotations per minute equivalent to 25 rotations per second, the minimum frequency of a full rotation
of a bearing inner ring is therefore 25Hz. To illustrate this time frequency transform, the obtained
images for all bearings at different percentage of their total life duration are shown in figs. IV.16
to IV.18. The analysis of these images can give interesting information. The main one is that for
every bearing the images at the very end of life are significantly different compared to its previous
images. Moreover, the order of magnitude of this difference is far superior to the previous ones.
For the images prior to the final one, most bearing tend to show a more smooth degradation, with
some fluctuations for some of them especially those with the second operating condition depicted
in Figure IV.17. For the bearings with the first operating condition, represented in Figure IV.16
two bearings (1_3 and 1_4) seem to experience a sudden degradation prior to to their end of life
(respectively at 70% and 80% of their total lives). It is thus expected to recover these observations
in the HI trajectories that will be obtained on this dataset.

Figure IV.16: Obtained CWT time-frequency images at different percentage of total life of
bearings in the first operating condition

IV–3.2.2 Siamese core neural network

A SNN principally featured with convolutional layers is herein implemented, since this type of
layers is specially adapted for the processing of images. Dense layers are also added for compressing
the outputs of the convolutional last layer into vectors in the embedding space. The convolutional
architecture is composed of a succession of convolution blocks, themselves featured of a convolutional
layer followed by a pooling layer. The use of these convolution blocks is a recommended practice
for CNN [56] that has also been used by [218] and [71] for learning respectively a HI and RUL from

IV–3. Experiments 107

Figure IV.17: Obtained CWT time-frequency images at different percentage of total life of
bearings in the second operating condition

Figure IV.18: Obtained CWT time-frequency images at different percentage of total life of
bearings in the third operating condtion

CWT images of bearing vibrations. The filter size of the pooling layers size is set to 2× 2, while for
the convolution layers it is kept to the default value of 3× 3. The number of filters in the kernel at
each convolution layer starts at 16 for the first block and is doubled for each subsequent block to
compensate the halving width and height of the outputs of the pooling layers, as recommended in
[56]. The outputs of the last convolutional block are then flattened into a vector before being fed

108 Chapter IV. Health indicator construction: proposed approach

to the dense layers. Dense layer sizes are set as defined in Eq. (IV.20), similarly as for the previous
experiments. The number of convolutional block nc is an hyperparameter, as well as the number of
final dense layers nhd.

Figure IV.19: Core NN architecture for the bearing dataset.

IV–3.2.3 Training

For this dataset, which is affected by data scarcity and complex high frequency measurements,
the training has been carried out in four different setups with increasing difficulty. For all these
setups, building up from the previous results on the turbofan dataset, only the anchor-at-start
and double-negative strategies are tested.

#1 In this setup, the training is carried out on the entire available set, i.e. all the 17 bearings, and
stopped when the training loss stops decreasing. There is therefore no validation and testing
sets. This setup is only for testing the ability of the proposed strategy to correctly learn from
this complex dataset.

#2 Here, the model is trained using the leave-one-out strategy on the entire dataset. The model is
therefore trained 17 times, with a single bearing left out of the training set for each run and
used as validation and testing set.

#3 Building up on the results from the previous setup, the setting proposed in [216] is used where
4 bearings for which the generalisation is performed well in the previous setup (1_1, 1_3,
2_6 and 3_3) are kept out of the training set and used for testing and validation sets.

#4 Comparison with the VAEDC approach of [150]. This is the same setup as the previous one,
except a new approach is used for comparison and thus trained similarly.

Except for the setup #1, the training is stopped after 50 epochs without any improvement of the
loss on the validation set. The training is performed via the same stochastic gradient optimisation
algorithm as for the previous dataset: adam. The batch size nB and the learning rate η are again
considered as hyperparameters with the experiments on this dataset

IV–3. Experiments 109

IV–3.2.4 Hyperparameter fine-tuning

As for the experiment on the turbofan dataset, the values of the hyperparameters summarised in
Table IV.7 are optimised via different grid searches for the two tested strategies, double-negative
and anchor-at-start. The hyperparameters to be optimised during this fine-tuning as well as the
different values tried during the grid search are also summarised in Table IV.7.

The same procedure is used for the fine-tuning with a three-step grid search, considering the
same hypotheses of hyperparameters dependance as in Subsection IV–3.1.4:

• Hyperparameters of the core neural network, that is the architecture of the neural network
are not dependent on the other hyperparameters, i.e. the optimiser hyperparameters, the
hyperparameter of samples selection and the hyperparameters relative to the strategy for
enforcing monotonicity.

• The optimiser hyperparameters are not dependent on the hyperparameter of samples selection
and the hyperparameters relative to the strategy for enforcing monotonicity.

Thus, first, the core NN hyperparameters (4 hyperparameters with 3 possible values) are opti-
mised via a grid search with all the other hyperparameters fixed. Then, the optimiser parameters
(2 hyperparameters with 3 possible values) are optimised with all the other parameters fixed (the
core NN hyperparameters are fixed with their previously found optimal values). Finally, the pa-
rameter of samples selection and the parameters relative to the strategy for enforcing monotonicity
are optimised, which results in the following number of trials:

Anchor-at-start : 33 + 32 + 3× 5 = 51 trials

Double-negative : = 33 + 32 + 3× 5 = 51 trials

For a total of 102 trials

During the grid searches, all the combinations of all the possible values for each hyperparame-
ter are tried by training a model for each of these combinations, following the training procedure
explained in Subsection IV–3.1.3. Here, setup #1 is used for the hyperparameter tuning. For each
trained model, all the HI trajectories for the training set, i.e. all the 17 bearings, are computed and
the mean monotonicity values for all these trajectories is used as the criterion for selecting the best
hyperparameters values.

Here again, the fine-tuning for each strategy yields a similar architecture represented in Fig-
ure IV.19. The optimal hyperparameters values can be found in Table IV.7.

IV–3.2.5 Performance evaluation and discussion

(a) Setup #1

The first step in evaluating the proposed methodology on this dataset consists in testing the ability
of learning a model when all the instances are taken for training. The results of this first exper-
iment can be found in Figure IV.20 for the HI curves and on the first row of Table IV.8 for the

110 Chapter IV. Health indicator construction: proposed approach

Hyperparameters Trial values
Optimal values

Anchor
at start

Double
nega-
tive

Model
Core NN

e: SNN embedding size 10,20,50 50
nhd: number of hidden
dense layers

[1-3] 2

nc: number of convolu-
tional layer blocks

[1-3] 2

Optim.

Optimiser
r: optimiser learning rate 0.01, 0.001, 0.0001 0.0001
nB: batch size 16,32,64 16

samples
selection

η: temporal neighbour-
hood for triplet selection

10,15,20 20

Anchor-
at-start

λ: semi-hard margin [1-5] 5 -

Double-
negative

mpen: loss penalisation
margin

0.1, 0.3, 0.5, 0.7, 1 - 0.1

Table IV.7: Hyperparameters of the method optimised for the bearing dataset.

Set-
up

Training
data

Testing
data

Strategy Mon Rob Pro FC

#1
All
bearings

All
bearings

Double
negative

1 0.007 0.897 0.876

Anchor at
start

0.977 0.013 0.579 0.620

#2
LOO
-
All
bearings

LOO
-
All
bearings

Double
negative

0.527 0.051 * *

Anchor at
start

0.421 0.069 * *

#3 Bearings
1_2, 1_4, 1_5,
1_6, 1_7, 2_1,
2_2, 2_3, 2_4,
2_5, 2_7, 3_1,
3_2

Bearings
1_1, 1_3, 2_6,
3_3

Double
negative

0.839 0.052 0.825 0.982

Anchor at
start

0.828 0.063 0.650 0.809

Table IV.8: Performance indicators on bearing dataset test set (denoised HI).
* The criteria values for Pro and FC cannot be evaluated on test dataset holding a single bearing (LOO)

performance criteria averaged over all bearings. These results show that the proposed methodology
is able to construct a general HI model on complex data such as bearing vibrations with perfectly
monotonous HI curves, as evidenced by the value of monotonicity criterion for both strategies: 1

and 0.98. Another key finding from this experiment is that the double-negative strategy performs
better on all the other criteria than the anchor-at-start strategy, with particularly satisfying re-
sults on the failure consistency criterion.

IV–3. Experiments 111

(a) Anchor at start

(b) Double negative Legend

Figure IV.20: HI curves obtained when training on all bearings.

(b) Setup #2

The second step of this experiment consists in investigating the ability of the model to generalise
well on new data on which it did not learn. For this, the model is trained using the leave-one-out
strategy on the entire dataset. The model is therefore trained 17 times, with a single bearing left
out of the training set for each run. The evaluation criteria are then performed on the HI curves
obtained for the leftover bearings for each run, and then averaged into a single value. The resulting
HI performance criteria can be found in the second row of Table IV.8. A significant decrease in
performance can be observed. This was expected given that, as opposed to the previous setup,
the model was not trained on the bearings’ data for which the performance criteria are calculated.
The double-negative strategy reveals better performance once again, which is consistent with the

112 Chapter IV. Health indicator construction: proposed approach

findings from Subsection IV–3.1.6. An additional thorough analysis of the performance criteria on
individual bearings when left out of the training data reveals interesting results: there is a significant
discrepancy in these criteria values among all bearings. This indicates that the vibration data for
some bearings is very different from that of other bearings or at least under-represented in the given
dataset, which inevitably leads to a generalisation problem and deteriorates the overall performance
of the model. These differences in vibration data from bearings under similar operating conditions is
reasonably well explainable by the complex internal dynamics of such systems and of the numerous
possible modes of degradation it can experience. To illustrate this issue, five bearings are here
identified as particularly problematic: 1_5, 1_7, 2_1, 2_3 and 2_5 as their monotonicity criterion
falls under 0.3 in the anchor-at-start setting while the other bearings all reaches values above 0.5.
By contrast, in the double-negative setting bearings 1_6, 2_6, 2_7 reach 0.7 and bearings 1_1
and 1_3 reach values even higher than 0.9. These differences in monotonicity performance criterion
between the different bearings illustrate the problem faced with a dataset with a limited amount
of data, here only 17 bearings. While for some bearings the generalisation is well performed by the
proposed model, bearings that experienced degradation trajectories and possibly failure modes that
differ to those represented in the training dataset can not be assigned a satisfactory HI.

(c) Setup #3

A third experiment is performed to validate the capacity of generalisation of the model on several
instances of bearing that it was not trained on. To do so, we use the setting proposed in [216]
where 4 bearings out of 17 (1_1, 1_3, 2_6 and 3_3) are kept out of the training set and used
for testing the performance of the model. From setup #2 we can pinpoint that the generalisation
is performed well for these 4 testing bearings suggested by [216]. It is therefore possible to get
satisfactory results on this setting. The resulting HI curves are drawn in Figure IV.21, and the
performance criteria obtained for this setup are available in the last row of Table IV.8. It shows
very good results on the four criteria. More specifically, the monotonicity criterion reaches values
higher than 0.8, which indicates that the model learns to construct monotonous HI and is able to
generalise to unseen data, when representative of the training data. The robustness criterion is
also satisfying, with residuals accounting for around 5% only of the HI values. Regarding the two
other criteria, namely prognosability and failure consistency, the double-negative strategy
shows better performances. On the former one, it gets a value higher than 0.8 indicating a strong
correlation between the four HI curves of the testing bearings. On the latter one, it reaches a value
close to 1, indicating a perfect failure consistency. For its part, the anchor-at-start strategy gets
a value of prognosability significantly lower, which is consistent with the results obtained on the
previous dataset and on the different settings of this dataset. For the failure consistency it reaches
a value higher than 0.8 indicating a consistent behaviour in the end of life though significantly less
than for the other strategy, which also confirms the results found on the previous dataset.

(d) Setup #4: Comparison with VAE-DC approach

Finally, a last experiment is conducted to compare the proposed approach, a SNN trained with a
modified triplet loss, with a similar and recent work from the literature [150]. This specific work,
which is mentioned at the end of Subsection III–1.2.1 for its particular relevance to the present study,
is, to the author’s knowledge, the only existing work that incorporates a monotonicity constraint
into the HI construction model during the learning process. In contrast, other approaches rely on a

IV–3. Experiments 113

Anchor-at-start Double-negative

(a) Training set

(b) Testing set

Figure IV.21: HI curves on the bearing dataset, with 13 bearings for training and 4 for
testing (setup #3).

preprocessing step, i.e. features filtering, as discussed in Subsection III–1.2.1. The authors of [150]
propose to construct the HI with a variational auto-encoder (VAE) with a latent space of dimension
one, i.e. the HI dimension. This approach can be classified as unsupervised fusion-based in the HI
methods classification proposed in Chapter III. It can additionally be classified as a reconstruction
self-supervised setting in the ML settings classification proposed in Chapter II. The authors of [150]
incorporated a so-called degradation constraint (DC) that penalises non-monotonous HI evolution.
To ensure a fair comparison, both the proposed approach and the method from [150] (VAE-DC)
utilise the same neural network architecture for the encoder and the SNN clone, respectively. This
involves preprocessing the data for the SNN similarly to the method proposed in [150], which relies
on computing single-valued statistics on vibration samples, e.g. mean square, peak-to-peak or center
frequency. The NN architecture used for both approaches is then adapted to fit this preprocessed
data samples consisting of 15 real valued statistics for each of the two vibration measurements, i.e. a
vector of 30 values. The SNN therefore then does not learn any more based on time-frequency images
but rather simple vectors. The NN architecture used is a multi-layer perceptron with three layers

114 Chapter IV. Health indicator construction: proposed approach

of 30, 15, and 7 neurons, using ReLU activations for the first two layers and a sigmoid activation
for the last one. Because VAE-DC needs an encoder which outputs a single value, a last layer with
a single neuron is added, the decoder is designed symmetrically. For further details on the precise
design and training of VAE-DC, the reader may refer to [150]. Both model are trained with setup
#3. The testing HI curves resulting from this experiment are drawn on Figure IV.22 , the indicator
values for the testing set are summarised in Table IV.9 . The indicators suggest that both strategies
of SNN presented in the present work outperform the method proposed in [150]. More precisely, the
monotonicity is improved with SNN and even largely improved with the anchor-at-start strategy,
which reaches a value of monotonicity close to that obtained with the CWT preprocessing. The
failure consistency however is slightly better with the VAE-DC approach, even if the SNN obtains
satisfactory values above 0.8. Overall, the performance results indicate that the SNN strategy leads
to HI curves that are more monotonous than with the VAE-DC strategy. Additionally, combining
the preprocessing of the vibration signals with CWT and using CNN to build the SNN’s clone lead
to improved results, see Table IV.8 setup #3, compared with the preprocessing proposed in [150]
combined with dense NN.

VAE-DC Double-negative Anchor-at-start

Figure IV.22: HI curves of testing set resulting from VAE-DC method and proposed SNN
method for the two strategies: anchor-at-start and anchor-at-start

Model Mon Rob Pro FC

VAE-DC 0.314 0.019 0.329 0.912
SNN
Double
negative

0.4425 0.102 0.376 0.84

SNN An-
chor at
start

0.739 0.107 0.765 0.821

Table IV.9: Performance indicators on bearing test dataset (denoised HI) resulting from
VAE-DC method and proposed SNN method for the two strategies: anchor-at-start and
anchor-at-start

IV–4. Conclusion 115

IV–4 Conclusion

In this chapter, a similarity-based HI construction method is proposed to enforce monotonicity
of the resulting HI. It is built upon a self-supervised contrastive learning setting with a SNN as
the representation learning model, two distinct training samples selection and / or, a constraint
incorporated directly in the contrastive loss function. No additional particular assumption on the
evolution of the HI is therefore needed, which is a significant novel idea from the literature and
make the proposed method very generic and adaptable to any physical system.

The turbofan experiment in Subsection IV–3.1 shows the efficiency of this method for enforcing
the monotonicity on a dataset with relatively high dimension in the MTS and also a high number
of system’s instances. A clear correlation between the improvement of the loss of the model and
the resulting monotonicity of the HI has been established for two distinct strategies of monotonicity
constraints.

The bearing experiment in Subsection IV–3.2 shows the efficiency of the proposed model on
reaching its aim for datasets with a reduced number of system’s instances, where the MTS are
sampled at high-frequency, and whose system degradation dynamic is known to be complex and
challenging to learn. The proposed method seems to perform better than the previous work of [150]
on the matter that attempts to reach the same purpose.

The combination of these two experiments proves the high adaptability of the proposed method-
ology for different contexts of data, low or high number of dimensions, low or high frequency sam-
pling, low or high number of system instances, and different MTS preprocessing techniques.

116 Chapter IV. Health indicator construction: proposed approach

V
Usages of HI for prognosis and health management
tasks

In the previous chapter, a new generic methodology has been proposed for learning a HI model.
This latter is able to assess the HI value at any instant t of any instance of the system based on the
latter own historical measurements up to t. This is done by learning from historical measurements of
run-to-failure instances of the system. As a result, a set of complete HI trajectories of run-to-failure
instances can be obtained: HI = {HI(k)(t)}k∈K, t∈Tk(T (k)). These HI trajectories can in themselves
be of particular interest to manufacturers, maintenance planners and users of the systems under
study. However, in this chapter, we investigate the potential of exploiting these HI trajectories,
but also, in the case of the approach proposed in Chapter IV, of using the learned latent space, to
extract even more useful knowledge for the prognostic and health management of these systems.

First, this chapter proposes to study the application of HI trajectories for identifying failure
modes in a first section. If RUL prognostics is the preferred use of HI trajectories, we also consider
that these HI trajectories also offer insights into the degradation specificities of individual instances
of each system. To divide these trajectories into several clusters, an univariate time series clustering
technique is here applied to the HI trajectories obtained in Chapter IV. Comparing the obtained
clusters with the actual true distribution of failure modes in various system instances help us de-
termining whether these trajectories are useful for identifying failure modes.

Then, as discussed in Chapter III, a natural application of HI learning is predicting the remain-
ing useful life (RUL). This may involve combining a HI forecasting method with a failure threshold
estimation technique. Taking inspirations from the work of [21] and [78] we here propose a general,
rather than individual (cf. Subsection III–2.1), forecasting model coupling a particle filter and an
ensemble of neural network.

Finally, a second use of the method proposed in Chapter IV for RUL prediction is also ex-
plored. This time, instead of using the HI trajectories, we only employ the latent space created
by the siamese neural network. Considering the RUL prediction in the context of contrastive self-
supervised learning (cf. Subsection II–2.2), the approach presented in Chapter IV can be used as
a pretext task that generates a latent space where the measured samples are projected and rep-
resented in a manner customised for further RUL prognostics. This second approach explores the
possibility of using the projection of measured samples in the latent space as inputs of a direct RUL

118 Chapter V. Usages of HI for prognosis and health management tasks

prognosis that links any of its input to a RUL estimation. This type of approach has, to the authors
knowledge, never been proposed and is an interesting direction of future research.

V–1 Failure mode identification

For a given system or device, a HI curve expresses how the system or device degrades over time
and, to some extent, whether or not it is likely to fail in the future. Hence, we believe that failure
modes can be identified by analysing HI curves. We therefore propose to predict the driving failure
mode of a system by resorting to a clustering approach. To the best of the authors’ knowledge,
this has never been done in the past. One should note that the purpose is not to provide new
clustering tools as it relies on existing clustering strategies and distance metrics in order to cluster
failure modes from HI curves. The proposed approach then assumes a set of HI curves obtained
from several instances of a given system HI = {HI(k)(t)}k∈K, t∈Tk(T (k)).

V–1.1 Time series clustering

Many methods already exist for clustering univariate time series and have been thoroughly studied
in literature. According to the review and survey in [2, 206] respectively, the most representative
techniques are partition clustering (e.g. k-means or k-medoids), model-based clustering (e.g. self-
organising maps) and hierarchical clustering (e.g. agglomerative clustering). Both works mention
the difficulty of partition and model-based clustering when dealing with time series of unequal
lengths. In our application case, the time series to be clustered do not have equal lengths, therefore
these two approaches are discarded as potential candidates. In contrast, both papers point out the
ability of agglomerative clustering for dealing with time series of unequal lengths if an adequate
distance metric is chosen. Elastic distance measure in general, and dynamic time warping (DTW)
in particular are especially mentioned in such cases. This literature analysis thus led here to the
choice of agglomerative clustering with DTW distance for HI curves of unequal lengths.

V–1.2 Dynamic time warping

DTW is an algorithm that can be used to measure the similarity between curves, trajectories,
sequences of values or more generally time series. Its strength resides in its ability to compare such
elements even if they do not have matching lengths, numbers of points or sampling frequencies. As
opposed to classical distance measures that need matching length, DTW does not compare elements
of the sequence that have necessarily the same position in the sequence. DTW indeed, allow for
one element of the the first sequence to be compared against one or multiple elements of the second
sequence. This mapping between sequences elements is the core of DTW and is visually illustrated
in Figure V.1. For such a mapping to be relevant for DTW it should satisfy some properties defined
as follow:

• Every element of one of the two sequences must be mapped to at least one element of the
other one.

