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Abstract 

Air pollution is a major public health issue, estimated to be responsible for over 7 million premature 

deaths worldwide every year. Most of the chronic effects of exposure to air pollution are attributable to 

particulate matter (PM). Child development, including the fetal period and the first years of life, is a key 

exposure window, since early exposures can have long-term impacts on child health. Most 

epidemiological studies assess the health effects of exposure to particulate matter on the basis of PM 

mass concentration, which corresponds to the regulatory metric currently in force. However, one of the 

mechanisms primarily responsible for the deleterious effects of exposure to particulate matter is its 

ability to induce or generate reactive oxygen species. These species disrupt the redox balance in the 

lungs, generating oxidative stress. More than a dozen different tests have been developed to measure the 

oxidative potential (OP) of particles, i.e. their capacity to oxidize a pulmonary fluid, and which 

integrates the effects on the fluid of the size, surface properties and chemical composition of PM. 

Although this is a promising metric, there is currently a lack of epidemiological studies evaluating 

exposure to the OP of particulate matter, which limits the evaluation of this indicator as a proxy for the 

health effects of PM exposure. Through a multidisciplinary approach combining atmospheric sciences 

and epidemiology, this thesis aimed to improve our knowledge on the relationship between OP of PM 

and health. To this end, the research strategy was based on data from the SEPAGES cohort (Suivi de 

l'Exposition à la Pollution Atmosphérique durant la Grossesse et Effets sur la Santé; Assessment of air 

pollution exposure during pregnancy and effect on health, in English), a research platform designed to 

characterize the effects of early exposure (including in utero) to a wide range of environmental factors 

on child health. Firstly, associations between prenatal exposure to PM OP and different respiratory 

health parameters in young children were investigated. The underlying mechanisms were then 

examined, identifying the short-term effects of personal exposure to PM OP on biological markers of 

oxidative stress and immune function. Finally, to improve the current knowledge on PM OP, a 

characterization of the chemical species contributing to PM OP in the indoor air of 41 homes was 

performed. Spatial and seasonal variations of PM OP in the Grenoble conurbation were then determined 
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from samples taken outside the homes. The results showed deleterious effects of prenatal exposure to 

PM OP on children’s lung volumes, as well as on a DNA oxidative stress biomarker and on pro-

inflammatory cytokines in pregnant women. These associations observed with the OP of PM were 

stronger than those with PM2.5 mass concentration. Finally, activities within the home, such as the use 

of household appliances like vacuum cleaners, emitted and resuspended chemical species that contribute 

significantly to the OP of PM, but less to PM2.5 mass concentration. Thus, this work points to sources 

contributing to PM OP that are specific to indoor air, and reinforces the interest of PM oxidative potential 

as a new metric of particulate exposure for assessing the health effects of air pollution. 
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Résumé 

La pollution de l’air est un enjeu de santé publique majeur, puisqu’elle est estimée responsable de plus 

de 7 millions de décès prématurés par an dans le monde. La majeure partie des effets chroniques de 

l’exposition à la pollution de l’air est attribuable aux particules (PM). Le développement de l’enfant, qui 

inclut la période fœtale et les premières années de vie, est une fenêtre d’exposition clé, car les expositions 

précoces peuvent avoir des impacts sur la santé à long terme. La plupart des études épidémiologiques 

évalue les effets sanitaires de l’exposition aux particules à partir de la concentration massique des PM, 

qui correspond à la métrique réglementaire actuellement en vigueur. Cependant, un des mécanismes à 

l’origine des effets délétères de l’exposition aux particules est leur capacité à induire ou générer des 

espèces réactives de l'oxygène. Ces espèces perturbent l'équilibre redox des poumons et génèrent du 

stress oxydant. Plus d’une dizaine de tests différents ont été développés pour mesurer le potentiel 

oxydant (PO) des particules, c’est-à-dire leur capacité à oxyder un milieu pulmonaire, et qui intègre les 

effets sur ce milieu de la taille, des propriétés de surface des PM, ainsi que de leur composition chimique. 

Bien que cette métrique soit prometteuse, les études épidémiologiques évaluant l’exposition au PO des 

particules sont peu nombreuses, ce qui limite l’évaluation de cet indicateur en tant que métrique 

indicatrice des effets sanitaires de l’exposition aux particules. Par une approche multidisciplinaire 

combinant les sciences atmosphériques et l’épidémiologie, ces travaux de thèse ont visé à améliorer les 

connaissances des relations entre le PO des particules et la santé. Pour cela, la stratégie de recherche de 

ces travaux a reposé sur les données de la cohorte SEPAGES, (Suivi de l'Exposition à la Pollution 

Atmosphérique durant la Grossesse et Effets sur la Santé), qui est une plateforme de recherche visant à 

caractériser les effets de l'exposition précoce (y compris in utero) à un large panel de facteurs 

environnementaux sur la santé de l'enfant. Tout d’abord, les associations entre l’exposition prénatale au 

PO des PM et différents paramètres de la santé respiratoire de jeunes enfants ont été étudiées. Les 

mécanismes sous-jacents ont ensuite été examinés, en identifiant les effets à court-terme de l’exposition 

personnelle au PO des PM sur des marqueurs biologiques du stress oxydant et de la fonction 

immunitaire. Enfin, afin d’améliorer les connaissances relatives au PO des PM, une caractérisation des 
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espèces chimiques contribuant au PO des PM dans l’air intérieur de 41 domiciles a été réalisée. Ensuite, 

les variations spatiales et saisonnières du PO des PM dans l’agglomération grenobloise ont pu être 

déterminées à partir des échantillons pris à l’extérieur des domiciles. Les résultats obtenus ont montré 

un effet délétère de l’exposition prénatale au PO des PM sur les volumes pulmonaires des enfants, ainsi 

que sur un marqueur biologique du stress oxydant de l’ADN et sur des cytokines pro-inflammatoires de 

la femme enceinte. Ces associations observées avec le PO de PM étaient plus fortes que celles avec les 

concentrations de PM2.5. Enfin, les travaux ont mis en évidence que des activités au sein des domiciles, 

telles que l’utilisation d’appareils électroménagers comme l’aspirateur, émettaient et remettaient en 

suspension des espèces chimiques qui contribuent grandement au PO des PM2.5, mais moins à la 

concentration massique des PM2.5. Ainsi, ces travaux indiquent des sources contribuant au PO des PM 

bien spécifiques à l’air intérieur et renforcent l’intérêt du potentiel oxydant des PM comme nouvelle 

métrique de l'exposition aux particules pour évaluer les effets sanitaires de la pollution de l’air. 
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Chapter I 

Introduction 
 

 General introduction 
 

 “Fog everywhere. Fog up the river, where it flows among green aits and meadows; fog down the river, 

where it rolls defiled among the tiers of shipping and the waterside pollutions of a great (and dirty) city. 

[…] Fog in the eyes and throats of ancient Greenwich pensioners, wheezing by the firesides of their 

wards.” – Charles Dickens, Bleak House, 1852. 

In cities, air pollution has been known to threaten human health for several decades. From the 19th to 

the mid-20th century, air pollution levels increased, following the growing industrial production. The 

first famous air pollution events occurred in Belgium (1930), in the USA (1948) and in London (1952), 

all of them taking place in winter, with a combination of intense coal burning emissions from industrial 

and home heating purposes, and exhaust emissions from road traffic, that led to important concentrations 

of SO2, NOx and particles. The unprecedented number of deaths, with 3000 excess deaths during the 

first three weeks of December 1952 (Bell and Davis, 2001), mainly caused by cardiovascular affections 

and respiratory infections made it very hard to ignore the role of the high pollution events in triggering 

these adverse health endpoints.  

Today, the population is still facing threatening levels of air pollution, with a combined effect of ambient 

and household air pollution associated with 7 million premature deaths per year in the world (WHO, 

2016), with great geographical inequalities since more than half of this burden is located in developing 

countries. In addition to short-term effects studies, several studies also demonstrated the effects of long-

term exposure to particles on cardio-respiratory, neurological, metabolic and reproductive systems 

(Slama et al., 2008; Tang et al., 2022; Thurston et al., 2017; Wang et al., 2021). In particular, early-life 

exposure has been identified as a period of great vulnerability for the child's future health. Indeed, 

exposure during the prenatal and early childhood periods could influence health at birth, cognitive and 
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pulmonary capacities, and the future development of respiratory diseases such as asthma and chronic 

obstructive pulmonary disease (Bush, 2021; Hsu et al., 2015; Jedrychowski et al., 2010; Korten et al., 

2017; Lavigne et al., 2018; Thurston et al., 2020). 

While strategies have been implemented to reduce air pollution exposure, particularly in western 

countries (Hammer et al., 2020), more targeted approaches relying on the biological mechanisms of air 

pollution are also being investigated, in order to decrease exposure to specific components of particles, 

that would be more harmful than others. Since the 2000s, a large body of research identified the role of 

oxidative stress as common to the adverse action of air pollutants, occurring as soon as being inhaled, 

with a key role of lung antioxidants (Ayres et al., 2008; Cho et al., 2005; Hellack et al., 2014; Valavanidis 

et al., 2013). The measurement of oxidative potential (OP) tests of particles has been developed with the 

aim to use a more appropriate metric, that would specifically target the oxidizing capacity of particles, 

in order to better predict the adverse health endpoints than the sole mass concentration.  

While there is mounting evidence of PM’s health effects from epidemiological studies using different 

exposure assessment approaches, different populations and different periods of time, indicators of the 

OP of particles remain poorly utilized. More investigations are needed to have sufficient evidence 

regarding its relevance as an exposure parameter in epidemiological studies and as a health risk indicator 

to be implemented in air pollution monitoring. To achieve these objectives, it is particularly necessary 

to enhance our understanding of the relationship between early-life exposure to the OP of particles and 

its impact on children's health, while characterizing the potential biological mechanisms involved and 

investigating strategies to minimize exposure to this parameter. This can only be achieved through a 

multidisciplinary approach, relying on atmospheric biogeochemistry and epidemiology, each of them 

bringing unique perspectives and methodologies, and together providing a more holistic view to 

ultimately build robust scientific evidence. 

The aim of this thesis was to provide a better understanding of OP, by addressing some research gaps in 

three complementary research domains:  

1) Etiological research, by assessing the association between prenatal exposure to the OP of 

particles and newborn respiratory health 
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2) Mechanistic research, by assessing the association between personal exposure to the OP of 

particles and biomarkers of oxidative stress in pregnant women  

3) Aerosol research, by characterizing OP of particles in indoor air and evaluate the eventual 

disparities with ambient OP exposure. 

The chapter below will introduce different concepts and current state of knowledge, by giving elements 

of context regarding air pollution in ambient and indoor environments. A focus will then be made on 

the different exposure assessment techniques that are used in epidemiological studies. The short and 

long-term health effects of PM exposure will be developed in a third section, also providing elements 

on the complexity of evaluating these effects at the earliest stage of life. Finally, the oxidative stress 

pathway, a major biological mechanism involved in the air pollution health effects, will be presented, 

along with the current evidence supporting the use of OP of particles in epidemiological studies. 

 

 Air Pollution 
 

Air pollution is a complex, ubiquitous concern. In ambient environments, its effects, particularly on 

cardiovascular and respiratory health, have been well-established. Moreover, an increasing body of 

evidence highlights its impact on various other health outcomes. Growing concerns also revolve around 

indoor exposure, which is less well understood. The sections below will define major air pollutants and 

their sources, the issues related to indoor air quality will be presented next, followed by an overview of 

the different regulations in place in Europe to mitigate exposure to air pollutants. 

II.1. Ambient air pollutants 

Ambient air pollution refers to solid, liquid or gaseous compounds that can originate from both natural 

and anthropogenic sources and that have negative impacts on the health, environment and ecosystems. 

Primary pollutants are emitted directly, while secondary pollutants originate from compounds 

transformed through chemical and photo-chemical reactions during their atmospheric transport. 

Pollutants that are targeted for their health effects by national and international health organizations 

include gases such as carbon monoxide (CO), ozone (O3), nitrogen oxides (NOx), sulfur dioxide (SO2), 

and particulate matter (PM). 
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II.1.1. Gases 

NOx are measured as a proxy for exposure to traffic emissions. NOx are composed of nitrogen oxide 

(NO) and nitrogen dioxide (NO2) that are highly reactive gases formed by combustion processes such 

as heating, power generation, and engines in vehicles. Incomplete combustion of fuels also leads to the 

formation of CO, a gas present as traces, that is very toxic. SO2 has been a major pollutant since the 

industrial revolution, being responsible of the famous pollution events occurring upon coal burning. It 

is a poisonous gas with an irritating odor and is key for PM formation. A natural source for SO2 is 

volcanic activity. Another complex compound, targeted for its health effects is ozone. Ozone is a 

harmful secondary pollutant, formed by the photochemical reaction between NOx and volatile organic 

compounds (VOCs). In the troposphere (located in the lower atmosphere, up to 10km above the earth 

surface), its high concentrations are of great concern for health. Stratospheric O3 (located in the high 

atmosphere), not considered to be a pollutant, forms the ozone layer, that filters the sun’s ultraviolet 

radiation and therefore attenuates the harmful effects of solar radiations. In Europe, from 1990 to 2019, 

about 10% of the death attributable to air pollution were associated with ambient gaseous air pollution 

(Juginović et al., 2021). 

II.1.2. Particles 

In addition to gases, the atmosphere is composed of solid and liquid airborne particles, that are called 

particles or particulate matter (PM). PM are very complex material, that can cover a wide size range 

from few nanometers to few micrometers and that can be composed of various chemical species 

(Seinfeld and Pandis, 2016). Both their size and composition are parameters that depend on the sources 

of PM, and that will determine PM behavior in the atmosphere, as well as their health effects. 

Figure 1 summarizes the different mechanisms for formation, growth and removal from aerosols. 

Primary PM are emitted directly to the atmosphere under the action of wind that will resuspend dust, 

salts or plant debris, which are coarse particles (1-10 µm). Direct emissions from combustion processes 

such as wood burning or diesel and gasoline in engines will emit fine primary particles (≤ 2.5 µm). 

Secondary PM are formed from precursor gases through gas-to-particle conversion. Precursor gas 

molecules create clusters that form ultrafine aerosols (nucleation phase). Atmospheric SO2 is a key 
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precursor, because it is rapidly oxidized in sulfuric acid (H2SO4), that condenses to aqueous sulfate 

particles (sulfuric acid) because of its low vapor pressure (condensation). Other precursor gases such as 

ammonia (NH3) or low-volatile organic compounds can also modify particles chemical composition. 

Particles will grow through collisions (coagulation), up to 1 µm, beyond which they are too large and 

have a slow collision rate. The 0.01-1 µm is therefore called the accumulation mode, because particles 

formed from gas precursors will accumulate in this size range. Coarse particles are large enough to 

sediment, and can also be removed from the atmosphere by rainout. Accumulation particles are too small 

to sediment, they can be removed by rainout too and they can be captured by water droplet or ice crystal 

(scavenging) or evaporate. 

 
Figure 1. Formation, growth and removal of aerosols (Jacob, 1999). 

Particle size is an important characteristic of PM since it is modulated by the sources and can lead to 

different reactivity (Gietl and Klemm, 2009; Manousakas et al., 2022), and health effects, considering 

that smaller particles are able to penetrate deeper in the lungs (Kelly and Fussell, 2012; Strak et al., 

2012). The aerodynamic diameter is defined as the diameter of a sphere of density 1 g/cm3 that has the 

same inertial properties as the atmospheric particle (Weiner, 2015), and is used to describe PM size 

given their complex shapes. PM10, PM2.5 and PM0.1, therefore correspond to particles with an 

aerodynamic diameter smaller or equal to 10 µm, 2.5 µm and 0.1 µm, respectively. PM0.1 are also called 

ultrafine particles (Figure 2).  
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Figure 2. Size comparison between PM, hair and fine beach sand. (US EPA, 2016) 

In order to determine the sources of particles, and to target chemical species that are potentially more 

harmful to human health, the chemical composition of PM is analyzed (Favez et al., 2020; Perrino et al., 

2020; Terzi et al., 2010). 

The most abundant chemical species in PM are ionic species formed in the atmosphere by condensation 

of precursor gases, namely sulfates (SO4
2-), nitrates (NO3

-) and ammonium (NH4
+) that originate 

respectively from SO2, NOx and NH3. Other ions such as sodium (Na+), chloride (Cl-) and magnesium 

(Mg2+) are also found with smaller concentrations. An important fraction of PM is composed of organic 

carbon (OC), an umbrella term representing many chemical species formed of a carbon chain, oxygen 

and nitrogen. Some specific organic species can be determined in PM, such as levoglucosan, an 

anhydride sugar originating from the combustion of cellulose contained in wood. Carbon is also found 

in PM as elemental carbon (EC), a compound that is emitted during incomplete combustion processes 

and that influence greatly the optical properties of PM, since its dark color absorbs light radiation. 

Finally, some metals are also constitutive of PM chemical composition, such as aluminum (Al), copper 

(Cu), iron (Fe), lead (Pb), titanium (Ti), tin (Sn) or zinc (Zn). Although they only represent a small 

portion of the mass of PM, metals are of particular importance because of the potentially harmful effects 

they can have on health (Hernández-Pellón et al., 2018). 

Many studies investigated the sources of PM by examining their chemical composition either directly 

at the emission, or from time series sampled in various typologies of environments (i.e. rural, urban, 

industrial, etc.) (Alleman et al., 2010a; Calzolai et al., 2015; Gietl and Klemm, 2009; Hadley, 2017; 

Hopke et al., 2020; Weber et al., 2019). Primary sources include biomass burning (originating from non-
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efficient domestic heating, and emitting mostly OC, EC, levoglucosan, potassium and rubidium), road 

traffic (from exhaust or non-exhaust such as brake or tire abrasion, it will emit EC and several metals 

such as Cu, Fe, Sn and Pb), primary biogenic emissions (emissions due to the biological activities of 

soil and plants micro-organisms, their specific tracers are polyols: arabitol, mannitol, sorbitol), 

industries, agriculture (emission of NO3
- and NH4

+ contained in fertilizers), mineral dust (emitted by the 

resuspension of the crustal dust, this is mainly composed of metals or ions), sea-salts (emitted by sea 

sprays, when fresh, they are mainly composed of Na+ and Cl-). Although more sporadic, events such as 

volcanic eruptions or long-distance transportation of desert dust are also sources that can contribute to 

PM. 

Aerosol aging or photochemical transformation, leading to secondary sources, is also an important factor 

to consider since it changes PM chemical composition, and therefore can potentially modify its health 

effect. Organic secondary aerosols correspond to natural or anthropogenic volatile organic compounds, 

that are transformed and transported during their atmospheric lifetime. Secondary inorganic aerosol is 

also an important source of PM. Agricultural NH3 forms particulate ammonium nitrates (NO3NH4) when 

reacted with NOx, and ammonium sulfates (NH4)2SO4 with SO2. 

The better understanding of chemical composition and sources of PM are critical for mitigation 

strategies in ambient air. By determining the sources that contribute to PM, policy-makers can 

implement strategies targeting sources that contribute to both high episodes of PM and background 

levels.  

II.2. Indoor air quality 

Ambient air quality is damaged by anthropogenic activities. A growing concern has also emerged 

regarding indoor air, since people spend more than 80% of their time in indoor environments (Avery et 

al., 2010) such as homes, day care centers, public building, offices, schools or transports. Indoor 

environments are sometimes described as “ecosystems” (Goyal and Mukesh, 2010) because they are 

composed of inhabitants and their activities in a specific closed space that can be modulated by air 

ventilation, building material and the environmental settings, as illustrated on Figure 3.  
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Figure 3. Processes affecting indoor air quality. 

Outdoor air pollutants can penetrate indoor environments by infiltration through building cracks, or 

through mechanical or natural ventilation. Therefore, the environmental setting of the building is key 

for indoor concentration of pollutants. As an example, the distance to main road was found to be a 

predictor of indoor air quality in homes and schools (Janssen et al., 2001; Lawson et al., 2011). This is 

usually explained by poorly designed ventilation systems and airtightness. A negative pressure 

difference between the inside and the outside of the building then draws the pollutants through cracks, 

vents and openings (Goyal and Mukesh, 2010). 

Indoors, a greater use of synthetic building materials and strengthened airtightness appeared with the 

greater insulation that improves the quality of life, by maintaining comfortable temperature indoors, 

further reducing thermic losses. The use of synthetic building materials contributes to indoor air 

pollutants, and the airtightness concentrates the pollutants indoors. 

Typical indoor PM sources include building materials, cleaning products (Gerster et al., 2014), printers 

(Arı, 2020; He et al., 2007; Z.-M. Wang et al., 2011), activities such as cooking or smoking (Vardoulakis 

et al., 2020), and fire places (Tsakas et al., 2011). Indoor PM is usually enriched with organic 

compounds, that come from various sources, including the primary biological aerosols emitted by the 

occupants (hair, skin flakes) (Marcovecchio and Perrino, 2021) or its activities (cooking and cleaning, 

emitting volatile and semi-volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons 
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(PAHs) that sorb on PM) (Liu and Zhang, 2019; Tofful et al., 2021). Combustion processes (cooking, 

stoves) will additionally emit EC. Cigarette smoking were found to be potential sources of cadmium and 

lead (Matt et al., 2021) and copper was linked to the use of electric appliances (vacuum cleaner, hair 

dryer) (Tofful et al., 2021; Yli-Tuomi et al., 2008) and to the type of kitchen utensils (Molnár et al., 

2007). Dust resuspension is also an important process taking place in indoor environments and 

contributes to the trace elements and inorganic fractions of PM. The wavelengths initiating outdoor 

photochemistry (~300 nm) are attenuated by windows, leading to a very different photochemistry 

indoors, which will impact both the outdoor aerosol aging after indoor penetration and the indoor 

secondary organic fraction (Abbatt and Wang, 2020; Young et al., 2019). 

Although this work focuses on PM, it should be mentioned that volatile compounds can also threaten 

inhabitant’s health. NOx can penetrate the indoor environment but also be emitted by gas stoves or 

cigarette smoking. Inhabitants can be exposed to O3 indoors, that is either from outdoor origin or that is 

formed indoors. CO and radon gas are two additional risks in indoor environments. Incomplete 

combustion generates an accumulation of CO indoors that easily reaches life-threatening concentrations. 

Because it is odorless and colorless, CO poisoning is very hard to detect, and caused 35 500 deaths 

worldwide as estimated by the 2017 Global Burden of Disease (Roth et al., 2018). Radon is an odorless 

and invisible radioactive gas, that can be released from the water, the soil and the rocks. Long-term 

exposure to radon was proven to increase the risk of lung cancer, in fact the United States Environmental 

Protection Agency estimates that radon causes 21 000 lung cancer (National Center for Environmental 

Health, 2023) deaths each year, making it the second leading cause of lung cancer. 

II.3. Regulated metrics 

Most studies investigating the health effects of particles used the mass concentration in the air to describe 

exposure. Policy-makers implemented regulations based on these studies, therefore using the same mass 

concentration metric for PM. In 2004, four metals and benzo(a)pyrene (as a tracer for the broader family 

of polycyclic aromatic hydrocarbons) measured in PM10 were further added in the list of regulated 

pollutants in the European Union, because of their carcinogenic and genotoxic effects on humans. Table 



10 

1 presents the current European air quality standards related to PM, that are the same as the French 

standards.  

Air quality standards are quantitative limits for pollutants in the air, that are enshrined in European or 

national legislation and are legally binding, requiring the Member States to evaluate air quality based 

on common methods and to fix sanitary and environmental objectives. By contrast to the European or 

national standards, the WHO air quality guidelines do not represent a legal constraint, but reflect the 

current state of scientific knowledge on the health impact of air pollution. The WHO guidelines are 

long-term global targets to achieve, aiming to help the different regions putting in place air quality 

policies. WHO guidelines were updated in 2021, proposing interim-targets intended to guide the 

reduction efforts, with a final recommended yearly concentration of 5 µg/m3 and 15 µg/m3 for PM2.5 and 

PM10, respectively (Table 1). Efforts can be made to reach these concentrations, by reducing 

anthropogenic emissions, but natural emissions such as biogenic emissions or desert dusts cannot be 

controlled. In fact, during strong dust events, Saharan dusts have been estimated to account for up to 

60% of total PM10 concentration in the Middle East and Mediterranean countries (Pey et al., 2013; 

Querol et al., 2019, 2009). This reinforces the need to further investigate PM using other properties that 

integrate their potential to harm human health.  

Table 1. Air Pollutant Regulations: Comparing WHO guidelines, European standards. 

Pollutant Time interval WHO 2021 

European Air 

Quality 

Directives (2008) 

PM2.5 (µg/m3) 

Year 5 25 

24hrs 15 - 

PM10 (µg/m3) 

Year 15 40 

24hrs 45 50a 

BaP (ng/m3)b Annual - 1 

Pb (ng/m3)b Annual 0.5 0.5 

As (ng/m3)b Annual 6.6 6 

Cd (ng/m3)b Annual 5 5 

Ni (ng/m3)b Annual 25 20 

a: not to be exceeded on more than 35 d/yr; b: measured in PM10 
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  PM Exposure assessment 
 

Exposure assessment is a key challenge for studies aiming at investigating effects of PM exposure, 

particularly for long-term exposure assessment. In the recent epidemiological studies, exposure levels 

are often estimated by exposure models (land-use regression models, dispersion models…) at the 

residential address, while in the past, data from the closest air quality monitoring station were used. 

Other smaller-scaled studies use personal samplers, to allow for the consideration of exposures in the 

various microenvironments visited by the participants, therefore providing a closer estimation of PM 

exposure. Depending on the exposure duration that is being studied (i.e. short- or long-term), the 

different approaches will present different advantages or limitations.  

III.1. Estimation methods in ambient air 

Air quality monitoring stations are used by local or national authorities to evaluate the compliance with 

the current regulations and are equipped to measure various pollutants, including PM10 and PM2.5 mass 

concentration. Because of the numerous advantages they offer, monitoring stations have been used to 

estimate long-term exposure to PM in earlier studies (Gauderman et al., 2004; He et al., 2019; Horak et 

al., 2002; Latzin et al., 2009). In time-series analyses, ambient monitoring stations are still being used. 

To address the uncertainties linked to their spatial resolution, study participants are increasingly enrolled 

within a certain buffer of the monitoring station (Weichenthal et al., 2016; Zhang et al., 2016) or an 

inverse weighting approach has been used to add more uncertainties on homes located further from the 

monitoring station (Mortimer et al., 2008). The main limitation of assessing exposure from the central 

monitoring station are the low spatial coverage of the stations (Table 2), therefore estimating exposure 

with low spatial resolution.  

To improve the spatial resolution of exposures assessments, several numerical models and geostatistical 

models have been developed, to build fine-scale maps of particles concentrations. A large number of 

epidemiological studies calculated exposure at home address using chemistry-transport models (CTM) 

(Bergstra et al., 2018; Cai et al., 2020), that are based on physical and chemical representation of 
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atmospheric processes, such as the chemistry of gases and aerosols, the different types of emissions, the 

transformation of pollutants, and the mixing, dispersion and deposition of aerosols. The main advantages 

of CTM reside in the flexibility in terms of temporal scale, as well as fine spatial resolution, and the 

accuracy of the processes considered, making it possible to access specific PM components too.  

Other studies used Land Use Regression (LUR) models to calculate exposure at home address (Hellack 

et al., 2017; MacIntyre et al., 2014; Pedersen et al., 2013; Stapleton et al., 2022), that are geostatistical 

models relying on geographical variables to predict pollutant concentrations and capture small-scale 

spatial variations attributable to the environment. LUR models use geographic information system-

derived predictor variables such as distance to the closest road, traffic intensity, land-use, population 

distribution in multivariate regressions, to statistically model air pollutant concentrations measured in 

different sites. LUR models provide finely resolved concentration maps with less computational work 

than CTMs. Models, whether numerical or geostatistical, comprise certain levels of errors and 

uncertainties in exposure assessment that will impact the subsequent air pollutant-health regression 

models. Since this error is not linked to the air pollutant-health model itself, the parameters estimating 

the quality of the predicted associations will not be formally impacted, but regression coefficients could 

be attenuated or the confidence interval increased (Basagaña et al., 2013; Wang et al., 2015). Moreover, 

these exposure models estimate outdoor exposure levels, but do not account for indoor exposure, even 

though people spend more than 80% of their time indoors (Avery et al., 2010; Klepeis et al., 2001). 

III.2. Personal measures 

To further reduce the uncertainties linked to exposure assessment, several mixed approaches were used 

to estimate personal exposure to PM, which corresponds to concentrations experienced by an individual 

during normal daily activities and depends on the exposure experienced indoors, outdoors, and the 

“personal cloud” (i.e. the resuspension around the person, generated by its activity).  

Some studies developed approaches to calculate personal exposure, that rely on: 1) the self-reporting of 

the time-activity patterns over the measurement periods (i.e.: time spent in their bedroom with open or 

close window, time spent in a car, outdoor…), 2) either indoor-outdoor ratios estimations for different 
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micro-environments (He et al., 2021) or an indoor PM sampler (Ouidir et al., 2015), 3) GPS-data to 

calculate outdoor exposure to PM using fine-scale CTM.  

To avoid the potential errors due to the steps required to calculate personal PM concentrations, a few 

studies used portable PM samplers, that are considered the “gold standard”, because they include all the 

different indoor and outdoor micro-environments (X.-C. Chen et al., 2020; Delfino et al., 2008; Dutta et 

al., 2021; Jedrychowski et al., 2010; Meng et al., 2005). Active PM samplers are equipped with a pump, 

and PM mass concentration is measured either using a nephelometer or by gravimetric analysis. PM 

personal monitors using the nephelometer technique rely on the optical (light-scattering) properties of 

PM, and gravimetric-based monitors are equipped with a filter that is weighted before and after the 

sampling period. The mass difference divided by the volume of air sampled during the measurement 

period provides the average mass concentration of PM over this period. Personal monitors are designed 

to be small and light, in order for the study participant to carry it for the whole measurement period. The 

main limitations of using active personal samplers are the cost, the acceptability for the participants, the 

complexity of using the samplers in larger-scale cohorts, the temporal coverage and the technical 

difficulties to handle filters. Compared to the other techniques, personal exposure reduces measurement 

errors in short-term exposure assessment, which augment the statistical power of the study and reduces 

the risk of failure in detecting effects (Armstrong, 1998). However, for studies investigating the effects 

of long-term exposure to PM, several measurement periods must be conducted to extrapolate an average 

exposure, which also incorporate some measurement error. 
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Table 2. Comparison of measurement and modelling strategies to estimate PM concentration. 

Criteria 
Monitoring stations Chemistry-Transport 

Models 

Land Use Regression models Personal samplers 

Ease and cost of use 
+++ +++ +++ - - - 

Temporal resolution 
+++ +++ + +++ 

Temporal coverage 
+++ (long-term measurements) +++ (possibility to hind- 

and forecast) 

+ (1-2 yrs) - (days-weeks) 

Spatial resolution 

- - - 

 

++1 

 
(Gabet et al., 2018) 

+++ 

 
©Inserm 

Access to the chemical 

complexity 

+++ 
++ 

- - (geographical variables only partly 

represent the chemical complexity) 

+++ 

Consideration of 

micro-environments 

- - - + (atmospheric 

processes, buildings) 
+ (local geographic features) 

+++ 

Acceptability from 

participants 

/ / / - 

1: Please note that the same spatial resolution is used for CTMs and LUR in this representation, although this is only correct for fine-resolution CTMs applied to the city-scale.
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 Health effects of exposure to PM 
 

Air pollution is estimated to be responsible for 7 to 8.8 million deaths per year worldwide (Lelieveld et 

al., 2019; WHO, 2016) and 2.3 to 3.8 million deaths are attributable to indoor air pollution specifically. 

 

 
Figure 4. Health impacts of PM.  

(Credit: Prana Air, adapted from: https://www.pranaair.com/blog/particulate-matter-pm-2-5-sources-impacts-measures) 

PM has both short-term and long-term effects on health (Figure 4). Short-term effects are immediate or 

acute and may happen after a single intense exposure to high levels of PM, and long-term effects are 

cumulative or chronic and may cause the development of various diseases. Different categories of the 

population are suspected to be more susceptible to the health effects of air pollution, in particular 

children, and studying the respiratory effects on children is critical to understand their future respiratory 

health trajectories.  

IV.1. Short term health effects of PM 

Already by the early 1900s, several time-series studies highlighted effects of short-term changes in air 

pollution exposure during severe pollution events on the changes in daily mortality counts (Pope and 

Dockery, 2006). Short-term effects of exposure to PM mostly impact the cardiovascular and respiratory 

systems. Effects on the cardiovascular system include an increased rate of myocardial infarction (C. 
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Chen et al., 2020; Y. Liu et al., 2021) and ischemia, exacerbation of heart failure, increased incidence 

of stroke (C. Chen et al., 2020). For the respiratory system, there is evidence for increased wheezing 

(Bergstra et al., 2018), asthma exacerbation (Janssen et al., 2003; Rosenquist et al., 2020), increased 

symptoms of chronic obstructive pulmonary disease (C. Chen et al., 2020), bronchiolitis and other 

respiratory tract infections. In a review of acute effects of PM2.5 constituents, Achilleos et al. (2017) 

found stronger association with mortality for combustion elements (elemental carbon, potassium), than 

with PM2.5 mass concentration, supporting the use of additional PM properties in health studies.  

Severe pollution events were found to be harmful for the vulnerable and at-risk people, including 

children and elderly people (Bell et al., 2013). However, chronic exposure is a risk for the general 

population, because the repetitive nature of exposure can lead to the dysregulation of critical biological 

processes, impairing the body's ability to maintain homeostasis, which in turn can lead to the 

development of various diseases. 

IV.2. Long term health effects of PM 

Effects of chronic exposure to PM on the cardiovascular and respiratory system are well established, 

with numerous studies showing increased mortality and morbidity related to cardiorespiratory effects 

(Abelsohn and Stieb, 2011; Abrams et al., 2017; Pope and Dockery, 2006). Recently, air pollution 

exposure has been estimated as a contributing factor for asthma and chronic obstructive pulmonary 

disease (COPD) onset (Thurston et al., 2020) and for other adverse outcomes, including diabetes (Liu 

et al., 2019), neurodegenerative diseases (Wang et al., 2021), in-utero growth and adverse birth 

outcomes (Jedrychowski et al., 2004; Lavigne et al., 2018).  

IV.3. Increased vulnerability for children 

Exposure to PM has unequal impact on population health and several subgroups have been identified as 

more susceptible, such as elders, or asthmatic individuals, for which short-term effect of exposure to 

PM can have very deleterious impacts. Continuous exposure can potentially have long-term 

implications, and children have been identified as a susceptible subgroup (Brumberg et al., 2021; Ha, 

2021; Makri and Stilianakis, 2008; Maung et al., 2022). 
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Children are considered highly vulnerable to the effects of particulate air pollution exposure, mainly 

because their lungs are not fully developed until they are 6 to 8 years old. Moreover, the relatively small 

size of their lungs compared to their height leads to higher respiratory rates compared to adults, which 

in turns leads to higher amounts of pollutants inhaled. This is also worsened by their small height, 

making them closer to the ground, where particles are being resuspended. Alveoli are the smallest part 

of the airways, which enable gas exchanges from the lungs to the blood. They start to develop in-utero, 

at around 36 gestational weeks, their multiplication last until about 2-3 years, and their growth continues 

until adolescence or early adulthood (Bateson and Schwartz, 2007; Joshi and Kotecha, 2007; Korten et 

al., 2017). Since smaller particles accumulate in the alveoli, the alveolarization process can easily be 

disturbed during that relatively long time period.  

Prenatal exposure has been identified as a critical exposure window for child health. Numerous studies 

showed that air pollution exposure as early as during the prenatal stage could affect future health 

trajectories of the fetuses, which supports the hypotheses of “developmental origins of health and 

diseases” (DOHaD), following which exposure to certain environmental factors during the prenatal and 

perinatal stages could have significant impacts on individual’s short and long-term health. While the 

exact mechanisms by which in-utero exposure to PM affects the fetus remains unknown, the role of 

epigenetic mechanisms has been suggested (Bianco-Miotto et al., 2017; Michels et al., 2022). After 

inhaled by the pregnant mother, PM are thought to either cross the alveoli and placental barrier, acting 

directly on the fetus or to induce inflammatory or immune reactions of the mother, therefore impacting 

the nutrients or oxygen supply for the fetus (Kannan et al., 2006). The effects of maternal exposure to 

PM on children include preterm birth and low birth weight (Fleischer et al., 2014; Lavigne et al., 2018; 

Malley et al., 2017), child’s neurodevelopment (Ha, 2021) and childhood and adult respiratory illnesses 

(Aithal et al., 2023; Bush, 2021). 

IV.3.1. Measuring lung function in early childhood: a challenge for epidemiological 

studies 

Investigating the effects of prenatal exposure to PM on health parameters measured in infants and 

children is a challenging task, because it requires mother-child cohorts enrolled during the pregnancy 
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stage, and a close follow-up in infancy. The health parameter of interest can also be challenging to get, 

especially at the youngest age because of parents’ availability, newborns and infants’ agitation. On a 

more technical aspect, while it is of great interest to measure objective health outcomes in very early 

children, it sometimes requires more advanced techniques. Lung function parameters are commonly 

assessed by spirometry, which requires to take in a deep breath, and then blow as hard and long as 

possible into the spirometer. This kind of cooperation cannot be expected from infants, and this is why 

most studies explored the effects of prenatal exposure to PM on lung function in children older than 4 

years, when spirometry becomes feasible. Several noninvasive techniques relying on tidal breathing are 

more suited to assess lung function parameters in very young children, since they do not require any 

cooperation from the participant. Among them, tidal breathing flow-volume loops (TBFVL), multiple 

breath washout (MBW), thoracoabdominal compression and body plethysmography measure lung 

volumes and airway oscillometry (AOS) measures mechanical properties of the lung.  

 
Figure 5. Definition of the different lung volumes (Binks, 2022). 

For body plethysmography, patients are breathing through a spirometer and placed in a closed chamber 

with continuous measurement of pressure variation. Information collected through the spirometer and 

the pressure variation of the chamber enable the calculation of lung volumes. The thoracoabdominal 

compression technique requires the children to wear an inflatable vest inside an inextensible jacket 

around the chest, and to be equipped with a facial mask connected to the analyzer. Rapid compressions 

are applied by inflating the first jacket, thereby mechanically forcing the expiration, and the flow and 

volumes can be computed (Jat and Agarwal, 2023). 
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Tidal breathing refers to inhalation and exhalation during natural breathing, at rest. TBFVL analysis 

consists of analyzing the breathing pattern during tidal breathing, resulting in acquiring information 

regarding processes related to respiratory control and pulmonary mechanical function. The most 

straightforward measured parameters are the respiratory rate and the tidal volume, i.e. the volume of air 

inspired during each breath (Figure 5). TBFVL analysis also enables the calculation of the time to peak 

expiratory flow to expiratory time (tPTEF /tE, see Figure 6), a parameter able to reflect airway obstruction 

(van der Ent et al., 1996). For healthy patients, the peak flow of expiration should occur near the 

midpoint of exhaled tidal volume, but with airway obstruction, the peak expiratory flow occurs faster, 

near the beginning of expiration.  

 
Figure 6. Flow to time component of the tidal breathing flow-volume loops analysis. (Bates et al., 2000) 

Not all lung volumes are measured by TBFVL analysis, such as volumes linked to forced expiration or 

inhalation, or residual volume.  

MBW is a technique performed during tidal breathing, and is a method used to assess the efficiency of 

gas exchange in the lungs, therefore providing information about the distribution of the ventilation. 

During the test, infants breathe a gas mixture containing a tracer gas (Beydon et al., 2007). The 

individual continues to breath the gas mixture for several breaths while the concentration of the tracer 

gas exhaled is measured. The MBW technique provides several important measurements, including 

functional residual capacity (FRC) and lung clearance index (LCI), which reflects heterogeneous 

obstruction of the distal airways. FRC corresponds to the sum of the residual volume, that prevents 

collapse caused by the elastic recoil of the lungs, and the expiratory reserve volume, that can be expired 

through forced expiration. LCI is calculated from the cumulative expired volume to clear the inert gas 

divided by the FRC, in other words it represents the number of “lung turnovers” (i.e., multiples of FRC) 
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required to complete the washout. The choice of inert gas can influence the resulting FRC and LCI, 

since some gases are soluble in blood and tissues. Sulfur hexafluoride is usually recommended to avoid 

any changes in the breathing pattern (Gustafsson et al., 2017), however the use of this gas is strictly 

regulated in the European Union, given its environmental persistence and its global warming potential 

accounting for 23 times the one of carbon dioxide (regulation (EU) 517/2014). To comply with the EU 

regulation, pure oxygen can be used and the concentration of nitrogen (N2) during exhalation is 

monitored. 

Airwave oscillometry (AOS), also known as forced oscillation technique, relies on the application of a 

pseudo-random oscillatory signal (pressure waves) on a tidal breathing to calculate the impedance of 

the lungs, which is related to its mechanical properties (Beydon et al., 2007). Impedance is decomposed 

in resistance and reactance, and is calculated for different frequencies. The resistance is representative 

of friction forces mainly in the airways and the reactance depends on the inertive and elastic behaviors 

of the respiratory system (Gosselink and Stam, 2005). 

The effect of prenatal exposure to PM on infants’ lung function was investigated using these non-

invasive objective techniques in a few studies, compared to the body of literature relying on spirometry 

at a slightly older age. This is probably due to the commercial availability of the equipment, the fact that 

spirometry is the most common in clinical practices and to the complexity inherent to studying very 

young children. 

To the best of our knowledge, 8 studies investigated the effects of prenatal exposure to PM on children’s 

lung function. Most studies relied on spirometry parameters, assessed from 4 to 17.5 years, 2 assessed 

lung mechanics using AOS and 1 study relied on TBFVL and MBW. Among the studies assessing AOS, 

one in Australia aimed at investigating the effects of prenatal exposure to an intense pollution event 

caused by a coal mine fire on children’s lung function at 7 yrs, assessed in 79 children (Hemstock et al., 

2023). The other study, located in Nigeria measured 72-hrs personal sampling during the 2nd and 3rd 

pregnancy trimester and AOS in up to 223 children aged 2-3 yrs (Dutta et al., 2021). None of these two 

studies found an effect of prenatal exposure to PM on AOS parameters. Among studies that used 

spirometry, prenatal exposure to PM was associated with reduced lung volumes in most of them, except 

in a Chinese study investigating the effects of prenatal exposure to PM10 at a monitoring station on lung 
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function assessed at 17.5 yrs in China (He et al., 2019), and in a study on asthmatic children, where 

prenatal exposure was associated with ventilation rates, but not volumes (Mortimer et al., 2008). Finally, 

in a Swiss birth cohort study comprising 241 children, TBFVL parameters linked to ventilation rates, 

were associated with prenatal exposure to PM10 assessed at a monitoring station. 

Overall, the existing literature on prenatal exposure to PM and children lung function presents 

contrasting results, that could be due to the different lung function and exposure assessment techniques, 

the differences in the population, age groups and number of participants. The use of PM mass 

concentration itself could also explain these contrasting results, since this indicator does not encompass 

its chemical constituents and sources, and ignores the underlying biological mechanisms.
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Table 3. Articles investigating prenatal exposure to PM and lung function in children. 

Author, 

publication 

year 

Inclusion 

period 
Country 

Number of 

participants 
PM size or source 

PM estimation 

method 

Lung 

function 

parameter 

Conclusion 

Cai et al. 

2020 

1990-

1992 
England 

5272 at 8 

yrs, 3446 at 

15 yrs 

PM10, PM10 from road emissions, 

PM10 from local sources, 

estimated at each pregnancy 

trimester, and from 0-6 months, 7-

12 months and average per year 

up to spirometry 

Chemistry-

transport model 

Spirometry at 

8 yrs and 15 

yrs old 

PM exposures in each time period in 

pregnancy and early life were 

associated with reduced lung function, 

in terms of forced expired volume and 

vital capacity, at age 8 years, but not at 

15. 

Dutta et al. 

2021 

2013-

2015 
Nigeria 223 

Personal PM2.5 during 2nd and 3rd 

pregnancy trimesters and indoor 

postnatal exposure 

Personal 

monitors 

(MicroPEM, 

RTI 

International) 

Airwave 

oscillometry 

measured at 

2-3 yrs 

Only postnatal PM2.5 exposures were 

associated with increased airway 

reactance at 5 Hz. 

He et al. 

2019 
1997 China 2942 

PM10 monthly average exposure 

at different developmental 

averages, including in-utero 

Monitoring 

station 

Spirometry at 

17.5 yrs 

No clear association of in-utero 

exposure to PM10 with lung function. 

Hemstock et 

al. 2023 

2012-

2015 
Australia 79 

In-utero PM2.5 daily average and 

maximum during a coalmine fire 

period, calcuted at each reported 

location every 12 hrs 

Chemistry-

transport model 

Airwave 

oscillometry 

at 7 yrs 

No detectable effect at 7 yrs of in-utero 

exposure to PM2.5 from the local 

coalmine fire. 

Jedrychowki 

et al. 2010 

2000-

2004 
Poland 176 

48hrs personal PM2.5 during 2nd 

trimester of pregnancy 

Personal 

monitor (PEMS) 

Spirometry at 

5 yrs. 

Prenatal exposure to PM2.5 was 

associated with lung volume reduction 

(forced expired volume and vital 

capacity) at 5 yrs. 
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Author, 

publication 

year 

Inclusion 

period 
Country 

Number of 

participants 
PM size or source 

PM estimation 

method 

Lung 

function 

parameter 

Conclusion 

Latzin et al. 

2009 
1999 Switzerland 241 

PM10 average exposure during 

pregnancy and between birth and 

lung function test. 

Monitoring 

station 

Tidal 

breathing, 

multiple 

breath 

washout at 5 

weeks 

Association of increased prenatal PM10 

exposure with higher minute 

ventilation, tidal inspiratory flow and 

respiratory rate. 

Mortimer et 

al. 2008 
2000 USA 

232 

asthmatic 

children 

PM10 mean of 24hrs averages 

during pregnancy, each trimester, 

0-3 yrs, 0-6 yrs. 

Monitoring 

station and 

spatial 

interpolation at 

home address 

(inverse distance 

weight on the 

residence) 

Spirometry at 

6-11 yrs 

1st and 2nd trimester exposure to PM10 

have detrimental effects on asthmatic 

children lung function, in terms of 

flows (peak expiratory flow rate and 

forced expiratory flow). 

Stapleton et 

al. 2022 

2004-

2006 
Spain 487 

PM2.5, PM10, PM2.5-10 average 

over pregnancy and for each 

trimester, average for preschool 

period (1-4yrs), for school period 

(5-11yrs) 

Land Use 

Regression 

models at home 

address 

Spirometry at 

4, 7, 9, 11 yrs 

old. 

Prenatal exposure to PM10 and PM2.5-10 

shows trends for reduced lung function 

growth, in terms of volume (forced vital 

capacity decrease). 
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 Oxidative stress: a major mechanism 

underlying the health effects of exposure 

to PM 
 

Aerosols’ composition, size, solubility or number are physicochemical properties that all influence PM’s 

health effects. Considering that these parameters are all intertwined and that the current regulated PM 

metric (mass concentration) does not integrated this diversity, there is a need to go beyond the measure 

of each parameter separately, and consider a property that both integrate the physicochemical properties 

of PM and its potential health effects. Another angle to better understand the accumulating deleterious 

PM effects consists in investigating the underlying biological mechanisms. In a recent study, Peters et 

al. (2021) proposed eight main mechanisms underlying environmental insults, namely genomic 

alterations, epigenetic alterations, mitochondrial dysfunction, endocrine disruption, altered intercellular 

communication, altered microbiome communities, impaired nervous system function and oxidative 

stress and inflammation. PM, as the largest environmental risk, can affect individuals by all these 

mechanisms (Figure 7).  

The investigation of PM composition has enabled the identification of components that are directly or 

indirectly redox-active, such as metals or organic species. Moreover, considering that, according to the 

latest Global Burden of Diseases, the main causes of deaths to which PM exposure contributes the most 

are linked to cardiovascular and respiratory diseases (Murray et al., 2020), and given the role of oxidative 

stress in the pathogenesis of these diseases, PM's oxidative capacities have gained greater interest in the 

scientific community. In fact, several studies highlighted that one of the main pathways for PM induced 

toxicity was linked to its capacity of generating oxidative stress in the lungs and on the systemic scale, 

which in turn, triggers an inflammation cascade (Baeza and Marano, 2007; Baulig et al., 2003; Delfino 

et al., 2011; Kelly and Fussell, 2015; Li et al., 2003; Mudway et al., 2020; Valavanidis et al., 2013). 
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Figure 7. Biological mechanisms for environmental health effects, proposed by Peters et al. (2021).  

 

V.1. Oxidative stress  

Oxidative stress occurs when there is an excess of reactive oxygen species (ROS) in comparison to 

antioxidants. In a normal situation, antioxidants naturally present in the body can neutralize ROS, but 

an excess of ROS, a deficiency of antioxidants, or a combination of both creates an imbalance between 

ROS and antioxidants, leading to oxidative stress. 

The modulation of the immune system is a mechanism that closely interact with oxidative stress (Figure 

8). When the body detects a threat such as pathogens, damaged cells, or irritants, the immune system 

triggers an inflammatory response. This involves immune cells like neutrophils and macrophages that 

release cytokines, which play a key role in the regulation of the immune response. Moreover, blood 

vessels dilate in the affected area, increasing blood flow, and becoming more permeable. This allows 

immune cells and plasma proteins to enter the tissue, aiding in the isolation and elimination of the threat. 

In cases where oxidative stress becomes prominent and the inflammation process is prolonged or 

excessive, immune cells release inflammation mediators, further escalating the response (Mudway et 
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al., 2020; Peters et al., 2021). These mediators include cytokines and chemokines, which attract more 

immune cells to the site and modify cellular properties to combat the threat effectively. 

 
Figure 8. Biological response to oxidative stress at the air-lung interface. (adapted from (Mudway et al., 2020) 

The interconnection between oxidative stress and inflammation amplifies the response to harmful 

stimuli. Excess ROS can enhance the inflammatory mechanism and the resulting inflammatory 

environment can, in turn, exacerbate oxidative stress, leading to a cyclic generation of oxidative stress 

and inflammation (Kelly and Fussell, 2015). 

ROS are highly reactive species, which often comprise unpaired electrons. This term includes radical 

species such as superoxide (O2
·-) and the hydroxyl radical (HO·), the strongest oxidant in biological 

systems. Hydrogen peroxide (H2O2), while not a radical, possesses significant oxidant capacity and is 

involved in several redox reactions that lead to additional ROS formation. These reactive species are 
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byproducts of natural metabolic processes, but can also result from exogenous sources such as ultraviolet 

light, heat, cigarette smoke or exposure to PM (Castro and Freeman, 2001).  

PM can carry or generate ROS in the body through various mechanisms. A direct acellular process is 

due to PM’s physicochemical properties, driven by transition metals (Fe, Cu, Ni) or quinones that are 

redox active species. Additionally, ROS can adsorb onto PM surface, facilitating penetration into the 

air-lung interface. Furthermore, PM can activate cellular processes that lead to ROS generation. Indeed, 

the proinflammatory situation caused by the direct particle-lung surface interaction leads to the 

formation of ROS. Although they are not redox active, PAHs are metabolized, which in turns produces 

ROS (Kelly and Fussell, 2012; Lodovici and Bigagli, 2011) or are rapidly processed in the atmosphere 

to result in derivatives like oxo-PAH (quinones), nitro-PAHs, methyl-PAHs, that are redox active for 

most of them (Keyte et al., 2013; Li et al., 2003; Zeng et al., 2020). 

The first step of oxidative stress, occurring when ROS levels are relatively low, activates the cellular 

antioxidants (Figure 8). These antioxidants initiate an adaptative process, striving to restore cellular 

redox balance (homeostasis) (Baeza and Marano, 2007). If the antioxidant response is insufficient, or if 

ROS levels increase, immune cells release cytokines, triggering inflammation. This inflammatory 

response recruits other immune cells, and modify cell properties to effectively combat the threat. 

However, prolonged inflammation and heightened oxidative stress can result in severe damage to 

cellular components such as DNA, lipids, and proteins. In cases of excessively high oxidative stress 

levels, this damage can lead to cell death processes through apoptosis or necrosis (Lodovici & Bigagli, 

2011).  

Oxidative damage can lead to various health problems and has been linked to the development of several 

chronic diseases. Accumulation of oxidative damage over time has been linked to aging and age-related 

diseases, such as neurodegenerative diseases that contribute to the progression of conditions like 

Alzheimer's and Parkinson's disease (Halliwell, 2006; Markesbery, 1999), as well as cardiovascular 

disease such as atherosclerosis, hypertension, and heart failure (Valko et al., 2007). Additionally, 

oxidative stress plays a role in diabetes and cancer (Castro and Freeman, 2001), primarily due to DNA 

modifications that can promote cell dysfunction and proliferation. Cytokine levels, which are signaling 

molecules released by immune cells during inflammation, often reflect the severity of oxidative stress 



28 

and its impact on the body’s physiological processes. Biomarkers play a crucial role in assessing redox 

imbalance or oxidative damage. For instance, levels of antioxidant enzymes such as superoxide 

dismutase, catalase, and glutathione peroxidase can provide insights into the body’s ability to 

counterbalance oxidative stress (Delfino et al., 2011). Stable oxidation products of damaged cellular 

components can also serve as biomarkers to measure the effects of oxidative stress. 

Isoprostanes are stable chemical species formed in vivo by lipid peroxidation of arachidonic acid, which 

is present in the membrane phospholipids of cells (Cracowski et al., 2002; Milne et al., 2005). 

Isoprostanes are isomers of prostaglandins (Figure 9), meaning they have the same chemical formula 

but different structure and physicochemical properties. The two lateral chains in the isoprostanes are in 

cis configuration, while they are trans in prostaglandins. The peroxidation of arachidonic acid 

intermediate products can be fully reduced to form four regioisomers F2-isoprostanes: the 5-series, 12-

series, 8-series and 15-series F2-isoprostanes, names after the position of the hydroxyl function (Figure 

9). Each of the regioisomer has eight diastereoisomers, leading to 64 different F2-isoprostanes isomers, 

the predominant one being the 8-isoprostane (also abbreviated as 15-F2t-IsoP, 8-iso-PGF2α, 8-epi-

PGF2α, or iPF2α-III), which is from the 15-series F2-isoP. This molecule is released in several biological 

fluids, namely plasma, urine, exhaled breath condensate but is most stable and easily analyzed in urine 

(Dahl and van Breemen, 2010). 

 

Figure 9. Structure of arachidonic acid and its peroxidation products (Milne et al., 2007). 

Malondialdehyde (MDA) is also a biomarker for lipid peroxidation. In contrary of isoprostanes that only 

have one precursor (arachidonic acid), MDA can be formed by peroxidation of several polyunsaturated 

fatty acids. MDA is widely used when studying oxidative stress because it is relatively stable, and 
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because it is abundant in human biofluids even at low levels of oxidative stress (Cui et al., 2018; Delfino 

et al., 2011).  

Several DNA products are produced by oxidative stress to DNA (covalent crosslinks, bases 

modifications), but nucleobase modifications and specifically the 8-hydroxy-2-deoxyguanosine (8-

OHdG) lesion is the most abundant and has a mutagenic potential that makes it of key interest for 

carcinogenesis research (Kasai, 1997; Valavanidis et al., 2009). 8-OHdG is formed by the interaction of 

the HO· radical with the nucleobases of DNA (Valavanidis et al., 2009), and can be analyzed in several 

human biofluids.  

Other molecules can be used as biomarkers for oxidative stress, such as o,o’-dityrosine, fluorescent 

oxidation products, leukocyte telomer length or other chemokines, but 8-iso-PGF2α, MDA and 8-OHdG 

are well-known biomarkers, with the necessary insights for the feasibility of their analysis. Additionally, 

these biomarkers were associated with exposure to PM in several studies (Bin et al., 2016; Hashemzadeh 

et al., 2019; He et al., 2020a; Li et al., 2020; Liu et al., 2018), as well as with various lung function 

parameters (Andrianjafimasy et al., 2017; Graille et al., 2020; Hashemzadeh et al., 2019; He et al., 

2020a; Montuschi et al., 1999). Moreover, 8-iso-PGF2α, MDA and 8-OHdG also comply with key 

parameters that must be considered when selecting the molecules of interest, namely low intra- and 

interindividual variation (Pelletier et al., 2017; Wu et al., 2010), high stability in the biofluids and over 

time (Barregard et al., 2013; Janicka et al., 2012; Martinez and Kannan, 2018), low circadian variations 

and available analytical techniques that lead to results with high reproducibility, repeatability and 

specificity (Graille et al., 2020; Martinez and Kannan, 2018; Martinez-Moral and Kannan, 2019; 

Sambiagio et al., 2021).  

V.2. Oxidative potential of particles 

Given the complexity of considering separately PM’s chemical composition, size or specific surface 

area, several techniques have been developed to measure the oxidative properties of PM. There are two 

main categories for oxidative potential assays: cellular and acellular tests. Cellular assays have been 

developed to mimic the different steps of oxidative stress in-vitro, and further understand the biological 
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mechanism in place (Ayres et al., 2008). Compared to cellular assays, acellular assays are less time-

consuming, cheaper and suitable for automation (Ayres et al., 2008; Gupta et al., 2020).  

Acellular tests of oxidative potential were developed with the aim of reproducing physiological reactions 

with a shorter duration and lower cost of analysis in order to be able to use them widely and gain a better 

understanding of the oxidative properties of PM in long time series and various site typologies. In order 

to measure OP, a portion of sampled PM is extracted in a fluid, and the tests measures the ability of PM 

to either deplete an antioxidant or generate ROS in the extract. Extraction fluids include organic solvents 

(methanol), Milli-Q water, or a simulated lung fluid, which is a mix of several salts that mimic the 

epithelial fluid that cover the lungs (Calas et al., 2017). The most common acellular OP tests include 

ascorbic acid (AA), dithiothreitol (DTT), glutathione (GSH) and electron spin resonance (ESR) assays 

(Bates et al., 2019; Rao et al., 2020; Shahpoury et al., 2022). They were each developed to be 

representative of a different oxidation pathway in the lungs and therefore present different sensitivities 

to chemical components of PM. AA, DTT and GSH assays rely on the quantification of the reduced 

form of AA, DTT and GSH respectively (Cho et al., 2005; Rao et al., 2020; Yang et al., 2014). ESR 

aims at detecting directly materials containing unpaired electrons, namely HO· in presence of H2O2 (D. 

Gao et al., 2020a). OP assays have been developed in order to closely mimic the biological mechanisms 

taking place in the lungs. Therefore, AA and GSH are used because they are present in high 

concentrations in the airway lining fluid, which is the first detoxifying environment of inhaled particles 

(Kelly and Mudway, 2003; Mudway et al., 2004). There is currently no consensus on a potentially better 

assay, and a large body of literature focuses on DTT and AA assays.  

AA is one of the most abundant antioxidants in the lungs, and this assay was developed to mimic the 

antioxidant depletion in the lungs following PM inhalation. Historically, this test was developed to 

measure OP of transition metals (Fang et al., 2016; Maikawa et al., 2016; Yang et al., 2014), but it 

proved to be sensitive to oxidation by some organic species too (Daellenbach et al., 2020; Visentin et 

al., 2016).  

DTT assay was developed to quantify OP induced by organic species (quinones, PAHs), and mimic O2·- 

production in vivo (Cho et al., 2005) but it is also sensitive to some transition metals (Charrier and 
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Anastasio, 2012). DTT is used as a surrogate for cellular reductant agents, producing ROS with catalysis 

by PM redox active species. It is currently the most utilized OP assay in the literature.  

OP can be normalized either by the mass of PM, or by the volume of air sampled. Intrinsic mass-

normalized OP (OPm) quantifies the OP of 1 µg of PM and is therefore representative of the reactivity 

of PM, whereas the volume-normalized OPv (OPm multiplied by PM2.5 mass concentration), is a proxy 

for exposure levels to humans (Weichenthal et al., 2016). 

V.3. Evidence for OP effects on health and biological parameters 

Since OP tests are intended to predict PM’s capacity to generate oxidative stress upon inhalation, several 

studies have been conducted with the aim of better understanding the OP of PM: 

- by characterizing the chemical species and the associated sources most sensitive to the OP 

assays ; 

- by evaluating its predictive character towards the health and biological effects attributed to PM 

exposure ; 

- by comparing the findings with what is observed for PM mass concentration. 

Regarding OP of PM sources, findings indicate that OPAA is mostly sensitive to vehicular emissions, 

because of the contribution of copper (Cu), iron (Fe) and zinc (Zn) to this source. OPDTT is also sensitive 

to vehicular emissions, but it is mostly associated to Cu and manganese (Mn) rather than Fe, and this 

sensitivity is also explained by the organic species composing the traffic emissions, such as soot-bound 

PAHs that oxidize to quinones once metabolized. Additionally, OPDTT is also sensitive to biomass 

burning and trash burning emissions, due to the large fraction of reactive organic species emitted by 

these sources, including humic-like substances or levoglucosan. Moreover, studies showed that both 

OPAA and OPDTT responses could be modified due to the interaction between organic species and 

transition metals. Higher Fe and Cu indeed led to a decrease in OPAA (antagonistic effect) while the 

presence of quinone and Cu increased the OPDTT response (synergetic effect) (Borlaza et al., 2021a; 

Pietrogrande et al., 2022; Yu et al., 2018). Given the different photochemistry indoors, the different 

penetration rate depending on the chemical constituent of PM, and the different indoor activities, the OP 

of PM indoors has also been investigated, in European offices for OPGSH and OPAA (Szigeti et al., 2016), 

Chinese student dormitories for OPDTT (Yang et al., 2021), Chinese homes for a cellular assay (Brehmer 
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et al., 2020; Secrest et al., 2016; Zhan et al., 2018) and OPDTT (Secrest et al., 2016), and Indian slums 

for OPDTT (Anand et al., 2022). Results show high variability in OP during outdoor-indoor transport, 

due the change in water-soluble iron and sulfate concentrations, that modifies particles’ pH and therefore 

metals solubilities (Yang et al., 2021). While lower indoor OPAA and OPGSH were found in European 

offices, this was not the case for OPDTT in Chinese homes. The role of transition metals, mainly copper 

and iron, sulfates, and PAHs were pointed in most studies, as well as the high variability between indoor 

environments of the studies. A recent study performed in an environmental chamber was able to show 

that nine indoor sources of PM could significantly contribute to OPDTT, among which the combustion 

related contributed greater (all related to incense, candles, or different cigarette types) (Hu et al., 2023). 

In most epidemiological studies, exposure to OP relied on LUR models developed in Europe (Gulliver 

et al., 2018; Hellack et al., 2017; Strak et al., 2017; Tonne et al., 2012; Yang et al., 2016), and North 

America (Weichenthal et al., 2019). However, most of the studies that developed these LUR highlighted 

that there were no specific geographical tracers for OP. For this reason, monitoring stations were 

sometimes preferred in time-series analysis studies (Korsiak et al., 2022; Weichenthal et al., 2016), using 

several stations in order to have a small residence-station distance (5km). Personal PM samplers 

providing gravimetric measurements, have the additional advantage of enabling OP analysis on the 

filter. It is therefore possible to estimate the integrated personal OP over the measurement period, but to 

the best of our knowledge, only one study relied on personal samplers to address OP impacts on health 

(Maikawa et al., 2016). 

In terms of health effects, OP was found associated with several cardiorespiratory outcomes in 

population of various ages (Table 4). OPDTT was found associated with cardiovascular health (Abrams 

et al., 2017; Bates et al., 2015; Fang et al., 2016; Weichenthal et al., 2021, 2016), and OPGSH was 

associated with adverse birth outcomes (Lavigne et al., 2018). More specifically, exposure to OP was 

used in relationship with lung function, airway inflammation and oxidative stress biomarkers in several 

cohort studies, interventional studies and time series studies. The assays used in these studies comprise 

the DTT, GSH, ESR, AA and a cellular test, and OP was standardized by air volume (OPv) in most 

cases. Most of these studies assessed the effects of short-term exposure, except in the PIAMA birth 

cohort study that estimated annual averages of OP using a LUR model. This study conducted on 3701 
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children found consistent associations of OPv
DTT with decreased lung volumes assessed by spirometry 

at 12 years, and this association was not observed with PM2.5 exposure. Airway inflammation, assessed 

by the fraction of exhaled nitric oxide (FeNO), was frequently investigated, with no association for long-

term exposure to OPv
DTT and OPv

ESR in the PIAMA cohort, whereas some other studies showed increased 

FeNO for increased short-term OPv
DTT (Delfino et al., 2013; Janssen et al., 2015), OPGSH (Maikawa et 

al., 2016), OPESR and OPAA (Janssen et al., 2015) and OPcell (Delfino et al., 2013, 2010). In a study, 

where healthy adults were exposed for 5 hours to air pollution at different sites in the Netherlands, OP 

exposure (OPAA and OPGSH based on measurement in different size fractions) was not associated with 

either FeNO, nor lung function assessed by spirometry.(Strak et al., 2012). However, a study relying on 

the same exposure design directly measured OP in PM2.5 and PM10, and found decreased lung volumes 

upon OPAA and OPESR exposure, although associations varied with site of exposure and PM size fraction 

(Janssen et al., 2015). All other studies found decreased lung volumes measured by spirometry for 

increased OP exposure, whereas this effect was not observed, or was on the opposite side for increased 

PM exposure (He et al., 2021; Hogervorst et al., 2006; Yang et al., 2016). Only one study investigated 

short-term OP effects in airway mechanical parameters, and found increased resistance of small, large 

and total airways for higher OPcell and increased total airways resistance for higher PM2.5 (He et al., 

2021). Mechanistic studies investigated the effects of short-term exposure to OP on oxidative stress and 

immune function biomarkers. Exposure duration ranged from a few hours post-exposure in 

interventional studies (Janssen et al., 2015; Liu et al., 2018; Steenhof et al., 2013), to 5 days in a cohort 

study (Delfino et al., 2010), and the population studied did not exceed 101 participants. Findings tended 

to converge towards an increase in pro-inflammatory biomarker interleukin 6 (IL-6), but associations 

varied depending on the biofluid used and therefore the type of inflammation considered, i.e. systemic 

or in the airways, for blood and nasal fluid respectively. Among the three studies investigating OP effects 

on oxidative stress biomarkers (Liu et al., 2018; Zhang et al., 2016, 2021), only one interventional study 

found an effect, with increased urinary MDA and 8-OHdG for higher personal exposure to OPm
AA and 

OPm
GSH in concentrated ambient particles, respectively (Liu et al., 2018). 

