
HAL Id: tel-04600456
https://theses.hal.science/tel-04600456

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparative microscopic signatures of microbial and
abiotic alterationof calcite

Luca Stigliano

To cite this version:
Luca Stigliano. Comparative microscopic signatures of microbial and abiotic alterationof calcite.
Earth and Planetary Astrophysics [astro-ph.EP]. Université Grenoble Alpes [2020-..], 2024. English.
�NNT : 2024GRALU004�. �tel-04600456�

https://theses.hal.science/tel-04600456
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : STEP - Sciences de la Terre de l'Environnement et des Planètes
Spécialité : Sciences de la Terre et de l'Environnement
Unité de recherche : Institut des Sciences de la Terre

Signatures microscopiques comparées de l'altération microbienne et 
abiotique de la calcite

Comparative microscopic signatures of microbial and abiotic 
alteration of calcite

Présentée par :

Luca STIGLIANO
Direction de thèse :

Damien DAVAL
CHARGE DE RECHERCHE, Université Grenoble Alpes

Directeur de thèse

 

 

Rapporteurs :
Catherine NOIRIEL
MAITRESSE DE CONFERENCE HDR, Université Toulouse III - Paul Sabatier
Steeve BONNEVILLE
FULL PROFESSOR, Université Libre de Bruxelles

Thèse soutenue publiquement le 15 janvier 2024, devant le jury composé de :
Liane G. BENNING,
FULL PROFESSOR, German Research Centre for Geosciences

Présidente

Damien DAVAL,
CHARGE DE RECHERCHE HDR, CNRS délégation Alpes

Directeur de thèse

Karim BENZERARA,
DIRECTEUR DE RECHERCHE, CNRS délégation Paris Centre

Co-directeur de thèse

Catherine NOIRIEL,
MAITRESSE DE CONFERENCE HDR, Université Toulouse III - Paul 
Sabatier

Rapporteure

Steeve BONNEVILLE,
FULL PROFESSOR, Université Libre de Bruxelles

Rapporteur

Cornelius FISCHER,
SCIENTIST, Helmholtz-Zentrum Dresden-Rossendorf

Examinateur

Isabelle DANIEL,
PROFESSEURE DES UNIVERSITES, Université Lyon 1 - Claude 
Bernard

Examinatrice

Laurent CHARLET,
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Examinateur

Invités :
Roland Hellmann
DIRECTEUR DE RECHERCHE, ISTerre, Université Grenoble Alpes
Philippe Ackerer
DIRECTEUR DE RECHERCHE, Institut Terre & Environnement de Strasbourg, Université de Strasbourg



 



1 

 

Comparative microscopic signatures of microbial and abiotic 

alteration of calcite 

 

 

Ph.D. candidate :  

Luca Stigliano 

 

 

Ph.D. advisors : 

Damien Daval 

Philippe Ackerer 

Karim Benzerara 

  



2 

 

Acknowledgments 

To begin, I would like to express my gratitude to my PhD supervisors, Damien, Philippe, and 

Karim, for their invaluable mentorship, guidance, support, and encouragement throughout this 

journey.  

First, I owe a big thank you to Damien for being the one person who first made me realize my 

passion for research, completely changing my life perspective. His genuine enthusiasm has been 

a constant source of inspiration for me since the very beginning, and his dedication has been an 

invaluable asset at every step of the process. Whether providing practical assistance with 

running experiments, offering insightful guidance in conceptualizing ideas, or simply being 

kind, extraordinarily present, and supportive, Damien has really embodied the ideal supervisor.  

I am also deeply grateful to Philippe for believing in me from the very beginning and for readily 

offering insightful advice whenever I needed his expertise and guidance. I knew I could always 

count on Philippe whenever I found myself at a dead end, confident that he would come up with 

unconventional resolving ideas that I would have never thought of. His only shortcoming 

throughout this journey was his inability to persuade me to master French fluently. 

Last but not least, I owe a huge thanks to Karim for conveying to me his passion towards the 

fascinating world of microbe-mineral interactions and for consistently being an extraordinary 

wellspring of ideas with his enthusiasm and boundless curiosity. Karim's multidisciplinary, 

creative, and committed approach has always been inspirational for me, profoundly shaping my 

broader approach to research in general. 

A sincere thanks to each one of you for always being there, especially at the beginning of this 

journey, when I needed it the most. None of this would have ever been possible without all of 

you. 

A huge thanks to all jury members (the reviewers: Maîtresse de conférences Catherine Noiriel 

and Prof. Steeve Bonneville, the president of the jury: Prof. Liane G. Benning, and all 

examiners: Prof. Cornelius Fischer, Prof. Isabelle Daniel, Prof. Laurent Charlet and 

Directeur de recherche Roland Hellman) for evaluating this manuscript and for the fruitful 

discussions held during the defense, from which I have really learnt a lot.  

On the same note, I extend my gratitude to the members of my thesis committee (i.e., Comité 

de Suivi Individuel), Fabrice and Tanguy, for their invaluable inputs and insights over these 

three years, which meaningfully contributed to improve this work. 

I am also sincerely thankful to all the people that helped me in the lab(s) and with the various 

analytical characterizations necessary for this research work (Simona, Delphine, Nathaniel, 

Rachel, Gilles, Nicolas, …). Additionally, a massive thank you to all lab-members from the 

Geochemistry team at ISTerre and the BIOMIN team at IMPMC, with a special thanks to Fériel 

and Cynthia for introducing me to the dynamics of working in a (geo-)microbiology lab, and 

to Bastien for the training and assistance with the VSI in-situ experiments. 

Lastly, one final big thank you to all ISTerre friends (Alicia, Arpad, Benjamin, Carlos & 

Carlos, Diksha, Jafar, Juliette, Marievi, Mathilde, Robin, Roland et al), for the countless lunch 

& coffee breaks, for all climbing and ski sessions, and for simply being wonderful companions 

throughout this Grenobloise wannabe adventure. 



3 

 

Abstract 

Studying the topography of altered rock surfaces represents a cornerstone for reconstructing 

past environmental conditions and for the identification of traces of life in the geological record, 

on Earth and beyond. Indeed, the surface microtopography of altered minerals has proven 

effective in retaining signatures of fluid-mineral interactions. For example, etch pits are among 

the commonly accepted signatures of interactions between a highly undersaturated aqueous 

fluid and a mineral surface. However, additional imprints of water-mineral interactions remain 

to be defined. On a similar note, weathering imprints supposedly left by microorganisms have 

been proposed as potential biosignatures. These include etching features and microchannels 

resembling microbes in ‘size, shape and distribution’. However, it has been shown that 

qualitatively similar surface features can also be reproduced through purely abiotic processes. 

Therefore, it becomes crucial to develop less ambiguous criteria to differentiate between abiotic 

and biotic weathering features. In this PhD thesis, these questions were addressed through a 

combination of experimental and modeling approaches. Calcite dissolution experiments were 

carried out at various saturation states, both under abiotic conditions and with a cyanobacteria 

biofilm covering the calcite surface. Time-resolved statistical analyses of the resulting surface 

topography acquired using vertical scanning interferometry were then conducted. The results 

suggested that the steady-state surface roughness resulting from dissolution can be used as a 

proxy to back-estimate the saturation state of the fluid. In this context, stochastic modeling of 

crystal dissolution helped defining the relaxation time that is required for the surface 

microtopography to switch from a given steady-state configuration to another, as a result of a 

change in the solution composition. This suggested that the microtopography of naturally 

weathered minerals may be representative of the fluid composition most recently visited. 

Furthermore, the experimental results showed that statistical characterizations of the surface 

microtopography of altered minerals can be used to quantitatively -thus less ambiguously- 

detect bio-weathering imprints. Specifically, at far-from-equilibrium conditions, biofilm-

mediated dissolution led to the formation of high-elevation regions across the calcite surface, 

which could be quantitatively detected by semi-variogram analyses. Atomic-scale stochastic 

simulations of the dissolution process suggested that these bio-weathering features resulted 

from a local increase in fluid saturation state at the biofilm-mineral contact, leading to a 

localized reduction in dissolution rate. Altogether, this work provides novel, mechanistically-

supported quantitative criteria that may help reconstruct past weathering conditions and identify 

mineral bio-weathering signatures in natural settings in a non-destructive and less ambiguous 

way.  
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Résumé 

L'étude de la surface des minéraux altérés et, en particulier, de leur topographie, joue un rôle 

fondamental dans la reconstitution des conditions environnementales passées et dans la 

détection de traces de vie dans l’enregistrement géologique, sur Terre et au-delà. En effet, on 

sait que la microtopographie de surface des minéraux altérés peut conserver des signatures 

caractéristiques des conditions dans lesquelles leurs interactions avec des solutions aqueuses se 

sont déroulées. Par exemple, les puits de corrosion figurent parmi les signatures admises des 

interactions entre un fluide aqueux fortement sous-saturé et une surface minérale. Toutefois, 

d'autres empreintes d'interactions fluides-minéraux restent à définir. Dans le même ordre 

d'idées, des empreintes microtopographiques spécifiques ont déjà interprétées comme résultant 

de l’interaction entre micro-organismes et surfaces minérales : en particulier, il a été suggéré 

que les puits et microcanaux ressemblant à des micro-organismes en termes de ‘taille, forme et 

distribution’ pouvaient constituer des biosignatures. Cependant, il a été démontré que des 

caractéristiques de surface qualitativement similaires peuvent également être reproduites par 

des processus purement abiotiques. Il apparait donc crucial de développer des critères plus 

univoques pour différencier les caractéristiques d'altération abiotiques et microbiennes. Dans le 

cadre de cette thèse, ces questions ont été abordées en combinant des approches expérimentales 

et de modélisation. Des expériences de dissolution de calcite ont été réalisées à divers états de 

saturation du fluide, à la fois dans des conditions abiotiques et avec un biofilm de 

cyanobactéries couvrant la surface de la calcite. Des analyses statistiques de la topographie de 

surface résultante, déterminée au cours du temps à l'aide d’un interféromètre à balayage vertical, 

ont ensuite été effectuées. Les résultats suggèrent que la rugosité de surface à l'état stationnaire 

résultant de la dissolution peut être utilisée comme un traceur caractéristique de l'état de 

saturation du fluide. Dans ce contexte, une modélisation stochastique de la dissolution de la 

calcite a permis de définir le temps de relaxation nécessaire pour que la microtopographie de 

surface passe d'une configuration d'équilibre à une autre, en réponse à un changement de 

composition de la solution. Les résultats suggèrent que la microtopographie des minéraux 

altérés dans le milieu naturel peut être représentative de la composition du dernier fluide en 

contact avec le minéral. En outre, les résultats expérimentaux ont montré que les 

caractérisations statistiques de la microtopographie de surface des minéraux altérés peuvent être 

utilisées pour détecter quantitativement – et donc de manière moins ambiguë - les empreintes 

de bio-altération. Plus précisément, dans des conditions loin de l'équilibre, la dissolution sous 

biofilm a conduit à la formation de régions surélevées de la surface de la calcite, mises en 

évidence par l’utilisation d’outils statistiques d’analyse de la rugosité tels que des 
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variogrammes. Des simulations stochastiques à l'échelle atomique du processus de dissolution 

suggèrent que ces caractéristiques d’altération biotique résultaient d'une augmentation locale 

de l'état de saturation du fluide au contact du biofilm avec le minéral, entraînant une réduction 

localisée de la vitesse de dissolution. Dans l'ensemble, ce travail introduit des critères 

quantitatifs et mécanistes novateurs pour reconstituer les conditions environnementales passées 

et pour identifier des biosignatures dans l’enregistrement géologique, sur Terre et au-delà, de 

manière plus univoque et à l’aide d’outils non-destructifs. 
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Chapter 1 : Introduction 

1.1 Chemical weathering: what are the challenges? 

Fluid–solid interactions and associated material fluxes play a significant role across various 

fields and applications, including the bio-geochemical cycle of elements (Schlesinger et al., 

2011), (bio-)leaching (Rohwerder et al., 2003), material corrosion (Sanchez et al., 2015), 

vitrified nuclear waste disposal (Grambow, 2006), medical science (Wang et al., 2005), and the 

study of prehistoric rock art (Rousaki et al., 2018), to name a few.  

In the Earth sciences, significant emphasis is placed on water-rock interactions occurring in the 

upper crust, particularly at or near the Earth's surface (Daval et al., 2009b). One of the key 

water-rock interactions in this context is the process known as ‘chemical weathering’, which 

involves the breakdown and alteration of mineral assemblages by the chemical action of 

aqueous solutions (Lasaga, 1984). 

Chemical weathering holds a crucial role in reshaping the distribution of mass on Earth, as it 

participates in the formation of soils (Minasny and McBratney, 2001), releases nutrients for 

living organisms (Brantley et al., 2011), contributes to seafloor and continental weathering 

(Krissansen-Totton and Catling, 2017), and plays a role in the long-term regulation of 

atmospheric CO2 levels (Berner et al., 1983). As an example, the weathering of silicates and 

consequent precipitation of carbonates, a natural process also denoted as carbonation of 

silicates, consumes one mol of CO2 per mol of silicate, thus serving as a net sink of CO2 in the 

overall carbon cycle. For instance: 

                                    𝐶𝑎𝑆𝑖𝑂3 + 2𝐶𝑂2 + 𝐻2𝑂 → 𝐶𝑎2+ + 2𝐻𝐶𝑂3
− + 𝑆𝑖𝑂2                               (1.1) 

                                        𝐶𝑎2+ + 2𝐻𝐶𝑂3
−  → 𝐶𝑎𝐶𝑂3 + 𝐶𝑂2 + 𝐻2𝑂                                       (1.2) 

In addition to its natural occurrence, chemical weathering processes can also be harnessed in 

various geo-engineering applications, including enhanced rock weathering for CO2 removal 

from the atmosphere (Beerling et al., 2020), geothermal energy recovery (Alt-Epping et al., 

2013) and CO2 sequestration.  

In order to model the material fluxes associated with chemical weathering, it is essential to 

determine the rate at which the individual components of rocks, i.e., single minerals, react in 

the presence of aqueous fluids (Daval et al., 2009b). Several empirical dissolution rate laws 
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have been developed to this end, according to the following general expression (Aagaard and 

Helgeson, 1982):  

                                                𝑟 = 𝑘𝐴(𝜉)𝑒(−
𝐸𝑎
𝑅 𝑇

) ∏ [𝑎𝑖]
𝑛𝑖

𝑖 𝑓(𝛥𝐺𝑟)                                               (1.3) 

where: r [mol/s] is the dissolution rate of a given mineral phase; t is time [s]; k is the rate 

constant; A(ξ) is the mineral surface area in contact with the fluid [m2], which varies as a 

function of the extent of reaction, ξ [/]; Ea [J/mol] is the activation energy of the dissolution 

process, that is the minimum energy required to initiate the reaction; R is the universal gas 

constant [J/K/mol]; T is temperature [K]; ai [/] is the activity (i.e., a function of the 

concentration) of the ith species; ΔGr [J/mol] is the Gibbs free energy of reaction, that is the 

energy change that drives the dissolution process.  

Regardless of the specific formulation, the hypothesis underlying these rate laws is that the 

dissolution flux is proportional to the mineral surface area in contact with the fluid, which 

implies that the reactivity is uniform across the surface and does not change with time. 

Nonetheless, all rate laws based on this assumption systematically fail to reproduce the long-

term and large-scale mineral dissolution rates observed in natural environments by several 

orders of magnitude (Bricker et al., 2003), making necessary to use the surface area as an 

adjustable parameter in geochemical reactive models (Aradóttir et al., 2012; Maher et al., 2009; 

Montes-H et al., 2005). It becomes therefore imperative to appropriately model the relationship 

between surface area and mineral reactivity. 

Numerous studies showed that the heterogeneous nature of the surface reactivity appears as a 

universal feature of solid dissolution (Fischer et al., 2015; Fisk et al., 2013; Horlait et al., 2014; 

Nicoleau and Bertolim, 2015; Noiriel et al., 2020; Robin et al., 2018; Williams et al., 1985). 

This heterogeneity arises from variations in the surface energy (Figure 1.1), which reflects a 

distribution of different reactive sites and their corresponding reaction mechanisms and kinetics 

(Figure 1.2) (Fischer et al., 2012). Moreover, as the mineral surface area evolves over time due 

to dissolution, modifications in the surface reactive sites have a direct dynamic impact on its 

overall reactivity (Noiriel et al., 2009; Noiriel et al., 2019).  

Consequently, developing alternative approaches to assess mineral reactivity, with a specific 

emphasis on the heterogeneous space−time dynamics of surface roughness, becomes crucial to 

achieve a more comprehensive understanding and accurate modeling of chemical weathering 

processes. 
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Figure 1.1 Illustration of the main intrinsic and extrinsic contributors to the variability of 

mineral reactivity, which explains the large uncertainty associated with predictions of mineral 

reaction rates in natural settings. Large scale extrinsic factors include grain-boundary 

distribution, mineral aggregation, pores-size, and bounding surfaces in rocks, whereas small 

scale extrinsic factors comprise molecules, nanoparticles, colloids, and newly precipitated 

surface films. On the other hand, intrinsic factors include mineral discontinuities and 

crystallographic defects. Collectively, both extrinsic and intrinsic factors lead to heterogeneities 

of surface energy over a broad span of length scales that ultimately result in large variabilities 

in the mineral dissolution rates measured in natural environments. Adapted from (Lüttge et al., 

2013). 

 

Figure 1.2 Schematic illustrations of a Kossel-cubic crystal, showing the different site types 

and corresponding number of neighbours, N, with adatom (N=1), step (N=2, ‘c’ and N=4, ‘s’), 

kink (N=3, ‘k’), and terrace (N=5) sites. The illustration at the right-hand side, which was 

adapted from (Lüttge et al., 2013), shows the details of corners and edges of a 3-D Kossel-cubic 

crystal. 
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1.2 Mineral dissolution 

In light of the broader context outlined earlier, it becomes crucial to delve deeper into the 

mechanisms underlying mineral dissolution. The following section is, therefore, dedicated to 

introducing the methods and techniques commonly employed to study mineral dissolution. 

Additionally, it offers an overview of the current state of knowledge, established practices, and 

recent advancements in the field. 

1.2.1 Approaches to measure mineral dissolution rates 

Mineral dissolution can be assessed using various methods, differing in approach and scales of 

observation. In laboratory studies, the experimental setups employed to determine mineral 

dissolution rates can be categorized as closed (batch) and open (fluidized bed reactors, 

continuously stirred flow-through reactors, column experiments, and variants thereof) systems 

(Lüttge et al., 2013).  

The classical approach involves placing a mineral sample, either as powders or µm-to-mm size 

single crystals, into a reactor. The bulk dissolution rate is then estimated by measuring changes 

in solution composition, typically with ICP-OES (Inductively Coupled Plasma Optical 

Emission spectroscopy). In closed (batch) systems, applying a mass balance and assuming a 

stoichiometric reaction, the mineral dissolution (or precipitation) rate can be expressed 

according to the following equation:  

                                                                𝑟 =  
|𝛥𝐶𝑖|

𝛥𝑡
∗  

𝑉

𝐴
                                                             (1.4) 

where: r [mol/m2/s] is the rate; Δt [s] is the time difference between the time of sampling, t, and 

the initial (or reference) time, t0; ΔCi [mol/m3] is the difference in solution concentration of the 

ith element composing the mineral, calculated between the time of sampling, t, and the initial 

time, t0 (note that ΔCi is positive for dissolution and negative for precipitation); V [m3] is the 

volume of the fluid in the batch; A [m2] is the surface area of the mineral.  

Similarly, in open (flow-through) systems, the rate can be calculated when a hydrodynamic 

steady-state is reached following:  

                                                      𝑟 =  𝑄 ∗ 
|𝐶𝑖,𝑜𝑢𝑡𝑙𝑒𝑡−𝐶𝑖,𝑖𝑛𝑙𝑒𝑡|

𝐴
                                                    (1.5) 

where: Q [m3/s] is the volumetric flow rate of the fluid; Ci,outlet [mol/m3] is the concentration of 

the ith element composing the mineral, measured at the outlet of the reactor; Ci,inlet [mol/m3] is 
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the concentration of the ith element composing the mineral, measured in the tank solution (note 

that Ci,outlet > Ci,inlet for dissolution and Ci,outlet < Ci,inlet for precipitation). Equations 1.4 and 1.5 

implicitly assume that the average concentration effectively represents the concentration 

distribution throughout the volume, implying 'perfect homogenization' of the fluid. 

Provided that the volume of the crystals is known, the mineral surface area, A, can be 

approximated to the geometrical surface area. This method involves calculating the surface area 

assuming ideal geometrical shapes, such as cubes, rhombohedrons, or spheres (in case of 

powders) (Lüttge, 2005). Alternatively, the surface area can be estimated based on the 

Brunauer-Emmett-Teller (BET) theory, which relates the amount of gas adsorbed onto the 

surface of solid materials to the total surface area available for adsorption (Brunauer et al., 

1938).  

Unlike the geometric surface area, the BET surface area accounts for all additional contributions 

arising from surface roughness, porosity, and other surface features, such as steps and etch pits 

(Anbeek, 1992). However, in practice, the BET method is only effective for minerals 

characterized by high surface area-to-volume ratios, such as fine-grained mineral powders or 

highly porous samples with open pores (Lüttge, 2005). Moreover, and more importantly, the 

BET method does not enable to differentiate between the various surface features (e.g., etch 

pits or fractures) that collectively contribute to the overall increase in the total surface area. 

Additionally, it cannot be applied to monitor the evolution of such features during dissolution 

and their relative contribution to the dissolution rate. 

Overall, techniques for estimating dissolution rates based on changes in the solution 

composition can only yield a bulk dissolution rate, which does not provide any information 

regarding the specific locations on the surface from which the material fluxes are originated. 

Nevertheless, a prerequisite to the fundamental understanding of the dissolution mechanisms is 

the ability to measure the dissolution fluxes directly from the mineral surface and to monitor 

the evolution of the surface during the dissolution process. This became possible in recent 

decades with the advent of high-resolution surface topography techniques, such as atomic force 

microscopy (AFM) and vertical scanning interferometry (VSI). These techniques are presented 

in detail in Section 1.5.1 and 1.5.2, respectively. 

The use of VSI allows to estimate the mineral dissolution (or precipitation) rate by directly 

evaluating the amount of material lost (or gained) by the mineral sample during the reaction. 

This requires measuring the height difference between a portion of the surface undergoing 
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dissolution (or precipitation) and a portion of the surface that remains unaltered and serves as a 

reference (Figure 1.12). To this end, the standard procedure involves covering several small 

spots on the pristine mineral surface with a high-temperature silicon rubber prior to the 

experiment. These masks are then removed at later stages of the experiment, exposing the 

unreacted portions of the surface (Lüttge et al., 1999). The dissolution (or precipitation) rate is 

thus given by: 

                                                                 𝑟 =  
|⟨𝛥ℎ⟩|

𝑉𝑚𝛥𝑡
                                                                  (1.6) 

where: |⟨Δh⟩| [m] is the average height difference between the reacted and the non-reacted area, 

denoted as ‘surface retreat’ in case of dissolution and as ‘surface advance’ in case of 

precipitation; Vm is the molar volume of the mineral; Δt [s] is the time difference between the 

acquisition time, t,  (i.e., the time at which the experiments are stopped (or paused) to measure 

|⟨Δh|⟩) and the initial (or reference) time, t0. 

This approach is particularly useful to study the relationship between the crystallographic 

orientation of a given mineral face and the corresponding dissolution rate (Daval et al., 2013; 

Perez et al., 2019; Saldi et al., 2017). Moreover, it can be used to directly measure mineral 

dissolution rates in soil profiles through incubation experiments (Wild et al., 2019a; Wild et al., 

2021). 

In addition to measuring dissolution rates, both VSI and AFM can offer valuable insights into 

the underlying dissolution mechanisms. These techniques enable the tracking of spatial 

variations in dissolution processes across the surface and the identification of reactive sites, 

thereby shedding light on how changes in surface topography relate to changes in reactivity. 

These aspects are discussed in greater detail in Section 1.2.3. 

Overall, accurately measuring mineral dissolution rates serves as a pre-requisite to better 

understand the link between mineral reactivity and a broad range of environmental conditions. 

1.2.2 Relationship between saturation state and dissolution rate 

In general, the dissolution rate of minerals depends on both physic-chemical parameters (e.g., 

temperature, pH, fluid saturation state) and mineral properties (e.g., crystal structure, chemical 

composition, surface area). 

Focusing on fluid properties, a critical parameter influencing mineral dissolution / precipitation 

rates is the saturation state of the fluid with respect to a given mineral phase, which represents 



14 

 

the driving force of the reaction. The saturation state indeed provides a thermodynamic measure 

of the distance from equilibrium for a particular dissolution (or precipitation) reaction, 

providing a link between thermodynamics and kinetics.  

The saturation state is defined as the ratio between the activity product of the ions in solution 

(i.e., the product of the ions concentrations raised to the power of their stoichiometric 

coefficients in the dissolution/precipitation reaction) and the solubility product constant for the 

mineral phase studied. For Ω < 1 (i.e., undersaturated solution), dissolution is favoured; for Ω 

= 1 (saturated solution), there is equilibrium between dissolution and precipitation; for Ω > 1 

(oversaturated solution), precipitation is favoured. 

Since natural waters display a wide range of saturation states with respect to common rock-

forming minerals (Opdyke and Wilkinson, 1993; Stefansson and Arnorsson, 2000), it is 

particularly important to understand the relationship between Ω (or, equivalently, Gibbs free 

energy of reaction, ΔGr) and dissolution rate for various minerals. To this end, numerous 

theoretical (Bandstra and Brantley, 2008; Dove et al., 2005; Lasaga and Luttge, 2004; Luttge, 

2006) and experimental studies (Arvidson and Luttge, 2010; Beig and Luttge, 2006; 

Bouissonnié et al., 2018; Hellmann and Tisserand, 2006; Smith et al., 2013; Xu et al., 2012) 

have been conducted to investigate this fundamental relationship. 

Several experimental studies documented a sigmoidal relationship between dissolution rate and 

Gibbs free energy for a range of different minerals, including calcite (Xu et al., 2012) (Figure 

1.3), albite (Hellmann and Tisserand, 2006), gibbsite (Nagy and Lasaga, 1992), kaolinite 

(Devidal et al., 1997), labradorite (Taylor et al., 2000), and smectite (Cama et al., 2000), among 

others. At conditions sufficiently far-from-equilibrium, the dissolution becomes independent of 

ΔGr (thus reaching the so-called ‘dissolution plateau’). As conditions move closer to 

equilibrium, there is a sharp decrease in the dissolution rate over a narrow range of ΔGr values. 

Ultimately, as equilibrium is approached, the curve becomes approximately linear, with rates 

gradually approaching zero along a gentle slope (Arvidson and Luttge, 2010). 

Such non-linear behaviour can be explained by the existence of two different dissolution 

mechanisms, one occurring at far-from-equilibrium and the other occurring at close-to-

equilibrium conditions. A description of these two different mechanisms is offered by the 

stepwave model (Lasaga and Luttge, 2001a), which builds upon the Burton-Cabrera-Frank 

(BCF) theory (Burton et al., 1951; Cabrera and Levine, 1956).  
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In brief, according to the BCF theory, dislocations with sufficiently large Burgers vectors will 

form hollow cores under any undersaturated solution (ΔGr < 0, Ω < 1). However, these hollow 

cores only open up to form etch pits (i.e., nm- to μm-scale excavations forming at the mineral 

surface at line defects, such as screw dislocations) if a critical value of undersaturation is 

reached (ΔGr < ΔGr,critical, Ω < Ωcritical) (Cabrera et al., 1954). Subsequently, as per the stepwave 

theory, the walls of the etch pit serve as a constant source of dissolution stepwaves (i.e., 

monolayer steps) originated from the outskirts of the pit. These stepwaves then traverse the 

crystal surface, thus dissolving the crystal in a layer-by-layer fashion, while concomitantly 

deepening the pit. In contrast, when differences in Gibbs free energy of reaction are not 

sufficiently large to open hollow cores to form etch pits (i.e., close-to-equilibrium conditions), 

the constant source of dissolution stepwaves emanated from the pit walls is absent. As a 

consequence, at close-to-equilibrium conditions, dissolution is significantly slower than at far-

from-equilibrium, as it is primarily driven by dissolution of point defects and pre-existing edges 

and corners, lacking the rate-enhancing contribution of the stepwaves emanated from the pits. 

Several experimental studies using AFM and VSI have offered substantial support for these two 

distinct dissolution mechanisms (Arvidson et al., 2003; Arvidson and Luttge, 2010; Cama et 

al., 2010; Teng, 2004). 
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Figure 1.3 Sigmoidal relationship between calcite dissolution rate and Gibbs free energy of 

reaction, ΔGr, showing two typical surface topographies resulting from dissolution at far-

from-equilibrium and close-to-equilibrium conditions. The size of both topography images 

displayed is 400 x 400 μm2. Adapted from (Bouissonnié et al., 2018). 

1.2.3 Interplay between surface area and surface reactivity 

The dissolution mechanisms discussed above implicitly demonstrate how certain areas on the 

surface exhibit higher reactivity compared to the rest of the surface. In general, certain locations 

at the surface, such as dislocation lines and point defects (Duckworth and Martin, 2004a), steps 

(Teng, 2004), and edges and corners (Noiriel et al., 2020), tend to dissolve preferentially.  

The specific relationship between surface area and surface reactivity can be conceptualized by 

considering a Kossel crystal (Kossel, 1927a) (Figure 1.2). A Kossel crystal is a theoretical 

crystal made up of a stack of individual sites, which can be used to understand the fundamental 

mechanisms of crystal dissolution at the atomic scale. The faces of a Kossel crystal follow a 

TLK model (Kossel, 1927a; Stranski, 1928), also denoted as terrace-step-kink model (TSK) 

model, which means that a given surface is primarily constituted by three types of sites: terraces, 
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steps, and kinks. It is based on the idea that the reactivity of a given site on a crystal surface is 

determined by its bonding to neighbouring sites. The higher the number of neighbours (i.e., the 

higher the number of bonds), the lower the reactivity of that specific site. As so, terraces are 

less reactive than kinks and steps. The reactivity of all sites at the surface defines the surface 

reactivity. 

It follows that the surface reactivity (and consequent dissolution events) determines changes in 

the surface area, and changes in the surface area lead to changes in the surface reactivity. This 

can be easily understood from Figure 1.2. Upon dissolution of specific sites at the surface, new 

sites with different configurations (i.e., charaterized by a different number of neighbours, hence 

bonds) are revealed, which, as a result, change the overall surface energy. This dynamic 

interplay, combined with the heterogeneous distribution of structural defects, drives the 

heterogeneity of reaction rates observed at the mineral surface, as further discussed in the 

following subsection.  

It becomes therefore particularly important to monitor the evolution of the surface area (or 

topography) of minerals as a function of the dissolution progress and the corresponding changes 

in reactivity. In other words, it is crucial to investigate the impact of the reaction history on 

mineral dissolution rates. 

Numerous works emphasized that the reactivity of crystalline materials is partly inherited from 

the reaction history. This has been demonstrated both experimentally (Arvidson and Luttge, 

2010; Beig and Luttge, 2006; Bose et al., 2008; Luttge, 2006) and from a modeling perspective 

(Bose et al., 2008; Fischer et al., 2018; Kurganskaya and Luttge, 2021).  

One common aspect of all these studies is that the dissolution mechanism does not switch 

instantaneously from one mode to the other when the crystal experiences a sharp change in the 

saturation state of the solution. This is particularly evident when the change in saturation state 

occurs in the direction of increasing Ω (i.e., the solution moves closer to equilibrium 

conditions). Specifically, as demonstrated experimentally by Arvidson and Luttge (2010), when 

etch pits are already present on the surface (due to far-from-equilibrium conditions previously 

experienced), once the saturation state switches to close-to-equilibrium conditions, the 

(stepwave) dissolution mechanism transiently does not change. The stepwaves continue to 

propagate from the etch pit walls, thereby dissolving the surface layer-by-layer. This results in 

a non-steady-state dissolution rate significantly higher than the steady-state rate that would be 

observed on a pristine surface exposed to identical close-to-equilibrium conditions (Beig and 
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Luttge, 2006) (Figure 1.4). As dissolution goes on, the pre-existing etch pits grow in radius and 

become less deep over time, until they ultimately disappear. This is due to a combination of 

stepwave dissolution mechanism and of fluid conditions not sufficiently far-from-equilibrium 

to sustain etch pits at dislocation lines. 

As a result, after a transient time (also denoted as topographic relaxation time (Bose et al., 

2008)), the surface reaches a new configuration for which the steady-state dissolution rate, 

associated with the specific saturation state of the fluid investigated, is once more established. 

Altogether, these considerations further highlight the importance of capturing the heterogeneity 

of reactive sites at the surface when modeling mineral reactivity. This aspect and its implications 

will be further explored in the upcoming sub-section. 

 

Figure 1.4 Albite dissolution rate vs Gibbs free energy of reaction, ΔGr, showing the 

comparison between steady-state rates (obtained starting from pristine, untreated surfaces) and 

non-steady-state rates (obtained starting from treated, pre-etched surfaces). Adapted from (Beig 

and Luttge, 2006). 

1.2.4 Dissolution rate spectra and resulting surface roughness 

Mineral dissolution rates determined in field studies are commonly one to three orders of 

magnitude lower than rates determined in laboratory (Bricker et al., 2003). Such large 
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discrepancy can be attributed to both extrinsic and intrinsic factors (Fischer et al., 2014) (Figure 

1.1).  

The extrinsic factors represent all those factors that have an impact on the mineral dissolution 

rate but that are not directly related to the physicochemical properties of the mineral itself. This 

includes environmental conditions such as temperature, pH, and saturation state, differences in 

fluid-dynamics conditions (i.e., turbulent flow in laboratory vs slow laminar flow in the field 

(Uroz et al., 2009)), as well as the contribution of microorganisms (Uroz et al., 2009; Wild et 

al., 2022).  

Examples of intrinsic factors include mineral anisotropy (Daval et al., 2013), surface aging 

(Daval et al., 2013; Wild et al., 2018), differences in the density of structural defects in minerals, 

and difficulties in quantifying surface area and wetted surface ((Bricker et al., 2003) and 

references therein). 

However, numerous observations from laboratory studies (that controlled for most of these 

factors) showed that the measured mean dissolution rates remain highly variable, suggesting 

that an intrinsic variability in dissolution rates might exist (Fischer et al., 2014). In this context, 

Fischer et al. (2012) showed that the distribution of reaction rates across the mineral surface is 

highly heterogeneous, as quantified through the so-called ‘rate spectra’ (i.e., the frequency 

distribution of local rate values over a given domain). This heterogeneity closely mirrors the 

anisotropic distribution of surface energy. By comparing the dissolution of calcite to its 

polycrystalline counterpart (micrite), the authors showed that the resulting rate spectra 

significantly differ from each other, indicating fundamentally distinct distributions of reactive 

sites among the two mineral samples. Notably, this intrinsic variability in the distribution of 

reactive sites may, in part, explain the dispersion seen in the dissolution rates data within the 

literature (Fischer et al., 2014).  

Numerous experimental observations revealed that mineral rate spectra are not normally 

distributed (Brand et al., 2017; Emmanuel, 2014; Feng et al., 2017; Fischer et al., 2012; Siena 

et al., 2023), indicating that mean values (and associated standard deviation) are not good 

descriptors of the actual rate distributions. Adopting a single-valued mean rate (or rate constant) 

as a function of environmental conditions is therefore unjustified (Fischer et al., 2014). 

Moreover, mean dissolution rates completely obscure all the information about the different 

contributors to the overall rate, which is instead preserved by the rate spectra (Figure 1.5). 
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The spatial variability in dissolution rates, captured by the rate spectra, stems from the 

heterogeneous distribution of reactive sites at the mineral surface and from the seemingly 

random distribution of crystallographic defects. These spatially variable dissolution rates, in 

turn, give rise to a surface topography that also exhibits spatial heterogeneity, as quantified 

through surface roughness characterizations.  

As a consequence, both the ‘dissolution rate spectra’ and the ‘surface roughness arising from 

dissolution’ can be treated as random fields and interpreted through stochastic models ((Siena 

et al., 2023) and references therein).  

For example, the generalized extreme value (GEV) model has proven effective in interpreting 

the dissolution rate spectra of dolostone (Emmanuel, 2014) and calcite (Brand et al., 2017) at 

far-from-equilibrium conditions, whereas the generalized-sub-gaussian model has been found 

to effectively capture the key statistical features of calcite surface roughness arising from close-

to-equilibrium dissolution (Siena et al., 2020) and of the rate spectra associated with calcite 

dissolution at far-from-equilibrium conditions (Siena et al., 2021).  

Alternatively, Fischer and Luttge (2007) proposed the use of the length-dependent convergence 

of surface roughness parameters (and corresponding graphs) as a tool to quantify the surface 

topography of altered minerals. As surface roughness is a scale-dependent quantity, 

unidimensional roughness parameters (e.g., average roughness parameter, Ra, root mean square 

roughness, Rq, etc.) scale as a function of the observation window size. Plotting roughness 

parameters as a function of the field of view can, thus, provide insights about the contributions 

of different ‘surface sections’ to the global surface roughness. Specifically, by looking at the 

convergence graph (i.e., roughness parameters as a function of the field of view), it is possible 

to identify the ‘regions of convergence’ as those field of views for which the roughness 

parameters remain locally constant. The converged roughness parameters evaluated over those 

regions can, therefore, be used to characterize various surface building blocks and to quantify 

the topography associated with those specific surface sections (Fischer et al., 2014). When 

employing this approach in conjunction with the rate spectra, it becomes possible to identify 

the contributions of the various surface sections to the overall reaction rate (Fischer et al., 2014). 

A complementary method for quantifying the surface roughness across various scales is the so-

called power spectral density (PSD), which is covered in-depth in a later section. This method 

finds extensive application in material engineering for evaluating surface quality (Duparré et 

al., 2002; Krolczyk et al., 2016). Conversely, in the field of Earth sciences, it is commonly 
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employed to characterize the roughness of rock fractures (Cardona et al., 2021), but it is only 

rarely applied to describe the evolution of the topography of minerals during dissolution 

(Mellott et al., 2002). Overall, the PSD is a powerful technique that allows to track the evolution 

of the different frequency components of surface roughness during dissolution. 

An alternative approach to study the spatial heterogeneity of surface roughness arising from 

dissolution is given by the application of geostatistical techniques, which are usually applied at 

the km-scale (Liu et al., 2017), to topography data at the μm-scale. As an example, Pollet-

Villard et al. (2016b) developed a numerical model of orthoclase dissolution able to reproduce 

the key statistical features of the surface area evolution observed experimentally under far-

from-equilibrium conditions. In their study, semi-variogram analyses were employed to 

calibrate the model parameters, ensuring that the model outputs would display the same spatial 

autocorrelation observed experimentally. Semi-variogram and PSD techniques are described 

and discussed more in detail in Chapter 2. 

From a stochastic modeling perspective (including kinetic Monte Carlo (kMC) modeling (Blum 

and Lasaga, 1987), which will be discussed in detail later in the manuscript), most of the studies 

have focused on the analysis of the number of sites that are involved in the reactions (Figure 

1.6) and, thus, on the global material flux (e.g., (Ackerer et al., 2021) and references therein), 

without specifically looking at the evolution of surface roughness during dissolution (Fischer 

et al., 2014). Among the kMC studies that specifically placed emphasis on surface roughness, 

Hernández Creus et al. (1997) showed that, under chemically aggressive conditions, surface 

roughness strongly increases due to etching, until it eventually reaches a morphological steady-

state configuration. Wehrli (1989) demonstrated that the steady-state surface roughness 

increases when the crystal bonds strength decreases (i.e., when the relative reactivity of all sites 

increases). More recently, de Assis and Aarão Reis (2018) investigated the dissolution of 

minerals with rough surfaces, showing how the evolution of the surface undergoing dissolution 

evolves in the direction of decreasing the surface energy, until the whole sample is ultimately 

flattened. Conversely, Carrasco et al. (2021) studied the dissolution of initially flat calcite 

surfaces, showing how, at high temperature, the surface roughness scales in time and size 

according to the Kardar−Parisi−Zhang equation of kinetic roughening.  

