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Titre : Étude qualitative des phénomènes physiques via la géométrie des feuilletages
complexes

Mots clés : corps rigide, dynamique Hamiltonienne, monodromie Hamiltonienne,
géométrie complexe, feuilletages complexes

Résumé : Cette thèse aborde deux su-
jets en physique mathématique : l’effet
de la raquette de tennis et la monodromie
hamiltonienne.
Grâce à une exploration approfondie de la
géométrie sous-jacente, nous fournissons
une description mathématique complète
de l’effet de la raquette de tennis, un
phénomène géométrique observé dans les
rotations libres de corps rigides. Nous
examinons l’existence, l’origine et la ro-
bustesse de cet effet en utilisant la
géométrie complexe et la géométrie réelle.
Nous détectons également des signatures
de contraintes physiques sur les mo-
ments d’inertie du corps, dans la struc-
ture géométrique de l’effet de la raque-
tte de tennis. L’analyse est étendue à
des phénomènes étroitement liés tels que

l’effet Dhzanibekov, le monster flip et la
phase de Montgomery.
La deuxième partie de la thèse se concen-
tre sur la monodromie Hamiltonienne, qui
est l’obstruction topologique la plus sim-
ple à l’existence de coordonnées d’action-
angles globales pour un système com-
plètement intégrable. Nous montrons
que l’utilisation de paires de Lax spec-
trales fournit une structure géométrique
complexe qui permet l’étude de la mon-
odromie Hamiltonienne et le calcul de la
matrice de monodromie correspondante.
Tout au long de ce travail de recherche,
nous adoptons un cadre général qui utilise
des feuilletages complexes pour fournir
une structure géométrique aux problèmes
posés, ce qui permet de mieux comprendre
les phénomènes physiques correspondant.

Title: Qualitative study of physical phenomena through geometry of complex folia-
tions

Keywords: rigid body, Hamiltonian dynamics, Hamiltonian monodromy, complex
geometry, complex foliations

Abstract: This thesis studies two top-
ics in mathematical physics: the ten-
nis racket effect and Hamiltonian mon-
odromy.
Through an in-depth exploration of the
underlying geometry, we provide a full
mathematical description of the tennis
racket effect, which is a geometric phe-
nomenon observed in free rotational dy-
namics of rigid bodies. We examine
the existence, origin, and robustness of
this effect using the interplay between
complex and real geometries. We also
detect signatures of physical constraints
on the moments of inertia of the body,
in the geometric structure of the tennis
racket effect. The analysis is extended
to closely related phenomena such as the

Dhzanibekov effect, the monster flip, and
the Montgomery phase.
The second part of the thesis focuses
on Hamiltonian monodromy, which is the
simplest topological obstruction to the ex-
istence of global action-angle coordinates
for a completely integrable system. We
show that the use of spectral Lax pairs
provides a complex geometric structure
that enables the study of Hamiltonian
monodromy and the calculation of the
corresponding monodromy matrix.
Throughout this research work, we adopt
a general framework that employs com-
plex foliations to provide a geometric
structure for the problems under study,
leading to a deeper understanding of these
phenomena.
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Abstract: The tennis racket effect is a geometric phenomenon that occurs in a free
rotation of a three-dimensional rigid body. In a complex phase space, we show that this
effect originates from a pole of a Riemann surface and can be viewed as a consequence
of the Picard-Lefschetz formula. We prove that a perfect twist of the racket is achieved
in the limit of an ideal asymmetric object. We give upper and lower bounds to the
twist defect for any rigid body, which reveals the robustness of the effect. A similar
approach describes the Dzhanibekov effect in which a wing nut, spinning around its
central axis, suddenly makes a half-turn flip around a perpendicular axis and the
Monster flip, an almost impossible skateboard trick.
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Abstract: We study signatures of physical constraints on free rotations of rigid bodies.
We show analytically that the physical or non-physical nature of the moments of inertia
of a system can be detected by qualitative changes both in the Montgomery phase and
in the tennis racket effect.

Title: Hamiltonian monodromy via spectral Lax pairs
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Abstract: Hamiltonian Monodromy is the simplest topological obstruction to the
existence of global action-angle coordinates in a completely integrable system. We
show that this property can be studied in a neighborhood of a focus-focus singularity
by a spectral Lax pair approach. From the Lax pair, we derive a Riemann surface which
allows us to compute in a straightforward way the corresponding Monodromy matrix.
The general results are applied to the Jaynes-Cummings model and the spherical
pendulum.
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Introduction

Historically, mathematics and physics developed side by side with very
important interactions. Mathematical concepts help the understanding of
physical phenomena and, at the same time, physics inspires the development
of mathematics through experimental results. Nowadays, the importance
of this vital symbiosis has been affected by the hyper-specialization; which
often results in little interaction between the different scientific fields.

Aware of this problem, many scientists worldwide have become inter-
ested in strengthening links between different research areas, resulting in
the development of these fields and even the emergence of new ones. Math-
ematical physics is an instance of this process since it is an area that brings
mathematicians and physicists, with different backgrounds, to work to-
gether, allowing a better understanding of physical phenomena.

This research work is motivated by the fundamental idea of making dif-
ferent research fields interact. Specifically, the goal of this work is to connect
the geometry of complex foliations with integrable physical systems. This
thesis is divided into two parts. The first part deals with problems related
to rigid body dynamics and the second part with problems on Hamiltonian
monodromy. In Appendix A different perspectives are described, in particu-
lar, in Section A.3 a brief description of a potentially interesting connection
between the two parts of this thesis is given.

The main problem under study in the first part is the tennis racket
effect (TRE). In short, it can be described as an unexpected π-flip observed
(in such a way that the faces of the head of the racket are exchanged) after
a complete turn (2π-rotation) of the handle of the racket is performed [61].
Several studies about this effect have been published [5, 70, 69, 47, 74], in
which different assumptions were imposed to obtain approximations that
allow a better understanding of this effect.

A similar effect is the Dhzanibekov 1 effect, where the unexpected π-
flip is observed after an α-rotation of the handle [14]. There exist fewer

1Named after the Soviet cosmonaut Vladimir Dzhanibekov, who noticed this effect
in space in 1985.
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Introduction

scientific articles about this effect [58]; maybe because the existence of it
was kept as a secret for almost ten years [71].

On the other hand, the monster flip is a skateboarding trick where the
objective is to perform a complete flip of the skateboard around its in-
termediate axis avoiding any extra rotation (to be able to continue skat-
ing). In particular, this implies that one has to avoid the tennis racket
effect. There is no scientific reference studying this trick, but it is a famous
skateboard trick and many videos and explanations can be found on the
internet [19, 33].

Finally, the Montgomery phase [51] is part of the geometric phases2 in
physics [44]. The Montgomery phase measures a specific rotation of a rigid
body in a laboratory frame. When the angular momentum of the rigid body
performs a loop in the body-fixed frame, the system rotates by some angle
around the fixed direction of the angular momentum in the initial frame.
This angle of rotation is the Montgomery phase [52] and it is closely related
to the tennis racket effect.

In the first part of this work, we treat the phenomena mentioned before.
In the first Chapter, we present an overview of the classical definitions and
results that we need to develop this part. In Chapter 2, we address the prob-
lem of finding a good mathematical description of the tennis racket effect
to understand its origin and, as consequence, the origin of the Dhzanibekov
effect and the monster flip. We detect different regions to analyze using
complex geometry, and then, perform a study in the real domain for each
of these regions; obtaining results explaining the three aforementioned ef-
fects. In Chapter 3, we take into account some physical restrictions that
the moments of inertia of a rigid body have to fulfill. We detect differences
in the rigid body dynamics for the cases in which the moments of inertia
fulfill these restrictions and when they do not. We show how to detect such
constraints in the TRE and the Montgomery phase. We take advantage
of the geometrical structure introduced for this problem to make a global
analysis of the tennis racket effect, to study some limit cases, and to obtain
results about the existence of the perfect TRE and the existence of the
Dhzanibekov effect with a given value of α.

In the second part, the main problem under study is Hamiltonian mon-
odromy, concept introduced by Duistermaat [28] in 1980, which has been
extensively studied [13, 22, 76, 8, 67, 30, 53, 46, 66, 31, 49] since then, from
many different perspectives.

We now give a brief presentation of the origin of this concept. In 1970,
Smale [64] proposed a program to understand mechanical systems in R4 with

2As well as the Berry phase in quantum mechanics, for instance.
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symmetries. This program can be described as follows. Let us consider a
conservative mechanical system in R4, with a symmetry described by an
action of a group of diffeomorphisms that leave the Hamiltonian invariant.
This symmetry defines a first integral, J , and let H be the total energy
of the system. Then the energy-momentum map is the mapping from the
phase space R4 to R2 given by (H, J). The first step of the program is to
find the critical values of the energy-momentum map, the second step is to
describe the topology of all the regular fibers. The third one is to find the
dynamics on each regular fiber and finally, the fourth step is to describe
how these regular fibers glue together to understand the global dynamics.

The first step can be done nowadays, in most cases, with the help of
computers. The second and third steps were answered by Liouville and then
completed by Mineur and Arnold, resulting in their famous Theorem [1]
that ensures, under certain hypotheses, the existence of a local change of
coordinates that transforms the dynamics into a linear flow over invariant
tori. This change of coordinates is called action-angle coordinates. The
fourth step of this program was done in a paper [28] by Duistermaat in 1980.
In this paper, he introduced the concept of Hamiltonian monodromy, as
part of the answer to the fourth and last step of the program. Hamiltonian
monodromy is the simplest obstruction to the existence of global action-
angle coordinates, and, thus, to a trivial gluing giving the global dynamics
of the system.

Nevertheless, for a given system to know whether or not it has trivial
Hamiltonian monodromy is not an easy task. There is a large area of
study on this subject for different mechanical systems, either in the study
of explicit systems or in giving conditions to know when this gluing is non-
trivial.

In the second part of this thesis, we address the problem of giving con-
ditions on mechanical systems to ensure that the Hamiltonian monodromy
of the system is nontrivial using spectral Lax pairs. The advantage of Lax
pairs is that they provide the system with an algebraic structure that is very
useful for its study. This part is organized into five chapters. In Chapter 4,
we introduce all the concepts mentioned before. In Chapter 5, we state and
prove auxiliary results used in the proofs of the main results. In Chapter 6,
we properly state and prove that for a mechanical system in R4 one can
introduce a Riemann surface, using spectral Lax pairs, such that the com-
putation of the Hamiltonian monodromy of the system boils down to the
computation of a residue at infinity of a meromorphic 1-form defined over
this Riemann surface. In Chapter 7, we give a solution for the problem of
finding a spectral Lax pair for a given system with a focus-focus singularity.
Finally, in Chapter 8, we present two relevant examples in physics to show

xi



Introduction

how the obtained results simplify some calculations.
The different constructions and ideas of the first and the second part

of this work, follow the general idea of using tools of complex foliations
to obtain a geometric structure of the problem in hand that leads to the
understanding of the corresponding physical system. This is the framework
of the present thesis.
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Chapter 1

Preliminaries

In this chapter, we introduce all the classical concepts and techniques about
rigid body dynamics that we need to derive the results of the following
chapters. We stress that the content of this chapter is well-known, we
include it here for completeness.

1.1 Quick overview of ODE
Let us recall the definition of an ordinary differential equation to then give
the geometric interpretation of it. Let F : Rn → Rn be a smooth function,
the ordinary differential equation given by F is the equation

d

dt
(x(t)) = F (x(t)). (1.1)

If we add the condition x(0) = x0, then we have an initial value problem.
A solution of the differential equation (1.1) is a smooth function φ : R →

Rn such that
d

dt
(φ(t)) = F (φ(t)).

If the function φ fulfills φ(0) = x0, then φ is a solution to the initial value
problem.

We describe the geometric meaning of these concepts. A differential
equation can be interpreted as follows: for each point, p0 ∈ Rn we have the
vector given by F (p0), and this vector represents a tangent vector at the
point p0. In this way, finding solutions of the differential equation (1.1) is
the same as finding curves such that at each point of the curve, the vector
given by F represents the velocity vector of the curve (see Figure 1.1).

We obtain important information from these curves, called integral curves.
For this reason, the following concept is introduced.

3



1. Preliminaries

Figure 1.1: Geometric interpretation of an ODE. U is an open subset of R2

where the differential equation d
dt
(x(t)) = F (x(t)) is defined. Thanks to G.

Martinez-Salgado for the figure.

Consider the ordinary differential equation (1.1). A first integral of this
equation is a non-constant smooth function H : Rn → R, such that for every
solution φ of the differential equation (1.1), H(φ) is constant (with respect
to time). In other words

d

dt
H(φ(t)) = 0.

Geometrically, this equation means that the solutions of the differential
equation are contained in the level sets of the function H. Notice that, in
R2 this property implies that the integral curves are the level curves of the
function H (see Figure 1.2).

On the other hand, if we have a differential equation on Rn, with n > 2,
then H = c is a hypersurface. In this case, the integral curves are contained
in the hypersurface, but one does not get the exact shape of the integral
curves. Let us exemplify this with a differential equation that will be useful
later since Euler’s equations are a particular case of this system.

4



1.1. Quick overview of ODE

Figure 1.2: Graph and level curves of H.

1. Consider the ordinary differential equation:

d

dt
M1 = c1M2M3

d

dt
M2 = c2M1M3

d

dt
M3 = c3M1M2,

where c1 + c2 + c3 = 0, and the function H(M1,M2,M3) = M2
1 +

M2
2 +M2

3 . Then, if we consider a solution of the differential equation
φ(t) = (M1(t),M2(t),M3(t)), we obtain

d

dt
H(φ(t)) =

∂H

∂M1

(φ(t))Ṁ1(t) +
∂H

∂M2

(φ(t))Ṁ2(t) +
∂H

∂M3

(φ(t))Ṁ3(t)

=2M1(t)(c1M2(t)M3(t)) + 2M2(t)(c2M1(t)M3(t))

+ 2M3(t)(c3M1(t)M2(t))

=(c1 + c2 + c3)2M1(t)M2(t)M3(t)

=0.

We conclude that the function H is a first integral for the system
given by this differential equation. Now, we analyze the equation
H(M1,M2,M3) = c, for different values of the constant c.

5



1. Preliminaries

Again, we fix a value c > 0, the expression H = c is the same as
M2

1 +M2
2 +M2

3 = c. Hence, we conclude that the level set

{(M1,M2,M3) ∈ R3 | H(M1,M2,M3) = c}

is a sphere of radius
√
c. If c < 0, then the level set is empty, and if

c = 0 the level set only contains the origin. Notice that for c > 0, we
have concentric spheres.

Thus, in R3, it is not enough to find a first integral to know the integral
curves of the differential equation. In this example, the solution curves are
contained in a sphere, but we have not found them. For this reason, it is a
usual technique to try to find another first integral (or more if the dimension
is higher).

1.2 The rigid body
A rigid body is an object in classical mechanics that does not deform in time.
Hence, its mass distribution and its shape are fixed. The mathematical
definition of the center of mass G is given by the integral

−→
OG =

1

M

∫ ∫
S

∫
ρ(Q)r⃗(Q)d3Q,

where S is the rigid body, M is the total mass, ρ is the density function
(which indicates how the mass is distributed in the body), r is the position
vector of each point of the body. From this equation, one can see that the
center of mass can be interpreted as a point on the rigid body such that
the mass of the object is well distributed around it.

When we study a rigid body, we need two coordinate frames; the labo-
ratory frame which is fixed, and one frame attached to the rigid body that
moves with the body. We analyze free rotations of a rigid body. Since we
do not consider translations, the center of mass is fixed in the laboratory
frame (standard assumption to remove the global translation of the rigid
body). Thus, in this case, the origin of both frames is chosen to be the
center of mass of the rigid body.

We now study an illustrative example to introduce the concept of angu-
lar velocity.

• Let us consider a point particle in R3 rotating along a circle around the
z-axis in a positive direction (see Figure 1.3) with constant angular

6



1.2. The rigid body

speed ω. We know that the angular velocity is defined as the vector
which has the same direction as the axis of rotation, norm equal to
the angular speed, and the orientation given by the right-hand rule.
In this example, the angular velocity is the vector (0, 0, ω).

Figure 1.3: Point particle rotating around the vertical axis.

We denote as x(t) the vector that describes the position of the particle,
and R is the radius of the circle. Then

x(t) = (R cos(ωt), R sin(ωt), ∥x∥ cos(θ)),

where θ is the angle between the z-axis and the vector x. The deriva-
tive is

ẋ(t) = (−ωR sin(ωt), ωR cos(ωt), 0).

Since ∥x∥ and θ do not depend on time. Now, we compute the product
Ω× x(t):

Ω× x(t) = (−ωR sin(ωt), ωR cos(ωt), 0).

Concluding that ẋ(t) = Ω × x(t). Observe that the angular speed is
equal to ∥Ω∥. The computations here are made for a vector along the
z-axis, but it is possible to do the same for any vector and the same
result is obtained.

Similarly, we consider a point on the rigid body and the vector going
from the center of mass to this point. Then, if the rigid body rotates
around a fixed axis, the movement of this vector is described by the equation
obtained in the previous example, i.e., if we attach a vector x to the center
of mass of the rigid body, and the rigid body is rotating around a fixed axis
with angular speed ω = ∥Ω∥, then the time evolution of x is

ẋ(t) = Ω× x(t).

7
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1. Preliminaries

Consider that the observer is on the surface of the rigid body, the rigid
body is rotating, and the observer follows the evolution of a vectorX belong-
ing to the laboratory frame then, the observer notices the same movement
described before for the vector x, but in the opposite direction. Hence, one
obtains

Ẋ(t) = −Ω×X(t) = X(t)×Ω.

When the rigid body is rotating in an arbitrary way (not around a fixed
axis), in a short time dt, the rotation is very similar to the aforementioned
rotation (around a fixed axis with constant speed), so one expects a similar
time evolution.

The equations describing this time evolution are [7]:

ẋ(t) = Ω(t)× x(t) (1.2)

Ẋ(t) = X(t)×Ω(t). (1.3)

A formal derivation of these two equations can be found in [3]. In this
later text a formal result is given assuring that for every time t, there exists
a vector Ω(t) which fulfills the equation ẋ(t) = Ω(t)× x(t). In this general
case, the function Ω(t) is defined as the angular velocity of the rigid body.
Then, it can also be proved that for every time t the vector Ω(t) fulfills the
equation Ẋ(t) = X(t)×Ω(t), where X is a vector of the laboratory frame.

The angular momentum is formally defined as

J(t) =

∫ ∫
S

∫
ρ(Q)r(Q)× ṙ(Q)d3Q. (1.4)

If the rigid body is rotating freely, i.e., without external forces, then the
angular momentum J does not depend on time. This fact is known as the
angular momentum Theorem and it is a consequence of Newton’s laws[34].
For this reason, we can consider the vector J as a vector in the laboratory
frame. The usual convention is to consider it aligned with the Z-axis of the
laboratory.

Finally, using Eq. (1.3), one gets

J̇(t) = J(t)×Ω(t). (1.5)

The definition of moment of inertia with respect to a rotational axis E
can be interpreted as a quantity that measures the resistance that the rigid
body puts to turn around a rotational axis E (or how dispersed the mass
of the body is with respect to the E-axis), and is given by

IE =

∫ ∫
S

∫
ρ(Q)r2E(Q)d

3Q,

8



1.2. The rigid body

where rE is the distance of each point of the rigid body S to the rotational
axis E.

Given the fact that the cross product by a fixed vector is a linear op-
erator in a 3-dimensional Euclidean space, one can prove that there is a
linear operator relating the angular momentum to the angular velocity us-
ing equations (1.4) and (1.5). This fact can be stated as follows.

Theorem 1.1. The angular momentum J of a rigid body with one station-
ary point G depends linearly on the angular velocity Ω, i.e., there exists a
constant linear operator I such that IΩ = J. Moreover, I is a symmetric
operator and the total energy of the body can be written as the quadratic
form 1

2
IΩ ·Ω.

A coordinate system in which I is diagonal is called a principal axis
system and the eigenvalues of I are called moments of inertia of the body.
A usual convention is to choose the frame attached to the body as the
coordinate system made up of the three principal rotational axes whose
origin is at the center of mass of the body.

Thus, in this body fixed frame, the angular momentum vector J is re-
lated to the angular velocity Ω through the relation

J = IΩ,

with I diagonal, since the three principal rotational axes are given by the di-
rections of the three eigenvectors of this matrix. Thus, one has the following
relations

Ωx =
Jx
Ix

Ωy =
Jy
Iy

Ωz =
Jz
Iz
,

where, (x, y, z) is the frame attached to the rigid body (made up of the three
principal rotational axes) and Ix, Iy, Iz are the corresponding moments of
inertia (the three corresponding eigenvalues). Using Eq. (1.5), we obtain

J̇x =

(
1

Iz
− 1

Iy

)
JyJz

J̇y =

(
1

Ix
− 1

Iz

)
JxJz

J̇z =

(
1

Iy
− 1

Ix

)
JxJy,

9



1. Preliminaries

These equations are the Euler’s equations describing the dynamics of free
rotations of a rigid body. There exist different approaches to introduce these
equations of motion see [7] or [1, 65] for a Lie group point of view. Notice
that, since we consider only rotations, we neglect gravity. This system is
also called Euler-Poinsot system [45]. Let us now analyze these equations.

First notice that(
1

Iz
− 1

Iy

)
+

(
1

Ix
− 1

Iz

)
+

(
1

Iy
− 1

Ix

)
= 0.

Thus, Euler’s equations are a particular case of the differential equations
considered in Section 1, where we proved that the function J2(Jx, Jy, Jz) =
J2
x + J2

y + J2
z is a first integral of the system. In this case, it corresponds

to the square of the norm of the angular momentum. We also showed that
the level curves of the function J2 are spheres of radii J for non-negative
values of J .

As explained in Section 1, to find the integral curves of the differential
equation it is not sufficient to have only one first integral. Nevertheless, for
this system, the total energy is conserved and is given in Theorem 1.1 as
1
2
IΩ ·Ω, obtaining

E(Jx, Jy, Jz) =
J2
x

2Ix
+
J2
y

2Iy
+
J2
z

2Iz
.

We conclude that this system has two first integrals, which is enough to
obtain the integral curves. In the following paragraphs, we explain how to
obtain these curves.

We assume the relation Iz < Iy < Ix, which means that we analyze
an asymmetric rigid body. Then, for non-positive values of the energy the
level sets are empty, and for positive values of the energy the level sets are
ellipsoids with radii:

√
2EIx,

√
2EIy,

√
2EIz. If we fix both, the value of E

and J2, we obtain curves that have to be integral curves of our differential
equation.

Now, we consider a fixed value of J2 and we change the value of E to
analyze all the possible curves that one can obtain. This means that we
fix a sphere and analyze the different curves that we can obtain when the
ellipsoid given by E is changing.

For a fixed sphere, the integral curves are represented in Figure 1.5, they
correspond to the intersections between the fixed sphere given by J2 and
the different level sets of E. On each sphere, we have six fixed points, four
of them are stable and two are unstable. The trajectory connecting two
unstable points is called separatrix and its equation is given by 2IyE

J2 = 1.

10



1.2. The rigid body

Figure 1.4: Intersection between a level set of J2 (light grey sphere) and a
level set of E (grey ellipsoid) [68].

Figure 1.5: Solutions obtained on a fixed sphere [68]. We have 4 stable fixed
points and 2 unstable points that are connected through the black trajectory
called separatrix. The red trajectories are called oscillating trajectories and
the blue ones are called rotating trajectories.

Thus, we define the distances of a given integral curve to the separatrix
as

c =
2IyE

J2
− 1. (1.6)

11



1. Preliminaries

1.3 Euler angles

Since we are interested in free rotations of rigid bodies, the natural coordi-
nates are given by rotation angles.

For this reason, we introduce a new coordinate system which is known
as the Euler angles. This new coordinate system describes the rotation of
the laboratory frame (X, Y, Z) with respect to the frame attached to the
body (x, y, z).

This coordinate system is not unique. We follow the ZY Z convention
in which, to go from the laboratory frame to the body frame, the following
three successive rotations are considered:

• The first one is a rotation of an angle ϕ around the Z axis, this
movement gives us a new position of the vectors X and Y , let us
denote these new positions as X ′ and Y ′. (See the first panel in
Figure 1.6)

• The second one is a rotation of an angle θ around the new axis Y ′.
Then, the position of the axes X ′ and Z have changed to the new
positions X ′′, Z ′′. (See the second panel in Figure 1.6)

• The last one is a rotation of an angle ψ around the new axis Z ′′.

After these successive rotations, we have arrived at the frame attached
to the rigid body (x, y, z). We denote by N the line of nodes which is
located where the vector Y ′ is located (it is also the line of intersection of
the planes (X, Y ) and (x, y)). (See third drawing on Figure 1.6)

Figure 1.6: Construction of the Euler angles [68].
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1.3. Euler angles

The new coordinate system is given by (ϕ, θ, ψ) and is known as the
Euler angles. Let us find the equations of motion in this new coordinate
system.

As explained before, for each angle, its derivative (the angular velocity)
is a vector in the direction of the rotation axis, and the direction is given
by the right-hand rule. Thus, one has that ϕ̇ is along the line given by the
Z-axis. The angular velocity θ̇ is along the line of nodes and ψ̇ is along the
line given by the axis z; and its coordinates in the frame (x, y, z) are given
by

ϕ̇x = −ϕ̇ sin(θ) cos(ψ) θ̇x = θ̇ sin(ψ) ψ̇x = 0

ϕ̇y = ϕ̇ sin(θ) sin(ψ) θ̇y = θ̇ cos(ψ) ψ̇y = 0

ϕ̇z = ϕ̇ cos(θ) θ̇z = 0 ψ̇z = ψ̇,

where ϕ̇, θ̇, and ψ̇ represent the angular speed.
These expressions are obtained by considering the projections of each

vector on the coordinate system (x, y, z). As an example, we now ana-
lyze ϕ̇x. All the other expressions are obtained in the same way, but the
procedure is easier.