V–1. Failure mode identification 119

Time

Time

HI

HI

Figure V.1: Example of a valid mapping for DTW for two sequences of different length,
sampling and number of points.

• First and last elements of both sequences must respectively be mapped together. They can
still be mapped to other elements as well.

• The mapping between two elements must respect the order of the sequence. If a and b are
two elements from the first sequence such that a > b, and c and d are two elements from the
second sequence such that c < d, then it is not possible to map a with c and b with d.

Many mappings can of course be valid, using only these rules. DTW aims at finding the mapping
that minimise the obtained distance between the two sequences. This distance is simply the Eu-
clidean distance considering the found mapping instead of a classical mapping depending on the
strict position in the sequence. It is worth mentioning that the DTW used for the HI trajectories
in this work is applied only on one dimension. The time dimension is not considered as a compo-
nent of the HI trajectories elements, it is rather only used for determining the position of each HI
value in the sequence. This choice is motivated by the removal of the influence of the length of HI
trajectories for their clustering.

V–1.3 Agglomerative clustering

Agglomerative clustering is based on two elements: a metric (here DTW) defining the distance
between the data samples to be clustered and a linkage criterion, i.e. a way to compute the distance
between two clusters based on the distance between their respective samples. In agglomerative
clustering, each data sample starts in its own cluster. Then, until a criterion for ending the clustering
is reached, the two closest clusters, according to the linkage criterion, are merged together. Usually
the criterion for ending the clustering is that all the observations are merged in a single cluster.
This enables a complete representation of the different sub-clusters hierarchy, called a dendogram.
In this dendogram each value of the linkage criterion is then associated to a clustering level, the
lower the linkage value, the more clusters there are. An example of a dendogram resulting from

120 Chapter V. Usages of HI for prognosis and health management tasks

Figure V.2: Dendogram example: here the threshold value sets the clustering with 3 clusters,
(A,B,C,D), (F,G,H,I) and (J,K,L)

agglomerative clustering is given in Figure V.2.
The existing linkage criterion that can be used in agglomerative clustering based on DTW distance

are the followings: single, average, complete and Ward. Single linkage defines the distance between
two clusters as the minimum distance of two elements taken in each of the two clusters. Complete
and average linkage are similar to single linkage but retains the maximum and average distance,
respectively. The Ward linkage defines the distance between two clusters as the additional total
within-cluster distances variance obtained if the two clusters are merged.

V–1.4 Experiments

V–1.4.1 Application to turbofan dataset

For assessing the use of HI trajectories to cluster different instance of a system into different cluster
representative of their failure modes, we decided to use the Turbofan dataset already presented
in this work. This dataset is particularly interesting for such an investigation because we already
know the number of failure modes present in the available run-to-failures. However, there is no
direct information in the dataset on which run-to-failure (RtF) experienced which failure mode.
This information is extremely valuable for assessing the ability of the clustering approach to cor-
rectly distinguish between different failure modes. A first investigation was therefore to find this
information in the available data.

V–1. Failure mode identification 121

(a) Turbofan HPC pressure evolution for FD001 dataset.

(b) Turbofan HPC pressure evolution for FD003 dataset.

(c) Turbofan HPC pressure evolution for FD003 dataset discriminated by failure mode.

122 Chapter V. Usages of HI for prognosis and health management tasks

(a) Prior failure mode identification in turbofan dataset

In the original paper presenting the turbofan datasets [166], the authors present the four created
datasets. It is mentioned that datasets FD003 and FD004 contain turbofan run-to-failure data
with two possible modes of degradation: high-pressure compressor (HPC) or fan failure, while
the datasets FD001 and FD002 only contains HPC failure. Unfortunately, the paper does not
provide the failure labels for each turbofan’s run-to-failure in FD003 and FD004. To extract this
information we have analysed the given signals in the dataset related to either the HPC or the fan:
temperature at fan inlet, temperature at HPC outlet, pressure at fan inlet, pressure at HPC outlet
and fan speed. It turned out that the unique measurement of pressure at HPC outlet is sufficient to
discriminate both failure modes. Figure V.3a shows the different curves of HPC pressure evolving
with time for the FD001 dataset. It is clear that all turbofans follow the same trajectories on this
measurement, i.e. a slight decrease over time. In Figure V.3b however, some turbofans from FD003
follow a different trajectory, i.e., exponential growth while the others follow the same trajectory
as in FD001. We thus discriminated the HPC failures and fan failures via the trajectories of the
HPC pressure along the life of the turbofans, as shown in Figure V.3c. If the trajectory exhibits a
slight decrease then the turbofan experiences HPC failure, if it has an exponential growth then it
experiences fan failure.
Thanks to this analysis we were able to label each RtF with its supposedly corresponding failure
mode.

(b) Results

The hierarchical agglomerative clustering with DTW presented in this section is then performed on
the HI curves of the training dataset obtained in Chapter IV with the double-negative strategy.
After a comparison of possible linkage criterion on the studied application case, it is found that the
clusters hierarchy found by the Ward criterion is the most balanced. Ward linkage is therefore used
for analysing the results of the experiment. The resulting dendogram is represented in Figure V.4,
while the clustered trajectories are drawn in Figure V.5

Figure V.4: Dendogram of hierarchical clustering for turbofan HI curves of training set
On the x-axis, the turbofan units with a Fan failure have a bolded label "F" when the HPC
one have a normal label "H".

This dendogram shows that two very distinct clusters can be obtained by setting the linkage
threshold accordingly. It is worth mentioning that the linkage value range (Y-axis), in which a
selected threshold value results in two clusters, is large, which emphasises the clear separation

V–1. Failure mode identification 123

Figure V.5: Clustered HI trajectories for the turbofan dataset (double-negative strategy)

between the two clusters. The separation between Fan and HPC failures is clear, although not
perfect. The "fan cluster" (in green in Figure V.4) is composed of 18 fan failures denoted by "F",
and 6 HPC failures denoted by "H", while the "HPC cluster" (in red in Figure V.4) is composed
of 16 fan failures and 40 HPC failures. These promising results indicate that it may be possible to
use the constructed HI curves to identify different degradation dynamics representative of different
failure modes. It is important to remind that the proposed HI construction method is not optimised
for this task of failure mode clustering. It nevertheless demonstrates the ability to produce HI curves
with shapes somehow depending on their failure mode. We believe that integrating failure mode
identification in RUL prognosis by the mean of HI curve clustering tasks offers the particular benefits
of gaining more information on the studied system. This also might to a certain extend, in the end,
improve the following steps needed for RUL prognosis, i.e. failure threshold definition and HI curve
forecasting.

V–1.4.2 Application to bearing dataset

To explore the potential differences in degradation on the bearing dataset, the HI trajectory based
clustering is also applied on this dataset. However, because no information is available on the
failure modes experiences by each bearing, it is impossible to conclude on the efficiency of the
method to discriminate between different failure modes for this dataset. This experiment is then
more exploratory, to identify potential clusters of degradation trajectories in the bearing dataset.
The setup #1 from Subsection IV–3.2 of HI training on bearing was used. That is to say that all
bearings are used as training.

124 Chapter V. Usages of HI for prognosis and health management tasks

(a) Results

The resulting HI trajectories could then be used for our proposed HI based clustering, the results of
which are shown on Figure V.6. The conclusion that can be reached when looking at the clustering
results is that HI curves with short lives are clearly separated from HI curves with long lives in
two distinct clusters. This could indicate that the degradations observed on the short-life bearing
might be of different nature than the ones on the long-life bearings. This cluster separation could
also be linked to the rate of increase of the trajectories. Indeed, the HI trajectories of the green
cluster in Figure V.6 have significantly higher gradients compared with the one of the red cluster,
especially at the beginning of their lives. This could also indicate a difference in failure modes, with
one failure mode more likely to happen in the beginning of life, and another one more related to
a slow degradation. However, we should once again note that the failure modes for each bearing
are unknown, and we cannot conclude here on the ability of clustering HI trajectories to identify
classes of failure modes.

V–1. Failure mode identification 125

(a) Dendogram of clustering for the double-negative strategy

(b) Clustered HI trajectories for the double-negative strategy

(c) Dendogram of clustering for the double-negative strategy

(d) Clustered HI trajectories for the anchor-at-start strategy

Figure V.6: Clustering results of HI trajectories on the bearing dataset

126 Chapter V. Usages of HI for prognosis and health management tasks

V–2 RUL Prognosis

The second investigation of HI trajectories usage is, as mentionned before, focused on RUL prog-
nostics, and is outlined in this section. It is separated in two different strategies, the first one using
the HI trajectories in a particle filter approach and a second one using the latent space where the
HI trajectories are computed.

Choice of notations

In this section and for the sake of simplicity, the notation x0:t is used to define the evolution
of any value x from an initial time 0 to the current time t.
The notations of the type x0, xt or xt−1 only denotes for the value of x at time 0, t or t− 1

respectively.

V–2.1 HI forecasting combined with failure threshold estimation:
a particle-filter based approach

As mentioned in Subsection III–2.1, the HI-based RUL prognostic, is typically composed of a HI
forecasting method combined with a failure threshold estimation one. It has been developed in
this same section that a particular method combining particle filters and neural networks recently
emerged in the literature for the task of HI forecasting [20]. In this section we propose some improve-
ments to this existing method. But before diving into the details of these proposed improvement
the next subsection introduce the method of particle filters.

V–2.1.1 Particle filter

Particle filter (PF), also called sequential Monte Carlo [45], is an algorithm to sequentially estimate
the posterior probability density function (PDF) of a hidden state xt given a series of noisy obser-
vations z0:t−1, t where t denotes the current time step. The state-space evolution is described as a
discrete hidden Markov model defined by:

xt = f(xt−1, ωt−1) (V.1)

zt = g(xt, ηt) (V.2)

where f in Eq. (V.1) describes the state equation and g in Eq. (V.2) the measurement equation, and
where ωt and ηt are the state and measurement noises, respectively and both considered normally
distributed with zero mean. To recursively estimate the posterior PDF p(xt|z0:t), the algorithm
uses the prediction-update recurrence. First, a prior distribution p(xt|z0:t−1) is computed using the
measurement available until time step (t − 1). The distribution is built by generating Np state
trajectories, also called particles, based on the state model defined in Eq. (V.1). The second step
consists in an update of the distribution. To do so, an importance weight is assigned to each
simulated particle q = 1, . . . , Np:

w
(q)
t = w

(q)
t−1p(zt|x

(q)
t); (V.3)

V–2. RUL Prognosis 127

in which p(zt|x(q)t) is the likelihood L(q)t of the particle q given the true observations zt. The formula
for this likelihood typically depends on how the function g is defined. In this formulation of PF it
is clear that the Markov hypothesis is considered true, i.e. the observation at any time t can be
estimated using the state at the same time t which in turn can be estimated using the state at the
previous time t− 1.

In its original form, PF suffers from the degeneracy problem [7]. All particles but one tend
to have an importance weight close to zero, hence the entire distribution of particles collapses to
one single particle. A common way of tackling this issue is to resort to the sampling importance
resampling (SIR) scheme [83]: The importance weights are normalised as follows:

ŵ
(q)
t =

w
(q)
t∑Np

j=1w
(j)
t

(V.4)

and the trajectories x(q)t are resampled on the basis of the normalised importance weights, i.e. by
sampling with replacement. This means that the trajectories with high importance weights are
more likely to be resampled, thus avoiding the degeneracy problem, introducing on the other hand
a loss of diversity on the particles [45].

V–2.1.2 Surrogate-based PF

The classical PF methodology relies on the availability of the state model expressed in Eq. (V.1)
and on the measurement model defined at Eq. (V.2). However, in the PHM context, the use of a
VHI with no physical meaning, and thus no evolution model, renders the state and measurement
equations unknown. To solve this issue, a common method consists in substituting the measurement
equation g(xt, ηt) with a parameterised surrogate model g̃(t;xt) = g̃t(xt) to which the white noise
ηt is added. This surrogate function is applied on t. The hidden states xt are then considered as
the parameters of this surrogate model g̃ to which the white noise ωt−1 is also simply added at each
time steps, thus defining the function f of Eq. (V.1), see eqs. (V.5) and (V.6) updated accordingly.

The PF state-space formulation is now rewritten as:

xt = xt−1 + ωt−1 (V.5)

z̃t = g̃t(xt) + ηt (V.6)

in which xt is now a state vector containing the parameters of the surrogate model g̃ at time step t.

In the surrogate-based PF used in this work, the likelihood of each particle q at each time step
t is calculated as follows:

L(q)t = p(z0:t|x(q)t) = ((2π)t+1|Ση|)−0.5

exp

{
−1

2

(
z0:t − g̃0:t(x(q)t)

)T
Σ−1
η

(
z0:t − g̃0:t(x(q)t)

)} (V.7)

Here, Ση and Σ−1
η denote for the covariance matrix and its inverse of the observation noises η0:t

respectively filled with σ2η and 1
σ2
η

on their descending diagonals and zeros elsewhere. z0:t and

g̃0:t(x
(q)
t) are (t+ 1)-sized vectors gathering the values until time t respectively of the observations

128 Chapter V. Usages of HI for prognosis and health management tasks

and the trajectory defined for g̃0:t by the state of the particle q at time t.

g̃0:t(x
(q)
t) = [g̃(0;x

(q)
t), . . . , g̃(t;x

(q)
t)] (V.8)

It is worth noticing that this two terms z0:t and g̃0:t(x
(q)
t) in Eq. (V.7) indicate that L(q)t is the

likelihood of particle q at time t given the entire set of available measurements until t. This is in
contrast with the classical PF in which the likelihood is usually computed just based on the last
observation, exploiting the Markov hypothesis, see Eq. (V.3).

The evolution of the model parameters in Eq. (V.5) is obtained by adding a random perturbation
as a Gaussian noise ωt−1 with zero mean to the previous state vector xt−1, which enables the
exploration of the parameterised function family of g̃. This exploration is thus modulated by Σω,t
the covariance matrix of the state noise. Because the surrogate function g̃ typically depends on a
certain number of parameters denoted here nθ, the state xt and noise ωt−1 are thus vectors of size
nθ. For the sake of simplicity it is herein considered that the noise vector ωt is independent through
its nθ components and therefore ωt ∼ N (0,Σ

(t)
ω) where:

Σ(t)
ω =

σ
2
ω,t[1]

. . .
σ2ω,t[nθ]

 (V.9)

The choice of variances applied on each state dimension σ2ω,t[d] ∀d ∈ [1, nθ] is of prime importance:
too low values would not guarantee a large enough exploration of the state space, while too large
values would result in the algorithm instability. Moreover, each state parameter do not necessarily
have the same sensitivity regarding perturbations which would hence necessitate that σω,t[d] ̸=
σω,t[d

′], ∀d ̸= d′. This issue of parameter-dependent noise variance is typically ignored in the
formulation proposed in [20], a solution to overcome this limitation inspired from the theoretical
development on particle filter optimal jittering in [174] is proposed here, see paragraph (d) and is
one contribution of this chapter.

V–2.1.3 Algorithm Details

(a) MLP surrogates

A combination of PF and NN has been firstly proposed by [51] and, as mentionned previously, has
later been investigated for HI forecasting with the aim of RUL prognostic of Li-Ion batteries in
[20]. In this work, inspired by this lastly mentioned reference, we decide to resort to a simple MLP
architecture composed by four layers (one input, two hidden layers and one output layer), with
three neurons per hidden layer. The input is a single value, i.e. the time step t, and the output is
composed of a single neuron returning the predicted HI value. The MLP is then composed of 15
weights and 7 biases, for a total of 22 parameters to completely describe the network represented
in Figure V.7. The input-output relationship is described as:

H̃It = zt = g̃t(xt) = g̃t(wt, bt) = hO(
3∑
j=1

w
(j)
t H

(j)
2 (t) + b

(O)
t) (V.10)

H
(j)
2 (t) = h2(

3∑
i=1

w
(i,j)
t H

(i)
1 (t) + b

(j)
t) (V.11)

V–2. RUL Prognosis 129

H
(i)
1 (t) = h1(w

(i)
t t+ b

(i)
t) (V.12)

where xt = {wt; bt} represent the MLP weights and biases and thus the states in the PF state-space
equations in eqs. (V.5) and (V.6), we thus have nθ = |{wt, bt}|. i and j respectively refer to the
neuron number of the first and second hidden layers, while hO, h2, h1 refer to the activation functions
of the output, second and first hidden layers, respectively. In this work, the activation functions
hO(·), h2(·) and h1(·) are respectively set as linear, exponential and scale exponential linear unit
(SELU) functions. The choice of h2(·) and hO(·) is motivated to fit a sum of exponential, which is
well fitted to an exponential-like degradation. The first hidden layer activation function choice is
for previously adding some non-linearity, expanding the possibilities of the defined parameterised
function family, and therefore improving its adaptability to degradation trajectories containing
exponential growths. It is also advised in the literature on NN to use pseudo-linear unit activation
functions e.g. rectified linear unit (ReLU), SELU or ELU.
The choice of such a simple architecture is motivated by the low computational efficiency of PF,
whose task is to recursively update the MLP parameters xt. Increasing the network complexity
could on one side improve the approximation capability of the surrogate g̃, but on the other side
would drastically increase the number of parameters and the computational burden of the entire
PF algorithm. Additionally, the more parameters there are in the surrogate function, the more the
size of the states and the more particles are needed to approximate the multivariate distribution of
these latter.

Input Hidden Layer 1 Hidden Layer 2 Output Layer

1

1 1

0
t t t

tttw w w

1

Figure V.7: Proposed MLP architecture

(b) Particle initialisation and reintroduction

The initialisation of the PF with plausible particles plays a crucial role in the algorithm perfor-
mances. Randomly initialising the particles, i.e. the parameters x0 in Eq. (V.6), would lead to poor
results, especially with g̃ lying in a large parameterised function family as defined in the previous
section. To do so, it is here proposed to initialise the particles with parameters x0 estimated when
fitting g̃ on HI trajectories selected to compose the training set. Once all the training trajectories
are fitted with their optimal parameters, a particle q is initialised by randomly taking the parame-
ters of one training trajectory fit. Additionally, to avoid a decrease in the diversity of the particles
along the PF cycles, initial particles corresponding to initial training trajectories fit are randomly
reintroduced at each re-sampling stage. The percentage of particle reintroduced instead of being

130 Chapter V. Usages of HI for prognosis and health management tasks

re-sampled is here arbitrarily fixed at 10% but could be considered as an hyperparameter of the
method to be fine-tuned. For learning g̃ with MLP surrogate models, a classical neural network
training is achieved to minimise the mean square error on the training curves.

(c) Particle likelihoods variance

To determine the likelihood variance σ2η used for the particle weight estimation performed in
Eq. (V.7), it is first needed to characterise the noise η defined in Eq. (V.6). This noise is estimated
off-line by the difference between known HI trajectories, i.e. the training set, and their respective
fits g̃t(x0). Fortunately, these best fit parameters for each training trajectories are already com-
puted for the initialisation of particles, so this step does not require any additional computational
burden. The mean µ̂η and variance σ̂2η of η are then estimated over all time steps of the training
trajectories. It was here found that the mean was close to zero for all MLPs, which justifies the
hypothesis of zero mean gaussian noise η. In the PF, the value used for σ2η should not be lower
than σ̂2η. Otherwise, a too low weight would be assigned even to the particles that best fit the HI
trajectory, resulting in minimal distinction between the weights of "good" and "poor" particles. In
this study, several values for the parameter σ2η were subsequently explored based on the estimated
noise variance σ̂2η. More specifically, the values [σ̂2η, 2σ̂

2
η, 5σ̂

2
η, 10σ̂

2
η, 20σ̂

2
η] were tested. Here, for

the proposed MLP, σ̂2η was estimated to be approximately 0.015, and the best results of PF were
achieved with 5σ̂2η = 0.075.

