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Résumé

L’objectif de cette these est de développer un cadre permettant d’obtenir des opérateurs K de spin-j
avec parametre spectral, solutions de I’équation de réflexion et appartenant & B ® End(C%*1)((u)),
ou B est une algebre comodule sur une algebre de Hopf H. A partir de ces opérateurs K, nous
obtenons des relations-TT universelles satisfaites par des matrices de transfert universelles dans la
sous-algebre commutante de B qu'ils génerent. Ce nouveau cadre proposé est spécialisé & B = A,
I'extension centrale de l'algebre g-Onsager, et H = LUysls, 1'algebre quantique a boucle de sio,
offrant une approche universelle & diverses chaines de spins quantiques ouvertes (spin-j, spin-ji,ja
alternantes, ...) avec conditions aux bords génériques. Les trois problemes suivants sont étudiés et
résolus.

Premieérement, nous introduisons une définition axiomatique d’une matrice K-universelle 8 €
B ® H satisfaisant une équation de réflexion universelle. Elle requiert la donnée d’une paire de
twist composée d'un twist ¢ (un certain automorphisme de H) et d’un twist de Drinfeld. Cette
définition étend les travaux de Balagovi¢-Kolb et Appel-Vlaar. Pour H = LU;sl> et une certaine
paire de twist fixée, nous montrons que ’évaluation de la composante tensorielle H de K & une
représentation d’évaluation formelle (de dimension infinie) de spin-j meéne a des opérateurs K avec
parameétre spectral KU (u).

Deuxiemement, en nous inspirant de ’évaluation d’un des axiomes de la matrice K-universelle,
et en considérant les produits tensoriels des représentations d’évaluation formelle de LU,sly dans
les cas ou apparaissent une sous-représentation de spin-j, nous introduisons un opérateur K de
spin-j fusionné KU) (u) € A, ® End(C¥*1)((u)). Ces derniers sont construits & 1’aide d’opérateurs
d’entrelacs de LUysly. Ils sont une généralisation spin-j de l'opérateur K de spin-1/2 introduit
par Baseilhac et Shigechi en 2009. Nous montrons indépendamment du cadre universel, que toutes
ces opérateurs K fusionnés satisfont les équations de réflexion. Ensuite, nous conjecturons une
relation de proportionnalité entre KU)(u) et Pévaluation de la matrice K-universelle KU (u). Elle
est appuyée en montrant que KU )(u) vérifie un ensemble de relations similaires a I’évaluation des
axiomes de R.

Troisiemement, une fonction génératrice de spin-j (appelée matrice de transfert universelle)
dans la sous-algebre commutante de A, est obtenue grace aux operateurs K fusionnés KO (u) que
nous avons construits. Sous réserve que la conjecture reliant KO (u) et IC(j)(u) soit vraie, nous
prouvons que ces fonction génératrices satisfont des relations-TT universelles qui permettent de
réduire récursivement le probleme spectral de spin-j & celui de spin-1/2. En spécialisant A, a
certaines représentations de N produits tensoriels, nous retrouvons les matrices de transfert de
diverses chaines de spin ainsi que les relations-TT qu’elles satisfont, et aussi des symétries non
triviales pour les hamiltoniens correspondants.

Mots clés: Algebres quantiques affines, algebre g-Onsager, chaines de spins quantiques, équation
de réflexion, opérateurs K, matrices R et K universelles, relations-TT universelles.
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Abstract

The goal of this thesis is to develop a framework for obtaining spin-j K-operators with spectral
parameter and which are solutions to the reflection equation. They belong to B ® End(C%*1)((u)),
where B is a comodule algebra over a Hopf algebra H. From these K-operators, we derive univer-
sal TT-relations satisfied by universal tranfer matrices in the commutative subalgebra of B they
generate. The proposed new framework is specialized to B = Ay, the central extension of the ¢-
Onsager algebra, and H = LU,sl>, the quantum loop algebra of slo, providing a universal approach
to various quantum spin chains (spin-j, alternating spin-ji, j2, etc.) with generic open boundary
conditions. The following three problems are studied and solved.

Firstly, we introduce an axiomatic definition of a universal K-matrix 8 € B ® H satisfying a
universal reflection equation. It requires the data of a pair of twists consisting of a twist ¢ (a certain
automorphism of H) and a Drinfeld twist. This definition extends the work of Balagovi¢-Kolb and
Appel-Vlaar. For H = LU,sly and a certain fixed pair of twists, we show that the evaluation of the
tensor component in H of K at a formal (infinite-dimensional) evaluation representation of spin-j
leads to K-operators with spectral parameters K (u).

Secondly, drawing inspiration from the evaluation of one of the axioms of the universal K-
matrix and considering the tensor products of formal evaluation representations of LUyslo in the
cases where a spin-j sub-representation appears, we introduce fused spin-j K-operators IC(j)(u) €
A, ® End(C%71)((u)). These operators are constructed using LU, sla-intertwining operators. They
are a spin-j generalization of the spin-1/2 K-operator introduced by Baseilhac and Shigechi in 2009.
We also show independently of this universal framework that all of these fused K-operators satisfy
the reflection equations. Then, we conjecture a proportionality relation between IC(j)(u) and the
evaluated universal K-matrix K@) (). This conjecture is supported by showing that K@) (u) satisfies
a set of relations similar to the evaluated axioms of g.

Thirdly, a generating function for spin-j (called universal transfer matrix) in the commutative
subalgebra of A4, is obtained using the fused K-operators K(j)(u) that we constructed. Provided
that the conjecture relating K@) (u) and K@) (u) holds, we prove that these generating functions
satisfy universal-TT relations which allow to reduce recursively the spectral problem of spin-j to
the one for spin-1/2. By specializing A, to certain N-tensor product representations, we recover
the transfer matrices of various spin chains along with the TT-relations they satisfy, and also find
non-trivial symmetries for the corresponding hamiltonians.

Keywords: Quantum affine algebras, g-Onsager algebra, quantum spin-chains, reflection equation,
K-operators, universal R- and K-matrices, universal TT-relations.
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Introduction

The scope of this thesis lies within the research field of quantum integrable systems. This field
has received increasing interest for nearly eighty years in both physics and mathematics. Quantum
integrable systems are a class of models in physics known for their exact solvability, meaning that
one can obtain the relevant physical quantities of the model without approximation. Among these
quantities are, for example, energy levels and system states, correlation functions that indicate
the probability of a system transitioning from one state to another, the S-matrix used to describe
particle scattering processes. These systems are described by a Hamiltonian, which is an operator
acting on a Hilbert space. Obtaining the spectrum and eigenstates of the Hamiltonian is essen-
tial for characterizing the energy states of the physical system. Note that this is achieved using
mathematical tools, some of them will be detailed in this manuscript.

The introduction is organized as follows. Firstly, we present the model of quantum spin chains
considered in this thesis. Secondly, we review some of the mathematical approaches employed in
the context of quantum integrable systems, with a particular emphasis on certain tools that play a
central role in the approach considered here. Finally, we present the results obtained in this thesis.

Spin chains model

Among the integrable models in physics, we will focus on models of quantum spin chains with
arbitrary spin values. The simplest case for spin-1/2 is the XXX model of Heisenberg introduced
in 1928 in [H28]. Spins are quantities that appear in quantum mechanics and possess intrinsic
magnetic moment. They are often represented by magnets that can have different orientations.
For example, an electron has a spin-1/2 that can be directed upwards or downwards. Among the
reference models, one can find, for instance, the chain with periodic boundary conditions, where
at each site, an electron interacts with those situated on its sides. First, these interactions can be
expressed using Pauli matrices:

ot = (? é) , oY = <? _02> , of = <é _01> . (0.0.1)



2 Introduction

The most general chain of N spin-1/2 particles with nearest-neighbor interactions is given by the
XY7Z chain, which is described by the Hamiltonian

N
per g Yy Z Z i — 1
Hyyy = ZJxUkUkH + Jyorop 1+ J0500 4 ol =0N41 s (0.0.2)
k=1

where we use the standard notation

ot=0h®.. 0hLhedrehe...®l, (0.0.3)
N — N —’
k—1 N—k

with Iz being the 2 x 2 identity matrix. In this context, J;, Jy, and J, are scalars referred to as
anisotropy factors. They determine whether a direction in space is preferred during the interaction.
For example, the XXX chain corresponds to the case where J, = J, = J,, while the XXZ chain
has J, = J, # J.. Let us note that long-range interactions, i.e. interactions occurring between a
spin at site k and those at sites k +m with m > 1, are neglected here. Finally, the model (0.0.2) is
subject to periodic boundary conditions, meaning that the spin at site 1 interacts with the one at
site N. This is reflected in the second equality in (0.0.2), and it is referred to as a closed spin chain
because it can be arranged in a circular fashion as follows:

N

Closed spin chain.

The Hamiltonian acts on the Hilbert space H = (C?)®" which is formed as the tensor product
of N spin-1/2 space representations, it is thus a matrix of size (2 x 2IV). It is clear that, due to its
size, obtaining the eigenvalues and eigenvectors becomes increasingly challenging as N increases. In
particular, direct computation becomes infeasible when considering the thermodynamic limit with
N — o0.

In order to solve spin chains, various methods have been developed, such as the Quantum Inverse
Scattering Method (QISM) [STE79]. The latter allows for the establishment of an integrability
criterion. This method relies on a R-matrix that acts on two sites. In the case of the XXZ chain,
it encodes the interactions between the spins. More generally, it is a complex-valued operator in
End(VU1) @ V02)), where VU are the spin spaces. It depends on parameters uy, uy € C*, and is
denoted as Ryy(ug,uy). Finally, the R-matrix satisfies the Yang-Baxter equation [M64, BZ66, Ya67,
Ba72], which belongs to the space End(V U1 @ VU2) @ V(3))

Ryp(u1, u2)Ri3(u1, u3) Roz(u2, u3) = Raz(ug, uz)Riz(u1, u3)Riz(ug, u2) . (0.0.4)

Depending on the considered model, the R-matrices associated with the XYZ, XXZ, XXX spin
chains are expressed in terms of elliptic, trigonometric, and rational functions, respectively.
In the case of closed spin chains, starting from the R-matrix, a transfer matrix is constructed,



which generates a finite set of mutually commuting quantities. Among these, the Hamiltonian is
included, implying that these quantities are conserved. This transfer matrix generates a sufficient
number of conserved quantities, ensuring the integrability of the system. The diagonalization of the
transfer matrix is notably performed by exploiting the underlying algebraic structure. In practice,
this allows for the simultaneous diagonalization of all conserved quantities, not just the Hamiltonian.
Details of this construction will be described later. Furthermore, these quantities are of prime
importance in the formulation of the Generalized Gibbs Ensemble for the study of non-equilibrium
systems [P13]. They are necessary for accurately describing the system at equilibrium after being
perturbed by a ‘quantum quench’ [VR16].

In addition to closed spin chains, open chains are also considered. Instead of periodic boundary
conditions, these open chains have diagonal, upper triangular, lower triangular, generic, and other
types of boundary conditions. These conditions refer to the form of the Pauli matrices acting on
sites 1 and N of the chain. For example, the Hamiltonian of the XYZ spin-1/2 chain with generic
and integrable boundary conditions was derived in [[{94], and it is given by:

N-1
H??;’Z = Z (Jxo-lgso-lf—l-l + JyO'IZO-Z+1 + Jzo'lio'z_H) (005)
k=1
+b.07 + byoy +b_oy +b.ox +brof +booy,

where by, b,, by, b, are scalars in C. For instance, in relation to the various types of boundary
conditions mentioned above, when by = b1 = 0, we have diagonal boundary conditions, and when
b_ =b_ = 0, they are of the upper triangular type. The terms left and right boundaries are often
used to refer to sites 1 and N, respectively. Finally, open spin chains can be represented as follows:

Open spin chain.

In this thesis, we will study the algebraic structures associated with XXZ spin chains of arbitrary
spin j with generic boundary conditions. These are generalizations of the model (0.0.5) for J, =
Jy # J.. Here, the boundary conditions are encoded through the K-matrix introduced by Sklyanin
in [Sk88]. Tt is a complex-valued operator in End(V()). This K-matrix satisfies the reflection
equation, which belongs to the space End(V1) @ V(2))

Rio(uy, ug) Ky (u1)Raoi(ug, —uy ) Ko(ug) = Ko(ug)Ri2(u1, —u2) Ki(uy)Ro1 (—u2, —uy) . (0.0.6)

The QISM mentioned earlier for closed spin chains has been extended to open spin chains in [Sk88].
Here as well, a transfer matrix generates the conserved quantities of the system. However, in this
case, it is constructed using both the R and K-matrices, and the Hamiltonian is also derived. The
specifics of this construction will be described later.

To conclude this section, we recall the physical interpretation of the Yang-Baxter and reflection
equations, given respectively by (0.0.4) and (0.0.6), in the context of particle scattering. Consider



4 Introduction

two particles labeled 1 and 2 that interact with each other. There are two states, referred to as
incoming and outgoing, describing the system before and after the interaction. This interaction is
encoded in a S-matrix, which is viewed as an R-matrix in our case, and thus satisfies the Yang-
Baxter equation. In this context, the parameters u; and us represent the rapidities! of the two
particles. The R-matrix and the Yang-Baxter equation (0.0.4) are depicted graphically:

1 _
Ria(uy,ug) = -
2 =
=012 3 1 23
space
R-matrix representation. Illustration of the Yang-Baxter equation.

The left side of the second equality is interpreted as follows. First, the particle 1 interacts with
the second, then the first particle interacts with the third, and finally, the second particle interacts
with the third. The interpretation of the right side of the equation. Therefore, the Yang-Baxter
equation implies that these two scattering processes are equivalent. According to this interpretation,
an example of a solution to the Yang-Baxter equations was obtained in [ZZ79].

Then, for open spin chains, the K-matrix and the reflection equation (0.0.6) are represented as

K(ul) = — 1
1
=21
e 2 2
space
K-matrix representation. Reflection equation representation.

Consider the left-hand term of the reflection equation above. Two particles interact through an
R-matrix, then the particle labeled as 1 bounces off the wall. It interacts again with the second
particle, and then the second hits the wall and is reflected. Similarly, the right-hand term can
be interpreted physically. Finally, the reflection equation indicates that these two processes are
equivalent. According to this interpretation, an example of a solution to the reflection equation was
obtained in [GZ93].

In the literature, two research directions in quantum integrable systems are commonly considered
and involve the use of

- a representation-dependent approach;

- a universal approach.

The first approach consists in choosing a physically interesting model and using various methods
to solve it. These methods include the algebraic Bethe Ansatz (ABA) or the Separation of Variables

'Bach particle of mass m has a rapidity u that satisfies m ch(u) = po, m sh(u) = p1, where p; are components of
the two-dimensional energy-momentum vector. They satisfy p2 — p? = m?, known as the energy-momentum relation.



(SoV), as described in [B31, Sk88] and [Ba72, Sk92, Sk95, KNMNT16], respectively. Each model is
associated with an R-matrix and a K-matrix, and this approach typically requires solving each case
individually, considering different spin values and boundary conditions.

The second approach aims to establish a more general resolution method that can handle many
spin chains simultaneously, such as XXZ chains with arbitrary spins on each site and various bound-
ary conditions. The unification of these chains is achieved through the use of a non-abelian asso-
ciative algebra of infinite dimension, namely the alternating central extension of the ¢-Onsager
algebra denoted as Ay, as described in [BS09, T21a]. A generating function that we call univer-
sal transfer matriz can be constructed in a commutative subalgebra of A,. By choosing certain
finite-dimensional representations of tensor product type, this generating function specializes to the
transfer matrices of these chains. The idea is to focus on this more fundamental structure to solve
these different systems without the need to treat them one by one. This will be precisely studied
in this thesis.

Representation-dependent approach

Now that we have reviewed what open and closed spin-1/2 chain models are, we can pose two
questions:

(i) How to obtain open or closed spin chains with arbitrary value of spin-j ?
(ii) How to solve these systems ?

To address (i), as for the spin-1/2 case, the basic elements for constructing an arbitrary spin-j chain
are the R and K-matrices as well. As will be explained in Section 1.2, from these matrices, a dressed
K-matrix (also known as a double row monodromy matrix) is defined, which takes the form [Sk&§]

Ra1(u) -+ Ran(u) Ko (u)Ron (u) -+ - Ra1(u) (0.0.7)

where a indicates an auxiliary space used in the construction of the spin chain. The transfer matrix
is constructed by taking the trace over the auxiliary space of the product of (0.0.7) with the dual
K-matrix also acting on the auxiliary space. Recall that the Hamiltonian is extracted from this
transfer matrix. Therefore, it is sufficient to find spin-j solutions to the Yang-Baxter and reflection
equations. To do so, one way is to directly solve these equations, but this is not an easy task.
This way, the spin-1 R and K-matrices for the XXZ chain were obtained in [ZF'80] and [IOZ96],
respectively. However, for higher spins, a direct resolution becomes significantly more challenging
and requires an indirect approach.

Solutions to the Yang-Baxter and reflection equations can be also obtained through a fusion
procedure known since the late 1970s. The spin-j R and K-matrices are constructed from spin-1/2
solutions of these equations. This procedure was developed for the R-matrix in [Ka79, KRS8I,
KR&7], and it was later extended to the K-matrices in [MIN92]. These fused matrices are obtained
recursively by considering tensor products of fundamental representations and then projecting onto
a sub-representation of SU(2) corresponding to a higher spin. For example, the spin-1 XXZ chain
with periodic boundary conditions was constructed in [ZF80] through a fusion procedure, and the
one with generic boundary conditions was obtained in [IOZ96]. It was verified that the solutions
obtained by direct resolution of the Yang-Baxter and reflection equations for spin-1 coincide with
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those obtained through fusion. More recently, compact forms of the spin-j R and K-matrices in
terms of spin-1/2 solutions were proposed in [FNRO7].

To address (ii), we review some methods used in solving spin chains, namely, the Algebraic
Bethe Ansatz (ABA) and the Separation of Variables (SoV) method, as discussed in [B31, Sk&§]
and [Ba72, Sk92, Sk95, KMNT16].

Firstly, the Bethe Ansatz was introduced by Bethe in [B31] to solve the spin-1/2 XXX chain.
Eigenstates are constructed in terms of quasi-particles whose rapidities satisfy the Bethe equations
(highly transcendental equations). The ABA was later developed for closed chains in [STF79] and
open chains in [Sk&88]. This method relies on the existence of a reference state from which all other
eigenstates are built. However, it is worth noting that these methods do not apply to all integrable
models, as we will see below.

The spectrum and eigenvectors of the transfer matrix obtained using the ABA are expressed in
terms of solutions to the Bethe equations. These equations can be solved at the free fermionic point
q = 1 (corresponding to the XX chain), but in general, they are only solved numerically. The SoV
method is also used for spin chains, but its application is not straightforward. The starting point
for the SoV method is to consider a transfer matrix with inhomogeneities. In general, this matrix
does not have an interpretation in terms of a local spin chain. However, its analysis is carried out
using the T-Q equations, whose solution leads to the spectrum and eigenvectors of this transfer
matrix. It is worth noting that, once again, these results are expressed in terms of solutions to the
Bethe equations. Then, by taking the homogeneous limit, i.e. setting the inhomogeneities to the
same value, the transfer matrix with inhomogeneities becomes the usual transfer matrix. Thus, in
this limit, the results obtained apply to spin chains.

However, these methods have limitations, which we briefly outline. The ABA does not work
systematically because its application requires the existence of a reference state (or pseudo-vacuum),
and this state may not exist in the case of open chains. For example, the reference state is unique
and corresponds to the highest weight state for the spin-1/2 XXZ chain with diagonal boundary
conditions, and its resolution was accomplished in [Sk88]. However, for the chain with non-diagonal
boundary conditions, the highest weight state (when all spins are oriented upwards) is no longer
a reference state in the ABA sense. In other words, it is not annihilated by the upper triangular
components of the monodromy matrix.

To circumvent this issue, a gauge transformation is used to construct a new state that satisfies
properties analogous to the reference state with respect to the new elements of the double mono-
dromy matrix [CLSWO02]. For certain constraints on the previously identified boundary conditions
in [N02], the diagonalization procedure of the transfer matrix using the ABA is then very similar
to the case with diagonal boundary conditions. However, for generic boundary conditions, the
ABA diagonalization procedure does not work directly. It requires a modified version of the ABA
(MABA), which was introduced in [BC13, BP14]. It should be noted, though, that the MABA
procedure comes with several challenges. For instance, it requires the introduction of so-called ‘in-
homogeneous’ Bethe equations, which are still not fully understood, and their thermodynamic limit
remains an open problem [BC13, BP14].

Furthermore, the fusion procedure mentioned in (i) has enabled the construction of the spin-
j transfer matrix, forming a hierarchy of mutually commuting generating functions. It satisfies
a recurrence relation between the transfer matrices of lower-spin chains, known as TT-relations,



which have been conjectured but verified only for a few spin-j values [MIN92, Zh95, FNRO7]. These
relations are different for each spin chain (due to different boundary conditions and spin values)
because each model is associated with R and K-matrices from which the transfer matrices are
constructed. This motivates the study of a universal approach aiming to obtain an algebraic version
of the TT-relations, which, after specialization to certain finite-dimensional representations, would
reduce to the TT-relations of various spin chains.

Universal approach

Now, let us turn our attention to the second research direction, which involves the study of the
underlying algebraic structures of quantum integrable systems. We start by recalling some import-
ant mathematical contributions that have applications in these systems, starting with the concept
of quantum groups that emerged in the 1980s. Then, the universal R-matrix associated with a
quantum group is also reviewed. Just as universal R-matrices are associated with quantum groups,
it is expected that universal K-matrices are also associated with certain comodule algebras over
quantum groups. Some recent advancements in universal K-matrices are also discussed.

Universal R-matrix

The characteristic feature of a quantum group is that it is a deformation of a classical object (a Lie
algebra or an algebra of functions on a Lie group) with a certain parameter ¢, and its specialization
to g = 1 leads to the same classical object. The first example that appeared in the literature is the
algebra Uysla, which is a deformation of the universal enveloping algebra of sly. It was obtained by
Kulish and Reshetikhin in [KR83] by studying the quantum inverse scattering method. The algebra
Uysly appears, for example, as a hidden symmetry of the Hamiltonian of the spin-1/2 XXZ chain
with specific boundary conditions [PS90]. Jimbo and Drinfeld independently formalized the concept
of quantum groups [J85, Dr86]. More generally, from Lie algebras g and their affine extensions g,
quantum groups are constructed, namely U,(g) and U,(g), which correspond to deformations of
the enveloping algebra associated with g and g. Specifically, a quantum group is a Hopf algebra (a
bialgebra with an antipode) that is neither commutative nor co-commutative. It is associated with
a coproduct A: H — H ® H, from which an opposite coproduct A°? = p o A is defined, where p is
the permutation operator satisfying p(a ® b) = b ® a, for all a, b € H. The non co-commutativity
of H is reflected in the fact that A is not symmetric, i.e. A # AP,

Historically, the Yang-Baxter equation with a spectral parameter (0.0.4) was introduced in [M64,
BZ66, Ya67, Ba72]. In the absence of a spectral parameter in the Yang-Baxter equation, a present-
ation of H = U,(g) was studied in [FRT&7]. The corresponding R-matrices are derived from more
general objects that we now recall. A particular case of a Hopf algebra, known as a quasi-triangular
Hopf algebra, involves a universal R-matrix denoted as R, which is an element in (the completion
of) H ® H satisfying certain axioms [Dr86]:

RA(z) = A%P(x)R forallz € H ,
(A ®id)(R) = RizNRos ,
(id X A)(ZR) = NRi13NR12 .

The universal R-matrix satisfies an algebraic (non-matrix) version of the Yang-Baxter equation,
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which belongs to H ® H ® H:
R12R13R23 = RazR13R12 .

Since then, explicit examples of universal R-matrices have been found. In [Dr86] there was intro-
duced a procedure allowing to construct a quasi-triangular Hopf algebra out of any Hopf algebra,
which is now known as the quantum double construction. In particular, an expression for the uni-
versal R-matrix associated with H = U,(g) has been given using this construction, see e.g. [CP94,
Sec.8.3]. For the quantum affine algebra H = U,(g), a factorized expression of the universal R-
matrix has been found in [[KXT92a, Da98]. It is expressed as an infinite product of g-exponentials
involving the root vectors of H = U,(g). In this case, i is an element belonging to the completion
of the tensor product of two copies of quAlg.

For H = U,(g), evaluating the second component of R to a finite-dimensional representation
leads to a L-operator without a spectral parameter, denoted as £ € H ®End(V(j )). This L-operator
satisfies an RLL equation belonging to H ® End(V")) @ End(V2)) [FRTS7]:

RLiLy = LoLyR . (0.0.8)

Evaluating these L-operators lead to R-matrices whose entries are scalars. For example, the eval-
uation of R for H = Uysly is carried out in [CP95, Sec.6.4]. Furthermore, the evaluation of the
second axiom of 9 gives the action of the coproduct on this operator, which has the form?

(A@id)(L) = (L) (£)y - (0.0.9)

that belongs to H ® H @ End(V ().

In this thesis, we consider two types of representations for H = quAlg with zero central charge®.
The first is a finite-dimensional evaluation representation indexed by a nonzero complex number
called the evaluation parameter, see Section 3.2.1. The second is an analogous version, but of
infinite dimension, and in this case, u is a formal parameter. In the literature, this representation
is known as quantum loop modules [CGO3], see Section 3.2.2. In the following, we use this latter
representation, which we call the formal evaluation representation. It should be noted that the
operators we evaluate through this representation will either be Laurent polynomials or power
series in u with coefficients belonging to B or H. For simplicity, in the introduction we omit the
notation H((u)) and write just H instead, etc.

For H = Uq;\lg, the specialization of the second tensor component of the universal R-matrix on
the formal evaluation representations leads to a L-operator with a spectral parameter that satisfies
the following equation [RS90, FR92]:

ng(ul, ’LLQ),Cl(ul)[:Q(UQ) = EQ(UQ)El(ul)ng(ul, UQ) N (0.0.lO)
and the action of the coproduct of H on the L-operator is given by
(A ®id)(L(u)) = ([,(u))m (E(u))m : (0.0.11)

The evaluation of R requires to treat u as a formal parameter to avoid convergence problems. This

2Here, the indices [1] and [2] are associated with the first and second tensor components, respectively.
3The central charge c is defined by KoK = ¢°, where we set ¢ = 0.



was suggested in [Dr86, Sec. 13] and later studied for H = Uy(g) in [F'R92, Sec. 4], see [Hel7, Sec. 1]
for a review. The specialization of the remaining first tensor component of L£(u) directly leads to
R-matrix solutions of the Yang-Baxter equation (0.0.4). Thus, we have

L-operators rep. of H R-matrices
€ H ®End(V1) € End(VUY) @ End(V 1))

Furthermore, the coproduct provides the action of H on the tensor product of its representations,
and subsequently on the spin chain by applying the coproduct successively. If we specialize the copies
of H in (0.0.11) to the evaluation representations, we obtain a product of R-matrices from which
the transfer matrix is constructed. For H = LUjsly, using the factorized form of [IK'T92a], a detailed
evaluation of R for spin-1/2 is provided in [BGKNRI12]. In this case, the simplest specialization,
i.e. taking a two-dimensional representation for each component of the tensor product, leads to the
R-matrix associated with the spin-1/2 XXZ chain (up to a scalar function that is meromorphic in
the spectral parameter).

Universal K-matrix

In the following, we will need an algebraic structure associated with the Hopf algebras H, called a
comodule algebra B. It is equipped with a coassociative coaction, which is an algebra homomorph-
ism §: B — B® H and is compatible with H in the sense that it satisfies certain relations involving
0 as well as the coproduct and counit. If in addition B is a subalgebra of H, and § agrees with the
restriction to B of the coproduct of H denoted Ap, then it is referred to as a coideal subalgebra.
Special cases, known as quantum symmetric pairs (H, B), were introduced in [Le99, Kol2]. For
example, there exists an injective algebra homomorphism from the ¢g-Onsager algebra O, to Uq;lz,
allowing us to treat O, as a coideal subalgebra of H = Uq.;lg [BB09, BB12]. This coideal is gener-
ated by Wy and W that satisfy the g-Dolan/Grady relations [T99. B04]. In this thesis, a central
example of a comodule algebra over H = quAlg is the alternating central extension of the g-Onsager
algebra denoted by A, [BS09, T21a]. Actually A, is the central extension of O, with an infinite
number of algebraically independent central elements. To the best of our knowledge, the algebra
Ay cannot be realized as a coideal subalgebra of H = quAlg.

Historically, the reflection equation with a spectral parameter (0.0.6) was first introduced in [Sk88],
and the version without a spectral parameter has been studied, for example, in [[XS592]. Analog-
ously to the universal R-matrix leading to the L-operators and R-matrices, one may wonder if
there exists a universal K-matrix associated with H-comodule algebras, in particular with coideal
subalgebras in H, which would lead to K-operators and K-matrices. K-operators are analogues of
L-operators, and we will explain below what they are precisely and why they are of interest.

The concept of a universal K-matrix is not new; it has been studied in [CG92, KS592, tDHO9S,
DEKNMO02]. More recently, significant progress has been made in the works of [BW13, BKol5, Kol7,
AV20]. Each of the definitions of universal K-matrices introduced in these recent references has
different axioms that were chosen to serve different purposes. We can highlight three directions
corresponding to where a universal K-matrix belongs to:

(i) H =U,4(g), in [BKo15];
(ii) B® H, where B is a coideal subalgebra of H = U,(g), in [Ko17];
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(iii) H = Uy(g), with the data of a certain automorphism of H, called ‘twist’, in [AV20].

Let us clarify that (i) and (iii) imply a choice of B as a coideal subalgebra over H to form a
quantum symmetric pair (H, B), and the universal K-matrix satisfies intertwining relations (twisted
in (iii)) with respect to B (and not H as the R-matrix).

Let us start with direction (ii). Kolb introduced a universal K-matrix .#° € B® H that satisfies
certain axioms [Ko17, Def. 2.7]:

H Ap(b) = Ap(b)# ,  forallbe B,
(Ap ®id)(H) = R3aA13R03 (0.0.12)
(id ® A)(H) = Rao H13R03 K12 -

It satisfies an algebraic (non-matrix) version of the reflection equation that belongs to B® H @ H
R32.#13R23 412 = H12R32.#13R03 -

The specialization of its second tensor component in H, to a finite-dimensional representation leads
to K-operators that do not depend on a spectral parameter, denoted as K € B ®End(V(j )), satisfying
a reflection equation of the form

R12K1R21’C2 = K2R12K1R21 s (0.0.13)

which belongs to B ® End(VU1) @ End(V72)). Moreover, the evaluation of the second relation in
eq. (0.0.12) takes the form
(Ap @id)(K) = (£) 5 (K) (L) 5 - (0.0.14)

Next, let us clarify that direction (i) is a special case of (ii). Indeed, applying the counit to the first
component of .#, we obtain an object k € H that was introduced by Balagovi¢ and Kolb in [BKo15].
Its specialization to a finite-dimensional representation leads to K-matrices (with scalar entries).