The goal is to find the x-coordinate of the vector Z. First, we note that
the vector Z and the line of nodes are orthogonal since the line of nodes is
located where the vector Y ′ was located (see Figure 1.6). For this reason,
when we project the vector Z onto the plane (x, y), this projection is on a
line (on this plane) which is orthogonal to the line of nodes. Moreover, the
x-coordinate is negative for the configuration of the two coordinate systems
(x, y, z) and (X, Y, Z) (i.e. for our convention ZY Z). Finally, when we
project the vector Z onto the plane (x, y), the length of this projection is
ϕ̇ sin(θ). With this information, it is easy to find the expression of ϕ̇x given
before.

Thus, the components of the angular velocity Ω of the rigid body are
given by

Ωx = ϕ̇x + θ̇x + ψ̇x

Ωy = ϕ̇y + θ̇y + ψ̇y

Ωz = ϕ̇z + θ̇z + ψ̇z

As said before, the vector J is aligned with the vector Z of the laboratory
frame. Thus, we have an expression for J similar to the one we obtained
for the angular velocity associated with ϕ, i.e.

J = (−J sin(θ) cos(ψ), J sin(θ) sin(ψ), J cos(θ)).

13



1. Preliminaries

On the other hand, using the relation between J and Ω we have

J = (IxΩx, IyΩy, IzΩz).

By equating coordinate to coordinate of these two expressions of J, one
obtains a system of 3 linear equations that can be solved for ϕ̇, θ̇ and ψ̇,
giving

ϕ̇ = J

(
1

Ix
cos2(ψ) +

1

Iy
sin2(ψ)

)
θ̇ = J

(
1

Iy
− 1

Ix

)
sin(θ) cos(ψ) sin(ψ) (1.7)

ψ̇ = J cos(θ)

(
1

Iz
− 1

Ix
cos2(ψ)− 1

Iy
sin2(ψ)

)
.

These are the Euler equations of the rigid body in terms of Euler angles.

1.4 Physical constraints on the moments of
inertia

Recall that, in the body-fixed frame, the angular momentum of the body J
is connected to the angular velocity Ω through the relation J = IΩ, where
I is a 3 × 3 symmetric matrix, called the inertia matrix. Its eigenvalues
are the inertia moments denoted Ix, Iy, and Iz and correspond to the three
axes of the body-fixed frame. For any rigid body there exist the following
physical restrictions on the values of the moments of inertia

Ii + Ij ≥ Ik (1.8)

with {i, j, k} = {x, y, z} and not equal. This constraint can be established
from the definition of the moments of inertia in the principal axis frame

Ii =

∫
S

ρ (r)
(
x2j + x2k

)
dr, (1.9)

where ρ is the mass density, V the volume of the body and xj the coordinates
of the position vector r, (x1, x2, x3) ≡ (x, y, z). We deduce that

Ii =

∫
ρ (r)

(
x2j + x2k

)
dr ≤

∫
ρ (r)

(
2x2i + x2j + x2k

)
dr = Ij + Ik. (1.10)

In the case of an asymmetric rigid body such that

Iz < Iy < Ix, (1.11)
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1.4. Physical constraints on the moments of inertia

the only constraint to satisfy is

Iy + Iz ≥ Ix. (1.12)

Definition 1.2. Let Ix, Iy, Iz be the moments of inertia of an asymmetric
rigid body such that Iz < Iy < Ix. A rigid body is said to be physical if the
values of the moments of inertia fulfill Eq. (1.12).

We introduce the parameters a and b, describing the asymmetry of the
body, defined as

a =
Iy
Iz

− 1 , b = 1− Iy
Ix
. (1.13)

The parameter a measures how different the moments of inertia Iy and Iz
are (measuring the asymmetry of the object in these directions) and b does
the same with Ix and Iy. Note that, by definition, a > 0 and 0 < b < 1.

The physical constraint (1.12) can be easily written by introducing a
constant I = I (a, b), which we call the geometric constant. For further
use, we also introduce a second geometric constant J = J (a, b). These
constants are defined by the following formulas

I =
1− b√
b (a+ b)

, J =
a+ 1√
a (a+ b)

− 1. (1.14)

Proposition 1.3. Let Ix, Iy, Iz be the moments of inertia of an asymmetric
rigid body such that Iz < Iy < Ix. The moments of inertia Ix, Iy, Iz describe
a physical rigid body if and only if the geometric constant I satisfies the
inequality I ≥ 1.

Proof. From Eq. (1.13), we get

Iy = (1− b) Ix , Iz =

(
1− b

1 + a

)
Ix. (1.15)

Since Ix ̸= 0, we have Iy + Iz ≥ Ix, if and only if

1− b+
1− b

1 + a
≥ 1. (1.16)

Using 0 < 1 + a, Eq. (1.16) is verified if and only if

(1− b) (1 + a) + 1− b ≥ 1 + a, (1.17)

which is equivalent to ab+ b2 ≤ 1− 2b+ b2 and finally to I ≥ 1.

The set of points of coordinates (a, b) that fulfill the constraint I ≥ 1 is
represented in Fig. 1.7.

This physical constraint will be a key point in Chapter 3.
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0 5 10 15 20
0

0.25

0.5

Figure 1.7: Set of points (a, b) (blue area) such that I = 1−b√
b(a+b)

≥ 1. The

solid black line represents the points for which I = 1.
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Chapter 2

Geometric origin of the tennis
racket effect

Rigid body dynamics is a classical topic treated in several books [34, 41,
3, 22]. Nevertheless, the tennis racket effect is not widely studied. There
exist few texts about this geometric effect [5, 22], where different approaches
are used to study particular cases. The goal of this work is then to give
a complete mathematical description of this effect obtaining results about
the existence, the origin, and the mathematical structure of this problem.
We introduce a suitable description of the problem that allows us to treat
also the Dzhanibekov effect [58] and the monster flip, for which there is no
scientific reference. The content of this chapter has been published in the
journal Physical Review Letters [48].

Before describing the tennis racket effect, let us point out that our inter-
est in it was sparked by the cover of the book by Cushman and Bates [22]
where there is a nice representation of this effect. Then, results published
in 2017 in Scientific Report [69] linked the tennis racket effect to the control
of spin 1/2-particles employing electromagnetic fields; turning out to be an
interesting effect connecting classical and quantum mechanics.

The tennis racket effect can be described as follows: Consider an ex-
periment that every tennis player has already made. The tennis racket is
held by the handle and thrown in the air so that the handle makes a full
turn before catching it. Assume that the two faces of the head can be
distinguished. It is then observed, once the racket is caught, that the two
faces have been exchanged. The racket did not perform a simple rotation
around its axis, but also an extra half-turn. This twist is called the tennis
racket effect (TRE). An intuitive understanding of TRE is given in [71].
It is also known as Dzhanibekov’s effect (DE), named after the Russian
cosmonaut who made a similar experiment in 1985 with a wing nut in zero
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2. Geometric origin of the tennis racket effect

gravity [54, 14]. The wing nut spins rapidly around its central axis and
flips suddenly after many rotations around a perpendicular axis [14]. The
Monster Flip (MF) is a freestyle skateboard trick. It consists of jumping
with the skateboard and making it turn around its transverse axis with the
wheels falling back to the ground. This trick is very difficult to execute
since TRE predicts precisely the opposite, turning about this axis should
produce a π- flip, and the wheels should end up in the air. The video [19]
shows that this trick can be made with success after many attempts.

Figure 2.1: Representation of the tennis racket effect [48]. After one com-
plete turn of the handle of the racket an extra flip is observed, so the faces of
the head of the racket are exchanged. Thanks to S. J. Glaser for providing
this figure.

This chapter is organized as follows: In Section 2.1, we introduce the
mathematical structure of the problem that allows to study it. In Sec-
tion 2.2, we present the results concerning the TRE. In Section 2.3, we
obtain similar results for the DE. Finally, in Section 2.4, we use approxi-
mations to obtain results on the MF.
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2.1. Notations and conventions

2.1 Notations and conventions

To link the introductory chapter and the aforementioned effects, we describe
explicitly the frame attached to the following rigid bodies: a tennis racket,
a skateboard, and a wing-nut. We assume the relation Iz < Iy < Ix. This
inequality implies:

1. For the tennis racket, the axis with the smallest moment of inertia is
the axis that goes through the handle of the racket, so this axis has
to be the z-axis, and the axis with the largest moment of inertia is
the axis that is perpendicular to the plane formed by the head of the
racket (see Figure 2.2), thus this corresponds to the x-axis.

Figure 2.2: Principal rotational axes for the tennis racket [68].

2. For the skateboard we have a similar configuration to the one for the
tennis racket (See Figure 2.3).

Figure 2.3: Principal rotational axes for the skateboard.

3. Finally, for the wing-nut we assume that the “wings” are larger than
the height and we obtain the configuration shown in Figure 2.4.
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2. Geometric origin of the tennis racket effect

Figure 2.4: Principal rotational axes for the wing-nut [68].

We recall that J = (IxΩx, IyΩy, IzΩz). If the object turns around a fixed
axis (x, y or z-axis), then the angular velocity Ω is aligned with this axis,
and therefore J is too. For the tennis racket, one wants to perform a pure
rotation around the y-axis. Hence, when the experiment starts, J is almost
aligned with the y-axis, in other words, we consider a trajectory with an
initial condition near one of the unstable points (see 1.5). This means that
we need to consider the initial conditions: θ0 ≈ π

2
, ψ0 ≈ −π

2
.

Moreover, if we consider θ0 ≈ π
2
, ψ0 ≈ −π

2
, ϕ0 = 0 with final conditions

θf ≈ θ0 ≈ π
2
, ψf ≈ π

2
, ϕf = 2π, following the construction1 of Euler angles

described in Section 1.3, one gets that the Euler angles ϕ and ψ are the
angles that we want to study, i.e., the angles shown in Fig. 2.2.

Thus, the tennis racket effect can be defined in terms of Euler angles as
∆ψ ≈ π when ∆ϕ = 2π. The monster flip is ∆ϕ = 2π when ∆ψ ≈ 0; that
is, no flip is observed. Finally, the Dzhanibekov effect is very similar to the
TRE, but at the beginning, the movement is guided (by a screw). For this
reason, we need a large number of flips to observe a half-flip in the other
direction. Thus, this problem can be described as ∆ψ ≈ π when ∆ϕ = k2π,
with k ∈ R.

These are geometric effects in the sense that we are not interested in the
time parametrization of the solutions, we are just interested in the variation
of the angle ψ for a given variation of the angle ϕ, or vice-versa.

Thus, to study the TRE, we can analyze the evolution of ψ with respect
to ϕ. Using Euler equations (1.7) one gets

dψ

dϕ
=

(a+ b cos2 ψ) cos θ

1− b cos2 ψ
. (2.1)

1Following this construction one notices that these initial and final configurations
correspond to the TRE: when the handle performs a complete flip, we observe the other
face of the head of the racket.
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were a and b are the asymmetry parameters introduced in Section 1.4 as

a =
Iy
Iz

− 1 , b = 1− Iy
Ix
.

Moreover, we can do this because of the unicity of solutions for differen-
tial equations and because 1 − b cos2 ψ ̸= 0 implies that we have a good
projection of the solutions curves into the coordinate ϕ.

In Section 1.2, we have introduced the distance of an integral curve to
the separatrix as c = 2IyE

J2 − 1, note that c is a first integral of the system.
In terms of Euler angles, we can write it as

c = a− sin2 θ(a+ b cos2 ψ).

Using this last equation, one gets

cos θ = ±

√
c+ b cos2 ψ

a+ b cos2 ψ
, (2.2)

which leads to

dψ

dϕ
= ±

√
(a+ b cos2 ψ)(c+ b cos2 ψ)

1− b cos2 ψ
. (2.3)

Equation (2.3) defines a two-dimensional phase portrait concerning ψ
and dψ/dϕ, as displayed in Fig. 2.5.

On this reduced2 phase portrait, we have one stable fixed point and
two unstable ones corresponding to stable and unstable fixed points on
the momentum sphere, respectively. The separatrix, for which c = 0, is
the trajectory connecting the two unstable points. The separatrix on this
reduced space also corresponds to the separatrix on the momentum sphere
(See Chapter 1).

We consider only the positive values of dψ
dϕ

defined in Eq. (2.3). The
same analysis can be done for the negative sign and a global analysis where
the sign change is done in Chapter 3.

2Reduced in the sense that we consider the variation of the angle ψ with respect to
the angle ϕ. Hence, we do not consider the parametrization of the integral curves with
respect to the original time t.
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-0.5 0 0.5
ψ/π

-1

0

1

dψ
/d
φ

Figure 2.5: Phase portrait (ψ, dψ/dϕ) with the parameters a and b set
respectively to 12 and 0.05. The black and blue lines depict respectively
the rotating and oscillating trajectories of the angular momentum. The
solid red line represents the separatrix.

2.2 The tennis racket effect

TRE is associated with a trajectory for which ∆ψ ≃ π when ∆ϕ = 2π,
with ψ0 ≃ −π

2
and ψf ≃ π

2
as initial and final values3 of the angle ψ. To

simplify the study of TRE, we consider a symmetric configuration, for which
ψ0 = −π

2
+ ε and ψf = π

2
− ε. A perfect TRE is thus achieved in the limit

ε→ 0. The symmetry hypothesis is not very restrictive since ε is small.
Using Eq. (2.3), we obtain that the variation of ϕ is given by

∆ϕ =

∫ π
2
−ε

−π
2
+ε

1− b cos2 ψ√
(a+ b cos2 ψ)(c+ b cos2 ψ)

dψ. (2.4)

Note that, for oscillating trajectories (c < 0), this equation is well defined
when c+ b cos2 ψ ≥ 0. On the interval (−π

2
+ ε, π

2
− ε), this condition leads

to the restriction sin2 ε ≥ | c
b
|.

From the parity of the integral and the change of variables x = cos2 ψ,
one obtains that ∆ϕ can be expressed as an incomplete elliptic integral,

3This is due to the expanation in the precedent Section 2.1 and because we are
considering positive values of dψ

dϕ
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2.2. The tennis racket effect

∆ϕ(ε) =
∫ 1

sin2 ε
ω, with

ω =
1

b

1− bx√
x(x− β)(1− x)(x− α)

dx, (2.5)

where α = −a
b

and β = − c
b
.

Let F be the function defined by

Fa,b,c(u) =

∫ 1

u

ω =

∫
γ

ω, (2.6)

where γ is the integration path with 0 < u < 1. We have ∆ϕa,b,c(ε) =
Fa,b,c(sin

2 ε).
We extend below the study to the complex domain and continue ana-

lytically all the functions to investigate the geometric origin of the TRE.
The multi-valued character of Fa,b,c, as a complex function, is different for
|u| < |β| and |u| > |β|, as shown below. In the first region, the multi-
valued character of Fa,b,c is square-root-like since the integration path goes
around only one branch point, while, in the second region, the multi-valued
character of Fa,b,c is logarithmic since the integration path goes around two
branch points. This difference in the multi-valued character of Fa,b,c leads
to different asymptotics in the corresponding real domains.

Figure 2.6: Riemann surface of the form ω with the four branch points
(black dots) in x = α, β, 0 and 1 (from bottom to top). When c → 0,
the two points x = β and x = 0 coincide and give birth to a pole. The
left and right panels represent the cases |β| < |u| and |u| < |β|. The solid
straight lines represent the branch cuts of the surface. The cycles δ and δ̃
are depicted by solid red lines. The form ω is integrated along the path γ
between the point u (black cross) and the ramification point x = 1.
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2. Geometric origin of the tennis racket effect

Analysis of the region |β| < |u| < 1

We study in this subsection the function Fa,b,c defined in Eq. (2.6) in both
the complex and real domains.

We start with the geometric analysis in the complex space by a complex-
ification of the problem in which Fa,b,c(u) can be interpreted as an Abelian
integral [75] over the Riemann surface of the form ω. As displayed in
Fig. 2.6, this surface has two sheets with four branching points in x = 0, 1,
β, and α. Branching cuts are introduced to define a single-valued function.
In the case where |β| < |u| < 1, the limit c→ 0 leads to the collision of the
two branching points x = 0 and x = β, giving rise to a pole whose integral
is a logarithmic function, which reveals the geometric origin of the TRE.
Notice that, for large values of a, there is no confluence of the branching
point x = α, with x = β, or 0.

In order to find precise expressions and bounds, we now study the real
integrals considering a logarithmic asymptotic for the function Fa,b,c, pre-
cisely due to this complex structure. We obtain the following theorem which
is the main result of this subsection. The notations and the proof can be
found below.

Theorem 2.1. Let 0 < b0 < 1 and 0 < c0 < 1 be fixed and such that
0 < c0

b0
< 1. For all b ∈ (b0, 1), all u0 ∈ ( c0

b0
, 1) and all c ∈ (−c0, c0) such that

0 ≤ |c| < be
−2π

√
ab−M(u0,

c0
b0

)
,

the equation
∆ϕa,b,c(ε) = 2π,

has a unique solution εS(a, b, c), for a large enough, which verifies:

arcsin

[√
|c|
b

]
< εS < arcsin

[
exp

(
−π

√
ab−

M(u0,
c0
b0
)

2

)]
. (2.7)

In particular
lim
a→∞

εS(a, b, c) = 0.

Notice that a large means that Iy ≫ Iz, giving a big asymmetry on the
corresponding axes. For the rest of this subsection, we analyze Fa,b,c in the
real case to obtain this result.

We express the function Fa,b,c as

Fa,b,c(u) =
1√
ab

(h1(u) + h2(u))−
ln(u)√
ab
,
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2.2. The tennis racket effect

with

h1(u) =

∫ 1

u

(
1√

x(x− β)
− 1

x

)
1− bx√

(1− x)(1− x
α
)
dx,

and

h2(u) =

∫ 1

u

dx

x

[
1− bx√

(1− x)(1− x/α)
− 1

]
.

We now show that, under certain conditions on the parameters, the func-
tions h1(u) and h2(u) are bounded.

Lemma 2.2. Let u0 ∈ R be such that 0 < |β| < u0 < 1. For every
u ∈ (|β|, u0), we have the following bound for the function h1

|h1(u)| <
2 ln (1 +

√
2)√

1− u0
+ 2M1

√
1− u0, (2.8)

where M1 =M1(u0, |β|) is given by

M1 = max

{
1√

u0(u0 − |β|)
− 1,

1

u0
− 1√

1 + |β|

}
. (2.9)

Proof. We have

|h1(u)| ≤
∫ 1

u

∣∣∣∣∣
(

1√
x(x− β)

− 1

x

)
1− bx√

(1− x)(1− x
α
)

∣∣∣∣∣ dx.
Let u0 ∈ R be such that 0 < |β| < u0 < 1 and u ∈ (|β|, u0).

Since
1− bx

(1 + xb/a)
≤ 1,

then, for x ∈ (0, u0],

1− bx√
(1− x)(1 + xb/a)

≤ 1√
1− u0

.

Notice that both sides of this last inequality are positive. We deduce that

|h1(u)| ≤
1√

1− u0

∫ u0

u

∣∣∣∣∣ 1√
x(x− β)

− 1

x

∣∣∣∣∣ dx
+

∫ 1

u0

∣∣∣∣∣ 1√
x(x− β)

− 1

x

∣∣∣∣∣ 1√
(1− x)

dx.
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2. Geometric origin of the tennis racket effect

For β fixed, the sign of the function

1√
x(x− β)

− 1

x

does not change and, on the interval [u0, 1], it is a continuous function of
x, so there exists a bound M1 of the modulus of the function. Thus

|h1(u)| ≤
1√

1− u0

∣∣∣∣∣
∫ u0

u

(
1√

x(x− β)
− 1

x

)
dx

∣∣∣∣∣+M1

∫ 1

u0

1√
(1− x)

dx.

(2.10)
In order to find an explicit bound M1, we consider two cases:

• For β ≥ 0 (c ≤ 0), we have∣∣∣∣∣ 1√
x(x− β)

− 1

x

∣∣∣∣∣ ≤ 1√
u0(u0 − β)

− 1 =
1√

u0(u0 − |β|)
− 1.

• For β < 0 (c > 0), we have∣∣∣∣∣ 1√
x(x− β)

− 1

x

∣∣∣∣∣ ≤ 1

u0
− 1√

1− β
=

1

u0
− 1√

1 + |β|
.

We finally take

M1 = max

{
1√

u0(u0 − |β|)
− 1,

1

u0
− 1√

1 + |β|

}
.

Now, we compute the integrals in Eq. (2.10); obtaining∫ u0

u

dx√
x(x− β)

= 2 log

(√
x− β +

√
x

) ∣∣u0
u
,

from where we get

∫ u0

u

(
1√

x(x− β)
− 1

x

)
dx = 2 log

1 +
√
1− β

u0

1 +
√

1− β
u

 .

One also has that ∫ 1

u0

dx√
1− x

= 2
√
1− u0.
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2.2. The tennis racket effect

Thus, we conclude

|h1(u)| <
1√

1− u0

∣∣∣∣∣∣2 log
1 +

√
1− β

u0

1 +
√

1− β
u

∣∣∣∣∣∣+ 2M1

√
1− u0.

Finally, by doing tedious computations one gets

|h1(u)| <
2 log(1 +

√
2)√

1− u0
+ 2M1

√
1− u0.

In a second step, we analyze the h2- function.

Lemma 2.3. Let 0 < b0 < 1 fixed. For every b ∈ (b0, 1) and for every a
such that

(
√
1 + x(b/a))

√
1− x < 1− bx,

we have the following upper bound for the function h2:

|h2(u)| < 2 ln (2)

Proof. We have

|h2(u)| ≤
∫ 1

u

dx

x

∣∣∣∣∣1− bx−
√

(1− x)(1− x/α)√
(1− x)(1− x/α)

∣∣∣∣∣ .
Notice that √

1− x < 1− x < 1− bx.

This implies that there exists d > 1 close enough to 1 such that

d
√
1− x < 1− bx,

which is equivalent to the existence of a large enough such that

(
√

1 + xb/a)
√
1− x < 1− bx,

when 1 > b > b0.
Thus, for a, b fulfilling the conditions given in the statement of the

Lemma, we have that∫ 1

u

dx

x

∣∣∣∣∣1− bx−
√

(1− x)(1− x/α)√
(1− x)(1− x/α)

∣∣∣∣∣ =
∫ 1

u

1− bx−
√

(1− x)(1− x/α)√
(1− x)(1− x/α)

dx

x
,
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2. Geometric origin of the tennis racket effect

obtaining

|h2(u)| <
∫ 1

u

dx

x

1−
√
1− x√

1− x
. (2.11)

The upper bound of h2 can be explicitly integrated giving

|h2(u)| <
∣∣[−2 ln(1 +

√
1− x)]1u

∣∣ ≤ 2 ln(2).

From where we obtain the result.

We finally get, using the two previous Lemmas, that

Fa,b,c(u) =
ha,b,c(u)√

ab
− lnu√

ab
, (2.12)

where ha,b,c = h1+h2 is a bounded function in the region |β| < u < 1, with

|ha,b,c(u)| ≤
2 ln(1 +

√
2)√

1− u0
+ 2M1

√
1− u0 + 2 ln(2).

We denote by M the function defined by

M(u0, |β|) =
2 ln(1 +

√
2)√

1− u0
+ 2M1(u0, |β|)

√
1− u0 + 2 ln(2),

for u0 ∈ (0, 1).

Proposition 2.4. Let 0 < b0 < 1 and 0 < c0 < 1 be fixed and such that
0 < c0

b0
< 1. For all b ∈ (b0, 1), all u0 ∈ ( c0

b0
, 1) and all c ∈ (−c0, c0), such

that
0 ≤ |c| < be

−2π
√
ab−M(u0,

c0
b0

)
, (2.13)

the equation
Fa,b,c(u) = 2π, (2.14)

has a unique solution u = uS(a, b, c) in (| c
b
|, u0), for a large enough, which

verifies
|β| < uS < e

−2π
√
ab+M(u0,

c0
b0

)
.

In particular,
lim
a→∞

uS(a, b, c) = 0.

Proof. Equation (2.14) becomes:

1√
ab
ha,b,c(u)−

1√
ab

lnu = 2π. (2.15)

28



2.2. The tennis racket effect

Equation (2.15) can be expressed in terms of a fixed point problem u = f(u),
with

f(u) = e−2π
√
ab+ha,b,c(u).

Notice that we have |ha,b,c(u)| < M(u0, |β|), with

M(u0, |β|) =
2 ln(1 +

√
2)√

1− u0
+ 2M1(u0, |β|)

√
1− u0 + 2 ln(2).

We also have that 0 < b0 < b < 1 and |c| < c0, which implies |β| < c0
b0

,
giving

M1(u0, |β|) = max

{
1√

u0(u0 − |β|)
− 1,

1

u0
− 1√

1 + |β|

}
≤M1(u0,

c0
b0
).

Thus, we arrive at

e
−2π

√
ab−M(u0,

c0
b0

)
< f(u) < e

−2π
√
ab+M(u0,

c0
b0

)
. (2.16)

We show, by continuity, the existence of a solution to the fixed point prob-
lem, if f(|β|) > |β| and f(u0) < u0. The first condition is given by Eq. (2.13)
and Eq. (2.16); while the second is trivially verified from inequality (2.16),
for a large enough to have e−2π

√
ab+M(u0,

c0
b0

)
< u0.

To prove the uniqueness, let us prove the general fact that if the pa-
rameters a, b, and c are fixed, then the value u fulfilling the equation
Fa,b,c(u) = 2π has to be unique.

Let us consider fixed values of the parameters a, b, and c. Let u1, u2 be
such that Fa,b,c(u1) = 2π and Fa,b,c(u2) = 2π, then

1

b

∫ 1

u1

1− bx√
x(x− β)(1− x)(x− α)

dx =
1

b

∫ 1

u2

1− bx√
x(x− β)(1− x)(x− α)

dx,

without loss of generality, let us assume that u1 ≤ u2. Then, one gets∫ u2

u1

1− bx√
x(x− β)(1− x)(x− α)

dx = 0.

Since, in the interval of integration, we have the condition

1− bx√
x(x− β)(1− x)(x− α)

> 0,

then we conclude that u1 = u2, getting the unicity of the solution.
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2. Geometric origin of the tennis racket effect

Using Proposition 2.4, we can deduce Theorem 2.1 which gives a precise
description of the TRE and is the main result of this subsection.