(d) Jittering variance

As mentionned previously, the selection of the jittering variance Σω in Eq. (V.7) is of paramount
importance in PF when employing the particle jittering strategy defined in Eq. (V.5). A common
choice is to adapt this jittering variance at each step, and not to use a fixed value. [20] proposed
an exponentially decreasing jittering variance across time steps, equal for each parameter. The
idea is to initially let the particles explore a wide possibility of values in the state space, and then
decrease the jittering to focus the exploration on the most suitable trajectories. However, in real
case scenarios, and typically with the turbofan example, the beginning of the HI trajectories can be
roughly constant around zeros, see Figure V.13, so exploring at the beginning is not a very effective
strategy, as the observation can not give much information about the HI trajectory and hence not
discriminate between likely and unlikely particles. Moreover, as mentioned before in this section,
the proposition in [20] to use a single variance value for each state parameter is clearly sub-optimal
and ignores the possible jittering-sensitivity variability among the parameters of the surrogate g̃.
Disregarding the particular use of PF for HI forecasting, some attempts for setting the jittering
dynamic have been proposed in the literature. [57] e.g. proposed to update each parameter xt of
g̃, based on the value’s range observed in the current particle set, the number of particles and the
number of parameters. [174] refined this strategy with a variance depending also on the parameter
value range of the current particles, but also depending on the effective sample size of the PF at
the same time step. This last approach in jittering is the one we use in this work. At each time
step t, the jittering variance (σ2ω,t[d] for each component d of any particle x(q)t is defined as:

σ2ω,t[d] = JÎQRd;tESS
− 1

3
t (V.13)

V–2. RUL Prognosis 131

where ÎQRd;t is the normalised inter-quartile range of values of dth component of xt over all the
particles, and ESSt is the effective sample size (ESS) at time t defined as:

ESS =
1

Np∑
q=1

(ŵ
(q)
t)2

(V.14)

where Np denotes for the number of particles. ESS evaluates the degeneracy of particles. If all
particles tend to have similar weights then ESS will tend to Np, if all particles but a few have
weights close to zero, then ESS will tend to this small number of particles with high weights.
With this jittering dynamic, a low ESS triggers an increase in jittering variance and thus a greater
exploration of the particles, while a high ESS decreases this exploration. In other words, a general
decrease in particles likelihood leads to an increasing parameter exploration, while a general increase
or steady level of particles likelihood leads to a decreasing or constant parameter exploration. In
[174] the authors found a value of J = 1.59 based on a general hypothesis. However it is unlikely
that this value is optimal for all use cases, therefore J is here set as an hyperparameter for optimising
the jittering dynamic. In the present work multiple values have been tried by trial and error and
the best performances were obtained with J = 1.5.

(e) Additional a priori on particles

The weighting of the particles given their likelihood in Eq. (V.3) ensures the consistency between
particles and measurements until the observation time t. To further improve the quality of the
prediction, additional a priori can be enforced on the trajectories via filtering the particles. This
consists in assigning a zero weight to the particles whose trajectories do not comply to some prede-
fined rules. In this work, we filtered out the particles based on:

Monotonicity
HIs are by definition monotonous. However, the noise in the observations can depict some non-
monotonicity; this can result in a non-monotonous prediction, which is incorrect by essence.
This is a monotonicity prior.

Threshold reaching
Particles are propagated in the future for a fixed horizon, defined as 150% of the longest
known HI trajectories. If a particle does not encounter the threshold before the horizon, it is
filtered out. This is a prior on the maximum life expectancy.

Max derivative
The parameterised function family of g̃, here MLP with exponential activation function,
encompasses functions with potential sudden exponential increases that would not fit well
with the HI trajectories. To filter these cases out, an a priori is set such that a particle can
not have a derivative higher than the highest derivative found in the training set. This is a
prior on the maximum degradation rate.

The a priori filtering can be thought as the introduction of prior knowledge in the PF algorithm.
It serves to filter out particles that exhibit substantial deviations or are improbable based on this
prior distribution.

132 Chapter V. Usages of HI for prognosis and health management tasks

With this last implementation details of apriori particles filtering, the particle filter based on
neural networks named hereafter PF-NN, dedicated to HI forecasting has now been thoroughly
detailed. A general flowchart of this method can be found in Figure V.8 for a global overview and
understanding.

V–2.1.4 Threshold estimation and RUL prognostic

As mentioned several times, the HI forecasting is not a objective in itself but serves the more
general purpose of RUL prognosis and, to reach this purpose, a threshold estimation is necessary.
This failure threshold can then be combined with HI prediction to obtain the RUL estimation.

(a) Threshold estimation

As mentioned in Subsection III–2.2 for HI-based RUL prognostic, a HI forecasting procedure must
be coupled with a proper setting of the failure threshold. This paragraph is dedicated at outlining
the threshold estimation method we propose to couple with the surrogate-PF HI forecasting. The
investigation of threshold estimation techniques achieved in Chapter III led to favor the option
of an adaptive probabilistic threshold for a better uncertainty quantification of the RUL. The
methodology proposed in [26, 117, 208] being the only one found by the authors in that direction,
it is thus used and adapted to a PF based HI forecasting. For applying this methodology a set of
known complete HI trajectories HI = {HI(k)(t)}k∈K, t∈Tk(T (k)) must be available. This hypothesis
is verified in the present context. From this set of trajectories, a set of failure thresholds R =

{r(k) = HI(k)(T (k))}k∈K is defined for each trajectory k as the HI value reached at the end of life
HI(k)(T (k)). At each time step t, the method then relies first on sequentially estimating a weight
α
(k)
t for each failure threshold r(k) in the set R corresponding to the similarity between the currently

observed trajectory HI(κ)0:t and the kth trajectory considered after t steps, HI(k)0:t . In their works [26]
propose to compute the α(k)

t for each k by solving the following minimisation problem:

α
(k)
t = arg min

{β(k)}k∈K
β(k)∈R∗

+, k∈K∑
k∈K β

(k)=1

t∑
τ=0

(HI(κ)τ −
∑
k∈K

β(k)HI(k)τ)2 (V.15)

Finally, one can combine these weights and their corresponding historical failure thresholds to ob-
tain a distribution of the true failure threshold of the currently observed trajectory p

r(κ)|HI(κ)0:t

by
e.g. computing the weighted mean and variance of R and assuming a Gaussian distribution. The
main assumption of this approach is that the similarity between two HI trajectories until a certain
time t is proportional to the likelihood of them having similar HI values at failure time.

While, in the present work, this existing general method is used, new solutions particularly
adapted to PF, are proposed for the weights computation and for the combination of weights and
historical failure threshold.

V–2. RUL Prognosis 133

C
urrent state prior distribution estim

ation

U
p to current denoised observations prior estim

ation

Previous state
posterior

distribution

U
pdate current state prior to posterior ditribution

True observations

Further propagation w
ith (1) and (2)

Initial state prior distribution estim
ation:

State-space m
odel

Sim
ulation of

 particles

1 particle:

 - 1 realisation of
 - 1 N

N

A
pply (1) on each particle

Pertubation of particles

Jittering

A
pply (2) on each particle

Particles w
eighing via likelihood:

Particles resam
pling

Training

Training

Extracting prior know
lege

from
 observed historical H

I
trajectories

N
N

 propagation

 H

I trajectories

best
particles/trajecories

selection

Particles propagation

(1) State equation:
(2) O

bservation equation:

 param
eters of

H
I set

 (n trajectories)

Figure V.8: Flowchart diagram of the proposed PF-NN for HI forecasting

134 Chapter V. Usages of HI for prognosis and health management tasks

Figure V.9: Histogram of failure thresholds for obtained turbofans HI trajectories and its
kernel density estimation at t = 0

In a PF, at each step τ , it is trivial to know the respective history of all current particles,
that is the state they were in at the previous steps an so on until their first initial particle. The
initial particles at t = 0 each correspond to one trajectory in HI fitted by the surrogate function
g̃. We thus denote the number N (k)

t of particles at time t whose initial ancestor correspond to the
trajectory k inHI. Because the precise implementation of the PF in this work includes a resampling
stage, an initial particle x(q) at step t = 0 can have from 0 up to Np successors at time t. Indeed,
if all of any x(q)0 successors are unlikely to fit the observations they are then rarely resampled and
end up themselves with almost no successor after a certain number of step. On the contrary if any
x
(q)
0 has successors that are very likely given the observations and that keep being so throughout

the time steps, they are then often resampled and this initial particle will have many successors. In

this work, we make the hypothesis that N
(k)
t
Np

is an estimation of α(k)
t the similarity of the currently

observed trajectory and the kth historical HI trajectory up to time t. We thus compute the weights
as follows:

α
(k)
t =

N
(k)
t

Np
(V.16)

Once these weights are acquired they must be combined with their corresponding failure threshold
values to obtain a distribution of failure threshold. In this work, no particular hypothesis about the
failure threshold distribution family is made (e.g. Gaussian or exponential). This is of paramount
importance for the empirical distribution of R e.g. for the turbofan case Figure V.9. A suitable
choice is to estimate the distribution of R with a weighted kernel density estimation (KDE). This
enables to estimate for a current trajectory under observation the density function pr(κ)|HI0:t(r) of
the current trajectory failure threshold r(κ) given the already available observations of this trajectory

V–2. RUL Prognosis 135

HI
(κ)
0:t :

p
r(κ)|HI(κ)0:t

(rκ) =

n∑
k=1

α
(k)
t

1

h
K(r

(κ) − r(k)

h
), r(κ) ∈ R+ (V.17)

where
n∑
k=1

αk(t) = 1 (V.18)

and K(u) = 1√
2π

exp−u
2

2
(V.19)

where h is called the bandwidth parameter and is estimated using the Scott’s rule [172].

(b) RUL Prediction and confidence intervals

The set of Np particles at any time t accounts for a representative ensemble of plausible trajectories
the currently observed one can take and therefore a representative discrete sample of the proba-
bility distribution p

ĤI
(κ)

0:∞|HI(κ)0:t)
. Additionally, the previous paragraph presented how to estimate

p
r(κ)|HI(κ)0:t

(r) the probability density function of the failure threshold for the currently observed HI
trajectory.

For RUL prognosis the quantity of interest can be defined as:

L(κ) = T (κ) − t (V.20)

where L(κ) and T (κ) respectively denotes for the RUL and time of failure of the currently observed
trajectory while t is the current time. To estimate the distribution of L(κ) we resort to a simulation-
based approach. A high number Ns of pairs of trajectories and failure thresholds, (HI(j)0:∞, r

(κ)(j))Ns
j=1

are randomly and independently sampled from the set of current particles p
ĤI

(κ)

0:∞|HI(κ)0:t)
and the

current failure threshold distribution p(r(κ)|HI0:t). From each of those pairs, a value of T (κ)(j) can
be obtained as the time needed by HI

(j)
0:∞ to reach the level r(κ)(j). A simple illustration of this

process is given in Figure V.10

The set of obtained values {T (κ)(j)}Ns
j=1 can then be used to estimate p(T (κ)|HI0:t). In this

work, only the mean and the 90% confidence interval of this latter distribution are of interest and
are obtained empirically from {T (κ)(j)}Ns

j=1. The RUL L(κ)(j) is easily obtained by subtracting the
current time t to T (κ)(j).

V–2.2 HI learning as pretext task for self-supervised RUL prognosis

V–2.2.1 Self-supervised learning

In Subsection II–2.2 a brief presentation of self-supervised learning (SSL) is given. A more specific
version of SSL is also given: contrastive learning. In contrastive learning, knowledge of similarity
and dissimilarity between the examples is used to learn a representation of these latter in a latent
space of reduced dimension where these known relationships should be emphasised. As a matter
of fact, this is precisely the approach that was proposed for learning the HI in Chapter IV. In this
method, for encoding samples in a latent space, a prior knowledge of similarity and dissimilarity is
used:

136 Chapter V. Usages of HI for prognosis and health management tasks

 sampled trajectories
from particles

sampled

failure
threshold

from
distribution

 realisation of failure times

Figure V.10: Illustration of the simulation-based estimation of the failure time distribution

• Two samples should be similar if they come from the same run-to-failure (RtF) and are
monitored closely in time.

• The dissimilarity between a sample at the beginning of life and another sample from the same
RtF should be greater when this other sample is monitored further away in the future

• The greatest dissimilarity between two samples of the same RtF should be between a sample
at the start of life and the sample at the failure time.

In the context of learning a HI in Chapter IV, this latent space is used to build HI trajectories of
observed RtFs. For a given RtF, its HI trajectory is the evolution, with the monitoring time of its
samples, of their distances in the latent space with the first sample of the same RtF.
In the present context of RUL prognosis, the question that arises is: can the representation of a
sample in the latent space learned in Chapter IV be used to directly predict the RUL?

V–2.2.2 Proposed approach: self-supervised RUL prognosis with HI contrastive
learning as pretext task

This idea is explored in the present section and is referred to as self-supervised RUL prognosis
with HI contrastive learning as pretext task. The aim is then to directly predict the RUL L̂i of an
instance of the system at a certain time ti corresponding to the starting time of the sub-series s(k)(i)

given its representation in the latent space e(k)(i) = SNN(s(k)(i)).

L̂i = f(e(k)(i); θf) (V.21)

(V.22)

V–2. RUL Prognosis 137

Where θf denotes for the parameters of the learning model f . Of course it is plausible that because
of noisy measurements, only the last measured sample is not sufficient for a correct prediction of
the RUL. Therefore, a more realistic setting would be to consider a certain amount of samples in
the past.

L̂i = f(e(k)(i−h:i); θf ;) (V.23)

where h, the history, denotes for the number of previous samples taken into account for making the
prediction.

The choice of the learning model for f(θf , ·) now arises. The latent space of which this model
will be applied has been learned by a SNN as presented in Chapter IV, and more generally the
current work already explored the possibility of integrating neural networks for solving various task
of prognostic and health management. A logical choice is therefore to opt for the use of NN once
again for modelling f(θf , ·).

V–2.2.3 Probabilistic recurrent NN and mean-variance estimation

As explained previously in this chapter, when performing RUL prediction, the evaluation of the
prediction uncertainty is of paramount importance for future decision making. To this end, it
appears relevant to model f(θf , ·) with a probabilistic neural network (PNN). More precisely, we
use a mean-variance estimation (MVE) for predicting both a mean prediction of the RUL as well
as the variance accounting for the uncertainty of prediction [86]. With this approach the RUL
prediction can be written as follow:

L̂i = µLi + νi (V.24)

νi ∼ N (0, σ
L̂i
) (V.25)

where µ
L̂i

is the mean prediction of the true RUL and νi is a zero-centred noise representing the
prediction uncertainty.
The output of the PNN f is therefore composed of two values, µ

L̂i
and σ

L̂i
the variance of the noise

νi:
{µ

L̂i
, σ

L̂i
}(k) = f(θf , e

(k)(i−h:i)) (V.26)

To train such a PNN, the loss used is based on the log-likelihood of a Gaussian density probability
function with mean and variance predicted by the output of the neural network given the true RUL,
denoted hereafter L(k)

i .

L(µ
L̂i
, σ

L̂i
, L

(k)
i) = − log(L(Li|f ; θf ; e(k)(i−h:i))) (V.27)

= − log(φ(
Li − µ(k)

L̂i

σ
(k)

L̂i

)) (V.28)

(V.29)

138 Chapter V. Usages of HI for prognosis and health management tasks

Distance

1) Distance metric learning with SNN and
contrastive loss

Core NN Core NN Core NN

Latent space

Contrastive loss

HI

Core NN

Latent space RUL

Latent space

2) Latent space projection of all training
instances samples

3) Probabilistic RUL prediction with RNN and MVE

RUL

Figure V.11: Overview diagram of the proposed SSL RUL prediction with HI learning as
pretext task, named SNN-PRNN

where φ denotes for the PDF of the standard Gaussian distribution, e(k)(i−h:i) is the representation
in the latent space of the sub-series s(k)(i), L(k)

i its associated RUL target and where µ(k)
L̂i

and σ(k)
L̂i

are the outputs of the PRNN applied on e(k)(i−h:i). A schematic overview of the method, named
hereafter SNN-PRNN, can be found in Figure V.11, and a detailed schematic of the PRNN-MVE
architecture in Figure V.12. In this schematic and in the experiment part of this chapter, the history
parameter h is set to 10. Such a choice should be more thoroughly investigated for a real use of this
approach, to find the right balance between accuracy and computational cost.

To predict the RUL by SNN-PRNN, a simple RNN architecture is here proposed. Because
multiple historic steps of samples representation in the latent space are used as input to the model,
the chosen architecture is composed of first, recurrent layers, and then, dense layers, with a final
dense layer with 2 neurons (one for the mean and one for the variance). It is important noting that
because the variance is necessarily positive a softplus activation function is used only on the neuron
predicting the variance. For the mean neuron, the sigmoid activation function is used, because the
RUL label data used for training the PNN is scaled between [0, 1]. One could choose a different
architecture with first common layers for mean and variance prediction and additional specific dif-

V–2. RUL Prognosis 139

Input

Rec. layer
64 neurons

Nb time

 steps: 10

Dimension:

20

Rec. layer
32 neurons

Rec. layer
16 neurons

Rec. layer
8 neurons

Dense 8
neurons

Dense 8
neurons

Sigmoid
neuron

Softplus
neuron

Nb time

 steps: 10

Figure V.12: Proposed PRNN for estimating the mean and standard deviation of the RUL.

ferent layers for each of the two, or one could even decide of two completely different architectures
for the mean and variance from the input to the output. The architecture choice in this work
is arbitrary and opted for its simplicity, as the aim here is to investigate the possibility of using
SNN-PRNN for predicting the RUL of a system instance at any time directly using recent measure-
ment samples representation in the latent space learnt by the methodology presented in Chapter IV.

Once the PRNN is trained, one can easily obtain the RUL mean prediction and 90% CI bounds.
The h last samples are fed to the NN, the resulting mean µ

L̂i
is the RUL prediction and µ

L̂i
−1.96σ

L̂i

and µ
L̂i

+ 1.96µ
L̂i

are the CI bounds.

V–2.3 Experiments

The public turbofan engine dataset [167] introduced in Subsection IV–3.1 is used to assess the
performance of the proposed methods. Among the 100 engines, the 80 first engines are used as the
training set and 20 last ones as the testing set. HI trajectories are here obtained from the siamese
neural network proposed in Chapter IV, which is optimised on the training set. Once trained, this
HI model is used to produce HI trajectories for each of the engines in the training and testing sets.
The obtained HI trajectories of the testing set are drawn in Figure V.13. To evaluate the benefits of
the proposed approaches, namely PF-NN and SNN-PRNN, three experiments are conducted. One
aims at evaluating the failure threshold estimation in the PF-NN method, another one at evaluating
the use of NN as surrogate function instead of more classical surrogate choices in the same NN-PF.
Finally a third one evaluating the method of direct SSL RUL with HI learning as pretext task.

(a) Experiment #1

A first experiment was conducted to assess how the PF-NN model performs with different threshold
estimation techniques. In the proposed PF-NN method, a new probabilistic threshold estimation
technique has been developed. Here, it is proposed to evaluate the PF method using this new
threshold estimation method and a classic one, which is setting a constant deterministic threshold
as the median of maximum HI values reached by the known complete historical HI trajectories
(training set).

140 Chapter V. Usages of HI for prognosis and health management tasks

(b) Experiment #2

The second experiment that was conducted aimed at assessing the choice of a NN as the surrogate
function. Here, it is proposed to evaluate the PF method using the NN as surrogate and a more
classic choice found in the literature, which is the sum of two exponentials sometimes denoted double
exponential (DE). DE is defined by a sum of two exponential functions as follows:

g(t, (at, bt, ct, dt)) = at exp btt+ ct exp dtt (V.30)

where θ = (at, bt, ct, dt) are the function parameters and thus the states xt in the PF state-space
equations, see eqs. (V.5) and (V.6). This choice of surrogate model is very common in the literature
of HI prediction with PF [101, 145, 79] as mentioned previously. This is due to the degradation
dynamics of most of the complex systems that tend to follow an exponential growth. It is in
particular verified for the application case studied here, where HI trajectories show an exponential-
like behaviour when the degradation appears, see Figure V.13. To initially optimise the DE model on
the training HI trajectories a least-square minimisation is performed with the Levenberg-Marquardt
algorithm.

(c) Experiment #3

Finally, the third experiment consists in testing the direct RUL prediction methodology of SSL with
the HI learning proposed in Chapter IV as pretext task. The results of this method, SNN-PRNN
are simply compared to those of the two previous experiments.

In all of these experiments the proposed methods for RUL prediction are performed on each
instance of the testing set. The training HI trajectories are used for initialising the particles in the
PF-NN method and for training the PRNN model in the SNN-PRNN one.

Figure V.13: HI trajectories of the testing set (HI value vs. time)

V–2. RUL Prognosis 141

(d) Evaluation metrics

To assess the performance of the RUL prediction two indicators are computed. The first indicator
is the mean relative error (MRE) defined as:

MRE =

∑
k∈K

∑
t∈Tk(T (k))

|L̂(k)
t −L(k)

t |
L
(k)
t

|Tk(T (k))K|
(V.31)

where k is a particular instance of the system under study, t a particular time step, Tk(T (k)) the set
of time steps for which the RUL prediction performance is assessed for the kth instance, L̂(k)

t the
predicted RUL and L

(k)
t the true RUL. |Tk(T (k))K| here denotes for the total number time steps

for all instances that are analysed by the indicator. This indicator relates to the point prediction
performance, and needs to be minimised.

A second indicator is developed to assess the performance of the CI prediction. It is referred as
CI coverage (CIC) and defined as follow:

CIC =
∑
k∈K

1
L∗
k∈ĈIk

L∗
k

W
ĈIk

(V.32)

where 1
L∗
k∈ĈIk

is the indicator function that takes one if the true RUL lies in the predicted RUL
CI, and W

ĈIk
is the CI width. The objective of this indicator, which is to be maximised, is to first

reward RUL CIs that include the true RUL, but also to reward more the CIs containing the true
RUL that are narrower, with this reward modulated by the true RUL. A wide CI when the true
RUL is low is more penalized than when it is high.