Currently, there is no standardized protocol regulating OP analysis, which leads to results or ambient 

levels of OP that are hard to compare, in addition to the existing differences between the assays.  
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Table 4. Articles investigating exposure to OP and endpoints linked to lung function, airway inflammation or biomarkers of oxidative stress. 

Author and 

publication 

year 

Type of study Country 
Number of 

participants 
OP assay 

Follow-up durationa, 

exposure durationb, or time 

intervalsc 

Health endpoint Conclusion 

Yang et al. 

(2016) 
Cohort study 

Netherlands 

and Belgium 
3701 children 

OPv
DTT and OPv

ESR 

of PM2.5, estimated 

by LUR 

14 years 

Lung function 

(spirometry), airway 

inflammation (FeNO) 

Increased 1-year OPDTT was 

associated with decreased lung 

volumes at 12 years, whereas PM2.5 

was not. There was no association 

with FeNO. 

Delfino et al. 

(2010) 
Panel study USA 

60 elderly 

nonsmoker 

participants 

with coronary 

artery disease 

OPcellular of outdoor 

PM0.25 
12 weeks serum IL-6, FeNO 

Increased OP and PM concentrations 

over the last 5 days were associated 

with increased IL-6 and FeNO. 

Associations for PM varied by size 

fraction. 

Delfino et al. 

(2013) 
Panel study 

Canada, 

USA 

45 asthmatic 

children 

OPv
DTT and OPcellular 

of PM2.5 at central 

monitoring site 

10 days 
Airway inflammation 

(FeNO) 

Increased lag 1-day and 2-day OP 

was associated with increased FeNO, 

for both assays, but not PM2.5. 

He et al. 

(2021) 

Panel study 

(relying on 

interventional 

study) 

China 
43 asthmatic 

children 

calculated 24-h 

averages of 

personal OPv
cellular 

in PM2.5 

8 weeks 

Airway mechanics 

(impulse 

oscillometry), 

lung function 

(spirometry), airway 

inflammation (FeNO) 

measured at each visit 

Higher lag 0-day and lag 3-day OP 

was associated with decreased lung 

function in terms of airway 

mechanics, lung flow and volumes, 

whereas PM2.5 was only associated 

with an increased lung resistance. 

Hogervorst et 

al. (2006) 
Panel study Netherlands 342 children 

OPm
ESR and OPv

ESR 

in Total Suspended 

Particles (TSP), 

PM10 and PM2.5 in 6 

primary schools 

1 year 
Lung function 

(spirometry) 

Increased 4-day average TSP and 

PM10 were associated with increased 

lung volumes, whereas increased 4-

day average OPESR of PM2.5 was 

associated with decreased lung 

volumes. 

Maikawa et al. 

(2016) 
Panel study Canada 

62 asthmatic 

children 

personal OPv
GSH, 

OPv
AA of PM2.5 

10 days 
Airway inflammation 

(FeNO) 

Increased lag 0 and lag 2-day OPGSH 

was associated with increase in 

FeNO, whereas OPAA and PM2.5 were 

not. 

Zhang et al. 

(2016) 
Panel study USA 

97 elderly non-

smoking adults 

OPv
DTT and 

OPv
cellular measured 

in PM0.18, PM0.18-2.5 

at central 

monitoring site 

12 weeks 

MDA in exhaled 

breath condensate, 

airway inflammation 

(FeNO) 

Increased 5-day average PM0.18 was 

associated with increased MDA and 

FeNO, whereas increased PM2.5 was 

associated with decreased FeNO. 
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Author and 

publication 

year 

Type of study Country 
Number of 

participants 
OP assay 

Follow-up durationa, 

exposure durationb, or time 

intervalsc 

Health endpoint Conclusion 

Associations with OP exposures were 

not significant. 

Zhang et al. 

(2021) 

Transversal 

study 
China 101 families 

OPm
DTT in indoor 

dust 

Dust collection duration not 

available 
urinary 8-OHdG 

None significant trend observed 

between OP in dust and urinary 8-

OHdG. 

Janssen et al. 

(2015) 

Interventional 

study 
Netherlands 

31 healthy non-

smoking adults 

personal exposure 

OPv
DTT, OPv

ESR, 

OPv
AA in PM2.5 and 

PM10 

5-hour exposures; 

Participants exposed 

multiple times, separated 

for at least 14 days between 

two exposures 

Lung function 

(spirometry), airway 

inflammation (FeNO), 

nasal lavage IL-6, 

serum IL-6 and C-

reactive protein 

Positive changes in FeNO and IL-6 in 

nasal lavage were associated with all 

OP exposures. Negative changes in 

lung volumes were associated with 

OPAA and OPESR exposure, but 

associations varied with sites and PM 

size fraction.  

Liu et al. 

(2018) 

Interventional 

study 
Canada 

53 healthy non-

smoker 

volunteers 

OPm
GSH and OPm

AA 

measured in 

personal 

concentrated 

ambient aerosol 

130-min 

exposures; Participants 

exposed multiple times, 

separated for at least 14 

days between two 

exposures 

blood and urinary 

MDA, urinary 8-

OHdG, plasma IL-6 

The percent change of urinary MDA 

and 8-OHdG, were significantly 

increased post-exposure to OPm
AA 

and OPm
GSH, respectively. Percent 

change in blood MDA and urinary 8-

OHdG were significantly increased 

post-exposure to PM2.5. 

Steenhof et al. 

(2013) 

Interventional 

study 
Netherlands 

31 healthy 

adults 

calculated OPv
GSH, 

OPv
AA of PM10 from 

measurements in 

different PM size 

fractions 

5-hour exposures; 

Participants exposed 

multiple times, separated 

for at least 14 days between 

two exposures 

serum IL-6, nasal 

lavage IL-6 and IL-8 

Changes in IL-6 and IL-8 were not 

associated with exposure to OP. 

Changes upon PM exposure varied 

by co-adjustment on PM 

components. 

Strak et al. 

(2012) 

Interventional 

study 
Netherlands 

31 healthy 

adults 

similar to Steenhof 

et al. (2013) 

5-hour exposures; 

Participants exposed 

multiple times, separated 

for at least 14 days between 

two exposures 

Lung function 

(spirometry), airway 

inflammation (FeNO) 

PM mass concentration and OP 

exposures were not associated with 

the studied endpoints. 

Abrams et al. 

(2017) 
Time series USA 

730,000 ED 

visits (general 

population) 

OPv
DTT of PM2.5 at 

central monitoring 

site 

10 months 
Respiratory diseases 

related ED visit 

Increased lag 0 and lag 2-day OPDTT 

was associated with increased risks 

of ED visits for respiratory diseases, 

with stronger effect than PM2.5. 

Bates et al. 

(2015) 
Time series USA 

263,665 ED 

visits (general 

population) 

modelled OPv
DTT of 

PM2.5 at central 

monitoring site 

10.5 years 
Respiratory diseases 

related ED visit 

Increased lag 0 and lag 2-day OPDTT 

and PM2.5 were associated with 
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Author and 

publication 

year 

Type of study Country 
Number of 

participants 
OP assay 

Follow-up durationa, 

exposure durationb, or time 

intervalsc 

Health endpoint Conclusion 

increased risk of ED visits for 

respiratory diseases, with higher risks 

for OP than PM. 

Fang et al. 

(2016) 
Time series USA 

458,526 ED 

visits (general 

population) 

modelled OPv
DTT, 

OPv
AA of PM2.5 at 

central monitoring 

site 

10.5 years 
Respiratory diseases 

related ED visit 

Increased lag 0 and lag 2-day OPDTT 

was associated with increased risks 

of ED visits for respiratory diseases, 

but not OPAA. 

Weichenthal et 

al. (2016) 
Time series Canada 

426,587 ED 

visits (general 

population) 

OPv
AA and OPv

GSH 

of PM2.5 at central 

monitoring site 

7,75 years 
Respiratory diseases 

related ED visit 

Increase in both OP assays for lag 0 

and lag 2-day and in lag 0 and lag 2-

day PM2.5 were associated with 

increased risks of ED visits for 

respiratory diseases. 

a: follow-up duration for cohort and panel studies, b: exposure duration for interventional studies, c: time intervals for time-series studies. Abbreviation: ED, emergency department.  
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 Objectives 
 

The general objective of this work is to make significant progress in the validation of oxidative potential 

as a relevant indicator of the health impacts of exposure to particulate matter. With the aim of achieving 

this objective, this thesis proposes a multidisciplinary approach based on a strategy that involves a 

combination of atmospheric sciences and epidemiology to: 

- Characterize the associations between prenatal personal measurements of OP and respiratory 

health endpoints in early childhood, 

- Characterize the associations between personal measurements of OP and biological markers of 

systemic oxidative stress and immune function,  

- Characterize the chemical species determining OP in indoor air, and OP spatial and seasonal 

variability in homes in the Grenoble area. 

The general methodology of this work will be the object of chapter II and the three main research axes 

will be developed in chapters III, IV and V, and VI. A general discussion of the work and its perspective 

will be conducted in chapters VII. 

 
Figure 10. Schematic of the thesis work. 
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Chapter II 

Methodology 
 

This work was based on the couple-child SEPAGES cohort based in the area of Grenoble, France. This 

chapter will provide an overview of the measurements utilized, and more details specific to each research 

question will be provided in the corresponding chapters.  

 

 Study site 
 

Grenoble is a city located in South-East of France. Together with 49 surrounding municipalities, it forms 

the Grenoble-Alpes Métropole territory, that occupies a total area of 545,5 km2 and comprised a total of 

448 457 inhabitants in 2020 (INSEE, 2023). The territory lies in the French Alps, and is surrounded by 

three mountain ranges: Chartreuse in the North, Vercors in the West and Belledonne in the East, however 

the city of Grenoble itself is flat, and is located at an altitude of about 200 m above sea level. The 

particular topography, with a Y shape formed by the valleys, and the proximity of mountains (peaking 

at up to 2000 to 3000m) strongly influences the climate, with irregular temperatures and rain patterns 

(Figure 11, Figure 12). The Grenoble basin is influenced by the oceanic and semi-continental climate 

and by the Mediterranean climate towards the South, favoring cold winters and hot summers. Because 

of the three valleys with main road axes and the surrounding vegetation, the presence of NOx and VOCs 

favors the formation of O3, leading to important O3 events in summer. In winter, the temperature, 

orography and anticyclonic conditions lead to important thermal inversions (Largeron & Staquet, 2016), 

increasing ground concentration of pollutants, and the number of days exceeding the PM10 daily 

threshold.  
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Figure 11. Topography of the Isère department, and 

location of the Grenoble basin. Credits: RGE Alti, IGN. 

Figure 12. Yearly average precipitations over the Isère 

department. Credits: Meteo France. 

The population of Grenoble is rather young with 30.2% of the population being between 15 and 29 years 

old, and is highly educated, with 25.2% of the population in 2020 having a higher education diploma, 

i.e. 5 years of study after high school, while this proportion is of around 11% for the whole metropolitan 

France (INSEE, RP2020).  

 

 SEPAGES cohort 
 

This work is based on the data collected in the SEPAGES cohort (https://cohorte-sepages.fr/), whose 

design is detailed by Lyon-Caen et al. (2019). SEPAGES (Suivi de l’Exposition à la Pollution 

Atmosphérique durant la Grossesse et Effets sur la Santé; Assessment of air pollution exposure during 

pregnancy and effect on health, in English) is a research platform aiming at characterizing the effect of 

early-life (including in utero) exposure to a large panel of environmental factors on child health, and 

specifically child growth, respiratory health and neurodevelopment. This cohort relates to the 

Developmental Origins of Health and Disease (DOHaD) research, which explores how the interplay 

between maternal and environmental factors modifies fetal and child growth and influence 

developmental trajectories and susceptibility to disease throughout the life course (Carraro et al., 2014). 

The finely characterized environmental exposure mainly include air pollutants (NO2, BC, VOCs, PM2.5), 

temperature, noise, UV, and chemical exposures such as phenols, phthalates and perfluorinated 

https://cohorte-sepages.fr/
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compounds. The SEPAGES cohort is also aiming at investigating various biological mechanisms 

involved in the health effects of early-life environmental factors, including DNA methylation, gut 

microbiota, thyroid hormones, immunological parameters, and oxidative stress.  

Briefly, 484 women were recruited at the beginning of their pregnancy between July 2014 and July 2017 

in eight obstetrical ultrasonography practices located in Grenoble area. To be included, women had to 

be of legal age (18 or more), to be pregnant by less than 19 gestational weeks, to be living in the Grenoble 

area, and to be planning to give birth in one of the four partner maternity hospitals. A recruitment 

questionnaire allowed to compare SEPAGES women to the population of pregnant women approached 

but not included, and to pregnant women of Grenoble and France (Table 5). Compared to the non-

included women, the 484 included women were older (74% were above 30, against 60% for the 

approached but not included women), had a lower parity, had a higher education level (94% 

undergraduate or graduate, against 70%), and were more frequently employed. Compared to the 

pregnant women in whole France, participants had a lower BMI (82% with a BMI <25 kg/m2 against 

68% in France) and smoked less before (89% did not smoke against 70% in France) and during 

pregnancy. 

 
Figure 13. Design of the SEPAGES cohort. 
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Table 5. Characteristics of the women in SEPAGES cohort, and comparison with pregnant women from Grenoble and 

France. Table extracted from Lyon-Caen et al. (2019) 

Characteristic 

Population of pregnant women 

SEPAGES Women 
Approached but 

Not Included 1 
Whole Grenoble Area 2 Whole France 3 

n = 484 n = 1841 n = 17,899 n = 12,950 

Age (years), mean ± SD 32.7 ± 3.9 31.0 ± 4.7 4 31.1 ± 5.0 5 30.3 ± 5.2 

Age (categories)   (<0.001) 4 (<0.001) 5 (<0.001) 6 

<20 0 0 13 (0.7) 113 (0.6) 204 (2.5) 

20–24 13 (2.7) 128 (7.0) 1483 (8.3) 1553 (12.0) 

25–29 113 (23.3) 589 (32.0) 5116 (28.6) 4052 (31.3) 

30–34 230 (47.5) 683 (37.1) 6656 (37.2) 4377 (33.8) 

35–39 117 (24.2) 353 (19.2) 3626 (20.3) 2236 (17.3) 

≥40 11 (2.3) 74 (4.0) 900 (5.0) 519 (4.0) 

Maternal Parity 7   (0.002) 4 (<0.001) 5 (<0.001) 6 

0 222 (45.9) 816 (44.6) 6036 (39.7) 5464 (42.2) 

1 child 214 (44.2) 721 (39.4) 6098 (40.1) 4609 (35.6) 

≥2 children 48 (9.9) 294 (16.1) 3071 (20.2) 2872 (22.2) 

Marital status   (0.005) 4 NA (<0.001) 6 

In a relationship (cohabitation 

or married) 
483 (99.8) 1808 (98.2) 9593 (81.9) 

No relationship 1 (0.2) 33 (1.8) 2123 (18.1) 

Education level   (<0.001) 4 (<0.001) 5 (<0.001) 6 

Primary school 0 (0.0) 4 (0.2) 106 (1.4) 187 (1.6) 

Secondary Education 6 (1.2) 226 (12.3) 677 (9.2) 2489 (21.3) 

High School education 23 (4.8) 316 (17.3) 1404 (19.2) 2521 (21.6) 

Undergraduate or graduate 452 (94) 1285 (70.2) 5141 (70.2) 6464 (55.4) 

Nationality       (<0.001)6 

French 394 (94.7) NA NA 10,083 (85.9) 

Other European country 8 18 (4.3) 416 (3.5) 

African country 0 (0.0) 993 (8.5) 

Other nationality 4 (1.0) 243 (2.1) 

Working status during pregnancy   (<0.001) 4 (<0.001) 5 (<0.001) 6 

Employed 434 (92.9) 1532 (85.0) 6806 (75.0) 7830 (68.1) 

Unemployed 13 (2.8) 79 (4.4) 508 (5.6) 1928 (16.8) 

Housewife/parental leave/in 

training 
20 (4.3) 191 (10.6) 1757 (19.4) 1630 (14.2) 

Not working, other 0 (0.0) 0 (0.0) NA  108 (0.9) 

BMI before pregnancy       (<0.001) 6 

<18.5 kg/m2 29 (6.0) NA NA 863 (7.4) 

18.5–24.9 kg/m2 364 (75.8) 7045 (60.8) 

25–29.9 kg/m2 67 (14.0) 2312 (20.0) 

≥ 30 kg/m2 20 (4.2) 1368 (11.8) 

Smoking before pregnancy       (<0.001) 6 

0 385 (89.1) NA NA 8217 (69.5) 

1–9 cig./day 37 (8.6) 1350 (10.9) 

≥ 10 cig./day 10 (2.3) 2132 (19.6) 

Smoking during pregnancy 9       (<0.001) 6 

0 402 (93.3) NA NA 9798 (83.4) 

1–10 cig./day 29 (6.7) 1447 (12.3) 

>10 cig./day 0 (0.0) 499 (4.2) 

Values reported are numbers (%), unless stated otherwise. BMI: Body Mass Index. 1Pregnant woman interviewed by a 

SEPAGES fieldworker who met the SEPAGES inclusion criteria and did not want to participate to the study. 2Database of birth 

certificates provided 8 days after birth, covering Isère département, where Grenoble is located. The population was restricted 

to women (1) who gave birth in one of the 4 maternity wards of Grenoble area, (2) who were older than 18 years old when they 

gave birth and (3) whose date of last menstrual period was between March 2014 and February 2017 (no data were available 

after this date). 3Source: 2016 French Perinatal Survey [62]. 4P-value; Χ2-test (or Fisher exact test when needed) comparing 

the characteristics of pregnant women included in SEPAGES and the pregnant women not included in SEPAGES and 

interviewed by a SEPAGES fieldworker. 5P-value; Χ2-test (or Fisher exact test when needed) comparing the characteristics of 

pregnant women included in SEPAGES and pregnant women living in Grenoble area. 6P-value; Χ2-test (or Fisher exact test 

when needed) comparing the characteristics of pregnant women included in SEPAGES and pregnant women living in France. 
7Before the index pregnancy. 8 Including Turkish. 9 For the pregnant women included in SEPAGES, smoking during pregnancy 

was defined as smoking any time during pregnancy. For the pregnant women living in France, smoking during pregnancy was 

defined as smoking during third trimester of pregnancy. 
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The follow-up of women included several online or interview-based questionnaires, to provide a detailed 

description of the living environment, the habits of each participant, and the health conditions identified 

in the infant (wheezing, waking up short of breath, bronchitis, asthma), clinical examinations, and 

environmental exposures measurements (Figure 13). Environmental exposures were assessed at 

different timepoints: during the second and third trimesters of pregnancy, and two months, 1 year and 3 

years after child birth. During the measurement weeks, and at birth, several biological samples were 

collected (urine, blood, placenta, nails, hair, milk, stools), and a clinical examination was conducted at 

the end of each measurement week (Table 5). 

A subset of the cohort (41 families) also volunteered to participate in an intensive campaign to measure 

the chemical composition of PM samples collected from the indoor and outdoor air of their homes, using 

4 low-volume samplers, and taking place when the child was about 3 years old. Figure 14 provides an 

overview of the measurements particularly used in the frame of this work. The maternal personal PM2.5 

measurements took place at during the second and third pregnancy trimesters, starting from 2015-06-22 

to 2017-12-20. The indoor-outdoor measurement campaign took place at two seasons in the years 2018-

2019, with a cold season ranging from 2018-11-26 to 2019-04-18 and the warm season ranging from 

2019-05-09 to 2019-10-31, and lung function measurements in children took place at the end of the 2-

months and 3-years measurement weeks.  

 
Figure 14. Summary of the measurements used in this work, and their chronological sequence. 
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II.1. Pregnancy period 

II.1.1. Exposure assessment 

PM2.5 was sampled using active air samplers equipped with internal 25mm PTFE filters (MicroPEM™; 

RTI International), installed in a backpack kept at close proximity during 7 to 8 consecutive days. 

Measurement periods took place at two different stages of the pregnancy: once during early pregnancy 

and once towards the end of the pregnancy, with a median (quartile 1, quartile 3) of time between the 

first and second measurement of 16 (14, 18) weeks, with a minimum of 4 weeks and a maximum of 23 

weeks, mainly due to the availability of the samplers or the volunteers. The filters were subjected to 

gravimetric analysis (Mettler Toledo UMX2 ultramicrobalance) in controlled hygrometric conditions 

(21°C, 25% relative humidity), prior and after the 7-days PM2.5 sampling, to measure the collected net 

mass (µg), and were then stored at -20°C.  

II.1.2. Urine pools 

On the 7th day of the first PM2.5 measurement week (during early pregnancy), the participant collected 

three urine samples in the morning, midday and evening and stored them in her freezer (-20°C). When 

the study field worker visited the participants at the end of the PM collection week, the samples were 

picked up and transported to Grenoble University Hospital’s (CHU-GA) certified biobank (bb-0033-

00069), where they were stored at -20°C until pooled. One urine daily-pool per participant was created, 

by mixing equal-volumes of the three spot samples (Philippat and Calafat, 2021), that were thawed 

overnight at 4°C prior to pooling procedure. Aliquots of individual urine pools were then stored at -

80°C until biomarker analysis in 2022 (storage of 5.9 ± 0.5 yrs, with one other thawing-freezing cycle).  

II.1.3. Blood samples 

Blood samples were collected by trained filed workers, within a maximum of 48 hours after the end of 

the first PM2.5 measurement week. Blood was collected in BD Medical 368886 vacutainer tube (lithium 

heparin) for immunological analyses (cell culture and plasma separation), and in BD Medical 368861 

vacutainer tube (EDTA) for cell counting. They were transported to the Etablissement Français du Sang 

(EFS) on ice, placed on a rotating device for at least 5 min to ensure homogeneous cell content, and 

were then processed within 24 hours after collection. 
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II.2. Lung function measurements 

Objective measurements of children’s lung function were performed by trained field workers at 6-12 

weeks using the tidal breathing flow-volume loops (TBFVL) and nitrogen multiple-breath washout 

techniques (N2MBW), and at 3 years using airwave oscillometry (AOS, see Figure 15). All 

measurements were performed in compliance with the current guidelines from the European Respiratory 

Society (ERS) and American Thoracic Society (ATS) (Bates et al., 2000; Beydon et al., 2007). 

  
Figure 15. Pictures of the lung function measurements at 6 weeks (left), and three years (right). Credits for the pictures are: 

Inserm (left), Thorasis (right). 

The three techniques used are noninvasive and do not require active participation of the children, making 

them particularly suitable for very young children. The parameters used are summarized and described 

in Table 6.
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Table 6. Lung function parameters measured at 6 weeks and 3 years. 

Age Technique Parameter Description 

6 

weeks 

TBFVL 

Tidal volume (VT) Volume of a tidal breath. 

tPTEF/tE 
Ratio of time to peak tidal expiratory flow (tPTEF) to 

expiratory time (tE) 

N2MBW 

Functional residual 

capacity (FRC) 

Volume of air remaining in the lungs at the end of a 

tidal breath. 

Lung clearance 

index (LCI) 

Number of “lung turnovers” (i.e., multiples of FRC) 

required to complete the washout 

3 

years 
AOS 

Resistance at 7 Hz 

(Rrs7) 
Associated with frictional losses in the large airways. 

Reactance at 7 Hz 

(Xrs7) 

Depends on the inertive and elastic behaviors of the 

respiratory system. Measures lung stiffness and 

heterogeneous ventilation. 

Area under the 

reactance curve 

(AX) 

Represents the peripheral airways and measures the 

loss of elastic recoil of increased stiffness of the lung. 

Frequency 

dependence of the 

resistance (Rrs7-19) 

Defined by the resistance difference between 7 and 

19 Hz, this parameter evaluates the resistance of the 

small airways and the heterogenous obstruction of the 

distal bronchi. 

 

II.3. Indoor-outdoor campaign 

41 families volunteered for the concurrent evaluation of the indoor and outdoor PM2.5 chemical 

characterization. In each home, indoor and outdoor sampling were carried out simultaneously, at two 

different seasons (cold and warm). Two indoor samplers were placed in the main living area while two 

outdoor samplers were placed on the adjacent balcony, terrace or garden when available. If there was 

none available, sampling was performed indoors only (N=12). The adjacent samplers were respectively 

equipped with a Teflon and a Quartz filter, to have sufficient material for chemical speciation. Figure 

16 summarizes the available data.  

Teflon filters were double-weighted in ATMO SUD’s gravimetric laboratory, under strict environmental 

conditions before and after sampling, following standard NF EN 12341, respecting 12h (before 

sampling) and 24-72h (after sampling) between the two analyses.  
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Figure 16. Schematic of the indoor-outdoor measurement campaign. 

In 2018-2019, PM10 were collected daily on 150 mm-diameter quartz fiber filters at the central 

monitoring site “Les Frênes” of the regional monitoring Air Quality agency (Atmo Aura) using a Digitel 

DA-80 (30 m3/h).  

 

 Chemical analyses 
 

III.1. OP analysis 

Personal PM2.5 filters, weekly PM2.5 indoor and outdoor quartz filters, and ambient PM10 filters were 

analyzed for OP following the same protocol established by Calas et al (Calas et al., 2018, 2017). PM 

were extracted from the filters in a simulated lung fluid (SLF), composed of a mixture of Gamble and 

1,2-dipalmitoylphosphatidylcholine (DPPC), to reach a final concentration of 25 µg/mL for ambient 

PM10 extracts, and of 10 µg/mL for the other filter extracts. After vortex mixing at 37°C during 75min, 

OP was measured using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, by mixing reagent 

solutions in a 96-well plate (CELLSTAR, Greiner-Bio) and measuring absorbance using Infinite M200 

Pro TECAN spectrophotometer, with a total reaction time of 30 min. The DTT assay relies on the 

consumption of DTT by PM2.5, and the titration of remaining DTT by dithionitrobenzoic acid (DTNB), 

forming 2-nitro-5-thiobenzoic acid (TNB) that is titrated every 10min. Since AA has an absorbance 
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spectrum in the UV-Visible, its absorbance at 265 nm, measured every 4 min, directly measures its 

depletion upon consumption by PM2.5. For both assays, analyses are performed in triplicates, a positive 

control of 1,4-naphtoquinone is performed for every experiment, with the coefficient of variation of the 

positive control tests <3% . OPDTT and OPAA was normalized by the sampled air volume (nmol/min/m3) 

and by the extracted PM mass (nmol/min/µg). 

III.2. Indoor and outdoor PM2.5 filters 

 
Figure 17. Summary of the chemical analyses conducted on the quartz and Teflon filters. 

Filter samples were subjected to chemical analysis to measure the carbonaceous fraction, water-soluble 

ions, anhydrosugars and polyols, on the quartz filter; trace elements analysis was performed on the 

Teflon filter (Figure 17). 

Organic and elemental carbon were analyzed on a 1.5 cm2 punch of the quartz filter, by thermo-optical 

analysis following the EUSAAR2 protocol, using the Sunset Lab EC/OC analyzer (Birch and Cary, 

1996; Cavalli et al., 2010). Briefly, the sample is placed in a quartz furnace and subjected to a prescribed 

temperature protocols, under a more or less oxidizing atmosphere. A gas stream carries the volatilized 

carbon through several steps, converting them into methane, analyzed by flame ionization detection. 

Water-soluble ions, anhydrosugars, and polyols were analyzed on the same water extract of the sample. 

Briefly, 10 mL ultrapure water is used for the solid/liquid extraction of the filter during 20 minutes under 

vortex agitation, prior to filtration using a 0.25 µm Acrodisc filter (Milipore Millex-EIMF).  

Ionic fraction is measured by ion chromatography (IC, Thermo Fisher ICS 3000), following a standard 

protocol previously described (CEN, 2017; Jaffrezo et al., 2005), with a CS16 column for cations 

analysis (Na+, NH4
+, K+, Mg2+, Ca2+) and an AS11HC column for anions (SO4

2-, NO3
-, Cl-). 
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The analysis of anhydrosugars (levoglucosan, mannosan, galactosan), polyols (arabitol, sorbitol, 

mannitol) is performed on the water extract, using high-performance liquid chromatography (HPLC), 

with pulsed amperometric detection (PAD) (model Thermo Fisher 5000+) with Metrosep columns (Carb 

1 – Guard+A Supp 15 – 150+Carb 1 – 150), following the procedure described by Piot et al. (2012).  

Metallic trace elements were analyzed by Tera-environment, using inductively coupled plasma coupled 

with a mass spectrometer (ICP-MS) or an atomic emission spectrometer (ICP-AES) after acid digestion 

of a portion of the Teflon filters, following standardized protocols (Alleman et al., 2010b; CEN, 2005).  

III.3. Urine samples 

Urine specific gravity, a measure of urine dilution, was measured in each pool prior to storage at -80°C 

using a handheld digital refractometer (Atago-PAL-10S). Urinary malondialdehyde (MDA) was 

analyzed in sampled diluted 50 times with water before derivatization using 2,4-Dinitrophénylhydrazine 

(DNPH). 8-OHdG and 8-iso-PGF2α were individually isolated from 1 mL urine using solid phase 

extraction. The concentrated extracts as well as the MDA-DNPH derivative were analyzed by liquid 

chromatography mass spectrometry (Thermo Fischer Quantiva). Oxidative stress biomarkers were 

analyzed at CURML-CHUV (Switzerland). Concentrations below the limit of detection (LOD) or limit 

of quantification (LOQ) were replaced by LOD or LOQ divided by the square root of two, respectively.  

III.4. Blood samples 

Innate and adaptative immunity of the women were measured at baseline in plasma and in whole blood 

after a 24-hour ex vivo activation at 37°C using Resiquimod (R848) and phytohaemagglutinin (PHA) 

(Table 7). Cytokine were measured in the culture supernatant (for activated cells) or in plasma by 

cytometric bead arrays (BD™ CBA Human cytokines Flex Set that is a bead-based immunoassay 

capable of simultaneously measuring several cytokines in biological fluids, BD Biosciences).  

Table 7. Cytokines analyzed in the blood samples, depending on the sample activation type. 

R848-activated cytokines PHA-activated cytokines Non-activated cytokines 

IFN-α, IFN-γ, IL-1b, IL-6, 

IL-8, IL-10, IL-12p70, TNF 

IFN-γ, IL-2, IL-9, IL-10, IL-13, IL-

17A, TNF 
IL-8, MCP-1, RANTES 
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Only cytokines with at least 70% of detected values were considered in this study, and the concentrations 

below the limit of detection were imputed by a fill-in approach, that randomly select values between 0 

and the LOD based on the underlying distribution (Helsel, 1990; Lubin et al., 2004).  

 

 Statistical tools 
 

IV.1. Personal exposure to PM and OP and biological or 

respiratory health endpoints 

The associations of exposure to PM2.5 and OP with oxidative stress and immunological biomarkers and 

with respiratory health followed a similar pathway of analysis, summarized in Figure 18.  

Firstly, the data was curated by several people working on the SEPAGES database handling, or having 

worked on the variables before. Among the curation and correction performed, a two-step 

standardization method based on regression residuals (Mortamais et al., 2012) was used to correct 

cytokine concentrations and N2MBW parameters related to technical between-participant variability 

related to the experimentations. Cytokines concentrations were corrected, when necessary on technical 

variables 1) for baseline cytokines: analytical batch, time between sample collection and reception, time 

between sample receipt and analysis; 2) for activated cytokines the same variables were used, along with 

the duration of the activation, R848 or PHA age at the time of sample activation, storage duration. FRC 

and LCI, two parameters measured by N2MBW, were corrected for the degree of hypoventilation that 

may be induced by using pure oxygen during the test, and was shown to affect FRC and LCI measures 

(Gustafsson et al., 2017). The degree of hypoventilation was calculated for each N2MBW test, 

comparing the maximum drop of tidal volume during the first 15 breaths after O2 inhalation and the 

mean tidal volume before inhalation. The method employed to correct these parameters first assessed 

the influence of the factors introducing between-participant variability on each outcome using adjusted 

linear models. The model estimates of each associated variable (p<0.10) were then used to remove the 

variability in cytokines concentrations or FRC and LCI. It is particularly necessary to apply this method 
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when the parameters influenced by experimentation-related variability are the independent variables, 

which was the case in other studies in SEPAGES for cytokine concentrations, LCI and FRC. This 

method was not employed for urinary biomarker correction, and protocol variables were introduced as 

covariates in the model, when necessary. 

With the available database, a descriptive analysis of the population selected for each study was 

conducted, by presenting the distribution of their characteristics and exposure levels. Included and 

excluded population were compared, to investigate any potential selection bias. Bivariate analysis was 

then conducted to investigate the relationship between different variables, and Spearman’s correlation 

coefficients were calculated between the different exposure variables and between the different health 

endpoints.  

 
Figure 18. Summary of the statistical analysis conducted for the personal exposure to PM and OP and biological or 

respiratory health endpoints. 
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To assess the linearity of the air pollutant-health endpoint associations, univariate regression analysis 

was performed, coding the exposure into tertiles or quartiles. Potential confounding factors in the health 

or biological endpoints - air pollution exposure models were selected a priori, based on previous studies, 

and were further investigated: 1) by exploring the linear relationship between each outcome and each 

factor, 2) by adding each factor one by one in the outcome - exposure model, to examine the impacts on 

the effect size of the exposure, 3) by performing a “fully adjusted” model. Potential confounders in the 

main models were then selected based on these analyses, by selecting influencing variables in at least 

one of the relationships considered. A p-value of 0.4 was used as criterion to select variables to exclude 

from the “fully adjusted” model to create the main model. Finally, a likelihood ratio test between the 

adjusted main model and the adjusted model, modelling the exposure with a natural spline with 5 degrees 

of freedom. P-values below 0.05 for the likelihood ratio test highlighted that spline models did not 

perform better than the adjusted main linear models. 

Missing data regarding covariates was imputed using multiple imputation by chained equation (MICE), 

after checking that the Missing Completely At Random (MCAR) hypothesis was not rejected, using 

Little’s test (Little, 1988). MICE iteratively imputes missing data by taking into account the relationship 

between the variables of the data table. Analyses were performed separately on multiple imputed 

datasets, and results were combined using Rubin’s rule (Rubin, 1987), i.e. averaging the estimates of 

the complete dataset. Each analysis comprised less than 10% of imputed data. Although post-hoc 

correction techniques reduce type I errors, they increase type II ones, by hypothesizing that there is no 

true association among all the tested exposures and outcomes, which is unlikely to be true as the study 

is based on strong a priori hypothesis from previous studies. For these reasons, results of this work were 

interpreted by looking at the consistency of association of PM and OP exposures across the health 

endpoints parameters, and no formal correction for multiple testing was applied. 

In the analyses on prenatal exposure to OP and children lung function, associations were evaluated with 

personal OPv, whereas both OPm and OPv were investigated in relation with biomarkers. Indeed, when 

considering short term exposure, and biological endpoints, OPm could additionally provide insights into 

the effects of oxidative properties of PM2.5, regardless of the inhaled air volume. 
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In the analyses on urinary biomarkers of oxidative stress, concentrations were corrected for specific 

gravity prior to analysis (MacPherson et al., 2018; van ’t Erve et al., 2019) following: [𝑂𝑆𝐵]𝑐𝑜𝑟𝑟
𝑖 =

 [𝑂𝑆𝐵]𝑖  ∗ (𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝐺)  −  1) (𝑆𝐺𝑖  −  1)⁄ ; with [OSB]: concentration of oxidative stress biomarker, 

i: pool of urine, SG: specific gravity. SG-corrected concentrations had a skewed distribution and were 

transformed using natural logarithm.  

An overview of the population selection for chapter III, IV and V is presented on Figure 19. The study 

on maternal exposure to PM2.5 and OP with child’s lung function (chapter III) was restricted to women 

with at least one OP measurement week during pregnancy and whose child had attended at least one 

clinical visit at 6 weeks or 3 years (n=356). The study on personal exposure to PM2.5 and OP with 

oxidative stress biomarkers (chapter IV) was restricted to women with one OP measurement week for 

which urine samples collected at the end of the measurement week were analyzed for oxidative stress 

biomarkers (n=300). Finally, the study on personal exposure to NO2, PM2.5 and OP with immunological 

biomarkers was restricted to women with at least one air pollution measurement week, for which a blood 

sample was retrieved within 2 days of the end the measurement week, and analyzed for cytokines 

(n=270).
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Figure 19. Overview of the population selection.
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IV.2. Indoor and outdoor measurement campaign 

Figure 20 summarizes the statistical workflow followed for the indoor-outdoor measurement campaign. 

The consistency of the concurrent samplers (respectively equipped with quartz and Teflon filters) 

operation conditions was assessed, including sampling duration and volume. Some samplers equipped 

with Teflon filters were stopped by participants while the adjacent sampler equipped with quartz filter 

continued running. Since most species were measured on quartz filters, reconstructed PM were more 

consistent than the gravimetric analysis measured on the Teflon filter. When a house had a Teflon filter 

but no quartz filter to reconstruct PM, then the gravimetric analysis was used (N=5).  

PM mass concentration was calculated using the following equation: 

[𝑃𝑀2.5] = [𝑂𝑀] + [𝐸𝐶] + [𝑛𝑠𝑠 − 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + [𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + [𝑎𝑚𝑚𝑜𝑛𝑖𝑢𝑚] + [𝑠𝑒𝑎𝑠𝑎𝑙𝑡] + [𝑑𝑢𝑠𝑡] 

Where the organic matter (OM) was estimated with an OM to OC conversion factor of 1.8 for outdoor 

and ambient PM and 1.4 for indoor PM (Favez et al., 2010; Putaud et al., 2010; Tofful et al., 2021). 

[nss-sulfate], corresponded to the sulfate fraction from which the marine component was subtracted 

(Seinfeld & Pandis, 2016) according to Eq. 4. 

[𝑛𝑠𝑠 − 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] = [𝑆𝑂4
2−] − 0.252[𝑁𝑎+]   (4) 

The seasalt fraction, was calculated from sodium concentrations according to Eq. 5. 

[𝑠𝑒𝑎𝑠𝑎𝑙𝑡] = 3.252 ∗  𝑁𝑎+]     (5) 

The dust fraction, taking into account metallic elements and oxydes, was calculated following the 

empirical Eq. 6 (Putaud et al., 2004):  [𝑑𝑢𝑠𝑡] = 5.6 ∗ [𝑛𝑠𝑠 − 𝐶𝑎2+]  (6) 

Where:   [𝑛𝑠𝑠 − 𝐶𝑎2+] = [𝐶𝑎2+] − [𝑁𝑎+]/26    (7) 

To create a database by individual, with PM constituents’ concentrations measured at two seasons in 

three environments, i.e. indoor, outdoor (measured outside of the house) and ambient (measured at the 

central monitoring station), daily ambient PM10 chemical species and OP was averaged over the 

individual period of indoor-outdoor sampling. 
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Figure 20. Summary of the statistical analysis conducted for the indoor-outdoor measurement campaign. 

A descriptive analysis of the homes, their occupant’s activity and the reconstructed PM in the different 

environments was performed. Then, spatial variations of outdoor PM and OP were assessed based on 

their descriptive statistics, and on the Spearman’s correlation coefficients between each PM’s chemical 

constituents and OP measured outdoors, and the corresponding weekly average at the ambient site. 

Finally, exposure in the indoor environment and the potential habits that could influence this exposure 

were characterized. This was done by identifying the main chemical drivers of PM OP using Spearman’s 

correlation coefficient calculated between PM2.5, OP and the chemical constituents, in each indoor and 

outdoor environment separately. Then, indoor-outdoor ratios of each chemical specie and OP was 

calculated, and the significance of the concentration difference between indoor and outdoor 

environments was assessed using Wilcoxon rank sum test. I/O ratios higher than 1 indicate potential 

indoor emission sources of chemical specie, or OP. To assess whether the specie potentially originating 

from indoor sources was mostly influenced by the indoor environment, I/O ratios were discussed with 

regards to the Spearman’s correlation coefficients between each PM’s chemical constituents and OP 

measured outdoors and indoors. Lastly, the influence of vacuuming, (binary variable, <2 vs. ≥2 times 

during the sampling week) and of cooking (binary: < vs. ≥ median of the reported cumulated duration 

of oven and hotplates use) was assessed, by comparing the means of I/O ratio in each category and using 

Wilcoxon test for mean comparison. Smoking, candle and incense lightning were not considered in these 

habits due to the very limited number of cases for each.  
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 French summary 
 

Contexte. L'exposition prénatale aux PM peut influencer le développement pulmonaire du fœtus et de 

l’enfant, ainsi que sa santé respiratoire ultérieure (Cai et al., 2020; Carraro et al., 2014; Dutta et al., 

2021; Korten et al., 2017; Latzin et al., 2009). Très peu d'études (Dutta et al., 2021; Latzin et al., 2009; 

Muttoo et al., 2019) ont utilisé des techniques non invasives permettant la mesure de la fonction 

pulmonaire chez les très jeunes enfants, pourtant, ces techniques reposent sur la respiration courante, ce 

qui les rend particulièrement adaptées et réalisables chez de très jeunes enfants.  

La plupart des études épidémiologiques utilisent la concentration massique des PM pour évaluer 

l’exposition aux particules en association avec les paramètres de santé (D. Gao et al., 2020b; Pope, 

2000). La capacité des PM à générer des espèces réactives de l'oxygène et ainsi à induire un stress 

oxydatif est mesurée par le potentiel oxydant (PO). Cette métrique est intégrative de plusieurs propriétés 

physico-chimiques des PM et de leurs effets sur la santé, puisqu’elle mime la voie oxydative par laquelle 

les PM affectent de nombreux paramètres de santé (Hellack et al., 2014). Actuellement, très peu d’études 

ont évalué l’exposition au PO des particules dans des cohortes, et encore moins en utilisant des mesures 

personnelles sur des femmes enceintes afin d’examiner les liens avec la santé ultérieure de l’enfant. 

 

Objectifs. L'objectif de cette étude est d'évaluer si l'exposition personnelle maternelle aux PM2.5, 

exprimées en concentration massique et en termes de PO, est associée à la fonction pulmonaire chez les 

nouveau-nés et les jeunes enfants. 

 

Méthodes. Cette étude repose sur 356 femmes de la cohorte SEPAGES, équipées d’échantillonneurs 

personnels de PM2.5 deux fois une semaine durant leur grossesse. Le PO a ensuite été analysé sur le filtre 

comportant les PM2.5, en utilisant le test à l’acide ascorbique (AA) et celui au dithiothréitol (DTT), et en 

normalisant les activités du PO par le volume d’air prélevé, pour quantifier l’exposition de chaque 

femme. Par la suite, la fonction pulmonaire de leurs enfants a été évaluée à 6 semaines par la technique 

des rinçages à l’azote (N2MBW) et par l’analyse des courbes débit-volume (TBFVL), et à 3 ans par la 
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technique de l’oscillométrie des voies aériennes (aussi appelée oscillations forcées, AOS). Les 

associations entre l’exposition prénatale aux PM2.5 et à son PO et la fonction pulmonaire à 6 semaines 

et 3 ans ont été étudiées par des régression linéaires multiples, en ajustant sur les facteurs de confusions 

sélectionnés d’après la littérature et récoltés à l’aide de plusieurs questionnaires administrés aux 

volontaires. Les valeurs manquantes sur ces co-variables ont été imputées 10 fois en utilisant une 

méthode d’imputation multiple par équations chaînées (MICE). 

 

Résultats. Chez les nouveau-nés, une augmentation d’un interquartile (IQR) de 0,89 nmol/min/m³ de 

POv
DTT est associée à une diminution de la capacité résiduelle fonctionnelle (CRF) mesurée par N2MBW 

(β : -2,26 mL ; avec un intervalle de confiance [IC] à 95% de -4,68 à 0,15). Les PM2.5 montrent une 

association similaire au POv
DTT, mais de moindre ampleur. L'indice de clairance pulmonaire (LCI) et les 

paramètres mesurés par le TBFVL ne montrent aucune association claire avec les expositions 

considérées. À l'âge de 3 ans, une augmentation de la fréquence-dépendance de la résistance des 

poumons (Rrs7-19) mesurée par AOS montre une tendance positive en lien avec l’exposition au POv
DTT 

(β : 0,09 hPa×s/L ; [IC] à 95 % : -0,06 - 0,24) et au POv
AA (IQR = 1,14 nmol/min/m³ ; β : 0,12 hPa×s/L 

; IC à 95 % : -0,04 - 0,27), mais pas aux PM2.5 (IQR = 6,9 µg/m³ ; β : 0,02 hPa×s/L ; IC à 95 % : -0,13 

- 0,16).  

 

Conclusions. Cette étude identifie des associations entre l’exposition aux PM2.5 et son PO pour la CRF, 

un indicateur du volume pulmonaire, et avec la Rrs7-19, qui mesure l’hétérogénéité mécanique liée à 

l’obstruction des petites bronches, également influencée par les volumes pulmonaires. Ces résultats, pris 

conjointement suggèrent des effets spécifiques du PO sur la croissance pulmonaire, ce qui est également 

supporté par des études montrant que l’exposition prénatale aux polluants environnementaux affecte la 

croissance in-utero, notamment la croissance des organes (Lavigne et al., 2018; Saadeh and Klaunig, 

2014) et que le stress oxydant peut endommager les tissus placentaires, et par ce biais affecter la 

croissance pulmonaire in-utero (Øvrevik, 2019; Veras et al., 2017). 
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 Abstract 
 

Background. Fine particulate matter (PM2.5) has been found to be detrimental to respiratory health of 

children, but few studies have examined the effects of prenatal PM2.5 oxidative potential (OP) on lung 

function in infants and preschool children. 

Objectives. We estimated the associations of personal exposure to PM2.5 and OP during pregnancy on 

offspring objective lung function parameters and compared the strengths of associations between both 

exposure metrics. 

Methods. We used data from 356 mother–child pairs from the SEPAGES cohort. PM filters collected 

twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) 

assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal 

breathing analysis (TBFVL) and nitrogen multiple-breath washout (N2MBW) test, performed at 6 wk, 

and airwave oscillometry (AOS) per- formed at 3 y. Associations of prenatal PM2.5 mass and OP with 

lung function parameters were estimated using multiple linear regressions. 

Results. In neonates, an interquartile (IQR) increase in OPv
DTT (0.89 nmol/min/m3) was associated with 

a decrease in functional residual capacity (FRC) measured by N2MBW [β: −2.26 mL; 95% confidence 

interval (CI): −4.68, 0.15]. Associations with PM2.5 showed similar patterns in comparison with OPv
DTT 

but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear 

association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs 

(Rrs7–19) from AOS tended to be associated with higher OPv
DTT (β: 0.09 hPa × s/L; 95% CI: −0.06, 0.24) 

and OPv
AA (IQR = 1.14 nmol/min/m3; β: 0.12 hPa × s/L; 95% CI: −0.04, 0.27) but not with PM2.5 (IQR 

= 6.9 µg/m3; β: 0.02 hPa × s/L; 95% CI: −0.13, 0.16). Results for FRC and Rrs7–19 remained similar in 

OP models adjusted on PM2.5.  

Discussion. Prenatal exposure to OPv
DTT was associated with several offspring lung function parameters 

over time, all related to lung volumes. 
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  Introduction 
 

Exposure to ambient particulate matter (PM) increases risk of chronic respiratory diseases and triggers 

asthma and chronic obstructive pulmonary diseases. (Janssen et al., 2003; Murray et al., 2020; WHO, 

2016) Early life, including pregnancy, is a vulnerable time window for the health effects of air pollution. 

(Capello and Pili, 2018; Sly and Flack, 2008) Exposure to PM during pregnancy is reported to influence 

foetal and infant lung development and respiratory health. (Cai et al., 2020; Carraro et al., 2014; Dutta 

et al., 2021; Korten et al., 2017; Latzin et al., 2009) 

Measures of children’s respiratory health, including spirometry outcomes (Bergstra et al., 2018; Gehring 

et al., 2013; Schultz et al., 2016a), asthma incidence (He et al., 2019), or fraction of nitric oxide in 

exhaled air (FeNO) (He et al., 2020a), have been widely investigated in association with outdoor air 

pollution. Although studying lung function of children in early childhood is of great interest for the 

evaluation of their susceptibility to respiratory diseases later in life, most previous studies (Bergstra et 

al., 2018; Gehring et al., 2013; He et al., 2019, 2020a; Schultz et al., 2016a) were limited to children 

older than 5 years of age, when spirometry becomes feasible. Very few studies (Dutta et al., 2021; Latzin 

et al., 2009; Muttoo et al., 2019) have used non-invasive techniques that allow for the measurement of 

lung function in very young children, such as tidal breathing flow-volume loops analysis (TBFVL), 

nitrogen multiple-breath washout (N2MBW) or airwave oscillometry (AOS). Yet, these techniques rely 

on tidal breathing, making them particularly suitable and feasible in population-based cohorts. Muttoo 

et al. (2019) and Latzin et al. (2009) found decreases in functional residual capacity (FRC) and tidal 

volume (VT), respectively estimated by MBW and TBFVL, in children that had higher prenatal exposure 

to nitrogen oxides (NOx) or particulate matter with diameter ≤ 10 m (PM10). Dutta et al. (2021) found 

higher airway reactance (Xrs5) measured by AOS in children with higher postnatal exposures to particles 

with < 2.5 µm diameter (PM2.5).  

Most epidemiological studies examining the health effects of PM used the mass concentration metric in 

association with health parameters. (D. Gao et al., 2020b; Pope, 2000) While the biological pathways 

are not fully understood yet, evidence suggest that oxidative stress caused by PM is a key factor in 
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understanding PM-associated health effects. (Crobeddu et al., 2017; Hatzis et al., 2006; Leni et al., 2020; 

Riva et al., 2011) The ability of PM to generate reactive oxygen species and thereby induce oxidative 

stress is measured by the oxidative potential (OP), an integrative metric of several physical and chemical 

properties of PM and its health effects. (Hellack et al., 2014) Several recent studies have presented OP 

as a better predictor than concentration for assessing association with some cardio-respiratory diseases. 

(Bates et al., 2019; Weichenthal et al., 2021) The studies addressing the effects of OP exposure on 

children’s lung function, although few in number, converged to a stronger detrimental effect of OP as 

compared to PM mass. (Delfino et al., 2013; He et al., 2021; Yang et al., 2016) These latter studies used 

average urban ambient OP measurements or OP estimated by land-use regression models, which could 

lead to measurement errors given that most people in western countries spend over 80% of their time 

indoors. (Avery et al., 2010) Thereby, personal sampling has been proposed to increase the accuracy in 

exposure assessment, but, to the best of our knowledge, no study has estimated personal prenatal 

exposure to OP in relation to respiratory function in the first years of life.  

The aim of this study was to assess whether maternal personal exposure to PM2.5 mass concentration 

and to the OP of PM2.5 is associated with lung function in newborns and in preschool children. The 

effects of OP and PM were also compared, and the independency of OP effects from PM2.5 were tested. 

 

 Methods 
 

IV.1. Study population 

This study is based on the data from the French mother-child SEPAGES cohort that has been setup to 

describe maternal and child personal exposure to environmental pollutants and their effects on health. 

The study design and protocol have been previously described by Lyon-Caen et al. (2019) Briefly, 

pregnant women were recruited from July 2014 to July 2017 in eight obstetrical ultrasonography 

practices located in the Grenoble area in the French Alps. The included women had to be pregnant by < 

19 gestational weeks, be older than 18 y old, to have a singleton pregnancy, to be planning to give birth 

in one of the four maternities clinics from Grenoble area and to live in the study area (i.e. living one 
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hour driving from Grenoble city centre). The volunteers were then followed during pregnancy, and their 

children were recruited at birth and then followed up. The mother-child pairs selected for this study had 

at least one period of PM2.5 sampling during pregnancy (n=405), with validated and positive OP analysis 

(n=387) and the children had performed at least one lung function test at either 6 wk or 3 y (n=356) 

(Figure 21). 

Parents signed an informed consent for themselves and their child and the study protocol was approved 

by the Comité de Protection des Personnes Sud-Est V (CPP) and the French data privacy institution 

(Commission Nationale de l’Informatique et des Libertés, CNIL). 

 
Figure 21. Flow chart for the selection of the study population. Note: *PM2.5 net weight < 4 µg.  

Abbreviations: AOS (Airwave oscillometry), LF (Lung function), N2MBW (Nitrogen multiple-breath washout), OP (Oxidative 

potential), PM2.5, PM with aerodynamic diameter <2.5 µm, TBFVL (Tidal breathing flow-volume loops). 

IV.2. Maternal exposure 

Active personal air samplers (MicroPEM™, RTI International, Research Triangle Park, NC, USA) were 

used to sample PM2.5 onto Teflon filters. The participants were asked to carry the devices or keep them 

at close proximity during the entire sampling period (consecutive 7-8 d). The measurements took place 

at different periods of the pregnancy. The sample filters on which OP was measured consisted of 286 



64 

collected at a median gestational age (GA) of 18 wk (min: 12, Q1: 32, Q3: 19, max: 28) and 294 at 34 

wk (min: 28, Q1: 32, Q3: 35, max: 38). Therefore, the median (IQR) of time between the first and second 

measurement was 16 (14, 18) wk with a minimum of 4 wk and a maximum of 23 wk, mainly due to the 

availability of the samplers or the volunteers. For each participant, personal exposure was estimated 

from one (132 out of 356, 37%) or 2 wk (224 out of 356, 63%) of sampling. An average exposure was 

calculated when two periods of measurements were available. 

The net mass (micrograms) of PM2.5 collected was determined by gravimetric analysis (Mettler Toledo 

UMX2 ultra-microbalance) before and after sampling at the same hygrometric conditions (21°C, 25% 

relative humidity). Following gravimetric analysis, the samples filters were cold-stored (-20°C) until 

OP analysis, for an average of 26 wk. OP analysis followed the protocol established by Calas et al. 

(2018, 2017) Briefly, a simulated lung fluid (SLF, mixture of Gamble and 

dipalmitoylphosphatidylcholine - DPPC) was used to extract PM2.5 from the filters for a final 

concentration of 10 µg/mL, maintaining a constant amount of extracted PM2.5 for intercomparison. The 

extracts were then subjected to vortex mixing at 37°C for 1.25 h. The OP was measured using the 

dithiothreitol (DTT) and ascorbic acid (AA) assays.  

For the DTT assay, PM2.5 extracts were mixed with a DTT solution using a 96-well plate (CELLSTAR, 

Greiner-Bio). Every ten minutes, the remaining DTT was titrated by dithionitrobenzoic acid (DTNB) 

and the formation of 2-nitro-5-thiobenzoic acid (TNB) was measured by absorbance at 412 nm (TECAN 

spectrophotometer Infinite M200 Pro), for a total reaction time of 30 min (e.g. 3 titrations in total). For 

the AA assay, a modified version of the synthetic respiratory tract lining fluid (RTLF) was used. (Kelly 

and Mudway, 2003) AA was mixed with the PM2.5 extract in a 96-well plate and the AA consumption 

was evaluated measuring the change in absorbance at 265 nm over time. Absorbance measurements 

were collected at 4-minute intervals for a total reaction time of 30 min. For both assays, the consumption 

rate (nanomoles per minute) was then normalized by the corresponding filtrated air sample volume 

(cubic meter) to represent human exposure through inhalation. OPv
DTT corresponds to the consumption 

of DTT (nmol/min/m3) and OPv
AA corresponds to the consumption of AA (nmol/min/m3). All samples 

were subjected to triplicate analysis and each sample result is reported as the mean of the repeated 

measurements. The coefficient of variation (CV) is between 0 and 10% for each assay.  
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To ensure accuracy of each OP measurement, positive control tests were performed for every 

experiment. A 1,4-naphthoquinone (1,4-NQ) solution was used for both the DTT and AA assays. 

Particularly, a 40 μL of 24.7 μM stock solution was used for the DTT assay and an 80 μL of 24.7 μM 

1,4-NQ solution for AA assay (Calas et al., 2018, 2017). The measurement quality, estimated by the CV 

of the positive control tests, were at <3.2% for both OP assays.  

IV.3. Lung Function at 6 weeks 

Lung function tests were performed on infants, aged 6-12 wk, using an infant face mask during natural 

sleep, in supine position and with the head midline, following guideline of the European Respiratory 

Society (ERS) and American Thoracic Society (ATS). (Bates et al., 2000) After stabilization of the 

breathing pattern (20-30 breaths rejected), 10 min of tidal breathing flow-volume loops (TBFVL) were 

recorded and three measurements of nitrogen multiple-breath washout (N2MBW) were performed.  

For TBFVL measurements, the first 30 to 50 regular breaths were used. The sighs and 10 breaths 

preceding and following a sigh were excluded. The following TBFVL parameters were retained in the 

present analysis: tidal volume (VT) and the ratio of time to peak tidal expiratory flow (tPTEF) to expiratory 

time (tE). Out of the 484 mother-child pairs, 325 children performed the TBFVL test. 

The N2MBW technique measures lung volumes and ventilation heterogeneity. For this test, infants 

inhaled pure oxygen (O2) and the concentration of exhaled N2 was monitored employing the Exhalyzer© 

and Spiroware© equipment (Ecomedics). The main outcomes were a) functional residual capacity 

(FRC) and b) lung clearance index (LCI), defined as the number of respirations required to reduce the 

concentration of N2 below 2.5%. Up to three valid measurements were obtained, guided by the following 

criteria: regular breathing during quiet sleep, tidal volume within target, no swallowing or sighs in the 

first five breaths, no sign of leak, and N2 concentration below 2.5% for at least three consecutive breaths 

to end the test. A transient decrease in tidal volume may be induced by using pure oxygen during the 

test, that has been shown to affect FRC and LCI measures. (Gustafsson et al., 2017) Hence, the degree 

of hypoventilation was calculated for each N2MBW test, comparing the maximum drop of tidal volume 

during the first 15 breaths after O2 inhalation and the mean tidal volume before inhalation. Then, FRC 

and LCI values were corrected for the degree of hypoventilation using a 2-step standardization method 
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based on regression residuals. (Mortamais et al., 2012) First, the influence of hypoventilation was 

characterized using adjusted linear mixed regression models (accounting for the repeated data), and, in 

a second step, the model estimate was used to remove the variability in FRC (or LCI) due to 

hypoventilation. A total of 865 valid N2MBW tests were retained, with a median (Q1; Q3) of 3 (2; 3) 

tests per child. Out of the 484 mother-child pairs, 350 children performed the N2MBW test. For each 

child, both LCI and FRC corrected values were averaged.  

IV.4. Lung Function at 3 years 

At the age of 3 y (median: 3.1 y.), the impedance of the respiratory system was assessed based on 

airwave oscillometry (AOS) using commercial device (TremoFlo; Thorasys Systems) complying with 

current European standards. (Beydon et al., 2007) The device was calibrated daily, using a reference 

resistance.  

For this technique, pressure waves with frequencies varying from 7 to 41 Hz are applied during tidal 

breaths and lung impedance is calculated from the changes in flow and pressure. To ensure the quality 

and reproducibility of the measurements, they were performed after at least 15 d from any respiratory 

infection (self-reported by the mother via a questionnaire administrated by a clinical research assistant 

at the clinical visit), with the child sitting, the head slightly extended, and wearing a nose clip. Children 

were asked to firmly close their lips around the mouthpiece while their cheeks and chins were maintained 

by the technician to avoid any signal damping by the mouth walls. After getting used to the device 

during approximately 30 s, three to five acceptable measurements were obtained and averaged. A rest 

interval of 1 min was respected between each 16-s-long measurement. We excluded measurements with 

the following artefacts: leakage, swallowing, glottis closure, vocalization or obstruction of the 

mouthpiece by the tongue. 

The key components of impedance are the resistance and the reactance of the respiratory system. The 

resistance is representative of friction forces mainly in the airways and the reactance depends on the 

inertive and elastic behaviors of the respiratory system. (Gosselink and Stam, 2005) The parameters 

included in this study are raw values of resistance and reactance at a frequency of 7 Hz (Rrs7 and Xrs7), 

the area under the reactance curve (AX) and the frequency-dependence of the resistance, defined by the 



67 

resistance difference between 7 and 19 Hz (Rrs7-19). Rrs7 is a parameter that reflects large airway 

resistance, whereas AX and Rrs7-19 better characterize the peripheral airways. Rrs7-19 also evaluates the 

heterogeneous obstruction of the distal bronchi. (Lundblad et al., 2021) Increased Rrs, Rrs7-19 and AX, 

and decreased Xrs are associated with a reduced lung function. 

Among the 320 children to the 3-y follow-up who performed AOS (66% follow-up rate), measurements 

for 306 children (96% success rate for AOS test) were retained, complying with validity and 

reproducibility criteria (at least 2 measurements with a coefficient of variation of <15% for Rrs7). The 

mean value of the valid measurements was calculated for each parameter and used for the analyses. Out 

of them, 248 had personal prenatal exposure to OP, resulting in a total attrition rate of 51% for the 

exposure to personal prenatal OP-AOS parameters association study. 

IV.5. Statistical methods 

Both univariate and multiple linear regressions were used to study the associations between maternal 

personal exposure to PM2.5 and OP with each lung function parameter. The three exposure metrics used 

in this study (PM2.5, OPv
DTT, OPv

AA) were continuous and scaled by their IQR, allowing to compare their 

respective effects on the outcomes. The Spearman correlation coefficient (rs) was used to calculate 

correlations between the exposures. Linear regressions were used after confirming linearity by a 

likelihood ratio test between the adjusted model, modelling the exposure with a natural spline with 5 

degrees of freedom and the adjusted main model (Figures S1 to S6 in the Supplement, all p-values ≤ 

0.05). All analyses were performed using R software (version 4.1; R Development Core Team). 

Potential confounders were selected a priori, based on previous studies (Latzin et al., 2009; Schultz et 

al., 2016a): a) parental characteristics: educational level (defined as the maximum number of studying 

years after high-school degree between the parents and expressed in two classes: above or <5 y; self-

reported through a self-administrated questionnaire), parental history of rhinitis (binary, self-reported 

by a questionnaire administrated by a clinical research assistant), mother’s age (calculated with the date 

of birth self-reported by a questionnaire administrated by a clinical research assistant) and body mass 

index (BMI) before pregnancy (continuous; calculated based on self-reported weight before pregnancy 

and height measured by a clinical research assistant during a SEPAGES clinical visit); b) infant 
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characteristics: child sex (male/female), age (continuous, calculated with the date of birth collected in 

the child health booklet), height and weight (continuous, measured by a clinical research assistant at the 

clinical visit), passive smoking (yes/no, in utero, including maternal passive smoking or until the clinical 

visit; assessed by several self-administrated questionnaires during and after the pregnancy), 

breastfeeding (still some breastfeeding at 6 wk, yes/no, self-reported by a questionnaire administrated 

by a clinical research assistant); c) exposure characteristics: season of sampling [3-class variable: cold 

(all filters sampled between October and March), warm (all filters sampled between April and 

September), and cold+warm (one filter sampled in the cold season and one filter sampled in the warm 

season)], mean temperature during pregnancy (continuous, assessed at home address by Hough’s 

model). (2020) The effects of the confounders were analyzed by looking at the effect of each confounder 

separately on the regression model adjusted for sex, height and weight (Figures S9, S10). Missing data 

regarding covariates in the main model were imputed by multiple chained equation, using the R package 

mice (van Buuren and Groothuis-Oudshoorn, 2011), assuming that the data was missing completely at 

random (MCAR), which was checked by Little’s test (Little, 1988) (p-values of the test > 0.05). 

Descriptive statistics of the covariates can be found in Table S1. Ten imputed datasets were created and 

results from each dataset were combined using Rubin’s rule. (Rubin, 1987) We did not correct for 

multiple tests, but results were interpreted by looking at the consistency of association of PM and OP 

exposures across the different lung function parameters.  

Several sensitivity analyses were conducted to address the robustness of the results from the main model 

by assessing the impacts of: a) data imputation, by conducting a complete case analysis; b) extreme 

exposure and health outcome values, by excluding the lowest (below 1st percentile) and highest values 

(above the 99th percentile) of the outcomes and exposures, resulting in the exclusion of 4%-5% of the 

population of each analysis; c) the number of PM and OP measurement weeks, by excluding participants 

with only one measurement week (n=132); d) the independency of OP effects to PM, by adjusting OP 

models on PM2.5; e) LCI and FRC measurement error due to the degree of hypoventilation, by adding 

an analysis excluding one fourth of the children that had the highest hypoventilation degree during the 

N2MBW test (n=72); f) leverage and influencing points, by excluding points that had a Cook’s distance 

(Cook, 1977) higher than 4/n, where n is the number of observations in the main model (exclusion of 4-
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7% of the observations); g) the independency of OP and PM effects to personal NO2 concentrations 

during the same weeks of sampling [passive sampler (Passam AG), worn simultaneously to the active 

PM sampler]. Multicollinearity was assessed using the variance inflation factor in the two-pollutant 

models (VIFs < 2).  

 

 Results 
 

V.1. Description of the population  

The present study was conducted with children that had at least one prenatal measurement of OP and 

one lung function parameter assessed, leading to 356 mother-child couples (73% of SEPAGES cohort) 

(Figure 21). The included children had parents with a higher educational level, had less parental history 

of rhinitis, higher exposure to PM2.5, higher Rrs7 and a lower Xrs7 as compared to the children not 

included in the study (Table 8). No difference between the included and excluded population was 

observed for both OP and lung function at 6 wk. In the study population, 52% (n=185) of the children 

were boys, and the majority of children were born on term (96%, n=341) by vaginal delivery (85%, 

n=302) from mothers that were mainly nulliparous or primiparous (45%, n=160 and 46%, n=162, 

respectively). In infancy, most children were still breastfed at 6 weeks (86%, n=306) and less than 27% 

(n=95) were exposed to tobacco smoke in utero (including maternal passive smoking) and after birth (< 

6 wk). The parental level of education is high since 72% (n=256) of the parents have studied 5 y or more 

after their French high school diploma (i.e., having at least a MSc diploma). Only 15 children were born 

before the 37th week, with a minimum of 34 gestational weeks. Regarding lung function tests (Figure 

21), 325 children performed a valid test of the lung function at 6 wk (284 had a valid N2MBW analysis 

and 309 had valid TBFVL measurements), and 248 children had valid AOS measurements. Out of these 

248 children, 197 had available N2MBW results and 205 had valid TBFVL test results.  
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Table 8. Characteristics of the included (N=356) and excluded (N=128) population from the cohort SEPAGES in this study. 

Included population corresponds to children that have at least both one prenatal oxidative potential assessment and one test 

of lung function. 