Proof of Theorem 2.1. The proof follows directly from Proposition 2.4 and
the relation ∆ϕa,b,c(ε) = Fa,b,c(sin

2 ε), since the change of variables u =
sin2 ε is a bijection from [0, π/2] to [0, 1].

Analysis of the region u < |β|
We consider now the function Fa,b,c in the region |u| < |β|. We recall that
this analysis only concerns the case with c > 0 and that the expression (2.12)
does not hold.

Lemma 2.5. There exists a holomorphic function k defined on

D = {v ∈ C : |v| <
√

|β|}

such that
Fa,b,c(u) = k(

√
u)

i.e. F (v2) = k(v).

Proof. Turning around the origin in u, we do not catch the cycle δ as in
the TRE, but a non-closed path. Turning twice around x = 0 the path
closes giving a closed cycle δ̃ winding twice around the branch point x = 0
only. Note that here

∫
δ̃
ω = 0. Indeed, the problem boils down to integrate

x 7→ 1√
x

on a loop winding twice around zero. Let k be k(v) = Fa,b,c(v
2).

Then, we deduce that:

k(ve2πi) = Fa,b,c(v
2e4πi) = Fa,b,c(v

2) +

∫
˜̃
δ

ω = Fa,b,c(v
2) = k(v).

Moreover, k(0) =
∫ 1

0
ω < ∞ is a complete elliptic integral. Hence, k has a

removable singularity at the origin and extends to a holomorphic function
on D.

In this case, equation ∆ϕa,b,c(ε) = 2π becomes ka,b,c(
√
sin2 ε) = 2π,

where ka,b,c is a bounded and analytic function. Note that the nature of this
equation, valid in the small region D, is completely different from Eq. (2.15).
Since, for c fixed and small, we have that the values of ∆ϕa,b,c(ε) in a
neighborhood of the origin vary a lot in the first case due to the logarithmic
behavior, and they do not in the second case due to the square root behavior.

We conclude that the complex structure does not allow us to deduce a
useful asymptotic behavior of the function, as in the previous case. Never-
theless, the problem of the existence of the TRE in this last region will be
treated in the next chapter.
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2.3. The Dzhanibekov effect

Figure 2.7: The function ∆ϕ = Fa,b,c(u) has a logarithmic behavior in the
orange region which corresponds to u > |β|. For the region u ≤ |β|, one
has two cases. In the green region, the function Fa,b,c(u) has a square-root
behavior, while in the brown one, there are no solutions. Considering c as a
fixed parameter is equivalent to analyzing horizontal lines, such as the blue
one.

2.3 The Dzhanibekov effect

A similar analysis can be used to describe the DE [14]. The video [14] shows
that the motion of the wing nut is first guided by a screw which induces
an almost perfect rotation around the central axis. In terms of Euler’s
angles, this leads to a very large angular speed ϕ̇ with respect to ψ̇ (i.e.
dψ
dϕ

≃ 0). Since the device generating the rotation of the rigid body blocks
the flip motion, the angle ψ is initially of the order of ±π

2
. We deduce that

the initial point of the dynamics is very close to one of the unstable fixed
points represented in Fig. 2.5, with a parameter c ≃ 0.
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2. Geometric origin of the tennis racket effect

Using Eq. (2.4) with ε = 0, DE is described by:

∆ϕ =

∫ π
2

−π
2

1− b cos2 ψ√
(a+ b cos2 ψ)(c+ b cos2 ψ)

dψ,

with c > 0. In this case, we search for the value of the variation ∆ϕ from
the beginning of the movement to the moment of the twist of the wing nut.
We assume that the wing nut performs a perfect twist for which ψ goes
from −π

2
to −π

2
. In this subsection, we now show that:

∆ϕ =
1√
ab

[ha,b(c)− ln(c)], (2.17)

where ha,b is a bounded function when c→ 0.
Since in this case ε = 0, we analyze the function Fa,b,c as a function of c

to find the initial conditions such that we observe the Dzhanibekov effect.
This is why, in this case, the expression of ∆ϕ is given as a function of c,
which corresponds to analyzing the axis c on the figure 2.7. Moreover, the
logarithmic divergence of ∆ϕ occurs due to the confluence of the two branch
points in x = β and x = 0, which gives a pole as in the TRE. Consequently,
the speed dϕ/dψ increases tremendously in a neighborhood of this point.

DE with many rotations around the intermediate axis can be observed
for a sufficiently small positive value of c. We stress that the number of
turns does not need to be complete. We give a more detailed description of
this fact in Section 3.1.

Using the same change of coordinates introduced for the TRE, one gets

∆ϕ =

∫ 1

0

1

b

1− bx√
x(x− β)(1− x)(x− α)

dx,

with α = −a
b

and β = − c
b
. In this case, on the complex plain, one obtains a

complete Abelian integral, for a cycle connecting the two branching points
0 and 1. It starts on one sheet of the Riemann surface and ends on the
other.

In order to obtain useful approximations, we estimate the integral in the
real domain. We have

∆ϕa,b(c) =
1√
ab

∫ 1

0

1− bx√
x(x− β)(1− x)(1− x

α
)
dx.

This last integral can be written as the sum of two terms:

∆ϕa,b(c) =
1√
ab

(f(c) + g(c)) ,
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2.3. The Dzhanibekov effect

with

g(c) =

∫ 1

0

1√
x(x− β)

dx,

and

f(c) =
1√
ab

∫ 1

0

1√
x(x− β)

(
1− bx√

(1− x)(1− x
α
)
− 1

)
dx.

Proposition 2.6. Let 0 < b0 < 1 be fixed. For every b ∈ (b0, 1) and every
a such that

(
√

1 + x(b/a))
√
1− x < 1− bx,

we have the following upper bound for the function ∆ϕa,b(c):

|∆ϕa,b(c)| <
1√
ab

(
2 ln (2) + 2 ln

(√
b+

√
b+ c√
c

))
.

Proof. Straightforward computations lead to

g(c) = 2 ln

(√
b+

√
b+ c√
c

)
= ln

(
(
√
b+

√
b+ c)2

c

)
.

We find, in a second step, a bound for the function f :

|f(c)| ≤ 1√
ab

∫ 1

0

1√
x(x− β)

∣∣∣∣∣1− bx−
√

(1− x)(1− x
α
)√

(1− x)(1− x
α
)

∣∣∣∣∣ dx.
As explained in Lemma 2.3, for a, b fulfilling the conditions given in the

statement, we have that∫ 1

u

dx

x

∣∣∣∣∣1− bx−
√

(1− x)(1− x/α)√
(1− x)(1− x/α)

∣∣∣∣∣ =
∫ 1

u

1− bx−
√

(1− x)(1− x/α)√
(1− x)(1− x/α)

dx

x
,

giving

|f(c)| ≤ 1√
ab

∫ 1

0

1

x

(
1−

√
1− x√

1− x

)
dx ≤ 2 ln 2.

It is then straightforward to derive Eq. (2.17) defining

ha,b(c) = 2 ln
(√

b+
√
b+ c

)
+ 2 ln (2).
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We have obtained that

|∆ϕa,b(c)| <
1√
ab

(
2 ln (2) + ln

(
√
b+

√
b+ c)2

c

)
.

Thus, a rough estimation of ∆ϕ when c→ 0, using this last inequality, is

∆ϕ ≃ 1√
ab

(
ln

(
4b

c

)
+ 2 ln 2

)
.

In the supplementary material of [48], the accuracy of this approximation
is investigated numerically for a standard wing nut, showing that, in fact,
it is pretty accurate.

Using this estimation of the variation ∆ϕ, we conclude that the number
of turns that we observe before the flip depends on the shape of the body
(because of the dependence of this expression on the parameters a and b)
and on the initial condition (encoded on the value of c). Nevertheless, given
the fact that the wing nut is guided by the screw at the beginning of the
movement, the initial condition will be almost the same every time (and
therefore the value of c as well). Thus, the number of turns depends only
on the moments of inertia of the wing nut. Finally, a condition on the value
of this variation, to observe the DE, is described in Section 3.1.
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2.4 The Monster flip
MFE corresponds to a complete turn around the transverse axis together
with a small variation of ψ. It can be realized in a neighborhood of the
unstable point where dψ

dϕ
= 0 (i.e. dϕ

dψ
= ∞), as shown in this subsection.

Following the approach used in the previous sections, we consider sym-
metric initial and final conditions. For rotating trajectories, one gets ψi =
−π

2
− ε and ψf = −π

2
+ ε with ε > 0, regarding the vertical symmetry. For

oscillating trajectories near the unstable point −π
2
, we consider the horizon-

tal symmetry, obtaining ψi = ψf = −π
2
+ ε (see Fig. 2.5). Notice that, for

these later trajectories, the value of ψ varies in [−π
2
+arcsin[

√
|β|],−π

2
+ ε],

where β = −c
b

as in the previous sections.
Thus, we search for a solution ε close to zero, of ∆̃ϕ(ε) = 2π, where

∆̃ϕ(ε) = 2

∫ −π
2

+ε

ψ1

1− b cos2 ψ√
a+ b cos2 ψ

√
c+ b cos2 ψ

dψ, (2.18)

with ψ1 = −π/2 or ψ1 = −π/2 + arcsin[
√

|β|], for rotating and oscillating
trajectories respectively.

Using the same change of coordinates as for the TRE, we get ∆̃ϕ(ε) =∫ sin2 ε

cos2 ψ1
ω, where ω is defined by Eq. (2.5). Note that, cos2(ψ1) = 0 in the

rotating case and, by construction, cos2(ψ1) = |β| in the oscillating case.
We introduce the function F̃a,b,c(u) =

∫ u
cos2 ψ1

ω and search for solutions
of

F̃a,b,c(u) = 2π, 0 ≤ u ≤ 1, (2.19)

in the rotating case or

F̃a,b,c(u) = 2π, |β| ≤ u ≤ 1, (2.20)

for oscillating trajectories.
In this section we show that, the solution of ∆̃ϕa,b,c = F̃a,b,c(u) can be

approximated as ε ≃
√

|β|
2
eπ

√
ab. The accuracy of this approximation is

shown numerically in supplementary material of [48].
As a consequence, for a body with ab ≥ 1, MFE can be observed only

in a neighborhood of the separatrix, where |β| ≪ 1. The rotation of the
skateboard around its transverse axis is constrained by the condition ε ≥√

|β|. This result quantifies the difficulty of performing MFE. For an angle
ε of 30 degrees, this leads for a standard skateboard to c ≃ 10−3, while the
maximum value of c is of the order of 10.

Following the study done for the TRE, one has the existence of two
different behaviors of the function F̃a,b,c(u) corresponding to the two regions
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2. Geometric origin of the tennis racket effect

0 < u < |β| and |β| < u < 1. In the case 0 < u < |β| (which only concerns
rotating trajectories), it can be shown, using the same technique as before,
that

F̃a,b,c(u) = h̃a,b,c(
√
u),

where h̃a,b,c is a holomorphic function vanishing at the origin. For the region
|β| < |u| < 1, one gets

F̃a,b,c(u) =
1√
ab
h̃a,b,c(u) +

1√
ab

ln(u),

where h̃a,b,c is a bounded single-valued function. Note the change of sign in
front of the logarithmic term with respect to Eq. (2.12).

We consider now the different integrals in the real domain to obtain the
approximation mentioned before.

Approximation for 0 < u < |β|
We consider the function F̃a,b,c in the region u < |β|. We stress that this
analysis only concerns the case with c > 0; hence, cos2 ψ1 = 0.

Since we search for solutions of F̃a,b,c(u) = 0 with u ≪ 1, we can ap-
proximate the function F̃ as follows

F̃a,b,c(u) =
1

b

∫ u

0

1− bx√
x(x− β)(1− x)(x− α)

dx ≃ 1√
ab

∫ u

0

dx√
x(x− β)

,

where we have replaced x by 0 except in the factor
√
x(x− β). Integrating

the right-hand side, one obtains

F̃a,b,c(u) ≃
2√
ab

ln

(√
1 +

u

|β|
+

√
u

|β|

)
.

The equation 2π = ∆ϕa,b,c = F̃a,b,c(u) can then be approximated as√
1 +

u

|β|
+

√
u

|β|
≃ eπ

√
ab. (2.21)

The variation ε of MFE can be estimated as

ε ≃ π
√
ac. (2.22)

using the Taylor expansion for exp(v),
√
1 + v and sin(v), and neglecting

higher order terms.
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2.5. Conclusion

Since we are in the case 0 < u < |β|, we have
√

1 + u
|β +

√
u
|β| ≤ 1+

√
2.

From where, it is also possible to recover the fact that the function h̃a,b,c is
bounded. Notice that this inequality also gives a strong constraint on the
parameters a and b, when we replace it in Eq. (2.21), obtaining

ab ≤ [ln(1 +
√
2)]2

π2
.

This bound on the product ab is of the order of 0.079 which means that in
this situation we cannot have very asymmetric rigid bodies.

Approximation for 0 ≤ |β| < u

In this case, we can use the same approximation for the function F̃a,b,c as
in the previous case, but this approximation will be valid just for ab large,
since in this case cos2 ψ1 = 0 or cos2 ψ1 = |β|. Thus, for ab large enough,
we have

F̃a,b,c(u) =
1

b

∫ u

cos2 ψ1

1− bx√
x(x− β)(1− x)(x− α)

dx ≃ 1√
ab

∫ u

0

dx√
x(x− β)

,

obtaining again Eq.(2.21).
An approximation for ε can be derived in the limit u/|β| ≫ 1, one gets

sin(ε) ≃
√

|β|
2

eπ
√
ab

A first-order Taylor expansion leads to

ε ≃
√
|β|
2

eπ
√
ab, (2.23)

which also allows to estimate the bounded function h̃a,b,c. The accuracy of
these different approximations is illustrated numerically in [48].

2.5 Conclusion
In conclusion, in this chapter we analyzed the tennis racket effect, the
Dzhanibekov effect and the monster flip by setting a, b and c as fixed
parameters and analyzing these phenomena as functions of ε. In the next
chapter, we make a more general analysis fixing only the parameters a and
b (describing the shape of the body) and doing a study of c and ε simulta-
neously which leads to interesting results.
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Chapter 3

Signatures of physical constraints
in rotating rigid bodies

The parameters a and b play a crucial role in the properties derived in the
previous Chapter. These parameters are related to the shape of the body
(since they are given in terms of the moments of inertia) and fulfill the
physical constraint introduced in Section 1.4.

However, as mentioned before, in the paper [69], a direct link between
Euler’s equations and Bloch’s equations is given, these later equations de-
scribe the control of spin 1/2-particles employing electromagnetic fields. In
this quantum counterpart, the moments of inertia play the role of additional
degrees of freedom used to design control fields, so they are not related to
the shape of a rigid body and do not fulfill the aforementioned physical
constraint.

Thus, the study of Euler’s equations, in both cases, the physical and the
non-physical case is interesting. Moreover, these two cases can be differen-
tiated from the parameters a and b as shown by the constraint derived in
Proposition 1.3.

In this Chapter, we prove that this constraint has geometrical signatures
on the rigid body dynamics, detecting these signatures in the tennis racket
effect and in the Montgomery phase 1 .

The results of this chapter have been published in Journal of Physics A:
Mathematical and Theoretical [36].

1The Montgomery phase is a well-known geometric phase whose definition can be
found in Section 3.5
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3. Signatures of physical constraints in rotating rigid
bodies

3.1 Geometric and dynamic framework

In the previous chapter and different works [5, 70], a study of the TRE
has been made in a neighborhood of the separatrix. The corresponding
trajectories are assumed to exhibit the TRE since the separatrix is the curve
connecting two unstable points, which are at the origin of this geometric
effect [3, 5].

Recall that the TRE is characterized by a variation ∆ϕ = 2π when
∆ψ = π − 2ε 2. In the previous chapter, c 3 was considered as a small
parameter, giving rise to approximations for ∆ϕ = Fa,b,c(ε), when ε ≃ 0.
We then obtained different behaviors of F as a function of ε. However, we
did not perform a full analysis of F , as a function of two variables c and ε.

In this Chapter, we analyze F , as a function of c and ε. We show that
the pairs of values (c, ε), such that Fa,b(c, ε) = 2π define a curve denoted C.
We find geometrical signatures that the constraint on the parameters a and
b imposes on this curve and, in addition, we take advantage of this analysis
to make a global study of the TRE 4.

For the rest of the chapter, the parameters a and b are fixed (which is
equivalent to fixing the rigid body that we analyze). We start studying the
dynamics of the reduced system

dψ

dϕ
=

(a+ b cos2 ψ) cos θ

1− b cos2 ψ
, (3.1)

dθ

dϕ
=
b sin θ sinψ cosψ

1− b cos2 ψ
, (3.2)

with first integral c = a − sin2 θ (a+ b cos2 ψ). The phase portrait of this
system is represented in Fig. 3.1. In this system, the evolution of the angle
ϕ can be analyzed as well since ϕ plays the role of time.

We define the relation C as the set of pairs (c, ε) such that when consid-
ering symmetric initial and final values of ψ, ψi = −π

2
+ ε and ψf = π

2
− ε,

for the trajectory given by the value of c, the time taken to go from the
initial point to the final point along the trajectory is 2π (i.e. ∆ϕ = 2π).

Equation (3.1) can be used to study this effect, as mentioned in the
previous Chapter. A difficulty lies in the fact that the sign of the term cos θ

2A perfect TRE is then described by ε = 0, ε describing the defect to a perfect TRE.
3c parametrizes the distance to the separatrix and depends on the initial condition

of the dynamics.
4A local, versus global, study of the TRE corresponds therefore to a local (close to

c = 0), or global (any value of c) study of the curve C, respectively.
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3.1. Geometric and dynamic framework

Figure 3.1: Schematic representation of the phase portrait (ψ, θ). The
blue and red lines correspond respectively to the rotating and oscillating
trajectories. The separatrix (c = 0) is plotted in black. The grey dots and
the green curves have the values c = −b and c = a respectively.

given by

cos θ = ±

√
c+ b cos2 ψ

a+ b cos2 ψ
, (3.3)

changes and then the sign of the derivative dψ/dϕ depends on the region
of the phase space we consider.

To detect this change of sign, we introduce the curve

S =
{
(c, ε) | c = −b sin2 (ε)

}
, (3.4)

for which cos θ is equal to 0; ε is determined by the initial condition ψ =
−π/2 + ε. A change of sign corresponds therefore to an intersection point
between the curves C and S.

In this section, we prove that C is a curve given as a graph of a function
ε = ε (c). We derive implicit equations describing this function and we
study different properties of the curve leading to a global description of the
TRE.
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3. Signatures of physical constraints in rotating rigid
bodies

Recall that, at the end of Chapter 1, we defined a physical rigid body,
we introduced the geometrical constant

I =
1− b√
b (a+ b)

, (3.5)

and we proved that the moments of inertia Ix, Iy, Iz describe a physical
rigid body if and only if I satisfies the inequality I ≥ 1.

The following Theorem is proved in Section 3.3 and is the main signature
of the physical constraint on the TRE.

Theorem 3.1. The relation C is a curve given as a graph of a function ε =
ε (c). Moreover, the function ε (c) is injective, if and only if the geometric
constant I verifies I ≥ 1, that is if and only if the rigid body is physical.

3.2 Description of the curve C associated to
the TRE

We first establish different results about the structure of the relation C.

Lemma 3.2. The set C is a curve in the plane (c, ε) given as a graph of a
function c 7→ ε (c).

Proof. We need to prove that for a fixed value of c, there exists only one
value of ε. Let us assume that there exist two values of ε, namely ε1 and ε2
fulfilling the definition of the curve C. The time taken to go from −π

2
+εk to

π
2
− εk along the curve is equal to 2π for k = 1, 2. We deduce that the time

needed to go from one point to the other (for example between −π
2
+ε1 and

−π
2
+ ε2) is 0. We conclude that ε1 = ε2.

First implicit equation

In this part of the section, we analyze the equation used in the previous
Chapter (Eq. (3.6)) from a new perspective, using the curves S and C.

We consider the derivative dψ
dϕ

for θ ∈ [0, π
2
), i.e. in the case cos θ > 0.

Using Eqs. (3.1) and (3.3), one obtains that the TRE can be described as
the solutions (c, ε) of the implicit equation

2π =

∫ π/2−ε

−π/2+ε

1− b cos2 ψ√
(b cos2 ψ + a) (b cos2 ψ + c)

dψ. (3.6)
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3.2. Description of the curve C associated to the TRE

The square root in the integrand of Eq. (3.6) is well defined if c ≥ −b sin2 (ε),
i.e. before intersecting the curve S.

For non-negative values of ε, one can consider the change of coordinates
given by x = cos2 ψ, which leads to

2π = Fa,b (c, u) =
1√
ab

∫ 1

u

1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ c

b

)dx, (3.7)

where u = sin2 ε, a and b are fixed parameters and c and u the variables.
Note that u ≥ 0 and S = {(c, u) | c = −bu}.

We now establish some properties of C in the region where the curve is
described by Eq. (3.6).

Proposition 3.3. The function ε (c) given by the solutions of the implicit
Eq. (3.6) is an injective decreasing function.

Proof. Using the symmetry of the integrand, we can transform Eq. (3.6)
into

π = Ia,b (c, ε) =

∫ π/2−ε

0

1− b cos2 ψ√
(b cos2 ψ + a) (b cos2 ψ + c)

dψ. (3.8)

We analyze the set C near a point (c1, ε1), for which the curve is de-
scribed by Eq. (3.8). The function given by Ia,b (c, ε)− π is a continuously
differentiable function such that Ia,b (c1, ε1)− π = 0. Thus, we can use the
Implicit Function Theorem to compute the derivative of the function ε (c).
The partial derivative of the function with respect to ε is

∂ (Ia,b (c, ε)− π)

∂ε
(c1, ε1)

= − 1− b cos2 (π/2− ε1)√
(b cos2 (π/2− ε1) + a) (b cos2 (π/2− ε1) + c1)

̸= 0.

This partial derivative is not equal to 0. Thus, the Implicit Function The-
orem gives the existence of a local solution near the point (c1, ε1) and leads
to the following expression for the derivative

dε

dc
= −∂Ia,b

∂c

/
∂Ia,b
∂ε

∣∣∣∣
ε(c)

. (3.9)
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3. Signatures of physical constraints in rotating rigid
bodies

Using the definition of Ia,b, we obtain

dε

dc
= −

π/2−ε(c)∫
0

1−b cos2 ψ√
b cos2 ψ+a

1

2(b cos2 ψ+c)
3
2
dψ

1−b cos2(π/2−ε(c))√
(b cos2(π/2−ε(c))+a)(b cos2(π/2−ε(c))+c)

≤ 0. (3.10)

Since Eq. (3.10) is valid near any point for which the curve C is described
by the first implicit equation, we conclude that this part of the curve is
strictly decreasing (the expression (3.10) has a discrete set of zeros). The
injectivity follows from this property.

Equation (3.7) can be used to study the existence of a TRE on the
separatrix and a perfect TRE as shown by the following result.

Proposition 3.4.

1. The TRE always occurs on the separatrix.

2. A perfect TRE occurs if and only if J < 2.

Proof.

1. Having a TRE on the separatrix is equivalent to finding u0 = sin2 (ε0)
such that

2π = Fa,b (0, u0) =
1√
ab

∫ 1

u0

1− bx

x
√
(1− x)

(
1 + b

a
x
)dx. (3.11)

Using the expression on the right-hand side of Eq. (3.11), we observe
that Fa,b (0, u) goes respectively to +∞ and 0 when u goes to 0 and
1. Thus, we conclude that there exists u0 ∈ (0, 1) such that 2π =
Fa,b (0, u0).

2. Showing the existence of a perfect TRE (ε = 0) amounts to show the
existence of c0 ∈ (−b, a) such that

2π = Fa,b (c0, 0) =
1√
ab

∫ 1

0

1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ c0

b

)dx. (3.12)

We have that Fa,b (c, 0) goes to ∞, when c goes to 0, and following
the computations of Sec. 3.5, we know that 2Fa,b (c, 0) is a decreasing
function with a greatest lower bound equal to 2πJ . We conclude that
a perfect TRE occurs if and only if J < 2.
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3.2. Description of the curve C associated to the TRE

The values ε0 and c0 represent the TRE on the separatrix and a per-
fect TRE respectively. A schematic representation is given in Fig. 3.2. In
Section 3.4, we study the dependence of these effects on the parameter a.

Intersection of C and S
In the previous subsection, we used the first implicit equation to obtain
properties of the curve C and we explained that this equation is valid until
the point where the curve C intersects S (i.e. when cos θ changes sign). We
now describe under which conditions these two curves intersect.

Figure 3.2: Schematic representation in the space (c, ε) of the part of the
curve C (solid magenta line) described by the first implicit equation. The
red dashed line represents the set S. The grey and green vertical lines have
respectively the equations c = −b and c = a. The points ε0 and c0 indicate
the positions of a TRE on the separatrix and of a perfect TRE (see the text
for details).
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3. Signatures of physical constraints in rotating rigid
bodies

First, notice that in the region b sin2 (ε) + c < 0 the integrand of the
integral of Eq. (3.6) is not well defined and that the curve S is delimiting
this region. If there exists an intersection point between C and S, then the
coordinate c of the intersection point has to be negative, which corresponds
to a positive value of ε since in this case, C is a decreasing curve (see
Fig. 3.2). Thus, we can use Eq. (3.7) to analyze whether or not there exists
an intersection point between these curves.

Lemma 3.5. The curves C and S intersect in (0, 1], if and only if I ≤ 2.

Proof. If C and S intersect in (0, 1], then there exists u∗ ∈ (0, 1] such that
Fa,b (−bu∗, u∗) = 2π. Using Lemmas 3.16 and 3.17 of Section 3.5, we deduce
that u = 1 is the minimum of the function Fa,b (−bu, u). Thus Fa,b (−b, 1) ≤
Fa,b (−bu∗, u∗), which implies that I ≤ 2.