However, axiomatics of directions (i) and (ii) is not suitable for the reflection equation with
spectral parameter (0.0.6). To change this, Appel and Vlaar proposed in [AV20] a twisted version
of the approach (i) in [BKol5], this is direction (iii). Their definition of universal K-matrix is
associated with a coideal subalgebra of H = U,(g) and includes a pair of consistent twists. It
was shown in [AV20] that such a universal K-matrix exists for a large class of coideals known as
quantum symmetric pairs. However, no explicit expression of this universal K-matrix is known
and the existence result requires a specific form of twists. Furthermore, it was shown in [AV22]
that these universal K-matrices are well-defined on finite-dimensional evaluation representations of
H = Uy(g) and provide K-matrix solutions of (0.0.6).

Note that both works of [BKol5, AV20] are significantly inspired by quasi K-matrix construc-
tion [BW13] for certain examples of quantum symmetric pairs. Moreover, the axiomatics of [BIKo15]
was also inspired by [tDHO98]. Besides, universal automorphisms have been constructed in [[X'Y 19]
that allow to construct universal solutions of generalized reflection equations as defined by [C92].

In this thesis, the algebra of primary interest for us is B = Ay, the alternating central extension
of the ¢-Onsager algebra, because of its applications to open spin-chains through K-operators with
spectral parameters as it will be discussed below. It is important to note that we do not have any
explicit form of a K-operator for Oy, while it is known for the comodule algebra B = A, [BS09]. To



11

the best of our knowledge, A, is not a coideal subalgebra of H = quAlz or any other quasi-triangular
Hopf algebra, and so we cannot use axiomatics and results of [AV20]. These axiomatics need slight
adjustment in order to treat comodule algebras and they will be given in the present text.

K-operators with spectral parameter

Now, let us get back to our initial goal of unifying various spin chains through a universal approach.
The key objects to achieve this are the K-operators with spectral parameter. They belong to
B ® End(V), where B is an algebra, and they satisfy a reflection equation in B ® End(VU1)) @
End(V 02))

ng(ul, UQ),Cl(Ul)RQl('LLQ, —ul)/CQ(UQ) = ICQ(UQ)RlQ(Ul, —UQ)ICl (Ul)RQl(—UQ, —ul) s (0015)

where R(ui,u2) is a solution of the Yang-Baxter equation (0.0.4). In this case, we call K(u) a
K-operator of spin-j. In other words, unlike K-matrices, which have scalar entries, K-operators
are matrices with entries belonging to B. In the following, B will be typically a comodule algebra
such as the alternating central extension of the g-Onsager algebra .4,. These K-operators are
generalizations of K-matrices because, when taking one-dimensional representations of B, they lead
to K-matrices. Indeed, we classified all one-dimensional representations of A, in Section 3.5.3, and
found that the image of the spin-1/2 K-operator is proportional to the most general K-matrix of the
open XXZ spin-1/2 chain [dVR94, GZ93]. Let us now explain why these K-operators are important
for the universal approach.

Recall that the Hamiltonian of a quantum spin-chain is obtained through a transfer matrix
constructed using the dressed K-matrices of the form (0.0.7). As we now recall, these dressed
K-matrices can be obtained by applying the coaction to the entries of the K-operator and taking
certain representations of B and H. We first request that the coaction of B satisfies®

(0 ®id)(K(u)) = (E(u))m (IC(u))m (L'(u))p] . (0.0.16)

Due to its relation with open spin-chains and because we are mostly interested in such physical mod-
els, we call the above coaction the physical coaction. Then, by successively iterating § on (0.0.16),
we find that the resulting matrix belongs to

B®H®...®» H®End(C¥'!) .

To show the relation between K-operators and dressed K-matrices, we take a one-dimensional
representation of B (corresponding to the boundary conditions at one end of the spin-chain) and
a spin-ji representation for each copy of H (corresponding to the bulk interaction in the spin-
chain). The resulting image is indeed (0.0.7), as it will be shown in Section 4.4.1. In other words,
the coaction (0.0.16) allows to define an action of B on the spin chain in such a way that it is
also compatible with the form of dressed K-matrices and therefore with the structure of transfer
matrices. The K-operators can thus be seen as a generalization of the dressed K-matrices given
by (0.0.7). This was observed in [BK05a, BK05b], while studying the XXZ spin-1/2 chain with
generic boundary conditions, that the dressed K-matrix is expressed as a spin-1/2 K-operator with

“Here, the indices [1] and [2] are respectively associated with the space of B and H.
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its entries specialized to spin-chains representations. In summary, the K-operators specialize as
follows:

K-matrices

§ B
ig) vep- j
K-operators M € End(VY))
&)
€ B® End(VW) m} Dressed K-matrices
" Prodyey

N
ep. of p € Q) End(VU") @ End(VY))
n=1

It is also worth mentioning that a presentation of H = U,(g) and H = Ugy(g) has been proposed
in [FRT87, RS90] through the L-operators satisfying (0.0.8) and (0.0.10). Similarly, K-operators
associated with a comodule algebra B and satisfying a spectral parameter version of (0.0.13) also
provide an FRT type presentation of B. For instance, a spin-1/2 K-operator associated with A,
has been introduced in [BS09] and gives its FRT type presentation.

We now give some examples of applications of these K-operators.

First of all, K-operators play a central role in the g-Onsager approach used to study quantum
spin chains. This approach draws inspiration from the method used by Onsager in [O44] (and
later by Davies in [D90]) to solve the two-dimensional Ising model with zero magnetic field and
periodic boundary conditions. This is a classical statistical mechanics model that corresponds to
the one-dimensional quantum Ising spin chain. In brief, the ¢-Onsager approach relies on the use of
a transfer matrix constructed from the K-operator of 4,, combined with the representation theory
of A,. The algebraic structure of the transfer matrix for spin-1/2 was studied in [BK07], and it was
expressed in terms of the commutative subalgebra of A,. This highlights the commutative property
of the transfer matrix. It should be noted that the specialization to tensor product representations of
the generating function of this commutative subalgebra in 4, is proportional to the transfer matrix
of the XXZ spin-1/2 chain with generic boundary conditions [BIK07]. This has been particularly
useful for studying the spectral problem of this spin chain within the framework of ¢-Onsager
representation theory.

Furthermore, A, is strongly connected to its degenerate versions such as the augmented g-
Onsager algebra [IT09, BB12], triangular ¢-Onsager and Uysls-invariant g-Onsager algebras [BB16,
Ts19], corresponding to different limits of boundary conditions (diagonal, triangular, etc.). Moreover,
A, encompasses a broad class of integrable models through various quotients. In fact, all known
examples of open XXZ spin chains of size N with integrable boundary conditions (special, diagonal,
triangular, general) are associated with A, or its degenerate versions.

Finally, it is worth noting that in the thermodynamic limit, the corresponding image of A, (or
its degenerate versions) becomes a non-abelian symmetry of the spin chain.

In this thesis, our goal is to generalize the results discussed above, namely: the study of spin
chains with arbitrary spin-j (not just spin-1/2), using an algebraic framework based on A, and its
various quotients, as well as the representation theory of Uq;\lg. The key objects to achieve this are
the spin-j K-operators associated with Ay. We aim to construct them and provide an interpretation
i terms of a universal K-matrixz. Indeed, we expect to define a universal K-matriz using axioms
i such a way that its specialization yields K-operators, and that the specialization of one of its
azioms provides an appropriate form for the coaction as in (0.0.16).  The goal is to construct a
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general framework that allows the development of universal TT-relations belonging to A,, which
would then specialize to the conjectured TT-relations for transfer matrices in the literature such
as [FNRO7, CYSW14].
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Introduction

The figure below schematically presents the different approaches and associated tools that have
been discussed in the introduction.
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Figure 3: Schematic view of the two different approaches to study quantum spin-chains.
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The following three problems are studied and solved in this thesis:

e Problem 1:

The different universal K-matrices, as defined in [BKol5, Kol7, AV20, AV22], do not allow
for the treatment of K-operators that are solutions of the reflection equation with a spectral
parameter (0.0.15) and with a ‘physical’ coaction, that is of the form (0.0.16).

e Problem 2:

The spin-1/2 K-operator for A, was introduced in [BS09], but its spin-j version has never
been constructed.

e Problem 3:

One can construct a generating function for spin-1/2 in the commutative subalgebra of A,
from its spin-1/2 K-operator (2.1.5). This object has indeed been studied for the spin-1/2
XXZ chain in [BK05a, BK05b], but for a quotient of A,. Moreover, a generating function for
spin-j in a commutative subalgebra of .4, has never been constructed, and its connection to
spin chains remains to be investigated. And finally, a universal version of TT-relations was
never studied.

Results

The following points summarize the main results of this thesis and address the three problems stated
above.

e Result 1:

In Definition 3.1.7, we introduce an axiomatic definition of a universal K-matrix R € B® H
where B is a comodule algebra over a Hopf algebra H, and we demonstrate that it satisfies a
universal reflection equation belonging to B® H @ H

R12(RY)32813M03 = mgpﬁmm%ﬁm .

This universal K-matrix also requires the specification of a pair of twists composed of a twist
¥ (a certain automorphism of H) and a Drinfeld twist J € H ® H. Furthermore, these axioms
correspond to a twisted version of (0.0.12), and we recover as special cases those given in
directions (i), (ii), and (iii), see Section 3.1.3. For example, when we impose that B is a
coideal subalgebra of H and apply the counit to the first tensor component of K, our axioms
correspond to those of direction (iii) from [AV20]. This new definition of a universal K-matrix
addresses Problem 1 for the following reasons.

First, we consider H = LUysly, a pair of twists (¢,J) = (1,1 ® 1), where 7 is defined in
(3.1.12), and an arbitrary comodule algebra B, assuming that K exists for this pair of twists.
Then, in Section 3.2.5, we define a spin-j K-operator belonging to B((u~')) ® End(V¥)).

KW (u) = (ido_,)(8),
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Here, m),: H — End(V(")) is the formal evaluation representation of H. It is an analogue
of the finite-dimensional evaluation representation of H, but it is not of highest weight type
and has infinite dimension. These representations of quantum affine algebras are known as
‘quantum loop modules’ [CGO03]. It is important that the twist satisfies a certain relation
with the evaluation representation of H (which is the case for n), namely, the action of the
twist has the effect of inverting the spectral parameter. In this case, KU)(u) satisfies the
spectral parameter reflection equation (0.0.15). Moreover, evaluating one of our axioms gives
the coaction of the K-operator, and it takes the desired form (0.0.16). Later, we will focus on
the case of B = A,.

e Result 2:

Drawing inspiration from the evaluation of one of the axioms of the universal K-matrix, we
define a spin-j K-operator denoted as K (u) € A, ® End(C¥*!) through a fusion proced-
ure without making any assumptions about the existence of K. The latter is constructed
recursively based on the spin-1/2 K-operator discussed earlier.

KO (w) = FE) K g+ RED (w2 (ugh) )

and we show in Theorem 3.5.2 that it satisfies (0.0.15). This addresses Problem 2. More
precisely, the formula above notably involves

gL, ¢¥+ —C, ®C, w=ug’"2, uy=uq?,

that intertwines the action of LU,sly on the evaluation representations and its pseudo-inverse.
). 2 2] 2j+1
FO. 2 @C¥ - ¢t

The conditions imposed on u1 and ug ensure that the tensor product of the evaluation repres-
entations of LU,sly admits a spin-j sub-representation. This reducibility condition is expressed
in terms of the ratio of the evaluation parameters of these tensor products [CP91, Sect.4.9].
Using this criterion, we explicitly construct £U) and FU) by determining their matrix expres-
sions, as described in Appendix C.1. In Section 3.3.2, we analyze the tensor products of the
formal evaluation representations of infinite dimension and obtain the intertwining operator
£U) and FU) in this formal framework with the parameter u being a formal variable. As an
example, we compute (V) (u) and verify that it satisfies the reflection equation (0.0.15) using
a Poincaré-Birkhoff-Witt (PBW) basis, as discussed in Section 2.1.2.

Additionally, we have proposed a relation (under the form of a conjecture) that links the
K-operators obtained through evaluation and the spin-j K-operator associated with A, con-
structed through the fusion procedure outlined above, as stated in Conjecture 1. This conjec-
ture suggests that these two operators are proportional to a central and invertible element in
A,((u™1)), which satisfies a functional relation and has a specific coaction. In particular, this
conjecture is supported by showing independently that the fused K-operator satisfies a set of
relations arising from the evaluation of the axioms of the universal K-matrix.

Finally, we studied images of the fused K-operators KU )(u) under finite-dimensional repres-
entations of B = A,. For a one-dimensional representation of A,, the corresponding images
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become fused K-matrices, see Definition 3.5.5. In particular, it reproduces known K-matrices
such as the one from [dVR94, GZ93]. Furthermore, using spin-chain representations of Ay,
we also obtain dressed K-matrices of the form (0.0.7) out of X)(u) for any value of spins, see
Lemma 4.4.2.

e Result 3:

To address Problem 3, we introduce a spin-j universal transfer matrix denoted as T4 (u) € Ayg,
which is constructed using the spin-j K-operator LU (u). Assuming that the conjecture linking
K (u) and KU (u) is true, we show that T (u) satisfies

1

T (u) = TU=2) (ug™2) T (ug’2) + £ () TV D (ug™) | (00.17)

where féj )(u) is a central element in A, that is explicitly calculated, as detailed in The-
orem 4.2.5. We call them universal TT-relations. Independently of the universal K-matrix
framework, we prove that (0.0.17) holds for j = 1,3/2, using a PBW basis of A,.

Moreover, these universal TT-relations can be applied to numerous spin chain models. As pre-
viously mentioned, the algebra A, unifies many models through its various quotients [BB12,
BB16]. We show in Proposition 4.4.4 that, by choosing a representation of Ay, TO) () re-
duces to a standard transfer matrix that can have an arbitrary value of spin at each site. For
instance, we recover the spin-1 Hamiltonian of the XXZ spin chain with generic boundary con-
ditions [[OZ96], the conjectured TT-relations of the spin-j XXZ chain with generic boundary
conditions [FINRO7], or the alternating spin chain [CYSW14].

Finally, based on this universal approach, we investigate the hidden symmetries of the XXZ
spin chain with arbitrary spin-j for various boundary conditions. Typically, in the representation-
dependent approach, the symmetries of the Hamiltonians are obtained on a case-by-case basis,
as seen for the XXZ spin chain with special boundary conditions (such as Ujslp-invariant)
in [PS90]. However, with the universal approach, we use the underlying structure of T)(u)
and the universal TT-relations (0.0.17) to determine hidden symmetries for many spin chains
simultaneously. Specifically, we consider operators belonging to A, that commute with TO) (u)
(or more simply with T(%)(u) thanks to (0.0.17)). By construction, their representations com-
mute with the corresponding Hamiltonian derived from the image of T (u). This is studied
in Section 4.5.

The last chapter is dedicated to the perspectives. First, we discuss similar results for the
alternating central extension of the positive part of quAlg [T19, B20]. We then address several
questions that are analogous to the above problems discussed for A,, and give elements of response.
Secondly, we gave an axiomatic definition of a universal K-matrix 8 € B ® H, but we do not
have any explicit expressions. Thus, we give some perspectives to construct such K for a comodule
algebra B = A, and B = O, over H = LU,sl».
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Notations.

qulg
Ugsla
LUyslo

quantum enveloping algebra for slo,
quantum affine algebra for slo,
quantum loop algebra for sls.

Comodule algebra B

o)

g-Onsager algebra,
alternating central extension of the ¢-Onsager algebra,

quotient algebra of A, ,
algebra map from A, to A((IN).

Fusion/reduction procedure

(formal) evaluation map from LU;sly to Uysla,

(formal) evaluation representations from LU,sly to End(C* 1),
LUysla-intertwiner for fusion (j +1/2) — (1/2, ),
LUyslo-intertwiner for reduction (j —1/2) — (1/2,7),
pseudo-inverse of € G +%),

pseudo-inverse of £ G-3),

Spin-j solutions of YB and RE

L9 (u) fused L-operator in Uysla[u, u™!] @ End(C%*1),
RU1:72) (y fused R-matrix in End(C%'*!) @ End(C%2+1),
KO (w) fused K-operator for Ay,

KN )(u) fused K-operator for .A,(IN),

KU (u) fused K-matrix,

K+0)(u) fused dual K-matrix.

Universal R- and K-matrices

R

L*(u)
L(j)(u)
’R(J'hjé)(u)
R

(¢, J)
KO (u)

universal R-matrix in H ® H,

affine L-operators in LU,sla((u™!)) ® End(C?),

spin-j L-operator in Uysla((u™1)) ® End(C# 1),

spin-j R-matrix in End(C%1"1) @ End(C%2+1),

universal K-matrix in B ® H,

twist pair: a Hopf algebra automorphism ), and a Drinfeld twist J,
spin-j K-operator for A,.

Transfer matrices

TO) (u) spin-j generating function in the commutative subalgebra of Ay,
TUN) (u) spin-j generating function in the commutative subalgebra of AéN),
t0Ain}) (1) spin-j transfer matrix in @’_, End(C¥n 1),
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Conventions.

We denote the set of natural numbers by N = {0, 1, 2, ...} and the positive integers by Ny = {1,

2, ...}
All algebras are considered over the field of complex numbers C, if not stated otherwise. Let
q € C*, and we assume that ¢ is not a root of unity. The g-commutator is

X, Y]q =¢XY —¢ 'YX

and [X,Y] = [X,Y], = XY — Y X. We denote the g-numbers by [n], = (¢" —¢")/(¢g—q~'). We
also denote by Io; the 2j x 25 identity matrix.

All generating functions considered in this thesis like TU)(u) or I'(u) are formal Laurent series
in u~! with coefficients in the corresponding algebra like Ag. In other words, they are of the form

D> fau

nel

where f, € A, and all but finitely many f,, for n < 0 vanish. In this case, we use the notation

A, ((u™h)), and the convention that every rational function of the form 1/p(u), where p(u) is a

Laurent polynomial, is expanded in u~".
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Chapter 1

Construction of quantum integrable spin-chains

In this chapter, the basic material to construct and study integrable closed and open spin-chains is
reviewed. As recalled in the introduction, the closed spin-chains are associated with the Yang-Baxter
algebra [M64, BZ66, Ya67, Ba72]. For the open spin-chains, the associated algebra is the (dual)
reflection algebra [Sk88]. Then, the Hamiltonian of the integrable closed spin-chains is derived from
a transfer matrix whose building blocks are the R- and K-matrices. As an example, the Hamiltonian
of the XXZ spin—% chain with generic boundary conditions is constructed. Setting the boundary
parameters to certain values, one obtains the special (Uyslp-invariant), diagonal, upper or lower
triangular boundary conditions.

This formalism extends to higher spin-j for the construction of quantum integrable spin-j chains.
We thus review a fusion procedure that allows to consider spin-j chains. This method aims to obtain
higher spin R- and K-matrices that satisfy a fused Yang-Baxter equation and a fused reflection
equation. These fused matrices are defined recursively and their building blocks are the spin—%
R~ and K-matrices. The procedure relies on the assumption that the specialization of the R-
matrix at some special point degenerates into a projector. For the fused R-matrix, this method
originates from [[KRS81]. A few years after the introduction of the reflection algebra, the fusion
procedure of the R-matrices has been extended to the case of K-matrices in [MN92] using the
same projectors. This allows to define a fused transfer matrix from which the Hamiltonian is
derived. According to the algebra considered, these fused transfer matrices of spin-j satisfy a
recurrence relations known under the name of the TT-relations. For the Yang-Baxter algebra, it
was conjecture in [[XS82]. For the reflection equation algebra, it was conjectured in [MN92, Zh95].
In this chapter, we review the representation-dependent approach for the construction of quantum
integrable systems, as illustrated in the left part of Fig. 3.

This chapter is organized as follows.
In Section 1.1, the basic material to describe closed spin-chains is recalled, namely: the Yang-
Baxter algebra whose defining relation is the Yang-Baxter equation, the monodromy matrix as well

as the transfer matrix, see Definitions 1.1.1, 1.1.5, 1.1.6. Then, we consider the R-matrix associated
to the XXZ spin—% with periodic boundary conditions and recall the derivation of the Hamiltonian

21
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from the transfer matrix.

In Section 1.2, the latter formalism is extended to describe closed spin-chains. This requires the
introduction of a K-matrix (and its dual). In particular, we recall the reflection algebra and its dual
algebra, whose defining relations are respectively the reflection equation and the dual reflection
equation, see Definitions 1.2.1, 1.2.3. Such systems are described with the help of a double-row
monodromy matrix and a transfer matrix. As an application, the XXZ spin—% Hamiltonian with
generic boundary conditions is derived from the latter transfer matrix.

In Section 1.3, we review the construction of the fused R- and K-matrices introduced in [KRS81]
and in [MN92], respectively. The spin-j fused R~ and K-matrices are then written in compact form
and solely in terms of the fundamental R- and K-matrices. Consequently, the Spin—% transfer
matrix associated to open spin-chains, given in Definition 1.2.7, is generalized to a spin-j auxiliary
space using the latter fused matrices, see Definition 1.3.4. Then, we recall the fusion hierarchy of
the transfer matrices, the so-called TT-relations, for the case of the XXZ spin-j chains with generic
boundary conditions [YNZ05, FNRO7]. Finally, in order to illustrate this procedure, we consider the
fusion of the six-vertex R-matrix and the Ghoshal-Zamolodchikov scalar K-matrix given in (1.1.5)
and (1.2.3), respectively. The resulting fused matrices are compared with the spin-1 solutions of the
Yang-Baxter equation and the reflection equation obtained in the literature. Then, the Hamiltonian
of the XXZ spin-1 chain with generic boundary conditions is derived from the spin-1 transfer matrix.

1.1 Closed spin-chains

Consider a spin-chain of size N whose spin interaction is between nearest neighbors. Here, we study
systems with periodic boundary conditions, which means that the particle at site N interacts with

. N+l — 1 ; _
the first one, i.e. o; =0;,1=12,Y, 2.

In this section, we recall the algebraic elements that allow us to describe systems with periodic
boundary conditions. More precisely, we recall the definitions of the Yang-Baxter algebra, the
monodromy matrix and the transfer matrix. Then, we recall how the Hamiltonian is derived from
the transfer matrix.

1.1.1 Yang-Baxter algebra

We first recall the definition of the R-matrix which originates from the independent work of C.N.
Yang [Ya67] and R.J. Baxter [Ba72].

Definition 1.1.1. The operator-valued function R: C ® C — End(V; ® Va) satisfies the so-called
Yang-Bazxter equation

Riz(u1, ug) Ri3(u1, uz) Ros(ug, us) = Ras(ug, uz) Ris(u1, us) Ria(uy, uz) (1.1.1)
where uy, us, ug € C*. A solution of this equation is called an R-matrix.
Example 1.1.2. Set Vi = Vo = V3 = C? in (1.1.1).

(i) An R-matrix satisfying the property R(ui,uz) = R(u; — ug) is called a difference form R-
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matrix. In this case, the equation (1.1.1) reads®
Ria(AM — A2)Ri3(A1 — A3)Rag(A2 — A3) = Raz(A2 — A3)Riz(A1 — A3)Ri2(A1 — A2) ,  (1.1.2)
where \; € C. For instance, for A and n € C,

sinh(A+mn) 0 0 0
0 sinh(\) sinh(n) 0
0 sinh(n) sinh(\) 0 ’
0 0 0  sinh(A+n)

RY(\) = (1.1.3)

is a solution of the Yang-Baxter equation.

(ii) An R-matrix satisfying the property R(ui,u2) = R(ui/us) is called a rational form R-matrix.
In this case, the equation (1.1.1) becomes

Rio(u1/uz)Ris(u1/ug)Raz(ua/u3) = Ras(ua/ug)Riz(u1/uz)Ria(ui/ug) , (1.1.4)

where u; € C*. For instance,

ug—u gt 0 0 0
0 u—ut g—qt 0
= 1.1.
R(’LL) 0 q-— q,1 u— Uil 0 ) ( 5)
0 0 0 ug—utg !

is a solution of the Yang-Baxter equation.
Note that R¥ (u) and R(u) are related by the parametrization ¢ = exp(n) and u = exp(\).
In this thesis, we mainly use rational form R-matrices.
Definition 1.1.3. Let R(u) € End(V ® V') be a solution of the Yang-Baxter equation (1.1.1). The

Yang-Baxter algebra is generated by T Z(;Z) forn € Z and 1 <i,7 < dim(V). The defining relation
is the so-called RTT relation

Rio(u/v)T1(u)T2(v) = To(v)T1(u)Ri2(u/v) , (1.1.6)
where dim(V) o
Tw= Y S wrller;, (1.1.7)

and E;; denotes the square matrix of size (dim(V)? x dim(V)?) with 1 in the entry (4,5) and 0
everywhere else.

Example 1.1.4. Set V = C? in (1.1.6). Then, a solution of the RTT relation with R(u) in (1.1.5)

®In the following, we use the parameters A or A; for the difference form R-matrices.
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and with the substitution 7 (u) — L£(u) is given by

DS SRS [ S o —1
Llu) = PR v K e q_zF_ | € Ugslofu,u™] @ End(C?),  (1.1.8)
(¢—q¢)E ugz K2 —u q 2K?

=

where F, F' and K +3 are the generators of the quantum algebra Ug,sla, see Appendix 3.3 for its
definition. It satisfies the so-called RLL equation

Ria(u/v)La(u)Lo(v) = La(v)La(u)Riz(u/v) . (1.1.9)
A solution of this equation is called an L-operator.
Let 7% be the spin—% representation map of Uysla
72 : Uysly — End(C?)

defined by ) X ) ) L
w2 (E)=0", w(F)=0", 7wi(K'Z)=¢""

Note that the L-matrix (1.1.8) and the R-matrix (1.1.5) are related as follows:

R(u) = (72 @ id)(L(u)) . (1.1.10)

1.1.2 Monodromy matrix

Now, in order to construct spin-chains, we recall the definition of the monodromy matriz. Introduce
the inhomogeneous parameters v; € C* with ¢ € N.

Definition 1.1.5. The monodromy matriz is defined for N € Ny as

Ton(u) = Ron(uwon)Ron—1(uvn—_1) - - - Rga(uv2) Rg1 (uvr) (1.1.11)
where a denotes the auziliary space and integers 1, 2, ..., N label the quantum spaces. It satisfies
the RTT relation

R12(u/v) T17N(u) T27N<’U) = TQ’N('U) Tl,N(u) ng(u/v) . (1.1.12)

Here, we consider only spin—% auxiliary and quantum spaces. In the next section, we will define

more general monodromy matrices with spin-j auxiliary space and spin-j; for each quantum space.

Graphically, one represents the monodromy matrix as

Ton(u) = °

(1.1.13)

N N-1 2 1



1.1. Closed spin-chains 25

where a straight line stands for the auxiliary space a, while a dashed line represents the quantum
space V.

1.1.3 Transfer matrix

Let us now define the transfer matrix from the monodromy matrix.

Definition 1.1.6. The transfer matrixz for periodic boundary systems is
™) (u) = trg(Tun (u)) | (1.1.14)
where T, n(u) is given in (1.1.11).

It is a generating function for integrals of motion of a quantum system described by some
representations of the Yang-Baxter algebra, see Definition 1.1.1. Indeed, provided the R-matrix is
invertible, one has for u, v € C

[t(N)(u),t(N)(v) ~0. (1.1.15)

It is obtained as follows. Multiplying the RTT relation (1.1.12) from the right by [Ri2(u/v)]™!, one
has
T v ()TN (v) = [Riz(w/v)] ™ T,y () 11, (u) Rz (u/v) -

Then taking the trace over the space Vi ® V5, using the cyclicity of the trace and the fact that the
trace of the tensor product is equal to the product of traces, one gets (1.1.15).

Graphically, due to (1.1.13), the transfer matrix is represented by

where the closed line stands for the trace over the auxiliary space.

Recall the Hamiltonian of the XXZ spin-1 chain with periodic boundary conditions is:

2
aper Zak AR k+1+ﬂ k k1 with ol = gN+1 (1.1.16)
Hxxz = 9 0202 > =" : T

We now recall how it is obtained from the transfer matrix. Due to the commutation (1.1.15), we
have conserved quantities denoted Z(™. They are obtained by taking logarithmic derivatives of the
transfer matrix [Lu70]

7 — jin (1n( ™ (w))

U

(1.1.17)

u=1
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Recall also the permutation matrix PgI’jQ) that flips the space from VU @ V(02) to V2) @ V0,
It acts as P(jl’jz)(a ® b)P(jml) =b® a. Consider j; = js = % and let P(373) = P, then one has for
the R-matrix in (1.1.5)

1
,P:
qg—q!

R(1) . (1.1.18)

Proposition 1.1.7. For the transfer matriz given in Definition 1.1.6 and with the R-matrix
from (1.1.5), we have

1, (1.1.19)

d
per -1 1 (N)
Hixz=(—q )7du (H(t (U))> S 5

where {v,} = {v1,v2,...,05}.

Proof. Let us set v, = 1. The logarithmic derivative of the transfer matrix is obtained by compute
the product [tV)(1)]71#(M)(1). Recall that the R-matrix (1.1.5) at u = 1 specializes to the per-
mutation matrix (1.1.18). First, for u = 1, computing the inverse of the transfer matrix starting
with t(V)(1)

( )

= (q - q_l)Ntra(PaN s Palpgjv)
(¢ —qa HNtro(Pyn—1- Pn1Pan)
( )

q—q HNPyn_1-Pn1,
where we used that try(P,r) = 1. Then, one has
D] =(g—a¢ ) NPn1 Pan-t -

Secondly, one computes the derivative of the transfer matrix as follows
N
#™M(1) = (¢ = ¢ tra(Pan -+ Ry(1) -+ Par)
k=1
N
=(q¢— qil)Nilztr(APaN e Ry(1) - 'PalpgN)
k=1
N
=(g—¢ )" tra(Pyn-1- - Riyg(1) - Prn1Pan)

k=1

N
= (g~ YV Punr o Ri(1) - P
k=1
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Finally, after straightforward calculations, one gets:

d

o) =[N

1 N
= qflenn-‘rl )

u=1

1-9 "o
where the Hamiltonian density is introduced
Hpnt1 = Prnt1Ry i1 (1) (1.1.20)
= oot + ol + T (oo + D)
and so (1.1.19) holds. O

1.2 Open spin-chains

Now, we construct open spin-chains, i.e. that has non-periodic boundary conditions. This requires
the introduction of some algebras, namely the reflection algebra and its dual, as well as an analogue
of the monodromy matrix (1.1.11) which is called the double-row monodromy matrix. Together,
they allow to define a transfer matrix that takes into account the boundary conditions.

In this section, these notions are recalled and the XXZ spin—% Hamiltonian with generic boundary
conditions is derived.

1.2.1 Reflection equation algebra

We first recall the definition of the reflection algebra introduced by Sklyanin in [Sk&8].

Definition 1.2.1 ([Sk88]). Let R(u) € End(V®V') be a solution of the Yang-Baxter equation (1.1.1).