Characteristics Included populationa (N=356) Excluded populationa (N=128) p-valueb 

Sex of child     0.2 

Male 185 (52%) 73 (59%)   

Female 171 (48%) 51 (41 %)   

Missing / 4   

Birthweight (g)     0.13 

Median (IQR) 3295 (3048, 3580) 3220 (2995, 3507)   

Missing / 5   

Preterm birth, <37 wk   0.2 

0 (No) 341 (96%) 115 (93%)  

1 (Yes) 15 (4%) 9 (7%)  

Missing / 4   

Parental educational level >5 y   0.048 

0 (No) 100 (28%) 48 (38%)  

1 (Yes) 256 (72%) 80 (62%)  

Delivery mode     0.084 

Vaginal  302 (85%) 96 (78%)   

C-section 54 (15%) 27 (22%)   

Missing / 5   

Still breastfed at 6 wk   0.11 

0 (No) 49 (14%) 20 (20%)  

1 (Yes) 306 (86%) 78 (80%)  

Missing 1 30   

Parental history of rhinitis   0.003 

0 (No) 132 (40%) 26 (24%)  

1 (Yes) 202 (60%) 83 (76%)  

Missing 22 19   

Parity     0.6 

0 (nulliparous) 160 (45%) 62 (48%)   

1 (primiparous) 162 (46%) 52 (41%)   

2 or more (multiparous) 34 (9.6%) 14 (11%)   

ETS in utero and < 6 wk     0.7 

0 (No) 259 (73%) 84 (75%)   

1 (Yes) 95 (27%) 28 (25%)   

Missing 2 16   

ETS < 3 yrs.     0.7 

0 (No) 270 (79%)  70 (77%)   

1 (Yes) 73 (21%) 21 (23%)   

Missing 13 37   

Exposure to particulate air pollutionc       

PM2.5 (µg/m3) 13.3 (10.6, 17.5) 12.2 (8.2, 16.6) 0.033 

Missing / 79   

OPv
DTT (nmol/min/m3) 1.49 (1.11, 2.00) 1.53 (1.05, 1.91) 0.8 

Missing / 97   

OPv
AA (nmol/min/m3) 1.56 (1.07, 2.21) 1.66 (0.93, 2.30) >0.9 

Missing / 97   

Mean temperature during pregnancy (°C)    

Median (IQR) 13.0 (10.6, 14.6)  11.6 (10.1, 13.6) 0.001 

Missing 0 4  

N2MBW parametersc (6 wk)       

FRC (mL) 105 (95, 115) 108 (95, 115) 0.6 

Missing 72 62   

LCI 7.58 (6.75, 8.47) 7.49 (6.99, 8.12) 0.9 

Missing 72 62   

TBFVL parametersc (6 wk)       

VT (mL) 34 (29, 39) 33 (29, 36) 0.4 

Missing 47 112   

tPTEF/tE (%) 35 (29, 42) 36 (26, 45) 0.8 

Missing 47 112   

AOS parametersc (3 y)       

Rrs7 (hPa×s/L) 11.53 (10.05, 13.04) 12.67 (10.87, 14.17) 0.021 

Missing 108 70   
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Characteristics Included populationa (N=356) Excluded populationa (N=128) p-valueb 

Rrs7-19 (hPa×s/L) 1.02 (0.56, 1.61) 1.18 (0.63, 1.98) 0.2 

Missing 108 70   

Xrs7 (hPa×s/L) -3.88 (-4.56, -3.28) -4.25 (-5.59, -3.51) 0.037 

Missing 108 70   

AX (hPa/L) 68 (45, 92) 70 (53, 105) 0.3 

Missing 108 70   

Note: AA, ascorbic acid; AOS, airwave oscillometry; DTT, dithiothreitol; AX, area under the reactance curve; ETS, 

environmental tobacco smoke; FRC, functional residual capacity; LCI, lung clearance index; N2MBW, nitrogen multiple-

breath washout; OP, oxidative potential; OPv
AA, volume-normalized oxidative potential measured by the AA assay; OPv

DTT, 

volume-normalized oxidative potential measured by the DTT assay; PM2.5, PM with an aerodynamic diameter <2.5 µm; Rrs7, 

resistance at a frequency of 7 Hz; Rrs7–19, difference between the resistance at 7 Hz and at 19 Hz; TBFVL, tidal breathing 

flow-volume loops; tPTEF=tE ratio of time to peak tidal expiratory flow to expiratory time; VT, tidal volume, Xrs7, reactance 

at a frequency of 7 Hz.  
aExpressed in n (%) or Median (IQR). bp-Value from Wilcoxon rank sum test and Pearson’s chi-squared test comparing 

included and excluded population. cVariables used for population selection (selected children had prenatal exposure to PM 

and OP and either N2MBW or TBFVL or AOS measures) 

 

V.2. Exposure to PM2.5 and its oxidative potential 

The median (Q1, Q3) of average prenatal personal exposures to PM2.5, OPv
DTT and OPv

AA were 13.3 

(10.6, 17.5) µg/m3, 1.49 (1.11, 2.00) nmol/min/m3 and 1.56 (1.07, 2.21) nmol/min/m3. Personal PM2.5 

and OP (particularly OPv
AA) presented a seasonal trend, with higher levels reached during the cold 

season (Figure 22, Table S2). OPv
DTT was highly correlated with both PM2.5 concentration and OPv

AA 

(rs=0.64 and rs=0.72, respectively. n=356, p<2.2∙10-16 for both), whereas the correlation between PM2.5 

concentration and OPv
AA was moderate (rs=0.51, p<2.2∙10-16) (Figure S7). For participants with two 

periods of sampling, there was no differences in PM2.5, OPv
AA and OPv

DTT levels at early vs. late 

pregnancy (Figure S8, Table S3). 

 
Figure 22. Monthly distribution of personal measurements of PM2.5 (left), OPv

DTT (center), and OPv
AA (right).  

See Table S2 for corresponding numeric data. Note: Boxes represent 25th–75th percentiles; the middle horizontal line 

represents the median; whiskers extend to the most extreme point within 1.5 IQRs of the box and the dots outside boxes indicate 

outliers. AA, ascorbic acid; DTT, dithiothreitol; IQR, interquartile range; OPv
AA, volume-normalized oxidative potential 

measured by the AA assay; OPv
DTT, volume-normalized oxidative potential measured by the DTT assay; PM2.5, PM with an 

aerodynamic diameter <2.5µm. 
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V.3. Association between exposures to prenatal PM2.5 and OP 

and lung function 

Lung function at 6 weeks. In the univariate analysis, increased personal prenatal exposure to PM2.5 and 

OPv
DTT were associated with a lower FRC at 6 weeks (-2.16 mL; 95% CI: -4.41, 0.09 for each 6.9 µg/m3 

increase of PM2.5, and -2.69 mL; 95% CI: -5.28, -0.11 for each 0.89 nmol/min/m3 increase of OPv
DTT). 

After adjusting for potential confounders (Table 9, Table S4, Figure 23), in both main and complete-

case analysis, the magnitude of association between OPv
DTT and FRC slightly decreased and associations 

were borderline significant (β: -2.26 mL; 95% CI: -4.68, 0.15 for the main model and β: -2.65 mL; 95% 

CI: -5.16, -0.14 for the complete-case analysis). The confounders mainly driving the differences between 

the univariate and the main analysis were the season of sampling and the parental history of rhinitis 

(Figure S9). LCI and tPTEF/tE did not show any clear association trend for all exposures considered. In 

general, for air pollution-lung function associations showing marginal association, the sensitivity 

analyses showed similar patterns of association to the ones of the main model, except for the negative 

OPv
DTT-VT association that disappeared when excluding extreme values. The analyses excluding 

leverage and influencing points (estimated by Cook’s distance) overall led to similar results and resulted 

in statistically significant association for FRC and exposure to both PM2.5 and OPv
DTT (Table S4, Figure 

S11). The analyses further adjusted on personal NO2 sampled simultaneously to PM2.5 showed that NO2 

did not modify the estimates and 95% CI for any of the studied associations. The magnitude of the 

associations of OPv
DTT on lung volumes, estimated by FRC, remained similar in models further adjusted 

on PM2.5. The change in FRC in the two-pollutant model with OPv
DTT and PM2.5 showed a stronger effect 

of OPv
DTT than PM2.5 [-1.82 mL (95% CI:-5.03, 1.40) for OPv

DTT vs. -0.59 mL (95% CI: -3.37, 2.19) for 

PM2.5], although this association became non-significant (Figure 23, Table S6). 
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Table 9. Associations between prenatal exposure to air pollution and lung function at 6 weeks and 3 years. Regression coefficients are estimated from univariate and multiple linear models. 

Age 

Pollutants PM2.5 (µg/m3) OPv
DTT (nmol/min/m3) OPv

AA (nmol/min/m3) 

Regression model Unadjusted Adjusteda Unadjusted Adjusteda Unadjusted Adjusteda 

6 

weeks 

FRC (mL)b Coefficients (95% CI) -2.16 (-4.41, 0.09) -1.58 (-3.67, 0.5) -2.69 (-5.28, -0.11) -2.26 (-4.68, 0.15) -1.05 (-3.31, 1.22) -0.59 (-2.85, 1.68) 

LCIb Coefficients (95% CI) -0.02 (-0.17, 0.13) 

-0.01 (-0.14, 

0.13) 

-0.05 (-0.22, 0.12) -0.06 (-0.22, 0.09) -0.02 (-0.17, 0.12) -0.05 (-0.19, 0.1) 

VT (mL)c Coefficients (95% CI) -0.52 (-1.4, 0.37) 

-0.54 (-1.35, 

0.28) 

-0.65 (-1.67, 0.38) -0.58 (-1.54, 0.38) -0.11 (-1.01, 0.78) 0.13 (-0.76, 1.02) 

tPTEF/tE (%)c Coefficients (95% CI) 0.34 (-0.86, 1.54) 0.25 (-1.02, 1.51) 0.8 (-0.59, 2.19) 0.69 (-0.79, 2.17) 0.42 (-0.78, 1.63) 0.14 (-1.23, 1.51) 

3 

years 

Rrs7 

(hPa×s/L)d 

Coefficients (95% CI) -0.01 (-0.33, 0.32) -0.02 (-0.33, 0.3) 0.12 (-0.21, 0.46) 0.05 (-0.28, 0.37) -0.04 (-0.37, 0.28) -0.08 (-0.41, 0.25) 

Rrs7-19 

(hPa×s/L) d 

Coefficients (95% CI) -0.01 (-0.15, 0.14) 0.02 (-0.13, 0.16) 0.08 (-0.07, 0.23) 0.09 (-0.06, 0.24) 0.1 (-0.05, 0.24) 0.12 (-0.04, 0.27) 

Xrs7 

(hPa×s/L) d 

Coefficients (95% CI) -0.01 (-0.17, 0.16) 0.01 (-0.15, 0.17) -0.09 (-0.26, 0.08) -0.05 (-0.22, 0.11) -0.07 (-0.23, 0.1) -0.07 (-0.23, 0.1) 

AX (hPa/L) d Coefficients (95% CI) 0.65 (-4.45, 5.74) 0.22 (-4.81, 5.25) 2.34 (-2.95, 7.64) 1.07 (-4.08, 6.22) -1 (-6.07, 4.06) -2.21 (-7.48, 3.07) 

Note: Coefficients are calculated for an increase of one IQR for PM2.5, OPv
DTT and OPv

AA, corresponding to 6.9 µg/m3, 0.89 nmol/min/m3, and 1.14 nmol/min/m3, respectively. PM2.5, particulate 

matter with an aerodynamic diameter <2.5 μm; OPv
DTT, volume-normalised oxidative potential measured by the DTT assay; OPv

AA, volume-normalised oxidative potential measured by the AA 

assay; FRC, functional residual capacity; LCI, lung clearance index; VT, tidal volume; tPTEF/tE ratio of time to peak tidal expiratory flow to expiratory time ; Rrs7, resistance at a frequency of 7 

Hz; Rrs7-19, difference between the resistance at 7 Hz and at 19 Hz; Xrs7, reactance at a frequency of 7 Hz; AX, area under the reactance curve. 
a Model adjusted on child’s height, weight, sex, age, season of sampling, breastfeeding, environmental tobacco smoke, maternal age and BMI before pregnancy, parental level of education, 

parental history of rhinitis and mean temperature during pregnancy.  
b Number of observations is 284 for FRC and LCI. 
c Number of observations is 309 for VT and tPTEF/tE. 
d Number of observations is 248 for Rrs7, Rrs7-19, Xrs7 and AX. 
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Figure 23. Association between personal exposure to PM2.5, OPv

DTT, and OPv
AA during pregnancy and lung function parameters 

measured at 6 wk in the univariate and multiple linear models and in the sensitivity analyses. 

Outcomes and exposures were scaled by their IQR. See Tables S4 and S6 for corresponding numeric data. Whiskers represent 

the 95% confidence interval around the estimate. The main model was adjusted on child’s height, weight, sex, age, season of 

sampling, breastfeeding, environmental tobacco smoke, maternal age and BMI before pregnancy, parental level of education, 

parental history of rhinitis, and mean temperature during pregnancy. In addition, “2 sampling periods” are the analyses 

reduced to the children that had 2 wk of prenatal measurements of air pollution (63%–66% of the population); “Excluding 

extreme values” are the analyses excluding the exposures and outcomes below the first percentile and above the 99th (exclusion 

of approximately 5% of the population); “Adjusted on PM” corresponds to adding personal exposure to PM2.5 in the set of 

confounders, “Adjusted on NO2” corresponds to adding personal exposure to NO2 in the set of confounders, and the last 

analyses were performed excluding children that had the highest hypoventilation degree during the nitrogen multiple breath 

washout test (excluding 25% of the population).  
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Lung function at 3 years. Increased personal prenatal exposures to OPv
DTT and OPv

AA were associated 

with an increase of 0.09 (95% CI: -0.06, 0.24) and 0.12 (95% CI: -0.04, 0.27) hPa×s/L in Rrs7-19 

respectively, whereas no trend for association was found with exposure to PM2.5 (β: 0.02 hPa×s/L; 95% 

CI: -0.13, 0.16) (Table 9, Figure 24). The confounders mainly driving the differences between the 

univariate and the adjusted model were the season of sampling, parental history of rhinitis and maternal 

age before pregnancy (Figure S10). The sensitivity analyses confirmed these trends of association. In 

particular, the analysis excluding extreme values resulted in a statistically significant positive 

association, with an IQR increase in OP being associated with an increase of 0.20 (95% CI: 0.04, 0.36) 

hPa×s/L in Rrs7-19 for OPv
DTT. Likewise, the model excluding leverage and influencing points led to 

statistically significant results with Rrs7-19 and exposure to both OPv, whereas the results for other 

outcomes were not modified, with their 95% CI largely overlapping with that of the main model (Table 

S5, Figure S12). The analyses further adjusted on personal NO2 sampled simultaneously to PM2.5 

showed that NO2 did not modify the estimates and 95% CI for any of the studied association. The two-

pollutant models for Rrs7-19 showed that the effects of both OPv were stronger than the effects of PM2.5 

[0.14 (-0.06, 0.34) and -0.07 (-0.27, 0.13) hPa×s/L for OPv
DTT and PM2.5; 0.15 (-0.03, 0.33) and -0.05 (-

0.22, 0.12) hPa×s/L for OPv
AA and PM2.5], and other associations were not modified in this model (Figure 

24, Table S7). No clear trends were observed for the other AOS parameters in the main model and this 

was confirmed by the sensitivity analyses. 
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Figure 24. Association between personal exposure to PM2.5, OPv
DTT, and OPv

AA during pregnancy and lung function parameters 

measured at 3 y in the univariate and multiple linear models and in the sensitivity analyses.  

Outcomes and exposures were scaled by their IQR. See Tables S5 and S7 for corresponding numeric data. Whiskers represent 

the 95% confidence interval around the estimate. The main model was adjusted on child’s height, weight, sex, age, season of 

sampling, breastfeeding, environmental tobacco smoke, maternal age and BMI before pregnancy, parental level of education, 

parental history of rhinitis and mean temperature during pregnancy. In addition, “2 sampling periods” are the analyses 

reduced to the children that had 2 wk of prenatal measurements of air pollution (61% of the population); “Excluding extreme 

values” are the analyses excluding the exposures and outcomes below the first percentile and above the 99th (exclusion of 

approx. 5% of the population); “Adjusted on PM” corresponds to adding personal exposure to PM2.5 in the set of confounders; 

“Adjusted on NO2” corresponds to adding personal exposure to NO2 in the set of confounders. 
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 Discussion 
 

To the best of our knowledge, this study is the first one to address the associations between maternal 

personal exposures to PM2.5 and OP and children’s objective lung function parameters measured as early 

as 6 weeks of age and at 3 years. Regarding OPv
DTT, our findings showed consistency across some lung 

function parameters with higher prenatal exposure being associated with a lowered indicator of lung 

volumes (FRC) at 6 weeks, and with a trend towards reduced Rrs7-19 at 3 years, an indicator influenced 

by both lung volumes and ventilation heterogeneity. Interestingly, the effects of OPv
DTT exposure on 

FRC were stronger than those of PM2.5 mass in the two-pollutant model.  

VI.1. PM and OP exposures and lung function 

Our results are in agreement with existing studies reporting a higher prevalence of reduced lung function 

in participants that are exposed to higher levels of PM2.5. (Gauderman et al., 2004; Gehring et al., 2013; 

Guo et al., 2019; Hwang et al., 2015; Rice et al., 2016) Regarding TBFVL and N2MBW tests, our 

findings are in line with the results of the South African birth cohort MACE (Muttoo et al., 2019), that 

investigated the effects of NOx from LUR models and lung function of children at 1.5, 6, 12 and 24 

months, and with the results of a Swiss birth cohort (Latzin et al., 2009) which examined the association 

between PM10 and NO2 from an ambient monitoring station and lung function measured in neonates 

(median age of 34 days). Both studies showed decreases in FRC and VT in infants prenatally exposed to 

higher concentrations of NOx or NO2 and PM10, while no effects were found on LCI. Our results extend 

their findings by confirming the pattern of decreased FRC with exposure to PM2.5 and OP, further 

supporting the importance of considering the oxidative stress caused by PM during pregnancy to predict 

lung growth restriction of children. In our study, none of the exposures considered were associated with 

LCI nor with tPTEF/tE, two parameters still poorly studied in association with air pollution and with 

conflicting results regarding LCI. (Latzin et al., 2009; Muttoo et al., 2019) The decrease in VT with 

OPv
DTT and PM2.5 is not confirmed by all sensitivity analyses, indicating limited robustness of this 

association. Rrs7-19 is usually used to detect the obstruction of the distal bronchi, and can be modified 

by both lung volumes and heterogeneity of ventilation. (Lundblad et al., 2021) The trend for an increase 
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of this parameter in children prenatally exposed to higher OP is in accordance with the results found at 

6 weeks, as lower lung volume could lead to an increased resistance of the small airways. This partially 

confirms the results from previous studies indicating a detrimental effect of air pollution on respiratory 

mechanical parameters. In the BAMSE birth cohort, Schultz et al. (2016b) investigated the effects of 

early life exposure to PM10 on lung mechanic components measured by impulse oscillometry in 2415 

adolescents and found increased frequency dependent resistance (Rrs5-20) and AX0.5 with higher PM10 

exposure, although the associations were not statistically significant. Shao et al. (2019) found increased 

AX in 84 children exposed to PM2.5 from a 6-week episode of fire during infancy. In addition, regarding 

acute respiratory effect of OP, He et al. (2021) found that an increase in OP measured 2 days prior to 

visit was significantly associated with increased Rrs5-20 and Rrs5 in 43 asthmatic children aged 5-13 

years. Although AOS parameters have been found associated with air pollution in previous studies, the 

parameter varies between studies. (Dutta et al., 2021; He et al., 2021; Schultz et al., 2016b; Shao et al., 

2019) In our case, we confirmed results with Rrs7-19, a parameter specific of the small airways. 

VI.2. Comparison of the exposure metrics 

Our study that identified associations between OP of PM with FRC, an indicator of lung volume, and 

with Rrs7-19, an indicator accounting for lung volumes too, indicates specific effects on lung growth. 

These observations are supported by studies showing that prenatal exposure to environmental pollutants 

impacts in-utero growth, including organ growth (Lavigne et al., 2018; Saadeh and Klaunig, 2014) and 

that oxidative stress may cause placental tissue damage, which could in turn affect lung growth in-utero. 

(Øvrevik, 2019; Veras et al., 2017) 

Only a few cohort studies tackled the associations of PM and OP exposure with lung function. (Delfino 

et al., 2013; He et al., 2021; Yang et al., 2016) The associations found with reduced lung function seemed 

generally clearer with OP than with PM2.5 mass concentration, which agrees with the existing literature. 

(Bates et al., 2019) For example, the PIAMA birth cohort study (Yang et al., 2016) found associations 

between OPv
DTT at home address and increased asthma and rhinitis prevalence and decreased lung 

function in 12-year-old children but no association with PM2.5 mass. The effect magnitudes of OP 

models adjusted on other pollutants were similar, although more sensitive to NO2 adjustment, which 
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was not the case in our model. In asthmatic children aged 9-18 years, Delfino et al. (2013) found 

significant positive associations between ambient OPv
DTT and OP measured by the in-vitro ROS-

macrophage assay and airway inflammation, while no association was found for PM2.5. Conclusions 

were not modified in their two-pollutant model. He et al. (2021) also used the ROS-macrophage assay 

and found associations with Rrs5, Rrs5-20 and Rrs20 for OP, while associations for PM were only found 

with Rrs5. Overall our results add to the existing evidence indicating that the OP of PM has a stronger 

effect on various respiratory outcomes than PM mass and is thereby a relevant complementary health 

metric for air pollution. (Abrams et al., 2017; Delfino et al., 2013; Fang et al., 2016; He et al., 2021; 

Janssen et al., 2015; Weichenthal et al., 2016; Yang et al., 2016) The different health effects found for 

PM2.5 and OP could be partially explained by the difference in sources contributing to OP and PM2.5 

concentration in the SEPAGES study area (Grenoble). In fact, previous studies showed that biomass 

burning and regional transport of secondary inorganic pollutants (nitrates and sulfates) were the main 

sources contributing to the ambient PM2.5 mass concentration, while vehicular emissions and biomass 

burning were the main drivers of OP levels over the area.(2021b, 2021a) We acknowledge that by using 

active personal samplers, exposure measurements incorporate both indoor- and outdoor-generated 

pollution, which can have different composition and thus different health effects. (Evangelopoulos et 

al., 2020) 

Our study extends the findings of others by comparing OP measured by the AA and the DTT assays. In 

their reviews, Bates et al. (2019) and Rao et al. (2020) showed that OPDTT was a better predictor than 

OPAA for most health outcomes. Here, we found that OPv
AA had a comparable effect to OPv

DTT on lung 

function as measured by Rrs7-19 at 3 years. However, results at 6 weeks were more contrasted. The effects 

of OPv
AA on FRC seemed to be influenced by PM2.5 mass concentration, since the OPv

AA coefficients in 

the model adjusted on PM were pulled towards zero. Overall, although both OP assays (i.e. DTT and 

AA) were developed to account for the toxicity of PM components, their health impact may differ, which 

could be explained by their different sensitivities to chemical components (traffic-related metals, organic 

carbon and inorganic species for OPDTT and metals only for OPAA) (Fang et al., 2017; Janssen et al., 

2014; Visentin et al., 2016) and their different reactivities to specific ROS. (Xiong et al., 2017)  
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VI.3. Strengths and limitations 

One of the main strengths of this study is the assessment of maternal exposure by personal 

measurements, which was proven to be more representative of real exposure (Avery et al., 2010; 

Evangelopoulos et al., 2020; Ouidir et al., 2015) than studies using ambient measurement from 

monitoring stations or exposure models. It is also expected to be more accurate as compared to 

approaches modelling the personal exposure (He et al., 2021), combining 1) self-reported time-activity 

patterns in different microenvironments (at home, at work, in a car, in public transport, outdoor…) and 

2) indoor-outdoor ratios estimation for each identified microenvironment, both being at risk of errors. 

Additionally, the use of OP in this study is a way to consider the potential oxidative stress caused by 

PM, which is thought to be a better predictor of PM damages than its concentration. Interestingly, the 

similitude of the seasonality observed in personal levels of PM2.5 and OP in the present study with the 

results of a previous study that showed higher ambient PM2.5 and OP during winter in the Grenoble area 

(Borlaza et al., 2021a), supports the external validity of our exposure data. 

We acknowledge that a mixed influence of pre- and post-natal exposure cannot be totally ruled out, but 

cannot be assessed because OP of PM2.5 was not measured in early childhood in SEPAGES. 

Nevertheless, other studies (Cai et al., 2020; Stapleton et al., 2022) that considered both pre- and post-

natal exposure to PM found an effect of prenatal exposure on lower lung function in children. Although 

the design of the study enables evaluation of the effects of air pollution on child’s lung function at 

different stages of the pregnancy, we a priori decided not to perform this analysis in our study in order 

to avoid lowering the number of participants included (224 with two measurement weeks) and increasing 

the number of statistical tests. 

One limitation of active personal samplers is that it cannot be used by the participants during their entire 

pregnancy. The compromise in this study was to perform sampling for two one-week periods during the 

pregnancy and to use the average of the two measures in the association studies. This tended to avoid 

the influence of seasonality and extreme pollution events during the sampling weeks, especially for 

OPv
DTT (Figure 22, Figure S8). However, this influence could not be avoided for individuals with only 

one week of measurement (N=132). To account for this limitation, models were adjusted for the season 
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of sampling and sensitivity analysis excluding participants with only one measurement week were 

conducted. Interestingly, in general, the associations between OP or PM2.5 and FRC, and Rrs7-19 were 

stronger in this latter sensitivity analysis consisting in a restricted population with a more accurate 

exposure assessment, which supports our a priori hypothesis.  

The novelty of this study also lies in the repeated assessment of lung function in early life, while most 

of the other studies considered children older than 5-years old, when spirometry starts to be feasible. 

Assessing lung function at the youngest age allows to better investigate the effects related to pregnancy 

and early infancy time-windows, which are believed to predict long-term respiratory morbidity. 

However, the use of pure oxygen during the N2MBW test (SF6 being forbidden in France) induced a 

transient decrease in tidal volume, that could affect the measurement of FRC and LCI. Although 

parameters were a posteriori corrected for the degree of hypoventilation, and sensitivity analysis 

excluding children with the highest hypoventilation degree showed similar patterns of association, 

residual errors in lung function assessment that would lead to underestimated effect estimates cannot be 

totally excluded. Because two different techniques of lung function measurement were used at 6 weeks 

and 3 years of age, the effect of prenatal exposure of air pollution on lung function growth could not be 

assessed. 

The amount of data collected during the follow-up of the cohort allowed to adjust for a number of 

confounding factors. However, the residual confounding due to the observational design of this study 

remains a limitation. Interestingly, the analysis excluding leverage and influencing points showed that 

these points tended to drive some of the regression estimates towards the null hypothesis, which indicate 

that influencing points might partly be related to measurement errors. Although the aim of our study 

was based on a priori hypothesis derived from previous association studies and from the biological 

specificities of OP of PM2.5, the number of associations tested was still relatively high (N=24) and we 

did not apply any formal correction for multiple comparisons. Thus, we acknowledge part of the 

associations observed may result from chance findings and thus should be interpreted cautiously. The 

attrition rate of 51% for the associations between the personal prenatal OP and lung function at three 

years could not be a priori defined as low, but given the demanding protocol and the originality of the 

longitudinal data collected, both for exposures (personal prenatal exposure to OP) and health outcomes 
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(with objective lung function measures in preschool children, which is rare in population-based cohorts), 

this can be considered as acceptable. However, a selection bias cannot be totally ruled out, in particular, 

the associations for PM2.5 may have been underestimated because included participants tended to have 

both higher exposure to PM2.5 and better lung function on two AOS parameters (lower Rrs7, higher Xrs7) 

at 3 years as compared to the non-included participants. Nevertheless, with no differences in OP between 

included and excluded children, the associations reported with OP are probably not driven by selection 

bias. Although a bigger sample would lead to more statistical power and therefore clearer conclusions, 

the use of objective and validated respiratory health parameters in early life and novel personal prenatal 

air pollution exposure metrics offers important and relevant information on PM exposure and its health 

effects. 

In summary, our study shows consistency in the associations between personal prenatal OPv
DTT and 

several early-life lung function parameters related to lung growth restriction, and therefore supports the 

detrimental health effects of PM2.5 exposure on health through oxidative stress and the relevance of OP 

of PM2.5 as a useful health-based metric. These findings, together with identifying sources of OP of PM, 

could help target emission sources that are critical in decreasing health effects of atmospheric pollution. 
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Table S1. Description of covariates and child’s characteristics in the group that have lung function measurements performed 

at 6 weeks (by the Nitrogen Multiple Breath Washout technique or by Tidal Breathing analysis) and in the group with lung 

function at 3 years (Forced Oscillation Technique). 

Characteristics 
Children with N2MBW at 6 weeks (median 

age: 47 days) N=325/356 

Children with AOS at 3 years (median age: 3.07 yrs.)  

N=248/356 

Sex of child   

Male 172 (53%) 129 (52%) 

Female 153 (47%) 119 (48%) 

Missing / / 

Birthweight (g)   

Median (IQR) 3280 (3040, 3560) 3305 (3078, 3582) 

Missing / / 

Preterm birth, <37 weeks 14 (4.3%) 11 (4.4%) 

Missing / / 

Parental educational level >5 years 235 (72%) 187 (75%) 

Delivery mode   

Vaginal  277 (85%) 207 (83%) 

C-section 48 (15%) 41 (17%) 

Missing / / 

Child still breastfed at 6 weeks 281 (86%) 219 (88%) 

Missing 1 / 

Parental history of rhinitis 186 (61%) 144 (61%) 

Missing 21 12 

Parity   

0 (nulliparous) 145 (45%) 105 (42%) 

1 (primiparous) 146 (45%) 119 (48%) 

2 or more (multiparous) 34 (10%) 24 (9.7%) 

ETS in utero and < 6 wks.   

0 232 (71%) 178 (72%) 

1 93 (29%) 68 (28%) 

Missing 0 2 

ETS < 3 yrs.   

0 243 (78%) 195 (79%) 

1 69 (22%) 53 (21%) 

Missing 13 0 

Maternal age at conception   

Median (IQR) 32 (30, 35) 32 (30, 35) 

Maternal BMI at conception   

Median (IQR) 21 (20, 24) 21 (20, 23) 

Season of sampling   

Warm 112 96 

Warm+Cold 133 90 

Cold 80 62 

Mean temperature during 

pregnancy 
  

Median (IQR) 13.0 (10.5, 14.6) 12.9 (10.5, 14.7) 

Season at the clinical visit   

Fall 107 94 

Spring 68 28 

Summer 59 57 

Winter 91 69 

Note: N2MBW, nitrogen multiple breath washout; TBFVL, tidal breathing flow-volume loops; AOS, airwave oscillometry; ETS, 

environmental tobacco smoke. 
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Table S2. Monthly distribution of personal measurements of PM2.5, OPv
DTT, and OPv

AA.  

Exposure Statistics Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

PM2.5  

(µg/m3) 

Minimum 5.70 4.70 5.00 4.30 4.80 4.90 4.10 5.10 5.10 5.60 7.50 7.00 

25th 

percentile 
10.17 9.95 10.65 8.10 9.58 9.60 9.30 8.92 10.50 10.80 12.52 15.23 

Median 14.40 13.30 13.00 9.70 12.75 12.60 11.90 12.20 13.20 13.80 17.65 19.50 

75th 

percentile 
19.97 16.90 15.17 11.95 15.95 16.45 15.52 15.55 17.90 20.30 21.67 23.95 

Maximum 77.60 26.20 23.50 18.30 50.30 27.70 30.70 30.50 51.10 44.30 49.30 41.50 

OPv
DTT 

(nmol/min/m3) 

Minimum 0.34 0.59 0.44 0.39 0.13 0.45 0.25 0.30 0.41 1.06 0.18 0.85 

25th 

percentile 
1.08 0.85 1.10 0.84 1.02 1.11 0.94 0.78 0.89 1.52 1.46 1.69 

Median 1.51 1.34 1.56 1.07 1.27 1.45 1.18 1.03 1.34 1.91 1.98 2.71 

75th 

percentile 
2.07 1.90 1.82 1.63 1.73 1.97 1.55 1.38 1.79 2.41 2.72 3.23 

Maximum 6.09 3.01 2.78 3.08 5.44 3.72 2.69 2.44 3.43 4.48 5.34 5.32 

OPv
AA 

(nmol/min/m3) 

Minimum 0.40 0.58 0.77 0.28 0.34 0.36 0.04 0.07 0.18 0.90 0.13 1.08 

25th 

percentile 
1.67 1.39 1.29 0.72 0.82 1.03 0.65 0.37 0.45 1.79 1.56 2.98 

Median 2.16 1.88 1.76 1.01 1.12 1.47 0.96 0.48 0.89 2.16 2.17 3.73 

75th 

percentile 
3.34 2.56 2.07 1.27 1.67 1.78 1.46 0.60 1.12 2.71 3.16 4.53 

Maximum 11.43 5.57 3.51 7.55 5.58 5.75 3.75 2.04 3.99 3.48 8.42 6.09 

Note: PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPv
AA, volume-normalised oxidative potential 

measured by the AA assay; OPv
DTT, volume-normalised oxidative potential measured by the DTT assay. 

 

Table S3. Comparison of the distribution of personal measurements of PM2.5, OPv
DTT and OPv

AA during each week of sampling, 

and their average.  

Exposure Trimester Minimum 25th percentile Median 75th percentile Maximum 

PM2.5 (µg/m3) 

early pregnancy 4.30 9.70 13.85 18.85 51.10 

late pregnancy 4.20 9.78 12.75 17.32 77.60 

average 5.25 11.36 13.75 17.46 46.70 

OPv
DTT 

(nmol/min/m3) 

early pregnancy 0.18 1.05 1.46 1.97 4.22 

late pregnancy 0.13 1.01 1.44 2.08 6.09 

average 0.57 1.17 1.52 2.00 3.79 

OPv
AA 

(nmol/min/m3) 

early pregnancy 0.04 0.83 1.52 2.19 11.43 

late pregnancy 0.07 0.87 1.48 2.33 7.86 

average 0.27 1.17 1.61 2.22 6.60 

Note: PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPv
AA, volume-normalised oxidative potential 

measured by the AA assay; OPv
DTT, volume-normalised oxidative potential measured by the DTT assay.
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Table S4. Sensitivity analyses of the associations between prenatal exposure to air pollution and lung function at 6 weeks. Regression coefficients are estimated from multiple linear models. 

Pollutants Regression model 
FRC (mL) LCI VT (mL) tPTEF/tE (%)  

Coefficients (95% CI) N Coefficients (95% CI) N Coefficients (95% CI) N Coefficients (95% CI) N 

PM2.5 (µg/m3) 

Complete Cases -1.54 (-3.69, 0.60) 262 -0.01 (-0.15, 0.13) 262 -0.66 (-1.51, 0.19) 285 0.30 (-0.99, 1.59) 285 

Main model -1.58 (-3.67, 0.50) 284 -0.01 (-0.14, 0.13) 284 -0.54 (-1.35, 0.28) 309 0.25 (-1.02, 1.51) 309 

2 sampling periods -1.58 (-4.23, 1.07) 178 -0.01 (-0.20, 0.17) 178 -0.64 (-1.74, 0.45) 204 0.11 (-1.67, 1.89) 204 

Excluding extreme 

values 
-0.71 (-2.96, 1.53) 270 0.05 (-0.10, 0.20) 271 0.03 (-0.89, 0.95) 293 0.00 (-1.34, 1.34) 293 

Adjusted on NO2 -1.56 (-3.67, 0.55) 284 -0.02 (-0.15, 0.12) 284 0.31 (-0.96, 1.59) 309 -0.56 (-1.39, 0.27) 309 

Cook’s distance -1.97 (-3.56, -0.38) 266 0.04 (-0.08, 0.16) 262 -0.22 (-0.97, 0.53) 290 -0.5 (-1.6, 0.59) 295 

Excluding high 

degrees of 

hypoventilation 

-1.09 (-3.45, 1.27) 212 0.04 (-0.12, 0.20) 212 / / / / 

OPv
DTT 

(nmol/min/m3) 

Complete Cases -2.65 (-5.16, -0.14) 262 -0.06 (-0.22, 0.10) 262 -0.64 (-1.66, 0.37) 285 0.71 (-0.84, 2.25) 285 

Main model -2.26 (-4.68, 0.15) 284 -0.06 (-0.22, 0.09) 284 -0.58 (-1.54, 0.38) 309 0.69 (-0.79, 2.17) 309 

2 sampling periods -2.15 (-5.60, 1.30) 178 0.03 (-0.21, 0.27) 178 -0.83 (-2.22, 0.55) 204 0.51 (-1.74, 2.76) 204 

Excluding extreme 

values 
-1.8 (-4.16, 0.56) 272 -0.02 (-0.19, 0.14) 272 -0.03 (-1.02, 0.96) 296 0.68 (-0.78, 2.15) 296 

Adjusted on NO2 -2.24 (-4.67, 0.19) 284 -0.07 (-0.23, 0.09) 284 -0.60 (-1.57, 0.37) 309 0.75 (-0.74, 2.24) 309 

Cook’s distance -2.19 (-4.11, -0.27) 263 -0.06 (-0.20, 0.08) 263 -0.37 (-1.24, 0.49) 291 0.61 (-0.66, 1.87) 296 

Excluding high 

degrees of 

hypoventilation 

-1.91 (-4.49, 0.68) 212 -0.03 (-0.20, 0.15) 212 / / / / 

OPv
AA 

(nmol/min/m3) 

Complete Cases -0.70 (-3.03, 1.63) 262 -0.06 (-0.21, 0.09) 262 0.09 (-0.83, 1.02) 285 0.13 (-1.27, 1.54) 285 

Main model -0.59 (-2.85, 1.68) 284 -0.05 (-0.19, 0.10) 284 0.13 (-0.76, 1.02) 309 0.14 (-1.23, 1.51) 309 

2 sampling periods -1.24 (-4.33, 1.84) 178 0.01 (-0.21, 0.23) 178 -0.31 (-1.58, 0.95) 204 -0.34 (-2.39, 1.72) 204 

Excluding extreme 

values 
0.73 (-1.83, 3.28) 271 0.01 (-0.16, 0.18) 271 0.84 (-0.18, 1.85) 295 -0.53 (-2.06, 1.00) 294 

Adjusted on NO2 -0.55 (-2.83, 1.72) 284 -0.05 (-0.20, 0.09) 284 0.12 (-0.77, 1.01) 309 0.18 (-1.20, 1.55) 309 

Cook’s distance -0.43 (-2.35, 1.48) 266 -0.03 (-0.17, 0.10) 265 0.59 (-0.24, 1.43) 292 0.25 (-0.97, 1.46) 296 

Excluding high 

degrees of 

hypoventilation 

-0.92 (-3.19, 1.34) 212 -0.06 (-0.21, 0.09) 212 / / / / 

Note: Coefficients are calculated for an increase of one IQR for PM2.5, OPv
DTT and OPv

AA, corresponding to 6.9 µg/m3, 0.89 nmol/min/m3, and 1.14 nmol/min/m3, respectively. FRC, functional 

residual capacity; LCI, lung clearance index; VT, tidal volume; tPTEF/tE ratio of time to peak tidal expiratory flow to expiratory time; PM2.5, particulate matter with an aerodynamic diameter <2.5 

μm; OPv
AA, volume-normalised oxidative potential measured by the AA assay; OPv

DTT, volume-normalised oxidative potential measured by the DTT assay.  
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Table S5. Sensitivity analyses of the associations between prenatal exposure to air pollution and lung function at 3 years. Regression coefficients are estimated from multiple linear models. 

Pollutants 
Regression 

model 

Rrs7 (hPa×s/L) Rrs7-19 (hPa×s/L) Xrs7 (hPa×s/L) AX (hPa/L) 

Coefficients (95% 

CI) 
N 

Coefficients (95% 

CI) 
N 

Coefficients (95% 

CI) 
N 

Coefficients (95% 

CI) 
N 

PM2.5 (µg/m3) 

Complete Cases -0.01 (-0.33, 0.31) 235 0.02 (-0.13, 0.17) 235 0.01 (-0.15, 0.18) 235 0.36 (-4.82, 5.53) 235 

Main model -0.02 (-0.33, 0.30) 248 0.02 (-0.13, 0.16) 248 0.01 (-0.15, 0.17) 248 0.22 (-4.81, 5.25) 248 

2 sampling 

periods 
0.1 (-0.35, 0.55) 151 0.05 (-0.17, 0.26) 151 -0.01 (-0.24, 0.22) 151 1.62 (-5.42, 8.66) 151 

Excluding 

extreme values 
-0.01 (-0.32, 0.29) 238 0.04 (-0.1, 0.18) 239 -0.02 (-0.18, 0.14) 238 -1.05 (-6.03, 3.92) 238 

Adjusted on 

NO2 
0.03 (-0.29, 0.35) 248 0.04 (-0.11, 0.18) 248 0.00 (-0.16, 0.16) 248 1.03 (-4.03, 6.09) 248 

Cook’s distance -0.07 (-0.35, 0.21) 232 0.04 (-0.07, 0.16) 233 -0.05 (-0.17, 0.08) 235 -0.50 (-4.81, 3.80) 237 

OPv
DTT 

(nmol/min/m3) 

Complete Cases 0.03 (-0.3, 0.36) 235 0.09 (-0.06, 0.25) 235 -0.06 (-0.22, 0.11) 235 0.99 (-4.38, 6.35) 235 

Main model 0.05 (-0.28, 0.37) 248 0.09 (-0.06, 0.24) 248 -0.05 (-0.22, 0.11) 248 1.07 (-4.08, 6.22) 248 

2 sampling 

periods 
0.19 (-0.36, 0.74) 151 0.12 (-0.14, 0.38) 151 -0.13 (-0.41, 0.15) 151 1.48 (-7.15, 10.11) 151 

Excluding 

extreme values 
0.1 (-0.25, 0.45) 235 0.20 (0.04, 0.36) 235 -0.10 (-0.28, 0.08) 236 0.14 (-5.53, 5.81) 235 

Adjusted on 

NO2 
0.06 (-0.26, 0.39) 248 0.10 (-0.05, 0.25) 248 -0.06 (-0.22, 0.10) 248 1.33 (-3.78, 6.45) 248 

Cook’s distance 0.15 (-0.13, 0.43) 233 0.16 (0.04, 0.29) 233 -0.09 (-0.21, 0.04) 235 0.38 (-4.04, 4.8) 237 

OPv
AA 

(nmol/min/m3) 

Complete Cases -0.12 (-0.46, 0.22) 235 0.12 (-0.04, 0.27) 235 -0.06 (-0.23, 0.11) 235 -2.35 (-7.78, 3.07) 235 

Main model -0.08 (-0.41, 0.25) 248 0.12 (-0.04, 0.27) 248 -0.07 (-0.23, 0.10) 248 -2.21 (-7.48, 3.07) 248 

2 sampling 

periods 
0.23 (-0.29, 0.75) 151 0.25 (0, 0.49) 151 -0.25 (-0.52, 0.01) 151 0.87 (-7.33, 9.06) 151 

Excluding 

extreme values 
0.03 (-0.33, 0.4) 238 0.16 (-0.02, 0.33) 237 -0.03 (-0.22, 0.16) 237 -4.28 (-10.19, 1.63) 237 

Adjusted on 

NO2 
-0.08 (-0.41, 0.25) 248 0.12 (-0.03, 0.27) 248 -0.07 (-0.23, 0.10) 248 -2.16 (-7.39, 3.07) 248 

Cook’s distance 0.01 (-0.28, 0.29) 233 0.17 (0.05, 0.29) 234 -0.1 (-0.23, 0.03) 235 -3.55 (-8.54, 1.44) 236 

Note: Coefficients are calculated for an increase of one IQR for PM2.5, OPv
DTT and OPv

AA, corresponding to 6.9 µg/m3, 0.89 nmol/min/m3, and 1.14 nmol/min/m3, respectively. PM2.5, particulate 

matter with an aerodynamic diameter <2.5 μm; OPv
AA, volume-normalised oxidative potential measured by the AA assay; OPv

DTT, volume-normalised oxidative potential measured by the DTT 

assay; Rrs7, resistance at a frequency of 7 Hz; Rrs7-19, difference between the resistance at 7 Hz and at 19 Hz; Xrs7, reactance at a frequency of 7 Hz; AX, area under the reactance curve.
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Table S6. Results of the two-pollutant models for exposure to air pollution and lung function at 6 weeks. 

 

Single-pollutant 

model 

Coefficients (95% 

CI)1 

Two-pollutant model (adjusted for exposures below) 

PM2.5 

Coefficients (95% CI)1 

OPv
DTT 

Coefficients (95% CI)1 

OPv
AA 

Coefficients (95% CI)1 

FRC (mL)     

PM2.5 -1.58 (-3.67, 0.50) -- -0.59 (-3.37, 2.19) -1.74 (-4.10, 0.62) 

OPv
DTT -2.26 (-4.68, 0.15) -1.82 (-5.03, 1.40) -- -- 

OPv
AA -0.59 (-2.85, 1.68) 0.27 (-2.27, 2.81) -- -- 

LCI     

PM2.5 -0.01 (-0.14, 0.13) -- 0.03 (-0.15, 0.21) 0.00 (-0.15, 0.15) 

OPv
DTT -0.06 (-0.22, 0.09) -0.09 (-0.29, 0.12) -- -- 

OPv
AA -0.05 (-0.19, 0.10) -0.05 (-0.21, 0.12) -- -- 

VT (mL)     

PM2.5 -0.54 (-1.35, 0.28) -- -0.22 (-1.29, 0.86) -0.62 (-1.53, 0.29) 

OPv
DTT -0.58 (-1.54, 0.38) -0.41 (-1.67, 0.85) -- -- 

OPv
AA 0.13 (-0.76, 1.02) 0.43 (-0.56, 1.41) -- -- 

tPTEF/tE (%)     

PM2.5 0.25 (-1.02, 1.51) -- -0.19 (-1.85, 1.47) 0.27 (-1.14, 1.68) 

OPv
DTT 0.69 (-0.79, 2.17) 0.83 (-1.11, 2.78) -- -- 

OPv
AA 0.14 (-1.23, 1.51) 0.01 (-1.51, 1.54) -- -- 

Note: Coefficients are calculated for an increase of one IQR for PM2.5, OPv
DTT and OPv

AA, corresponding to 6.9 µg/m3, 0.89 

nmol/min/m3, and 1.14 nmol/min/m3, respectively. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPv
AA, 

volume-normalised oxidative potential measured by the AA assay; OPv
DTT, volume-normalised oxidative potential measured 

by the DTT assay; FRC, functional residual capacity; LCI, lung clearance index; VT, tidal volume; tPTEF/tE ratio of time to peak 

tidal expiratory flow to expiratory time. 
1adjusted on child’s height, weight, sex, age, season of sampling, breastfeeding, environmental tobacco smoke, maternal age 

and BMI before pregnancy, parental level of education, parental history of rhinitis and mean temperature during pregnancy.  

 

Table S7. Results of the two-pollutant models for exposure to air pollution and lung function at 3 years.  

 

Single-pollutant 

model 

Coefficients 

(95% CI)1 

Two-pollutant model (adjusted for exposures below) 

PM2.5 

Coefficients (95% CI)1 

OPv
DTT 

Coefficients (95% CI)1 

OPv
AA  

Coefficients (95% CI)1 

Rrs7 (hPa×s/L)     

PM2.5 -0.02 (-0.33, 0.30) -- -0.12 (-0.54, 0.30) 0.00 (-0.36, 0.37) 

OPv
DTT 0.05 (-0.28, 0.37) 0.13 (-0.3, 0.56) -- -- 

OPv
AA -0.08 (-0.41, 0.25) -0.08 (-0.46, 0.30) -- -- 

Rrs7-19 (hPa×s/L)     

PM2.5 0.02 (-0.13, 0.16) -- -0.07 (-0.27, 0.13) -0.05 (-0.22, 0.12) 

OPv
DTT 0.09 (-0.06, 0.24) 0.14 (-0.06, 0.34) -- -- 

OPv
AA 0.12 (-0.04, 0.27) 0.15 (-0.03, 0.33) -- -- 

Xrs7 (hPa×s/L)     

PM2.5 0.01 (-0.15, 0.17) -- 0.08 (-0.13, 0.29) 0.06 (-0.13, 0.24) 

OPv
DTT -0.05 (-0.22, 0.11) -0.11 (-0.32, 0.11) -- -- 

OPv
AA -0.07 (-0.23, 0.10) -0.10 (-0.29, 0.10) -- -- 

AX (hPa/L)     

PM2.5 0.22 (-4.81, 5.25) -- -1.58 (-8.27, 5.10) 1.12 (-4.72, 6.96) 

OPv
DTT 1.07 (-4.08, 6.22) 2.13 (-4.71, 8.96) -- -- 

OPv
AA -2.21 (-7.48, 3.07) -2.80 (-8.91, 3.32) -- -- 

Note: Coefficients are calculated for an increase of one IQR for PM2.5, OPv
DTT and OPv

AA, corresponding to 6.9 µg/m3, 0.89 

nmol/min/m3, and 1.14 nmol/min/m3, respectively. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPv
AA, 

volume-normalised oxidative potential measured by the AA assay; OPv
DTT, volume-normalised oxidative potential measured 

by the DTT assay; Rrs7, resistance at a frequency of 7 Hz; Rrs7-19, difference between the resistance at 7 Hz and at 19 Hz; Xrs7, 

reactance at a frequency of 7 Hz; AX, area under the reactance curve. 
1adjusted on child’s height, weight, sex, age, season of sampling, breastfeeding, environmental tobacco smoke, maternal age 

and BMI before pregnancy, parental level of education, parental history of rhinitis and mean temperature during pregnancy.  
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Figure S1. Directed acyclic graph (DAG) mapping causal relationships between maternal OP of PM exposure and child lung 

function.  

Please note that at 6 weeks, there is an additional link between birth weight and weight/height at the clinical visit. 
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Figure S2. Test of linearity of the PM2.5-lung function parameters at 6 weeks. 

Comparison of the adjusted linear model (red) and the adjusted model, modelling exposure as a natural spline with 5 degrees 

of freedom (blue dashed line), for exposure to PM2.5 and lung function at 6 weeks. P-value is from the likelihood-ratio test. 

Summary table available in the Excel supplemental file. The green lines represent the thresholds for 1st and 99th percentile of 

outcome and exposure. 

 
Figure S3. Test of linearity of the OPv

DTT-lung function parameters at 6 weeks. 

Comparison of the adjusted linear model (red) and the adjusted model, modelling exposure as a natural spline with 5 degrees 

of freedom (blue dashed line), for exposure to OPv
DTT and lung function at 6 weeks. P-value is from the likelihood-ratio test. 

Summary table available in the Excel supplemental file. The green lines represent the thresholds for 1st and 99th percentile of 

outcome and exposure. 
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Figure S4. Test of linearity of the OPv

AA-lung function parameters at 6 weeks. 

Comparison of the adjusted linear model (red) and the adjusted model, modelling exposure as a natural spline with 5 degrees 

of freedom (blue dashed line), for exposure to OPv
AA and lung function at 6 weeks. P-value is from the likelihood-ratio test. 

Summary table available in the Excel supplemental file. The green lines represent the thresholds for 1st and 99th percentile of 

outcome and exposure. 

 
Figure S5. Test of linearity of the PM2.5-lung function parameters at 3 years. 

Comparison of the adjusted linear model (red) and the adjusted model, modelling exposure as a natural spline with 5 degrees 

of freedom (blue dashed line), for exposure to PM2.5 and lung function at 3 years. P-value is from the likelihood-ratio test. 

Summary table available in the Excel supplemental file. The green lines represent the thresholds for 1st and 99th percentile of 

outcome and exposure. 
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Figure S6. Test of linearity of the OPv

DTT-lung function parameters at 3 years. 

Comparison of the adjusted linear model (red) and the adjusted model, modelling exposure as a natural spline with 5 degrees 

of freedom (blue dashed line), for exposure to OPv
DTT and lung function at 3 years. P-value is from the likelihood-ratio test. 

Summary table available in the Excel supplemental file. The green lines represent the thresholds for 1st and 99th percentile of 

outcome and exposure. 

 
Figure S7. Test of linearity of the OPv

AA-lung function parameters at 3 years. 

Comparison of the adjusted linear model (red) and the adjusted model, modelling exposure as a natural spline with 5 degrees 

of freedom (blue dashed line), for exposure to OPv
AA and lung function at 3 years. P-value is from the likelihood-ratio test. 

Summary table available in the Excel supplemental file. The green lines represent the thresholds for 1st and 99th percentile of 

outcome and exposure. 
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Figure S8. Spearman correlation coefficients between the exposures.  

PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPv
AA, volume-normalised oxidative potential measured 

by the AA assay; OPv
DTT, volume-normalised oxidative potential measured by the DTT assay 

 

 

Figure S9. Comparison of the distribution of personal measurements of OPv
AA (left), OPv

DTT (center) and PM2.5 (right) during 

each week of sampling, and their average. See Table S3 for corresponding numeric data. 

Note: Boxes represent 25th to 75th percentiles, the middle horizontal line represents the median, whiskers extend to the most 

extreme point within 1.5 interquartile ranges of the box and the dots outside boxes indicate outliers. PM2.5, particulate matter 

with an aerodynamic diameter <2.5 μm; OPv
AA, volume-normalised oxidative potential measured by the AA assay; OPv

DTT, 

volume-normalised oxidative potential measured by the DTT assay.  
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Figure S10. Effect of each confounder separately on the regression models at 6 weeks, adjusted for sex, height and weight, and 

comparison to the main model, adjusted on all the confounders listed.  

Outcomes and exposures were scaled by their IQR. See Excel supplemental file for corresponding numeric data. Whiskers 

represent the 95% confidence interval around the estimate. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm 

(µg/m3); OPv
DTT, volume-normalised oxidative potential measured by the DTT assay (nmol/min/m3); OPv

AA, volume-normalised 

oxidative potential measured by the AA assay (nmol/min/m3); FRC, functional residual capacity; LCI, lung clearance index; 

VT, tidal volume; tPTEF/tE ratio of time to peak tidal expiratory flow to expiratory time. 
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Figure S11. Effect of each confounder separately on the regression models at 3 years, adjusted for sex, height and weight, and 

comparison to the main model, adjusted on all the confounders listed.  

Outcomes and exposures were scaled by their IQR. See Table S3 for corresponding numeric data. Whiskers represent the 95% 

confidence interval around the estimate. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm (µg/m3); OPv
DTT, 

volume-normalised oxidative potential measured by the DTT assay (nmol/min/m3); OPv
AA, volume-normalised oxidative 

potential measured by the AA assay (nmol/min/m3); Rrs7, resistance at a frequency of 7 Hz; Rrs7-19, difference between the 

resistance at 7 Hz and at 19 Hz; Xrs7, reactance at a frequency of 7 Hz; AX, area under the reactance curve. 
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Figure S12. Association between personal exposure to PM2.5, OPv
DTT and OPv

AA during pregnancy and lung function 

parameters measured at 6 weeks in the multiple linear models and in the sensitivity analysis excluding leverage and influencing 

points, estimated by Cook’s distance.  

Outcomes and exposures were scaled by their IQR. See Table S4 for corresponding numeric data. Whiskers represent the 95% 

confidence interval around the estimate. Models were adjusted on child’s height, weight, sex, age, season of sampling, 

breastfeeding, environmental tobacco smoke, maternal age and BMI before pregnancy, parental level of education, parental 

history of rhinitis and mean temperature during pregnancy. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm 

(µg/m3); OPv
DTT, volume-normalised oxidative potential measured by the DTT assay (nmol/min/m3); OPv

AA, volume-normalised 

oxidative potential measured by the AA assay (nmol/min/m3); FRC, functional residual capacity; LCI, lung clearance index; 

VT, tidal volume; tPTEF/tE ratio of time to peak tidal expiratory flow to expiratory time. 
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Figure S13. Association between personal exposure to PM2.5, OPv
DTT and OPv

AA during pregnancy and lung function 

parameters measured at 3 years in the multiple linear models and in the sensitivity analysis excluding leverage and influencing 

points, estimated by Cook’s distance.  

Outcomes and exposures were scaled by their IQR. See Table S5 for corresponding numeric data. Whiskers represent the 95% 

confidence interval around the estimate. Model were adjusted on child’s height, weight, sex, age, season of sampling, 

breastfeeding, environmental tobacco smoke, maternal age and BMI before pregnancy, parental level of education, parental 

history of rhinitis and mean temperature during pregnancy. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm 

(µg/m3); OPv
DTT, volume-normalised oxidative potential measured by the DTT assay (nmol/min/m3); OPv

AA, volume-normalised 

oxidative potential measured by the AA assay (nmol/min/m3); Rrs7, resistance at a frequency of 7 Hz; Rrs7-19, difference between 

the resistance at 7 Hz and at 19 Hz; Xrs7, reactance at a frequency of 7 Hz; AX, area under the reactance curve. 
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 French summary 
 

Contexte. Le stress oxydant est une des voies principales responsables des effets de l'exposition aux 

particules fines (PM2.5) sur la santé. Le potentiel oxydant (PO) des PM est associé à plusieurs indicateurs 

de santé, mais son impact sur les biomarqueurs du stress oxydant reste insuffisamment étudié. 

L’exposition aux PM des femmes durant leur grossesse a de nombreux effets délétères sur la santé 

ultérieure de l’enfant, ce qui rend cette période particulièrement intéressante pour étudier les 

mécanismes biologiques sous-jacent. Par ailleurs, des études récentes ont examiné l’interaction entre la 

concentration massique de PM2.5, et son potentiel oxydant intrinsèque (exprimé par microgramme de 

PM). Les résultats indiquent des effets plus forts des PM sur les issues de naissance et les hospitalisations 

pédiatriques pour des issues respiratoires, lorsque la capacité intrinsèque des PM à générer du stress 

oxydant était élevé. Il est nécessaire d’examiner si des résultats similaires sont obtenus au niveau 

moléculaire, et particulièrement sur le stress oxydant systémique de femmes enceintes. 

 

Objectifs. Le principal objectif de cette étude est d'explorer l'exposition personnelle aux PM2.5 et son 

potentiel oxydant en lien avec les niveaux de trois biomarqueurs urinaires du stress oxydant chez les 

femmes enceintes. L’objectif secondaire est d'évaluer si la concentration de PM2.5 modifie les 

associations entre le PO et les biomarqueurs sélectionnés. 

 

Méthodes. Trois cents femmes enceintes de la cohorte SEPAGES (Grenoble, France) ont porté des 

échantillonneurs personnels de PM2.5 pendant une semaine, et le PO des PM a été mesuré à l'aide des 

tests de l'acide ascorbique (AA) et du dithiothréitol (DTT), puis normalisé par 1) la masse de PM2.5 

(POm), et 2) le volume d'air échantillonné (POv). Un pool urinaire composé de trois prélèvements 

Contribution: This work was published by Science of The Total Environment. I was involved in the 

OP data curation and the investigation of biomarkers’ variability regarding protocol variables. I 

performed the statistical analyses, generated the plots and wrote the first draft of the article. OP 

analysis was performed by the workforce of IGE’s plateau AirOSol. Among the statistical methods 

presented, I beneficiated from the work of other IAB’s team members and former students, and was 

able to use readily validated PM2.5 mass concentration exposure.  
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effectués le 7e jour de l'échantillonnage des PM a été analysé pour trois biomarqueurs du stress oxydant, 

à savoir la 8-hydroxy-2-désoxyguanosine (8-OHdG), le malondialdéhyde (MDA) et la 8-iso-

prostaglandine-F2α (8-iso-PGF2α). La gravité spécifique urinaire a été mesurée dans le pool, et les 

niveaux de biomarqueurs ont été corrigés pour ce facteur, représentant le taux de dilution des 

échantillons, puis ln-transformés. Les associations ont été étudiées à l'aide de régressions linéaires 

multiples ajustées sur des caractéristiques des volontaires (niveau d’éducation, antécédents d’asthme et 

de rhinite, indice de masse corporelle avant la grossesse, âge, parité, tabagisme actif ou passif), des 

caractéristiques d’exposition (température moyenne durant la semaine de mesure des PM), des variables 

concernant les échantillons urinaires (âge gestationnel lors de la récolte d’urine, nombre d’échantillons 

dans le pool urinaire, temps de stockage à -80°C avant l’analyse). Les effets du PO des PM ont été 

également explorés en stratifiant par la concentration médiane de PM2.5 (14 µg/m³).  

 

Résultats. Dans les modèles principaux, aucune association n'a été observée avec la 8-iso-PGF2α, ni le 

MDA. Une augmentation d’un écart interquartile (IQR) de POm
AA a été associée à une augmentation de 

6,2 % de la 8-OHdG (effet : 6,2 % ; intervalle de confiance à 95 % : 0,2 % à 13 %). Dans l'analyse 

stratifiée, l'exposition au POm
AA est associée à la 8-OHdG chez les participantes exposées à de faibles 

niveaux de PM2.5 (effet : 11 % ; IC à 95 % : 3,3 % à 20 %), mais pas chez celles exposées à des niveaux 

élevés (effet : -1,0 % ; IC à 95 % : -11 % à 9,6 %). Les associations pour le POm
DTT présentent des 

résultats similaires (p-valeurs pour les termes d'interaction POm
AA-PM et POm

DTT-PM de 0,10 et 0,08, 

respectivement).  

 

Conclusions. En résumé, nos résultats suggèrent que le POm
AA serait associé à des dommages oxydatifs 

à l'ADN. Cette association n'a pas été observée avec l'exposition à la concentration massique des PM2.5. 

Les effets du POm
AA sur la 8-OHdG avaient tendance à être plus forts aux concentrations plus faibles de 

PM (inférieures à la médiane) par rapport aux concentrations plus élevées. Plus de recherches 

épidémiologiques, toxicologiques et en science des aérosols sont nécessaires pour approfondir la 

compréhension des effets du POm
AA sur la 8-OHdG, et de l'effet potentiel de la concentration massique 

des PM sur cette association. 
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 Abstract 
 

Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter 

(PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but 

its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the 

SEPAGES cohort (France) carried personal PM2.5 samplers for a week and OP was measured using 

ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM2.5 mass (OPm) and 2) 

sampled air volume (OPv). A pool of three urine spots collected on the 7th day of PM sampling was 

analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) 

and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Associations were investigated using adjusted multiple 

linear regressions. OP effects were additionally investigated by stratifying by median PM2.5 

concentration (14 µg/m3). In the main models, no association was observed with 8-iso-PGF2α, nor 

MDA. An interquartile range (IQR) increase in OPm
AA exposure was associated with increased 8-OHdG 

(percent change: 6.2%; 95% CI: 0.2% to 12.6%). In the stratified analysis, exposure to OPm
AA was 

associated to 8-OHdG for participants exposed to low levels of PM2.5 (percent change: 11.4%; 95% CI: 

3.3% to 20.1%), but not for those exposed to high levels (percent change: -1.0%; 95% CI: -10.6% to 

9.6%). Associations for OPm
DTT also followed a similar pattern (p-values for OPm

AA-PM and OPm
DTT-

PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPm
AA may 

be associated with increased DNA oxidative damage. This association was not observed with PM2.5 

mass concentration exposure. The effects of OPm
AA in 8-OHdG tended to be stronger at lower (below 

median) vs. higher concentrations of PM2.5. Further epidemiological, toxicological and aerosol research 

are needed to further investigate the OPm
AA effects on 8-OHdG and the potential modifying effect of 

PM mass concentration on this association. 
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  Introduction 
 

Exposure to particulate matter (PM) has been targeted as a major global public health risk factor for several 

years (Health Effects Institute, 2020; Murray et al., 2020; WHO, 2016), and pregnancy represents a specific 

window of susceptibility for the future child. One of the main suggested pathways for PM adverse health 

effects is oxidative stress, caused by a redox imbalance, triggering an inflammatory cascade (Crobeddu et 

al., 2017; Delfino et al., 2011; Kelly, 2003; Lodovici and Bigagli, 2011). Oxidative stress is caused by the 

PM capacity to carry or induce the formation of reactive oxygen species (ROS) in vivo, and can be measured 

by several cellular and acellular tests, called the oxidative potential (OP) of PM (Calas et al., 2017; Hellack 

et al., 2014). The intrinsic mass-normalized OP (OPm) quantifies the OP of 1 µg of PM and is therefore 

representative of the reactivity of PM, whereas the volume-normalized OPv (OPm multiplied by PM2.5 mass 

concentration), is a proxy for exposure levels to humans (Weichenthal et al., 2016).  

Maternal exposure to PM during pregnancy has deleterious effects on the child’s health (Bush, 2021), and 

recent studies provided first evidences of these effects, including adverse birth outcomes (Lavigne et al., 

2018), altered fetal growth (Borlaza et al., 2022a), and decreased lung function (Marsal et al., 2023). The 

interaction between OPm and PM2.5 was investigated in few recent papers, and results indicated that PM2.5 

had stronger effects on adverse birth outcomes (Lavigne et al., 2018) and pediatric respiratory hospitalization 

(Korsiak et al., 2022) when its intrinsic potential to produce ROS was higher. Because redox-active species 

in PM2.5 vary based on chemical composition and sources (Bates et al., 2019, 2015; Borlaza et al., 2021a), 

additional investigation on the combined effect of PM concentration and its OP on human health parameters, 

especially at the molecular level such as oxidative stress biomarkers, are required. 