Conversely, an intersection point between the two curves is characterized
by the equation Fa,b (c, u) = 2π, with c = −bu. The function Fa,b (−bu, u)
is a continuous function which goes to ∞, when u goes to 0 and verifies

Fa,b (−bu, u) → πI ≤ 2π, (3.13)

when u goes to 1 (using Lemma 3.17). We conclude that there exists u∗ ∈
(0, 1], such that F (−bu∗, u∗) = 2π, and thus, an intersection point between
these curves.

Notice that u ∈ (0, 1] is equivalent to ε ∈ (0, π
2
], and that the intersection

point is unique since Fa,b (−bu, u) is a decreasing function (See Lemma 3.16).

Remark 3.6. Using the preceding proof, we deduce that the intersection
point is exactly in u = 1, if and only if I = 2.

We derived a condition on the parameters that ensures the existence
of an intersection point between C and S. After this intersection point
the implicit equation describing the solution curve C changes as described
below. We first recall that the first implicit equation describes the curve
C in the region θ ∈ [0, π

2
), i.e. cos θ > 0. Notice that, if there exists

an intersection point between C and S, then c < 0, which corresponds
to oscillating trajectories. The period Tϕ of these closed orbits can be
calculated using the relation

dϕ

dψ
= ± 1− b cos2 ψ√

(b cos2 ψ + a) (b cos2 ψ + c)
. (3.14)

46



3.2. Description of the curve C associated to the TRE

Indeed, since the solutions are symmetric and we consider the whole orbit
to compute the period, one arrives at

Tϕ (c) = 2

∫ π
2
−ε∗

−π
2
+ε∗

1− b cos2 ψ√
(b cos2 ψ + a) (b cos2 ψ + c)

dψ = 2Fa,b (−bu, u) .

(3.15)
The last equality in Eq. (3.15) is obtained by performing the change of
coordinates that we have used before, x = cos2 ψ and c = −bu = −b sin2 (ε).
Lemma 3.16 proves that the period Tϕ (c) decreases when c decreases. In
Fig. 3.1, this means that the smaller orbits have a smaller period (ϕ plays
the role of time in this phase space). This latter result implies that the
sign of cos (θ) changes after the intersection point between C and S, since
for the values of c between −b and the value of this intersection point the
periods are smaller.

The second implicit equation takes the following form∫ −π/2+ε∗

−π/2+ε
−ha,b,c (ψ) dψ +

∫ π/2−ε∗

−π/2+ε∗
ha,b,c (ψ) dψ +

∫ π/2−ε

π/2−ε∗
−ha,b,c (ψ) dψ

=2π (3.16)

where ε∗ ∈
(
0, π

2

)
and

ha,b,c (ψ) =
1− b cos2 ψ√

(a+ b cos2 ψ) (c+ b cos2 ψ)
. (3.17)

Notice that ε ∈ [ε∗, π − ε∗]. Hence ε∗ < ε. Straightforward computation
leads to the following expressions in terms of Fa,b

2Fa,b

(
c,−c

b

)
− Fa,b (c, u) = 2π, (3.18)

for ε < π
2

and

2Fa,b

(
c,−c

b

)
+ Fa,b (c, u) = 2π, (3.19)

for ε ≥ π
2
.

After each intersection point between the curves C and S, the implicit
equation describing the curve C changes as it is explicitly shown in the last
part of the following subsection.
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3. Signatures of physical constraints in rotating rigid
bodies

3.3 The curve C in the physical and
non-physical cases

In this section, we show that the physical nature of a rigid body can be
detected from the structure of the curve C, in the sense that the properties
of the curve C differs between a physical and a non-physical rigid body.

The physical case

The proof of Theorem 3.1 is given at the end of this part. First, we show
two results on which the proof of Theorem 3.1 is based.

Lemma 3.7. There exists an intersection point (c1, ε (c1)) between C and
S and a point

(
c∗, π

2

)
∈ C such that c∗ ∈ (c2, c1), if and only if I < 1. Here

c2 is either the coordinate of the second intersection point or equal to −b if
there is no second intersection point.

Proof. Since the point
(
c∗, π

2

)
∈ C is found between the first and the second

intersection point (in the sense that c∗ ∈ (c2, c1)), then the implicit equation
describing C in this point is given by Eq. (3.16), leading for c = c∗ and ε = π

2

to the following expression

2

∫ π/2−ε∗

−π/2+ε∗

1− b cos2 ψ√
(a+ b cos2 ψ) (c∗ + b cos2 ψ)

= 2π,

which is equivalent to
Fa,b (−bu∗, u∗) = π,

where u∗ = − c∗

b
. Since the minimum value of Fa,b (−bu, u) is Iπ and c∗ ̸=

−b, we arrive at πI < π concluding that I < 1.
Conversely, the condition 1−b√

b(a+b)
< 1 < 2 implies the existence of an

intersection point on the interval u ∈ (0, 1) (due to Lemma 3.5), which
leads to −b < c1. Let us set u1 = − c1

b
. As a first step, we prove that the

condition I < 1 gives the existence of a solution u∗ ∈ (u1, 1) to the implicit
equation Fa,b (−bu, u) = π. Using the same analysis as the one done in
Lemma 3.5, we observe that Fa,b (−bu, u) is equal to 2π, for u equal to u1,
and goes to πI, when u goes to 1. By hypothesis, πI < π, we conclude
that there exists u∗ ∈ (u1, 1), such that Fa,b (−bu∗, u∗) = π.

Now, we define c∗ = −bu∗ < c1 and prove that the point (c, ε) =
(
c∗, π

2

)
belongs to C. We consider expression (3.16), since we analyze C after the
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3.3. The curve C in the physical and non-physical cases

first intersection point.

−π/2+ε∗∫
0

−ha,b,c∗ (ψ) dψ +

π/2−ε∗∫
−π/2+ε∗

ha,b,c∗ (ψ) dψ +

0∫
π/2−ε∗

−ha,b,c∗ (ψ) dψ

= 2

π/2−ε∗∫
−π/2+ε∗

ha,b,c∗ (ψ) dψ.

Using the change of coordinates x = cos2 ψ, we get

2

∫ π/2−ε∗

−π/2+ε∗
ha,b,c∗ (ψ) dψ = 2Fa,b

(
c∗,

−c∗

b

)
= 2Fa,b (−bu∗, u∗) = 2π.

Thus,
(
c∗, π

2

)
belongs to C. Since it is a solution of the second implicit

equation, we also get c∗ ∈ (c2, c1), where c2 is either the coordinate of the
second intersection point or −b, if there is no second intersection point.

Following the preceding proof, the same result can be established when
c∗ = −b and I = 1.

Proposition 3.8. The function ε (c) is not injective if and only if there
exists a point

(
c∗, π

2

)
∈ C, with c∗ ∈ (−b, 0).

Proof. As the function ε (c) is not injective, there exists an intersection
point (c1, ε (c1)) between C and S. This is because we proved that the func-
tion ε (c) is injective in the part described by the first implicit equation.
Since we have an intersection point, we analyze Eq. (3.18) and prove that
ε (c) is a strictly decreasing function when it is described by this last equa-
tion. Let us consider c3 < c2 < c1 < 0. The period Tϕ (c) being decreasing,
when c decreases, implies 2Fa,b

(
c3,

−c3
b

)
< 2Fa,b

(
c2,

−c2
b

)
. Thus, we have

2Fa,b

(
c3,

−c3
b

)
− 2π < 2Fa,b

(
c2,

−c2
b

)
− 2π. (3.20)

Using c3 < c2, we get

0 <
1− bx√

x (1− x)
(
1 + b

a
x
) (
x+ c2

b

) < 1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ c3

b

) .
(3.21)
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3. Signatures of physical constraints in rotating rigid
bodies

Thus, if u2 and u3 are such that

1√
ab

∫ 1

u2

1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ c2

b

) = 2Fa,b

(
c2,

−c2
b

)
− 2π,

1√
ab

∫ 1

u3

1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ c3

b

) = 2Fa,b

(
c3,

−c3
b

)
− 2π.

Using Eq. (3.20) and (3.21), we obtain u2 < u3, which is equivalent to

ε(c2) = arcsin (
√
u2) < ε(c3) = arcsin (

√
u3) . (3.22)

We just have proved that when the function ε(c) is described by Eq. (3.18),
it is a strictly decreasing function. For this reason, ε(c) is injective in the
region where it is described by the first implicit equation and by Eq. (3.18).
Since ε(c) is not injective globally, we conclude that there exists a point(
c∗, π

2

)
∈ C, with c∗ ∈ (−b, 0).

Conversely, we have that ε(c∗) = π
2

and, notice that for the TRE on the
separatrix we have ε(0) ∈

(
0, π

2

)
. Thus, all the values in [ε(0), π

2
] are taken

by the function ε(c). If the function ε(c) is less than π
2
, for values of c in

(−b, c∗), then the function is not injective. If it is not the case, then there
exist δ1 > 0 and δ2 > 0 such that(π

2
− δ2,

π

2
+ δ2

)
⊂ ε ((c∗ − δ1, c

∗ + δ1)) . (3.23)

We also have

ε(c) ∈

[
arcsin

(√
−c
b

)
, π − arcsin

(√
−c
b

)]
. (3.24)

Since arcsin
(√

−c
b

)
→ π

2
, when c → −b, then there exists c̃ such that

c̃ < c∗ − δ1 and close enough to −b so that[
arcsin

(√
−c̃
b

)
, π − arcsin

(√
−c̃
b

)]
⊂
(π
2
− δ2,

π

2
+ δ2

)
. (3.25)

Finally, we conclude that ε(c̃) ∈
(
π
2
− δ2,

π
2
+ δ2

)
, i.e., the function ε(c) is

not injective.

Proof of Theorem 3.1. If the function ε(c) is not injective, then there exists
an intersection point (c1, ε (c1)) between C and S and a point

(
c∗, π

2

)
∈ C,
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3.3. The curve C in the physical and non-physical cases

where c∗ ∈ (−b, c1). This is a consequence of the proof of Proposition 3.8.
Using Lemma 3.7, we obtain that I < 1. Conversely, if I < 1, using
Lemma 3.7, we deduce that there exists an intersection point (c1, ε (c1))
between C and S and a point

(
c∗, π

2

)
∈ C, where c∗ ∈ (−b, c1), which

implies that the function ε(c) is not injective (due to Proposition 3.8). The
first claim follows.

The second claim now follows directly from Proposition 1.3.

The curve C in the non-physical case

Theorem 3.1 shows that for physical rigid bodies, the curve C is described
by an injective decreasing function, while, for non-physical systems, this
function is non-injective. In this latter case, the function has an oscillating
behavior with respect to the curve S, i.e. the curves C and S intersect
several times. Moreover, the number of intersection points depends on
the value of the geometric constant I. Fig. 3.3 illustrates these different
behaviors.

Figure 3.3: Representation of the oscillatory behavior observed, in the non-
physical case, with respect to the curve S which is represented by the red
dashed curve.

The following Theorem is the main result for the non-physical case and
states the aforementioned structure of the curve C.

Theorem 3.9. For every n ∈ N \ {0}, if the parameters a and b are such
that I < 2

2n+1
, then there exist at least n intersection points between C and

S. Moreover, if (cn, ε (cn)) are the coordinates of the n-th intersection point,
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then there exist c∗ ∈ (−b, cn) such that ε (c∗) = π
2

and another intersection
point (cint, ε (cint)) such that cint ∈ (−b, cn).

The proof generalizes the ideas used in the preceding Lemmas and is
given at the end of this part of the text. We start by introducing the
generalization of the implicit equations describing the curve C.

The same derivation as the one used for the second implicit equation can
be done after each intersection point between C and S, since the period Tϕ(c)
is a decreasing function. We deduce that the implicit equation describing
C depends on the number of intersection points.

After the first n intersection points, the implicit equation that describes
C is

2π =

∫ −π/2+ε∗

−π/2+ε
−ha,b,c (ψ) dψ + (2n− 1)

∫ π/2−ε∗

−π/2+ε∗
ha,b,c (ψ) dψ (3.26)

+

∫ π/2−ε

π/2−ε∗
−ha,b,c (ψ) dψ,

for n odd and

2π =

∫ π/2−ε∗

−π/2+ε
ha,b,c (ψ) dψ + (2n− 1)

∫ π/2−ε∗

−π/2+ε∗
ha,b,c (ψ) dψ (3.27)

+

∫ π/2−ε

−π/2+ε∗
ha,b,c (ψ) dψ,

for n even. Using x = cos2 ψ, we get four different expressions

2nFa,b

(
c,−c

b

)
− Fa,b (c, u) = 2π, n odd, ε <

π

2
(3.28)

2nFa,b

(
c,−c

b

)
+ Fa,b (c, u) = 2π, n odd, ε ≥ π

2
(3.29)

2nFa,b

(
c,−c

b

)
− Fa,b (c, u) = 2π, n even, ε >

π

2
(3.30)

2nFa,b

(
c,−c

b

)
+ Fa,b (c, u) = 2π, n even, ε ≤ π

2
(3.31)

Lemma 3.10. Assume that the parameters a and b are such that I < 2
3
.

Let (c1, ε (c1)) be the coordinates of the first intersection point between
C and S. Then, there exists an intersection point (cint, ε (cint)) such that
cint ∈ (−b, c1).

Proof. First notice that the condition I < 2
3
< 2 implies the existence of

an intersection point on the interval ε ∈
(
0, π

2

)
, due to Lemma 3.5, which
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gives −b < c1. Then, we stress that I < 2
3
< 1 leads to the existence of a

point c∗ ∈ (−b, c1), such that ε (c∗) = π
2
.

If there exists another intersection point between c∗ and c1, the proof is
done. If not, then we look for one after c∗, i.e., on the interval (−b, c∗). For
this reason we use the expression (3.29), for n = 1

2Fa,b

(
c,−c

b

)
+ Fa,b (c, u) = 2π. (3.32)

We analyze this equation along the curve c = −bu to find intersection
points, getting

2π = 2Fa,b (−bu, u) + Fa,b (−bu, u) = 3Fa,b (−bu, u) . (3.33)

Thus, our problem is equivalent to the problem of finding solutions to the
implicit equation given by

Fa,b (−bu, u) =
2π

3
. (3.34)

Using the same techniques as before, we notice that Fa,b (−bu, u) is equal
to π, for u∗ = c∗

−b and goes to Iπ < 2
3
π, when u goes to 1. We deduce

that there exists uint ∈ (u∗, 1) such that Fa,b (−bu, u) is equal to 2π
3

. Then
the point (cint, uint), where cint = −buint, is an intersection point such that
−b < cint < c∗ < c1.

Proof of Th. 3.9. We proceed by induction

• Base case. For n = 1, we get the condition I < 2
3
< 1 < 2. Using

Lemma 3.5, we have the existence of at least one intersection point.
Using Lemma 3.7 and Lemma 3.10, we have respectively the existence
of c∗ and of the intersection point (cint, ε (cint)).

• Induction step. Assuming that the statement holds for n > 1, we
prove that it holds for n + 1. The condition I < 2

2(n+1)+1
< 2

2n+1

implies the existence of at least n+1 intersection points (the statement
holds for n). Let (cn+1, ε (cn+1)) be the coordinates of the (n + 1)-st
intersection point and un + 1 = − cn+1

b
. Notice that −b < cn+1 and,

hence, un+1 < 1 (the statement holds for n).

First, we prove that the condition I < 2
2(n+1)+1

< 1
n+1

implies the
existence of a solution u∗ ∈ (un+1, 1) to the implicit equation given
by Fa,b (−bu, u) = π

n+1
. Using the same analysis as the one done in

Lemma 3.5, we observe that Fa,b (−bu, u) is equal to 2π
2n+1

, for u equal

53



3. Signatures of physical constraints in rotating rigid
bodies

to un+1, and goes to Iπ, when u goes to 1. Using the hypothesis, we
get

Iπ < π

n+ 1
<

2π

2n+ 1
. (3.35)

We conclude that there exists u∗ ∈ (un+1, 1) fulfilling the equation
Fa,b (−bu∗, u∗) = π

n+1
. Now, we define −b < c∗ = −bu∗ < cn+1 and we

show that the point (c, ε) =
(
c∗, π

2

)
belongs to C. We study the set C

after the first n+1 intersection points and we observe that Eq. (3.26)
and (3.27) transform into

2(n+ 1)

π/2−ε∗∫
−π/2+ε∗

ha,b,c∗ (ψ) dψ, (3.36)

for the point
(
c∗, π

2

)
. Using the change of coordinates x = cos2 ψ, we

get

2(n+ 1)

∫ π/2−ε∗

−π/2+ε∗
ha,b,c∗ (ψ) dψ = 2(n+ 1)Fa,b

(
c∗,

−c∗

b

)
(3.37)

= 2(n+ 1)Fa,b (−bu∗, u∗)
= 2π.

Thus,
(
c∗, π

2

)
belongs to C, which implies that ε (c∗) = π

2
.

Finally, we prove the existence of the intersection point (cint, ε (cint)).
If there exists another intersection point between c∗ and cn+1, the
proof is done. If not, then we look for one after c∗, i.e., on the interval
(−b, c∗). For this reason, we use the implicit equation (3.29), or (3.31),
along the curve c = −bu. Both equations transform into

2π = 2(n+1)Fa,b(−bu, u)+Fa,b(−bu, u) = (2(n+1)+1)Fa,b (−bu, u) .
(3.38)

Thus, our problem is equivalent to the problem of finding solutions to
the implicit equation given by

Fa,b (−bu, u) =
2π

2(n+ 1) + 1
. (3.39)

Using the same techniques as before, we notice that Fa,b (−bu, u) is
equal to π

n+1
, for u∗ = c∗

−b and goes to 1−b√
b(a+b)

π, when u goes to 1. We
get

1− b√
b(a+ b)

π <
2π

2(n+ 1) + 1
<

π

n+ 1
. (3.40)
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We conclude that there exists uint ∈ (u∗, 1), such that Fa,b (−bu, u) is
equal to 2π

2(n+1)+1
. Then, the point (cint, uint), where cint = −buint, is

an intersection point such that −b < cint < c∗ < cn+1.

Numerical calculations show the different behaviors in Fig. 3.4.

-0.07 -0.05 -0.03 -0.01
0

0.5

1

1.5

2

2.5

3

Figure 3.4: Plot of the function ε(c). We have used a fixed value of b =
0.0629 and varied the value of a. The solid purple, black, blue, and green
curves correspond respectively to a = 39.95, a = 18.27, a = 12.65 and
a = 3.1, which leads to I = 0.59, 0.87, 1.05 and 2.1. The dashed red
curve represents the set S. The black horizontal and vertical lines have the
equations ε = π/2 and c = 0, respectively.

55



3. Signatures of physical constraints in rotating rigid
bodies

3.4 Global behavior of the tennis racket
effect with respect to the geometric
parameters a and b

Once the analysis of the curve C has been done for a fixed rigid body (for a
and b fixed), the next step is to analyze the behavior of this curve when the
parameters a and b vary. In this part of the text we study two particular
cases of this problem.

Evolution of c0 and ε0 as a function of a

Recall that c0 and ε0, introduced in Proposition 3.4, represent respectively a
perfect TRE and the TRE on the separatrix. In this section, we prove that
the values of c0 (a, b) and ε0 (a, b) decrease when a increases. This result
allows to analyze the behavior of C when the parameter a varies. Since we
consider different values of (a, b), in this section we use the notation Ca,b
instead of C.

Lemma 3.11. Let us consider two values of the parameter a such that
0 < a1 < a2 and the solutions (0, c0 (a1)) ∈ Ca1,b, (0, c0 (a2)) ∈ Ca2,b. Then
c0 (a1) > c0 (a2).

Proof. We have that (0, c0 (a1)) ∈ Ca1,b and (0, c0 (a2)) ∈ Ca2,b. Thus

π =

∫ π/2

0

1− b cos2 ψ√
(b cos2 ψ + a1) (b cos2 ψ + c0 (a1))

dψ

=

∫ π/2

0

1− b cos2 ψ√
(b cos2 ψ + a2) (b cos2 ψ + c0 (a2))

dψ. (3.41)

Since a1 < a2, then
√
b cos2 ψ + a1 <

√
b cos2 ψ + a2. This latter in-

equality implies
1− b cos2 ψ√
b cos2 ψ + a2

<
1− b cos2 ψ√
b cos2 ψ + a1

. (3.42)

From the two previous equations, we obtain

1√
b cos2 ψ + c0 (a2)

>
1√

b cos2 ψ + c0 (a1)
, (3.43)

which leads to
c0 (a1) > c0 (a2) . (3.44)
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Lemma 3.12. Let us consider two values of the parameter a such that
0 < a1 < a2 and the solutions (ε0 (a1) , 0) ∈ Ca1,b, (ε0 (a2) , 0) ∈ Ca2,b. Then
ε0 (a1) > ε0 (a2).

Proof. We follow the same idea as in the previous proof. The fact that
(ε0 (a1) , 0) ∈ Ca1,b and (ε0 (a2) , 0) ∈ Ca2,b leads to

π =

∫ π/2−ε0(a1)

0

1− b cos2 ψ√
(b cos2 ψ + a1) b cos2 ψ

dψ

=

∫ π/2−ε0(a2)

0

1− b cos2 ψ√
(b cos2 ψ + a2) b cos2 ψ

dψ. (3.45)

Since a1 < a2, then
√

(b cos2 ψ + a1) b cos2 ψ <
√
(b cos2 ψ + a2) b cos2 ψ,

giving

1− b cos2 ψ√
(b cos2 ψ + a2) b cos2 ψ

<
1− b cos2 ψ√

(b cos2 ψ + a1) b cos2 ψ
. (3.46)

From the two previous equations, we get

π

2
− ε0 (a1) <

π

2
− ε0 (a2) . (3.47)

We conclude that ε0 (a1) > ε0 (a2).

Notice that, when we change the value of a, but not the value of b we have
the same limit curve Sb that cannot be crossed, but the set Ca,b is modified.
According to these results, we know that when the value of a increases the
curve Ca,b goes down, in the sense that its intersection points with the two
axes decrease (See Figs. 3.2 and 3.5). An illustrative numerical example is
given in Fig. 3.5 for physical and non-physical rigid bodies. We observe that
the evolution of ε as a function of c is similar in the two cases. When a goes
to ∞ for a fixed value of b, the curve C is tangent to S in c = ε = 0. This
limit case has been already described in the previous Chapter, obtaining
that we have a perfect tennis racket effect on the separatrix.

Remark 3.13. From this analysis, one observes that the only possibility
to have a perfect TRE on the separatrix is to consider the abstract limit
a → ∞. This case has been already described in the previous chapter in
Theorem 6.1. Moreover, as explained in Sec. 1.4, the physical constraint
corresponds to 2b+ ab ≤ 1. If this inequality is fulfilled when a→ ∞, then
b → 0. This case (a → ∞, b → 0) is described below. Note that when
a→ ∞ and b→ 0, the physical constraint becomes ab ≤ 1.
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Figure 3.5: Plot of the defect ε as a function of c (curve Ca,b) for differ-
ent values of a, the parameter b being fixed to 0.06. The parameter a is
respectively set to 12.65, 13.89, 15.38 and 18.27 (solid blue, dashed blue
and solid black lines), which leads to I equal to 1.045, 1, 0.951 and 0.872.
The horizontal and vertical solid lines indicate respectively the position of
a perfect TRE (ε = 0) and of the separatrix (c = 0). The set S is plotted
in red.

Behavior of the flip defect ε when a→ ∞ and b→ 0

In [36], an explicit expression for the flip defect ε is obtained in the limit
case a→ ∞ and b→ 0 by using incomplete elliptic integrals.

The parameters χ and β defined as follows

χ = ab, β =
c

b
, (3.48)

are introduced and the expression obtained is

ε =
π

2
− am

(
π
√
χ(1 + β)

∣∣∣ 1

1 + β

)
, (3.49)

where am is the Jacobi amplitude. Recall that the Jacobi amplitude is
defined as the inverse of the incomplete elliptic integral of the first kind, i.e.
if u = F (φ|m), then φ =am(u|m).

According to Lemma 3.12, we know that the value of the flip defect on
the separatrix ε0 decreases when a increases, and so the smallest possible
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value of ε0 will occur when a→ ∞. Therefore, we can use expression (3.49)
to determine the minimum value of ε0 subject to the physical constraint
χ ≤ 1. It turns out that in the case of c < 0, there is a minimum value for
ε when χ→ 1 and β → 0. In this limit case, we have

ε0,min =
π

2
− am (π|1) = π − 2 arctan (eπ) = 0.086374. (3.50)

While in the case c > 0, there is a minimum value of β ̸= 0 such that ε = 0
that happens when χ→ 1, namely

π

2
− am

(
π
√

1 + β
∣∣∣ 1

1 + β

)
= 0 ⇒ β = 0.028973. (3.51)
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Figure 3.6: Plot of the function ε = π
2
−am

(
π
√
χ (1 + β)

∣∣∣ 1
1+β

)
. The values

of χ = 1, 0.8, 0.6 and χ = 0.4 correspond to the green, black, red and blue
curves respectively.

Figure 3.6 illustrates the analysis carried out above. For instance, we
observe that when we are very close to the separatrix β = 0, there is no
physical rigid body (in the sense that χ ≤ 1) that can achieve a perfect
∆ψ = π twist (i.e., ε0 = 0). Nevertheless, we observe that when β = 0,
the smallest possible value of ε0 happens for χ → 1, and therefore such a
physical rigid body characterized by χ = 1 performs the best quasi-perfect
twist, ∆ψ = π − 2ε0,min = 2.96884, on the separatrix.
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3.5 The Montgomery phase
The Montgomery phase is a geometric phase that can be seen, for rotational
dynamics, as the analog of the Berry phase for quantum systems [51, 17].
We now introduce this concept.

As shown in figure 1.6, the solutions to Euler’s equations are periodic
functions (except for the fixed points and the separatrix). For a periodic
solution, after one period T, the angular momentum vector J⃗ as seen in
the rotating rigid body frame has returned to the initial position. In the
laboratory frame, the rigid body has rotated by some angle around J⃗ with
respect to its initial orientation. The Montgomery phase is this angle of
rotation.

In our convention for the Euler’s angles, for one period, the angle that
measures the rotation around J⃗ is given by ∆ϕ.