The reflection algebra, denoted J~, is generated by 17(5;1) forn € Z and 1 < 4,5 < dim(V). The
defining relation is the so-called reflection equation

R(u/v) K (u) R(uv) Ko (v) = Ko (v) R(uv) Ky (u) R(u/v) (1.2.1)

where

K(u) = Z Z U”Kgl) ® Eij , (1.2.2)

i,j=1 n=—o0

and we assume ‘](JE;L) are all zero for n > N for some fixed positive N. A solution of the reflection
equation is called a K-matrix.

Example 1.2.2. Set V. = C? in (1.2.1). Then, a solution of the reflection equation for R(u)
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in (1.1.5) and with the substitution K(u) — K (u) is given by [GZ93, dVR94]

2 —2
uey +u-le.  EruT)
K@) ={ 4 e e (1.2.3)
_(FT UE_ +u - E4

where k+ and €4 are scalars in C.In other words, it defines a one-dimensional representation for
J.

Note that examples of K-operators (for which 17(([;) are not scalars) will be considered in
Chapter 2. There are two presentations for an algebra that has an associated K-matrix. The
first is the standard one which consists in giving the generators with their defining relations. The
second is a Faddeev-Reshetikhin-Takhtajan (FRT) type presentation: given an R-matrix and a
K-operator, the reflection equation is equivalent to the defining relations of the algebra.

In [Sk88], Sklyanin also introduced the dual reflection algebra as follows.

Definition 1.2.3 ([Sk88]). Let R(u) € End(V®V') be a solution of the Yang-Baxter equation (1.1.1).

The dual reflection algebra, denoted J 7, is generated by 17_(5;) forn € Z and 1 < 4,j < dim(V).
The defining relation is the so-called dual reflection equation

R(v/u)Ky' () R(1/uvg*) K (v) = Ky () R(1L/uvg®) Ky (w) R(v/u) | (1.2.4)
where t; stands for the transposition on the space Vi, and

K(u) = Z Z Un?(f;l) ® Eij (1.2.5)

1,j=1 n=—o0
We also assume ?Cgl) are all zero for n > N for some fixed positive N. A solution of the dual

reflection equation is called a dual K-matrix.

Example 1.2.4. Set V = C? in (1.2.4). Then, a solution of the dual reflection equation for R(u)
in (1.1.5) and with the substitution %(u) — K (u) is given by

wGEs - u—lg—lz. Fr(?@—uq?)
K+(u) = % —(Fu2q2_uf2]q72) B a4 1 - , (1.2.6)
g T UWE-Fu g et

where k4 and Z4 are scalars in C. It defines a one-dimensional representation for J 7.

Remark 1.2.5. Note that the R-matriz from (1.1.5) satisfies the following properties
R"2(u) = R(u) , (1.2.7)
Ru)R(u™') = —c(uq)c(ug™) 1y , (1.2.8)
R (w)R™ (u™q™2) = —c(u)c(ug?) 1y , (1.2.9)

where 12 (resp. t1) stands for the transposition applied to the space V; ® V5 (resp. V7). In this
case, the reflection algebra and the dual reflection algebra are isomorphic [Sk&8, Sec. 3]. An obvious
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isomorphism o: J~ — J T is such that
o(K(uw) = K(—u g 1) . (1.2.10)
In particular, K*(u) in (1.2.6) is related to K (u) in (1.2.3) by
—1 —1\\?
K+(u) = (K(_u q )) leiﬁfé;,kiﬁfﬁi :

In the physics literature, the K-matrix and its dual are respectively called the left and right
boundary K-matrices because they encode boundary conditions at the corresponding ends of the
spin-chains.

1.2.2 Double-row Monodromy Matrix

Now, in order to construct spin-chains with boundary conditions, we recall the definition of the
double-row monodromy matrix.

Definition 1.2.6 ([Sk&8]). The double-row monodromy matriz is defined for N € N; as
Ton(w) = Ty () Ko(w)Ty n(u) (1.2.11)

where K(u) is a solution of the reflection equation (1.2.1), T, y(u) is the monodromy matrix given
in (1.1.11) and

Ton (1) = Rap (wv7 ) Rag(uvg b) - - Ran—1 (wvyt ) Ran (uvyt) - (1.2.12)
It satisfies the reflection equation
Rlz(u/v) Tl,N(U) R12(’LL’U) TQ’N(U) == TQ’N(U) ng(uv) TI,N(U) ng(u/v) . (1213)

In the literature, solutions of the reflection equation of the form (1.2.11) are called dressed
K-matrices.

Graphically, one represents the double-row monodromy matrix as

(1.2.14)

1.2.3 Transfer matrix

The study of the closed spin chains was done using the transfer matrix from Definition 1.1.6. Now,
in order to take into account the boundary conditions, which are encoded into the K-matrices, we
need an analogue of the latter transfer matrix. Recall the dual K-matrix Kt (u) given in (1.2.6).
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Definition 1.2.7. The transfer matrix for open spin-chains is
t ) (w) = trg (K (u)Ty n (1) (1.2.15)
where Ty n(u) is given in (1.2.11).

Note that we keep the same notation for the transfer matrix t(*)(u) whether we are in the case
of open or closed spin-chains. It will be clear which definition of the transfer matrix should be
used, (1.1.14) or (1.2.15), according to the context.

Graphically, one represents the transfer matrix as

, (1.2.16)

where the left wall represents the matrix K (u). The transfer matrix as defined in (1.2.15) forms a
commutative family, i.e. the equation (1.1.15) also holds for open spin-chains. We refer the reader
to [Sk&8, Thm. 1] for the proof that this latter relation holds. Therefore, conserved quantities ™)
are again extracted from the logarithmic derivative of the transfer matrix using the formula (1.1.17).

For instance, the Hamiltonian of the XXZ spin—% with generic boundary conditions is given
by [dVRI3]:

1

N|=

Dygen -
/HE(Q))(QZ (ki76i,ki75i) = b(

5 o
)+ (q I (ey —e-)of + kaof +k_op

€++€7 4

2 -1 (1.2.17)
(q—q (g+_§—)‘77v+g+0++ﬁ—0_> ;
ey t+e 4 N N
where we introduced the bulk term
B N~ (oo vy L atat L,
biz = Z <0kak+1 + 030k T To-k:o'k-}-l) (1.2.18)

k=1

and ki, €4, k4, £+ are scalars in C. Then, as for the periodic spin-chains, the Hamiltonian is
obtained from the transfer matrix with the K-matrices (1.2.3), (1.2.6) and the R-matrix (1.1.5)

Proposition 1.2.8. For the transfer matriz given in Definition 1.2.7 with the K-matrices (1.2.3),
(1.2.6) and the R-matrix (1.1.5), we have
1 _ 1 —g 1l d
MY (ks 22, s B) = Hg?) = Tl mn(t ™) (w) . (1219)
u u:l,{l}n}zl

1
where 7-[((]2) is some scalar € C*.
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Proof. We compute the r.h.s. of (1.2.19) and we set the inhomogeneities parameters v, to 1. Firstly,

using (1.1.18) one gets
[t(N)(l)]_l _ (q - q_l)_2N

o tr(EF()
Secondly, we compute ¢'(1) which denotes the derivative of t(u) with respect to u evaluated at v = 1.
Note that there are 2NV 4 2 terms depending on u inside the trace of the transfer matrix, so one
obtains:

(K (1)) . (1.2.20)

#(1) = (¢ — ¢ H2N (K1(1)tr(K+’(1)) + K{(l)tr(KJr(l))) (1.2.21)
N-1
+(a—a )N (K () K (1) (Hiz + 2 Ho)
n=2

g — g )N (B () His K (1) + 2K (1)t (K (1) Ho))

where H,, 41 is given in (1.1.20). Then, using (1.2.20) and (1.2.21), one has:

d
—In(t(w)| =[N (1.2.22)
du uel
tr(K+ (1 2 = 2 tro (K (1)H,
) 2 R 2 () H)
r(K+(1)  g—gq ' & q—q tr(K (1))
1 1
+ [Ki(D)] TR (1) + —[K1(1)] T Hi2 K (1) + — Hia .
q—4q q—9q
Finally, after straightforward calculations, one finds that the claim follows. O

Now, several special cases are obtained by specializations of the Hamiltonian (1.2.17).

Example 1.2.9. According to the boundary parameters ki, e+, ki, £+ chosen in (1.2.17), the
resulting Hamiltonian may exhibit some symmetries. These are often used in order to find an
highest-weight vector which is required to apply the algebraic Bethe ansatz.

(i) The XXZ spin—% chain with diagonal boundary conditions is defined as

1y 1
Hg(?))(d;ag (ei’ gi) = Hg(?))(g;n(o7 €+, 07 gi)

—1 — —
N e T
2 Ey e Ey +E-

In this case, the K-matrix and its dual are diagonal. This Hamiltonian enjoys the U(1)

symmetry
N

dia
Hg?))cdzg(siaé?i)?sz] =0, ST=)oF. (1.2.23)
k=1

(ii) The XXZ spin-% chain with special (Uyslo-invariant) boundary condition is defined as [ABBBQ),
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PS90]

HOP = HD90,e, =0,6_,0,2,,2_ = 0)
q—q"

Recall the quantum algebra Uysla from Definition 2.3.4. This Hamiltonian satisfies

(3 )Sp
for any z in a N-tensor product® of Spin—l irreducible representation of Ugsls.

(iii) The XXZ spin—f chains with either upper or lower triangular boundary conditions are defined
as

’H( )up tr.

XX (k+7€:|:7E+7gi) H( o

XX (k:tagﬂ:ak:l:vgz)‘k7:E7:O ’

( )lo tr.

HXXZ (k—7€:|:7E—7§:|:) H( oo

XX <k:|:7€:|:7k:|:752 ‘k‘+:E+:O .
Note that the name upper or lower triangular refers to the triangular form of the K-matrix
and its dual. Such Hamiltonian does not enjoy U(1) symmetry (1.2.23).

1.3 Towards integrable higher-spin chains

As we have seen in the previous sections, the FRT formalism is a general tool to construct integrable
spin-chains. Now, one may ask how to construct Hamiltonians associated with either closed or open
integrable spin-chains with higher spin-interactions. To do so, fusion techniques for the R- and K-
matrices have been developed. In 1979 Karowski constructed scattering S-matrices in [[<a79] that
describe the interaction of a spin—% particle with a spin-j particle. Then, in 1981, Kulish, Reshetikhin
and Sklyanin generalized this construction to obtain any spin-j R-matrices, see [[{RS81]. Later,
using the same formalism, Mezincescu and Nepomechie constructed fused K-matrices in [MN92]. In
this section, we review the constructions of both fused R- and K-matrices which use (anti-)symmetric
projectors P*. Firstly, we recall the construction of the fused R-matrices following [[<582]. Secondly,
using this formalism, fused K-matrices are constructed following [MN92]. Finally, this method is
applied to the six-vertex R-matrix from (1.1.5) and the spin-3 scalar K-matrix given in (1.2.3). The
Hamiltonian of the open XXZ spin-1 chain is also derived. In subsequent chapters, we will use a
more recent fusion procedure [BLN15, LBG23], and the one of [KRS81, MN92] is reviewed in the

present section for completeness.

1.3.1 Fusion of R- and K-matrices

Here, the goal is to obtain solutions of the Yang-Baxter equation (1.1.4) for any spin-j. They are
obtained using a fusion procedure that we now describe. As we will see below, the fused R-matrices

Recall the algebra homomorphism A: Ugsly — Ugslo ® Ugsla. Any word in (Ugsl2)®Y is constructed using
combinations of AN"Y(E), AN"Y(F), AN"1(K*2) and any element z € End(C2)®V is obtained from the latter
words by mapping E — o*, F - o7, K2 gt
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are constructed from the fundamental R-matrix, i.e. the R-matrix that acts in End(C? ® C?), by
considering a product of fundamental R-matrices. Let us now recall the construction of the fused
spin-1 R-matrix following [KS&82].

Notations.

Below we use the notation {12} on the R- and K-matrices to indicate that the fusion is applied on
the spaces labelled by 1 and 2. Introduce the notation

Vo =Vi®...0Vy=C®...0C* . (1.3.1)
~—_———

2j times

Basic Ingredients.

Following [I[{582], the fusion of the R-matrices relies on the following assumption. The specialization
of R(u) at u = 71, for some 3 € C*, is proportional to a one-dimensional projector

Pryy = aRp(B7Y) (1.3.2)

where a € C* is fixed by the idempotent property of the projector, i.e. (Pﬁ2})2 = P{Ez}' From
this projector, two important relations are derived for the fusion. Firstly, we can define another

projector

Py =T= Py

which projects onto a three-dimensional space. It is easy to verify that it satisfies the relation

(1.3.3)

Pl Py =0 (1.3.4)
Secondly, the specialization of the Yang-Baxter equation (1.1.4) and the latter relation imply that
P{_12}R13(U)R23(U,B)P{t2} =0. (1.3.5)

Indeed, setting uy = u, us = uf, ug = 1 in (1.1.4), multiplying each side of this equation on the

right by P{+12}, using (1.3.2) and (1.3.4), it follows (1.3.5).

Fusion of R-matrix.
Following [KX582], we introduce fused R-matrices.
Lemma 1.3.1. The fused R-matrices
R{12}3(u) == P52}R13(U>R23(U5)P{—§2} 5 (136)

Rif23)(u) = Py Riz(u) Ruz2(uB) Pl (1.3.7)

satisfy the fused Yang-Baxter equations

Ry19y3(u/v) Rypaya(u) R3a(v) = R3a(v) Rypoya(u) Rpioys(u/v) (1.3.8)
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Ria(u/v) R34y (w) Rog3ay (v) = Ragaay (v) Rigzay (v) Ria(u/v) (1.3.9)

Proof. We first show (1.3.8). Replace the fused R-matrices in the L.h.s. of (1.3.8) by (1.3.6). Remove
the intermediate P{Jb} using (1.3.3) and (1.3.5). Then, reorder the R-matrices using the Yang-Baxter

equation (1.1.4). Finally, using I = P{Jh} + Pligy and (1.3.5), one identifies the r.h.s. of (1.3.8). The
equation (1.3.9) is shown similarly using now P{33}R13(U)R12(uﬁ)P{23} = 0, instead of (1.3.5). O

Then, one defines fused R-matrices for any j1, jo

Rpigyaay () = Py Rioya(u) Rpiays (uB) Py (1.3.10)

that satisfy

Ri12y(34) (u/v) Ri12y (56} (W) R34y (56} (V) = Rysayis6) (V) Rty se) (w) Ryi2y 34y (u/v) - (1.3.11)

In a subsequent part, we will consider fusion of the K-matrices using the projector P{JEQ}. To this
end, it will be necessary to use another fused R-matrix that we now introduce.

Lemma 1.3.2. The fused R-matrices
R3{12}(u) = P{—gl}Rgl(u)Rgg(uﬁ>P{gl} s (1.3.12)
where P{Zl} = P12P52}P1_21, satisfy the fused Yang-Bazter equation

R3{12}(u/v)R4{12}(u)R43(v) = R43(U)R4{12}(U)R3{12}(u/v) . (1.3.13)

Proof. 1t is similar to the proof of Lemma 1.3.1. In particular, one needs to use the relations

Ry3(v) Raz(upB) R3a(uB/v) = Raa(upf/v)Raz(uB)Ra3(v) ,
R43(U)R41(U)R31(U/U) = R31 (U/U)R41(U)R43(U) 5

that come from the Yang-Baxter equation (1.1.4) by setting appropriately u, v and applying per-
mutations. O

Fusion of K-matrix.

Consider a K-matrix that satisfies the following reflection equation [MN92]
Ry2(u/v)K1(u)Roy (uv) K2 (v) = Ko(v)Ria(uv) Ky (u)Roy (u/v) (1.3.14)

where

Roi(u) = 7312R12(u)771_21 . (1.3.15)

Now, we recall the construction of fused K-matrices that solve a reflection equation. It is clear
that this reflection equation involves fused R-matrices as constructed in previous subsection, see
Lemma 1.3.1 and Lemma 1.3.2. Here, we recall the fusion procedure for the K-matrices introduced
by Mezincescu and Nepomechie in [MN92]. As discussed below, the fused K-matrices are constructed
using the projector P{JEQ}.
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The K-matrices are constructed from the fundamental R- and K-matrices as we now recall
following [MN92]. This fusion is again based on the assumption that the R-matrix specializes to a
one-dimensional projector as in (1.3.2).

Note that, relatively to the reflection algebra; see Definition 1.2.1, the formalism presented
here can be applied not only to K-matrices (matrices with scalar entries) but also to K-operators
(matrices with algebraic entries). Indeed, the formalism of Mezincescu and Nepomechie in [MN92]
can be generalized to K-operators since it is enough that (1.3.2) holds. However, in this chapter
only K-matrices are considered. Examples of K-operators, as well as the construction of fused K-
operators, will be studied in Chapters 2 and 3. Following [MN92], we introduce fused K-matrices.
We denote them by K2 (u).

Lemma 1.3.3. The fused K-matriz
K{lg}(u) = P{tQ}Kl(u)Rgl(’U?ﬁ)Kg(uﬁ)P{—;l} s (1.3.16)
satisfies the reflection equation

R{12}3(U/'U)K{12}(U)R3{12}(UU)K3('U) = K3(’U)R{12}3(U/U)K{12}(U)R3{12} (u/v) , (1.3.17)

where Ry19y3(u) and Ragi9y(u) are respectively given by (1.3.6), (1.3.12).

Proof. Replace the fused R- and K-matrices in the Lh.s. of (1.3.17) by their expressions given
in (1.3.6), (1.3.12) and (1.3.16), respectively. Remove the intermediate P{+12} using

Ppyyy Ra1(uv) Raz (uvf) Py = 0 (1.3.18)
Ppyy K1 (u)Ro1 (u?B) K2 (uB) Py, = 0, (1.3.19)

which are obtained using (1.3.4) together with a specialization of the Yang-Baxter equation (1.1.4)
and the reflection equation (1.3.14), respectively. Then, reorder the R- and K-matrices using (1.1.4)
and (1.3.14). Finally, using I = P;;,+ P;, and the above relations, one identifies the r.h.s. of (1.3.17).

O

Spin-;j fused R- and K-matrices

The procedure detailed above can be repeatedly applied to construct spin-j R- and K-matrices. They
are written solely in terms of the fundamental R- and K-matrices, i.e. of spin—%. For convenience,
we now choose R(u) and K (u) given in (1.1.5), (1.2.3), respectively, as fundamental R~ and K-
matrices. Let {a} = {ai,...,as;,} be a label of the space Vo, ® ... ® V,. , with V,, = C2
Following [KRS&81, Zh95], introduce the symmetric projector P{J; y as

2519

1 251 k
Pro=— P, , 1.3.20
{a} (2]1)!]}1 <z:1 uak) ( )
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where P is the permutation matrix given by

2
P = Z Eab & Eba ) (1321)
a,b=1

with Pg, q, = 1. We now give the compact form of the fused R- and K-matrices. Recall the notation
Vigjy from (1.3.1). Firstly, the fused R-matrices are expressed as [[KRS87, FNRO7]

2j1 2j2
1. keA-0—
Rty (@) = Py Py TT T Rawn, (wd™ 797527 PP € Bnd(Vigg,) @ Bnd(Vgy) 5 (1:3.22)
k=1¢=1
11
where Ri%j (u) = Rgyp, (u) is the spin-3 R-matrix given in (1.1.5). The R-matrices in the product

above are ordered in increasing value of k and ¢. For instance, for (j1,j2) = (2, 2) the fused R-matrix

is L s
(3

R{i;?{bl ,b2,b3}( ) P{—'l—)l 7l)27b3}‘l:.“)al b1 (uqil)Rale (U)R(ll bs (uq)P{—il_)l ,bz,bg}

with .
P‘E‘gl,bQ,bS} = E(Pblbz + ]I) (Pb1b3 + Pbes + ]I) .

Secondly, the fused K-matrices are expressed as [Z2h95, FNRO7]

Ky () = P, H{

H o, (42 1)] Ko, (ugb™ 2)} Pl €End(Viy) ,  (1.3.23)

1
where Ké,f)(u) = K, (u) is given in (1.2.3). The products of braces are ordered in the order of
3

increasing k. For instance, for j = 5 one has
(3)

_ pt
{a1,a27a3}(u) - P{alyaz,aa}

Ko, (Uq_lRalaz (uzq_l)Kaz (“)Ra1a3 (Uz)Razas (U2Q)Ka3 (UQ)PJF

{a1,a2,a3} *

Finally, let us point out that R%}ﬁi (u) € End(Vig;,1) ®End(V{g,}) and K&l}) (u) € End(Vig;,})-

However, the fusion procedure has the effect of projecting the space C2*" into CZ+!. Tn order to ex-
hibit this structure, one can apply similarity transformations to transform the R-matrices in (1.3.22)
into symmetric R-matrices, and similarly for the fused K-matrices, see [N02]. In Section 1.3.3, we
apply the above formulas to construct spin-1 R- and K-matrices and apply such similarity trans-
formations.

1.3.2 TT-relations for the open XXZ spin-chains

In the previous section, we recalled a procedure to obtain higher dimensional R- and K-matrices,
using the formalism of [[XS82, MN92] (i.e. with the projectors P¥). Recall that the essential object
to construct spin-chains are transfer matrices. Here, we construct spin-j transfer matrices from the
latter fused R~ and K-matrices. TT-relations were proposed in order to derive transfer matrices of
higher spin-chains from transfer matrices of lower spin-chains. Following [FFNR07], we also recall
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the TT-relations associated to the open XXZ spin-s chains.

Spin-j transfer matrices

Recall that the transfer matrix associated to the open XXZ spin—% chain is given in Definition 1.2.7.

In order to study higher spin-chains, it is thus necessary to consider a spin-j transfer matrix. Recall
the fused R- and K-matrices from (1.3.22), (1.3.23). First, we need to define the spin-j analogues
of the dual K-matrix K (u) from (1.2.6). Due to Remark 1.2.5, the spin-j K-matrix solution of the
dual reflection equation can be constructed as follows [Sk88]. Recall the notation {a} above (1.3.20)
and c(u) from (1.3.33). Define

A 1 . t
K@) = ——— (KY) (—u=lq™) : (1.3.24)
0= g (),
with K‘*'(%)(u) = K*(u), where the normalization factor f(%)(u) =1 and
2j-1 k
f(])(u) = H H — c(quk+£+2_2])c(quk+€_23) (1.3.25)
k=1¢=1

is introduced for further convenience. We now introduce a generalization of the transfer matrix
from Definition 1.1.6.

Definition 1.3.4. Let j, s € %N+. The transfer matrix for the XXZ open spin-chains with N sites
s given by ‘ ‘ ‘
109 (u) = tra (KO ()T (u)) | (1.3.26)

where the double-row monodromy matrix is

T(j}f,)(u) = Rg’vs) (uvy') - -R((I]i’s) (uvl_l)K(j) (u)R(jl’s) (uvy) - -- Rg’vs) (uvy) . (1.3.27)

a a

One can show for all u, v € C* that
[t(jhs) (w), £02) (v)] ~0. (1.3.28)

The proof is done similarly to [Sk&8, Thm. 1] and requires in particular that the fused R-matrices
are invertible and satisfy the crossing unitarity property

[R(j’s) (U)]tl [R(j’s) (U_lq_Q)]tl X 241y 2541) >

where t1 denotes the transposition over the space V.

TT-relations

Recall the transfer matrix from Definition 1.3.4. It satisfies the so-called TT-relations for j,s €
AN; [MN92, Zh95, YNZ05]

1 (1

109 () = 1072 (ug )5 (ug’~2) + 6 (ug? =2 )tV D (ug ™) (1.3.29)
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where 6(%)(u) is a product of various quantum determinants given by”:

iy 3 1 “ c(u?)c(u?q?)

56 (u) = c(ug® T2 M) e(ug™s" 2t —_— 1.3.30
(w) [J%( e | (1.3.30)

2.2)2
+ 2 (u2a? ~2,-2y _ L k,c(u q-) 1.3.31
X <5+—|—s_—|—5+5 (u“q” +u g ) — kg PR ) ( )

2 .2\2
22 4 E (2t u g Y) — hk ) 1.3.32
G R L R (1.3.32)

with the scalar function

clu) =u—u"t. (1.3.33)

Let us make some important remarks concerning this relation. One can show analytically that it
holds for small values of j. For instance, the case j = 1 was proven in [MN92]. For higher values
of j, the proof of (1.3.29) relies on the following conjecture: the projectors P{J; } defined in (1.3.20)

— . _ + .
and P{a} =1 P{a} satisfy
2j—1
+ — + _ pt - + k) p—
P{12...2j—1}P{12...2j}P{12...2j—1} = P{12...2j—2}P2j—1 2j T ZPkk-HX( )Pk k+1 (1.3.34)
k=1
for j = %,2, ..., and for some set of matrices {X(1), ..., XZ=D}  For more details, see [FNR07,

App. A] where the relation (1.3.34) is verified up to j = 3. Let us mention that with a more recent
fusion procedure described in Chapter 3, a different proof for the TT-relations will be given based
on the existence of a universal K-matrix.

1.3.3 Application to the open XXZ spin-1 chain
Spin-1 R- and K-matrices

We now apply the fusion procedure of [[KRS81, MN92] to construct spin-1 R- and K-matrices.
Consider the spin—% R- and K-matrices given in (1.1.5) and (1.2.3). The idempotent property of
Prg, and the equation (1.3.2) hold for

1
o= — , B=q, 1.3.35
@a-a1) (1.3.35)
and with
00 00
_ 041 -1o0
Py = 0_2% %2 0 (1.3.36)
00 00

"We fixed the inhomogeneities v,, = 1 for convenience.



1.3. Towards integrable higher-spin chains 39

From (1.3.3), one gets

1000
oilp

+ _

Py = 0%0 (1.3.37)
0001

Note that the rank of P is 3 while the rank of P~ is 1.
Using the formulas (1.3.6), (1.3.10) and shifting u — uq_% for later convenience, the fused
R-matrices are given by

1,l 1 1
R~({122})3(U) = Py Ris(ug 5)323(%2)1352} ; (1.3.38)
1,3

1,% _1 a 1
R oy (0) = Py B (a5 R () P

{12}{34} {34}{12}4 (34} - (1.3.39)

Note that they are 8 x 8 and 16 x 16 matrices, respectively, with ranks 6 and 9. In order to exhibit
their spin-1 forms, we need to rearrange them using some similarity transformations. Define the
invertible matrices A1) and BM) by [N02]

10 00
0+ 1o . _1 _1

A0 — 0(2) 8 . BM = diag <([2}q) 2,1, ([2]¢) 2,1) . (1.3.40)
0%—-30

The actions of these matrices are respectively to change the basis and to make the R-matrices
symmetric, i.e. invariant by transposition. Below, we apply similarity transformations on (1.3.38)
and (1.3.39) to extract R(l’%)(u) € End(C? ® C?) and RV (u) € End(C? @ C?). Here we removed
the indices in brackets for the latter R-matrices because now they have a standard matrix size.

1
Then, the conjugation actions of A1) and BM) on R?l;})s(u) read:

X bW X X R(lv%)(u) 00
WY 4@ plhs (u)(Afg)z})_l(B() )"l = 0. 00

{123 {1237 {12}3 {12}
0--- 00
where
0 clug ) Rlelg) 0 0 0
1
ROD@) = cfugh)| 0 VWD) ety 0 00 g
0 0 0 c(ug?) /Plge(a) 0
0 0 0 2qc(q) c(ug™2) 0
0 0 0 0 0 clug?)

with ¢(u) from (1.3.33).
Similarly, we get

1 1 1 1 1,1 1 — 1 — 1 _ 1 _
By Ay By Al Bl ) (A0~ By (AL Bly) ™!
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RAD@w)0--- 0

= . (1.3.42)
0 0.0
where
afw) 0 0O 0O 0O 0O 0 0 0
0 ag(u) 0 az(u) O 0 0 0 0
0 0 aq(u) 0 as(u) 0 ag(u) O 0
0 ag(u) 0 az(u) O 0 0 0 0
RYY(u) = e(u)e(ug)? 0 0 as(u) 0 ay(u) 0 as(u) O 0 (1.3.43)
0 0 0 0 0 az(u) 0 ag(u) O
0 0 ag(u) 0 as(u) 0 aq(u) O 0
0 0 0 0 0 ag(u) 0 az(u) O
o 0 0 0 0 0 0 0 afw
and with
c(u)c(ug™t
)=o) ) =) aslu)=ela?),  aslw) = LI
_ da)elw) ag(u _ da)elg?) azr(u) = ag(u) + az(u
as(u) = cCug) 6(u) = c(ug) 7(u) = ag(u) + az(u)

Remark 1.3.5. The spin-1 R-matriz given above corresponds to the R-matriz of the nineteen vertex
model. It was originally obtained in [ZF80] by solving directly the Yang-Baxter equation.

Now, we construct the spin-1 K-matrix using (1.3.16) (we shift the argument v — uq_%):

1
K{jy () = P

{12}K1(Wf%)R12(UQ)K2(7~“1%)PJr

1 (1.3.44)

where we used that the R-matrix (1.1.5) enjoys the P-symmetry Ro;(u) = Rj2(u). Note that it is
a 4 x 4 matrix with rank 3. Here again, we apply the similarity transformations to get

c(u? D (y
B‘E)Q}Ag{llg}KEg}(u)(AF{11)2})71(38)2})71 = (C(qu) <K 0< ) 8), (1.3.45)
with K (u) € End(C?) given by
z1(u) yi(u) 2(u)
KO (u) = { §1(u) z2(u) yo(w) (1.3.46)
Z2(u) 72(u) z3(u)
c(u?)e(u?q=!
z(u) = -Qy ( )c(<q) 1 )» y1(u) = k‘+C(U2) q+q! (uq_1/25+ + u_lql/Qs,) ,
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z1(u) = c(q)(3u? + 2u +epe (g+q7")) + kpk_c(uqh), z3(u) = Cﬂl(U)Liﬁsf
- wtput_g2 g2
rau) = clg) (€2 + &2 +24e_cu2)) + bk e L ) =, .. .

and g1(u) = yl(u)‘k+—>k,’ ga(u) = yg(u)|k+_>k7, Z(u) = z(u)‘kJr_)k; Note that we used the
notation (12) for the K-matrix (1.3.46).

Remark 1.3.6. The spin-1 K-matriz KV (u) coincides with the spin-1 K-matriz of class A from [I0Z96]
provided one identifies cos(n) — % and

kyy/ -1 k_ -1
—1 N -+ Q-l-q ﬂ N Q+q ,

C— — 6"1‘ = —&_ 9 ,LL_ —1 9 — —1
_ q\/_q_l _ q\/_q_l (1.3.47)
_ - kyva+a- _ k-va+q
(y 2By =—E_", M+—>W7 M+—>W'

It was obtained by solving directly the reflection equation.