To get a better insight on the performances of the tested strategies in all the conducted experi-
ments, their results are analysed over the entire life of the engines and in the last quarter of their life
where the RUL prediction is more critical. The results of the online RUL prediction for experiment
#1 are shown in Subsection V–2.3 for the five first testing engines. The overall performance indi-
cators for both experiments are summarised in Table V.1, averaged and summed up, respectively
for MRE and CIC, over the entire testing set.

(e) Results

Model MRE (full) MRE (75-100%) CI coverage (full) CI coverage (75-100%)
PF-NN + probabilistic threshold 0.516 0.574 3527 1311

PF-NN + constant threshold 0.442 0.441 4299 1621
PF-DE + constant threshold 0.429 0.645 3054 389

SNN-PRNN 0.529 0.953 2040 1646

Table V.1: Performance indicators for experiment #1, #2 and #3 over the entire testing set

Experiment #1: It is clear from this experiment that the use of the proposed probabilistic thresh-
old does not lead to improved results, against our expectations: the MRE both on full and
last quarter of life indicates better mean prediction performance of the proposed method

142 Chapter V. Usages of HI for prognosis and health management tasks

with a constant median threshold. However, additional experiments should be performed
with more variability in the failure HI values to confirm this finding. For the CI coverage
the proposed indicator also indicates better performance with the constant median thresh-
old. These indicator values are crucial for distinguishing the performance differences between
the two approaches tested in this experiment. Indeed, the RUL prediction graphs in Sub-
section V–2.3 show that both approaches predictions does not enable to easily distinguish
a clear difference. Nevertheless, these graphs can help us giving insight on the overall RUL
prediction quality. They are in one hand encouraging because clearly the RUL prediction
systematically converges very close to the true RUL towards the end of life. However these
graphs also indicate that the prediction are often overconfident in their predictions leading
to confidence intervals excluding the true RUL often for long parts of the engine’s life and, in
some cases, during the entire life. The uncertainty quantification of the proposed method is
therefore not well enough calibrated and necessitates further improvements, as a perspective
of this work.

Experiment #2: This second experiment results give a clear indication that using NN as sur-
rogate function improves the performance of the surrogate-PF approach. Indeed, if PF-DE
shows slightly better mean RUL prediction accuracy on the entire lifetime of engines, it is
clearly outperformed by the PF-NN in the last quarter of life. Moreover, the CIC indicates a
consistently better performance of PF-NN for CIC both on full and last quarter of life. PF-DE
is even outperformed by the PF-NN with probabilistic threshold, which, as demonstrated by
the previous experiment can be a disadvantage compared to the constant median threshold.
This result is consistent with the finding of [20] that first proposed to use NN as surrogate
function for PF-based HI forecasting in the case of Li-Ion batteries.

Experiment #3: This last experiment indicates that the proposed SNN-PRNN approach leads
to poorer result for RUL prediction compared to the PF-based approaches tested. The only
satisfaction of this method is its performance of CIC in the last quarter of life which is slightly
improved compared to the PF-NN approach with constant threshold. This satisfaction must
nevertheless be modulated. Indeed, if the PF-based approaches uncertainty quantification
quality is hindered by over-confidence in their predictions, the ones of the SSL approach
suffer of under-confidence. This can clearly be observed directly on the RUL prediction graph
resulting from the third experiment in Subsection V–2.3. The true RUL is systematically
included in the 90% CI interval, which might indicate that the RUL prediction distribution,
under the gaussian assumption here, is miscalibrated, leading to a too wide CI interval. This
CI prediction is nevertheless better rewarded by CIC than the PF-based ones. This is because
these latter, more often than expected, exclude the true RUL from the CI prediction towards
the end of life, an outcome purportedly penalised by the proposed CIC, and never observed
with the SNN-PRNN approach. One should keep in mind that this method has not been
optimised thoroughly compared to the PF-NN one, but is more an exploratory work.

V–2. RUL Prognosis 143

Figure V.14: RUL prediction graph of SNN-PRNN on testing turbofan engines (RUL vs.
time)

144 Chapter V. Usages of HI for prognosis and health management tasks

Figure V.15: RUL prediction graph, comparison of PF-NN with probabilistic and constant
threshold on testing turbofan engines (RUL vs. time)

V–3. Conclusion and perspectives 145

V–3 Conclusion and perspectives

V–3.1 Conclusions

This final chapter aimed at exploring the possibility of using the information extracted in Chap-
ter IV, that is: the HI trajectories, and the latent space produced by the SNN with which the HI
trajectories are learnt. These information are investigated to be used for both RUL prognostic and
failure mode identification.

The two proposed methods explored for RUL prognostic lead to interesting conclusion.
In the first one, PF-NN, a combination of particle filter and ensemble of neural network is used for
predicting the RUL. This approach extends the work of [20], however, if the general idea does come
from the latter reference, new additional considerations have been developed in the present chapter.
They include the following: the particle initialisation, the particle exploration dynamic (jittering),
the a-priori particle filtering and the combination of the approach with a probabilistic evolving fail-
ure threshold. These improvements led to extend the finding of [20], on a new application case, that
simple shallow neural network are particularly adapted surrogate function for particle filter with
unknown state and observation equations. Indeed, the PF-NN strategy was applied to simulated
turbofans were the degradation is exponential like, an we compared results with neural network
instead of sum of exponential models. The neural networks led to better RUL prediction. However,
we also found that in this application case the uncertainty quantification is miscalibrated and leads
to overconfident prediction, despite being better calibrated than the method of sum of exponential.

As a second RUL prognostic approach we propose the SNN-PRNN method: the use of the
SNN’s learnt latent space for direct and supervised RUL prediction, thus placing ourselves in a self-
supervised learning setting. If the RUL prediction results are less satisfactory than the one issued
from the first proposed approach, the comparison between the two approaches must be tempered. In
the first approach at any current time t the RUL prediction model can use all the observations from
initial time up to t. In the second approach the model use only the 10 last observations which is an
arbitrary choice. Inversely, in the first approach the model has only access to the HI values (single
dimension) while in the second approach the model has access to the entire sample projection in
the latent space (multiple dimensions). Interestingly, this second approach seems to lead to better
uncertainty quantification quality toward the end of life which is definitely an appreciated outcome
for RUL prognostic. However, as opposed to the overconfidence of the particle filter approach pre-
diction, the prediction issued from self-supervised approach is largely under-confident.

Finally in the first section an exploratory study of using HI trajectories for failure mode iden-
tification was performed. It was found that a simple univariate time series clustering was able to
partially separate instances affected by different failure modes into different clusters. If this separa-
tion is not perfect, it is still encouraging. This proposition is merely exploratory in the present thesis
and is not a claim that failure mode identification should strictly be done based on HI trajectories.
It is rather a suggestion to exploit information contained in HI trajectories to improve a potential
failure mode identification task.

146 Chapter V. Usages of HI for prognosis and health management tasks

VI
Conclusion

This chapter finally concludes this thesis by summarising the key developments carried out and the
associated findings. It also outlines the current limitations of the proposed developments and the
future perspectives of research they offer.

VI–1 Summary of the thesis

This thesis aims at studying multivariate time series (MTS) learning methods in the context of
prognostics and health management (PHM). A general presentation of PHM has thus been outlined
in Chapter I. The four main tasks of PHM have been presented: anomaly detection, failure mode
identification, remaining useful life (RUL) prognostic and health assessment. It has been argued
that this latter is connected to all the other tasks. Indeed, by extracting information about the
precise health status of a system at any monitored instant in the form of an health indicator (HI),
one should be able to better achieve the goals of the three other tasks: RUL prognostic, anomaly
detection and failure mode identification. Based on this analysis, the core of this PhD thesis was
then more explicitly defined as exploring the analysis of PHM data focusing on health assessment.
More precisely the research has been structured in two main axes. First, researching the current
limitations of this health assessment task and propose solutions to overcome them. Secondly, re-
searching the current limitations in the usage of HI for subsequent usage in solving other PHM
tasks, and also propose solutions to overcome them.

Before the exploration of the literature carried out in Chapter III on the two identified axes of
research, Chapter II introduces key theoretical concepts, for a correct understanding of the devel-
opments carried out in subsequent chapters. This includes precise definitions of time series, their
mathematical notations and particular properties with a focus on different types of sampling used
in the following chapters. Then, an introduction to machine learning methods in general and for
solving particular problems encountered when learning from MTS has been given. Finally a short
focus on theoretical elements of neural networks has been carried out.

In Chapter III, an overview of the literature on HI definition, learning and usage in the field
of PHM has been outlined. It includes the definition of what a HI is and the mathematical defini-
tions of what properties this latter must satisfy. The properties of monotonicity, failure consistency,
prognosability and robustness have then been emphasised as the most crucial properties for a HI to
satisfy, but it was also demonstrated that the property of monotonicity stands out of the three other

148 Chapter VI. Conclusion

ones as even more crucial. Then, existing approaches for learning a HI from preprocessed signals
have been described. During this analysis of the state-of-the-art on HI learning approaches, the
ability of each approach to enforce monotonicity has been scrutinized . It turns out that, a certain
type of approach, namely similarity-based approach, has almost never been subjected to develop-
ments in the direction of enforcing monotonicity during the learning of the HI. This is in constrast
with the other main type of approach identified: fusion-based approach that already have been
successfully developed to enforce monotonicity. These observations lead to the development of a
proposed solution for similarity-based HI learning with a monotonicity constraint in Chapter IV.
In the second part of this chapter, a review of existing works that make use of HI for solving other
PHM tasks has been given. It turns out that it is mostly the RUL prognostic task that resorts to
HI. The task of anomaly detection can also benefit from HI, but works in that direction have not
been included in this chapter for the reason that anomaly detection was not focused on during this
thesis. The reason for this choice, as previously explained in Chapter I, is that once a HI is obtained,
anomaly detection merely consist in defining a threshold that, when crossed by the HI, indicates an
anomaly. This threshold estimation task is similar to the one developed in RUL prognostic. Hence,
This chapter’s part has been more focused on outlining state-of-the-art approaches for HI-based
RUL prognostics. This includes the forecasting of future values of a currently observed HI, and the
estimation of a failure threshold which, when crossed by the HI, indicates failure.
It has been pointed out that some promising RUL prognostic may be obtained when mixing stochas-
tic process modeling with ML approaches. Indeed, it is shown is this chapter that stochastic process
modeling provides with strong statistical methods for estimating uncertainties in prediction but lack
the abilities to precisely model the potential evolutions of HI trajectories issued from systems with
complex degradation dynamics. The neural networks on the contrary have been presented in this
chapter to have strong ability to precisely model these degradation. These observations lead to
propose improvements to a type of approach, in Chapter V, that recently emerged in the litera-
ture. This latter combines a stochastic process modeling technique, state-space models and neural
networks. Finally, an other interesting finding in this chapter was the absence of any HI-based
approach for failure mode identification which also lead us to explore the possibility of using HI
trajectories to identify failure modes in Chapter V.

In Chapter IV, to overcome the lack of HI learning method that enforces monotonicity discov-
ered in the literature in the first part of Chapter III, a new approach is proposed. It is built upon
a contrastive learning setting with a siamese neural network (SNN) as the representation learning
model. Two distinct training sample selections and constraints incorporated directly in the con-
trastive loss function are proposed to enforce the monotonicity of the resulting similarity-based HI.
This approach has the advantage of not resorting to particular hypothesis on the evolution of the HI,
which is a significant novelty from the literature and makes the proposed method very generic and
theoretically adaptable to any physical system. This method has been tested on two public datasets.
The first one, on turbofan, shows the efficiency of this method for enforcing the monotonicity on a
dataset with relatively high dimension in the MTS and also a high number of system’s instances. A
clear correlation between the improvement of the loss of the model and the resulting monotonicity
of the HI has been established for the two distinct strategies of monotonicity constraints proposed
in this chapter. The second dataset, on rolling bearings, shows the efficiency of the proposed model
on reaching its aim for datasets with a reduced number of system’s instances, where the MTS are
sampled at high-frequency, and whose system degradation dynamics are known to be complex and

VI–1. Summary of the thesis 149

challenging to learn. The proposed method has been compared to another similarity-based HI learn-
ing method that also tries to enforce monotonicity. It turned out that our proposed methodology
performed better on the bearing dataset. The results from the experiments on these two datasets,
tend to prove the high adaptability of the proposed methodology for different contexts of data, low
or high number of dimensions, low or high frequency sampling, low or high number of system’s
instances, and different MTS preprocessing techniques. But it also opens perspectives as described
later in the dedicated section of this conclusion.

Chapter V aims at exploring the possibility of using the outcomes of Chapter IV, the HI trajec-
tories and the latent space produced by the SNN with which the HI trajectories are learnt. These
outcomes have been investigated to be used for both RUL prognostic and failure mode identification.
First, in this chapter, an exploratory study has been conducted on the use of HI trajectories for
failure mode identification. It has been found that simple univariate time series clustering is able
to partially separate instances affected by different failure modes into different clusters. Although
this separation is not perfect, it is an encouraging work in that direction. This suggests that it is
possible to use the information contained in the HI trajectories to support a potential failure mode
identification task. Subsequently, two proposed methods have been explored for HI-based RUL
prognostic.
In the first one, PF-NN, a combination of particle filter (PF) and ensemble of neural network has
been investigated for RUL prognostic. In this approach a state-space model partially defined by
a neural network is continuously optimised by a PF algortithm. This latter continuously update
the parameters of pre-trained NNs to fit the current partial HI trajectory being observed in order
to forecast it. This method also includes failure threshold estimation to define the HI value that
indicates failure of the system. This approach comes from previous works in the literature, however,
in this chapter, new additional considerations have been developed for it. These latter include the
following: the particle initialisation, the particle exploration dynamic (jittering), the a-priori par-
ticle filtering and the combination of the approach with a probabilistic evolving failure threshold.
These improvements lead to extend previous findings in the literature that simple shallow neural
network are particularly adapted surrogate function for particle filter with unknown state and ob-
servation equations. The PF-NN strategy has here been applied to simulated turbofans were the
degradation is exponential like, and has been compared with a similar PF approach that does not
use NN. The neural networks lead to better RUL prediction. However, it has also been found that,
in this application case, the model provides overconfident prediction, which is a sign of low quality
of uncertainty quantification.
A second RUL prognostic approach has also been proposed, the SNN-PRNN method. Here the
SNN’s learnt latent space has been used for direct and supervised RUL prediction via a proba-
bilistic recurrent neural network (PRNN), thus placing this approach in a self-supervised learning
setting. The RUL prediction results are less satisfactory than the ones issued from the PF-NN
approach but the comparison between the two approaches must be tempered. The two approaches
use different inputs and take into considerations different amount of previous observations for pre-
dicting the RUL. Additionally, the second approach is a completely novel proposition and therefore
an exploratory work here, when the first proposed approach has been built upon previous existing
works and benefits from the accumulation of improvements from many researchers.

150 Chapter VI. Conclusion

VI–2 Limitations and perspectives

This thesis developments and findings will advance the field of PHM. The new similarity-based HI
learning method using SNN and contrastive loss does compensate for a lack of similarity-based HI
method that enforces monotonicity of the HI in the literature. This method provides one with a
HI more compliant with the theoretical properties it should satisfy, and with a latent space where
samples of monitored signals can be somehow represented according to their degradation levels. The
PF-NN methodology enhanced in this thesis will enable researchers to better combine stochastic
process modelling and neural networks for forecasting HI values of a current trajectory and predict-
ing the RUL. Finally, this thesis proposes interesting perspectives in using HI trajectories in general
for failure mode identification, and using HI learning as a pretext task before applying a supervised
direct RUL prediction in a self-supervised learning setting.

However, a thesis being limited in time, its developments also have limitations. Hence, the
proposed methods in Chapter IV and Chapter V are subjected to improvements for future works.

VI–2.1 Perspectives on HI learning with SNN and contrastive loss

Firstly, the impact of the number of failure modes and run-to-failure samples could be analysed
more in depth. Here two datasets have been studied, the one of turbofans with a high number of
instances and low number of failure modes, and the one of bearing with an unknown, but probably
high, number of failure modes, and low number of instances. The variety of failure modes may
induce a high variability in the data and thus necessitates a higher number of system’s instances for
a model to be able to generalise well. A thorough analysis of the impact of lowering or increasing the
number of available instances in different data availability contexts would be an interesting addition
to the present work, as well as any proposed approach for HI construction models. More existing
datasets could therefore be studied with the proposed approach, e.g. Li-Ion battery dataset from
the same NASA repository, in order to confirm the obtained results and study the sensitivity to the
number of instances and number of failure modes.

An interesting usage of the learnt distance metric, would also be to study the distances between
samples of different instances of the system. Indeed, in the proposed approach for HI construction,
once the distance metric is learnt, only samples of the same instance are compared. But instead of
comparing any sample to the initial sample of the same instance, one could compare it to all initial
samples of every known instances for a better HI estimation. One could even compute an entire
distance matrix between any observed samples of any observed instance. This distance matrix could
be used to project every samples relatively to each other in a reduced dimension (2D or 3D) thanks
to manifold projection techniques like t-SNE, LLE or Isomap. These manifold techniques could be
very useful for visualising the different degradation trajectories or even for discovering regions of
the manifolds indicating different stages of degradation or different failure modes.

VI–2. Limitations and perspectives 151

Another potential for improvement relates to uncertainty quantification (UQ). This topic is of-
ten absent of the problem of HI construction and has not been prioritised in this chapter. Indeed,
usually the issue of UQ is rather accounted for during the RUL prediction. An interesting perspec-
tive would then be to construct HI not in a deterministic form, i.e. a single trajectory, but in a
probabilistic form, i.e. as a distribution of trajectories, or a stochastic process. In the continuity of
this work, investigating the possibility of transforming the current SNN based model into a prob-
abilistic one would be a promising perspective. An interesting work in that direction is the one of
[205] that develops a probabilistic combination of triplet loss and SNN, with the use of Bayesian
NN and mean-variance estimation for uncertainty quantification. This work has been developed in
the context of image retrieval, but some key concepts could be reused in the present context.

VI–2.2 Perspectives in using HI learning for RUL prediction and
failure mode identification

The results on the experiment of failure mode identification suggest to further investigate the use of
HI trajectories for this task. Using the proposed failure mode identification via the HI trajectories
could also potentially improve the further RUL prediction, by taking into account the predicted
failure mode. Indeed, knowing an observed instance to be subjected to particular failure mode will
enable the RUL prediction model to use known HI trajectories from the same failure modes and
hence potentially provides with more adapted and precise RUL predictions. This could also improve
the failure threshold estimation accuracy, as the HI value at failure time might be dependent on the
failure mode.

The PF-NN RUL prognostic approach proposed in Chapter V could benefit from a thorough
ablation study to investigate the respective impacts of the improved jittering dynamic, particles
initialisation and a-priori particle filtering on the quality of the results. A valuable addition would
also be to experiment on different RUL datasets as for instance the one on bearings used in Chap-
ter IV. Due to the time constraint of the thesis the experiments of PF-NN on the bearing dataset
have not been possible to carry out satisfactorily and are hence not included here. Another dataset
that could be used is the one on Li-ion batteries as it is the one used by the authors of the original
formulation of PF-NN that inspired the proposed method. It could enable to evaluate our improve-
ments against this original proposed approach.

For the SNN-PRNN approach for RUL prediction proposed in Chapter V, many suggestions
may be raised. For now, the approach attempts at predicting the RUL of any instance a certain
time via a PRNN, inputted with the last 10 observations, up to the current time, of the SNN’s latent
space projection of measured signals samples. Thus, a simple improvement could be to include as
input to the PRNN the time elapsed from the beginning of life until the last time of observations,
which can be a crucial information to more accurately predict the RUL. Studying the impact of
reducing or increasing the number of last observations to take into account for predicting the RUL
would also be a necessary work to obtain a better model for RUL prediction. Finally, studying the

152 Chapter VI. Conclusion

use of more complex NN architecture, particularly adapted to treat sequential data, like dilated
convolution layers or attention mechanisms could also improve the approach.

Finally, the results from the two proposed RUL prognostic approach also highlight that quan-
tifying the prediction uncertainties remains a challenge and should be prioritised as an axis for
future research. For this, it would be relevant to develop models that have the ability to distinguish
between the aleatoric and epistemic level of uncertainties produced by the RUL prediction. These
two types of uncertainties are not explicitly accounted for in this thesis, however, this aspect offers
interesting perspectives especially for the second proposed RUL prognostic approach SNN-PRNN.
Indeed the mean-variance estimation developed in this approach can indeed be thought of as ac-
counting for aleatoric uncertainty, but integrating uncertainties on the NN parameters could enable
to include epistemic uncertainty by e.g. resorting to bayesian neural networks.