Montgomery’s formula [52] gives this angle as

∆ϕ =
2HT

J
− A

J
(3.52)

where H is the energy and A is the area of the region bounded by the
orbit on the angular momentum sphere as represented in Fig. 3.7 (the sign
is chosen according to whether or not the orientation of the periodic orbit
is induced by the standard orientation of this region). The first term is
usually called dynamical phase and the second one geometric phase.

We study in this section the signature of the physical constraint intro-
duced in Proposition 1.3 on the Montgomery phase. Different analytical
properties described by Theorems 3.14 and 3.15 are found for oscillating
and rotating trajectories.

Theorem 3.14.

1. For any (a, b) ∈ (0,∞)× (0, 1), the greatest lower bound or infimum,
infc∈(−b,0)∆ϕ (a, b), of the Montgomery phase ∆ϕ, for oscillating tra-
jectories, is given by

inf
c∈(−b,0)

∆ϕ (a, b) = 2πI,

where I = I (a, b) is the geometric constant given by (1.14).

2. A rigid body is physical (i.e. such that I ≥ 1), if and only if

inf
c∈(−b,0)

∆ϕ (a, b) ≥ 2π.
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Figure 3.7: Representation of the area A of the geometric phase corre-
sponding to the rotating and oscillating trajectories (top and bottom re-
spectively).

Theorem 3.15. For any (a, b) ∈ (0,∞)× (0, 1), the greatest lower bound
infc∈(0,a) ∆ϕ (a, b) of the Montgomery phase ∆ϕ (a, b), for rotating trajecto-
ries is given by

inf
c∈(0,a)

∆ϕ (a, b) = 2πJ ,

where J = J (a, b) is the second geometric constant given by (1.14).

The corresponding proofs are given below. We observe that Theo-
rem 3.14 gives a direct way to detect the physical nature of the rigid body.
The evolution of ∆ϕ with respect to c in the oscillating and rotating cases is
presented in Fig. 3.8 for two generic pairs (a, b) corresponding to a physical
and a non-physical rigid body.

The function Fa,b(−bu, u)
In this subsection, we prove the properties of the function Fa,b(−bu, u) that
are used to study the case of rotating and oscillating trajectories.
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Figure 3.8: Plot of the Montgomery phase ∆ϕ as a function of the pa-
rameter c, for oscillating (panel (a)) and rotating (panel (b)) trajectories.
A physical and a non-physical rigid body is considered with the parame-
ters (a = 12.65, b = 0.0629) and (a = 18.27, b = 0.0629) respectively. The
parameter c belongs to the interval (−b, a). The physical and non-physical
cases are depicted respectively in red, blue, or black. The horizontal dashed
line represents the boundary between the physical and the non-physical bod-
ies. The small inserts give the corresponding values of I and J .

Lemma 3.16. The function Fa,b(−bu, u) is a decreasing function on the
interval [0, 1], and thus, its minimum value is taken in u = 1.

Proof. Recall that the function Fa,b(−bu, u) has been defined as

Fa,b(−bu, u) =
1√
ab

∫ 1

u

1− bx√
x (1− x)

(
1 + b

a
x
)
(x− u)

dx. (3.53)
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Let us perform the following change of variables

x = u+ (1− u) y2, (3.54)

so for x ∈ (u, 1), in terms of y, we have y ∈ (0, 1). Therefore the integral
(3.53) can be written as

Fa,b (−bu, u) =
2√
ab

∫ 1

0

1− b (u+ (1− u) y2)√
(1− y2) (u+ (1− u) y2)

(
1 + b(u+(1−u)y2)

a

)dy.
(3.55)

Since now the limits of integration (3.55) do not depend on the vari-
able u, to compute the derivative ∂uFa,b (−bu, u), we simply perform the
following computation

∂uFa,b (−bu, u)

=
2√
ab

∫ 1

0

∂u

 1− b (u+ (1− u) y2)√
(1− y2) (u+ (1− u) y2)

(
1 + b(u+(1−u)y2)

a

)
 dy

= − b

(ab)3/2

∫ 1

0

√
1− y2 (a+ (a+ 2) b (u+ (1− u) y2))(
(u+ (1− u) y2)

(
1 + b(u+(1−u)y2)

a

))3/2 dy. (3.56)

Note that we have an explicit minus sign on the right-hand side of Eq. (3.56),
and since all the quantities inside the integrand are positive, we conclude
that the derivative ∂uFa,b (−bu, u) is always negative. This implies that the
function Fa,b (−bu, u) is an injective decreasing function on the interval u ∈
[0, 1], and so its global minimum corresponds to the point where u→ 1.

Lemma 3.17. The function Fa,b (−bu, u) has the following limiting behav-
iors

lim
u→0

Fa,b (−bu, u) = ∞, (3.57)

lim
u→1

Fa,b (−bu, u) =
1− b√
b (a+ b)

π = Iπ. (3.58)

Proof. Given the expression Eq. (3.53) of the function Fa,b (−bu, u), it is
straightforward to deduce that this function diverges when u → 0. The
second statement of the Lemma can be shown as follows. When u is close
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to one, the function Fa,b (−bu, u) can be approximated as follows

Fa,b (−bu, u) =
1√
ab

∫ 1

u

1− bx√
x (1− x)

(
1 + b

a
x
)
(x− u)

dx (3.59)

∼ 1− b√
ab
(
1 + b

a

) ∫ 1

u

1√
(1− x) (x− u)

dx.

By computing the second integral, we obtain

1− b√
ab
(
1 + b

a

) ∫ 1

u

1√
(1− x) (x− u)

dx =
1− b√
ab
(
1 + b

a

)π. (3.60)

Then we estimate the error E of this approximation

|E| =

∣∣∣∣∣ 1√
ab

∫ 1

u

1− bx√
x (1− x)

(
1 + b

a
x
)
(x− u)

dx

− 1− b√
ab
(
1 + b

a

) ∫ 1

u

1√
(1− x) (x− u)

dx

∣∣∣∣∣
=

1− b√
ab
(
1 + b

a

)
∣∣∣∣∣∣
∫ 1

u

1√
(1− x) (x− u)

 (1− bx)
√

1 + b
a

(1− b)
√
x
(
1 + b

a
x
) − 1

 dx

∣∣∣∣∣∣
≤ 1− b√

ab
(
1 + b

a

) ∫ 1

u

dx√
(1− x) (x− u)

max
x∈[u,1]

∣∣∣∣∣∣
(1− bx)

√
1 + b

a

(1− b)
√
x
(
1 + b

a
x
) − 1

∣∣∣∣∣∣
=

1− b√
ab
(
1 + b

a

)π max
x∈[u,1]

∣∣∣∣∣∣
(1− bx)

√
1 + b

a
− (1− b)

√
x
(
1 + b

a
x
)

(1− b)
√
x
(
1 + b

a
x
)

∣∣∣∣∣∣ ,

and we get that |E| → 0, when u→ 1.
Using this result and Eq. (3.60), we get

Fa,b (−bu, u) →
1− b√
ab
(
1 + b

a

)π, (3.61)

when u→ 1.
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3.5. The Montgomery phase

The case of oscillating trajectories

The MP is defined as the variation of the angle ϕ for a loop in the reduced
phase space

(
ψ, dψ

dϕ

)
as shown in Fig. 3.9. For the oscillating trajectories,

the condition c + b cos2 ψ ≥ 0 bounds the evolution of ψ and leads to
sin2 ε ≥ |c|

b
. We denote by ε∗ = arcsin

√
−c
b

this minimal value.

Figure 3.9: Reduced phase space
(
ψ, dψ

dϕ

)
. In this subsection, we analyze

oscillating trajectories, which are the red trajectories on this figure.

Using the symmetry of the trajectory with respect to dψ
dϕ

= 0, the vari-
ation ∆ϕ can be expressed as

∆ϕ = 2

∫ π
2
−ε∗

−π
2
+ε∗

1− b cos2 ψ√
(a+ b cos2 ψ) (c+ b cos2 ψ)

dψ. (3.62)

Proof of Theorem 3.14. The integral (3.62) is also symmetric with respect
to the line defined by ψ = 0, so that

∆ϕ = 4

∫ π
2
−arcsin

(√
−c
b

)
0

1− b cos2 ψ√
(a+ b cos2 ψ) (c+ b cos2 ψ)

dψ. (3.63)
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Performing the change of variables x = cos2 ψ, we get

∆ϕ =
2√
ab

∫ 1

−c/b

1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ c

b

)dx. (3.64)

Introducing u = −c/b, so that for c ∈ (−b, 0), u ∈ (0, 1), we get

∆ϕ = 2Fa,b (−bu, u) , (3.65)

where the function Fa,b (−bu, u) described in the previous Subsection is the
incomplete elliptic integral

Fa,b (−bu, u) =
1√
ab

∫ 1

u

1− bx√
x (1− x)

(
1 + b

a
x
)
(x− u)

dx. (3.66)

According to Lemma 3.16 of 3.5, giving the monotonic behavior of the
function Fa,b (−bu, u), we know that the greatest lower bound of the function
Fa,b (−bu, u) occurs when u→ 1, which is computed in Lemma 3.17, namely

lim
u→1

Fa,b (−bu, u) =
1− b√
b (a+ b)

π = πI, (3.67)

thus showing the first claim. It is then straightforward to show the second
statement.

The case of rotating trajectories

For rotating trajectories, the angular momentum performs a loop when the
angle ψ goes from −π

2
to 3π

2
. Using the symmetries of cos2 ψ, we obtain

that the corresponding variation of ϕ is given by

∆ϕ = 4

∫ π
2

0

1− b cos2 ψ√
(a+ b cos2 ψ) (c+ b cos2 ψ)

dψ. (3.68)

Proof of Theorem 3.15. The proof follows the same general lines as the
proof of Th. 3.14. One shows that the function c 7→ ∆ϕ (c) is decreas-
ing. Thus, the greatest lower bound is obtained for c→ a, since 0 ≤ c < a.
We obtain by direct calculations,

lim
c→a

∆ϕ = 4

∫ π
2

0

1− b cos2 ψ

a+ b cos2 ψ
dψ = 4

∫ π
2

0

[
1 + a

a+ b cos2 ψ
− 1

]
dψ

= 2π

[
a+ 1√
a (a+ b)

− 1

]
= 2πJ . (3.69)
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Figure 3.10: On the left panel the complete turn of the momentum vector
is represented for oscillating (red) and rotating (blue) trajectories. On the
right panel, we have the corresponding trajectories on the reduced phase
space dψ

dϕ
.

3.6 Lower bound for the Dzhanibekov effect
A similar analysis, as the one used for rotating trajectories, can be done to
describe the existence of the Dzhanibekov effect with a given value of the
variation of the angle ϕ.

Notice that for the Dzhanibekov effect, we have that the variation of
the angle ψ is exactly π. Thus, in this framework, the Dzhanibekov effect
is only observed for rotating trajectories. i.e., for 0 ≤ c < a.

The result describing the existence of the Dzhanibekov effect is stated
as follows.

Proposition 3.18. Given a value α ∈ R, the Dzhanibekov effect with value
∆ϕ = α occurs if and only if πJ < α. In other words, the infimum of the
possible values angles to observe the Dzhanibekov effect is given by πJ ,
which is only reached in the limit c→ a.

Proof. Showing the existence of the Dzhanibekov effect with value ∆ϕ = α
amounts to show the existence of cD ∈ (0, a) such that

α = Fa,b (cD, 0) =
1√
ab

∫ 1

0

1− bx√
x (1− x)

(
1 + b

a
x
) (
x+ cD

b

)dx. (3.70)

We have that Fa,b (c, 0) goes to ∞, when c goes to 0. Moreover, following
computations done for the rotating trajectories, one obtains that Fa,b (c, 0)
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is a decreasing function on (0, a) with greatest lower bound equal to πJ .
In other words, one obtains

lim
c→a

Fa,b (c, 0) = πJ . (3.71)

We conclude that the Dzhanibekov effect with value ∆ϕ = α occurs if
and only if πJ < α. The second part of the proposition is now a direct
result.

Notice that, this greater lower bound πJ is one-half of the one found
for the Montgomery phase.

Below, some values of this greater lower bound are shown for different
objects.

Object a b J πJ
Racket 12.54 0.06 0.0771 0.2424
Wing nut 2.92 0.0972 0.3209 1.008
Skate board 8.82 0.078 0.1084 0.3507
Mobile phone 2.97 0.198 0.2941 0.924
Book 1.11 0.31 0.6828 2.1451

Table 3.1: Values of the greatest lower bound πJ for different objects [48].

3.7 Conclusions
The problems analyzed in this first part of the present thesis are holonomy
phenomena, that is, detecting the variation of something given along a
solution of the differential equation. These phenomena are strongly related
to monodromy phenomena, the next part of the thesis studies Hamiltonian
monodromy; and, in Chapter A of perspectives, we explain an explicit link
between these two parts of the thesis.
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Hamiltonian monodromy
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Chapter 4

Preliminaries

Hamiltonian integrable systems with a finite number of degrees of freedom
have a long history going back from Liouville in the mid-nineteenth century
to Arnold one hundred years later [3]. A modern description of integrable
systems was formulated in the last decades in terms of Lax pairs [42, 9].
In this context, a Lax pair consists of two matrix-valued functions on the
phase space satisfying a differential equation equivalent to the Hamiltonian
dynamics. When one can derive such a Lax pair, this approach is a powerful
tool for finding the constants of motion of the integrable system.

Additionally, geometric and topological properties are known to provide
valuable insights into the dynamics and the structure of such systems [18, 3].
One of these geometrical properties is Hamiltonian Monodromy (HM) which
was introduced by Duistermaat in 1980 [28]. In short, HM is the simplest
topological obstruction to the existence of global action-angle coordinates
in a completely integrable Hamiltonian system. The quantum analog of
HM was formulated mathematically few years later [23, 35, 72] and was
also at the origin of many studies in physics, as a way to describe the global
structure of quantum spectra [62, 25, 24, 20, 10, 6, 57, 29].

For completely integrable systems with compact fibers, the phase space
is fibered by tori or by disjoint union of tori over the set of regular values.
HM describes the possible nontriviality of the torus bundle over a loop in
the set of such regular values [22, 30]. HM is characterized by a matrix
with integer coefficients, the Monodromy matrix, that corresponds to the
transformation of a basis of the first homology group of a compact regular
fiber along a loop. In this study, we consider two degrees of freedom systems
with a global circle action over the phase space [22, 30]. In this case, HM
can be studied by analyzing a function on the phase space, namely the
rotation number Θ.
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A similar concept of Monodromy appears in complex geometry with the
Picard-Lefschetz theory for Riemann surfaces [4, 75]. A natural question
is to determine what relation may exist between these two forms of Mon-
odromy. We propose, in this part, to do this analysis in an explicit way by
showing in particular how to compute the variation of the rotation number
from the Lax pair formalism. More precisely, starting from the Lax pair
of the Hamiltonian system under study, we show that a complex reduced
phase space can be defined as a set of Riemann surfaces depending on the
constants of motion of the system. We establish generic conditions that
this complex fibration must satisfy to exhibit a non-trivial monodromy. In
this setting, we show that the rotation number is expressed as an Abelian
integral of a meromorphic one-form with a nonzero residue at infinity. The
last step of our approach consists of combining the two results to get the
Monodromy matrix of the system.

Since non-trivial monodromy is not limited to systems for which a Lax
pair is known, we introduce, what we call a quasi-Lax pair formalism. It
corresponds to a Lax pair up to higher order terms valid in a neighborhood
of focus-focus point. It can be derived for any Hamiltonian system lo-
cally around this singularity. Using the procedure described above with
some adaptations, we obtain the monodromy matrix characterizing the
focus-focus singularity. Some open questions and generalizations to higher-
dimensional integrable systems are discussed in Appendix A.

4.1 Hamiltonian monodromy

In the first chapter of the previous part, we introduced the concept of Hamil-
tonian differential equation and first integral. We explained that in higher
dimensions more first integrals are needed in order to find the solutions,
but we did not specify how many of them are required. Locally, in R2n

only n first integrals are necessary to find the solutions to the Hamiltonian
differential equation. This is a well-known result called Arnold-Liouville
Theorem. In this chapter, we properly state this result, we introduce a co-
ordinate system called action-angle coordinates and the concept of Hamil-
tonian monodromy. Let us begin with some basic definitions [43].

Definition 4.1. Let F : M → N be a smooth map between smooth man-
ifolds. A point p ∈ M is said to be a regular point of F , if dFp : TpM →
TF (p)N is surjective; it is a critical point otherwise.
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4.1. Hamiltonian monodromy

Definition 4.2. Let F : M → N be a smooth map between smooth mani-
folds. A point c ∈ N is said to be a regular value of F if every point of the
level set F−1(c) is a regular point, and a critical value otherwise.

Definition 4.3. Let F : M → N a smooth map between smooth manifolds.
A level set F−1(c) is called a regular fiber, if c is a regular value of F .

We introduce the set ΣF which denotes the set of all critical values of
the map F . By Sard’s Theorem, ΣF has measure zero in N . This set is a
key element in understanding the concept of Hamiltonian monodromy.

Let us now consider a Hamiltonian differential equation in R2n with
coordinates (q1, . . . , qn, p1, . . . , pn) and Hamiltonian H : R2n → R. Thus,
the differential equation can be written as

q̇i =
∂H

∂pi
, (4.1)

ṗi = −∂H
∂qi

,

with i ∈ {1, . . . , n}.
Given two smooth functions defined over this phase space, f : R2n → R,

g : R2n → R, we define the Poisson bracket of these functions as follows

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (4.2)

Since the functions are defined over the phase space, we have that ḟ =
{f,H}. Thus, a function f is a first integral, of the Hamiltonian differential
equation (4.1), if and only if {f,H} = 0.

Definition 4.4. Let f1, . . . , fk be k first integrals of the Hamiltonian dif-
ferential equation (4.1). The set {f1, . . . , fk} is said to be in involution if
{fi, fk} = 0, for all 1 ≤ i, j ≤ k.

Geometrically, this definition is equivalent to requiring that the level
sets of each function are invariant under the flow of each other function.

Definition 4.5. Let f1, . . . , fk be k first integrals of the Hamiltonian dif-
ferential equation (4.1). The set {f1, . . . , fk} is said to be independent if
the set of critical points of F = (f1, . . . , fk) has measure zero in R2n

This definition is introduced in order to have “new” information with
each first integral.
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4. Preliminaries

Definition 4.6. A Hamiltonian system with first integrals f1 = H, . . . , fk
is called a completely integrable system if k = n and the set {f1, . . . , fk} is
independent and in involution.

For a completely integrable system, the map F = (f1, . . . , fk) is called
energy-momentum map and in R2 we denote it as EM. The definition of
completely integrable system is linked with the result that we mentioned
before and that we now formally state.

Theorem 4.7 (Arnold-Liouville Theorem). Let us consider a completely
integrable system f1 = H, . . . , fn in R2n, with energy-momentum map
F = (f1, . . . , fn) with compact fibers. Under these conditions, each con-
nected component of a regular fiber of F is diffeomorphic to a real torus
Tn. Moreover, for an open subset U ⊂ Rn such that U ∩ ΣF = ∅, there
exists a local diffeomorphism

Φ: F−1(U) → U × Tn

(q, p) 7→ (I, φ),

which transforms the Hamiltonian differential equation into

İ = 0

φ̇ = V (I).

Notice that the local diffeomorphism gives a local change of coordinates
that allows solving the differential equation. This is the reason why these
systems are called completely integrable systems. This local change of co-
ordinates is called action-angle coordinates.

The new form of the differential equation allows to detect the geometric
structure of the Hamiltonian dynamics since it is a linear flow over invariant
tori.

In 1980, Duistermaat [28] described the conditions to have global action-
angle coordinates. In this article, the concept of Hamiltonian monodromy
is introduced. We now describe it.

Assume that the fibers of F are compact and connected. Consider a
regular value c0 ∈ F (R2n) \ ΣF and an element [Γ] ∈ π1(F (R2n) \ ΣF , c0).
Using the Arnold-Liouville Theorem, we have that F−1(Γ) is a fiber bundle
over Γ with Tn as fiber and local trivializations given by the action-angle
coordinates. This bundle is trivial if it is diffeomorphic to S1 × Tn.

Definition 4.8. A completely integrable system with compact connected
fibers has monodromy (or non-trivial Hamiltonian monodromy), if there
exists a class [Γ] ∈ π1(F (R2n) \ ΣF , c0) for which the fiber bundle F−1(Γ)
over Γ is not trivial [30].
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It turns out that Hamiltonian monodromy is the simplest topological
obstruction to the existence of global action-angle coordinates [28].

Theorem 4.9 (Duistermaat). A system with non-trivial Hamiltonian mon-
odromy has no globally defined action-angle coordinates.

There exists another obstruction to the existence of global action-angle
coordinates, we briefly describe it in Appendix A.

Notice that, if there exists globally defined action-angle coordinates, we
have all the information about the system, since we can solve the dynamical
equations. This is the importance of knowing if a given system can have
global action-angle coordinates, or not.

We now describe a geometric way of studying Hamiltonian monodromy
and we introduce the monodromy matrix. For other descriptions of Hamil-
tonian monodromy see [63].

Using Arnold-Liouville Theorem, we know that for each point c ∈ Γ,
the corresponding fiber is a real torus Tn. We can fix n generators of
the first homology group of this fiber H1(F

−1(c),Z), and using the local
trivializations, analyze how these elements change when the point on Γ
changes. After a complete turn following Γ, we arrive at the initial fiber,
and hence, we can compare the generators that we fix at the beginning with
the final elements that we obtain. If these elements are the fixed generators,
then the Hamiltonian monodromy is trivial and it is non-trivial otherwise.

Notice that this construction gives a linear map from H1(F
−1(c),Z) into

itself. Thus we can describe this map with a matrix with integer coefficients.
This matrix only depends on the homotopy class of [Γ] and we denote it
as MΓ. In terms of this matrix, we say that the Hamiltonian monodromy
along Γ is trivial if MΓ = Id, where Id is the identity matrix, and it is
non-trivial otherwise.

Given a physical system, the computation of this matrix is not an easy
task. In fact, in higher dimensions, it is very difficult to compute it. Even
on R4 it is not straightforward to calculate it. Nevertheless, there exists a
particular case where generators of the first homology group can be obtained
from the flows of the first integrals. We describe this case.

Most physical systems admit symmetries, in the sense that the system is
invariant under certain transformations. Emmy Noether proved that these
symmetries always correspond to a first integral of the system. This result
is known as Noether’s Theorem [3].

Theorem 4.10 (Noether’s Theorem). Let (M = R2n, H) be a Hamiltonian
system and {gs : M →M}s∈R a one-parameter group of diffeomorphisms. If
H is invariant under this family of diffeomorphisms, then the Hamiltonian
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Figure 4.1: Geometrical description of Hamiltonian monodromy.

differential equation corresponding to H admits a first integral I that can
be written in terms of gs.

Thus, due to this correspondence, a system with a symmetry has always
a first integral associated with the symmetry. The special case that we study
in this thesis, is a system in R4 with a symmetry given by an S1-action. We
explain why this case is easier to analyze.

Let us consider a completely integrable system in R4 and let EM be
its energy-momentum map, i.e., EM = (H,K) : R4 → R2. As men-
tioned before, this map defines a fibration and we assume that the fibers
are compact and connected. The bifurcation diagram is the image of the
energy-momentum map. We consider a system with a symmetry given by
a global S1-action whose first integral (in the sense of Noether’s Theorem)
is K. In this case, we can analyze the first homology group of the fibers
H1(F

−1(c),Z) with the Hamiltonian flows of H and K as follows.
Since K defines an S1-action, its Hamiltonian flow has closed orbits [30]

of period 2π, and, we can define the rotation number. Consider a point
(q, p) belonging to a regular torus EM−1(h, k), and the closed orbit of K
starting at this point. Let γ be the orbit of the flow generated by H starting
at (q, p) and ending at the first point of intersection with the orbit of K at
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positive time T called the first return time. The rotation number is defined
as the time taken to go, with the Hamiltonian flow defined by K, from the
point (q, p) to this first point of intersection (see Fig. 4.2).

Figure 4.2: Definition of the first return time and the rotation number.

If we denote by θ the canonically conjugate angle to K, i.e. {θ,K} = 1
,then the rotation number Θ can be defined as

Θ =

∫
γ

dθ =

∫ T

0

{θ,H} dt =
∫ T

0

θ̇dt.

An important property of T and Θ is that they only depend on the fiber
that we consider, in other words, they only depend on the values of H and
K [31].

These two functions allow to codify the information on the first homol-
ogy group of the fiber, in terms of the Hamiltonian flows of H and K, since
we can consider an orbit of K and the closed curve obtained by following
the Hamiltonian flow of H during the time T and then close it following the
Hamiltonian flow of K during a time Θ. These two closed curves form a
basis of the first homology group of the fiber and we can study the variation
of these elements by following the Hamiltonian flows defined by H and K.

The results that are obtained in Chapter 6 are established in this frame-
work, where we study Hamiltonian monodromy along loops around an iso-
lated critical value of EM, via spectral Lax pairs. Thus, we now introduce
spectral Lax pairs.
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4.2 Spectral Lax pairs

In this section, we introduce the concept of Spectral Lax pairs and describe
some of their properties, which are used later in this study.

Definition 4.11. Let L(t) and B(t) be a pair of n × n time-dependent
matrices acting on Rn, L and B form a Lax pair if they satisfy the relation

dL

dt
= [B,L] = BL− LB.

The first property of Lax pairs is described in the following Lemma.

Lemma 4.12. Let L(t), B(t) be a Lax pair. Any invertible solution U(t) of
the equation dU

dt
= B(t)U(t) satisfies the equality d

dt
(U−1(t)L(t)U(t)) = 0.

Using this property, it is easy to prove the following result.

Corollary 4.13. Let L(t), B(t) be a Lax pair. If U(t) is an invertible
solution of the equation dU

dt
= B(t)U(t) and U(0) = Id, then L(t) =

U(t)L(0)U−1(t).

Finally, using the previous two results, one can prove the following result
which is the main property of Lax pairs.