Hamiltonian

Consider the transfer matrix (1.3.26) for j = s = 1 with the spin-1 R- and K-matrices defined
in (1.3.39), (1.3.44), (1.3.24). The transfer matrix forms a commutative family due to (1.3.28) and,
similarly to Proposition 1.2.8, one extracts the Hamiltonian as follows:

en d
HRG —H o+ (ln(t(l’l)(u))> (1.3.48)

u:l,{vn}zl

Using the above relation, one finds that the Hamiltonian of the XXZ spin-1 chain with open bound-
ary conditions is:

HHS (b, e, Ba) = B (1.3.49)

1
_l’_
]{7+k‘_ — €+<€_(q + q_l) — (53_ + 52_

)
. a+a' o KA R (s)”
% <<5+5_(q 1_q)+k+k_ql> (s )2+(52,—52)51+ + qul( 1

2(q+q71) . - . -
+ VoA (o (el il g +holsfost] g+ oo (alsiysi) g +kolsfs7] )

q—4q
1
== 1 2 | =2
+h- —E48(¢+q ) —(EL +E2)
o -1 i sT)2 k2 (sy)?
% <(s+s(q 1q)+kz+k‘;]41q_q> (SN)2+(§2 751)337 +( Nq)_ql( N)
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where the bulk term is

(1) 2 - z .2 .2 2 (q2 _q_E)Q Z 2 + .- -+
bt = @ —q2 Z Sn Sng1 = (8n - Spg1)” — - {Snsn+17 SpSn4+1 T Sn Sn+1}
n=
12
(¢—a)

T

(SZSZ+1-—(SZ)Q(SZ+1)2-%(82)2-%(Si+1)2)>, (1.3.50)

we also introduced the anti-commutator {A, B} = AB + BA, and with the spin-1 matrices:

L (010 . [(0-10 100
s=—|101|, s*=— (10 -1|, =000 |, (1.3.51)
V2 \o 10 V2o 1 o 00—1
010 000
st=v2l001], ss=v2[100] . (1.3.52)
000 010

Note that the formula (1.2.22) is useful to compute the logarithmic derivative of the transfer matrix.
However, it requires slight adjustments because here we use the spin-1 R- and K-matrices, and also
the spin-1 permutation matrix P11 = Zib:l Eup @ Epg.

Similarly to the spin—% Hamiltonians given in Example 1.2.9, several special cases are obtained
by specializations of the boundary parameters k4, e4, k+,Z+ in the above spin-1 Hamiltonian.

Example 1.3.7. The spin-1 analogues of the Hamiltonians from Example 1.2.9 (i) and (ii) are
given.

(i) Define the XXZ spin-1 chain with diagonal boundary conditions as

s (ex,52) = HPLS(0,24,0,54)

1
—pM (g — o (s%)2 2 2\ .%
+€+€_(q+q_1)+£i+€2_ (ere(g—q 1)(s5)? + (e3 —2)si)
1 —_ z —. —=. z
+ (E+e-(g—a )(sh)* + (55 —22)sk) -

gre_(g+gH+ei+e2
It satisfies

N
Hgg;??g(‘gi?gi)a ZSZ} =0,
k=1

where s* is given in (1.3.51).
(ii) Define the XXZ spin-1 chain with special (Uysls-invariant) boundary conditions as
7—[%?’} = H%ﬁ}”(o,u =0,6_,0,8,,_=0)

=bM) — % + 5% .

For any x in a N-tensor product of spin-1 irreducible representation of Uysls, this Hamiltonian
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satisfies "
1)s

Now, it remains to find the eigenvalues and eigenvectors of the Hamiltonians constructed. Since,
it goes beyond the scope of this thesis, we do not diagonalize it here. As discussed in the introduction,
several tools are available. For instance, the ABA can be used if a reference state is known,
see Appendix A for the diagonalization of the XXZ Spin—% chain with either periodic or diagonal
boundary conditions following [STF79] and [Sk88]. For more general boundary conditions, when a
reference state is not known, a generalization was proposed under the name of MABA, see [BC13,
BP14].

In this chapter, we reviewed the representation-dependent approach for the construction of
quantum integrable systems. Now, we want to consider a representation-independent approach to
construct quantum integrable systems that correspond to the right part of Figure 3. As we will see
in subsequent chapters, this corresponds to work with K-operators instead of K-matrices.



44

Chapter 1.

Construction of quantum integrable spin-chains



Chapter 2

The ¢g-Onsager algebra and its alternating
central extension

In this chapter, several presentations for the g-Onsager algebra O, and its alternating central ex-
tension A, are reviewed, as well as their comodule algebra structures. Among these presentations,
the FRT type for A, with its spin-1/2 K-operator will be of main importance in the following, see
Definition 2.1.1. Briefly speaking, this chapter introduces the fundamental elements for studying
the algebraic approach to quantum integrable systems as depicted in the right part of Figure 3. The
algebra A, is interesting from the point of view of quantum integrable systems because all known
integrable boundary conditions for the XXZ spin-1/2 chains can be obtained from the specialization
of the commutative subalgebra of A,. In order to consider any spin-j, fused K-operators for A, of
spin-j are required. The latter will be constructed in Chapter 3.

This chapter is organized as follows.

In Section 2.1, three presentations of the alternating central extension of the ¢-Onsager algebra,
denoted A, are reviewed. The PBW basis of A, as well as its central elements are also given.

In Section 2.2, three presentations of the g-Onsager algebra, denoted Oy, are reviewed. This
algebra is related with A, by setting the central elements of A, to some scalars. The PBW basis of
Oy, written in terms of its root vectors, and its PBW basis are also given.

In Section 2.3, Hopf algebras are recalled as well as some examples such as the quantum algebra
Uysla, the quantum affine algebra Uysls and the quantum Loop algebra LU, sls.

Finally, in Section 2.4, the comodule algebra structures for O, and A, are given.

45
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2.1 The alternating central extension of the ¢-Onsager algebra

In this section, we review three presentations for A, from [BS09, BB17, T21a], as well as their
Poincaré-Bikhoff-Witt bases. Then, using a K-operator coming from the FRT-type presentation
for A,, we recall the center of this algebra which is extracted from the quantum-determinant of
Sklyanin [Sk88]. Finally, we introduce a spin-1/2 generating function in the commutative subalgebra

for A,.

2.1.1 Three presentations for A,

The alternating central extension of the g-Onsager algebra A, is known to have three presentations
that are now reviewed. The first one takes the form of a reflection algebra satisfied by a K-operator
which entries are generating functions in the generators of A, [BS09], recall Definition 1.2.1. It is
called a FRT type presentation. This latter presentation is the one that plays a central role in this
thesis. Note that part of the material in this subsection is taken from [BS09, BB17, T21a).

o FRT type.
First, recall the R-matrix associated with the tensor product of two-dimensional evaluation

representations of quAlg is given in (1.1.5).

Definition 2.1.1 ([BS09]). A, is an associative algebra with alternating generators
{W_g, W1, Grt1, Grt1|k € N}. Introduce the generating functions:

W) => W, U 1 W (u) = WU F (2.1.1)
keN keN

Gr(u) =) GpU ™' G (u)=) GpU "1, (2.1.2)
keN keN

where we use the shorthand notation U = (qu?® + ¢ 'u=2)/(q¢+ ¢ 1) and the expansion in u=!:

U = (g4 g O D ) 2 (21.3)
/=

o

The defining relations are given by

=

ol
—~
<
=
Il
e
2 —~
=
—
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~
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— o~
N
—~
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~
=
N|=
Nl
—~
S
~
4
~
—~
no
=
.
N

RG® (ufv) K12 () RG3) (uv) K

with the R-matriz (1.1.5) and the fundamental K-operator

[NIES

K (

1,1 1 ky(g+q~ ")
)(u): <qu+(U)_U q W,(u) k_(q+q—1)g+(u)+ +q7q_l ) ’ (2‘1.5)

-1
O () + L) g (u) — u g ()

where k4 € C*.

For convenience, introduce the parametrization:

p=kik_(g+q')? eC*. (2.1.6)
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Explicitly, one obtains the defining relations between the generating functions {Wx (u), G+ (u)}
as follows. First, insert the R-matrix (1.1.5) and the K-operator (2.1.5) in the reflection equa-
tion (2.1.4). Then, a comparison of the matrix entries of each sides of the latter equation yields [BS09,
Def. 2.2]:

Wi (u), Wi(v)] =0 (2.1.7)
Wi (), W- (0)] + [W- (), Wy (0)] = 0, (2.1.8)
[Ge(u), W (v)]+[ +(u),Ge(v)] =0, e==+, (2.1.9)
G (u), G+ (v)] = (2.1.10)
G4 (u), G- (v)] + [ (u>7g+(v)] =0, (2.1.11)
1
(U —=V)Wx(u), Wz(v)] = p((qqfql)) (G+(u)Gx(v) — G+ (v)Gx(u)) (2.1.12)
1
+ G+q D (Gx(u) — Gx(u) + Gx(v) — G£(v)) ,
W ()W (v) — Wa () We (v) + p(qiq) G2 (u), G (v)] (2.1.13)
O OV ()W (0) ~ W (o)W () =0,
UG+ (v), Wi ()], = V [G=(u), W (v)], — (¢ — ¢ ") We(w)Gx(v) = Wx(v)Gx(u)  (2.1.14)

+p(UWx(u) = VW (v) = We(u) + Wx(v)) =0,
UWs(u), G5 ()], =V W (v), Gz (w)], — (¢ - 1)( +(u)G () = Wi (0)Gz(u))  (2.1.15)
+ p(UW=(u) = VWx(v) = W (u) + Wi(v)) =0.

Lemma 2.1.2. There ezists an automorphism o of A, that sends
Wi(u) = Wx(u), Gi(u)— Gx(u) . (2.1.16)

Proof. Tt is obtained from the reflection equation (2.1.4). Indeed, note that the R-matrix is such
that R(%é)(u) = MR(%’%)(U)M, with M = 0, ® 0. Consider the conjugation of the K-operator by
oz. Its entries read: (amlC(%)(u)ax)i,j = (K(%)(u))g_i;g_j for 1 <i,7 < 2. Then, multiplying (2.1.4)
on both sides by M ® M, the automorphism o follows. ]

e Alternating type.

Now, from the equations (2.1.7)-(2.1.15) and using (2.1.1), (2.1.2), the relations between the
alternating generators {W_j, Wy, Ggi1, Grr1]k € N} are extracted. The following is the second
presentation of the algebra A, [BS09, T21a]:

1

Wo, Wis1] = [W_p, W] = ————(Gip1 — G , 2.1.17
[Wo, Wp1] = [W_p, Wi] (q+q_1)( k1 — Grs1) ( )
[Wo, Gr1],, = [Gra1, Wo] , = pW_jp—1 = pWip1 (2.1.18)
[Gr1, Wi = [Wi, Gk+1]q = pWiy2 — pW_p , (2.1.19)

[W—k)W—Z] =0 ) [Wk-‘rhwe-ﬁ-l] =0 ) (2120)
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(W_k, Wepa ] 4 [Wes1, W] =0, (2.1.21)
W_k, Gria] + [Grg1, Wy =0, (2.1.22)
[W_, Ge1] + [Gry1, W_g] =0, (2.1.23)

(W1, Gega] + [Grir, Wega] =0, (2.1.24)

[Wis1, Gey] + [Gry1, Wera] =0, (2.1.25)

[Grt1,Geg1] =0, [Gry1,Gesa] =0, (2.1.26)

[Ghs1,Gep1] + [Ghs1,Gra] =0, (2.1.27)

where ¢ € N. Note that these two presentations were originally obtained in the context of quantum
integrable systems [BI05a].

e Compact type.

Let us now give the third presentation for Ay, it is called the compact presentation, see® [T21D].
In this case, Ay is generated by Wy, W1, {Gi41 }ren subject to the following defining relations:

[Wo, [Wo, [Wo, Wilglg-1] = p[Wo, W1] , (2.1.28)
(W1, [W1, W1, Wolglg-1] = p[W1, Wo] , (2.1.29)
W1, G1] = [W1, [W1, Wol] , (2.1.30)

[G1, Wo] = [[W1, Wo]q, Wo] , (2.1.31)

W1, Grqa] = p~ Wi, W1, [Wo, Grlglg] . k>1, (2.1.32)

[Gret1, Wo] = p~ [[[Gk, Wilg, Wolg, Wo , B >1, (2.1.33)
[Gey1,Grp1] =0,  kleN, (2.1.34)

where p is given by (2.1.6). The A -generators in the above presentation are called essential.

Remark 2.1.3. A variation of this presentation can be obtained [T21b]. The image of the altern-
ating generators with respect to the automorphism o from Lemma 2.1.2 is given by:

o(W_g) = W1, o(Wpy1) = W_y 0(Gr+1) = Git1 o(Gr41) = Gr+1

for k € N. Therefore, another compact presentation of A, generated by {Wp, Wy, Gpy1|k € N}
follows by applying o to the relations (2.1.28)—(2.1.34).

2.1.2 PBW bases for A,

In the following, we will need Poincaré-Bikhoff-Witt bases that we now recall.

Definition 2.1.4. Let A denote an algebra. A Poincaré-Bikhoff-Witt (PBW) basis for A consists
of a subset 2 C A and a linear order < on  such that the following is a basis for the vector space A:
aias - - an neN, a1,a9,...,0a, € £, ag<ap<---<a, .

We now give the PBW basis for each presentation of A,.

8The defining relations of A, given in (2.1.28)-(2.1.34) coincide with the compact presentation of A, given in
[T21D, Prop. 12.1] for the identification Wo — Wo, W1 — Wi, Ger1 +— Gry1, p — —(¢> — ¢ 2)?, for some q € C*.
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o Wx(u),Gu(u)}

The first presentation of A, in terms of the generating functions Wy (u) and G+ (u) will be of high
importance for us, recall Definition 2.1.1. We will thus encounter various combinations of these
generating functions that will need reordering. A PBW basis for A, can be constructed in terms of
these generating functions in the linear order < that satisfies

Wi(u) < G4(v) < G_(w) < W_(x)

where u, v, w, x are indeterminate. According to this chosen order, any words in {Wx (u;), G+ (u;) }ien
can be written in terms of ordered expressions that take the form:

R T

P M
[T @) [[6+w) I] 6-wm) [[W-(w) ., R.P.M,TEN. (2.1.35)
p=1 m=1

r=1 t=1

The rewriting of any word of A, in the PBW basis requires ordering relations that are given in the
next lemma.

Lemma 2.1.5. The following relations hold in Ay:

G- (1)G+ (1) = G (W)G-(v) + p(g? = a2 (W (W)W (0) = W- ()W (v) (2.1.36)
£ O OV @)W ()~ W )W ()
W) = Walw- ) + 2 () (6, 6 0) - 606 ) (2130
(00— -(0) + G-(0) — 64(0) )|
W-(0)G+(u) = 5= (Vg™ = V)G (W-(v) = (g = 1) (W (w) - (v) (2.1.38)

~ W4 (0)G4 (1) — UGy ()W () + p(UW- (1) = VIV_ (1) = Wi (u) + Wi (0)) ) |
—1
WG () = T (Ve = Ug)g-wW_(v) - (a— ¢ ) (W4 ()G (v) (2.1.39)

— Wi (0)G— (1) — UG_(0)W_(w)) + p(UW_(u) — VW_(v) — Wy (u) + W+(v))> ,

G (W () = === ((Ug = Vg )W ()G (v) = (g = ) G+ ()W-(w) (2.1.40)
+ pUWs () = VWi (0) = W (1) + W-(v) )

G- ()W (u) Vg —Uqg " YWa (G- (v) - (q - ¢) (G- (0)W-(u) (2.1.41)

1
- q(V-U0) ((
G (WW-(0) + VW (0)G- () + p(UW (0] — VW (0) = W_ () + W_(0)))
where V = (qu* + ¢ 'v2) /(g + ¢ 7).

Proof. The first two ordering relations (2.1.36), (2.1.37), are obtained directly from (2.1.9) and (2.1.10).
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The third relation (2.1.38) follows from (2.1.11) and (2.1.13) by replacing the element which is not
in the chosen order. The relations (2.1.39)—(2.1.41) are derived similarly. O

Below, PBW bases for the other two presentations of A, are given but since we mostly work
with the first one, i.e. with the generating functions W4 (u), G+(u), we omit ordering relations for
the alternating generators and the essential ones.

i {Wfkv Wk+l7 Gk+17 ék‘+1 ’k € N}

Different types of PBW bases for A, are known [121a]. For instance, a PBW basis for 4, can be
constructed in terms of the alternating generators

{W,k}keN P {GZ+1}£€N ) {ém—l—l}meN ) {Wn+1}n€N )
in the linear order < that satisfies?

W_j < Go1 < Gyt <Wpp1, Kk lmneN. (2.1.42)

2.1.3 The center of A,

The center of A, has been studied in details in [T21a]. In the FRT presentation, the center is
generated by the so-called quantum determinant associated with the K-operator (2.1.5). It is a
generating function for central elements of Ay, given by [Sk88]:

_ — - (3) (3:3) ¢ 2\4~(3)
D(u) = tri2 (PR () RS2 (qu2)k? (ug) | (2.1.43)
where P~ = (1 — P)/2 and with the R-matrix (1.1.5).

Proposition 2.1.6 ([BB17, T21a]). The quantum determinant of the fundamental K-operator

-2 -2

U2 2 _ u 1
) = < Qq(q_qflq) ) <A(2)(u) T > , (2.1.44)

with
AB () = (g = )@ + a2 (Wi (Wi (ua) + W-(W)W- (ug)
+(g— g HWP@ +u?q?) (w+(u)w_ (ug) + W_(U)W+(uq)> (2.1.45)
(g—qh)

- (G+()9-(ua) + G- (W)G+ (ua)) = Gy (w) — G (ua) — G- (w) — - (uq) ,

N——

1
is such that [I'(u), IC;%TZ(U)] = 0. The coefficients of T'(u) € A,((u™')) generate the center of A,.

9For a different choice of ordering, the proof of the PBW basis is given in [T21a].
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1 . . —
We can expand A(2)(u) as a formal power series in u ™!

AR (y) = > u R Mgy (2.1.46)
k=0
with ( 1)k( . k)
g+q )"(¢" +4q”
Cr = — 2 . (2.1.47)

Explicit expressions for the coefficients Ay;1 in terms of the alternating generators of A, can be
found in [BB17, Lem. 2.1]. For instance, the first elements read:

Al = G1 + Cl - (q - q_l)(Wgwl + W1W0) 5 (2148)
3 2 _ 2
Ay = Gy + Gy — %(q71W0W2 + gW-oWq + q*1W1W_1 +gW_1 W) (2.1.49)
—1 ~ ~
q—q _ G1G; + G1G
o +q_2((q2+q ) (W2 +W3) 4 2L T2 ; 2y (2.1.50)

We see that the constant term of A(%)(u) —2p/(q—q ') is —2p/(q — ¢~') and so it is invertible.
Therefore, by [T21d, Lem. 4.1] it follows that I'(u) is invertible too.

Remark 2.1.7. A central element of Ay4((t)) denoted Z(t) has been proposed in [121a, Def. 8.4]. It
1s easily checked that adapting its expression to our conventions, we have the correspondence

T(ug™?)
“e(uZq) — 2(t), (2.1.51)
together with
p=—(P—q 2, gwiost, Wie(ug) = SWES),  Wa(ug 2) — TWH(T)
G (ug?) +p/lg—q 1) = G(S) | G_(ug~2) +p/(g—q ) = G(T) .

To conclude this subsection, let us point out the unitarity property of the fundamental K-
1
operator K(2)(u) given in (2.1.5), that will be used in Section 3.6.

Lemma 2.1.8.
K& (uHKED (1) = KD (K@D (u) = L 21, , (2.1.52)
c

where c(u) and I'(u) are respectively given in (1.3.33), (2.1.44).

Proof. Note that by definition of the generating functions in (2.1.1), (2.1.2), one has Wy (u™!)
Wi (ug™t) and G4 (u™t) = G4 (ug™1). Then, using the ordering relations of A, given in Lemma 2.1.

O &

by straightforward calculation one gets (2.1.52).

We call the above property (2.1.52) the unitarity property of the fundamental K-operator.
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Remark 2.1.9. Since I'(u) is invertible, it follows that K(%)(u) is invertible too and its inverse is
given by:

[K(%)(u)}_l = AU ) k@Y. (2.1.53)

2.1.4 Commutative subalgebra

There exists an abelian subalgebra of A,, denoted Z, and it is now recalled. The latter is obtained
from the FRT type presentation of A,. First, define the generating function for A, as

TR (u) = tr(K T (w)K(u) € A, (2.1.54)

where K1 (u) and K(u) = K(%)(u) are respectively given in (1.2.6), (2.1.5). Note that it forms a
commutative family [Sk&88]
[T(%)(u),T(%)(v)] =0, wu,veC.

By a direct computation, one finds that the latter generating function is expressed as a linear
combination of the generators {Zox+1|k € N} [BIK05b, BB12]

T(%)(u) = (u?¢® —u2¢7%) (Z(u) + Ty) with Z(u) = ZIZkHU_k_l , (2.1.55)
keN
where _ _
_ _ 1 k4 k_ ~
I2k+1 = E+W_k + E_Wk+1 + ) 7Gk+1 + 7Gk+1 y (2156)
a© —q° \ky k—

with Ei,Ei €C, kg € C* and

o

_ p ky
fo= (g—a (> —q7?) <k+

Then, 7 is generated by the elements {Zyx 11|k € N}, i.e.

_|_

) . (2.1.57)

il

[Zok+1,To¢41] =0, Kk, LeN.

2.2 The ¢-Onsager algebra O,

Let us now review the g-Onsager algebra. As for A,, we give several presentations of O, as well as
its PBW basis. Finally, the definition of the Onsager algebra is given. It is known to be obtained
from the limit ¢ = 1 of the ¢-Onsager algebra.

2.2.1 Three presentations for O,

The g-Onsager algebra O, originally appeared in the context of P- and Q-polynomial scheme [T99]
and later on in quantum integrable systems, in the study of the open XXZ spin—% chain [BO4]. It
was understood later that A, is isomorphic to the alternating central extension of the g-Onsager
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algebra [BB17, T21a], i.e. we have an isomorphism of algebras
A, 20,87 . (2.2.1)

Here, Z denotes the center of A, which is generated by the elements Ay from (2.1.46). Therefore,
the algebra O, is obtained from A, by fixing the A;41’s to some scalars as we now recall.
o FRT type.

This presentation takes the form of a reflection equation with the same K-operator as for Ay,
see Definition 2.1.1, but in addition the quantum determinant in (2.1.44) is fixed as

(u*q®> —u2q?) ( (4 2p )
I'u) — 0'2) (u) — , 2.2.2
w) 2(q—q71) (W) q—q! (22.2)
with
52)(u) =2 E w2104 (2.2.3)

for certain scalars dx 11 € C and with ¢ in (2.1.47), or equivalently we set Agy1 = 2dx,1. Note that
Ay are algebraically independent and so all §; can be fixed independently. Due to the isomorph-
ism (2.2.1), any choice of scalars J;, gives isomorphic quotients Oy.

o Alternating type.

Another presentation of alternating type is given in terms of alternating generators
{W_k, Wis1, Gkt1, g~k+1}keN [BB17,T21a). The defining relations are the same as for Ay, see (2.1.17)-
(2.1.27), and in addition the central elements Ay from (2.1.46) are now fixed to 2d54;.

Define the image of the alternating generators of A, into O, [BB17, T21c¢]:

W_p—W_, Wk+1 — Wk;Jr]_ s Gk+1 — gk+1, ékJr]_ — Gk+1 . (2.2.4)

In Oy, given k fixed the above alternating generators can be recursively expressed as combinations

of lower ones Wy, Wi, W_1,Ws,G1, Gy, ... [BBIT, Prop.3.1]. Let {x|k € N} be fixed scalars. Let
i,j,k,¢ € Ny and denote k = & mod 2 and [%] = % One has:

(5] f(gc) [5]—-k+1 o) [5]-1 4
Orn==>_ > 5 Wiy- Z > ” 5 Fis = X 5 Gogyny mr
0=0 j4j=20+1—k+1 =0 ij=20+k+1 =0
(2.2.5)
+ 71
+ (qu)[WkHaWO] + 0k+1 5

where

Git1=Gip1 + Q}H ,
Wi = (¢ — ¢ ) OWV-iWjr1 + Wi W)

1 s _
Fij=(q—q") ((q2 +q )W W_j + WiaWjp1) + ;(gj+1gi+1 + Qj+1g¢+1)) ,
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and
[@]_z‘+j+k7+1
2 2
(k) _ -1 i i —2j—4m—2
G = "%+ Z TS ES s S ,
m=0 2 2 "
[5]_i+j+k7+1—1
2 2
f(k") _ —1 % J + J —2j—4m
ij = Gkl Wiy _igergion_ \Wn T W1 )4 '
m=0 2 2 "
(k) _ -1 2041—Fk+1 —2k—2
dﬁ __Ck+1w[ﬁ]_g (1+ )7
2

with cgyq from given in (2.1.47) and

; (m +i)! C1yidl, —i—2m—1
i (_1\m 7 —2m
Wny = ()" =@+ 7)™ :
Also, one has:
1
W = ;[Wo,gkﬂ]q + Wit - (2.2.6)

The expressions for the other alternating generators are given by Wy.11 = Q(W_y), gk+1 = Q(Gk11),
where the automorphism 2 of Oy is such that:

QW_1) = Wit , QWii1) =Wk, UGki1) = Grr1 5 QUGkt1) = Gry1 -

Iterating (2.2.5), (2.2.6), the alternating generators can be written as polynomials of Wy, W, and
scalars d;11. For instance,

G1 = QWi Wy — ¢ " WoW + 61, (2.2.7)
W — L, 9 2 2 2 Silg—q™)
= (¢ + g HIWW i Wo — WyWi — WIWG) + Wy + ————— W,
1
G = W ((q_3 + q_l)WSV\hz - (q3 + Q)W12Wg + (q_3 - q3)(W0W12W0 + WleWl)
— (g7 + g7+ 27 Y WoWI WoWs + (¢° + ¢° + 20)WIWoWI W, + p(q — ¢ (WG + W12)>
S1(q—q ) L §(q—q7")
+ ———— (W Wo — ¢ WoWr) + 62 — (P tq2)’

W_y = wiWiWi? + wa W WiWy + ws WIWe Wi Wy + WiWiWoW1 ) + waWoWi Wo Wi W
+ wsW1PWo? + weWoW1 2 Wo? + wr WiWe Wy
+ ngoW% + w9W12W0 + wig (W3W1 + Wlwg) + wiWiWoW1 + wiaWoWi Wy
+ wlgwg’ + wiaWo + wisWy

where

w1

_ 1 __[2ql8g _ 4 _ 1 <[2]q[3]q[8]q n 1)

p?’
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S S ¢ 1L P - R SR
o P*(3lg’ o p?[3]q[4lg’ ! p?[3]q[4l’ ® p’ - pl3lg
—q! 1 2]4[3148]4 —q H[4],
_g1)? _g-1)2 - .
wis — ;(q %4](]) e =1 pq2[4})q 2lago | (g pq Dy s = U pq s,

e Compact type.

Recall that, in the compact presentation, the algebra A, is generated by Wy, W1, {Gi41}ren.
It was found in [BB16] that the generators {Gg41}ren are expressed solely in terms of Wy, W; and
central elements Apy; € A,;. As a consequence, the compact presentation of O, is generated by
Woy, Wi as we now recall.

Definition 2.2.1 ([T99, B04]). The q-Onsager algebra Oy is generated by Wy, Wh, subject to the
defining relations:

Wo, Wo, Wo, Wilglg-1] = p[Wo, W1] , (2.2.8)
[Wb [le [WDWO}Q]q*l] = p*[WbWO] )

where p* = p is given in (2.1.6). The equations (2.2.8), (2.2.9) are called the g-Dolan/Grady

relations.

In addition to the FRT, alternating or compact type, a presentation of Lusztig’s type for O, in
terms of real and imaginary root vectors {Bpstag fneNs {Bné+ar fneNs {Bns fnen, is known [BIK17].
This will be recalled in the next subsection while introducing the PBW basis for O,.

2.2.2 PBW basis for O,

Two PBW bases are known for the g-Onsager algebra. From the perspective of the alternating type
presentation, a PBW basis for Oy is conjectured to be obtained by the elements [BB17, Conj. 1]
(see also [T21c, Conj. 16.2])

W_k}ken s {Ges1}ien , {Wms1}men
in the linear order < that satisfies
W_ik < Gpr1 <Wpy1 klmeN.

From the perspective of Drinfeld type presentation for Oy, there exists a PBW basis that involves
the root vectors of Oy [BIK17]

{Bn5+o¢0}n€N s {Bn5+a1}nEN y {Bn6}nEN+ . (2210)
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These elements are recursively defined as follows [BIK17, T21a]. Writing Bs = a2 WiWe — WoW,
we have

Bs, W,
Bay = Wo, Bitao = Wit [ — 5[1;5((]2 ol =t (2.2.11)
q[Bs, B(n—1)s-+ac]
Bn6+ao = B(n—2)5+ao + (q — q_l)(q2 — q_2) n =2 (2212)
and
q B57 W
Bal = Wi, B(5+a1 =Wo — (q — qu)(qg g q_2)7 (2213)
q[Bs, Bin-1)s+a.)
Bn5+a1 = B(n72)6+a1 — (q — q_l)(q2 — q_2) n Z 2. (2214)
Moreover for n > 1,
n—2
Bns = 4 *Bn-1)510: Wo = WoB(u—1)540, + (@2 = 1) Z Bis oy Bin—t-2)54a; - (2.2.15)
=0

By [BK17, Prop.5.12] the elements {Bys}nen, mutually commute. Assuming ¢ is transcendental
over K, then a PBW basis for Oy is obtained by the elements (2.2.10) in any linear order [BIK17,
Thm. 4.5].

Let us now briefly discuss the specialization ¢ = 1 for the ¢-Onsager algebra and its alternating
central extension A4,. The former is the Onsager Lie algebra O and the latter is its alternating
central extension A.

Firstly, the FRT type presentation for O takes the form of a non-standard classical Yang-Baxter
algebra (a classical version of the reflection equation) [BBC18, Thm. 1]. For A, it is given in [BCI8,
Prop.4.1]. It was proven in [BC18, Thm. 2] that these two FRT presentations are isomorphic, i.e.
A = 0. Secondly, the alternating presentation for A was obtained in [BC18, Def. 4.1], see also [T21e,
Rem. 5.10] for the limit ¢ = 1 of A,. Finally, the compact presentation for O is generated by Ay,
Aj, subject to the Dolan/Grady relations [Pe&7]

[Ao, [Ao, [Ao, A1]]] = 16[Ag, A1] ,  [A1,[A1, [A1, Aol]] = 16[A1, Ao] -

These relations are the ¢ = 1 limit of the g-Dolan/Grady relations (2.2.8), (2.2.9), see [T2le,
Rem. 5.5].

2.3 Hopf algebras

Let us now recall the definition of a Hopf algebra. It can be found in any quantum groups book, see
for instance [KS12, Chap.1]. We also give some examples of Hopf algebras, namely: the quantum
algebra Ugsla, the quantum affine algebra Uysla and the quantum loop algebra LUsls.
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2.3.1 Definition

Let us first briefly recall the notion of an algebra and a coalgebra. An algebra A over a field K
is a K-vector space with two linear maps u: A ® A — A and : K — A, called respectively the
multiplication and the unit, that satisfy:

po(id@u)=po(p®id),  po(id®:) =id=po(t®id).