VI–3 Epilogue

This manuscript attempted to summarise the work carried out during the my thesis. It aimed at
exploring the use of multivariate time series learning and analysis in the field of prognostic and
health management with a particular focus on the use of neural networks and deep learning tools.
I hope this work will find echos in researchers of this field, and inspire them to reuse, improve and
study the proposed methods of HI learning, RUL prognostic and failure mode identification. I would
like to note that the developed method for solving PHM tasks made use of generic machine learning
approaches and contribute with some advancements in this field as well. The proposed approaches
could hence also be used in other contexts than PHM: contexts where enforcing a monotonicity
constraint in a contrastive learning setting on sequential data is necessary, or contexts where on-line
forecasting of a monotonous quantity of interest is needed.

Bibliography

[1] S. Abbasion et al. “Rolling Element Bearings Multi-Fault Classification Based on the
Wavelet Denoising and Support Vector Machine.” In: Mechanical Systems and Signal
Processing 21.7 (Oct. 2007), pp. 2933–2945. issn: 0888-3270. doi: 10.1016/j.ymssp.
2007.02.003.

[2] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. “Time-Series Clus-
tering – A Decade Review.” In: Information Systems 53 (Oct. 2015), pp. 16–38. issn:
03064379. doi: 10.1016/j.is.2015.04.007.

[3] A. S. Ahmad et al. “A Review on Applications of ANN and SVM for Building Electri-
cal Energy Consumption Forecasting.” In: Renewable and Sustainable Energy Reviews
33 (May 2014), pp. 102–109. issn: 1364-0321. doi: 10.1016/j.rser.2014.01.069.

[4] Wasim Ahmad et al. “A Reliable Technique for Remaining Useful Life Estimation of
Rolling Element Bearings Using Dynamic Regression Models.” In: Reliability Engi-
neering & System Safety. Impact of Prognostics and Health Management in Systems
Reliability and Maintenance Planning 184 (Apr. 2019), pp. 67–76. issn: 0951-8320.
doi: 10.1016/j.ress.2018.02.003.

[5] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. “A Survey of Network
Anomaly Detection Techniques.” In: Journal of Network and Computer Applications
60 (Jan. 2016), pp. 19–31. issn: 1084-8045. doi: 10.1016/j.jnca.2015.11.016.

[6] Masanao Aoki. State Space Modeling of Time Series. Springer Science & Business
Media, Mar. 2013. isbn: 978-3-642-75883-6.

[7] M.S. Arulampalam et al. “A Tutorial on Particle Filters for Online Nonlinear/Non-
Gaussian Bayesian Tracking.” In: IEEE Transactions on Signal Processing 50.2 (Feb.
2002), pp. 174–188. issn: 1941-0476. doi: 10.1109/78.978374.

[8] Vepa Atamuradov et al. “Railway Point Machine Prognostics Based on Feature Fu-
sion and Health State Assessment.” In: IEEE Transactions on Instrumentation and
Measurement 68.8 (Aug. 2019), pp. 2691–2704. issn: 0018-9456, 1557-9662. doi: 10.
1109/TIM.2018.2869193.

[9] P. Baraldi, G. Bonfanti, and E. Zio. “Differential Evolution-Based Multi-Objective
Optimization for the Definition of a Health Indicator for Fault Diagnostics and Prog-
nostics.” In: Mechanical Systems and Signal Processing 102 (Mar. 2018), pp. 382–400.
issn: 0888-3270. doi: 10.1016/j.ymssp.2017.09.013.

https://doi.org/10.1016/j.ymssp.2007.02.003
https://doi.org/10.1016/j.ymssp.2007.02.003
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.rser.2014.01.069
https://doi.org/10.1016/j.ress.2018.02.003
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/TIM.2018.2869193
https://doi.org/10.1109/TIM.2018.2869193
https://doi.org/10.1016/j.ymssp.2017.09.013

154 Bibliography

[10] Ole E. Barndorff-Nielsen, Thomas Mikosch, and Sidney I. Resnick. Lévy Processes:
Theory and Applications. Springer Science & Business Media, Mar. 2001. isbn: 978-
0-8176-4167-2.

[11] Luis Basora, Xavier Olive, and Thomas Dubot. “Recent Advances in Anomaly De-
tection Methods Applied to Aviation.” In: Aerospace 6.11 (Nov. 2019), p. 117. issn:
2226-4310. doi: 10.3390/aerospace6110117.

[12] Satyanarayana Reddy Beeram and Swarna Kuchibhotla. “Time Series Analysis on
Univariate and Multivariate Variables: A Comprehensive Survey.” In: Communication
Software and Networks. Ed. by Suresh Chandra Satapathy et al. Lecture Notes in
Networks and Systems. Singapore: Springer, 2021, pp. 119–126. isbn: 9789811553974.
doi: 10.1007/978-981-15-5397-4_13.

[13] T. Benkedjouh et al. “Remaining Useful Life Estimation Based on Nonlinear Feature
Reduction and Support Vector Regression.” In: Engineering Applications of Artificial
Intelligence 26.7 (Aug. 2013), pp. 1751–1760. issn: 0952-1976. doi: 10.1016/j.
engappai.2013.02.006.

[14] Maximilian Benker, Artem Bliznyuk, and Michael F. Zaeh. “A Gaussian Process
Based Method for Data- Efficient Remaining Useful Life Estimation.” In: IEEE Access
9 (2021), pp. 137470–137482. issn: 2169-3536. doi: 10.1109/ACCESS.2021.3116813.

[15] Gérard Biau and Erwan Scornet. “A Random Forest Guided Tour.” In: TEST 25.2
(June 2016), pp. 197–227. issn: 1863-8260. doi: 10.1007/s11749-016-0481-7.

[16] Box and Jenkins: Time Series Analysis, Forecasting and Control | SpringerLink.
https://link.springer.com/chapter/10.1057/9781137291264_6.

[17] Janet M. Box-Steffensmeier et al. Time Series Analysis for the Social Sciences. An-
alytical Methods for Social Research. Cambridge: Cambridge University Press, 2014.
isbn: 978-0-521-87116-7. doi: 10.1017/CBO9781139025287.

[18] Rasmus Bro and Age K. Smilde. “Principal Component Analysis.” In: Analytical
Methods 6.9 (2014), pp. 2812–2831. doi: 10.1039/C3AY41907J.

[19] Jane Bromley et al. “Signature Verification Using a "Siamese" Time Delay Neural
Network.” In: Advances in Neural Information Processing Systems. Vol. 6. Morgan-
Kaufmann, 1993, p. 8.

[20] F. Cadini et al. “State-of-Life Prognosis and Diagnosis of Lithium-Ion Batteries by
Data-Driven Particle Filters.” In: Applied Energy 235 (Feb. 2019), pp. 661–672. issn:
0306-2619. doi: 10.1016/j.apenergy.2018.10.095.

[21] Francesco Cadini et al. “Particle Filtering-Based Adaptive Training of Neural Net-
works for Real-Time Structural Damage Diagnosis and Prognosis.” In: Structural
Control and Health Monitoring 26.12 (2019), e2451. issn: 1545-2263. doi: 10.1002/
stc.2451.

[22] Fatih Cakir et al. “Deep Metric Learning to Rank.” In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE,
June 2019, pp. 1861–1870. isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00196.

https://doi.org/10.3390/aerospace6110117
https://doi.org/10.1007/978-981-15-5397-4_13
https://doi.org/10.1016/j.engappai.2013.02.006
https://doi.org/10.1016/j.engappai.2013.02.006
https://doi.org/10.1109/ACCESS.2021.3116813
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1017/CBO9781139025287
https://doi.org/10.1039/C3AY41907J
https://doi.org/10.1016/j.apenergy.2018.10.095
https://doi.org/10.1002/stc.2451
https://doi.org/10.1002/stc.2451
https://doi.org/10.1109/CVPR.2019.00196

Bibliography 155

[23] Yudong Cao et al. “A Novel Temporal Convolutional Network with Residual Self-
Attention Mechanism for Remaining Useful Life Prediction of Rolling Bearings.” In:
Reliability Engineering & System Safety 215 (Nov. 2021), p. 107813. issn: 0951-8320.
doi: 10.1016/j.ress.2021.107813.

[24] Stanislas Chambon et al. “A Deep Learning Architecture for Temporal Sleep Stage
Classification Using Multivariate and Multimodal Time Series.” In: IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering 26.4 (Apr. 2018), pp. 758–
769. issn: 1558-0210. doi: 10.1109/TNSRE.2018.2813138.

[25] S.G. Chang, Bin Yu, and M. Vetterli. “Adaptive Wavelet Thresholding for Image De-
noising and Compression.” In: IEEE Transactions on Image Processing 9.9 (Sept./2000),
pp. 1532–1546. issn: 10577149. doi: 10.1109/83.862633.

[26] Abdallah Chehade, Scott Bonk, and Kaibo Liu. “Sensory-Based Failure Threshold
Estimation for Remaining Useful Life Prediction.” In: IEEE Transactions on Relia-
bility 66.3 (Sept. 2017), pp. 939–949. issn: 0018-9529, 1558-1721. doi: 10.1109/TR.
2017.2695119.

[27] Dingliang Chen et al. “Health Indicator Construction by Quadratic Function-Based
Deep Convolutional Auto-Encoder and Its Application into Bearing RUL Prediction.”
In: ISA Transactions 114 (Aug. 2021), pp. 44–56. issn: 0019-0578. doi: 10.1016/j.
isatra.2020.12.052.

[28] Jiayu Chen et al. “A Novel Health Indicator for PEMFC State of Health Estimation
and Remaining Useful Life Prediction.” In: International Journal of Hydrogen Energy
42.31 (Aug. 2017), pp. 20230–20238. issn: 0360-3199. doi: 10.1016/j.ijhydene.
2017.05.241.

[29] Longting Chen et al. “Health Indicator Construction of Machinery Based on End-to-
End Trainable Convolution Recurrent Neural Networks.” In: Journal of Manufactur-
ing Systems 54 (Jan. 2020), pp. 1–11. issn: 0278-6125. doi: 10.1016/j.jmsy.2019.
11.008.

[30] Tianqi Chen and Tong He. “Xgboost: eXtreme Gradient Boosting.” In: ().

[31] Davide Chicco. “Siamese Neural Networks: An Overview.” In: Artificial Neural Net-
works. Ed. by Hugh Cartwright. Methods in Molecular Biology. New York, NY:
Springer US, 2021, pp. 73–94. isbn: 978-1-07-160826-5. doi: 10.1007/978-1-0716-
0826-5_3.

[32] Edwin K P Chong. “An Introduction to Optimization.” In: ().

[33] William S. Cleveland. “Robust Locally Weighted Regression and Smoothing Scat-
terplots.” In: Journal of the American Statistical Association 74.368 (Dec. 1979),
pp. 829–836. issn: 0162-1459. doi: 10.1080/01621459.1979.10481038.

[34] Jamie Coble and J. Wesley Hines. “Identifying Optimal Prognostic Parameters from
Data: A Genetic Algorithms Approach.” In: Annual Conference of the PHM Society
1.1 (2009). issn: 2325-0178.

https://doi.org/10.1016/j.ress.2021.107813
https://doi.org/10.1109/TNSRE.2018.2813138
https://doi.org/10.1109/83.862633
https://doi.org/10.1109/TR.2017.2695119
https://doi.org/10.1109/TR.2017.2695119
https://doi.org/10.1016/j.isatra.2020.12.052
https://doi.org/10.1016/j.isatra.2020.12.052
https://doi.org/10.1016/j.ijhydene.2017.05.241
https://doi.org/10.1016/j.ijhydene.2017.05.241
https://doi.org/10.1016/j.jmsy.2019.11.008
https://doi.org/10.1016/j.jmsy.2019.11.008
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1080/01621459.1979.10481038

156 Bibliography

[35] Computational Intelligence in Time Series Forecasting. Advances in Industrial Con-
trol. London: Springer-Verlag, 2005. isbn: 978-1-85233-948-7. doi: 10 . 1007 / 1 -
84628-184-9.

[36] Noel Cressie. “The Origins of Kriging.” In: Mathematical Geology 22.3 (Apr. 1990),
pp. 239–252. issn: 1573-8868. doi: 10.1007/BF00889887.

[37] Padraig Cunningham, Matthieu Cord, and Sarah Delany. “Supervised Learning.” In:
Jan. 2008, pp. 21–49. isbn: 978-3-540-75170-0. doi: 10.1007/978-3-540-75171-7_2.

[38] Marco Cuturi and Arnaud Doucet. Autoregressive Kernels For Time Series. Jan.
2011. doi: 10.48550/arXiv.1101.0673. arXiv: 1101.0673 [stat].

[39] Perry de Valpine. “Review of Methods for Fitting Time-Series Models with Pro-
cess and Observation Error and Likelihood Calculations for Nonlinear, Non-gaussian
State-Space Models.” In: Bulletin of Marine Science 70.2 (Mar. 2002), pp. 455–471.

[40] K. C. Deekshit Kompella, Mannam Venu Gopala Rao, and Rayapudi Srinivasa Rao.
“Bearing Fault Detection in a 3 Phase Induction Motor Using Stator Current Fre-
quency Spectral Subtraction with Various Wavelet Decomposition Techniques.” In:
Ain Shams Engineering Journal 9.4 (Dec. 2018), pp. 2427–2439. issn: 2090-4479. doi:
10.1016/j.asej.2017.06.002.

[41] Li Deng, Geoffrey Hinton, and Brian Kingsbury. “New Types of Deep Neural Network
Learning for Speech Recognition and Related Applications: An Overview.” In: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing. May 2013,
pp. 8599–8603. doi: 10.1109/ICASSP.2013.6639344.

[42] Sachin Desale et al. “Heuristic and Meta-Heuristic Algorithms and Their Relevance
to the Real World: A Survey.” In: INTERNATIONAL JOURNAL OF COMPUTER
ENGINEERING IN RESEARCH TRENDS 2.5 (2015).

[43] Reik V. Donner et al., eds. Nonlinear Time Series Analysis in the Geosciences: Appli-
cations in Climatology, Geodynamics and Solar-Terrestrial Physics. Vol. 112. Lecture
Notes in Earth Sciences. Berlin, Heidelberg: Springer, 2008. isbn: 978-3-540-78937-6
978-3-540-78938-3. doi: 10.1007/978-3-540-78938-3.

[44] Marco Dorigo and Thomas Stützle. “Ant Colony Optimization: Overview and Recent
Advances.” In: Handbook of Metaheuristics. Ed. by Michel Gendreau and Jean-Yves
Potvin. International Series in Operations Research & Management Science. Cham:
Springer International Publishing, 2019, pp. 311–351. isbn: 978-3-319-91086-4. doi:
10.1007/978-3-319-91086-4_10.

[45] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. “On Sequential Monte Carlo
Sampling Methods for Bayesian Filtering.” In: Statistics and Computing 10.3 (July
2000), pp. 197–208. issn: 1573-1375. doi: 10.1023/A:1008935410038.

[46] Kathryn Anne Dowsland and Jonathan Thompson. “Simulated Annealing.” In: Hand-
book of Natural Computing. Ed. by Grzegorz Rozenberg, Thomas Back, and Joost
N. Kok. Springer-Verlag, July 2012, pp. 1623–1655. isbn: 978-3-540-92909-3. doi:
10.1007/978-3-540-92910-9_49.

https://doi.org/10.1007/1-84628-184-9
https://doi.org/10.1007/1-84628-184-9
https://doi.org/10.1007/BF00889887
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.48550/arXiv.1101.0673
https://arxiv.org/abs/1101.0673
https://doi.org/10.1016/j.asej.2017.06.002
https://doi.org/10.1109/ICASSP.2013.6639344
https://doi.org/10.1007/978-3-540-78938-3
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.1007/978-3-540-92910-9_49

Bibliography 157

[47] Elhoussin Elbouchikhi et al. “An Efficient Hilbert–Huang Transform-Based Bearing
Faults Detection in Induction Machines.” In: IEEE Transactions on Energy Con-
version 32.2 (June 2017), pp. 401–413. issn: 1558-0059. doi: 10.1109/TEC.2017.
2661541.

[48] Sascha M. M. Fässler et al. “Does Larval Mortality Influence Population Dynamics?
An Analysis of North Sea Herring (Clupea Harengus) Time Series.” In: Fisheries
Oceanography 20.6 (2011), pp. 530–543. issn: 1365-2419. doi: 10.1111/j.1365-
2419.2011.00600.x.

[49] Olga Fink, Enrico Zio, and Ulrich Weidmann. “Fuzzy Classification With Restricted
Boltzman Machines and Echo-State Networks for Predicting Potential Railway Door
System Failures.” In: IEEE Transactions on Reliability 64.3 (Sept. 2015), pp. 861–
868. issn: 1558-1721. doi: 10.1109/TR.2015.2424213.

[50] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. “Unsupervised Scal-
able Representation Learning for Multivariate Time Series.” In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019, p. 12.

[51] J. F. G. de Freitas et al. “Sequential Monte Carlo Methods to Train Neural Network
Models.” In: Neural Computation 12.4 (Apr. 2000), pp. 955–993. issn: 0899-7667.
doi: 10.1162/089976600300015664.

[52] Roger Frigola. “Bayesian Time Series Learning with Gaussian Processes.” PhD thesis.
University of Cambridge, Aug. 2015.

[53] Song Fu et al. “A Novel Time-Series Memory Auto-Encoder With Sequentially Up-
dated Reconstructions for Remaining Useful Life Prediction.” In: IEEE Transactions
on Neural Networks and Learning Systems PP (June 2021), pp. 1–12. doi: 10.1109/
TNNLS.2021.3084249.

[54] Nagi Gebraeel. “Sensory-Updated Residual Life Distributions for Components With
Exponential Degradation Patterns.” In: Automation Science and Engineering, IEEE
Transactions on 3 (Nov. 2006), pp. 382–393. doi: 10.1109/TASE.2006.876609.

[55] Zoubin Ghahramani. “Unsupervised Learning.” In: Advanced Lectures on Machine
Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003,
Tübingen, Germany, August 4 - 16, 2003, Revised Lectures. Ed. by Olivier Bousquet,
Ulrike von Luxburg, and Gunnar Rätsch. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2004, pp. 72–112. isbn: 978-3-540-28650-9. doi: 10.1007/978-
3-540-28650-9_5.

[56] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
Nov. 2016. isbn: 978-0-262-33737-3.

[57] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel Approach to Nonlinear/Non-
Gaussian Bayesian State Estimation.” In: IEE Proceedings F (Radar and Signal Pro-
cessing) 140.2 (Apr. 1993), pp. 107–113. issn: 2053-9045. doi: 10.1049/ip- f-
2.1993.0015.

https://doi.org/10.1109/TEC.2017.2661541
https://doi.org/10.1109/TEC.2017.2661541
https://doi.org/10.1111/j.1365-2419.2011.00600.x
https://doi.org/10.1111/j.1365-2419.2011.00600.x
https://doi.org/10.1109/TR.2015.2424213
https://doi.org/10.1162/089976600300015664
https://doi.org/10.1109/TNNLS.2021.3084249
https://doi.org/10.1109/TNNLS.2021.3084249
https://doi.org/10.1109/TASE.2006.876609
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1049/ip-f-2.1993.0015

158 Bibliography

[58] Henry Gouk et al. “Regularisation of Neural Networks by Enforcing Lipschitz Con-
tinuity.” In: Machine Learning 110.2 (Feb. 2021), pp. 393–416. issn: 1573-0565. doi:
10.1007/s10994-020-05929-w.

[59] Mikhail Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces.
Modern Birkhäuser Classics. Boston, MA: Birkhäuser, 2007. isbn: 978-0-8176-4582-
3. doi: 10.1007/978-0-8176-4583-0.

[60] Narendhar Gugulothu et al. “Predicting Remaining Useful Life Using Time Series
Embeddings Based on Recurrent Neural Networks.” In: arXiv:1709.01073 [cs] (Oct.
2017). arXiv: 1709.01073 [cs].

[61] Jie Gui et al. A Survey of Self-supervised Learning from Multiple Perspectives: Al-
gorithms, Applications and Future Trends. Aug. 2023. doi: 10.48550/arXiv.2301.
05712. arXiv: 2301.05712 [cs].

[62] Liang Guo et al. “A Recurrent Neural Network Based Health Indicator for Remaining
Useful Life Prediction of Bearings.” In: Neurocomputing 240 (May 2017), pp. 98–109.
issn: 09252312. doi: 10.1016/j.neucom.2017.02.045.

[63] Ashish Gupta et al. “An Unseen Fault Classification Approach for Smart Appliances
Using Ongoing Multivariate Time Series.” In: IEEE Transactions on Industrial Infor-
matics 17.6 (June 2021), pp. 3731–3738. issn: 1941-0050. doi: 10.1109/TII.2020.
3016590.

[64] Mai Lan Ha and Volker Blanz. “Deep Ranking with Adaptive Margin Triplet Loss.”
In: arXiv:2107.06187 [cs] (July 2021). arXiv: 2107.06187 [cs].