Theorem 4.14. Let L(t), B(t) a Lax pair. The functions Fk = Tr(Lk) and
the eigenvalues of L are constants of the motion.

Proof. Let U(t) be an invertible solution of equation dU
dt

= B(t)U(t) such
that U(0) = Id. By Corollary 4.13

L(t) = U(t)L(0)U−1(t).

Thus
Lk(t) = U(t)Lk(0)U−1(t),

and
Tr(Lk(t)) = Tr(U(t)Lk(0)U−1(t)) = Tr(Lk(0)),

because of the invariance of the trace under conjugation. Then the functions
Fk = Tr(Lk(t)) are constants of motion.

On the other hand, the eigenvalues are roots of the equation

0 = det(λId− L(t)),
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but we have

0 = det (λId− L(t))

= det(λId− U(t)L(0)U−1(t))

= det(λU(t)U−1(t)− U(t)L(0)U−1(t))

= det(U(t)(λId− L(0))U−1(t))

= det(U(t))det(λId− L(0))det(U−1(t))

= det(λId− L(0)).

We conclude that the eigenvalues of L(t) are the same as those of L(0) thus,
are constants of the motion.

Given a completely integrable system, a Lax pair describing this system
is a pair of square matrices L and M which fulfill the equation

L̇ = [M,L],

and such that, by identifying element by element the two sides of this
matrix-valued differential equation, we find the equations of motion of the
original dynamical system. A spectral Lax pair is a Lax pair for which the
matrices L(λ) and M(λ) depend on an extra parameter λ called spectral
parameter. The spectral curve is defined by the characteristic polynomial
of L, i.e., by det(L(λ) − µI) = 0. If the dependence of L on the spectral
parameter is polynomial then the spectral Lax pair defines a spectral curve
that is polynomial in the variables λ and µ and such that all its coefficients
are constants of motion (due to Theorem 4.14).

The spectral curve is the main tool that we use to study Hamiltonian
monodromy.

Examples

In this section, we give three examples of physical systems and their corre-
sponding Lax pairs to better understand this tool.

As a first example we take a system already studied in the previous part,
Euler equations for the rigid body:

Ṁ1 = (
1

I3
− 1

I2
)M2M3,

Ṁ2 = (
1

I1
− 1

I3
)M1M3,

Ṁ3 = (
1

I2
− 1

I1
)M1M2,
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with the relations M1 = I1Ω1, M2 = I2Ω2, M3 = I3Ω3.
We consider the following matrices

M =

 0 −M3 M2

M3 0 −M1

−M2 M1 0

 , Ω =

 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 .

It is easy to verify that M and Ω form a Lax pair. Now we are interested
in finding a Lax pair depending on a spectral parameter in order to analyze
the spectral curve. We introduce the matrix

J =

J1 0 0
0 J2 0
0 0 J3

 =

 I3+I2−I1
2

0 0
0 I3+I1−I2

2
0

0 0 I1+I2−I3
2


(note that M = −(JΩ+ΩJ)) and we define the matrices L(λ) =M + λJ2

and N(λ) = Ω− λJ , λ ∈ R.
The matrices L(λ) and N(λ) form a Lax pair depending on the spectral

parameter λ. Thus, they satisfy equation L̇ = [N,L], and these equations
of motion are equivalent to Euler equations (this can be verified by direct
computations).

The spectral curve is given by the equation

0 = det(L(λ)− µId) = det

λJ2
1 − µ −M3 M2

M3 λJ2
2 − µ −M1

−M2 M1 λJ2
3 − µ

 ,

which can be written as

µ3−µ2λ(J2
1 + J2

2 + J2
3 ) + µλ2(J2

1J
2
2 + J2

1J
2
3 + J2

2J
2
3 )

−λ3(J2
1J

2
2J

2
3 )− λ(J2

1M
2
1 + J2

2M
2
2 + J2

3M
2
3 ) + µ(M2

1 +M2
2 +M2

3 ) = 0,

this curve has a simple pole at λ = ∞.
In the article [38] some symmetries of this system are introduced, after

reduction, the authors obtain a 4-dimensional system with two conserved
quantities (two first integrals). Thus, this system (after reduction of sym-
metries) is a completely integrable system, nevertheless, the non-simply
connectedness of its bifurcation diagram makes its study more complex,
this point is addressed in Section A.3 of perspectives.

We now give the spectral Lax pairs of two systems that are described
in Chapter 8, refer to this Chapter for details. In this part of the text, we
just present the equations of motion and their corresponding Lax pairs.
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The first system is the spherical pendulum (see Chapter 8 for details),
the dynamical equations can be expressed as

˙⃗q = p⃗

˙⃗p = e⃗z − (p2x + p2y + p2z − z)q⃗,

where e⃗z = (0, 0,−1) is a unit vector along the z- direction.
To simplify the analysis, we introduce the coordinates (Lx, Ly, Lz) and

(Mx,My,Mz) defined as

Lx = x− λKx

Ly = y − λKy

Lz = z − λKz + λ2

and

Mx = Kx

My = Ky

Mz = Kz − λ,

where K⃗ is the angular momentum K⃗ = q⃗ × p⃗ with ˙⃗
K = q⃗ × e⃗z.

Thus, the Lax matrices L and M (which satisfy L̇ = [M,L]) can be
expressed as:

L = Lxσx + Lyσy + Lzσz

M =
−i
2
(Mxσx +Myσy +Mzσz),

where σx, σy, and σz are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The spectral curve is given by

µ2 = λ4 − 2Kzλ
3 + 2(

1

2
(p2x + p2y + p2z) + z)λ2 + 1,

which is of the form µ2 = Q(λ) with Q a polynomial of degree 4 with
constants of motion as coefficients.

Finally, we consider the Jaynes-Cummings model (see Chapter 8 for
details) whose phase space is S2×R2. The coordinates of S2 are denoted by
(Sx, Sy, Sz), with the constraint S2

x + S2
y + S2

z = S2
0 (where S0 is a positive
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constant). The coordinates of R2 are given by (q, p). Complex coordinates,
S+, S− and b, are introduced to simplify the description, as follows

S+ = Sx + iSy

S− = Sx − iSy

b =
1√
2
(q + ip).

The Hamiltonian dynamics are governed by the following differential
equations

Ṡ+ = 2iω0S+ − 2igb̄Sz

Ṡz = igb̄S− − igbS+ (4.3)
ḃ = −iωb− igS−,

where ω0, ω, and g are real constants.
We consider the Lax matrices L and M defined by

L(λ) =

(
(2λ−ω)(λ−ω0)+g2Sz

g2
2b(λ−ω0)

g
+ S−

2b̄(λ−ω0)
g

+ S+
(ω−2λ)(λ−ω0)−g2Sz

g2

)

and
M(λ) =

(
−iλ −igb
−igb̄ iλ

)
.

Thus, they fulfill equation L̇ = [M,L], and the equations obtained en-
try by entry are equivalent to the equations describing the Hamiltonian
dynamics (4.3). The spectral curve is of the form µ2 = Q(λ), where Q
is a polynomial of degree 4 with constants of motion as coefficients. This
spectral curve is explicitly given in Chapter 8.

We now proceed to the study of Hamiltonian monodromy using spectral
Lax pairs, by first obtaining some auxiliary results that will help us to
describe the geometric structure of the problem.
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Chapter 5

Auxiliary results

As mentioned before, in this chapter we develop the technical results needed
to prove the main results of this part. Since the main results describe
Hamiltonian monodromy through the Lax pair structure, in this chapter
we study the geometric and analytic structure of the type of spectral curves
that one obtains from Lax pairs. In this study, these are elliptic curves.

We begin the study by describing meromorphic forms defined over these
curves. Then, we derive a normal form for the spectral curve and, finally, we
describe the movement of ramification points defining these elliptic curves,
when the values of the parameters h and k vary.

The content of this Chapter, as well as the following ones: Chapters 6,
7, and 8, has been published in Journal of Mathematical Physics [37].

5.1 Meromorphic forms on Riemann surfaces

In this section, we show that meromorphic forms on elliptic curves µ2 =
Q4(λ) having at most simple poles at infinity are generated by {λdλ

µ
, dλ

µ
}.

The following proposition states this result which is the first auxiliary result
needed for the proofs of the main results.

Proposition 5.1. Consider a regular elliptic curve given by the equation
F (λ, µ) = 0, of the form F (λ, µ) = µ2−Q(λ), with Q a square-free polyno-
mial of degree four. Then, the space of meromorphic forms having at most
simple poles at infinity is two-dimensional, generated by {λdλ

µ
, dλ
µ
}.

Proof. The proof follows from the general study of the space of meromorphic
functions and forms on Riemann surfaces in the spirit of the Riemann-Roch
theorem. All the references can be found in the classical book [50].
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Let X be a compact Riemann surface given by the compactification

X = F−1(0) ∪ {−∞,+∞}, (5.1)

of the complexification of F−1, obtained by adding two points at infinity
(one for each leaf). We denote M and M(1) respectively, the space of mero-
morphic functions and forms on X. Given f ∈ M, we associate its divisor
div(f) =

∑
p∈X ordp(f)p. Taking ω ∈ M(1), we define similarly div(ω), by

using local uniformizations of ω at any point p of X. The supports of the
sum are finite. Let D be a divisor. We define the vector spaces

L(D) = {f ∈ M(X) : div(f) ≥ −D},

and
L(1)(D) = {ω ∈ M(1)(X) : div(ω) ≥ −D}.

We are interested in one-forms having at most simple poles at infinity.
Note that a form cannot have only one pole with nonzero residue as the
sum of residues on a compact surface is zero. Hence, we take the divisor
D = 1 · (+∞) + 1 · (−∞) and consider L(1)(D). Using [50] (Chapter V,
Lemma 3.11), we have for any Riemann surface

dimL(1)(D) = dimL(D +Kd),

where Kd is a canonical divisor (i.e. divisor of any meromorphic form on
the Riemann surface X).

Now, we restrict to X, given by Eq. (5.1). Note that the form ω = dλ
µ

is
holomorphic on X and does not have zeros. Hence, the canonical divisor Kd

is the zero divisor, so for the elliptic curve, we get dimL(1)(D) = dimL(D).
The Riemann surface X is a torus and Proposition 3.14 of Chapter V [50]
applies and gives dim(L(D)) = deg(D) = 2. Thus

dimL(1)(D) = 2.

On the other hand, by the same analysis, but for the 0 divisor, we obtain
dimL(1)(0) = 1 (this space is generated by the holomorphic form dλ

µ
). One

verifies easily that Res(λdλ
µ
,±∞) ̸= 0 (and this residue is equal to ±1, when

Q is unitary). Hence, the forms {λdλ
µ

, dλ
µ
} generate the space L(1)(D), and

the differential one-forms in this space with nontrivial residues at ±∞ have
a non-zero component in λdλ

µ
.
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5.2 Normal form

The second step is to find a normal form of the spectral curves that we will
study. In this way, the proofs and the geometric analysis will be simpler
and easier to understand. In this section, we also formulate the genericity
condition (G) that will be used in Theorem 6.1.

The conditions on the elliptic curves stated in the following lemma are
conditions verified by the spectral curves that we study. The value (h0, k0)
will play later the role of the critical value of the energy-momentum map
of the system.

Lemma 5.2. Let Q(λ, h, k) be a real polynomial of degree four. We assume
that there exists (h0, k0) such that the polynomial Q(λ, h0, k0) ∈ R[λ] has
two different double non-real roots. Assume that the differential of the
function F (defined by Eq. (5.2) below) is invertible at (h0, k0). Moreover,
by convention, we assume that1

det

[
∂F

∂(h, k)

]
(h0,k0)

> 0. (G)

Then there exists a local orientation preserving diffeomorphism

(λ, h, k) 7→ (λ̂(λ, h, k), ĥ(h, k), k̂(h, k)),

which transforms the polynomial Q to the normal form polynomial

λ̂4 + (2 + ĥ)λ̂2 + k̂λ̂+ 1

multiplied by a unity.

Proof. First note that, since the polynomial Q has real coefficients, then
its roots are complex conjugate. Let λ0 and λ̄0 be the double roots for
(h, k) = (h0, k0).

After a first translation in the parameters (h, k), we set (h0, k0) equal to
(0, 0). By a translation and a homothety in the variable λ, the roots λ0, λ̄0
are given by i and −i. We eliminate the cubic term by a translation in λ
(which depends on h and k). In order to have the constant coefficient equal
to 1, we consider a homothety on λ and factorize, leading to the polynomial

u(h, k)(λ̂4 + a(h, k)λ̂2 + b(h, k)λ̂+ 1),

1It is possible to work with the negative determinant but in this case, the change of
orientation has to be taken into account.
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where u is a unity in a neighborhood of (h0, k0) and a(h0, k0) = 2, b(h0, k0) =
0.

Finally, from the transformation (h, k)
F7−→ (ĥ, k̂), given by

F (h, k) = (a(h, k)− 2, b(h, k)), (5.2)

which is a local diffeomorphism, by the inverse function theorem, we arrive
at the normal form polynomial

Q̂(λ̂, ĥ, k̂) = λ̂4 + (2 + ĥ)λ̂2 + k̂λ̂+ 1, (5.3)

multiplied by the unity u(F−1(ĥ, k̂)).

We point out that the change of variables in λ is global, while the change
of variables in (h, k) is local. Thus, we can consider the transformation
(λ, µ)

G7−→ (λ̂, µ̂), where µ̂ = µ√
u
, which is a global diffeomorphism and we

obtain the normal form of the spectral curve

µ̂2 = λ̂4 + (2 + ĥ)λ̂2 + k̂λ̂+ 1.

This normal form simplifies the calculations done in the next section, where
the objective is to analyze the motion of the roots when the parameters ĥ
and k̂ vary.

86



5.3. Monodromy of roots of the normal form polynomial

5.3 Monodromy of roots of the normal form
polynomial

As mentioned before, in this section, we describe the motion of the roots
of the normal form polynomial obtained in the previous Section when the
parameters ĥ and k̂ vary along a circle around the origin (notice that this is
equivalent to analyze the movement of the roots of the original polynomial
when the parameters h and k vary along a circle around (h0, k0), but the
computations are easier in the normalized case).

This is a key point in this work since, the monodromy of the surfaces
of the form µ2 = Ph,k(λ) is given by the movement of the roots of the
polynomial Ph,k(λ), when (h, k) varies along a loop around a singularity. In
this sense, the monodromy of the roots codifies all the information about
the monodromy of the surfaces and the loops on them. Thus, this is relevant
to understand the geometric structure of the problem.

Lemma 5.3. Let Q̂(λ̂, ĥ, k̂) be the polynomial defined by Eq. (5.3). For
values of (ĥ, k̂) close enough to (0, 0), the polynomial Q̂(λ̂, ĥ, k̂) has four
roots of the form i ± β, −i ± β̄, where β ∈ C depends on the value (ĥ, k̂).
Moreover, if (ĥ, k̂) moves along a small loop around (0, 0), then the two
roots close to i turn around i until they exchange their positions, and the
same statement holds for −i.

Proof. Consider a small circle C around the origin in the space (ĥ, k̂) with
positive orientation, i.e.,

ĥ = r cosϕ

k̂ = r sinϕ,

with r ≪ 1 and ϕ ∈ [0, 2π]. The polynomial

Q̂ĥ,k̂(λ̂) = λ̂4 + (2 + ĥ)λ̂2 + k̂λ̂+ 1

has two double roots, i and −i, for (ĥ, k̂) = (0, 0). We set λ̂ = εi + z,
where ε = ±1. We substitute λ̂ in the equation Q̂ĥ,k̂(λ̂) = 0 and. The
multivalued character of the roots is given by the terms obtained using
a Newton diagram (See [21], Section 2.8). Thus, neglecting higher-order
terms given by the Newton diagram of this polynomial equation, we obtain
−4z2 ≃ ĥ− εik̂. The multivalued character of the roots is given by

−4z2 = ĥ− εik̂. (5.4)
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Thus, from Eq. (5.4), we deduce that the two roots near i behave like

i± β̃ where β̃ =
√

ik̂−ĥ
4

, with an appropriate logarithmic branch. Note that
the square root argument is different from 0 because ĥ and k̂ are both real.
Moreover, the roots can be written as i± β (See [21], Section 2.8), and the
roots near −i are then of the form −i± β̄ because the polynomial has real
coefficients2.

Now, we analyze the motion of these roots when (ĥ, k̂) varies along C.
Setting z = ρeiθ, with ρ ≪ 1, and substituting the parametrization of C,
we obtain

−4ρ2e2iθ = re−iεϕ,

which leads to

ρ =
r1/2

2

θ = −εϕ
2

− π

2
+ kπ,

with k ∈ Z. We conclude that near each double root, we obtain two simple
roots which exchange their positions along the loop C in the space (ĥ, k̂).

We now have all the auxiliary results that we need to prove the results
linking the Hamiltonian monodromy of a system with the spectral curve
and its algebraic structure. This is done in the following Chapter.

2The reader can refer to Section 8, Fig. 8.2, to see this behavior in a numerical plot
obtained for a system presented as an example.
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Chapter 6

Hamiltonian monodromy via
spectral Lax pairs

The objective of this study is to obtain the monodromy matrix of a given
system described by a spectral Lax pair using the algebraic structure of
the spectral curve. In the previous chapter, we obtain auxiliary results
describing the algebraic structure of spectral curves. In this chapter, we
finally make this link explicit proving the main results of this part of the
present thesis.

More explicitly, in this chapter, we study Hamiltonian Monodromy along
loops around an isolated critical value of EM, deriving a Riemann surface
(given by the spectral curve of the spectral Lax pair) and using its algebraic
structure.

Hence, in Theorem 6.1, we formulate a general result about integrals of
meromorphic one-forms on this Riemann surface and, in Theorem 6.2, we
give conditions under which the Monodromy is not trivial and calculate it
using Theorem 6.1. As mentioned before, the conditions imposed on these
results are obtained by studying well-known physical systems and their
properties. Additionally, we present in Chapter 8 some of these well-known
systems (which have a focus-focus singularity) and show that Theorem 6.2
applies and allows to easily derive the monodromy matrix of the systems.

6.1 Main results

We now recall the properties of the systems that we consider to establish
the results of this work.

We focus on the study of Hamiltonian systems in R4 with Hamiltonian
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H and an S1-action 1 generated by a second constant of motion K, that
can be described by a spectral Lax pair, L(λ), M(λ), where L and M are
complex 2 × 2 matrices and such that the matrix L can be expressed as
follows

L(λ) =

(
A(λ) B(λ)
C(λ) −A(λ)

)
. (6.1)

Here A, B and C are polynomial functions of the parameter λ, with A of
degree two, B and C of degree one.

Since Lax pairs are not unique, this requirement on the polynomial order
is not strict, but we consider systems such that these degrees correspond
to the simplest Lax pair. In other words, it corresponds to the simplest
solution for which there exists a Lax pair.

The spectral curve is derived from the characteristic polynomial of L
and is given by the equation µ2 = A2(λ) + B(λ)C(λ) = Qh,k(λ), where µ
denotes the eigenvalue of L and Q is a polynomial of degree four. Using
the standard procedure of Lax pairs for defining separated variables [9], we
introduce the functions λ̃ and µ̃ respectively, as the solution of the implicit
equation C(λ) = 0 and by the relation µ̃2 = A(λ̃)2.2 This defines the
multivalued mapping L : R4 → C2 × R2 given by

L(q, p) = (λ̃(q, p), µ̃(q, p), EM(q, p)),

that respects the fibers of the torus bundle. We point out that the variables
λ̃ and µ̃ can be viewed as the coordinates of a complex reduced phase space
with respect to the momentum K [9]. In particular, the orbits of K are
mapped to points in the image of L and the orbit of the Hamiltonian flow
γ to a cycle L(γ) (see Fig. 6.1).

The different mappings are described by the commutative diagram given
in Fig. 6.2. This diagram is schematically represented in Fig. 6.3. If EM has
compact fibers for regular values, then, by the Arnold-Liouville theorem,
the regular fibers of EM are real tori T2. In Sec. 6.2, we prove that the
fibers of Φ are contained in Riemann surfaces. Let (h0, k0) be an isolated
critical value in the bifurcation diagram and let Γ be a simple loop positively
oriented contained in the set of regular values of EM around (h0, k0), such
that (h0, k0) is the only critical value inside Γ. The first main result of this
study is about the structure of the Riemann surface given by the spectral
curve and it is stated as follows:

1As mentioned in Section 4.1, the definition of Hamiltonian monodromy does not
require an S1-action but, if the system posses one, we can use the rotation number to
compute the monodromy matrix.

2The solution of C(λ) = 0 also gives the position of the pole of the eigenvectors of
L[9]

90



6.1. Main results

Figure 6.1: Image of the orbit of the Hamiltonian flow γ under the mapping
L. The first panel of the right-hand side is the complex plane where λ̃ lies,
the two other panels on this side are different representations of the Riemann
surface µ2 = Qh,k(λ).

Figure 6.2: Commutative diagram between the mappings EM, L and Φ,
where Φ is the projection from L(R4) ⊂ C2 × R2 to R2.

Theorem 6.1. Under the above hypotheses on the system, assume that
Q is a polynomial that has two non-real double roots for (h, k) = (h0, k0)
and fulfills the genericity condition (G) described in Section 5.2. Consider
a one-form ξ in the space (λ̃, µ̃) which can be written as ξ = c1

λ̃dλ̃
µ̃

+ c2
dλ̃
µ̃

,
(c1, c2) ∈ C2 (see Sec. 5.1). Let I be the integral

∫
L(γ) ξ, then the variation of

I when h and k vary along Γ is given by ∆ΓI = 2πiRes(ξ,+∞).3 Moreover,
this residue can be expressed as

Res(ξ,+∞) = − c1√
a4
,

where a4 is the leading coefficient of Q.

Theorem 6.1 is related to the Hamiltonian monodromy of the system
because, as mentioned before, Hamiltonian monodromy can be studied from

3By +∞ we mean the point at infinity in the upper leaf of the Riemann surface, i.e.,
µ > 0 for λ large enough.
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Figure 6.3: Schematic representation of the commutative diagram given
in Fig. 6.2. The two upper panels describe respectively the fibration of
the phase space by real tori T2 (left) and by complex tori (right). For each
regular value (h, k), this complex torus is a Riemann surface with two points
at infinity (crosses). The lower panel depicts the image of EM in the space
(h, k). The red point indicates the position of the singular value (h0, k0).
The oriented circle represents the loop Γ, for which the Monodromy matrix
is computed.

the rotation number Θ, and Θ can be expressed as an integral of a one-form
in the space (λ̃, µ̃).

More specifically, taking η = θ̇
˙̃
λ
dλ̃, we get

Θ =

∫
γ

dθ =

∫
L(γ)

dθ

dλ̃
dλ̃ =

∫
L(γ)

η.

Using the previous Theorem, we deduce that the study of HM boils down
to the study of meromorphic forms in the space (λ̃, µ̃). As a consequence
of Theorem 6.1, we obtain the following result.

Theorem 6.2. Consider a completely integrable Hamiltonian system in R4

as described above, in a neighborhood of an isolated critical point (q0, p0).
Assume that Res(η,+∞) = n

i
. Under the conditions given in Theorem 6.1,

the Monodromy matrix M, for Γ, is

MΓ =

(
1 n
0 1

)
,
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in an appropriate basis.

We state the main results for two degrees of freedom systems but in
Appendix A we discuss possible generalizations of the results to higher
dimensional systems. Notice that the hypothesis of expressing ξ as c1 λ̃dλ̃µ̃ +

c2
dλ̃
µ̃

comes form the study done in Sec. 5.1. In Sec. 8, we apply these
results to two physical systems and we stress that the assumptions about
the spectral Lax pair given by Eq. (6.1) are inspired by the study of well-
known systems. Moreover, in Chapter 7, we show that any Hamiltonian
system with a focus-focus singularity can be described, locally, by what we
call a quasi-Lax pair of this form.

6.2 Proofs
The proofs of the main results are developed in this Section.

Proof of Theorem 6.1. The system is represented by a spectral Lax pair of
the form given by Eq. (6.1) and the corresponding spectral curve is

µ2 = A2(λ) +B(λ)C(λ)

where Qh,k(λ) = A2(λ) + B(λ)C(λ) is a polynomial in λ. For fixed values
of the constants of motion, the spectral curve, µ2 = Qh,k(λ), defines a
Riemann surface. A link between the initial phase space and the Riemann
surface can be established from the set (λ̃, µ̃) where λ̃ is a solution of the
implicit equation C(λ) = 0 and µ̃2 = A(λ̃)2. 4

First, note that λ̃, µ̃ : R4 → C are complex-valued functions that depend
on the original variables of the system. The multivalued mapping L(q, p) =
(λ̃(q, p), µ̃(q, p), EM(q, p)) is such that L : R4 → C2 × R2, and we obtain
the commutative diagram of Fig. 6.2.

From the definition of λ̃ and µ̃, it is straightforward to deduce that

µ̃2 = Qh,k(λ̃). (6.2)

Equation (6.2) tells us that the fibers of Φ are contained in Riemann surfaces
defined by the same equation as the spectral curve.

Now, we analyze these Riemann surfaces for a fixed value of (h, k) ̸=
(h0, k0) close enough to (h0, k0). Using Lemma 5.2, we know that the Rie-
mann surface given by µ̃2 = Qh,k(λ̃) is diffeomorphic to the one given by

4The set of coordinates (λ̃, µ̃) is related to a vector bundle that can be defined through
the eigenvectors associated with the eigenvalues given by µ [9]. Note also that we can
replace C by B everywhere.
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the equation µ̂2 = λ̂4 + (2 + ĥ)λ̂2 + k̂λ̂+ 1, and from Lemma 5.3 we obtain
that this polynomial has four different non-real roots, which are complex
conjugate. The Riemann surface is therefore a torus with two points at
infinity (see Fig. 6.4).

We assume that the image of the cycle L(γ) under the map λ̃ can be
deformed (in the complex plane) to a simple loop that goes around two
conjugate roots of Qh,k(λ̃). This hypothesis can be verified directly for the
two examples in Sec. 8. In other words, L(γ) is homotopic on the Riemann
surface µ̃2 = Qh,k(λ̃) to a cycle, γ̃, of the form described in Fig. 6.5.5

We consider the one-form ξ on this Riemann surface and, since the value
of the integral only depends on the homology class, we obtain

I =

∫
L(γ)

ξ =

∫
γ̃

ξ.