Overall, kMC modeling and stochastic simulations are powerful tools to explore the evolution 

of surface roughness during dissolution. They can be particularly advantageous in situations 

where experimental endeavours are impractical or excessively time-consuming. Nevertheless, 

the primary limitation lies in the inability to predict in advance whether the model accurately 
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reproduces the outcomes that would be observed experimentally. Therefore, as a general 

strategy, it is recommended to employ numerical simulations in combination with experimental 

and analytical methods, consistently looking for cross-validations. 

 

Figure 1.5 Schematic illustration depicting how rate spectra preserve critical information about 

reaction modes that are obscured by single-valued mean dissolution rates. Illustration adapted 

from (Fischer et al., 2014). 
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Figure 1.6 Evolution of a Kossel crystal during dissolution, simulated using kMC modeling 

with two different values of bond-breaking activation energy: Eb = 5 kJ/mol (a, c) and Eb = 15 

kJ/mol (b, d). Images (a) and (b) correspond to a reaction extent of 10%, whereas images (c) 

and (d) represent a reaction extent of 50%. Only 1/8 of the crystal is displayed, and the white 

solid line represents the initial size of such a one eight of the crystal. Adapted from (Ackerer et 

al., 2021). 

1.2.5 Relationship between saturation state and surface topography resulting from 

dissolution 

As discussed in section 1.2.2, several minerals exhibit a sigmoidal relationship between 

dissolution rate and Gibbs free energy, which can be explained by the existence of two distinct 

dissolution mechanisms. Arvidson and Mackenzie (2000) suggested that such relationship 

might be shared by all crystals that dissolve through the formation of etch pits formed at 

dislocation outcrops, which includes all crystals having a framework structure. 

Due to the existence of two distinct dissolution mechanisms, far-from-equilibrium and close-

to-equilibrium conditions lead to surface microtopographies that are markedly dissimilar from 
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each other. Specifically, while the ‘far-from-equilibrium microtopography’ is dominated by the 

presence of etch pits, the ‘close-to-equilibrium microtopography’ tends to preserve the largest 

pre-existing surface features, such as cleavage steps, over the relatively short timescales 

commonly investigated in laboratory studies (Teng, 2004; Xu et al., 2012). 

Of note, the examples and discussions provided in this (and in the following) sub-section 

revolve around calcite, as it was chosen as a model mineral for this study, for the reasons that 

will be elaborated in section 1.7. Additionally, for calcite, the relationship between saturation 

state and resulting dissolution morphological features has been studied extensively 

(Bouissonnié et al., 2018; Gao et al., 2010; Kurganskaya and Luttge, 2021; Smith et al., 2013; 

Teng, 2004; Xu et al., 2012).  

When it comes to dissolution of calcite {104} faces, the relationship between saturation state 

and surface topography extends beyond a simple differentiation based on the presence or 

absence of etch pits. At very far-from-equilibrium conditions (Ω ∼ 0.00), the etch pits typically 

have a rhombic shape, whereas, at slightly closer-to-equilibrium conditions (Ω ∼ 0.02 – 0.20), 

they tend to become more triangular (Figure 1.7) (Bouissonnié et al., 2018; Gao et al., 2010; 

Teng, 2004). Of note, the critical value of the saturation state (Ωcritical) above which the 

formation of microscopic etch pits is no longer observed experimentally is estimated at ∼ 0.31 

– 0.45 ((Bouissonnié et al., 2018) and references therein). 

A mechanistic explanation for the etch pits morphology observed at far-from-equilibrium 

conditions is provided in (Gao et al., 2010). Their considerations are briefly summarized here. 

The rhombic shape observed at Ω ∼ 0.00 is a direct consequence of the rhombohedral symmetry 

of the calcite lattice, for which there are two inequivalent types of steps, with obtuse and acute 

orientations. The two acute (and the two obtuse) steps are crystallographically equivalent in the 

absence of chiral solutes (Orme et al., 2001). The acute steps create an overhang on the lower 

terrace, whereas the obtuse steps form a more open structure with respect to the lower terrace. 

At Ω ∼ 0.02 – 0.20, the etch pits develop a more triangular shape. While the obtuse steps 

intersect at a distinct point, forming a sharp corner, the acute steps form a curvilinear boundary.  

This phenomenon can be fundamentally attributed to backward reactions (precipitation 

processes), which become increasingly frequent as the saturation state rises. According to the 

TLK model (Liang and Baer, 1997), precipitation occurs at single kink sites. Since acute steps 

have more single kink sites compared to obtuse steps, the net acute–acute kink detachment rate 

is thus significantly reduced compared to that of the obtuse–acute kink sites (Jordan et al., 
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2001). This results in the accumulation of acute-acute kink sites at the acute steps, which 

ultimately produces the triangular shape of the (otherwise rhombohedral) etch pits.  

Altogether, these considerations suggest that valuable information about the fluid saturation 

state might be imprinted in the altered calcite surface. This suggests the potential existence of 

a more general relationship between saturation state and surface topography arising from 

dissolution, as further discussed in a subsequent section. 

 

Figure 1.7 Calcite surface microtopography arising from dissolution as a function of the 

saturation state. Topography data were acquired with VSI at 50x magnification. The size of all 

windows is 400 x 400 μm2. Topography data corresponding to Ωcalcite = 0.00 and Ωcalcite = 0.65 

are unpublished data, whereas topography data corresponding to Ωcalcite = 0.10 were published 

in (Stigliano et al., 2023b). 

1.2.6 Impact of organic molecules and foreign ions on the mineral surface topography 

resulting from dissolution 

It is worth noting that beside the saturation state, other factors can impact the surface 

microtopography that emerges from dissolution. In this regard, there is an extensive literature 

documenting how the presence of organic compounds (Oelkers et al., 2011; Teng and Dove, 

1997; Wu et al., 2011; Yang et al., 2008) and foreign ions (Lea et al., 2001; Vinson et al., 2007) 

can alter the reaction mechanism (e.g., through inhibition of relative step velocities by selective 

binding), which, in turn, modifies the etch pits morphology. 

The crucial role played by organics (e.g., polysaccharides) in biologically controlled 

mineralization of calcite is widely recognized (Arias and Fernández, 2008; Yang et al., 2008). 

However, organic molecules also play a role in mediating calcite dissolution, thus altering the 

resulting surface topography (Oelkers et al., 2011; Wu et al., 2011; Yang et al., 2008). For 

instance, (Teng and Dove, 1997) showed that, when exposed for a few minutes to aspartate 

solutions, the calcite surface develops triangular-shaped etch pits with sharp edges, which, after 
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two weeks of reaction, lead to the formation of well-oriented tetrahedral etch hillocks 

interconnected by triangular etch pits (Figure 1.8). 

Clear modifications in calcite etch pits morphology can also be observed in presence of foreign 

ions, i.e., ions that are not normally part of the calcite structure and that may come from the 

surrounding environment or from impurities within the crystal itself. The interaction of calcite 

surfaces with foreign ions has a significant impact on its overall reactivity and resulting surface 

topography. Several studies showed that the presence of Mg2+ in carbonated solutions can 

significantly alter the morphology of calcite etch pits by selective step pinning through 

adsorption of Mg2+ (Arvidson et al., 2006; Gao et al., 2010; Ruiz-Agudo et al., 2009). 

Modifications in step velocity ratio and resulting changes in etch pits morphology due to site-

specific pinning or adsorption was also observed in presence of Mn2+ (Vinson et al., 2007), Sr2+ 

(Vinson and Lüttge, 2005), Li+ (Ruiz-Agudo et al., 2010) and Cd2+ (Pérez-Garrido et al., 2007). 

Furthermore, (Ruiz-Agudo et al., 2010) documented changes in etch pit morphology from 

rhombohedral to pseudohexagonal and elliptical during calcite dissolution in solutions 

containing F-. Additionally, (Klasa et al., 2013) showed how, in phosphate-bearing solutions, 

the rhombohedral etch pits gradually changed morphology as the phosphate concentration 

increased, starting with the rounding of acute steps, progressing to pseudo-triangular shapes, 

and ultimately resulting in the appearance of heart-shaped, tear-shaped, or distorted 

rhombohedra. In general, the mechanisms responsible for the observed alterations in the etch 

pits morphology primarily involved the selective inhibition of specific sites within the etch pit 

steps. 

Altogether, these observations highlight how the mineral surface topography arising from 

dissolution can be informative about the solution chemistry to which the mineral was exposed. 

However, these studies also show that some of the non-rhombohedral etch pits morphologies 

(e.g., pseudo-triangular and rounding of acute steps) can occur under a range of chemical 

conditions very distant from each other. This suggests that qualitative descriptions of surface 

morphology alone may not be adequate to differentiate between the various chemical factors 

(e.g., saturation state, foreign ions, or organic mediation) that might have led to their formation. 

This aspect poses significant challenges for potential applications in environmental 

reconstruction, as discussed in the following section. 
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Figure 1.8 Digital image of etch hillock features (i.e., well-oriented tetrahedral etch hillocks 

that are interconnected by triangular etch pits) developed on the calcite {104} face after 

dissolution in an aspartate solution for two weeks. The image includes labels indicating the 

orientations of the three constituent faces of the tetrahedrons and the orientations of the 

individual layers that make up the hillocks. The corresponding crystallographic axes associated 

with these features are also included. Adapted from (Teng and Dove, 1997). 
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1.3 Mineral surface roughness resulting from dissolution as a proxy for the 

reaction conditions  

As discussed in sub-section 1.2.5, qualitative comparisons of the calcite surface topographies 

resulting from dissolution at different saturation states indicate that a more general Ω - surface 

topography relationship might exist. If such a relationship does exist, several minimum 

requirements must be fulfilled to make it a reliable proxy to back-estimate the fluid saturation 

state: 1. the relationship must be quantitative, hence the microtopography main features must 

be somehow quantified; 2. the surface topography arising from dissolution must reach a steady-

state configuration, as quantified by the metrics adopted; 3. the steady-state configurations 

resulting from different Ω must be sufficiently distinguishable from each other; 4. the steady-

state configurations resulting from different Ω must be sufficiently distinguishable from the 

surface topographies originated by other factors (e.g., organics or foreign ions).  

All these conditions need to be verified experimentally. However, central to the development 

of this relationship (and its potential use as a proxy) is the quantification of the surface 

topography, which can be done through surface roughness characterizations, as discussed in 

detail in Chapter 2. In this way, the informative content of the surface microtopography is 

summarized into the main statistical traits captured by the surface roughness characterization. 

As so, the surface microtopographies resulting from dissolution at different saturation states 

can be quantitatively compared through the corresponding surface roughness characterizations, 

thus establishing the Ω - surface topography relationship. 
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1.4 Microbial weathering of minerals: what are the challenges? 

The chemical weathering of rock-forming minerals was initially conceptualized in terms of 

abiotic reactions alone (Smits et al., 2009). Nevertheless, over the last decades, there has been 

a growing recognition of the role that living organisms play in this process (Burford et al., 2003; 

Hoffland et al., 2004; Smits et al., 2009; Wild et al., 2022). Various living organisms have been 

shown to influence (either promoting or inhibiting) mineral weathering rates, including bacteria 

(Uroz et al., 2015), archaea (Bai et al., 2021), algae (Coombes, 2014), fungi (Gadd and 

Petrology, 2017), plants (Bonneville et al., 2009), and animals (Dorn, 2014), both individually 

and through symbiotic cooperations. The processes by which living organisms influence 

mineral weathering are commonly referred to as bioweathering.  

Plants and microbes play a significant role in mineral bioweathering. Specifically, the 

contribution of plants, including their roots and associated microbial symbionts, has been 

extensively studied and tentatively modelled ((Wild et al., 2022) and references therein). 

Current evidence suggest that plants globally accelerate rock weathering through a variety of 

chemical and physical mechanisms (Dontsova et al., 2020; Porder, 2019). These include: (i) 

carbon acid production and exudation of organic ligands; (ii) selective uptake of 

macronutrients, such as base cations (Ca2+, K+, Mg2+) and phosphorous; (iii) modifications of 

the soil hydrology; (iv) physical breakdown of rocks caused by the growth of roots, which, in 

turn, exposes new mineral surface area to chemical weathering (Dontsova et al., 2020). 

Conversely, the specific contribution of microbes to mineral bioweathering (also denoted as 

microbial weathering) has often been overlooked, despite several factors indicating its potential 

significant impact (Wild et al., 2022). Microorganisms, which include prokaryotes (bacteria and 

archaea) and μm-size eukaryotes (fungi, algae and protozoa), inhabit a wide array of 

environments on Earth, including the most extreme habitats (e.g., deserts, geothermal soils, hot 

springs, hypersaline habitats, and the deep sub-surface) ((Burford et al., 2003) and references 

therein). In all these environments, microbes constantly interact with minerals, e.g., by using 

them as substrates to sustain biofilm growth (Gorbushina, 2007), by inducing their dissolution 

for nutrients uptake (Ahmed and Holmström, 2014), or by inducing their formation for energy 

storage or pH regulation functions (Cosmidis and Benzerara, 2022). Moreover, it has been 

shown that the crystallographic properties of the mineral substrates (i.e., chemical composition 

and structure) can influence the diversity of soil bacterial communities, suggesting that the 

minerals create true ecological niches (Gleeson et al., 2006; Uroz et al., 2012).  
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Overall, these observations indicate that microbial weathering does contribute to mineral 

weathering. However, this prompts several questions: What are the mechanisms underlying 

microbial weathering? Is microbial contribution quantitatively significant? How can microbial 

weathering be differentiated from other forms of (bio-)weathering? What are the signatures of 

microbial weathering? 

1.4.1 Mechanisms of microbial weathering 

Microbes can both promote and inhibit (also denoted as bioprotection) mineral weathering, 

according to different mechanisms. For instance, acidolysis reactions (e.g., resulting from the 

excretion of H+, organic acids and other metabolites, and / or by the formation of carbonic acid 

due to respiration) lead to a decrease in pH, which tends to favour mineral dissolution (Gadd, 

2010). Conversely, CO2 fixation carried out by some autotrophic (e.g., photosynthetic, 

chemosynthetic) microorganisms leads to an increase in pH, which tends to favour mineral 

precipitation (Dittrich and Sibler, 2010). Microbes can also promote dissolution of primary 

metals-bearing minerals by excreting organic ligands, which can form chelate complexes with 

metal ions at the crystal surface, thus promoting its dissolution (i.e., the organic ligand wraps 

around the metal ion, creating a stable complex in which the metal ion is effectively sequestered 

and solubilized). For example, it is widely recognized that microbial siderophores (Fe-chelating 

ligands) can increase the dissolution rate of Fe-silicates (olivines, pyroxenes, hornblendes, and 

biotite) in soils ((Buss et al., 2007) and references therein). 

Certain microorganisms, specifically fungi, have the capability to enhance weathering through 

mechanical processes similar to those previously described for plant roots. The combination of 

turgor pressure forces within fungal appressoria (structures utilized to penetrate host 

organisms), which can reach up to 8 MPa, along with the pulsatile, apical growth of hyphae and 

the strong adhesive forces that anchor fungi to mineral surfaces, can play a role in the creation 

of shallow ‘trenches’ of ~ 100 nm in depth on the surfaces of biotite and chlorite basal planes 

((Wild et al., 2022) and references therein). This distinctive growth pattern facilitates the 

displacement and fragmentation of the uppermost material, leading to the generation of new 

mineral surface area on an otherwise relatively unreactive basal plane (Bonneville et al., 2016). 

When studying microbe-mineral interactions (including microbial weathering) in natural 

environments, it is crucial to differentiate between planktonic (i.e., free-floating) and biofilm-

forming (i.e., adhering to surfaces) microbes. Biofilms are complex communities of sessile (i.e., 

immobile) prokaryotic and / or eukaryotic microbes adhering to each other through a self-

produced extracellular matrix (Figure 1.9), primarily made of extracellular polymeric 
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substances (EPS), which mostly consist of exopolysaccharides, DNA, and/or proteins 

(Costerton et al., 1995). Water constitutes ∼ 97% of the total mass of a biofilm (Zhang et al., 

1998), while a substantial portion of the organic content, ranging from 50% to 90%, is 

composed of EPS (Flemming and Wuertz, 2019). 

While planktonic microbes can also indirectly interact with minerals in their vicinity by 

inducing (and by responding to) changes in the bulk solution chemistry, biofilm lifestyles 

generally enable a more effective exchange of elements with the mineral substrates (e.g., 

(Ahmed and Holmström, 2014)). Of note, in natural environments, planktonic microbial 

communities are generally taxonomically and metabolically very different from microbial 

communities within biofilms (Iniesto et al., 2022). 

A key advantage of biofilms is the ability to generate at the fluid-mineral interface confined 

microenvironments with chemical conditions that locally diverge from those of the surrounding 

bulk solution. In these microenvironments, microbes can locally regulate chemical (e.g., pH, 

chemical potential of specific elements) and environmental (e.g., moisture content) conditions 

to protect themselves from adverse conditions (e.g., droughts, fluctuations in solution 

compositions) ((Wild et al., 2022) and references therein). As so, in the context of 

bioweathering, biofilms can establish at the fluid-mineral interface weathering conditions (in 

terms of, e.g., pH, fluid saturation state, local concentration of chelating agents and redox 

conditions (Liu et al., 2002; Newman and Kolter, 2000)) that are highly different from the 

weathering conditions of the bulk fluid, thus significantly impacting the overall mineral 

weathering rate.  

Finally, it is worth emphasizing that when the conditions within the biofilm microenvironment 

favour mineral precipitation, biofilms can serve as protection against weathering. Such 

bioprotection mechanism can be achieved through the passivating impact of mineral 

precipitation and EPS covering the mineral substrate (Jroundi et al., 2017).  
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Figure 1.9 Sketch of biofilm-mineral interactions. Minerals can be dissolved. Dissolution can 

be enhanced or slowed down by the production of protons, chelating agents, reductants, 

oxidants by microbes. Microbes can also attach to high-energy sites. Dissolution in turn releases 

nutrients and drives the onset of chemical gradients (double arrows in red) at the base of the 

biofilm. Minerals can be precipitated (light blue) within biofilms, which can lead to passivation 

of the mineral substrate surface underneath the biofilm. Passivation refers to the formation of 

minerals on top of the mineral substrate (yellow) surface that makes the substrate surface less 

prone to alteration, reducing its dissolution rate. Sketch and corresponding captions from Fig.1 

in (Stigliano et al., 2023a). 

1.4.2 Signatures of microbial weathering 

As outlined in the previous subsection, microbes have the potential for both enhancing and 

inhibiting mineral weathering. Assessments of the microbial impact on weathering rates for 

specific microbe-mineral interactions, as quantified by the ‘acceleration factor’ (i.e., 

microbially enhanced rate / abiotic rate), can vary significantly, ranging from as low as 0.1 

(indicating bioprotection) to more than 8 (indicating enhancement) ((Wild et al., 2022) and 

references therein). Nevertheless, the quantitative global net contribution of microbial 

weathering to the overall weathering rate remains an open question.  

Due to several challenges associated with measuring chemical weathering rates in natural 

environments, most of the studies attempting to estimate the intrinsic contribution of microbes 

to weathering fluxes relied on laboratory experiments involving axenic (i.e., single strain) 

cultures (e.g., (Santelli et al., 2001)). While these studies provided valuable insights into the 
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mechanisms by which microbes affect dissolution rates (Bray et al., 2015; Cama and Ganor, 

2006), they have several limitations in terms of relevance with respect to natural settings. First, 

they are restricted to microorganisms that can be cultured in the laboratory. Second, they do not 

consider the complex interactions that occur within microbial communities in the field, where 

multiple species coexist, sometimes in symbiotic cooperations. Then, it is not possible to 

precisely replicate the actual environmental conditions within laboratory settings. Lastly, these 

experiments often employ fresh mineral surfaces, from which elements are much more readily 

accessible than in natural settings, in which natural samples are subject to ‘surface aging’ 

(Eggleston et al., 1989). 

Higher degrees of relevance and accuracy have been reached over the years both in field (e.g., 

incubation experiments) and laboratory (e.g., microcosms experiments) settings ((Wild et al., 

2022) and references therein). However, beyond the question of microbial weathering rates, it 

is crucial to understand the mechanisms by which microbes affect the dissolution fluxes.  

To this end, high-resolution surface topography techniques, such as VSI, have recently proven 

successful in providing insights about the link between bacterial and/or fungal attachment and 

mineral surface dynamics (Davis and Lüttge, 2005; Quirk et al., 2015; Wild et al., 2021). For 

instance, Wild et al. (2021) used VSI topography measurements to deconvolute the weathering 

flux distinctively due to the fungal hyphae of Verticillium sp. from the solution-related flux 

from olivine samples incubated in a soil profile of a temperate forested area. The authors 

concluded that the contribution of olivine-colonizing fungi in a Mg-deficient forest soil 

accounted for up to 16% of the weathering flux after 9 months of incubation. Such enhancing 

contribution was highly localized and limited to the location where the hypha attached to the 

mineral, resulting in a depression of the surface. Similar imprints of localized enhanced mineral 

weathering due to hyphae attachment were also documented in other studies (Bonneville et al., 

2009; Quirk et al., 2015) and can be explained by a combination of mechanical forcing that 

weakens the crystal structure at early stages (during attachment) and chemical alteration of the 

mineral substrate at later stages (Bonneville et al., 2009). 

Overall, these observations indicate that the surface topography resulting from microbial 

weathering can retain distinct signatures of the microbial contribution, suggesting that the 

surface imprints left behind by microbes during weathering may serve as potential 

biosignatures. 
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In this context, micron-scale morphological features, such as tubular microchannels or etch pits 

developed in altered glass or mineral samples, have often been interpreted as imprints of 

bioweathering left by microorganisms (Bennett et al., 1996; Benzerara et al., 2005; Fisk et al., 

1998; Jongmans et al., 1997; McLoughlin et al., 2007; Thorseth et al., 1995). Specifically, 

etching features resembling microorganisms in ‘size, shape and distribution’ are among the 

conventional criteria used to suggest past or ongoing interactions between microbial cells and 

minerals (Fisk et al., 1998; Thorseth et al., 1995). However, the identification of biosignatures 

based on the microtopography of naturally weathered samples has often proven elusive, as etch 

pits and tubular features could equally be formed abiotically (Benzerara et al., 2007; Fisk et al., 

2013; Santelli et al., 2001). 

This requires, on the one hand, to better understand the mechanisms behind the formation of 

various weathering features under a broad range of biotic and abiotic conditions, which would 

allow to evaluate the likelihood of different potential explanations. On the other hand, this also 

requires to be able to detect the subtle differences in the fine morphology of weathering features, 

which could be key to differentiate between abiotic and biotic processes (Welch et al., 2002). 

To these ends, high-resolution surface topography techniques are particularly useful, as 

discussed in the following section. 
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1.5 Surface topography techniques to study biofilm-mediated mineral 

dissolution 

High-resolution surface topography techniques can offer valuable insights into the mechanisms 

underlying microbial weathering of minerals and the subsequent formation of bioweathering 

features. As previously discussed, mineral-colonizing microbes, especially those forming 

biofilms, can interact effectively with minerals, due to their close proximity. As so, studying 

biofilm-mineral interactions with high-resolution surface topography techniques can be 

particularly informative in this regard. 

This section includes two paragraphs of the book chapter ‘Micro- and nanoscale techniques for 

studying biofilm-mineral interactions’ that was recently published in Methods in Microbiology 

(Stigliano et al., 2023a). These segments focus on two high-resolution surface topography 

techniques (AFM and VSI) that show great potential in elucidating the mechanisms behind 

microbial weathering and in distinguishing subtle variations within the fine structure of (bio-

)weathering features. 

1.5.1 Atomic force microscopy (AFM) to image the topography, and mechanical, 

electrical and chemical properties of biofilm-mineral assemblages at the sub-nanometre 

scale 

Atomic Force Microscopy (AFM) is a very-high-resolution scanning probe microscopy 

technique for surface analysis. It essentially consists of: (i) a flexible cantilever with a sharp tip 

scanning over the sample surface; (ii) a piezoelectric scanner controlling lateral and vertical 

position of the AFM probe relative to the surface under study; (iii) a laser beam reflected from 

the back side of the cantilever and directed onto a photodiode detector; (iv) a feedback loop 

system (Figure 1.10). As the tip scans over the studied surface, attractive or repulsive forces 

between the tip and the sample cause a deflection of the cantilever. The deflection is measured 

with the laser reflected from the back side of the cantilever onto the detector. The deflection 

signal recorded on the photodiode detector, combined with the information about the distance 

between the cantilever and the surface as controlled by the piezoelectric scanner, are finally 

converted into a topographic map. 

AFM is actually a broad term encompassing several different operating modes, ranging from 

topography measurements to mechanical, electrical and chemical surface characterizations at 

the nanoscale. The different topographic modes can be classified based on the specific operating 

modes such as: (i) ‘contact mode’, in which the tip is continuously in contact with the surface 
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when raster-scanned across the sample, (ii) ‘intermittent contact mode’, better known as 

‘tapping mode’, in which the tip continuously oscillates close to the studied surface and 

perpendicularly to it, intermittently touching it, and (iii) ‘non-contact mode’, in which the tip 

oscillates as in ‘tapping mode’ but without ever getting in direct contact with the surface (Figure 

1.10). Generally, ‘contact mode’ is optimal for hard and regular samples, whereas ‘intermittent’ 

or ‘non-contact modes’ are preferable for softer and less regular samples (e.g., biofilm). AFM 

allows to obtain topography images with 1 Å vertical resolution, 30 nm lateral resolution, 10 

μm vertical scanning range and 100 μm2 field of view. For the study of biofilm-mineral 

assemblages, the ‘force mapping’, a non-topographic mode, also appears particularly 

interesting. In this mode, the force between the AFM tip and the studied surface is measured, 

providing information about mechanical properties, such as adhesion forces. An extensive 

description of all AFM operating modes can be found in (Eaton and West, 2010). 

Applying AFM to the study of mineral dissolution and growth has become increasingly popular 

over the years (Daval et al., 2013; Li et al., 2021; Nagy et al., 1999; Pollet-Villard et al., 2016a). 

Mineral samples can be imaged under wet conditions, without any sample preparation, allowing 

the study of the surface dynamics of minerals undergoing dissolution-precipitation processes in 

situ (Pimentel et al., 2013; Siena et al., 2021; Wang and Putnis, 2020). Meanwhile, AFM has 

proven to be an equally essential tool for the analysis of microbial systems (Dufrêne, 2002; 

Wright et al., 2010). However, proper AFM imaging and force mapping of live cells under 

physiologically relevant conditions are technically challenging. In fact, since the cells are only 

weakly bonded to the substrate, the interaction with the scanning tip may provoke cell 

detachment or damage (Wright et al., 2010). Nevertheless, great progress has been achieved in 

this respect over the past two decades (Evans et al., 2021; Hu et al., 2020). Additionally, AFM 

has been extensively applied to monitor biofilm development (Kamaeva et al., 2014; Oh et al., 

2007; Oh et al., 2009) and biofilm-EPS properties (Breitenbach et al., 2018). 

Overall, AFM has great potential in characterizing biofilm-mineral interactions. Recently, 

(Wang et al., 2022) documented how Vibrio harveyi J4, an extreme halophilic bacterium, could 

initiate the calcite-to-protodolomite transformation in Mg-containing solutions. AFM was used 

in the ‘contact mode’, over observation areas of 5 μm2 and 500 nm2. This revealed nano-

spheroids-hemispheroids (interpreted as protodolomite) over the calcite surface after 3 months 

of incubation. They suggested that the numerous carboxyl groups with negative charges present 

in the bacterial EPS may attract Ca2+ and Mg2+ ions, promoting the precipitation of 

protodolomite. 
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AFM has been especially used to investigate biofilm-mediated dissolution of minerals. These 

studies have been conducted from various experimental perspectives, ranging from ex situ 

observations of incubation experiments ((Kirtzel et al., 2020; Saccone et al., 2012)) to in situ 

imaging of batch and flow-through systems (Pokrovsky et al., 2021). To investigate the impact 

of fungal biofilm on different mineral surfaces (hornblende, biotite and chlorite) after 6 months 

of incubation, (Saccone et al., 2012) adopted AFM imaging and ‘force mapping’ before and 

after the removal of the biofilm. The biofilm comprises globular features measuring 10–80 nm 

in diameter, as shown by images acquired in ‘tapping mode’, and its morphology differed from 

mineral to mineral. AFM ‘force mapping’ revealed the hydrophobic nature of the hypha 

(compared with the AFM tip), and of the biofilm to a lesser extent. Additionally, the biofilm 

altered the hornblende surface underneath, which made the mineral surface significantly more 

mechanically fragile than a cleaved surface, pointing at the key role that fungal biofilm might 

play in enhancing silicate weathering. In contrast, in situ AFM imaging was also used to show 

the potential of biofilms to inhibit mineral weathering, with possible applications in stone 

heritage protection and consolidation (Jroundi et al., 2017). 

Another area where AFM offers considerable insights is bioleaching, i.e., solubilization of 

metals from insoluble ores mediated by bacteria and archaea. Since bioleaching requires 

attachment (Bellenberg et al., 2014),  AFM in the ‘force mapping’ mode was used to investigate 

how to favour early microbial attachment and biofilm formation. As an example, (Su et al., 

2021) showed how the presence of a surfactant increased the mean adhesion forces between 

Acidianus manzaensis YN-25 and chalcopyrite, supposedly by changing the Lewis acid-base 

interaction and electrostatic force (Su et al., 2021). Finally, the spatial correlation of AFM 

imaging in ‘topographic mode’ with epifluorescence microscopy (EFM) and CLSM, can 

provide great insights about bioleaching, including the ability to thoroughly investigate cell 

distribution, biofilm formation and EPS production (Zhang et al., 2014; Zhang et al., 2019). As 

an example, by correlating AFM and EFM, (Zhang et al., 2014) showed that F. acidiphilum 

cells attach to pyrite substrates preferentially along cracks and macro-steps, with subsequent 

formation of a monolayer biofilm. 
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Figure 1.10 Principle of AFM. (A) Working principle (in constant force mode, i.e. constant 

deflection). The sharp tip at the end of the cantilever feels the (attractive or repulsive) force 

from the sample surface and deflects accordingly, causing the laser beam to deviate its path to 

the photodetector, reaching a point different than the ‘setpoint’, i.e., the point on the 

photodetector corresponding to no deflection of the cantilever. The error signal is sent to a 
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feedback loop system that responds by adjusting the cantilever height, through vertical 

adjustment of the piezoelectric scanner, to move it back to the no deflection configuration. The 

height adjustment of the piezoelectric scanner is converted into a surface height measurement. 

The scanner then moves horizontally in the plane to scan other points on the surface. (B) 

Different topographic operating modes. In ‘contact mode’, the sharp tip continuously touches 

the surface while scanning and is therefore always in the repulsive force regime (green dot line). 

In contrast, in ‘non-contact mode’, the sharp tip continuously oscillates vertically while moving 

along the surface and is therefore always in the attractive force regime (blue dot line). Lastly, 

in ‘intermittent contact mode’, the sharp tip oscillates and moves along the surface as in ‘non-

contact mode’, but it constantly ranges from one force regime to the other (red dot line). 

Force/Deflection graph adapted from (Eaton and West, 2010). Atomic force microscopy. 

Oxford University Press. 

1.5.2 Vertical scanning interferometry (VSI) to quantify dissolution rates of mineral 

substrates covered by biofilms 

Biofilms can positively and/or negatively impact the dissolution rates of the mineral substrates 

on which they grow. However, this effect remains to be properly quantified and the parameters 

controlling the impact type (i.e. enhancement or inhibition of dissolution) and magnitude of this 

effect to be determined. Like AFM, white light vertical scanning interferometry (WL-VSI, 

commonly known as VSI) proves as a particularly interesting tool for this purpose. VSI is an 

interference microscopy technique using the low coherence of white light to obtain areal surface 

topography measurements. In brief, a beam emitted from a white light source is split into two 

parts with a beam splitter: one beam is reflected by a fixed reference mirror, the other by the 

surface under examination. The two beams are recombined by the beam splitter to interfere with 

each other on a detector. A CCD sensor detects the resulting interference fringe pattern, and the 

corresponding signal is digitized to generate a topography map of the surface investigated 

(Figure 1.11). State-of-the-art VSI allows to obtain topography images with a sub nanometric 

vertical resolution, a 360 nm lateral resolution, a 1 mm vertical scanning range and a 1 mm2 

field of view (extendable up to 1 cm2 in ‘stitching mode’). More details regarding VSI basic 

principles are provided elsewhere (Wyant, 2002). 

VSI is widely used in mineral reactivity studies in order to (i) quantify crystal dissolution (or 

growth) rates through direct measurements of the surface normal retreat (or advance), as well 

as (ii) characterize the resulting surface morphology (Lüttge et al., 1999). In this regard, VSI is 

also suitable for studying microbially-mediated alteration of minerals, as it allows to localize 
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the biofilm forming microbes, while quantifying any changes in surface topography (Davis and 

Lüttge, 2005) (Figure 1.12). 

When compared to AFM (topographic mode), VSI offers a larger field of view, which makes it 

more appropriate for studying the spatial heterogeneity of biofilm mineral interactions. In 

contrast, due to the limited lateral resolution, VSI cannot detect the nanometric surface features 

that can be resolved with AFM. The complementary use of VSI and AFM is therefore 

particularly advised for the quantitative characterization of scale-dependent phenomena (e.g. 

mineral surface roughness and biofilm spatial distribution). Additionally, the higher vertical 

scanning range of VSI allows to study crystal macro-steps, inaccessible with AFM. It is crucial 

to investigate such surface macro-features as they provide high-energy sites that might favour 

microbial attachment (Davis and Lüttge, 2005). Lastly, AFM may be detrimental to the biofilms 

because of the invasive nature of the tip it uses to probe the sample. By contrast, VSI is non-

invasive and non-destructive. In return, since VSI is optimized for non-biological opaque and/or 

thick (relatively to vertical scanning range) samples, great care must be taken in some specific 

cases, when interpreting potential microbe-mineral interactions. For example, (Waters et al., 

2009) used VSI to study the attachment of Shewanella MR1 on different substrates and showed 

how an optical artifact was generated when reflective surfaces were used, with the bacteria 

appearing as rod-shaped pits instead of cells attached on the surface (Waters et al., 2009). The 

authors interpreted such artifacts as the result of conflicting interferometric information 

between the light reflected from the top of the transparent bacterium and the light reflected from 

the surface underneath the cell. Interestingly, they suggested that, by modifying the VSI 

software recognition program, it may be possible to acquire separate heights data from the top 

of the cells and from the substrate underneath them. In principle, this would allow to directly 

track the dissolution of the substrate underneath the cells, without having to physically remove 

the cells. While this phenomenon could represent an opportunity, in other cases, the generation 

of such optical artifacts might lead to misinterpretations of the VSI output. Therefore, in the 

case of ambiguous results, validation of the final interpretations with AFM is recommended. 

All so-far published geomicrobiology studies using VSI addressed mineral bio-dissolution and 

not bio-precipitation, although the latter should also be feasible. Regarding bio-dissolution, VSI 

was used to compare the effects on Fe-silicate dissolution of: (i) siderophores-only (high-

affinity iron-chelating organic molecules); (ii) EPS-only; (iii) Bacillus sp., a siderophore- and 

EPS-producing microorganism, which necessitates Fe only as a micronutrient (Buss et al., 

2007). The authors documented an increase in surface roughness whenever siderophores were 
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present, alone or in Bacillus sp. biofilms. This was attributed to etch-pit growth, resulting from 

siderophore-promoted dissolution. Hence, it was concluded that the etch-pits formed in the 

presence of Bacillus sp. cells may be caused by siderophores concentrated in biofilms. 

Similarly, VSI was applied to assess the impact of Shewanella oneidensis MR-1 surface 

colonization on the dissolution of different carbonate phases (calcite-CaCO3 vs dolomite-

(Ca,Mg)CO3) through surface retreat measurements (Davis et al., 2007). The presence of S. 

oneidensis MR-1 cells was found to influence carbonate dissolution via two pathways with 

competing effects: (i) inhibition of dissolution and etch-pits growth through covering of mineral 

reactive sites by the cells; (ii) enhancement of dissolution through carbonate material 

excavation during irreversible attachment of the cells to the mineral surface. For calcite 

substrates, which are more soluble and faster-dissolving than dolomite substrates, inhibition 

prevailed, resulting in a biotic dissolution rate 40–70% lower than in the corresponding abiotic 

case. For dolomite, the enhancement due to carbonate material excavation by the cells during 

surface colonization prevailed, which led to an overall higher dissolution rate compared with 

the abiotic control. More recently, (Wild et al., 2021) used VSI to estimate fungal contribution 

to silicate weathering rates in natural soils by measuring local depressions of the mineral surface 

right underneath the hyphae. In this case, they showed a local increase in olivine weathering, 

which they attributed to fungal hyphae of Verticillium sp. 

The main current limitation in the application of VSI to biofilm-mineral interaction studies, is 

the requirement of a dry environment during acquisition of topography images, i.e., ex situ 

characterizations. In fact, the presence of any fluid other than air in between the objective and 

the sample would affect the optical path of the beam reflected from the sample surface. 

However, this limitation may be overcome by adding a ’compensating filter’ in the path of the 

beam reflected from the reference mirror. This filter needs to be ad-hoc designed with a 

refractive index and a thickness that could compensate for the presence of an aqueous solution 

and a reactor cap in the path of the beam reflected from the sample surface (Larimer et al., 2019; 

Larimer et al., 2016). Such technical modification, although technically challenging, would 

make VSI in situ observations of biofilm-mineral interactions feasible. 
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Figure 1.11 (A) VSI apparatus, showing two Mirau objectives (10x, 50x) Samples have to be 

placed on the working table aligned with the selected objective. The objective remains fixed, 

while the working table can move horizontally to find the desired location on the sample surface 

and vertically to find fringes on the surface, as controlled by the piezoelectric scanner. (B) 

Simplified scheme of VSI working principle with a Mirau objective. In this configuration, a 

beam is split into two beams, one reflected by a reference mirror built in the Mirau objective, 

the other reflected by the sample surface. Both beams are reflected back and will interfere with 

each other, producing an interferogram, which can be converted into a surface topography map. 

Panel B: Adapted from (Wu et al., 2021). Performance analysis of surface reconstruction 

algorithms in vertical scanning interferometry based on coherence envelope detection. 

Micromachines, 12(2), Art. 2. doi: 10.3390/mi12020164. 
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Figure 1.12 Example of VSI application to microbe-mineral interaction studies: topography 

data of a calcite surface colonized by a biofilm of Chroococcidiopsis thermalis PCC 7203 cells 

after dissolution under alkaline conditions, before (A) vs after (B) physical removal of the cells. 

These experiments will be further addressed in Chapter 5. (A) Topography data of the calcite 

surface partially covered by the cells. The highest height values (i.e., mostly in the yellow colour 

range) and arranged in circular shapes refer to the cells, whereas the lowest height values (i.e., 

mostly in the blue colour range) refer to the calcite substrate surface. (B) Topography data of 

the calcite surface after physical removal of the cells. (C) Corresponding calcite surface normal 

retreat, ΔH, measured as the relative height difference between an unreacted (reference) area 

(displayed in light yellow) and a dissolved area. 
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1.6 Surface imprints resulting from bacterial weathering as potential 

biosignatures 

As discussed in the previous sections, altered minerals can be indicative, to different degrees, 

of ongoing and past microbe-mineral interactions.  

For instance, rock-eating fungi, as denoted by Jongmans et al. (1997), can penetrate minerals 

through the hyphae along points of weakness, or by direct tunnelling or boring, leading to the 

formation of micro tunnels (Gadd, 2017; van Schöll et al., 2008).  After the degradation of the 

fungal hyphae, the micro tunnels formed by the hyphae are left within the minerals (and, 

sometimes, later filled by precipitated minerals), leaving behind traces of past bioweathering 

activity (Gadd, 2017). These micro tunnels are often characterized by parallel-oriented walls 

with constant diameter (typically corresponding to that of the original hypha) and rounded ends, 

which help to distinguish these micro tunnels from coalesced etch pits and cracks that might 

have been caused by abiotic processes (van Schöll et al., 2008).  