[65] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality Reduction by Learning an
Invariant Mapping.” In: 2006 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’06). Vol. 2. June 2006, pp. 1735–1742. doi:
10.1109/CVPR.2006.100.

[66] David Heckerman. “A Tutorial on Learning with Bayesian Networks.” In: Innovations
in Bayesian Networks: Theory and Applications. Ed. by Dawn E. Holmes and Lakhmi
C. Jain. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2008,
pp. 33–82. isbn: 978-3-540-85066-3. doi: 10.1007/978-3-540-85066-3_3.

[67] Ahmed Zakariae Hinchi and Mohamed Tkiouat. “Rolling Element Bearing Remain-
ing Useful Life Estimation Based on a Convolutional Long-Short-Term Memory Net-
work.” In: Procedia Computer Science. PROCEEDINGS OF THE FIRST INTER-
NATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCI-
ENCES, ICDS2017 127 (Jan. 2018), pp. 123–132. issn: 1877-0509. doi: 10.1016/j.
procs.2018.01.106.

[68] C. Hu et al. “A Prognostic Model Based on DBN and Diffusion Process for De-
grading Bearing.” In: IEEE Transactions on Industrial Electronics 67.10 (Oct. 2020),
pp. 8767–8777. issn: 1557-9948. doi: 10.1109/TIE.2019.2947839.

https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/978-0-8176-4583-0
https://arxiv.org/abs/1709.01073
https://doi.org/10.48550/arXiv.2301.05712
https://doi.org/10.48550/arXiv.2301.05712
https://arxiv.org/abs/2301.05712
https://doi.org/10.1016/j.neucom.2017.02.045
https://doi.org/10.1109/TII.2020.3016590
https://doi.org/10.1109/TII.2020.3016590
https://arxiv.org/abs/2107.06187
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1007/978-3-540-85066-3_3
https://doi.org/10.1016/j.procs.2018.01.106
https://doi.org/10.1016/j.procs.2018.01.106
https://doi.org/10.1109/TIE.2019.2947839

Bibliography 159

[69] Xiaoxi Hu et al. “Data-Driven Technology of Fault Diagnosis in Railway Point Ma-
chines: Review and Challenges.” In: Transportation Safety and Environment 4.4 (Dec.
2022), tdac036. issn: 2631-4428. doi: 10.1093/tse/tdac036.

[70] Cheng Hua et al. “Performance Reliability Estimation Method Based on Adaptive
Failure Threshold.” In: Mechanical Systems and Signal Processing 36.2 (Apr. 2013),
pp. 505–519. issn: 0888-3270. doi: 10.1016/j.ymssp.2012.10.019.

[71] Cheng-Geng Huang et al. “A Novel Deep Convolutional Neural Network-Bootstrap
Integrated Method for RUL Prediction of Rolling Bearing.” In: Journal of Manufac-
turing Systems (Mar. 2021). issn: 0278-6125. doi: 10.1016/j.jmsy.2021.03.012.

[72] Henry Jackson. “Race, Economy and Punishment: Inequity and Racial Disparity in
Imprisonment, 1972–2002.” In: Criminal Justice Studies 27.2 (Apr. 2014), pp. 226–
243. issn: 1478-601X. doi: 10.1080/1478601X.2013.870073.

[73] Andrew R. Jacobson et al. “Climate Forcing and Density Dependence in a Mountain
Ungulate Population.” In: Ecology 85.6 (2004), pp. 1598–1610. issn: 1939-9170. doi:
10.1890/02-0753.

[74] Tim Januschowski et al. “Forecasting with Trees.” In: International Journal of Fore-
casting. Special Issue: M5 Competition 38.4 (Oct. 2022), pp. 1473–1481. issn: 0169-
2070. doi: 10.1016/j.ijforecast.2021.10.004.

[75] Kamran Javed, Rafael Gouriveau, and Noureddine Zerhouni. “Novel Failure Prog-
nostics Approach with Dynamic Thresholds for Machine Degradation.” In: IECON
2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. Vienna,
Austria: IEEE, Nov. 2013, pp. 4404–4409. isbn: 978-1-4799-0224-8. doi: 10.1109/
IECON.2013.6699844.

[76] Ranjeet Ranjan Jha et al. “HLGSNet: Hierarchical and Lightweight Graph Siamese
Network with Triplet Loss for fMRI-based Classification of ADHD.” In: 2020 Inter-
national Joint Conference on Neural Networks (IJCNN). July 2020, pp. 1–7. doi:
10.1109/IJCNN48605.2020.9207667.

[77] Jianfang Jia et al. “SOH and RUL Prediction of Lithium-Ion Batteries Based on
Gaussian Process Regression with Indirect Health Indicators.” In: Energies 13.2 (Jan.
2020), p. 375. doi: 10.3390/en13020375.

[78] Sun Jianzhong et al. “Study of Ensemble Learning-Based Fusion Prognostics.” In:
2010 Prognostics and System Health Management Conference. Jan. 2010, pp. 1–7.
doi: 10.1109/PHM.2010.5414582.

[79] Ruihua Jiao et al. “Fault Monitoring and Remaining Useful Life Prediction Framework
for Multiple Fault Modes in Prognostics.” In: Reliability Engineering & System Safety
203 (Nov. 2020), p. 107028. issn: 0951-8320. doi: 10.1016/j.ress.2020.107028.

[80] Michael L. Johnson and Lindsay M. Faunt. “[1] Parameter Estimation by Least-
Squares Methods.” In: Methods in Enzymology. Vol. 210. Numerical Computer Meth-
ods. Academic Press, Jan. 1992, pp. 1–37. doi: 10.1016/0076-6879(92)10003-V.

https://doi.org/10.1093/tse/tdac036
https://doi.org/10.1016/j.ymssp.2012.10.019
https://doi.org/10.1016/j.jmsy.2021.03.012
https://doi.org/10.1080/1478601X.2013.870073
https://doi.org/10.1890/02-0753
https://doi.org/10.1016/j.ijforecast.2021.10.004
https://doi.org/10.1109/IECON.2013.6699844
https://doi.org/10.1109/IECON.2013.6699844
https://doi.org/10.1109/IJCNN48605.2020.9207667
https://doi.org/10.3390/en13020375
https://doi.org/10.1109/PHM.2010.5414582
https://doi.org/10.1016/j.ress.2020.107028
https://doi.org/10.1016/0076-6879(92)10003-V

160 Bibliography

[81] Santosh Kabbur, Xia Ning, and George Karypis. “FISM: Factored Item Similarity
Models for Top-N Recommender Systems.” In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’13. New
York, NY, USA: Association for Computing Machinery, Aug. 2013, pp. 659–667. isbn:
978-1-4503-2174-7. doi: 10.1145/2487575.2487589.

[82] Zhao Kang, Chong Peng, and Qiang Cheng. “Kernel-Driven Similarity Learning.” In:
Neurocomputing 267 (Dec. 2017), pp. 210–219. issn: 0925-2312. doi: 10.1016/j.
neucom.2017.06.005.

[83] Nikolas Kantas et al. “On Particle Methods for Parameter Estimation in State-Space
Models.” In: Statistical Science 30.3 (Aug. 2015). issn: 0883-4237. doi: 10.1214/14-
STS511. arXiv: 1412.8695 [stat].

[84] Guolin Ke et al. “LightGBM: A Highly Efficient Gradient Boosting Decision Tree.”
In: Advances in Neural Information Processing Systems. Vol. 30. Curran Associates,
Inc., 2017.

[85] J. Kennedy and R. Eberhart. “Particle Swarm Optimization.” In: Proceedings of
ICNN’95 - International Conference on Neural Networks. Vol. 4. Nov. 1995, 1942–
1948 vol.4. doi: 10.1109/ICNN.1995.488968.

[86] Abbas Khosravi et al. “Comprehensive Review of Neural Network-Based Prediction
Intervals and New Advances.” In: IEEE Transactions on Neural Networks 22.9 (Sept.
2011), pp. 1341–1356. issn: 1941-0093. doi: 10.1109/TNN.2011.2162110.

[87] Phattara Khumprom and Nita Yodo. “A Data-Driven Predictive Prognostic Model
for Lithium-ion Batteries Based on a Deep Learning Algorithm.” In: Energies 12.4
(Jan. 2019), p. 660. doi: 10.3390/en12040660.

[88] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980 [cs].

[89] Alex Kosgodagan-Dalla Torre et al. “Representing Markov processes as dynamic non-
parametric Bayesian networks.” In: HAL 2017.0 (2017).

[90] S. B. Kotsiantis. “Decision Trees: A Recent Overview.” In: Artificial Intelligence Re-
view 39.4 (Apr. 2013), pp. 261–283. issn: 1573-7462. doi: 10.1007/s10462-011-
9272-4.

[91] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks.” In: Advances in Neural Information Pro-
cessing Systems. Vol. 25. Curran Associates, Inc., 2012.

[92] Brian Kulis. “Metric Learning: A Survey.” In: Foundations and Trends® in Machine
Learning 5.4 (July 2013), pp. 287–364. issn: 1935-8237, 1935-8245. doi: 10.1561/
2200000019.

[93] Anil Kumar et al. “State-Space Modeling and Novel Entropy-Based Health Indicator
for Dynamic Degradation Monitoring of Rolling Element Bearing.” In: Reliability
Engineering & System Safety 221 (May 2022), p. 108356. issn: 0951-8320. doi: 10.
1016/j.ress.2022.108356.

https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1016/j.neucom.2017.06.005
https://doi.org/10.1016/j.neucom.2017.06.005
https://doi.org/10.1214/14-STS511
https://doi.org/10.1214/14-STS511
https://arxiv.org/abs/1412.8695
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/TNN.2011.2162110
https://doi.org/10.3390/en12040660
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1561/2200000019
https://doi.org/10.1561/2200000019
https://doi.org/10.1016/j.ress.2022.108356
https://doi.org/10.1016/j.ress.2022.108356

Bibliography 161

[94] Ashutosh Kumar Dubey et al. “Study and Analysis of SARIMA and LSTM in Fore-
casting Time Series Data.” In: Sustainable Energy Technologies and Assessments 47
(Oct. 2021), p. 101474. issn: 2213-1388. doi: 10.1016/j.seta.2021.101474.

[95] Divina Lawrance and Suja Palaniswamy. “Emotion Recognition from Facial Expres-
sions for 3D Videos Using Siamese Network.” In: 2021 International Conference
on Communication, Control and Information Sciences (ICCISc). Vol. 1. June 2021,
pp. 1–6. doi: 10.1109/ICCISc52257.2021.9484949.

[96] Jay Lee et al. “Prognostics and Health Management Design for Rotary Machinery Sys-
tems—Reviews, Methodology and Applications.” In: Mechanical Systems and Signal
Processing 42.1 (Jan. 2014), pp. 314–334. issn: 0888-3270. doi: 10.1016/j.ymssp.
2013.06.004.

[97] Yaguo Lei et al. “A Model-Based Method for Remaining Useful Life Prediction of
Machinery.” In: IEEE Transactions on Reliability 65.3 (Sept. 2016), pp. 1314–1326.
issn: 0018-9529, 1558-1721. doi: 10.1109/TR.2016.2570568.

[98] Yaguo Lei et al. “Machinery Health Prognostics: A Systematic Review from Data
Acquisition to RUL Prediction.” In: Mechanical Systems and Signal Processing 104
(May 2018), pp. 799–834. issn: 0888-3270. doi: 10.1016/j.ymssp.2017.11.016.

[99] Hongru Li et al. “A Novel Method Based upon Modified Composite Spectrum and
Relative Entropy for Degradation Feature Extraction of Hydraulic Pump.” In: Me-
chanical Systems and Signal Processing 114 (Jan. 2019), pp. 399–412. issn: 0888-3270.
doi: 10.1016/j.ymssp.2018.04.040.

[100] Hua Li et al. “Application of EEMD and Improved Frequency Band Entropy in Bear-
ing Fault Feature Extraction.” In: ISA Transactions 88 (May 2019), pp. 170–185.
issn: 0019-0578. doi: 10.1016/j.isatra.2018.12.002.

[101] Naipeng Li et al. “A Wiener-Process-Model-Based Method for Remaining Useful Life
Prediction Considering Unit-to-Unit Variability.” In: IEEE Transactions on Industrial
Electronics 66.3 (Mar. 2019), pp. 2092–2101. issn: 0278-0046, 1557-9948. doi: 10.
1109/TIE.2018.2838078.

[102] Naipeng Li et al. “An Improved Exponential Model for Predicting Remaining Useful
Life of Rolling Element Bearings.” In: IEEE Transactions on Industrial Electronics
62.12 (Dec. 2015), pp. 7762–7773. issn: 0278-0046, 1557-9948. doi: 10.1109/TIE.
2015.2455055.

[103] Penghua Li et al. “State-of-Health Estimation and Remaining Useful Life Prediction
for the Lithium-Ion Battery Based on a Variant Long Short Term Memory Neural
Network.” In: Journal of Power Sources 459 (May 2020), p. 228069. issn: 0378-7753.
doi: 10.1016/j.jpowsour.2020.228069.

[104] Ting Li, Shuguang He, and Xiujie Zhao. “Optimal Warranty Policy Design for De-
teriorating Products with Random Failure Threshold.” In: Reliability Engineering &
System Safety 218 (Feb. 2022), p. 108142. issn: 0951-8320. doi: 10.1016/j.ress.
2021.108142.

https://doi.org/10.1016/j.seta.2021.101474
https://doi.org/10.1109/ICCISc52257.2021.9484949
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1109/TR.2016.2570568
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.ymssp.2018.04.040
https://doi.org/10.1016/j.isatra.2018.12.002
https://doi.org/10.1109/TIE.2018.2838078
https://doi.org/10.1109/TIE.2018.2838078
https://doi.org/10.1109/TIE.2015.2455055
https://doi.org/10.1109/TIE.2015.2455055
https://doi.org/10.1016/j.jpowsour.2020.228069
https://doi.org/10.1016/j.ress.2021.108142
https://doi.org/10.1016/j.ress.2021.108142

162 Bibliography

[105] Xiang Li, Wei Zhang, and Qian Ding. “Deep Learning-Based Remaining Useful Life
Estimation of Bearings Using Multi-Scale Feature Extraction.” In: Reliability Engi-
neering & System Safety 182 (Feb. 2019), pp. 208–218. issn: 0951-8320. doi: 10.
1016/j.ress.2018.11.011.

[106] Xin Li et al. “Tipping Point Detection Using Reservoir Computing.” In: Research 6
(July 2023), p. 0174. doi: 10.34133/research.0174.

[107] L. Liao and F. Köttig. “Review of Hybrid Prognostics Approaches for Remaining
Useful Life Prediction of Engineered Systems, and an Application to Battery Life
Prediction.” In: IEEE Transactions on Reliability 63.1 (Mar. 2014), pp. 191–207.
issn: 1558-1721. doi: 10.1109/TR.2014.2299152.

[108] Linxia Liao, Wenjing Jin, and Radu Pavel. “Enhanced Restricted Boltzmann Ma-
chine With Prognosability Regularization for Prognostics and Health Assessment.”
In: IEEE Transactions on Industrial Electronics 63.11 (Nov. 2016), pp. 7076–7083.
issn: 1557-9948. doi: 10.1109/TIE.2016.2586442.

[109] Bryan Lim et al. “Temporal Fusion Transformers for Interpretable Multi-horizon Time
Series Forecasting.” In: arXiv:1912.09363 [cs, stat] (Sept. 2020). arXiv: 1912.09363
[cs, stat].

[110] D. Liu et al. “A Health Indicator Extraction and Optimization Framework for Lithium-
Ion Battery Degradation Modeling and Prognostics.” In: IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems 45.6 (June 2015), pp. 915–928. issn: 2168-2232.
doi: 10.1109/TSMC.2015.2389757.

[111] Kaibo Liu, Abdallah Chehade, and Changyue Song. “Optimize the Signal Quality of
the Composite Health Index via Data Fusion for Degradation Modeling and Prognos-
tic Analysis.” In: IEEE Transactions on Automation Science and Engineering 14.3
(July 2017), pp. 1504–1514. issn: 1545-5955, 1558-3783. doi: 10.1109/TASE.2015.
2446752.

[112] Mengsi Liu et al. “Mixed Similarity Learning for Recommendation with Implicit Feed-
back.” In: Knowledge-Based Systems 119 (Mar. 2017), pp. 178–185. issn: 0950-7051.
doi: 10.1016/j.knosys.2016.12.010.

[113] Yingchao Liu, Xiaofeng Hu, and Wenjuan Zhang. “Remaining Useful Life Prediction
Based on Health Index Similarity.” In: Reliability Engineering & System Safety 185
(May 2019), pp. 502–510. issn: 0951-8320. doi: 10.1016/j.ress.2019.02.002.

[114] C. Joseph Lu and William O. Meeker. “Using Degradation Measures to Estimate a
Time-to-Failure Distribution.” In: Technometrics 35.2 (May 1993), pp. 161–174. issn:
0040-1706. doi: 10.1080/00401706.1993.10485038.

[115] David Luengo et al. “A Survey of Monte Carlo Methods for Parameter Estimation.”
In: EURASIP Journal on Advances in Signal Processing 2020.1 (May 2020), p. 25.
issn: 1687-6180. doi: 10.1186/s13634-020-00675-6.

https://doi.org/10.1016/j.ress.2018.11.011
https://doi.org/10.1016/j.ress.2018.11.011
https://doi.org/10.34133/research.0174
https://doi.org/10.1109/TR.2014.2299152
https://doi.org/10.1109/TIE.2016.2586442
https://arxiv.org/abs/1912.09363
https://arxiv.org/abs/1912.09363
https://doi.org/10.1109/TSMC.2015.2389757
https://doi.org/10.1109/TASE.2015.2446752
https://doi.org/10.1109/TASE.2015.2446752
https://doi.org/10.1016/j.knosys.2016.12.010
https://doi.org/10.1016/j.ress.2019.02.002
https://doi.org/10.1080/00401706.1993.10485038
https://doi.org/10.1186/s13634-020-00675-6

Bibliography 163

[116] Helmut Lütkepohl. “Chapter 6 Forecasting with VARMA Models.” In: Handbook of
Economic Forecasting. Ed. by G. Elliott, C. W. J. Granger, and A. Timmermann.
Vol. 1. Elsevier, Jan. 2006, pp. 287–325. doi: 10.1016/S1574-0706(05)01006-2.

[117] Biao Ma et al. “Similarity-Based Failure Threshold Determination for System Resid-
ual Life Prediction.” In: Eksploatacja i Niezawodność Vol. 22.no. 3 (2020). issn: 1507-
2711. doi: 10.17531/ein.2020.3.15.

[118] Walter Zucchini MacDonald Iain L. Hidden Markov Models for Time Series: An In-
troduction Using R. New York: Chapman and Hall/CRC, Apr. 2009. isbn: 978-0-429-
13953-6. doi: 10.1201/9781420010893.

[119] James A. Macinko, Leiyu Shi, and Barbara Starfield. “Wage Inequality, the Health
System, and Infant Mortality in Wealthy Industrialized Countries, 1970–1996.” In:
Social Science & Medicine. Adjusting for Market Failure: Challenges in Public Health
Alternatives 58.2 (Jan. 2004), pp. 279–292. issn: 0277-9536. doi: 10.1016/S0277-
9536(03)00200-4.

[120] Chu V. Mai et al. “Surrogate Modeling for Stochastic Dynamical Systems by Combin-
ing Nonlinear Autoregressive with Exogenous Input Models and Polynomial Chaos
Expansions.” In: International Journal for Uncertainty Quantification 6.4 (2016).
issn: 2152-5080, 2152-5099. doi: 10.1615/Int.J.UncertaintyQuantification.
2016016603.

[121] Pankaj Malhotra et al. Multi-Sensor Prognostics Using an Unsupervised Health Index
Based on LSTM Encoder-Decoder. Aug. 2016. arXiv: 1608.06154 [cs].

[122] M. M. Manjurul Islam, Alexander E. Prosvirin, and Jong-Myon Kim. “Data-Driven
Prognostic Scheme for Rolling-Element Bearings Using a New Health Index and Vari-
ants of Least-Square Support Vector Machines.” In: Mechanical Systems and Signal
Processing 160 (Nov. 2021), p. 107853. issn: 0888-3270. doi: 10.1016/j.ymssp.
2021.107853.

[123] Timothy Masters. Practical Neural Network Recipes in C++. USA: Academic Press
Professional, Inc., 1993. isbn: 978-0-12-479040-7.

[124] K. Medjaher, N. Zerhouni, and J. Baklouti. “Data-Driven Prognostics Based on
Health Indicator Construction: Application to PRONOSTIA’s Data.” In: 2013 Eu-
ropean Control Conference (ECC). Zurich: IEEE, July 2013, pp. 1451–1456. isbn:
978-3-033-03962-9. doi: 10.23919/ECC.2013.6669223.