Thus,

∆ΓI =

∫
γ̃f

ξ −
∫
γ̃i

ξ =

∫
γ̃f−γ̃i

ξ,

where γ̃i and γ̃f are the initial and final cycles obtained by turning around
the point (h0, k0) along Γ.

The cycle γ̃f can be found by following the transformation of γ̃i when
the constants of motion vary along Γ, and, this transformation is completely
determined by the movement of the roots of the polynomial Qh,k(λ̃) [75].
It is then enough to analyze the movement of the roots which is given by
Lemma 5.3, since F is an orientation preserving local diffeomorphism in the
variables (H,K) (Lemma 5.2) and the diffeomorphism in (λ̃, µ̃) maps the
roots of one polynomial to the roots of the new one. Thus, using Lemma 5.3,
one obtains the movement of the roots represented in Fig. 6.6. The initial
and final cycles are represented on the Riemann surface in Fig. 6.7.

The cycles γ̃i and γ̃f are respectively diffeomorphic to the left-hand side
and right-hand side cycles in Fig. 6.7. Hence, the chain γ̃f−γ̃i is homologous
to the chain formed by the two cycles shown in the first torus of Fig. 6.8.
We can deform these two cycles as shown in Fig. 6.8 to obtain a positively
oriented cycle near +∞.

Let δ̃ denote this cycle. We get

∆ΓI =

∫
δ̃

ξ = 2πiRes(ξ,+∞),

5Note that it is possible to take the opposite orientation of the cycle giving rise to a
change of sign of the integral.
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Figure 6.4: The upper panel represents two complex planes where cuts
between the roots of the polynomial have been added. The segments with
the same color in both planes are identified. Schematically, the Riemann
surface can be constructed by performing the different deformations shown
in this Figure.

since, by hypothesis, ξ = c1
λ̃dλ̃
µ̃

+ c2
dλ̃
µ̃

, where (c1, c2) ∈ C2. Hence, ξ only
has (at most) poles at infinity.
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Figure 6.5: Configuration for the normal form with k̂ = 0, ĥ > 0. In the
complex plane (left-hand side), the cycle is a simple loop that goes around
the two conjugate roots λ1 and λ̄1. On the right-hand side, we have the
representation of this loop on the Riemann surface.

Figure 6.6: For k̂ = 0 and ĥ > 0 the roots are purely imaginary. Hence,
they are aligned along the imaginary axis. Then, they start rotating coun-
terclockwise until they exchange their positions (pairwise).

Finally, computing Res(ξ,+∞), we arrive at

Res(ξ,+∞) = Res

c1 1z + c2√
Q̃(1

z
)
(
−1

z2
)dz, 0


= − c1√

a4
,

where a4 is the leading coefficient of Q(λ̃).

Proof of Theorem 6.2. By definition of η, we have∫ T

0

θ̇dt =

∫
L(γ)

θ̇
˙̃λ
dλ̃ =

∫
L(γ)

η.
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Figure 6.7: Analyzing the movement of the roots (Figure 6.6), we obtain
the initial and the final cycles on the Riemann surface.

Figure 6.8: Deformation of the two cycles (that are homologous to γ̃f − γ̃f )
into the positively oriented cycle δ̃ near +∞.

Then, using Theorem 6.1, we obtain that the variation of the rotation num-
ber, when the constants of motion vary along Γ, is given by ∆ΓΘ = 2πn.

A basis for the homology group of a regular torus EM−1(h, k) can be
defined as {γK , γH}, where γK is the closed orbit of the flow generated by
K starting at a point (q, p) ∈ EM−1(h, k) and γH is the cycle obtained by
concatenating γ and the orbit of K between this final point and the initial
one (this is equivalent to follow the flow of K for a time −Θ).

Since we have a global S1-action, the first element of the basis remains
the same after a turnaround Γ. The second element, γH , transforms into
itself plus n-times the cycle γK , since ∆ΓΘ = 2πn.

Thus, the Monodromy matrix in the basis described before is

M =

(
1 n
0 1

)
.
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In chapter 8, we present two examples where it can be observed that this
result simplifies the calculation of the monodromy matrix. The difficulty
of this method is that a spectral Lax pair is needed to obtain the algebraic
structure. For many physical systems Lax pairs are known. Nevertheless
finding a Lax pair for a given system is not an easy task and there is no
general algorithm to derive them.

On the other hand, it is already known that the Hamiltonian mon-
odromy is a local property around the critical point [31]. For this reason,
it is natural to try to study it with a local normal form.

In the following chapter we prove that for a system with a local form
corresponding to a focus-focus critical point, an approximate Lax pair can
be used in a neighborhood of a focus-focus singularity.
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Chapter 7

Quasi Lax pair of a system with
a focus-focus singularity

In Chapter 8, the method described in the previous chapter is applied to two
classical systems whose Lax pairs are known and that have a focus-focus
singularity. Another problem related to this later one is to prove, using
complex geometry, the non-triviality of the monodromy of any system with
a focus-focus singularity.

The major restriction of our method is the fact that there is no algorithm
to find a spectral Lax pair for a given physical system and, to the best of
my knowledge, there is no known spectral Lax pair for the local model of
a focus-focus singularity. For this reason, in this Chapter, we approach
the aforementioned problem by introducing the notion of quasi-Lax pair
for systems with a focus-focus singularity and show that the monodromy
matrix of these systems can be calculated from this new notion.

We call this new notion quasi-Lax pair of the dynamical system because
the dynamical equations are only reproduced up to some terms by the Lax
equation, where the rest of the terms are negligible in a neighborhood of
the focus-focus singularity. Another feature of this Chapter is that the
simplicity of the differential equations treated in this case highlights the
geometric constructions of the previous Chapter.

We consider a two-degree of freedom system with the coordinates (a, ā)
and (b, b̄), such that {a, ā} = {b, b̄} = −i and the other brackets vanish.
The Hamiltonian defined as

H = ab+ āb̄

is Liouville-integrable with the constant of motion K given by

K = b̄b− aā.
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7. Quasi Lax pair of a system with a focus-focus singularity

This system corresponds to a 1:-1 resonant system, which is the non-
compact local normal form for dynamics with a single focus-focus point
in a = b = 0. The nontrivial Monodromy of the Hamiltonian dynamics is
e.g. shown in [31, 73] with standard techniques. The Hamiltonian dynamics
are governed in a neighborhood V of the focus-focus point by the following
differential equations

ȧ = −ib̄; ˙̄a = ib

ḃ = −iā; ˙̄b = ia. (7.1)

The quasi-Lax pair is defined by the two matrices L and M given by

L = (λ2 + 1− aā/2)σz + (bλ+ ā)σ+ + (b̄λ+ a)σ−

and
M =

1

2
(−iλσz − ibσ+ − ib̄σ−),

where we use the Pauli matrices σx,y,z and σ± = 1
2
(σx ± iσy). We find the

equations of motion from L̇ = [M,L] in which terms of order larger than
(or equal to) 3 are neglected.

In this case, we define1 the spectral curve by det(L(λ) − µ Id) = 0 and
the new set of coordinates (λ̃, µ̃), where µ̃ = A(λ̃) and λ̃ is the solution of
the implicit equation C(λ) = 0.

We stress that the spectral curve given by

µ̃2 = λ̃4 + (2 + k)λ̃2 − hλ̃+ 1− a2ā2

4
(7.2)

depends on time (not all its coefficients are constants of motion), but if we
neglect terms of order larger than three we directly obtain the normal form
of the spectral curve derived in Sec. 5.2.

At this level appears the major difficulty in the method proposed in this
Chapter: the last term of the right-hand side of Eq. (7.2), −a2ā2

4
, causes

the Riemann surface to be different for each point of the Hamiltonian flow.
Even if we still have a torus for each value of a, the image of each point of
the Hamiltonian flow under the mapping (λ̃, µ̃) belongs to a different torus,
which is a small perturbation of the one given by the normal form of the
spectral curve. This fact makes the use of the spectral curve more difficult.

Nevertheless, since in this section, we consider a local study, in a neigh-
borhood of the focus-focus point, it is not necessary to have all the informa-
tion provided by the tori described by the variables (λ̃, µ̃). As we show in
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Figure 7.1: Schematic representation of the mapping λ̃ in a neighborhood
V of the focus-focus point.

this section, it is enough to work with the information given by the variable
λ̃ ∈ Ĉ.

First, notice that the change of variables

λ̃ = −a
b̄
,

µ̃ = λ̃2 + 1− aā

2
,

obtained from the quasi-Lax pair, can be applied to derive a new expression
of the Liouville two-form. This latter can either be expressed as

Ω = ida ∧ dā+ idb ∧ db̄

or
Ω = −id ln(b̄) ∧ dK − 2i

λ̃
dλ̃ ∧ dµ̃ (7.3)

and, using Eq. (7.3), we obtain the one-form dθ = −id ln(b̄), which leads to
θ̇ = −λ̃. We also have {λ̃, µ̃} = i

2
λ̃ and, using Eq. (7.1), we arrive at

˙̃λ = {λ̃, H} = i(1 + λ̃2). (7.4)

In order to analyze the monodromy of the system in a small neighbor-
hood2 V of the focus-focus point, we have to work with relative cycles [31].

1Following the idea presented the previous Chapter.
2We can consider, e.g., a ball of radius R small enough such that ∥a∥2 + ∥b∥2 ≤ R2.
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7. Quasi Lax pair of a system with a focus-focus singularity

Consider the fiber EM−1(h, k) for (h, k) sufficiently close to (0, 0) so that
EM−1(h, k)∩∂V is the disjoint union of two S1 orbits S− and S+. We make
the convention that the Hamiltonian flow in the intersection EM−1(h, k)∩V
(which is homeomorphic to a cylinder) sends points on S− to S+. For any
point p ∈ EM−1(h, k) ∩ V let γrel(p) be the part of the orbit of XH in V
that goes through p. Such curve joins a point p− ∈ S− to a point p+ ∈ S+.
(see [31] for details). Then, the rotation number Θ can be expressed as

Θ =

∫
γrel

dθ =

∫
γ̃rel

−λ̃
i(1 + λ̃2)

dλ̃, (7.5)

where γ̃rel is the image under the mapping λ̃ of γrel. The crucial point is that
the 1-form that we integrate only depends on λ̃, this makes the information
given by this variable sufficient for this local study. Notice that, in this
case, we have two branching points that are located in ±i.

The variation of the rotation number is given by

∆Θ =

∫
∆γ̃rel

−λ̃
i(1 + λ̃2)

dλ̃.

It is then enough to study the behavior of λ̃ over the Hamiltonian flow in
V . This behavior is described in Lemma 7.1. First, we integrate Eq. (7.1),
obtaining that the Hamiltonian flow in V is given by

a(t) = a0 cosh(t)− ib̄0 sinh(t)

b̄(t) = b̄0 cosh(t) + ia0 sinh(t),

where a0 and b̄0 are the initial values at t = 0 of a and b̄. The proof of the
following Lemma uses these expressions.

Lemma 7.1. The mapping λ̃, restricted to V , has the following properties

1. On the singular fiber EM−1(0, 0) \ {(0, 0, 0, 0)}, the function λ̃ takes
two values i and −i (one on each connected component).

2. In a regular fiber EM−1(h, k), λ̃ does not take the value i nor −i and
it is injective on each Hamiltonian trajectory.

3. λ̃ is well-defined and continuous on each regular fiber, except for those
fibers for which h = 0 and k < 0, where λ̃ takes the value ∞.3

3In other words, if we consider λ̃ : V → Ĉ, then it is well defined and continuous on
each regular fiber, where Ĉ is the Riemann sphere.
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4. In a regular fiber EM−1(h, k), the image of the Hamiltonian flow is a
curve that starts and ends near −i and i, respectively. When (h, k)
goes to (0, 0), the initial and final points converge to −i and i.

Proof. 1. For the singular fiber for which h = k = 0, the initial condition
(0, 0) ̸= (a0, b0) ∈ V of the Hamiltonian flow verifies

||a0|| = ||b0||, (7.6)
Re(a0b0) = 0. (7.7)

Note that Eq. (7.6) implies that a0 ̸= 0 and b0 ̸= 0. Using Eq. (7.7), we
get a0b0 = ir, with r ∈ R, which, from Eq. (7.6) leads to ∥r∥ = ∥b0∥2.
Since b̄0 = ∥b0∥2

b0
, we obtain

a0 = ±ib̄0,

for ∥r∥ = ±r. We use this relation to compute the image of a solution
curve φ(t), contained in the singular fiber

λ̃(φ(t)) =
ib̄0 sinh(t)− a0 cosh(t)

b̄0 cosh(t) + ia0 sinh(t)

=
ib̄0 sinh(t)∓ ib̄0 cosh(t)

b̄0 cosh(t)± ib̄0i sinh(t)

= ∓i.

We conclude that λ̃ is constant, for the trajectories contained in the
singular fiber and that it only takes two values, i (when a0 = −ib̄0)
and −i (when a0 = ib̄0).

2. (Proof by contradiction) First, let us suppose that there exists a reg-
ular fiber EM−1(h, k) and an initial condition (a0, b0) ∈ V contained
in this fiber such that λ̃(φ(a0, b0)) takes the value i or −i for some
value of t.

This condition implies that there exists t1 such that

λ̃(φ(t1)) =
−a(t1)
b̄(t1)

=
−a0 cosh(t1) + ib̄0 sinh(t1)

b̄0 cosh(t1) + ia0 sinh(t1)
= ±i,

equivalently,

−a0 cosh(t1) + ib̄0 sinh(t1) = ±ib̄0 cosh(t1)± (−a0) sinh(t1),
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7. Quasi Lax pair of a system with a focus-focus singularity

which implies,

0 = a0(− cosh(t1)± sinh(t1))− ib̄0(− sinh(t1)± cosh(t1)

= (a0 ± ib̄0)(−e∓t1).

From the last equation, one gets that: a0± ib̄0 = 0. Hence, k = 0 and
h = 0, which is a contradiction with the fact that we are considering
a regular fiber.

For the second part, let us suppose that (a0, b0) ∈ V is an initial
condition contained in a regular fiber EM−1(h, k) such that, for the
corresponding Hamiltonian trajectory φ, there exist t1 and t2 with
t1 ̸= t2 fulfilling

λ̃(φ(t1)) = λ̃(φ(t2)).

Equivalently,

−a0 cosh(t1) + ib̄0 sinh(t1)

b̄0 cosh(t1) + ia0 sinh(t1)
=

−a0 cosh(t2) + ib̄0 sinh(t2)

b̄0 cosh(t2) + ia0 sinh(t2)
,

multiplying by −1 both sides of the equality, we get the following
equation

ia20 cosh(t1) sinh(t2)− ib̄20 sinh(t1) cosh(t2)

= ia20 cosh(t2) sinh(t1)− ib̄20 sinh(t2) cosh(t1),

obtaining,

0 = i(a20 + b̄20)(sinh(t2) cosh(t1)− sinh(t1) cosh(t2))

= i(a20 + b̄20)(sinh(t2 − t1)).

Since t1 ̸= t2 we have that sinh(t2 − t1) ̸= 0. Thus, a20 + b̄20 = 0, which
implies k = 0 and h = 0 and this is a contradiction with the fact that
we are considering a regular fiber.

3. Recall that the function λ̃ is defined as λ̃ = −a
b̄

. Thus, when b ̸= 0
the function is well-defined and continuous.

First, notice that b = 0 implies h = 0, giving that for the fibers
EM−1(h, k) such that h ̸= 0, b does not vanish on this fiber. Hence,
the function λ̃ is well-defined and continuous for the fibers EM−1(h, k)
with h ̸= 0 .

For the regular fibers EM−1(h, k) such that h = 0 we have that k ̸= 0.
By definition, k = bb̄ − aā which is equivalent to k = ||b||2 − ||a||2.
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Thus, if b vanishes on a given fiber one gets k < 0. We conclude that,
for k > 0, b does not vanish and λ̃ is well-defined and continuous on
these fibers.

Now, we prove the footnote: for the regular fibers EM−1(h, k) such
that h = 0, k < 0, let us set k = −k0, with 0 < k0 ≪ 1, and analyze
the function λ̃ in the fiber EM−1(0,−k0).
Let us first prove that, for every Hamiltonian trajectory on this fiber,
there exists a time where the trajectory takes the value b̄ = 0.

If the initial condition is such that b0 = 0, there is nothing to prove.
When the initial condition (a0, b0) is such that b0 ̸= 0 we have that
b̄0 ̸= 0 and a0 ̸= 0 (because a0 = 0 implies k > 0). We study the
quotient −b̄0

ia0
. Since h = 0 we have that the real part of a0b0 vanishes,

thus a0b0 = ir0 with r0 ∈ R, this implies that −b̄0
ia0

= ||b0||
r0

∈ R. We also
have that k = ||b0||2 − ||a0||2 = −k0, equivalently, ||b0||2 = ||a0||2 − k0
which implies that ||−b̄0

ia0
||2 = 1 − k0

||a0||2 < 1. We conclude that −b̄0
ia0

is
a real number of norm less than 1.

We consider t1 = arctanh
(

−b̄0
ia0

)
and

b̄(t1)

cosh(t1)
= b̄0 + ia0 tanh(t1) = b̄0 + ia0

−b̄0
ia0

= 0.

Since cosh(t) does not vanish we conclude that b̄(t1) = 0 which is
what we wanted to prove.

We now analyze the behavior of λ̃, on this fiber, near the points
such that b = 0. First notice that −k0 = k = ||b||2 − ||a||2 implies
||a||2 = ||b||2 + k0. Thus, we can consider a point (a∗, 0) in the fiber
and obtain

lim
(a,b)→(a∗,0)

∥λ̃(a, b)∥2 = lim
(a,b)→(a∗,0)

∥∥∥∥−ab̄
∥∥∥∥2

= lim
(a,b)→(a∗,0)

||b||2 + k0
||b||2

= lim
(a,b)→(a∗,0)

(
1 +

k0
||b||2

)
= ∞.

We conclude that the function restricted to this fiber is well-defined
and continuous when the codomain of the function is considered to
be the Riemann sphere.
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7. Quasi Lax pair of a system with a focus-focus singularity

4. First notice that

λ̃(φ(t)) =
ib̄0 sinh(t)− a0 cosh(t)

b̄0 cosh(t) + ia0 sinh(t)

=
ib̄0 tanh(t)− a0
b̄0 + ia0 tanh(t)

,

and, by definition,

tanh(t) =
et − e−t

et + e−t
.

Hence, tanh converges exponentially to ±1 when t→ ±∞.

From where one gets that

ib̄0 sinh(t)− a0 cosh(t)

b̄0 cosh(t) + ia0 sinh(t)

converge exponentially to ±i when t→ ±∞.

On the other hand, when (h, k) goes to (0, 0) the time such that
a Hamiltonian trajectory φ, on the fiber EM−1(h, k), reaches the
boundary of V tends to infinity. For this reason, the initial and final
points of the image of the trajectories tend to −i and i respectively.

The mapping λ̃ is schematically represented in Fig. 7.1 with C as codomain
and in Fig. 7.2 with Ĉ as codomain.

The image of a regular fiber EM−1(h, k) under λ̃ can be described as
follows. For h > 0 (resp. h < 0) and k = 0, the image is contained in
the left (resp. right) part of the unitary circle. For k > 0 (resp. k < 0),
the norm of the points in the image of the fiber is smaller (resp. larger)
than 1. For h = 0 and k > 0, the image is contained in the imaginary
axis between i and −i, while it belongs to the imaginary axis outside of
the segment between i and −i, for h = 0 and k < 0. We point out that
there is no intersection between the different trajectories. Indeed, they are
given as solutions of the differential equation λ̇ = 1 + λ2. Hence, by the
uniqueness theorem for differential equations, they cannot intersect, unless
they coincide, which is not the case.

We now consider a small circle Γ, of radius ρ in the space of parameters
(h, k) starting in h = 0, k < 0, and positively oriented. The previous
analysis gives the behavior of γ̃rel, when (h, k) vary along Γ. These results
are illustrated numerically in Fig. 7.3.

106



Figure 7.2: Schematic description of the mapping λ̃ in a neighborhood V
(here a ball) of the focus-focus point. The image of λ̃ lies on the Riemann
sphere which is the compactification of the complex plane by the stereo-
graphic projection.

We have all the tools in hand to compute the variation of the rotation
number along Γ

∆ΓΘ =

∫
∆Γγ̃rel

−λ̃
i(1 + λ̃2)

dλ̃.

Note that the one-form has a pole at infinity and, for the value h = 0,
k < 0, γ̃rel goes through this point. For this reason, we parameterize Γ as
h+ ik = ρeiϕ, with ϕ ∈ [−π

2
, 3π

2
] and we consider the limit

∆ΓΘ = lim
ε→0+

(
Θ(ρei(

3π
2
−ε))−Θ(ρei(

−π
2

+ε))
)

= lim
ε→0+

 ∫
∆εΓrel

−λ̃
i(1 + λ̃2)

dλ̃

 ,

where ∆εΓrel = γ̃rel(ρe
i( 3π

2
−ε))− γ̃rel(ρe

i(−π
2

+ε)).
Let δ0 be the segment starting and ending respectively at the initial

points of γ̃rel(ρei(
−π
2

+ε)) and γ̃rel(ρei(
3π
2
−ε)) and δ1 the segment starting and

ending respectively at the final points of γ̃rel(ρei(
3π
2
−ε)) and γ̃rel(ρe

i(−π
2

+ε)).
The circle Γ in the space (h, k) and the different paths on the Riemann
sphere are represented schematically in Fig. 7.4. A numerical plot is given
in Fig. 7.5.

The segments δ0 and δ1 are contained in the domain of analyticity of the
function log(1+ λ̃2), where log is taken in the (0, 2π)- branch. This domain
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7. Quasi Lax pair of a system with a focus-focus singularity
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Figure 7.3: Plot of the trajectories in the complex plane of λ̃. The red points
correspond to +i and −i. The blue and green curves represent, respectively,
the Hamiltonian flows for ϕ = 0, π and 3π

2
−ε, −π

2
+ε. The solid and dashed

black lines depict, respectively, the trajectories for ϕ = π
2

and −π
2
. The

trajectories converge to the points ±i when t→ ±∞. Numerical values are
set to ρ = 0.1, a0 = 0.5 and ε = 0.6.

is C \ R ∪ i[−1, 1]. We have

lim
ε→0+

(∫
δj

−λ̃
i(1 + λ̃2)

dλ̃

)
= 0,

with j = 0, 1. Using this result, we obtain

∆ΓΘ = lim
ε→0+

(∫
δε

−λ̃
i(1 + λ̃2)

dλ̃

)
,

where δε is γ̃rel(ρei(
3π
2
−ε)) ∗ δ1 ∗ −γ̃rel(ρei(

−π
2

+ε)) ∗ δ0, ∗ corresponding to the
concatenation of paths.

Finally, we get for ε > 0∫
δε

−λ̃
i(1 + λ̃2)

dλ̃ = 2πi× Res

(
−λ̃

i(1 + λ̃2)
dλ̃, λ̃ = ∞

)
= 2π,
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Figure 7.4: The left panel depicts the loop Γ in the space (h, k). The posi-
tion of the blue, green, yellow and red points are respectively ρei(−

π
2
+ε),

ρei(
3π
2
−ε), ρe

3iπ
2 and 0. The corresponding trajectories are represented

schematically on the Riemann sphere in the right panel, with the same
color code. The segments δ0 and δ1 joining respectively the initial and final
points of the trajectories are also plotted (see the text for details).

which leads to
∆ΓΘ = lim

ε→0+
(2π) = 2π.

We conclude that the monodromy matrix of any system with a focus-
focus singularity can be computed from this complex approach using quasi-
Lax pairs and the corresponding change of variables defined by λ̃ and µ̃.

Through the analysis of the complex geometry of a Riemann surface
given by the Lax pair of a Hamiltonian system, we have shown that Hamil-
tonian monodromy can be completely described by the properties of this
surface defined by a polynomial of degree four. More precisely, the mon-
odromy matrix can be computed from a meromorphic form of this surface
with a pole at infinity. The general approach is illustrated by two relevant
examples, namely the Jaynes-Cumming model and the spherical pendulum,
for which a Lax pair is known in the next Chapter.

However, the main weak point of this method is the need to know a Lax
pair. This description has been achieved only for a few integrable systems,
while Hamiltonian monodromy and its generalizations appear generically in
such systems, for instance in any system with a focus-focus singularity. We
proposed, in this Chapter, to answer this question by deriving a quasi-Lax
pair in a small neighborhood of the singularity, which allows us to apply,
with some adaptations, the general results of this study. This idea originates
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7. Quasi Lax pair of a system with a focus-focus singularity
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Figure 7.5: Plot of the cycle δε. The relative cycles and the segments δ0, δ1
are, respectively, represented in blue and red. The black dots correspond
to ±i. Numerical values are set to ρ = 0.1, a0 = 0.4 and ε = 0.6. The
neighborhood V is a ball of radius 1.

from the fact that Hamiltonian monodromy is a local phenomenon that does
not depend on the global Hamiltonian dynamics. Thus, we think that the
notion of quasi-Lax pair will be a valuable tool in the study of Hamiltonian
systems with singularities.
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Chapter 8

Physical Examples

In this Chapter, we present two relevant examples of this theory. The
first example is the James-Cummings model whose relevance comes from
the fact that it is the classical limit of an important system in quantum
optics. The second example is the spherical pendulum which is the most
representative example of Hamiltonian monodromy, since it was the first
example for which the non-triviality of the Hamiltonian monodromy was
proved. We show, using these two examples, that the computation of the
monodromy matrix is relatively simple using the Lax pair method.

8.1 The Jaynes-Cummings model
As a first example, we consider the classical Jaynes-Cummings model (JC).
Its quantum counterpart has been widely studied as a basic model system
in quantum optics [27, 39] describing the interaction of a two-level quantum
system with a quantized mode of an optical cavity [60]. The global dynamics
of the classical version have been recently explored in a series of papers
showing, in particular, the possible non-trivial monodromy of this integrable
system [10, 11, 57, 12, 40, 2].