Notably, micro tunnels are also commonly formed by microorganisms within calcareous and 

calco-phosphatic substrates in marine and freshwater settings (Campbell, 1983). This involves 

a variety of filamentous or pseudo filamentous microbes (denoted as carbonate borers), which 

includes eukaryotes (fungi, green and red algae) and prokaryotes (cyanobacteria) (Garcia-

Pichel, 2006). Among these, euendolithic (i.e., true boring endoliths) cyanobacteria represent a 

geochemical paradox, as photoautotrophic metabolism is usually considered to induce 

carbonate precipitation rather than dissolution. Nonetheless, the chemical excavation into 

carbonates is made possible by the microbial active uptake of Ca2+ at the boring front, which 

locally decreases the saturation state with respect to CaCO3, thereby making dissolution 

thermodynamically favoured (Garcia-Pichel et al., 2010). Interestingly, it has been shown that 

these filamentous euendolithic cyanobacteria can create micro tunnels as deep as several 100s 

of μm, which extend significantly beyond the length of the individual microorganisms. 

In general, micro tunnels and similar volumetric signatures of bioweathering can readily be 

interpreted as biosignatures when detected in natural settings, primarily due to their large size 

and because fewer plausible processes have been proposed to explain the formation of these 

features abiotically. However, this type of weathering features is limited to a small sub-set of 

multicellular (and relatively complex) microbes. Since the predominant form of microbial life 

on Earth is single-celled organisms, in order to search for more universal signatures of microbial 

bioweathering, it becomes necessary to examine the impact of single-celled microbes.  
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Comparative studies of the surface microtopography resulting from abiotic and abiotic 

weathering carried out to date suffer from the limitations discussed in section 1.4.2, which 

mainly include the intrinsic ambiguity associated with biogenic criteria based on qualitative 

(thus subjective) comparisons (Rouillard et al., 2020). Shifting towards biogenic criteria based 

on quantitative approaches appears therefore necessary. Ultimately, these quantitative 

approaches need to be versatile enough to capture the full spectrum of potential imprints that 

might be left at the surface by microbes, which may go far beyond the presence of etch pits 

resembling cells in ‘size, shape and distribution’.  
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1.7 Manuscript plan 

The central aim of this manuscript is to investigate the informative content that is retained 

within weathered mineral surfaces, addressing the following fundamental questions: 

1. Can the microtopography of naturally-weathered minerals serve as a proxy to back-

estimate the fluid saturation state? 

2. Does microbial weathering result in specific imprints at the mineral surface that could 

be quantitatively attributable to the action of life? 

These questions are addressed through a combination of flow-through dissolution experiments 

and numerical modeling employing various stochastic methods, ranging from empirical 

approaches to kMC and Ising modeling. The detailed descriptions of the experimental and 

numerical approaches employed will be provided in the upcoming chapters. However, the 

general experimental approach involved conducting calcite dissolution experiments at various 

saturation states, both under sterile conditions and with a biofilm of cyanobacteria 

Chroococcidiopsis thermalis PCC 7203 covering the calcite surface. Ex-situ and in-situ time-

resolved analyses of the resulting surface topography were conducted using VSI. The statistical 

analyses of the surface topography involved a combination of descriptive statistics and spatial 

statical metrics, such as semi-variogram and PSD. 

Calcite was selected as a model mineral because of its widespread availability on Earth, as it 

constitutes the principal rock-forming constituents in limestone. Calcium carbonate minerals 

have also been detected on other planetary environments, such as Mars, making them 

potentially relevant for the search for biosignatures on other planets. Furthermore, the relatively 

fast reactivity of calcite makes it a suitable candidate for attaining a surface steady-state 

configuration in relatively short time scales. As previously discussed, the achievement of a 

steady-state configuration of the surface resulting from dissolution is indeed a prerequisite to 

use mineral surface roughness as a proxy for the reaction conditions. On the other hand, the 

cyanobacteria Chroococcidiopsis thermalis PCC 7203 was chosen as a model bacteria strain 

because it is particularly targeted as a model strain in astrobiology research and because several 

Chroococcidiopsis strains have been shown to be endolithic and to inhabit calcite rocks. 

Additionally, the PCC 7203 strain revealed to adhere effectively to calcite substrates, making 

it an ideal candidate for studying the localized effects of microbial weathering on mineral 

surfaces. 
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Chapter 2 provides an overview of the surface roughness descriptors employed in this 

manuscript to quantify the key statistical features of surface microtopography data and provides 

some illustrative conceptual examples of their application.  

Chapter 3 and 4 are focused on the question of the fluid imprints that are left on mineral surfaces 

after abiotic dissolution at various saturation states, aiming to develop a quantitative link 

between a statistical characterization of the surface roughness resulting from dissolution and 

the fluid saturation state. Chapter 5 focuses instead on the question of signatures of microbial 

weathering that are left on mineral surfaces after biofilm-mediated dissolution, aiming to 

provide a novel approach to quantitatively differentiate between abiotically and biotically 

weathered mineral surfaces. 

Chapter 3 and 4 contain two articles that were published in the framework of this PhD. Chapter 

5 is divided in two sub-sections. Sub-section 5.1 contains the final draft of an article in its final 

version before submission, whereas sub-section 5.2 presents novel experimental results 

involving the in-situ monitoring of calcite dissolution mediated by biofilm-forming 

cyanobacteria using VSI, made possible through the parallel development of a specific reaction 

cell developed by a postdoctoral scholar (Dr. Bastien Wild) involved in the same project that 

funded most of the work gathered in the present manuscript (ERC Mobidic). 

Each chapter is preceded by a general introduction, serving the purpose of connecting the 

various articles together. The manuscript ends with a final chapter dedicated to conclusions and 

perspectives, exploring limitations and generalizability of this study, and presenting the 

prospects of experimental and field studies designed to explore the potential application of the 

laboratory-based findings of this work to natural environments. 
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Chapter 2 : Statistical methods to quantitatively detect fluid 

imprints and bio-weathering signatures 

As discussed in the previous chapter, the present thesis work revolves around the informative 

content that is retained within weathered mineral surfaces, encompassing both fluid imprints 

and signatures of microbial weathering. In this context, it becomes crucial to shift from 

subjective, qualitative (thus debated) assessments to quantitative (thus less ambiguous) criteria, 

based on surface roughness characterizations. 

To this end, the general approach adopted involves summarizing the key statistical features of 

the surface topography into surface roughness descriptors. This enables to compare 

quantitatively different surfaces by comparing the corresponding roughness descriptors. As so, 

a new question arises: which surface roughness descriptors are most appropriate for 

characterizing mineral surfaces resulting from dissolution? 

The following chapter is dedicated to introducing and providing illustrative examples of the 

main statistical techniques employed in this study. These methods are used to quantitatively 

detect fluid imprints resulting from dissolution at different saturation states and bio-weathering 

signatures resulting from microbially-mediated dissolution, through surface roughness 

characterizations. 

A comprehensive collection of the various techniques employed in surface metrology for 

quantifying roughness can be found in (Whitehouse, 1994). In brief, these can range from 

simple unidimensional descriptors of the roughness amplitude, such as Ra (i.e., arithmetic 

average of height deviations from the mean plane) and Rq (i.e., root mean square of height 

deviations from the mean plane), to evaluations of the frequency distribution of surface height 

values and/or the corresponding spatial patterns. 

2.1 Frequency distribution of height values 

The specific shape of the frequency distribution of the height values of a surface holds 

significant information. For instance, if the distribution closely follows a Gaussian (normal) 

distribution, wherein the majority of the height values gather around the mean and the height 

values are equally likely to be above or below the mean, it suggests that there is no systematic 

bias or trends in the surface's elevation data. Alternatively, distributions that deviate from the 

bell-shaped curve can reveal information about particular height values that are more or less 
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frequent on the surface, potentially providing valuable insights into the underlying dissolution 

process. 

A broad range of descriptive statistics tools can be used for characterizing the particular shape 

of a given frequency distribution. Here, the focus will be directed towards two specific 

parameters—skewness and kurtosis—that hold particular significance in describing the surface 

roughness resulting from dissolution.  

The skewness and kurtosis of the frequency distribution of heights values evaluated over a given 

observation window of N*M data points are defined as: 

                                                      𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ (𝑍𝑖−<𝑍>)3𝑁

𝑖

(𝑁∗𝑀−1)𝑠3                                                    (2.1) 

                                                       𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
∑ (𝑍𝑖−<𝑍>)4𝑁

𝑖

(𝑁∗𝑀−1)𝑠4
                                                  (2.2) 

where: Zi is the ith value of the surface topography, Z, over the area investigated, <Z> is the 

surface heights mean value, and s is the corresponding surface heights standard deviation. 

Skewness is a measure of the degree of asymmetry of a given distribution, whereas kurtosis is 

a measure of the relative weight of the tails compared to the rest of the distribution. A Gaussian 

distribution is characterized by skewness and kurtosis equal to 0 and 3, respectively. A skewness 

value lower or higher than 0 indicates a left-skewed or right-skewed distribution, respectively, 

whereas a kurtosis lower or higher than 3 denotes a distribution with tails that are respectively 

thinner or heavier compared to a Gaussian distribution. 

Figure 2.1 and 2.2 provide visual representations that help illustrate the concepts of skewness 

and kurtosis when applied to surface height values. Overall, applying these two parameters to 

surfaces resulting from dissolution can provide insights into whether (and to what degree) the 

dissolution process skews the height values towards either tail of the distribution, and to what 

extent the tailedness of the distribution is consequently affected. 

Nonetheless, while descriptors of the frequency distribution, such as skewness and kurtosis, can 

effectively provide information about the prevalent height values within the surface, they do 

not take into account the spatial distribution of these values across the surface. Consequently, 

surfaces that share an identical frequency distribution of height values can exhibit substantial 

differences in terms of their spatial distribution, as exemplified in Figure 2.3. There is a need 

for the complementary application of statistical tools focused on characterizing the spatial 

distribution of the height values.  
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Figure 2.1 Visual representation of three surfaces sharing the same variance but characterized 

by different skewness values (top row) and corresponding histograms (bottom row). These 

include left-skewed (skewness < 0), symmetric (gaussian, skewness = 0) and right-skewed 

(skewness > 0) distributions, respectively. This visualization illustrates how a left-skewed 

distribution, characterized by long tails towards lower height values, indicates the presence of 

'spikes' that prominently stand out from the overall texture of the surface towards lower height 

values. In contrast, for right-skewed distributions, which are characterized by long tails towards 

higher height values, the ‘spikes’ stand out from the overall surface texture towards higher 

height values. 
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Figure 2.2 Visual representation of three surfaces sharing the same variance but characterized 

by different kurtosis values (top row) and corresponding histograms (bottom row). These 

include platykurtic (kurtosis < 3), gaussian (kurtosis = 3) and leptokurtic (kurtosis > 3) 

distributions, respectively. This visualization illustrates how a platykurtic distribution, 

characterized by lighter tails compared to a gaussian distribution with the same variance, 

indicates height values that are more compacted around the surface mean plane. In contrast, for 

leptokurtic distributions, which are characterized by heavier tails compared to a gaussian 

distribution with the same variance, the height values are less tightly clustered around the 

surface mean plane, displaying ‘spikes’ standing out from the overall surface texture both 

towards higher and lower height values. 
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Figure 2.3 Visual representation of two surfaces sharing the same histogram of height values 

(bottom row) but different spatial distribution of the height values across the surface.  

2.2 Semi-variogram 

A statistical method specifically aimed at characterizing the spatial distribution of surface height 

values is the semi-variogram, which, indeed, provides a measure of the degree of spatial 

correlation of the height values (Jacobs et al., 2017). 

The experimental semi-variogram, γ(s), is defined as: 

                                               𝛾(𝑠) =  
1

2 𝑛(𝑠)
∑ [𝑍(𝑢𝑖) − 𝑍(𝑢𝑖 + 𝑠)]2𝑛(𝑠)

𝑖=1                                      (2.3) 

where: n(s) is the total number of data (i.e., height values) pairs separated by a given distance s 

(evaluated along all directions), and Z(ui) is the height value evaluated on the ith position on the 

grid, u. 

Conceptually, the experimental semi-variogram quantifies the notion that, for surfaces 

exhibiting a certain degree of spatial dependency, closer data pairs tend to be more similar than 
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more distant ones. As a consequence, the experimental semi-variogram, which in practice 

measures the ‘spatial dissimilarity’ of height values, shows lower values at short lags and 

increasingly higher values as the separation distance increases (Figure 2.4). 

Different theoretical semi-variogram models can be used to interpret the semi-variogram 

computed on experimental data. Fitting experimental semi-variograms with theoretical models 

enables to summarize all the information regarding the degree of spatial correlation within the 

model parameters alone. The general expression for a theoretical semi-variogram is:  

                                           

                                       𝛾(𝑠) =  𝛾(𝑠 = 0) + 𝑓(𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑙𝑙, 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ)                        (2.4) 

where: γ(s=0) is the nugget, a parameter that accounts for the short scale variability that is due 

to measurement errors and uncontrolled environmental oscillations; the total sill, which is the 

‘plateau value’ exhibited by the semi-variogram under stationary conditions; the correlation 

length, which is the value of the separation distance at which the plateau value is reached. 

Conceptually, the total sill measures how much the height values are spread around the surface 

mean plane, as it can be seen by comparing two surfaces with the same spatial pattern but 

different variance (see ‘Surface A’ and ‘Surface C’ in Figure 2.5). On the other hand, the 

correlation length measures the separation distance above which the height values are no longer 

spatially correlated. By comparing two surfaces with the same variance but different spatial 

pattern, it can be observed how larger surface features result in larger correlation length values 

(see ‘Surface A’ and ‘Surface B’ in Figure 2.5). 

Altogether, these examples show how topography maps exhibiting different spatial patterns are 

characterized by different degrees of spatial correlation and thus by different experimental 

semi-variogram curves. It is therefore possible to use semi-variograms to quantitatively 

compare mineral surfaces resulting from dissolution at different (abiotic and biotic) conditions.  
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Figure 2.4 Figure showing the graphical relationships between experimental and theoretical 

semi-variogram, including model parameters: nugget, total sill and correlation length. 
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Figure 2.5 Visual representation of three surfaces characterized by different degrees of spatial 

autocorrelation. ‘Surface A’ and ‘Surface B’ have the same variance, but different spatial 

patterns. As a result, the larger surface features of ‘Surface B’ lead the variogram to shift to the 

right, thereby increasing the correlation length, while the average plateau value remains 

unaffected. On the other hand, ‘Surface A’ and ‘Surface C’ have the same spatial patterns, but 

different variance. As so, variogram associated with ‘Surface C’ exhibits a shift towards lower 

values, thereby decreasing the total sill, while the correlation length remains unaffected. Grid 

cell width = 2⋅10-4 a.u. 

2.3 Power spectral density (PSD) 

An alternative method to assess the spatial distribution of the height values across the surface 

is given by the power spectral density (PSD), which, indeed, provides a measure of surface 

roughness at different length-scales. The mathematical definition of the PSD is detailed in 

(Jacobs et al., 2017). In brief, this involves a transformation of the surface topography, Z(x,y), 

from the spatial domain to the frequency domain, through the 2D Fourier transform: 
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                                              𝑍̃𝑞𝑥𝑞𝑦
=  ∫ 𝑍(𝑥, 𝑦)𝑒−𝑖(𝑞𝑥𝑥+𝑞𝑦𝑦)𝑑𝑥𝑑𝑦

 

𝐴
                                                 (2.5) 

where: qx and qy are the corresponding wavevectors. 

However, in practice, the surface topography, Z(x,y), is not a well-defined continuous function 

as it can be measured only at discrete sites on a regular rectangular grid with “pixel” size 𝑙𝑥×𝑙𝑦. 

As so, the discrete 2D Fourier transform, which is commonly computed through the FFT (Fast 

Fourier transform) algorithm (Loan, 1992), becomes: 

                                             𝑍̃𝑞𝑥𝑞𝑦
=  𝑙𝑥𝑙𝑦 ∑ 𝑍𝑥,𝑦𝑒−𝑖(𝑞𝑥𝑥+𝑞𝑦𝑦) 

𝑥,𝑦                                                (2.6) 

where: Zx,y is the actual topography matrix. 

The 2D PSD can thus be defined as: 

                                                           𝐶𝑞𝑥,𝑞𝑦
2𝐷 =  

1

𝑈
|𝑍̃𝑞𝑥,𝑞𝑦

|
2

                                                    (2.7) 

where: U is a scaling factor that makes the PSD independent of sample size. 

Note that the magnitude operation removes all phase information from the discrete 2D Fourier 

transform but retains its amplitude. The 2D PSD values obtained can then be averaged over the 

radial direction, providing an effective quantification of the contribution of the different 

frequency components to the overall surface roughness.  

Figure 2.6 provides examples of the application of the radially averaged 2D PSD to surfaces 

exhibiting different degrees of roughness at different length-scales, showing how the PSD can 

detect (and quantify) variations in the roughness amplitude at specific frequency components. 

Overall, these examples show how the PSD is able to effectively differentiate between surfaces 

displaying different degrees of surface roughness at different length-scales. As so, it becomes 

possible to use PSD analyses in conjunction with semi-variogram analyses to quantitatively 

compare mineral surfaces resulting from dissolution at different (abiotic and biotic) conditions.  
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Figure 2.6 Visual representation of three surfaces characterized by different degrees of 

roughness scaling (i.e., how surface roughness changes as a function of window size) but same 

variance (left-hand side column) and three surfaces with the same roughness scaling but 

different variance (right-hand side column) and corresponding radially averaged 2D PSD plots. 

PSD analyses can effectively differentiate between these surfaces. For instance, the left-hand 

column illustrates how the PSD effectively captures the reduction in high-frequency surface 

roughness components when transitioning from 'Roughness 1' to 'Roughness 3'. Conversely, the 

right-hand side column illustrates how changes in the variance of the height values, while 

keeping the roughness scaling constant, lead to a shift in the PSD towards lower values. The 

different surfaces were generated by using an open-source code in MATLAB (Kanafi, 2020). 

Grid cell width = 2⋅10-4 a.u. 

2.4 Complementary use of semi-variogram and PSD 

Both the semi-variogram and PSD are methods aimed at characterizing the spatial distribution 

of height values. However, they can provide complementary information. In particular, semi-

variogram analyses are better suited to identify variations in surfaces with relatively prominent 

surface features, whereas the PSD is more effective at detecting variations in mid-to-high-

frequency components of surface roughness. Figure 2.7 provides a clear illustration of this 

distinction. 

Therefore, the combined application of both semi-variogram and PSD analyses emerges as a 

valuable approach for capturing the key statistical characteristics of any given surface, thereby 

serving as a valuable asset for comparing the mineral surface roughness resulting from 

dissolution under a wide spectrum of different conditions. 
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Figure 2.7 Visual representation of three surfaces exhibiting different spatial statistical traits. 

These surfaces were generated to illustrate the specific traits that are better captured by either 

the semi-variogram or the PSD. ‘Surface B’ was generated adding to ‘Surface A’ additional 

surface roughness, which was characterized by the same degree of roughness scaling as 

‘Roughness 2’ in Figure 2.6.  ‘Surface C’ was generated as ‘Surface B’, but with smaller and 

more frequent well-defined surface features. Overall, the semi-variogram fails to differentiate 

between ‘Surface A’ and ‘Surface B’, whereas it effectively differentiates both of them from 

‘Surface C’. Conversely, the PSD is poorly effective at distinguishing between ‘Surface B’ and 

'Surface C’, whereas it effectively differentiates both of them from ‘Surface A’, especially in 

the high-frequency region. Grid cell width = 2⋅10-4 a.u. 
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Chapter 3 : Calcite surface roughness resulting from dissolution 

at close-to-equilibrium conditions 

Introduction 

The following chapter begins to address the question related to the quantitative detection of 

fluid imprints that are left on calcite surfaces upon dissolution at different saturation states. In 

particular, this first study focuses on the evolution of the calcite surface microtopography 

resulting from close-to-equilibrium dissolution at a given saturation state, Ω = 0.6, as quantified 

through statistical characterizations of the resulting surface roughness. Flow-through 

dissolution experiments were conducted at T = 22 °C and pH = 8, with a mechanically-polished 

calcite crystal, for a total duration of ∼ 8 days. Time-resolved surface topography data of a 

{104} face exposed to dissolution were acquired ex situ with VSI at 50× (lateral resolution, dl 

= 0.22 μm). The resulting surface topography data were analysed employing a statistical 

characterization that involved a combination of evaluations of the frequency distribution of the 

height values (variance, skewness, and kurtosis) and corresponding spatial distribution analyses 

(semi-variogram), calculated over subregions of size 33 × 33 μm2. 

The main experimental results showed that, at Ω = 0.6, a steady-state configuration of the 

reacting calcite surface was attained after a relaxation time of ∼ 2 days, as reflected by the 

temporal stabilization of the key statistics and semi-variogram of the resulting surface 

topography. As discussed in the general introduction, the achievement of a steady-state 

configuration of the surface represents a prerequisite for using surface roughness as a proxy to 

back-estimate the fluid saturation state. The other key requirement is that the statistical 

characterizations of the steady-state configurations of the surface obtained after dissolution at 

different saturation states are sufficiently distinguishable from each other.  

To this end, an original empirical model based on stochastic approaches was developed and 

implemented. The model, which is based on the concept that the areas most exposed to the fluid 

are prone to preferential dissolution, revealed able to reproduce the space−time evolution of the 

key statistical descriptors of the surface topography observed experimentally. Furthermore, the 

empirical model suggested that a steady-state configuration of the surface is also achieved at 

different Ω values and that the corresponding surface roughness characterizations can be 

statistically differentiated, hinting at the potential existence of a bijective Ω – roughness 

relationship. 
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Abstract 

Linking the evolution of the surface area (as quantified, e.g., through its spatial roughness) of 

minerals to their dissolution rate is a key aspect of mineral reactivity. Unraveling the nature of 

their main features requires relying on approaches yielding a quantitative characterization of 

the temporal evolution of surface topography/roughness. Here, a mechanically polished {104} 

calcite surface was dissolved at room temperature and at close-to-equilibrium conditions (Ω = 

0.6) with an alkaline solution (pH = 8) across a temporal window of 8 days. Surface topography 

images were acquired daily using vertical scanning interferometry, the ensuing topography data 

being then embedded within a statistical analysis framework aimed at describing 

comprehensively the surface roughness evolution. The strongest system variations were 

observed after 1 day: the probability density function of surface roughness was observed to 

transition from being approximately Gaussian to being left-skewed and leptokurtic, exhibiting 

a dramatic increase in the variance and a significant change in the semi-variogram structure. 

After a relaxation time of approximately 2 days, the reacting surface appeared to attain a steady-

state configuration, being characterized by the values of the statistical moments characterizing 

surface roughness that become virtually independent of time. Attempting to unravel the 

underlying dissolution mechanism, an original numerical model able to reproduce satisfactorily 

the statistical behavior observed experimentally was developed and tested. Our results suggest 

that under the investigated conditions, dissolution may be characterized as a spatially correlated 

random process, with the areas most exposed to the flowing fluid being prone to preferential 

dissolution. The numerical model was also used to obtain insights into the influences of the 

initial surface roughness and of the fluid composition on the steady-state statistical 

characterization of the surface roughness. Our results suggest that the influence of the initial 

surface roughness is limited. The present study suggests that potential empirical relations 

linking the surface roughness of the reacted crystals to the saturation state at which they 

dissolved may be developed, which would allow to back-estimate the reacting conditions only 

based on topography data. Linking the evolution of the surface area (as quantified, e.g., through 

its spatial roughness) of minerals to their dissolution rate is a key aspect of mineral reactivity. 

Unraveling the nature of their main features requires relying on approaches yielding a 

quantitative characterization of the temporal evolution of surface topography/roughness. Here, 

a mechanically polished {104} calcite surface was dissolved at room temperature and at close-

to-equilibrium conditions (Ω = 0.6) with an alkaline solution (pH = 8) across a temporal window 

of 8 days. Surface topography images were acquired daily using vertical scanning 
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interferometry, the ensuing topography data being then embedded within a statistical analysis 

framework aimed at describing comprehensively the surface roughness evolution. The strongest 

system variations were observed after 1 day: the probability density function of surface 

roughness was observed to transition from being approximately Gaussian to being left-skewed 

and leptokurtic, exhibiting a dramatic increase in the variance and a significant change in the 

semi-variogram structure. After a relaxation time of approximately 2 days, the reacting surface 

appeared to attain a steady-state configuration, being characterized by the values of the 

statistical moments characterizing surface roughness that become virtually independent of time. 

Attempting to unravel the underlying dissolution mechanism, an original numerical model able 

to reproduce satisfactorily the statistical behavior observed experimentally was developed and 

tested. Our results suggest that under the investigated conditions, dissolution may be 

characterized as a spatially correlated random process, with the areas most exposed to the 

flowing fluid being prone to preferential dissolution. The numerical model was also used to 

obtain insights into the influences of the initial surface roughness and of the fluid composition 

on the steady-state statistical characterization of the surface roughness. Our results suggest that 

the influence of the initial surface roughness is limited. The present study suggests that potential 

empirical relations linking the surface roughness of the reacted crystals to the saturation state 

at which they dissolved may be developed, which would allow to back-estimate the reacting 

conditions only based on topography data. 

 

Keywords : calcite, near-equilibrium dissolution, surface roughness, spatial statistics, 

dissolution models 
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3.1 Introduction 

Chemical weathering is a central part of the Earth system as it is one of the key processes that 

contributes to the redistribution of mass on Earth. The dissolution of rockforming minerals 

controls the formation of soil and supplies nutrients to sustain ecosystems1, is responsible for 

atmospheric CO2 drawdown, regulating the long-term climate of the Earth2, and is involved in 

various geoengineered strategies such as enhanced rock weathering for carbon dioxide removal 

from the atmosphere3, radioactive waste storage4, geothermal energy recovery5, or CO2 

sequestration6. The development of rate laws describing the dissolution kinetics of minerals is 

critical as an effective strategy for upscaling of mineral reactivity, with the ultimate goal of 

modeling fluxes associated with chemical weathering across a variety of space and time scales. 

The classical hypothesis underlying the rate laws that are employed to interpret mineral 

reactivity (through modeling frameworks based on either a bottom-up (e.g., ref  7) or a top-

down (e.g., ref 8) approach) rests on a conceptual picture according to which the dissolution 

flux is proportional to the contact surface area between the fluid and the solid.  

While such a simplification rests on the assumption that reactivity is immutable in time and 

homogeneous at the surface of the minerals, the heterogeneous nature of the surface reactivity 

appears as a universal feature of solid dissolution, as documented through a variety of material 

degradation studies ranging from the corrosion of metals9−11, glasses12, and ceramics13−16 to the 

weathering of rocks and minerals (e.g., refs 17−28). At the heart of the heterogeneous nature of 

surface reactivity is the concept of surface energy and its distribution in space and time 

throughout the evolution of the dissolution process (e.g., refs 15, 29), which is then mirrored 

by the gradual development of surface roughness. The heterogeneous distribution of structural 

defects and the seemingly random occurrence of hydrolysis events at the mineral surface drive 

the variability of surface reactivity, the latter possibly varying by two orders of magnitude for 

a single mineral (e.g., refs 15, 29). These observations thus support the need and opportunity 

for the development of an alternative approach for the assessment of mineral reactivity focused 

on the heterogeneous space−time dynamics of surface roughness.  

As an example, the rate spectra approach20 is based on the evaluation of the probability density 

function of the dissolution rates at each given location of the mineral surface. From a practical 

standpoint, spatially resolved dissolution rates at the surface of a given material can be 

quantified by monitoring the time-resolved evolution of surface topography resulting from 

dissolution (e.g., refs 15, 20, 22, 27, 29−33). One of the most promising aspects of the rate 
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spectra approach is that the deconvolution of a rate spectrum provides information about the 

modes (i.e., the main contributors to the overall rates), which can then be compared against 

outputs of atomic-scale simulations such as kinetic Monte Carlo modeling, and refines our 

knowledge of the corresponding reaction mechanisms (e.g., refs 34, 35).  

A notable limitation of the rate spectra approach is that determining the distribution of 

dissolution rates at the mineral surface requires analyzing across time a laterally fixed and 

motionless surface. Such measurements can only be achieved under well-controlled laboratory 

conditions using techniques such as in situ atomic force microscopy (AFM) conducted in a fluid 

reaction cell (e.g., ref 30) or vertical scanning interferometry (VSI) with a reaction cell fixed to 

the VSI stage (e.g., refs 32, 36 and references therein), so that a given dissolution rate can be 

assigned to each pixel (or group of pixels) depicting the topography data collected for a given 

field of view. When considering crystals subject to weathering in the field (e.g., ref 37) or 

samples with a low reactivity (which makes them incompatible with measurements of the 

dissolution progress at room temperature over short time periods), obtaining insights into the 

temporal evolution of the key statistics of the overall roughness of a given surface is of 

significant interest. As documented by Fischer et al.19, the investigation of surface roughness 

evolution could provide information about the reaction history across the dissolution process. 

As such, time-resolved statistical analyses of dissolving mineral surfaces are of critical 

importance as they underpin the development of empirical and/or theoretically supported 

relationships between surface topography and the extent of reaction or between the surface 

topography and the reaction conditions.  

Pollet-Villard et al.38 showed that a statistical treatment of etch pit nucleation and growth 

monitored by AFM could be used to successfully develop a model accounting for the longterm 

evolution of the (001) surface of a dissolving K-feldspar at far-from-equilibrium conditions. By 

tuning the model parameters based on the comparison between the statistics of modeled and 

measured surface topographies at the early stage of dissolution, these authors could forecast the 

subsequent retreat rate of the surface as well as evaluate, through a sensitivity analysis, the 

impact of defect density (i.e., screw dislocation) on K-feldspar dissolution rates. To the best of 

our knowledge, a detailed analysis combining statistical approaches and process models to 

characterize the evolution of the surface roughness of a crystal dissolved at close-toequilibrium 

conditions, where the nucleation of etch pits is no longer spontaneous, is still lacking. The 

present study aims at bridging this gap by providing a detailed statistic-based analysis of the 

topography evolution of a calcite surface dissolved at close-to-equilibrium conditions. In their 
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preliminary study, Siena et al.39 demonstrated that single snapshots of the spatial distribution of 

surface topography of calcite under such conditions can be successfully characterized by jointly 

modeling the probability distribution functions of surface heights and their spatial increments 

as a generalized sub-Gaussian random field. Since single snapshots of surface roughness are 

not sufficient to predict or reconstruct reaction rates during dissolution (see, e.g., ref 22), the 

present study extends their work by providing a time-resolved analysis of the evolution of 

surface topography. We then assess the ability of three empirical numerical models of 

dissolution to reproduce the observed behavior of the key statistical descriptors associated with 

the experimental data. The model that is most successful for reproducing the observed statistical 

description of the system is then employed to assess the relative impact of initial surface 

roughness and fluid composition on the statistical evolution of the surface. The outputs of the 

simulations suggest that a bijective relationship might exist between the saturation state and the 

steady-state statistics of the surface topography data.  

3.2 Materials and Methods 

3.2.1 Materials and experimental methods 

3.2.1.1 Sample preparation 

The fragment used in the present study was obtained from an optically transparent calcite 

sample originating from the Massif des Écrins (Alps, France). The chemical composition of the 

sample was determined, as in the study of Bouissonnié et al.25, from 3 g of calcite by loss on 

ignition and alkaline fusion, and only very few impurities (0.2 wt % MgO, 0.008% MnO, and 

trace amounts of Sr) were revealed. The calcite sample was cleaved along the natural {104} 

calcite plane to obtain a 3 × 5 mm2 size fragment (Figure 3.1). The crystal was then embedded 

in epoxy resin to be subjected to multistep abrasive grinding (the finest grit size being 8.4 μm) 

to establish an initially flat surface and to remove the effects of sample cutting followed by a 

polishing sequence (the finest grit size being 0.25 μm) using an aqueous solution saturated with 

respect to calcite as a lubricant to avoid etching of the surface. More details are provided in the 

Supporting Information (Table A1). After polishing, the crystallographic orientation of the 

sample was determined for the entire surface by electron backscatter diffraction (EBSD) using 

a TESCAN VEGA II scanning electron microscope (SEM). The sample was analyzed as it was 

(i.e., without carbon coating), and no grain boundaries were observed. The resin was then 

removed using a precision saw, and the crystal surface was cleaned with ethanol. Finally, a 

small portion (∼1−2 mm2) of the surface of the crystal was masked with RTV glue spots (Figure 
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1) to provide a nonreacting reference surface to enable one to measure the height difference 

(i.e., surface retreat) between the reference and the unmasked portions using VSI (see Section 

3.3.1). The average roughness (Ra) for a given observation window is defined as: 

                                       

                                                           𝑅𝑎 =
1

𝑁
 ∑ |𝑍𝑖(𝒙)−< 𝑍 > |𝑁

𝑖=1                                               (3.1) 

 

where Z(x) corresponds to the height (evaluated with respect to a given reference) of the cell 

whose centroid is associated with vector position x, <Z> is the average height (evaluated with 

respect to the same reference), and N is the total number of the sampled height data. Based on 

the VSI data (50× magnification) collected over 100 × 100 μm2 areas and following a second-

order degree surface detrending, which was required to minimize biases stemming from the tilt 

caused by the VSI acquisition and from the waviness of the sample resulting from polishing 

(see Section 3.2.1.5), values of Ra were found to range between 1.0 and 1.3 nm. 

 

Figure 3.1 Intensity map of the polished 3 × 5 mm2 size fragment employed in the experiment 

as imaged by VSI at 5× magnification (corresponding to the lateral resolution dl = 2.2 μm) after 

188 h of dissolution. The orange area indicates where the mask was placed during the 

experiment before its removal. The highlighted rectangle corresponds to the region where VSI 

data were acquired also at 50× magnification (corresponding to the lateral resolution dl = 0.22 

μm; see also Figure 3.2). 
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3.2.1.2 Aqueous Solution Preparation 

Reagent-grade NaCl, NaHCO3, and CaCl2 were added to ultrapure water (18 MΩ·cm) 

equilibrated with atmospheric CO2 at concentrations similar to those documented in previous 

studies (refs 40, 25) to provide a baseline for the analysis of rate data. The concentration of 

NaCl was set to 5.85 g/L to yield an ionic strength of approximately 0.1 molal and that of 

NaHCO3 was set to 0.095 g/L to fix the alkalinity. The measured pH of the resulting solution 

was 8.0 ± 0.1. The concentration of CaCl2 was adjusted to maintain a constant saturation index 

of the solution with respect to calcite (Ωcalcite), which is defined as: 

                                                           

                                                                Ω𝑐𝑎𝑙𝑐𝑖𝑡𝑒 =
𝑎

𝐶𝑎2+  𝑎
𝐶𝑂3

2−

𝐾𝑠𝑝,𝑐𝑎𝑙𝑐𝑖𝑡𝑒
                                                    (3.2) 

where aCa2+ and aCO3
2− are calcium and carbonate ion activities, respectively, and Ksp, calcite 

is the solubility product of calcite. Since the nucleation of etch pits on the {104} calcite faces 

is no longer spontaneous for Ω > 0.4525, the experiment was conducted at a saturation index of 

0.60 ([Ca2+] = 0.00135 molal). 

3.2.1.3 Experimental Approach 

The experimental setup was analogous to the one used in the study by Bouissonniéet al.25. In 

brief, the experiment was conducted in a mixed-flow reactor setup at room temperature (T = 22 

± 1 °C). A calcite fragment of size ∼10 mm3 (which is small in comparison with the volume of 

the fluid in the reactor, i.e., ∼100 mL) was used to maintain a negligible concentration of Ca 

released throughout calcite dissolution compared to the background concentration in the inlet 

solution, thus maintaining a nearly constant saturation index across the reaction progress. The 

experiment was conducted at a constant flow rate (0.25 mL/min) for a total duration of 188 h 

(∼8 days). The peristaltic pump was periodically stopped (every ∼23 h) to recover the calcite 

fragment, clean it with ethanol, and analyze the evolution of surface roughness as a function of 

time by VSI. After each analysis, the sample was placed back into the reactor and the pump was 

restarted for additional 23 h cycles until the experiment was ultimately stopped. The aqueous 

solution was also regularly sampled (once a day) to evaluate the pH and the Ca concentration, 

the latter being measured with an inductively coupled plasma−atomic emission spectroscope 

(ICP-AES, Thermo iCAP 6000 Series). Based on these fluid analyses, the saturation index was 

evaluated to be 0.58 ± 0.01 over the duration of the experiment. Details on ICP-AES analyses 

are given in the Supporting Information (Table A2). 
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3.2.1.4 VSI analyses 

As emphasized by Fischer et al.19, a robust statistical analysis of surface roughness requires 

relying on an experimental method that yields a sufficiently high vertical resolution (similar to 

that provided by AFM) together with a large field of view (e.g., comparable to that provided by 

light optical microscopy). The technical specifications of VSI, for which the vertical resolution 

can range between 0.5 and 2 nm and fields of view can be as large as several tens of mm2 in 

stitching mode, are fully compatible with this goal. Measurements of the surface topography, 

Z(x, y), (x, y) being the spatial coordinates in the horizontal plane, were collected using a Zygo 

NewView 7300 VSI. As roughness is a scale-dependent quantity19, all data were acquired and 

processed at a fixed magnification (50×) over a collection of nine regions (see Figure 3.2), each 

associated with the same planar area and with lateral resolution dl = 0.22 μm. In addition, 

topography measurements acquired at 5× across the whole crystal surface were used to evaluate 

the overall dissolution rate of calcite over the duration of the experiment according to (see, e.g., 

ref 41):  

                                                                 

                                                                        𝑟 =
∆ℎ

∆𝑡 𝑉𝑚
                                                                 (3.3) 

where r (mol/m2/s) is the overall dissolution rate, Δh (m) is the spatially averaged height 

difference (i.e., surface retreat) between the unreacted reference surface and the reacted mineral 

surface, Δt (s) is the time interval over which the height difference is evaluated, and Vm 

(m3/mol) is the molar volume of calcite. 

 

Figure 3.2 Intensity map of the portion of the crystal surface imaged at 50 magnification 

(depicted in Figure 3.1). The 710325 μm² area delineated in the figure (orange color box) 

represents the region identified as most suitable for the study and contains the 9 square sub-
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regions (3333 μm²) investigated across time during dissolution. The initial average surface 

roughness was evaluated (at 50 magnification) to range between 0.6 and 0.8 nm across the 9 

sampling windows. 

3.2.1.5 Topography Data Processing 

The analysis of topography data is focused on the 710 × 325 μm2 area delineated in Figure 3.2. 

This region has been identified as the most suitable for this study as it has the lowest density of 

surface defects (such as macrosteps or cracks), which may lead to optical artifacts that would 

strongly affect the statistical analyses. Thus, the only features characterizing the initial surface 

in the selected region were polishing scratches. Nine subregions of size 33 × 33 μm2 have been 

selected to provide a representative statistical description of the roughness of this area while 

attempting to avoid most of the VSI-related artifacts (e.g., artificial spikes arising as a result of 

a sharp (subvertical) height transition between two adjacent locations), which would lead to an 

overestimation of the average surface roughness parameter Ra42. As such, for all the nine 

sampled regions, and at all available times, the total amount of “dead pixels” (i.e., pixels for 

which the VSI was not able to acquire a height value) and VSI-related artifacts was negligible 

(<0.1%) compared to the total number of data. Each of these “dead pixels” and VSI-related 

artifacts was replaced by the arithmetic mean of the height values of the eight neighboring 

pixels. If one (or more) neighboring pixel was either a “dead pixel” or a VSI-related artifact, 

then these were excluded from the calculation of the mean value. The following two criteria 

have been considered for the selection of the sample window size: (i) convergence of the 

average surface roughness parameter Ra19, which was observed to remain approximately 

constant within windows ranging from 25 × 25 to 35 × 35 μm2 and (ii) the presence of a 

sufficient number of data for a statistical analysis.  

We note that the raw topography data in the sampled regions could not be analyzed as acquired. 

Identification of the actual surface roughness required separating the effects of (i) the waviness 

generated by the polishing process and (ii) the tilt of the sample support applied during the 

acquisition phase to adjust the alignment between the sample surface and the VSI microscope 

objective. For this purpose, the topography data of each sample window at each observation 

time have been detrended by removing the best-fitting second-order degree surface from all 

data points (Figure 3.3). Otherwise, polishing scratches have been considered as part of the 

initial surface roughness (and hence were not removed with data processing) to be able to 

observe their influence on the surface roughness evolution. 
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Figure 3.3 Exemplary three-dimensional (3D) representation of the mean-removed topography 

data, 𝑍′, (see Section 3.2.2) associated with a selected sample window, after replacement of 

‘dead pixels’ and VSI-related artifacts (see Section 3.2.1.5), and second order degree de-

trending at observation times t = 0, 23, and 188 hours. 
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3.2.2 Statistical Approaches 

A statistical characterization confined to the univariate analysis of the frequency distribution of 

heights shadows the information associated with the degree of spatial correlation of the data. 