A coalgebra C over a field K is a K-vector space with two linear maps: A: C =+ C®C and e: C — K,
called respectively the coproduct and the counit, that satisfy:

([d®A)cA=(A®id)o A, (d®e)oA=id=(e®id) o A .
Definition 2.3.1. A Hopf algebra is a K-vector space H such that:
(i) H is an algebra and a coalgebra over a field K.
(ii) the coproduct and the counit are algebra homomorphisms.

(ii) H is equipped with a K-linear map S: H — H, called the antipode, that obeys
po(S®idoA=poe=po(id®S)oA .

Remark 2.3.2. The above point (ii) is equivalent to the condition [IXS12, Prop. 3] that the multi-
plication and the unit are coalgebra homomorphisms.

Remark 2.3.3. A bialgebra is the same as a Hopf algebra but without antipode.

2.3.2  Up,sly, U,sly and LU,sl,

We first recall the definition of Ugsls.

Definition 2.3.4. The algebra Uysly is a Hopf algebra generated by the elements E, F, K*3 satis-
fyzng 1 1 1 1
K2E =qFK? , K2F =¢ 'FK=
K—-K!
q—q!
Let A: Uysly — Ugsly @ Uysla, €: Uyslo — C and S: Ugsly — Uysly be respectively the coproduct,
the counit and the antipode. They are given by:

)

(2.3.1)

[E,F] = , KK 2=K 3K2=1.

(2.3.2)

and
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We also recall that the Casimir central element of Uysls is given by

C=(q—q')FE+qK+q 'K™!

2.3.5
(q—q D)?EF +¢ 'K +qK 1. ( )

Note that the monomials {E"K*2F* | r,s,t € N} form a basis for Uysla, see for instance [KS12,
Chap. 3].
Now, the Drinfeld-Jimbo presentation of the quantum affine algebra Uysls is recalled [J&5, Dr&6].

Definition 2.3.5. Define the 2 x 2 extended Cartan matric a;j, i,j € {0,1} with a; = 2, a;j =
—2 for i # j. The quantum affine algebra Uysly is a Hopf algebra generated by the elements

1
Ei,Fi,Kj[2, i € {0,1} satisfying:

1 ag; 1 1 ag; 1 K — K1
K?E;j=q2 E;K? , K}Fj=q ¢ F;K? [Es, Fj] = 51‘,3'# ; (2.3.6)
11 _1 1 11 11
KK, > =K, *K? =1, KjK} = K7 K§ (2.3.7)
with the g-Serre relations:
[Ei, [Es, [, Ej]Q]qfl] =0, [£5, [Fi, [, Fj]q]qfl] =0. (2.3.8)

Let A: quAlg — quAlg ® quAlg, €: quAlg — C and S: Uq;\lz — quAlz be respectively the coproduct,
the counit and the antipode. They are given by:

1
AE)=E&®K+K,*®FE;, AF))=F,K? +K, > ®F;, (2.3.9)
1 1 1 ..
AK ) =K 0K ®
and
+1
e(B))=e¢(F))=0, eK;?)=1, (2.3.10)
1 1
S(E;) = —qE; S(F)=—¢'Fi, S(K;*)=K,?. (2.3.11)

1
2

1 1 1
v(E) = EK?,  v(l) =K *F, v(K?)=K". (2.3.12)

(2
Besides the above definition, other presentations for quAlg exist. The so-called Drinfeld second
presentation (Drinfeld loop presentation) was found later in [Dr88]. It is given in terms of generators
{zF h,, KT, ci%1|m € Z,r € Z*} and relations. In [RS90], a FRT presentation for quAlg was ob-
tained. It involves affine L-operators satisfying several relations similar to the RLL equation (1.1.9)

that will be discussed more in Section 3.2.3. Moreover, a PBW basis was constructed using the
root-vectors of Uysla, see [Da93, Be9d4].

In this thesis we will mainly work with Definition 2.3.5 and the FRT presentation with the
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affine L-operators. Their calculation, the PBW basis and the root vectors of Uq;\lg are recalled in
Appendix B.

Finally, the quantum Loop algebra is recalled.

Definition 2.3.6. The quantum loop algebra LUyslo is the unital associative C-algebra generated by

1 be
the elements E;, F;, Kii"’; i € {0, 1} which satisfy the defining relations of the Uysly algebra (2.3.6)-
(2.3.8) with the extra relation

1 1 1 1
KEK? =1=K:K? . (2.3.13)

The quantum loop algebra LU,sly is a Hopf algebra Wlth the coproduct as in (2.3.9), counit
n (2.3.10) and antipode (2.3.11) with the substitution KO =K, 2

2.3.3 Evaluation map

Let us now recall the evaluation map ev, : LUysly — Uysla where v € C*. First, consider the algebra
map ¢: LUysly — Uysly defined by the equations:

=

o(Eo) =
o(E1)

Let ¢, be the principal gradation automorphism ¢,,: LUysly — LUgslz, where u € C* [BDGZ93].
It is defined by

) SD(FO):Ea
> SD(Fl)ZFa @(K

F (2.3.14)
E

©
—
’“m»—-oﬁw
S—
Il
™
N]]

~—
N

1 1
¢U(EO) = u_lEO 5 ¢U(F0) = UFO ’ ¢U(KO2) = K()2 )
1 1 (2.3.15)
¢u(El) = u_lEl ) ¢’LL(F].) = ufy, ¢u(K12) = K12
Then the evaluation map'® ev, is defined by the composition
eVy = POy . (2.3.16)

Its action on the generators of LUysly are obtained from (2.3.14) and (2.3.15).

2.4 Comodule algebra structure

Recall the definition of a right comodule algebra.

Definition 2.4.1. B is a right comodule algebra over a Hopf algebra H if there exists an algebra map
0: B — B® H, which we call right coaction, such that the coassociativity and counital conditions
hold

(id® A)od=(0®id)od , (id®e)od=1id. (2.4.1)

In this thesis, we will only work with right comodule algebras, and we will often simply call
them comodule algebras.

%For more general evaluation map, see for instance [BGKNR12, eq. (4.32)]. Here, we set so = s1 = —1.
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2.4.1 Comodule algebra structure for A,

We conjecture that the algebra A, is a right comodule algebra over H = LU,;sly with coaction
d: .Aq — Aq & ﬁUqSlz

such that its values on first 2 generators are
1 1
d(Wo) =1® (k+q5E1Kf + kq‘%Kf) +Wo® K1, (2.4.2)
1 1
6(W1) =1® (k+q§FoK§ + k_qiEoK(%) +W; ® K . (2.4.3)

Obtaining the coaction for all the generators of A, requires a detailed study. At present, we do not
have expressions of this coaction for all the generators of A,. Nevertheless, in this thesis, it will be
sufficient to consider an evaluated coaction

dw: Ag = Aqg @ Uysly

such that §,, = (id ® evy,) 0§, with w € C*. Note that in the next chapter, we will use a formal
evaluation map in order to consider w as a formal variable and not a nonzero complex scalar, see
Section 3.2.2.

o (Wi(u),Gx(u)}

The proof of the following proposition is postponed to the end of Section 3.5.

Proposition 2.4.2. The evaluated coaction of the generating functions (2.1.1), (2.1.2) is

U—l U—l
O Wa(u))= ———Wx(u) ® ((g—q 1)?S+S% — q(K* — KFh) — — (w? + w HWa(u) @ 1
q+q q+q
(¢—¢ HUu™! +1 lo prtd 1 +1q okl
s (0 o S ) + kTR () (S K))
+ U (1 ® (krgt3w¥lS, K¥3) £ 1 (k_q%wils_Ki%)) TWy(u) @ KEL, (2.4.4)
(@) = T g e st g ) (w et 4wt KT 4 G () 01
ke (g+q7h) Togtag!
(¢ = a7 (keaTE OV () = UTW- () @ (T S5 KF)
+ g W (1) = U™ Wi () @ (0 S K H))
kik_(¢+q U k= —1\2 @2 | 2 -1
R e pa— g )PSE - R KT ) (2.4.5)
where we used the shorthand notation Sy = E, S_ = F. We note that these expressions were first

obtained in [BS09, Prop. 2.2]1.

"Typos in [BS09] corrected (a prefactor was missing).
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o {W_p, Wiy, Gk+1,ck+1’k € N}

Proposition 2.4.3. The evaluated coaction for the alternating generators are given by

1 1 1 1
dw(Wp) =1® (kyq2w "EK2 +k_q 2wFK2)+Wy® K , (2.4.6)
(W) = 1@ (kyq 2wEK ™2 + k_q2w 'FK 2) + W, @ K~ | (2.4.7)
6w(G1) = GL @1+ (¢7 — g k(g 3 Wo ® (™ FKZ) + g3 W) ® (wFK %))
kik_ -1 k_
4k (q:q )1®(7((1_(1)2}72_(wfzKerZKfl)), (2.4.8)
q—q ky
. kik (qg+q! k _ D
5w<G1)_+q(_qq_f)1®(k+(q_q 1)2E2—(w 2K 1—|—w2K)))
+ G @1+ (= ¢ Dk (q2Wo ® (WEK?) + ¢ 2W, ® (w ' EK2)) | (2.4.9)
and for k € Ny
Su(W_g) = —— W SURER (K- K-Y) 4 W e K - Lt W
wl( —k)—q+q_1 @ ((g—q7) —q(K — ) +W_ @ T gL ke
a—a (kiq2Gp® (w ' EK?) + k_q 3Gy @ (wFK?)) (2.4.10)
(W )—#W ®((¢g— ¢ ')?FE—qK ' - K))+W ®K—1—MW
w{VWEk+1 T it q! —k+1 q4—9q q k+1 q+q! k
-1
q—q 1z gt
k G EK™ k_q2G FK 2.4.11
kyk— (q+q )(+q2 £ ® (v ) hegiGo (w ) ( )
6u(Gri1) = (¢ —q %) < %W—k—Wk)®(w_1FK%)+q%(Wk+l_W—k-i—l)@(WFK_%))
k_(qg—q 1)2~ 2 1 -2 2 p—1
=979 ) G eF - Gr ® K+wK Y)4Gui®l, 2.4.12
k(g +q 1) k i+ k@ (w w ) k+1 ( )
~ 1 1 1 1
Suw(Gri1) = (¢ — g ks ( 2(Wep = W) @ (WEK?Z) + ¢~ 2 (Wi — Wepqn) ® (w_lEK_E))
ki(g—q')? 2 I = —27-—1 2 ~
G, FE - —G ® K 4+wK)+G ®1. 2.4.13
k(g +q 1) t+q ! k® (w wK) k+1 ( )

Proof. Replace the generating functions W4 (u), G+(u) in the equations (2.4.4), (2.4.5) by their
expressions given in (2.1.1), (2.1.2). Then, the result follows by extracting the modes. O

o {Wo, Wy, Gg41]k € N}

The evaluated coaction for the generators of the compact form of A, are extracted from Proposi-
tion 2.4.3.

Proposition 2.4.4. The action of the evaluated coaction map on the essential generators of A, are

given by (2.4.6), (2.4.7) and

kik—(¢+q7")

6w(Gl) =k (*—q¢ IR F*+ G @1+ v

® (WK1 +w?K) (2.4.14)



62 Chapter 2. The q-Onsager algebra and its alternating central extension
a—q'
k(g+qt)
k- (¢—q7")? (¢+q¢ ")
0w (G =—— " (Gg— ———=

( k+1) ket q_‘_q,1 ( k [
(¢—q")

ki(g+q7t)

G
- q+2_1 ® WK +wK) + G ® 1,

- (2 Wo, Gily ® (w ' FK3) + ¢3[Gy, Wi, ® (wFK %)) |
Wo, [Wo, G¢] ]) ® F? (2.4.15)

(g 2w [Wo, Gp1], ® FKZ + q2w[Gpy1,Wi], ® FK %)

for k € N,.

Proof. Recall Proposition 2.4.3 with 6,,(G1) and 6,,(Gg41) given in (2.4.8), (2.4.12). The goal is to
express the r.h.s. of the latter relations solely in terms of {Wy, W1, Gi11|k € N}. We first show the
equation (2.4.15). It is proven using (2.1.17)—(2.1.19) and [Wo, Wy] = —p~1[Wo, [Wo, Gi],], which
is obtained using in the r.h.s. of the latter relation (2.1.18) for K — k — 1 and |Wy, W_;] = 0. The
equation (2.4.14) is shown similarly. O

2.4.2 Comodule algebra structure for O,

For Oy, the coaction map §: Oy — Oy ® LUysls is given by (2.4.2), (2.4.3) but with the substitution
VV[) — Wo and W1 — W1 [BB]Z]

In this chapter the g-Onsager algebra as well as its alternating central extension A, were both
reviewed with several different presentations, and their comodule algebra structure were also given.
In this thesis, the FRT presentation for A, with its spin—% K-operator given in Definition 2.1.1
will be of main importance. Indeed, in the next chapter we introduce an axiomatic definition
of a 2-legs universal K-matrix associated with a comodule algebra B, and A, will be our main
example. On one hand, from this universal K-matrix, spin-j K-operators for A, are obtained by
specialization to formal evaluation representations of LU;slo. On the other hand, independently
of this universal framework, fused K-operators for A, are constructed using a fusion procedure
different from the one presented in Section 1.3. This one is based on LU,slo-intertwiners between
formal evaluation representations and their tensor products. Then, comparing spin-j K-operators
and fused K-operators, some information on this universal K-matrix is extracted and reported in
Conjecture 1.



Chapter 3

Universal K-matrix and fused K-operators

fOf Aq

In this chapter we solve the first two problems addressed in this thesis:
e Problem 1:

The different universal K-matrices, as defined in [BKol15. Kol7, AV20, AV22] (recall the dis-
cussion of these constructions in Introduction), do not allow for the treatment of K-operators

solutions to the reflection equation with spectral parameter (0.0.15) and with a physical co-
action of the form (0.0.16).

e Problem 2:

The spin-1/2 K-operator for the alternating central extension of the g-Onsager algebra A, was
introduced in [BS09], recall Definition 2.1.1, but its spin-j version has never been constructed.

In short, this chapter is divided into two parts: Sections 3.1 and 3.2 tackle the first problem,
while Sections 3.3-3.6 address the second problem, offering an interpretation of the fused K-operators
constructed by fusion in relation to the evaluation of a universal K-matrix.

This chapter is organized as follows.

In Section 3.1, the formalism of universal R-matrix is first reviewed following [Dr86]. In order
to handle K-operators with a spectral parameter, we consider a mild modification of the universal
K-matrix axioms from [Ko17, AV20], see Definition 3.1.7. In our framework, the universal K-matrix
R belongs to B® H, where B is a comodule algebra over a Hopf algebra H. It satisfies a 1-twisted
reflection equation, where ¢ is an automorphism of H, see Proposition 3.1.8.

In Section 3.2, we consider the choice where H is the quantum loop algebra LU,sl2, and introduce
formal evaluation representations, which are infinite-dimensional and not of highest-weight type.
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Spin-j (affine) L-operators and K-operators are defined as evaluations of R and £ in Section 3.2.3. Tt
is important that these evaluations make only sense for formal parameter u. An importance is given
for the choice of ¥, an automorphism of H that forms a twist pair together with a Drinfeld twist
J € H® H, see Definition 3.1.5. Indeed, for H = LUysla, ¢ = 1 defined in (3.1.12) and J =1® 1,
the specialization of the i-twisted reflection equation leads to the reflection equation with spectral
parameter (3.2.37) that appears in the study of open quantum spin-chain models. Finally, the Hopf
algebra structure of H, as well as the comodule algebra structure of B, are described in terms of
1

the spin-35 affine L-operators and K-operator.

Section 3.3 is devoted to a detailed analysis of the tensor product of evaluation representations of
LUyslo. They are of finite dimension and indexed by a non-zero complex number u called evaluation
parameter. Sub-representations emerge from the tensor product representation of LU,sly for special
values of the evaluation parameters, and we find explicit expressions for the corresponding LU,sls-
intertwining operators: the fusion/reduction operators (j +1) — (1, ), where we used the notation
(j) = C¥*L and ( %, j) = C? @ C¥*L. This analysis is then extended to the case where u is treated
as a formal parameter, which is necessary for a careful treatment of the constructions of fused L-
and K-operators.

In Section 3.4, we assume the existence of a universal K-matrix R for a comodule algebra B and
a certain twist pair, to explore consequences of universal K-matrix axioms on the properties of K-
operators. Considering the sub-representation associated with the ‘fusion’ (j+3) — (3, ) of formal
evaluation representations, it leads to a fusion relation satisfied by the spin-j L- and K-operators, see
Propositions 3.4.1 and 3.4.8. This relation expresses a spin-j L-operator (resp. K-operator) in terms
of L-operators (resp. K-operators) of lower spins recursively. The sub-representation corresponding
to ‘reduction’ (j — %) — (%,j) leads similarly to Propositions 3.4.3 and 3.4.9 that express a spin-j
L-operator (resp. K-operator) in terms of L-operators (resp. K-operators) of higher spins recursively.

In Section 3.5, we consider the choice of the comodule algebra B = A,, the alternating central
extension of the g-Onsager algebra, over H = LUyslz. This time, we do not assume the existence
of a universal K-matrix. Instead, we draw inspiration from the fusion relation satisfied by the
spin-j K-operators established in the previous section to give a new proposal for fused K-operators
generated by the fundamental one of spin-1/2 found by Baseilhac and Shigechi in 2009 [BS09]. More
precisely, we introduce fused K-operators of spin-j in Definition 3.5.1 based on the fundamental
K-operator (2.1.5) from the reflection algebra presentation of A, see Theorem 2.1.1. We prove in
Theorem 3.5.2 that they satisfy a reflection equation with spectral parameter. We also give compact
expressions for the fused R-matrices and the fused K-operators in (3.5.9), (3.5.10), solely in terms
of the fundamental R-matrix and K-operator. Then, we classify one-dimensional representations
for A, in Proposition 3.5.3, and by applying these results to the fused K-operators, we get fused
K-matrices in Definition 3.5.5.

In Section 3.6, the precise relation between the spin-j K-operators from Section 3.4 and the
fused K-operators from Section 3.5 leads to Conjecture 1, with a few supporting evidence discussed.
Remarkably, the fused K-operators constructed by a fusion procedure turns out to satisfy analogs
of the evaluated axioms of the universal K-matrix.

This chapter is based on our paper [LBG23]. Since all the proofs are already given in details
there, we omit most of them here and we refer the interested reader to the latter reference.
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3.1 Universal R- and K-matrices

Firstly, we recall the definition of a quasi-triangular Hopf algebra H with the associated universal
R-matrix that satisfies the universal Yang-Baxter equation. Then, inspired by the works [[K017] and
[AV20], we define in Section 3.1.3 a universal K-matrix associated with H, a pair of its consistent
twists (¢, J), and its comodule algebra B — this is an element in B ® H that satisfies a universal
reflection equation (also called -twisted reflection equation), see Proposition 3.1.8.

3.1.1 TUniversal R-matrix

Let H be a Hopf algebra with coproduct A: H - H ® H, the counit e: H — C and the antipode
S: H — H, which are subject to consistency conditions'?. We denote the opposite coproduct
A = po A, where p is the permutation operator'®. Here we use the notation Rys = R® 1,

Roz = 1 ® R, Riz = pas(Ri2).

Definition 3.1.1 ([Dr&86]). For a Hopf algebra H, an invertible element R € H ® H is called
universal R-matriz if it satisfies

RA(x) = AP(z)R Ve e H | (R1)
(A @ id)(R) = Ri13Ros (R2)
(id® A)(R) = RisRg (R3)

If such R exists, then the pair (H,R) is called a quasi-triangular Hopf algebra.
We note that the universal R-matrix necessarily satisfies
(S®id)(R) ="' = (id® S)(R) , (3.1.1)
(e®id)(R) =1=(Id®e€)(R) . (3.1.2)

Using the relations (R1)-(R3) one can show that the universal R-matrix satisfies the universal
Yang-Baxter equation (without evaluation parameter):

R12R13R23 = Ra3R13R12 .« (3.1.3)

It is well-known that the universal R-matrix coming from a quasi-triangular Hopf algebra gives
a way to generate R-matrices on tensor product of representations, via evaluations as we will see in
Section 3.2 [Dr&6].

3.1.2 Drinfeld twists and twist pairs

Appel and Vlaar introduced the notion of a cylindrical bialgebra [AV20, Def. 2.3] which is a quasi-
triangular bialgebra with a universal solution of a twisted reflection equation in H ® H. This
approach was further elaborated in [AV22] to study K-matrix solutions of the parameter-dependent
reflection equation for the case of finite-dimensional representations of quantum affine algebras.

12We refer to [CP95, Chap. 4] for the axioms of a Hopf algebra.
13Here we define p(z ® y) = y ® «, for all z,y in H.
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In this section, first we review known results of [AV20]. Then, inspired by [AV20, Prop.2.7], we
introduce a universal K-matrix £ € B ® H that satisfies a new set of axioms (K1)-(K3).
The following is an extension of [AV20, Def. 2.2] from bialgebras'# to Hopf algebras.

Definition 3.1.2. Let (H,R) be a quasi-triangular Hopf algebra and v: H — H an algebra auto-
morphism. The -twisting of (H,R) is the quasi-triangular Hopf algebra (HY,R¥Y) obtained from
(H,R) by pullback through <, i.e. HY is the Hopf algebra with same multiplication, new coproduct,
counit and antipode'®:

AV =@pev)odoy™, e =eoy !,  SV=yoSoy !, (3.1.4)
and the universal R-matrix is given by
R = (V@ Y)(R) . (3.1.5)

In what follows, we also use the opposite version of the ¥-twisting of (H,R). Let HP be the
Hopf algebra with the coproduct A, the antipode S~! and the other structure maps are the same
as H. Also, the pair (H C"p’w,iﬁg{/} ), where HP¥ is the v-twisting of HP, is a quasi-triangular
Hopf algebra [LBG23, Lem. 2.3].

To introduce the concept of universal K-matrix, we also need another type of twists, called
Drinfeld twists:

Definition 3.1.3 ([Dr86, Dr&9a]). A Drinfeld twist of a Hopf algebra H is an invertible element
J € H® H satisfying the property

(e@id)(J) =1 = (id® e)(J) (3.1.6)

and the cocycle identity
(JRDNA®id)(J)=1xJ)(id A)(J) . (3.1.7)

Example 3.1.4. In the literature, there are two natural choices of Drinfeld twists [AV20]: J =1®1
and J = R R. [t is straightforward to check using the universal R-matriz azioms (R1)—(R3)
that (3.1.6) and (3.1.7) indeed hold for both of them.

Given a Drinfeld twist J one obtains a new quasi-triangular Hopf algebra (H;,9R;) with the
coproduct [Dr89h]
Aj(z)=JA@)J, VreH, (3.1.8)

and the universal R-matrix

Ry =JugRJ L. (3.1.9)

At this point, we introduced two ways of deforming a quasitriangular Hopf algebra (H,R) with
coproduct A, either using the twist ¢, or a Drinfeld twist J. The following definition of a quasi-
triangular pair imposes some compatibility conditions for these two deformations.

Definition 3.1.5 ([AV20]). Let (H,R) be a quasi-triangular algebra. A twist pair (¢, J) is the
datum of an algebra automorphism v: H — H and a Drinfeld twist J € H ® H such that

1Recall that a bialgebra is a Hopf algebra as defined in Definition 2.3.1 but it does not have an antipode S.
151t is enough to verify that €% o S¥ = €¥.
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(Hcopﬂb’gq;/’{/’) = (Hj,R), i.e. such that €¥ =,

APY(z) = JA(z)J 1,  VreH,
o ~ (3.1.10)
Ry = Iy RJ T,
where
APV = (h @) o AP oqp L. (3.1.11)

Example 3.1.6. For H = LU;sly, the pair (¢,J) = (9,1 ® 1) forms a twist pair with the auto-
morphism n defined by

1 1
—_ — 2 — 2

n(Eo) = F1 n(Er) = Fo U(KO;) = Kl,; ; (3.1.12)

n(F1) = Ep , n(Fo) = E1 n(K{) =K, ?*

3.1.3 Universal K-matrix

Let (¢, J) be a twist pair for a Hopf algebra H and B is a right comodule algebra over H. Inspired
by [AV20] we define a universal K-matrix & € B ® H. Recall the definition of a comodule algebra
B with coaction §: B — B ® H from Definition 2.4.1. Here we use the notation £ = R ® 1,
K13 = pa23 o Ria.

Definition 3.1.7. We say that R € B® H is universal K-matrixz if the following relations hold for
all b € B:

RO(b) =6V (D)8, with 6¥ = (id® ) 0§, (K1)
(6 @ id)(8) = (RY)30813%R03 , (K2)
(id ® A)(R) = Joz' R1sRyyfaa | (K3)
where
RY = (¢ @ id)(R) . (3.1.13)

A universal reflection equation is then derived using the axioms (K1)-(K3).

Proposition 3.1.8 ([LBG23, Prop.2.11]). Let (v, J) be a twist pair. The universal K-matriz
satisfies the -twisted reflection equation

R12(RY)30813M03 = Koy R13R%LR1o - (3.1.14)

Let us now make several remarks concerning the above definition. First, we note that 6¥ defines
a coalgebra structure on B over H¥. Therefore, by (K1) £ intertwines two actions of B on B® H,
given by d and §¥ respectively. By analogy with (R1), we call (K1) the twisted intertwining relation.

Then, from above axioms and some properties of the comodule and Hopf algebras structure, we
find:

Remark 3.1.9. From the azioms (K2)-(K3) of the universal K-matrix, we get some relations on
the level of the algebra.
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(i) We provide a consistency check of the axioms (K2) and (K3). From coassociativity prop-
erty (2.4.1), we have:

(id® A ®id) o (6 ®id)(R) = (5 ® id ®id) o (5 ® id)(K) . (3.1.15)

This relation is checked using (R2) and (K2). Indeed, the Lh.s. equals (R )43(9R%) 42 814R24NR 34
where we used (A ® id)((RY)21) = (:BY)32(9RY)31, while the r.h.s. gives the same expression
using twice (K2).

The counital property in (2.4.1) is checked using (K3) and (3.1.2) as follows:

(id® e ®id) o (§ ®id)(R) = (id ® € ® id) ((R?)32813R23) = & . (3.1.16)

(ii) Recall that the coproduct and the counit of a Hopf algebra satisfy
(e®id)oA=id=(id®e)oA. (3.1.17)
Then, using (K3), (3.1.2), (3.1.6), and the fact that € is an algebra homomorphism we obtain:
A= [(([d@id®e) o ([d@A)|(R) = ([dRid®e)(Jom R13RuR12) = ((Idoe)(R)]®@1) & . (3.1.18)

Applying again (id ® €) on (3.1.18), we find that (id ® €)(R) is an idempotent. If in addition,
R is invertible, it follows:
(d®e)(R) =1, (3.1.19)

which is the analogue of (3.1.2) for the universal R-matrix.
Finally, we consider some special cases of Definition 3.1.7.

Remark 3.1.10. The previous definitions of universal K-matrices from the works [[Kol7. AV20]
can be obtained as special cases of Definition 3.1.7.

(i) Tt is easy to check that (id, M5;") is a twist pair. In particular, one finds that (K1)-(K3), for
¥ =1id and J = 9%511, correspond to the axioms for the universal K-matrix defined in [Kol7,
Def. 2.7].

(ii) Assume that B is a right coideal subalgebra of H, that is 6 = A|p, then define:
K= (e®id)(R), KeH.

Then, applying the counit on the first tensor factor of the universal K-matrix in (K1)—(K3)

yields:
Kb=wybK, VYbeB, (3.1.20)
A= R")nkR, (3.1.21)
Alp(K) = JLKRYK, . (3.1.22)

We recall that in this setting of B a coideal subalgebra of H, Appel and Vlaar introduced
in [AV20] one-component universal K-matrices & € H. The formulas (3.1.20) and (3.1.22),
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with the identification K = k, correspond respectively to the defining relations of the so-called
cylindrically invariant subalgebra B and the cylindrical pair (H,fR), see [AV20, Def.2.3].
We thus get the one-component universal K-matrix of [AV20] from our 2-component K. The
opposite is actually also true: starting from a solution K of (3.1.20) and (3.1.22), and assuming
that R defined by (3.1.21) lies in B ® H, one can check that 8 satisfies the axioms (K1)-(K3).
Indeed, checking (K1) and (K2) is straightforward, while for (K3) we use the equalities

(id © A)[(RY)a1] = Joz" (RY)31(RY )a1.J23
(9%¢)219%339%13 = 9%139%3”3(9%21 .

The first one is obtained using

A(y(z)) = T (W @ ¢) 0 A% ()]

with
(id ® AP)(Ra1) = R31NR21 ,

while we applied (id ® 9 ® id) o p12 to the universal Yang-Baxter equation (3.1.3) to get the
second equality. Then, we get

(ld ® A) (ﬁ) = J2?51 (mw)i’»llci’» (%¢)21%;&3%13 ICQ%lg
= J55 (RY)31K3 Riz Ry (RY)a1 Koo
= J2_31§139%12Z)3ﬁu

which is indeed (K3).

Let us comment on the point (ii) of the above remark. If B = Oy, the ¢g-Onsager algebra, then an
explicit formula for our universal K-matrix in O,® LU;sl could be deduced from (3.1.21) provided K
is known. Note that there are existence results for K for certain choice of twists [AV20]. However,
no expressions for K in Oy, for example in terms of root vectors, are known. In the following,
we fix the twist pair (¢,J) = (7,1 ® 1) from Example 3.1.6 which actually differs from [AV20,
Sec. 9.5]. We make this choice because 7 is easy to work with and it allows to obtain the standard
reflection equation from the -twisted reflection equation (3.1.14) in our choice of gradation. Let us
mention that in the next sections, we define K-operators out of 8 € A; ® LUysl2, and derive fusion
formulas satisfied by the K-operators for the twist pair (n,1®1). As it will be studied in Chapter 4,
these K-operators are involved in the construction of physical transfer matrices. In view of these
applications, it is not clear whether the choice of the twist pair of Appel-Vlaar from [AV20, Sec. 9.5]
produces the physical transfer matrices discussed in Chapter 4. Indeed, following the approach in
(ii) for B = O, and using their twist pair, the fusion formula is affected by non-trivial J and it
provides a priori different spin-j K-operators.

Furthermore, if B is a comodule algebra over H and not a coideal subalgebra of H, as in our
main case of interest B = Ay, then the formalism from [AV20, AV22] is not suitable. That is why in
this section we developed a slight generalization for the two-leg universal K-matrices, and we study
its consequences in the next sections.
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3.2 Evaluation of universal R- and K-matrices

We introduced a universal K-matrix 8 € B® H in Definition 3.1.7, where B is a comodule algebra
over H. Now, we need to define a K-operator as the 1-component evaluation of K& such that it
satisfies the reflection equation with spectral parameter (0.0.15), and whose coaction is physical, i.e.
of the form (0.0.16). Therefore, a study of the evaluation of R (and its twisted versions), as well as
R, is required. The spectral parameters naturally arise in quantum affine algebras from evaluation
representations. For instance, the evaluation representation for H = quAlg was introduced in [J86,
CP91], via an algebra map from quAlg — Ugsly with a spectral parameter u. Representations
of quAlg can thus be obtained by pulling back representations of U,sly by the algebra map. It
works similarly for Uq(;’\ln) [J86], but it is not the case for any U,(g), see the remark below [C]94,
Prop. 4.1]. For clarity of presentation and because we will mainly work with this specific case, we
consider g = sAlg, and in particular its quotient: the quantum loop algebra H = LU;sls, recall
Definition 2.3.6. As reviewed below, it has an evaluation representation map 7,: H — End(V©)).
We want the twist automorphism v to satisfy

moyp=nl_, . (3.2.1)
Such twist indeed exists, denoted as n and defined by (3.1.12). Together with the trivial Drinfeld
twist, it forms a twist pair (¢, J) = (7,1 ® 1) from Definition 3.1.5. We now briefly recall the

evaluation representation of LU,sly to define 7.