[125] Safyan Aman Memon, Kinaan Aamir Khan, and Hammad Naveed. “HECNet: A Hi-
erarchical Approach to Enzyme Function Classification Using a Siamese Triplet Net-
work.” In: Bioinformatics 36.17 (Nov. 2020), pp. 4583–4589. issn: 1367-4803. doi:
10.1093/bioinformatics/btaa536.

[126] A Mignatti, G Corani, and Andrea-Emilio Rizzoli. “Credal Model Averaging: Dealing
Robustly with Model Uncertainty on Small Data Sets.” In: (), p. 9.

https://doi.org/10.1016/S1574-0706(05)01006-2
https://doi.org/10.17531/ein.2020.3.15
https://doi.org/10.1201/9781420010893
https://doi.org/10.1016/S0277-9536(03)00200-4
https://doi.org/10.1016/S0277-9536(03)00200-4
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016016603
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016016603
https://arxiv.org/abs/1608.06154
https://doi.org/10.1016/j.ymssp.2021.107853
https://doi.org/10.1016/j.ymssp.2021.107853
https://doi.org/10.23919/ECC.2013.6669223
https://doi.org/10.1093/bioinformatics/btaa536

164 Bibliography

[127] Seyedali Mirjalili. “Genetic Algorithm.” In: Evolutionary Algorithms and Neural Net-
works: Theory and Applications. Ed. by Seyedali Mirjalili. Studies in Computational
Intelligence. Cham: Springer International Publishing, 2019, pp. 43–55. isbn: 978-3-
319-93025-1. doi: 10.1007/978-3-319-93025-1_4.

[128] Francesco Carlo Morabito et al. “Chapter 11 - Deep Learning Approaches to Elec-
trophysiological Multivariate Time-Series Analysis∗∗To My Loved Daughter, Valeria.”
In: Artificial Intelligence in the Age of Neural Networks and Brain Computing. Ed. by
Robert Kozma et al. Academic Press, Jan. 2019, pp. 219–243. isbn: 978-0-12-815480-
9. doi: 10.1016/B978-0-12-815480-9.00011-6.

[129] Jorge J. Moré. “The Levenberg-Marquardt Algorithm: Implementation and Theory.”
In: Numerical Analysis. Ed. by G. A. Watson. Vol. 630. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1978, pp. 105–116. isbn: 978-3-540-08538-6 978-3-540-35972-2.
doi: 10.1007/BFb0067700.

[130] Mohammad Amin Morid et al. “Learning Hidden Patterns from Patient Multivariate
Time Series Data Using Convolutional Neural Networks: A Case Study of Healthcare
Cost Prediction.” In: Journal of Biomedical Informatics 111 (Nov. 2020), p. 103565.
issn: 1532-0464. doi: 10.1016/j.jbi.2020.103565.

[131] A. Mosallam, K. Medjaher, and N. Zerhouni. “Data-Driven Prognostic Method Based
on Bayesian Approaches for Direct Remaining Useful Life Prediction.” In: Journal of
Intelligent Manufacturing 27.5 (Oct. 2016), pp. 1037–1048. issn: 0956-5515, 1572-
8145. doi: 10.1007/s10845-014-0933-4.

[132] Robert Moskovitch and Yuval Shahar. “Classification-Driven Temporal Discretization
of Multivariate Time Series.” In: Data Mining and Knowledge Discovery 29.4 (July
2015), pp. 871–913. issn: 1573-756X. doi: 10.1007/s10618-014-0380-z.

[133] Kevin Patrick Murphy. “Dynamic Bayesian Networks: Representation, Inference and
Learning.” PhD thesis. 2002.

[134] Fionn Murtagh, Michael Spagat, and Jorge A. Restrepo. “Ultrametric Wavelet Re-
gression of Multivariate Time Series: Application to Colombian Conflict Analysis.” In:
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
41.2 (Mar. 2011), pp. 254–263. issn: 1558-2426. doi: 10.1109/TSMCA.2010.2064301.

[135] Patrick Nectoux et al. “PRONOSTIA : An Experimental Platform for Bearings Ac-
celerated Degradation Tests.” In: IEEE International Conference on Prognostics and
Health Management, PHM’12. Vol. sur CD ROM. IEEE Catalog Number : CPF12PHM-
CDR, June 2012, p. 1.

[136] Arkadi S. Nemirovski and Michael J. Todd. “Interior-Point Methods for Optimiza-
tion.” In: Acta Numerica 17 (May 2008), pp. 191–234. issn: 1474-0508, 0962-4929.
doi: 10.1017/S0962492906370018.

[137] Paul Newbold. “ARIMA Model Building and the Time Series Analysis Approach to
Forecasting.” In: Journal of Forecasting 2.1 (1983), pp. 23–35. issn: 1099-131X. doi:
10.1002/for.3980020104.

https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1016/B978-0-12-815480-9.00011-6
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1016/j.jbi.2020.103565
https://doi.org/10.1007/s10845-014-0933-4
https://doi.org/10.1007/s10618-014-0380-z
https://doi.org/10.1109/TSMCA.2010.2064301
https://doi.org/10.1017/S0962492906370018
https://doi.org/10.1002/for.3980020104

Bibliography 165

[138] Khanh T. P. Nguyen and Kamal Medjaher. “An Automated Health Indicator Con-
struction Methodology for Prognostics Based on Multi-Criteria Optimization.” In:
ISA Transactions 113 (July 2021), pp. 81–96. issn: 0019-0578. doi: 10.1016/j.
isatra.2020.03.017.

[139] Bent Helge Nystad, Giulio Gola, and John Einar Hulsund. “Lifetime Models for Re-
maining Useful Life Estimation with Randomly Distributed Failure Thresholds.” In:
PHM Society European Conference 1.1 (2012). issn: 2325-016X. doi: 10.36001/
phme.2012.v1i1.1442.

[140] Hideki Oki et al. “Triplet Loss for Knowledge Distillation.” In: 2020 International
Joint Conference on Neural Networks (IJCNN). July 2020, pp. 1–7. doi: 10.1109/
IJCNN48605.2020.9207148.

[141] Charles H. Oppenheimer and Kenneth A. Loparo. “Physically Based Diagnosis and
Prognosis of Cracked Rotor Shafts.” In: Component and Systems Diagnostics, Prog-
nostics, and Health Management II. Vol. 4733. SPIE, July 2002, pp. 122–132. doi:
10.1117/12.475502.

[142] Murphy K. P. “Dynamic Bayesian Networks : Representation, Inference and Learning,
Dissertation.” In: PhD thesis, U.C. Berkley, Dept. Comp. Sci (2002).

[143] Giovanni Pagliarini et al. “Neural-Symbolic Temporal Decision Trees for Multivariate
Time Series Classification.” In: 29th International Symposium on Temporal Represen-
tation and Reasoning (TIME 2022). Ed. by Alexander Artikis, Roberto Posenato, and
Stefano Tonetta. Vol. 247. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 13:1–
13:15. isbn: 978-3-95977-262-4. doi: 10.4230/LIPIcs.TIME.2022.13.

[144] Joan Pellegrino et al. Measurement Science Roadmap for Prognostics and Health
Management for Smart Manufacturing Systems. Tech. rep. NIST AMS 100-2. Na-
tional Institute of Standards and Technology, Sept. 2016, NIST AMS 100–2. doi:
10.6028/NIST.AMS.100-2.

[145] Kaixiang Peng et al. “A Deep Belief Network Based Health Indicator Construction and
Remaining Useful Life Prediction Using Improved Particle Filter.” In: Neurocomputing
361 (Oct. 2019), pp. 19–28. issn: 0925-2312. doi: 10.1016/j.neucom.2019.07.075.

[146] A. Picot et al. “Statistic-Based Spectral Indicator for Bearing Fault Detection in
Permanent-Magnet Synchronous Machines Using the Stator Current.” In: Mechanical
Systems and Signal Processing 46.2 (June 2014), pp. 424–441. issn: 0888-3270. doi:
10.1016/j.ymssp.2014.01.006.

[147] M. Andrea Previtali et al. “Population Dynamics of Two Sympatric Rodents in a
Variable Environment: Rainfall, Resource Availability, and Predation.” In: Ecology
90.7 (2009), pp. 1996–2006. issn: 1939-9170. doi: 10.1890/08-0405.1.

https://doi.org/10.1016/j.isatra.2020.03.017
https://doi.org/10.1016/j.isatra.2020.03.017
https://doi.org/10.36001/phme.2012.v1i1.1442
https://doi.org/10.36001/phme.2012.v1i1.1442
https://doi.org/10.1109/IJCNN48605.2020.9207148
https://doi.org/10.1109/IJCNN48605.2020.9207148
https://doi.org/10.1117/12.475502
https://doi.org/10.4230/LIPIcs.TIME.2022.13
https://doi.org/10.6028/NIST.AMS.100-2
https://doi.org/10.1016/j.neucom.2019.07.075
https://doi.org/10.1016/j.ymssp.2014.01.006
https://doi.org/10.1890/08-0405.1

166 Bibliography

[148] Fang Qian and Gang Niu. “Remaining Useful Life Prediction Using Ranking Mutual
Information Based Monotonic Health Indicator.” In: 2015 Prognostics and System
Health Management Conference (PHM). Oct. 2015, pp. 1–5. doi: 10.1109/PHM.
2015.7380042.

[149] Yuning Qian, Ruqiang Yan, and Robert X. Gao. “A Multi-Time Scale Approach to
Remaining Useful Life Prediction in Rolling Bearing.” In: Mechanical Systems and
Signal Processing 83 (Jan. 2017), pp. 549–567. issn: 0888-3270. doi: 10.1016/j.
ymssp.2016.06.031.

[150] Yi Qin, Jianghong Zhou, and Dingliang Chen. “Unsupervised Health Indicator Con-
struction by a Novel Degradation-Trend-Constrained Variational Autoencoder and
Its Applications.” In: IEEE/ASME Transactions on Mechatronics 27.3 (June 2022),
pp. 1447–1456. issn: 1083-4435, 1941-014X. doi: 10.1109/TMECH.2021.3098737.

[151] Yi Qin et al. “Gated Dual Attention Unit Neural Networks for Remaining Useful Life
Prediction of Rolling Bearings.” In: IEEE Transactions on Industrial Informatics 17.9
(Sept. 2021), pp. 6438–6447. issn: 1941-0050. doi: 10.1109/TII.2020.2999442.

[152] Guangqi Qiu, Yingkui Gu, and Junjie Chen. “Selective Health Indicator for Bearings
Ensemble Remaining Useful Life Prediction with Genetic Algorithm and Weibull
Proportional Hazards Model.” In: Measurement 150 (Jan. 2020), p. 107097. issn:
0263-2241. doi: 10.1016/j.measurement.2019.107097.

[153] Akhand Rai and Jong-Myon Kim. “A Novel Health Indicator Based on the Lyapunov
Exponent, a Probabilistic Self-Organizing Map, and the Gini-Simpson Index for Cal-
culating the RUL of Bearings.” In: Measurement 164 (Nov. 2020), p. 108002. issn:
0263-2241. doi: 10.1016/j.measurement.2020.108002.

[154] Emmanuel Ramasso. “Investigating Computational Geometry for Failure Prognos-
tics.” In: International Journal of Prognostics and Health Management 5.1 (Nov.
2020). issn: 2153-2648, 2153-2648. doi: 10.36001/ijphm.2014.v5i1.2205.

[155] Saeed Ramezani, Alireza Moini, and Mohamad Riahi. “Prognostics and Health Man-
agement in Machinery: A Review of Methodologies for RUL Prediction and Roadmap.”
In: International Journal of Industrial Engineering and Management Science 6.1
(Apr. 2019), pp. 38–61. issn: 2409-1871.

[156] Syama Sundar Rangapuram et al. “Deep State Space Models for Time Series Fore-
casting.” In: Advances in Neural Information Processing Systems. Vol. 31. Curran
Associates, Inc., 2018.

[157] Friedrich Recknagel et al. “Comparative Application of Artificial Neural Networks
and Genetic Algorithms for Multivariate Time-Series Modelling of Algal Blooms in
Freshwater Lakes.” In: Journal of Hydroinformatics 4.2 (Mar. 2002), pp. 125–133.
issn: 1464-7141. doi: 10.2166/hydro.2002.0013.

[158] Fuji Ren and Siyuan Xue. “Intention Detection Based on Siamese Neural Network
With Triplet Loss.” In: IEEE Access 8 (2020), pp. 82242–82254. issn: 2169-3536. doi:
10.1109/ACCESS.2020.2991484.

https://doi.org/10.1109/PHM.2015.7380042
https://doi.org/10.1109/PHM.2015.7380042
https://doi.org/10.1016/j.ymssp.2016.06.031
https://doi.org/10.1016/j.ymssp.2016.06.031
https://doi.org/10.1109/TMECH.2021.3098737
https://doi.org/10.1109/TII.2020.2999442
https://doi.org/10.1016/j.measurement.2019.107097
https://doi.org/10.1016/j.measurement.2020.108002
https://doi.org/10.36001/ijphm.2014.v5i1.2205
https://doi.org/10.2166/hydro.2002.0013
https://doi.org/10.1109/ACCESS.2020.2991484

Bibliography 167

[159] Behnoush Rezaeianjouybari and Yi Shang. “Deep Learning for Prognostics and Health
Management: State of the Art, Challenges, and Opportunities.” In: Measurement 163
(Oct. 2020), p. 107929. issn: 0263-2241. doi: 10.1016/j.measurement.2020.107929.

[160] Marco Rigamonti et al. “Ensemble of Optimized Echo State Networks for Remaining
Useful Life Prediction.” In: Neurocomputing 281 (Mar. 2018), pp. 121–138. issn: 0925-
2312. doi: 10.1016/j.neucom.2017.11.062.

[161] S. Roberts et al. “Gaussian Processes for Time-Series Modelling.” In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 371.1984 (Feb. 2013), p. 20110550. doi: 10.1098/rsta.2011.0550.

[162] Lior Rokach and Oded Maimon. “Clustering Methods.” In: Data Mining and Knowl-
edge Discovery Handbook. Ed. by Oded Maimon and Lior Rokach. Boston, MA:
Springer US, 2005, pp. 321–352. isbn: 978-0-387-25465-4. doi: 10.1007/0- 387-
25465-X_15.

[163] Peter M. Roth et al. “Mahalanobis Distance Learning for Person Re-identification.”
In: Person Re-Identification. Ed. by Shaogang Gong et al. Advances in Computer
Vision and Pattern Recognition. London: Springer, 2014, pp. 247–267. isbn: 978-1-
4471-6296-4. doi: 10.1007/978-1-4471-6296-4_12.

[164] Sebastian Ruder. An Overview of Gradient Descent Optimization Algorithms. June
2017. doi: 10.48550/arXiv.1609.04747. arXiv: 1609.04747 [cs].

[165] Omer Sagi and Lior Rokach. “Ensemble Learning: A Survey.” In: WIREs Data Mining
and Knowledge Discovery 8.4 (2018), e1249. issn: 1942-4795. doi: 10.1002/widm.
1249.

[166] Abhinav Saxena and Kai Goebel. “Turbofan Engine Degradation Simulation Data
Set.” In: NASA Ames Prognostics Data Repository (2008), pp. 1551–3203.

[167] Abhinav Saxena, Don Simon, and Neil Eklund. “Damage Propagation Modeling for
Aircraft Engine Prognostics.” In: (), p. 9.

[168] Robert E. Schapire. “Explaining AdaBoost.” In: Empirical Inference: Festschrift in
Honor of Vladimir N. Vapnik. Ed. by Bernhard Schölkopf, Zhiyuan Luo, and Vladimir
Vovk. Berlin, Heidelberg: Springer, 2013, pp. 37–52. isbn: 978-3-642-41136-6. doi:
10.1007/978-3-642-41136-6_5.

[169] Bernhard Schölkopf. “The Kernel Trick for Distances.” In: ().

[170] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A Unified Em-
bedding for Face Recognition and Clustering.” In: 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (June 2015), pp. 815–823. doi: 10.
1109/CVPR.2015.7298682. arXiv: 1503.03832.

[171] Guido Sciavicco and Stan Ionel Eduard. Knowledge Extraction with Interval Temporal
Logic Decision Trees. May 2023. doi: 10.48550/arXiv.2305.16864. arXiv: 2305.
16864 [cs].

https://doi.org/10.1016/j.measurement.2020.107929
https://doi.org/10.1016/j.neucom.2017.11.062
https://doi.org/10.1098/rsta.2011.0550
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1007/978-1-4471-6296-4_12
https://doi.org/10.48550/arXiv.1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1002/widm.1249
https://doi.org/10.1002/widm.1249
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1503.03832
https://doi.org/10.48550/arXiv.2305.16864
https://arxiv.org/abs/2305.16864
https://arxiv.org/abs/2305.16864

168 Bibliography

[172] David W. Scott. “Multivariate Density Estimation and Visualization.” In: Handbook
of Computational Statistics: Concepts and Methods. Ed. by James E. Gentle, Wolf-
gang Karl Härdle, and Yuichi Mori. Springer Handbooks of Computational Statis-
tics. Berlin, Heidelberg: Springer, 2012, pp. 549–569. isbn: 978-3-642-21551-3. doi:
10.1007/978-3-642-21551-3_19.

[173] Matthias Seeger. “Gaussian Processes for Machine Learning.” In: International Jour-
nal of Neural Systems 14.02 (Apr. 2004), pp. 69–106. issn: 0129-0657. doi: 10.1142/
S0129065704001899.

[174] N. Shephard and T. Flury. “Learning and Filtering via Simulation: Smoothly Jittered
Particle Filters.” In: (2009).

[175] Xiao-Sheng Si et al. “Remaining Useful Life Estimation – A Review on the Statistical
Data Driven Approaches.” In: European Journal of Operational Research 213.1 (Aug.
2011), pp. 1–14. issn: 03772217. doi: 10.1016/j.ejor.2010.11.018.

[176] Xiao-Sheng Si et al. “Remaining Useful Life Estimation Based on a Nonlinear Diffu-
sion Degradation Process.” In: IEEE Transactions on Reliability 1.61 (2012), pp. 50–
67. issn: 0018-9529, 1558-1721. doi: 10.1109/TR.2011.2182221.

[177] Edward A. Silver et al. “A Tutorial on Heuristic Methods.” In: European Journal of
Operational Research 5.3 (Sept. 1980), pp. 153–162. issn: 0377-2217. doi: 10.1016/
0377-2217(80)90084-3.

[178] Ashish Singhal and Dale E. Seborg. “Clustering Multivariate Time-Series Data.” In:
Journal of Chemometrics 19.8 (2005), pp. 427–438. issn: 1099-128X. doi: 10.1002/
cem.945.

[179] Tanin Sirimongkolkasem and Reza Drikvandi. “On Regularisation Methods for Anal-
ysis of High Dimensional Data.” In: Annals of Data Science 6.4 (Dec. 2019), pp. 737–
763. issn: 2198-5812. doi: 10.1007/s40745-019-00209-4.

[180] Changyue Song, Kaibo Liu, and Xi Zhang. “Integration of Data-Level Fusion Model
and Kernel Methods for Degradation Modeling and Prognostic Analysis.” In: IEEE
Transactions on Reliability 67.2 (June 2018), pp. 640–650. issn: 0018-9529, 1558-1721.
doi: 10.1109/TR.2017.2715180.

[181] Abdenour Soualhi, Kamal Medjaher, and Noureddine Zerhouni. “Bearing Health
Monitoring Based on Hilbert–Huang Transform, Support Vector Machine, and Re-
gression.” In: IEEE Transactions on Instrumentation and Measurement 64.1 (Jan.
2015), pp. 52–62. issn: 0018-9456, 1557-9662. doi: 10.1109/TIM.2014.2330494.

[182] Ruiqi Sun et al. “Dynamic Forecast of Desert Locust Presence Using Machine Learning
with a Multivariate Time Lag Sliding Window Technique.” In: Remote Sensing 14.3
(Jan. 2022), p. 747. issn: 2072-4292. doi: 10.3390/rs14030747.

https://doi.org/10.1007/978-3-642-21551-3_19
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.1016/j.ejor.2010.11.018
https://doi.org/10.1109/TR.2011.2182221
https://doi.org/10.1016/0377-2217(80)90084-3
https://doi.org/10.1016/0377-2217(80)90084-3
https://doi.org/10.1002/cem.945
https://doi.org/10.1002/cem.945
https://doi.org/10.1007/s40745-019-00209-4
https://doi.org/10.1109/TR.2017.2715180
https://doi.org/10.1109/TIM.2014.2330494
https://doi.org/10.3390/rs14030747

Bibliography 169

[183] Shan Suthaharan. “Support Vector Machine.” In: Machine Learning Models and Al-
gorithms for Big Data Classification: Thinking with Examples for Effective Learning.
Ed. by Shan Suthaharan. Integrated Series in Information Systems. Boston, MA:
Springer US, 2016, pp. 207–235. isbn: 978-1-4899-7641-3. doi: 10.1007/978- 1-
4899-7641-3_9.