We rely on statistical tools to characterize the degree of spatial correlation of surface topography 

by (i) interpreting the investigated random field, Z(x), as the sum of an ensemble mean, <Z>, 

and a zero-mean fluctuation, Z′(x) and (ii) evaluating the key statistical features of both Z′(x) 

and spatial increments, ΔZ(h) = Z(x) − Z(x + h), h being the separation distance (or lag). 

We characterize the temporal evolution of the sample probability density functions of Z′ (Figure 

3.4) through the time-resolved analysis of the corresponding sample variance, skewness (eq 

3.4), and kurtosis (eq 3.5). We quantify the temporal variation of the degree of spatial 

correlation of the roughness field through the analysis of the experimental semi-variogram (eq 

3.6). 

We recall that the skewness and the kurtosis of a probability density function are defined as: 

                                                                skew =
∑ ( 𝑍𝑖 − <𝑍> )3𝑀

𝑖

(𝑀−1) 𝑠3                                                    (3.4) 

                                                                 kurt =
∑ ( 𝑍𝑖 − <𝑍> )4𝑀

𝑖

(𝑀−1) 𝑠4                                                     (3.5) 

where zi is the ith observed value of Z, <Z> is the ensemble average, M is the number of 

available observations of Z, and s is the standard deviation of Z. We recall that skewness is a 

measure of the degree of asymmetry of a probability distribution, whereas kurtosis gives the 

combined weight of the tails relative to the rest of the distribution. We recall that a Gaussian 

distribution is characterized by skewness and kurtosis equal to 0 and 3, respectively. A negative 

skewness indicates a left-skewed distribution; a kurtosis lower or higher than 3 denotes a 

distribution with tails that are respectively thinner or heavier than Gaussian. 

The experimental semi-variogram is defined as half of the sample variance of the spatial 

increments, that is, 

                                                  𝛾(ℎ) =
1

2 𝑛(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2𝑛(ℎ)

𝑖=1                                  (3.6) 

where n(h) is the number of data pairs separated by a given omnidirectional lag h = | h|. As 

stated above, it is a measure of the spatial dependency of Z. 
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Figure 3.4 Comparison of the sample distributions probability densities of the variable Z’ at 

observation times t = 0, 23, and 188 hours (open circles) with Gaussian distributions densities 

(dashed lines) characterized by the same mean and standard deviation of Z’. The distribution of 

Z’ appears to be symmetric at t = 0 hours and slightly asymmetric (left-skewed) at longer times. 

3.2.3 Numerical Modeling 

3.2.3.1 Numerical Approach  

In addition to providing a statistical description of the evolution of the surface roughness 

resulting from dissolution, we also aim at comparing such depiction to results associated with 

three dissolution models, as described in the following. The objective of the development of 

these models is twofold: (i) demonstrating that a statistical characterization of surface roughness 

evolution may help to rule out some of the existing models describing the mechanisms of 

mineral dissolution and (ii) providing a qualitative assessment of the impact of input parameters 

such as initial surface topography and fluid composition on the calculated statistical descriptors. 

Each of the three dissolution models we analyze is characterized by a given mathematical 

rendering of dissolution processes, which are viewed in a probabilistic context. The parameters 

of each of these models (see Section 3.2.3.2) were adjusted to assess whether spatial statistics 

based on modeling results was compatible with the corresponding statistics based on the 

experimentally observed temporal evolution of calcite roughness. The models considered differ 

in the way one assigns the probability that dissolution takes place at a given location on the 
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simulated surface, as described in the following (additional details are provided in Section 

3.2.3.2): 

(i) Uniform and spatially independent dissolution probability (hereafter termed Model 1): the 

occurrence of dissolution at each location of the simulated crystal surface and at each time is 

associated with a given probability, the latter being uniformly distributed across the system, 

independent of the location. Initiation of dissolution at a given location is therefore 

unpredictable and independent of the neighborhood. Such a conceptual framework is typically 

common for pitting corrosion models9,10. 

(ii) Equiprobable dissolution with the presence of volume defects dissolving preferentially 

(hereafter termed Model 2). At close-to-equilibrium conditions, the strain field of a dislocation 

does not open up hollow cores to form etch pits (e.g., ref 43) and dissolution is driven by point 

defects, pre-existing edges, and corners36. As such, whereas the dissolution taking place at 

defect-free zones is considered to be equally likely, locations termed as “defects” are associated 

with a higher probability to dissolve, this being intended to simulate such highly localized point 

defects. 

(iii) Dissolution probability of individual locations in the (x, y) plane controlled by fluid 

accessibility (hereafter termed Model 3). The model is based on a conceptual picture according 

to which dissolution is locally proportional to the contact surface between the crystal and the 

fluid,44 thus rendering the sites that are more accessible to the fluid more likely to be dissolved. 

3.2.3.2 Details of the Numerical Models  

For all models, the simulated crystal can be interpreted as a 3D collection of voxels, each with 

the lateral length equal to the VSI lateral resolution (dl = 0.22 μm) and their vertical size being 

assigned a value of dv = 2 nm, consistent with the VSI vertical resolution range (0.5−2 nm; note 

that we selected the largest value to reduce the computational time).  

To ensure that the outputs of the numerical simulations were representative of the experimental 

scenarios, several settings were considered for all models: (i) the size of the simulation window 

was taken equal to the size of a single experimental sample window (150 × 150 in terms of 

pixels, corresponding to a crystal surface area of 33 × 33 μm2); (ii) model evaluations were 

stopped when the simulated surface retreat, averaged over the whole surface, was equal to its 

experimental counterpart at the end of the experiment (at 5× magnification); and (iii) the initial 

topography employed in the simulations coincided with one of the experimental sample 

windows at t = 0 h (as the sample windows were characterized by similar initial average surface 
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roughness Ra, as described in Section 3.2.1.5). Finally, the outputs of the simulations were 

compared with the experimental data in terms of the statistics of Z′ and of the associated semi-

variogram function to identify the numerical model, which was most compatible with the 

statistical results stemming from the experimental observations.  

The simulation of the dissolution process at a given time is based on the generation of a random 

number sampled from a uniform distribution at each (x, y) location of the simulated solid 

matrix. Such a number was then compared to the probability value assigned to the 

corresponding voxel: if the generated number was lower than the corresponding probability, the 

voxel was released from the crystal volume; otherwise, it remained in place.  

Model 1 involved the presence of five types of surface voxels assigned at the beginning of the 

simulation, each one associated with a given probability of dissolution, being randomly 

distributed over the entire simulated crystal volume (i.e., the frequency of each voxel type was 

20% and they were distributed without any spatial dependency; see Figure 3.5a). 

Model 2 was initiated upon assigning to the whole crystal volume the same probability of 

dissolution (Pmin). Then, a given number of voxel defects (characterized by a given probability 

Pmax > Pmin) were randomly and uniformly distributed over the whole crystal volume. Each of 

these defects was associated with a degree of spatial influence, that is, all neighboring voxels 

up to a given distance (L, which is intended as an adjustable model parameter) were 

characterized by a probability of dissolution (Pmin < P < Pmax, P decreasing linearly with distance 

from the voxel defect until the nondisturbed region was reached; see Figure 3.5b for an example 

of a voxel defect).  

Model 3 was characterized by two parameters (here denoted as P1 and P1*) and is based on the 

concept that the voxels having the largest number of faces exposed to the fluid are the most 

reactive ones. All voxels having only their top faces exposed to the fluid are characterized by a 

probability of dissolution P1*. All voxels having also one or more lateral faces exposed to the 

fluid are characterized by a higher probability of being associated with dissolution: the higher 

the number of faces exposed to the fluid, the higher the probability that dissolution takes place 

at that voxel. The model parameter P1 corresponds to the probability of dissolution of a single 

voxel given by a single lateral face exposed to the fluid. Hence, the probability of dissolution 

linked to a voxel having j lateral faces in contact with the fluid is P1 × j. This model also includes 

the possibility that various voxels which are superimposed (henceforth termed voxel spines, see 

Figure 3.5c) dissolve simultaneously. Consistently, the larger the voxel spine lateral area in 
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contact with the fluid, the higher the probability that one or more voxels are dissolved: for a 

given voxel within a voxel spine, the probability that the voxel considered is dissolved along 

with all the upper voxels is ∑ j4
j=1 × nj + P1

∗, where nj is the number of lower voxels (the one 

considered being included) having j faces exposed to the fluid and P1* is nonzero only when 

considering the top voxel (see Figure 3.5c for a schematic example).  

 

Figure 3.5 (a-b) Conceptual representation of the main features of Model 1 (a) and Model 2 (b) 

in a horizontal section. In these examples, values of dissolution probabilities are represented as 

Pmin<P2<P3<P4<Pmax. (c) Schematic representation of a voxel spine in a vertical section. As an 

example, the probability 𝑃𝐴+𝐵+𝐶+𝐷+𝐸+𝐹 that voxels A, B, C, D, E, and F are all subject to 

dissolution (and hence are released from the solid matrix) at the same time is zero, as it is given 

by the probability 𝑃𝐹 of voxel F (with no lateral faces exposed to the fluid) to be released, which 

is null (note that the configuration of the voxel layers along the y-axis is the same as the one 

here depicted). Following a similar reasoning: 𝑃𝐴+𝐵+𝐶+𝐷+𝐸 = 𝑃𝐴+𝐵+𝐶+𝐷+𝐸+𝐹 +  𝑃𝐸 = 0 +

 𝑃1 × 1; 𝑃𝐴+𝐵+𝐶+𝐷 = 𝑃𝐴+𝐵+𝐶+𝐷+𝐸 +  𝑃𝐷 = 𝑃1 × 1 +  𝑃1 × 1; 𝑃𝐴+𝐵+𝐶 = 𝑃𝐴+𝐵+𝐶+𝐷 +  𝑃𝐶 =

𝑃1 × 2 + 𝑃1 × 2; 𝑃𝐴+𝐵 = 𝑃𝐴+𝐵+𝐶+ 𝑃𝐵 = 𝑃1 × 4 +  𝑃1 × 2; 𝑃𝐴 = 𝑃1 × 6 +  𝑃1 × 2 + 𝑃1
∗. 
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3.3 Results 

3.3.1 Calcite Dissolution Rate 

The average surface retreat (Δh) measured after 188 h of dissolution at Ω = 0.60 was determined 

to be (0.20 ± 0.01) μm (mean value ± standard deviation), which resulted in an estimate of the 

{104} overall dissolution rate equal to (8.0 ± 0.4) × 10−9 mol m−2 s−1. We note that this value 

is in good agreement with the close-to-equilibrium values documented in previous studies (refs 

40, 25) using similar experimental and analytical protocols (these values range from 1.8 × 10−8 

mol m−2 s−1 at Ω = 0.45 to 5.6 × 10−9 mol m−2 s−1 at Ω = 0.80). This gives us the confidence that 

the desired close-to-equilibrium thermodynamic conditions were attained in our experimental 

setting.  

3.3.2 Statistical Analyses 

3.3.2.1 Time-Resolved Statistical Analysis of Surface Roughness 

The key results of the timeresolved statistical analysis of the mean-removed surface topography 

(Z′) are shown in Figure 3.6, which depicts the temporal dependence of variance (Figure 3.6a), 

skewness (Figure 3.6b), and kurtosis (Figure 3.6c) of Z′, as obtained upon averaging the 

corresponding quantities evaluated for each of the nine samples analyzed. Intervals of width 

equal to ± 1 standard deviation are also shown to provide an appraisal of the variability of such 

statistical moments among the samples. These plots reveal that temporal variations of the main 

statistics of the surface topography take place mostly at early times (reaction times shorter than 

46 h). All of the investigated statistical moments are seen to exhibit a plateau after such a 

relaxation time. Figure 3.6a clearly shows a steep increase of the variance for time t < 46 h until 

an asymptotic value of (2.85 ± 0.6) × 10−5 μm2 is attained. The sharp variation observed at the 

very beginning of the experiment is possibly related to the initial condition rendered by the 

polishing process, which might have locally weakened the surface. Polishing-resulting 

scratches are likely to induce the formation of surface defects, which are in turn prone to 

preferential dissolution (see, e.g., refs 29, 32). Attainment of constant values of these statistical 

moments suggests that the rate at which the surface topography dissolves tends to become 

spatially constant as time progresses. Analyses of the third and fourth moments (i.e., skewness 

and kurtosis) of Z′ reveal that the initial surface configuration is characterized by an 

approximately Gaussian probability density function, whereas the surface configuration at late 

times emerges as left-skewed (skew < 0) and leptokurtic (kurt > 3). Figure 3.6b shows a 

transition from a Gaussian pattern (skew ≈ 0) to an asymptotic negative value (skew ≈ −0.2), 

displaying a minimum value at early times (t ≈ 23 h). Similarly, Figure 3.6c illustrates a 
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deviation from values typical of a Gaussian distribution at t = 0 h to a leptokurtic behavior at 

later times. This implies that dissolution leads to the formation of more pronounced peaks and 

valleys as the reactions starts, the valleys being predominant. This behavior may also provide a 

quantitative criterion to distinguish, at steady-state, between reacted and unreacted 

(mechanically polished) calcite surfaces based only on surface topography measurements. 

Consistent with the observation of Siena et al.39, (mechanically polished) dissolved calcite 

surfaces are characterized, at late times, by left-skewed topography distributions. As such, while 

the probability distribution of the surface roughness across the mechanically polished unreacted 

surface is symmetric, reaction is seen to be associated with a larger frequency of low rather than 

high height values, implying that dissolution was very active in the majority of the area. As long 

as initial symmetric unreacted surfaces are concerned, the asymmetry of Z′ distributions can 

then be considered a distinctive feature of dissolution, being also consistent with the right-

skewed rate spectra observed in several studies related to a variety of minerals altered through 

various dissolution regimes (e.g., ref 20, 30). Furthermore, the decrease in skewness and the 

increase in kurtosis as the reaction starts may provide some insights into surface reactivity. 

Correspondingly, (i) a skewness value that decreases from 0 at t = 0 h to a negative value at t = 

23 h might be the result of a nonuniform distribution of dissolution rates and (ii) a kurtosis value 

that increases from 3 at t = 0 h to a larger value at t = 23 h might be related to dissolution rates 

that are, respectively, extremely lower and extremely higher with respect to the average 

dissolution rate. 
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Figure 3.6 Temporal evolution of the key higher-order statistics of Z’, i.e., variance (a), 

skewness (b) and kurtosis (c). The figure depicts mean values (circles) evaluated across the 9 

sample windows identified in Figure 3.2 and intervals of width corresponding to ± one standard 

deviation (SD). 
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3.3.2.2 Time-Resolved Semi-Variogram Analyses 

Figure 3.7 shows the sample omnidirectional semi-variograms of surface roughness evaluated 

as a function of time across a selected observation window, the results associated with the 

remaining windows being qualitatively similar.  

Consistent with the results of Section 3.3.2.1, the most pronounced variations take place at early 

times. Three regimes can be identified. The first regime (corresponding to 0 h ≤ t ≤ 23 h) is 

characterized by a strong increase of the experimental semi-variogram sill with time, consistent 

with the sample variance rise (Figures 3.6a and 3.7a). The semi-variogram at t = 0 h exhibits 

higher values at shorts lags and a more persistent spatial correlation than its counterpart at t = 

23 h (Figure 3.7b). This feature, combined with the (previously discussed) observation that the 

distributions of Z′ are left-skewed, may be employed to quantitatively distinguish between 

reacted and unreacted surfaces. Semi-variograms evaluated at 23 h < t  ≤ 69 h are characterized 

by a mild temporal increase of their sill (see also Figure 3.6a) and a virtually constant level of 

spatial correlation across time (Figure 3.7c). Our results show that differences between semi-

variograms evaluated at subsequent times tend to diminish as time increases (see also Figure 

3.7d), consistent with the observation that the system tends to attain a certain degree of steady 

state, in terms of the statistical characterization of surface roughness.  
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Figure 3.7 Evolution of experimental semi-variogram in time for a selected sample window 

(data associated with the remaining windows exhibit a qualitatively similar behavior). (a) 

Experimental semi-variogram (log-log scale) at observation time t = 0 h and 23 h; (b) Normal 

scored transformed variogram (i.e., semi-variogram normalized to the sample variance) at 0 

and 23 hours. The main advantage of this visualization is that it makes it possible to compare 

the structure of semi-variograms characterized by strongly different sample variances; (c) 

Experimental semi-variograms for 23 h  t  69 h; (d) Experimental semi-variograms for 69 h 

 t  188 h. 

3.3.2.3 Numerical Model Selection 

As discussed in Section 3.2.3.1, model parameters are tuned until the best possible agreement 

with the statistics of the experimental data is attained. The least stringent condition to be met to 

this end was the constraint on the observed average surface retreat.  

Optimal parameter values correspond to minimization of the mean square error (MSE) between 

(i) the average variance values depicted in Figure 3.6a and their model-based counterparts and 

(ii) the late-time model-based semi-variogram and the corresponding averaged experimental 
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semi-variogram. We recall that for a stationary random field, as Z ′(x) is, the semivariogram sill 

corresponds to the variance.  

Model-based results correspond to averages across a collection of 100 simulation runs for each 

set of parameters tested. Figure 3.8a shows the behavior of the variance of surface roughness 

associated with (i) the experimental observations (obtained upon averaging the results 

associated with all of the spatial subregions investigated) and (ii) their model-based 

counterparts corresponding to the optimal parameter value sets versus the extent of reaction 

(i.e., the fraction of total iterations, equivalent to time). Figure 3.8b shows the corresponding 

depiction of sample semi-variograms associated with the longest observation time (t = 188 h, 

corresponding to 100% extent of the reaction).  

Results from Model 1 were deemed as not consistent with the documented experimental 

evidence because the modelbased semi-variogram shown in Figure 3.8b displayed a lack of 

spatial correlation, in line with the nature of the underlying physical model. A large number of 

parameter value combinations have been investigated for Model 2. It was found that even 

though the model does imprint a certain degree of correlation to the spatial field of roughness, 

none of the analyzed parameter sets allowed attaining a variance plateau over time. The latter 

result is related to the observation that the considered dissolution mechanism implied the 

variance to continuously increase with time. Otherwise, results from Model 3 are consistent 

with the experimental observations with reference to both the attainment of the variance plateau 

at long times (see Figure 3.8a) as well as the ability to reproduce the semi-variogram structure 

after 188 h of dissolution (see Figure 3.8b). As an additional advantage, we note that Model 3 

requires only two model parameters. All of these features contribute to identify Model 3 as the 

most successful, in terms of consistency with the experimental results, across the collection of 

models tested.  
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Figure 3.8 (a) Variance of surface roughness (Z’) associated with (i) the experimental 

observations (symbols; ± standard deviation evaluated across the 9 spatial sub-regions 

investigated) and (ii) their model-based counterparts corresponding to the optimal parameter 

value sets (solid lines) versus the extent of reaction (i.e., the fraction of total iterations, 

equivalent to time). (b) Experimental and numerically-based sample semi-variograms 

associated with the longest observation time (t = 188 h, corresponding to 100% extent of the 

reaction). 

3.3.2.4 Parametrization and Validation of the Selected Model 

The set of parameters for Model 3 that results in the best match (based on the minimization of 

MSE, as described in Section 3.3.2.3) between numerical and experimental data is P1=0.05 and 

P1
*=0.1.  

This model is able to capture the observed behavior of the variance as it causes the variance to 

steeply increase at early times through the generation of areas dissolving preferentially until a 

plateau is reached as these areas merge at long times, while the average retreat increases 

linearly. The implementation of the dissolution mechanism associated with Model 3 imprints a 

certain degree of spatial correlation due to the assumption that the voxels associated with a 

larger number of faces exposed to the fluid are more reactive (i.e., more likely to be dissolved). 

As a consequence, the simulated dissolution process advances through time by propagating a 

number of randomly generated valleys (i.e., areas resulting from dissolution being locally more 

active than in the remaining portions of the surface). The temporal evolution of the simulated 

surface is probabilistically related to the locations where these valleys are randomly generated 

at early iterations.  
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As a result, diverse simulation runs may lead to moderately different statistical evolutions of 

the simulated surface. We investigate this aspect by performing 100 runs of Model 3 with the 

optimal parameter set. Figure 3.9 shows a comparison of Z′ statistics between ± SD resulting 

from 100 simulation runs of Model 3 and ± SD evaluated across the nine subregions 

investigated. 

We observe that the steady-state model-based values of Z′ variance are in good agreement with 

their experimental counterparts (see Figure 3.9a), whereas mild discrepancies can be observed 

as the order of the statistical moments considered increases (see Figure 3.9b,c). The main 

differences in the behavior of the variance of Z′ are detected at early times, the model plateau 

being attained later than the experimental one. Although the early time system variation 

observed experimentally is very sharp (and possibly enhanced by the weakening effect of 

polishing scratches), numerical results show that merging of areas dissolving preferentially is 

more gradual. Nevertheless, the main temporal trend of the modeling results is satisfactorily 

consistent with the experimental observations, thus supporting the selection of Model 3 as 

capable of embedding the main statistical traits associated with the observed system dynamics.  

 

Figure 3.9 Temporal evolution of the key statistics of Z’ evaluated over 100 realizations of 

Model 3. Envelopes of width equal to ± one standard deviation around the corresponding mean 

are depicted (shaded areas). Symbols denote the corresponding intervals associated with the 

experimental data monitored across the 9 sample windows investigated. 



101 

 

3.4 Discussion 

3.4.1 Applicability of a Statistical Approach to Surface Topography of Dissolved Mineral 

Surfaces  

Attempting to take into account the spatial heterogeneity of mineral dissolution, Fischer et al.20 

suggested the rate spectra approach, which was then largely applied in several subsequent 

studies (e.g., refs 15, 20, 22, 27, 29−33). This strategy has opened up the possibility for new 

developments in the field of mineral reactivity as the deconvolution of rate spectra allows for 

the determination of the main contributors to a given rate distribution and can shed some light 

on our ability to identify dissolution mechanisms34, 35, 45 or the specific contribution of microbes 

to chemical weathering33. However, this approach suffers from two main limitations: (i) it 

requires the presence of a laterally fixed (motionless through time) surface and/or reference 

points at the crystal surface, which may not be compatible with a number of field applications 

and (ii) it does not contain information about the spatial correlation of the surface roughness 

distribution as the evolution of dissolved surfaces characterized by diverse extents of spatial 

correlation might be associated with the same rate spectra. 

Our statistic-based approach targeting close-to-equilibrium conditions (which are characteristic 

of most natural settings) can be seen as complementary to the rate spectra approach. 

Our observations that the initial surface configuration of a mechanically polished calcite sample 

is characterized by a Gaussian probability density function, whereas the surface equilibrium 

configuration is left-skewed and leptokurtic, may provide a quantitative criterion to distinguish 

between the reacted and unreacted (mechanically polished) calcite surfaces based only on 

surface topography measurements. More specifically, the left-skewness of dissolved calcite 

surfaces (already observed by Siena et al.39), which intrinsically implies that the surface is 

characterized by a larger number of low height values rather than high height values, could be 

viewed as a specific feature of dissolution as it results in a right-skewed rate spectrum consistent 

with the observations of numerous studies related to various minerals altered through various 

dissolution regimes (e.g., ref 20, 30). 

3.4.2 Insights into Surface Dynamics of Calcite Dissolved at Close-to-Equilibrium 

Conditions 

Our results show that the surface roughness variance increases with time until a plateau is 

reached, indicating the achievement of a steady-state surface configuration, as supported by the 

attainment of a virtually invariant semi-variogram. We note that the numerical simulations and 
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scanning tunneling microscopy observations of silver electro dissolution by Hernández et al.46 

yielded similar trends. A qualitatively similar behavior was also observed in previous studies 

(refs 23, 47) at far-from-equilibrium conditions for fluorite, where the authors noted that the 

value of the variance plateau may be specific to the considered crystallographic orientation.  

With the aim of obtaining further insights into the underlying dissolution mechanism, three 

diverse numerical models have been examined (see Section 3.2.3). Model 3 (i.e., dynamic 

dissolution probability based on fluid accessibility) has been identified as the one that best 

captures the results of our statistical analyses on the evolution of the surface topography. Model 

1 (i.e., uniform and spatially independent dissolution probability similar to pitting corrosion 

models) failed to account for the spatial correlation, whereas Model 2 led to a monotonous 

temporal increase of the variance of the surface topography and the formation of geometric etch 

pits, these features being incompatible with dissolution at close-toequilibrium conditions. 

Otherwise, the results of Model 3 (i.e., equiprobable dissolution with the presence of volume 

defects dissolving preferentially), by involving a dynamic set of dissolution probabilities, were 

fully consistent with the main statistics and the semi-variogram structure of surface roughness. 

Pollet-Villard et al.38 developed a model accounting for the long-term evolution of the (001) 

surface of a dissolving K-feldspar at far-from-equilibrium conditions based on the 

correspondence between modeling and experimentally based statistical behaviors. Similarly, 

the results of our study enable us to conclude that the dissolution of a {104} calcite surface at 

close-to-equilibrium conditions progresses in a way which is consistent with a mechanism 

based on random generation of a number of valleys, which tend to increase with time and grow 

until they finally merge to attain a steady-state surface area. We note that while the temporal 

evolution of the roughness variance reaches a plateau, the average retreat increases according 

to a linear trend, which is also consistent with other studies (e.g., ref 38). 

One should emphasize that our results are not intended to imply that Model 3 can be considered 

a universal descriptor of mineral dissolution that would apply to any mineral reacted at close-

to-equilibrium conditions. As opposed to mechanistic models such as kinetic Monte Carlo 

simulations (e.g., refs 26, 28, 48), Model 3 is essentially phenomenological and its parameters 

need to be estimated against experimental observations. Nonetheless, and more importantly, the 

development and analysis of these various models underlined the need to consider some key 

elements that have to be implemented into any future model to ensure its ability to capture 

major features of the statistics of surface roughness, as described in the following:  
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(i) The dissolution probability of a given voxel is dynamic as it depends on its immediate 

neighboring environment. Interestingly, this feature is also observed at a smaller (i.e., atomic) 

scale (e.g., refs 26, 48−51) although in this latter case, the relationship that links the dissolution 

probability of an atom to its environment corresponds to the product of the probabilities to break 

the bonds linking the atom to the surface (thus resulting in the hydrolysis of all bonds 

simultaneously). Applying the exact same rule also at the nanometer scale would most likely 

be unreasonable without the development of upscaling laws as the detachment of a nm-scale 

voxel already involves the dissolution of hundreds of thousands of atoms. Here, we show that 

the detachment of a voxel is related, in a statistical sense, to the number of faces of the voxel 

exposed to the solution, consistent with the macroscopic description of the dissolution process 

where the dissolution rate is scaled to the surface area in contact with the solution. 

(ii) Specific features that are shown to be consistent with the observation that the variance of 

the surface roughness reaches a plateau include (a) considering that columns of voxels (i.e., 

voxel spines) can dissolve at the same time and (b) assigning a higher dissolution probability 

to voxels located at the top of a given column (see Section 3.2.3.2). Interestingly, such a 

condition is similar to that implemented in one of the models developed to describe the 

dissolution of silver46, where a given probability is assigned to each voxel depending on its 

distance to the basal plane.  

(iii) Finally, we showed that the strength of the spatial correlation associated with the semi-

variogram for late times is not necessarily related to a specific distance between pre-existing 

defects in the simulated crystal (as in Model 2 or in the study by Pollet-Villard et al.38) and can 

be otherwise associated with the specific choice of a dynamic set of dissolution probabilities.  

3.4.3 Statistical Characterizations of Surface Topography as a Metric for Identification of 

Reacting Conditions 

Dissolution at far-from-equilibrium conditions results in a final topography that is markedly 

different from the steady-state surface observed in our study at close-toequilibrium 

conditions38,52,53. As suggested by Godinho et al.23, the temporal evolution of the surface 

topography may be associated with decreasing dissolution rates. This opens up the possibility 

that the observed steady-state surface topography is closely related to the fluid composition. 

The experimental investigation of such a conceptual element remains the focus of ongoing 

research.  
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The calibrated numerical model developed in this study, which has been shown to satisfactorily 

reproduce the experimentally observed statistical behavior at given conditions of initial 

roughness and fluid composition (i.e., Model 3), is then employed to explore additional 

scenarios with the aim of discriminating the contribution to the surface equilibrium 

configuration given by the initial roughness from that resulting from the fluid composition.  

The results obtained considering various initial topographies in the absence of macrofeatures 

suggest that the initial surface roughness has only a negligible impact on the simulated steady-

state surface. Our simulation results obtained upon considering the effect of a random noise 

associated with the initial surface document that there are no significant variations in the 

fluid−mineral contact surface (and hence in preferential dissolution), whereas considering the 

presence of surface macrofeatures (e.g., cracks or fractures) would possibly lead to different 

results. As an example, Figure 3.10a,b shows the temporal evolutions of variance and the 

steady-state semivariograms resulting from four different initial surface topographies: (i) a 

perfectly flat surface, (ii) the experimental topography measured at t = 0 h for one of the sample 

windows, and (iii + iv) the topography associated with (ii) which is then corrupted through a 

white noise with SD equal to: (iii) 1 SD and (iv) 2 times the SD of the experimental topography 

considered. If supported by experimental data, these results would enable one to rule out the 

starting topography as a major parameter controlling the steady-state variance of the surface 

topography resulting from mineral dissolution.  

Conversely, differences in “fluid compositions” were shown to have a major impact on the 

steady-state topography. The impact of fluid composition was simulated based on the 

observation that P1 and P1* are proportional to the dissolution rates and hence inversely 

proportional to the saturation state. Here, we limit our analysis to conditions where no etch pits 

would actually be observed so that only dissolution rates corresponding to saturation states 

ranging between Ω = 0.45 and Ω = 0.8 are simulated25. As an example, Figure 3.10c,d illustrates 

the variance temporal evolutions and the steady-state semi-variograms related to three different 

simulated saturation states (and hence different surface retreats Δh after t = 188 h): starting from 

the values of the model parameters, which were found to best interpret the experimental 

conditions (P1 = 0.05 and P1* = 0.1), the saturation state of the solution was simulated by 

increasing (P1 = 0.08 and P1* = 0.13) and decreasing (P1 = 0.02 and P1* = 0.07) the values of 

the model parameters, which resulted, respectively, in higher (Δh = 0.26 μm) and lower (Δh = 

0.14 μm) surface retreats. The model results suggest that higher saturation states (i.e., closer-

toequilibrium conditions) result in higher values of the variance plateau due to the delayed 
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merging of the areas subject to preferential dissolution. This observation may seem 

counterintuitive: Fischer et al.22 showed that the kink site density at the atomic scale is 

positively correlated with an increase in surface roughness, the latter being in turn strongly 

correlated with the dissolution rate (see Figure 3.6). On the other hand, nm-scale experimental 

and modeling results of previous relevant studies (refs 23, 47) showed that an increase in 

roughness can be associated with decreasing dissolution rates, which would be in close 

agreement with our overall analysis.  

We note that the results from our simulations, albeit constrained to the available experimental 

settings, suggest that the steady-state variance of the topography and the fluid composition may 

be related. From a practical aspect, generalizing this result would be based on the assumption 

that a steady-state surface configuration would be achieved also at saturation states differing 

from the one here investigated: if supported through additional experimental observations, 

direct measurements of surface roughness would allow to unambiguously distinguish surfaces 

that have reacted from surfaces that have not, while possibly providing insights into the 

saturation state of the fluid at which dissolution took place. This justifies the need for further 

experimental investigation on the relationship between the mineral dissolution rate and surface 

roughness to enhance the ability of our model to characterize these processes. While further 

experimental studies are required to explore the behavior seen in our numerical simulations, 

our results suggest that the reacting conditions could be back-estimated through a simple 

statistical characterization of topography data of a reacted surface, paving the way to the 

development of empirical transfer functions linking saturation states and reacted surface 

topographies.  
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Figure 3.10 Temporal evolution of the variance of surface roughness as a function of the initial 

surface roughness (a) and of the fluid composition (i.e., saturation state) (c) resulting from 

numerical simulations associated with Model 3. Corresponding results for the normal scored 

transformed experimental semi-variogram evaluated at the last observation time (b, d) are also 

included. No significant variation in the semi-variogram was observed in both cases, suggesting 

that the semi-variogram structure may significantly change only at far from equilibrium 

conditions regardless of the initial surface roughness. 

3.5 Conclusions 

Time-resolved statistical analyses of a mechanically polished calcite surface reacting at close-

to-equilibrium conditions were demonstrated to be a powerful tool to assess the attainment of 

a steady-state configuration for the reacting surface. This is reflected through the temporal 

dynamics of the key statistics and spatial semi-variograms of surface roughness, which tend to 

stabilize after a given relaxation time (approximately 2 days in our experiments). Our approach 
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can be used as a quantitative reference to compare (i) differently polished (or unpolished, e.g., 

cleavage) calcite surfaces reacting at the same physicochemical conditions or (ii) mechanically 

polished calcite surfaces reacting at different physicochemical conditions. In both cases, a 

spatial analysis of semi-variogram functions can provide a quantitative appraisal of the strength 

of the space−time correlation of surface roughness as it evolves subject to the progress of the 

reaction. In this context, additional investigations may contribute to possibly distinguish 

between the individual contributions given by the initial surface roughness and the reacting 

conditions to the plateau values of the statistical moments characterizing the dissolving surface 

area at steady state. As a consequence, a thorough characterization and understanding of the 

statistical evolution of the surface roughness could possibly be a key to backestimate the 

reacting conditions (e.g., saturation state of the solution) by simply measuring the topography 

of the reacted surface after attainment of the steady state.  

We developed and implemented an original conceptual model that enabled us to reproduce the 

experimentally observed space−time evolution of the key statistical descriptors of surface 

topography. The documented consistency between modeling and experimentally based 

statistical analyses may imply that under the investigated conditions, the dissolution mechanism 

is characterized by an overall space−time organization, as reflected by the semi-variogram 

structure, with the areas most exposed to the fluid being prone to preferential dissolution. The 

results of our statistical analyses document that such a dissolution mode is fully compatible 

with the achievement of a steady-state surface area observed through the experiments in this 

study.  

An ongoing study is geared toward analyzing whether this model, while being conceptually and 

mathematically simple, can be a viable tool to reliably predict the statistical evolution of calcite 

surface roughness as a function of the fluid composition.  
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Chapter 4 : Calcite surface roughness as a proxy for the reaction 

conditions 

Introduction 

In the previous chapter, it was shown that under close-to-equilibrium conditions, at a given 

saturation state, Ω = 0.6, the calcite surface roughness resulting from dissolution reached a 

steady-state configuration, as quantified through key statistics and semi-variogram analyses. 

Furthermore, an empirical model that successfully reproduced the space-time dynamics of the 

surface topography observed experimentally, suggested that a bijective Ω – roughness 

relationship might exist. This question was addressed experimentally in the following study. 

Flow-through dissolution experiments were conducted at T = 22 °C and pH = 7.9, at various 

saturation states (Ω = 0.00, 0.10, 0.30, 0.55, 0.65, 0.80), with mechanically-polished calcite 

crystals, for a total duration of ∼ 11 days. Time-resolved surface topography data of {104} faces 

exposed to dissolution at different Ω were acquired ex situ with VSI at 50× (lateral resolution, 

dl = 0.17 μm). Of note, the lateral resolution changed compared to the previous study due to 

the use of an upgraded VSI instrument (Zygo NewView 9000 instead of Zygo NewView 7300 

used in the previous study), which was then used for the rest of the PhD work. The surface 

topography data resulting from dissolution at different saturation states were analysed 

employing a comprehensive statistical approach. This approach involved the use of the 

unidimensional descriptor Ra, evaluated over subregions of 80 × 80 μm2, and spatial statistics 

metrics, which included semi-variogram and power spectral density (PSD) analyses, evaluated 

over subregions of 400 × 400 μm2. In comparison to the previous study, larger subregions were 

adopted to be able to capture the presence of larger surface features, such as etch pits, that were 

absent at Ω = 0.6. Moreover, skewness and kurtosis analyses were not included in this study 

because they did not exhibit any distinctive pattern in relation to Ω. 

The main experimental results showed that a steady-state configuration of the reacting surface 

was achieved for all saturation states investigated within ∼ 4 days, and that the corresponding 

statistical characterizations of the resulting surface topography are quantitatively 

distinguishable, according to a seemingly bijective Ω-roughness relationship. Notably, in 

contrast to the behaviour predicted by the empirical model developed in the previous study, the 

experiments showed that larger surface roughness evaluations corresponded to lower Ω values. 

Moreover, we found that Ising modelling of the dissolution of a Kossel crystal successfully 

reproduced the Ω-roughness relationship observed experimentally. The Ising modelling was 
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then used to investigate the impact of the initial surface topography and of Ω fluctuations on 

the steady-state configuration of the crystal surface. We showed that, in a timeframe negligible 

compared to geological timescales (i.e., ~ in the order of months at most), the crystal surface 

reaches a new steady-state configuration that only depends on the fluid saturation state most 

recently visited. This suggests that the impact of the reaction history on the Ω-roughness 

relationship is transient.  

Overall, this study indicates that, for calcite, under the investigated conditions, a bijective 

relationship between the saturation state of the fluid and the steady-state surface roughness does 

exist. This suggests that calcite surface roughness can potentially be used as a proxy to 

reconstruct past weathering conditions.  

This chapter consists of a research article that was published in Chemical Geology in 2023 

(Stigliano et al., 2023). 

Stigliano, L., Ackerer, P., Benzerara, K., Daval, D., 2023b. Linking calcite surface roughness 

resulting from dissolution to the saturation state of the bulk solution. Chemical Geology, 637: 

121680. 
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Abstract 

It has long been supposed that mineral dissolution results in surface microtopography features 

that may be related to the weathering conditions. Detection of etch pits on weathered mineral 

surfaces is indicative of far-from-equilibrium conditions (Ω→0), whereas their absence points 

towards close-to-equilibrium conditions (Ω→1). However, surface microtopography 

characterizations limited solely to qualitative comparisons may conceal the potential of 

reconstructing intermediate saturation conditions. To investigate this prospect, we performed 

flow-through dissolution experiments at room temperature and atmospheric pCO2, on 

mechanically-polished {104} calcite surfaces reacting at different saturation states with respect 

to calcite (0 ≤ Ω ≤ 0.8), under alkaline conditions (pH = 7.9). Time-resolved topography data 

of the dissolved calcite surface were acquired ex situ using vertical scanning interferometry 

(VSI). Quantitative comparisons of the ensuing surface topography data relied on surface 

roughness characterizations, based on a combination of unidimensional descriptors (Ra) and 

spatial statistics metrics (power spectral density, or PSD, and semi-variogram). Time-resolved 

surface roughness analyses suggested a temporal stabilization of the calcite surfaces undergoing 

dissolution for all targeted saturation states, and that the steady-state surface roughness 

evaluations corresponding to different Ω values are statistically distinguishable, with larger 

roughness values corresponding to lower Ω values, according to a seemingly bijective 

relationship. We then investigated the atomic-scale mechanisms that might partially explain the 

empirical Ω-roughness relationship derived experimentally at the VSI-scale through kMC and 

Ising dissolution modeling of a Kossel crystal. We found that the Ising model successfully 

reproduced the Ω-roughness behaviour observed experimentally, and we discussed the features 

that interpretative stochastic models need to satisfy to agree with the experimental findings. 

Overall, the present study suggests that, under the investigated conditions, the steady-state 

calcite surface roughness resulting from dissolution can be used as a proxy to back-estimate the 

saturation state of the fluid under which the reaction occurred for samples reacted under 

unknown conditions.     