In the following, in order to evaluate universal R- and K-matrices, we will need formal evaluation
representations which are infinite-dimensional. For pedagogical reasons, we first recall the standard
finite-dimensional case, i.e. when u is a non-zero complex number.

3.2.1 LU,sly; evaluation representation

Recall the evaluation map ev,,: LUsla — Uysla from Section 2.3.3. Recall also that finite-dimensional
irreducible representations of Ugsly are labelled by a non-negative integer or half-integer j, with the
dimension of the representation being 2j + 1. Let V) denotes the (2j + 1)-dimensional space
spanned by |j,m) with m € {—j, —j+1,...,7—1, j}, then

. . . . 1 .
E|j7m> :Ajvm |]7m+1>7 F|j’m> :Bj,m ‘J7m_1> ; Ki2 |]7m> :q:I:m |],m> 5 (3‘2'2)

with

Ajm = \/[j —m], [j+m+1],, Bjm = \/[j +m], [ —m+1],. (3.2.3)

Let 7/ be the representation map of Uysla, such that 7 Uysly — End(C%*1). Then, given u € C*,
we define the evaluation representations 77,: LU,sls — End(C¥*1) by

7l =l oev, . (3.2.4)

3.2.2 Formal evaluation representation of LU,sl,

In the next sections, when we discuss L- and K-operators, and in calculations of 1-component
evaluation of the universal R- and K-matrix, we actually work with formal parameter u, not a
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complex number, because the evaluated expressions would not be well-defined if v was a number
as in the evaluation representations considered above. Actually, in the evaluation of the universal
R-matrix, such considerations were already accounted for in [Dr86, Sec.13] and [F'R92, Sec.4],
see [Hel7, Sec.1] for a review. Similarly, for the evaluation of the universal K-matrix, similar
precautions should be taken. Therefore, we need to introduce a formal-parameter analogue of the
(finite-dimensional) evaluation representations from (3.2.4). In the literature, these representations
of quantum affine algebras are also known [CG03] under the name quantum loop modules.

From now on, we assume that u*! is formal, and keeping for brevity the same notations, we

define the formal evaluation representations 7, as

T =mloevy,: LU,sly — End(CH [t . (3.2.5)
where the formal evaluation map
evy: LUysly — qulg[uil] , (3.2.6)

is defined by same formulas as in (2.3.16) for the principal gradation but with u*! formal variables.
We thus have explicitly on generators:

Wf%(Eo) = u 7i(F), W{}(FO) = unl(E) , WZL(K(%) = Wj(Kié) ) (3.2.7)
m(E) = uin(BE), w(FR) =urd(F), wi(K?) = ni(K2)

The map (3.2.5) and formulas (3.2.7) define the action of LU,slz on the space C¥+1[u*1] of
Laurent polynomials in u with coefficients being vectors in C**!. For example, the action of Ey is
given by

7l (Ep)(zu™) = 79 (F)(z)u™ 1 | reC¥ nez,
and extended linearly to all elements in C%*+![u*!], and similarly for the other generators.

Here, we use the same notation for the corresponding representation mﬂ : LUysly — End (CQj +1 [uil]),
and call it formal evaluation representation. We denote the corresponding infinite-dimensional mod-
ule by C¥ % In what follows, we will often use the notation (CE{;“, for z € C*, which means that
the LU,sly action is on the same underlying vector space C%+1[u*1] but one needs to replace u in
the action (3.2.7) by zu. Let {z} }o<k<o; be a basis in the spin-j module C**! over Uysls such that
o is the highest weight vector, or |j, j) in the notations of (3.2.2), and zy := 7/ (F)*zg. Then the
vectors

Thp = Tpu” 0<k<2j,nez, (3.2.8)
form a basis in (C?,,j *1 with the action of LUygyslz up to scalars described as follows: FEy changes
the index (k,n) by (41, —1), while Fj changes it in the opposite way (k,n) — (k — 1,n + 1), and
similarly for E1, Fy, and finally Ky and K; do not change the index (k,n), they act as K~! and K,
respectively, on .

For the LUysly action in the basis (3.2.8), let us consider an example of the j =1 case in more
details. The action of LUysls is better to present diagrammatically as in Figure 3.1 where each node

corresponds to some xy , while edges are the actions of E; and F; described up to scalars above.
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Figure 3.1: Quantum loop module C3 of spin-1 where the red and blue diagrams correspond to
irreducible components of the LU,sly action.

As we can see from this example, the formal-evaluation representation C3 is fully reducible due
to the presence of two different sub-diagrams, one is blue and the other is red. Each of these sub-
diagrams describes an irreducible action. It is not hard to see that this action arises from the other
version of formal-evaluation representation in the homogeneous gradation. Recall [BDGZ93] that
the homogeneous gradation action is as in (3.2.7) for Ey and Fy, while F; and F act just as E and
F, respectively. Let us denote the corresponding LU, slg module on the vector space C¥*1[y i1]
by C¥*! Tt is clear from the action in the basis of (C 21 analogous to zju™ that this module is
irreducible, while in our example C3 is decomposed as C3 = (C3 <) C3

We have a similar result for arbitrary spin j: indeed, the diagram for j = 5 is obtained by
simply deleting the last row of nodes labeled by x3, and all arrows attached to them, so we get a
disjoint union of two zig-zag’s, while for j > 1 one just repeats the obvious pattern of arrows which
gives again two independent sub-diagrams of different color. Let us reformulate this observation as
the following lemma.

Lemma 3.2.1. CZ™ is a direct sum of two copies of CcH*t,

This effect of decomposition of the action in one gradation via actions in the other gradation is
in contrast to the finite-dimensional evaluation representations where the choice of gradation is not
really important.

3.2.3 Evaluation of the universal R-matrix.

The universal R-matrix R is an element of a completion of UqSAl2®Uq;lg having the form of a product
of infinite series over root vectors [[KT92a, Theorem 1], see the expression in our conventions in
Appendix B. Let us now consider formal evaluation representations applied to the second component
of the universal R-matrix which results in the so-called affine L-operators and R-matrices.

The spin—% affine L-operators'® are defined as follows [['R92]:

Lo(w) = ((d@r2)®), L (u) = [(d e, ) (%) . (3.2.9)

Y6We call these operators affine in order to distinguish them from the usual L-operators defined in (3.2.12). The

. 1
spin-j affine L-operators are defined using Wi _, instead of 7r5_1 in (3.2.9). However, we will only need the spin-1/2
ones.
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The calculation of such specialization is tedious, so it is given in Appendix B in Section B.2.2, with

their final expressions in (B.2.18) and (B.2.25). We thus see that they belong in LU,sla((u™!)) ®

End(C?). Considering the modes of the entries of L*(u), they generate H = LU,sly and satisfy the

Yang-Baxter algebra relations:

() LE(wW)RE2) (u/v) | (3.2.10)
22) (u/v) . (3.2.11)

These relations follow from the evaluation of the universal Yang-Baxter equation (3.1.3).

Secondly, applying the evaluation map as defined in (3.2.6), to the first tensor component of R
and the formal evaluation representation to the second, one obtains L-operators.

Definition 3.2.2. For j € %N:
LY (u1 Jup) = (eva, @ 7, )(R) € Uysla((uz/u1)) ® End(C¥H1) . (3.2.12)

We call LY (u) the spin-j L-operator.

Note that LO(u) = 1 by (3.1.2). Evaluating the first component of L) (u) on a finite-
dimensional representation of Uysly we get the R-matrix. For any spin j1, j2, we denote the R-matrix
by

RUVI2) (uy fug) = (w} @ 72 ) (R) (3.2.13)
= (7 @id) (LY (uy fuz)) .

We recall that the L-operators satisfy the RLL relations. Indeed, applying (ev,, ® 77%22 ® 7'[%?:’,’)
to (3.1.3), one finds'”

L) (/o) LS (g REG T (i fg) = R (/g )L™ (un fug L7 (wn fua) . (3.2.14)

Recall also that the R-matrix satisfies the Yang-Baxter equation. It is found by applying (77! ®
id ® id) to the above equation and setting ug = 1:

joémé)(ul/u2)R%17j3)(U1>R%27j3)(u2) _ R;J;’j?’)(UQ)R%LB)(ul)Rgg’h)(ul/uz) . (3.2.15)

An explicit computation of the spin—% L-operator L(%)(u) and the R-matrix for j; = jo = % as
the evaluation of the universal R-matrix can be found in [BGKNR12, egs. (4.62), (4.53)]. Similar
computations for affine L-operators L*(u) are done in Appendix B.3. For j = % in (3.2.12), the
L-operator is given by:

L(2) (u) = p(w) L@ (u) (3.2.16)

with E(%)(u) from (1.1.8), where the ‘normalization’ p(u) is the following function of u~!:

p(u) = utgmzet Y (3.2.17)

"The RLL equation belongs to the triple product U,sle ® End(C?*1 ') @ End(C%2*!), and thus the L-operator
should be written as L((sz)(u) but here we omit the label 0 corresponding to Ugsla.
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and A(u) can be written as a power series (B.3.1) in u~! with coefficients Cy, € Uyslz being certain

polynomials in the Casimir element, see (B.2.5) and (B.2.6) for more details. Therefore, L(%)(u) is
indeed in Ugsla((u™!)) @ End(C?).

For j1 = jo = % in (3.2.13), the corresponding R-matrix is given by:

N

RE ) (u) = 72 (u(w))RE 2 (u) | (3.2.18)

where R(%’%)(u) is given in (1.1.5) and with

(3.2.19)

A 0 k(25+1) —k(2j+1) ,,—2k
wf(u(u»:u*q-%exp( (i u )

2k
— 1+gq k

where we used the evaluation of the coefficients Cj of A(u) given in (B.3.1), see [BGKNRI12, eq.
(4.59)]. Note that R(%’%)(u) coincides with the expression in (C.3.1) for j = 3.

We now recall a special central element in Uyslo, called the quantum determinant ~(u). It is
given by [Sk&8]:
— A(3) (3)
Y(u) = trio (Pl (w)Ly? (ug)) (3.2.20)
=’ +u g -C,
where tri2 stands for the trace over V3 ® V3 and where C' is the Casimir element of Ugysly defined
in (2.3.5). Here, as usual, the permutation matrix P2 = P with P = R(%’%)(l)/(q —q71) for the
R-matrix (1.1.5) and Py, = (1 —P)/2.
By straightforward calculations, one finds that the L-operator L(%)(u) given in (3.2.16) satisfies
a unitarity property:

L&) (v HLE) (u) = LO ()L (™! = c(u)lo,  with c(u) = —y(ug Hp(w)p(u™) , (3.2.21)

where the quantum determinant y(u) is given in (3.2.20). Note that c(u) is invariant by the inversion
of its argument, i.e. c(u) = c(u™1).

3.2.4 Hopf algebra structure

Given a Hopf algebra H, it is known that the coproduct, counit and antipode can be formulated
solely in terms of the affine L-operators [RS90] defined in (3.2.9). Recall the counit and antipode for
LUysly are respectively given by (2.3.10) and (2.3.11). Recall also the action of the counit and the
antipode on the universal R-matrix are given by (3.1.1), (3.1.2). Then, regarding the coproduct’s
action on the affine L-operators, it is obtained from the evaluation of the second axiom of the
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universal R-matrix (R2). The Hopf algebra structure of LU,slz can be described as follows'® [RS90]

(A ®id)(L*(u)) = (L*(u) )iy (L*(u )y (3.2.23)
(S® id)(Li(u)) = (L¥(u)) ! (3.2.24)
(e®id)(LE(u)) =1 . (3.2.25)

As a consequence, for the usual L-operator we have

(A ®id)(LO (u)) = (L(j)(u)>m (L(j)(u)>[2] , (3.2.26)
(S ®@id)(LY) (u)) = (LY (u))7!, (3.2.27)
(e®id)(LY (u)) =1 . (3.2.28)

3.2.5 Evaluation of the universal K-matrix.

Recall that we fixed H = LUysly without specifying its comodule algebra B. Assume that a
universal K-matrix R exists for a choice of B and the twist pair (¢, J) = (,1®1) where 7 is defined
n (3.1.12). Here 8 is in B ® LUysls, or rather in an appropriate completion of the tensor product.
For example, K might be written in the form of an infinite product over root vectors, as it the case
for the universal R-matrices. For the root vectors of B = Oy, see [BIK17], and their relations with
the alternating generators of B = Ay in [121c¢], and (B.1.1)-(B.1.2) for H = LU;sly. Then, we can
consider its evaluation with the formal evaluation representations on the second tensor component:

Definition 3.2.3. For j € %N, introduce
K9 (u) = (ido ) ,)(R) € B((u")) ®End(C¥*!) (3.2.29)
We call KU (u) the spin-j K-operator.

Similarly to the case of L-operators, we consider u as a formal variable and assume that K3 (u)
is in B((u™!)) ® End(C?). By Proposition 3.1.8, the universal K-matrix £ satisfies the 1-twisted
reflection equation (3.1.14). We now show that the evaluation of this equation leads to a reflec-
tion equation with spectral parameter. To do so, we need to evaluate the w-twisted universal
R-matrices (3.1.13). Firstly, note that ¢» = n from (3.1.12) is such that (recall the definition
n (3.2.6))

eVy 01 = evy-1 , (3.2.30)

which implies (3.2.1) for ¢ = n. Then the evaluations of the ¥-twisted universal R-matrices read:

(it @ m2)(RT) = RU) (1/(uyuy)) (3.2.31)
(mlt @ w2 ) (R)a1) = R (1/(uguy)) | (3.2.32)

"®The index [j] characterizes the ‘quantum space’ Vj; on which the entries of L*(u) act. With respect to the
ordering V[1; ® V}g], one has:

(T)y(T = Z ik ® ( (3.2.22)
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(nth, © 72)((9%21)") = R (wra) (3.2.33)
(wth, © w2) (O) = Rep ™ (s fua) (3.2.34)
(i} @ w2 ) (R = RULI2) (yy fuy) (3.2.35)
where
'R;Jf’jl)(u) = PU2d)R 21 () plitiz) (3.2.36)

Applying' Po3 to (3.1.14) leads to ﬁlg(%n)%ﬁlgmgg = mggﬁm(%n)ggﬁm. Finally, applying (id &
Wil_l ® 7Ti2_1) to the latter equation using (3.2.31)-(3.2.35), it follows that the K-operator (3.2.29)
1 2

satisfies the reflection equation'®

RGP (u fun) K (un)RIF (ugu2) K () (3.2.37)
= K5 (u2) R (ugua) KT ()RS (us fus)

for any value of ji, jo.

We show in [LBG23, Sec. 4.1.4] that the evaluation of the universal R-matrix satisfies

(v, 1 ® 7 _)(R) = (evy, ®7],)(Ra1) , (3.2.38)

2

which implies the P-symmetry o
jolwl)(u) = R (y) | (3.2.39)

Note that a proof of the above relation that does not use (3.2.38) can be found in [RSV14, Lem. 2.1].
Then, due to the P-symmetry (3.2.39), the relations (3.2.32)-(3.2.34) become

(L @ w2 ) (AM)21) = RUW2)(1/(uruy)) (3.2.40)
(@ w2 ) (Ma1)") = RU2) (uquy) | (3.2.41)
(rlt @ 72)(RY]) = RUL2) (uy fus) (3.2.42)

and the reflection equation (3.2.37) becomes the standard reflection equation

R (g 1) KD (11 YR (w09 ) K2 (1) (3.2.43)
_ ngz (u2)R(j17j2)(u1u2)ng1)(ul)R(jhm)(ul/uQ) .

Let us also mention that applying one-dimensional representations for B, the K-operators spe-
cialize to K-matrices. This will be precisely studied for B = A, in Section 3.5.3.

3.2.6 Comodule algebra structure

Consider the subalgebra in B generated by the matrix entries of the K-operator K(%)(u). They
satisfy the reflection equation (3.2.43) for j; = jo = % Similarly to the coproduct of LUjslz

9 As for the L-operator L) (u), the K-operator should be written as Ké? (u) but here we use standard notation
KZ(J)(u) where we omit the label 0 corresponding to B.
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discussed above, the coaction for this subalgebra can be expressed in terms of L- and K-operators.
Applying (id ® id ® wi _1) on the second axiom of the universal K-matrix (K2), we get:

Proposition 3.2.4 ([LBG23, Prop.4.18]). The coaction map 6: B — B ® LUysly restricted to the
subalgebra generated by the matriz entries of K(%)(u) 1s such that

(6 ® id) (K@) (u)) = (L™ @)y, (K<%>(u)) (LH () y - (3.2.44)

(1]

In the case when B is generated by the matrix entries of the K-operator K(%)(u), eq. (3.2.44)
expresses the coaction map for B solely in terms of L- and K-operators. This is the case when
B = A, and it will be discussed in Section 3.6.

We finally consider the evaluated coaction d,, = (id®ev,,)0d: B — B®Ujsly, for a formal para-
meter w, applied to the matrix elements of the spin-j K-operator. The evaluated coaction is obtained
by taking the image of (K2) under the evaluation map (id ® ev,, ® 7/_,) using (3.2.12), (3.2.30),
the evaluation

LY (ug/u1) = (evy, @ 72 ) (M) (3.2.45)

and it is given by

(60 © id) (KU () = (L(j)(u/w))m (K(j)(u))[l] (L(j)(uw))m . (3.2.46)

Whereas the action of (id ® 7ri _1) on (K1) gives
K9 (0)(id @ 77)[6,-1(b)] = (id @ 77)[6,(b)] KD (v) . (3.2.47)
We call it the twisted intertwining relation for KO (u).

In summary, the results obtained up to here are the following:

e Firstly, we defined axiomatically a universal K-matrix 8 € B ® H, where B is a comodule
algebra over H, see Definition 3.1.7.

e Secondly, we introduced formal evaluation representations of LUysla which are adapted to
work with L- and K-operators. These infinite-dimensional representations were known as
quantum loop modules [CGO03], but the framework developed here for L- and K-operators is
new to our knowledge.

e Thirdly, we defined spin-j K-operators, K@ (u) € B((u~!)) ® End(C¥*!), as the formal
evaluation of the second tensor component of the universal K-matrix, see Definition 3.2.29.
Provided the Hopf algebra automorphism 1 satisfies (3.2.1), we have shown that KU)(u)
satisfies the reflection equation with spectral parameter (3.2.37) (or (3.2.43) if the R-matrix
enjoys the P-symmetry (3.2.39)).

e Finally, the comodule algebra structure of B using K-operators is obtained from the evaluation
of the second axiom of the universal K-matrix (K2). This leads to the desired form, see (3.2.44)
and (3.2.46).
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Therefore, the elements presented here provide a solution to Problem 1, addressing and resolving
the stated issue.

Now, we want to solve Problem 2 which consists in constructing a fused K-operator, KU )(u) €
A, ® End(C%71) that is a spin-j generalization of the spin-1/2 case in (2.1.5). It would also be
desirable to give a clear interpretation of these fused K-operators in terms of the universal K-matrix
where the comodule algebra over the Hopf algebra is now fixed to B = A, and H = LU,sls.

The strategy is the following. We begin by studying the tensor product representations of LU, sla
and use the reducibility criteria on the evaluation parameters [CP91] to identify sub-representations
of spin-(j+1/2) and spin-(j —1/2). Then, we construct LU,sls-intertwiners explicitly for the corres-
ponding sub-representations which is a new result to the best of our knowledge. This construction
is then extended for tensor product of formal evaluation representations of LU,sls and this is also a
new result. These intertwiners are used to show that the spin-j K-operators K(j)(u) satisfy fusion
and reduction properties. These properties inspire us to recursively define fused K-operators K@) (u)
from (2.1.5), and we show that they satisfy a reflection equation with a spectral parameter in The-
orem 3.5.2. Finally, we propose an interpretation of () (u) in terms of a universal K-matrix, which
is expressed as Conjecture 1, establishing a relationship between KU)(u) and KU)(u). Supporting
evidence are also given.

3.3 Tensor product representations of LU,sls

In principle, as we have seen in the previous section, the evaluations of a universal R- or K-matrix
lead to a L-operator or K-operator, respectively. Although the root vectors of O, are known [BK17]
as well as their relations with the alternating generators of A, [12lc], the universal K-matrix
R € Ay ® LUysly for the twist pair (¢, J) = (9,1 ® 1), where n is defined in (3.1.12), is not
known, even its existence is an open problem. In further sections we give evidence on the existence
of such universal K-matrix by considering its relation with K-operators that are independently
constructed using a fusion procedure. This construction is based on the analysis of the tensor
product of evaluation representations of LU;slz. The reducibility criteria in terms of ratios of the
evaluation parameters for these tensor products are known [CP91, Sec. 4.9]. In this section, we
study the sub-quotient structure of these tensor products in more details, and construct explicitly
the corresponding intertwining operators. We also extend the above study for tensor product of
formal evaluation representations of LUysls, i.e. when the evaluation parameters are formal. It is
important to note that the latter are the principal elements in the construction of fused L- and
K-operators for any spin-j, and the formal versions are necessary to give a careful treatment for
this construction. In the next section, they are built from the fundamental (spin-1/2) L- and
K-operators.

For pedagogical reasons, let us start with the case where u is a non-zero complex number. We
study now tensor products of these representations

1 . .
(ma, @ m),) 0 A: LUysly — Emd((Ci1 ® (Cijjl) , (3.3.1)

where 7, is defined in (3.2.4), and look at special points in the evaluation parameters space so that
a proper sub-representation emerges. The strategy is the following: we first construct basis vectors
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{wg}, {ve} for the decomposition with respect to the subalgebra generated by {E1, F1, K1}. Then,
we study the action of { Ey, Fy, Ko} on these basis vectors. We find that there are only two ratios of
evaluation parameters up to a sign when we get a proper sub-representation, and we also construct
explicitly the corresponding intertwining maps.

3.3.1 Analysis of the tensor product representation of LU,sl,

Consider first the subalgebra generated by {E;, F1, K1} and construct basis vectors {wy}, {v/},
where k=0,1,...,2j+1,{=0,1,...,2j—1and j € %NJF, corresponding to the tensor product
decomposition C? @ C¥+! = C%+2 @ C%. We denote by wy and vg the highest weight vectors of
the corresponding spins-(j + 3) and (j — 4). These are defined by the relations

=
=

[(7d, @, ) A(B)]wo =0, [(md, @m,) A(K1)]wo = ¢ 1w (3.3.2)

(7, ® 7, ) A(E1)]vg =0, [(nd, @ 7 )A(K1)]vo = g% g (3.3.3)
Solutions to these equations are uniquely determined, up to a scalar, by
.. .. Uy _;_1 .o
wo = 1) @|5,7) , vo =N ®Ij,j—1)— w! T2 A ) @154,5) (3.3.4)

with [1) = [3,3),[}) = |3,—3), and where Aj,, is given in (3.2.3). The other basis vectors are
constructed via the action of Fjy:

1 1 4

k
we = |k & Tl )AED| w0, v |k @l )AE)] w, (3.3.5)

where 0 < k <2j+41and 0 </ <2j—1, and we set these vectors to zero if their index is outside
of the indicated range.

Now, we study the action of the generators Ey and F{y on these basis vectors, and we begin with
the action on wy’s:

1 .
[(7731 ® WiQ)A(Eo)] wy, = e (U1, u2)wi41 + ez k(ur, u2)vy

) (3.3.6)
|:(7T51 ® 7, )A(Fo)] wi = f1e(u, u2)wp—1 + for(ur, uz)vg—2 ,
where the coefficients are
2422 92 —2j-1 -
_9 4 9 g2 (u] — uzq )V [27]q
e1k(ur, uz) = uy® + [2f]quy” ea s (ur,ug) = P2+ 1], . (3.3.7)
2 9001\ 120 — K+ 2]4[K],
UL, U) = (U] + uz|2 - , 3.3.8
fl,k:( 1 2) ( 1 2[ J]q) [2j+1]q ( )
u? —uzqg~ P! u2q2j+% 27]qlk]qlk — 1
Fop(ur, uz) = (ui — u3 ) [27]q[Flqlk — g (3.3.9)

25 + 1],
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We next look at the action on wv,’s:
1 ‘
(i, 7)) o = (0, o+ easlun s
(3.3.10)

1 . _ _
[(Wﬁl ® Wiz)A(Fo)] v = fre(ur, ug)ve—1 + for(ur, ug)wy .

where the coefficients are

o 9 2 2 2j+1
_ (7 2 —|—2 —Uu _ ud —u J
e1o(ur, ug) = —2 [‘7. Jo = : Eap(uy, up) = ——1 124 :
2+ U A+ zudud /L2 + 1),
_ 0 — 241,10 _ 2 2¢O — 241,02 +1 =4
Fuomn,us) = (13— df2j + 2 L 20le gy = Cdm 221l

27 + 1] U2\ /[2514[25 + 14

We first note that in (3.3.6) and (3.3.10) the coefficients with indices 2,k and 2,¢, respectively,
correspond to contribution in the action that mixes the two spin components. In order to find
proper sub-representations, we thus need to analyse the roots of these functions ey, for, €2y
and fTQ’g. First, for generic values of uj/ug these functions do not vanish which corresponds to
the well known fact that this tensor product is irreducible. For later convenience, we present this
action diagrammatically below in Figure 3.2 where the red (resp. blue) arrows correspond to the
action of Fy (resp. Ep), and the branching points correspond to the linear combinations from (3.3.6)
and (3.3.10).

Figure 3.2: Action of E;, F; on wy, vy for generic values of uy; and us.

From the expression of the coefficients (3.3.7) and (3.3.9), one finds that e (w1, u2) = for(u1,u2) =
0 iff uy/ug = iq_j_% and ég¢(u1,uz) = fz’g(ul,ug) =0 iff uy/ug = qu%. Bold arrows in Fig-
ure 3.2 are used to emphasize that they disappear after fixing the ratio u; /ug = +q~7 ~3. However
we do not have simultaneously these four coefficients equal to zero so we do not have a direct sum
decomposition. Instead, by fixing the ratio u;/uz to the special values we have a sub-representation
as depicted below by the dotted rectangles.
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Figure 3.3: Action of E;, F; on wy, vy for fixed values of uy/us.

1

We thus find that fixing ui/us = +¢ 772 (resp. wuj/ug = :tqj+%) gives a spin-(j + ) (resp.
spin-(j — 4)) sub-representation.

Now, in order to prepare the fusion construction, we need to find which space the two sub-
representations depicted above are isomorphic to. First, consider the spin-(j+ %) sub-representation

from the left part of Fig. 3.3. We find that Ci2q_]-_1/2 ® (quf2 is isomorphic to CZ when uy = uq%.
We thus introduce a LUgslo-intertwiner for j € 1N

i+ . 2+l 2 2
gl+3). Cy: —>(Cuq_j®(cuq% ,

and compute explicitly its matrix expression in Lemma C.1.1.

Then, consider the right part of Fig. 3.2 with the spin-(j — %) sub-representation. We find that
the space (CZqu 112 ® C% is isomorphic to C¥ ! when uy = uq%. Similarly to £V +%), we introduce
a LUyslo-intertwiner for j € %N+

U )

U1 C¥1 52, 9 CY
uq

[N

and give its matrix expression in Lemma C.2.1.

Let us note that £073) and £U-32) will be respectively used in the fusion and reduction of L-
and K-operators. However, in order to give a careful treatment for this construction, one needs to
consider u as a formal parameter and not a complex. Recall that we have already introduced the
formal evaluation representation of LU,sls in Section 3.2.2. The idea is now to extend the above
analysis on tensor product representations of LUysls, and construct LU, sla-intertwiners for a formal
parameter u.
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3.3.2 Tensor product of formal evaluation representations of LU,sl,

Recall the formal evaluation representations of LU,sls are defined by 73, from (3.2.5). We now want
to study tensor products of these infinite-dimensional representations’

1 . .
(73, ® ) 0 At LUysly — End(CZ @ C2H) (3.3.11)

to establish the LU;sls-intertwining properties analogous to Lemmas C.1.1 and C.2.1 on this formal
level. First, note that as a vector space (Cil ®(C3]2+1 is isomorphic to C2@C%+! [u{cl, ugﬂ] — the space
of Laurent polynomials in two variables u; and wg with coefficients in the 2(2j + 1)-dimensional
vector space — or equivalently, to the product of C? ® C¥*! and (C[ufl, uécl] Below, we will use

these identifications implicitly. Then, the action (3.3.11) can be written as

1

a(vf(ur, ug)) = a(v)f(ur,ug) = |(7d, @ 7)o A(a)| (v) f(ur, us) (3.3.12)

for any a € LUyslz, v € C2 @ C¥*! and f € C[ufl,uzﬂ]. In what follows, we will shortly write
the action as on the left-hand side instead of lengthy but more precise expression on the right-hand
side.

The difference from the finite-dimensional case where u;’s were generic complex numbers is that
these infinite-dimensional tensor products are not irreducible anymore. Indeed, for every non-zero
complex number z the Laurent polynomial u; — 2z~ 'us generates a proper ideal in the algebra of
Laurent polynomials because its inverse lives in a bigger ring of rational functions in u; and wus.
Similarly, for the module (C%1 ® Ci@“ consider for a fixed z € C* the linear span of vectors of the
following form:

L= (v (ug — 2 ug) f(ur,up) | v € C2@C¥ M| f e Cluf!,ui']) (3.3.13)

which can be thought of as ‘ideal’ generated by the Laurent polynomials u; — 2z~ us.

Analysing the action of F; and E; on these vectors, recall (3.3.12), it is clear that I is a proper
LU,sly-submodule of Czl ® (C%f;“l.

We can then define a so-called partial specialisation “identifying ug with zu;” of the module
C? . ® (C%/QH as the quotient by I, from (3.3.13). We will use the following short-hand notations for
this quotient:

)

zZuy

C2 @ CUH .= (@31 ® Cﬁ;‘“) /L., (3.3.14)

when the same formal parameter appears in both tensor factors. And let us denote the canonical
projection
pl: C2 ®CUM 2 @ CHM (3.3.15)

zZuy

which is a LU, slo-intertwining operator. We also note that the quotient module (Cﬁl ®(C%Jfl can be

identified with C2®C%*1[uF!] as a vector space. Indeed, first note that the images PLz@yulul),
for any € C? and y € C¥*! are all proportional to (z ® y)u?+m, therefore every element in the

quotient space C2, ® CZ ! is a (finite) linear combination of the monomials (z ® y)u?, for n € Z,

1 . .
2ONote that the homomorphism (7, @, ) oA sends LUsl2 to End(C},)®End(C2Z ™) which is a proper subalgebra
in End((CfL1 ® (Cﬁ];l), and this algebra embedding is implicitly used in (3.3.11).
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which makes it identical to C? @ C%+1[uE!].