The classical JC describes the interaction of a classical spin coupled to
a Harmonic oscillator on the phase space S2 ×R2. The Hamiltonian of the
system can be expressed as

H = 2ω0Sz + ωb̄b+ g(b̄S− + bS+), (8.1)

where ω0, ω, and g are real constants representing respectively the frequen-
cies of the spin and of the Harmonic oscillator and the coupling strength
between the two sub-systems. The coordinates describing the spin and the
Harmonic oscillator are denoted by (Sx, Sy, Sz) and (b, b̄), respectively, with
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8. Physical Examples

the constraint S2
x + S2

y + S2
z = S2

0 , where S0 is a positive constant. To sim-
plify the description, we also introduce the components S+ and S−, given
by

S+ = Sx + iSy

S− = Sx − iSy.

The spin dynamics is obtained from the following Poisson bracket

{Sa, Sb} = εabcSc,

where εabc is the completely anti-symmetric tensor with indices a, b and c
belonging to the set {x, y, z}. Note that

{S±, Sz} = ±iS±

{S+, S−} = −2iSz.

For the Harmonic oscillator, we have {b, b̄} = −i, which can be deduced
from b = 1√

2
(q + ip) and b̄ = 1√

2
(q − ip) and the relation {q, p} = 1, where

q and p are the real position and momentum of the oscillator.
The Hamiltonian H defines a completely integrable dynamics on the

phase space of dimension four. The second constant of motion, K, can be
written as K = Sz+ b̄b and verifies {K,H} = 0. The Hamiltonian dynamics
are then governed by the following differential equations

Ṡ+ = {S+, H} = 2iω0S+ − 2igb̄Sz

Ṡz = igb̄S− − igbS+ (8.2)
ḃ = −iωb− igS−.

A standard computation of the bifurcation diagram [11] shows that this
system has a focus-focus singularity for some values of the parameters,
and thus a non-trivial monodromy around this point. The correspond-
ing isolated singular value of the bifurcation diagram has the coordinates
(h0, k0) = (2ω0S0, S0). Note that the dynamics has another fixed point on
the fiber (−2ω0S0,−S0). Figure 8.1 displays the bifurcation diagram, for a
specific set of parameters.

The Lax Pair approach

We now describe the dynamics by using Lax pairs. We consider the Lax
matrices L and M defined by

L(λ) =

(
(2λ−ω)(λ−ω0)+g2Sz

g2
2b(λ−ω0)

g
+ S−

2b̄(λ−ω0)
g

+ S+
(ω−2λ)(λ−ω0)−g2Sz

g2

)
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8.1. The Jaynes-Cummings model

0 2 4
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Figure 8.1: Plot of the JC bifurcation diagram. Numerical parameters are
set to S0 = 1, ω0 = 1, ω = 2 and g = 1. The points, for which dEM has
rank 0 and 1, are respectively plotted in blue and red. The blue points
have the coordinates (S0, 2ω0S0) and (−S0,−2ω0S0). A loop around the
focus-focus point is displayed in black.

and
M(λ) =

(
−iλ −igb
−igb̄ iλ

)
.

The matrix L has the form described by Eq. (6.1). The Lax equation reads

L̇(λ) = [M(λ), L(λ)],

and is equivalent to Eq. (8.2). The spectral curve is given by

µ2 = A2 +BC = Q(λ), (8.3)

where Q(λ) is a polynomial of order four in λ, which can be expressed as

Q(λ) =
(2λ− ω)2

g4
(λ− ω0)

2 +
4

g2
K(λ− ω0)

2

+
2

g2
(H − ωK)(λ− ω0) + S2

0 .

As mentioned in the general case, it can be verified that all the coefficients
of the polynomial are constants of the motion. The movement of the roots
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along a loop in the bifurcation diagram can be computed numerically. To
this aim, we consider a loop defined by k = k0 + r cos(χ) and h = h0 +
r sin(χ), with r = 0.5 and χ ∈ [0, 2π]. We denote by χc the angle defined
by χc = π+arctan(2ω0), which leads to the point (hc = h0+ r sin(χc), kc =
k0 + r cos(χc). The roots for this specific loop are displayed in Fig. 8.2.

0.5 1 1.5

-1

0

1

Figure 8.2: Plot of the movement of the roots of the polynomial Q along the
loop of Fig. 8.1. Numerical parameters are set to S0 = 1, ω0 = 1, ω = 2 and
g = 1. The crosses correspond to (k0, h0) and the blue points to (kc, hc).

The Hamiltonian dynamics on this surface are obtained from the func-
tions (λ̃, µ̃). We recall that λ̃ is the solution of the implicit equation
C(λ) = 0 and µ̃ = A(λ̃). We deduce that

λ̃ = ω0 −
g

2

S+

b̄
, (8.4)

µ̃ =

(
ω − 2ω0

2g

)
S+

b̄
+
S2
+

2b̄2
+ Sz.

It is then straightforward to verify that

{λ̃, µ̃} = {−gS+

2b̄
, Sz} = i(λ̃− ω0)

and {λ̃, K} = 0, {µ̃,K} = 0, i.e., λ̃ and µ̃ are coordinates of the reduced
phase space. Figure 8.3 illustrates numerically the Hamiltonian trajec-
tory on the Riemann surface. This loop can be derived either using the
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8.1. The Jaynes-Cummings model

Hamiltonian flow in the original coordinates, given by Eq. (8.2) and the
relations (8.4), or by using the Riemann surface (8.3). In this latter case,
we have

˙̃λ = {λ̃, H} =
g2

2(λ̃− ω0)
{λ̃, µ̃2} = ig2µ̃,

which leads to
˙̃λ = ig2

√
Q(λ̃).

-4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3

Figure 8.3: Plot of the image of the Hamiltonian flow under λ̃, for k1 =
k0 − 0.01 and h1 = h0. The red points correspond to the position of the
branch points of the Riemann surface.

The normal form

The next step of our general approach consists of analyzing the polynomial
Qh,k(λ̃) around the point (h0, k0) in the bifurcation diagram. Since Q ∈
R[λ̃], we haveQ(λ̃) = Q(¯̃λ), which implies that the roots ofQk,h are pairwise
complex conjugate. We first compute Qh0,k0(λ̃) and its roots:

Qh0,k0(λ̃) =

(
(2λ̃− ω)(λ̃− ω0)

g2
+ S0

)2

=
4

g4

(
λ̃2 − 2ω0 + ω

2
λ̃+

ω0ω + g2S0

2

)2

.
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Since this polynomial has conjugate roots, we also have

Qh0,k0(λ̃) =
4

g4
((λ̃− λ0)(λ̃− λ̄0))

2

=
4

g4
(λ̃2 − 2Re (λ0)λ̃+ ||λ0||2)2,

and we arrive at

Re (λ0) =
2ω0 + ω

4

Im (λ0) =

(
g2S0

2
−
(
ω − 2ω0

4

)2
) 1

2

.

Then, we apply the general procedure described in Sec. 5 to transform this
polynomial to the one of the normal form. We have:

Qh,k(λ̃) =
4

g4
λ̃4 − 4

g4
(ω + 2ω0)λ̃

3

+
4

g4
((ω0 +

ω

2
)2 + ωω0 + g2k)λ̃2

− 4

g4
(ωω0(ω0 +

ω

2
) +

g2

2
(k(ω + 4ω0)− h))λ̃

+
4

g4
(
ω2ω2

0

4
+
g4S2

0

4
+
ω0g

2

2
(k(ω + 2ω0)− h)).

From a direct calculation, we obtain that the derivative at (h0, k0) of the
transformation F defined in Lemma 5.2 has the following form

D =

(
g2(ω0−Re(λ0))

2Im(λ0)4
g2(s)

2Im(λ0)4

g2

2Im(λ0)3
g2(2−(ω+4ω0))

2Im(λ0)3

)
,

where

s = 2Im(λ0)
2 − 2Re(λ0)2 + Re(λ0)(ω + 4ω0)− ω0(ω + 2ω0).

The determinant of the matrix D is

det(D) =
g4

4Im(λ0)7
(−Im(λ0)

2 + 2Re(λ0)2

−Re(λ0)(ω + 4ω0) + ω0(ω + 2ω0)

+(ω0 − Re(λ0))(2− (ω + 4ω0))).
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Substituting the values of Re(λ0) and Im(λ0), we obtain

detD =
g4(−g2S0 − ω2

0

2
− ω

2
+ ω2

4
+ ω0)

4Im(λ0)7
.

If detD ̸= 0, then Q can be transformed to the normal form polynomial.

Hamiltonian Monodromy

We have now all the tools in hand to compute the monodromy matrix. The
angle θ conjugate to K verifies {θ,K} = 1 and {θ, λ̃} = {θ, µ̃} = 0. Using
Eq. (8.3), we have

θ̇ = {θ,H} = {θ,−2K(λ̃− ω0) + ωK},

which gives
θ̇ = ω + 2ω0 − 2λ̃

and we obtain the following expression for the one-form dθ, as a function
of λ̃ and µ̃

dθ =
((ω + 2ω0)− 2λ̃)dλ̃

ig2µ̃
. (8.5)

From Eq. (8.5), it is clear that dθ is of the form described in Theorem 6.1.
We deduce that the residue of this form at infinity is equal to 2

ig2
divided

by the square root of the leading coefficient of the polynomial Q, i.e.,

2
ig2√

4
g4

=
2g2

2g2i
=

1

i
.

Finally, using Theorem 6.2, we obtain that the monodromy matrix is

M =

(
1 1
0 1

)
.
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8.2 The spherical pendulum

As a second example, we consider the historical system for which a non-
trivial monodromy was for the first time highlighted [28], namely the spher-
ical pendulum. Since then, this system has been extensively studied both
from classical and quantum point of view [23, 35, 22, 15, 8, 30]. The cor-
responding Lax pair has been described in [8, 32]. The spherical pendulum
consists of a mass moving without friction on a sphere. The dynamics are
governed on the phase space TS2 by the following Hamiltonian expressed
in dimensionless coordinates [22]:

H =
1

2
(p2x + p2y + p2z) + z,

with the constraints x2+y2+z2 = 1 and xpx+ypy+zpz = 0. The dynamical
equations can be expressed as

˙⃗q = p⃗

˙⃗p = e⃗z − (p2x + p2y + p2z − z)q⃗,

where e⃗z = (0, 0,−1) is a unit vector along the z- direction. We introduce
the angular momentum K⃗ = q⃗ × p⃗, with ˙⃗

K = q⃗ × e⃗z. We deduce that the
system is completely integrable, since it has a second constant of motion,
K = Kz, such that {H,K} = 0. It can be shown that the spherical pen-
dulum has a non-trivial Monodromy, due to a focus-focus singularity corre-
sponding to the point (h0, k0) = (1, 0) of the bifurcation diagram [22, 30].

The Lax Pair approach

With the coordinates (Lx, Ly, Lz) and (Mx,My,Mz) defined as

Lx = x− λKx,

Ly = y − λKy,

Lz = z − λKz + λ2.

and

Mx = Kx,

My = Ky,

Mz = Kz − λ,
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8.2. The spherical pendulum

the Lax matrices L and M , which satisfy L̇ = [M,L], can then be expressed
as:

L = Lxσx + Lyσy + Lzσz

M =
−i
2
(Mxσx +Myσy +Mzσz),

where σx, σy, and σz are the Pauli matrices.
The spectral curve is given by the eigenvalues of L

µ2 = L2
x + L2

y + L2
z.

A straightforward computation leads to

µ2 = λ4 − 2Kλ3 + 2Hλ2 + 1. (8.6)

We have

A(λ) = Lz

C(λ) = Lx − iLy

and we deduce that

λ̃ =
x+ iy

Kx + iKy

and
µ̃ = A(λ̃) = z − λ̃Kz + λ̃2.

As expected, it can be verified that

{λ̃, K} = {µ̃,K} = 0.

Using {Kx, z} = −y and {Ky, z} = x, we get

{λ̃, µ̃} = {λ̃, z} = −iλ̃2.

Finally, from Eq. (8.6), we arrive at

˙̃λ = {λ̃, H} =
µ̃

λ̃2
{λ̃, µ̃} = −iµ̃.

119



8. Physical Examples

The normal form

As in the JC model, we apply the procedure described in Sec. 5.2 to trans-
form the polynomial

Qh,k(λ̃) = λ̃4 − 2kλ̃3 + 2hλ̃2 + 1

to the normal form polynomial. The polynomial Qh0,k0(λ̃) given by

Qh0,k0(λ̃) = λ̃4 + 2λ̃2 + 1,

has the roots ±i. Following Lemma 5.2, we obtain that the derivative at
(h0, k0) of the transformation F is

D =

(
0 2
2 0

)
.

Since detD ̸= 0, the polynomial Q can be transformed to the normal form.

Hamiltonian Monodromy

The last step to compute the monodromy matrix consists of expressing the
one-form dθ in the coordinates (λ̃, µ̃). The angle θ conjugate to K verifies
{θ,K} = 1 and {θ, λ̃} = {θ, µ̃} = 0. Starting from Eq. (8.6), we deduce
that

θ̇ = {θ,H} = λ̃.

Finally, we arrive at

dθ = θ̇
dλ̃
˙̃λ

= i
λ̃dλ̃

µ̃
. (8.7)

The one-form given in Eq. (8.7) corresponds to the expression described in
Theorem 6.1 and its residue at infinity is equal to −i = 1

i
. Using Theo-

rem 6.2, we conclude that the Hamiltonian monodromy matrix is

M =

(
1 1
0 1

)
.
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Chapter 9

General Conclusions

In this thesis, two main topics have been treated, namely, rotating rigid
body dynamics and Hamiltonian monodromy. Throughout the different
chapters of this work, these problems were developed and the necessary
concepts were introduced. We now give a summary of the different results
obtained as a general conclusion. Details are given in the referred chapters.

In Chapter 2, we proved a result (Th. 2.1) that ensures the existence and
robustness (with respect to c) of the tennis racket effect (TRE) in a neigh-
borhood of the separatrix in the region |β| < |u|. For the region u < |β|,
we find that the asymptotic behavior of the function Fa,b,c(u) describing the
tennis racket effect is completely different from the asymptotic behavior in
the region |β| < |u|, since Fa,b,c(u) has a logarithmic behavior in the variable
u in the region |β| < |u| and a square root behavior in the region u < |β|.
These two regions are found using the fact that the abelian integral defining
Fa,b,c(u) has a different multivaluated character in these two regions.

For the Dhzanibekov effect we found, under certain hypotheses on the
parameters a and b, an approximation of the variation of the angle ϕ as
a function of the distance to the separatrix c. This allows us to predict,
with good accuracy [48], the number of rotations necessary (given the initial
condition c) to observe the π-flip of the wing nut.

On the other hand, recall that the monster flip is intended to avoid any
extra rotation when the skateboard performs a full turn along the interme-
diate axis of the skateboard. Since the tennis racket effect predicts a π-flip
in the transverse axis of the skateboard, to describe this trick, it is nec-
essary to find an approximation of this possible extra rotation for a given
initial condition. Thus, for the monster flip, we give an approximation of
this possible rotation, under conditions on the parameters a and b, and,
assuming that the corresponding rotation angle is small, we see that this
imposes a strong constraint on these parameters.
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9. General Conclusions

In Chapter 3, for an asymmetric rigid body such that Iz < Iy < Ix, we
search for the signatures of the physical constraint Iy + Iz ≥ Ix. We define
the physical case when the moments of inertia fulfill this inequality and the
non-physical case otherwise. In this chapter, we study the tennis racket
effect from a new perspective by investigating the pairs (c, ε) that describe
the tennis racket effect (2π = ∆ϕ = Fa,b(c, ε)) and taking into account the
physical constraint. We prove that these pairs describe a curve, C, which
turns out to be injective in the physical case and non-injective in the non-
physical case. As part of the mathematical framework that leads to these
results, we introduce implicit equations describing this curve that allow us
to perform a quantitative analysis. We take advantage of this description
of the tennis racket effect to prove that the TRE on the separatrix always
exists and to give conditions under which a perfect TRE is observed. For
the Montgomery phase, we detect the signature of the physical constraint
on oscillating trajectories. We show (Th. 3.14) that the Montgomery phase
is greater than or equal to 2π in the physical case and is less than 2π in the
non-physical case. Moreover, for rotating trajectories, we find the infimum
of the values of the Montgomery phase along these trajectories. Finally, we
take advantage of the analysis done for the Montgomery phase for rotating
trajectories to give a result about the existence of the Dhzanibekov effect
with a given value α of the rotation angle required to observe the flip of the
wing nut. It turns out that in this case, for rotating trajectories, we also
find a minimum possible value of α given by 1

2
of the minimum value of the

Montgomery phase, which implies that if α is smaller than this value, it is
not possible to observe the Dhzanibekov effect for this given angle.

In Chapter 4 we present introductory material and, in Chapter 5, aux-
iliary results are obtained. In Chapter 6, we study the Hamiltonian mon-
odromy of two degrees of freedom systems in R4 with a globally defined
S1-action which is described by a spectral Lax pair. This analysis is done
around an isolated critical value of the energy-momentum map (H,K),
where H is the total energy of the system and K is the first integral de-
fined by the S1-action. Using the spectral Lax pair of the system, we derive
a Riemann surface with the property that the variation of the rotation
number ∆Θ boils down to the computation of a residue at infinity of a
meromorphic 1-form defined on this Riemann surface. Moreover, we give
an explicit expression of this residue (Th. 6.1, Th. 6.2). We show in Chap-
ter 8, that these results simplify the computations of the monodromy matrix
in two relevant examples in physics, namely, the spherical pendulum and
the Jaynes-Cummings model.

Since the spectral Lax pair is not known for all completely integrable
systems, in Chapter 7, we introduce what we call a quasi-Lax pair, which is
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an approximate Lax pair obtained by neglecting high-order terms. In this
chapter, we proved that for systems with a focus-focus singularity, this tool
allows to calculate the monodromy matrix for this type of system using the
Lax pair approach.

Finally, in Appendix A, we briefly describe three problems that could
be solved in the near future with the tools introduced in this thesis. One
problem is to study the equations of the rigid body with a rotor. The second
one is the study of a generalization of the Jaynes-Cummings model called
the Tavis-Cummings model. The third problem links Part 1 and Part 2,
and the goal is to find a connection between Hamiltonian monodromy and
the Montgomery phase.
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Appendix A

Perspectives

Throughout this thesis, we have tackled different physical problems using
complex foliations tools. This approach invites the study of physical prob-
lems from this perspective. This appendix is dedicated to the description
of physical problems that could be analyzed using similar tools or ideas
to those introduced in this thesis. We also discuss possible generalizations
and, in particular, we describe three problems that started to be investi-
gated during the PhD thesis.

We begin this appendix by presenting these three problems and, in Sec-
tion A.4, we briefly describe other possible research directions.

A.1 Rigid body with a rotor

The article [16] describes the dynamics of a rigid body with an attached
rotor that can be switched on and off. This model describes, for example,
the dynamics of a somersault for a diver. Applications can also be found
in space mechanics on the dynamics of satellites. The equations of motion
of this system are very similar to Euler’s equations, except for some extra
terms that we now describe. As before, we denote by (x, y, z) and (X, Y, Z)
the body-fixed and the space-fixed frames respectively, and by (Ix, Iy, Iz) the
moments of inertia characterizing the rigid body. We assume that the rotor
leads to an additional (non-time dependent) angular momentum A⃗ along the
z- axis1, which can be switched on or off. For a diver, this additional angular
momentum corresponds to the motion of the arms during a somersault.

The angular momentum of the body L⃗ has coordinates (Lx, Ly, Lz) and

1The case where the additional angular momentum is along the z-axis is the easiest
to study due to some simplifications in the calculations.
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fulfills
L⃗ = IΩ⃗ + A⃗,

where Ω⃗ is the angular velocity of the rigid body and the vector A⃗ has the
coordinates (0, 0, A). The equations of motion can be written as ˙⃗

L = L⃗×Ω⃗.
Leading to

L̇x = (
1

Iz
− 1

Iy
)LyLz −

ALy
Iz

L̇y = (
1

Ix
− 1

Iz
)LxLz +

ALx
Iz

L̇z = (
1

Iy
− 1

Ix
)LxLy

In [68], the phase portraits of this system are presented for some values
of A. Moreover, Euler angles can be introduced as well for this system.

Using similar techniques as those introduced in this thesis, the different
phase portraits of this system can be obtained. Using Euler angles, we can
then describe different effects (an equivalent of the TRE for example) on
this system as abelian integrals and, hence, provide a geometric analysis of
the dynamics. We note that the addition of the rotor rotating in one or the
other sense at a given speed breaks the symmetry of the system.

A.2 Tavis-Cummings model: Chern class and
monodromy in higher dimensions

In chapter 8, the Jaynes-Cummings model was presented. This model has
a generalization to higher dimensions (when considering more spins). This
system is called the Tavis-Cummings model and we now present the model
for two spins. The classical Tavis-Cummings model for two spins is defined
in the phase space S2 × S2 × R2 by the Hamiltonian given by

H = 2ε1S
z
1 + 2ε2S

z
2 + ωb̄b+ g(b̄S−

1 + bS+
1 ) + g(b̄S−

2 + bS+
2 ),

where ε1, ε2, ω, and g are real parameters representing, respectively, the
frequencies of the spins and of the Harmonic oscillator and the coupling
strength between the sub-systems. The coordinates describing the spin and
the Harmonic oscillator are respectively denoted by (Sx1 , S

y
1 , S

z
1), (Sx2 , S

y
2 , S

z
2)

and (b, b̄), with the constraints

(Sz1)
2 + S+

1 S
−
1 = S2

0 ; (Sz2)
2 + S+

2 S
−
2 = S2

0 .
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A.3. Hamiltonian monodromy and Montgomery phase: Monodromy vs
Holonomy

Here, S0 is a positive constant and S+ and S− are given by

S+ = Sx + iSy,

S− = Sx − iSy.

Finally, the system has the following Poisson brackets

{b, b̄} = −i,
{S+, Sz} = iS+,

{S−, Sz} = −iS−,

{S+, S−} = −2iSz.

For any number of spins, this system is a completely integrable system
described by a spectral Lax pair. Generically, for three degrees of freedom
systems, the singular values of the energy-momentum map are surfaces on
R3. Nevertheless, for specific values of ω, ε1, ε2, S0 and g, we have found
an isolated curve of critical values, using the Lax pair. Moreover, this curve
is not smooth and it is, in fact, a cusp. For each point of this curve, one
can find a circle of critical points, in the respective fiber. Thus, this is a
very degenerate case for which, the study of the Hamiltonian monodromy
around this curve is an interesting problem.

Moreover, given the fact that for a 3-tori foliation over R3 with param-
eters, it is very degenerate to have an isolated curve of singular values it
is still a possibility to find an isolated critical value, by choosing correctly
the values of the parameters. If this is the case, then the Hamiltonian mon-
odromy around this point is trivial and the study of the Chern class [28]
could be a very interesting work. Since, to the best of our knowledge, no
physical system with trivial monodromy and non-trivial Chern class has
been found.

Finally, given the fact that this system has a spectral Lax pair for any
number of spins, we consider that it could be a key system to investigate
how to use spectral Lax pairs to study Hamiltonian monodromy in higher
dimensions.

A.3 Hamiltonian monodromy and
Montgomery phase: Monodromy vs
Holonomy

The Montgomery phase, as described in Section 3.5, is the variation of a spe-
cific angle when we follow the flow of the system given by Euler’s equations,
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i.e., a holonomy phenomenon. On the other hand, the rotation number is
one of the main ingredients in Hamiltonian monodromy as described in the
second part of this thesis. We strongly believe that there is a link between
the two main problems treated in this work, rotating rigid body dynamics
and Hamiltonian monodromy.

This idea comes from the fact that in [38] some symmetries of Euler’s
equations are used to perform reductions and obtain a completely integrable
system with two degrees of freedom. Then, an expression of the rotation
number of this reduced system is obtained and it turns out to be equal
to the Mongomery phase. Nevertheless, in this article, the Hamiltonian
monodromy of the reduced system is not investigated since the set of regular
values of the bifurcation diagram is not connected.

Thus, finding a way to study the Hamiltonian monodromy of this system
(possibly by complexification) would link a holonomy phenomenon and a
monodromy one through a formula, which would be a relevant property of
this system and would give a nice connection between the first and second
parts of this work. A similar discussion about monodromy vs holonomy can
be found in [26].

A.4 Other problems

In this section, we briefly mention different problems as perspectives for
further research. The first direction of research is the use of the algebraic
structure of Lax pairs in other problems. For example, there exists a Lax
pair for Euler’s equations in higher dimensions (which is a generalization
of the one introduced in Chapter 4). A specific problem in this context is
to find robust "effects" like the TRE in higher dimensions using the Lax
pair structure. The goal of doing this is, first, to understand the dynamics
in higher dimensions and, second, to follow the ideas presented in [70] to
construct convenient control fields using robust effects. Another problem
is the study of Euler’s equation in R3 with time-dependent moments of
inertia. This idea has been investigated in [55].

On the other hand, following the guideline of applying existing theories
in foliations to the study of physical systems, one interesting problem is to
compare the two classifications of foliations near a pinched torus given in
the papers [67] and [56]. On the first one, a classification of foliations ob-
tained through completely integrable systems near a focus-focus singularity
(which corresponds to a pinched point on a torus) is given. In the second
one, a classification of complex foliations near a homoclinic loop (which
corresponds to a pinched torus) is given. To relate these works is a natural
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problem and could lead to generalizations, in particular, in the case of small
deformations of the integrable systems.

Another relevant idea is to investigate which of the results obtained can
be extended to quantum mechanics. That is, either to find signatures of
the obtained results in quantum mechanics or to use the methods already
described to obtain information on quantum systems. As an example of the
first idea, in the paper [59] the classical and quantum control of rotating
asymmetric molecules are studied. Hence, a question that arises is whether
or not the physical and non-physical cases discussed in this thesis have
different properties in this framework. Finally, an example of the second
direction is to investigate the use of the Lax pair structure to describe
quantum monodromy.
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