Keywords: calcite dissolution, saturation state, surface roughness, kMC modeling, Ising 

modeling 
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4.1 Introduction 

The reconstruction of the evolution of environmental conditions that prevailed at the Earth’s 

surface through geological time essentially relies on the use of geochemical proxies related to 

the isotopic, the chemical, and/or the crystallographic properties of minerals found in the 

geologic record. In particular, some properties of secondary phases are supposed to reflect the 

specific physicochemical conditions that prevailed at the time of their formation. A large variety 

of environmental parameters such as temperature, precipitations, sea level, atmospheric 

composition, and weathering conditions are commonly back-estimated following this approach 

(Sheldon and Tabor, 2009). Regarding chemical weathering in particular, the development of 

non-traditional stable isotopes measurements (e.g., δ29Si, δ53Cr, δ11B) has greatly contributed 

to constrain the conditions under which water-rock interactions occurred. Some non-exhaustive 

examples include: (i) the determination of the hydrologic regime and intensity of successive 

weathering episodes that occurred during pedogenesis (Guinoiseau et al., 2021), (ii) the 

estimation of redox conditions of chemical weathering (Wille et al., 2018), (iii) the ability to 

distinguish between hydrothermal and supergene weathering events (Lemarchand et al., 2012). 

In addition, morphological observations of minerals at the microscale, such as characterizations 

of grains shape and size, or crystal overgrowth, can provide useful complementary information 

about the conditions under which they were deposited and/or formed (Kontakiotis et al., 2011; 

McCave and Hall, 2006; Wilkin et al., 1996). 

Conversely, whether specific imprints left at the surface of altered primary minerals can be 

unambiguously used as proxies to infer the conditions under which water-rock interactions 

occurred is more controversial. As an example, it has long been documented that the chemical 

weathering of silicates results in the development of submicron-thick amorphous silica-rich 

surface layers (ASSLs), both in the field and in laboratory experiments ((Daval et al., 2018; 

Hellmann et al., 2012; Nugent et al., 1998) and references therein). However, linking their 

physicochemical properties to the fluid composition proved challenging. Indeed, the thickness 

of ASSLs is a complex parameter that is equally impacted by the intrinsic crystallographic 

orientation of the parent silicate mineral (e.g., (Bouissonnié et al., 2020b; Daval et al., 2013)) 

and extrinsic parameters such as the concentration of aqueous silica (Wild et al.). Conversely, 

other physical parameters characterizing the ASSLs, such as their density, may represent a more 

promising proxy as it may be intimately linked to the pH of the aqueous fluid that weathered 

the primary silicates (Wild et al., 2019b). However, knowledge of the pH-ASSL density 
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relationships remains in its infancy at present. Another feature possibly easier to characterize 

and that has been investigated for decades is the surface microtopography of minerals, which 

might be informative of past chemical weathering conditions in natural settings (Nugent et al., 

1998; Phillips-Lander et al., 2017). As an example, the presence of etch pits on mineral surfaces 

has been historically used to suggest that chemical weathering in the field is a surface-controlled 

process, which operates following mechanisms comparable to those evidenced in laboratory 

experiments (Berner et al., 1980). The pioneering works of Lasaga et al. (1986) and Brantley et 

al. (1986) have further refined the use of this criterion, demonstrating that the presence of etch 

pits is indicative of reactions taking place under far-from-equilibrium conditions (i.e., high 

values of fluid undersaturation), whereas their absence points towards (close-to-) equilibrium 

conditions (i.e., low to null values of fluid undersaturation), as a result of a switch in the 

dominant dissolution mechanism ((Brantley et al., 1986; Lasaga and Blum, 1986)). Detection 

of etch pits on weathered oceanic volcanic glass has also been used as textural evidence of 

microbial activity (Fisk et al., 1998). 

However, the information content of mineral surface microtopography goes beyond simply 

differentiating between the presence and absence of etch pits. For instance, the specific shape 

of etch pits on calcite can be informative of the saturation state of the fluid: at low saturation 

states (i.e., far from equilibrium), etch pits are typically rhombohedral, whereas, at gradually 

higher saturation states, they tend to become more triangular, as re-precipitation processes 

become more important (Bouissonnié et al., 2018; Teng, 2004). Bouissonnié et al. (2018) also 

observed how, within rhombohedral etch pits, the morphology of the pits changed from 

rhombohedral at the top to triangular at the bottom, suggesting that this could be an indication 

of the development of a chemical gradient in the fluid along the etch pit depth, and hence of a 

local variation of the saturation state (Bouissonnié et al., 2018). Likewise, Duckworth and 

Martin (2004) suggested that the morphology of etch pits nucleated on Fe-, Mg- and Zn-

carbonates could be used to provide information on the pH at which fluid-mineral reactions 

occurred ((Duckworth and Martin, 2004b)). Finally, several studies showed that the presence 

of Mg2+ in carbonated solutions can significantly alter the morphology of calcite etch pits by 

selective step pinning through adsorption of Mg2+ impurities ((Arvidson et al., 2006; Gao et al., 

2010; Ruiz-Agudo et al., 2009)). More generally, the fine description of dissolution textures at 

mineral surface, which may be preserved in spite of particle transport and sedimentation (see, 

e.g., (Velbel and Losiak, 2010)), shows promise as a means to provide constraints on the contact 

time, the fluid composition and/or temperature of fluid-rock interactions.  
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Such observations also motivated the need to thoroughly characterize the space-time evolution 

of the surface microtopography of minerals undergoing dissolution over a broad range of 

controlled chemical conditions. Surface area and surface reactivity are, in fact, fundamentally 

related. The heterogeneous distribution of reactive sites at the mineral surface and the seemingly 

random distribution of crystallographic defects are reflected in a corresponding non-uniform 

distribution of ‘dissolution rates’ at the fluid-mineral interface, as quantified through the ‘rate 

spectra’ approach (Fischer et al., 2012). This, in turn, results in a non-uniform spatial evolution 

of the surface area, as quantified through surface roughness characterizations (Fischer and 

Luttge, 2007). The spatial variability displayed by both the ‘dissolution rate spectra’ and the 

‘surface roughness resulting from dissolution’ shows traits typical of stochastic processes and 

can, therefore, be quantified through corresponding approaches (Siena et al., 2021). For 

instance, (Emmanuel, 2014) applied the generalized extreme value (GEV) model to interpret 

rate spectra data of dolostone dissolution. More recently, a generalized sub-gaussian (GSG) 

model has proven successful to capture the key statistical features of calcite surface roughness 

resulting from dissolution at close-to-equilibrium (Siena et al., 2020), and to interpret the rate 

spectra associated with calcite dissolution at far-from-equilibrium (Siena et al., 2021). 

Alternatively, Fischer and Luttge (2007) proposed the convergence of surface roughness 

parameters as a tool to quantify the surface topography of altered minerals (Fischer and Luttge, 

2007). The evolution of the surface area and surface reactivity of dissolving crystals has also 

been extensively investigated through kinetic Monte Carlo (kMC) modeling (Ackerer et al., 

2021; Kurganskaya and Luttge, 2016; Lasaga and Blum, 1986). In particular, Kurganskaya et 

al. (2021) investigated numerically the relationship between calcite surface reactivity and fluid 

undersaturation, showing how, by gradually changing the saturation state from far-from-

equilibrium to equilibrium conditions, different kinetic pathways could be generated for 

systems with different type and density of crystallographic defects (Kurganskaya and Luttge, 

2021). In addition, Carrasco et al. (2021) specifically focused on characterizing the calcite 

surface roughness resulting from kMC dissolution at room and high temperature, showing that, 

for the latter conditions, the scaling of the surface roughness in time and size is the same as in 

the Kardar−Parisi−Zhang equation of kinetic roughening (Carrasco et al., 2021). 

Despite being a key step in defining an unambiguous proxy of weathering conditions, to date, 

a comprehensive analysis combining statistical characterizations of experimental 

microtopography data and numerical modeling to describe the temporal evolution of the mineral 

surface roughness resulting from dissolution at different saturation states, is still lacking. In our 
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previous study (Stigliano et al., 2021), we showed how, at close-to-equilibrium conditions 

(Ω=0.6), a steady-state configuration of the calcite surface roughness resulting from dissolution 

was achieved. In addition, we developed an empirical model based on experimental 

observations that suggests that a statistical characterization of the steady-state surface 

roughness could be used to differentiate between surfaces reacted at different saturation states. 

Here, we investigated to what extent statistical characterizations of the calcite surface roughness 

resulting from dissolution at different saturation states can be used as a proxy for the reaction 

conditions, under controlled laboratory conditions. Then, we conducted numerical modeling 

based on stochastic approaches. This allowed us to identify some of the atomic-scale 

mechanisms that could contribute to explain the different evolution of surface roughness as a 

function of the saturation state that we observe experimentally with vertical scanning 

interferometry (VSI). Lastly, we discussed generality and implications of our findings.  

 

4.2 Materials and methods 

4.2.1 Materials and experimental methods 

4.2.1.1 Calcite samples and aqueous solutions preparation 

All the crystals used in the present study were obtained from the same natural calcite sample 

employed in our preliminary study (Stigliano et al., 2021). Chemical composition analysis of 

the original natural sample revealed very few impurities: 0.2 wt % MgO, 0.008% MnO, and 

trace amounts of Sr. Starting from the original sample, six smaller pieces (∼ 100 mm3) were 

obtained through cleavage along the natural {104} calcite plane, as verified with X-Ray 

diffraction (XRD) and electron backscatter diffraction (EBSD). For each piece, one of the 

resulting {104} faces was then mechanically-polished in order to get initial surface 

topographies with comparable surface roughness for all the crystals employed in the 

experiments. EBSD characterizations of the resulting polished faces ensured that the outermost 

atomic layers were crystalline prior to the start of the experiments. The finest grit size of the 

polishing sequence was 0.25 μm. Absolute ethanol (as a replacement for water-based solutions) 

was used as lubricant for each polishing step to avoid surface etching. The polishing process 

yielded comparable initial surface roughness across various locations on a given crystal and  

among the different crystals. For all the samples, the average surface roughness, Ra, (Equation 

4.1) ranged between 0.6 and 0.8 nm. It was evaluated over 80 × 80 μm2 areas of the polished 

surfaces, based on VSI data collected at 50x magnification. The chemical composition of the 
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dissolving aqueous solution chosen in the present study was similar to that used in previous 

works on calcite dissolution under slightly alkaline conditions (Bouissonnié et al., 2018; Smith 

et al., 2013; Stigliano et al., 2021). As so, NaCl, NaHCO3 and CaCl2-2H2O were added to Milli-

Q water (18 MΩ·cm). The concentrations of NaCl and NaHCO3 were set to 99.25 mmol/kg and 

1.02 mmol/kg, respectively, whereas CaCl2-2H2O was added in different amounts for each 

experiment (i.e., 0 mmol/kg, 0.33 mmol/kg, 0.97 mmol/kg, 1.83 mmol/kg, 2.18 mmol/kg, 2.75 

mmol/kg) to target six different saturation indexes of the solution with respect to calcite (i.e., Ω 

= 0.00, 0.10, 0.30, 0.55, 0.65, 0.80). The ionic strength was approximately constant throughout 

all the different experiments. Saturation Index calculations have been performed using CHESS 

(van der Lee and De Windt, 2002). 

 

4.2.1.2 Experimental setup 

All experiments were conducted using the exact same setup as described in Bouissonnié et al. 

(2018) (see their Figure 1A, (Bouissonnié et al., 2018)) All the experiments were conducted for 

a total duration of ∼ 11 days in perfluoroalkoxy alkane (PFA) reactors placed in an incubator 

set at T = 22.0 ± 0.1 °C. The pCO2 of the room was constantly monitored over time and found 

to be 500 ± 50 ppm, and the tank reservoir containing the inlet solution was left open to the 

atmosphere. For each experiment, a calcite chip was placed inside the reactor on a Teflon tripod 

with the polished face as top face. The solution inside the reactor was continuously stirred to 

maintain homogeneous chemical conditions. A flow-through system was adopted (with a flow 

rate of ∼ 0.15 mL/min set by a peristaltic pump) aiming to roughly maintain the same saturation 

index inside the reactor as in the inlet solution. In this regard, we employed a reactor volume 

of ∼100 mL, which is significantly larger than the calcite chips (∼100 mm3) subject to 

dissolution. Chemical analyses conducted by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES, Varian 720ES) of the Ca2+ concentration in the inlet vs outlet solutions 

showed no significant increase in the outlet solutions as a result of calcite dissolution (Table 

B1). Moreover, the resulting pH of both the inlet and outlet solutions was measured to be 7.9 ± 

0.1 over time for all experiments, suggesting that each experiment was performed at a fixed 

saturation index. Overall, fluid chemical analyses ensured that all experiments were conducted 

under chemostatic conditions. 

The calcite samples were taken out from the reactors after different durations over the course 

of the experiments for ex situ time-resolved surface topography measurements of the dissolving 

top faces with vertical scanning interferometry (VSI, Zygo NewView 9000). Right after 
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removal of the calcite chips from the reactors, the surfaces under study were gently cleaned 

with precision wipes soaked in pure ethanol, air dried, and placed under the VSI objective for 

topography measurements. As our previous study showed that the strongest evolution of the 

surface topography occurs in the first three days of dissolution, the acquisition frequency in this 

time interval was the highest, aiming to detail the short-term temporal evolution of the surface 

topography (Stigliano et al., 2021). After each VSI data acquisition, the calcite chips were 

placed back into the reactor to continue the experiments until completion. 

4.2.1.3 VSI analyses and Data processing 

Time-resolved VSI data were always collected at 50x magnification (lateral resolution of 0.17 

μm) over an area of ∼ 1 mm2 for all the studied surfaces. In order to characterize 

comprehensively the surface roughness associated with the planar areas under study, we 

identified several sub-windows (i.e., sampling windows), aiming to capture the statistical 

variability at play on each given crystal surface. Moreover, as surface roughness is a scale-

dependent quantity (Fischer and Luttge, 2007), we selected sub-windows of two different sizes. 

Specifically, we worked with 30+ sub-windows of 80 × 80 μm2 and 3 sub-windows of 400 × 

400 μm2. In broad terms, for a given lateral resolution, characterizations on smaller (but more 

numerous) sub-windows are better suited to describe the spatial heterogeneity along the crystal 

surface, whereas larger sub-windows (but less numerous) are more apt to characterize in detail 

the spatial dependency of the heights data within a given window. As a general approach, we 

tried to maximize the number of sub-windows, which were chosen randomly along the surface, 

while avoiding surface macro-defects (such as macrosteps or cracks) that would strongly bias 

the statistical analysis (Stigliano et al., 2021). Of note, the sub-windows sizes selected have 

been determined to be suitable for capturing the key roughness features, as Ra convergence is 

observed for both sub-windows sizes across all investigated conditions (see Figure B1, (Fischer 

and Luttge, 2007)). Once all the suitable sub-windows were selected for each experiment at a 

given time, the sub-windows corresponding to the same locations at all other times were also 

selected. To ensure precise localization of the same area for each subsequent analysis, we relied 

on cracks and visible imperfections on the surface, which remained at the same locations during 

dissolution, as reference points. Afterwards, the ensuing raw surface topography data were post-

processed. To study the actual surface roughness, it was necessary to minimize the biases 

originated by the imperfect parallel alignment between the VSI objective and the studied 

surface, and by the waviness of the sample surface resulting from the polishing process 

(Stigliano et al., 2021). For this purpose, for each sub-window and at each observation time, 



122 

 

the topography data were detrended by removing the best-fitting surface from all data points 

(Table B2 and Table B3). In addition, the height values corresponding to VSI-related optical 

artifacts (i.e., pixels for which the VSI failed to acquire a height value or artificial spikes 

resulting from a sharp height transition between two adjacent pixels) were replaced by the 

arithmetic mean of the height values of the surrounding pixels. For all the selected sub-windows 

and at all times, the amount of replaced pixels was negligible (<0.1%) compared to the total 

number of pixels of each given window. 

 

4.2.2 Statistical Approaches 

To describe comprehensively the calcite surface topography resulting from dissolution at 

different saturation states, we relied on a variety of statistical tools, each addressing specific 

traits of the corresponding surface roughness. In particular, we targeted two main aspects of 

surface roughness: (i) its spatial heterogeneity along the surface, targeted through the analysis 

of smaller but more numerous sub-windows and (ii) the spatial dependency of the heights values 

within a given sub-window, targeted through the analysis of larger but less numerous sub-

windows. For the ‘smaller sub-windows analysis’, we employed a simple unidimensional 

statistical descriptor, the average surface roughness parameter (Ra), whereas for the ‘larger 

observation windows analysis’, we adopted semi-variograms and power spectral density (PSD) 

analyses. 

4.2.2.1 Average surface roughness Ra 

We recall that the average roughness parameter (Ra) for a given sampling window is defined as: 

                                               𝑅𝑎 =
1

𝑁
 ∑ | 𝑍(𝑥𝑖) − < 𝑍 > |𝑁

𝑖=1                                        (4.1) 

where Z(xi) is the height value of the pixel in the ith position on the grid, and <Z> is the 

arithmetic mean evaluated on all data points (N) within the sampling area. For surface 

roughness characterizations on smaller windows, it is more convenient to adopt a single-value 

expression (such as Ra) as it makes it easier to evaluate the degree of spatial heterogeneity 

across-windows and across-times for each given crystal surface. It allows to visually compare, 

within a single plot, the temporal evolution of the surface roughness (and its heterogeneity) 

resulting from dissolution at different Ω values. Conversely, for surface roughness 

characterizations on larger windows, a higher level of descriptive detail is required. 

4.2.2.2 Experimental and Theoretical semi-variogram 
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As in our previous study ((Stigliano et al., 2021)), the degree of spatial correlation of the surface 

topography resulting from dissolution was quantified using the experimental semi-variogram 

γ(h), which is defined as: 

                                        𝛾(ℎ) =
1

2 𝑛(ℎ)
 ∑ [𝑍(𝑥𝑖)  −  𝑍(𝑥𝑖 + ℎ)]2𝑛(ℎ)

𝑖=1                                (4.2)  

where n(h) is the number of data pairs separated by a given distance (or lag), h (evaluated in all 

directions). Conceptually, the experimental semi-variogram quantifies the notion that data pairs 

of spatial quantities (such as the topography field, Z) exhibit a certain degree of similarity as a 

function of distance. It is indeed a measure of the ‘dissimilarity’ of the spatial field. In general, 

closer data pairs tend to be more similar than more distant ones. As a consequence, the 

experimental semi-variogram shows lower values at short lags and increasingly higher values 

as the separation distance increases. If stationarity conditions are met (i.e., statistical properties 

of the height values do not vary significantly over the region being analyzed) and if the 

underlying trends / biases have been properly removed, the experimental semi-variogram 

eventually reaches a plateau (Figure B2). Different topography maps are characterized by 

different degrees of spatial correlation and thus by different experimental semi-variogram 

curves. We take advantage of this property to quantitatively differentiate the surface roughness 

resulting from dissolution at different saturation states. Theoretical models are generally applied 

to interpret the experimental semi-variograms (Gringarten and Deutsch, 2001). Fitting 

experimental semi-variograms with theoretical semi-variograms allows one to encapsulate all 

the information regarding the degree of spatial correlation within the model parameters alone. 

In this study, a simple (two-parameters) semi-variogram exponential model proved capable of 

satisfactorily interpreting its experimental counterpart. The exponential model γ(h) is defined 

as:  

                                           𝜸(ℎ) = 𝜸(0) + (𝐶 − 𝜸(0)) (1 − 𝑒𝑥𝑝 (−
ℎ

𝑎
))                            (4.3) 

where: (i) 𝜸(0) is the nugget, a parameter that accounts for the short-scale random noise that is 

due to measurement error and uncontrolled environmental oscillations, (ii) C is the total sill 

(i.e., the semi-variogram plateau value) and (iii) a is a parameter related to the correlation 

length, or effective range (i.e., the separation distance above which data pairs are no longer 

spatially autocorrelated) (Figure B2). The difference between the total sill and the nugget, (C - 

γ(0)), is the partial sill, which represents the remaining variance of the height values after 

removing the contribution of random noise. The exponential semi-variogram model is 

unbounded, which means that the plateau value is only reached asymptotically.  Therefore, the 
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correlation length is defined as the separation distance at which the semi-variogram equals a 

given percentage of the partial sill. If a percentage of 95% is selected, the correlation length is 

given by ∼ 3*a. These model parameters can then be calibrated against the experimental semi-

variogram computed on the surface topography data and plotted as a function of Ω. 

4.2.2.3 Power spectral density (PSD) 

To fully describe surface roughness, it is crucial to also consider the general notion that surfaces 

are characterized by different degrees of roughness at different spatial scales. In this regard, the 

power spectral density (PSD) enables one to quantify the surface roughness at different length 

scales by breaking it down into its individual frequency components.  

In simple terms, surface topography data can be conceptualized as the ensemble of several 1-D 

height profiles evaluated along the radial direction from the center point of a given observation 

window. By applying the Fourier transform to these 1-D height profiles, we can decompose 

them into a series of sine and cosine waves, each characterized by a given frequency (i.e., the 

number of oscillations per unit length) and amplitude (i.e., the height of the wave). For all waves 

with each given frequency, the average value of the square of the amplitude is calculated. The 

power spectral density, or PSD, is the plot of the average amplitude squared as a function of the 

spatial frequency, or wavenumber (Jacobs et al.; Mellott et al., 2002; Persson et al., 2005). This 

enables one to quantify, within a single plot, the ‘low-frequency’ and the ‘high-frequency’ 

components of the surface roughness. Here we used the PSD to quantify the ‘surface roughness 

at different length scales’ that originated from dissolution at different saturation states.  

4.2.3 Modeling of calcite dissolution using stochastic approaches 

We attempted to identify the atomic-scale factors that may play a role in explaining the 

roughness-Ω trend that we observed experimentally at the VSI scale. To do so, we developed 

stochastic models of calcite dissolution applied with different values of fluid saturation state. 

4.2.3.1 Classical kinetic Monte Carlo dissolution modeling of Kossel crystal structure 

Kinetic Monte Carlo (kMC) modeling of mineral growth (Gilmer, 1980) and dissolution 

(Wehrli, 1989) aims to describe, within a probabilistic framework, the kinetics of the 

interactions of chemical elements transitioning from a solid state (in a crystal) to a dissolved 

state (in a fluid), and vice versa. Within this framework, it has been shown that a reasonable 

approximation for the calcite structure is given by the so-called Kossel crystal (Kossel, 1927b), 

a simple cubic lattice in which a site represents one CaCO3 molecule (Ackerer et al., 2021; 

Carrasco et al., 2021). Additionally, adopting such an approximation in the present study 
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enabled us to investigate to what extent the atomic-scale mechanisms reproducing qualitatively 

the roughness-Ω trend observed experimentally at the meso-scale are fundamental to mineral 

dissolution (i.e., a result of the dynamic interaction between surface reactivity and fluid 

undersaturation). Therefore, we applied kMC simulations to model the dissolution of a Kossel 

crystal at different saturation states, aiming to investigate variations in the evolution of the 

resulting surface topography. For a Kossel crystal, the reactivity of each site is determined by 

the number of its nearest-neighbors (NNs), which equals the number of existing bonds. For a 

given site, the higher the number of NNs, the higher the number of existing bonds, hence, the 

lower its tendency to dissolve. Following this concept, the general expression for the dissolution 

probability Pd,N of a site with N nearest-neighbors is given by the following  (Kurganskaya and 

Luttge, 2013): 

                                                           𝑃𝑑,𝑁 = 𝑒𝑥𝑝 (−
𝑁𝐸𝑎

𝑅 𝑇
) = 𝑃𝑏

𝑁                                           (4.4) 

where Pb is the bond-breaking probability (i.e. probability of breaking a single bond), Ea 

[kJ/mol] is the corresponding activation energy, T [K] is temperature and R [kJ/mol/K] is the 

universal gas constant. With this expression, it is implicitly assumed that all bonds are 

equivalent and that, for a given site, the cleavage of different bonds are independent events. To 

investigate the impact of the saturation state, back-precipitation events need to be included in 

the kMC model (Kurganskaya and Luttge, 2021). The microscopic reversibility principle 

implies that, at equilibrium between dissolution and precipitation, the activation energy 

required to break a single bond is the same as the activation energy required for the same bond 

type to be formed. It follows that, at equilibrium, the generic expression for the precipitation 

probability Pp,N of a site forming N bonds when adsorbed to the surface has to be identical to 

Pd,N. The driving force of precipitation processes is the difference in chemical potential Δμ 

[kJ/mol] between a given site in the aqueous solution and a given site at the crystal surface. 

Whereas the chemical potential of the bulk fluid is univocally determined by macroscopic 

thermodynamic parameters, the nonequivalence of surface sites poses a definitional problem 

regarding the expression of the ‘surface chemical potential’ (Kurganskaya and Luttge, 2021). 

However, based on statistical mechanics considerations (Mutaftschiev, 2001), the kink site (i.e., 

the site type for which the coordination is half that of the bulk crystal; (Luttge et al., 2019)) can 

be considered as representative of the whole crystal surface from a thermodynamics 

perspective, as first proposed by Kossel (Kossel, 1927b). Thus, the difference in chemical 

potential Δμ uniquely depends on the saturation state of the fluid. Adopting the conventional 

approach first introduced by Gilmer et al. (Gilmer, 1980; Gilmer and Bennema, 1972) and 
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recently used by Kurganskaya et al. for calcite (Kurganskaya and Luttge, 2021), we consider 

that precipitation events can only occur at kink sites (N = 3 in a Kossel crystal), according to 

the following precipitation probability: 

                                                        𝑃𝑝,3 = 𝑒𝑥𝑝 (
𝛥µ

𝑅 𝑇
) 𝑒𝑥𝑝 (−

3𝐸𝑎

𝑅 𝑇
)                                         (4.5) 

Note that when Δμ=0, Pp,3 = Pd,3, which implies that, at the microscopic scale, equilibrium 

between dissolution and precipitation is maintained at kink sites. Conversely, at far-from-

equilibrium conditions (i.e., Δμ-∞), the precipitation probability becomes negligible. As in 

state of the art kMC modeling, we consider that the dissolution tendency is intrinsic to the 

mineral itself, hence independent of Δμ (Briese et al., 2017; Kurganskaya and Luttge, 2013; 

Kurganskaya and Luttge, 2016; Lasaga and Luttge, 2001b; Meakin and Rosso, 2008), whereas 

the frequency of precipitation events is a function of the distance from equilibrium 

(Kurganskaya and Luttge, 2021). Lastly, the time increment (Δt) after each iteration is defined 

as in Equation 4.6, which observes the concept that, for a surface configuration in which less 

likely events are prevalent (compared with a case in which more likely events are prevalent), 

on average, more time is needed before any event can occur, and therefore Δt is higher (e.g., Δt 

is maximum for a flat surface configuration). Moreover, Δt is inversely proportional to the 

‘frequency factor’, ν [s-1], which is an estimation of the expected attachment/detachment 

reaction attempts in one-unit time at the mesoscale (Ackerer2021). 

                                              Δ𝑡 =
1

𝑣(∑ 𝑛𝑑,𝑁𝑃𝑑,𝑁
5
𝑁=1 +𝑛𝑝,3𝑃𝑝,3)

                                            (4.6) 

4.2.3.2 Calcite dissolution simulations following the Ising model 

In addition to exploring classical kMC modeling, we investigated the potential of the Ising 

model in reproducing the Ω-roughness relationship observed experimentally. The Ising model 

was first applied by Bandstra and Brantley (2008) to study the dissolution of a regular 2-D 

lattice (i.e., a surface profile, see their Figure 3, (Bandstra and Brantley, 2008)). In their model, 

the reaction mechanisms were defined in terms of nearest neighbor interactions, with 

dissolution and precipitation probabilities, respectively, decreasing and increasing with the 

number of nearest neighbors, according to a power law expression. In the present study, we 

generalized their model to investigate the dissolution of a regular 3-D lattice in which only 

‘surface sites’ can react, as described in section 4.2.3.3. Therefore, the general expressions used 

in this study for the dissolution probability Pd,N and precipitation probability Pp,N of a site with 

N nearest-neighbors (1 ≤ N ≤ 5) are given, respectively, by the following equations: 
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                                                           𝑃𝑑,𝑁 = (1 −
𝑁

6
)

𝛾

                                                         (4.7) 

                                                𝑃𝑝,𝑁 = 𝑒𝑥𝑝 (
𝛥µ

𝑅 𝑇
) (

𝑁

6
)

𝜂

                                                   (4.8) 

with γ and η being adjustable parameters.  

4.2.3.3 Algorithmic details 

A Kossel crystal can be conceptualized as a volume composed of identical sites, each one on 

top of and next to the other. The edge length of a single site was chosen as a = 0.394 nm to 

match the molar volume of calcite at ambient temperature and pressure (Carrasco and Aarão 

Reis, 2021). We considered an initially flat top surface with periodic boundary conditions, 

hence, all surface sites, i.e., sites at the very top in the (x,y) plane, initially have NNs = 5. As in 

Carrasco at al., 2021, we allowed detachment of the surface sites only. This reduces the overall 

computational effort as it makes it possible to simulate the dissolution dynamics of a crystal 

volume by only keeping track of a single topography map and the corresponding neighbors map 

specific to surface sites only ((Carrasco et al., 2021)).  

For both the kMC and the Ising models, we adopted the ‘divide and conquer’ approach, for 

which one iteration step corresponds to one (dissolution or precipitation) event (Meakin and 

Rosso, 2008). At each iteration, the single event taking place is established based on the current 

surface configuration, i.e., number of sites of each given type, and the values of the elementary 

probabilities, Pd,i and Pp,j (with j=3 for the kMC model). This is done by computing the relative 

probabilities, 𝑃𝑑,𝑖
∗  and 𝑃𝑝,𝑗

∗ , defined and piled up as in Figure 4.1 (Kurganskaya and Luttge, 

2013). A random number between 0 and 1 is generated. If the random number falls within a 

specific relative probability class, the event corresponding to that category will occur (see 

example in Figure 4.1).  Once the event type has been determined, one of the sites belonging to 

that class is randomly selected and the event executed.  

Crystal defects are typically conceptualized as pre-determined sites, in the case of point defects, 

or group of sites, in the case of screw dislocations, within the crystal volume, which are 

associated with much higher reactivity (regardless of the site coordination) due to the strain 

field generated. For the kMC model, this can be implemented by reducing the activation energy 

associated with the bond-breaking probability, Pb, related to the impacted sites, as a function of 

the induced strain field, by defining dislocation parameters, such as core radius, strain energy 

and dislocation length (Kurganskaya and Luttge, 2016). However, Meakin and Rosso (2008) 

showed that equivalent simulation results can be achieved by implementing ‘instantaneous’ 
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detachment of the sites at the affected locations, i.e., missing sites for point defects and pre-

opened nanotubes for screw dislocations, without explicitly defining the strain field at core 

regions (Meakin and Rosso, 2008). Here we followed the latter approach, by implementing 

screw dislocations as pre-opened hollow cores of lattice sites with diameters of 4x4 for the kMC 

model and 1x1 for the Ising model. The pre-opened hollow cores were as deep as the whole 

simulated crystal to exclude the impact of the dislocation depth (Kurganskaya and Luttge, 

2021). One single pre-opened hollow core was implemented for each simulated crystal and the 

window size was adjusted to match a reasonable value of dislocation density for calcite. Hence, 

we selected a window size of 200x200 sites. The resulting dislocation density was on the order 

of magnitude of 1010 cm-2, which was in the upper end of the range found for real minerals (103 

– 1011 cm-2), as representative of a strained calcite crystal (MacInnis and Brantley, 1992; Meakin 

and Rosso, 2008). The simulations were run for a number of iterations sufficient to reach a 

steady-state configuration of the surface roughness, as quantified through Ra. All the outputs of 

the simulations represent the average values evaluated over 10 simulation runs for each set of 

parameters tested. 

 

Figure 4.1 Example of (dissolution or precipitation) event selection and expression of the 

relative probabilities, 𝑃𝑑,𝑖
∗  (i.e., the probability that any site with i neighbors detaches from the 

surface) and 𝑃𝑝,𝑗
∗  (i.e., the probability of attachment events at any site for which j bonds would 

be formed), for a given surface configuration at a given iteration step. For the kMC model, j = 
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3. The expression of all relative probabilities (hence, the length of all event classes) changes at 

each iteration step as the surface configuration changes upon each event execution.  

 

4.3 Results 

4.3.1 Time-resolved small-windows statistical analyses 

The key results of the time-resolved analysis of the surface topography, Z, for the 6 calcite 

surfaces reacted at different Ω are depicted in Figure 4.2. The figure shows, for all samples, the 

temporal evolution of the median (and corresponding interquartile range, IQR) of Ra values 

computed, for each surface, over at least 30 sub-windows of 80x80 μm2 (Table B2). Steady-

state dissolution rates as a function of Ω derived from Bouissonnié et al. (2018) are also 

included ((Bouissonnié et al., 2018)).  Because for most of the samples, at t > 0 h, the 30+ Ra 

values were positively skewed (i.e., skewed towards high values of Ra, and, hence, non-

normally distributed), we used the median (instead of the mean) to represent the central 

tendency of the data. As a measure of the dispersion of the data around the median, we adopted 

the IQR, which includes 50% of the central values.  

Consistent with our previous findings at Ω=0.6 (Stigliano et al., 2021), the biggest increase in 

surface roughness occurred, for all saturation states, at early times of dissolution, as evidenced 

from the first VSI acquisitions at ~ 15 hours. The sharpness of the increase in Ra showed inverse 

proportionality with respect to Ω: more aggressive conditions of the fluid (i.e., lower Ω) resulted 

in higher alteration of the calcite surface, whereas progressively higher Ω led to lower surface 

roughness development. After this initial increase, the temporal evolutions of Ra at different 

saturation states tended to reach mostly non-overlapping plateau values, with Ra, Ω=0 = 90.4 ± 

5.2 nm, Ra, Ω=0.1 = 72.0 ± 4.9 nm, Ra, Ω=0.3 = 28.1 ± 3.7 nm, Ra, Ω=0.55 = 5.4 ± 0.5 nm, Ra, Ω=0.65 = 

3.2 ± 0.4 nm, and Ra, Ω=0.8 = 1.0 ± 0.3 nm (computed as averages of the median values over the 

3 final temporal acquisitions, with the ± symbol indicating the range of variability in the median 

values). This indicates the achievement of a steady-state configuration of the surface roughness 

at all Ω. We therefore focused our statistical analysis on Ra values at the final time, as 

representative of the steady-state configurations. Figure 4.3 depicts the box plots computed on 

the 30+ Ra values for all Ω, showing a linear relationship in semi log-scale. To assess the 

statistical significance of the Ra - Ω trend at the final time, we performed one-tailed Wilcoxon 

rank-sum tests, specifically to check if the median value of Ra corresponding to each Ω value 

was significantly lower than the median value of Ra corresponding to the closest smaller Ω 
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value (i.e., Ra, Ω=0.8 < Ra, Ω=0.65). The null hypothesis was that the median of the first dataset was 

greater than or equal to the median of the second dataset, and the alternative hypothesis was 

that the median of the first dataset was less than the median of the second dataset. For all 

datasets with Ω ≥ 0.3, the null hypothesis could be rejected with a p-value << 0.005, whereas 

the null hypothesis Ra, Ω=0.1 ≥ Ra, Ω=0 could be rejected only if the p-value threshold was set to 

0.05. We therefore concluded that the Ra - Ω trend at the final time was statistically significant 

at all saturation states, and highly statistically significant for Ω ≥ 0.3. Note that, at all times, for 

Ω = 0 and Ω = 0.1, the dispersion-to-median ratio was higher than for all other saturation states, 

as clearly visible in Figure 4.3 at the final times. The higher dispersion of Ra values for these 

two saturation states can be explained by the fact that these are the only two experimental 

conditions producing well-developed etch pits (see Figure 4.7), which resulted into an overall 

more heterogeneous surface topography. Moreover, as the size of the sampling window was 

smaller than the size of the larger etch pits, the Ra measurement varied significantly if the 

specific sub-window was located at the bottom of the pit or if corners / edges were partially 

included. This effect also contributed to additionally skewing the datasets. 

 

Figure 4.2 Comparison of the temporal evolution of Ra evaluated over 30+ sub-windows of 

80x80 μm2 for all saturation states: A) Ω=0, 0.1, 0.3, 0.55; B) Ω=0.55, 0.65, 0.8. The circles 

and the associated bars represent the median values and the corresponding interquartile 

intervals.  
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Figure 4.3 Box plots of Ra evaluated over 30+ sub-windows of 80x80 μm2 at the final time as 

a function of Ω. Steady-state dissolution rates as a function of Ω derived from Bouissonnié et 

al (2018) in similar experimental conditions are also included. In such a semi log-scale 

representation, steady-state dissolution rates are thus shown to be strongly correlated to steady-

state Ra values. 

 

4.3.2 Time-resolved large-windows statistical analyses 

4.3.2.1 Topography evolution as described by PSD and variograms 

Figure 4.4 and Figure 4.5 show the power spectral density and experimental semi-variograms 

of the surface topography, Z, evaluated, for all saturation states, as a function of time (t = 0 

hours, early, mid, and late times) across a given sub-window of 400x400 μm2. Examples of VSI 

images showing the final surface topography for the various Ω values can be found in Figure 

4.7. Consistent with the time-resolved Ra analysis on small-windows, for all saturation states, 

the largest development in surface roughness was detected at early stages of dissolution (t = 15 

hours) (Figure 4.4 and Figure 4.5). Subsequently, the increase in surface roughness due to 

dissolution gradually diminished from early-to-mid and from mid-to-late times, pointing 

towards the achievement of a steady-state configuration of the surface. In general, for all 

saturation states, the PSD and the semi-variogram move towards higher values with time, until 

the curves evaluated at mid and late times quasi-overlap (Figure 4.4 and Figure 4.5), indicating 

a temporal stabilization of the surface in all cases. This increase in values reflected an increase 
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in surface roughness at all frequencies for the PSD and an overall increase in spatial variability 

for the semi-variogram. However, it is important to note that the increase was not constant 

across all frequencies and separation distances. Properly characterizing in detail this evolution 

over the full range of frequencies and lags can provide valuable insights into the dissolution 

processes at different Ω. At Ω = 0.8, for low wavevector values (i.e., lower than ∼ 0.06 μm-1), 

the PSD, over time, remained mostly identical to those evaluated at t = 0 hours, whereas it 

convincingly increased in the mid-to-high interval (i.e., between ∼ 0.06 and 10 μm-1), indicating 

a change in surface texture at small scales. Additionally, the semi-variogram structure was 

conserved from t = 0 h to t > 0 h (i.e., the semi-variogram plateau was reached at approximately 

the same lag), while moving towards higher semi-variogram values. When combined, these two 

pieces of information suggested that, upon dissolution, the large-scale surface texture mostly 

remained unaltered, while small-scale surface features either emerged (i.e., become detectable 

at the VSI-scale) or became more pronounced. This reflected the slight deepening of the 

polishing scratches that were already detectable at t = 0 h, along with the concomitant 

appearance of additional scratches, presumably occurring as a result of the preferential 

dissolution caused by the strain field induced by the polishing process (Figure B3). Similarly, 

at Ω = 0.65, dissolution led to the deepening of pre-existing polishing scratches (Figure B4). 

Differently from what can be observed at Ω = 0.8, the PSD evaluated at Ω = 0.65 evolved in 

time towards higher values at all frequencies, reflecting a more uniform deepening of the 

polishing scratches due to dissolution. Differently from what we observed at Ω = 0.8 and Ω = 

0.65, for Ω ≤ 0.55, the surface topographies resulting from dissolution did not inherit any pre-

existing topographic features from the initial surface. Nevertheless, upon dissolution, the 

general trend of the PSD and semi-variogram moving towards higher values at all frequencies 

and lags was preserved, suggesting that the increase in surface roughness may be induced by a 

fundamental underlying dissolution mechanism over the whole Ω range. Lastly, we point out 

how, for Ω = 0.1 and Ω = 0, the semi-variogram from early to mid/late times moved towards 

higher values while reaching its plateau value at larger separation distances, mirroring the 

gradual development of etch pits in terms of both planar and vertical growth. Overall, for all 

saturation states, PSD and semi-variogram provided consistent pieces of information, showing 

mutually compatible temporal evolution. Note that the PSD and semi-variogram curves 

evaluated for Ω ≤ 0.3 at early time were higher than those evaluated for Ω ≥ 0.65 at steady-

state, indicating that 15 hours of dissolution at far from equilibrium conditions were sufficient 

to produce a degree of surface roughness significantly higher than the maximum attainable at 

close-to-equilibrium. As in the previous section, we then focused our statistical analysis on 
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surface topography data acquired at the final time, as they are representative of the steady-state 

configuration of the surfaces. 