PM-induced ROS, by oxidizing cellular components, can trigger the release of oxidation products of both 

lipids and DNA. 8-hydroxy-2-deoxyguanosine (8-OHdG) is a biomarker of oxidative damage to DNA and 

can be used to quantify the fraction of DNA oxidized by reactive oxygen species (ROS). Its urinary 

concentration has been previously associated with exposure to PM (Ambroz et al., 2016; Hu et al., 2021; Li 

et al., 2020), to OP of concentrated ambient PM (Liu et al., 2018), and to OP of indoor dusts (Zhang et al., 

2021). Malondialdehyde (MDA) and 8-isoprostane-F2α (8-iso-PGF2α, also known as 15-F2t-IsoP) are 
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products of lipid peroxidation caused by the oxidation of polyunsaturated fats by ROS. The oxidation of 

several polyunsaturated fatty acids can result in the formation of MDA, making it abundant in human urine, 

but arachidonic acid is the only precursor of isoprostanes. Previous studies showed that both 8-iso-PGF2α 

and MDA were significantly associated with exposure to PM (Bin et al. 2016; Hashemzadeh et al. 2019; He 

et al. 2020; Hu et al. 2021) and to the OP of PM (Liu et al., 2018). Using a controlled-exposure study design, 

one study found that higher OPm
AA

 and OPm
GSH (i.e. measured by the ascorbic acid or the glutathione assays) 

were respectively associated with increased urinary MDA and urinary 8-OHdG, (Liu et al., 2018). 8-OHdG, 

MDA, and 8-iso-PGF2α could mediate the health effects of PM exposures, since previous studies suggested 

that their levels in pregnant women were associated with both air pollution exposure (Ambroz et al., 2016; 

Nagiah et al., 2015) and adverse birth outcomes (Kim et al., 2005). However, to the best of our knowledge 

no study has specifically addressed the relative effect of both PM and its OP, assessed using personal 

dosimeter, on several biomarkers of oxidative stress in pregnant women.   

The primary aim of the current study was to investigate the associations between personal exposure to PM2.5 

and its OP and levels of three urinary oxidative stress biomarkers in pregnant women. Our secondary aim 

was to evaluate the potential effect modification of PM2.5 levels on the associations between OP and the 

selected oxidative stress biomarkers (OSB). 

 

 Materials and methods 
 

IV.1. Study design and population 

The study participants were volunteers of the French SEPAGES (Suivi de l’Exposition à la Pollution 

Atmosphérique durant la Grossesse et Effets sur la Santé; Assessment of air pollution exposure during 

pregnancy and effect on health, in English) mother-child cohort living within one hour driving distance from 

Grenoble city center. Details on the cohort design and protocol were made available previously (Lyon-Caen 

et al., 2019). Briefly, women were recruited in eight obstetrical ultrasonography practices in the Grenoble 

area (France), from July 2014 to July 2017. To be enrolled participants had to be pregnant with singleton 

pregnancies by <19 gestational weeks, aged >18, intending to deliver at one of the four maternity clinics in 
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the Grenoble area, and residing within a one-hour drive from Grenoble city center. In this study, the included 

women had one PM sampling weekly period during pregnancy, including a valid OP measurement and one 

pooled urine sample collected on the seventh day of the measurement week, resulting in 300 included 

pregnant women out of the 484 women enrolled in the cohort (Figure S1). 

Participants signed an informed consent and the study protocol received approval from the French data 

privacy institution (Commission Nationale de l’Informatique et des Libertés, CNIL - n°914138) and the 

Comité de Protection des Personnes Sud-Est V (CPP - 2013-A01491-44). 

IV.2. Personal exposure 

Participants were asked to wear or keep at close proximity the active personal PM2.5 samplers (MicroPEM, 

RTI International, Research Triangle Park, NC, USA) during 7 to 8 consecutive days. In this study, 300 

samples were collected at a median gestational age of 19 weeks (min: 13, Q1: 17, Q3: 20, max: 29). Personal 

exposure to PM2.5 mass concentration and OP was evaluated following the same methodology as previously 

published in the frame of SEPAGES (Borlaza et al., 2022a; Marsal et al., 2023). Briefly, PM2.5 net mass (µg) 

was quantified via gravimetric analysis of the MicroPEM’s internal filter before and after the sampling week 

(Mettler Toledo UMX2 ultramicrobalance), at the same hygrometric conditions (21°C, 25% relative 

humidity). Loaded Teflon® filters were cold-stored (-20°C) until OP analysis. OP was measured following 

the protocol established by Calas et al. (2018, 2017). Extracts at 10 µg/mL of PM2.5 in a simulated lung fluid 

(Gamble, a mixture of salts, and 1,2-dipalmitoylphosphatidylcholine, pH=7.4) were subjected to vortex 

mixing at 37°C for 85 minutes prior to analysis using the dithiothreitol (DTT) and ascorbic acid (AA) assays. 

DTT is not a constituent of the lung lining fluid, but it is used as a surrogate for biological reducing agents, 

and it is sensitive to organic species and transition metals (Calas et al., 2018; Cho et al., 2005), while AA is 

one of the main antioxidants of the lung, and is mainly sensitive to transition metals (Ayres et al., 2008). All 

samples underwent triplicate analysis, and the results represent the mean of repeated measurements. To 

validate measurement accuracy, positive control tests were conducted, employing a 1,4-naphthoquinone 

(1,4-NQ) solution for both DTT and AA assays. Specifically, the DTT assay utilized a 40 µL solution of 

24.7 µM stock, while the AA assay employed an 80 µL solution of 24.7 µM 1,4-NQ. Measurement quality, 

assessed by CV of positive control tests, yielded values below 4% for both OP assays. 
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For both assays, the consumption rate (nmol/min) was normalized by 1) the corresponding PM2.5 mass (µg, 

OPm), corresponding to the intrinsic oxidative potential of 1 µg PM2.5 and 2) the air volume sampled for each 

filter (m3, OPv) to represent human exposure through inhalation. OPv
DTT and OPm

DTT correspond to the 

consumption of DTT (nmol/min/m3 and nmol/min/µg respectively); OPv
AA and OPm

AA correspond to the 

consumption of AA (nmol/min/m3 and nmol/min/µg respectively). 

IV.3. Biomarkers of oxidative stress 

Three non-fasting urine samples (morning, midday and evening) were collected by the participants on the 

6th (2%) or 7th (98%) day of the PM sampling week and stored in their freezer (-20°C) (more information 

regarding urine collection is available in the supplement). Urines from the 6th day were used for the 6 

participants (2%) who did not collect their urine on the 7th day. Some women collected only one (n=6, 2%) 

or two (n=29, 10%) urine samples. These women were included in the analyses and the statistical model 

accounted for this difference in urine sample between women by including a variable (2-class variable: <3 

samples or 3 samples in the pool) as a cofactor. At the end of the air pollution measurement week, samples 

were picked up by the study field worker and transported to the certified biobank (bb-0033-00069) of the 

Grenoble University Hospital (CHU-GA), and were stored for a median (IQR) of 10.5 (6.6, 15.5) days at -

20°C until pooled. Equal volumes of the three spot samples were used to get one equal-volume pool for each 

participant (Philippat and Calafat, 2021). For the pooling procedure, single urine samples were thawed 

overnight at 4°C. After pooling, aliquots of the pool were stored at -80°C for a median (IQR) of 5.9 (5.5, 

6.3) years prior to biomarker analysis, during which they underwent one other thawing/freezing cycle.  

Specific gravity (SG) of each sample was measured after pooling using a handheld digital refractometer 

(Atago-PAL-10S). Urinary malondialdehyde (MDA) was analyzed after diluting 20 µL urine in 980 µL 

water. 50 µL of 2,4-Dinitrophenylhydrazine (DNPH) derivatization solution and 20 µL of internal standard 

(MDA-d2, 0.2 µg/mL) were added to 125 µL of the water-diluted urine. Calibration solutions (0.075-10 ng 

mL) were prepared in water, using MDA-tetrabutylammonium salt (Sigma-Aldrich, analytical standard) for 

making the mother solution. The MDA-DNPH derivative was analyzed by ultra-performance liquid 

chromatography mass spectrometry (UPLC-MS/MS Thermo Fischer Quantiva) by injecting 20 µL of each 
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sample on a Zorbax C18 Eclipse plus 100 x 2.1mm x 1.8µm (Agilent). Three replicates of one quality control 

(QC, standard at 1 ng/mL in water) were inserted in each series, containing about 80 samples.  

8-OHdG and 8-iso-PGF2α were analyzed following a previously validated method (Sambiagio et al., 2021) 

with minor modifications. Both biomarkers were individually isolated using solid phase extraction (SPE 

HLB 200 mg/3 mL, Macherey Nagel). The SPE was loaded with 1 mL urine diluted with 1 mL of internal 

standard (8-OHdG 15N, 2.5 ng/mL, Cambridge Isotope Laboratories; 8-iso-PGF2α-d4, 5 ng/mL, Cayman 

Chemical). Calibration solutions (8-OHdG: 0.2-20 ng/mL; 8-iso-PGF2α: 0.05-4 ng/mL) were prepared in 

urine, previously cleaned through the SPE HLB. The extracts were analyzed by ultra-performance liquid 

chromatography mass spectrometry (UPLC-MS/MS Thermo Fischer Quantiva) by injecting 20 µL of each 

sample on an Acquity HSST3 150 x 2.1mm x 1.8µm (Waters). Two replicates of low concentration QC 

(calibration solution at 1.05 ng/mL for 8-OHdG and 0.17 ng/mL for 8-iso-PGF2α) and two replicates of high 

concentration QC (calibration solution at 10.42 ng/mL for 8-OHdG and 1.08 ng/mL for 8-iso-PGF2α) were 

added in each series, containing about 40 samples. Additional details regarding the sample preparation, 

instrumental conditions, limit of quantification (LOQ), limit of detection (LOD), repeatability, recovery and 

quality control are given in Supplementary material. All analyses were done at CURML-CHUV 

(Switzerland). For the statistical treatment, concentrations below the LOD or LOQ were replaced by LOD 

or LOQ divided by the square root of two, respectively. 

Biomarker concentrations were corrected for specific gravity prior to analysis (MacPherson et al., 2018; van 

’t Erve et al., 2019) following: [𝑂𝑆𝐵]𝑐𝑜𝑟𝑟
𝑖 =  [𝑂𝑆𝐵]𝑖  ∗ (𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝐺)  −  1) (𝑆𝐺𝑖  −  1)⁄ ; with [OSB]: 

concentration of oxidative stress biomarker, i: pool of urine, SG: specific gravity. SG-corrected 

concentrations had a skewed distribution and were transformed using natural logarithm.  

IV.4. Statistical methods 

Correlations between the exposure variables and between the different biomarker concentrations were 

investigated using Spearman’s correlation coefficient. Univariate and multiple linear regression models were 

used to estimate the associations of personal exposure to PM2.5 and OP (OPv
DTT, OPm

DTT, OPv
AA, OPm

AA) 

with SG-corrected and log-transformed concentrations of oxidative stress biomarkers. The percent change 
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and 95% confidence interval (CI) of the biomarker associated with one interquartile range (IQR) increase in 

personal exposure was retrieved from the model outputs.  

Potential confounders were selected a priori, based on previous studies (Ambroz et al., 2016; Liu et al., 

2018): 1) volunteer’s characteristics: educational level (defined as the maximum number of studying years 

after high-school degree and expressed in three classes: up to 3 years, 4 years, 5 years or more;), history of 

asthma and history of rhinitis (both binary), body mass index (BMI) before pregnancy (continuous) and age 

(continuous), parity (3-class variable: nulliparous, primiparous, multiparous); active or passive smoking 

(yes/no at any time of the pregnancy); 2) exposure characteristics: mean temperature during the week of 

sampling (Hough et al., 2020) (continuous); 3) variables regarding the urine sample: gestational age at the 

urine collection (continuous); number of samples in the pool (binary: less than 3 vs. 3); storage time at -80°C 

before analysis (continuous) (see Table S6 for details regarding information collection in the covariates). In 

a fully adjusted model, we also considered the mean relative humidity during the week of sampling and the 

individual technician performing the pooling procedure, but neither were included in the final main model 

because the p-values were above 0.4 in all models. The set of confounders was reduced to the 

abovementioned list after analyzing the effect of each confounder separately on the association between 

exposure and outcome. The effects of the confounders were analysed by looking at the effect of each 

confounder separately (Figures S2, S3). Variance inflation factors (VIFs) were used to investigate 

multicollinearity in the model (all VIFs < 2, after choosing (1) mean temperature during the week of 

exposure over season of sampling, and (2) storage time over batch).  

Multiple chained equation was used to impute missing covariate data (10% missing data) using the R 

package mice (van Buuren and Groothuis-Oudshoorn, 2011). This algorithm iteratively estimates missing 

values in a dataset, by creating a series of predictive models that account for the relationships between 

variables. Results of 10 imputed datasets were combined using Rubin’s rule (Rubin, 1987). The missing 

completely at random (MCAR) hypothesis was checked by Little’s test (Little, 1988) (p-values of the test > 

0.05).  

Several sensitivity analyses were performed, applying small modifications to the main model to test if results 

were robust: 1) the quality of the imputation was tested by performing a complete case analysis (i.e. 

excluding the 10% with missing data regarding covariates), 2) the influence of extreme exposure and 
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biomarker levels, that is common in driving linear regressions, was evaluated by excluding values below 1st 

percentile or above 99th percentile of the OSB and exposures (exclusion of 4% of the population in each 

analysis), 3) because smoking is a major source of oxidative stress, an analysis was conducted in non-

smokers only (excluding current smokers, representing 6 to 7% of the population), and 4) the quality of the 

SG correction was tested by using raw concentrations, while SG was added in the co-factors, 5) because 

pool samples based on less than three urine samples could be affected by circadian variations of biomarkers, 

an analysis was conducted excluding women with pools of one or two urine samples (exclusion of 12% of 

the population).  

To assess a potential effect modification of PM2.5 levels on the associations between intrinsic OP and levels 

of oxidative stress biomarkers, we first conducted a stratified analysis, estimating OP effects separately in 

those with PM levels above and below the median. Then, we added an interaction term in the model between 

OP and categorical PM (below vs. above the median of 14 µg/m3), to calculate the p-value for interaction.  

All analyses were performed using R software (version 4.1.0). 

 

 Results 
 

V.1. Description of the population 

In this study, 300 pregnant women with one measurement of weekly personal exposure to PM2.5 and OP and 

one urine pool sample collected at the end of the measurement week were included (62% of the enrolled 

women in the SEPAGES cohort). The median (IQR) age of the population was 32 (30, 35) and most of 

participants studied for at least 3 years after obtaining their French high school diploma (i.e., having at least 

an equivalent to BSc diploma). The PM personal sampling week took place equally in both cold (N=153, 

51%) and warm (N=147, 49%) seasons. The included participants were mostly non-smokers (N=258, 94%), 

were in a healthy weight range (i.e. median (IQR) BMI of 21.6 (19.8, 24.1)) and had their urine samples 

collected at a median (IQR) gestational age of 19 (17, 20) weeks. The majority of participants (N=277, 92%) 

took supplemental minerals or vitamins at least once during pregnancy. As compared to the non-included 

women, those included had higher exposure to PM2.5, higher levels of raw 8-OHdG and higher levels of 8-
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iso-PGF2α corrected for specific gravity (The median (IQR) personal exposure was 14 (10, 18) µg/m3, 1.41 

(1.03, 1.97) nmol/min/m3, 1.45 (0.90, 2.13) nmol/min/m3, 0.11 (0.09, 0.14) nmol/min/µg and 0.11 (0.07, 

0.16) nmol/min/µg for PM2.5, OPv
DTT, OPv

AA, OPm
DTT and OPm

AA, respectively. Spearman’s correlation 

coefficients between exposure variables are presented in Table S7. High correlations were found between 

PM2.5 and OPv
DTT (rs=0.68, p<0.01), and between OPm

AA and OPm
DTT (rs=0.65, p<0.01), but more moderate 

correlations were found between PM2.5 and OPv
AA (rs=0.47, p<0.01). For both assays, OPv was significantly 

higher for above median compared to below median PM2.5 concentrations (Table S8, median PM2.5 

concentration of 14 µg/m3), with a median of 1.91 vs. 1.10 nmol/min/m3 and 1.90 vs. 1.20 nmol/min/m3 for 

OPv
DTT and OPv

AA respectively (associated p-values<0.001). Intrinsic OP followed an inverse pattern, with 

a median of 0.10 vs. 0.12 nmol/min/µg for both OPm (p<0.01 and p=0.04 for OPm
DTT and OPm

AA, 

respectively). 

Table 10). 

 

Figure 25. Flow chart for the selection of the study population. Note: *PM2.5 net weight < 4 µg.  

V.2. Description of exposure 

The median (IQR) personal exposure was 14 (10, 18) µg/m3, 1.41 (1.03, 1.97) nmol/min/m3, 1.45 (0.90, 

2.13) nmol/min/m3, 0.11 (0.09, 0.14) nmol/min/µg and 0.11 (0.07, 0.16) nmol/min/µg for PM2.5, OPv
DTT, 

OPv
AA, OPm

DTT and OPm
AA, respectively. Spearman’s correlation coefficients between exposure variables 

are presented in Table S7. High correlations were found between PM2.5 and OPv
DTT (rs=0.68, p<0.01), and 

between OPm
AA and OPm

DTT (rs=0.65, p<0.01), but more moderate correlations were found between PM2.5 
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and OPv
AA (rs=0.47, p<0.01). For both assays, OPv was significantly higher for above median compared to 

below median PM2.5 concentrations (Table S8, median PM2.5 concentration of 14 µg/m3), with a median of 

1.91 vs. 1.10 nmol/min/m3 and 1.90 vs. 1.20 nmol/min/m3 for OPv
DTT and OPv

AA respectively (associated p-

values<0.001). Intrinsic OP followed an inverse pattern, with a median of 0.10 vs. 0.12 nmol/min/µg for 

both OPm (p<0.01 and p=0.04 for OPm
DTT and OPm

AA, respectively). 

Table 10. Population description. 

Characteristic N Excluded, N = 184 Included, N = 300 p-valuea 

PM2.5 (µg/m3) 345 45 300 <0.001 

Median (IQR)  8 (3, 14) 14 (10, 18)  

Missing  139 0  

OPv
DTT (nmol/min/m3) 313 13 300 0.4 

Median (IQR)  1.43 (0.81, 1.70) 1.41 (1.03, 1.97)  

Missing  171 0  

OPv
AA (nmol/min/m3) 313 13 300 0.2 

Median (IQR)  1.26 (0.53, 1.84) 1.45 (0.90, 2.13)  

Missing  171 0  

OPm
DTT (nmol/min/µg) 313 13 300 0.2 

Median (IQR)  0.09 (0.08, 0.11) 0.11 (0.09, 0.14)  

Missing  171 0  

OPm
AA (nmol/min/µg) 313 13 300 0.3 

Median (IQR)  0.08 (0.06, 0.15) 0.11 (0.07, 0.16)  

Missing  171 0  

MDAraw (ng/mL) 471 171 300 >0.9 

Median (IQR)   55.7 (39.8, 77.4) 54.5 (33.9, 86.9)  

Geometric means (geometric SD)  53.7 (1.75) 54.8 (1.99)  

Missing  13 0  

8-OHdGraw (ng/mL) 471 171 300 0.02 

Median (IQR)  3.20 (2.41, 4.27)  3.58 (2.49, 4.97)  

Geometric means (geometric SD)  3.16 (1.66) 3.52 (1.79)  

Missing  13 0  

8-iso-PGF2αraw (ng/mL) 471 171 300 0.7 

Median (IQR)   0.32 (0.22, 0.42) 0.31 (0.20, 0.44)  

Geometric means (geometric SD)  0.30 (1.65) 0.29 (1.79)  

Missing  13 0  

MDAcorr (ng/mL) b 471 171 300 0.11 

Median (IQR)  60.2 (45.7, 75.0) 54.8 (39.8, 74.2)  

Geometric means (geometric SD)  59.4 (1.53) 57.8 (1.76)  

Missing  13 0  

8-OHdGcorr (ng/mL) b 471 171 300 0.10 

Median (IQR)  3.43 (2.73, 4.46) 3.75 (2.87, 4.83)  

Geometric means (geometric SD)  3.49 (1.49) 3.71 (1.53)  

Missing  13 0  

8-iso-PGF2αcorr (ng/mL) b 471 171 300 0.01 

Median (IQR)  0.33 (0.26, 0.44) 0.31 (0.24, 0.39)  

Geometric means (geometric SD)  0.33 (1.46) 0.31 (1.49)  

Missing  13 0  

Gestational age at urine collection (weeks) 343 44 299 <0.001 

Median (IQR)  20 (18, 21) 19 (17, 20)  

Missing  140 1  

Level of education 482 184 298 0.07 

up to 3 years  36 (20%) 47 (16%)  

4 years  38 (21%) 89 (30%)  

5 years or more  110 (60%) 162 (54%)  

Missing  0 2  
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Characteristic N Excluded, N = 184 Included, N = 300 p-valuea 

Active or passive smoking at any time of 

the pregnancy 
440 158 282 0.5 

No  129 (82%) 223 (96%)  

Yes  29 (18%) 59 (21%)  

Missing  26 18  

Parity 484 184 300 0.07 

0 (nulliparous)  94 (51%) 128 (43%)  

1 (primiparous)  69 (38%) 145 (48%)  

2 or more (multiparous)  21 (11%) 27 (9%)  

Age 484 184 300 0.9 

Median (IQR)  32.4 (29.5, 35.3) 32.1 (30.0, 35.1)  

BMI before pregnancy (kg m-2) 480 183 297 0.4 

Median (IQR)  21.3 (19.7, 23.6) 21.6 (19.8, 24.1)  

Missing  1 3  

History of rhinitis 484 184 300 0.2 

No  98 (53%) 177 (59%)  

Yes  86 (47%) 123 (41%)  

History of asthma 484 184 300 0.2 

No  146 (79%) 252 (84%)  

Yes  38 (21%) 48 (16%)  

Mean temperature during the week of 

sampling (°C) 
331 31 300 0.4 

Median (IQR)  13 (8,18) 11 (6, 19)  

Missing  153 0  

Season of sampling 313 13 300 0.05 

Cold  3 (23%) 153 (51%)  

Warm  10 (77%) 147 (49%)  

Missing  171 0  

Sample storage time at -80°C (yrs) 401 170 300 <0.001 

Median (IQR)  7.00 (6.63, 7.31) 5.95 (5.50, 6.35)  

Missing  14 0  

Number of samples in the pool 449 174 300 0.2 

3  162 (93%) 265 (88%)  

<3  12 (7%) 35 (12%)  

Missing  17 0  

Pool specific gravity 474 174 300 0.15 

Median (IQR)  1.017 (1.013, 1.021) 1.018 (1.014, 1.023)  

Missing  10 0  

Vitamins/minerals consumption at any 

trimester of the pregnancy 
466 173 293 0.3 

Never  9 (5%) 16 (6%)  

At least during 1 trimester  164 (95%) 277 (94%)  

Missing  11 7  

Type of stove 421 148 273 0.6 

Gas stove   66 (45%) 114 (42%)   

Electric stove   78 (53%) 154 (56%)   

Other   4 (2.7%) 5 (1.8%)   

Missing   36 27   

Note: PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPm
DTT, mass-normalized oxidative potential measured by 

the DTT assay; OPm
AA, mass-normalized oxidative potential measured by the AA assay; OPv

DTT, volume-normalized oxidative 

potential measured by the DTT assay; OPv
AA, volume-normalized oxidative potential measured by the AA assay. 

ap-value from Wilcoxon rank sum test, Pearson’s Chi-squared test or Fisher’s exact test comparing included and excluded 

population. 
bbiomarker concentration corrected for specific gravity 
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V.3. Description of biomarkers 

Raw OSB and SG-corrected OSB were highly correlated (Table 2, all rs ≥ 0.75, p<0.01). There was no 

correlation between the three OSB corrected for specific gravity (rs < 0.5). MDAcorr was the most abundant 

biomarker, ranging from 7.4 ng/mL to 537 ng/mL with a median (IQR) of 55 (40, 74) ng/mL. 8-OHdGcorr 

ranged from 0.77 ng/mL to 13.5 ng/mL with a median (IQR) of 3.75 (2.87, 4.83) ng/mL, while 8-iso-

PGF2αcorr ranged from 0.06 ng/mL to 1.24 ng/mL with a median (IQR) of 0.31 (0.24, 0.39) ng/mL. 

Table 11. Spearman correlation coefficients between the oxidative stress biomarkers (raw, and corrected for specific gravity). 

 8-OHdG 8-iso-PGF2α MDAcorr
 a 8-OHdGcorr

 a 8-iso-PGF2αcorr
 a 

MDA 0.43** 0.49** 0.80** 0.09 0.15 

8-OHdG  
0.64** 0.09 0.75** 0.32** 

8-iso-PGF2α  
 

0.12 0.28** 0.75** 

MDAcorr 
a   

 
0.10 0.10* 

8-OHdGcorr
 a    

 
0.37** 

Note: **: p-value<0.01; *: p-value<0.05. abiomarker concentration corrected for specific gravity. 

V.4. Associations of PM2.5 and OP with OSB 

In the main models, we did not observe associations between exposure to PM2.5 mass concentration or its 

OP and 8-iso-PGF2α or MDA. However, an IQR increase in exposure to OPm
AA was significantly associated 

with increased levels of urinary 8-OHdG (percent change: 6.2%; 95% CI: 0.2% to 12.6%). The confounders 

mainly driving the differences between the univariate and the main analysis were the mean temperature 

during the sampling week (Figure S2, S3). The sensitivity analyses suggest that the results are overall robust 

to the influence of data imputation, active smoking, and are not influenced by the number of samples in the 

pool (Figure 26). The analysis excluding extreme values, the analysis testing SG correction show similar 

trends to the main model, but with slightly weaker effects that became not statistically significant. This could 

imply that few participants with extreme values (in the 1st percentile and 99th percentile of both 8-OHdG and 

OPm
AA) partly drove the main model’s effect size (percent change: 3.2%; 95% CI: -3.0% to 9.9%). A weak 

positive OPv
AA-8-OHdG association can also be observed and was robust to the different sensitivity analyses 

(percent change: 3.7%, 95% CI: -1.7% to 9.4%). OPm
DTT also presents a positive trend with 8-OHdG, that 

disappeared in the model excluding extreme values in exposure and outcomes. 
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The analyses stratified by PM2.5 levels (below vs. above the median value of 14 µg/m3) indicate that exposure 

to OPm
AA was associated to 8-OHdG for participants exposed to levels of PM2.5 below the median of 14 

µg/m3 (percent change: 11.4%; 95% CI: 3.3% to 20.1%), although no association was observed for 

participants exposed to above median levels of PM2.5 (percent change: -1.0%; 95% CI: -10.6% to 9.6%, with 

OPm
AA-PM interaction term p-value=0.12) (Figure 27, Tables S9, S10). Interestingly, a similar pattern was 

observed for OPm
DTT (percent change: 7.1%; 95% CI: 0.7% to 14.2% vs. percent change: -4.9% ; 95% CI: -

15.5% to 7.0% for low vs. high PM2.5 strata, p-value for interaction = 0.11). There was a trend for positive 

association between 8-iso-PGF2α and exposure to OPm
AA at below median levels of PM2.5, and an inverse 

trend at above median levels of PM2.5 was observed (p-value for interaction = 0.06). There was no evidence 

of an effect modification of PM level on the OP-MDA associations, regardless of the type of OP assay.   
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Figure 26. Association between personal exposure to PM2.5, OPm

DTT, OPv
DTT, OPm

AA and OPv
AA and oxidative stress biomarkers in 

multiple linear models and in the sensitivity analyses.  

Exposures were scaled by their IQR. See corresponding numeric data in Table S5. Whiskers represent the 95% confidence interval 

around the estimate. The main model was adjusted on educational level, history of rhinitis, history of asthma, age, BMI, parity, 

active or passive smoking, mean temperature during the sampling week, gestational age at urine collection, number of samples in 

the pool, storage time at -80°C before analysis. “Complete Cases” is an analysis excluding the 10% with missing data regarding 

covariates; “Excluding extreme values” are the analyses excluding the outcomes and exposures below the 1st percentile and above 

the 99th (excluding approx. 4% of the population); “Excluding smokers” is an analysis excluding approx. 6-7% of the population; 

“Not corrected for SG” is an analysis using raw concentrations of OSB, adding specific gravity in the confounders.  
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Figure 27. Association between personal exposure to PM2.5, OPm

DTT and OPm
AA and oxidative stress biomarkers in multiple linear 

models and in the stratified analyses.  

Exposures were scaled by their global IQR. Corresponding numeric data was made available in Table S6. Whiskers represent the 

95% confidence interval around the estimate. Models were adjusted on educational level, history of rhinitis, history of asthma, age, 

BMI, parity, smoking, mean temperature during the sampling week, gestational age at urine collection, number of samples in the 

pool, storage time at -80°C before analysis. “Low PM concentration” are the analyses stratified on PM2.5 concentrations below or 

equal to the median (14 µg/m3) and “High PM concentration” are the analyses stratified on PM2.5 concentrations above the median.  

 

 Discussion 
 

To our knowledge, this study is the first to investigate the associations between personal exposure to the OP 

of PM2.5 and three urinary biomarkers of oxidative stress in pregnant women (MDA, 8-OHdG and 8-iso-

PGF2α). Overall, our findings suggest that OPm
AA may be associated with higher 8-OHdG, whereas PM2.5 

mass concentration is not, and that the effects of OPm
AA on 8-OHdG tend to be stronger at below compared 

to above median concentrations of PM2.5. 

VI.1. PM effects on OSB 

In this study, exposure to PM2.5 mass concentration was not associated with any of the considered OSB, 

which is partly in line with previous studies that have often yielded contrasting results. Ambroz et al. (2016) 
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compared urinary 8-OHdG and plasma 8-iso-PGF2α in pregnant women living in two cities with different 

ambient PM2.5 levels. They found higher urinary 8-OHdG levels in women living in the most polluted city 

compared to the women living in the other city, but they did not identify any effect on 8-iso-PGF2α . In a 

population of 43 asthmatic children, He et al. (2020a) identified an association between 24-h personal PM2.5 

and airway oxidative stress, measured by MDA levels in nasal fluid, but not with systemic oxidative stress, 

measured by urinary MDA and 8-OHdG. In their meta-analysis, Li et al. (2020) reported overall 

heterogenous associations. They highlighted a positive, borderline significant pooled association between 

the increase in short-term exposure to ambient PM2.5 and 8-OHdG levels, and a positive and statistically 

significant pooled association with increased MDA levels. These contrasting results could be attributable to 

differences in exposure assessment (ambient vs. personal), and to the duration of exposure (7-day average 

vs. 24-h). Another difference between studies lies in the sources contributing to PM, that most probably have 

various physicochemical properties in the different studies, since they were performed in different regions 

of the world. Some PM chemical constituents would induce more oxidative stress than others, which is 

supported by our findings showing associations for OP of PM exposure but not for PM2.5 exposure. Sources 

with a larger proportion of redox-active species, that do not necessarily contribute to PM2.5 mass 

concentration, would induce more systemic oxidative stress. By assessing personal exposure of 300 pregnant 

women, indoor sources are also included in the current study. 

VI.2. OP effects on OSB 

Our findings, showing positive association between OPm
AA and urinary 8-OHdG levels, are partly in line 

with a controlled human exposure study using concentrated ambient particles (Liu et al., 2018). They found 

an association between 21-h post-exposure change in urinary 8-OHdG and the intrinsic OP levels, using the 

glutathione assay (OPm
GSH). This association was also observed for PM2.5 exposure, with weaker effect than 

for OPm
GSH, but was not found for OPm

AA exposure. Our study extends their findings by identifying an 

association between personal OPm
AA and urinary 8-OHdG, in a population of 300 pregnant women exposed 

to realistic levels of PM2.5. The association of OPm
AA with 8-OHdG reflects an effect of the intrinsic toxicity 

of PM2.5 on DNA damage. We do not have a clear explanation for this result, but a hypothesis is that the 

oxidant capacity of PM2.5 is dominant compared to the amount of PM2.5 inhaled for the negative effects on 
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DNA damage. Some specific PM2.5 may act as catalysts, inducing physical damage to cellular and 

mitochondrial structures (Li et al., 2015), thus facilitating or enhancing oxidative stress on DNA.  

In the current study’s area (Grenoble), anthropogenic sources, such as biomass burning, primary traffic and 

industrial emissions constantly account for more than 70% of total PM10 OPm
AA (Borlaza et al., 2021a). This 

contribution is expected to be similar or higher for OP measured in the PM2.5 fraction since the natural 

sources contribute mostly to the coarser size fraction (PM2.5-PM10), while anthropogenic sources are mainly 

responsible of species emitted in the finer fractions of PM (Clements et al., 2014; Karagulian et al., 2015). 

The chemical composition of these sources is often rich in transition metals, which are species with low 

mass and size but with high specific surface area and therefore high reactivity (Borlaza et al., 2018; Charrier 

and Anastasio, 2012). These sources have been found to cause oxidative damage in DNA in a Chinese cohort 

of people working in a coking plant (Hu et al., 2021). 

VI.3. OPAA in epidemiological studies 

Very few epidemiological studies have found significant associations using the OPAA assay, while there is 

more epidemiological evidence for associations with the DTT and the GSH assays (Bates et al., 2019; He 

and Zhang, 2023). Contrary to these previous studies, we found that exposure-response associations were 

stronger with the AA assay, and the main models did not show any association with OPDTT. Our results on 

OPAA are consistent with our previous studies on lung function in children in the same cohort, which also 

reported a trend for decreased lung volumes with personal prenatal exposure to OPv
AA (Marsal et al., 2023). 

In another study, exposure to OPAA was found associated to increased markers of airway inflammation 

(Janssen et al., 2015). 

While OPDTT is sensitive to several organic species and metals, OPAA is more sensitive to transition metals 

(Fe, Cu, Zn) (Calas et al., 2018; Grange et al., 2022; Pietrogrande et al., 2022). The use of both DTT and 

AA assays was shown to be complementary in several studies aiming to understand PM sources in different 

environments, since they were also sensitive to different PM sources (Daellenbach et al., 2020; Pietrogrande 

et al., 2019; Visentin et al., 2016; Weber et al., 2021). While it might be tempting to reduce investigations 

on OP on the assays for which a large amount of evidence on health effects can be found in the literature, 

this area of research is still relatively new and more studies are needed to fully understand the differences 
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between both assays in terms of health effects, and at the molecular level. Moreover, it should be noted that 

there is currently no standardized protocol to measure OP, regardless of the assay used. It is therefore more 

complex to compare studies between each other. Finally, this study is based on personal exposure, which is 

rarely the case in other OP-health studies; different sources and chemical species could therefore be 

potentially captured indoors by OPAA compared to OPDTT. However, to the best of our knowledge, no study 

specifically compared OPAA and OPDTT in indoor environments.  

VI.4. Effect modification by PM2.5 

Our study indicates a potential modifying role of PM2.5 concentration on associations between OP and OSB, 

characterized by stronger effects of OPm
AA and OPm

DTT in 8-OHdG and 8-iso-PGF2α in the context of low 

(lower than 14 µg/m3) vs. high (higher than 14 µg/m3) PM2.5 mass concentration. Previous studies inversely 

investigated PM2.5 effects in OP strata, and were able to show that PM2.5 effects on several endpoints were 

stronger at higher OPm levels (Korsiak et al., 2022; Lavigne et al., 2018; Tonne et al., 2012). Our findings 

suggest stronger effects of OPm
AA on 8-OHdG for PM2.5 at low PM2.5 levels, contradicting some of the 

previous studies. However, our results support recent findings reporting a steeper slope of PM2.5 effects on 

mortality (Stafoggia et al., 2022; Weichenthal et al., 2022) and asthma onset (Liu et al., 2021) at low levels 

of PM2.5 exposure. These studies aimed at investigating PM2.5 effects at ambient levels lower than the WHO 

2005 and 2021 guidelines, i.e. 10 µg/m3 and 5 µg/m3 respectively. Here, we considered levels below the 

median PM2.5 personal exposure of the study participants, i.e. 14 µg/m3, but the slopes of the concentration-

response curve proposed by Stafoggia et al. (2022), Weichenthal et al. (2022), and Liu et al. (2021) seem to 

remain steeper than high concentrations of PM2.5 up to 15 to 20 µg/m3. The higher intrinsic OP activity at 

lower PM2.5 mass concentration is not easy to explain without an exhaustive chemical characterization of 

PM, but such result was already highlighted in previous studies in ambient PM (Campbell et al., 2021; Wang 

et al., 2020). A possible explanation would be that participants with below-median PM2.5 levels are exposed 

to finer particles with little contribution to PM mass concentration but with high OP. A greater portion of 

redox-inactive species may contribute to PM2.5 of women with above-median PM2.5 levels. Another 

hypothesis involves antagonist chemical reactions between PM constituents, such as organic species and 

metals (Borlaza et al., 2021a; Pietrogrande et al., 2022; Samake et al., 2017). Participants with above-median 
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PM levels would be exposed to particles that would react either with each other or with assay constituents, 

reducing the measured OP. In such cases, particles contributing mainly to PM mass would cause additional 

chelation phenomena, altering the redox properties of chelated species. This, in turn, would result in lower 

OP levels in the higher stratum of PM levels compared to the lower stratum. 

VI.5. Strengths & Limitations 

This study is unique because it benefits from measurements of personal exposure to PM2.5 and two OP assays 

on pregnant volunteers, with subsequent analysis of OSB levels in urine.  

In this study, associations between PM2.5 and its OP and oxidative stress biomarkers were estimated using a 

personal integrated 7-day sample for PM2.5 and OP, and a pooled urine sample collected on the last day of 

the measurement week. The major strength of this study relies in the assessment of exposure and OSB. Using 

personal exposure integrates the variety of environments to which participants were exposed, and is therefore 

more representative of their true exposure than exposure assessments relying on ambient levels only, 

particularly when considering short-term effects. As for OSB, the use of a pooled urine sample with the 3 

urine samples collected on the 7th day reduces intra-day variability of biomarkers, that was reported in some 

studies for 8-iso-PGF2α, with higher levels in the first urine void (Pelletier et al., 2017) and for 8-OHdG 

(Kanabrocki et al., 2002) that has a marked circadian cycle. Although pooling procedure aims to reduce 

biomarker measurement error, we cannot guaranty that all participants collected their urine at the same time 

of the day as requested by the protocol, which could have introduced measurement error. The heterogeneity 

in the findings from the few studies assessing exposure to PM2.5 and its OP can be due to the differences in 

exposure assessment, duration and concentrations, as well as the biofluids used to measure biomarkers. 

Previous studies considered different lags in the effects of PM2.5 on OSB levels, and there is no consensus 

on a gold-standard duration to consider between exposure assessment and urine collection. Associations 

between exposure to PM2.5 and urinary 8-OHdG at lags 0, 1, 2, 3 days and at lags 0, 1, 2 days for urinary 

MDA were reported (Gong et al., 2014). However, Pelletier et al. (2017) did not find significant associations 

between PM2.5 and urinary 8-OHdG, MDA and 8-iso-PGF2α, at lags 0, 1 and 2 days in sites with PM2.5 

levels below the personal exposure levels of the present study. Effect dilution by considering a 7-day 
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integrated sample cannot be totally ruled out and could potentially have resulted in underestimating the 

associations reported in this study.  

In this study, we analyzed OSB in urine, but previous studies found different association patterns with MDA 

in nasal fluids or exhaled breath condensate and with urinary MDA (Gong et al. 2014; He et al. 2020). Using 

biofluids from the upper-respiratory tract could lead to clearer associations, because the OSB levels in these 

biofluids would most likely be caused by air pollutant exposure, however urinary OSB levels are more 

representative of the systemic effect of exposure to PM2.5 and OP. Previous studies investigated the stability 

over storage of urinary MDA, 8-OHdG and 8-iso-PGF2α at -20°C, and found no effect after 3 months for 

8-OHdG and 8-iso-PGF2α (Martinez and Kannan, 2018), and mixed results for MDA depending on the 

study, but with a potential decrease (Martinez and Kannan, 2018; Weitner et al., 2016). No study specifically 

addressed this point over several years at -80°C, and to account for a potential effect of storage duration in 

the estimated associations, we included this variable as a confounding factor. 

In the SEPAGES cohort, urine dilution was measured relying on SG, and creatinine was not measured 

because it can be affected by individuals’ characteristics (Barr et al., 2005). SG-correction is traditionally 

applied in spot urine samples, but Philippat et al. (2021) showed that this method was not necessarily relevant 

in pool samples, since it lowered correlation coefficients with the gold-standard method for some chemical 

species. Unfortunately, to the best of our knowledge, no study particularly investigated the relevance of SG-

correction in pooled urine samples for OSB. The sensitivity analysis using raw outcomes showed a trend for 

OPm
AA-8-OHdG association, that was not significant. This correction should therefore be considered 

cautiously.  

Although the design of the study allowed to adjust for a number of confounding factors, residual confounding 

is a potential limitation of the study. Moreover, studies report contradictory influence of vitamin and 

minerals supplementation on oxidative stress (Moller and Loft, 2006; Sley et al., 2020; van ’t Erve, 2018), 

but we could not perform an analysis taking this factor into account, since only 16 participants were not 

supplemented. In fact, in France, most pregnant women take some supplementation in vitamins and minerals. 

Similarly, a potential confounding by endogenous antioxidant levels cannot be totally ruled out. Our results 

were not adjusted on the natural variation of melatonin levels (measures not available in SEPAGES), which 
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might be a confounder in the associations between short-term air pollution exposure and urinary 8-OHdG 

and MDA (He et al., 2020).  

A selection bias cannot be totally ruled out. Indeed, included participants tended to have higher exposure to 

PM2.5 and higher levels of SG-corrected 8-iso-PGF2α, potentially leading to the overestimation of the PM2.5-

8-iso-PGF2α association. But we did not observe this association. Nevertheless, since there was no 

significant difference in OP levels between the included and excluded participants, it is unlikely that the 

reported association with OP were influenced by selection bias. 

 

 Conclusion 
 

In conclusion, this study highlighted that the capacity of PM2.5 to generate ROS in a simulated lung fluid, 

measured by the AA assay was associated with DNA damage in pregnant women. These results are 

important because future child’s health could potentially be affected. Although the clear mechanisms remain 

unknown, this study further underlines the importance of the OP of PM2.5 in epidemiological studies and we 

recommend future studies in epidemiology, toxicology and aerosol sciences to investigate the role of key 

chemical tracers in OP. This will aid in better understanding the underlying biological mechanisms, 

particularly in the context of low PM2.5 mass concentrations. 
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Urine sampling and handling 

In addition to the effects of pregnancy exposure to air pollution on mother and child health, the SEPAGES 

cohort aims to assess the effect of exposure to chemical pollution, mainly phenols and phthalates. Because 

urine phenols and phthalate metabolites have short half-lives (thus important intra-day variability), the 

design of urine sampling consisted in 3 urine samples per day during 2 weeks (one in trimester 2 and one in 

trimester 3) and the pooling of daily samples to limit measurement errors related to the metabolites (Perrier 

et al., 2016; Vernet et al., 2019).  

Urine samples were collected by the women at their homes in polypropylene tubes, and were stored in their 

freezers until the end of the measurement week. Trained field workers retrieved and transported the samples 

to the certified biobank (bb-0033-00069) of the Grenoble University Hospital, where they were stored at -

20°C until pooling analysis. Since measurement weeks were not simultaneous, urine samples were 



125 

systematically treated individually (i.e. all samples of one participant each time) during the pooling 

procedure, therefore being at very low risk of cross-contamination. 

Quality assurance/quality control for biomarkers analysis 

MDA analysis 

The DNPH derivatization solution was prepared using a commercially available cartridge (LpDNPH S10, 

Supelco) eluted with 3.8 mL acetonitrile. This solution was then acidified with 200 µL acetic acid 25% 

(LCMS grade) and diluted to a total volume of 10 mL with H2O (LCMS grade). 50 µL of this reactive was 

added in each urine sample to derivatize the MDA at ambient temperature for 2 hours. This procedure 

allowed to get blank chromatograms with the lowest signal compared to derivatization solutions prepared 

with solid DNPH. 

MDA-DNPH derivatives were separated using a Zorbax C18 Eclipse plus 100 x 2.1mm x 1.8µm and 

analyzed in positive electrospray ionization (ESI+) mode, optimized at 3700 V between 2-8.5 min. The 

temperature of the vaporizer and of the ion transfer tube were maintained at 350°C and 390°C, respectively. 

The mobile phases were MilliQ water (A) and methanol/acetonitrile (70/30, v/v) (B), each with 0.1% acetic 

acid. The LC flow was set at 0.25 mL/min, and the column temperature at 30°C. The elution gradient was 

set: 0% B at 0-1.1 min, 55% B at 1.1 min, 65% B at 5 min, 90% B at 5.5 min, and 0% B at 8 min. In these 

conditions, the retention time of the MDA-DNPH is about 7.3 min. Ion detection conditions are described 

in Table S8. For each analytical series, 3 replicates of the QC sample (1.0 ng/mL MDA in water) were 

inserted. The averaged measured QC concentrations was 1.01 ± 0.04 ng/mL over the 22 analytical series. 

For each analytical series, 3 replicates of the QC sample (1.0 ng/mL MDA in water) were inserted. The 

averaged measured QC concentrations was 1.01 ± 0.04 ng/mL over the 22 analytical series.  

Table S8. Ion detection conditions for MDA analysis. 

 Precursor ion (m/z) Product ion (m/z) Collision energy (V) 

MDA 235.03 143.07 23.6 

 235.03 159.07 20.5 

 235.03 189.0 16.3 

MDA-d2 237.03 145.07 23.6 

 237.03 161.07 20.5 

 237.03 191.0 16.3 
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8-OHdG and 8-isoprostane analysis 

Both biomarkers were isolated sequentially from urine using a conditioned SPE (HLB 200 mg/3mL) with 2 

mL methanol (MeOH) and 2 mL H2O. After loading the urine sample on the SPE, a washing step with 2 x 

2 mL H2O/MeOH 90/10 was done. Then, the 8-OHdG was eluted using 2 x 1 mL H2O 0.1% acetic 

acid/MeOH 75/25 and filtrated through a PTFE filter with pores of 0.45 µm. This extract, containing the 8-

OHdG, was directly analyzed without any additional treatment. The SPE was further washed with 2 x 2 mL 

H2O/MeOH 50/50 and dried under nitrogen. The 8-iso-PGF2α was then eluted using 2 x 2 mL of acetone 

and filtrated through a PTFE filter with pores of 0.45 µm. This extract was concentrated to dryness (40°C, 

3 psi under nitrogen) and redissolved in 250 µL H2O containing 0.1% acetic acid (LCMS grade). Finally, 

both extracts were independently analyzed on the UPLC-MSMS system as described here under. As matrix 

effects might be important for the analysis of these two biomarkers in urine, the use of internal standard is 

mandatory (Sambiagio et al., 2021). In addition, the calibration standards were prepared in real urine which 

was passed through the SPE HLB cartridge before use, to ensure the absence of both biomarkers and other 

potential interferents. The blank corresponded to this cleaned urine, not spiked with standards.  

8-OHdG was separated on the Acquity HSST3 150 x 2.1mm x 1.8µm, and analyzed in positive electrospray 

ionization (ESI+) mode, optimized at 3700 V between 0.1-10 min. The temperature of the vaporizer and of 

the ion transfer tube were both maintained at 350°C. The mobile phases were MilliQ water 0.1% acetic acid 

(A) and MilliQ water (B), and acetonitrile (C). The LC flow was set at 0.25 mL/min, and the column 

temperature at 35°C. The elution gradient was set: 90% B, 0% C at 0 min, 10% B, 80% C at 5.5 min, and 

90% B, 0% C at 7.6 min. In these conditions, the retention time of the 8-OHdG is about 6.8 min. Ion detection 

conditions are described in Table S9. 

For each analytical series, 3 replicates of the low and high QC samples (1.05 ng/mL and 10.42 ng/mL 8-

OHdG in urine, respectively) were inserted. The averaged measured low QC concentration was 1.05 ± 0.05 

ng/mL (n=24), and the high QC concentrations 10.52 ± 0.33 ng/mL (n=24). 

Table S9. Ion detection conditions for 8-OHdG analysis. 

 Precursor ion (m/z) Product ion (m/z) Collision energy (V) RF lens (V) 

8-OHdG 

284.1 140.0 28.8 37 

284.1 168.1 10.0 37 

284.1 243.0 10.2 37 

8-OHdG 15N 
289.1 173.1 10.0 40 

289.1 248.0 10.2 40 
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8-iso-PGF2α was separated on the Acquity HSST3 150 x 2.1mm x 1.8µm, and analyzed in negative 

electrospray ionization (ESI-) mode, optimized at 3400 V between 7-16 min. The temperature of the 

vaporizer and of the ion transfer tube were both maintained at 350°C. The mobile phases were MilliQ water 

with 0.1 acetic acid (A) and acetonitrile (B). The LC flow was set at 0.30 mL/min, and the column 

temperature at 35°C. The elution gradient was set: 25% B at 0 min, 40% B at 20 min, 90% B at 26 min, and 

20% B at 27 min. In these conditions the retention time of the 8-iso-PGF2α is about 14.6 min. Ion detection 

conditions are described in Table S10. 

Table S10. Ion detection conditions for 8-iso-PGF2α analysis. 

 Precursor ion (m/z) Product ion (m/z) Collision energy (V) RF lens (V) 

8-iso-PGF2α 

353.2 193.11 25.0 80 

353.2 290.97 20.0 80 

353.2 309.24 20.0 80 

8-iso-PGF2α-d4 

357.2 197.11 25.0 78 

357.2 295.11 20.0 78 

357.2 313.17 19.0 78 

For each analytical series, 3 replicates of the low and high QC samples (0.17 ng/mL and 1.08 ng/mL 8-iso-

PGF2α in urine, respectively) were inserted. The averaged measured low QC concentration was 0.167 ± 

0.017 ng/mL (n=24), and the high QC concentrations 1.063 ± 0.057 ng/mL (n=24).  

Based on the low and high QC, several analytical parameters were determined (Table S11).  

Table S11. Analytical parameters based on the low- and high-quality controls. 

 MDA (ng/mL) 8-OHdG (ng/mL) 8-iso-PGF2α (ng/mL) 

LOD 0.025 0.2 0.05 

LOQ 0.075 0.5 0.10 

Repeatability low QC [%] 3.8 4.9 10.2 

Repeatability high QC [%] - 3.1 5.3 

Recovery low QC [%] 101.2 100.5 98.3 

Recovery high QC [%] - 101.0 98.4 

The first standard solution used for the calibration corresponded to the LOQ. This level presented a 

variability lower than 30% in all cases. The LOD was calculated based on the LOQ and corresponds to 1/3 

LOQ.  

Table S12. Number and percentage of samples detected (≥ LOD) and quantified (≥ LOQ) for each oxidative stress biomarkers. 

 MDA 8-OHdG 8-iso-PGF2α 

≥ LOD 300 (100%) 300 (100%) 299 (99.6%) 

≥ LOQ 300 (100%) 299 (99.6%) 294 (98%) 
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Description of population and covariates 

 

Figure S14. Flowchart of the population selection. 

 

 

Figure S15. Directed Acyclic Graph for the potential covariates. 
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Table S13. Description of covariates in the multiple regression models. 

Potential confounders in the main 

model 
Variable type Details regarding information collection 

educational level - defined as the 

maximum number of studying years 

after high-school degree 

3-class variable: up to 3 years, 4 

years, 5 years or more 

self-reported through a self-administrated 

questionnaire 

history of asthma binary 
self-reported through a self-administrated 

questionnaire 

history of rhinitis binary 
self-reported through a self-administrated 

questionnaire 

body mass index (BMI) before 

pregnancy 
continuous 

calculated based on self-reported weight before 

pregnancy and height measured by a clinical 

research assistant during a SEPAGES clinical visit 

age continuous 

calculated with the date of birth self-reported by a 

questionnaire administrated by a clinical research 

assistant 

parity 

3-class variable: 0, 

nulliparous/1, primiparous/2, 

multiparous; 

reported by a self-administrated questionnaire 

Active or passive smoking Binary 
assessed by several self-administrated 

questionnaires during the pregnancy 

mean temperature during the week 

of sampling 
continuous 

assessed at home address by a hybrid model 

(Hough et al., 2020) 

gestational age at the urine 

collection 
continuous 

calculated based on the difference in weeks 

between gestational duration and date of the urine 

collection 

number of samples in the pool binary: less than 3 vs. 3 
reported by the laboratory technician performing 

the pooling 

storage time at -80°C before 

analysis 
continuous 

calculated from the date the samples were sent for 

analysis and the date the storage started 
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Figure S16. Effect of each confounder related to participants’ characteristics separately on the regression models.  

Outcomes and exposures were scaled by their IQR. Whiskers represent the 95% confidence interval around the estimate. PM2.5, 

particulate matter with an aerodynamic diameter <2.5 μm (µg/m3); OPm
DTT, mass-normalized oxidative potential measured by the 

DTT assay (nmol/min/µg); OPv
DTT, volume-normalized oxidative potential measured by the DTT assay (nmol/min/m3); ); OPm

AA, 

mass-normalized oxidative potential measured by the AA assay (nmol/min/µg); OPv
AA, volume-normalized oxidative potential 

measured by the AA assay (nmol/min/m3). 
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Figure S17. Effect of each confounder related to technical variables separately on the regression models.  

Outcomes and exposures were scaled by their IQR. Whiskers represent the 95% confidence interval around the estimate. PM2.5, 

particulate matter with an aerodynamic diameter <2.5 μm (µg/m3); OPm
DTT, mass-normalized oxidative potential measured by the 

DTT assay (nmol/min/µg); OPv
DTT, volume-normalized oxidative potential measured by the DTT assay (nmol/min/m3); ); OPm

AA, 

mass-normalized oxidative potential measured by the AA assay (nmol/min/µg); OPv
AA, volume-normalized oxidative potential 

measured by the AA assay (nmol/min/m3). 



132 

Results 

Table S14. Spearman correlation coefficients between exposures and oxidative stress biomarkers (raw, and corrected for specific 

gravity). 

 
OPv

DTT OPv
AA OPm

DTT OPm
AA 

PM2.5 0.68** 0.47** -0.25** -0.14** 

OPv
DTT  

0.71** 0.47** 0.35** 

OPv
AA  

 
0.40** 0.77** 

OPm
DTT  

  
0.65** 

OPm
AA    

 

Note: **: p-value<0.01; *: p-value<0.05. PM2.5, particulate matter with an aerodynamic diameter <2.5 μm; OPm
DTT, mass-

normalized oxidative potential measured by the DTT assay; OPm
AA, mass-normalized oxidative potential measured by the AA assay; 

OPv
DTT, volume-normalized oxidative potential measured by the DTT assay; OPv

AA, volume-normalized oxidative potential measured 

by the AA assay. 

 

Table S15. Description of PM2.5, OPv
DTT, OPv

AA, OPm
DTT and OPm

AA in the low vs. high concentrations of PM2.5 (using the median 

exposure of 14 µg/m3 as threshold). 

Characteristic N PM2.5 ≤ 14 µg/m3, N = 151 PM2.5 > 14 µg/m3, N = 149 p-value1 

PM2.5 300   <0.001 

Median (IQR)  10 (8, 11) 18 (15, 22)  

Range  4, 14 14, 51  

OPv
DTT 300   <0.001 

Median (IQR)  1.10 (0.83, 1.35) 1.91 (1.47, 2.41)  

Range  0.18, 2.74 0.52, 4.56  

OPv
AA 300   <0.001 

Median (IQR)  1.20 (0.68, 1.65) 1.90 (1.17, 2.78)  

Range  0.08, 3.51 0.04, 11.43  

OPm
DTT 300   0.009 

Median (IQR)  0.12 (0.09, 0.15) 0.10 (0.08, 0.12)  

Range  0.02, 0.35 0.03, 0.18  

OPm
AA 300   0.037 

Median (IQR)  0.12 (0.08, 0.17) 0.10 (0.06, 0.15)  

Range  0.01, 0.47 0.00, 0.45  

1Wilcoxon rank sum test 

Note: PM2.5, particulate matter with an aerodynamic diameter <2.5 μm (µg/m3); OPm
DTT, mass-normalised oxidative potential 

measured by the DTT assay (nmol/min/µg); OPv
DTT, volume-normalised oxidative potential measured by the DTT assay 

(nmol/min/m3); OPv
AA, volume-normalised oxidative potential measured by the AA assay (nmol/min/m3); OPm

AA, mass-normalised 

oxidative potential measured by the AA assay (nmol/min/µg). 
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Table S16. Estimated associations between exposure to OPm
AA and OPm

DTT and oxidative stress biomarkers in pregnant women, 

after stratification on PM2.5 levels (using the median exposure of 14 µg/m3 as threshold). 

OSB and exposure 
PM2.5 ≤ 14 µg/m3, N = 151 PM2.5 > 14 µg/m3, N = 149 interaction p-

value percent change (95% CI) percent change (95% CI) 

MDA    

OPm
AA 1.3 (-9.5, 13.5) 3.4% (-8.4, 16.7) 0.99 

OPm
DTT 5.1 (-4.2, 15.3) 2.1% (-11.4, 17.5) 0.63 

8-OHdG    

OPm
AA 11.4% (3.3, 20.1) -1.0% (-10.6, 9.6) 0.12 

OPm
DTT 7.1% (0.70, 14.2) -4.9% (-15.5, 7.0) 0.11 

8-iso-PGF2α    

OPm
AA 5.8% (-1.4, 13.4) -8.7% (-16.9, 0.4) 0.06 

OPm
DTT 2.9% (-2.9, 9.0) -5.3% (-15.2, 5.9) 0.31 

Note: percent change (95% CI) correspond to the stratified analysis, adjusted on educational level, history of rhinitis, history of 

asthma, age, BMI, parity, active or passive, mean temperature during the sampling week, gestational age at urine collection, number 

of samples in the pool and storage time at -80°C before analysis. The interaction p-value corresponds to the OPm
AA×PM2.5 or 

OPm
DTT×PM2.5 term, after binarizing the PM2.5 variable using the median exposure of 14 µg/m3 as threshold. 
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Table S17. Numerical data for figures 1 and 2 of the main text: Association between personal exposure to PM2.5, OPm
DTT, OPv

DTT, 

OPm
AA and OPv

AA and oxidative stress biomarkers in multiple linear models and in the sensitivity analyses. 

 Biomarker 8-iso-PGF2α MDA 8-OHdG 

Pollutant Analysis 
percent change (95% 

CI) 
N 

percent change 

(95% CI) 
N 

percent change 

(95% CI) 
N 

PM2.5 

Univariate 0.02 (-5.47, 5.84) 300 -2.57 (-10.07, 5.55) 300 2.66 (-3.31, 9.00) 300 

Complete Cases 0.02 (-5.51, 5.88) 273 -3.3 (-11.25, 5.36) 273 1.94 (-4.12, 8.39) 273 

Main model -0.01 (-5.36, 5.64) 300 -2.92 (-10.46, 5.26) 300 2.07 (-3.85, 8.35) 300 

Excluding extreme values 0.13 (-5.48, 6.07) 288 -2.12 (-10.04, 6.49) 288 2.69 (-3.62, 9.41) 289 

Excluding active smokers 1.31 (-4.03, 6.95) 283 -2.71 (-10.34, 5.57) 283 2.8 (-3.27, 9.25) 283 

Not corrected for SG 0.71 (-4.97, 6.72) 300 -2.01 (-9.66, 6.29) 300 3.17 (-3.29, 10.06) 300 

3 samples in pool -0.19 (-6, 5.99) 265 -2.25 (-10.77, 7.09) 265 1.66 (-4.84, 8.6) 265 

OPm
DTT 

Univariate 0.16 (-4.71, 5.28) 300 3.41 (-3.65, 10.98) 300 2.41 (-2.87, 7.98) 300 

Complete Cases 0.88 (-4.36, 6.40) 273 5.47 (-2.66, 14.27) 273 2.74 (-2.99, 8.81) 273 

Main model 1.6 (-3.28, 6.72) 300 4.89 (-2.43, 12.75) 300 3.56 (-1.82, 9.23) 300 

Excluding extreme values -0.25 (-5.17, 4.93) 288 3.52 (-4.02, 11.66) 288 -0.76 (-6.27, 5.07) 289 

Excluding active smokers 1.53 (-3.30, 6.6) 283 3.93 (-3.43, 11.85) 283 3.25 (-2.25, 9.06) 283 

Not corrected for SG -0.87 (-5.88, 4.41) 300 2.44 (-4.74, 10.16) 300 1.2 (-4.50, 7.23) 300 

3 samples in pool 2.04 (-3.06, 7.41) 265 6.35 (-1.6, 14.93) 265 5.37 (-0.39, 11.45) 265 

OPv
DTT 

Univariate -0.41 (-5.96, 5.46) 300 -1.98 (-9.63, 6.31) 300 2.33 (-3.71, 8.75) 300 

Complete Cases -0.27 (-6.05, 5.86) 273 -1.57 (-10.05, 7.7) 273 2.56 (-3.83, 9.37) 273 

Main model 0.31 (-5.28, 6.24) 300 -1.55 (-9.53, 7.12) 300 3.16 (-3.07, 9.79) 300 

Excluding extreme values 1.86 (-3.66, 7.69) 288 0.53 (-7.54, 9.31) 288 4.51 (-1.81, 11.25) 289 

Excluding active smokers 1.02 (-4.57, 6.94) 283 -1.82 (-9.9, 6.99) 283 3.53 (-2.88, 10.36) 283 

Not corrected for SG -0.48 (-6.33, 5.73) 300 -2.08 (-10.05, 6.6) 300 2.78 (-3.93, 9.97) 300 

3 samples in pool 0.31 (-5.39, 6.36) 265 -0.43 (-8.91, 8.83) 265 3.87 (-2.59, 10.77) 265 

OPm
AA 

Univariate 0.16 (-4.82, 5.39) 300 2.70 (-4.45, 10.39) 300 3.85 (-1.60, 9.60) 300 

Complete Cases 0.12 (-5.54, 6.12) 273 0.9 (-7.58, 10.16) 273 5.75 (-0.64, 12.56) 273 

Main model 0.5 (-4.81, 6.1) 300 1.47 (-6.32, 9.9) 300 6.19 (0.16, 12.59) 300 

Excluding extreme values -0.45 (-5.78, 5.18) 289 1.34 (-6.62, 9.97) 288 3.24 (-3.03, 9.93) 288 

Excluding active smokers 0.97 (-4.28, 6.51) 283 1.44 (-6.41, 9.95) 283 6.6 (0.44, 13.13) 283 

Not corrected for SG -1.51 (-6.97, 4.28) 300 -0.54 (-8.19, 7.75) 300 4.11 (-2.31, 10.94) 300 

3 samples in pool 0.28 (-5.13, 6.01) 265 2.82 (-5.49, 11.86) 265 6.86 (0.58, 13.53) 265 

OPv
AA 

Univariate -1.19 (-5.50, 3.32) 300 -0.38 (-6.49, 6.14) 300 1.97 (-2.75, 6.92) 300 

Complete Cases -2.02 (-6.88, 3.09) 273 -2.61 (-9.81, 5.16) 273 3.25 (-2.26, 9.06) 273 

Main model -1.72 (-6.45, 3.24) 300 -2.27 (-9.11, 5.09) 300 3.69 (-1.7, 9.39) 300 

Excluding extreme values -0.26 (-5.35, 5.11) 289 -1.11 (-8.61, 7.01) 288 4.04 (-1.97, 10.4) 288 

Excluding active smokers -0.89 (-5.56, 4.01) 283 -2.29 (-9.15, 5.09) 283 4.3 (-1.19, 10.09) 283 

Not corrected for SG -2.32 (-7.26, 2.89) 300 -2.69 (-9.52, 4.67) 300 3.37 (-2.45, 9.54) 300 

3 samples in pool -2.1 (-6.8, 2.84) 265 -1.53 (-8.63, 6.13) 265 3.31 (-2.13, 9.05) 265 

Pollutants were scaled by their IQR. The main model was adjusted on educational level, history of rhinitis, history of asthma, age, 

body mass index, parity, active or passive smoking, mean temperature during the sampling week, gestational age at urine collection, 

number of samples in the pool, storage time at -80°C before analysis. “Complete Cases” is an analysis excluding pregnant women 

with missing data for at least one covariate; “Excluding extreme values” are the analyses excluding the exposures and outcomes 

below the 1st percentile and above the 99th; “Excluding active smokers” is an analysis excluding women that actively smoked during 

their pregnancy; “Not corrected for SG” is an analysis using raw concentrations of OSB, adding SG in the confounders; “3 samples 

in pool” is an analysis excluding women for which the pooled urine sample was based on less than 3 urine samples. PM2.5, 

particulate matter with an aerodynamic diameter <2.5 μm (µg/m3); OPm
DTT, mass-normalized oxidative potential measured by the 

DTT assay (nmol/min/µg); OPv
DTT, volume-normalized oxidative potential measured by the DTT assay (nmol/min/m3); OPv

AA, 

volume-normalized oxidative potential measured by the AA assay (nmol/min/m3); OPm
AA, mass-normalized oxidative potential 

measured by the AA assay (nmol/min/µg); SG: specific gravity.  
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2 Etablissement Français du Sang Auvergne-Rhône-Alpes, Research and Development Laboratory, 38700 

Grenoble, France 

3 Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France 

4 Department of Pulmonology and Physiology, CHU Grenoble-Alpes, Grenoble, France  

5 RTI International, Research Triangle Park, North California, USA 

6 Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France  

7Univ. Grenoble Alpes, Inserm UA07 STROBE Laboratory, Grenoble, France. 

8 Agence de l’environnement et de la Maîtrise de l’Energie. 20, avenue du Grésillé- BP 90406 49004 

Angers Cedex 01 France 

 

Contribution: While Chapter IV was focused on the mechanical pathway that led to oxidative stress, 

this work more globally concerns systemic modifications of the immune function in pregnant 

women. Therefore, another air pollutant, namely NO2, was included.  

The manuscript related to this work is under review by the co-authors and should be submitted 

soon. I was involved in the OP data curation and initiated the first steps of the statistical analyses 

during my second year of PhD. We decided to entrust this work to Laurène Frau during the summer 

2023. She performed the rest of the statistical analyses, and we wrote the first draft of the article 

together. This work validated her internship and her first year of Masters. OP analysis was 

performed by the workforce of IGE’s plateau AirOSol. Among the statistical methods presented, we 

beneficiated from the work of other IAB’s team members and former students, and were able to use 

readily validated PM2.5 mass concentration exposure, and corrected cytokines concentrations (two-

step standardization method and fill-in approach for values <LOD).  
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 French summary 
 

Contexte. Le stress oxydant et la modulation du système immunitaire sont deux mécanismes cycliques, 

s’influant l’un et l’autre, qui sont principalement responsable des effets sanitaires de la pollution 

atmosphérique. L’exposition aux polluants de l’air a été associée à une réponse pro-inflammatoire, mais 

seulement très peu d’études se sont intéressées à l’exposition au potentiel oxydant des PM, alors même que 

cette métrique a été développée pour simuler la capacité des PM à générer du stress oxydant. Seulement 

quelques études de faible effectif ont étudié les effets de l’exposition au PO des PM sur des marqueurs de la 

fonction immunitaire, et ces études sont limitées à quelques marqueurs. Par ailleurs, alors que les femmes 

enceintes représentent une population particulièrement vulnérable du fait des modifications de leur système 

immunitaire, peu d’études ont spécifiquement porté sur cette population. 