In the quotient modules (3.3.14), we can now identify for appropriate values of z infinite-
dimensional submodules isomorphic to certain quantum loop modules. First, denote by W7 the
subspace in (CZ1 ® (C?f;l spanned by vectors wy , ,, obtained via the iterated action of F; on
wouuy® where wy is the product (3.3.4) of highest-weight vectors in U,slo-modules of spin—% and j:

Whm = FF (wo) uful 0<k<2j+1,nmeZ. (3.3.16)

Note that as in the finite-dimensional situation if £ > 2j + 1 then the corresponding vectors wy, ,, m
are just zero. We will also denote wy, := wy 0.

We claim that the image of W7 under the projection pg at z = qj+% is a LUysla-submodule
isomorphic tg the quantum loop module (Cijqj-r2 of spin-(j + %) Indeed, first the action of FEj
preserves WY because using the commutator relation between E7 and F; and the fact that all

vectors wg ., are annihilated by E; we get
Eq (wk,n,m) ~ Wk—1n,m >

and so the image of W/ under pZ»; is equally preserved by the action of E; because pg commutes
with all F; and F;. Let us now analyse the action of Ey and Fy on the vectors wy, y . Observing
that wy, pm = wpuiuy, we get for the action the expressions similar to (3.3.6):

Eo(Wkpnm) = Eo(wg)utuy' = eq (U1, u2)Wht1n,m + €2 (w1, u2)vpuiuy'

n

(3.3.17)
Fo(winm) = Folwg)ufuy' = fig(u1, u2)Wk—1,nm + for(ur, ug)vp_suiuy’ |

where vy, is defined as in (3.3.5) and the coefficients are as in (3.3.7)-(3.3.9). Note that the images
PL(Wknm) are all proportional to pl(wg)ul™™, so the vectors wy, = pl(wy)u?, for n € Z and
0 < k < 2j+1, form a basis in the image of W7 under the projection p’. Then, the action on these

: L
basis elements wy, , at z = ¢/ 2 simplifies to:

Eo(wikn) = ¢ 225 + g Wet1n-2

it - (3.3.18)

FO(wk,n) = q2J [2] +2— k]q Wk—1,n+2 -
We thus see that LUgsly acts on pi(Wj ). We are just left to identify the quantum loop module
pﬁ(Wj ) is isomorphic to. First note from (3.3.18) that the action of Ey and Fp changes the index
n by £2 while the action of E; and F keeps it unchanged. Therefore p(W7) is decomposed onto
a direct sum of two LUyslo-modules: one generated by wg and the other by w1, precisely as in
Lemma 3.2.1. Following the same idea as in the proof of Lemma C.1.1 we identify this module with

the quantum loop module (Cft]1 Jq“f

which proves the above claim about the image of W7 under the
projection pi.

We can now construct the corresponding intertwining operator (for which again for brevity we
use the same notation as in the finite-dimensional situation)

Gy, 242 2 2j+1
gV Clj —>Cu®(Cqu+1/2
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by identifying the quotient space C2 ®Ciz;+11 /» With C?2®C%*u*!] as discussed above, and simply

acting on spin states by the same matrix as in (C.1.3) with the matrix entries as in Lemma C.1.1.

3.4 Spin-j L- and K-operators

In this section, we define spin-j L- and K-operators as evaluations of universal R- and K-matrices
for H = LUyslz and B a comodule algebra for a certain twist pair. Using the intertwining operators
studied in the previous section, we show that the spin-j L- and K-operators satisfy certain properties
named as ‘fusion’ and ‘reduction’.

3.4.1 Spin-j L-operators

While the L-operators have been known for a long time, to our knowledge, the approach we intro-
duce below has not been considered. It is worth mentioning the paper [RSV14], which also uses
intertwiners to construct fused L-operators. For practical applications, the explicit expressions for
intertwiners are needed. Here, the LU,slo-intertwiners are explicitly given in terms of the Bj,,
from (3.2.3), see Lemma C.1.1.

L-operators and fusion (j + ) — (3, 7).

We study a so-called fusion relation for L-operators that relates LU +%)(u) to LU (u) and L(%)(u).
For this, we evaluate the equation (R3) on the second and third tensor components for a special
choice of evaluation parameters. Recall that in the previous section we obtained a spin-(j + %)
sub-representation in the tensor product (3.3.11) of formal evaluation representations of LUsls.
The corresponding intertwining operator £ (+3) is fixed by Lemma C.1.1, and we introduce its
pseudo-inverse

FOrD: €2, @CY, - C¥H,
uq

Nl

whose matrix entries are given in (C.1.7), (C.1.8). Then, inserting the product Flta)glits) = Inj42
and using the intertwining property (C.1.4), fusion relations satisfied by L-operators and R-matrices
are exhibited in the next propositions (where we use the notation (12) to indicate which spaces are
fused, that is to say, where the intertwiner acts). The following formula is an important result in
the thesis. We provide its proof for the reader’s convenience, aiming to facilitate the understanding
of the application of the intertwining operators constructed above.

Proposition 3.4.1 ([LBG23, Prop.4.4]). The L-operators (3.2.12) satisfy for j € %N:

) 1 . 1 . il
L(J-&-%)(u) = ]-"éf;;Q)Lg)(uq_%)L%)(qu)gg;;Q). (3.4.1)

. 1
Proof. By definition of the L-operator we have LU +%)(w Ju) = (evy ® e )(R). Using the pseudo-
inverse property FU+pgl+s) = Ioj12, we get

LU (w/u) = (1 ® FUHDETHD) | (evy @ 70 7 )(R)
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£ ol

® 7’
uq

ol

= (1@ FUta)) [(evw Q2 )(id®A)(SR)] (1@ E0tD)

=

= (1 ® FUta)) [(evw Ol _; ® wiq

%)(9%39%12)} (1® 5(j+%))
. . 1 . .
= (10 FOrDILY (¢ 2w /w)Li? (¢w/u)(1 © €612)) .

The second equality is obtained using the intertwining property (C.1.4):

(1@ T2y [(id@wfr%)(%)] = {(idqu_j ® 1)o(id®A)(£R)} 1®&lt)y . (3.4.2)

uq?2

Then, the third equality is due to (R3) and the last one follows by definition of the L-operator. [J

From this proposition, we see that L) (u) for j € 3Ny is in Uysla((u™!)) ® End(C¥*1). For the
next proposition, we give only a sketch of the proof, the reader is referred to [LB(G23] for a more
detailed proof.

Proposition 3.4.2 ([LBG23, Prop. 4.5]). The R-matrices (3.2.13) satisfy

o y (L . H—L ;
RULI2) (y) = ]:g;;R%’”)(uq_h+%)735]31 2’J2)(uq%)5<(£§ , (3.4.3)

where
11

1, 11 . i L
Ryt (ug™ R (wg) €Y

141 (+3)
R () = F o

29 (3.4.4)

Sketch of Proof. The eq. (3.4.4) is obtained by applying (7'/? ® id) on (3.4.1), while (3.4.3) is
proved by fusing the first component of R(%’jﬁ%)(u) similarly to the proof of Proposition 3.4.1 but
using (R2). O

Note that the construction of fused L-operators and R-matrices, first uses the pseudo-inverse
1 1 -1

property FUt2)g0+3) = Isj4+2 and then the intertwining property (C.1.4). Even if FU*2) is not
unique, taking different expressions for F (+3) yields the same L-operators and R-matrices.

L-operators and reduction (j — 3) — (3,).

We now consider spin-(j — %) sub-representations in the tensor product of formal evaluation repres-

entations of LU,sl, with the corresponding intertwining operator £ (-3) is fixed by Lemma C.2.1,
and we introduce its pseudo-inverse

FU=2).c¥1 52, @C¥

ugq

uqJ + Y

Nl

whose matrix entries are given in (C.2.7).

Proposition 3.4.3 ([LBG23, Prop.4.7]). The L-operators (3.2.12) satisfy for j € N,:

) (a1 . 1 . (51
LU-D)(u) = FY 2)L§J)(uq*%)L§2)(Uq7j71)5<(fz>2)' (3.4.5)
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Sketch of Proof. The pr(l)of is similar to Proposition 3.4.1 but1 using now the intertwining relation
(C.2.4) satisfied by £U72) instead of the one satisfied by £U+2) given in (C.1.4). O

Fused L-operators and fused R-matrices

Recall that the spin-j L-operators L) (u) and R-matrices RU172)(u) are derived through evaluations
of the universal R-matrix. Additionally, fusion properties have been established using LU,sla-
intertwiners, as detailed in Propositions 3.4.1 and 3.4.2. Now, we aim to construct the spin-j
generalizations of E(%)(u) and R(%’%)(u) from equations (1.1.8) and (1.1.5) through fusion. The
goal is to link them with L) (u) and RU172) (), thereby circumventing the difficulty of evaluating
PR for increasing values of j.

A higher spin generalization of E(%)(u) from (1.1.8) is obtained as follows. Starting from the
fundamental L-operator E(%)(u) given in (1.1.8), for any j € %NJ,_ define the fused L-operators
LY)(u) € Uysly @ End(C¥H1) as:

(G+3)

. il : 1 .
L0 () = Fl? £ (w5017 w1y

12) (12) (3.4.6)

Although not needed here, it can be proven directly by induction that £U)(u)’s satisfy the Yang-
Baxter equation (3.2.14), where L) (u) are replaced by £U)(u). We now give the relations between
the spin-j L-operators (3.2.12), obtained by evaluation of the universal R-matrix, and the fused
L-operators (3.4.1).

Lemma 3.4.4 ([LBG23, Lem.4.8]). The spin-j L-operators and the fused L-operators are related

as follows:
LY () = 19 (w) LD (u) | (3.4.7)
where
‘ 2j—1 o
M(J)(U) — H Iu(uq]_§_k) (348)
k=0

is central in Ugsls.

Above, we have shown that the L-operators L(j)(u)’s satisfy both fusion and reduction rela-
tions. As the L-operator is the evaluation of the universal R-matrix (3.2.12), the expression (3.4.1)
with j replaced by j — 1 equals (3.4.5). By the consistency of the fusion and reduction relations
(3.4.1) and (3.4.5), respectively, one gets a functional relation satisfied by the central element p(u)
from (3.2.17).

Lemma 3.4.5 ([LBG23, Lem.4.9]). The following relation holds:

p(u)p(ug)y(u) =1, (3.4.9)
where y(u) is given in (3.2.20).

Corollary 3.4.6. The quantum determinant of the L-operator L(%)(u) is such that

1 1
tr1a (PLY? (W)LY (ug) = 1. (3.4.10)
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We note that Lemma 3.4.5 provides an independent derivation of?! [BGKNR12, eq. (4.60)]. We
do not give a general solution to the functional equation (3.4.9). Solutions for spin-representations

of Uysly can be easily constructed. For instance, for W%(u(u)) the ‘minimal’ solution is given

by (3.2.19).
We now introduce fused R-matrices (by analogy with (3.4.3) and (3.4.4))

o 4 1, . 1 .
ROV () = FOIRE™ (ug 1) RE %) (ug)ely) (3.4.11)

for 71 > 1 and where

D=

. i1
J(ug)egn? . (3.4.12)

. 1y (1 1
REID(w) = Fog R (ug™ ) Ri3 )

(23)

with R(%’%)(u) given in (1.1.5), and show that (3.4.12) agrees with (C.3.1).

Lemma 3.4.7 ([LBG23, Lem. 4.11]). The R-matrices (3.2.13) and the fused R-matrices (3.4.11)
are related by

R(jl:jQ)(u) — f(jl,jz)(u)R(jth)(u) , (3.4.13)
where
2k 2k —2k
. o + . U
f(h’”)(u) = o152 g 2102 oy, (ZM[%]qk[?h]qk Z ) , (3.4.14)
k=1

and (3.4.12) agrees with (C.3.1).

Unitarity properties of L-operators

Recall that the spin-1/2 L-operators L(%)(u) from (3.2.12) satisfies the unitarity property (3.2.21).
More generally, by induction one gets the unitarity property for any spin-j:

2j—1
LV (™ YLO (u) = LO ()LD (u ) = ( I1 c(qu+;+k>> Ioja1 (3.4.15)
k=0

where c(u) is given in (3.2.21). It follows from (3.4.15) and (3.2.13) that both RU1:72) (1) R (71:72) (4~ 1)
and RULI2) (4~ 1YRULI2) (1) are equal and proportional to the identity matrix for any j; and js.
Because RU1+72) (1) is proportional to RU12)(u) due to (3.4.13), we also have

RO (u) RUM2) (u ™) = ROW2) (™ YROW () o¢ Ty 41y (21011 (3.4.16)

3.4.2 Spin-j K-operators

Recall that the spin-j K-operators KU )(u) are defined as the 1-component evaluation of a universal
K-matrix, see Definition 3.2.3. Now, using the intertwining operators constructed in Section 3.3 and
the third axiom of the universal K-matrix (K3), we propose certain fusion and reduction relations
satisfied by KU (u).

211t is an exponential version of [BGIKNR12] with the identification 7 — u, R NN ,u(u)uq%, s — —2,8 — —1,
s1 — —1.
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K-operators and fusion (j + ) — (3, /).

We follow here the same approach used for L-operators based on sub-representations in the tensor
product of formal evaluation representations of LUyslz), now considering (K3) instead of (R3).
Recall the intertwining operator &£ (+3) is fixed by Lemma C.1.1 and its pseudo-inverse F U+3) is
given in (C.1.6) with (C.1.7), (C.1.8). The following formula is one of the main result of the thesis,
and so we give its detailed proof.

Proposition 3.4.8 ([LBG23, Prop.4.14]). The K-operators (3.2.29) satisfy for j € $N:

) .1 . . . 1 . L
K(J+%)(u) = ]-‘g;Q)ng)(uq_%)R(%ﬂ)(u2qj_%)K§2)(qu)5<(i;;2)- (3.4.17)

. 1
Proof. By definition, we have K(J“'%)(u) = (id ® Wi—tf)(ﬁ). Using the pseudo-inverse property
f(j+%)g(j+%) = ]I2j+2, we get

ip L . . 1
(ideon ?)(R) = (1o FUrDeUD) do ) ) (8)
. 1 . .
—(1eFUtder?, ;o )o(ildeA)R)(1eelt2)

u~1q2

. 1 .
= (1o FUta))(ide Totgs @7

u

)(R13RTR12)](1 @ EUF2))

1
1q2

The second equality is obtained using the intertwining property (C.1.4):

. ipl 1 , 4
(1oei*)(idor 2)(R) = [(de T @ ) e(deA)R)(1e g0ty . (3.4.18)
uTrq?2
Then, the third equality is due to (K3) and finally, from the definition of the K-operator (3.2.29)
and the evaluation of the twisted universal R-matrix (3.2.31), the claim follows. O

Using the power series assumption on K(%)(u), we see that KU (u) is also a formal power series
in 4!, ie. it is in B((u~')) ® End(C¥*1).

K-operators and reduction (j — ) — (3, 7).

The following proposition is also an important result but since it is proved similarly to the reduction

—/. 1
relation (3.4.5) for the L-operators, we skip its proof. Recall the intertwining operator & (G-32) ig
fixed by Lemma C.2.1 and its pseudo-inverse FU=2) is given in (C.2.6) with (C.2.7).

Proposition 3.4.9 ([LBG23, Prop.4.16]). The K-operators (3.2.29) satisfy for j € 4N,

-1 =)@~y (L =3\ (3 -1\ #—3)

KU~2) (u) = F i1y VK (ug™2)RED (w27 2)K? (ug 7 )E L, (3.4.19)
Recall that we assumed that the universal K-matrix exists for a given choice of B and the twist

pair (1,1 ® 1). Therefore, the K-operator for a given spin is unique, that is, similarly to the case of

the L-operator, we obtain the same operator KU (u) either using the fusion for (j) — (3.7—%4)or

using the reduction (j) = (3,j + 3).
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Remark 3.4.10. Consider the opposite coproduct A°? = po A with the definition (2.3.9). It follows
from (K3):
(id ® AP)(R) = R12(RY)32813 . (3.4.20)

Recall that we obtained for A an intertwining relation in (C.2.8) where £U +3) is fixed as in (C.1.5),

see Remark C.2.2. Thus, we also take FUT32) as defined in (C.1.7), (C.1.8). Then, using (C.2.8)
and (3.4.20), we obtain a new fusion relation for any j € %N:

. iy (1 . : , . 1
KU+ (u) = Fiiy 7K (ug )RGD (u2g 1KY (ug? )€y 2. (3.4.21)
Similarly, we also have the intertwining relation for A° given in (C.2.9) with EU=3) fixed as

in (C.2.5), see Remark C.2.2, and we take FU=2) as defined in (C.2.6) with (C.2.7). Then, us-
ing (3.4.20) and (C.2.9), we obtain a new reduction relation for any j € 3N, :

KO3 () = 2O VKD (ug)RGD (u2g HKY (ug) €057, (3.4.22

Here, we assumed the existence of a universal K-matrix 8 € B ® LUyslz. From our new
axiomatic definition of K, fusion and reduction properties were exhibited. Now, we want to put
aside this universal framework and construct fused K-operators KU)(u) € A, ® End(C%*1) that
are spin-j versions of the spin-1/2 K-operator for A, from (2.1.5). To achieve this, recall first the
fused L-operators from (3.4.6). This construction is guided by the evaluation of the third axiom
of the universal R-matrix, as indicated in equation (R3), leading to Proposition 3.4.1. Similarly,
the approach to constructing ) (u) is to take inspiration from the evaluation of the action of the
coproduct on the second tensor component of the universal K-matrix, as exhibited by the fusion
property of KU (u) presented in Proposition 3.4.8. In short, this amounts to consider the latter
proposition and replace K@) (1) — KU)(u) and show that the corresponding fusion formula indeed
satisfies reflection equations for all possible values of spins.

3.5 Fused K-operators for A,

In this section, we consider the comodule algebra B = A, and related ‘fused’ K-operators. Contrary
to the previous section, here we do not assume the existence of a universal K-matrix. In Section 3.5.1,
fused K-operators KU)(u) built from the fundamental K-operator by analogy with (3.4.21) are shown
to satisfy the reflection equation (3.2.43) for all j € N, where K (u) is replaced by K (u). This
is the main result in this section. We then introduce fused K-matrices in Definition 3.5.5 out of
the fused K-operators K (u). It is done by classifying one-dimensional representations for Ay in
Proposition 3.5.3, and applying these representations to K ) (u). We also establish the unitarity and
invertibility properties of &) (u) in Section 3.5.5. In preparation to the discussion in Section 3.5.6,
we calculate the evaluated coaction for 4, and also establish the twisted intertwining relations for

the fused K-operators which are similar to (3.2.47).



90 Chapter 3. Universal K-matrix and fused K-operators for A,

3.5.1 Fused K-operators for A,

Recall R(z'2) (u) and the fundamental K-operator K(2) (u), given respectively by (1.1.5) and by (2.1.5),
satisfy the reflection equation (2.1.4). By analogy with (3.4.21), we now construct fused K-operators
KW (u) € A; ® End(C¥H).

Definition 3.5.1. For j € %NJF, the fused K-operators for A, are

A 1y (1 .
K(J*’%)(u):}‘g;;ﬂld?)(uq_])R(% ) (u2q 7 2)KY (u %)5<(J+> : (35.1)

with K(%)(u) defined in (2.1.5).

Theorem 3.5.2. The fused K-operators K(j)(u) satisfy the reflection equation for any ji, jo € %NJF :

RUM) (uy fup) P () ROV (ug un )Y (uz) = (3.5.2)
Icgjé) (’U,Q)R(jl »J2) (U1UQ)IC(1j1)(U1)R(j1’j2) (ul/u2) .

The proof is done by induction on ji, jo. For (ji,j2) = (3, 3), the reflection equation (3.5.2)

holds for IC(%)(u) due to [BS09]. The proof is divided into three parts and consists of three lemmas.
We first show the case (j1,j2) = (3,7 + %), assuming the equation (3.5.2) holds for (1, j2) = (5, 4).
Then, we prove the case (j + 3, 3), assuming (3.5.2) holds for (j1,42) = (j, 1). Finally, the generic
case (j1,J2) follows. We refer the reader to [LBG23, Sec.5.2] for a detailed proof.

3.5.2 Examples of fused K-operators

In this subsection we compute explicitly the spin-1 K-operator for A,, and give compact forms for
K9 (u), as well as for the fused R-matrices defined by (3.5.1) and (3.4.12), respectively.

Spin-1 fused K-operator

The expressions of £012), FUt2) in (C.1.1), (C.1.2), for j = 1 read:

1 0 0
2 /2]
eW = 0 [1}(1 ol FO = 0 [22 [22‘1 ol- (3.5.3)
. ([)QM . 00 0 1
From (3.4.12), the fused R-matrix reads
1 , 1, (34 1
RGN () = F) RE (w3 RGP (ugh)El), (3.5.4)
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and is given explicitly by

, (3.5.5)

)
Q
—~
I
'QI
|
~—
)
Q
—
=
~—
~
W
oS O O O O

1 111 L 1
KW (w) = F) K (ug™H)RG) (w27 (ug?)ELD), (3.5.6)

(1)

Using the above expressions, one finds that the entries Kk (u) are explicitly given by:

K (1) = (e(@)™" + p "G (ug™2)) (p + ¢(q)G—(ug?))

+ o(u?q) (ug2 Wy (ug™2) — u™ g 2W_(ug™2)) (ug? Wi (ug?) — u'g "2 W_(ug?)),
-1)-3 1 3 1 3 1
IC%) (u) = (q—i_;i_) (c(uQ)(pc(q)_1 + g+(uq_§)) (uq5W+(uq§) —u g2l (uqﬁ))

+ (p+ (@G (ug™?)) (ug? W-(ug?) —u™'q "2 W_ (ug?))
+ c(uq) (g Wi (ug™%) = u™ g W= (ug ) (pe(@) ™! + G (ug?))),

c(u?

13 () = 7 ya (P + @G (ug™) (0 + ()G (ug)),
c(q)™! 1 3 1 3 1
K (u) = %H(/L]q)JrT (C(UQQ) (p+ c(q)G—(ug™7)) (ug> Wi (ug?) — u~tg 2 W_(uq?)) (3.5.7)

(0P a2+ W (g8 3 (T (2 )W (g 2))

(0 a2+ @YW (g F) + 0 (0 (24 ) + uP W (g )

X (uq%W_(uq%) —u g 2W+(Uq%))7
K9 () = o (XS ()les oy K5 (1) = o (K5 () sty
K (w) = o () ()l ey K58 (1) = o (K5 () sty

where o is defined in (2.1.16) and {W4(u),G+(u)} are given in (2.1.1)-(2.1.2).
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The fused K-operator (3.6.1) for j = 1 satisfies the reflection equation:

1 1

D (/)2 () RED (un) K5 (v) = KO (0) RED (uo) K2 () RGD (uv) (3.5.8)
Note that the latter equation can be independently checked using the ordering relations given in
Lemma 2.1.5.
Spin-; fused K-operator

From the fusion formulas (3.4.12) and (3.5.1) it is clear that the fused R-matrices and K-operators
can be expressed only in terms of the fundamental K-operator and R-matrix, and the maps & (@)
and F). They are given by:

2j-2 2j— 2j-2
1 . m , a1 m
Rz (u) = ( H Tomt2 ® FU3 )> < H 352231)1 p(ug J+2+k)> ( H Ip2j—1-m) ® g0+3 )) ;

m=0 k=0 m=0
(3.5.9)
and
2j—2 2j 1
KO () = <Hﬂ2m® ;(j—%)H{;c,g ¢" I3 [ H R,:z’;)g 2 —2”2’““)]}

m=0 k=1 (3.5.10)
252

X (Hﬂz(mzm) ® S(HTS)) ;
m=0

where the product stands for the usual matrix product and the products are ordered from left to
right in an increasing way in the indices.

3.5.3 K-matrices from one-dimensional representations of A,

Recall in Section 1.3, that we reviewed another fusion procedure that was developed for the R-
matrix in [Ka79, KRS81], and for the K-matrix in [MN92]. Now, we want to compare this approach
with the fusion procedure we developed here. Note, however, that we introduced fused K-operators
while it was not considered in [MN92]. Therefore, we first need to construct fused K-matrices
out of fused K-operators KU)(u) € A, ® End(C¥*+!) defined in (3.5.1). It turns out that it is
sufficient to apply one-dimensional representations on the first component to get fused K-matrices.
All one-dimensional representations of A, are classified in the following proposition.

Proposition 3.5.3. We have the algebra map e: A; — C

€(Gry1) = €(Gry1) = grt1 (3.5.11)
k
eWii1) = got (Z (mey + m—i—ls_)gkm> , keN, (3.5.12)
m=0
E(W—k) = E(Wk—i-l)‘si%s; ) (3.5.13)

with go = p/(q — ¢~ 1), and for any scalars gii1, e+ € C for any k € N, and where we used the
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notation m = m mod 2.

Proof. Recall the presentation of A, with defining relations (2.1.17)-(2.1.27). In every one-dimen-
sional representation of A, the generators are evaluated to scalars, and so they commute. Therefore,
the only non-trivial defining relations in such representations are (2.1.17)-(2.1.19). From (2.1.17),
we conclude that €(Gji) = €(Ggy1). Moreover, from (2.1.18) and (2.1.19), the images e(W,) for
¢ € Z\{0,1} can be expressed in terms of ¢(Wp), e(W1) and €(Gg41). Indeed, setting ¢(Wp) = e
and €(W;) = e_, the recursion relations (2.1.18), (2.1.19) have a unique solution given by (3.5.12)-
(3.5.13). Finally, the scalars €4 and €(Ggy1) = gr+1 have no more constraints, therefore they
parameterize one-dimensional representations. O

We now compute the image of the fundamental K-operator K(%)(u) given in (2.1.5) under the
map (€ ® id), recall the notation U = (u?q +u=2¢7!)/(¢+ ¢~ ') and c(u) from (1.3.33). We find
that the corresponding image is proportional to the spin-1/2 K-matrix of [dVR94, GZ93].

Proposition 3.5.4. X X X
(e @ id) (K2 (u)) = <2 (u) K@) (u) | (3.5.14)

where K(%)(u) = K(u) is from (1.2.3) and

3 () = c(q? <ingk> . (3.5.15)
pe(u?) \ =

Proof. We compute the Lh.s. of the first relation in (3.5.14) using Proposition 3.5.3 and the expres-
sions (2.1.1)-(2.1.2) of the generating functions G (u), W4 (u). Firstly, from (2.1.2) and (3.5.11) we
have

€(G+(w) => U g — g0 . (3.5.16)
k=0

Secondly, using (2.1.1) and (3.5.12) we find that the image of WW_(u) under the map e is
oo k
W) =pg—q ) D U gpm(mey + m+1c)
k=0 m=0

=p Na—a DD U " g m(mer + m+1e)

m=0 k=m

[o¢] o0
=p Hg—q ") Z U Hmey +m+1e) ZU_kgk :
m=0 k=0
Then, we get
_ 1 _U*l U*Z 0
(- (u)) = L4 (=== Ug, ) (3.5.17)
p 1-U?2 —

eWi(u) = eOWV-(u))]es—es » (3.5.18)
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where the second relation follows from (3.5.13). Finally, applying (¢ ® id) to (2.1.5) and us-
ing (3.5.16)-(3.5.18), one gets the r.h.s. of (3.5.14). O

More generally, we define fused K-matrices KU)(u) € End(C%*) as follows:

Definition 3.5.5. The fused K-matrices are given for any j € %N+ by

(e @ id) (KW (u)) = ¢V (u) KW (u) , (3.5.19)
where
2j—1
D)= T (w274, (3.5.20)
k=0

and with g(%)(u) from (3.5.15).
By construction, they satisfy the reflection equation

R(j17j2)(Ul/Uz)K{jl)(U1)R(j17j2)(UlUZ)K§j2)(u2) = (3.5.21)
KéjQ) (UQ)R(jhjz) (u1u2)K£j1) (ul)R(jl’j2) (uy/ug) .

Note that the fused K-matrices K)(u) satisfy a direct analogue of the fusion formula (3.5.1) for
K9 (u).

Proposition 3.5.6. The fused K-matrices of spin-j satisfy

KO () = F) K2 (ug 7 HRETD (g Ky (wgh)e) (3:5.22)

where K(%)(u) = K(u) is defined in (1.2.3).

Proof. Start from the definition of the fused K-matrices (3.5.19), then replace IC(j)(u) by the fusion
formula, and finally simplify using the expression of ¢U )(u) in (3.5.20). O

The above proposition will be important for the construction of the spin-j generating function
in a commutative subalgebra of A, as it will be discussed in Section 4.1, and it also explains the
form of <) (u). Moreover, the fusion formula (3.5.22) for K-matrices will be more convenient to use
since it is defined recursively from the fundamental K-matrix (1.2.3), and R(%’%)(u) from (1.1.5).

3.5.4 Comparison to other fusion approaches

We are now able to compare the fusion procedure for R~ and K-matrices introduced in [Ka79,
KRS81] and [MN92], respectively, with our own approach. In their formalism, the analogue of our
formulas (3.5.9) and (3.5.10), are given in (1.3.22) and (1.3.23). Recall also that the resulting R-
and K-matrices are not of the good size, as discussed in Section 1.3.3. For instance, the R-matrix
Rgll;}) (34} (u) is a (16 x 16) matrix, but after applying some similarity transformations, its spin-1
structure is exhibited in (1.3.42), in a block of correct size 9 x9. We have also checked that this block
expression is equal to our formula (3.4.11) for (j1,j2) = (1,1). The spin-1 K-matrix is computed

using (3.5.19) for j = 1, with K (u) from (3.5.6)-(3.5.7). Then, after simplification, we find that
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the expression of K(1(u) coincides with the one given in (1.3.46). The latter was obtained via the
fusion procedure from [MN92] after taking similarity transformations. We have also computed both
R~ and K-matrices up to j = 2 using the two fusion approaches, and they turned out to match
(after applying similarity transformations and extracting the block of correct size). We thus expect
that these approaches lead to the same R- and K-matrices for a general j.

More precisely, comparing the fusion procedure introduced in [[Ka79, KRS81], [MN92] with our
fusion construction, the advantages of the latter are the following:

- By construction, our fused R-matrices and K-operators (including K-matrices) are directly of
the correct size, i.e. RU172)(y) € End(C%1*1) @ End(C%2H1).

- The fusion technique developed here has a clear interpretation in representation theory since
1
it uses LUyslo-intertwining operators & (G+3),

- The fusion formulas (3.4.6) and (3.5.1) draw inspiration from the fusion properties of the
spin-j L- and K-operators satisfied by the evaluations of the universal R- and K-matrices,
see (3.4.1) and (3.4.21). Thus, it has a clear interpretation in the context of universal R- and
K-matrices.

3.5.5 Unitarity and invertibility properties

We now discuss the unitarity and invertibility properties of the fused K-operators IC(j)(u) given
n (3.5.1). Recall that K(%)(u) satisfies the unitarity property and is invertible, see Lemma 2.1.8
and Remark 2.1.9, respectively. We generalize these properties for any spin-j.