Figure 4.4 Comparison of the temporal evolution of PSD (top row) and semi-variogram 

(bottom row) evaluated on a given observation window of 400x400 μm2 for Ω = 0.8, 0.65, 0.55. 

 

Figure 4.5 Comparison of the temporal evolution of PSD (top row) and semi-variogram 

(bottom row) evaluated on a given observation window of 400x400 μm2 for Ω = 0.3, 0.1, 0. 
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4.3.2.2 Steady-state PSD and variograms 

Figure 4.6 shows the PSD and (experimental and theoretical) semi-variograms of the surface 

topography Z evaluated, for each Ω, over 3 sub-windows of 400x400 μm2, at the final time (as 

described in the Materials and Methods section). Evaluations of PSD and semi-variograms at 

different Ω resulted in curves that were, at least partially, non-overlapping, even when 

considering the variability introduced by the 3 different observation windows. This indicated 

that the surface topographies resulting from dissolution at different Ω were statistically 

distinguishable, based on PSD and semi-variogram characterizations. When plotted on a log-

log scale, the PSD exhibited a non-linear behavior over the whole range of wavevector values 

for all Ω, indicating a complex roughness pattern over multiple scales. However, some common 

features could be identified across all Ω. For instance, in all cases, there was an important drop 

in the power signal detected at high wavevector values, which indicated an important decrease 

in surface roughness at small-scale. It should be noted how, at close-to-equilibrium conditions 

(i.e., Ω = 0.8, 0.65, 0.55), the PSD-curves partially overlapped at low and high wavevector 

values, while being clearly differentiable from the curves evaluated at Ω ≤ 0.3 over the whole 

wavevector range. This suggests that, at close-to-equilibrium conditions, the specific imprints 

left on surfaces by fluids with different degrees of undersaturation could only be detected at the 

intermediate-scale. In contrast, highly undersaturated fluids (i.e., far-from-equilibrium) resulted 

in surfaces with textures that were significantly different at all scales compared to close-to-

equilibrium dissolution, which is in line with the switch in the dissolution mechanism.  Notably, 

the PSD curve at Ω = 0.55 exhibits a slightly distinct behavior compared to the other curves at 

close-to-equilibrium conditions. It stands apart by displaying a plateau for low wavevector 

values, suggesting that the surface topography at this particular condition is predominantly 

characterized by long-wavelength patterns. Similarly, the PSD curve at Ω = 0.3 departs from 

the other curves at far-from-equilibrium for low wavevector values, reflecting a lower 

development of etch pits compared to Ω = 0.1 and Ω = 0. Interpretations of high vector values 

(i.e., very-high-frequency region) should be cautious. As the VSI lateral resolution is 

approached, the PSD sampling rate for a specific wavevector decreases, and the signal-to-noise 

ratio deteriorates. However, a plateau can be observed at far-from-equilibrium for wavevector 

values larger than 10 μm-1, particularly evident at Ω = 0. The presence of such ‘very-high-

frequency plateau’ can be interpreted as the remnant of roughness induced by the dominant 

topographical features (e.g., large etch pits at Ω = 0 and Ω = 0.1). Nevertheless, the observation 

that such a plateau value tends to be consistently higher at Ω = 0 compared to Ω = 0.1 suggests 

that there is also a concomitant increase in high-frequency roughness that is not directly related 
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to etch pits development as Ω decreases. This also explains why the plateau values are higher 

at far-from-equilibrium compared to close-to-equilibrium. The PSD analysis also revealed that 

the level of heterogeneity amongst the three different sub-windows, for a given Ω, was 

considerably higher at far-from-equilibrium (particularly noticeable at Ω = 0.1 and Ω = 0) 

compared to close-to-equilibrium conditions. Specifically, under close-to-equilibrium 

conditions, the three PSD curves obtained from the three different sub-windows almost 

overlapped, indicating a relatively low degree of heterogeneity at the crystal surface. In contrast, 

at far-from-equilibrium conditions, some variations emerged, especially at Ω = 0.1 and Ω = 0, 

the conditions for which well-developed etch pits were observed. The increased level of 

heterogeneity at the crystal surface arose from variations in the spatial distribution of etch pits, 

both in terms of density and size, which reflects distinct spatial distributions of crystal defects 

at various locations along the calcite surface.  

For final time semi-variogram comparisons at different saturation states, we relied on 

evaluations of the exponential model parameters (i.e., correlation length (3*a), and partial sill 

(C - γ(0)), as depicted in Figure 4.8. The parameters C and a were derived using the least squares 

regression method with a prescribed nugget value of 5.2 x 10-8 μm2 (Table 1). The nugget value 

was estimated based on 30 repeated VSI acquisitions at 50x magnification over an area of 

400x400 μm2 of a mechanically-polished calcite surface, as representative of the lowest level 

of roughness considered in this study. It was calculated as the average of the variance values 

evaluated across repeated height measurements for each given pixel. The repeated 

measurements have been conducted in environmental conditions (e.g., vibration level) 

comparable to those present during the acquisitions of the experimental topography data, and 

with identical VSI settings.  The graph shows the two model parameters as a function of Ω in 

semi log-scale, both exhibiting an approximately linear trend with negative slope. The 

correlation length (i.e., the separation distance above which the height values are no longer 

spatially correlated) tended to decrease as the saturation state increased. At Ω = 0 and Ω = 0.1, 

the larger correlation length can be explained by the presence of well-developed etch pits, 

whereas, at Ω = 0.65 and Ω = 0.8, the lower correlation length is primarily determined by the 

polishing scratches (deepened by preferential dissolution), which dominate the overall 

topography (see Figure 4.7). In general, far-from-equilibrium conditions resulted in surfaces 

with more persistent autocorrelation over a greater distance, whereas surfaces reacted at closer-

to-equilibrium conditions gradually exhibited a more rapid decline in spatial autocorrelation 

over shorter distances. Data points at Ω ≥ 0.55 deviated from this linear trend (when plotted in 

semi log-scale), presumably due to the impact of residual features from the initial topography 
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(as in Figure B3 and Figure B4). Similarly, the partial sill (i.e., the semi-variogram plateau 

value minus the nugget) convincingly decreased as Ω increased. This indicates that conditions 

of higher undersaturation of the fluid (i.e., low Ω) progressively led to surface structures with 

higher variance of the height values. Overall, the semi-variogram analysis at the final time 

suggested that, as the saturation state decreased, the surface became more variable over larger 

separation distances and the differences between the height values became more pronounced.  

 

Figure 4.6 A) PSD and B) semi-variogram evaluated over 3 windows of 400x400 μm2 for all 

Ω, at the final time. The semi-variogram plot displays for all sub-windows the experimental 

semi-variograms as symbols (i.e., circles, downward triangles, and upward triangles), with their 

model counterparts shown as lines (i.e., respectively, solid, dashed, and dashed-dot lines). 
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Figure 4.7 Images of surface topography data acquired with VSI at 50x magnification over a 

given observation window of 400x400 μm2 for all Ω, at the final time. 

 

Figure 4.8 Semi-variogram model parameters (correlation length, 3*a, and partial sill, (C - 

γ(0)) evaluated, for each saturation state, over 3 sub-windows of 400x400 μm2, at the final 

time, plotted as a function of Ω. 
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Table 4.1 Table of semi-variogram model parameters (correlation length, 3*a, and total sill, C) 

evaluated, for each saturation state, over 3 sub-windows of 400x400 μm2, at the final time, 

corresponding to data displayed in Figure 4.8. A prescribed nugget value of 5.2E-8 was used 

for the semi-variogram fitting. Corresponding R-squared values are also included. 

 

4.4 Discussion 

Our results suggest that, under the investigated experimental conditions, the steady-state 

configuration of calcite surfaces undergoing dissolution at different saturation states are 

statistically distinguishable. Below, we first describe the results of numerical simulations based 

on previously published stochastic dissolution models at the atomic-scale to ascertain the key 

processes that are required to support these results from a theoretical perspective. The 

combination of the outputs of statistical characterizations and numerical modeling is then used 

to discuss whether the steady-state surface topography of minerals resulting from dissolution at 

different Ω values can be used as a proxy of the saturation state of the fluid under which 

dissolution occurred. 

4.4.1 Stochastic simulations of calcite dissolution as a function of Ω 

4.4.1.1 Classical kMC modeling 

Standard kMC modeling was applied as described in the Materials and Methods section. The 

parameter values used in the simulations were: Eb = 16 kJ/mol, T = 22 °C and ν = 1012 s-1. The 

values for the bond-breaking activation energy, Eb, and frequency factor, ν, were selected from 

the range of possible values compatible with ab initio calculations (see (Ackerer et al., 2021; 

Carrasco et al., 2021)). The surface topographies resulting from simulations at different 

saturation states (Ω=0, Ω=0.4 and Ω=0.8) are depicted in Figure 4.9 (2D representation) and in 

Figure B5 (3D representation). In contrast to our experimental observations, the long-term 

simulated dissolution led to the opening of hollow cores to form etch pits over the whole range 
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of Ω values investigated, which in turn resulted in the achievement of a similar Ra value at 

steady-state (Figure B6). The only observable difference in the steady-state surface topography 

could be detected at Ω=0.8, with the etch pit showing more rounded steps and corners than 

those obtained at lower saturation states, as a result of more frequent re-precipitation events. 

Extending such simulations over windows of size equivalent to the VSI-scale would lead to the 

formation of micro-scale etch-pits, which are not observable experimentally for Ω > Ωcritical 

(i.e., the saturation state threshold above which the formation of etch pits is no longer 

thermodynamically favored, which is ∼ 0.45 for calcite; e.g., (Bouissonnié et al., 2018), and 

references therein). With these simulation settings, the presence of a constant source of highly 

reactive sites around the pre-opened hollow core eventually leads to the formation of an etch 

pit, regardless of the saturation state. The saturation state only controls the number of iterations 

required to achieve a steady-state configuration of the etch pit, with larger saturation states 

implying more iterations (Figure B6). Therefore, with the standard settings adopted for the 

investigated conditions, the kMC model fails to reproduce the evolution of the surface 

topography resulting from dissolution as a function of the saturation state that we observed 

experimentally. 

 

 

Figure 4.9 Comparison of steady-state surface configurations after dissolution at Ω=0, Ω=0.4 

and Ω=0.8, resulting from simulations with standard kMC modeling. The screw dislocations 

were implemented as pre-opened hollow cores of diameter 4 × 4 lattice sites and as deep as the 

whole simulated crystal.  

4.4.1.2 Ising modeling 

The Ising model was applied with parameter values arbitrarily set to: γ = η = 3. The surface 

topographies resulting from simulations at different saturation states (Ω=0, Ω=0.4 and Ω=0.8) 

are depicted in Figure 4.10 (2D representation) and Figure B7 (3D representation). Consistent 

with our experimental observations and contrary to the output of classical kMC modeling, the 
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long-term simulated dissolution does not lead to the opening of hollow cores to form etch pits 

at close-to-equilibrium conditions (Ω=0.8), despite the presence of a pre-opened hollow core. 

Moreover, at far-from-equilibrium, the pre-opened hollow core opens up to form etch pits that 

vary in depth as a function of Ω, which stems from the general expression of dissolution and 

precipitation probabilities. Overall, this allows one to reproduce the Ω-roughness trend 

observed experimentally over the whole range of saturation states (Figure 4.11).  

The reason why the Ising model successfully reproduces this behaviour can be summarized in 

a few conceptual features that any potential model possibly needs to capture the surface 

roughness dynamics observed experimentally. Both the kMC and Ising models express the 

dissolution and precipitation probability of a given site as a function of the number of nearest 

neighbors. However, the Ising model produces ‘rougher surfaces’ because the relative 

differences in dissolution probability between differently coordinated sites is much lower than 

in the kMC model: Pd,i+1/ Pd,i < 1 for Ising model, whereas Pd,i+1/ Pd,i <<< 1 for kMC model, 

with i = 1, 2, 3, 4. In other words, while in the kMC model the layer-by-layer dissolution is 

mostly driven by kink sites only, in the Ising model, all sites participate more significantly to 

the global dissolution rate. To satisfy this feature with the kMC model, unrealistically lower 

values of the bond-breaking activation energy would need to be chosen. 

The other key model feature is the relative importance of the precipitation probabilities of the 

sites with 4 and 5 nearest neighbors with respect to the dissolution probabilities of the sites with 

1 and 2 nearest neighbors. In the Ising model, the precipitation events of sites forming 4 or 5 

bonds play a significant role in compensating the roughness generated by the dissolution events. 

Additionally, this makes the surface roughness evolution more sensitive to the saturation state, 

which eventually is key to establish the Ω-roughness trend observed experimentally. Of note, 

the shape of etch pits, which is more rounded compared to simulations conducted with kMC 

modeling (see Figure B5 for kMC model and Figure B7 for Ising model), could still be refined 

by changing the values of γ and η. Here we did not try to find the combination that best 

reproduces the etch pit shape, as it was not the main goal of the modeling. 
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Figure 4.10 Comparison of steady-state surface configurations after dissolution at Ω=0, Ω=0.2, 

Ω=0.4 and Ω=0.8, resulting from simulations with Ising modeling. The screw dislocations were 

implemented as pre-opened hollow cores of diameter 1 × 1 lattice sites at the center of the 

simulation window in all cases. Despite the presence of a pre-opened hollow core, the Ising 

model does not form an etch pit at Ω=0.8.  
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Figure 4.11 Comparison of Ra evaluated over the steady-state surface configurations resulting 

from dissolution at Ω=0, Ω=0.2, Ω=0.4 and Ω=0.8, simulated with Ising modeling. The pre-

opened hollow core was excluded from the calculation of Ra. The different plateau values of Ra 

indicate the achievement of different steady-state configurations of the surface as a function of 

the saturation state. 

4.4.2 Surface roughness: a relevant proxy for back-tracking past water-rock interaction 

conditions? 

 Several pre-requisites must be fulfilled for surface roughness to be a relevant proxy of 

past water-rock interactions: (i) surface roughness must reach a steady-state value for a given 

fluid composition; (ii) the roughness-Ω relationship must be bijective, (iii) the roughness-Ω 

relationship must not be impacted by the starting topographic configuration, while the transient 

period during which the surface topography evolves from one configuration to another must 

remain short compared to the duration of the water-rock interaction event that is tracked. These 

three aspects are discussed in the three subsections below. 

4.4.2.1 Evidence for a temporal stabilization of the roughness towards a steady-state 

configuration: a pre-requisite to infer the solution composition 

The dynamic nature of a dissolving crystal surface has long raised the question of the existence 

of a steady-state microtopographic configuration that would no longer depend on time and/or 

the reaction progress. Intimately related to this question, the recognition that mineral reactivity 
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decreased with time following a power law (Maher et al., 2004; Vance et al., 2009; White and 

Brantley, 2003) and references therein) has fuelled this debate and raised the question of the 

time required for a steady-state to develop, or even the existence of such a steady-state (Köhler 

et al., 2005; Weissbart and Rimstidt, 2000).  

From an experimental standpoint, few studies have reported time-resolved statistical analyses 

of the roughness of crystal surfaces undergoing dissolution, with contrasted results. Regarding 

experiments conducted with mineral powders, most of them focused on the relationship 

between the temporal evolution of the surface area typically quantified through BET and 

geometric surface area measurements, which are related through the so-called ‘roughness 

factor’ (roughness factor = BET surface area / geometric surface area). The BET surface area 

measurement is based on the Brunauer-Emmett-Teller (BET) theory, which relates the amount 

of gas adsorbed by a given material to its total surface area. In contrast, the geometric surface 

area measurement refers to the total surface area of a material based solely on its geometric 

properties, such as shape and size. The ‘roughness factor’, therefore, quantifies the deviations 

of the actual surface from a hypothetical smooth surface (Anbeek, 1992). Although several 

studies reported a temporal increase in the roughness factor with time (e.g. (Gautier et al., 

2001)), the use of BET surface area as a criterion to decipher the evolution of the roughness of 

the crystalline surface has been subsequently questioned for silicate minerals, since post-

dissolution specific surface areas can be altered by interference from porous altered surface 

layers that are not representative of the surface area of the dissolving crystalline surface ((Daval 

et al., 2010) and references therein). 

In the light of such shortcomings, the link between surface morphology and mineral reactivity 

has also been extensively studied on single crystal surfaces, specifically by looking at the 

evolution of the mineral surface microtopography during dissolution with high-resolution 

techniques, such as atomic force microscopy (AFM) or high-resolution optical microscopies 

(e.g., confocal profilometry, phase-shift interferometry, VSI, (Saldi et al., 2017)) and references 

therein). For instance, Pollet-Villard et al. (2016) evaluated the evolution of the experimental 

semi-variogram over the AFM surface topography of a (001) orthoclase surface after far-from-

equilibrium dissolution at T = 180 °C and pH = 9 (Pollet-Villard et al., 2016b). Over the short 

duration of their experiments (< 5 days), the variance of the surface topography observed a 

continuous increasing trend. Similarly, Saldi et al. (2017) investigated the surface topography 

evolution of different cleavage {101̅4} faces and miscut surfaces parallel to the {0001} 

crystallographic plane of dolomite single crystals during dissolution at T = 50 °C and pH of ∼ 



144 

 

4.7 (Saldi et al., 2017). An increasing trend of the RMS surface roughness with time was 

reported, suggesting that a morphological steady state may not be reached at the surface of 

dolomite under the investigated conditions. Godinho et al. (2014) investigated the temporal 

evolution of the Ra surface roughness of different fluorite faces subjected to dissolution at T = 

21 °C and pH of ∼ 3.6, showing that a steady-state configuration was reached for the (115), 

(334), (104) and (245) faces (with distinguishable plateau values), whereas it was not achieved 

for the (102) and (110) faces (Godinho et al., 2014). Conversely, the achievement of a steady-

state configuration of the surface roughness was reported by Li et al. (2021) for the (010) olivine 

face after dissolution at room temperature and pH of ∼ 1.0 (Li et al., 2021). Together with the 

experimental results of the present work, these previous studies suggest that the steady-state 

configuration of the surface roughness resulting from dissolution is both crystallographically- 

and fluid-controlled, and that a critical reaction progress needs to be observed prior to possibly 

reaching a steady-state. 

The impact of different thermodynamic and kinetic parameters on the evolution of the surface 

area and reactivity of minerals was also explored through numerical modeling. Several studies 

based on kMC modeling of far-from-equilibrium dissolution investigated the evolution of 

nanosized grains with different size and shape (e.g., (Carrasco et al., 2021) and references 

therein) and of mineral surfaces at different temperatures and for different values of activation 

energy for molecular detachment (Carrasco et al., 2021). For instance, Carrasco et al. (2021) 

showed that for a bond-breaking activation energy of E = 16.0 ± 0.7 kJ/mol and fixed 

temperature, the dissolution of an initially flat surface of a defect-free Kossel crystal results into 

a steady-state configuration of the surface roughness, which reflects the achievement of a 

constant number of kink sites at the surface (Carrasco et al., 2021). Moreover, sensitivity 

analyses revealed that higher temperatures and / or lower values of the bond-breaking activation 

energy result in rougher surfaces at steady-state. Interestingly, Ackerer et al. (2021) reached 

comparable conclusions in their modeling work, following similar approaches (Ackerer et al., 

2021). Finally, several stochastic and deterministic modeling exercises aimed at investigating 

the dynamics of defect-driven crystal reactivity concluded that etch pit coalescence played a 

key role in the attainment of steady-state roughness and associated crystal dissolution rate at 

far-from-equilibrium conditions ((Lasaga and Luttge, 2001a; Pollet-Villard et al., 2016b) and 

references therein). 

In the present study, all experiments and simulations converge towards the conclusion that the 

mechanically-polished calcite surface microtopography reaches a steady-state on timeframes of 
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the order of tens of hours at most, which is consistent with previous studies (MacInnis and 

Brantley, 1992; Stigliano et al., 2021). From an experimental standpoint, the steady-state 

roughness is apparently controlled by the fluid saturation state, with higher roughness 

corresponding to lower fluid saturation states. Only the time required to reach a steady-state 

differs from experiment to experiment. As a first approximation, it appears that the difference 

between the initial and final roughness is the parameter that primarily controls the duration of 

the transient period. From a numerical standpoint, a common point in all simulations, regardless 

of the considered model, is the existence of a steady-state surface roughness for all Ω values 

considered. Note that, for all Ω values, this transient time may vary for different initial surfaces 

depending on the difference in surface roughness between the initial surface and the final 

equilibrium configuration, as further discussed in Section 4.4.2.3. The reason for the 

achievement of a steady-state configuration relies on the fact that both kMC and Ising models 

fundamentally link the sites reactivity to the number of nearest neighbours. Consequently, while 

a certain degree of surface roughness is necessary for dissolution to occur, its evolution is 

limited by the fact that isolated sites (i.e., sites with only one neighbour) are associated with 

much higher reactivity compared to the rest of the surface and therefore dissolve preferentially. 

This inevitably leads to a stabilization of the surface roughness that, otherwise, could potentially 

increase indefinitely. Such a balance between more reactive and less reactive sites is reflected 

by the stabilization of kink sites at the surface over time (see, e.g., (Ackerer et al., 2021; 

Bouissonnié et al., 2020a; Bouissonnié et al., 2020b)), which testifies the achievement of a 

mean steady-state that energetically integrates over all different surface sites. 

In summary, and to the best of our knowledge, this study is the first of its kind that demonstrates 

both from experimental and theoretical standpoints that the surface roughness of a crystalline 

surface subjected to dissolution eventually reaches a steady-state value for all fluid saturation 

states. This is a strong pre-requisite to possibly use this relation as a proxy for back-estimating 

fluid composition for past water-rock interactions. Future efforts should focus on enhancing the 

statistical characterization of the steady-state surface roughness resulting from dissolution and 

extending it to various conditions. For instance, VSI Power Spectral Density characterizations 

of the steady-state configuration could be expanded to higher frequencies through the 

complementary use of AFM, in accordance with the methodology outlined by Gong et al. (2016) 

((Gong et al., 2016)). These approaches have the potential to identify on weathered mineral 

surfaces additional imprints of the fluid composition. Below, we briefly discuss the second pre-
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requisite that needs to be observed for roughness to be a relevant indicator of the fluid 

composition, that is, the uniqueness of such a relation. 

4.4.2.2 Is the Ω-roughness relation bijective? 

A striking aspect of the experimental work described in Section 4.3 is the seemingly bijective 

nature of the relation between roughness and Ω, which seems to be an intrinsic property of 

crystal dissolution. To the best of our knowledge, very few studies have addressed this question, 

either experimentally or numerically. From an experimental standpoint, as emphasized in the 

introduction section, our current knowledge is basically limited to the description of etch pit 

formation at far-from-equilibrium conditions, corresponding to higher surface roughness 

compared to closer-to-equilibrium conditions, where etch pit nucleation is no longer 

spontaneous. Strikingly, modeling studies have not reached much more detailed conclusions, 

as the characterization of surface roughness was not central to these previous works, which 

were primarily aimed at investigating rate-Ω relations (e.g., (Kurganskaya and Luttge, 2021; 

Martin et al., 2020; Martin et al., 2019)). When combined with the numerical simulations 

conducted in the present study (see Section 4.4.1), two important conclusions can be drawn 

from kMC simulations run with a simple Kossel crystal structure and bond-breaking 

probabilities consistent with ab initio calculations: 

(i) the steady-state roughness of a dissolving defect-free surface (which can be seen as an ideal 

surface for which no dislocation etch pits are formed, corresponding to close-to-equilibrium 

conditions) remains independent of Ω and systematically very low. This is consistent with the 

fact that the low reactivity of terrace sites limits the topography to 2-3 atomic layers only (as 

observed in this work over the whole Ω-range and from (Carrasco et al., 2021) for far-from-

equilibrium dissolution at room temperature); 

(ii) for simulations run with surfaces including outcropping dislocations, the steady-state 

surface roughness is much higher and does not depend on Ω. 

As a consequence, kMC simulations run with a simple Kossel crystal structure and a bond-

breaking activation energy larger than ~5-10 kJ/mol (defined as the threshold for kink-

dominated surfaces; see (Ackerer et al., 2021)) cannot predict the bijective relation observed 

experimentally. Therefore, either the input parameters need to be adjusted (and will thus depart 

from their theoretical values estimated from first principles), or a higher level of freedom needs 

to be allowed to the model for it to be successful.  
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The sensitivity analyses that we ran while developing the model that best captures the 

roughness-Ω trend observed experimentally highlighted two important results: (i) decreasing 

the gap between the dissolution probability of terrace sites and that of other sites having fewer 

number of bonds tends to increase the overall surface roughness, while limiting the contribution 

of dislocation etch pits to the overall roughness at close-to-equilibrium conditions; (ii) allowing 

for the precipitation at sites other than kink sites, with a precipitation probability that increases 

with the connectivity of the site, makes the surface roughness evolution more sensitive to the 

saturation state. Of note, the Ising model proposed by Bandstra and Brantley (2008) meets both 

requirements, explaining why it is successful in this regard (Bandstra and Brantley, 2008).  

Importantly, while the Ising model provided the best agreement between simulations and 

observations, this does not fully rule out the possibility that simulations based on the classical 

kMC formalism (i.e., based on bond-breaking and bond-forming activation energies, as 

described by Equation 4.4 and Equation 4.5) may satisfactorily reproduce the experimentally 

observed roughness-Ω trend. For instance, Martin et al (2019) suggested that if the bond-

forming activation energy was significantly higher than the bond-breaking activation energy, 

spontaneous terrace vacancies can be created and pit opening can be more favorable than 

adatom removal (Martin et al., 2019). This would result in increased surface roughness over the 

whole Ω range, which is a prerequisite to obtain a bijective roughness-Ω relation. Secondly, 

more sophisticated formulations can be proposed for the bond-breaking activation energy 

reflecting the existence of nonequivalent kink sites for calcite as proposed by Kurganskaya and 

Luttge (2021) (Kurganskaya and Luttge, 2021). This results in a modification of the apparent 

bond-breaking activation energy at those sites. If this modification goes in the direction of a 

decrease in the apparent activation energy, this would in turn decrease the gap between the 

reactivity of terrace and kink sites, which represents another prerequisite to obtain a bijective 

roughness-Ω relation. 

Finally, comparing the outputs of all those models to the experimental measurements 

assumes that the trends revealed numerically at the atomic-level faithfully reflect the trends 

observed experimentally at the nanometer-level. While this assumption was implicitly followed 

in previous studies (e.g., (Bandstra and Brantley, 2008)), it is important to recall that surface 

roughness is a scale-dependent parameter, so that the transfer of information from one scale to 

another is not trivial (see the extensive work by Fischer and Luttge (2007), (Fischer and Luttge, 

2007)). Alternative approaches using mesoscale models could then represent a promising 
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avenue of research (e.g., (Stigliano et al., 2021)), although to the best of our knowledge, such 

models would only be empirical at this stage.  

4.4.2.3 Promises and obstacles for the use of Ω-roughness relations as a proxy to infer past 

weathering conditions 

In our previous study (Stigliano et al., 2021), we suggested that mineral surfaces exhibiting left-

skewed, leptokurtic topography distribution might be a distinctive feature of minerals that have 

been subjected to dissolution. Here, we further argue that when the reaction occurs under ideal, 

well-controlled conditions (i.e., starting with statistically identical mineral surfaces and reacted 

in solutions of fixed chemical composition differing only in their saturation state), negative 

correlations between steady-state roughness configuration and solution saturation state 

represent an emerging intrinsic feature of mineral dissolution. Comparing these results with 

rates data from (Bouissonnié et al., 2018), it can be noted how both the steady-state Ra values 

and the steady-state dissolution rates decrease linearly in semi log-scale as a function of Ω (see 

Figure 4.3. Such correlation suggests that, after a transient phase in which roughness and 

reactivity are dictated by the interaction between the fluid and the ‘current surface 

configuration’ (e.g., (Bose et al., 2008; Fischer et al., 2018; Kurganskaya and Luttge, 2021)), 

the interaction between the bulk solution and the surface eventually leads towards a 

minimization of the surface energy, whose configuration is strictly dependent on the saturation 

state. However, prior to using such a new tool to back-estimate the conditions under which 

fluid-mineral reactions occurred, e.g., for paleoenvironmental reconstructions, several issues 

would need to be tackled. This includes knowledge of the impact of: (i) the initial surface 

microtopography; (ii) possible fluctuations in fluid composition on steady-state surface 

roughness; and (iii) whether these results apply to calcite only, or whether they might be 

extended to other rock-forming minerals. We will now examine these three issues in detail.  

(i) The rationale for examining the impact of the starting surface microtopography on steady-

state roughness is two-fold. First, it is frequently argued that mineral grinding and/or polishing 

result in an increase in high energy sites and associated transient dissolution regimes that are 

not representative of long-term weathering (e.g., (Eggleston et al., 1989) and references 

therein). Consequently, one might argue that the results described above might be an artifact of 

the methods followed to conduct the study. Second, the breakdown of minerals which  occurs 

along cleavage planes both in the field and in the laboratory usually results in heavily stepped 

surfaces, even on fields of view as small as a few 10s of microns on a side, similar to those used 

in the present study (see microphotographs in (Ruiz-Agudo et al., 2009) as an example). 
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As further explained below, it is challenging to address this point from an experimental 

perspective, as the time required to erase a given starting topographic configuration may not be 

compatible with reasonable experimental timescales. Conversely, numerical modeling appears 

well suited to tackle this question, as it allows one to run a wide variety of sensitivity tests over 

short timescales. As a consequence, here we tested the impact of initial surface roughness 

configuration using the Ising model that was shown to best reproduce the roughness-Ω relations 

revealed experimentally. The following initial configurations have been tested: (i) a perfectly 

flat surface with Ra = 0 nm; (ii) a surface composed of normally distributed height values, with 

mean = 0 nm and standard deviation = 15 nm, resulting in Ra = 4.8 nm; and (iii) a stepped 

surface containing 2 steps with height of 20 nm and 40 nm, overall resulting in Ra = 15 nm. The 

simulations were run for two Ω values (Ω = 0.2 and Ω = 0.8) representative of far-from and 

close-to-equilibrium conditions, respectively. As can be seen in Figure 4.12, after a transient 

phase of variable duration that depends both on the roughness of the initial surface and Ω, the 

relaxation of the surface converges towards a unique final roughness that depends only on the 

saturation state at which the simulations were run. In addition, by using the simulated surface 

retreat as a function of the number of iterations to calculate a conversion factor between 

iterations and elapsed time, it is possible to estimate the relaxation time for the different initial 

surface configurations. By doing so, we found that if the difference in surface roughness 

between the initial and the equilibrium configuration is sufficiently large (or, in other words, if 

the initial surface is sufficiently rough), the higher the saturation state, the longer the transient 

phase. This seems a reasonable result, since lower Ω values correspond to higher dissolution 

rates. Of note, starting from a surface with a step of a few microns (e.g., a cleaved surface), the 

estimated elapsed time to reach steady-state at Ω = 0.8 is in the order of months. This sensitivity 

analysis highlights two important results: first, investigating the impact of initial roughness on 

steady-state surface roughness experimentally would have required durations that are hardly 

compatible with laboratory constraints for close-to-equilibrium conditions. Second, and more 

importantly, such durations remain short compared to geologic timescales, suggesting that 

calcite surface microtopography might preserve imprints related to the composition of the latest 

aqueous fluid that contacted calcite surface. 

(ii) The rationale for examining the impact of possible fluctuations in fluid composition on 

steady-state surface roughness is also two-fold: first, in the field, the reaction conditions are 

rarely buffered to well-constrained physicochemical conditions, but are rather impacted at 

various frequencies by environmental fluctuations such as rainfall or temperature (e.g., see the 
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calculations of the impact of seasonal variations on the saturation state of pore water in a soil 

profile conducted by (Wild et al., 2019a)). Second, it has been previously observed 

experimentally and theoretically that the nucleation of etch pits inherited from fluid-mineral 

interactions at far-from-equilibrium conditions could keep on driving mineral reactivity at 

close-to-equilibrium conditions, where the nucleation of etch pits is no longer spontaneous 

(Arvidson and Luttge, 2010; Beig and Luttge, 2006; Kurganskaya and Luttge, 2021), resulted 

in so-called ‘non-steady state dissolution rates’. In other words, the reactivity of crystalline 

materials is inherited from the reaction history, as underlined by the modeling work of Fischer 

et al (2018) (Fischer et al., 2018). 

To test for the consequences of oscillations in the fluid composition, we used the Ising model 

to simulate the impact of a sudden switch in solution saturation from Ω = 0.8 to Ω = 0.2 and 

then back to 0.8 on calcite surface microtopography, starting from an initially perfectly flat 

surface. Note that such a switch can be considered as an extreme and most likely unrealistic 

scenario in natural settings, except for anthropic perturbations such as subsurface CO2 injection, 

which may result in a dramatic drop of the pore water by several pH units within time frames 

of a few days (e.g., (Kampman et al., 2014) and references therein). As can be seen in Figure 

4.13, the surface roughness evolves from a steady-state value representative of Ω = 0.8 to 

ultimately stabilize to a new value that is characteristic to the Ω value at which the simulation 

was run. Similarly, after the second switch in Ω, the surface roughness gradually decreases to 

reach a value that is indistinguishable from the roughness calculated before the first switch in 

Ω. This latter result is consistent with the results shown Figure 4.12: the roughness of the surface 

ultimately stabilizes to a value that is representative of the ongoing fluid saturation state, 

irrespective of the starting roughness of the surface. Note that the characteristic time to reach 

this new steady-state value is, again, intimately related to the starting roughness value and 

dissolution rate, itself dictated by the fluid saturation state.  

Lastly, it should be noted how variations in fluid composition caused by the presence of both 

framework and impurity ions can also potentially modify the calcite surface roughness resulting 

from dissolution. For instance, the presence of given free ions in the aqueous solution, such as 

Mg2+ or SO4
2-, has been shown to alter the density and depth of etch pits on calcite surfaces 

((Ruiz-Agudo et al., 2009)) and the corresponding etch pits morphology ((Gao et al., 2010)). 

This can potentially modify the surface roughness resulting from dissolution and should, 

therefore, be taken into consideration when interpreting Ω-roughness relationships. 
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(iii) Overall, the results above pinpoint that calcite represents a good candidate to potentially 

preserve imprints representative of the latest fluid composition of the waters that interacted with 

this mineral. As emphasized in previous studies, the time required to reach steady-state 

dissolution rate – and correspondingly, steady-state surface topography – is short, with 

estimates ranging from minutes ((Bandstra and Brantley, 2008)) to hours ((MacInnis and 

Brantley, 1992) and this study) at far-from-equilibrium, and from hours to months at close-to-

equilibrium ((Stigliano et al., 2021) and this study) at room temperature. Moreover, Bose et al. 

(2018) introduced the concept of ‘topographic relaxation time’, which refers to the processes 

associated with time-dependent alterations in dissolution kinetics and surface morphology that 

occur following a sudden change in solution chemistry ((Bose et al., 2008)). Based on their 

theoretical formulation, estimates of the relaxation time for calcite can range from a few hours 

to a few days. This intrinsically high reactivity is key to ensure that the surface topography 

measured at a given time does not represent an integrated, transient state that is not 

representative of steady-state conditions. Conversely, Bandstra et al. (2008) suggested that the 

time required to reach steady-state for silicate minerals could be 2 to 5 orders of magnitude 

larger than that for calcite (in agreement with the much lower reactivity of silicates), which 

would require that the fluid composition remain stable over up to tens of thousands of years 

under close-to-equilibrium conditions to preserve imprints of the latest fluid composition 

interacting with the minerals (Bandstra and Brantley, 2008). This is the first clear limitation of 

the extension to silicate minerals of surface roughness measurements as a proxy for fluid 

composition. But more importantly, the weathering of silicate minerals is also characterized by 

the build-up of submicron-thick silica layers, both in the field and in laboratory (Daval et al., 

2011; Hellmann et al., 2012; Nugent et al., 1998), the roughness of which is completely beyond 

crystallographic control (Jordan et al., 1999; Wild et al., 2019b). In addition to the complicating 

factor represented by the attachment of secondary phases to the surface of primary minerals 

(for which sonication is not always sufficient to reveal the altered surface of primary minerals), 

such aspects need to be addressed in dedicated studies to reach definitive conclusions regarding 

the use of surface roughness as a proxy for the conditions under which fluid-rock interactions 

occurred. 
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Figure 4.12 Comparison of the Ra evolution as a function of the number of iterations at Ω = 0.2 

and Ω = 0.8 for systems with different initial surface configurations, as described in 4.2.3: (A) 

a perfectly flat surface; (B) a surface composed of normally distributed height values, (C) a 

stepped surface. Note that the steady-state roughness for a given Ω is the same, regardless of 

the initial surface configuration. 
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Figure 4.13 Ra evolution as a function of the number of iterations for a system undergoing a 

sudden switch in solution saturation from Ω = 0.8 to Ω = 0.2 and then back to Ω = 0.8. After a 

transient time, the surface always reaches a steady-state configuration that is only indicative of 

the saturation state of the fluid, while erasing the imprints left on the surface by the saturation 

state visited previously. Note the asymmetry in the transient times: overwriting the smoother 

surface resulting from dissolution at Ω = 0.8 with the rougher surface resulting from dissolution 

at Ω = 0.2 requires less time than what is needed for the opposite pathway. 

 

4.5 Conclusions 

We investigated the potential of the calcite surface microtopography (as quantified through 

surface roughness characterizations) to be quantitatively informative of past weathering 

conditions. Two main pre-conditions have to be met to achieve this purpose: (i) the calcite 

surface needs to evolve towards a steady-state configuration that is determined by the fluid 

saturation state, Ω, and (ii) the steady-state configurations obtained at different Ω values must 

be statistically distinguishable from each other. In the present study, we provided experimental 

evidence and theoretical validation that both conditions apply under the investigated conditions. 

In particular, based on a combination of unidimensional descriptors (Ra) and spatial statistics 

metrics (PSD and semi-variogram) analyses, we derived experimentally a seemingly bijective 

Ω-roughness relation for which larger roughness evaluations correspond to lower Ω values. The 

validity of this empirical relation was corroborated by Ising dissolution modeling of a Kossel 

crystal, suggesting that the behavior observed experimentally might be an intrinsic property of 

crystal dissolution.  

Additionally, we used the Ising model to investigate the impact of the initial surface topography 

and of Ω fluctuations on the steady-state configuration of the crystal surface. We showed that, 

in a timeframe negligible compared to geological timescales (i.e., ∼ in the order of months at 

most), the crystal surface reaches a new steady-state configuration that only depends on the 

fluid saturation state most recently visited. Therefore, the present study suggests that 

information related to the fluid chemistry can be retrieved from the fine analysis of surface 

roughness of calcite, which is a prerequisite to possibly extend this finding to carbonate 

minerals altered in natural settings, including extraterrestrial contexts  (for the record, a similar 

approach has been used with the Mars lander Phoenix, which carried an AFM among the 

instruments onboard to possibly evidence etching features at the surface of grains (see (Velbel 
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and Losiak, 2010)).  Finally, one of the main challenges that needs to be overcome is to identify 

natural settings that exhibit the most suitable conditions of preservation (i.e., minerals that 

ceased to be in contact with a fluid while remaining protected from erosion mechanisms).  

Further research should also focus on the identification of Ω-signals on naturally weathered 

minerals to confirm the generality of our findings. However, as far as carbonate minerals are 

concerned, promising targets could be buried geological formations, fossilized organisms and 

cave formations, with potential relevance to terrestrial and Martian contexts. 
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Chapter 5 : Surface imprints of microbial weathering as potential 

biosignatures 

Introduction 

The previous chapter documented the existence, under abiotic conditions, of a one-to-one 

relationship between the steady-state calcite surface roughness resulting from dissolution and 

the saturation state of the fluid. This suggests that fluid imprints left on weathered minerals can 

be quantitatively informative of past weathering conditions. In this context, investigating the 

impact of microorganisms on the Ω-roughness relationship developed abiotically can offer 

valuable insights into the second fundamental question at the core of this thesis: does microbial 

weathering result in specific imprints at the mineral surface that could be quantitatively 

attributable to the action of life?  