 

Objectifs. Ce travail vise à évaluer les associations entre l'exposition personnelle aux NO2, PM2.5, et PO des 

PM2.5 et la fonction immunitaire dans une population de femmes enceintes. 

 

Méthodes. Cette étude repose sur 270 femmes enceintes appartenant à la cohorte couple-enfant française 

SEPAGES. Des échantillonneurs passifs et actifs ont été portés durant une semaine pour calculer l’exposition 

au NO2 et PM2.5, respectivement. Le potentiel oxydant des PM2.5 prélevées sur le filtre de l’échantillonneur 

personnel a été mesuré par les méthodes du dithiothréitol (DTT) et de l'acide ascorbique (AA). Les niveaux 

de cytokines sécrétées par les monocytes, les cellules dendritiques, les granulocytes et les lymphocytes T 

ont été analysés dans des échantillons sanguins prélevés à la fin de la semaine de mesure d’exposition aux 

polluants de l’air. Les niveaux de 29 cytokines et chimiokines ont été mesurés à l'état basal et après activation 

des lymphocytes T et des cellules dendritiques avec de la phytohémagglutinine (PHA) et du résiquimod 

(R848), respectivement. Des modèles de régression linéaire multiple ont été réalisés pour évaluer 

l'association entre chaque polluant de l'air et chaque cytokine en ajustant pour les facteurs de confusion 

potentiels. 
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Résultats. Aucune association significative n’a été mise en évidence pour l’exposition aux PM2.5. Une 

augmentation d’un écart interquartile (IQR) de l'exposition au NO2 (10 µg/m3) était associée à une 

augmentation de l'IL-10 et à une diminution du TNF activé par la PHA (β [intervalle de confiance à 95 %] : 

0,18 [0,03 ; 0,32], p=0,02 ; β [IC à 95 %] = -0,18 [-0,32 ; -0,02], p=0,03, respectivement). Une augmentation 

de l'exposition au POv
AA (IQR = 1,65 nmol/min/m3) était associée à une diminution de l'IL-8 activée par le 

R848 (β [IC à 95 %] = -0,17 [-0,33 ; 0,00], p=0,05), et une tendance similaire était observée avec l'IL-8 à 

l'état basal (β [IC à 95 %] = -0,18 [-0,41 ; 0,06], p=0,14. Une augmentation de l'exposition au POm
AA (IQR 

= 0,08 nmol/min/µg) était associée à une diminution de l'IL-8 activée par le R848 (β [IC à 95 %] = -0,12 [-

0,24 ; 0,00], p=0,05). Enfin, le POm
DTT était associé à une augmentation de l'IL-17A activée par la PHA (β 

[IC à 95 %] = 0,11 [0,00 ; 0,22], p=0,04), et une tendance similaire était observée avec le POv
DTT et le POm

AA 

(β [IC à 95 %] = 0,08 [-0,04 ; 0,20], p=0,18 ; β [IC à 95 %] = 0,10 [-0,01 ; 0,22], p=0,07, respectivement). 

 

Conclusions. Cette étude a mis en évidence un effet de l’exposition des polluants de l’air sur la fonction 

immunitaire de la femme enceinte. Les effets sont observés avec l’exposition au NO2 et au PO des PM2.5, 

mais pas avec la concentration massique des PM2.5. Cela suggère que les métriques spécifiques à l’exposition 

aux traceurs liés au trafic (NO2), et aux espèces redox-actives (PO des PM) sont plus spécifiques que la 

simple concentration en masse pour les effets biologiques sur les voies oxydantes et inflammatoire. Cela 

apporte des preuves biologiques aux études épidémiologiques récentes suggérant que la concentration 

massique des PM n’est pas la métrique la plus adéquate pour l’estimation des effets délétères de l’exposition 

à la pollution atmosphérique.  
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 Abstract 
 

Context: The immune function is suspected to play an important role in the health effects of air pollution 

but it remains poorly investigated in pregnant women. 

Objectives: Associations between personal exposure to air pollutants and the immune function of pregnant 

women were investigated. 

Methods: One-week personal measurements of exposure to nitrogen dioxide (NO2), particulate matter with 

an aerodynamic diameter of ≤2.5µm mass concentration (PM2.5) and PM2.5 oxidative potential (OP) were 

assessed in 270 pregnant women from the French cohort SEPAGES. PM filters collected by an active 

personal sampler were analyzed for PM2.5 OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) 

assays. Immune function biomarkers were assessed in a blood sample withdrawn at the end of the exposure 

measurement week. Levels of 29 cytokines and chemokines were measured at baseline and after T cell and 

dendritic cell activation with phytohemagglutinin (PHA) and resiquimod (R848), respectively. Adjusted 

linear regression models were performed to assess the association between each air pollutant and each 

cytokine.  

Results: No significant associations with PM2.5 were found. An increase in NO2 exposure was associated 

with higher interleukin 10 (IL-10) and lower PHA-activated tumor necrosis factor (TNF). Increased 

exposure to OPAA was associated with lower IL-8 measured upon R848 activation and at baseline. Finally, 

OPDTT was associated with higher PHA-activated IL-17A. 

Conclusions: Our study provides significant insights into the relationships between air pollution exposure 

and immune function among pregnant women. OP of PM is a useful metric to highlight biological pathways 

induced by atmospheric pollution exposure. 

 

  Introduction 
 

Exposure to atmospheric pollutants, such as particulate matter (PM) and nitrogen dioxide (NO2), affects a 

number of human systems and organs, and contributes to a significant part of premature death worldwide 
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(Fuller et al., 2022). Oxidative stress and the modulation of the immune system are two inter-related 

mechanisms through which air pollutants exert their deleterious effects on health (Bernstein et al., 2004; Li 

et al., 2003; Mudway et al., 2020). Oxidative stress, by an excess of reactive oxygen species can damage 

lipoproteins or lipids in membranes, leading to the formation of oxidation-specific epitopes recognized by 

pattern recognition receptors of the innate immune system (Binder et al., 2016). This can enhance 

inflammatory mechanisms, thereby leading to a cyclic generation of oxidative stress and inflammation 

(Kelly and Fussell, 2015).  

Most of the research carried out on immune system has focused on the assessment of ambient particles, 

notably PM10 and PM2.5 and gases (NO2). Epidemiological studies showed that exposure to NO2 was 

associated with increased pro-inflammatory cytokines, such as IL-6 and TNF-α (Lim et al., 2022; Xu et al., 

2022). Previous studies highlighted that ambient exposure to fine particles was associated with an 

intensification of inflammatory responses and an increase in B lymphocytes (Glencross et al., 2020; Zhao et 

al., 2019). The oxidative potential (OP) of PM, a metric developed to mimic oxidative stress generation in 

the lung fluid after PM inhalation, was assessed in very few epidemiological studies addressing its 

relationship with human immune system. OPAA, OPDTT and OPDCFH from ambient PM were found associated 

with elevated expression of pro-inflammatory biomarkers in lung epithelial cells (Leni et al., 2020; Liu et 

al., 2014). To the best of our knowledge, four studies estimated associations between OP of PM and immune 

system biomarkers of human and showed that OP of PM was positively associated with plasma IL-6 (Delfino 

et al., 2010), blood IL-6 expression (Liu et al. (2018) and IL-6 levels in nasal fluids (Janssen et al. (2015), 

while Steenhof et al. (2013) did not find any association with blood IL-6, nor with nasal IL-6 and IL-8. 

Overall, these studies tend to converge towards a pro-inflammatory effect of OP exposure, but they mostly 

relied on the expression of IL-6 and a relatively small sample size.  

Pregnant women constitute a sensitive population to air pollution, primarily due to the modifications that 

occur in their immune systems during pregnancy, including a modification of cytokine production (Mor and 

Cardenas, 2010). However, there is a notable lack of available data regarding effects of exposure to air 

pollution on immune system in this particular population. Furthermore, it is especially relevant to delve into 

the mechanisms involved in the health effects of air pollution in pregnant women, as prenatal exposure to 
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air pollution influences the development of child health and immune function (Baïz et al., 2011; García-

Serna et al., 2021; Manches et al., 2023).  

The aim of this study was to assess the associations between personal exposure to air pollutants (NO2, PM2.5 

and PM OP) during pregnancy and immune function measured both at the baseline state and after T cell and 

dendritic cell activation. 

 

 Materials and methods 
 

IV.1. Study population 

This study is based on data from the SEPAGES French parent-child cohort. The study population lives 

within 80km around the center of Grenoble in the Alpes. Briefly, 484 pregnant women, with pregnancy 

duration less than 19 weeks and with a singleton pregnancy, older than 18 years old and affiliated to the 

French national security system, were recruited between 2015-2017 (Lyon-Caen et al., 2019). Their partner 

and children were also recruited. Exposure information were collected using personal samplers and 

immunological information were collected using blood samples. Sociodemographic and medical 

information were collected using a combination of questionnaires, interviews, and clinical examinations 

during and after pregnancy. The present analysis is based on 270 mothers with exposure assessed to at least 

one of the measured air pollutants during pregnancy and immunological measurements at the end of the 

exposure assessment week (Figure 28). To be included in the analysis, mothers had to have the blood samples 

collected within 2 days after the pollutant sampling period to assess the immune system's status in relation 

to the exposure measurements. 
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Figure 28. Flow chart for the selection of the study population 

Abbreviations: PM2.5 particulate matter with diameter ≤ 2.5 μm; NO2 nitrogen dioxide; OP: oxidative potential; PHA: 

phytohemagglutinin; R848 resiquimod. 

IV.2. Personal exposure assessment to air pollutants  

Women in the SEPAGES cohort wore or kept nearby personal active air samplers placed in a wearable 

backpack to measure their personal exposures to PM2.5 (MicroPEM™ active air sampler; RTI International, 

USA) and NO2 (Passam AG passive air sampler, Switzerland) for 7 (13%) to 8 (87%) consecutive days 

(Borlaza et al., 2022a; Lepeule et al., 2023; Marsal et al., 2023). The measurement week took place during 

the second (81%) or the third trimester (19%) of pregnancy (median [min-max] gestational age = 19 weeks 

[14-36]). 

NO2 concentration was measured using spectrophotometry following established methods (Hafkenscheid et 

al., 2009). PM2.5 filters from the MicroPEM were weighed before and after sampling at RTI International 

(USA), using a microbalance (Mettler Toledo UMX2) placed in an environmental chamber maintained at a 

temperature of 21°C and 35% relative humidity. PM2.5 mass concentration was calculated by dividing the 

mass of collected PM, measured by gravimetric analysis, by the air volume sampled during the measurement 

week (µg/m3). PM filters were cold-stored until OP analysis. Protocol for OP measurement was previously 

published (Borlaza et al., 2022a; Marsal et al., 2023), based on the protocol established by Calas et al. (2018, 

2017). Briefly, PM2.5 were extracted in a simulated lung fluid consisting in a mixture of 1,2-
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dipalmitoylphosphatidylcholine (DPPC), to reach a final concentration of 10 µg/mL. Extracts were 

incubated at 37°C for 75 min under vortex agitation prior to analysis using the dithiothretitol (DTT) and the 

ascorbic acid (AA) assays. A 96-well plate (CELLSTRAR, Greiner-Bio) was used to mix the extracts with 

DTT or AA solutions. For the AA assay, the absorbance at 265 nm (TECAN spectrophotometer Infinite 

M200 Pro) is measured over time to evaluate AA consumption by PM2.5 extract, for a total reaction time of 

30 min. For the DTT assay, the absorbance at 412 nm measured the formation of the 2-nitro-5-thiobenzoic 

acid (TNB), which is the reaction product of the remaining DTT and dithionitrobenzoic acid (DTNB), for a 

total reaction time of 30 min. Samples were analyzed in triplicates, and the mean was calculated for each 

sample. For both assays, consumption rates were then normalized by the mass of PM of the extract (OPm, in 

nmol/min/µg), or by the corresponding air volume sampled (OPv, nmol/min/m3). 

IV.3. Maternal immune function 

Blood samples were collected by trained field workers, within a maximum of 48 hours after the end of the 

exposure measurement week, following the procedure published by Manches et al. (2023). Briefly, blood 

was collected in BD Medical 368886 vacutainer tube (lithium heparin) for immunological analyses (cell 

culture and plasma separation), and in BD Medical 368861 vacutainer tube (EDTA) for cell counting. They 

were transported to the Etablissement Français du Sang (EFS) in coolers, placed on a rotating device for at 

least 5 min to ensure homogeneous cell content, and were then processed within 24 hours after collection. 

Innate and adaptative immunity of the women were measured at baseline in plasma and in whole blood after 

a 24-hour ex vivo activation of the whole blood at 37°C using Resiquimod (R848) and phytohaemagglutinin 

(PHA), as previously described by Manches et al. (2023).  

Briefly, cytokines were measured in the culture supernatant (for activated cells) or in plasma by cytometric 

bead arrays (BD™ CBA Human cytokines Flex Set, BD Biosciences).  

Among the 29 cytokines that were measured (12 at baseline, 9 after PHA-activation and 8 after R848 

activation) only those with at least 70% of detected values were considered (Manches et al., 2023). Hence, 

for the samples activated with PHA, the overall activity of T lymphocytes (T helpers Th1, Th2, Th9, Th17, 

and regulatory Treg) was assessed by quantifying the levels of IL-2, TNF-α, interferon (IFN) γ, IL-13, IL-

17a, IL-9 and IL-10. For the samples activated with R848, the overall activity of dendritic cells was evaluated 
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by quantifying TNF-α, IL-10, IL-6, IL-8, IFN-α, IFN-γ, IL-1β, and IL-12p70. For the non-activated sample, 

the basal state of the immune system was quantified by IL-8, monocyte chemoattractant protein-1 (MCP1) 

and regulated on activation, normal T cell expressed and secreted (RANTES). The concentrations below the 

limit of detection were imputed by a fill-in approach, that randomly selects values between 0 and the LOD 

based on the underlying distribution (2023)(Helsel, 1990; Lubin et al., 2004). Due to their skewed 

distribution, cytokine concentrations were log10 transformed.  

Since technical between-participant variability related to the experimentation can lead to measurement error, 

a two-step standardization method based on regression residuals (Mortamais et al., 2012) was used to correct, 

when necessary, cytokine concentrations. The same standardized variables as previously described by 

Manches et al. (2023) were used. Briefly, the technical variables considered were: 1) for baseline cytokines: 

analytical batch, time between sample collection and reception, time between sample reception and analysis; 

2) for activated cytokines the same variables were used, together with the duration of the activation, R848 

or PHA age at the time of sample activation, and storage duration.  

IV.4. Statistical analysis 

Summary statistics (mean [standard deviation] or median [Q1-Q3]) were calculated for air pollutant 

exposure assessments, cytokine levels, and covariates. A correlation matrix (Pearson’s r) was calculated 

between the cytokine’s levels and between the air pollutant concentrations. Univariate and adjusted linear 

regressions were conducted to estimate the associations between each air pollutant exposure and each 

cytokine levels. Each exposure and log-transformed cytokine variables were divided by the interquartile 

range (IQR), to facilitate comparison of the beta estimates. The included covariates were age of the women 

(continuous), BMI before pregnancy (continuous), active or passive smoking (active smoking in the 12 

months prior to pregnancy, or active or passive smoking during pregnancy; binary: yes/no), educational level 

(binary: <master's degree, ≥ master's degree), leukocyte count (continuous), gestational age at sampling 

(continuous), and sampling season (4 categories with winter corresponding to January-March, spring to 

April-June, summer to July-September, and fall to October-December). To avoid reduction of the sample 

size due to missing data in cofactors (overall 29 missing values), multiple imputations (n=20 datasets) were 

performed using Multivariate Imputation by Chained Equations (package mice, R).  
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In addition, sensitivity analyses were carried out to assess the robustness of the results to 1) extreme values 

(after exclusion of 1% lowest and 1% highest exposure and cytokine concentrations), 2) influential values 

(after exclusion of values with a Cook’s distance exceeding 4/n, with n being the number of participants in 

the main analysis), and 3) the set of confounders, with models excluding the leucocyte counts among 

cofactors and models including history of asthma and rhinitis which could lie in the causal path between air 

pollution and cytokine levels. Results with p-value < 0.05 were considered statistically significant, and 

results with 0.05 ≤ p ≤ 0.10, indicative of a trend. All analyses were conducted using the statistical software 

R (version 4.2). 

 Results 
 

V.1. Population characteristics 

The population studied included 270 pregnant women with a median age of 32.1, a median BMI of 21.6 and 

a high educational level (58% of them had a diploma equivalent to or higher than a master's degree) (Table 

12). Among these women, 9.5% were active smokers before or during pregnancy. Regarding respiratory 

health, 16% reported asthma symptoms before or during pregnancy, and 40% reported rhinitis. 

Table 12. Description of women in the study population 

Characteristics N = 2701 

Age (years) 32.1 (29.9 - 35.1) 

Age (categories)   

<30 69 (25.5%) 

30-35 133 (49.3%) 

≥ 35 68 (25.2%) 

BMI before pregnancy 21.6 (19.8 – 24.1) 

BMI before pregnancy (categories)  

<18.5 kg/m2 15 (5.6%) 

18.5-25 kg/m2 197 (73.8%) 

25-30 kg/m2 43 (16.1%) 

≥ 30 kg/m2 12 (4.5%) 

Missing 3 

Education level   

High school 13 (4.8%) 

Bachelor’s degree 29 (11%) 

Master’s degree 70 (26%) 

≥ Postgraduate 157 (58%) 

Missing 1 

Active smoking before or during pregnancy  

No 228 (90%) 
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Characteristics N = 2701 

Yes 24 (9.5%) 

Missing 18 

Passive smoking during pregnancy  

No 204 (80%) 

Yes 50 (20%) 

Missing 16 

Symptoms of asthma before or during pregnancy  

No 228 (84%) 

Yes 42 (16%) 

Symptoms of rhinitis before or during pregnancy  

No 162 (60%) 

Yes 108 (40%) 

Season of sampling  

Autumn 55 (21%) 

Spring 79 (30%) 

Summer 69 (26%) 

Winter 64 (24%) 

Gestational age at sampling (weeks) 19.0 (18.0- 21.0) 
1 Median (Q1-Q3); n (%) 

 

V.2. Exposure to NO2 , PM2.5 and OP  

Median (Q1-Q3) exposure to NO2, PM2.5, OPm
DTT, OPv

DTT, OPm
AA and OPv

AA were 20.2 (16.2 - 25.8) µg/m3, 

13.8 (9.9-18.5) µg/m3, 0.11 (0.09-0.14) nmol/min/µg, 1.48 (1.06-2.00) nmol/min/m3, 0.12 (0.08-0.16) 

nmol/min/µg and 1.65 (0.98-2.63) nmol/min/m3, respectively (Table 13). For PM2.5 and NO2, personal 

exposure levels are in the range of typical ambient exposure levels, as reported in the ELAPSE project, 

pooling eight European cohorts (Strak et al., 2021). A seasonal trend was observed during the cold season 

with higher concentrations of all studied pollutants. OPv
AA presents a strong Pearson correlation coefficient 

(r > 0.5) with OPv
DTT and with OPm

AA, whereas OPv
DTT is strongly correlated with PM2.5; and OPm

AA with 

OPm
DTT (Figure 29). Moderate Pearson correlation coefficients (0.30 < r < 0.50) were observed between 

OPv
DTTand OPm

DTT or OPm
AA, and between OPv

AA and PM2.5. Remaining correlations were considered weak (r 

< 0.3). 

Table 13. Description of air pollutant characteristics 

Air pollutant N Median (Q1-Q3) IQR 

NO2 (µg/m3) 270 20.2 (16.2 – 25.8) 9.5 

PM2.5 (µg/m3) 210 13.8 (9.9 – 18.5) 8.60 

OPm
DTT (nmol/min/µg) 194 0.11 (0.09 - 0.14) 0.05 
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OPv
DTT (nmol/min/m3) 194 1.48 (1.06 - 2.00) 0.93 

OPm
AA (nmol/min/µg) 194 0.12 (0.08 - 0.16) 0.09 

OPv
AA (nmol/min/m3) 194 1.65 (0.98 - 2.63) 1.65 

Abbreviations: IQR interquartile range; PM2.5 particulate matter with diameter ≤ 2.5 μm; NO2 nitrogen dioxide; OP: oxidative 

potential; DTT: dithiothreitol; AA: ascorbic acid. 

 

V.3. Cytokines measurements 

Regarding raw concentrations of cytokines, women exhibited high concentrations of RANTES (median [Q1-

Q3] = 14026 pg/mL [9873 - 17511]) at the basal state, high levels of IL-2, IL-10, TNF- and IFN- (median 

[Q1-Q3]= 2665 pg/mL [1702 - 4249], 904 pg/mL [609 - 1370]), 760 pg/mL [248 - 1468] and 758 pg/mL 

[430 - 1384]), after activation with PHA, and high levels of IL-1β, IL-6, and IL-8 (median [Q1-Q3]= 9157 

pg/mL [6482 - 13545]; 44668 pg/mL [32069 - 60509] and 39811 pg/mL [20896 - 66940], respectively) after 

activation with R848. Regarding imputed, corrected and log-10 transformed cytokine concentrations, the 

intra-group (basal, PHA activated, R848 activated) correlations at the basal level displayed a low correlation 

(-0.1 < Pearson r < 0.2), correlations after PHA activation were moderate-to-strong (r > 0.4) and correlations 

after R848 activation were weak-to-moderate (0.2 < r < 0.4) (Figure 29). The inter-group correlation was 

very weak (r < 0.1), except for IL-8 between basal state and R848-activated measures (r = 0.37), IFN- 

between PHA- and R848- activated measures (r = 0.44) and between PHA-activated IL-2 and R848-

activated IL-6, IL-1, and IL-12p70 (0.22 < r < 0.27). A negative correlation was also observed between IL-

10 secretion after PHA activation and IL-8 secretion at basal state and after R848 activation (r = -0.15 and -

0.16, respectively). 

Table 14. Description of biomarkers characteristics 

Cytokine levels  Percentile of raw values 
Percentile of imputed, corrected and log10 

transformed values 

 N 10% 25% 50% 75% 90% 10% 25% 50% 75% 
90

% 
IQR 

Concentration of 

leucocytes (G/L) 
265 6.8 7.6 8.9 10.2 11.6       

At basal state             

IL-8 (basal, pg/mL) 266 5.5 8.9 17.8 94.3 283.1 0.50 0.84 1.07 1.36 1.86 0.52 

MCP1 (basal, pg/mL) 266 19.0 25.9 38.4 56.2 116.0 1.22 1.38 1.51 1.64 1.77 0.26 

RANTES (basal, pg/mL) 266 7374.1 9873.3 14026.3 17511.4 23935.5 3.84 3.96 4.08 4.16 4.24 0.2 

After PHA activation             
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IFN-γ (pg/mL) 264 300.0 429.7 758.4 1383.8 3121.9 2.60 2.75 2.94 3.14 3.30 0.39 

IL-2 (pg/mL) 264 1067.1 1701.6 2664.7 4245.8 7877.3 3.13 3.30 3.47 3.65 3.78 0.35 

IL-9 (pg/mL) 264 13.8 20.7 35.8 59.7 86.8 1.29 1.45 1.64 1.85 2.05 0.4 

IL-10 (pg/mL) 264 428.4 609.1 904.3 1369.6 2428.1 2.76 2.91 3.04 3.18 3.30 0.27 

IL-13 (pg/mL) 264 57.1 83.9 138.1 205.8 339.4 1.75 1.93 2.11 2.26 2.40 0.33 

IL-17A (pg/mL) 259 94.0 156.6 282.0 518.6 1151.4 2.15 2.32 2.55 2.78 2.97 0.43 

TNF-α (pg/mL) 264 12.8 247.9 760.2 1468.2 2489.4 1.38 2.22 2.70 2.97 3.22 0.75 

After R848 activation             

IFN-α (pg/mL) 270 41.6 116.7 259.2 573.1 976.9 2.20 2.39 2.68 2.92 3.12 0.53 

IFN-γ (pg/mL) 270 82.3 173.0 366.8 738.5 1211.7 1.93 2.24 2.60 2.89 3.16 0.65 

IL-1β (pg/mL) 270 4503.4 6481.8 9157.4 13545.0 19700.1 3.60 3.73 3.88 4.02 4.15 0.29 

IL-6 (pg/mL) 270 21720.3 32069.2 44667.9 60509.2 87701.3 4.26 4.40 4.54 4.66 4.79 0.26 

IL-8 (pg/mL) 270 12534.4 20895.5 39810.9 66939.8 112322.1 3.93 4.10 4.35 4.54 4.76 0.44 

IL-10 (pg/mL) 270 348.4 530.7 782.9 1090.5 1348.7 2.51 2.66 2.79 2.91 3.05 0.25 

IL-12p70 (pg/mL) 270 7.1 11.7 22.5 37.5 61.0 0.87 1.11 1.35 1.59 1.79 0.48 

TNF-α (pg/mL) 270 116.3 2643.8 6382.1 11480.7 15127.2 1.84 2.82 3.21 3.44 3.66 0.62 

Abbreviations: IL, interleukin; IFN interferon; TNF tumor necrosis factor; RANTES regulated on activation, normal T cell 

expressed and secreted; MCP monocyte chemoattractant protein; PHA phytohemagglutinin; R848 resiquimod. 

 
Figure 29. Pairwise Pearson’s correlations between pollutants (a). Pairwise Pearson’s correlations between cytokine and number 

of leukocyte (b). 

Pearson correlation coefficients are indicated using a scale of size and color only when the p-values were less than 0.05. 

Abbreviations: PM2.5 particulate matter with diameter ≤ 2.5 μm; NO2 nitrogen dioxide; OP: oxidative potential; DTT: dithiothreitol; 

AA: ascorbic acid; IL interleukin; IFN interferon; TNF tumor necrosis factor; RANTES regulated on activation, normal T cell 

expressed and secreted; MCP monocyte chemoattractant protein; PHA phytohemagglutinin; R848 resiquimod. 
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V.4. Association between personal exposures to air pollutants and 

immune function parameters 

Univariate analyses are presented in Table S1. In multivariate analyses, no significant association with PM2.5 

was found (Figure 30). A 10 µg/m3 (IQR) increase in NO2 exposure was associated with higher basal IL-10 

and lower PHA-activated TNF- (β [95%CI] = 0.18 [0.03, 0.32], p=0.02; β [95%CI] = -0.18 [-0.32, -0.02], 

p=0.03, respectively). Increased exposure to OPv
𝐴𝐴 (IQR=1.65 nmol/min/m3) was associated with lower IL-

8 measured upon R848 activation (β [95%CI] = -0.17 [-0.33, 0.00], p=0.05), and a similar trend, although 

not significant, was observed for basal IL-8 levels (β [95%CI] = -0.18 [-0.41, 0.06], p=0.14). An IQR-

increase in exposure to OPm
𝐴𝐴 (IQR = 0.08 nmol/min/µg) was statistically significantly associated with lower 

R848-activated IL-8 (β [95%CI] = -0.12 [-0.24, 0.00], p=0.05). 

Finally, OPm
DTT was associated with higher PHA-activated IL-17A (β [95%CI] = 0.11 [0.00, 0.22], p=0.04), 

and a similar trend of association was observed for OPv
DTT and OPm

𝐴𝐴 (β [95%CI] = 0.08 [-0.04, 0.20], 

p=0.18; β [95%CI] = 0.10 [-0.01, 0.22], p=0.07, respectively) (Table S2).  
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Figure 30. Adjusted association between each immunological parameter and each personal exposure to NO2, PM2.5, OPDTT and 

OPAA during pregnancy.  

Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple linear 

regression models. Models were adjusted on women age, BMI, active or passive smoking, educational level, white blood cell count, 

gestational age at sampling, and sampling season. Abbreviations: PM2.5 particulate matter with diameter ≤ 2.5 μm; NO2 nitrogen 

dioxide; OP oxidative potential; DTT, dithiothreitol; AA, ascorbic acid; CI, confidence interval; IQR, interquartile; BMI, body mass 

index; Il, interleukin; IFN interferon; TNF tumor necrosis factor; RANTES regulated on activation, normal T cell expressed and 

secreted; MCP monocyte chemoattractant protein; PHA phytohemagglutinin; R848 resiquimod 

Overall, results were robust, as displayed by the sensitivity analyses. Only the association between NO2 and 

PHA activated IL-10 disappeared with the exclusion of extreme and influential values. Other findings were 

either similar, or stronger, as for the NO2-TNF association (Figure S2). The other models excluding the 

leucocyte counts among cofactors, and including history of asthma and rhinitis, have the same results as the 

main models. 

 

  Discussion 
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VI.1. Comparison with others studies  

To our knowledge, this is the first study investigating the association between personal exposures to PM2.5, 

OP of PM2.5, and NO2, with basal and activated immune function parameters in pregnant women. Our results 

show that increase in NO2 exposure was associated with higher PHA-activated TNF−. Similarly, an 

increase in OPm
AA, as well as in OP𝑣

AA, led to increase in R848-activated IL-8. Finally, a positive association 

was suggested between PHA-activated IL-17A with the three OP measurements. Interestingly, the study did 

not find any significant association with PM2.5, but it did reveal significant associations with the capacity of 

PM to induce oxidative stress, as measured by OP.  

The mechanisms involved in the health impacts of air pollutants include impairment of the innate and 

adaptative immunity, and the activation of oxidative stress and reactive oxygen species (Leikauf et al., 2020). 

Adaptive immunity and oxidative stress closely interact with each other, these two mechanisms being 

triggered independently but having effects on each other. By investigating the effects of NO2, PM2.5 and OP 

of PM2.5 exposure on immunological parameters, our study was able to provide a complete picture of the 

cross-interaction of oxidative stress and adaptative immunity pathways. 

The results observed in the current study, showing decreased TNF- levels upon NO2 exposure, are in line 

with previous research in non-pregnant adults (Hu et al., 2020). However, positive associations between 

PM2.5 and TNF- reported in previous studies (Chen et al., 2018; Friedman et al., 2021; Gong et al., 2022; 

Zhang et al., 2022) were not observed in our study. Potential differences in study populations, measurement 

methodologies and analysis models could play a role in these disparities. More specifically, Chen et al. 

(2018) investigated these associations in students and the three other studies (Gong et al. (2022), Friedman 

et al. (2021) and Zhang et al. (2022)) were based on a population of pregnant women but used ambient 

exposure (not personal exposure assessment), and Gong et al. (2022) examined cytokines levels in the 

placenta, which could lead to different results compared to blood.  

Very few studies have addressed the effects of OP exposure on immune response in human blood, and when 

they did, IL-6 levels were mostly investigated (Liu et al., 2018; Steenhof et al., 2013). In the RAPTES project 

(Steenhof et al., 2013), blood and nasal lavage from 31 healthy student volunteers were retrieved after 5 
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hours of exposure in different ambient settings, with contrasted pollution levels. No effect was observed 

with any of the analyzed OP tests (AA and Glutathione assays ). The observed negative OP-IL-8 association 

is consistent with some previous findings among non-pregnant individuals that considered PM2.5 exposure 

from one week (Hu et al., 2020) to three months (Audi et al., 2017) and from both indoor (Audi et al., 2017) 

and ambient environments (Fiorito et al., 2018; Hu et al., 2020; Parenteau et al., 2022). Contradictory, 

positive IL-8-PM2.5 mass and IL-8-NO2 relationships were reported by some experimental studies (Cachon 

et al., 2014; Jeong et al., 2017; Longhin et al., 2018), which may differ from real environmental contexts in 

human studies.  

The results of our study indicate a positive association between OP exposure and IL-17A. To the best of our 

knowledge, no prior research has specifically examined this relationship. Previous studies used NO2 or PM2.5 

exposure to examine effects on IL-17A in non-pregnant participants, and similar positive associations were 

reported with PM2.5 (N. Gao et al., 2020) and NO2 exposure (Fiorito et al., 2018; N. Gao et al., 2020; Hu et 

al., 2020). The study conducted by Hu et al. (2020) addressed these associations by varying the durations of 

exposure to PM2.5 and NO2, which led to contrasting observations. Specifically, a short-term exposure to 

NO2 (between 12 and 24 hours) was significantly correlated with high levels of IL-17A, whereas prolonged 

exposure (two weeks) was statistically associated with reduced levels of IL-17A. Our study extends these 

findings that relied on ambient PM2.5 and NO2 exposure, by using personal exposure assessment, by 

measuring PM2.5 OP exposure, and by activating the cells.  

Our study presents the specificity of analyzing cytokines in pregnant women, who present several variations 

of immunity compared to non-pregnant women. In a recent study (Jarmund et al., 2021), at basal state, most 

inflammatory cytokines among which TNF- and IL-8 decreased in the second trimester. We observe here 

at the same period of pregnancy a global trend towards a decrease of these cytokines at basal state and after 

activation of immune cells, suggesting that there might be a cumulative negative effect of pregnancy and 

exposure to air pollutants on inflammatory cytokines secretions that could impair maternal health and 

capacity to respond to pathogens. Moreover, we observed a positive association between NO2 exposure and 

IL-10 secretion upon activation with PHA, which could participate to the reduction of inflammatory 

cytokines that was detected here. Indeed, IL-10 has broad regulatory effects on several immune cells, and is 

involved in normal pregnancy processes of tolerance (Thaxton and Sharma, 2010). In our experimental 
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settings where whole blood cells are activated by PHA, IL-10 might be produced by regulatory T cells that 

are also involved in tolerance mechanisms towards fetuses during pregnancy (Tsuda et al., 2019).  

Overall, our results on the impacts of air pollution exposure on the inflammatory function of the immune 

system may provide insights into the mechanisms underlying the adverse health effects of air pollution. In 

particular, IL-17A secretion is strongly linked to severe forms of asthma (Brandt et al., 2013; Weng et al., 

2018), hypertension during pregnancy (Dhillion et al., 2012) and changes in birth weight (Laine et al., 2020). 

T lymphocytes, producers of IL-17A, are also pathogenic cellular components of autoimmune diseases, such 

as multiple sclerosis or psoriasis (Dhillion et al., 2012). Circulating IL-17A decreases during pregnancy 

(Jarmund et al., 2021), and our results suggest that air pollution could interfere with this regulation of Th17 

cells, with potential consequences on maternal health. Studies have suggested that air pollution can affect 

the risk of multiple sclerosis and its severity, with a suggested link between air pollution-induced oxidative 

stress and proinflammatory cytokines (Abbaszadeh et al., 2021; Noorimotlagh et al., 2021). In addition, 

TNF-α has also been identified as playing a role in the inflammatory response in allergies, which are related 

to air pollution (Melén et al., 2008). 

VI.2. Strengths and Limitations  

One of the primary strengths of this study lies in its meticulous exposure measurements. Personal exposure 

measurements provided accurate assessment, tailored to the individual, in contrast to conventional 

assessments based on ambient exposure data obtained from monitoring stations or exposure models. Further, 

pregnant women are inclined to spend a greater portion of their time indoors, where air pollutants sources 

and chemical components differ from the ambient environment. Another asset is that the study focuses on 

cytokines produced not only at basal level, but also after activation of innate and T cells. Consequently, the 

obtained results closely approximate real immune cell functionality, reflecting the actual immune system 

response to aggression in the context of potential damages induced by air pollution exposure. Activation 

could potentially reduce confusion bias compared to basal state, by activating participants' cells using the 

same procedure. The use of OP measurements aims to account for the detrimental impacts of PM2.5 through 

the oxidative stress pathway, and this led to clearer associations compared to the mass concentration metric. 

Furthermore, since the main sources contributing to PM and to the OP of PM were already reported in the 
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Grenoble area (Borlaza et al., 2021a), it is particularly relevant to examine both parameters in the current 

Grenoble-based study. 

Although the study is based on an a priori hypothesis, the number of associations tested is relatively high 

and we have not applied a formal correction for multiple comparisons. It should therefore be recognized that 

some of the associations identified could result from chance finding and should therefore be interpreted with 

caution. The relatively small sample size of this study limits the statistical power, and a larger population 

would potentially lead to more robust conclusions. However, this is counterbalanced by the accuracy of the 

measurements, by the use of personal samplers, that significantly decreases measurement error. A further 

constraint of this study relates to the recruited population in SEPAGES, which does not reflect the overall 

diversity of the general population. This study is geographically restricted to the Grenoble region with a 

specific semi-continental climate and orography that lead to important thermal-inversions in the winter 

season, thereby increasing ground concentrations of pollutants. In addition, the included participants had 

higher levels of education and were more often non-smoker, as compared to pregnant women in France. 

Nevertheless, analyses in this homogeneous population are less prone to confounding biases related to social 

environment. Lastly, the conducted study specifically focuses on the independent effects of each pollutant 

on each included cytokine. This might be considered as simplistic, because interaction and cumulative effect 

of various air pollutants are expected, and cytokines do not operate in isolation within the immune system 

but are involved in a complex network of regulations and interactions of the body. However, studying the 

isolated effects provides a solid grasp of the underlying mechanisms, even though all intricacies of the 

system are not captured.   

 

 Conclusion 
In conclusion, our study provides significant insights into the relationships between exposure to air pollutants 

and immune function among pregnant women. These findings offer a convincing perspective on the 

association between specific air pollutants beyond PM mass concentration as oxidative potential and 

alterations of the immune system.This crucial data can be instrumental in creating strategies to reduce 

the oxidative potential of PM2.5 and mitigate its adverse effects on health. 
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Table S18. Unadjusted association between each air pollutant and each cytokine levels. 
 NO2 (μg/m3) PM2.5 (μg/m3) OPm

DTT (nmol/min/μg) OPv
DTT (nmol/min/m3) OPm

AA (nmol/min/μg) OPv
AA (nmol/min/m3) 

 N β 95% CI N β 95% CI N β 95% CI N β 95% CI N β 95% CI N β 95% CI 

IL-8 (basal, pg/mL) 266 0.03 [-0.14, 0.2] 209 -0.05 [-0.23, 0.12] 193 -0.07 [-0.23, 0.09] 193 -0.18 [-0.36, -0.01] 193 -0.13 [-0.29, 0.04] 193 -0.28 [-0.48, -0.07] 

MCP1 (basal, pg/mL) 266 0.03 [-0.13, 0.19] 209 -0.03 [-0.19, 0.13] 193 0.08 [-0.07, 0.23] 193 0.00 [-0.17, 0.17] 193 0.06 [-0.09, 0.22] 193 -0.02 [-0.21, 0.18] 

RANTES (basal, pg/mL) 266 0.09 [-0.14, 0.32] 209 -0.07 [-0.23, 0.1] 193 -0.01 [-0.17, 0.14] 193 -0.07 [-0.24, 0.1] 193 -0.01 [-0.16, 0.15] 193 -0.09 [-0.29, 0.1] 

IFN-γ (PHA, pg/mL) 264 0.04 [-0.08, 0.16] 204 -0.02 [-0.14, 0.09] 188 -0.01 [-0.12, 0.1] 188 -0.05 [-0.17, 0.07] 188 0.01 [-0.1, 0.13] 188 -0.03 [-0.17, 0.11] 

IL-2 (PHA, pg/mL) 264 0.03 [-0.09, 0.16] 204 0.00 [-0.12, 0.13] 188 0.02 [-0.1, 0.13] 188 0.04 [-0.09, 0.16] 188 0.07 [-0.05, 0.18] 188 0.07 [-0.07, 0.22] 

IL-9 (PHA, pg/mL) 264 0.09 [-0.04, 0.21] 204 0.04 [-0.09, 0.17] 188 0.06 [-0.06, 0.18] 188 0.10 [-0.04, 0.23] 188 0.03 [-0.09, 0.16] 188 0.06 [-0.09, 0.22] 

IL-10 (PHA, pg/mL) 264 0.19 [0.04, 0.33] 204 0.00 [-0.13, 0.13] 188 0.09 [-0.03, 0.21] 188 0.08 [-0.05, 0.21] 188 0.12 [-0.01, 0.24] 188 0.15 [0, 0.31] 

IL-13 (PHA, pg/mL) 264 0.04 [-0.09, 0.17] 204 0.08 [-0.05, 0.21] 188 0.02 [-0.11, 0.14] 188 0.12 [-0.02, 0.25] 188 0.02 [-0.1, 0.15] 188 0.09 [-0.06, 0.25] 

IL-17A (PHA, pg/mL) 259 0.06 [-0.06, 0.18] 199 0.04 [-0.08, 0.16] 183 0.10 [-0.01, 0.21] 183 0.14 [0.02, 0.26] 183 0.15 [0.04, 0.26] 183 0.20 [0.06, 0.33] 

TNF-α (PHA, pg/mL) 264 -0.18 [-0.34, -0.03] 204 -0.05 [-0.22, 0.13] 188 -0.11 [-0.27, 0.05] 188 -0.13 [-0.31, 0.04] 188 -0.08 [-0.25, 0.08] 188 -0.14 [-0.35, 0.06] 

IFN-α (R848, pg/mL) 270 0.00 [-0.13, 0.12] 210 0.06 [-0.06, 0.19] 194 -0.01 [-0.12, 0.11] 194 0.05 [-0.08, 0.18] 194 0.08 [-0.04, 0.2] 194 0.10 [-0.05, 0.25] 

IFN-γ (R848, pg/mL) 270 0.08 [-0.04, 0.2] 210 0.01 [-0.12, 0.14] 194 -0.04 [-0.15, 0.08] 194 -0.06 [-0.19, 0.07] 194 -0.04 [-0.16, 0.08] 194 -0.07 [-0.22, 0.08] 

IL-1β (R848, pg/mL) 270 -0.03 [-0.15, 0.09] 210 0.07 [-0.05, 0.2] 194 -0.05 [-0.17, 0.07] 194 -0.02 [-0.15, 0.11] 194 -0.06 [-0.18, 0.06] 194 -0.06 [-0.21, 0.09] 

IL-6 (R848, pg/mL) 270 -0.01 [-0.15, 0.12] 210 0.03 [-0.11, 0.17] 194 0.00 [-0.13, 0.13] 194 0.02 [-0.13, 0.16] 194 -0.09 [-0.22, 0.04] 194 -0.10 [-0.27, 0.06] 

IL-8 (R848, pg/mL) 270 0.04 [-0.08, 0.17] 210 0.03 [-0.1, 0.16] 194 -0.05 [-0.17, 0.08] 194 -0.06 [-0.2, 0.07] 194 -0.14 [-0.27, -0.02] 194 -0.21 [-0.36, -0.05] 

IL-10 (R848, pg/mL) 270 0.05 [-0.1, 0.21] 210 -0.09 [-0.25, 0.07] 194 0.06 [-0.08, 0.21] 194 -0.02 [-0.19, 0.14] 194 0.01 [-0.14, 0.17] 194 -0.04 [-0.23, 0.15] 

IL-12p70 (R848, pg/mL) 270 0.07 [-0.05, 0.19] 210 0.01 [-0.12, 0.13] 194 -0.01 [-0.13, 0.11] 194 -0.06 [-0.19, 0.07] 194 -0.04 [-0.15, 0.08] 194 -0.07 [-0.22, 0.08] 

TNF-α (R848, pg/mL) 270 0.01 [-0.16, 0.19] 210 0.09 [-0.1, 0.28] 194 0.00 [-0.19, 0.18] 194 0.00 [-0.2, 0.2] 194 -0.08 [-0.27, 0.11] 194 -0.13 [-0.36, 0.1] 

Pollutants and cytokines variables were standardized by IQR. 

Abbreviations: NO2 nitrogen dioxide, PM2.5 particulate matter with diameter ≤ 2.5 μm, OP: oxidative potential, DTT: dithiothreitol, AA: ascorbic acid, CI, confidence interval, IL, interleukin, 

IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and secreted, MCP monocyte chemoattractant protein.
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Table S19. Adjusted associations between each air pollutant and each cytokine levels. 

 NO2 (μg/m3) PM2.5 (μg/m3) OPm
DTT (nmol/min/μg) OPv

DTT (nmol/min/m3) OPm
AA (nmol/min/μg) OPv

AA (nmol/min/m3) 

 N β 95% CI N β 95% CI N β 95% CI N β 95% CI N β 95% CI N β 95% CI 

IFN-α R848 (pg/mL) 270 -0.04 [-0.16, 0.09] 210 0.05 [-0.07, 0.17] 194 -0.03 [-0.14, 0.09] 194 0 [-0.13, 0.13] 194 0.02 [-0.11, 0.15] 194 0.01 [-0.16, 0.18] 

IFN-γ (R848, pg/mL) 270 0.07 [-0.06, 0.19] 210 0.03 [-0.1, 0.16] 194 -0.04 [-0.16, 0.07] 194 -0.06 [-0.2, 0.07] 194 -0.07 [-0.2, 0.06] 194 -0.11 [-0.28, 0.06] 

IL-1β (R848, pg/mL) 270 -0.04 [-0.16, 0.07] 210 0.08 [-0.04, 0.2] 194 -0.07 [-0.18, 0.04] 194 -0.06 [-0.18, 0.07] 194 -0.09 [-0.21, 0.03] 194 -0.1 [-0.26, 0.06] 

IL-6 (R848, pg/mL) 270 0.00 [-0.13, 0.12] 210 0.06 [-0.08, 0.19] 194 0.00 [-0.12, 0.12] 194 0.04 [-0.1, 0.18] 194 -0.05 [-0.19, 0.08] 194 -0.04 [-0.22, 0.14] 

IL-8 (R848, pg/mL) 270 0.06 [-0.06, 0.17] 210 0.07 [-0.05, 0.2] 194 -0.07 [-0.18, 0.04] 194 -0.05 [-0.18, 0.07] 194 -0.12 [-0.24, 0] 194 -0.17 [-0.33, 0] 

IL-10 (R848, pg/mL) 270 0.05 [-0.1, 0.19] 210 -0.09 [-0.24, 0.07] 194 0.05 [-0.09, 0.18] 194 -0.05 [-0.21, 0.11] 194 0.01 [-0.14, 0.16] 194 -0.05 [-0.25, 0.16] 

IL-12p70 (R848, pg/mL) 270 0.06 [-0.07, 0.19] 210 -0.01 [-0.14, 0.13] 194 -0.01 [-0.13, 0.11] 194 -0.08 [-0.22, 0.06] 194 -0.06 [-0.19, 0.07] 194 -0.12 [-0.3, 0.05] 

TNF-α (R848, pg/mL) 270 0.03 [-0.15, 0.21] 210 0.1 [-0.1, 0.31] 194 -0.01 [-0.19, 0.18] 194 0.01 [-0.2, 0.23] 194 -0.06 [-0.26, 0.15] 194 -0.12 [-0.39, 0.16] 

IFN-γ (PHA, pg/mL) 264 0.03 [-0.09, 0.15] 204 -0.02 [-0.14, 0.1] 188 -0.02 [-0.13, 0.09] 188 -0.07 [-0.2, 0.06] 188 -0.02 [-0.14, 0.11] 188 -0.08 [-0.24, 0.08] 

IL-2 (PHA, pg/mL) 264 0.01 [-0.11, 0.13] 204 -0.03 [-0.15, 0.09] 188 0.01 [-0.1, 0.12] 188 -0.03 [-0.15, 0.1] 188 0.02 [-0.1, 0.14] 188 -0.02 [-0.19, 0.14] 

IL-9 (PHA, pg/mL) 264 0.06 [-0.07, 0.19] 204 0.02 [-0.11, 0.15] 188 0.04 [-0.08, 0.16] 188 0.05 [-0.08, 0.19] 188 -0.03 [-0.16, 0.11] 188 -0.01 [-0.19, 0.16] 

IL-10 (PHA, pg/mL) 264 0.18 [0.03, 0.32] 204 -0.04 [-0.17, 0.1] 188 0.08 [-0.04, 0.2] 188 0.02 [-0.11, 0.16] 188 0.06 [-0.07, 0.2] 188 0.06 [-0.11, 0.24] 

IL-13 (PHA, pg/mL) 264 0.01 [-0.12, 0.13] 204 0.06 [-0.07, 0.19] 188 0 [-0.11, 0.12] 188 0.07 [-0.07, 0.2] 188 -0.03 [-0.16, 0.1] 188 0.03 [-0.15, 0.2] 

IL-17A (PHA, pg/mL) 259 0.03 [-0.08, 0.15] 199 -0.01 [-0.13, 0.1] 183 0.11 [0, 0.22] 183 0.08 [-0.04, 0.2] 183 0.1 [-0.01, 0.22] 183 0.1 [-0.05, 0.25] 

TNF-α (PHA, pg/mL) 264 -0.18 [-0.34, -0.02] 204 -0.02 [-0.2, 0.16] 188 -0.11 [-0.28, 0.06] 188 -0.11 [-0.3, 0.08] 188 -0.05 [-0.23, 0.13] 188 -0.09 [-0.34, 0.15] 

IL-8 (basal, pg/mL) 266 0.07 [-0.1, 0.24] 209 -0.02 [-0.19, 0.16] 193 -0.06 [-0.22, 0.1] 193 -0.12 [-0.31, 0.06] 193 -0.05 [-0.23, 0.12] 193 -0.18 [-0.41, 0.06] 

MCP-1 (basal, pg/mL) 266 0.03 [-0.14, 0.2] 209 -0.01 [-0.18, 0.16] 193 0.07 [-0.08, 0.23] 193 0.00 [-0.17, 0.18] 193 0.08 [-0.09, 0.25] 193 0.00 [-0.23, 0.22] 

RANTES (basal, pg/mL) 266 0.09 [-0.14, 0.32] 209 -0.06 [-0.23, 0.11] 193 -0.04 [-0.19, 0.12] 193 -0.09 [-0.27, 0.09] 193 -0.02 [-0.19, 0.15] 193 -0.14 [-0.36, 0.09] 

Pollutants and cytokines variables were standardized by IQR. Models were adjusted on mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at 

sampling, and sampling season. 

Abbreviations: NO2 nitrogen dioxide, PM2.5 particulate matter with diameter ≤ 2.5 μm, OP: oxidative potential, DTT: dithiothreitol, AA: ascorbic acid, CI, confidence interval, BMI, body mass 

index, IL, interleukin, IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and secreted, MCP monocyte chemoattractant protein..  
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Figure S19. Sensitivity analyses of the associations between NO2 and cytokine levels. 

Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple 

linear regression models. Univariate: regression model included air pollutant exposure. Multivariate: Regression model was 

adjusted for mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at sampling, 

and sampling season. Regression without extreme values: Exclusions from the multivariate regression models were made for 

participants whose exposures or outcomes were outside the 1st and 99th percentiles. This exclusion accounted for 

approximately 2.5% of the total population. Regression without influential values: Multivariate regression with a Cook's 

distance above 4/n, where n represents the length of the regression population, were excluded from the analysis. This exclusion 

accounted for approximately 7% of the total population. 

Abbreviations: NO2 nitrogen dioxide, CI, confidence interval, IQR, interquartile, BMI, body mass index, IL, interleukin, IFN 

interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and secreted, MCP monocyte 

chemoattractant protein. 
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Figure S20. Sensitivity analyses of the associations between PM2.5 and cytokine levels.  
Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple 

linear regression models. Univariate: regression model included air pollutant exposure. Multivariate: Regression model was 

adjusted for mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at sampling, 

and sampling season. Regression without extreme values: Exclusions from the multivariate regression models were made for 

participants whose exposures or outcomes were outside the 1st and 99th percentiles. This exclusion accounted for 

approximately 2.5% of the total population. Regression without influential values: Multivariate regression with a Cook's 

distance above 4/n, where n represents the length of the regression population, were excluded from the analysis. This exclusion 

accounted for approximately 7% of the total population. 

Abbreviations: PM2.5 particulate matter with diameter ≤ 2.5 μm, CI, confidence interval, IQR, interquartile, BMI, body mass 

index, IL, interleukin, IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed 

and secreted, MCP monocyte chemoattractant protein. 
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Figure S21. Sensitivity analyses of the associations between OPv

AA and cytokine levels. 

Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple 

linear regression models. Univariate: regression model included air pollutant exposure. Multivariate: Regression model was 

adjusted for mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at sampling, 

and sampling season. Regression without extreme values: Exclusions from the multivariate regression models were made for 

participants whose exposures or outcomes were outside the 1st and 99th percentiles. This exclusion accounted for 

approximately 2.5% of the total population. Regression without influential values: Multivariate regression with a Cook's 

distance above 4/n, where n represents the length of the regression population, were excluded from the analysis. This exclusion 

accounted for approximately 7% of the total population. 

Abbreviations: OP: oxidative potential, AA: ascorbic acid, CI, confidence interval, IQR, interquartile, BMI, body mass index, 

IL, interleukin, IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and 

secreted, MCP monocyte chemoattractant protein. 
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Figure S22. Sensitivity analyses of the associations between OPm

AA and cytokine levels.  

Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple 

linear regression models. Univariate: regression model included air pollutant exposure. Multivariate: Regression model was 

adjusted for mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at sampling, 

and sampling season. Regression without extreme values: Exclusions from the multivariate regression models were made for 

participants whose exposures or outcomes were outside the 1st and 99th percentiles. This exclusion accounted for 

approximately 2.5% of the total population. Regression without influential values: Multivariate regression with a Cook's 

distance above 4/n, where n represents the length of the regression population, were excluded from the analysis. This exclusion 

accounted for approximately 7% of the total population. 

Abbreviations: OP: oxidative potential, AA: ascorbic acid, CI, confidence interval, IQR, interquartile, BMI, body mass index, 

Il, interleukin, IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and 

secreted, MCP monocyte chemoattractant protein. 
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Figure S23. Sensitivity analyses of the associations between OPv

DTT and cytokine levels.  
Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple 

linear regression models. Univariate: regression model included air pollutant exposure. Multivariate: Regression model was 

adjusted for mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at sampling, 

and sampling season. Regression without extreme values: Exclusions from the multivariate regression models were made for 

participants whose exposures or outcomes were outside the 1st and 99th percentiles. This exclusion accounted for 

approximately 2.5% of the total population. Regression without influential values: Multivariate regression with a Cook's 

distance above 4/n, where n represents the length of the regression population, were excluded from the analysis. This exclusion 

accounted for approximately 7% of the total population. 

Abbreviations: OP: oxidative potential, AA: ascorbic acid, CI, confidence interval, IQR, interquartile, BMI, body mass index, 

Il, interleukin, IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and 

secreted, MCP monocyte chemoattractant protein. 
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Figure S24. Sensitivity analyses of the associations between OPm

DTT and cytokine levels. 
Pollutants and cytokines variables were standardized by their IQR. Beta values and their 95% CI were estimated by multiple 

linear regression models. Univariate: regression model included air pollutant exposure. Multivariate: Regression model was 

adjusted for mother age, BMI, active or passive smoking, educational level, white blood cell count, gestational age at sampling, 

and sampling season. Regression without extreme values: Exclusions from the multivariate regression models were made for 

participants whose exposures or outcomes were outside the 1st and 99th percentiles. This exclusion accounted for 

approximately 2.5% of the total population. Regression without influential values: Multivariate regression with a Cook's 

distance above 4/n, where n represents the length of the regression population, were excluded from the analysis. This exclusion 

accounted for approximately 7% of the total population. 

Abbreviations: OP: oxidative potential, AA: ascorbic acid, CI, confidence interval, IQR, interquartile, BMI, body mass index, 

Il, interleukin, IFN interferon, TNF tumor necrosis factor, RANTES regulated on activation, normal T cell expressed and 

secreted, MCP monocyte chemoattractant protein. 
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 French summary 
 

Contexte. Le potentiel oxydant (PO) des PM mesure la capacité des PM à générer du stress oxydant in 

vivo mais la variabilité spatiale de ce paramètre a été peu étudiée à fine échelle au sein de villes de tailles 

moyennes. Par ailleurs, la majorité du temps est passée dans des environnements intérieurs, pour 

lesquels le PO des PM a été très peu étudié. L’intérieur des logements est particulièrement crucial pour 

une partie de la population, et notamment les personnes âgées, les femmes enceintes et les jeunes enfants, 

pour lesquels l’intérieur du domicile est l’environnement principalement fréquenté. Les PM à l’intérieur 

des domiciles peuvent provenir de l’extérieur, mais peuvent également être générées à l’intérieur. Très 

peu d’études ont effectué une caractérisation chimique des particules dans l’intérieur de domiciles 

européens, et aucune n’a mesuré le PO. 

 

Objectifs. Cette étude vise à décrire la variabilité spatial et saisonnière du PO en air extérieur à 

Grenoble, puis à caractériser les traceurs du PO dans l’air intérieur de domiciles et de les comparer à 

l’air extérieur.  

 

Méthodes. Cette campagne de mesure a été réalisée dans un sous-échantillon de la cohorte SEPAGES, 

dans laquelle 41 familles se sont portées volontaires. Chaque domicile a été équipé pendant 7 jours de 

deux préleveurs bas volume à l’intérieur, équipés d’un filtre quartz et d’un filtre Teflon, respectivement, 

et, de la même manière, deux préleveurs étaient placés à l’extérieur. Les espèces chimiques analysées 

comportaient la fraction carbonée, ionique, métallique et le PO mesuré par l’acide ascorbique (AA) et 

le dithiothréitol (DTT). 

 

Résultats. La quasi-totalité des participants n’ont ni fumé, ni utilisé d’encens et de bougies durant la 

semaine de prélèvement. Les médianes (Q1-Q3) de PM2.5 sont très similaires à l’intérieur et à l’extérieur 

(10.3 [7.8, 14.9] µg/m3 et 10.3 [7.4, 13.7] µg/m3, respectivement. Le PO des PM présente également des 

niveaux proches à l’intérieur et à l’extérieur des logements. Le PO présente une forte variabilité spatiale, 



167 

particulièrement en hiver, alors que ces contrastes sont plus importants en été pour les PM2.5. Comparé 

à l’extérieur des domiciles, le POAA en intérieur était beaucoup plus corrélé aux concentrations de cuivre, 

et légèrement plus corrélé aux concentrations de carbone organique. En outre, ces deux espèces 

chimiques ont des concentrations supérieures à l’intérieur par rapport à l’extérieur, et leurs faibles 

corrélations entre ces deux environnements suggèrent des sources intérieures de ces éléments, 

probablement liées aux activités des occupants. Le PODTT était très peu corrélé aux espèces chimiques 

mesurées, autant à l’intérieur qu’à l’extérieur. Enfin, les habitants passant l’aspirateur plus de deux fois 

par semaine présentent des niveaux de particules, d’espèces issues de la remise en suspension de PM, 

de cuivre et de POAA significativement supérieurs aux concentrations obtenues dans les logements dont 

les occupants ont passé l’aspirateur moins de deux fois dans la semaine. 

 

Conclusions. Dans l'ensemble, nos résultats suggèrent une variation spatiale importante des PM2.5, et 

particulièrement du PO des PM sur la ville de Grenoble. Les schémas d'exposition sont différents à 

l'intérieur des domiciles par rapport à l'extérieur, avec une forte influence de l’utilisation de l’aspirateur. 

Bien que le PO des PM ne soit pas significativement plus élevé à l'intérieur des logements par rapport à 

l'extérieur, les concentrations élevées de cuivre impactent fortement le POAA à l'intérieur, ce qui souligne 

la nécessité de prendre en compte les environnements intérieurs pour l'exposition personnelle au PO des 

PM. 
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 Abstract 
 

Context. The oxidative potential (OP) of PM measures the ability of PM to generate oxidative stress in 

vivo, but the spatial variability of this parameter remains poorly studied within medium-sized cities. 

Moreover, people spend the majority of time indoors, but there are very few studies reporting OP of PM 

in indoor residential environments. PM indoors can originate from the outdoors but can also be generated 

by indoor sources. Very few studies have conducted chemical characterization of particles within 

European households, and none have measured the OP. 

 

Objectives. This study aims to describe the spatial and seasonal variability of OP in outdoor air in 

Grenoble, and then to characterize OP chemical drivers in indoor household air, in comparison with 

outdoor air. 

 

Methods. This measurement campaign was conducted in a subsample of the SEPAGES cohort, in which 

41 families volunteered. Two low-volume samplers were placed in the main living area of each home, 

and equipped with a quartz and a Teflon filter, respectively. Similarly, two samplers were placed 

outdoors. The chemical species analyzed included the carbonaceous, ionic, metallic fraction, and the OP 

measured by ascorbic acid (AA) and dithiothreitol (DTT). 

 

Results. Most participants neither smoked nor used incense and candles during the sampling week. 

PM2.5 median (Q1-Q3) concentrations are very similar indoors and outdoors (10.3 [7.8, 14.9] µg/m3 and 

10.3 [7.4, 13.7] µg/m3, respectively). OP of PM also shows similar levels indoors and outdoors of homes. 

OP exhibits strong spatial variability, especially in winter, while these contrasts are more significant in 

summer for PM2.5. Compared to the outdoors of homes, indoor OPAA was much more correlated with 

copper concentrations and slightly more correlated with organic carbon concentrations. Furthermore, 

these two chemical species have higher concentrations indoors than outdoors, and their low correlations 

between these two environments suggest indoor origins, likely related to occupant activities. OPDTT was 
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very weakly correlated with the measured chemical species, both indoors and outdoors. Finally, 

residents vacuuming more than twice a week had significantly higher levels of PM2.5, of species resulting 

from PM resuspension, of copper, and of OPAA concentrations compared to homes where occupants 

vacuumed less than twice a week. 

 

Conclusions. Overall, our results suggest significant spatial variation in PM2.5, especially in the OP of 

PM across the city of Grenoble. Exposure patterns differ indoors compared to outdoors, with a strong 

influence of vacuum cleaner use. Although the OP of PM is not significantly higher indoors compared 

to outdoors, elevated copper concentrations strongly impact indoor OPAA, highlighting the need to 

consider indoor environments for personal exposure to PM OP. 

 

  Introduction 
 

Particulate matter (PM) is estimated to be responsible for 7 to 8.8 million deaths per year worldwide 

(Lelieveld et al., 2019; WHO, 2016) and 2.3 to 3.8 million deaths are attributable to indoor air pollution 

specifically. The role of the oxidative stress pathway in PM’s adverse health effects has been underlined 

in many studies (Gangwar et al., 2020; Kelly, 2003; Mudway et al., 2020). The oxidative potential (OP) 

of PM is an indicator integrative of PM’s physicochemical complexity, developed to quantify PM’s 

capacity to carry or generate reactive oxygen species in vivo (Ayres et al., 2008; Cho et al., 2005; 

Hellack et al., 2014). There are currently several acellular tests used, including the dithiothreitol (DTT) 

assay, ascorbic acid (AA) assay, glutathione (GSH) assay, electron paramagnetic resonance (EPR) 

spectroscopy, among others. The different assays were developed to capture different pathways for 

oxidative stress generation, such as direct PM-bound reactive oxygen species measurement (EPR 

spectroscopy) or indirect measurement, by measuring the depletion of lung antioxidant (AA, GSH) or 

reductant (DTT) (Bates et al., 2019; Shahpoury et al., 2022).  

PM can penetrate indoor environment through building cracks, mechanical or natural ventilation (Bo et 

al., 2017), but can also be generated indoors, by synthetic building materials, or indoor activities such 
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as cooking, cleaning or smoking (Liu and Zhang, 2019; Tofful et al., 2021). While many studies 

compared indoor and outdoor environments in terms of mass concentration of PM, fewer studies 

additionally relied on a chemical and OP characterization of PM. The OP of PM and its chemical tracers 

have been studied during outdoor to indoor transport in environmental chambers or research house for 

OPDTT, a cellular OP assay and OPEPR (Hu 2023, Niu, 2021, Kurshid 2019), in a large-scale study on 

office buildings across Europe for OPGSH and OPAA (Szigeti et al., 2016), in Chinese student dormitories 

for OPDTT (Yang et al., 2021) and in rural and urban Chinese homes for OPDTT and a cellular test 

(Brehmer et al., 2020; Secrest et al., 2016). Results show high variability in OP during outdoor-indoor 

transport, due to the change in water-soluble iron and sulphate concentrations, that modifies particles’ 

pH and therefore metals solubilities (Yang et al., 2021). The role of transition metals, mainly copper and 

iron, and of sulfates, and PAHs were pointed in most studies. Few studies have concurrently measured 

OP and PM chemical constituents, and most of them are not performed in residences (Hu et al., 2023; 

Niu et al., 2021; Sauvain et al., 2015; Szigeti et al., 2016, 2014), or are located in Asia (Anand et al., 

2022; Guo et al., 2019; Secrest et al., 2016; Yang et al., 2021; Zhan et al., 2018; Zhang et al., 2021), 

with specific indoor sources . 

To the best of our knowledge, a fine description of the residential indoor and outdoor PM2.5 chemical 

composition and OP has not been performed in Europe to this date. We address this gap by measuring 

concurrent OPAA, OPDTT and PM2.5 chemical species in the indoor and outdoor environments of 41 

homes in Grenoble, France. The objectives of our study are: (i) to provide a description of PM2.5 and its 

main chemical constituents indoors and outdoors, ii) to investigate the spatial variations of PM 

constituents and OP across the city of Grenoble (France), and (iii) to investigate OP specific indoor 

tracers, and its potential sources. 
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 Material and methods 
 

IV.1. Site description  

The present study was conducted in France, for a sub-sample of the SEPAGES cohort whose families 

live within a 80 km radius of Grenoble (Lyon-Caen et al., 2019). The local meteorology that can be 

encountered in Grenoble are described by Bessagnet et al. (2020) and Borlaza et al. (2021b). Briefly, 

the Grenoble basin is surrounded by three mountain ranges, which leads to winter thermal inversion 

phenomena, favouring the ground concentration of pollutants.  

In total, 41 families volunteered for this campaign. The spatial repartition of the homes is representative 

of the typologies encountered around an urban area, namely, peri-urban, urban background, urban hyper-

centre and traffic sites. In each home, indoor and outdoor sampling were carried out simultaneously. 

Two indoor samplers were placed in the main living area while two outdoor samplers were placed on 

the adjacent balcony, terrace or garden when available. If there was none available, sampling was 

performed indoors only (N=12). 

IV.2. Sampling procedure 

 
Figure 31. Schematic of the study protocol. 
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Low-volume samplers (Ecotech, MicroVol 1100) equipped with a PM2.5 sampling head were operated 

a flow rate of 3 m3/h during 7 ± 1 days. Sampling inlets of the instruments were set up in a height of 50-

150 cm to sample in the breathing zone of the kids. In each measuring environment (i.e. indoor or 

outdoor), two such samplers were installed side by side, one equipped with a quartz filter (Tissuquartz 

47 mm) and one with a Teflon filter (PTFE 47 mm). The four samplers were started simultaneously. 37 

out of 41 homes were equipped twice: once during a cold period (2018-11-26 to 2019-04-18) and once 

during a warm period (2019-05-09 to 2019-10-31). At the end of the sampling week, filters were 

transported on ice and cold-stored (-20°C) until gravimetric and chemical analyses.  