[184] Thamo Sutharssan et al. “Prognostic and Health Management for Engineering Sys-
tems: A Review of the Data-Driven Approach and Algorithms.” In: The Journal of En-
gineering 2015.7 (2015), pp. 215–222. issn: 2051-3305. doi: 10.1049/joe.2014.0303.

[185] Benjamin Szubert et al. “Structure-Preserving Visualisation of High Dimensional
Single-Cell Datasets.” In: Scientific Reports 9.1 (June 2019), p. 8914. issn: 2045-2322.
doi: 10.1038/s41598-019-45301-0.

[186] Chang Wei Tan et al. “Time Series Extrinsic Regression.” In: Data Mining and Knowl-
edge Discovery 35.3 (May 2021), pp. 1032–1060. issn: 1573-756X. doi: 10.1007/
s10618-021-00745-9.

[187] Fengzhen Tang. “KERNEL METHODS FOR TIME SERIES DATA.” PhD thesis.
July 2015.

[188] Sheng-jin Tang et al. “Remaining Useful Life Estimation Based on Wiener Degrada-
tion Processes with Random Failure Threshold.” In: Journal of Central South Uni-
versity 23.9 (Sept. 2016), pp. 2230–2241. issn: 2227-5223. doi: 10.1007/s11771-
016-3281-z.

[189] Shengjin Tang et al. “Remaining Useful Life Prediction of Lithium-Ion Batteries
Based on the Wiener Process with Measurement Error.” In: Energies 7.2 (Feb. 2014),
pp. 520–547. doi: 10.3390/en7020520.

[190] Andreas Theissler et al. “Predictive Maintenance Enabled by Machine Learning: Use
Cases and Challenges in the Automotive Industry.” In: Reliability Engineering &
System Safety 215 (Nov. 2021), p. 107864. issn: 0951-8320. doi: 10.1016/j.ress.
2021.107864.

[191] Christopher Torrence and Gilbert P Compo. “A Practical Guide to Wavelet Analysis.”
In: Bulletin of the American Meteorological Society 79.1 (1998), p. 18.

[192] Yiu L. Tse, Michael E. Cholette, and Peter W. Tse. “A Multi-Sensor Approach to
Remaining Useful Life Estimation for a Slurry Pump.” In: Measurement 139 (June
2019), pp. 140–151. issn: 02632241. doi: 10.1016/j.measurement.2019.02.079.

[193] Julio J. Valdés and Graeme Bonham-Carter. “Time Dependent Neural Network Mod-
els for Detecting Changes of State in Complex Processes: Applications in Earth Sci-
ences and Astronomy.” In: Neural Networks. Earth Sciences and Environmental Appli-
cations of Computational Intelligence 19.2 (Mar. 2006), pp. 196–207. issn: 0893-6080.
doi: 10.1016/j.neunet.2006.01.006.

[194] Jesper E. van Engelen and Holger H. Hoos. “A Survey on Semi-Supervised Learning.”
In: Machine Learning 109.2 (Feb. 2020), pp. 373–440. issn: 1573-0565. doi: 10.1007/
s10994-019-05855-6.

https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1049/joe.2014.0303
https://doi.org/10.1038/s41598-019-45301-0
https://doi.org/10.1007/s10618-021-00745-9
https://doi.org/10.1007/s10618-021-00745-9
https://doi.org/10.1007/s11771-016-3281-z
https://doi.org/10.1007/s11771-016-3281-z
https://doi.org/10.3390/en7020520
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1016/j.measurement.2019.02.079
https://doi.org/10.1016/j.neunet.2006.01.006
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6

170 Bibliography

[195] Ashish Vaswani et al. “Attention Is All You Need.” In: arXiv:1706.03762 [cs] (Dec.
2017). arXiv: 1706.03762 [cs].

[196] Ashish Vaswani et al. “Attention Is All You Need.” In: Advances in Neural Information
Processing Systems. Vol. 30. Curran Associates, Inc., 2017.

[197] Ting Hei Wan et al. “Anomaly Detection of Train Wheels Utilizing Short-Time Fourier
Transform and Unsupervised Learning Algorithms.” In: Engineering Applications of
Artificial Intelligence 122 (June 2023), p. 106037. issn: 0952-1976. doi: 10.1016/j.
engappai.2023.106037.

[198] Biao Wang et al. “A Hybrid Prognostics Approach for Estimating Remaining Useful
Life of Rolling Element Bearings.” In: IEEE Transactions on Reliability 69.1 (Mar.
2020), pp. 401–412. issn: 0018-9529, 1558-1721. doi: 10.1109/TR.2018.2882682.

[199] Biao Wang et al. “Recurrent Convolutional Neural Network: A New Framework for
Remaining Useful Life Prediction of Machinery.” In: Neurocomputing 379 (Feb. 2020),
pp. 117–129. issn: 09252312. doi: 10.1016/j.neucom.2019.10.064.

[200] Fu-Kwun Wang and Tadele Mamo. “A Hybrid Model Based on Support Vector
Regression and Differential Evolution for Remaining Useful Lifetime Prediction of
Lithium-Ion Batteries.” In: Journal of Power Sources 401 (Oct. 2018), pp. 49–54.
issn: 03787753. doi: 10.1016/j.jpowsour.2018.08.073.

[201] Jiang Wang et al. “Learning Fine-Grained Image Similarity with Deep Ranking.” In:
2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH,
USA: IEEE, June 2014, pp. 1386–1393. isbn: 978-1-4799-5118-5. doi: 10.1109/CVPR.
2014.180.

[202] Qiyao Wang et al. “Health Indicator Forecasting for Improving Remaining Useful Life
Estimation.” In: 2020 IEEE International Conference on Prognostics and Health Man-
agement (ICPHM). June 2020, pp. 1–8. doi: 10.1109/ICPHM49022.2020.9187047.

[203] Yong Wang. “Gauss–Newton Method.” In: WIREs Computational Statistics 4.4 (2012),
pp. 415–420. issn: 1939-0068. doi: 10.1002/wics.1202.

[204] Zezhou Wang et al. “Methods for Predicting the Remaining Useful Life of Equip-
ment in Consideration of the Random Failure Threshold.” In: Journal of Systems
Engineering and Electronics 31.2 (Apr. 2020), pp. 415–431. issn: 1004-4132. doi:
10.23919/JSEE.2020.000018.

[205] Frederik Warburg et al. “Bayesian Triplet Loss: Uncertainty Quantification in Im-
age Retrieval.” In: 2021 IEEE/CVF International Conference on Computer Vision
(ICCV). Montreal, QC, Canada: IEEE, Oct. 2021, pp. 12138–12148. isbn: 978-1-
66542-812-5. doi: 10.1109/ICCV48922.2021.01194.

[206] T. Warren Liao. “Clustering of Time Series Data—a Survey.” In: Pattern Recognition
38.11 (Nov. 2005), pp. 1857–1874. issn: 0031-3203. doi: 10.1016/j.patcog.2005.
01.025.

[207] Greg Welch. An Introduction to the Kalman Filter. 1997.

https://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.engappai.2023.106037
https://doi.org/10.1016/j.engappai.2023.106037
https://doi.org/10.1109/TR.2018.2882682
https://doi.org/10.1016/j.neucom.2019.10.064
https://doi.org/10.1016/j.jpowsour.2018.08.073
https://doi.org/10.1109/CVPR.2014.180
https://doi.org/10.1109/CVPR.2014.180
https://doi.org/10.1109/ICPHM49022.2020.9187047
https://doi.org/10.1002/wics.1202
https://doi.org/10.23919/JSEE.2020.000018
https://doi.org/10.1109/ICCV48922.2021.01194
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1016/j.patcog.2005.01.025

Bibliography 171

[208] Pengfei Wen et al. “A Generalized Remaining Useful Life Prediction Method for
Complex Systems Based on Composite Health Indicator.” In: Reliability Engineering
& System Safety 205 (Jan. 2021), p. 107241. issn: 0951-8320. doi: 10.1016/j.ress.
2020.107241.

[209] Qingsong Wen et al. Transformers in Time Series: A Survey. May 2023. doi: 10.
48550/arXiv.2202.07125. arXiv: 2202.07125 [cs, eess, stat].

[210] Lifeng Wu, Xiaohui Fu, and Yong Guan. “Review of the Remaining Useful Life Prog-
nostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies.” In: Ap-
plied Sciences 6.6 (June 2016), p. 166. issn: 2076-3417. doi: 10.3390/app6060166.

[211] M. Xia et al. “Remaining Useful Life Prediction of Rotating Machinery Using Hier-
archical Deep Neural Network.” In: 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). Oct. 2017, pp. 2778–2783. doi: 10.1109/SMC.2017.
8123047.

[212] Xiaohui Xie. “Principal Component Analysis.” In: ().

[213] Dong Xu et al. “Residual Fatigue Life Prediction of Ball Bearings Based on Paris Law
and RMS.” In: 25.2 (2012), pp. 320–327. issn: 10009345. doi: 10.3901/CJME.2012.
02.320.

[214] Mingjing Xu et al. “Fault Prognostics by an Ensemble of Echo State Networks in
Presence of Event Based Measurements.” In: Engineering Applications of Artificial
Intelligence 87 (Jan. 2020), p. 103346. issn: 0952-1976. doi: 10.1016/j.engappai.
2019.103346.

[215] Yuanjie Yan et al. “Image Clustering via Deep Embedded Dimensionality Reduction
and Probability-Based Triplet Loss.” In: IEEE Transactions on Image Processing
29 (2020), pp. 5652–5661. issn: 1057-7149, 1941-0042. doi: 10.1109/TIP.2020.
2984360.

[216] Zijian Ye et al. “Rolling Bearing Health Indicator Extraction and RUL Prediction
Based on Multi-Scale Convolutional Autoencoder.” In: Applied Sciences 12.11 (Jan.
2022), p. 5747. issn: 2076-3417. doi: 10.3390/app12115747.

[217] Cancan Yi et al. “Time-Varying Fault Feature Extraction of Rolling Bearing via
Time–Frequency Sparsity.” In: Measurement Science and Technology 32.2 (Dec. 2020),
p. 025116. issn: 0957-0233. doi: 10.1088/1361-6501/abb50f.

[218] Youngji Yoo and Jun-Geol Baek. “A Novel Image Feature for the Remaining Use-
ful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and
Convolutional Neural Network.” In: Applied Sciences 8.7 (July 2018), p. 1102. doi:
10.3390/app8071102.

[219] Jianbo Yu. “Local and Nonlocal Preserving Projection for Bearing Defect Classifica-
tion and Performance Assessment.” In: IEEE Transactions on Industrial Electronics
59.5 (May 2012), pp. 2363–2376. issn: 1557-9948. doi: 10.1109/TIE.2011.2167893.

https://doi.org/10.1016/j.ress.2020.107241
https://doi.org/10.1016/j.ress.2020.107241
https://doi.org/10.48550/arXiv.2202.07125
https://doi.org/10.48550/arXiv.2202.07125
https://arxiv.org/abs/2202.07125
https://doi.org/10.3390/app6060166
https://doi.org/10.1109/SMC.2017.8123047
https://doi.org/10.1109/SMC.2017.8123047
https://doi.org/10.3901/CJME.2012.02.320
https://doi.org/10.3901/CJME.2012.02.320
https://doi.org/10.1016/j.engappai.2019.103346
https://doi.org/10.1016/j.engappai.2019.103346
https://doi.org/10.1109/TIP.2020.2984360
https://doi.org/10.1109/TIP.2020.2984360
https://doi.org/10.3390/app12115747
https://doi.org/10.1088/1361-6501/abb50f
https://doi.org/10.3390/app8071102
https://doi.org/10.1109/TIE.2011.2167893

172 Bibliography

[220] Wennian Yu, II Yong Kim, and Chris Mechefske. “An Improved Similarity-Based
Prognostic Algorithm for RUL Estimation Using an RNN Autoencoder Scheme.” In:
Reliability Engineering & System Safety 199 (July 2020), p. 106926. issn: 09518320.
doi: 10.1016/j.ress.2020.106926.

[221] Alireza Zendehboudi, M. A. Baseer, and R. Saidur. “Application of Support Vector
Machine Models for Forecasting Solar and Wind Energy Resources: A Review.” In:
Journal of Cleaner Production 199 (Oct. 2018), pp. 272–285. issn: 0959-6526. doi:
10.1016/j.jclepro.2018.07.164.

[222] George Zerveas et al. “A Transformer-based Framework for Multivariate Time Series
Representation Learning.” In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. KDD ’21. New York, NY, USA: Association
for Computing Machinery, Aug. 2021, pp. 2114–2124. isbn: 978-1-4503-8332-5. doi:
10.1145/3447548.3467401.

[223] Bin Zhang, Congying Deng, and Yi Zhang. “A Hybrid Feature Selection and Health
Indicator Construction Scheme for Delay-Time-Based Degradation Modelling of Rolling
Element Bearings.” In: IOP Conference Series: Materials Science and Engineering
339 (Mar. 2018), p. 012026. issn: 1757-8981, 1757-899X. doi: 10.1088/1757-899X/
339/1/012026.

[224] Chi Zhang et al. “Equipment Health Indicator Learning Using Deep Reinforcement
Learning.” In: Machine Learning and Knowledge Discovery in Databases. Ed. by Ulf
Brefeld et al. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2019, pp. 488–504. isbn: 978-3-030-10997-4. doi: 10.1007/978- 3- 030-
10997-4_30.

[225] H. Zhang et al. “Nonlinear-Drifted Fractional Brownian Motion With Multiple Hidden
State Variables for Remaining Useful Life Prediction of Lithium-Ion Batteries.” In:
IEEE Transactions on Reliability 69.2 (June 2020), pp. 768–780. issn: 1558-1721.
doi: 10.1109/TR.2019.2896230.

[226] Jiusi Zhang et al. “Prediction of Remaining Useful Life Based on Bidirectional Gated
Recurrent Unit with Temporal Self-Attention Mechanism.” In: Reliability Engineering
& System Safety 221 (May 2022), p. 108297. issn: 0951-8320. doi: 10.1016/j.ress.
2021.108297.

[227] Qi Zhang and Linfeng Deng. “An Intelligent Fault Diagnosis Method of Rolling Bear-
ings Based on Short-Time Fourier Transform and Convolutional Neural Network.”
In: Journal of Failure Analysis and Prevention 23.2 (Apr. 2023), pp. 795–811. issn:
1864-1245. doi: 10.1007/s11668-023-01616-9.

[228] Zhihua Zhang. Multivariate Time Series Analysis in Climate and Environmental Re-
search. Cham: Springer International Publishing, 2018. isbn: 978-3-319-67339-4 978-
3-319-67340-0. doi: 10.1007/978-3-319-67340-0.

https://doi.org/10.1016/j.ress.2020.106926
https://doi.org/10.1016/j.jclepro.2018.07.164
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1088/1757-899X/339/1/012026
https://doi.org/10.1088/1757-899X/339/1/012026
https://doi.org/10.1007/978-3-030-10997-4_30
https://doi.org/10.1007/978-3-030-10997-4_30
https://doi.org/10.1109/TR.2019.2896230
https://doi.org/10.1016/j.ress.2021.108297
https://doi.org/10.1016/j.ress.2021.108297
https://doi.org/10.1007/s11668-023-01616-9
https://doi.org/10.1007/978-3-319-67340-0

Bibliography 173

[229] Xiaohang Zhao, Ke Zhang, and Yi Chai. “A Multivariate Time Series Classification
Based Multiple Fault Diagnosis Method for Hydraulic Systems.” In: 2019 Chinese
Control Conference (CCC). July 2019, pp. 6819–6824. doi: 10.23919/ChiCC.2019.
8866359.

[230] Lilei Zheng et al. “Siamese Multi-Layer Perceptrons for Dimensionality Reduction
and Face Identification.” In: Multimedia Tools and Applications 75.9 (May 2016),
pp. 5055–5073. issn: 1380-7501, 1573-7721. doi: 10.1007/s11042-015-2847-3.

[231] Yuhuang Zheng. “Predicting Remaining Useful Life Based on Hilbert–Huang Entropy
with Degradation Model.” In: Journal of Electrical and Computer Engineering 2019
(Feb. 2019), e3203959. issn: 2090-0147. doi: 10.1155/2019/3203959.

[232] Guo Zhong and Chi-Man Pun. “Subspace Clustering by Simultaneously Feature Se-
lection and Similarity Learning.” In: Knowledge-Based Systems 193 (Apr. 2020),
p. 105512. issn: 0950-7051. doi: 10.1016/j.knosys.2020.105512.

[233] Jianghong Zhou et al. “Remaining Useful Life Prediction by Distribution Contact
Ratio Health Indicator and Consolidated Memory GRU.” In: IEEE Transactions on
Industrial Informatics 19.7 (July 2023), pp. 8472–8483. issn: 1941-0050. doi: 10.
1109/TII.2022.3218665.

[234] Shuang Zhou et al. “Remaining Useful Life Prediction and Fault Diagnosis of Rolling
Bearings Based on Short-Time Fourier Transform and Convolutional Neural Net-
work.” In: Shock and Vibration 2020 (Oct. 2020), e8857307. issn: 1070-9622. doi:
10.1155/2020/8857307.

[235] J. Zhu, N. Chen, and W. Peng. “Estimation of Bearing Remaining Useful Life Based
on Multiscale Convolutional Neural Network.” In: IEEE Transactions on Industrial
Electronics 66.4 (Apr. 2019), pp. 3208–3216. issn: 1557-9948. doi: 10.1109/TIE.
2018.2844856.

[236] Enrico Zio. “Prognostics and Health Management (PHM): Where Are We and Where
Do We (Need to) Go in Theory and Practice.” In: Reliability Engineering & System
Safety 218 (Feb. 2022), p. 108119. issn: 0951-8320. doi: 10.1016/j.ress.2021.
108119.

https://doi.org/10.23919/ChiCC.2019.8866359
https://doi.org/10.23919/ChiCC.2019.8866359
https://doi.org/10.1007/s11042-015-2847-3
https://doi.org/10.1155/2019/3203959
https://doi.org/10.1016/j.knosys.2020.105512
https://doi.org/10.1109/TII.2022.3218665
https://doi.org/10.1109/TII.2022.3218665
https://doi.org/10.1155/2020/8857307
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.1016/j.ress.2021.108119
https://doi.org/10.1016/j.ress.2021.108119

	Introduction
	General context
	Machine learning
	Application context: Prognostics and Health Management
	Anomaly detection
	Failure mode identification
	Health assessment
	RUL prognostics

	Motivations and objectives
	Structure
	Publications and communications

	Machine learning and multivariate time series: theoretical and practical considerations
	Time series and their acquisition in PHM
	Time series
	Context of time series acquisition in PHM

	Machine learning on time series
	General consideration on machine learning
	Learning settings: focus on the degree of supervision
	Downstream learning tasks on MTS
	Learning models and estimation of their parameters
	Model's overview
	Optimisation or parameters estimation for learning models

	A focus on neural networks
	Overall presentation and use for time series
	Theoretical considerations

	Conclusion

	Overview of health indicators in PHM: construction methods and uses
	Review of HI construction methods
	HI properties: what is a good HI?
	Construction methods
	Time series preprocessing
	HI construction

	Review on HI-based RUL prognostics
	HI forecasting
	Function fitting
	Curve matching
	Stochastic process model
	Machine learning methods
	New hybrid approaches

	Threshold estimation

	Health indicator construction: proposed approach
	Similarity learning
	Similarity learning
	Siamese neural networks
	Contrastive triplet loss

	SNN triplet loss based HI
	Health indicator construction
	Preprocessing and time windowing
	Definition of the SNN architecture and HI definition
	Definition of the loss function of the SNN and selection of training samples
	Additional considerations

	Experiments
	Turbofan
	Preprocessing
	Siamese neural network
	Training
	Hyperparameters fine-tuning
	Final training for performance evaluation
	Performance evaluation and discussion

	Bearing
	Preprocessing
	Siamese core neural network
	Training
	Hyperparameter fine-tuning
	Performance evaluation and discussion

	Conclusion

	Usages of HI for prognosis and health management tasks
	Failure mode identification
	Time series clustering
	Dynamic time warping
	Agglomerative clustering
	Experiments
	Application to turbofan dataset
	Application to bearing dataset

	RUL Prognosis
	HI forecasting combined with failure threshold estimation: a particle-filter based approach
	Particle filter
	Surrogate-based PF
	Algorithm Details
	Threshold estimation and RUL prognostic

	HI learning as pretext task for self-supervised RUL prognosis
	Self-supervised learning
	Proposed approach: self-supervised RUL prognosis with HI contrastive learning as pretext task
	Probabilistic recurrent NN and mean-variance estimation

	Experiments

	Conclusion and perspectives
	Conclusions

	Conclusion
	Summary of the thesis
	Limitations and perspectives
	Perspectives on HI learning with SNN and contrastive loss
	Perspectives in using HI learning for RUL prediction and failure mode identification

	Epilogue