To address this question, flow-through dissolution experiments were conducted targeting the 

same conditions as in the previous study (i.e., T = 22 °C, pH = 7.9, and various saturation states, 

Ω = 0.00, 0.10, 0.30, 0.55, 0.65, 0.80). However, in this case the calcite surface undergoing 

dissolution was covered with a biofilm of the cyanobacterium Chroococcidiopsis thermalis 

PCC 7203. Experiments were conducted under continuous light exposure, for a total duration 

of ∼ 4 days (i.e., the relaxation time after which a steady-state surface roughness is attained for 

all saturation states investigated, under abiotic conditions). The calcite surface topography data 

resulting from microbially-mediated dissolution at different saturation states were analysed 

with semi-variogram and PSD analyses, evaluated over regions of 600 × 600 μm2, and 

compared with the abiotic counterparts. 

The main experimental results showed that, under far-from-equilibrium conditions, biofilm-

mediated dissolution produced high-elevation regions (i.e., regions that dissolved less 

compared to the rest of the surface) at locations where clusters of cells were still sticking to the 

surface at the end of the experiments. After removal of the cells, these regions could be 

quantitatively detected by the spatial statistical metrics adopted. In contrast, under close-to-

equilibrium conditions, abiotically and biotically weathered surfaces were statistically 

undistinguishable.  

Furthermore, the dissolution mechanism behind the formation of these ‘topographic highs’ was 

further investigated through kMC modeling at far-from-equilibrium conditions. This suggested 

that the formation of these ‘less dissolved regions’ might be caused by the generation of a 
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microenvironment at the mineral-biofilm interface in which the saturation state is locally higher 

compared to that of the bulk solution. Of note, kMC modeling was preferred over Ising models 

and other empirical models because it is mechanistically supported, being based on ab initio 

calculations. Moreover, while kMC modeling fails to reproduce the evolution of the surface 

topography observed in abiotic experiments at close-to-equilibrium conditions, it satisfactorily 

reproduces its evolution at far-from-equilibrium conditions, so that both Ising model or classic 

kMC model can be used indistinguishably. 

Overall, this study offers a novel mechanistically-supported methodology to quantitatively 

differentiate abiotically and biotically weathered surfaces, providing an innovative tool for the 

identification of biosignatures based on the microtopography of naturally weathered samples. 

In addition, an unprecedented experiment was conducted using an original flow cell that was 

designed to monitor in situ calcite dissolution with VSI. This experiment was conducted at Ω = 

0.00, aiming to closely monitor the dynamics of cyanobacteria cells attachment/detachment and 

the corresponding contribution to the dissolution process. Preliminary results confirmed that, at 

far-from-equilibrium conditions, high-elevation-regions are formed at the locations where the 

cells agglomerate. Furthermore, the VSI in situ acquisition setup allowed to generate a ‘bacteria 

residence time map’, that is a visual representation of the duration of coverage by bacteria of 

specific areas on the calcite surface during dissolution. This residence time map was found to 

be positively correlated with the calcite microtopography resulting from dissolution acquired 

after physically removing all residual cells from the surface. In other words, cells that sticked 

to the calcite surface for longer times tended to have a larger inhibitory impact of substrate 

dissolution, strengthening the conclusion that the calcite microtopography may preserve a 

record of the history of biofilm coverage. 

This chapter is divided into two main sub-sections, one dedicated to the findings of the ex situ 

experiments (section 5.1), and the other one dedicated to preliminary results from the in situ 

experiments (section 5.2). Section 5.1 is presented as a research article that will be submitted 

to PNAS. 
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5.1 Imprints of microbial contribution to mineral weathering detected by 

statistical characterizations of surface microtopography 
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Significance statement 

The identification of biosignatures resulting from microbe-mineral interactions represents a 

cornerstone for the search for traces of life in rocks. Current criteria used to assess the 

biogenicity of mineral alteration rely on qualitative, thus subject to debate, considerations. 

Traditional approaches have primarily focused on surface etching features morphologically 

resembling microbes, overlooking other potential imprints of biotic activity.  This study shows 

that biofilm-mediated calcite dissolution generates high-elevation regions on the surface due to 

localized reduction in dissolution rate, resulting from the formation of a micro-environment at 

the calcite-biofilm interface. While state-of-the-art analytical methods failed to detect 

distinctive biogenicity features, statistical characterizations of the microtopography succeeded 

to unambiguously detect these biotic imprints. Overall, this study offers a novel approach for 

the non-destructive and unequivocal identification of bioweathering signatures. 

 

Abstract 

The absence of unambiguous criteria to define imprints of microbe-mineral interactions 

currently represents an obstacle to quantifying the contribution of microorganisms to chemical 

weathering on Earth and, more generally, to the search for traces of life in the geological record. 

Conventional methods based on qualitative descriptions of etching features supposedly induced 

by microorganisms have often proven equivocal. Shifting towards mechanistically supported 

quantitative criteria thus appears necessary to overcome such ambiguities. Here, calcite 

dissolution experiments were carried out at room temperature and various solution 

compositions, either under sterile conditions or with a cyanobacterial biofilm covering the 

calcite surface. None of the state-of-the-art methods usually used to evidence biosignatures (i.e., 

electron microscopy imaging, nanoscale chemical and crystallographic characterizations) 

succeeded in detecting any distinctive biogenicity feature. Conversely, high-elevation regions 

at the calcite surface were uniquely detected through statistical microtopography 

characterizations based on semi-variogram and power spectral density analyses, making 

microbially-weathered surfaces quantitatively distinguishable from their abiotic counterparts. 

Interestingly, these high-elevation regions formed beneath the microbial cells are at odds with 

the surface etching features resembling cell morphologies that are usually sought as bio-

weathering markers. Atomic-scale stochastic simulations of the dissolution process suggested 

that these regions resulted from a local increase in fluid saturation state at the biofilm-mineral 
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contact, leading to a localized reduction in dissolution rate. Overall, this study offers a new 

avenue for the non-destructive and unambiguous identification of the signatures of mineral 

bioweathering in natural settings.  

 

5.1.1 Introduction 

Microorganisms essentially occupy niches on Earth that are home to fluid-rock interactions 

(Flemming and Wuertz, 2019). While biology may significantly impact these interactions, there 

is some debate about the relative contribution of the biotic versus abiotic processes 

(Schwartzman and Volk, 1989). Determining the biosignatures associated with fluid-mineral-

microorganisms interactions has thus long been a challenge in Earth and planetary sciences, 

especially for the quantification of the contribution of microbes to chemical weathering in 

natural settings (Wild et al., 2022; Wild et al., 2021) or the search for traces of life (Santelli et 

al., 2001). 

Micron-scale morphological features, such as tubular microchannels or etch pits developed in 

altered glass or mineral samples have been repeatedly interpreted as imprints of bioweathering 

left by microorganisms in modern as well as ancient samples as old as 3.8 Gyr (Bennett et al., 

1996; Fisk et al., 1998; Jongmans et al., 1997; McLoughlin et al., 2007; Thorseth et al., 1995). 

In particular, etching features resembling microorganisms “in size and shape”, consequently 

interpreted as resulting from enhanced dissolution beneath the attached cells, are among the 

conventional criteria used to suggest past or ongoing interactions between microbial cells and 

minerals (Fisk et al., 1998; Thorseth et al., 1995). However, although a few studies provided 

direct compelling evidence for so-called ‘bacterial entrenchment’ (Davis et al., 2007; Lüttge et 

al., 2003), biosignatures based on the microtopography of naturally weathered samples has 

often proven equivocal, as etch pits and tubular features could equally be formed abiotically 

(Fisk et al., 2013; Santelli et al., 2001). 

In that respect, the advent of non-destructive surface sensitive microtopography measurement 

techniques, such as atomic force microscopy (AFM) or vertical scanning interferometry (VSI), 

has shown promise as means to provide microtopography characterizations that go beyond 

simple qualitative observations. Recently, these techniques allowed to quantify the impact of 

fungal attachment to mineral substrate in the field (Wild et al., 2022), but this required some 

pre-assessment of the starting topography of the mineral surface and identification of the 
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location of fungal hyphae. Conversely, detecting the univocal impact of past bacterial 

attachment has proven elusive so far, unless individual living cells and/or biofilm remains were 

concurrently identified. 

Here, we hypothesize that the interactions between microorganisms and minerals may leave 

traces in the microtopography of the mineral surface. The use of surface microtopography as an 

unambiguous parameter in the search for bacterial imprints requires the simultaneous 

fulfillment of three conditions yet to be met to date: (i) any metrics derived from 

microtopography measurements proposed as a biogenicity criterion must be defined without 

the need to make assumptions regarding the starting microtopography of the mineral and the 

physicochemical environment in which the microbe-mineral contact has occurred; (ii) 

microtopography analyses must go beyond local, qualitative and/or subjective observations, 

and have to be considered at a scale large enough to derive quantitative statistical criteria; (iii) 

a mechanistic understanding that supports the observations must be offered to confirm that any 

possible correlation between surface microtopography and the presence of microorganisms 

actually results from a causal relationship. 

For this purpose, calcite is a mineral substrate of particular interest. Indeed, (i) it is ubiquitous 

on Earth, representing a dominant phase in limestones and marine sediments (Morse et al., 

2007); (ii) its reactivity is almost unaffected by pH in the pH range typical of fluid-limestone 

interactions (Brantley and Olsen, 2014) (i.e., for pH ranging from ~5 to ~11, no assumption has 

to be made regarding the fluid composition apart from the fluid saturation state), and, (iii) under 

abiotic conditions, the high dissolution rate of calcite ensures that any transient starting 

topographic feature is erased from the surface in a matter of a few months at most, reaching a 

steady-state configuration (Bandstra and Brantley, 2008; Stigliano et al., 2023). We recently 

showed that, under abiotic conditions, the steady-state calcite surface microtopography varies 

with the saturation state of the fluid (Ω) at which the dissolution reaction occurred, according 

to a bijective relationship (Stigliano et al., 2023). In other words, the surface topography of any 

calcite crystal reacted under stable conditions over durations as large as a few months is 

representative of the Ω value at which the reaction took place. 

In the present study, we tested if and how this relation could be impacted by bacteria. If this is 

the case, this may provide a direct biosignature of microbe-mineral interactions. We used 

Chroococcidiopsis thermalis PCC 7203, a soil cyanobacterium known for its resistance to 

desiccation (Murik et al., 2017; Waterbury and Stanier, 1978), and particularly targeted as a 
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model strain in astrobiology (Billi et al., 2011). Several Chroococcidiopsis strains have been 

shown to be endolithic and to inhabit calcite rocks (Casero et al., 2021; Wierzchos et al., 2018). 

Combining biotic and abiotic calcite dissolution experiments with statistical characterizations 

of the surface microtopography, we found a specific signature of dissolution mediated by 

cyanobacteria. No other specific chemical or crystallographic signature could be detected at the 

surface of calcite using nanoscale microscopy and spectroscopy techniques. We further 

developed stochastic dissolution modeling at the atomic-scale to support the observed feature, 

providing, to the best of our knowledge, the first direct evidence that the impact of bacteria on 

mineral surface microtopography goes much beyond the classical criterion of etching features 

resembling single microbial cells “in size and shape”. Such an unexpected finding thus offers a 

new tool for the search of traces of microbe-mineral interactions in the geological record.  

5.1.2 Results  

5.1.2.1 Abiotic vs. microbially-influenced calcite dissolution rates 

Dissolution rates evaluated through surface retreat measurements were determined under biotic 

conditions using vertical scanning interferometry (VSI) and compared with the  values 

determined abiotically under similar conditions (both in terms of fluid chemistry, i.e., pH, 

alkalinity and ionic strength, and experimental settings) from Bouissonnié et al. (2018) over the 

same Ω range here investigated (Figure C1) (Bouissonnié et al., 2018). The saturation state of 

the fluid (Ω) was varied between 0 (far-from-equilibrium conditions) and 0.8 (close-to-

equilibrium conditions). With the only exception of Ω = 0.00 and Ω = 0.30, for which the biotic 

dissolution rate was higher than the value expected abiotically under the same conditions or 

very close to it, respectively, an overall decrease in calcite reactivity was observed under biotic 

conditions for all saturation states investigated. 

5.1.2.2 Statistical characterization of calcite surface microtopography 

VSI and scanning electron microscopy (SEM) images of the calcite surfaces reacted with 

solutions at different saturation states under biotic conditions revealed no etching features that 

could be associated with microbial activity according to conventional criteria: no etch pits 

resembling microorganisms in terms of “size and shape” were observed (see Figure 5.1.1, 

Figure C2 and Figure C3). Therefore, we investigated whether the microtopography resulting 

from biotic dissolution at various saturation states exhibits distinctive statistical traits when 

compared with its abiotic counterparts (Figure 5.1.2; see Materials and Methods section for an 

explanation of the different statistical measurements).  
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The power spectral density (PSD) curves obtained at close-to-equilibrium at Ω = 0.55 and Ω = 

0.65 under biotic conditions exhibit a shift towards lower values compared with their abiotic 

counterparts across all spatial frequencies, and they mostly align with the PSD curve obtained 

abiotically at Ω = 0.80. This reflects a decrease in surface roughness at all spatial scales. The 

curve obtained biotically at Ω = 0.8 is indistinguishable from its abiotic counterpart. 

Consistently, the semi-variogram sill values obtained biotically at Ω = 0.55, 0.65 and 0.80 show 

a similar trend, approximately matching the value obtained abiotically at Ω = 0.80. However, 

overall, both PSD and semi-variogram analyses indicate that, at close-to-equilibrium 

conditions, abiotically and biotically weathered calcite surfaces are not statistically 

distinguishable. Conversely, some significant distinctions can be observed at far-from-

equilibrium (i.e., Ω = 0.30, 0.10 and 0.00). At Ω = 0.30, although the PSD curve and the sill 

value showed only minimal differentiation between biotic and abiotic conditions, the higher 

correlation length evaluated for biotic conditions can be interpreted as a subtle distinctive trait 

of biotic weathering. However, this feature in itself cannot be used as a distinctive biogenicity 

criterion without knowledge of the fluid saturation state, since comparable or even larger 

correlation lengths were also recorded abiotically at lower saturation states.  

In contrast, at Ω = 0.10 and Ω = 0.00, multiple metrics point towards a statistical differentiation 

between biotically and abiotically weathered surfaces. Specifically, at Ω = 0.10, the biotic PSD 

decreases more steeply compared to the abiotic counterpart as wavevector values increase, 

indicating that the surface roughness exhibits less high-frequency features. Moreover, the sharp 

drop in the PSD signal notable in the very-high-frequency region (i.e., wavevector values higher 

than ∼ 10 µm-1) indicates a minimal degree of small-scale irregularities. Overall, this suggests 

that the biofilm-mediated dissolution at Ω = 0.10 produces smoother surfaces in terms of high-

frequency components compared with abiotic conditions. A similar behavior can also be 

observed at Ω = 0.00, with the biotic PSD deviating from its abiotic counterpart in the high-

frequency region (i.e., wavevector values higher than ∼ 1.5 µm-1). Regarding semi-variogram 

characterizations, the biotic sill value at Ω = 0.00 is almost identical to its corresponding abiotic 

value, whereas at Ω = 0.10 it is slightly lower, indicating that biofilm-mediated dissolution 

produces surfaces with height values more clusteredaround the mean plane compared to abiotic 

conditions. Furthermore, the strongest statistical differentiation between biotically and 

abiotically weathered surfaces at Ω = 0.00 and at Ω = 0.10 is given by the correlation length. 

Indeed, in both cases the values obtained biotically largely exceed those obtained abiotically 

across all explored saturation states. Therefore, this appears as a distinctive trait of microbially-
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mediated calcite dissolution. Overall, both PSD and semi-variogram analyses indicate that, at 

far-from-equilibrium conditions, abiotically and biotically weathered calcite surfaces are 

statistically distinguishable, especially at Ω = 0.00 and Ω = 0.10. 

In practical terms, the main factor explaining the biotic statistical imprints observed under far-

from-equilibrium conditions is the presence of distinct regions that display more pronounced 

topographical elevation compared to the rest of the surface (Figure 5.1.1B and C). Overall, the 

presence of these regions makes the height values correlated on average over larger distances 

across the surface (Figure C4), concomitantly reducing the high frequency components of 

surface roughness.  

The emergence of these topographical variations results from lower local dissolution rates 

(Figure C5; discussion section). These regions were further characterized by correlating VSI 

images before and after removal of the cells from the surface. Specifically, these regions 

represent areas that retained clusters of cells at the end of the experiments (Figure 5.1.1 a, e vs. 

b, f). This correlation suggests a causal link between biofilm coverage and a localized reduction 

in dissolution rate. None of these regions with heightened elevation were detected at Ω = 0.55, 

0.65, and 0.80 (Figure C2 and Figure C3). 
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Figure 5.1.1 Panels showing the calcite surface topography resulting from biotic and abiotic 

dissolution at Ω = 0 (left-hand side, A-D) and Ω = 0.1 (right-hand side, E-H). A and E show 

VSI images acquired before removal of the cells, at Ω = 0 and at Ω = 0.1, respectively. B and F 
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show corresponding VSI images acquired after removal of the cells. C and G show an SEM 

close-up of the areas outlined in B and F, respectively. These areas were targeted for FIB milled 

thin foils extraction, as shown in Figure C6. VSI abiotic counterparts are shown in D (Ω = 0) 

and H (Ω = 0.1). The size of all VSI images is 600x600 µm2. 

 

Figure 5.1.2 A, B) Semi-variogram model parameters as a function of Ω in abiotic (black 

squares) and biotic (red circles) conditions. C) PSD at different saturation states in abiotic (+ 

signs) and biotic (full circles) conditions. Semi-variogram and PSD curves have been evaluated 

over sub-windows of 600x600 µm2. 

5.1.2.3 Crystallographic and chemical characterizations of calcite regions populated with 

cyanobacteria 

We further inspected the regions populated with cyanobacteria in experiments carried out at Ω 

= 0.10 and Ω = 0.00 using transmission electron microscopy (TEM) characterizations 

conducted on focused ion beam (FIB) milled thin foils, attempting to identify any potential 

chemical and / or crystallographic imprint left at the surface of these locations at a submicron 

scale (Figure 5.1.1 and Figure C6). X-ray energy dispersive spectroscopy (XEDS) analyses 

showed no chemical difference between the first 10s of nm underneath calcite surface and the 

rest of the calcite, with a uniform distribution of Ca along the foils (Figure 5.1.3B, Figure C7 

and Figure C8). Moreover, the crystalline homogeneity was confirmed using high resolution 

transmission electron microscopy (HRTEM) revealing no significant alteration of the crystal 

structure at the very surface of calcite. Last, no other phase -amorphous or crystalline- was 

observed up to the very surface. 
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Overall, under the investigated conditions, the statistical characterization of the surface 

microtopography appeared as the only tool able to quantitatively differentiate between 

biotically and abiotically weathered surfaces. 

 

 

Figure 5.1.3 (A) STEM-HAADF image of a FIB thin foil of the calcite crystal reacted at Ω = 

0 extracted from the high-elevation region displayed in Figure 1.B and corresponding STEM-

XEDS elemental map (B) acquired using Pt-Mα, Ga-Kα and Ca-Kα lines. (C) High resolution 

TEM image of the same area. (D – E) Fast Fourier transforms of labelled areas in (C) showing 

the crystalline homogeneity of the calcite: each FFT corresponds to calcite with the same [-4 -

2 1] zone axis. The indexation is relative to the calcite cell parameters (R-3c, a = 4.989 Å, c = 

17.061 Å). 

 

5.1.3 Discussion 

Comparisons of the surface microtopography limited to qualitative considerations (e.g., 

changes in etch pits morphology) and physicochemical characterizations at the atomic scale 

have proven ineffective in differentiating between abiotically and biotically weathered calcite 

surfaces under the investigated conditions. Conversely, a thorough statistical characterization 
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of the calcite surface microtopography involving power spectral density and semi-variogram 

analyses quantitatively differentiated between those processes, at least at far-from-equilibrium 

conditions. Such a differentiation requires microtopography analyses over a relatively broad 

field of view (∼600x600 µm2). This is possible using VSI, which provides observation windows 

large enough to conduct statistical analyses able to capture the impact of the high-elevation 

regions, whose influence extends far beyond the size of a single cell. Below, we explore whether 

such results can be supported by independent modeling of the dissolution process at the atomic-

scale, using parameters derived from independent ab initio quantum mechanical studies. As 

stated above, this step represents a prerequisite to assert that statistical analyses of surface 

microtopography represent a reliable tool to detect microbially-influenced mineral weathering. 

We then conclude with a discussion of the promises and limitations of this new approach. 

5.1.3.1 Microbially-mediated generation of topographic highs 

The overall decrease in calcite reactivity and the specific occurrence of elevated topographical 

areas observed beneath microbial cells argue in favor of a local change in the dissolution 

mechanism, whereby the biofilm restricts the propagation of dissolution stepwaves (Lasaga and 

Luttge, 2001a). Such a dissolution-inhibiting process can be mechanistically explained in 

various non-exclusive ways: (i) creation of a micro-environment at the calcite-biofilm interface 

chemically different from that of the bulk solution due to metabolic activity ((Ahmed and 

Holmström, 2014; Barker et al., 1998) and references therein); (ii) diffusion limitation of ions 

between the surface and the bulk solution by the biofilm (Davit et al., 2013); (iii) mechanical 

obstruction caused by the presence of the biofilm that physically hinders the calcite-water 

contact (Luttge and Conrad, 2004). 

While these are all plausible explanations, complete hindering of the calcite-water contact can 

be excluded based on surface retreat measurements. In all cases, the relative height of the high-

elevation regions was always lower than the global surface retreat, Δh (Figure C5). This implies 

that dissolution did occur beneath the biofilm (albeit at a lower rate compared to the rest of the 

surface), suggesting that the biofilm did not hinder direct contact between the crystal surface 

and the bulk fluid. Therefore, a reasonable explanation for the reduced dissolution rates 

observed beneath biofilm patches rather stems from the dynamic interplay between the 

formation of a micro-environment caused by cells metabolic activity and the diffusion-limiting 

impact of the porous biofilm. At a bulk scale, the addition of C. thermalis PCC 7203 cells to 

the aqueous solution in our experiments under light exposure increased the solution pH (Figure 

C9), primarily because of photosynthetic activity (e.g., (Dittrich and Sibler, 2010)). Thus, it can 
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be expected that the local pH of the microenvironment beneath cells would be higher compared 

to that of bulk solution. Moreover, it is reasonable to expect that the diffusion-limiting impact 

of the biofilm would lead to a concentration of dissolved Ca2+ and CO3
2- that is higher in the 

microenvironment solution compared to the surrounding bulk solution. When combined, both 

considerations point towards a microenvironment with a higher saturation state compared to 

that of the bulk solution. Specifically, to be able to obtain a dissolution rate that is lower (but 

not null) than the rest of the surface, the microenvironment saturation state, Ω, should be higher 

(but lower than 1).  

We tested this hypothesis through kinetic Monte Carlo (kMC) modeling of Kossel crystal 

dissolution (see Materials and Methods). The model successfully reproduced the high-elevation 

regions observed experimentally (Figure 5.1.4), which are responsible for the observed 

statistical signatures described above. Specifically, a good agreement was achieved with the 

surface feature displayed in Figure 5.1.1c, both in terms of its stepped structure and overall 

shape. 

From a mechanistic perspective, the key for such a feature to emerge is to locate the sub-window 

with higher Ω somewhere in-between various dislocation centers. In this way, the coalescence 

of the dissolution stepwaves propagating from the pre-opened hollow cores is slowed down by 

more frequent re-precipitation events within the microenvironment, eventually leading to the 

emergence of elevated stepped regions as dissolution progresses. This specific configuration 

also possibly explains why such features are not observed all over the surface, as they result 

from the peculiar combination of etch pits (and therefore, dislocations) distribution and the 

location of biofilm attachment at the calcite surface. 

 

Figure 5.1.4 Surface topography (left-hand side, 2D representation; right-hand side, 3D 
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representation) resulting from kMC modeling of biofilm-mediated Kossel crystal dissolution at 

Ωbulk = 0. The white square delimits the area in which a higher saturation state (i.e., Ωbiofilm = 

0.6) was set. Corresponding abiotic kMC modeling outcomes are displayed in Figure C10.  

5.1.3.2 Promises and limitations for the use of statistical characterizations of mineral 

microtopography as a proxy to infer imprints of microbial activity 

The kMC simulations carried out using parameters derived from independent ab initio quantum 

mechanical studies suggest that the interaction between the calcite surface and a 

microenvironment with locally higher Ω values is a likely explanation for the observed 

topographic highs revealed through statistical characterizations of surface microtopography. 

These findings contrast with the conventional (and oftentimes controversial) criteria that 

associate tubular and/or granular etching features observed on naturally weathered samples to 

fungal and/or bacterial imprints (e.g., (Staudigel et al., 2008; Van Breemen et al., 2000)). To the 

best of our knowledge, topographic highs are not among the distinctive features that are 

searched for, and their unambiguous evidence through statistical characterizations is absent 

from the list of biogenicity criteria associated to microbially-influenced mineral weathering 

(McLoughlin et al., 2007). 

Importantly, our findings verify all criteria recalled previously for the search of imprints of 

microbe-mineral interactions: (i) no need for strong assumptions regarding the reaction 

conditions apart from the saturation state of the fluid, which is obvious to constrain based on 

the bijective relationship existing between etch pit nucleation and far-from-equilibrium 

conditions, as demonstrated theoretically and experimentally for decades (e.g., (Brantley et al., 

1986; Lasaga and Blum, 1986) for quartz (Bouissonnié et al., 2018) for calcite); (ii) the 

derivation of quantitative statistical parameters and (iii) an independent mechanistic support. 

Therefore, we hypothesize that such biotic imprints could potentially be identified on a variety 

of microbially-mediated weathered minerals, provided thatthe biofilm generates a 

microenvironment (above the underlying substrate) characterized by a saturation state that is 

higher compared with that of the bulk solution. Such a mechanism is likely to be commonplace, 

as testified by the growing number of studies that point out the ability of microbial biofilms to 

mitigate the impact of extensive chemical weathering (Carter, 2005; Elert et al., 2021), which 

might eventually contribute to a sustained attachment of the biofilms. 

Among the main limitations of this approach, it can be questioned whether biofilm attachment 

is the only mechanism that can lead to the development of topographic highs on a pitted mineral 

surface. Arguably, the attachment of secondary minerals resulting from chemical weathering is 
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also known to act as a protective layer that can eventually inhibit the reactivity of the underlying 

dissolving minerals (Daval et al., 2009a; Velbel, 1993). However, unlike biofilm attachment, 

such layers are rarely discontinuous and often adhere firmly to the substrate, so that they can 

hardly be removed even by sonication techniques (Zhu et al., 2006). In addition, they overall 

have a much stronger resistance to aging than biofilms, so that they are likely to be detected on 

naturally weathered samples. 

To conclude, we therefore suggest that statistical approaches targeted to quantitatively describe 

microtopographic biotic imprints on weathered mineral surfaces can be adopted as additional 

independent methods for detecting potential biosignatures following a non-destructive / non-

invasive approach. 

5.1.4 Materials and methods 

5.1.4.1 Starting materials and experimental protocol 

Starting from a natural calcite sample, 12 smaller fragments of ∼ 100 mm3 were obtained 

through cleavage along the natural {104} calcite plane, as verified with X-ray diffraction (XRD) 

analyses conducted with a Siemens D5000 diffractometer. The chemical analyses of the original 

natural calcite reported in (Bouissonnié et al., 2018) revealed that the major impurities were 

Mg (~0.1 wt.%), Sr (475 ppm) and Mn (60 ppm). For each fragment, one of the resulting {104} 

faces was processed through a sequence of mechanical polishing steps, with a final grit size of 

0.25 μm. 

The flow-through system for each dissolution experiment consisted of a tank open to the 

atmosphere, a peristaltic pump and a perfluoroalkoxy alkane (PFA) reactor. The aqueous 

solution was continuously transferred from the tank into the reactor containing the calcite chip 

and subsequently either discarded or sampled for chemical solution analysis using Varian 720 

ICP-AES (see Table C1 for fluid analyses). The solution inside the reactor was continuously 

stirred to ensure uniform chemical conditions. The reactor was positioned within an incubator 

operating at a controlled temperature of T = 22.0 ± 0.1 °C, while the measured pCO2 of the 

room was found to be 500 ± 50 ppm during all experiments.  

The aqueous solution composition was: NaCl = 5.8 g/L, NaHCO3 = 0.086 g/L. CaCl2-2H2O 

was added in different amounts (i.e., 0 g/L, 0.0485 g/L, 0.1425 g/L, 0.2685 g/L, 0.3205 g/L, 

0.405 g/L) to target 6 different saturation states (i.e., Ω = 0.00, 0.10, 0.30, 0.55, 0.65, 0.80).  

The outputs of abiotic experiments carried out in our previous study (Stigliano et al., 2023) 

were used to provide a baseline for comparison with biotic experiments. In brief, for each 
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experiment, a calcite chip was positioned on a Teflon tripod in the reactor with the polished 

face facing upwards. At various time intervals throughout the experiments, the calcite samples 

were removed from the reactors for ex-situ time-resolved surface topography measurements of 

the dissolving top faces with VSI (Zygo NewView 9000) at 50x magnification over an area of 

∼ 1 mm2. The experiments lasted for a total duration of ∼ 11 days. 

For the biotic experiments, a similar setup was adopted, with a few adjustments outlined below. 

All the experimental equipment directly in contact with the aqueous solution was sterilized 

(either autoclaved or rinsed and bathed in an aqueous solution of ethanol at 70%) prior to the 

start of the experiments and left to dry out in a sterile laminar flow cabinet. The aqueous solution 

was pre-filtered at 0.2 μm. To establish a non-reacting reference surface, a small portion (∼1 

mm²) of the crystal surfaces was covered with room temperature vulcanized (RTV) glue and 

left to dry out before the sample being bathed overnight in absolute ethanol. At the end of the 

experiments, the glue mask was removed, and the average height difference between the reacted 

and non-reacted areas (referred to as surface retreat, Δh) was used to estimate the dissolution 

rate of calcite (e.g., (Stigliano et al., 2021)). Right before the start of each biotic experiment, 

the reactor was pre-filled with sterile aqueous solution and the calcite chip submerged and 

placed on the Teflon holder, with the polished face facing upwards. During this stage, 160 µL 

of pre-filtered tank solution, enriched with Chroococcidiopsis thermalis PCC 7203 cells, was 

injected onto the polished calcite face to create a biofilm on the mineral substrate. To obtain the 

cell suspension, 20 mL of a pure culture in exponential growth, grown in a BG-11 medium 

(Rippka et al., 1979), was centrifuged at 1200 rpm. After discarding the supernatant, the cell 

pellet was resuspended in 160 µL of pre-filtered tank solution and then injected onto the calcite 

surface. The biotic experiments lasted for ∼ 4 days as the abiotic experiments showed that this 

duration exceeds the time required to achieve a steady-state configuration of the calcite surface 

resulting from dissolution (~ 60 hours; (Stigliano et al., 2023)). Lastly, to prevent a pH increase 

in the bulk solution inside the reactor as a result of photosynthetic activity and to uphold 

saturation states similar to those targeted in the abiotic experiments, the flow rate was increased 

from 0.15 mL/min to 1.15 mL/min (Figure C9). 

5.1.4.2 Analytical characterizations 

 Topography images of the calcite surface were acquired with VSI over an area of ∼ 1 mm2 at 

50x at the final time. The images were acquired before and after physically removing the 

biofilm from the surface using an aqueous solution of sodium dodecyl sulfate (SDS) at 2% 

(Buss et al., 2003) and saturated with respect to calcite to prevent dissolution during this 
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cleaning step. Subsequently, the calcite surface topographies resulting from biofilm-mediated 

dissolution at various saturation states were quantitatively compared to the steady-state 

configurations of the corresponding abiotic experiments. This comparative approach involved 

semi-variogram and PSD analyses conducted over areas of 600x600 µm². In brief, the 

experimental semi-variogram provides a measure of the degree of spatial correlation of the 

heights data, whereas the PSD quantifies the surface roughness at different length scales by 

deconstructing it into its individual frequency components. More details can be found in 

(Stigliano et al., 2023).  

Additionally, the calcite surfaces were characterized with SEM, attempting to identify specific 

surface features that might be diagnostic of microbial presence and / or activity. Based on VSI 

pictures acquired before and after removing the biofilm, two locations that exhibited higher 

density of cells sticking to the calcite substrate at the end of the experiments have been 

identified as of potential interest, one at Ω = 0.00 and one at Ω = 0.10 (Figure 5.1.1 and Figure 

C6). These locations have been targeted for FIB-milling and TEM characterization (Figure 

C11), to look for chemical and / or crystallographic ‘anomalies’ that might be associated with 

the presence of the cells.  

Ultrathin electron transparent cross sections were prepared by FIB Ga+ milling with the 

Auriga® 40 FIB-SEM (Carl Zeiss NTS GmbH) dual-beam operated at IPGP (Paris, France). 

HRTEM and scanning transmission electron microscopy (STEM) observations were performed 

on FIB foils using a 200 kV JEOL 2100F microscope operated at IMPMC (Paris, France) 

equipped with a field emission gun. XEDS spectra were acquired in STEM mode to probe the 

chemical composition of the reacted calcite samples, with a focused electron beam (1 nm) and 

a detection limit close to 0.1 wt%.  

5.1.4.3 Stochastic simulations of calcite dissolution 

Standard kMC modeling of far-from-equilibrium dissolution of a Kossel crystal has been 

applied to assess whether stochastic dissolution simulations parameterized following results 

from ab initio studies can successfully reproduce specific surface features resulting from biotic 

dissolution. We recall that, in classical kMC modeling (e.g., (Kurganskaya and Luttge, 2021)), 

the dissolution probability, Pd,N, of a surface site having N neighbors is given by Equation 5.1.1, 

where Ea [kJ/mol] is the activation energy associated with the breakdown (and formation) of a 

single bond, R [kJ/mol/K] is the universal gas constant and T [K] is temperature. Precipitation 

is allowed at kink sites only (i.e., N = 3), with the corresponding precipitation probability being 

provided in Equation 5.1.2, where Δμ [kJ/mol] is the difference in chemical potential between 
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a given site in the aqueous solution and a given site at the crystal surface. The parameter values 

used in the simulations were: Ea = 15.5 kJ/mol and T = 295.15 K, where the activation energy 

value was selected from the range of possible values compatible with ab initio calculations 

(Carrasco and Reis, 2021). Simulations were conducted using the ‘divide and conquer’ 

approach ((Meakin and Rosso, 2008)). More algorithmic details can be found in (Stigliano et 

al., 2023). Lastly, the contribution of the microbes to the dissolution dynamics has been taken 

into account by implementing locally an arbitrary higher Ω  (i.e., Ωbiofilm = 0.6 vs Ωbulk = 0), 

which simulated a micro-environment at the mineral-biofilm interface characterized by a higher 

fluid saturation. 

                                                       𝑃𝑑,𝑁 = 𝑒𝑥𝑝 (−
𝑁𝐸𝑎

𝑅 𝑇
)                                                       (5.1.1) 

                                                𝑃𝑝,3 = 𝑒𝑥𝑝 (
𝛥µ

𝑅 𝑇
) 𝑒𝑥𝑝 (−

3𝐸𝑎

𝑅 𝑇
)                                             (5.1.2) 
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5.2 In situ VSI investigations of microbial weathering signatures 

5.2.1 Introduction 

In order to further investigate the mechanism underlying the formation of the high-elevation 

regions observed ex situ at far-from-equilibrium conditions, an in situ VSI calcite dissolution 

experiment was conducted at Ω = 0.00.  

The development of such a flow cell was one of the objectives of the ERC Mobidic project that 

funded most of this PhD work. It has been conducted by Dr. Bastien Wild during his 

postdoctoral fellowship in parallel with this PhD work. A stable version of the flow cell has 

been ready in July 2023, making it possible to run a first preliminary experiment aimed at better 

characterizing the interplay between microbial attachment and calcite dissolution. 

The main advantage of the in situ VSI setup is the possibility to observe simultaneously the 

dynamics of cells attachment/detachment to the calcite substrate and the concurrent dissolution 

process. Nonetheless, there are a few technical challenges associated with in-situ VSI imaging 

of solid materials through a liquid medium and with the in vivo imaging of bacteria.  

As previously mentioned in sub-section 1.5.2, since water has a different refractive index 

compared to air, the presence of a water medium in between the VSI objective and the solid 

sample affects the optical path of the beam reflected from the sample surface. This needs to be 

addressed by adding an ad-hoc designed filter in the path of the beam reflected from the 

reference mirror to compensate for the presence of water (and, in some configurations, of a 

transparent reactor cup). Moreover, the presence of bacterial cells on the sample surface, with 

their own distinct refractive index, can further disrupt the optical path of the beam. This can 

lead to the generation of artifacts in the acquired topography data, which must be corrected in 

the data processing stage. However, if these technical and post-processing challenges can be 

successfully overcome, the in-situ approach has the unique potential of providing valuable 

mechanistic insights into biofilm-mediated dissolution that are beyond the reach of ex situ 

experimental configurations. 

5.2.2 Materials and methods 

The VSI in situ experimental setup adopted in this work consisted of: (i) a commercially 

available glass compensated objective, which allows to acquire image through a glass window, 

by putting a same glass slide in the prism slider assembly, after the beam splitter, before the 
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internal reference of the objective; (ii) a flow-through fluid cell placed under the VSI objective, 

containing a calcite sample with a mechanically-polished top {104} face; (iii) a transparent 

glass at the top of the fluid cell, functioning as a see-through reactor cup that allows the VSI 

light beam to reach the calcite surface; (iv) a tank reservoir connected upstream to the flow-

through fluid cell, containing an aqueous solution with the same solution composition as in the 

previous experiments conducted at Ω = 0.00 (NaCl = 5.8 g/L and NaHCO3 = 0.086 g/L); (v) a 

conical 15 mL centrifuge tube containing an aqueous solution saturated with respect to calcite 

enriched with a pellet of PCC 7203 cells that were obtained from a culture in the exponential 

growth phase. The temperature of the room was maintained at T = 22 ± 0.5 °C and the solution 

pH was measured to be pH = 7.5 ± 0.1 all over the progress of the experiments, both in the tank 

solution and at the outlet of the fluid cell. All aqueous solutions employed in the experiment 

were pre-filtered at 0.2 µm. 

The aqueous solution containing the PCC 7203 pellet was injected into the fluid cell with a flow 

rate of 15 mL/h set by a peristaltic pump placed downstream. The fluid cell had previously been 

filled with an aqueous solution saturated with respect to calcite. The pump was then stopped 

for ∼ 2 minutes to allow the cells to stick to the calcite surface. Then, an aqueous solution 

saturated with respect to calcite was run through the fluid cells for ∼ 5 minutes to free the fluid 

cell from all bacteria cells that did not stick to any solid substrate. Subsequently, the aqueous 

solution at Ω = 0.00 was run into the fluid cell with a constant flow rate of 15 mL/min. VSI 

topography images of a given area of 400 × 400 μm2 of the calcite surface undergoing 

dissolution were acquired every 3 minutes, for a total duration of 22 hours. Every ∼ 5 hours, 

the flow rate was increased by a ∼ 100-fold factor for ∼ 1 minute to evacuate air bubbles that 

formed inside the fluid cell over time, due to the imperfect sealing of the system.  

VSI in-situ topography images were acquired at 20× (lateral resolution, dl = 0.4 µm) with an 

objective equipped with an ad-hoc designed filter able to compensate for the equivalent 

refractive index of the water and of the see-through reactor cup located in between the objective 

and the calcite surface. Subsequently, the time-resolved topography data were processed to gain 

insights into the interplay between the real-time bacteria coverage and calcite surface 

topography evolution. This involved: (i) estimating the rate of detachment of bacterial cells 

from the calcite surface undergoing dissolution; (ii) comparing the evolution of regions that 

were never covered with areas that were partially covered by bacteria; (iii) generating a 'bacteria 

residence time map', which provided an estimate of the duration of bacteria coverage for each 

pixel in the topography data of the analysed region. 
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The light reflected from the bacterial cells was consistently interpreted by the VSI as negative 

height values relative to the calcite surface beneath, seemingly appearing as depressions in the 

surface. This was likely due to a different refractive index of the bacterial cells compared to the 

surrounding water medium. Of note, similar VSI artifacts were also observed by (Waters et al., 

2009) under dry conditions when imaging bacteria on reflective solid materials. By taking 

advantage of this conflicting interferometric information, it was possible to locate the bacterial 

cells present on the surface by applying a cutoff value at the lower end of the histogram of the 

height values. Importantly, this allowed to monitor the bacteria coverage over time, while 

enabling to observe the surface progressively exposed to the fluid as bacteria detached from the 

surface. 