Teflon filters were subjected to double weighing prior and after sampling, in accordance with standard 

NF EN 12341, with a time between weighing of 12h and 24-72h, respectively. This was performed in 

ATMO SUD’s gravimetric laboratory, where strict control of the laboratory environment is applied 

(grey clean room, relative humidity in the 45%-50% range, temperature of 19°C to 21°C, 1 µg 

resolution) and with filter conditioning in the gravimetry laboratory for at least 48 h prior to weighing. 

The total operating volume recorded by the samplers was used to calculate PM2.5 mass concentration. 

The time and volume of sampling recorded by the samplers is calculated only when the pump is 

operating, accounting for periods during which the sampler could have been recorded unplugged by the 

volunteer. At the end of the sampling week, smoking, the use of candles and incense, vacuuming habits 

(number of times and duration), and the use of the hotplates/oven (number of times and duration) were 

assessed through a questionnaire performed by the field workers.  

During the overall period of the measurement campaign, daily PM10 filters were collected at the central 

monitoring site “Les Frênes” of the regional monitoring Air Quality agency (Atmo Aura) using a Digitel 

DA-80 (30 m3/h). Quartz fiber filters were analyzed for the same set of chemical species and OP and 

PM10 mass was also monitored continuously at this site. In the rest of this article, “outdoor” will refer to 

the measurements outside of the house, and “ambient” will refer to the measurements at the central 

monitoring station. 
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IV.3. Chemical analyses 

Filter samples were subjected to chemical analysis to measure the carbonaceous fraction, water-soluble 

ions, anhydrosugars and polyols, on the quartz filter; trace elements analysis was performed on the 

Teflon filter. 

Organic and elemental carbon were analyzed on a 1.5 cm2 punch of the quartz filter , by thermo-optical 

analysis following the EUSAAR2 protocol, using the Sunset Lab EC/OC analyzer (Birch and Cary, 

1996; Cavalli et al., 2010). Briefly, the sample is placed in a quartz furnace and subjected to a prescribed 

temperature protocol, under a more or less oxidizing atmosphere. A gas stream carries the volatilized 

carbon through several steps, converting them into methane, analyzed by flame ionization detection. 

The measured organic carbon (OC) is converted into matter (OM) using a conversion factor of 1.8, as 

measured in ambient environment in Grenoble by Favez et al. (2010), and 1.4 for indoor environment, 

as measured by Tofful et al. (2021).  

Water-soluble ions, anhydrosugars, and polyols were analyzed on the same water extract of the sample. 

Briefly, 10 mL ultrapure water is used for the solid/liquid extraction of the filter during 20 minutes under 

vortex agitation, prior to filtration using a 0.25 µm Acrodisc filter (Milipore Millex-EIMF).  

Ionic fraction is measured by ion chromatography (IC, Thermo Fisher ICS 3000), following a standard 

protocol previously described (CEN, 2017; Jaffrezo et al., 2005), with a CS16 column for cations 

analysis (Na+, NH4
+, K+, Mg2+, Ca2+) and an AS11HC column for anions (SO4

2-, NO3
-, Cl-). 

The analysis of anhydrosugars (levoglucosan, mannosan, galactosan), polyols (arabitol, sorbitol, 

mannitol) is performed on the water extract, using high-performance liquid chromatography (HPLC), 

with pulsed amperometric detection (PAD) (model Thermo Fisher 5000+) with Metrosep columns (Carb 

1 – Guard+A Supp 15 – 150+Carb 1 – 150), following the procedure described by Piot et al. (2012).  

Metallic trace elements were analyzed by Tera-environment, using inductively coupled plasma coupled 

with a mass spectrometer (ICP-MS) or an atomic emission spectrometer (ICP-AES) after acid digestion 

of a portion of the Teflon filters, following standardized protocols (Alleman et al., 2010b; CEN, 2005).  
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IV.4. OP analysis 

Following Calas et al. (2018, 2017), PM2.5 from quartz filter and PM10 was extracted in a simulated lung 

fluid (SLF, a mixture of 1,2-dipalmitoylphosphatidylcholine - DPPC and Gamble), reaching a final 

extraction concentration of 10 µg/mL for PM2.5 filters and 25 µg/mL for PM10 filters, in order to maintain 

the amount of extracted PM constant between each sample. The extracts were then placed at 37°C under 

vortex agitation for 75 min. OP was measured using the dithiothreitol (DTT) and ascorbic acid (AA) 

assays. Extracts are placed in a 96-well plate (CELLSTAR, Greiner-Bio), and DTT or AA solutions are 

added, and their consumption is followed over time. For the DTT assay, a titration of the remaining DTT 

is performed every 10 min for a total reaction time of 30 min, by adding dithionitrobenzoic acid (DTNB), 

that forms the 2-nitro-5-thiobenzoic acid chromophore, measured by absorbance at 412 nm (TECAN 

spectrophotometer Infinite M200 Pro). For the AA assay, AA consumption can be measured directly by 

absorbance at 265 nm, and measurements are performed every 4min for a total reaction time of 30 min. 

Positive control tests were performed for every experiment, using a 1,4-naphthoquinone (1,4-NQ) 

solution for both assays. Particularly, 40µL and 80 µL of a 24.7μM 1,4-NQ solution were used for the 

DTT and the AA assays, respectively, and the measurement quality, estimated by the coefficient of 

variation of the positive control tests were at <3.2%. 

IV.5. Data validation and statistical analysis 

Due to volunteer’s activities, some samplers were stopped during the measurement week (mostly 

unplugging due to the noise). Samples with less than 1 day (N=2) of sampling were excluded from the 

analysis. Although gravimetric measurements of PM2.5 were performed on Teflon filters, some samplers 

equipped with Teflon filters were stopped while the adjacent sampler equipped with Quartz filter 

continued running. Since most species were measured on Quartz filters, reconstructed PM using 

chemistry were more consistent than the gravimetric analysis (formula in the SI). When a house had a 

Teflon filter but no Quartz filter to reconstruct PM, then the gravimetric analysis was used (N=5). 

Chemical species for which more than 75% of the samples were below the limit of detection (table S1) 

were not considered.  
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Spearman’s correlation coefficients were calculated 1) by pairs of outdoor-ambient PM’s chemical 

constituents and OP; 2) by pairs of indoor chemical species; 3) by pairs of outdoor chemical species; 4) 

by pairs of indoor-outdoor PM’s chemical constituents and OP. 

Indoor-outdoor ratios of each chemical specie and OP were calculated, and the significance of the 

concentration difference between indoor and outdoor environments was assessed using Wilcoxon rank 

sum test. I/O ratios higher than 1 indicate potential indoor emission sources of chemical specie, or OP. 

Lastly, the influence of vacuuming, (binary variable, <2 vs. ≥2 times during the sampling week) and of 

cooking (binary: < vs. ≥ median of the reported cumulated duration of oven and hotplates use) was 

assessed, by comparing the means of I/O ratio in each category and using Wilcoxon test for mean 

comparison. Smoking, candle and incense lightning were not considered in these habits due to the very 

limited number of cases for each. 

 

 Results and discussion  
 

V.1. General description of the homes 

Table 15. Description of the lifestyle habits reported by the participants of the indoor-outdoor campaign. 

Lifestyle habits Cold season (N = 40) Warm season (N=38) 

Tobacco consumption in the sampler room 1 0 

Candle lighting in the sampler room 3 0 

Incense use in the sampler room 0 0 

Missing / 1 

Oven or hotplates use during the week (minutes)   

Q1 230 225 

Median 285 285 

Q3 380 359 

Maximum 715 905 

Vacuum cleaning use during the week (minutes)   

Q1 20 20 

Median 30 33 

Q3 47.5 60 

Maximum 135 180 

Number of vacuuming events during the week   

0 4 3 

1 13 17 

2 10 6 

3 7 6 

4 3 1 

> 4 (max = 8) 3 5 
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The majority of inhabitants did not smoke or use candles or incense in the sampled room during the time 

of the measurement campaign. The median vacuuming duration was 30 minutes per week, and the 

maximum was 135 min and 180 min in the cold and hot seasons, respectively. Vacuuming was 

performed more than twice during the sampling week in 13 residences in the cold season, against 12 in 

the warm season. The maximum duration of total use of oven or hotplates was reached in summer, with 

905 min of use, but the median duration was the same (285 min) for both seasons. 

Out of the 41 homes of the study, 27 were located within a 10km radius of the local air quality monitoring 

station, of which 16 were located within 5km. 

 

Figure 32. Geographical repartition of the residences in the Grenoble basin, and localization of the central air quality 

monitoring station. 

V.2. Characteristics of concurrent indoor and outdoor 

measurements 

V.2.1. PM reconstruction 

The median (IQR) PM2.5 concentration of the overall set of measurements was very similar indoors and 

outdoors, with 10.3 (7.8, 14.9) µg/m3 and 10.3 (7.4, 13.7) µg/m3, respectively (Table S2). PM2.5 mass 

concentration ranged from 2.5 to 39.1 µg/m3 indoors and from 2.1 to 35.3 µg/m3 outdoors. The 25 µg/m3 

European air quality yearly threshold was exceeded only in one outdoor situation, during the cold 

season, while the average ambient PM10 concentration did not exceed 10 µg/m3 over the same period of 
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time. Indoors, this threshold was exceeded six times mostly during the cold season (5 out of 6 times), 

and 2 of these 6 occurrences were in homes without concurrent outdoor sample to be compared with. 

Organic matter (OM) was the largest contributor to PM, accounting for more than 70% indoors and 60% 

outdoors for PM2.5, and for 50% of ambient PM10 at both seasons (figure 1). For indoors samples during 

the cold season, the second largest contributor was EC, with a median (IQR) of 7.5% [5.6%, 8.4%] vs. 

6.0 [4.5%, 6.2%] in the warm season. The second main contributor indoors in the warm season was non-

sea-salt sulfate (7.3% [5.9%, 9.1%]). Outdoors, the second largest contribution is found for inorganic 

species like nitrate (12.4% [9.1%, 17.0%]) and non-sea-salt sulfate (11.8% [8.5%, 14.2%]) in the cold 

and warm seasons, respectively. The pattern of ambient PM10 chemical components is similar to outdoor 

PM2.5 except for the larger dust contribution, which is the second largest contributor to PM10 in the warm 

season. PM concentrations, in all environments present a strong seasonality, with higher levels in the 

cold than in the warm season, which is mostly driven by the differences for OM and inorganic species, 

and which is consistent with a one-year study on PM10 sources at three sites in Grenoble (Borlaza et al., 

2021). 

  
Figure 33. Median PM mass concentration its reconstructed contributors. 

Many studies have investigated PM mass concentration in indoor residential environments, and they are 

mostly located in Asia (Anand et al., 2022; Brehmer et al., 2020; Li et al., 2017) or the USA (Li et al., 

2017). Their findings show indoor PM2.5 concentrations much higher than the concentrations in the 41 

houses of this study, i.e. above 30 µg/m3 and up to 630 µg/m3 in a residence with smokers. To the best 

        

                                        

 

 

  

 
 
 
  
 
  
 
 
 
 
 
  
 
  
 
 
  
 

 
 
  

 
 

  

  

        

       

        

       

    

                  



178 

of our knowledge, 6 studies had indoor residential PM2.5 levels in the same range as ours, in the UK (7.9 

± 5.2 µg/m3) (Jones et al., 2000), in Finland (9.5 ± 6.1µg/m3) (Götschi et al., 2002), in Sweden (7.5 ± 

6.0 µg/m3), in Australia (15.5 ± 7.9 µg/m3 with human activity) (Morawska, 2003), in the USA (7.0 

µg/m3 and 14.3 µg/m3 in non-smoking houses and smoking houses, respectively) (Russo et al., 2015) 

and in China, when a filtration device was used (8.50 µg/m3) (Zhan et al., 2018). Tofful et al. (2021) 

conducted an 18-day indoor-outdoor measurement campaign in a house located in a peri-urban site in 

Italy. They reported higher indoor and outdoor PM2.5 concentrations than the concentrations found in 

this study, with higher average OC and EC concentration. However, the maxima were close (OC, 17 

µg/m3 indoors and 28 µg/m3 outdoors vs. 19 and 24 µg/m3 in our study) or lower (EC, 2.3 µg/m3 vs. 3.5 

µg/m3) than the values found in the 41 houses of this study. It seems therefore that our study is in the 

low end of the results obtained in similar conditions in Europe. 

V.2.2. Seasonality of the OP of PM 

OPAA presents a strong seasonality in all environments, with higher values in the cold than in the warm 

season (Figure 34). For example, indoor OPm
AA activity has a median (IQR) of 0.13 (0.09, 0.17) vs.0.06 

(0.04, 0.11) nmol/min/µg, in the cold and warm season, respectively. OPDTT does not present any 

seasonality indoors. Outdoors, only OPv
DTT has higher activities in the cold season than in the warm 

season, and this is influenced by the marked seasonality of PM2.5 mass concentration. The pattern for 

outdoor OPm
DTT differs from that of ambient PM10 available in this study, that has higher activities in 

the cold season than in the warm season for both OPm
DTT and OPv

DTT. Other studies reported different 

seasonal patterns of OP, depending on the assay and on the region of the world considered. Yang et al. 

(2021) investigated the seasonality of OPDTT of PM2.5 in six unoccupied offices and student dormitories 

in China, with one concurrent outdoor sampling on the outside of the building. They did not find seasonal 

patterns for OPv
DTT neither indoors nor outdoors, but OPm

DTT values were ranked as autumn > spring > 

summer > winter, with similar patterns indoors and outdoors. In a study of indoor and outdoor OP in 

European offices, Szigeti et al. (2016) found variable seasonality, with higher OPm
AA in summer than in 

winter in Hungary and in the Netherlands, but results for OPv
AA tended to be opposite, with higher values 

in winter than in summer. The seasonal variations in OP are strongly influenced by PM chemical 

compounds and the season at which they are emitted. This was underlined in a study covering France, 
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that found high seasonality for OPv
AA and OPv

DTT in some sites, including in Alpine valleys, while other 

sites (traffic, industrial and urban traffic) did not exhibit such seasonality (Weber et al., 2021). In the 

present study, the variability between OP assays shows that sources of OPAA are predominant in winter, 

while the sources of OPDTT vary throughout the year. 

 

Figure 34. Seasonality of OP of PM2.5 in the residential indoor and outdoor environments and of OP of PM10 in the ambient 

environment. 

V.3. Spatial variations of PM and OP over Grenoble 

In the cold season, outdoor PM2.5 varies by a factor 7 among the measurement sites, ranging from 5 to 

35 µg/m3, whereas OPv
AA and OPv

DTT vary by a factor 16, respectively ranging from 0.24 to 3.81 

nmol/min/m3 and from 0.21 to 3.40 nmol/min/m3. In the warm season, PM2.5 vary by a factor 12, ranging 

from 2.1, 24.3 µg/m3, whereas OPv
AA and OPv

DTT vary by a factor 5, respectively ranging from 0.19 to 

1.00 nmol/min/m3 and from 0.38 to 2.33 nmol/min/m3. These results indicate important spatial contrasts 

in OPv, particularly in winter. On the contrary, in the warm season, heterogeneities are more marked for 

PM mass concentrations compared to OP, which highlights the dominant variations of PM constituents 

that do not contribute to OP. This suggests that assessing exposure using the central monitoring station 
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in Grenoble would be associated with significant uncertainties, which would be greater in winter for OP, 

and in summer for PM2.5. 

To further characterize spatial variations of OP over the area, the outdoor-ambient correlation 

coefficients help identify species that have more spatial variability. Major inorganic ions (NO3
-, NH4

+, 

SO4
2-), but also Na+, Cl- and levoglucosan present high correlation coefficients (ρout-amb>0.75) between 

ambient and outdoor environments, indicating a rather homogenous behavior of these species over the 

area of the study. Greater spatial homogeneity of secondary inorganic aerosols rich in nitrate and sulfate 

is consistent with their origin from long-range transport of air masses, as highlighted by previous studies 

in France (Borlaza et al., 2022; Favez et al., 2021). For levoglucosan, a tracer for biomass burning 

emissions, the high outdoor-ambient correlation suggests uniform distribution of the emission sources 

over the Grenoble basin, together with a well-mixed atmosphere. This is in line with a previous study 

on PM10 sources in Grenoble, that found strong correlations of the biomass burning source across three 

measurement sites located within 15 km of the city center (Borlaza et al., 2021). Moderate to low 

correlation coefficients are found between outdoor and ambient samples for Mg2+, Ca2+, EC and most 

metals (except As). This result is quite surprising for Mg2+, for which a similar pattern to Na+ is expected, 

considering that both species are tracers of aged seasalts aerosols. Therefore, this suggests a local dust 

origin for Mg2+. For Ca2+, EC, Cu and Sb, these moderate correlations suggest spatially variable patterns 

for sources linked to dust and road traffic (both exhaust and non-exhaust), which is consistent with the 

previous study that observed stronger similarity in the dust and traffic sources between two urban sites 

compared to the peri-urban one (Borlaza et al., 2021). This is also in line with another study conducted 

in Grenoble (Ouidir et al., 2015), that estimated exposure to atmospheric pollutants using GPS-data, that 

highlighted stronger variability of NO2, which is a traffic tracer, than PM2.5. 

Both OPm
AA and OPv

AA have a higher correlation coefficient (ρ>0.7) between ambient and outdoor 

environments as compared to OPDTT (ρ<0.36), indicating a spatially more consistent pattern of the OP 

measured by the AA assay, compared to the DTT assay. A previous study on the spatiotemporal 

variation of several OP assays in the Midwestern US (Yu et al., 2021) found an opposite trend, with 

more spatial variation of OPv
DTT compared to OPv

AA. 
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Interestingly, most correlation coefficients are higher for homes located within 5km of the local air 

quality monitoring station compared to the coefficients for all houses (Table S5). Correlation 

coefficients for Ca2+ and V remain similar to the results obtained without filtering the homes. OPv
DTT 

and OPm
DTT are correlated (ρ>0.6) between the outdoor (<5km) and ambient environments, which was 

not the case when considering all houses (ρ<0.3), which further highlight the spatial variability of OPDTT.  

Table 16. Spearman’s pairwise outdoor-ambient correlation coefficient for each species.  

Species ρout-amb 

PM2.5 0.61 

OC 0.62 

EC 0.49 

Cl- 0.76 

NO3
- 0.81 

SO4
2- 0.81 

Na+ 0.81 

NH4
+ 0.80 

K+ 0.66 

Mg2+ 0.08 

Ca2+ 0.46 

Levoglucosan 0.89 

As 0.61 

Cu 0.17 

Mn 0.35 

Pb 0.60 

Sb 0.34 

V 0.41 

OPv
AA 0.71 

OPv
DTT 0.36 

OPm
AA 0.76 

OPm
DTT 0.30 

 

V.4. Comparison of PM exposures in the indoor and outdoor 

environments 

V.4.1. Chemical drivers of PM2.5 and OP 

Table 17 shows the Spearman’s correlation coefficients of PM2.5 mass concentration and OP with each 

PM2.5 chemical constituent analyzed. Regardless of the environment considered, PM2.5 is highly 

correlated to OPv
DTT (ρ > 0.7), but more moderately to OPv

AA and is not correlated with both mass-

normalized OP. Compared to outdoor, indoor PM2.5 mass concentration is highly correlated to calcium 
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concentration (ρ=0.71 vs. 0.29 outdoors), presents weaker correlation with levoglucosan and 

ammonium, and stronger correlations with OC, EC, and trace elements such as Cu, Mn, Pb, and Sb, and 

particularly with SO4
2- (ρ=0.56 vs. 0.28 outdoors). This suggests that indoor dusts, identified with 

calcium concentrations, are important drivers for PM2.5, as well as EC and OC.  

Indoors OPv
AA has a similar correlation with K+ compared to outdoors, is a lot more correlated with Cu 

(ρ=0.75 vs. 0.57 outdoors), and slightly more with the other trace elements. Correlation with EC was 

still high, although less than outdoors, and the OPv
AA-levoglucosan correlation tended to be more 

moderate (ρ=0.56 vs. 0.67 outdoors). The OPv
DTT-OC correlation was slightly stronger indoors 

compared to outdoors, and there was a weaker correlation with levoglucosan (ρ=0.36 vs. 0.52 outdoors) 

and K+. The correlation pattern with metals was similar indoors and outdoors. Together, this suggests 

that indoor OPv
AA is mainly driven by copper and EC concentrations, whereas OPv

DTT is mainly driven 

by OC concentrations.  

In both indoors and outdoors PM2.5, OPm
DTT does not show any correlation with any of the chemical 

components of PM2.5. On the other hand, indoor OPm
AA shows moderate correlations with EC, K+ and 

Cu, while outdoor OPm
AA additionally presents a high correlation to EC and levoglucosan. Although 

mass-normalized OP is often poorly correlated to the concentration of PM chemical species, the 

correlation of OPm
DTT is surprising because it strongly differs from ambient PM10, for which OPm

DTT is 

highly correlated to levoglucosan, moderately to K+, EC, Cl- NO3
-, and negatively to SO4

2-. Since these 

species are not expected to be in the coarser fraction of PM, the same pattern could be expected, at least 

with outdoor OPm
DTT. This suggests that unmeasured species dominate the response of OPm

DTT, while 

OPm
AA is probably driven by combustion sources. While the result with OPm

DTT indoors could be 

explained by sources rich in organic species specific to the indoor environment, that we did not measure 

(PAHs for example), this absence of correlation is quite unexpected for outdoors PM, since OPm
DTT was 

found sensitive to metals and organics species. 
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Table 17. Spearman's correlation coefficients in the indoor and outdoor environments, between PM2.5, OPv
AA, OPv

DTT, OPm
AA and OPm

DTT and the set of PM2.5 chemical constituents. 

Species 
indoor outdoor 

PM2.5 OPv
AA OPv

DTT OPm
AA OPm

DTT PM2.5 OPv
AA OPv

DTT OPm
AA OPm

DTT 

PM2.5 1.00 0.63 0.83 0.18 0.14 1.00 0.63 0.79 0.22 -0.14 

OPv
AA 0.63 1.00 0.69 0.85 0.44 0.63 1.00 0.55 0.86 0.12 

OPv
DTT 0.83 0.69 1.00 0.36 0.62 0.79 0.55 1.00 0.25 0.43 

OPm
AA 0.18 0.85 0.36 1.00 0.49 0.22 0.86 0.25 1.00 0.27 

OPm
DTT 0.14 0.44 0.62 0.49 1.00 -0.14 0.12 0.43 0.27 1.00 

OC 0.96 0.64 0.80 0.24 0.17 0.91 0.66 0.75 0.34 -0.03 

EC 0.71 0.75 0.65 0.51 0.23 0.64 0.86 0.63 0.72 0.20 

Cl- 0.57 0.49 0.39 0.24 -0.09 0.52 0.66 0.48 0.56 0.07 

NO3
- 0.63 0.60 0.50 0.35 0.07 0.60 0.59 0.48 0.46 0.01 

SO4
2- 0.56 0.17 0.50 -0.12 0.15 0.28 -0.22 0.17 -0.47 -0.16 

Na+ 0.37 0.35 0.29 0.18 -0.02 0.26 0.40 0.22 0.37 0.04 

NH4
+ 0.09 -0.02 0.11 -0.03 0.21 0.49 0.15 0.36 -0.07 -0.06 

K+ 0.57 0.69 0.49 0.52 0.15 0.63 0.67 0.57 0.57 0.14 

Mg2+ 0.67 0.32 0.49 0.01 -0.02 0.52 0.10 0.35 -0.20 -0.15 

Ca2+ 0.71 0.32 0.53 -0.03 0.01 0.29 -0.05 0.11 -0.32 -0.24 

Levoglucosan 0.39 0.56 0.36 0.44 0.11 0.57 0.77 0.52 0.72 0.14 

As 0.42 0.36 0.41 0.22 0.19 0.55 0.49 0.46 0.35 -0.07 

Cu 0.51 0.75 0.57 0.64 0.39 0.45 0.57 0.54 0.41 0.07 

Mn 0.52 0.53 0.40 0.35 0.06 0.42 0.47 0.39 0.38 -0.02 

Pb 0.56 0.55 0.45 0.34 0.08 0.47 0.48 0.42 0.38 -0.03 

Sb 0.54 0.51 0.42 0.30 0.03 0.43 0.43 0.40 0.32 -0.08 

V 0.27 0.22 0.22 0.15 0.09 0.14 -0.13 0.03 -0.20 -0.23 
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V.4.2. Indoor sources of PM et PO 

Indoor to outdoor ratios 

Indoor to outdoor ratios of PM2.5 main chemical constituents and OP were calculated and are presented 

in figure 4. This figure shows that few species present average indoor concentrations higher than the 

outdoor ones. Only organic carbon and copper concentrations are found significantly (p<0.05, see Table 

S2) higher indoors than outdoors, with median (Q1-Q3) I/O ratio of 1.6 (1.1, 2.3) and 1.6 (0.8, 1.9), for 

OC and Cu, respectively. Both additionally present low indoor-outdoor correlations (≤0.20, Table 18), 

indicating that indoor levels of OC and Cu are mostly influenced by indoor sources and processes instead 

of those of outdoors. The OC I/O ratio is consistent with the chemistry of indoor sources, since synthetic 

building materials, paints, plastics, cooking activities can emit semi-volatile organic compounds that 

sorb onto PM2.5, thereby enriching its carbonaceous fraction (Abbatt and Wang, 2020; Maung et al., 

2022). Concerning Cu I/O ratios, previous studies also found higher indoor than outdoors concentrations 

of Cu and suggested several sources such as certain electrical appliances that have a rotating motor such 

as vacuum cleaners or electric fans (Tofful et al., 2021; Yli-Tuomi et al., 2008; Zhao et al., 2006), as 

well as cooking and frying, depending on the utensils used (Molnár et al., 2007). Previous studies 

showed that these two compounds were of great concern for human health, since Chen et al. (2020) 

highlighted the role of OC in inducing increased levels of pro-inflammatory cytokines and lipid 

peroxidation biomarker in cells exposed to personal and indoor PM2.5, and both biomarkers were 

associated with increased airway inflammation biomarker in the study participants. In the HELIX 

(Human Early Life Exposome) project, based on six longitudinal population-based birth cohorts in 

Europe, copper exposure during childhood was found to influence behavioral problems in children 

(Maitre et al., 2021).  

Figure 35 indicates that a few other variables (As, PM mass, most OP) have median I/O ratios below or 

equal to 1, while most inorganic species such as SO4
2-, Na+, NO3

- and NH4
+ are significantly lower 

indoors than outdoors. This is consistent with previous findings that suggested to use SO4
2- as a tracer 

for the infiltration of non-volatile PM2.5 species, because of the lack of indoor sources for sulfates 

(Diapouli et al., 2013; Liu and Zhang, 2019; Sarnat et al., 2002). The I/O ratios of 0.5 (0.2, 0.9) and 0.4 

(0.1, 0.9) for nitrates and ammonium respectively, are also consistent with previous findings 
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highlighting the frequent desorption of nitrates from the particulate to the gaseous phase when 

penetrating indoors (Liu and Zhang, 2019). Levoglucosan presented higher concentrations outdoors, 

with a median (IQR) I/O ratio of 0.88 (0.29, 1.12), which could be explained by the high contribution 

of the biomass burning source in winter, that would be higher outdoors than indoors. This is consistent 

with the correlation coefficients between indoor and outdoor, which are highest for potassium and 

levoglucosan (ρ=0.67 and 0.65, respectively, Table 18). Together, this suggests that biomass burning 

emissions outdoors are able to penetrate the indoor environment, which is consistent with previous 

studies that observed this penetration in houses with low air-exchanges (Tofful et al., 2021), or that some 

residences have indoor biomass burning sources. In fact, in 13 cases, indoor concentrations of 

levoglucosan were higher than outdoors, indicating that these participants could have been exposed to 

indoor biomass burning emissions.  

Cl- reached very high I/O ratio, particularly in the warm season with a median (Q1-Q3) ratio of 1.2 (1.0, 

176), due to values below the quantification limit outdoors. This is probably caused by an important 

volatilization of Cl- in the outdoor environment with a concurrent indoor environment presenting lower 

temperatures, leading to a more limited volatilization and therefore higher concentrations indoors. The 

relatively high indoor-outdoor correlation coefficient (ρ=0.61, Table 18) suggests that outdoor Cl- partly 

penetrates indoor (Table 18). Outdoor Cl- can originate from sea- and road salts and industry, and is 

mostly in the coarse PM fraction (Seinfeld and Pandis, 2016). Higher values indoors can also be caused 

by indoor sources of Cl- such as chlorine-based cleaning agents or from the chlorinated municipal tap 

water, as suggested in previous studies (Habre et al., 2014; Zhao et al., 2006).  

Interestingly, PM2.5, intrinsic and volume-normalized OPAA and OPDTT do not present any statistically 

different activities indoors compared to outdoors, even when splitting by season, and have median I/O 

ratios between 0.88 (OPv
AA) and 0.99 (PM2.5). However, maxima for volume-normalized OP were 

reached in the same household, that had no concurrent outdoor sampling. Noteworthy, OPv activities 

reached levels almost twice as much as the maximum OPv reached outdoors during the entire measuring 

campaign (6.86 vs. 3.81 and 5.48 vs. 3.40 for OPv
AA and OPv

DTT, respectively). The high OPv were 

probably caused by the very high metal concentrations (Cu, Pb, Sb) reached in that house, and were 

associated with high concentrations of EC and inorganic species (NO3
-, NH4

+, SO4
2-). The impact of 
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outdoor air cannot be disentangled in this residence, since it was not measured concurrently, but such 

observation highlights the importance of considering indoor air when estimating exposure to OP. 

 
Figure 35. Indoor to outdoor ratios of concentrations of PM2.5, its chemical constituents and OP.  

Note: mean I/O ratio for NH4
+ was not shown for residences with >2 vacuuming sessions because it reached a very high 

value, due to outliers. 

 

Influence of habits on the OP of PM2.5 

The influence of vacuuming frequency and of the total duration of hotplates and oven use was 

investigated on OP and PM2.5 mass concentration, since it was previously identified to influence both 

dust resuspension and copper emission (Vicente et al., 2020). The mean I/O ratios for people that 

vacuumed more than twice during the week is shown on Figure 35. Resuspension of settled dust during 

vacuuming is suggested by the higher average I/O ratios compared to those of all participants for most 

chemical species, and particularly OC, Ca2+, Mg2+ and Na+, and Cu. Cu could also originate from 

emissions of the vacuum cleaner itself. Significantly higher OPv
AA is also obtained in houses with more 

than 2 vacuuming sessions compared to the other houses, with median (IQR) OP activity of 1.21 (0.67, 

2.46) vs. 0.84 (0.40, 1.42) nmol/min/m3 (p-value of the Wilcoxon test for mean comparison = 0.02). 
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PM2.5 mass concentration presented a similar trend [12.2 (9.0, 15.6) vs. 9.9 (7.1, 11.3) p=0.06], but not 

OPv
DTT. The total duration of hotplates and oven use did not lead to significantly different results for OP 

and PM2.5, when splitting by the median duration. However, considering the reported impact of cooking 

on PM (Abdullahi et al., 2013; Li et al., 2016), this is a surprising result.  

Table 18. Spearman’s pairwise outdoor-indoor correlation coefficient for each species.  

Species ρind-out 

PM2.5 0.30 

OC 0.18 

EC 0.48 

Cl- 0.61 

NO3
- 0.57 

SO4
2- 0.57 

Na+ 0.38 

NH4
+ 0.26 

K+ 0.67 

Mg2+ 0.14 

Ca2+ 0.26 

Levoglucosan 0.65 

As 0.35 

Cu 0.20 

Mn 0.43 

Pb 0.58 

Sb 0.40 

V 0.16 

OPv
AA 0.52 

OPv
DTT 0.27 

OPm
AA 0.36 

OPm
DTT 0.06 

 

V.5. Strengths and limitations 

To the best of our knowledge, this study is the first to concurrently assess residential indoor and outdoor 

OP of PM2.5, using two different assays, along with an extensive chemical characterization and at two 

seasons. We acknowledge that this study has several limitations. Typical indoor sources such as cooking 

or cleaning emit semi-volatile organic compounds (Abdullahi et al., 2013; Maung et al., 2022), that 

could influence the OP of PM. 7-day sampling was performed in order to have sufficient mass for the 

chemical and OP analysis, these short lifetime compounds would therefore have reacted. Additional 

information on the type of fuel used for cooking and on the presence of a wood stove would have led to 
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clearer conclusions regarding the impact of these activities on the two OP assays. However, we were 

able to show that vacuum cleaning had a significant impact on some species and on OP activities.  

We considered developing a land use regression model to predict OP’s spatial variability, but this model 

had several limitations, namely: sampling weeks were not simultaneous in all houses and only one 

central monitoring station measuring PM10 was available to temporally adjust the measurements. We 

considered that these factors were too prone to induce uncertainties in a land use regression model, 

especially considering that previous studies with this aim highlighted the lack of specific geographic 

predictors for OP (Gulliver et al., 2018; Jedynska et al., 2017; Weichenthal et al., 2019).  

We also investigated the possibility to apportion PM and OP sources, both outdoors and indoors. 

Although 38 houses had indoor sampling at 2 different seasons the Positive Matrix Factorization applied 

to this indoor dataset did not lead to stable results. To stabilize the solution, we tried to model outdoor 

PM sources, with the aim to reproduce published data of our team (Borlaza et al., 2021), but, again, this 

did not lead to a stable solution. These instabilities are probably due to the large variations of chemical 

concentration, particularly during the summer season, that led to individual homes with very high 

contributions to some potential sources. Reducing the database did not improve the results, and this is 

why we do not present source apportionment for indoor PM2.5 and OP sources, although this would be 

a great tool to target specific indoor sources. Despite this, our conclusions highlight the spatial variability 

of OP, particularly during the cold season. We were also able to show the importance of several species 

for OP, namely OC, EC and copper for OP. These species are probably emitted by indoor activities such 

as cooking, cleaning, and we were able to highlight the role of vacuuming for their resuspension and 

emission. Therefore, we recommend paying particular attention to the house ventilation during these 

activities. 

 

 Conclusion 
 

Overall, our findings suggest important spatial variation of OP and PM2.5 over the city of Grenoble, and 

different exposure patterns in the inside of residences compared to the outside, with an important 
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influence of vacuum cleaning, that led to increased I/O ratios of OC, Cu and OPAA in house with more 

than 2 vacuuming session compared to the others. Although OP activities are not significantly higher 

indoors compared to outdoors, the important concentrations of copper greatly impact OPAA indoors, 

which highlights the need to take indoor environments into account for OP exposure.  
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PM mass reconstruction 

PM mass concentration was calculated using the following equation: 

[𝑃𝑀2.5] = [𝑂𝑀] + [𝐸𝐶] + [𝑛𝑠𝑠 − 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + [𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + [𝑎𝑚𝑚𝑜𝑛𝑖𝑢𝑚] + [𝑠𝑒𝑎𝑠𝑎𝑙𝑡] + [𝑑𝑢𝑠𝑡] 

Where the organic matter (OM) was estimated with an OM to OC conversion factor of 1.8 for outdoor 

and ambient PM and 1.4 for indoor PM (Favez et al., 2010; Putaud et al., 2010; Tofful et al., 2021). 

[nss-sulfate], corresponded to the sulfate fraction from which the marine component was subtracted 

(Seinfeld & Pandis, 2016) according to Eq. 4. 

[𝑛𝑠𝑠 − 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] = [𝑆𝑂4
2−] − 0.252[𝑁𝑎+]   (4) 

The seasalt fraction, was calculated from sodium concentrations according to Eq. 5. 

[𝑠𝑒𝑎𝑠𝑎𝑙𝑡] = 3.252 ∗  𝑁𝑎+]     (5) 

The dust fraction, taking into account metallic elements and oxydes, was calculated following the 

empirical Eq. 6 (Putaud et al., 2004):  [𝑑𝑢𝑠𝑡] = 5.6 ∗ [𝑛𝑠𝑠 − 𝐶𝑎2+]  (6) 

Where:   [𝑛𝑠𝑠 − 𝐶𝑎2+] = [𝐶𝑎2+] − [𝑁𝑎+]/26    (7) 
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Table S20 Summary of detection (DL) or quantification (QL) limits used to replace values below the QL, and percentage of 

values below the QL. 

Chemical constituent 
QL or DL used to replace values 

<QL 
< QL 

PM  0% 

OC (µg/m3) 0.089025596 0% 

EC (µg/m3) 2.82026E-05 0% 

MSA (ng/m3) 0.003 0% 

Cl- (ng/m3) 0.123 17% (N=23) 

NO3
- (ng/m3) 0.186 0.7 (N=1) 

SO4
2- (ng/m3) 0.185 0% 

Oxalate (ng/m3) 0.022 0% 

Na+ (ng/m3) 0.121 1.5% (N=2) 

NH4
+ (ng/m3) 0.100 3.7% (N=5) 

K+ (ng/m3) 0.022 1.5% (N=2) 

Mg2+ (ng/m3) 0.007 0% 

Ca2+ (ng/m3) 0.076 0% 

Inositol (ng/m3) 1.43 81% (N=108) 

Glycerol (ng/m3) 39.05 81% (N=109) 

Erythritol (ng/m3) 1.07 81% (N=108) 

Xylitol (ng/m3) 3.55 96% (N=128) 

Arabitol (ng/m3) 3.55 67% (N=90) 

Sorbitol (ng/m3) 1.41 90% (N=121) 

Mannitol (ng/m3) 3.52 34% (N=45) 

Threalose (ng/m3) 1.76 84% (N=112) 

Levoglucosan (ng/m3) 17.82 25% (N=34) 

Mannosan (ng/m3) 3.54 59% (N=79) 

Galactosan (ng/m3) 14.73 94% (N=126) 

L-Rhamnose (ng/m3) 3.57 95% (N=127) 

Glucose (ng/m3) 3.53 57% (N=76) 

Al (ng/m3) 236.46 93% (N=125) 

As (ng/m3) 0.18 47% (N=63) 

Ba (ng/m3) 3.68 86% (N=115) 

Cd (ng/m3) 0.18 93% (N=124) 

Co (ng/m3) 0.18 92% (N=123) 

Cr (ng/m3) 1.35 91% (N=122) 

Cu (ng/m3) 1.17 21% (N=28) 

Fe (ng/m3) 32.42 12% (N=16) 

Mn (ng/m3) 1.24 45% (N=60) 

Mo (ng/m3) 0.22 40% (N=54) 

Ni (ng/m3) 0.76 75% (N=101) 
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Chemical constituent 
QL or DL used to replace values 

<QL 
< QL 

Pb (ng/m3) 0.18 6.7% (N=9) 

Rb (ng/m3) 0.42 80% (N=107) 

Sb (ng/m3) 0.18 22% (N=30) 

Sn (ng/m3) 46.32 67% (N=90) 

Ti (ng/m3) 1.01 16% (N=22) 

V (ng/m3) 0.18 50% (N=67) 

Zn (ng/m3) 18.94 89% (N=120) 
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Table S21. Descriptive statistic of PM2.5 constituents and OP indoors and outdoors. 

Characteristic N Indoor, N = 78 Outdoor, N = 56 p-value1 

Season 134   >0.9 

cold  40 (51%) 29 (52%)  

warm  38 (49%) 27 (48%)  

PM2.5 (µg/m3) 134   0.6 

Median (IQR)  10.3 (7.8, 14.9) 10.3 (7.4, 13.7)  

Range  2.5, 39.1 2.1, 35.3  

OC (µg/m3) 128   <0.001 

Median (IQR)  5.52 (3.95, 7.34) 3.58 (2.67, 4.42)  

Range  1.34, 24.16 1.43, 18.67  

Missing  3 3  

EC (µg/m3) 128   0.7 

Median (IQR)  0.69 (0.51, 1.11) 0.69 (0.57, 1.00)  

Range  0.00, 3.21 0.00, 3.54  

Missing  3 3  

Cl- (ng/m3) 128   0.094 

Median (IQR)  25 (12, 73) 15 (0, 76)  

Range  0, 749 0, 472  

Missing  2 4  

NO3
- (ng/m3) 128   0.002 

Median (IQR)  315 (221, 444) 465 (247, 1,596)  

Range  0, 1,409 97, 4,570  

Missing  2 4  

SO4
2- (ng/m3) 128   0.017 

Median (IQR)  745 (479, 1,175) 1,026 (721, 1,563)  

Range  37, 5,143 175, 2,827  

Missing  2 4  

Na+ (ng/m3) 128   0.01 

Median (IQR)  51 (26, 80) 75 (35, 121)  

Range  0, 336 7, 346  

Missing  2 4  

NH4
+ (ng/m3) 128   <0.001 

Median (IQR)  182 (77, 427) 562 (324, 865)  

Range  0, 1,468 0, 1,912  

Missing  2 4  

K+ (ng/m3) 128   0.2 

Median (IQR)  28 (13, 98) 40 (17, 109)  

Range  0, 466 3, 273  

Missing  2 4  

Mg2+ (ng/m3) 128   0.2 

Median (IQR)  7 (6, 11) 9 (7, 13)  

Range  2, 392 2, 38  

Missing  2 4  

Ca2+ (ng/m3) 128   0.3 

Median (IQR)  75 (49, 109) 66 (43, 105)  

Range  15, 3,883 11, 2,335  

Missing  2 4  

Levoglucosan (ng/m3) 128   0.3 

Median (IQR)  55 (9, 181) 72 (19, 314)  

Range  9, 793 9, 1,013  

Missing  2 4  
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Characteristic N Indoor, N = 78 Outdoor, N = 56 p-value1 

As (ng/m3) 129   0.7 

Median (IQR)  0.09 (0.09, 0.39) 0.23 (0.09, 0.31)  

Range  0.09, 2.32 0.09, 1.24  

Missing  1 4  

Cu (ng/m3) 129   0.019 

Median (IQR)  5.14 (1.95, 13.76) 3.05 (1.94, 7.21)  

Range  0.58, 134.2 0.58, 44.6  

Missing  1 4  

Mn (ng/m3) 129   0.071 

Median (IQR)  0.62 (0.62, 2.57) 1.93 (0.62, 3.69)  

Range  0.62, 25.42 0.62, 13.19  

Missing  1 4  

Pb (ng/m3) 129   0.3 

Median (IQR)  1.81 (0.78, 3.52) 2.31 (1.28, 3.27)  

Range  0.09, 19.79 0.09, 10.75  

Missing  1 4  

Sb (ng/m3) 129   0.007 

Median (IQR)  0.34 (0.09, 0.62) 0.50 (0.34, 0.90)  

Range  0.09, 2.59 0.09, 3.76  

Missing  1 4  

V (ng/m3) 129   0.001 

Median (IQR)  0.09 (0.09, 0.23) 0.24 (0.09, 0.40)  

Range  0.09, 1.29 0.09, 1.64  

Missing  1 4  

OPv
AA (nmol/min/m3) 130   0.3 

Median (IQR)  0.93 (0.54, 1.98) 0.76 (0.48, 1.67)  

Range  0.05, 6.86 0.19, 3.81  

Missing  2 2  

OPv
DTT (nmol/min/m3) 130   0.9 

Median (IQR)  1.13 (0.64, 1.66) 1.02 (0.79, 1.44)  

Range  0.18, 5.48 0.21, 3.40  

Missing  2 2  

OPm
AA (nmol/min/µg) 130   0.6 

Median (IQR)  0.10 (0.05, 0.15) 0.08 (0.05, 0.14)  

Range  0.01, 0.39 0.02, 0.47  

Missing  2 2  

OPm
DTT (nmol/min/µg) 130   0.3 

Median (IQR)  0.10 (0.08, 0.12) 0.11 (0.09, 0.12)  

Range  0.04, 0.20 0.04, 0.33  

Missing  2 2  
1Pearson's Chi-squared test; Wilcoxon rank sum test      
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Table S22. Spearman's correlation coefficients in the ambient environments, between PM10, OPv
AA, OPv

DTT, OPm
AA and OPm

DTT 

and the set of PM10 chemical constituents. 

Species PM10 OPv
AA OPv

DTT OPm
AA OPm

DTT 

PM10 1.00 0.54 0.67 0.17 0.16 

OPv
AA 0.54 1.00 0.76 0.89 0.72 

OPv
DTT 0.67 0.76 1.00 0.54 0.73 

OPm
AA 0.17 0.89 0.54 1.00 0.79 

OPm
DTT 0.16 0.72 0.73 0.79 1.00 

OC 0.91 0.56 0.67 0.22 0.19 

EC 0.46 0.89 0.69 0.77 0.59 

Cl- 0.21 0.66 0.39 0.74 0.58 

NO3
- 0.57 0.77 0.63 0.65 0.60 

SO4
2- 0.42 -0.42 -0.09 -0.65 -0.54 

Na+ -0.09 0.24 0.01 0.34 0.13 

NH4
+ 0.76 0.15 0.41 -0.12 0.07 

K+ 0.70 0.84 0.78 0.64 0.60 

Mg2+ 0.21 0.48 0.24 0.50 0.27 

Ca2+ 0.32 -0.22 0.00 -0.47 -0.49 

Levoglucosan 0.41 0.86 0.66 0.83 0.79 

As 0.74 0.65 0.72 0.37 0.38 

Cu 0.38 0.75 0.61 0.60 0.46 

Mn 0.55 0.64 0.72 0.44 0.46 

Pb 0.61 0.80 0.79 0.66 0.71 

Sb 0.43 0.63 0.54 0.46 0.39 

V 0.24 -0.11 0.00 -0.25 -0.37 
 

Table S 23. Outdoor-ambient spearman correlation coefficients for homes located within 5km of the local air quality monitoring 

station. 

Species ρout-amb (total) ρout-amb (5km) 

PM2.5 0.61 0.81 

OC 0.62 0.80 

EC 0.49 0.65 

Cl- 0.76 0.83 

NO3
- 0.81 0.90 

SO4
2- 0.81 0.81 

Na+ 0.81 0.84 

NH4
+ 0.80 0.86 

K+ 0.66 0.83 

Mg2+ 0.08 0.26 

Ca2+ 0.46 0.47 

Levoglucosan 0.89 0.93 

As 0.61 0.73 

Cu 0.17 0.28 

Mn 0.35 0.60 

Pb 0.60 0.74 

Sb 0.34 0.42 

V 0.41 0.37 

OPv
AA 0.71 0.91 

OPv
DTT 0.36 0.61 

OPm
AA 0.76 0.87 

OPm
DTT 0.30 0.65 
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Chapter VII 

Discussion and Perspectives 
 

 Discussion 
 

I.1. Summary of the main findings 

The overall objective of this research was to document the health impacts of exposure to particulate 

pollutants, in terms of its mass concentration and its oxidative potential, in order to assess the relevance 

of OP as a health metric with respect to the current regulated metric. OP measurements aim to be more 

specific than the mass concentration metric to adverse PM health effects caused by oxidative stress. 

Unfortunately, there are few studies assessing precise measurements at the personal level to characterize 

the associations of OP exposure with different health parameters. In this work, a comprehensive 

approach was adopted by addressing the relationship of personal OP with various health and biological 

endpoints, and the variations in indoor and outdoor PM OP and chemical constituents. After 

summarizing the main findings of the thesis, a discussion follows on whether OP would be a relevant 

additional metric for air quality management. 

The etiologic axis of the thesis work showed associations for prenatal exposure to OPv
DTT with decreased 

lung growth in children, assessed by a decreased functional residual capacity at 6 weeks, and increased 

Rrs7-19 at 3 years. Interestingly, prenatal exposure to PM2.5 mass concentration was only associated with 

decreased FRC, but with smaller effects than OPv
DTT. This study assessed personal exposure of the 

pregnant women at two time points, and measured objective lung function parameters as early as 6 

weeks. To the best of our knowledge, this is the first study addressing the associations between prenatal 

exposure to PM2.5 OP and children’s lung function by using such precise techniques.  

The mechanistic axis focused on the effects of OP of PM2.5 exposure on biomarkers related to two main 

pathways involved in the PM adverse health effects: the oxidative stress and the immune system. While 
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OP measurements were included in many toxicological studies, to assess whether cellular responses 

indeed corresponded to oxidative stress and inflammation, it was more rarely tested in epidemiological 

studies. Investigating the responses of systemic oxidation and inflammation in a cohort, following PM 

and OP exposure explores the biological plausibility of other epidemiological studies investigating the 

associations of exposure to PM and OP with health outcomes. Particularly, in the context of this work, 

the possibility to assess biomarkers in pregnant women, and to test the relationship of OP with their 

concentrations is a great added value in regards of the other results on the prenatal exposure to PM and 

OP and their effects on children lung function. Indeed, biological plausibility is a critical criterion 

required to support a causal interpretation of statistical links between exposure and health endpoints. No 

associations of PM2.5 mass concentration was revealed with biomarkers of oxidative stress, nor with 

immune function parameters. Our findings suggest a deleterious effect of mass-normalized OPAA on 

oxidative damage to DNA (8-OHdG), and a potential effect modification of PM2.5 levels was identified, 

with stronger effects of OPm
AA and OPm

DTT on 8-OHdG and 8-iso-PGF2α in the context of low (< 

median; 14 µg/m3), vs. high (≥ median) exposure to PM2.5 level. Regarding blood immunological 

biomarkers, OP was associated with a decrease in R848-activated IL-8 (OPAA), and an increase in IL-

17A (for all OP tests, standardized by mass and volume). Together, results on oxidative DNA damage 

and on the immune function are in line with the proposed hierarchical response model for oxidative 

stress induced by pollutant exposure, that identified inflammation in the pathway between antioxidant 

defense and cell. They also underline the specificity of OP compared to PM2.5 mass concentration as 

exposure metric able to detect associations. Compared to previous studies on the impact of PM2.5 or OP 

exposure on biological endpoints, this is a large-scale study of homogenous pregnant women, for which 

exposure was precisely assessed using personal monitors. In addition, immune blood cells were 

activated to assess their propensity to secrete cytokines, and urine samples were pooled to reduce intra-

day variability of biomarkers. To the best of our knowledge, these are the first studies making such an 

effort to minimize measurement error in the assessment of air pollutant exposure through personal 

measurements and biomarker analysis, and employing a urinary pool methodology.  

The exposure and aerosol research axis of the thesis showed an important spatial variability for OP and 

PM2.5 within the cohort’s study area. Redox-active species exhibited greater spatial heterogeneity 
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outdoors during the cold season compared to the warm season, during which non-redox species mostly 

influenced the magnitude of PM2.5 concentrations. In terms of chemical tracers of PM sources in the 

outdoor air, a homogenous distribution of the biomass burning tracer levoglucosan was evidenced, 

whereas species related to road traffic exhibited some spatial contrast. Although not statistically 

significant, the higher levels of organic carbon, chloride and copper in the indoor vs. outdoor 

environment indicate indoor-specific sources associated to these elements, likely related to cooking, 

cleaning and electrical appliances. Vacuuming, by resuspending settled particles, and potentially 

emitting copper particles was identified as a habit that led to higher exposure to OPAA. To the best of 

our knowledge, this was one of the first study in Europe that assessed PM constituents and two OP 

assays inside residences and within the city. This chapter highlights the need to take into account indoor 

PM exposure, particularly for OP, as well as spatially resolve exposure within the city. 

Taken together, the findings of this work are complementary in showing that reduction in copper 

exposure would probably lead in limiting adverse health effects of PM2.5 exposure. Indeed, higher indoor 

concentrations of copper compared to outdoors were found in chapter VI, and this specie was also the 

main indoor tracer of OPAA. In the epidemiological studies of this thesis, both short-term and prenatal 

personal OP were found associated with biological and health endpoints, respectively. Reducing copper 

exposure indoors, could therefore lead to reduced exposure to the OPAA of PM2.5 and thereby limit 

biological and health effects. This is supported by both epidemiological and toxicological studies 

investigating the role of specific PM constituents in ambient air. Steenhof et al. (2011) compared PM2.5 

effects from several sites, and highlighted that PM2.5 with the highest metal content induced the most 

adverse effect on cell metabolic activity compared to PM2.5 from the other sites. A study in Canada 

underlined a combined effect of sulfur and transition metals, with the magnitude of association between 

PM2.5 OP exposure and acute cardiovascular events being strongest when PM content of both species 

was elevated (Weichenthal et al., 2021). Sulfur was used as a proxy for sulfate to represent PM’s acidity, 

that influence metals dissolution. Since there are no known indoor sources of sulfate, targeting sources 

of sulfate outdoors and sources of transition metals, and particularly copper both indoors and outdoors 

would have significant impact on personal exposure to OP. This highlights the need to raise awareness 

about good practices related to indoor air quality, entailing the ventilation of living spaces, including 
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during the moderate use of household electrical appliances such as vacuum cleaners or hair dryers, which 

are less recognized than smoking and cooking in terms of particle emissions. Reducing these exposures 

for pregnant women could result in lowered oxidative stress and inflammation levels, subsequently 

decreasing the risk of compromising the development of their offspring. Following the Developmental 

Origins of Health and Disease (DOHaD) hypothesis, this decreased exposure could also have 

implications for offspring’s future lives, by lowering the likelihood of developing respiratory diseases. 

I.2. Strength and limitations  

I.2.1. Population selection 

In the SEPAGES cohort, the women who volunteered for the study differed from those who did not, 

therefore potentially introducing a volunteer bias, which is a type of selection bias. Indeed, the 

participants tended to be older, had a higher education level, a lower parity, more frequently lived in a 

relationship and worked, compared to the women approached but not included (see Methodology section 

and Lyon-Caen et al., 2019). Compared to the French population, the included participants tended to 

smoke less before and during pregnancy. This systematic error can modify the exposure-outcome 

relationship in the selected population compared to the general population that would be eligible for the 

study (Tripepi et al., 2010). However, participants tended to be less exposed to tobacco smoke, that emit 

transition metals contributing to the OP of PM. They were also potentially exposed to lower levels of 

ambient air pollution, since they tended to live in less deprived areas. Thus, the results cannot be 

generalized to the whole population of Grenoble, nor to the whole population of France. However, this 

homogeneity of the population can limit confusion bias related to smoking or educational level, that was 

used as a proxy for more complex variables linked to the socioeconomical status. 

I.2.2. Exposure assessment  

In this work, exposure was assessed using personal monitors to limit the measurement errors related to 

the participant’s location. Although personal PM filters could not more precisely represent the variety 

of environments and activities of the participant, some measurement error has probably been introduced 

by this estimation method, related to the chemistry of redox-active species, and to the temporal coverage 

of personal monitors. By using a 7-day filter, it is highly probable that reactive oxygen species with 
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short half-lives have already reacted when the filters were analyzed (Fuller et al., 2014; Utinger et al., 

2023; Wang et al., 2023). However, the sharp decrease induced by ROS’ reactivity probably happens 

within a few hours after collection, thereby affecting most off-line OP measurement techniques. OP 

levels could thereby be underestimated, and since this decrease depends on the aerosol content of ROS, 

which depends on the exposure sources, all filters would not be affected to the same extent. However, 

to this day, no other precise measurement techniques can be applied to estimate personal exposure to 

OP, since online measurements are only at the pilot research stage, and cannot be transported to evaluate 

personal exposure of participants. Regarding temporal coverage, measurement error could have been 

introduced in Chapter III, due to the compromise with the feasibility of personal sampling, since 

personal samplers cannot be worn during the entire pregnancy. Instead, two one-week PM2.5 

measurement periods were performed to estimate the prenatal exposure, and some participants of this 

study (N=124, 35%) only had one measurement week. Considering the heavy protocol of the cohort 

design, additional weeks of sampling would not have been possible, for both costs and acceptability 

aspects. The main concern related to the use of such temporal coverage to represent the pregnancy is to 

have sampled a particular week, with unusually high or low exposure. Including the season of sampling 

in the confounders partially accounted for the peak events that occur in winter in Grenoble, and the 

results excluding participants with only one measurement week tended to lead to clearer results. This 

measurement error related to temporal coverage of personal monitors has therefore probably diluted the 

associations observed, rather than inflated them. 

I.2.3. Outcomes’ assessment 

To assess the outcomes in this thesis work, novel non-invasive techniques were used for lung function 

measurements. Using O2 introduced a transient decrease of tidal volumes during N2MBW assessment, 

and although FRC and LCI measurement were corrected for the degree of hypoventilation induced, there 

could be residual error. This demonstrates the compromise between the need to measure lung function 

at the earliest stage of infancy and the originality of the devices that have to be used, and how they 

should be adapted to comply with the French regulation regarding tracer gas.  

For urinary biological marker in Chapter IV, urine pools were used for the first time among the studies 

investigating air pollution effects on oxidative stress biomarkers. However, the drawback from this 
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originality is that there is a lack of literature regarding the relevance of correcting biomarkers for specific 

gravity in urine pools, as the mean of concentrations corrected for specific gravity will differ from the 

concentration in the pool corrected specific gravity measured in the pooled sample (O’Brien et al., 2017). 

Indeed, mathematically, the sum of ratios generally differs from the ratio of sums. Results relying on 

raw biomarkers concentrations were also shown and were similar, suggesting that even if SG-correction 

in pooled urine samples turns out to be irrelevant, conclusions would remain unchanged. Regardless of 

the urine dilution, using a pooled urine sample has the advantage to reduce intra-day variability of 

biomarkers, which reduces measurement error. 

Cytokine quantification in plasma in Chapter IV led to very few cytokine concentrations above the 

detection limit at baseline, and more sensitive techniques would be required to quantify very low 

cytokines concentration. However, a novel approach was used to activate innate blood immune cells, 

and a large number of cytokines secreted by monocytes, dendritic cells, granulocytes and T cells were 

analyzed. 

I.2.4. Confounding factors 

Efforts were made to collect a lot of potential confounding factors to reduce further biases. For all 

analyses, potential confounders were selected a priori and their effects were investigated to choose 

whether to retain them or exclude them from final models. Confounders with strong a priori knowledge 

such as environmental tobacco smoke or education level, were kept systematically, even when the 

SEPAGES data did not evidence strong effects on the associations studied. However, there could be 

residual confounding, as already mentioned in the corresponding chapters, and particularly chapter IV 

with endogenous ROS production and antioxidant supplementation that could influence the relationship 

between air pollution and oxidative stress levels (He et al., 2020b; Moller and Loft, 2006). The accuracy 

of the confounders could also introduce residual confounding. In fact, assessing socioeconomic status 

by using the highest level of education may not fully capture the complexity of this dimension, but this 

is partly compensated by the homogeneity of the cohort regarding educational level. 

Overall, chapters III-VI highlighted associations between OP of PM exposure and several biological and 

health endpoints, with OP being more specific than PM2.5. With the improvement of analysis techniques 

and the reduction of analysis costs, the amount of information per participant has largely increased in 
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epidemiological studies, which leads to multiple testing issues. Since results presented in this thesis 

work were not formally corrected for multiple testing, part of the associations observed may result from 

chance findings and thus should be interpreted cautiously. However, although they present some 

limitations, these findings add to the growing body of evidence showing that OP might be a more health-

relevant metric than PM mass concentration. 

 

 Perspectives 
 

The strengths and limitations of this study provide the basis for a number of recommendations and 

perspectives related to future research work within the SEPAGES cohort and beyond. 

II.1. Further research in SEPAGES 

Several aspects were investigated in this thesis work, particularly using data from the SEPAGES cohort. 

However, certain aspects could not be addressed or were intentionally set aside, and they will be the 

focus of future studies within the IAB and IGE research teams.  

II.1.1. Etiological research 

The follow-up of the children in the cohort is still ongoing, allowing for the replication of certain 

parameter measurements. Indeed, during the ongoing 8-year-old child visit, the AOS will be measured 

again, and the first spirometry measurements will be performed. In the study on children’s lung function 

from Chapter III, a longitudinal analysis between 6 weeks and 3 years of age was not possible due to 

the use of different measurements. The measurements of AOS at 3 years and 8 years of age will enable 

to investigate associations between prenatal exposure to air pollutants during pregnancy and trajectories 

of lung function in the child. 

Furthermore, personal of PM2.5 exposure was also assessed during the week preceding the clinical visit 

at 3 years. These data will be validated, and the analysis of OP will be conducted on the filters, allowing 

for the consideration of short-term exposure in the relationship between prenatal exposure and 

mechanical properties of the lung in the child at 3 years. Accounting for short-term exposure in this 

relationship is important as it effectively distinguishes the effects of prenatal exposure from the effects 
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of short-term exposure. These efforts will be incorporated into a multidisciplinary thesis, once again co-

supervised by IGE and IAB, that will begin in the autumn of 2023. 

II.1.2. Methodological research 

In this work, we aimed at getting a better overview of the suitability of the OP of PM, by evaluating its 

potential to predict health or biological effects compared to mass concentration, and by investigating its 

main tracers in the indoor and outdoor environment to propose ways to reduce exposure inside homes. 

However, to get a better understanding of exposure to PM and OP, a larger study focused on the 

assessment methods of PM available in the Grenoble basin could be performed. Currently, a one-year 

study relying on 3 sites with different typologies in Grenoble already investigated the sources of PM 

and OP, but a study comparing the results of different exposure assessments available for the SEPAGES 

cohort, namely personal samplers, fine-scale modelling at home address, ambient station (weighted by 

the distance to home) could help evaluating the suitability of using 2 weeks of personal samplers 

compared to other methods. 

II.2. Research perspectives 

In addition to the research questions that could be addressed by utilizing the research framework offered 

by the SEPAGES cohort, the findings of this work also raise several research perspectives.  

II.2.1. Epidemiology 

The results presented in this work demonstrate that the oxidative capacity of particles is a relevant 

indicator for considering some of the health effects of PM exposure. It would be relevant for its 

measurement to be more widely integrated into future epidemiological studies. Firstly, in relatively 

small-scale studies, including personal measurements of PM OP would be insightful in evaluating the 

impact of this exposure on various biological and health parameters. This would not only facilitate study 

comparisons but will also enhance understanding of target organs or tissues during OP of PM exposure, 

alongside assessing which OP tests relates best to which health or biological outcomes. This thesis 

employed AA and DTT assays for OP assessment, representing the main lung anti-oxidant categories, 

but other assays exist, some of which, might predict some specific health outcomes more effectively. 

Indeed, each assay’s specificity toward different chemical species could also be associated with distinct 
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underlying biological mechanisms. A toxicological study indeed identified that PM2.5 with the highest 

OPm
DTT, related to high metal levels, had a strong adverse effect on cell metabolic activity, but only a 

moderate effect on pro-inflammatory response while a more moderate OPm
DTT, mostly caused by PAH 

content, caused higher secretion TNF-α and IL-6, two pro-inflammatory markers (Steenhof et al., 2011). 

More recently, anthropogenic PM2.5 with an important mass fraction of transition metals were found 

responsible for high OP levels and increased IL-6 release in cells (Daellenbach et al., 2020; Leni et al., 

2020). 

Since personal measurements are feasible only in relatively small cohorts, the development of ambient 

OP measurements through both routine analysis at air quality monitoring stations, and modelling would 

be necessary. European regulations are moving in this direction, as OP has been proposed as a new 

parameter to be measured across European super-sites (one site per 10 000 000 inhabitant) that conduct 

extensive air pollution characterization. Simultaneously, an ongoing European project, RI-Urbans, aims 

to assess the relevance of new air pollution indicators, including OP, by creating a network that will 

investigate the sources of these parameters and their effects on mortality. This will be evaluated through 

time series analyses based on long-term ambient OP measurements and mortality data. Given the large 

scale of this project (across 5 European cities), more generalizable conclusions will be made on the 

impacts of PM OP on mortality, with regards to other air pollutants measured simultaneously. 

II.2.2. Mechanistical and methodological considerations 

II.2.2.1. Mechanistic research 

An interesting approach to gain a better understanding of the findings of this thesis would be to study 

the associations between exposure to PM constituents and biomarkers of oxidative stress. OP integrates 

PM constituents, by accounting for their ROS-generation capacities and synergetic and antagonistic 

effects. However, it is necessary to disentangle which of the constituents affecting OP are affecting 

oxidative stress levels, while taking into account the effects of PM mass concentration. Liu et al. (2018) 

investigated the role of both OPm and metal constituents in PM in relation with urinary MDA and 8-

OHdG in a controlled exposure study. They reported increased urinary levels of 8-OHdG post-exposure 

to copper and increased urinary levels of both MDA and 8-OHdG post-exposure to OPm (AA- and 



204 

glutathione-related). However, the role of metals in the OP-OSB relationship was not further 

investigated, and since they assessed exposure to concentrated ambient particles, PM mass 

concentrations were high compared to the average levels in cities (238.4 ± 62.0 µg/m3). The higher 

mass-normalized OP for below median levels of PM2.5 mass concentrations denotes a higher PM 

reactivity at these levels, which was also found in other studies in ambient air (Campbell et al., 2021), 

but the underlying atmospheric mechanisms remain insufficiently understood. Considering that stronger 

OPm effects were observed on oxidative DNA damage at lower PM2.5 concentrations, important 

questions are raised, related to the physicochemical properties of PM constituents at these low 

concentrations. This is of particular interest, since the low PM concentrations were also found to be 

critical in terms of effects on mortality and asthma incidence (S. Liu et al., 2021; Stafoggia et al., 2022).  

To address these research gaps, a multidisciplinary approach combining atmospheric sciences and 

toxicological studies could be implemented. In toxicology, cells are usually exposed to concentrations 

higher than the average levels to which the population is exposed. However, conducting analyses 

stratified by concentrations of PM, on which an extensive chemical and OP characterization would be 

performed, could provide insights into the cellular processes at play. In atmospheric sciences, low PM 

concentrations could be investigated by utilizing measurement sites where long-term chemical 

characterization of PM and OP were already performed. This would be achieved by focusing on days 

with low PM concentrations, and determining whether OP was significantly higher than on other days. 

Common sources contributing to this high OP could potentially be identified. 

Once fully characterized, these high OP – low PM events could be simulated using atmospheric 

simulation platforms, such as the Pollu-Risk research platform (LISA - UMR CNRS 7583, IMRB - 

INSERM 955), which enables the simulation of realistic atmospheres under controlled conditions for 

exposing various types of cells and mice. Characterizing the physical properties of particles could also 

shed light on the increased reactivity of these particles at low concentrations, as well as their health 

effects. Parameters like particle morphology and size play crucial roles in understanding these 

mechanisms. These various experiments could confirm or refute the hypothesis made in Chapter IV, 

suggesting that certain PM constituents might have a physical effect on epithelial cells, exacerbating 

oxidative damage to DNA. 



205 

II.2.2.2. OP measurement methods 

Some of the inconsistencies observed in the results between OP exposure and health outcomes could be 

attributed to the lack of standardization in measuring this parameter, which makes studies hard to 

compare. Indeed, protocols for OP analysis are not yet standardized, and for each OP assay, analysis 

protocol can vary between laboratory. Some of these differences lie in the methods for PM extraction 

(aqueous, organic, or in a simulated lung fluid), the concentrations of reactants and the devices used to 

perform the measurement (kinetic or endpoint). As part of the aforementioned RI-Urbans project, a 

comprehensive intercomparison of OPDTT measurement protocols has been undertaken. The results of 

this intercomparison will help identify critical technical variables contributing to differences in OP 

measurements and assess variations across different protocols employed by collaborating laboratories, 

as compared to a reference protocol. This intercomparison pertains to OPDTT, the most widely used test, 

that was suggested as one of the most relevant for health effects, because of its consistent associations 

with cardiorespiratory outcomes. Nevertheless, extending the intercomparison to other existing tests 

and, ultimately, developing standardized protocols could facilitate the use of a comparable exposure 

metric across various studies. 

Although acellular tests on filters are robust and allow for the analysis of oxidative potential (OP) using 

multiple assays, across numerous filters simultaneously, and at a relatively low cost, there can be a rather 

long time between sample collection and analysis, that could potentially lead to an underestimation of 

OP levels. Reactive oxygen species (ROS) are highly reactive, and oxidation processes persist after PM 

is collected on filters, thereby decreasing their concentration (Fuller et al., 2014; Y. Wang et al., 2011). 

Several prototypes have been developed or are currently under development to enable continuous online 

measurement of OP, particularly with DCFH (King and Weber, 2013), AA (Campbell et al., 2019; Uzu, 

n.d.), and DTT tests (Puthussery et al., 2018; Uzu, n.d.). Presently, the use of these prototypes is limited 

due to challenges in employing them in moderately or low-polluted environments. However, in the long 

run, equipping air quality monitoring stations with automated systems could enable the assessment of 

short-term OP effects on a larger scale. 
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II.2.3. Perspectives for public health 

Some tools related to OP assessment could be developed to facilitate future epidemiological studies, 

assist decision-making, and refine specific recommendations related to air pollution. In particular, the 

development of Land Use Regression (LUR) models and Chemical Transport Models (CTM) could 

greatly beneficiate to the epidemiology community, because such models would enable large-scale 

studies on OP without implementing heavy measurement campaigns, thereby increasing the weight of 

evidence for OP relevance and wider use. Models would also provide tools for future assessment and 

management of the health risks associated with exposure to the oxidative potential of PM. Currently, a 

jointly supervised thesis between LISA (University Paris Cité) and IGE (University Grenoble Alpes) 

aims to model the oxidative potential of PM using the CHIMERE model for France. LUR and CTM 

would be complementary since LUR models would present a fine spatial resolution that would take into 

account the complex topography of Grenoble and enable the mapping of vulnerable areas to inform the 

population and guide urban planning decisions. Scenarios related to urban planning policies (low-

emission zones, creation of wooded areas) could also be evaluated. CTM would allow to study the 

impacts of different sources, on which reduction actions can be implemented, as well as to model 

scenarios for policies related to these emissions.  

Another action that could be considered in regards of the findings of this thesis, along with previous 

findings, is to conduct awareness campaigns regarding exposure to air pollutants. These campaigns 

should emphasize on the gestational period’s crucial window for both mother’s and child's health and 

simple recommendations for reducing exposure in households should be provided. A challenge in 

implementing these awareness campaigns is related to the acceptability of new recommendations, since 

the pregnancy period is already characterized by many changes and recommendations. This could create 

a sense of guilt among pregnant women and the couples more generally. Interventional studies and 

citizen science could help evaluate the acceptability and effectiveness of the recommendations. 

Additionally, it would be beneficial for these best practices to become part of daily life, as this would 

also promote the health of occupants in their homes.  



 

207 

References 
 

Abbaszadeh, S., Tabary, M., Aryannejad, A., Abolhasani, R., Araghi, F., Khaheshi, I., Azimi, A., 2021. 

Air pollution and multiple sclerosis: a comprehensive review. Neurol. Sci. 42, 4063–4072. 

https://doi.org/10.1007/s10072-021-05508-4 

Abbatt, J.P.D., Wang, C., 2020. The atmospheric chemistry of indoor environments. Environ. Sci. 

Process. Impacts 22, 25–48. https://doi.org/10.1039/C9EM00386J 

Abdullahi, K.L., Delgado-Saborit, J.M., Harrison, R.M., 2013. Emissions and indoor concentrations of 

particulate matter and its specific chemical components from cooking: A review. Atmos. 

Environ. 71, 260–294. https://doi.org/10.1016/j.atmosenv.2013.01.061 

Abelsohn, A., Stieb, D.M., 2011. Effets de la pollution de l’air sur la santé. Can. Fam. Physician 57, 

e280–e287. 

Abrams, J.Y., Weber, R.J., Klein, M., Samat, S.E., Chang, H.H., Strickland, M.J., Verma, V., Fang, T., 

Bates, J.T., Mulholland, J.A., Russell, A.G., Tolbert, P.E., 2017. Associations between Ambient 

Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. 

Environ. Health Perspect. 125, 107008. https://doi.org/10.1289/EHP1545 

Achilleos, S., Kioumourtzoglou, M.-A., Wu, C.-D., Schwartz, J.D., Koutrakis, P., Papatheodorou, S.I., 

2017. Acute effects of fine particulate matter constituents on mortality: A systematic review and 

meta-regression analysis. Environ. Int. 109, 89–100. 

https://doi.org/10.1016/j.envint.2017.09.010 

Aithal, S.S., Sachdeva, I., Kurmi, O.P., 2023. Air quality and respiratory health in children. Breathe 19, 

230040. https://doi.org/10.1183/20734735.0040-2023 

Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., Galloo, J.-C., 2010a. PM10 metal concentrations 

and source identification using positive matrix factorization and wind sectoring in a French 

industrial zone. Atmospheric Res. 96, 612–625. https://doi.org/10.1016/j.atmosres.2010.02.008 

Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., Galloo, J.-C., 2010b. PM10 metal concentrations 

and source identification using positive matrix factorization and wind sectoring in a French 

industrial zone. Atmospheric Res. 96, 612–625. https://doi.org/10.1016/j.atmosres.2010.02.008 

Ambroz, A., Vlkova, V., Rossner, P., Rossnerova, A., Svecova, V., Milcova, A., Pulkrabova, J., 

Hajslova, J., Veleminsky, M., Solansky, I., Sram, R.J., 2016. Impact of air pollution on oxidative 

DNA damage and lipid peroxidation in mothers and their newborns. Int. J. Hyg. Environ. Health 

219, 545–556. https://doi.org/10.1016/j.ijheh.2016.05.010 

Anand, A., Yadav, S., Phuleria, H.C., 2022. Chemical characteristics and oxidative potential of indoor 

and outdoor PM2.5 in densely populated urban slums. Environ. Res. 212, 113562. 

https://doi.org/10.1016/j.envres.2022.113562 

Andrianjafimasy, M., Zerimech, F., Akiki, Z., Huyvaert, H., Le Moual, N., Siroux, V., Matran, R., 

Dumas, O., Nadif, R., 2017. Oxidative stress biomarkers and asthma characteristics in adults of 

the EGEA study. Eur. Respir. J. 50. https://doi.org/10.1183/13993003.01193-2017 

Arı, A., 2020. A comprehensive study on gas and particle emissions from laser printers: Chemical 

composition and health risk assessment. Atmospheric Pollut. Res. 11, 269–282. 

https://doi.org/10.1016/j.apr.2019.10.013 



 

208 

Armstrong, B.G., 1998. Effect of measurement error on epidemiological studies of environmental and 

occupational exposures. Occup. Environ. Med. 55, 651–656. 

Audi, C., Baïz, N., Maesano, C., Ramousse, O., Reboulleau, D., Magnan, A., Caillaud, D., Annesi-

Maesano, I., 2017. Serum cytokine levels related to exposure to volatile organic compounds and 

PM2.5 in dwellings and workplaces in French farmers &ndash;&nbsp;a mechanism to explain 

nonsmoking COPD. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 12, 1363–1374. 

https://doi.org/10.2147/COPD.S117866 

Avery, C.L., Mills, K.T., Williams, R., McGraw, K.A., Poole, C., Smith, R.L., Whitsel, E.A., 2010. 

Estimating Error in Using Residential Outdoor PM2.5 Concentrations as Proxies for Personal 

Exposures: A Meta-analysis. Environ. Health Perspect. 118, 673–678. 

https://doi.org/10.1289/ehp.0901158 

Ayres, J.G., Borm, P., Cassee, F.R., Castranova, V., Donaldson, K., Ghio, A., Harrison, R.M., Hider, 

R., Kelly, F., Kooter, I.M., Marano, F., Maynard, R.L., Mudway, I., Nel, A., Sioutas, C., Smith, 

S., Baeza-Squiban, A., Cho, A., Duggan, S., Froines, J., 2008. Evaluating the Toxicity of 

Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A 

Workshop Report and Consensus Statement. Inhal. Toxicol. 20, 75–99. 

https://doi.org/10.1080/08958370701665517 

Baeza, A., Marano, F., 2007. Pollution atmosphérique et maladies respiratoires - Un rôle central pour le 

stress oxidant. médecine/sciences 23, 497–501. https://doi.org/10.1051/medsci/2007235497 

Baïz, N., Slama, R., Béné, M.-C., Charles, M.-A., Kolopp-Sarda, M.-N., Magnan, A., Thiebaugeorges, 

O., Faure, G., Annesi-Maesano, I., 2011. Maternal exposure to air pollution before and during 

pregnancy related to changes in newborn’s cord blood lymphocyte subpopulations. The EDEN 

study cohort. BMC Pregnancy Childbirth 11, 87. https://doi.org/10.1186/1471-2393-11-87 

Barregard, L., Møller, P., Henriksen, T., Mistry, V., Koppen, G., RossnerJr, P., Sram, R.J., Weimann, 

A., Poulsen, H.E., Nataf, R., Andreoli, R., Manini, P., Marczylo, T., Lam, P., Evans, M.D., 

Kasai, H., Kawai, K., Li, Y.-S., Sakai, K., … Cooke, M.S., 2013. Human and Methodological 

Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2′-deoxyguanosine 

15. 

Basagaña, X., Aguilera, I., Rivera, M., Agis, D., Foraster, M., Marrugat, J., Elosua, R., Künzli, N., 2013. 

Measurement Error in Epidemiologic Studies of Air Pollution Based on Land-Use Regression 

Models. Am. J. Epidemiol. 178, 1342–1346. https://doi.org/10.1093/aje/kwt127 

Bates, J.H., Schmalisch, G., Filbrun, D., Stocks, J., 2000. Tidal breath analysis for infant pulmonary 

function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. 

European Respiratory Society/American Thoracic Society. Eur. Respir. J. 16, 1180–1192. 

https://doi.org/10.1034/j.1399-3003.2000.16f26.x 

Bates, J.T., Fang, T., Verma, V., Zeng, L., Weber, R.J., Tolbert, P.E., Abrams, J.Y., Sarnat, S.E., Klein, 

M., Mulholland, J.A., Russell, A.G., 2019. Review of Acellular Assays of Ambient Particulate 

Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health 

Effects. Environ. Sci. Technol. 53, 4003–4019. https://doi.org/10.1021/acs.est.8b03430 

Bates, J.T., Weber, R.J., Abrams, J., Verma, V., Fang, T., Klein, M., Strickland, M.J., Sarnat, S.E., 

Chang, H.H., Mulholland, J.A., Tolbert, P.E., Russell, A.G., 2015. Reactive Oxygen Species 

Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. 

Environ. Sci. Technol. 49, 13605–13612. https://doi.org/10.1021/acs.est.5b02967 



 

209 

Bateson, T.F., Schwartz, J., 2007. Children’s response to air pollutants. J. Toxicol. Environ. Health A 

71, 238–243. 

Baulig, A., Garlatti, M., Bonvallot, V., Marchand, A., Barouki, R., Marano, F., Baeza-Squiban, A., 2003. 

Involvement of reactive oxygen species in the metabolic pathways  triggered by diesel exhaust 

particles in human airway epithelial cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 285, L671–

L679. https://doi.org/10.1152/ajplung.00419.2002 

Bell, M.L., Davis, D.L., 2001. Reassessment of the lethal London fog of 1952: novel indicators of acute 

and chronic consequences of acute exposure to air pollution. Environ. Health Perspect. 109, 

389–394. 

Bell, M.L., Zanobetti, A., Dominici, F., 2013. Evidence on Vulnerability and Susceptibility to Health 

Risks Associated With Short-Term Exposure to Particulate Matter: A Systematic Review and 

Meta-Analysis. Am. J. Epidemiol. 178, 865–876. https://doi.org/10.1093/aje/kwt090 

Bergstra, A.D., Brunekreef, B., Burdorf, A., 2018. The effect of industry-related air pollution on lung 

function and respiratory symptoms in school children. Environ. Health 17, 30. 

https://doi.org/10.1186/s12940-018-0373-2 

Bernstein, J.A., Alexis, N., Barnes, C., Bernstein, I.L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, 

S.M., Williams, P.B., Bernstein, J.A., 2004. Health effects of air pollution. J. Allergy Clin. 

Immunol. 114, 1116–1123. https://doi.org/10.1016/j.jaci.2004.08.030 

Bessagnet, B., Menut, L., Lapere, R., Couvidat, F., Jaffrezo, J.-L., Mailler, S., Favez, O., Pennel, R., 

Siour, G., 2020. High Resolution Chemistry Transport Modeling with the On-Line CHIMERE-

WRF Model over the French Alps—Analysis of a Feedback of Surface Particulate Matter 

Concentrations on Mountain Meteorology. Atmosphere 11, 565. 

https://doi.org/10.3390/atmos11060565 

Beydon, N., Davis, S.D., Lombardi, E., Allen, J.L., Arets, H.G.M., Aurora, P., Bisgaard, H., Davis, 

G.M., Ducharme, F.M., Eigen, H., Gappa, M., Gaultier, C., Gustafsson, P.M., Hall, G.L., 

Hantos, Z., Healy, M.J.R., Jones, M.H., Klug, B., Lødrup Carlsen, K.C., … Wilson, N.M., 2007. 

An Official American Thoracic Society/European Respiratory Society Statement: Pulmonary 

Function Testing in Preschool Children. Am. J. Respir. Crit. Care Med. 175, 1304–1345. 

https://doi.org/10.1164/rccm.200605-642ST 

Bianco-Miotto, T., Craig, J.M., Gasser, Y.P., Dijk, S.J. van, Ozanne, S.E., 2017. Epigenetics and 

DOHaD: from basics to birth and beyond. J. Dev. Orig. Health Dis. 8, 513–519. 

https://doi.org/10.1017/S2040174417000733 

Bin, P., Shen, M., Li, H., Sun, X., Niu, Y., Meng, T., Yu, T., Zhang, X., Dai, Y., Gao, W., Gu, G., Yu, 

S., Zheng, Y., 2016. Increased levels of urinary biomarkers of lipid peroxidation products 

among workers occupationally exposed to diesel engine exhaust. Free Radic. Res. 50, 820–830. 

https://doi.org/10.1080/10715762.2016.1178738 

Binder, C.J., Papac-Milicevic, N., Witztum, J.L., 2016. Innate sensing of oxidation-specific epitopes in 

health and disease. Nat. Rev. Immunol. 16, 485–497. https://doi.org/10.1038/nri.2016.63 

Binks, A., 2022. Pulmonary Physiology for Pre-Clinical Students. Virginia Tech Publishing. 

https://doi.org/10.21061/pulmonaryphysiology 

Birch, M.E., Cary, R.A., 1996. Elemental Carbon-Based Method for Monitoring Occupational 

Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 25, 221–241. 

https://doi.org/10.1080/02786829608965393 



 

210 

Bo, M., Salizzoni, P., Clerico, M., Buccolieri, R., 2017. Assessment of Indoor-Outdoor Particulate 

Matter Air Pollution: A Review. Atmosphere 8, 136. https://doi.org/10.3390/atmos8080136 

Borlaza, L.J.S., Cosep, E.M.R., Lee, K., Joo, H., Park, M., Bate, D., Cayetano, M.G., Park, K., 2018. 

Oxidative potential of fine ambient particles in various environments. Environ. Pollut. 243, 

1679–1688. https://doi.org/10.1016/j.envpol.2018.09.074 

Borlaza, L.J.S., Uzu, G., Ouidir, M., Lyon-Caen, S., Marsal, A., Weber, S., Siroux, V., Lepeule, J., 

Boudier, A., Jaffrezo, J.-L., Slama, R., 2022a. Personal exposure to PM2.5 oxidative potential 

and its association to birth outcomes. J. Expo. Sci. Environ. Epidemiol. 

https://doi.org/10.1038/s41370-022-00487-w 

Borlaza, L.J.S., Weber, S., Jaffrezo, J.-L., Houdier, S., Slama, R., Rieux, C., Albinet, A., Micallef, S., 

Trébluchon, C., Uzu, G., 2021a. Disparities in particulate matter (PM10) origins and oxidative 

potential at a city-scale (Grenoble, France) – Part II: Sources of PM10 oxidative potential using 

multiple linear regression analysis and the predictive applicability of multilayer perceptron 

neural network analysis. Atmospheric Chem. Phys. https://doi.org/10.5194/acp-2021-57 

Borlaza, L.J.S., Weber, S., Marsal, A., Uzu, G., Jacob, V., Besombes, J.-L., Chatain, M., Conil, S., 

Jaffrezo, J.-L., 2022b. Nine-year trends of PM10 sources and oxidative potential in a rural 

background site in France. Atmospheric Chem. Phys. 22, 8701–8723. 

https://doi.org/10.5194/acp-22-8701-2022 

Borlaza, L.J.S., Weber, S., Uzu, G., Jacob, V., Cañete, T., Micallef, S., Trébuchon, C., Slama, R., Favez, 

O., Jaffrezo, J.-L., 2021b. Disparities in particulate matter (PM10) origins and oxidative 

potential at a city scale (Grenoble, France) – Part I: Source apportionment at three neighbouring 

sites. Atmospheric Chem. Phys. 21, 5415–5437. https://doi.org/10.5194/acp-21-5415-2021 

Brandt, E.B., Kovacic, M.B., Lee, G.B., Gibson, A.M., Acciani, T.H., Le Cras, T.D., Ryan, P.H., 

Budelsky, A.L., Khurana Hershey, G.K., 2013. Diesel exhaust particle induction of IL-17A 

contributes to severe asthma. J. Allergy Clin. Immunol. 132, 1194-1204.e2. 

https://doi.org/10.1016/j.jaci.2013.06.048 

Brehmer, C., Norris, C., Barkjohn, K.K., Bergin, M.H., Zhang, J., Cui, X., Teng, Y., Zhang, Y., Black, 

M., Li, Z., Shafer, M.M., Schauer, J.J., 2020. The impact of household air cleaners on the 

oxidative potential of PM2.5 and the role of metals and sources associated with indoor and 

outdoor exposure. Environ. Res. 181, 108919. https://doi.org/10.1016/j.envres.2019.108919 

Brumberg, H.L., Karr, C.J., Bole, A., Ahdoot, S., Balk, S.J., Bernstein, A.S., Byron, L.G., Landrigan, 

P.J., Marcus, S.M., Nerlinger, A.L., Pacheco, S.E., Woolf, A.D., Zajac, L., Baum, C.R., 

Campbell, C.C., Sample, J.A., Spanier, A.J., Trasande, L., COUNCIL ON ENVIRONMENTAL 

HEALTH, 2021. Ambient Air Pollution: Health Hazards to Children. Pediatrics 147, 

e2021051484. https://doi.org/10.1542/peds.2021-051484 

Bush, A., 2021. Impact of early life exposures on respiratory disease. Paediatr. Respir. Rev. 40, 24–32. 

https://doi.org/10.1016/j.prrv.2021.05.006 

Cachon, B.F., Firmin, S., Verdin, A., Ayi-Fanou, L., Billet, S., Cazier, F., Martin, P.J., Aissi, F., Courcot, 

D., Sanni, A., Shirali, P., 2014. Proinflammatory effects and oxidative stress within human 

bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) 

collected from Cotonou, Benin. Environ. Pollut. 185, 340–351. 

https://doi.org/10.1016/j.envpol.2013.10.026 

Cai, Y., Hansell, A.L., Granell, R., Blangiardo, M., Zottoli, M., Fecht, D., Gulliver, J., Henderson, A.J., 

Elliott, P., 2020. Prenatal, Early-Life, and Childhood Exposure to Air Pollution and Lung 



 

211 

Function: The ALSPAC Cohort. Am. J. Respir. Crit. Care Med. 

https://doi.org/10.1164/rccm.201902-0286OC 

Calas, A., Uzu, G., Kelly, F.J., Houdier, S., Martins, J.M.F., Thomas, F., Molton, F., Charron, A., 

Dunster, C., Oliete, A., Jacob, V., Besombes, J.-L., Chevrier, F., Jaffrezo, J.-L., 2018. 

Comparison between five acellular oxidative potential measurement assays performed with 

detailed chemistry on PM10 samples from the city of Chamonix (France). Atmospheric Chem. 

Phys. 18, 7863–7875. https://doi.org/10.5194/acp-18-7863-2018 

Calas, A., Uzu, G., Martins, J.M.F., Voisin, D., Spadini, L., Lacroix, T., Jaffrezo, J.-L., 2017. The 

importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the 

oxidative potential of particulate matter. Sci. Rep. 7, 11617. https://doi.org/10.1038/s41598-

017-11979-3 

Calzolai, G., Nava, S., Lucarelli, F., Chiari, M., Giannoni, M., Becagli, S., Traversi, R., Marconi, M., 

Frosini, D., Severi, M., Udisti, R., di Sarra, A., Pace, G., Meloni, D., Bommarito, C., 

Monteleone, F., Anello, F., Sferlazzo, D.M., 2015. Characterization of PM10 sources in the 

central Mediterranean. Atmos Chem Phys 17. 

Campbell, S.J., Utinger, B., Lienhard, D.M., Paulson, S.E., Shen, J., Griffiths, P.T., Stell, A.C., Kalberer, 

M., 2019. Development of a Physiologically Relevant Online Chemical Assay To Quantify 

Aerosol Oxidative Potential. Anal. Chem. 91, 13088–13095. 

https://doi.org/10.1021/acs.analchem.9b03282 

Campbell, S.J., Wolfer, K., Utinger, B., Westwood, J., Zhang, Z.-H., Bukowiecki, N., Steimer, S.S., Vu, 

T.V., Xu, J., Straw, N., Thomson, S., Elzein, A., Sun, Y., Liu, D., Li, L., Fu, P., Lewis, A.C., 

Harrison, R.M., Bloss, W.J., Loh, M., Miller, M.R., Shi, Z., Kalberer, M., 2021. Atmospheric 

conditions and composition that influence PM2.5 oxidative potential in Beijing, China. 

Atmospheric Chem. Phys. 21, 5549–5573. https://doi.org/10.5194/acp-21-5549-2021 

Capello, F., Pili, G., 2018. Air Pollution in Infancy, Childhood and Young Adults, in: Capello, F., Gaddi, 

A.V. (Eds.), Clinical Handbook of Air Pollution-Related Diseases. Springer International 

Publishing, Cham, pp. 141–186. https://doi.org/10.1007/978-3-319-62731-1_10 

Carraro, S., Scheltema, N., Bont, L., Baraldi, E., 2014. Early-life origins of chronic respiratory diseases: 

understanding and promoting healthy ageing. Eur. Respir. J. 44, 1682–1696. 

https://doi.org/10.1183/09031936.00084114 

Castro, L., Freeman, B.A., 2001. Reactive oxygen species in human health and disease. Nutrition 17, 

161–165. https://doi.org/10.1016/S0899-9007(00)00570-0 

Cavalli, F., Viana, M., Yttri, K.E., Genberg, J., 2010. Toward a standardised thermal-optical protocol 

for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos Meas 

Tech 11. 

CEN, 2017. Ambient air - Standard method for measurement of NO3
-, SO4

2-, Cl-, NH4
+, Na+, K+, Mg2+, 

Ca2+ in PM2.5 as deposited on filters (Technical report No. EN 16913:2017). CEN, Brussels, 

Belgium. 

CEN, 2005. Ambient air quality - Standard method for the measurement of Pb, Cd, As and Ni in the 

PM10 fraction of suspended particulate matter (Technical report No. EN 14902:2005). CEN, 

Brussels, Belgium. 



 

212 

Charrier, J.G., Anastasio, C., 2012. On dithiothreitol (DTT) as a measure of oxidative potential for 

ambient particles: evidence for the importance of soluble transition metals. Atmospheric Chem. 

Phys. 12, 9321–9333. https://doi.org/10.5194/acp-12-9321-2012 

Chen, C., Liu, X., Wang, X., Qu, W., Li, W., Dong, L., 2020. Effect of air pollution on hospitalization 

for acute exacerbation of chronic obstructive pulmonary disease, stroke, and myocardial 

infarction. Environ. Sci. Pollut. Res. 27, 3384–3400. https://doi.org/10.1007/s11356-019-

07236-x 

Chen, R., Li, H., Cai, J., Wang, C., Lin, Z., Liu, C., Niu, Y., Zhao, Z., Li, W., Kan, H., 2018. Fine 

Particulate Air Pollution and the Expression of microRNAs and Circulating Cytokines Relevant 

to Inflammation, Coagulation, and Vasoconstriction. Environ. Health Perspect. 126, 017007. 

https://doi.org/10.1289/EHP1447 

Chen, X.-C., Chuang, H.-C., Ward, T.J., Tian, L., Cao, J.-J., Ho, S.S.-H., Lau, N.-C., Hsiao, T.-C., Yim, 

S.HL., Ho, K.-F., 2020. Indoor, outdoor, and personal exposure to PM2.5 and their bioreactivity 

among healthy residents of Hong Kong. Environ. Res. 188, 109780. 

https://doi.org/10.1016/j.envres.2020.109780 

Cho, A.K., Sioutas, C., Miguel, A.H., Kumagai, Y., Schmitz, D.A., Singh, M., Eiguren-Fernandez, A., 

Froines, J.R., 2005. Redox activity of airborne particulate matter at different sites in the Los 

Angeles Basin. Environ. Res. 99, 40–47. https://doi.org/10.1016/j.envres.2005.01.003 

Clements, N., Eav, J., Xie, M., Hannigan, M.P., Miller, S.L., Navidi, W., Peel, J.L., Schauer, J.J., Shafer, 

M.M., Milford, J.B., 2014. Concentrations and source insights for trace elements in fine and 

coarse particulate matter. Atmos. Environ. 89, 373–381. 

https://doi.org/10.1016/j.atmosenv.2014.01.011 

Cook, R.D., 1977. Detection of Influential Observation in Linear Regression. Technometrics 19, 15. 

https://doi.org/10.2307/1268249 

Cracowski, J.-L., Durand, T., Bessard, G., 2002. Isoprostanes as a biomarker of lipid peroxidation in 

humans: physiology, pharmacology and clinical implications. Trends Pharmacol. Sci. 23, 360–

366. https://doi.org/10.1016/S0165-6147(02)02053-9 

Crobeddu, B., Aragao-Santiago, L., Bui, L.-C., Boland, S., Baeza Squiban, A., 2017. Oxidative potential 

of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 230, 125–133. 

https://doi.org/10.1016/j.envpol.2017.06.051 

Cui, X., Gong, J., Han, H., He, L., Teng, Y., Tetley, T., Sinharay, R., Chung, K.F., Islam, T., Gilliland, 

F., Grady, S., Garshick, E., Li, Z., Zhang, J. (Jim), 2018. Relationship between free and total 

malondialdehyde, a well-established marker of oxidative stress, in various types of human 

biospecimens. J. Thorac. Dis. 10, 3088–3097. https://doi.org/10.21037/jtd.2018.05.92 

Daellenbach, K.R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, 

F., Weber, S., Segers, A., Kuenen, J.J.P., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., 

Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.-L., Prévôt, A.S.H., 2020. 

Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 587, 

414–419. https://doi.org/10.1038/s41586-020-2902-8 

Dahl, J.H., van Breemen, R.B., 2010. Rapid quantitative analysis of 8-iso-prostaglandin-F2α using 

liquid chromatography–tandem mass spectrometry and comparison with an enzyme 

immunoassay method. Anal. Biochem. 404, 211–216. https://doi.org/10.1016/j.ab.2010.05.023 



 

213 

Delfino, R.J., Staimer, N., Tjoa, T., Arhami, M., Polidori, A., Gillen, D.L., George, S.C., Shafer, M.M., 

Schauer, J.J., Sioutas, C., 2010. Associations of Primary and Secondary Organic Aerosols With 

Airway and Systemic Inflammation in an Elderly Panel Cohort. Epidemiology 21, 892–902. 

https://doi.org/10.1097/EDE.0b013e3181f20e6c 

Delfino, R.J., Staimer, N., Tjoa, T., Gillen, D., Kleinman, M.T., Sioutas, C., Cooper, D., 2008. Personal 

and Ambient Air Pollution Exposures and Lung Function Decrements in Children with Asthma. 

Environ. Health Perspect. 116, 550–558. https://doi.org/10.1289/ehp.10911 

Delfino, R.J., Staimer, N., Tjoa, T., Gillen, D.L., Schauer, J.J., Shafer, M.M., 2013. Airway 

inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. J. 

Expo. Sci. Environ. Epidemiol. 23, 466–473. https://doi.org/10.1038/jes.2013.25 

Delfino, R.J., Staimer, N., Vaziri, N.D., 2011. Air pollution and circulating biomarkers of oxidative 

stress. Air Qual. Atmosphere Health 4, 37–52. https://doi.org/10.1007/s11869-010-0095-2 

Dhillion, P., Wallace, K., Herse, F., Scott, J., Wallukat, G., Heath, J., Mosely, J., Martin, J.N., Dechend, 

R., LaMarca, B., 2012. IL-17-mediated oxidative stress is an important stimulator of AT1-AA 

and hypertension during pregnancy. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 303, R353–

R358. https://doi.org/10.1152/ajpregu.00051.2012 

Diapouli, E., Chaloulakou, A., Koutrakis, P., 2013. Estimating the concentration of indoor particles of 

outdoor origin: A review. J. Air Waste Manag. Assoc. 63, 1113–1129. 

https://doi.org/10.1080/10962247.2013.791649 

Dutta, A., Alaka, M., Ibigbami, T., Adepoju, D., Adekunle, S., Olamijulo, J., Adedokun, B., Deji-

Abiodun, O., Chartier, R., Ojengbede, O., Olopade, C.O., 2021. Impact of prenatal and postnatal 

household air pollution exposure on lung function of 2-year old Nigerian children by 

oscillometry. Sci. Total Environ. 755, 143419. https://doi.org/10.1016/j.scitotenv.2020.143419 

Evangelopoulos, D., Katsouyanni, K., Keogh, R.H., Samoli, E., Schwartz, J., Barratt, B., Zhang, H., 

Walton, H., 2020. PM2.5 and NO2 exposure errors using proxy measures, including derived 

personal exposure from outdoor sources: A systematic review and meta-analysis. Environ. Int. 

137, 105500. https://doi.org/10.1016/j.envint.2020.105500 

Fang, T., Verma, V., Bates, J.T., Abrams, J., Klein, M., Strickland, M.J., Sarnat, S.E., Chang, H.H., 

Mulholland, J.A., Tolbert, P.E., Russell, A.G., Weber, R.J., 2016. Oxidative potential of 

ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health 

associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmospheric Chem. 

Phys. 16, 3865–3879. https://doi.org/10.5194/acp-16-3865-2016 

Fang, T., Zeng, L., Gao, D., Verma, V., Stefaniak, A.B., Weber, R.J., 2017. Ambient Size Distributions 

and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between 

Soluble and Insoluble Particles. Environ. Sci. Technol. 51, 6802–6811. 

https://doi.org/10.1021/acs.est.7b01536 

Favez, O., Haddad, I.E., Piot, C., Boréave, A., Abidi, E., Marchand, N., Jaffrezo, J.-L., Besombes, J.-

L., Personnaz, M.-B., Sciare, J., Wortham, H., George, C., D’Anna, B., 2010. Inter-comparison 

of source apportionment models for the estimation of wood burning aerosols during wintertime 

in an Alpine city (Grenoble, France). Atmospheric Chem. Phys. 10, 5295–5314. 

https://doi.org/10.5194/acp-10-5295-2010 

Favez, O., Weber, S., Petit, J.-E., Alleman, L.Y., Albinet, A., Riffault, V., Chazeau, B., Amodeo, T., 

Salameh, D., Zhang, Y., Srivastava, D., Samaké, A., Aujay, R., Papin, A., Bonnaire, N., 

Boullanger, C., Chatain, M., Chevrier, F., Detournay, A., … Leoz-Garziandia, E., 2020. 2 



 

214 

Overview of the French operational network for in situ 3 observation of PM chemical 

composition and sources 4 in urban environments (CARA program) 46. 

Favez, O., Weber, S., Petit, J.-E., Alleman, L.Y., Albinet, A., Riffault, V., Chazeau, B., Amodeo, T., 

Salameh, D., Zhang, Y., Srivastava, D., Samaké, A., Aujay-Plouzeau, R., Papin, A., Bonnaire, 

N., Boullanger, C., Chatain, M., Chevrier, F., Detournay, … Leoz-Garziandia, E., 2021. 

Overview of the French Operational Network for In Situ Observation of PM Chemical 

Composition and Sources in Urban Environments (CARA Program). Atmosphere 12, 207. 

https://doi.org/10.3390/atmos12020207 

Fiorito, G., Vlaanderen, J., Polidoro, S., Gulliver, J., Galassi, C., Ranzi, A., Krogh, V., Grioni, S., 

Agnoli, C., Sacerdote, C., Panico, S., Tsai, M.-Y., Probst-Hensch, N., Hoek, G., Herceg, Z., 

Vermeulen, R., Ghantous, A., Vineis, P., Naccarati, A., for the EXPOsOMICS consortium‡, 

2018. Oxidative stress and inflammation mediate the effect of air pollution on cardio- and 

cerebrovascular disease: A prospective study in nonsmokers: Effect of Air Pollution on Cardio- 

and Cerebrovascular Disease. Environ. Mol. Mutagen. 59, 234–246. 

https://doi.org/10.1002/em.22153 

Fleischer, N.L., Merialdi, M., van, D.A., Vadillo, -Ortega Felipe, Martin, R.V., Betran, A.P., Souza, 

J.P., 2014. Outdoor Air Pollution, Preterm Birth, and Low Birth Weight: Analysis of the World 

Health Organization Global Survey on Maternal and Perinatal Health. Environ. Health Perspect. 

122, 425–430. https://doi.org/10.1289/ehp.1306837 

Friedman, C., Dabelea, D., Thomas, D.S.K., Peel, J.L., Adgate, J.L., Magzamen, S., Martenies, S.E., 

Allshouse, W.B., Starling, A.P., 2021. Exposure to ambient air pollution during pregnancy and 

inflammatory biomarkers in maternal and umbilical cord blood: The Healthy Start study. 

Environ. Res. 197, 111165. https://doi.org/10.1016/j.envres.2021.111165 

Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O’Reilly, S., Brauer, M., Caravanos, J., 

Chiles, T., Cohen, A., Corra, L., Cropper, M., Ferraro, G., Hanna, J., Hanrahan, D., Hu, H., 

Hunter, D., Janata, G., Kupka, R., Lanphear, B., Lichtveld, M., Martin, K., Mustapha, A., 

Sanchez-Triana, E., Sandilya, K., Schaefli, L., Shaw, J., Seddon, J., Suk, W., Téllez-Rojo, 

M.M., Yan, C., 2022. Pollution and health: a progress update. Lancet Planet. Health 6, e535–

e547. https://doi.org/10.1016/S2542-5196(22)00090-0 

Fuller, S.J., Wragg, F.P.H., Nutter, J., Kalberer, M., 2014. Comparison of on-line and off-line methods 

to quantify reactive oxygen species (ROS) in atmospheric aerosols. Atmos. Environ. 92, 97–

103. https://doi.org/10.1016/j.atmosenv.2014.04.006 

Gabet, S., Jaffrezo, J.-L., Mathy, S., Prados, E., Rieux, C., Uzu, G., Slama, R., 2018. QAMECS : Qualité 

de l’Air dans la Métropole grenobloise – Evaluation de l’Environnement, de la Santé et des 

coûts associés – Rapport scientifique intermédiaire. 

Gangwar, R.S., Bevan, G.H., Palanivel, R., Das, L., Rajagopalan, S., 2020. Oxidative stress pathways 

of air pollution mediated toxicity: Recent insights. Redox Biol. 34, 101545. 

https://doi.org/10.1016/j.redox.2020.101545 

Gao, D., Godri Pollitt, K.J., Mulholland, J.A., Russell, A.G., Weber, R.J., 2020a. Characterization and 

comparison of PM2.5 oxidative potential assessed by two acellular assays. Atmospheric Chem. 

Phys. 20, 5197–5210. https://doi.org/10.5194/acp-20-5197-2020 

Gao, D., Ripley, S., Weichenthal, S., Godri Pollitt, K.J., 2020b. Ambient particulate matter oxidative 

potential: Chemical determinants, associated health effects, and strategies for risk management. 

Free Radic. Biol. Med., Air Pollution: Consequences for Cellular Redox Signaling, Antioxidant 

Defenses and Disease 151, 7–25. https://doi.org/10.1016/j.freeradbiomed.2020.04.028 



 

215 

Gao, N., Xu, W., Ji, J., Yang, Y., Wang, S.-T., Wang, J., Chen, X., Meng, S., Tian, X., Xu, K.-F., 2020. 

Lung function and systemic inflammation associated with short-term air pollution exposure in 

chronic obstructive pulmonary disease patients in Beijing, China. Environ. Health 19, 12. 

https://doi.org/10.1186/s12940-020-0568-1 

García-Serna, A.M., Hernández-Caselles, T., Jiménez-Guerrero, P., Martín-Orozco, E., Pérez-

Fernández, V., Cantero-Cano, E., Muñoz-García, M., Ballesteros-Meseguer, C., Pérez De Los 

Cobos, I., García-Marcos, L., Morales, E., 2021. Air pollution from traffic during pregnancy 

impairs newborn’s cord blood immune cells: The NELA cohort. Environ. Res. 198, 110468. 

https://doi.org/10.1016/j.envres.2020.110468 

Gauderman, W.J., Avol, E., Gilliland, F., Vora, H., Thomas, D., Berhane, K., McConnell, R., Kuenzli, 

N., Lurmann, F., Rappaport, E., Margolis, H., Bates, D., Peters, J., 2004. The Effect of Air 

Pollution on Lung Development from 10 to 18 Years of Age. N. Engl. J. Med. 351, 1057–1067. 

https://doi.org/10.1056/NEJMoa040610 

Gehring, U., Gruzieva, O., Agius, R.M., Beelen, R., Custovic, A., Cyrys, J., Eeftens, M., Flexeder, C., 

Fuertes, E., Heinrich, J., Hoffmann, B., de, J.J.C., Kerkhof, M., Kl,  ümper C., Korek, M., M,  

ölter A., Schultz, E.S., Simpson, A., Sugiri, D., Svartengren, M., von, B.A., Wijga, A.H., 

Pershagen, G., Brunekreef, B., 2013. Air Pollution Exposure and Lung Function in Children: 

The ESCAPE Project. Environ. Health Perspect. 121, 1357–1364. 

https://doi.org/10.1289/ehp.1306770 

Gerster, F.M., Vernez, D., Wild, P.P., Hopf, N.B., 2014. Hazardous substances in frequently used 

professional cleaning products. Int. J. Occup. Environ. Health 20, 46–60. 

https://doi.org/10.1179/2049396713Y.0000000052 

Gietl, J.K., Klemm, O., 2009. Source Identification of Size-Segregated Aerosol in Münster, Germany, 

by Factor Analysis. Aerosol Sci. Technol. 43, 828–837. 

https://doi.org/10.1080/02786820902953923 

Glencross, D.A., Ho, T.-R., Camiña, N., Hawrylowicz, C.M., Pfeffer, P.E., 2020. Air pollution and its 

effects on the immune system. Free Radic. Biol. Med. 151, 56–68. 

https://doi.org/10.1016/j.freeradbiomed.2020.01.179 

Gong, C., Chu, M., Yang, J., Gong, X., Han, B., Chen, L., Bai, Z., Wang, J., Zhang, Y., 2022. Ambient 

fine particulate matter exposures and human early placental inflammation. Environ. Pollut. 315, 

120446. https://doi.org/10.1016/j.envpol.2022.120446 

Gong, J., Zhu, T., Kipen, H., Wang, G., Hu, M., Guo, Q., Ohman-Strickland, P., Lu, S.-E., Wang, Y., 

Zhu, P., Rich, D.Q., Huang, W., Zhang, J., 2014. Comparisons of Ultrafine and Fine Particles 

in Their Associations with Biomarkers Reflecting Physiological Pathways. Environ. Sci. 

Technol. 48, 5264–5273. https://doi.org/10.1021/es5006016 

Gosselink, R., Stam, H., 2005. Lung Function Testing: European Respiratory Monograph. European 

Respiratory Society. 

Götschi, T., Oglesby, L., Mathys, P., Monn, C., Manalis, N., Koistinen, K., Jantunen, M., Hänninen, O., 

Polanska, L., Künzli, N., 2002. Comparison of Black Smoke and PM 2.5 Levels in Indoor and 

Outdoor Environments of Four European Cities. Environ. Sci. Technol. 36, 1191–1197. 

https://doi.org/10.1021/es010079n 

Goyal, R., Mukesh, K., 2010. Indoor Pollution and Health Effects, in: Air Pollution: Health and 

Environmental Impacts. CRC Press, pp. 109–132. 



 

216 

Graille, M., Wild, P., Sauvain, J.-J., Hemmendinger, M., Guseva Canu, I., Hopf, N.B., 2020. Urinary 8-

OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. 

Int. J. Mol. Sci. 21, 3743. https://doi.org/10.3390/ijms21113743 

Grange, S.K., Uzu, G., Weber, S., Jaffrezo, J.-L., Hueglin, C., 2022. Linking Switzerland’s PM10 and 

PM2.5 oxidative potential (OP) with emission sources. Atmospheric Chem. Phys. 22, 7029–

7050. https://doi.org/10.5194/acp-22-7029-2022 

Gulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M.-Y., Probst-Hensch, N., 

Eeftens, M., Imboden, M., Ducret-Stich, R., Naccarati, A., Galassi, C., Ranzi, A., 

Nieuwenhuijsen, M., Curto, A., Donaire-Gonzalez, D., Cirach, M., Vermeulen, R., Vineis, P., 

Hoek, G., Kelly, F.J., 2018. Land use regression models for the oxidative potential of fine 

particles (PM 2.5 ) in five European areas. Environ. Res. 160, 247–255. 

https://doi.org/10.1016/j.envres.2017.10.002 

Guo, C., Hoek, G., Chang, L., Bo, Y., Lin, C., Huang, B., Chan, T., Tam, T., Lau, A.K.H., Lao, X.Q., 

2019. Long-Term Exposure to Ambient Fine Particulate Matter (PM2.5) and Lung Function in 

Children, Adolescents, and Young Adults: A Longitudinal Cohort Study. Environ. Health 

Perspect. 127, 127008. https://doi.org/10.1289/EHP5220 

Gupta, T., Singh, S.P., Rajput, P., Agarwal, A.K. (Eds.), 2020. Measurement, Analysis and Remediation 

of Environmental Pollutants, Energy, Environment, and Sustainability. Springer Singapore, 

Singapore. https://doi.org/10.1007/978-981-15-0540-9 

Gustafsson, P.M., Bengtsson, L., Lindblad, A., Robinson, P.D., 2017. The effect of inert gas choice on 

multiple breath washout in healthy infants: differences in lung function outcomes and breathing 

pattern. J. Appl. Physiol. 123, 1545–1554. https://doi.org/10.1152/japplphysiol.00524.2017 

Ha, S., 2021. Air pollution and neurological development in children. Dev. Med. Child Neurol. 63, 374–

381. https://doi.org/10.1111/dmcn.14758 

Habre, R., Coull, B., Moshier, E., Godbold, J., Grunin, A., Nath, A., Castro, W., Schachter, N., Rohr, 

A., Kattan, M., Spengler, J., Koutrakis, P., 2014. Sources of indoor air pollution in New York 

City residences of asthmatic children. J. Expo. Sci. Environ. Epidemiol. 24, 269–278. 

https://doi.org/10.1038/jes.2013.74 

Hadley, O.L., 2017. Background PM2.5 source apportionment in the remote Northwestern United 

States. Atmos. Environ. 167, 298–308. https://doi.org/10.1016/j.atmosenv.2017.08.030 

Hafkenscheid, T., Fromage-Mariette, A., Goelen, E., Hangartner, M., Pfeffer, U., de Santis, F., 

Saunders, K., Swaans, W., Tang, Y.S., Targa, J., van Hoek, C., Gerboles, M., 2009. Review of 

the application of diffusive samplers in the European Union for the monitoring of nitrogen 

dioxide in ambient air. European Commission. 

Halliwell, B., 2006. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 

1634–1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x 

Hammer, M.S., Van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A.M., Hsu, N.C., Levy, R.C., Garay, 

M.J., Kalashnikova, O.V., Kahn, R.A., Brauer, M., Apte, J.S., Henze, D.K., Zhang, L., Zhang, 

Q., Ford, B., Pierce, J.R., Martin, R.V., 2020. Global Estimates and Long-Term Trends of Fine 

Particulate Matter Concentrations (1998–2018). Environ. Sci. Technol. 54, 7879–7890. 

https://doi.org/10.1021/acs.est.0c01764 

Hashemzadeh, B., Idani, E., Goudarzi, G., Ankali, K.A., Sakhvidi, M.J.Z., Akbar Babaei, A., 

Hashemzadeh, H., Vosoughi, M., Mohammadi, M.J., Neisi, A., 2019. Effects of PM2.5 and 



 

217 

NO2 on the 8-isoprostane and lung function indices of FVC and FEV1 in students of Ahvaz 

city, Iran. Saudi J. Biol. Sci. 26, 473–480. https://doi.org/10.1016/j.sjbs.2016.11.008 

Hatzis, C., Godleski, J.J., González-Flecha, B., Wolfson, J.M., Koutrakis, P., 2006. Ambient Particulate 

Matter Exhibits Direct Inhibitory Effects on Oxidative Stress Enzymes. Environ. Sci. Technol. 

40, 2805–2811. https://doi.org/10.1021/es0518732 

He, B., Huang, J.V., Kwok, M.K., Au Yeung, S.L., Hui, L.L., Li, A.M., Leung, G.M., Schooling, C.M., 

2019. The association of early-life exposure to air pollution with lung function at ~17.5 years in 

the “Children of 1997” Hong Kong Chinese Birth Cohort. Environ. Int. 123, 444–450. 

https://doi.org/10.1016/j.envint.2018.11.073 

He, C., Morawska, L., Taplin, L., 2007. Particle Emission Characteristics of Office Printers. Environ. 

Sci. Technol. 41, 6039–6045. https://doi.org/10.1021/es063049z 

He, L., Cui, X., Li, Z., Teng, Y., Barkjohn, K.K., Norris, C., Fang, L., Lin, L., Wang, Q., Zhou, X., 

Hong, J., Li, F., Zhang, Y., Schauer, J.J., Black, M., Bergin, M.H., Zhang, J.J., 2020a. 

Malondialdehyde in Nasal Fluid: A Biomarker for Monitoring Asthma Control in Relation to 

Air Pollution Exposure. Environ. Sci. Technol. 54, 11405–11413. 

https://doi.org/10.1021/acs.est.0c02558 

He, L., Cui, X., Xia, Q., Li, F., Mo, J., Gong, J., Zhang, Y., Zhang, J. (Jim), 2020b. Effects of personal 

air pollutant exposure on oxidative stress: Potential confounding by natural variation in 

melatonin levels. Int. J. Hyg. Environ. Health 223, 116–123. 

https://doi.org/10.1016/j.ijheh.2019.09.012 

He, L., Norris, C., Cui, X., Li, Z., Barkjohn, K.K., Brehmer, C., Teng, Y., Fang, L., Lin, L., Wang, Q., 

Zhou, X., Hong, J., Li, F., Zhang, Y., Schauer, J.J., Black, M., Bergin, M.H., Zhang, J.J., 2021. 

Personal Exposure to PM2.5 Oxidative Potential in Association with Pulmonary 

Pathophysiologic Outcomes in Children with Asthma. Environ. Sci. Technol. 55, 3101–3111. 

https://doi.org/10.1021/acs.est.0c06114 

He, L., Zhang, J. (Jim), 2023. Particulate matter (PM) oxidative potential: Measurement methods and 

links to PM physicochemical characteristics and health effects. Crit. Rev. Environ. Sci. Technol. 

53, 177–197. https://doi.org/10.1080/10643389.2022.2050148 

Health Effects Institute, 2020. State of Global Air 2020 28. 

Hellack, B., Sugiri, D., Schins, R.P.F., Schikowski, T., Krämer, U., Kuhlbusch, T.A.J., Hoffmann, B., 

2017. Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass 

and association to type two diabetes mellitus. Atmos. Environ. 171, 181–190. 

https://doi.org/10.1016/j.atmosenv.2017.10.017 

Hellack, B., Yang, A., Cassee, F.R., Janssen, N.A.H., Schins, R.P.F., Kuhlbusch, T.A.J., 2014. Intrinsic 

hydroxyl radical generation measurements directly from sampled filters as a metric for the 

oxidative potential of ambient particulate matter. J. Aerosol Sci. 72, 47–55. 

https://doi.org/10.1016/j.jaerosci.2014.02.003 

Helsel, D.R., 1990. Less than obvious - statistical treatment of data below the detection limit. Environ. 

Sci. Technol. 24, 1766–1774. https://doi.org/10.1021/es00082a001 

Hemstock, E.J., Foong, R.E., Hall, G.L., Wheeler, A.J., Dharmage, S.C., Dalton, M., Williamson, G.J., 

Gao, C., Abramson, M.J., Johnston, F.H., Zosky, G.R., 2023. No association between in utero 

exposure to emissions from a coalmine fire and post-natal lung function. BMC Pulm. Med. 23, 

120. https://doi.org/10.1186/s12890-023-02414-7 



 

218 

Hernández-Pellón, A., Nischkauer, W., Limbeck, A., Fernández-Olmo, I., 2018. Metal(loid) 

bioaccessibility and inhalation risk assessment: A comparison between an urban and an 

industrial area. Environ. Res. 165, 140–149. https://doi.org/10.1016/j.envres.2018.04.014 

Hogervorst, J.G.F., de Kok, T.M.C.M., Briedé, J.J., Wesseling, G., Kleinjans, J.C.S., van Schayck, C.P., 

2006. Relationship between radical generation by urban ambient particulate matter and 

pulmonary function of school children. J. Toxicol. Environ. Health A 69, 245–262. 

https://doi.org/10.1080/15287390500227431 

Hopke, P.K., Dai, Q., Li, L., Feng, Y., 2020. Global review of recent source apportionments for airborne 

particulate matter. Sci. Total Environ. 740, 140091. 

https://doi.org/10.1016/j.scitotenv.2020.140091 

Horak, F., Studnicka, M., Gartner, C., Spengler, J.D., Tauber, E., Urbanek, R., Veiter, A., Frischer, T., 

2002. Particulate matter and lung function growth in children: a 3-yr follow-up study in Austrian 

schoolchildren. Eur. Respir. J. 19, 838–845. https://doi.org/10.1183/09031936.02.00512001 

Hough, I., Just, A.C., Zhou, B., Dorman, M., Lepeule, J., Kloog, I., 2020. A multi-resolution air 

temperature model for France from MODIS and Landsat thermal data. Environ. Res. 183, 

109244. https://doi.org/10.1016/j.envres.2020.109244 

Hsu, H.-H.L., Mathilda Chiu, Y.-H., Coull, B.A., Kloog, I., Schwartz, J., Lee, A., Wright, R.O., Wright, 

R.J., 2015. Prenatal Particulate Air Pollution and Asthma Onset in Urban Children. Identifying 

Sensitive Windows and Sex Differences. Am. J. Respir. Crit. Care Med. 192, 1052–1059. 

https://doi.org/10.1164/rccm.201504-0658OC 

Hu, H., Ye, J., Liu, C., Yan, L., Yang, F., Qian, H., 2023. Emission and oxidative potential of PM2.5 

generated by nine indoor sources. Build. Environ. 230, 110021. 

https://doi.org/10.1016/j.buildenv.2023.110021 

Hu, W., Wang, Y., Wang, T., Ji, Q., Jia, Q., Meng, T., Ma, S., Zhang, Z., Li, Y., Chen, R., Dai, Y., Luan, 

Y., Sun, Z., Leng, S., Duan, H., Zheng, Y., 2021. Ambient particulate matter compositions and 

increased oxidative stress: Exposure-response analysis among high-level exposed population. 

Environ. Int. 147, 106341. https://doi.org/10.1016/j.envint.2020.106341 

Hu, X., He, L., Zhang, J., Qiu, X., Zhang, Y., Mo, J., Day, D.B., Xiang, J., Gong, J., 2020. Inflammatory 

and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. 

Environ. Pollut. 263, 114503. https://doi.org/10.1016/j.envpol.2020.114503 

Hwang, B.-F., Chen, Y.-H., Lin, Y.-T., Wu, X.-T., Leo Lee, Y., 2015. Relationship between exposure 

to fine particulates and ozone and reduced lung function in children. Environ. Res. 137, 382–

390. https://doi.org/10.1016/j.envres.2015.01.009 

Jacob, D.J., 1999. Introduction to atmospheric chemistry. Princeton University Press, Princeton, N.J. 

Jaffrezo, J.-L., Aymoz, G., Delaval, C., Cozic, J., 2005. Seasonal variations of the water soluble organic 

carbon mass fraction of aerosol in two valleys of the French Alps. Atmospheric Chem. Phys. 5, 

2809–2821. 

Janicka, M., Kubica, P., Kot-Wasik, A., Kot, J., Namieśnik, J., 2012. Sensitive determination of 

isoprostanes in exhaled breath condensate samples with use of liquid chromatography–tandem 

mass spectrometry. J. Chromatogr. B 893–894, 144–149. 

https://doi.org/10.1016/j.jchromb.2012.03.005 

Janssen, N.A.H., Brunekreef, B., van Vliet, P., Aarts, F., Meliefste, K., Harssema, H., Fischer, P., 2003. 

The relationship between air pollution from heavy traffic and allergic sensitization, bronchial 



 

219 

hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ. Health 

Perspect. 111, 1512–1518. https://doi.org/10.1289/ehp.6243 

Janssen, N.A.H., Strak, M., Yang, A., Hellack, B., Kelly, F.J., Kuhlbusch, T.A.J., Harrison, R.M., 

Brunekreef, B., Cassee, F.R., Steenhof, M., Hoek, G., 2015. Associations between three specific 

a-cellular measures of the oxidative potential of particulate matter and markers of acute airway 

and nasal inflammation in healthy volunteers. Occup. Environ. Med. 72, 49–56. 

https://doi.org/10.1136/oemed-2014-102303 

Janssen, N.A.H., van Vliet, P.H.N., Aarts, F., Harssema, H., Brunekreef, B., 2001. Assessment of 

exposure to traffic related air pollution of children attending schools near motorways. Atmos. 

Environ. 35, 3875–3884. https://doi.org/10.1016/S1352-2310(01)00144-3 

Janssen, N.A.H., Yang, A., Strak, M., Steenhof, M., Hellack, B., Gerlofs-Nijland, M.E., Kuhlbusch, T., 

Kelly, F., Harrison, R., Brunekreef, B., Hoek, G., Cassee, F., 2014. Oxidative potential of 

particulate matter collected at sites with different source characteristics. Sci. Total Environ. 472, 

572–581. https://doi.org/10.1016/j.scitotenv.2013.11.099 

Jarmund, A.H., Giskeødegård, G.F., Ryssdal, M., Steinkjer, B., Stokkeland, L.M.T., Madssen, T.S., 

Stafne, S.N., Stridsklev, S., Moholdt, T., Heimstad, R., Vanky, E., Iversen, A.-C., 2021. 

Cytokine Patterns in Maternal Serum From First Trimester to Term and Beyond. Front. 

Immunol. 12. 

Jat, K.R., Agarwal, S., 2023. Lung Function Tests in Infants and Children. Indian J. Pediatr. 90, 790–

797. https://doi.org/10.1007/s12098-023-04588-8 

Jedrychowski, W., Bendkowska, I., Flak, E., Penar, A., Jacek, R., Kaim, I., Spengler, J.D., Camann, D., 

Perera, F.P., 2004. Estimated Risk for Altered Fetal Growth Resulting from Exposure to Fine 

Particles during Pregnancy: An Epidemiologic Prospective Cohort Study in Poland. Environ. 

Health Perspect. 112, 1398–1402. https://doi.org/10.1289/ehp.7065 

Jedrychowski, W., Perera, F.P., Maugeri, U., Mroz, E., Klimaszewska-Rembiasz, M., Flak, E., Edwards, 

S., Spengler, J.D., 2010. Effect of prenatal exposure to fine particulate matter on ventilatory 

lung function of preschool children of nonsmoking mothers. Krakow inner city birth cohort 

prospective study. Paediatr. Perinat. Epidemiol. 24, 492–501. https://doi.org/10.1111/j.1365-

3016.2010.01136.x 

Jedynska, A., Hoek, G., Wang, M., Yang, A., Eeftens, M., Cyrys, J., Keuken, M., Ampe, C., Beelen, R., 

Cesaroni, G., Forastiere, F., Cirach, M., de Hoogh, K., De Nazelle, A., Nystad, W., Akhlaghi, 

H.M., Declercq, C., Stempfelet, M., Eriksen, K.T., … Kooter, I.M., 2017. Spatial variations and 

development of land use regression models of oxidative potential in ten European study areas. 

Atmos. Environ. 150, 24–32. https://doi.org/10.1016/j.atmosenv.2016.11.029 

Jeong, S.-C., Cho, Y., Song, M.-K., Lee, E., Ryu, J.-C., 2017. Epidermal growth factor receptor (EGFR)-

MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-

induced lung toxicity: JEONG et al. Environ. Toxicol. 32, 1628–1636. 

https://doi.org/10.1002/tox.22390 

Jones, N.C., Thornton, C.A., Mark, D., Harrison, R.M., 2000. Indoor/outdoor relationships of particulate 

matter in domestic homes with roadside, urban and rural locations. Atmos. Environ. 34, 2603–

2612. https://doi.org/10.1016/S1352-2310(99)00489-6 

Joshi, S., Kotecha, S., 2007. Lung growth and development. Early Hum. Dev., Selected Proceedings of 

the Neonatal Update 2007 83, 789–794. https://doi.org/10.1016/j.earlhumdev.2007.09.007 



 

220 

Juginović, A., Vuković, M., Aranza, I., Biloš, V., 2021. Health impacts of air pollution exposure from 

1990 to 2019 in 43 European countries. Sci. Rep. 11, 22516. https://doi.org/10.1038/s41598-

021-01802-5 

Kanabrocki, E.L., Murray, D., Hermida, R.C., Scott, G.S., Bremner, W.F., Ryan, M.D., Ayala, D.E., 

Third, J.L.H.C., Shirazi, P., Nemchausky, B.A., Hooper, D.C., 2002. Circadian variation in 

oxidative stress markers in healthy and type II diabetic men. Chronobiol. Int. 19, 423–439. 

https://doi.org/10.1081/CBI-120002914 

Kannan, S., Misra, D.P., Dvonch, J.T., Krishnakumar, A., 2006. Exposures to Airborne Particulate 

Matter and Adverse Perinatal Outcomes: A Biologically Plausible Mechanistic Framework for 

Exploring Potential Effect Modification by Nutrition. Environ. Health Perspect. 114, 1636–

1642. https://doi.org/10.1289/ehp.9081 

Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, 

M., 2015. Contributions to cities’ ambient particulate matter (PM): A systematic review of local 

source contributions at global level. Atmos. Environ. 120, 475–483. 

https://doi.org/10.1016/j.atmosenv.2015.08.087 

Kasai, H., 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a 

marker of cellular oxidative stress during carcinogenesis. Mutat. Res. 387, 147–163. 

https://doi.org/10.1016/s1383-5742(97)00035-5 

Kelly, F.J., 2003. Oxidative stress: its role in air pollution and adverse health effects. Occup. Environ. 

Med. 60, 612–616. https://doi.org/10.1136/oem.60.8.612 

Kelly, F.J., Fussell, J.C., 2015. Linking ambient particulate matter pollution effects with oxidative 

biology and immune responses. Ann. N. Y. Acad. Sci. 1340, 84–94. 

https://doi.org/10.1111/nyas.12720 

Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity 

attributable to ambient particulate matter. Atmos. Environ. 60, 504–526. 

https://doi.org/10.1016/j.atmosenv.2012.06.039 

Kelly, F.J., Mudway, I.S., 2003. Protein oxidation at the air-lung interface. Amino Acids 25, 375–396. 

https://doi.org/10.1007/s00726-003-0024-x 

Keyte, I.J., Harrison, R.M., Lammel, G., 2013. Chemical reactivity and long-range transport potential 

of polycyclic aromatic hydrocarbons – a review. Chem. Soc. Rev. 42, 9333–9391. 

https://doi.org/10.1039/C3CS60147A 

Kim, Y., Hong, Y., Lee, K., Park, H., Park, E., Moon, H., Ha, E., 2005. Oxidative stress in pregnant 

women and birth weight reduction. Reprod. Toxicol. 19, 487–492. 

https://doi.org/10.1016/j.reprotox.2004.10.007 

King, L.E., Weber, R.J., 2013. Development and testing of an online method to measure ambient fine 

particulate reactive oxygen species (ROS) based on the 2’,7’-dichlorofluorescin (DCFH) assay. 

Atmospheric Meas. Tech. 6, 1647–1658. https://doi.org/10.5194/amt-6-1647-2013 

Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, 

S.C., Engelmann, W.H., 2001. The National Human Activity Pattern Survey (NHAPS): a 

resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 

11, 231–252. https://doi.org/10.1038/sj.jea.7500165 

Korsiak, J., Lavigne, E., You, H., Pollitt, K., Kulka, R., Hatzopoulou, M., Evans, G., Burnett, R.T., 

Weichenthal, S., 2022. Air Pollution and Pediatric Respiratory Hospitalizations: Effect 



 

221 

Modification by Particle Constituents and Oxidative Potential. Am. J. Respir. Crit. Care Med. 

206, 1370–1378. https://doi.org/10.1164/rccm.202205-0896OC 

Korten, I., Ramsey, K., Latzin, P., 2017. Air pollution during pregnancy and lung development in the 

child. Paediatr. Respir. Rev. 21, 38–46. https://doi.org/10.1016/j.prrv.2016.08.008 

Laine, J.E., Bodinier, B., Robinson, O., Plusquin, M., Scalbert, A., Keski-Rahkonen, P., Robinot, N., 

Vermeulen, R., Pizzi, C., Asta, F., Nawrot, T., Gulliver, J., Chatzi, L., Kogevinas, M., 

Nieuwenhuijsen, M., Sunyer, J., Vrijheid, M., Chadeau-Hyam, M., Vineis, P., 2020. Prenatal 

Exposure to Multiple Air Pollutants, Mediating Molecular Mechanisms, and Shifts in 

Birthweight. Environ. Sci. Technol. 54, 14502–14513. https://doi.org/10.1021/acs.est.0c02657 

Latzin, P., Roosli, M., Huss, A., Kuehni, C.E., Frey, U., 2009. Air pollution during pregnancy and lung 

function in newborns: a birth cohort study. Eur. Respir. J. 33, 594–603. 

https://doi.org/10.1183/09031936.00084008 

Lavigne, É., Burnett, R.T., Stieb, D.M., Evans, G.J., Godri Pollitt, K.J., Chen, H., van Rijswijk, D., 

Weichenthal, S., 2018. Fine Particulate Air Pollution and Adverse Birth Outcomes: Effect 

Modification by Regional Nonvolatile Oxidative Potential. Environ. Health Perspect. 126, 

077012. https://doi.org/10.1289/EHP2535 

Lawson, S.J., Galbally, I.E., Powell, J.C., Keywood, M.D., Molloy, S.B., Cheng, M., Selleck, P.W., 

2011. The effect of proximity to major roads on indoor air quality in typical Australian 

dwellings. Atmos. Environ. 45, 2252–2259. https://doi.org/10.1016/j.atmosenv.2011.01.024 

Leikauf, G.D., Kim, S.-H., Jang, A.-S., 2020. Mechanisms of ultrafine particle-induced respiratory 

health effects. Exp. Mol. Med. 52, 329–337. https://doi.org/10.1038/s12276-020-0394-0 

Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R.T., Haines, A., Ramanathan, V., 2019. Effects of 

fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. 

Acad. Sci. 116, 7192–7197. https://doi.org/10.1073/pnas.1819989116 

Leni, Z., Cassagnes, L.E., Daellenbach, K.R., Haddad, I.E., Vlachou, A., Uzu, G., Prévôt, A.S.H., 

Jaffrezo, J.-L., Baumlin, N., Salathe, M., Baltensperger, U., Dommen, J., Geiser, M., 2020. 

Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLOS 

ONE 15, e0233425. https://doi.org/10.1371/journal.pone.0233425 

Lepeule, J., Pin, I., Boudier, A., Quentin, J., Lyon-Caen, S., Supernant, K., Seyve, E., Chartier, R., 

Slama, R., Siroux, V., 2023. Pre-natal exposure to NO2 and PM2.5 and newborn lung function: 

An approach based on repeated personal exposure measurements. Environ. Res. 226, 115656. 

https://doi.org/10.1016/j.envres.2023.115656 

Li, N., Hao, M., Phalen, R.F., Hinds, W.C., Nel, A.E., 2003. Particulate air pollutants and asthma: A 

paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 

109, 250–265. https://doi.org/10.1016/j.clim.2003.08.006 

Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z., Dong, C., 2015. Mitochondrial damage: An important 

mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. J. Hazard. Mater. 