At the end of the experiment, the residual cells sticking to the calcite surface were physically 

removed using an aqueous solution of sodium dodecyl sulfate (SDS) at 2% and saturated with 

respect to calcite, according to the same protocol followed in the previous study. VSI 

topography data of the calcite surface were subsequently acquired in dry conditions with a 

different objective at 20× (lateral resolution, dl = 0.45 µm). 

5.2.3 Results and discussion 

5.2.3.1 Detachment rate of bacterial cells and surface roughness evolution 

An example of how the location of individual bacterial cells could be detected on the surface at 

different times during dissolution is provided in Figure 5.2.1. When comparing the optical 

images of a given area with the corresponding topography images, it was observed that the VSI 

interpreted individual cells as depressions in the surface. Therefore, at each given time, applying 

a lower-end cutoff value allowed the counting of the number of bacterial cells projected on the 

horizontal plane adhering to the surface and the identification of the portions of the calcite 

surface that were not covered by bacteria.  

The detachment rate of bacterial cells was determined by plotting the number of pixels 

associated with bacterial cells as a function of time, calculated using a cutoff value of -0.38 μm 

(Figure 5.2.2). The cutoff value was chosen as the highest value that would allow to detect the 

highest number of individual cells at the surface, while simultaneously excluding all negative 

height values originated from the portion of the surface that was not covered by bacteria. This 

is particularly critical for rougher surfaces. The sharp decrease in slope that is observed for 

times larger than 10.8 hours is largely a consequence of the protocol followed to counting 

individual cells. Indeed, as the calcite surface roughness increased over time during dissolution, 
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it became progressively more difficult to differentiate negative height values associated with 

bacteria from height values originated from the uncover portion of the surface. As a result, the 

derived plot can only be considered reliable within the time interval between t = 0 hours and t 

= 10.8 hours. Thus, the slope of the regression line determined in that specific time interval was 

used to derive the detachment rate. This was done by assuming an average coverage of 25 pixels 

(pixel width of 0.4 µm) for each individual cell, which resulted in a detachment rate of ∼ 159 

cells / hour. 

Additionally, this cutoff approach enabled to analyse the evolution of the surface topography 

evaluated over areas of 80 × 80 μm2 of a region that was entirely devoid of bacteria throughout 

the entire duration of the experiment (Figure 5.2.3) and of a region that was consistently 

partially covered by bacteria (Figure 5.2.4). This made possible to compare the temporal 

evolution of the corresponding surface mean height values and average surface roughness 

parameters, Ra (Figure 5.2.5). Calculations were performed only based on surface height values, 

excluding the regions covered by cells at any given time. Notably, the gradual detachment of 

bacterial cells from the surface progressively revealed surface height values that were 

previously inaccessible. Overall, this analysis showed that, while the uncovered area tended to 

maintain overtime approximately the same relative average height with respect to the average 

mean plane of the total surface, the partially covered area tended to increase its relative average 

height. In other words, this indicates that the presence of cells in that specific location led to the 

generation of a region with higher elevation compared to the rest of the surface. Furthermore, 

the Ra analysis revealed that while the uncovered area reached a steady-state configuration of 

surface roughness after a relaxation time of ∼ 18 hours, the average surface roughness 

parameter evaluated over the partially covered area exhibited a consistent increasing trend. This 

further indicates that the localized presence of agglomerates of cells significantly affected the 

evolution of the surface topography.  

Of note, quite unexpectedly, despite conducting the experiments under far-from-equilibrium 

conditions (Ω = 0.00), etch pits were not observed anywhere on the surface. Several factors 

might explain this observation. One possibility is that the duration of the experiments was not 

long enough to allow etch pits to fully develop and/or or the VSI resolution was insufficient to 

detect early-stage etch pits. Additionally, this could also be due to the presence of EPS coatings 

on the surface, which might have hindered the nucleation of etch pits, preventing their 

formation, as observed ex situ in some areas covered by agglomerates of cells. These hypotheses 

will be further investigated in future experiments. 
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Figure 5.2.1 Panel displaying a sub-window of 350 × 350 μm2 at two different times: t = 1.57 

hours (left-hand side column) and t = 5.97 hours (right-hand side column). The first row 

displays optical images, whereas the second row displays the corresponding topography images 

acquired in-situ with VSI at 20× (dl = 0.4 µm). The brown and pink squares of 80 × 80 μm2 

outlined in the topography maps represent the locations that were targeted in Figure 5.2.3 and 

Figure 5.2.4 respectively. Comparing the optical images in the first row with the corresponding 
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topography in the second row revealed that individual cells were interpreted by the VSI as 

negative height values after a first-order surface detrending. By applying a cutoff value of -0.1 

µm, it was possible to identify most of the cells present on the surface at a given time, without 

significantly including any real height value originated from the calcite surface. All values 

lower than the cutoff are displayed in red in the topography images in the last row.  

 

 

Figure 5.2.2 Number of pixels covered by cells as a function of time, evaluated over the area 

of 350 × 350 μm2 displayed in Figure 5.2.1. The detachment rate was estimated based on the 

slope of the regression line evaluated between t = 0 h and t = 10.8 h, assuming an average of 25 

pixels covered by each bacterial cell (diameter ∼ 2 μm). The cutoff value used throughout the 

analysis was set at -0.38 μm. 
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Figure 5.2.3 Surface topography images obtained at different times over the area of 80 × 80 

μm2 delineated in brown in Figure 5.2.1. This provides a visual representation of an area that 

was entirely devoid of bacteria throughout the entire duration of the experiment.   

 

Figure 5.2.4 Surface topography images obtained at different times over the area of 80 × 80 

μm2 delineated in pink in Figure 5.2.1. This provides a visual representation of an area that was 

partially covered by bacteria during the experiment, displaying the cells detachment dynamics. 

Note that the colour scale used for the height values is the same as the one used in Figure 5.2.3.  
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Figure 5.2.5 Plots of the temporal evolution of the average mean height (left-hand side) and 

average surface roughness parameter, Ra (right-hand side), evaluated over areas of 80 × 80 μm2. 

The ‘Uncovered’ (blue) curves were evaluated over the area delineated in brown in Figure 5.2.1, 

whereas the ‘Partially covered’ (red) curves were evaluated over the area delineated in pink in 

Figure 5.2.1. 

 

5.2.3.2 Bacteria residence time 

Figure 5.2.6 provides a visual comparison of the ‘bacteria residence time map’ calculated based 

on in situ acquisitions with the corresponding surface topography acquired ex-situ at the final 

time, after removing the residual biofilm from the calcite surface. The ‘bacteria residence time 

map’ was calculated by categorizing each pixel of the surface topography acquired in-situ at 

any given time as ‘covered’ or ‘uncovered’. At each time step, if the considered pixel considered 

was categorized as ‘covered’ (based on a cutoff value of -0.38 μm), the ‘residence time map’ 

was incremented by the time interval between two consecutive acquisitions. Thus, the final 

residence time map represents the cumulative duration during which each pixel was covered by 

bacterial cells. As previously mentioned, the automatic detection of individual cells at various 

times over field of views as large as 350 × 350 μm2 with a cutoff value of value of -0.38 μm 

can only be considered reliable within the time interval between t = 0 hours and t = 10.8 hours. 

Therefore, the ‘bacteria residence time map’ was calculated only based on the in-situ 

topography data acquired over that time period. Furthermore, since the ex situ topography data 

were acquired over the same field of view but with a lower resolution compared to the in situ 

acquisitions (because of the use of a traditional Mirau objective instead of the glass 

compensated objective used for the in situ acquisition), in order to have a one-to-one 
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correspondence between pixels, the ‘bacteria residence time map’ was rescaled with a bilinear 

interpolation to match the resolution of the ex situ surface topography.  

The residence time map and final surface topography were then compared by plotting the height 

values corresponding to all pixels with a given residence time as a function of all residence time 

values, averaged over time intervals of one hour (Figure 5.2.7). The resulting plot shows that, 

while the average of all height values associated with pixels that were never covered by bacteria 

(i.e., residence time equal to zero) was slightly negative, the average height values associated 

with pixels that were covered by bacteria for a given time was consistently positive, which 

means that all pixels that have been covered by bacteria tended to be more elevated compared 

to the surface mean plane (and to the ‘uncovered’ counterparts). Moreover, the average height 

values associated with pixels that were covered by bacteria for a given time show an upward 

trend as the residence time intervals increase, with a notable sharp increase for the 2-hour 

residence time interval and according to a seemingly linear trend for larger time intervals. This 

suggests that locations that were covered by bacteria for longer times dissolved less compared 

to the rest of the surface, which ultimately resulted in the formation of a so-called ‘high-

elevation region’, with relative height of ∼ 0.34 μm after ∼ 22 hours. 

 

 

Figure 5.2.6 Comparison of the ‘bacteria residence time map’ based on in-situ acquisitions 

(left-hand side) with the corresponding surface topography acquired ex-situ in dry conditions 

after physically removing the residual cells from the calcite surface (right-hand side). The size 

of the images is 357 × 357 μm2. 
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Figure 5.2.7 Plot of the average height values associated with various bacteria residence time 

values as a function of different residence time intervals. Each plotted value represents the 

average of all height values corresponding to pixels for which the residence time interval falls 

within one hour interval. It provides an average estimate of the correlation between the ‘final 

surface topography’ and the ‘bacteria residence time map’ displayed in Figure 5.2.6. 
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Figure 5.2.8 Surface profile of the ‘high-elevation-region’ generated at the location where the 

bacterial cells sticked for longer times, with relative height of ∼ 0.34 μm with respect to the 

rest of the surface after ∼ 22 hours of dissolution. 

 

5.2.4 Conclusions 

The results presented in this second sub-section of Chapter 5 are preliminary and part of an 

ongoing research. An outline of future experimental and processing efforts is provided in 

Chapter 6, where methods to address the current limitations are also discussed. Nonetheless, 

these preliminary findings can already provide some valuable additional insights into the 

interplay between biofilm dynamics and mineral dissolution. First, the in situ VSI setup shed 

light into the dynamics of cells detachment during dissolution, thereby enabling the estimation 

of the detachment rate of bacterial cells from the calcite surface. Secondly, the analysis of 

surface topography in areas devoid of bacteria and in areas consistently partially covered by 

bacteria revealed that biofilm coverage has a distinct impact on the surface topography 

evolution, specifically leading to the generation of regions with higher elevations compared to 

the rest of the surface and exhibiting a distinct evolution of surface roughness. Lastly, the 
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comparison between the ‘bacteria residence time map’ and the final surface topography 

revealed that areas covered by bacteria for longer periods tended to dissolve less compared to 

the rest of the surface, thereby resulting in the formation of ‘high-elevation-regions’. Overall, 

this further confirms the existence of the bio-weathering signatures formed under far-from-

equilibrium conditions that were documented for the first time in sub-section 5.1 and clarifies 

that these signatures are formed at the locations covered by agglomerates of cells for durations 

as short as a few hours. Furthermore, the correlation between bacteria residence time map and 

the final surface topography suggests that the calcite microtopography resulting from 

dissolution may preserve signatures of the history of biofilm coverage, thus providing 

additional clues about past bio-weathering conditions. 
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Chapter 6 : Conclusions and perspectives 

6.1 Key findings, limitations, and generalizability 

Overall, this PhD work contributed to the fundamental understanding of the informative content 

embedded within weathered mineral surfaces. Through a combination of experimental and 

modeling approaches, this study showed that the steady-state calcite surface roughness 

resulting from dissolution can be used as a proxy to back-estimate the saturation state of the 

fluid and that the calcite surface microtopography may preserve imprints of microbial 

weathering that can be quantitatively detected. 

More specifically, under abiotic conditions, an empirical relationship was established between 

a statistical characterization of the steady-state surface roughness of calcite resulting from 

dissolution and the saturation state of the fluid under which the reaction occurred. Stochastic 

modeling investigations suggested that the steady-state surface roughness configurations 

resulting from dissolution at different Ω do not depend on the reaction history and that the 

relaxation time required for calcite to achieve a microtopography steady-state is in the order of 

several months at most, which is negligible compared to geological timescales. The statistical 

characterizations associated with each saturation state investigated can therefore be used as 

reference values to back-estimate the saturation state of the fluid for weathered calcite surfaces 

reacted under unknown conditions. 

Furthermore, dissolution experiments conducted upon covering the calcite surface with a 

biofilm of cyanobacteria revealed that, under the investigated conditions, biofilm-mediated 

dissolution did not produce etching features resembling microorganisms in ‘size, shape and 

distribution’. In contrast, biofilm mediation produced high-elevation regions across the calcite 

surface at the locations where the cells agglomerated, with the size of such regions extending 

far beyond the size of individual cells. Such results were independently confirmed by 

preliminary observations conducted in situ. Atomic-scale stochastic simulations of the 

dissolution process suggested that these distinctive bio-weathering features arose from a 

localized increase in the fluid saturation state at the biofilm-mineral interface. This increase in 

saturation state could be attributed to a local increase in pH likely induced by photosynthetic 

activity, which, in turn, led to a localized reduction in the calcite dissolution rate. Importantly, 

the presence of these distinctive microbial weathering signatures could be quantitatively 

detected through the statistical characterizations developed in this study. These tools, therefore, 
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may provide a novel, non-destructive means to quantitatively, thus less ambiguously, identify 

biosignatures on naturally weathered minerals. 

Before discussing the generalizability and potential applications of these findings to natural 

settings, it is important to emphasize that these outcomes were obtained within well-controlled 

laboratory settings. It is therefore crucial to thoroughly investigate any disparities between the 

investigated conditions and the complexities of natural settings, as such differences could 

potentially reduce the signals-to-noise ratio observed in this work. 

6.1.1 Limitations 

First, the laboratory experimental setup adopted, which consisted in a continuously stirred flow-

through system in which physico-chemical conditions were maintained constant over the 

progress of the calcite dissolution experiments, does not fully capture the dynamic and 

fluctuating nature of natural systems. The primary discrepancies between the laboratory settings 

employed in this study and natural settings can be summarized as follows: (i) the laboratory 

setup maximizes mineral-water contact, unlike natural settings where fluid-mineral interactions 

occur within porous media or involve mineral surfaces partially covered by sediments, organic 

matter, and biofilms, thereby reducing the available reactive surface area; (ii) the laboratory 

settings maintained turbulent flow and homogeneous chemical conditions within the reactor 

through continuous stirring, which contrast with the laminar and/or discontinuous flows that 

are observed, for instance, in soils, where a gradient in the fluid saturation state can be generated 

at the fluid-mineral interface along the direction of the water flow; (iii) the controlled 

temperature conditions maintained in the lab stand in contrast to the diurnal and seasonal 

temperature variations prevalent in many natural environments ; (iv) the use of a simplified 

medium in the lab, devoid of chelating agents, organic matter, and other compounds commonly 

found in natural environments may not fully capture the complexity of interactions that occur 

in natural settings. Notably, none of these discrepancies inherently implies that the Ω-roughness 

signal observed in this laboratory study would not be convincingly recognized in natural 

environments as well. However, it is plausible that the reference Ω-roughness curves derived 

here may need recalibration in more realistic settings. Specifically designed incubation 

experiments can address this question, as discussed in sub-section 6.3.2. 

Secondly, the experiments were conducted with mm-size mechanically-polished natural calcite 

crystals. In natural settings, the size of calcite crystals can vary widely from one location to 

another, depending on the specific geological and environmental conditions. In this study, the 

attainment of a steady state surface roughness configuration indicative of the fluid saturation 



196 

 

state was only demonstrated for calcite single crystals with {104} surfaces larger than 4-5 mm, 

which can be conceptualized as ‘infinite surfaces’. For smaller crystals, the contribution of 

corners and edges to the dissolution process and to the corresponding microtopography 

evolution becomes more significant (Noiriel et al., 2020). This increased influence of corners 

and edges may potentially impact the achievement of a steady-state configuration and/or the 

establishment of a bijective Ω-roughness relationship. Moreover, it is well-established that 

mechanical polishing increases the dislocation density (MacInnis and Brantley, 1992), which, 

in turn, affects the crystal reactivity and the corresponding surface microtopography evolution. 

While employing crystals with different dislocations densities (e.g., naturally cleaved samples 

and/or samples subject to various degrees of mechanical and thermal stress), under the same 

physico-chemical conditions of the fluid, is unlikely to hinder the establishment of a bijective 

of Ω-roughness relationship, it is plausible that the time required to achieve a steady-state 

configuration of the surface and the surface roughness reference values might differ. As a 

consequence, further experimental and modeling work is needed to explore how the Ω-

roughness relationship developed in this study changes for calcite crystals with varying defect 

distributions, fluid impurities, and framework impurity ion, as well as to explore the existence 

of a Ω-roughness relationship for smaller calcite crystals. On a similar note, different fluid 

compositions, pH levels, temperature conditions, and the presence of fluid impurities would 

also need to be investigated. In parallel, improving the fundamental understanding of the 

underlying mechanisms may help narrowing down the parameters that would need to be 

investigated. Ultimately, a comprehensive library of Ω-roughness relationships obtained under 

a variety of fluid-mineral conditions relevant for natural environments would need to be 

generated. 

Lastly, with regards to the biotic experiments, it is important to note that this study employed a 

single bacterial strain, with one specific metabolism. In natural settings, biofilm-forming 

microbial communities often consist of diverse bacteria, as well as consortia of archaea and 

microbial eukaryotes, with a wide array of metabolic pathways. Such diversity in microbial 

populations and metabolisms in nature may lead to variations in the bio-weathering features 

produced and potentially limit the clarity of the microbial weathering signal that was detected 

experimentally in this work with a single bacteria strain. Future work should therefore explore 

the impact of more complex and realistic biofilm-forming microbial communities. 
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6.1.2 Generalizability 

Considering the limitations posed by the experimental approach adopted in this study, it 

becomes possible to explore the potential applicability of these findings to other mineral-

microbe systems. 

At the core of the empirical Ω-roughness relationship that was developed in this work under 

abiotic conditions, there is the difference in surface microtopography resulting from dissolution 

that is observed at far-from-equilibrium versus close-to-equilibrium conditions for all minerals 

with a framework structure, as discussed in section 1.2.5. Therefore, all minerals for which a 

critical value of Gibbs free energy can be clearly identified (i.e., a critical value that distinctly 

separates far-from-equilibrium conditions, for which the opening of hollow cores to form etch 

pits is thermodynamically favoured, from close-to-equilibrium conditions, for which 

crystallographic etch pits are not formed), have the potential to exhibit a more general 

relationship between the saturation state and the surface topography arising from dissolution. 

However, for such Ω-roughness relationships to be used as a proxy for reconstructing past 

weathering conditions, the surface topography associated with distinct saturation states must 

also achieve a steady-state configuration over relatively short timescales. The attainment of a 

steady-state configuration of the crystal surface is likely to be the most challenging requirement 

to be met. For instance, Anbeek, (1992) showed that the surface roughness factors of naturally-

weathered feldspars vary by more than one order of magnitude, suggesting that a steady-state 

configuration of the surface might not exist. In contrast, the attainment of a steady-state of 

surface roughness was documented under laboratory conditions for the (115), (334), (104) and 

(245) faces of fluorite (Godinho et al., 2014) and for the (010) olivine face (Li et al., 2021), 

under far-from-equilibrium conditions. Hence, fluorite and olivine emerge as promising 

candidates to work, along with calcite, as proxies for back-estimating the fluid saturation state 

in natural settings.  

Furthermore, additional experimental work is needed to explore the existence of a bijective 

relationship between Ω and the steady-state surface roughness of calcite under pH conditions 

that were not explored in this work. However, since the calcite dissolution rate is approximately 

constant  between pH=5.5 and pH=8.5 (Sjoeberg and Rickard, 1984) and given the distinct link 

that exists between surface roughness and dissolution rate at pH∼7.9, as documented in this 

study, it is plausible that the Ω-roughness relationship here developed would extend at least to 

this entire pH range.  
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Lastly, regarding the bio-weathering signatures documented in this study, similar high-elevation 

regions can potentially be identified on a variety of microbially-mediated weathered minerals, 

provided that the biofilm creates a microenvironment with a higher saturation state compared 

to the bulk solution. This potential includes a wide spectrum of microbial species, with various 

metabolisms, and a diverse range of mineral substrates. 

Taking into account the discussed constraints and prospects for generalization, the natural 

settings most relevant to the findings of this work are detailed in the following section.  

 

6.2 Applications to natural settings 

6.2.1 Estimation of the fluid saturation state in natural environments 

With regards to the Ω-roughness proxy relationship developed in this study, given the 

constraints provided by the laboratory conditions adopted and discussed in the previous sub-

section, natural settings that could be relevant for these findings include water-dominated 

environments with relatively stable chemical conditions and environments that ceased to be in 

contact with aqueous fluids. These include aquatic environments, such as lakes, rivers and 

oceans, where minerals interact with water over extended periods, but also arid deserts, caves 

and planetary surfaces, where minerals might have ceased to interact with water. 

In natural settings where calcite crystals (or other minerals with a similar Ω-roughness 

relationship) are no longer in contact with aqueous fluids, the utility of the Ω-roughness proxy 

relationship becomes straightforward. By comparing the statistical metrics associated with a 

naturally weathered calcite sample to the reference values established in this study, it would 

become possible to estimate the last fluid saturation state experienced by that surface, offering 

valuable insights into the chemical history of these surfaces that would be otherwise 

inaccessible. 

With regard to aquatic environments with relatively stable chemical conditions, the utility of 

the Ω-roughness proxy relationship becomes less straightforward. This is because, in such 

settings, it is often feasible to collect both mineral and aqueous samples. Analysing the 

chemistry of the collected aqueous samples would provide a direct method for estimating the 

fluid saturation state based on solution chemistry analyses. Therefore, for these settings, the Ω-

roughness proxy relationship becomes beneficial only when the fluid saturation state cannot be 

reliably estimated based on solution chemistry analyses. These include settings where 
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measuring the concentrations of all dissolved elements is straightforward, but the estimation of 

the corresponding activity coefficients becomes challenging due to the presence of complexing 

agents in the solution. This challenge introduces significant uncertainty when estimating the 

fluid saturation state. In this context, an example of practical application would be the use of 

the Ω-roughness proxy to estimate the saturation state of seawater with respect to calcite, where 

the abundant presence of dissolved organic compounds may hinder the accurate estimate of 

[Ca2+] activity. Indirect estimations of seawater saturation state with respect to calcite, based on 

in situ derived dissolution rates, have been suggested in previous studies (Naviaux et al., 2019). 

On a similar basis, the Ω-roughness proxy relationship developed in this study could be used to 

estimate the seawater saturation state more reliably at different depths of the ocean, as well as 

to identify shifts in the saturation state of seawater due to ocean acidification.  

6.2.2 Determination of biosignatures on naturally weathered minerals 

The tool developed in this work for the determination of biosignatures based on the surface 

microtopography resulting from dissolution has the potential to be valuable in a wide range of 

natural settings, including the search for life on other planets.  

As previously mentioned, the bioweathering imprints (i.e., high-elevation regions) documented 

in this work can potentially be identified on a variety of microbially-mediated weathered 

minerals, provided that the biofilm creates a microenvironment with a higher saturation state 

compared to the bulk solution. When considering CaCO3-minerals, these include microbes 

whose metabolism results in a net increase of the solution pH, such as phototrophic, nitrifying 

and ammonia-oxidizing bacteria. As a consequence, the identification of these high-elevation 

regions in natural settings on Earth can provide insights into past presence of life in extreme 

environments as well as providing clues about the specific microbial populations that might 

have been present in the past in a given environment. 

 

6.3 Future perspectives 

Building upon the findings of this work, there are several promising avenues for future research 

and exploration, along with potential methodological improvements. These include conducting 

additional in situ dissolution experiments, which are currently ongoing, as well as designing 

incubation and preservation experiments aimed at investigating the 'surface signals' achievable 

under conditions more closely resembling natural settings. 
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6.3.1 Microbial weathering in-situ experiments 

The sub-section 5.2 was centred around the in-situ cyanobacteria-mediated calcite dissolution 

experiment conducted at Ω = 0.00, which provided initial insights into the potential of this 

experimental configuration. In this framework, additional in situ dissolution experiments will 

be performed, exploring a wider range of saturation states and initial surface conditions, with 

the ultimate goal of broadening the mechanistic understanding of the interplay between biofilm 

dynamics, mineral substrate dissolution, and corresponding surface microtopography evolution. 

The study presented in the sub-section 5.1, which was based on ex situ dissolution experiments, 

revealed that close-to-equilibrium conditions resulted in a larger biofilm coverage of the calcite 

surface at the end of the experiments compared to far-from-equilibrium conditions. This can be 

explained either as a consequence of the larger surface retreat obtained at far-from-equilibrium 

(due to higher reactivity) or as a consequence of inconsistent initial biofilm coverage, which 

could not be monitored with the experimental configuration adopted. To address this question, 

targeted in situ experiments for which the dynamics of biofilm coverage can be monitored in 

real-time can provide additional insights that could support either explanation.   

Notably, the different biofilm coverage observed at the end of the ex-situ experiments at far-

from-equilibrium compared to close-to-equilibrium conditions can, in principle, also be 

explained by different metabolic activity of the cyanobacteria, resulting from different solution 

concentrations of [Ca2+]. If in situ experiments will confirm that the final biofilm coverage is 

consistently higher at far-from-equilibrium compared to close-to-equilibrium conditions (with 

the initial biofilm coverage being approximately the same), additional in situ experiments can 

be designed to explore whether this is a consequence of the larger surface retreat (due to higher 

reactivity) or of a different metabolic activity (due to different concentrations of [Ca2+]). One 

possibility to explore this aspect is to conduct two dissolution experiments with the same Ω, 

where one experiment is run with a pre-etched surface (e.g., pretreated in mQ water so that etch 

pits develop on the surface) and one with an untreated mechanically-polished surface. The pre-

etched surface would (transiently) have higher reactivity compared to the untreated surface, 

even if the fluid saturation state is the same in both cases (Beig and Luttge, 2006). If the 

pretreated surface exhibits a higher cell detachment rate compared to the untreated surface, then 

it would be possible to conclude that the material loss controls the biofilm detachment rather 

than the concentration of [Ca2+], suggesting that Ω might only indirectly control the biofilm 

detachment by modulating the mineral substrate reactivity.  
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In general, the detachment of bacterial cells from the surface is controlled by two main 

parameters: the fluid-dynamics conditions (i.e., the flow rate in the in situ setup and the 

rotational speed of the stir bar in the ex situ setup) and the material loss from the calcite substrate 

due to dissolution. The in situ setup enables to targetedly explore the control of bacterial 

detachment by conducting specific experiments with different flow rate and with conditions 

that lead to higher reactivity of calcite, in terms of fluid chemistry (e.g., pH lower than 5.5) 

and/or using more reactive samples (e.g., calcite crystals with larger dislocation density and/or 

pre-etched). Ongoing in-situ experiments will attempt to address this question. 

In parallel, potential methodological improvements of data processing will also be investigated. 

In particular, the protocol for identifying individual cells across the calcite surface, which is at 

the core of all analyses presented in the sub-section 5.2, currently show some limitations that 

could potentially be overcome. The current protocol, which involves establishing a given cutoff 

value (kept constant at different times) leads to an underestimation of the bacteria coverage at 

any given time. One possibility of improvement involves partitioning the area investigated into 

various sub-windows for which distinct time-varying cutoff values can be assigned. Moreover, 

when it comes to study the evolution of the surface roughness of partially covered areas as in 

section 5.2.3.1, one current limitation involves that individual cells identified by the cutoff-

based approach erroneously appear to be surrounded by negative height values (Figure 5.2.4). 

As these supposedly negative height values disappear as cells detach from the surface, these 

can be interpreted as VSI artifacts and should, therefore, be excluded. Indeed, including such 

negative height values in the surface analyses leads to observable inconsistencies. For instance, 

as displayed in Figure 5.2.5, the presence of these ‘artificial’ negative height values shifts the 

mean height value of the partially covered surface at t = 0 h towards a lower value compared to 

the uncovered counterpart, when they should both be centred approximately in zero. 

Additionally, this results in a consistently higher Ra, even at early times, which is likely to be a 

processing artifact. To address this limitation, one potential solution is to identify the locations 

of individual cells using cutoff-based approaches and then expand the zones to be excluded by 

a few pixels in all directions around these locations. This approach would ensure the removal 

of all 'artificial' negative height values from the analysis, thus improving the accuracy of the 

surface analysis. 

Overall, the prospects of conducting additional in situ experiments and enhancing the associated 

data processing hold promise for advancing the fundamental understanding of the informative 
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content embedded into bio-weathered mineral samples, a question central to this manuscript 

work. 

6.3.2 Incubation weathering experiments and field studies 

While methodological improvements and additional laboratory experimental studies can 

provide further insights into the fundamental understanding of the informative content of 

biotically and abiotically weathered surfaces, it is also crucial to conduct experiments and field 

studies specifically designed to explore the presence and persistence of (bio-)weathering 

signatures on mineral samples across natural settings.  

To this end, it is essential to investigate the existence of detectable 'microtopography signals' in 

natural environments. To address this question, incubation experiments involving calcite 

samples should be conducted across various natural settings, spanning from soils to aqueous 

environments, targeting different saturation states with respect to calcite of the bulk solution. 

Comparisons of the statistical characterizations of the resulting microtopographies with the 

reference values developed in this work would potentially allow to understand the extent to 

which these findings can directly be applied to natural settings. On the same note, the naturally-

occuring coverage of the calcite samples from complex biofilms, and the resulting potential 

distinctive surface features, would also need to be targetedely investigated, in order to explore 

the relevance for natural environments of the microbial signatures identified in this study. 

The second necessary step would involve examining the extent to which these 

‘microtopography signals’ can be preserved over time and under varying physicochemical 

conditions. While some of these questions were addressed in this study from a modeling 

perspective, direct observations are also required. 

Overall, conducting these incubation experiments in natural environments can provide insights 

into the types of natural settings where the findings of this research hold the most promise and 

relevance. Once potential natural environments are identified, field studies aimed at exploring 

the existence of detectable 'microtopography signals' on naturally weathered mineral samples 

collected from these settings will be essential. Hopefully, this will confirm the results of this 

PhD work, which suggested that naturally-weathered minerals may serve as a proxy to back-

estimate the fluid saturation state, and that microbial weathering does result in specific imprints 

at the mineral surface that could be quantitatively attributable to the action of life. 
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6.4 Concluding remarks 

Collectively, this PhD work contributed to advance the fundamental understanding of the 

informative content embedded within weathered mineral surfaces. Through a combination of 

laboratory experiments and modeling approaches, this research showed that, under the 

conditions investigated in the lab, the calcite steady-state surface roughness resulting from 

dissolution can be used as a proxy to back-estimate the saturation state of the fluid. Additionally, 

this study revealed that the calcite surface microtopography resulting from biofilm-mediated 

dissolution can preserve imprints of microbial weathering, which can be quantitatively, thus 

less ambiguously, detected. Moving ahead, it is essential to conduct additional extensive 

research, both in laboratory and in the field, to evaluate the applicability of these findings to 

natural settings. Overall, the novel, mechanistically-supported quantitative criteria developed 

in this PhD work represent a first step forward in the capability to reconstruct past weathering 

conditions and identify mineral bio-weathering signatures in natural settings, both on Earth and 

in the broader context of astrobiology. 
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Appendices 

Appendix A 

 

Table A1 Grit sizes of the multi-step grinding and polishing sequence. 

 

 

Table A2 ICP-AES analyses of the aqueous solution at different times. Concentrations are 

expressed in ppm. 
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Appendix B 

 

Table B1 ICP-AES measurements of the inlet vs outlet solutions for all saturation states over 

the progress of the experiments. 

 

 

 

Table B2 The table indicates, for all saturation states, the number of sampling windows of 

80x80 μm2 used in the small-windows statistical analysis and the specific surface detrending 

adopted. As described in the Materials and Methods section, the sampling windows were 

identified randomly along the surface, while avoiding surface macro-defects, and only selected 

if available at all times. Moreover, in general, a second-order surface detrending was applied to 

correct for the imperfect parallel alignment between the surface and the VSI objective and by 

the waviness of the sample surface resulting from the polishing process. However, at Ωcalcite ≤ 

0.55, the effects of the polishing process on the surface were no longer visible after dissolution. 
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Hence, a first-order surface detrending was applied to correct for the imperfect VSI-surface 

parallel alignment, while preserving the actual shape of dissolution surface features, such as 

etch pits. 

 

 

 

Table B3 The table indicates, for all saturation states, the precise times referred to as ‘early’, 

‘mid’ and ‘late’ times in the text and the specific surface detrending adopted on sub-windows 

of 400x400 μm2. For Ωcalcite = 0.65 and Ωcalcite = 0.8, to correct for the waviness of the sample 

generated by the polishing process and still present after dissolution, a 4th order surface 

detrending was adopted. Compared to the small-window analysis, for which a 2nd order 

detrending was adopted on 80x80 μm2 sub-windows, the waviness of the sample detected with 

a 400x400 μm2 observation window was more complex, and hence required an higher order 

detrending. Otherwise, for Ωcalcite ≤ 0.55, the effects of the polishing process on the surface were 

no longer visible after dissolution, and a 1st order degree surface detrending was adopted. 
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Figure B1 Analysis of Ra convergence as a function of sub-window size. In this analysis, the 

different sub-windows were generated by progressively dividing the field of view, starting from 

the largest window used in the study (i.e., 400*400 µm^2), into smaller sizes, by a factor of 2 

at each step. The Ra values showed in the plot represent the average values evaluated across all 

sub-windows with a given size. 

 

 

 

Figure B2 Figure showing the graphical relationships between experimental and theoretical 

semi-variogram, including model parameters: total sill, nugget and correlation length. 
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Figure B3 Surface topography comparison of a 400x400 μm2 observation window at t = 0 h 

and t = 15 h, for Ωcalcite = 0.8. The increase in depth of the polishing scratches due to preferential 

dissolution is evident when comparing the two time lapses at fixed colour scale. 

 

 

Figure B4 Surface topography comparison of a 400x400 μm2 observation window at t = 0 h 

and t = 15 h, for Ωcalcite = 0.65. The increase in depth of the polishing scratches due to 

preferential dissolution is evident when comparing the two time lapses at fixed colour scale. 
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Figure B5 Comparison of steady-state surface configurations after dissolution at Ω=0, Ω=0.4, 

and Ω=0.8, resulting from simulations with classical kMC modeling, in 3D representation.  

 

 

Figure B6 Comparison of Ra evaluated for the steady-state surface configurations resulting 

from dissolution at Ω=0, Ω=0.4 and Ω=0.8, simulated with standard kMC modeling. The pre-

opened hollow cores of 4 × 4 lattice sites were excluded from the calculation of Ra. The plateau 

values of Ra indicate the achievement of a steady-state configuration of the surface. 

 

 

 



211 

 

 

 

Figure B7 Comparison of steady-state surface configurations after dissolution at Ω=0, Ω=0.2, 

Ω=0.4 and Ω=0.8, resulting from simulations with Ising modeling, in 3D representation. 
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Appendix C 

 

 

Figure C1 Calcite dissolution rates as a function of Ω obtained in abiotic and biotic conditions. 

Abiotic rates data were derived from Bouissonnié et al. (2018) in similar conditions. 

 

 

Figure C2 Panels showing the calcite surface topography resulting from calcite biotic 

dissolution at Ω = 0.30 and Ω = 0.55, before (left-hand side) and after (right-hand side) removal 

of the PCC 7203 cells. The size of all VSI images is 600x600 µm2. 
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Figure C3 Panels showing the calcite surface topography resulting from calcite biotic 

dissolution at Ω = 0.65 and Ω = 0.80, before (left-hand side) and after (right-hand side) removal 

of the PCC 7203 cells. The size of all VSI images is 600x600 µm2. 
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Figure C4 Close-up of Figure 5.1.1F. This sketch schematically illustrates how the presence of 

high-elevation regions affetcs the semi-variogram correlation length. If the high-elevation areas 

(see, e.g., dashed circle) were absent, the correlation length would be determined by the average 

distance between the centeres of etch pits (see shorter double arrow). However, due to the 

presence of these areas, the surface heights values become correlated on average over larger 

distances (see longer double arrow), thus leading to a higher correlation length compared to 

abiotic dissolution. The size of the VSI image is 400x400 µm2. 

 

 

Figure C5 A) Global surface retreat, Δh, evaluated as the average height difference between 

the reacted and non-reacted area. The size of the VSI image is 500x500 µm2. B) Relative height 

of the high-elevation region displayed in Figure 5.1.1 B, C. The size of the VSI image is 

250x250 µm2. A, B) Overall, comparing the relative height of the high-elevation region to the 

global surface retreat reveals that dissolution was only limited by the biofilm presence, not 

inhibited. 
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Figure C6 Locations targeted for FIB foil extraction. SEM (left-hand side) and FIB (right-hand 

side) images close-up of the high-elevation regions displayed in Figure 5.1.1C and Figure 

5.1.1G. These areas were targeted as they exhibited higher density of cells sticking to the calcite 

substrate at the end of the experiments (see Figure 5.1.1). 
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Figure C7 EDXS analyses conducted on the uppermost nanometers beneath the calcite surface 

(see red area) reacted at Ω = 0.00 did not reveal any discernible peaks indicative of elements 

other than Ca, C, O. The absence of foreign element signals implies that there were no additions 

of external elements into the crystal due to interactions between the biofilm and the calcite. 
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Figure C8 EDXS analyses conducted over an area contained in the same region depicted in 

Figure C7, but situated a few tens of nm deeper beneath the surface. EDXS analyses over this 

area also did not reveal the presence of  any discernible peaks indicative of elements other than 

Ca, C, O. 

 

 

 

Figure C9 Solution pH evolution as a function of time, under intermittent light exposure, 

evaluated in batch tests for two of the solution employed in our experiments (i.e., Ω = 0, with 

NaCl=5.8 g/L, NaHCO3=0.086 g/L, CaCl2=0 g/L;  Ω = 0.55, with NaCl=5.8 g/L, 
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NaHCO3=0.086 g/L, CaCl2=0 g/L), upon enrichment with PCC 7203 cells. These tests 

demonstrate that the overall impact of adding PCC 7203 cells, subjected to light exposure, to 

the experimental solutions (when the fluid is not continuously replenished as in flow-through 

systems at a sufficiently fast rate) is an increase of the bulk solution pH, likely due to 

photosynthetic activity. In flow-through tests, a pH increase was observed under light exposure 

for flow rates lower than ∼ 0.6 mL/min. 

 

 

Figure C10 Surface topography (left-hand side, 2D representation; right-hand side, 3D 

representation) resulting from kMC modeling of abiotic Kossel crystal dissolution at Ωbulk = 0, 

conducted using the same simulations settings employed for Figure 5.1.4, with the exception 

that no sub-window with higher Ω value was introduced. 
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Figure C11 A) High-angle annular dark-field scanning transmission electron microscopy 

(STEM - HAADF) of the FIB foil used for TEM analysis, showhing the Pt support. B) Bright 

field transmission electron microscopy (TEM – BF) close-up of the FIB foil, showing the Au-

coating applied to the calcite surface prior to FIB milling. C) Calcite diffraction pattern. 

 

ICP-AES Ca [ppm] 

(Ω=0.00)  

Ca [ppm] 

(Ω=0.10)  

Ca [ppm] 

(Ω=0.30)  

Ca [ppm] 

(Ω=0.55)  

Ca [ppm] 

(Ω=0.65)  

Ca [ppm] 

(Ω=0.80)  

t = 0 h 0.83 14.23 39.32 72.71 88.79 104.27 

t = 3 h 0.85 14.71 39.34 71.34 91.70 104.91 

t = 16 h 0.87 14.58 38.75 71.73 90.30 102.92 

t = 48 h 0.84 14.72 38.43 73.09 90.84 104.28 

t = 61 h 0.87 14.06 39.71 73.15 88.81 103.47 

t = 95 h 0.86 14.28 39.02 73.29 88.90 106.11 

 

Table S1 ICP-AES measurements of the aqueous solution for all saturation states, sampled at 

different time points during the biotic experiments. Samples collected at t > 0 h were collected 

from the reactor outlet, while the samples at t = 0 h were obtained directly from the tank 

solution. Solution pH of both the tank and the outlet solutions was measured to be 7.9 ± 0.1 

over time, as for the abiotic experiments (see Stigliano et al. (2023)).  
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