287, 392–401. https://doi.org/10.1016/j.jhazmat.2015.02.006 

Li, T., Cao, S., Fan, D., Zhang, Yaqun, Wang, B., Zhao, X., Leaderer, B.P., Shen, G., Zhang, Yawei, 

Duan, X., 2016. Household concentrations and personal exposure of PM2.5 among urban 

residents using different cooking fuels. Sci. Total Environ. 548–549, 6–12. 

https://doi.org/10.1016/j.scitotenv.2016.01.038 



 

222 

Li, Z., Liu, Q., Xu, Z., Guo, X., Wu, S., 2020. Association between short-term exposure to ambient 

particulate air pollution and biomarkers of oxidative stress: A meta-analysis. Environ. Res. 191, 

110105. https://doi.org/10.1016/j.envres.2020.110105 

Li, Z., Wen, Q., Zhang, R., 2017. Sources, health effects and control strategies of indoor fine particulate 

matter (PM2.5): A review. Sci. Total Environ. 586, 610–622. 

https://doi.org/10.1016/j.scitotenv.2017.02.029 

Lim, Y.-H., Hersoug, L.-G., Lund, R., Bruunsgaard, H., Ketzel, M., Brandt, J., Jørgensen, J.T., 

Westendorp, R., Andersen, Z.J., Loft, S., 2022. Inflammatory markers and lung function in 

relation to indoor and ambient air pollution. Int. J. Hyg. Environ. Health 241, 113944. 

https://doi.org/10.1016/j.ijheh.2022.113944 

Little, R.J.A., 1988. A Test of Missing Completely at Random for Multivariate Data with Missing 

Values. J. Am. Stat. Assoc. 83, 1198–1202. https://doi.org/10.1080/01621459.1988.10478722 

Liu, C., Zhang, Y., 2019. Relations between indoor and outdoor PM2.5 and constituent concentrations. 

Front. Environ. Sci. Eng. 13, 5. https://doi.org/10.1007/s11783-019-1089-4 

Liu, F., Chen, G., Huo, W., Wang, C., Liu, S., Li, N., Mao, S., Hou, Y., Lu, Y., Xiang, H., 2019. 

Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes 

mellitus: A systematic review and meta-analysis. Environ. Pollut. 252, 1235–1245. 

https://doi.org/10.1016/j.envpol.2019.06.033 

Liu, L., Urch, B., Szyszkowicz, M., Evans, G., Speck, M., Van Huang, A., Leingartner, K., Shutt, R.H., 

Pelletier, G., Gold, D.R., Brook, J.R., Godri Pollitt, K., Silverman, F.S., 2018. Metals and 

oxidative potential in urban particulate matter influence systemic inflammatory and neural 

biomarkers: A controlled exposure study. Environ. Int. 121, 1331–1340. 

https://doi.org/10.1016/j.envint.2018.10.055 

Liu, Q., Baumgartner, J., Zhang, Y., Liu, Y., Sun, Y., Zhang, M., 2014. Oxidative Potential and 

Inflammatory Impacts of Source Apportioned Ambient Air Pollution in Beijing. Environ. Sci. 

Technol. 48, 12920–12929. https://doi.org/10.1021/es5029876 

Liu, S., Jørgensen, J.T., Ljungman, P., Pershagen, G., Bellander, T., Leander, K., Magnusson, P.K.E., 

Rizzuto, D., Hvidtfeldt, U.A., Raaschou-Nielsen, O., Wolf, K., Hoffmann, B., Brunekreef, B., 

Strak, M., Chen, J., Mehta, A., Atkinson, R.W., Bauwelinck, M., Varraso, R., … Andersen, Z.J., 

2021. Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE 

project. Eur. Respir. J. 57, 2003099. https://doi.org/10.1183/13993003.030992020 

Liu, Y., Pan, J., Fan, C., Xu, R., Wang, Y., Xu, C., Xie, S., Zhang, H., Cui, X., Peng, Z., Shi, C., Zhang, 

Y., Sun, H., Zhou, Y., Zhang, L., 2021. Short-Term Exposure to Ambient Air Pollution and 

Mortality From Myocardial Infarction. J. Am. Coll. Cardiol. 77, 271–281. 

https://doi.org/10.1016/j.jacc.2020.11.033 

Lodovici, M., Bigagli, E., 2011. Oxidative Stress and Air Pollution Exposure. J. Toxicol. 2011, 487074. 

https://doi.org/10.1155/2011/487074 

Longhin, E., Holme, J.A., Gualtieri, M., Camatini, M., Øvrevik, J., 2018. Milan winter fine particulate 

matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but 

specifically impairs IL-8 release. Toxicol. In Vitro 52, 365–373. 

https://doi.org/10.1016/j.tiv.2018.07.016 



 

223 

Lubin, J.H., Colt, J.S., Camann, D., Davis, S., Cerhan, J.R., Severson, R.K., Bernstein, L., Hartge, P., 

2004. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. 

Environ. Health Perspect. 112, 1691–1696. https://doi.org/10.1289/ehp.7199 

Lundblad, L.K.A., Siddiqui, S., Bossé, Y., Dandurand, R.J., 2021. Applications of oscillometry in 

clinical research and practice. Can. J. Respir. Crit. Care Sleep Med. 5, 54–68. 

https://doi.org/10.1080/24745332.2019.1649607 

Lyon-Caen, S., Siroux, V., Lepeule, J., Lorimier, P., Hainaut, P., Mossuz, P., Quentin, J., Supernant, K., 

Meary, D., Chaperot, L., Bayat, S., Cassee, F., Valentino, S., Couturier-Tarrade, A., Rousseau-

Ralliard, D., Chavatte-Palmer, P., Philippat, C., Pin, I., Slama, R., The SEPAGES Study Group, 

2019. Deciphering the Impact of Early-Life Exposures to Highly Variable Environmental 

Factors on Foetal and Child Health: Design of SEPAGES Couple-Child Cohort. Int. J. Environ. 

Res. Public. Health 16, 3888. https://doi.org/10.3390/ijerph16203888 

MacIntyre, E.A., Gehring, U., Mölter, A., Fuertes, E., Klümper, C., Krämer, U., Quass, U., Hoffmann, 

B., Gascon, M., Brunekreef, B., Koppelman, G.H., Beelen, R., Hoek, G., Birk, M., de Jongste, 

J.C., Smit, H.A., Cyrys, J., Gruzieva, O., Korek, M., … Heinrich, J., 2014. Air pollution and 

respiratory infections during early childhood: an analysis of 10 European birth cohorts within 

the ESCAPE Project. Environ. Health Perspect. 122, 107–113. 

https://doi.org/10.1289/ehp.1306755 

MacPherson, S., Arbuckle, T.E., Fisher, M., 2018. Adjusting urinary chemical biomarkers for hydration 

status during pregnancy. J. Expo. Sci. Environ. Epidemiol. 28, 481–493. 

https://doi.org/10.1038/s41370-018-0043-z 

Maikawa, C.L., Weichenthal, S., Wheeler, A.J., Dobbin, N.A., Smargiassi, A., Evans, G., Liu, L., 

Goldberg, M.S., Pollitt, K.J.G., 2016. Particulate Oxidative Burden as a Predictor of Exhaled 

Nitric Oxide in Children with Asthma. Environ. Health Perspect. 124, 1616–1622. 

https://doi.org/10.1289/EHP175 

Maitre, L., Julvez, J., López-Vicente, M., Warembourg, C., Tamayo-Uria, I., Philippat, C., Gützkow, 

K.B., Guxens, M., Andrusaityte, S., Basagaña, X., Casas, M., De Castro, M., Chatzi, L., Evandt, 

J., Gonzalez, J.R., Gražulevičienė, R., Smastuen Haug, L., Heude, B., Hernandez-Ferrer, C., 

Kampouri, M., Manson, D., Marquez, S., McEachan, R., Nieuwenhuijsen, M., Robinson, O., 

Slama, R., Thomsen, C., Urquiza, J., Vafeidi, M., Wright, J., Vrijheid, M., 2021. Early-life 

environmental exposure determinants of child behavior in Europe: A longitudinal, population-

based study. Environ. Int. 153, 106523. https://doi.org/10.1016/j.envint.2021.106523 

Makri, A., Stilianakis, N.I., 2008. Vulnerability to air pollution health effects. Int. J. Hyg. Environ. 

Health 211, 326–336. https://doi.org/10.1016/j.ijheh.2007.06.005 

Malley, C.S., Kuylenstierna, J.C.I., Vallack, H.W., Henze, D.K., Blencowe, H., Ashmore, M.R., 2017. 

Preterm birth associated with maternal fine particulate matter exposure: A global, regional and 

national assessment. Environ. Int. 101, 173–182. https://doi.org/10.1016/j.envint.2017.01.023 

Manches, O., Um, K., Boudier, A., Maddouri, Y., Lyon-Caen, S., Bayat, S., Slama, R., Philippat, C., 

Siroux, V., Chaperot, L., 2023. Maternal imprinting and determinants of neonates’ immune 

function in the SEPAGES mother-child cohort. Front. Immunol. 14. 

Manousakas, M., Furger, M., Daellenbach, K.R., Canonaco, F., Chen, G., Tobler, A., Rai, P., Qi, L., 

Tremper, A.H., Green, D., Hueglin, C., Slowik, J.G., El Haddad, I., Prevot, A.S.H., 2022. 

Source identification of the elemental fraction of particulate matter using size segregated, highly 

time-resolved data and an optimized source apportionment approach. Atmospheric Environ. X 

14, 100165. https://doi.org/10.1016/j.aeaoa.2022.100165 



 

224 

Marcovecchio, F., Perrino, C., 2021. Contribution of Primary Biological Aerosol Particles to airborne 

particulate matter in indoor and outdoor environments. Chemosphere 264, 128510. 

https://doi.org/10.1016/j.chemosphere.2020.128510 

Markesbery, W.R., 1999. The Role of Oxidative Stress in Alzheimer Disease. Arch. Neurol. 56, 1449–

1452. https://doi.org/10.1001/archneur.56.12.1449 

Marsal, A., Slama, R., Lyon, -Caen Sarah, Borlaza, L.J.S., Jaffrezo, J.-L., Boudier, A., Darfeuil, S., 

Elazzouzi, R., Gioria, Y., Lepeule, J., Chartier, R., Pin, I., Quentin, J., Bayat, S., Uzu, G., Siroux, 

V., 2023. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and 

Preschool- Age Children: A Prospective Study. Environ. Health Perspect. 131, 017004. 

https://doi.org/10.1289/EHP11155 

Martinez, M.P., Kannan, K., 2018. Simultaneous Analysis of Seven Biomarkers of Oxidative Damage 

to Lipids, Proteins, and DNA in Urine. Environ. Sci. Technol. 52, 6647–6655. 

https://doi.org/10.1021/acs.est.8b00883 

Martinez-Moral, M.-P., Kannan, K., 2019. How stable is oxidative stress level? An observational study 

of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, 

and lipids in healthy individuals. Environ. Int. 123, 382–389. 

https://doi.org/10.1016/j.envint.2018.12.009 

Matt, G.E., Quintana, P.J.E., Hoh, E., Dodder, N.G., Mahabee-Gittens, E.M., Padilla, S., Markman, L., 

Watanabe, K., 2021. Tobacco smoke is a likely source of lead and cadmium in settled house 

dust. J. Trace Elem. Med. Biol. 63, 126656. https://doi.org/10.1016/j.jtemb.2020.126656 

Maung, T.Z., Bishop, J.E., Holt, E., Turner, A.M., Pfrang, C., 2022. Indoor Air Pollution and the Health 

of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile 

Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung 

Disease. Int. J. Environ. Res. Public. Health 19, 8752. https://doi.org/10.3390/ijerph19148752 

Melén, E., Nyberg, F., Lindgren, C.M., Berglind, N., Zucchelli, M., Nordling, E., Hallberg, J., 

Svartengren, M., Morgenstern, R., Kere, J., Bellander, T., Wickman, M., Pershagen, G., 2008. 

Interactions between Glutathione S- Transferase P1, Tumor Necrosis Factor, and Traffic-

Related Air Pollution for Development of Childhood Allergic Disease. Environ. Health 

Perspect. 116, 1077–1084. https://doi.org/10.1289/ehp.11117 

Meng, Q.Y., Turpin, B.J., Korn, L., Weisel, C.P., Morandi, M., Colome, S., Zhang, J., Stock, T., Spektor, 

D., Winer, A., Zhang, L., Lee, J.H., Giovanetti, R., Cui, W., Kwon, J., Alimokhtari, S., Shendell, 

D., Jones, J., Farrar, C., Maberti, S., 2005. Influence of ambient (outdoor) sources on residential 

indoor and personal PM2.5 concentrations: Analyses of RIOPA data. J. Expo. Sci. Environ. 

Epidemiol. 15, 17–28. https://doi.org/10.1038/sj.jea.7500378 

Michels, K.B., Gunasekara, C.J., Waterland, R.A., 2022. The Role of Epigenetics in the Developmental 

Origins of Health and Disease, in: Michels, K.B. (Ed.), Epigenetic Epidemiology. Springer 

International Publishing, Cham, pp. 123–142. https://doi.org/10.1007/978-3-030-94475-9_6 

Milne, G.L., Musiek, E.S., Morrow, J.D., 2005. F2-Isoprostanes as markers of oxidative stress in vivo: 

An overview. Biomarkers 10, 10–23. https://doi.org/10.1080/13547500500216546 

Milne, G.L., Sanchez, S.C., Musiek, E.S., Morrow, J.D., 2007. Quantification of F 2 -isoprostanes as a 

biomarker of oxidative stress. Nat. Protoc. 2, 221–226. https://doi.org/10.1038/nprot.2006.375 

Moller, P., Loft, S., 2006. Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free 

Radic. Biol. Med. 41, 388–415. https://doi.org/10.1016/j.freeradbiomed.2006.04.001 



 

225 

Molnár, P., Bellander, T., Sällsten, G., Boman, J., 2007. Indoor and outdoor concentrations of PM2.5 

trace elements at homes, preschools and schools in Stockholm, Sweden. J Env. Monit 9, 348–

357. https://doi.org/10.1039/B616858B 

Montuschi, P., Corradi, M., Ciabattoni, G., Nightingale, J., Kharitonov, S.A., Barnes, P.J., 1999. 

Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. 

Am. J. Respir. Crit. Care Med. 160, 216–220. https://doi.org/10.1164/ajrccm.160.1.9809140 

Mor, G., Cardenas, I., 2010. The Immune System in Pregnancy: A Unique Complexity. Am. J. Reprod. 

Immunol. 63, 425–433. https://doi.org/10.1111/j.1600-0897.2010.00836.x 

Morawska, L., 2003. Characteristics of particle number and mass concentrations in residential houses 

in Brisbane, Australia. Atmos. Environ. 37, 4195–4203. https://doi.org/10.1016/S1352-

2310(03)00566-1 

Mortamais, M., Chevrier, C., Philippat, C., Petit, C., Calafat, A.M., Ye, X., Silva, M.J., Brambilla, C., 

Eijkemans, M.J., Charles, M.-A., Cordier, S., Slama, R., 2012. Correcting for the influence of 

sampling conditions on biomarkers of exposure to phenols and phthalates: a 2-step 

standardization method based on regression residuals. Environ. Health 11, 29. 

https://doi.org/10.1186/1476-069X-11-29 

Mortimer, K., Neugebauer, R., Lurmann, F., Alcorn, S., Balmes, J., Tager, I., 2008. Air Pollution and 

Pulmonary Function in Asthmatic Children: Effects of Prenatal and Lifetime Exposures. 

Epidemiology 19, 550. https://doi.org/10.1097/EDE.0b013e31816a9dcb 

Mudway, I.S., Kelly, F.J., Holgate, S.T., 2020. Oxidative stress in air pollution research. Free Radic. 

Biol. Med. 151, 2–6. https://doi.org/10.1016/j.freeradbiomed.2020.04.031 

Mudway, I.S., Stenfors, N., Duggan, S.T., Roxborough, H., Zielinski, H., Marklund, S.L., Blomberg, 

A., Frew, A.J., Sandström, T., Kelly, F.J., 2004. An in vitro and in vivo investigation of the 

effects of diesel exhaust on human airway lining fluid antioxidants. Arch. Biochem. Biophys., 

Oxygen Club of California: A Tribute to Bruce N. Ames 423, 200–212. 

https://doi.org/10.1016/j.abb.2003.12.018 

Murray, C.J.L., Aravkin, A.Y., Zheng, P., Abbafati, C., Abbas, K.M., Abbasi-Kangevari, M., Abd-

Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abegaz, K.H., Abolhassani, H., 

Aboyans, V., Abreu, L.G., Abrigo, M.R.M., Abualhasan, A., Abu-Raddad, L.J., Abushouk, A.I., 

Adabi, M., … Lim, S.S., 2020. Global burden of 87 risk factors in 204 countries and territories, 

1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 

396, 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2 

Muttoo, Naidoo, Jeena, Asharam K, 2019. Air Pollution Exposure and Infant Lung Function in the 

MACE Cohort, South Africa. Environ. Epidemiol. 3, 280. 

https://doi.org/10.1097/01.EE9.0000609000.48206.68 

Nagiah, S., Phulukdaree, A., Naidoo, D., Ramcharan, K., Naidoo, R., Moodley, D., Chuturgoon, A., 

2015. Oxidative stress and air pollution exposure during pregnancy: A molecular assessment. 

Hum. Exp. Toxicol. 34, 838–847. https://doi.org/10.1177/0960327114559992 

National Center for Environmental Health, 2023. Radon in the Home [WWW Document]. Cent. Dis. 

Control Prev. URL http://www.cdc.gov/nceh/features/protect-home-radon/index.html 

(accessed 8.25.23). 



 

226 

Niu, X., Jones, T., BéruBé, K., Chuang, H.-C., Sun, J., Ho, K.F., 2021. The oxidative capacity of indoor 

source combustion derived particulate matter and resulting respiratory toxicity. Sci. Total 

Environ. 767, 144391. https://doi.org/10.1016/j.scitotenv.2020.144391 

Noorimotlagh, Z., Azizi, M., Pan, H.-F., Mami, S., Mirzaee, S.A., 2021. Association between air 

pollution and Multiple Sclerosis: A systematic review. Environ. Res. 196, 110386. 

https://doi.org/10.1016/j.envres.2020.110386 

O’Brien, K.M., Upson, K., Buckley, J.P., 2017. Lipid and Creatinine Adjustment to Evaluate Health 

Effects of Environmental Exposures. Curr. Environ. Health Rep. 4, 44–50. 

https://doi.org/10.1007/s40572-017-0122-7 

Ouidir, M., Giorgis-Allemand, L., Lyon-Caen, S., Morelli, X., Cracowski, C., Pontet, S., Pin, I., Lepeule, 

J., Siroux, V., Slama, R., 2015. Estimation of exposure to atmospheric pollutants during 

pregnancy integrating space–time activity and indoor air levels: Does it make a difference? 

Environ. Int. 84, 161–173. https://doi.org/10.1016/j.envint.2015.07.021 

Øvrevik, J., 2019. Oxidative Potential Versus Biological Effects: A Review on the Relevance of Cell-

Free/Abiotic Assays as Predictors of Toxicity from Airborne Particulate Matter. Int. J. Mol. Sci. 

20, 4772. https://doi.org/10.3390/ijms20194772 

Parenteau, A.M., Alen, N.V., La, J., Luck, A.T., Teichrow, D.J., Daang, E.M., Nissen, A.T., Deer, L.K., 

Hostinar, C.E., 2022. Associations of air pollution with peripheral inflammation and cardiac 

autonomic physiology in children. New Dir. Child Adolesc. Dev. 2022, 125–154. 

https://doi.org/10.1002/cad.20474 

Pedersen, M., Giorgis-Allemand, L., Bernard, C., Aguilera, I., Andersen, A.-M.N., Ballester, F., Beelen, 

R.M.J., Chatzi, L., Cirach, M., Danileviciute, A., Dedele, A., Eijsden, M. van, Estarlich, M., 

Fernández-Somoano, A., Fernández, M.F., Forastiere, F., Gehring, U., Grazuleviciene, R., 

Gruzieva, O., … Slama, R., 2013. Ambient air pollution and low birthweight: a European cohort 

study (ESCAPE). Lancet Respir. Med. 1, 695–704. https://doi.org/10.1016/S2213-

2600(13)70192-9 

Pelletier, G., Rigden, M., Kauri, L.M., Shutt, R., Mahmud, M., Cakmak, S., Kumarathasan, P., 

Thomson, E.M., Vincent, R., Broad, G., Liu, L., Dales, R., 2017. Associations between urinary 

biomarkers of oxidative stress and air pollutants observed in a randomized crossover exposure 

to steel mill emissions. Int. J. Hyg. Environ. Health 220, 387–394. 

https://doi.org/10.1016/j.ijheh.2016.11.010 

Perrier, F., Giorgis-Allemand, L., Slama, R., Philippat, C., 2016. Within-subject Pooling of Biological 

Samples to Reduce Exposure Misclassification in Biomarker-based Studies: Epidemiology 27, 

378–388. https://doi.org/10.1097/EDE.0000000000000460 

Perrino, C., Catrambone, M., Canepari, S., 2020. Chemical Composition of PM10 in 16 Urban, 

Industrial and Background Sites in Italy. Atmosphere 11, 479. 

https://doi.org/10.3390/atmos11050479 

Peters, A., Nawrot, T.S., Baccarelli, A.A., 2021. Hallmarks of environmental insults. Cell 184, 1455–

1468. https://doi.org/10.1016/j.cell.2021.01.043 

Pey, J., Querol, X., Alastuey, A., Forastiere, F., Stafoggia, M., 2013. African dust outbreaks over the 

Mediterranean Basin during 2001&ndash;2011: PM10 concentrations, phenomenology and 

trends, and its relation with synoptic and mesoscale meteorology. Atmospheric Chem. Phys. 13, 

1395–1410. https://doi.org/10.5194/acp-13-1395-2013 



 

227 

Philippat, C., Calafat, A.M., 2021. Comparison of strategies to efficiently combine repeated urine 

samples in biomarker-based studies. Environ. Res. 192, 110275. 

https://doi.org/10.1016/j.envres.2020.110275 

Pietrogrande, M.C., Romanato, L., Russo, M., 2022. Synergistic and Antagonistic Effects of Aerosol 

Components on Its Oxidative Potential as Predictor of Particle Toxicity. Toxics 10, 196. 

https://doi.org/10.3390/toxics10040196 

Pietrogrande, Russo, Zagatti, 2019. Review of PM Oxidative Potential Measured with Acellular Assays 

in Urban and Rural Sites across Italy. Atmosphere 10, 626. 

https://doi.org/10.3390/atmos10100626 

Piot, C., Jaffrezo, J.-L., Cozic, J., Pissot, N., El Haddad, I., Marchand, N., Besombes, J.-L., 2012. 

Quantification of levoglucosan and its isomers by High Performance Liquid Chromatography – 

Electrospray Ionization tandem Mass Spectrometry and its applications to atmospheric and soil 

samples. Atmospheric Meas. Tech. 5, 141–148. https://doi.org/10.5194/amt-5-141-2012 

Pope, C.A., 2000. Review: Epidemiological Basis for Particulate Air Pollution Health Standards. 

Aerosol Sci. Technol. 32, 4–14. https://doi.org/10.1080/027868200303885 

Pope, C.A., Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution: Lines that Connect. 

J. Air Waste Manag. Assoc. 56, 709–742. https://doi.org/10.1080/10473289.2006.10464485 

Putaud, J.-P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., 

Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, 

A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., … Raes, F., 2010. A European 

aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 

rural, urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308–1320. 

https://doi.org/10.1016/j.atmosenv.2009.12.011 

Puthussery, J.V., Zhang, C., Verma, V., 2018. Development and field testing of an online instrument for 

measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol 

assay. Atmospheric Meas. Tech. 11, 5767–5780. https://doi.org/10.5194/amt-11-5767-2018 

Querol, X., Pérez, N., Reche, C., Ealo, M., Ripoll, A., Tur, J., Pandolfi, M., Pey, J., Salvador, P., Moreno, 

T., Alastuey, A., 2019. African dust and air quality over Spain: Is it only dust that matters? Sci. 

Total Environ. 686, 737–752. https://doi.org/10.1016/j.scitotenv.2019.05.349 

Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Pérez, N., Moreno, T., Viana, M., 

Mihalopoulos, N., Kallos, G., Kleanthous, S., 2009. African dust contributions to mean ambient 

PM10 mass-levels across the Mediterranean Basin. Atmos. Environ. 43, 4266–4277. 

https://doi.org/10.1016/j.atmosenv.2009.06.013 

Rao, L., Zhang, L., Wang, X., Xie, T., Zhou, S., Lu, S., Liu, X., Lu, H., Xiao, K., Wang, W., Wang, Q., 

2020. Oxidative Potential Induced by Ambient Particulate Matters with Acellular Assays: A 

Review. Processes 8, 1410. https://doi.org/10.3390/pr8111410 

Rice, M.B., Rifas-Shiman, S.L., Litonjua, A.A., Oken, E., Gillman, M.W., Kloog, I., Luttmann-Gibson, 

H., Zanobetti, A., Coull, B.A., Schwartz, J., Koutrakis, P., Mittleman, M.A., Gold, D.R., 2016. 

Lifetime Exposure to Ambient Pollution and Lung Function in Children. Am. J. Respir. Crit. 

Care Med. 193, 881–888. https://doi.org/10.1164/rccm.201506-1058OC 

Riva, D.R., Magalhães, C.B., Lopes, A.A., Lanças, T., Mauad, T., Malm, O., Valença, S.S., Saldiva, 

P.H., Faffe, D.S., Zin, W.A., 2011. Low dose of fine particulate matter (PM2.5) can induce 



 

228 

acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal. Toxicol. 

23, 257–267. https://doi.org/10.3109/08958378.2011.566290 

Rosenquist, N.A., Metcalf, W.J., Ryu, S.Y., Rutledge, A., Coppes, M.J., Grzymski, J.J., Strickland, M.J., 

Darrow, L.A., 2020. Acute associations between PM2.5 and ozone concentrations and asthma 

exacerbations among patients with and without allergic comorbidities. J. Expo. Sci. Environ. 

Epidemiol. 30, 795–804. https://doi.org/10.1038/s41370-020-0213-7 

Roth, G.A., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, 

F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R.S., Abebe, H.T., Abebe, M., 

Abebe, Z., Abejie, A.N., Abera, S.F., Abil, O.Z., Abraha, H.N., … Murray, C.J.L., 2018. Global, 

regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and 

territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The 

Lancet 392, 1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7 

Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York, 

pp. i–xxix. https://doi.org/10.1002/9780470316696.fmatter 

Russo, E.T., Hulse, T.E., Adamkiewicz, G., Levy, D.E., Bethune, L., Kane, J., Reid, M., Shah, S.N., 

2015. Comparison of Indoor Air Quality in Smoke-Permitted and Smoke-Free Multiunit 

Housing: Findings From the Boston Housing Authority. Nicotine Tob. Res. 17, 316–322. 

https://doi.org/10.1093/ntr/ntu146 

Saadeh, R., Klaunig, J., 2014. Child’s Development and Respiratory System Toxicity. J. Environ. Anal. 

Toxicol. 04. https://doi.org/10.4172/2161-0525.1000233 

Samake, A., Uzu, G., Martins, J.M.F., Calas, A., Vince, E., Parat, S., Jaffrezo, J.L., 2017. The 

unexpected role of bioaerosols in the Oxidative Potential of PM. Sci. Rep. 7, 10978. 

https://doi.org/10.1038/s41598-017-11178-0 

Sambiagio, N., Sauvain, J.-J., Berthet, A., Auer, R., Schoeni, A., Hopf, N.B., 2021. Rapid Liquid 

Chromatography—Tandem Mass Spectrometry Analysis of Two Urinary Oxidative Stress 

Biomarkers: 8-oxodG and 8-isoprostane. Antioxidants 10, 38. 

https://doi.org/10.3390/antiox10010038 

Sarnat, J.A., Long, C.M., Koutrakis, P., Coull, B.A., Schwartz, J., Suh, H.H., 2002. Using Sulfur as a 

Tracer of Outdoor Fine Particulate Matter. Environ. Sci. Technol. 36, 5305–5314. 

https://doi.org/10.1021/es025796b 

Sauvain, J.-J., Deslarzes, S., Storti, F., Riediker, M., 2015. Oxidative Potential of Particles in Different 

Occupational Environments: A Pilot Study. Ann. Occup. Hyg. 59, 882–894. 

https://doi.org/10.1093/annhyg/mev024 

Schultz, E.S., Hallberg, J., Bellander, T., Bergström, A., Bottai, M., Chiesa, F., Gustafsson, P.M., 

Gruzieva, O., Thunqvist, P., Pershagen, G., Melén, E., 2016a. Early-Life Exposure to Traffic-

related Air Pollution and Lung Function in Adolescence. Am. J. Respir. Crit. Care Med. 193, 

171–177. https://doi.org/10.1164/rccm.201505-0928OC 

Schultz, E.S., Hallberg, J., Gustafsson, P.M., Bottai, M., Bellander, T., Bergström, A., Kull, I., Gruzieva, 

O., Thunqvist, P., Pershagen, G., Melén, E., 2016b. Early life exposure to traffic-related air 

pollution and lung function in adolescence assessed with impulse oscillometry. J. Allergy Clin. 

Immunol. 138, 930-932.e5. https://doi.org/10.1016/j.jaci.2016.04.014 

Secrest, M.H., Schauer, J.J., Carter, E.M., Lai, A.M., Wang, Y., Shan, M., Yang, X., Zhang, Y., 

Baumgartner, J., 2016. The oxidative potential of PM2.5 exposures from indoor and outdoor 



 

229 

sources in rural China. Sci. Total Environ. 571, 1477–1489. 

https://doi.org/10.1016/j.scitotenv.2016.06.231 

Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate 

Change, 3rd Edition. 

Shahpoury, P., Zhang, Z.W., Filippi, A., Hildmann, S., Lelieveld, S., Mashtakov, B., Patel, B.R., Traub, 

A., Umbrio, D., Wietzoreck, M., Wilson, J., Berkemeier, T., Celo, V., Dabek-Zlotorzynska, E., 

Evans, G., Harner, T., Kerman, K., Lammel, G., Noroozifar, M., Pöschl, U., Tong, H., 2022. 

Inter-comparison of oxidative potential metrics for airborne particles identifies differences 

between acellular chemical assays. Atmospheric Pollut. Res. 13, 101596. 

https://doi.org/10.1016/j.apr.2022.101596 

Shao, J., Zosky, G.R., Hall, G.L., Wheeler, A.J., Dharmage, S., Melody, S., Dalton, M., Foong, R.E., 

O’Sullivan, T., Williamson, G.J., Chappell, K., Abramson, M.J., Johnston, F.H., 2019. Early 

life exposure to coal mine fire smoke emissions and altered lung function in young children. 

Respirology 25, 198–205. https://doi.org/10.1111/resp.13617 

Slama, R., Darrow, L., Parker, J., Woodruff, T.J., Strickland, M., Nieuwenhuijsen, M., Glinianaia, S., 

Hoggatt, K.J., Kannan, S., Hurley, F., Kalinka, J., Šrám, R., Brauer, M., Wilhelm, M., Heinrich, 

J., Ritz, B., 2008. Meeting Report: Atmospheric Pollution and Human Reproduction. Environ. 

Health Perspect. 116, 791–798. https://doi.org/10.1289/ehp.11074 

Sley, E.G., Rosen, E.M., van ‘t Erve, T.J., Sathyanarayana, S., Barrett, E.S., Nguyen, R.H.N., Bush, 

N.R., Milne, G.L., Swan, S.H., Ferguson, K.K., 2020. Omega-3 fatty acid supplement use and 

oxidative stress levels in pregnancy. PLOS ONE 15, e0240244. 

https://doi.org/10.1371/journal.pone.0240244 

Sly, P.D., Flack, F., 2008. Susceptibility of Children to Environmental Pollutants. Ann. N. Y. Acad. Sci. 

1140, 163–183. https://doi.org/10.1196/annals.1454.017 

Stafoggia, M., Oftedal, B., Chen, J., Rodopoulou, S., Renzi, M., Atkinson, R.W., Bauwelinck, M., 

Klompmaker, J.O., Mehta, A., Vienneau, D., Andersen, Z.J., Bellander, T., Brandt, J., Cesaroni, 

G., de Hoogh, K., Fecht, D., Gulliver, J., Hertel, O., Hoffmann, B., … Janssen, N.A.H., 2022. 

Long-term exposure to low ambient air pollution concentrations and mortality among 28 million 

people: results from seven large European cohorts within the ELAPSE project. Lancet Planet. 

Health 6, e9–e18. https://doi.org/10.1016/S2542-5196(21)00277-1 

Stapleton, A., Casas, M., García, J., García, R., Sunyer, J., Guerra, S., Abellan, A., Lavi, I., Dobaño, C., 

Vidal, M., Gascon, M., 2022. Associations between pre- and postnatal exposure to air pollution 

and lung health in children and assessment of CC16 as a potential mediator. Environ. Res. 204, 

111900. https://doi.org/10.1016/j.envres.2021.111900 

Steenhof, M., Gosens, I., Strak, M., Godri, K.J., Hoek, G., Cassee, F.R., Mudway, I.S., Kelly, F.J., 

Harrison, R.M., Lebret, E., Brunekreef, B., Janssen, N.A., Pieters, R.H., 2011. In vitro toxicity 

of particulate matter (PM) collected at different sites in the Netherlands is associated with PM 

composition, size fraction and oxidative potential - the RAPTES project. Part. Fibre Toxicol. 8, 

26. https://doi.org/10.1186/1743-8977-8-26 

Steenhof, M., Mudway, I.S., Gosens, I., Hoek, G., Godri, K.J., Kelly, F.J., Harrison, R.M., Pieters, 

R.H.H., Cassee, F.R., Lebret, E., Brunekreef, B.A., Strak, M., Janssen, N.A.H., 2013. Acute 

nasal pro-inflammatory response to air pollution depends on characteristics other than particle 

mass concentration or oxidative potential: the RAPTES project. Occup. Environ. Med. 70, 341–

348. https://doi.org/10.1136/oemed-2012-100993 



 

230 

Strak, M., Janssen, N., Beelen, R., Schmitz, O., Vaartjes, I., Karssenberg, D., van den Brink, C., Bots, 

M.L., Dijst, M., Brunekreef, B., Hoek, G., 2017. Long-term exposure to particulate matter, NO2 

and the oxidative potential of particulates and diabetes prevalence in a large national health 

survey. Environ. Int. 108, 228–236. https://doi.org/10.1016/j.envint.2017.08.017 

Strak, M., Janssen, N.A.H., Godri, K.J., Gosens, I., Mudway, I.S., Cassee Flemming R, Lebret Erik, 

Kelly, F.J., Harrison, R.M., Brunekreef, B., Steenhof, M., Hoek, G., 2012. Respiratory Health 

Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative 

Potential—The RAPTES Project. Environ. Health Perspect. 120, 1183–1189. 

https://doi.org/10.1289/ehp.1104389 

Strak, M., Weinmayr, G., Rodopoulou, S., Chen, J., Hoogh, K. de, Andersen, Z.J., Atkinson, R., 

Bauwelinck, M., Bekkevold, T., Bellander, T., Boutron-Ruault, M.-C., Brandt, J., Cesaroni, G., 

Concin, H., Fecht, D., Forastiere, F., Gulliver, J., Hertel, O., Hoffmann, B., … Samoli, E., 2021. 

Long term exposure to low level air pollution and mortality in eight European cohorts within 

the ELAPSE project: pooled analysis. BMJ 374, n1904. https://doi.org/10.1136/bmj.n1904 

Szigeti, T., Dunster, C., Cattaneo, A., Cavallo, D., Spinazzè, A., Saraga, D.E., Sakellaris, I.A., de 

Kluizenaar, Y., Cornelissen, E.J.M., Hänninen, O., Peltonen, M., Calzolai, G., Lucarelli, F., 

Mandin, C., Bartzis, J.G., Záray, G., Kelly, F.J., 2016. Oxidative potential and chemical 

composition of PM2.5 in office buildings across Europe – The OFFICAIR study. Environ. Int. 

92–93, 324–333. https://doi.org/10.1016/j.envint.2016.04.015 

Szigeti, T., Kertész, Z., Dunster, C., Kelly, F.J., Záray, G., Mihucz, V.G., 2014. Exposure to PM2.5 in 

modern office buildings through elemental characterization and oxidative potential. Atmos. 

Environ. 94, 44–52. https://doi.org/10.1016/j.atmosenv.2014.05.014 

Tang, Z., Sarnat, J.A., Weber, R.J., Russell, A.G., Zhang, X., Li, Z., Yu, T., Jones, D.P., Liang, D., 

2022. The Oxidative Potential of Fine Particulate Matter and Biological Perturbations in Human 

Plasma and Saliva Metabolome. Environ. Sci. Technol. 56, 7350–7361. 

https://doi.org/10.1021/acs.est.1c04915 

Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., Samara, C., 2010. 

Chemical composition and mass closure of ambient PM10 at urban sites. Atmos. Environ. 44, 

2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019 

Thaxton, J.E., Sharma, S., 2010. REVIEW ARTICLE: Interleukin-10: A Multi-Faceted Agent of 

Pregnancy. Am. J. Reprod. Immunol. 63, 482–491. https://doi.org/10.1111/j.1600-

0897.2010.00810.x 

Thurston, G.D., Balmes, J.R., Garcia, E., Gilliland, F.D., Rice, M.B., Schikowski, T., Van Winkle, L.S., 

Annesi-Maesano, I., Burchard, E.G., Carlsten, C., Harkema, J.R., Khreis, H., Kleeberger, S.R., 

Kodavanti, U.P., London, S.J., McConnell, R., Peden, D.B., Pinkerton, K.E., Reibman, J., 

White, C.W., 2020. Outdoor Air Pollution and New-Onset Airway Disease. An Official 

American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 17, 387–398. 

https://doi.org/10.1513/AnnalsATS.202001-046ST 

Thurston, G.D., Kipen, H., Annesi-Maesano, I., Balmes, J., Brook, R.D., Cromar, K., Matteis, S.D., 

Forastiere, F., Forsberg, B., Frampton, M.W., Grigg, J., Heederik, D., Kelly, F.J., Kuenzli, N., 

Laumbach, R., Peters, A., Rajagopalan, S.T., Rich, D., Ritz, B., Samet, J.M., Sandstrom, T., 

Sigsgaard, T., Sunyer, J., Brunekreef, B., 2017. A joint ERS/ATS policy statement: what 

constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 

49. https://doi.org/10.1183/13993003.00419-2016 



 

231 

Tofful, L., Canepari, S., Sargolini, T., Perrino, C., 2021. Indoor air quality in a domestic environment: 

Combined contribution of indoor and outdoor PM sources. Build. Environ. 202, 108050. 

https://doi.org/10.1016/j.buildenv.2021.108050 

Tonne, C., Yanosky, J.D., Beevers, S., Wilkinson, P., Kelly, F.J., 2012. PM mass concentration and PM 

oxidative potential in relation to carotid intima-media thickness. Epidemiol. Camb. Mass 23, 

486–494. https://doi.org/10.1097/EDE.0b013e31824e613e 

Tripepi, G., Jager, K.J., Dekker, F.W., Zoccali, C., 2010. Selection Bias and Information Bias in Clinical 

Research. Nephron Clin. Pract. 115, c94–c99. https://doi.org/10.1159/000312871 

Tsakas, M.P., Siskos, A.P., Siskos, P., Tsakas, M.P., Siskos, A.P., Siskos, P., 2011. Indoor Air Pollutants 

and the Impact on Human Health, in: Chemistry, Emission Control, Radioactive Pollution and 

Indoor Air Quality. IntechOpen. https://doi.org/10.5772/18806 

Tsuda, S., Nakashima, A., Shima, T., Saito, S., 2019. New Paradigm in the Role of Regulatory T Cells 

During Pregnancy. Front. Immunol. 10, 573. https://doi.org/10.3389/fimmu.2019.00573 

US EPA, O., 2016. Particulate Matter (PM) Basics [WWW Document]. URL https://www.epa.gov/pm-

pollution/particulate-matter-pm-basics (accessed 3.7.23). 

Utinger, B., Campbell, S.J., Bukowiecki, N., Barth, A., Gfeller, B., Freshwater, R., Ruegg, H.-R., 

Kalberer, M., 2023. An Automated Online Field Instrument to Quantify the Oxidative Potential 

of Aerosol Particles via Ascorbic Acid Oxidation (preprint). Aerosols/Laboratory 

Measurement/Instruments and Platforms. https://doi.org/10.5194/amt-2023-14 

Uzu, G., n.d. ROS online. 21P3079/BKKT. 

Valavanidis, A., Vlachogianni, T., Fiotakis, C., 2009. 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A 

critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health Part C Environ. 

Carcinog. Ecotoxicol. Rev. 27, 120–139. https://doi.org/10.1080/10590500902885684 

Valavanidis, A., Vlachogianni, T., Fiotakis, K., Loridas, S., 2013. Pulmonary Oxidative Stress, 

Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major 

Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int. J. Environ. 

Res. Public. Health 10, 3886–3907. https://doi.org/10.3390/ijerph10093886 

Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., 2007. Free radicals and 

antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 

39, 44–84. https://doi.org/10.1016/j.biocel.2006.07.001 

van Buuren, S., Groothuis-Oudshoorn, K., 2011. Multivariate Imputation by Chained Equations in R. J. 

Stat. Softw. 45, 1–67. https://doi.org/10.18637/jss.v045.i03 

van der Ent, C.K., Brackel, H.J., van der Laag, J., Bogaard, J.M., 1996. Tidal breathing analysis as a 

measure of airway obstruction in children three years of age and older. Am. J. Respir. Crit. Care 

Med. 153, 1253–1258. https://doi.org/10.1164/ajrccm.153.4.8616550 

van ’t Erve, T.J., Rosen, E.M., Barrett, E.S., Nguyen, R.H.N., Sathyanarayana, S., Milne, G.L., Calafat, 

A.M., Swan, S.H., Ferguson, K.K., 2019. Phthalates and Phthalate Alternatives Have Diverse 

Associations with Oxidative Stress and Inflammation in Pregnant Women. Environ. Sci. 

Technol. 53, 3258–3267. https://doi.org/10.1021/acs.est.8b05729 

van ’t Erve, T.J., 2018. Strategies to decrease oxidative stress biomarker levels in human medical 

conditions: A meta-analysis on 8-iso-prostaglandin F2α. Redox Biol. 17, 284–296. 

https://doi.org/10.1016/j.redox.2018.05.003 



 

232 

Vardoulakis, S., Giagloglou, E., Steinle, S., Davis, A., Sleeuwenhoek, A., Galea, K.S., Dixon, K., 

Crawford, J.O., 2020. Indoor Exposure to Selected Air Pollutants in the Home Environment: A 

Systematic Review. Int. J. Environ. Res. Public. Health 17, 8972. 

https://doi.org/10.3390/ijerph17238972 

Veras, M.M., de Oliveira Alves, N., Fajersztajn, L., Saldiva, P., 2017. Before the first breath: prenatal 

exposures to air pollution and lung development. Cell Tissue Res. 367, 445–455. 

https://doi.org/10.1007/s00441-016-2509-4 

Vernet, C., Philippat, C., Agier, L., Calafat, A.M., Ye, X., Lyon-Caen, S., Hainaut, P., Siroux, V., 

Schisterman, E.F., Slama, R., 2019. An Empirical Validation of the Within-subject 

Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarker-based 

Studies. Epidemiology 30, 756–767. https://doi.org/10.1097/EDE.0000000000001056 

Vicente, E.D., Vicente, A.M., Evtyugina, M., Calvo, A.I., Oduber, F., Blanco Alegre, C., Castro, A., 

Fraile, R., Nunes, T., Lucarelli, F., Calzolai, G., Nava, S., Alves, C.A., 2020. Impact of vacuum 

cleaning on indoor air quality. Build. Environ. 180, 107059. 

https://doi.org/10.1016/j.buildenv.2020.107059 

Visentin, M., Pagnoni, A., Sarti, E., Pietrogrande, M.C., 2016. Urban PM2.5 oxidative potential: 

Importance of chemical species and comparison of two spectrophotometric cell-free assays. 

Environ. Pollut. 219, 72–79. https://doi.org/10.1016/j.envpol.2016.09.047 

Wang, J., Jiang, Haoyu, Jiang, Hongxing, Mo, Y., Geng, X., Li, Jibing, Mao, S., Bualert, S., Ma, S., Li, 

Jun, Zhang, G., 2020. Source apportionment of water-soluble oxidative potential in ambient 

total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. 

Atmos. Environ. 235, 117624. https://doi.org/10.1016/j.atmosenv.2020.117624 

Wang, J., Ma, T., Ma, D., Li, H., Hua, L., He, Q., Deng, X., 2021. The Impact of Air Pollution on 

Neurodegenerative Diseases. Ther. Drug Monit. 43, 69–78. 

https://doi.org/10.1097/FTD.0000000000000818 

Wang, M., Gehring, U., Hoek, G., Keuken, M., Jonkers, S., Beelen, R., Eeftens, M., Postma, D.S., 

Brunekreef, B., 2015. Air Pollution and Lung Function in Dutch Children: A Comparison of 

Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure 

Modeling Approaches. Environ. Health Perspect. 123, 847–851. 

https://doi.org/10.1289/ehp.1408541 

Wang, S., Zhao, Y., Chan, A.W.H., Yao, M., Chen, Z., Abbatt, J.P.D., 2023. Organic Peroxides in 

Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem. Rev. 

123, 1635–1679. https://doi.org/10.1021/acs.chemrev.2c00430 

Wang, Y., Hopke, P.K., Sun, L., Chalupa, D.C., Utell, M.J., 2011. Laboratory and Field Testing of an 

Automated Atmospheric Particle-Bound Reactive Oxygen Species Sampling-Analysis System. 

J. Toxicol. 2011, e419476. https://doi.org/10.1155/2011/419476 

Wang, Z.-M., Wagner, J., Wall, S., 2011. Characterization of Laser Printer Nanoparticle and VOC 

Emissions, Formation Mechanisms, and Strategies to Reduce Airborne Exposures. Aerosol Sci. 

Technol. 45, 1060–1068. https://doi.org/10.1080/02786826.2011.580799 

Weber, S., Salameh, D., Albinet, A., Alleman, L.Y., Waked, A., Besombes, J.-L., Jacob, V., Guillaud, 

G., Meshbah, B., Rocq, B., Hulin, A., Dominik-Sègue, M., Chrétien, E., Jaffrezo, J.-L., Favez, 

O., 2019. Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized 

Constrained Positive Matrix Factorization Approach. Atmosphere 10, 310. 

https://doi.org/10.3390/atmos10060310 



 

233 

Weber, S., Uzu, G., Favez, O., Borlaza, L.J.S., Calas, A., Salameh, D., Chevrier, F., Allard, J., 

Besombes, J.-L., Albinet, A., Pontet, S., Mesbah, B., Gille, G., Zhang, S., Pallares, C., Leoz-

Garziandia, E., Jaffrezo, J.-L., 2021. Source apportionment of atmospheric PM10 oxidative 

potential: synthesis of 15 year-round urban datasets in France. Atmospheric Chem. Phys. 21, 

11353–11378. https://doi.org/10.5194/acp-21-11353-2021 

Weichenthal, S., Crouse, D.L., Pinault, L., Godri-Pollitt, K., Lavigne, E., Evans, G., van Donkelaar, A., 

Martin, R.V., Burnett, R.T., 2016. Oxidative burden of fine particulate air pollution and risk of 

cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). 

Environ. Res. 146, 92–99. https://doi.org/10.1016/j.envres.2015.12.013 

Weichenthal, S., Lavigne, E., Traub, A., Umbrio, D., You, H., Pollitt, K., Shin, T., Kulka, R., Stieb, 

D.M., Korsiak, J., Jessiman, B., Brook, J.R., Hatzopoulou, M., Evans, G., Burnett, R.T., 2021. 

Association of Sulfur, Transition Metals, and the Oxidative Potential of Outdoor PM2.5 with 

Acute Cardiovascular Events: A Case-Crossover Study of Canadian Adults. Environ. Health 

Perspect. 129, 107005. https://doi.org/10.1289/EHP9449 

Weichenthal, S., Pinault, L., Christidis, T., Burnett, R.T., Brook, J.R., Chu, Y., Crouse, D.L., Erickson, 

A.C., Hystad, P., Li, C., Martin, R.V., Meng, J., Pappin, A.J., Tjepkema, M., van Donkelaar, 

A., Weagle, C.L., Brauer, M., 2022. How low can you go? Air pollution affects mortality at 

very low levels. Sci. Adv. 8, eabo3381. https://doi.org/10.1126/sciadv.abo3381 

Weichenthal, S., Shekarrizfard, M., Traub, A., Kulka, R., Al-Rijleh, K., Anowar, S., Evans, G., 

Hatzopoulou, M., 2019. Within-City Spatial Variations in Multiple Measures of PM 2.5 

Oxidative Potential in Toronto, Canada. Environ. Sci. Technol. 53, 2799–2810. 

https://doi.org/10.1021/acs.est.8b05543 

Weiner, R., 2015. 5 - Risk assessment approaches for the transport of radioactive material, in: Sorenson, 

K.B. (Ed.), Safe and Secure Transport and Storage of Radioactive Materials. Woodhead 

Publishing, Oxford, pp. 51–63. https://doi.org/10.1016/B978-1-78242-309-6.00005-8 

Weitner, T., Inić, S., Jablan, J., Gabričević, M., Domijan, A.-M., 2016. Spectrophotometric 

Determination of Malondialdehyde in Urine Suitable for Epidemiological Studies. Croat. Chem. 

Acta 89, 133–139. https://doi.org/10.5562/cca2902 

Weng, C.-M., Lee, M.-J., He, J.-R., Chao, M.-W., Wang, C.-H., Kuo, H.-P., 2018. Diesel exhaust 

particles up-regulate interleukin-17A expression via ROS/NF-κB in airway epithelium. 

Biochem. Pharmacol. 151, 1–8. https://doi.org/10.1016/j.bcp.2018.02.028 

WHO, 2016. Ambient air pollution: A global assessment of exposure and burden of disease, World 

Health Organization. ed. 

Wu, X., Cai, H., Xiang, Y.-B., Cai, Q., Yang, G., Liu, D., Sanchez, S., Zheng, W., Milne, G., Shu, X.-

O., 2010. Intra-Person Variation of Urinary Biomarkers of Oxidative Stress and Inflammation. 

Cancer Epidemiol. Prev. Biomark. 19, 947–952. https://doi.org/10.1158/1055-9965.EPI-10-

0046 

Xiong, Q., Yu, H., Wang, R., Wei, J., Verma, V., 2017. Rethinking Dithiothreitol-Based Particulate 

Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen 

Species Generation. Environ. Sci. Technol. 51, 6507–6514. 

https://doi.org/10.1021/acs.est.7b01272 

Xu, Z., Wang, W., Liu, Q., Li, Z., Lei, L., Ren, L., Deng, F., Guo, X., Wu, S., 2022. Association between 

gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-

analysis. Environ. Pollut. 292, 118336. https://doi.org/10.1016/j.envpol.2021.118336 



 

234 

Yang, A., Janssen, N.A.H., Brunekreef, B., Cassee, F.R., Hoek, G., Gehring, U., 2016. Children’s 

respiratory health and oxidative potential of PM2.5 : the PIAMA birth cohort study. Occup. 

Environ. Med. 73, 154–160. https://doi.org/10.1136/oemed-2015-103175 

Yang, A., Jedynska, A., Hellack, B., Kooter, I., Hoek, G., Brunekreef, B., Kuhlbusch, T.A.J., Cassee, 

F.R., Janssen, N.A.H., 2014. Measurement of the oxidative potential of PM2.5 and its 

constituents: The effect of extraction solvent and filter type. Atmos. Environ. 83, 35–42. 

https://doi.org/10.1016/j.atmosenv.2013.10.049 

Yang, F., Liu, C., Qian, H., 2021. Comparison of indoor and outdoor oxidative potential of PM2.5: 

pollution levels, temporal patterns, and key constituents. Environ. Int. 155, 106684. 

https://doi.org/10.1016/j.envint.2021.106684 

Yli-Tuomi, T., Lanki, T., Hoek, G., Brunekreef, B., Pekkanen, J., 2008. Determination of the sources of 

Indoor PM 2.5 in Amsterdam and Helsinki. Environ. Sci. Technol. 42, 4440–4446. 

https://doi.org/10.1021/es0716655 

Young, C.J., Zhou, S., Siegel, J.A., Kahan, T.F., 2019. Illuminating the dark side of indoor oxidants. 

Environ. Sci. Process. Impacts 21, 1229–1239. https://doi.org/10.1039/C9EM00111E 

Yu, H., Puthussery, J.V., Wang, Y., Verma, V., 2021. Spatiotemporal variability in the oxidative 

potential of ambient fine particulate matter in the Midwestern United States. Atmospheric 

Chem. Phys. 21, 16363–16386. https://doi.org/10.5194/acp-21-16363-2021 

Yu, H., Wei, J., Cheng, Y., Subedi, K., Verma, V., 2018. Synergistic and Antagonistic Interactions 

among the Particulate Matter Components in Generating Reactive Oxygen Species Based on 

the Dithiothreitol Assay. Environ. Sci. Technol. 52, 2261–2270. 

https://doi.org/10.1021/acs.est.7b04261 

Zeng, M., Liao, Z., Wang, L., 2020. Atmospheric oxidation of gaseous anthracene and phenanthrene 

initiated by OH radicals. Atmos. Environ. 234, 117587. 

https://doi.org/10.1016/j.atmosenv.2020.117587 

Zhan, Y., Johnson, K., Norris, C., Shafer, M.M., Bergin, M.H., Zhang, Y., Zhang, J., Schauer, J.J., 2018. 

The influence of air cleaners on indoor particulate matter components and oxidative potential 

in residential households in Beijing. Sci. Total Environ. 626, 507–518. 

https://doi.org/10.1016/j.scitotenv.2018.01.024 

Zhang, B., Gong, X., Han, B., Chu, M., Gong, C., Yang, J., Chen, L., Wang, J., Bai, Z., Zhang, Y., 2022. 

Ambient PM2.5 exposures and systemic inflammation in women with early pregnancy. Sci. 

Total Environ. 829, 154564. https://doi.org/10.1016/j.scitotenv.2022.154564 

Zhang, X., Staimer, N., Gillen, D.L., Tjoa, T., Schauer, J.J., Shafer, M.M., Hasheminassab, S., Pakbin, 

P., Vaziri, N.D., Sioutas, C., Delfino, R.J., 2016. Associations of oxidative stress and 

inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly 

cohort. Environ. Res. 150, 306–319. https://doi.org/10.1016/j.envres.2016.06.019 

Zhang, Y.-J., Huang, C., Lv, Y.-S., Ma, S.-X., Guo, Y., Zeng, E.Y., 2021. Polycyclic aromatic 

hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in 

human body: A case study in the indoor environment of Guangzhou, South China. Environ. Int. 

149, 106405. https://doi.org/10.1016/j.envint.2021.106405 

Zhao, C.-N., Xu, Z., Wu, G.-C., Mao, Y.-M., Liu, L.-N., Qian-Wu, Dan, Y.-L., Tao, S.-S., Zhang, Q., 

Sam, N.B., Fan, Y.-G., Zou, Y.-F., Ye, D.-Q., Pan, H.-F., 2019. Emerging role of air pollution 



 

235 

in autoimmune diseases. Autoimmun. Rev. 18, 607–614. 

https://doi.org/10.1016/j.autrev.2018.12.010 

Zhao, W., Hopke, P.K., Norris, G., Williams, R., Paatero, P., 2006. Source apportionment and analysis 

on ambient and personal exposure samples with a combined receptor model and an adaptive 

blank estimation strategy. Atmos. Environ. 40, 3788–3801. 

https://doi.org/10.1016/j.atmosenv.2006.02.027 



 

236 

  



 

237 

Appendix A 

Publications and communications 
 

A.1 Accepted articles 

Anouk Marsal, Jean-Jacques Sauvain, Aurélien Thomas, Sarah Lyon-Caen, Lucille Joanna S. Borlaza, 

Claire Philippat, Jean-Luc Jaffrezo, Anne Boudier, Sophie Darfeuil, Rhabira Elazzouzi, Johanna 

Lepeule, Ryan Chartier, Sam Bayat, Rémy Slama, Valérie Siroux*
,
 Gaëlle Uzu*. Effects of personal 

exposure to the oxidative potential of PM2.5 on oxidative stress biomarkers in pregnant women. Science 

of the Total Environment, 911 (2024) Available on: https://doi-org/10.1016/j.scitotenv.2023.168475 

*Co-last authorship 

 

Anouk Marsal, Rémy Slama, Sarah Lyon-Caen, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Anne 

Boudier, Sophie Darfeuil, Rhabira Elazzouzi, Yoann Gioria, Johanna Lepeule, Ryan Chartier, Isabelle 

Pin, Joane Quentin, Sam Bayat, Gaëlle Uzu*, Valérie Siroux*, and the SEPAGES cohort study group. 

Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool-Age 

Children: A Prospective Study. Environmental Health Perspectives, 131:1 (2023). Available on: 

https://ehp.niehs.nih.gov/doi/10.1289/EHP11155. *Co-last authorship  

Lucille Joanna S. Borlaza, Gaëlle Uzu, Marion Ouidir, Sarah Lyon-Caen, Anouk Marsal, Samuël 

Weber, Valérie Siroux, Johanna Lepeule, Anne Boudier, Jean-Luc Jaffrezo, Rémy Slama and the 

SEPAGES cohort study group. Personal exposure to PM2.5 oxidative potential and its association to birth 

outcomes. Journal of Exposure Science & Environmental Epidemiology, 33, 416–426 (2023). Available 

on: https://doi.org/10.1038/s41370-022-00487-w [My contribution to this article mainly involved 

checking the models and reviewing the manuscript.] 

 

Lucille Joanna S. Borlaza, Samuël Weber, Anouk Marsal, Gaëlle Uzu, Véronique Jacob, Jean-Luc 

Besombes, Mélodie Chatain, Sébastien Conil, and Jean-Luc Jaffrezo. Nine-year trends of PM10 sources 

and oxidative potential in a rural background site in France, Atmospheric Chemistry and Physics, 22, 

8701–8723 (2022). Available on: https://doi.org/10.5194/acp-22-8701-2022 [I started working on the 

analyses and manuscript related to this article during an internship in 2019. The results and the 

manuscript were updated by L.J.S.B. and S.W.] 

 

https://doi-org/10.1016/j.scitotenv.2023.168475
https://ehp.niehs.nih.gov/doi/10.1289/EHP11155
https://doi.org/10.1038/s41370-022-00487-w
https://doi.org/10.5194/acp-22-8701-2022


 

238 

A.2 Articles in preparation 

Anouk Marsal*, Laurene Frau*, Laurence Chaperot, Ines Amine, Sarah Lyon-Caen, Anne Boudier, 

Claire Philippat, Karine Supernant, Johanna Lepeule, Joane Quentin, Ryan Chartier, Sam Bayat, Remy 

Slama, Gaelle Uzu, Valérie Siroux. Personal exposure to air pollutants and immune system biomarkers 

in pregnant women. *Co-first authorship. [The manuscript related to this work is currently under review 

by the co-authors.] 

 

Anouk Marsal, Sarah Lyon-Caen, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Anne Boudier, Joane 

Quentin, Karine Supernant, Rhabira Elazzouzi, Sophie Darfeuil, Takoua Mhadhabi, Yoann Gioria, 

Rémy Slama, Valérie Siroux,
 Gaëlle Uzu. Characteristics of PM2.5 and OP in indoor and outdoor 

environments. [We plan to make some improvements to this manuscript before submitting it.] 

 

Lucille Joanna S. Borlaza, Valeria Mardoñez, Anouk Marsal, Ian Hough, Vy Thuy Dinh Ngoc, Marcos 

Luc Besombes, Griša Močnik, Isabel Moreno, -Luc Jaffrezo, Andrés Alastuey, Jean-Andrade, Jean

Fernando Velarde, Jacques Gardon, Alex Cornejo, Paolo Laj, and Gaëlle Uzu. Oxidative potential of 

 .altitude cities in Bolivia-association to respiratory health endpoints in highparticulate matter and its 

This work was part of V. Mardoñez’s thesis. My contributions relate to the statistical methods that are [

]used, and result interpretation.  

 

A.3 Poster communications 

Anouk Marsal, Rémy Slama, Sarah Lyon-Caen, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Anne 

Boudier, Sophie Darfeuil, Rhabira Elazzouzi, Yoann Gioria, Johanna Lepeule, Ryan Chartier, Isabelle 

Pin, Joane Quentin, Sam Bayat, Gaëlle Uzu*, Valérie Siroux*, and the SEPAGES cohort study group. 

Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool-Age 

Children: A Prospective Study. International Aerosol Conference, Athens, Sep. 2022. 

*Co-last authorship 

 

Anouk Marsal, Jean-Jacques Sauvain, Aurélien Thomas, Sarah Lyon-Caen, Lucille Joanna S. Borlaza, 

Claire Philippat, Jean-Luc Jaffrezo, Anne Boudier, Sophie Darfeuil, Rhabira Elazzouzi, Johanna 

Lepeule, Ryan Chartier, Sam Bayat, Rémy Slama, Valérie Siroux*
,
 Gaëlle Uzu*. Effects of personal 

exposure to the oxidative potential of PM2.5 on oxidative stress biomarkers in pregnant women. 

European Aerosol Conference, Málaga, Sep. 2023. 

 


	Table of Contents
	List of Figures
	List of Tables
	Introduction
	I. General introduction
	II. Air Pollution
	II.1. Ambient air pollutants
	II.1.1. Gases
	II.1.2. Particles

	II.2. Indoor air quality
	II.3. Regulated metrics

	III.  PM Exposure assessment
	III.1. Estimation methods in ambient air
	III.2. Personal measures

	IV. Health effects of exposure to PM
	IV.1. Short term health effects of PM
	IV.2. Long term health effects of PM
	IV.3. Increased vulnerability for children
	IV.3.1. Measuring lung function in early childhood: a challenge for epidemiological studies


	V. Oxidative stress: a major mechanism underlying the health effects of exposure to PM
	V.1. Oxidative stress
	V.2. Oxidative potential of particles
	V.3. Evidence for OP effects on health and biological parameters

	VI. Objectives

	Methodology
	I. Study site
	II. SEPAGES cohort
	II.1. Pregnancy period
	II.1.1. Exposure assessment
	II.1.2. Urine pools
	II.1.3. Blood samples

	II.2. Lung function measurements
	II.3. Indoor-outdoor campaign

	III. Chemical analyses
	III.1. OP analysis
	III.2. Indoor and outdoor PM2.5 filters
	III.3. Urine samples
	III.4. Blood samples

	IV. Statistical tools
	IV.1. Personal exposure to PM and OP and biological or respiratory health endpoints
	IV.2. Indoor and outdoor measurement campaign


	Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool-Age Children: A Prospective Study
	I. French summary
	II. Abstract
	III.  Introduction
	IV. Methods
	IV.1. Study population
	IV.2. Maternal exposure
	IV.3. Lung Function at 6 weeks
	IV.4. Lung Function at 3 years
	IV.5. Statistical methods

	V. Results
	V.1. Description of the population
	V.2. Exposure to PM2.5 and its oxidative potential
	V.3. Association between exposures to prenatal PM2.5 and OP and lung function

	VI. Discussion
	VI.1. PM and OP exposures and lung function
	VI.2. Comparison of the exposure metrics
	VI.3. Strengths and limitations

	VII. Acknowledgments
	VIII. Supplemental Material
	VIII.1. List of Figures
	VIII.1. List of Tables


	Effects of personal exposure to the oxidative potential of PM2.5 on oxidative stress biomarkers in pregnant women
	I. French summary
	II. Abstract
	III.  Introduction
	IV. Materials and methods
	IV.1. Study design and population
	IV.2. Personal exposure
	IV.3. Biomarkers of oxidative stress
	IV.4. Statistical methods

	V. Results
	V.1. Description of the population
	V.2. Description of exposure
	V.3. Description of biomarkers
	V.4. Associations of PM2.5 and OP with OSB

	VI. Discussion
	VI.1. PM effects on OSB
	VI.2. OP effects on OSB
	VI.3. OPAA in epidemiological studies
	VI.4. Effect modification by PM2.5
	VI.5. Strengths & Limitations

	VII. Conclusion
	VIII. Acknowledgment
	IX. Supplemental Material
	IX.1. List of Figures
	IX.2. List of Tables


	Personal exposure to air pollutants and immune system biomarkers in pregnant women
	I. French summary
	II. Abstract
	III.  Introduction
	IV. Materials and methods
	IV.1. Study population
	IV.2. Personal exposure assessment to air pollutants
	IV.3. Maternal immune function
	IV.4. Statistical analysis

	V. Results
	V.1. Population characteristics
	V.2. Exposure to NO2 , PM2.5 and OP
	V.3. Cytokines measurements
	V.4. Association between personal exposures to air pollutants and immune function parameters

	VI.  Discussion
	VI.1. Comparison with others studies
	VI.2. Strengths and Limitations

	VII. Conclusion
	VIII. Supplemental Material
	VIII.1. List of Figures
	VIII.2. List of Tables


	Characteristics of PM2.5 and OP in indoor and outdoor environments
	I. French summary
	II.  Abstract
	III.  Introduction
	IV. Material and methods
	IV.1. Site description
	IV.2. Sampling procedure
	IV.3. Chemical analyses
	IV.4. OP analysis
	IV.5. Data validation and statistical analysis

	V. Results and discussion
	V.1. General description of the homes
	V.2. Characteristics of concurrent indoor and outdoor measurements
	V.2.1. PM reconstruction
	V.2.2. Seasonality of the OP of PM

	V.3. Spatial variations of PM and OP over Grenoble
	V.4. Comparison of PM exposures in the indoor and outdoor environments
	V.4.1. Chemical drivers of PM2.5 and OP
	V.4.2. Indoor sources of PM et PO

	V.5. Strengths and limitations

	VI. Conclusion
	VII. Supplemental Material
	VII.1. List of Tables


	Discussion and Perspectives
	I. Discussion
	I.1. Summary of the main findings
	I.2. Strength and limitations
	I.2.1. Population selection
	I.2.2. Exposure assessment
	I.2.3. Outcomes’ assessment
	I.2.4. Confounding factors


	II. Perspectives
	II.1. Further research in SEPAGES
	II.1.1. Etiological research
	II.1.2. Methodological research

	II.2. Research perspectives
	II.2.1. Epidemiology
	II.2.2. Mechanistical and methodological considerations
	II.2.2.1. Mechanistic research
	II.2.2.2. OP measurement methods

	II.2.3. Perspectives for public health



	References
	Publications and communications
	A.1 Accepted articles
	A.2 Articles in preparation
	A.3 Poster communications