Proposition 3.5.7 ([LBG23, Prop.5.12]). Let

1 irl
I)R(Q:J)(u ¢ Q)K(Q)(uqﬂ)g(j+2) , (3.5.23)

RO () = FL R (ug 02

(12)

for j € $N4 and with IC(%) K(%)(u). Then

2j—1 r( uq —j— 2+k) 2j—22j—k—2 '
]C(J)( (H c( 2] - 2k)> (H H C(u2q2]—1—2k—5)c(u_2q1—k:+€)) H2j+1

k=0 k=0 (=0
=KD HKW (u) , (3.5.24)

where KU (u), T(u) and c(u) are respectively given in (3.5.1), (2.1.44), (1.3.33).

Remark 3.5.8. The spin-j fused K-operator KKU) (u) is invertible and its inverse is given by:

-1

[l I(u ik T 2022
j g’ =) w212kl o (2l R iC) (0
{’C(])W)] =11 C(u—quj—l—%)] [H H A I (T a s | B S (e I
k=0 k=0 (=0
(3.5.25)

Remark 3.5.9. By direct calculations we have checked for j = 1, 3,2 that KW () is equal to KW (u)

defined in (3.5.1) and we expect this equality holds for any j. Note that KU (u) and KU (u), are
direct analogs of the spin-j K-operators K@) (u) defined in (3.4.21) and (3.4.17), respectively.
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3.5.6 Twisted intertwining relations and evaluated coaction of fused K-operators

The fused K-operators KU )(u) are expected to have a simple relation with the spin-j K-operators
K (u) as will be discussed in Section 3.6, similarly to the relations between L) (u) and £U)(u).

Therefore, the evaluated coaction for K& (u) is expected to be of the form (3.2.46) up to appropriate
normalization.

Lemma 3.5.10 ([LBG23, Lem. 5.15]). The evaluated coaction 8y,: Ay — Ay @ Uysla is such that®?

(80 ® id) (K3 () = qiql_l (,c%)(u/w))m (/d%)(u))m (U%)(uw))m . (3.5.26)

Note that using above lemma, one obtains the evaluated coactions of the generating functions
Wi (u), G+ (u) of Ay, see Proposition 2.4.2. Now, using (2.4.4), (2.4.5) we can compute the evaluated
coaction of the quantum determinant I'(u) from (2.1.44):

1
(g u g PP+ u )

(D (1)) = D(u) ® y(u/w)y(uww) | (3.5.27)

where y(u) is given in (3.2.20). Here we used the ordering relations of A, in Lemma 2.1.5 and the
PBW basis of Ugsla, see Section 2.3.2.

The following result is a natural generalization of Lemma 3.5.10.

Proposition 3.5.11 ([LBG23, Prop. 5.16]). The evaluated coaction of KU)(u) for j € $N, is given

by
N D) (1)) — sz vt L i i
(6w ®id) (KY) (w)) 1 g1 ‘u:uqﬂ%w X < ( )(U/w)>m <’C( )(U))[ll (ﬁ( )(uw)>[2] . (3.5.28)

In the next section, we will also need the twisted intertwining relations satisfied by the fused
K-operators. For the fundamental K-operator (2.1.5), the twisted intertwining relations have been
given in [BS09, Prop.4.2]. This result is now extended to higher values of j.

Proposition 3.5.12 ([LBG23, Prop.5.17]). The following relation holds for any j € %NJF and all
be Ay ' . ' '
KD () (id @ 7)[6,-1(b)] = (id ® 7)[0, (b)) KD (v) . (3.5.29)

Having introduced fused K-operators for A, in Definition 3.5.1 and shown that they satisfy the
reflection equation with spectral parameter (3.5.2) in Theorem 3.5.2, the Problem 2 is then solved.
However, we want to go further in order to find an interpretation of &£ (u) in terms of the universal
K-matrix &. Recall the relationship between the fused L-operators £) (u) and those obtained by
evaluating the universal R-matrix, as established in Lemma 3.4.4. We now look for an analogous
relation between KU (u) and KU (u). As we will see, due to the absence of an explicit expression for
a universal K-matrix & € A, ® LUsla, we can only propose such a relation and provide supporting
evidence.

*Here, the index [1] is associated with the space for Ag, and [2] for Usla, and we use the convention
(DT (T2 = Sper (T ke @ (T)ir (T )5
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3.6 Fused K-operators and the universal K-matrix for A,

In this section, we assume there exists a universal K-matrix for A;,. We are interested in the precise
relationship between the fused K-operators £U)(u) constructed in the previous section using (3.5.1)
and the spin-j K-operators defined in (3.2.29) through the evaluation of the universal K-matrix.
By analogy with Lemma 3.4.4 relating spin-j L-operators (3.2.12) and fused L-operators (3.4.1), we
propose:

Conjecture 1. For j € %N, we have
KY) (1) = v (u)KW) (u) | (3.6.1)
where KY)(u) is defined in (3.5.1) with
2j—1 2j—-22j— .
v (u) = (H v(ug ) (H H 2 (p(u®q =27 ‘))) : (3.6.2)
m=0 k=0 (=

Here ﬂ%(,u(u)) is given by (3.2.19) and v(u) = V(%)(u) is an invertible central element in A, ((u™1)),
defined by the functional relation

D=

2 (u(u®q))v(u)v(ug)l(u) =1, (3.6.3)

where I'(u) is given in (2.1.44), and has the evaluated coaction
Sw(v(u) = (u’q +u™ g~ v (u) ® pu/w)p(uw) . (3.6.4)

Supporting evidence for Conjecture 1 are now presented. Afterwards, we derive from Conjec-
ture 1 certain properties of the fused K-operators for j > 0.

3.6.1 Supporting evidence
For the clarity of the presentation, let us define:

K9 (u) = v (w)KW (u)  for je iIN, (3.6.5)

where we assume V(%)(u) is an invertible central element in A,((u™1)). Importantly, it is not
assumed that KU)(u) is obtained from the evaluation of a universal K-matrix.

We provide supporting evidence for Conjecture 1. We show that K (u) for all j satisfy the
following systems of equations:

KY(v)(id @ 77)[6,-1(b)] = (ld®ﬂj)[5 OIKY (v) , (K1)
(6 @ d) (KD (u)) = (LU u/w) (x© )[1] (L(j)(uw))[z], (K2)

. ] 1 ) (a1 .
K(g)(u) — f(J) ng)(uq—j-i-g)'R(%J—%)(u2q—J+l)ng 2)(uq%)é’g%> ,
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where R(29)(u) is given in (3.4.4), if and only if (3.6.2) and (3.6.4) hold. Here, (K 1), (K2), (K3")
are direct analogs of (3.2.47), (3.2.46), (3.4.21), respectively. We will also show that K (u) satisfies
the reflection equation (3.2.43) where K (u) is replaced by KU)(u).

We assume that v(u) is an invertible central element in A, ((u™1)).

Lemma 3.6.1 ([LBG23, Lem.6.1]). The K-operators KJ)( ) for all j € 1N satisfy the fusion
relation (K3’) if and only if #\9) (u) takes the form (3.6.2), and so they are central

In what follows, we will assume that (K3’) holds, so in part}cular all pU )(u) are central. Then,
using Proposition 3.5.12, the twisted intertwining relation for KU )( ) is immediate:

Lemma 3.6.2 ([LBG23, Lem. 6.2]). The K-operators K9 (u) for all j € N satisfy (K17).
We also show that the evaluated coaction (K2’) holds for K@) (u).

Lemma 3.6.3 ([LBG23, Lem.6.3)). The K-operators K9 (u) for all j € 3N satisfy (K2) if and
only if d,,(v(u)) is given by (3.6.4).

Finally, assuming (K3’) holds so that v9) (u) are central, see Lemma 3.6.1, it is easy to see that
the fused K-operators K(j)(u) satisfy the reflection equation due to Theorem 3.5.2.
Lemma 3.6.4 ([LBG23, Lem. 6.4]). The K-operators KU (u) satisfy the reflection equation (3.2.43)
where KU)(u) is replaced by K (u) for any ji, j2 € %NJF.

In summary, the evidence supporting this conjecture can be summarized in Figure 3.4.

Eval. Conj. 1 s s
(K1) — (3.2. 47) o (kD) P
(K2) E"al' (3.2.46) Con?' | (k) x
Conj. 1 n

Figure 3.4: Supporting evidence for Conjecture 1, where the double-sided arrows connecting two
equations signifies the equality of the latter under the assumption that Conjecture 1 is true.

Functional relation on v(u)

We have seen in Lemma 3.6.1 that the relation (K3’) fixes the normalization factor ) (u) as (3.6.2).
Here we show that the analog of the reduction relation (3.4.22) for K@) (u) leads to the functional
relation (3.6.3). Recall the functional relation on p(u) in (3.4.9) was obtained by comparing the
fusion relation with the reduction relation satisfied by the spin-j L-operators, see Lemma 3.4.5. We
proceed similarly for K (u).

Proposition 3.6.5 ([LB(23, Prop.6.5]). The K-operators KU (u) satisfy (K3’) and

. . . ~ (s (51
Kg )( qJ—i-l)fR(%,])(u2qj+%)KgJ)(uq%)g(J 2) ’ (ng)

j—1 (G—3)
KU™2)(u) = Fijy)? (12

(12)

for j =1 if and only if v(u) satisfies the functional relation (3.6.3).
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Remark 3.6.6. As a consistency check, we observe that the evaluated coaction in (3.6.4) respects
the functional relation (3.6.3) on v(u). Indeed, using (3.5.27) and the functional relations (3.4.9)
and (3.6.3), we obtain

81 (1(1)) 8 (1 (1) )8 (T (w)) 2 (p(u?q)) = 1@ 1 . (3.6.6)

Coaction

We propose a right coaction for the components of K(%)(u):

(6 @id) (KD (@) = (L) (KD @) (L @)y (3.6.7)

(1]

where L*(u) are defined in (3.2.9), which is the direct analog of (3.2.44). First of all, we show that

the coaction as defined by (3.6.7) respects the relations satisfied by the components of K(%)(u)
Recall that, due to Lemma 3.6.4, these relations are

~ (1 ~ (1 ~ (1 ~ (1
RGED (w/0)K2 ()RED) (w)K 2 (v) = K (0)RG D (o) K (RGP (ufv) . (3.6.8)

We finally show that ¢ defined in (3.6.7) is coassociative and counital, see (2.4.1). Firstly, we check
the coassociativity:

(6®id®id) o (8 id)(K? (u)) = (4 id ® id) (([L—w-l)rl)m (KD )

(L+ (U)) [2]>

(L"(u)) 2] (L™ (u)) (3]

(1]
= (@) (B )y (KD ()
= ([d® A®id) o (§ ®id) (K (u)) ,

(1]

where the coproduct is given in (3.2.23) and we used (A ® id)([LT (u)]™1) = (LJF(u))[;]l (Lﬂu))ﬁ]l .
Secondly, the condition with the counit is checked:

N|=

(id®e®id) o (0@ id)(KE) (u) = (id@ewid) o (([Lﬂu—l)rl)m (K

)(u) )

D) ),y )

(1]

Wl

K

where we used (3.2.25).

To conclude this section, let us comment on the coaction of 44, that is expected to be closely re-
lated with the coaction of O,. By assumption, v(u) = Y 32, vgu~* where vy, € Z(A,). From (3.6.3)
it is easily checked that 1y is a scalar satisfying

9 1
__Morer
(g—q71)?

Provided Conjecture 1 holds, the coaction of A, is given by (3.6.7) with (3.6.5), (2.1.5) and (B.2.18),
(B.2.25), recall the discussion in Section 3.2.6 and Proposition 3.2.4. A comparison of the leading

=1. (3.6.9)
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term u~! of the matrix entries (1,1) and (2,2) of both sides of (3.6.7) gives:
S(Wo) =1® <k+q§ElK§ + k_q—éFlfé) W K, (3.6.10)
SW) = 1@ (mq—%FoKé 4 kq%EoKé) W @ K (3.6.11)

Note that these equations indeed agree with the coaction of O, given in (2.4.2), (2.4.3), where we
used A; =2 O, ® Z. To construct the coaction of W_j, W41, Gii1, Ck+1 for general values of k,
the properties of the generating function v(u) need to be investigated further starting from the
functional relation (3.6.3).

3.6.2 Comments

Based on the supporting evidence given in the previous subsection, we believe Conjecture 1 is
correct. Some straightforward consequences are now pointed out. Firstly, some relations among the
fused K-operators (3.5.1) are derived, and will be used in the next chapter.

Proposition 3.6.7 ([LBG23, Prop. 6.8]). Assume Conjecture 1. Then, the following relations hold
for any j € %N+:

3 ; _(j—1%
DY (gL, =

2j—2 (3.6.12)
<Hc 2T R e(uPgP ’f)) I (ug?)KY2)(u) |

(i1 1 . 1. .
I T

Pl VK g RED (a7 HI P (g Y -

2j—2 ' ’ . . (3.6.13)
< 11 C(U2q2”2+k)6(u2q2”k)> [(ug ™ HKY"2 (u) |
k=0

where £072) is fixed by Lemma C.2.1 and FU=3) is given in (C.2.6) with (C.2.7).

Secondly, we analyze the spin-0 K-operator K(© (u) and the analog of the quantum determin-
ant (2.1.43) for the spin-1 K-operator K(%)(u).

Proposition 3.6.8 ([LBG23, Prop.6.9]). Assume Conjecture 1, then K(©(u) = 1. Furthermore,
the quantum determinant of the K-operator K(%)(u) is equally 1:
— 13,y (303 (0 2y (2) _
tr12 (PRK 2 (W)R137 (qu”)Ky? (ug)) =1 . (3.6.14)
Proposition 3.6.9 ([LBG23, Prop. 6.10]). Assume Conjecture 1, then KW (u) from (3.5.23) is equal
to the fused K-operator K (u) defined in (3.5.1).
3.6.3 Solutions to the twisted intertwining relations

We conclude this section by mentioning another method to obtain solutions of the Yang-Baxter and
reflection equations. Recall that solutions of these equations have been obtained using the second
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and third axioms of the universal R~ and K-matrices. Indeed, the evaluations of (R2)-(R3) lead
to the fused formulas for the L-operators and R-matrices, as well as the Hopf algebra structure of
H; while (K2)-(K3) lead to the fused K-operators and the comodule algebra structure of B, see
Propositions 3.4.1, 3.4.2, Sec. 3.2.4, and Propositions 3.4.8, 3.2.4, respectively. Now, let us discuss
the interest of the evaluation of the first axiom of the universal R- and K-matrices, (R1) and (K1).

Firstly, for the R-matrices, the idea is to demand that they satisfy a set of intertwining relations
with respect to the quantum affine algebra action on VU @ V(62) given by its coproduct A. For
H = LUysly and for any x € LUysl2, these relations read

RULE) (y /o) [(7) @ 702)A(z)] = [(79' @ 72) A% (2)| RV (w/v) .

It is then enough to solve them to obtain solutions of the Yang-Baxter equation. Note that this
technique has been initiated in [[XR&3] without this universal framework. The solutions were found
to be unique (up to an overall scalar function), and thus they should come from the evaluation of
the universal R-matrix. In the universal framework, the solution of (R1)—(R3) of the form [KT92b,
eq. (42)] is unique [K'T92b, Theorem 7.1}, and is given by [[KXT92b, eq. (58)]. For the expression of
the universal R-matrix in a factorized form, see Section B.1.2.

Secondly, the K-operators satisfy a set of twisted intertwining relations with respect to the
comodule algebra action on B ® VU1 given by its coaction 6. For B = Ay and H = LUyslo,
the twisted intertwining relations are given in Proposition 3.5.12 which are the direct analogs of
the evaluated axiom (K1) from (3.2.47). Importantly, it is sufficient to consider the relations for
b= Wy, W;. We consider a rather general ansatz for K0 (u), it is a (2j + 1) x (2j 4+ 1) matrix with
entries in A, that are linear combinations of monomials of the form (recall the ordering (2.1.42))

R P M T
F@) [T Wy (ug™) T G+ (ug®) T G- (ug™) [[W-(ug™), R+P+M+T<2j (3.6.15)
r=1 p=1 m=1

t=1

and for some choice of a,,bp,cp,d; € %Z, and f(u) is a Laurent polynomial in u of maximal
degree 2(R+ P + M + T'). Then, solving the twisted intertwining relations for the spin-1/2 and
1 K-operators, we indeed find that their expressions match with the fused ones derived using the
fusion formula (3.5.1). The details of these calculations can be found in [LBG23, Sec.7]. Based
on these evidences, we conjecture that spin-j K-operator solutions of (3.5.29) are unique (up to an
overall scalar factor), and coincide with the expression provided in (3.5.1). However, due to the
non-commutative nature of A, it appears challenging to express the entries of KU )(u) for a general
j using the twisted intertwining relations.

Note that the K-matrices should also satisfy a set of twisted intertwining relations but for the
action of a certain coideal subalgebra in the quantum affine algebra. In this case, this method has
been initiated in [MN97. DMO1] where the coideal subalgebra is now known as the ¢g-Onsager algebra
O4 [T99, BO4]. Let us also notice that recursion formulas for the entries of the spin-j K-matrices
have been obtained this way in [DMO1], and they are already quite complicated.

Finally, let us compare the two methods for obtaining K-operator solutions of the reflection
equations with spectral parameter (3.5.2), namely: the fusion procedure and the solving of the
twisted intertwining relations. The latter method is more complicated than the use of the fusion
procedure. Indeed, it quickly becomes tedious to solve the twisted intertwining relations due to the
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repeated use of the ordering relations [LBG23, eq. (7.2)] that serve to express each term in the PBW
basis of A,. In contrast, the fusion formula (3.5.1) for £U)(u) can be more easily applied since the

intertwining operators £ (+3) and their pseudo-inverses F U+3) are explicitly known.

Summary of main results

Recall that Problem 1 was addressed in Sections 3.1 and 3.2, see the summary at the end of
Section 3.2. The results obtained in Sections 3.3-3.6 are the following:

e Firstly, we studied tensor product of evaluation representations of LU,sls, to highlight the re-
ducibility criteria that gives rise either to a spin-(j+1/2) or a spin-(j—1/2) sub-representation
as depicted in Fig. 3.3. Then, we constructed explicitly the corresponding LU, slo-intertwining
operators £ (+3) and £0 7%), as well as their pseudo-inverses F (+3) and FU~3) in Sections C.1
and C.2. Importantly, we have also extended this analysis to the formal evaluation represent-

ations of LUysly, when v is a formal parameter.

e Secondly, using the LU,sls-intertwiners, we find that the spin-j K-operators K(j)(u) from
Definition 3.2.29, satisfy fusion properties such as (3.4.21). This inspires us to define fused
K-operators KU)(u) in Definition 3.5.1, independently of the framework of the universal K-
matrix. Then, we show by induction in Theorem 3.5.2 that they satisfy a reflection equation
with spectral parameter. Applying one-dimensional representations for A, to these fused K-
operators, we obtain spin-j K-matrices in Definition 3.5.5. We also find that they satisfy a
fusion formula in Proposition 3.5.6.

e Finally, we give an interpretation of these fused K-operators K(j)(u) in terms of the spin-j
K-operators K ) (u) coming from the evaluation of the universal K-matrix & € B® H. We pro-
pose that they are proportional (up to a central element v(u) € A,((u™!))), see Conjecture 1,
and we give supporting evidence as depicted in Figure 3.4.

Therefore, the elements outlined above offer a solution to Problem 2.



Chapter 4

Universal T'T-relations and applications

Recall that every solution of the reflection equation enables the construction of a generating function
for mutually commuting elements [Sk88]. This was reviewed for the transfer matrix for open spin-
chains in Section 1.2.3. In the previous chapter, we constructed fused K-operators for A,, and thus
one may ask how to explicitly construct such generating functions in a commutative subalgebra of
Ay. For the case j = 1/2, the generating function T(%)(u) is computed in [BB12], see its expression
in (2.1.55), and the corresponding commutative subalgebra is known. It is denoted as Z and is
generated by the elements {Zoxy1|k € N}, as discussed in Section 2.1.4. We call this generating
function a universal transfer-matrix because of its link to quantum spin-chains. Indeed, using spin-
chain representations for A,, it was found that T(%)(u) specializes to the transfer matrix of the
XXZ spin-1/2 chain with generic boundary conditions [BK05a, BK05b]. However, for a general j
such generating functions and the corresponding commutative subalgebras are not known, as well
as the connection with the spin-j transfer matrices, generalizing [BK05a, BK05b] for j = 1/2. In
this chapter, we solve the third problem of the thesis.

e Problem 3:

One can construct a generating function for spin-1/2 in the commutative subalgebra of A,
from its spin-1/2 K-operator (2.1.5). This object has indeed been studied for the spin-1/2
XXZ chain in [BK05a, BK05b], but for a quotient of A,. Moreover, a spin-j version of this
generating function has never been constructed, and its connection to spin chains remains to
be investigated.

The main result of this chapter is the construction of universal-transfer-matrix generating functions
for every spin value j, that we denote T\)(u) € A,((u™")), and the derivation of universal TT-
relations for Ag, see eq. (4.1.4) and Theorem 4.2.5. They are recurrence relations satisfied by the
spin-j generating functions. The universal TT-relations are proven for any spin-j provided the
evaluations of the universal K-matrix K (u) are proportional to KU)(u) by a factor #\9) (u), which
is an invertible central element in A,((u™')) defined by (3.6.2), see Conjecture 1. For brevity, when
we refer to Conjecture 1 in the following, we actually mean that there exists a universal K-matrix
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R € A; ® LUysly such that the proportionality relations hold. A consequence of these universal
TT-relations is that all TU)(u) are polynomials in T(%)(u) and so they all belong to the same
commutative subalgebra Z as for j = 1/2. We also show independently for small values j = 1, 3/2,
that the universal TT-relations indeed hold using a PBW basis for A, from Section 2.1.2.

Then, by considering spin-chain realizations which are certain tensor product representations of
Ay, we show that TG )(u) gives rise to a general open spin-j transfer matrix with any value of spin
at each site. In this case, the universal TT-relations become the TT-relations for actual physical
transfer matrices. These TT-relations allow to reduce recursively the spectral problem of spin-j to
the one for spin-1/2. Finally, from the algebraic structure of T¢)(u) and using the PBW basis of A,,
we obtain non-trivial symmetries for the corresponding Hamiltonians, i.e. operators that commute
with the Hamiltonians.

This chapter is organized as follows.

In Section 4.1, we introduce spin-j dual K-matrices K*+U)(u) in (4.1.2), and show they satisfy
fusion formula (4.1.3). This allows us to define in (4.1.4) the generating function TU)(u) as the
trace over the spin-j auxiliary space of the product of the dual K-matrix with the spin-j K-operator
KO (1) from (3.5.1).

Section 4.2 is dedicated to the universal TT-relations. Firstly, they are proved under the assump-
tion that Conjecture 1 holds. What sets this conjecture apart from previous works on TT-relations
is the presence of a universal K-matrix that specializes to K-operators. This is sufficient to show
TT-relations at an algebraic level (what we call universal TT-relations), without any additional
assumption. On the contrary, in the literature, there are conjectured TT-relations that rely on as-
sumptions concerning the specific representations considered, which are not universal. For instance,
the proof of the TT-relations in [FNRO7] relies on relations satisfied by the projectors (1.3.34).
Secondly, we give a proof (with no assumptions made) of the universal TT-relations for the spin
values j =1, % This uses commutation relations of PBW basis elements of A, given in Section 2.1.2.

In Section 4.3, we recall spin-chain representations for .4,, denoted 9N) where N is the number
of tensor factors or length of the chain, that was introduced in [BK05b], and find that the images
of the alternating generators of A, satisfy linear relations (4.3.9)-(4.3.10). The latter imply that,
on representations, the generating functions {W4(u),G+(u)} for A, truncate. Inspired by these
linear relations, we introduce in Definition 4.3.1 the quotient algebra .A((ZN). We also describe the
corresponding quotient map o) : A, — .A((IN), to provide a FRT type presentation of .A((JN). Finally,
n (4.3.28), we compute explicitly the spin-1/2 generating function T(%)(u) in ZW | which is a
commutative subalgebra of Ag ) generated by {¢pN)(Zypy1)|k € N}.

In Section 4.4, we focus on the applications to the quantum integrable systems beyond the
case spin-1/2. Firstly, we construct truncated K-operators (¢) @ id)(KY(u)) ~ KON)(u) €
A%N) [u,u"] ® End(C¥*1), as well as the spin-j generating function in ZN), denoted TUN) (u) €

(O

)-
( )( (u™1)), see (4.4.14). Secondly, we consider the spin-chain representations of A,. The image
Of ]C(J N (u)
n (1.2.11)) with arbitrary spin-j,, at each site and a spin-j auxiliary space. Moreover, we show
in Proposition 4.4.5 that the universal TT-relations specialize to TT-relations satisfied by transfer

Using the quotient map o), TUN)(4) are found to satisfy universal TT-relations in

is found to form a double-row monodromy matrix (dressed K-matrix, recall the form
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matrices ¢t(Un}y )(u) defined in (4.4.16). Importantly, the auxiliary space j is arbitrary as well as
the spin of the quantum spaces j,, and thus generalizes the case j = 1/2 from [BK05a, BKO5b].
As an application, we set the spins j, to some values, and we recover the conjectural TT-relations
studied in the literature such as the XXZ spin-j chains with generic boundary conditions [FNR07],
or the alternating spin chains [CYSW14]. The spins j, have the same value j in the former case,
and alternating values j1, jo in the latter case. Finally, as a corollary of the TT-relations, we find
that the transfer matrix t{U»}~)(4,) is a polynomial of degree 4Nj in the spin-chain representation
of the generators of the g-Onsager algebra Wy and W;.

In the literature, symmetries of open XXZ spin-1/2 chains have been studied, see e.g. [ABBBQ),
PS90]. For instance, these symmetries include the U(1) symmetry with diagonal boundary condi-
tions, or the Uysly symmetry with special boundary conditions, as recalled in Example 1.2.9. To
conclude this chapter, we study hidden symmetries for open spin-j chains but using now the un-
derlying algebraic structure of the generating functions TU )(u), and not directly the Hamiltonian.
To do so, in Section 4.5 we study (in the algebra) commutation relations between elements of A,

and T(%)(u).

The results presented in this chapter form the foundation of an article currently in preparation,
titled T'T-relations and the q-Onsager algebra.

4.1 Generating function TV (u) for A,

Here we introduce the material to construct the spin-j generating function T(j)(u) in the commut-
ative subalgebra of A,. In the next section, we show that they are solely expressed in terms of the
fundamental one (of spin-1/2) T(%)(u), recall its expression in (2.1.55), and central elements of A,.

4.1.1 Spin-j fused K-matrices

The construction of T (u) requires fused K-operators KU (u) € A,((u™")) ® End(C¥+1) as well
as fused dual K-matrices KT (u) € End(C¥*!) that satisfy the dual reflection equation from
Definition 1.2.3

K9 () R (1 fuvg?) K9 (w) RO 92 (v ) (4.1.1)
As shown in the previous chapter, the fused K-operators are given in Definition 3.5.1 and they

satisfy the reflection equation, see Theorem 3.5.2. The dual K-matrices are obtained as follows.

Recall that we introduced spin-j K-matrices out of fused K-operators KU (u) in Definition 3.5.5.
Solutions of the dual reflection equation (4.1.1) can be constructed similarly as in Remark 1.2.5

(KD (g ™)

K+0)(y) = !

, (4.1.2)

79 w)

Ei—)—gq:,k‘i—)—%q:

where the normalization factor fU)(u) from (1.3.25) is used for further convenience. From (4.1.2)
and the fusion formula (3.5.22) for the K-matrices, we find that the spin-j dual K-matrices satisfy
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the fusion formula:
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4.1.2 TO)(u)

Following [Sk&8, Thm. 1], the spin-j generating function is built from the fused K-operator K@) (u)
for A, given by (3.5.1) and the fused dual K-matrix with scalar entries K+ (u) given by (4.1.2):

TO () = try) (K0 (KD (w)) | (4.1.4)

where the trace is taken over the auxiliary space V) = C%*!. Let us note that these generating
functions can be seen as universal versions of the physical transfer matrices, e.g. the one for the
open quantum spin-chains as reviewed in 1.2.3. Indeed, we will show in Section 4.4 that these power
series specialize to transfer matrices acting on spin-chains.

In the next section, we show that T)(u) satisfy universal TT-relations that involve various
quantum determinants. Recall T'(u) € A,((u™1)) is given in (2.1.44). We will also need the value
of the quantum determinant of the dual spin—% K-matrix. For j = % in (4.1.2), one gets:

[INIE

L a4l

g, (ug)) (4.1.5)
c(u?g?)? >

(@=q)?)

where c(u) is given in (1.3.33). The quantum determinant associated with K(u) from (1.2.3) is

given by

1
Iy (u) = tria(PR K, 2 (w)R}

= —c(u?¢h) <€i +2 4t (PP +u?c ) ki ke

I (u) =Ty (—u"q? . (4.1.6)

gi—)—&:‘:,Ei—)—k):‘:

Note that both I'(u) and I'_(u) are related as follows:

N(ug) T (u) , (4.1.7)

N[

e(P(w) = ¢'2)(u)c!

where € is the one-dimensional representation of A, defined in Proposition 3.5.3, and g(%) (u) is given
in (3.5.15).

Finally, we will also need some properties satisfied by the fused R-matrix R(%’j)(u) given
in (C.3.1). By straightforward calculations, one finds that it is symmetric and enjoys unitarity
and crossing symmetry properties:

. t .
[R(%J)(u)] P — RGID(u) | (4.1.8)
R@D(u)RED (u1) = B9 (u) Tyj s (4.1.9)

RED W] [RED )" = €0(w) Ly (41.10)
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where t15 (resp. t1) stands for the transposition applied to the space VU1 @ V2) (resp. VUV)), and

2j—1 2j—1

B (w)= [T —clug’ 2 F)e(ug2%), €D (w)=T] —c(ug’ " 2)e(ug7+4+3).  (41.11)
k=0 k=0

4.2 Universal TT-relations for A,

In this section, we first show in Theorem 4.2.5 that TU)(u), defined in (4.1.4), satisfy universal
TT-relations for any j € %NJF provided Conjecture 1 is true. Then, an independent proof of the
universal TT-relations is given for j = 1, 3/2 using a PBW basis for A,.

4.2.1 Proof of the universal TT-relations

For the proof of the universal TT-relations, a few properties satisfied by the intertwining oper-
ator £9) and its pseudo-inverse FU) are needed, recall their expressions are respectively given in
Lemma C.1.4 and in (C.1.7)-(C.1.8). These properties are gathered in the next two lemmas. Recall
also that H(j+%)(u) is a diagonal matrix that is useful to decompose R(%’j)(u) at a special point
u = qj+% in terms of 5(j+%), FU+3) and HU+2) as in (C.3.5).

Lemma 4.2.1. The following relations hold:

ng) cl) — [;:(j)]m(j) : EU-3 FU-3) 4 glity) Fl+3) = Lijt2 , (4.2.1)
[}'(j)]t]:(j)R(é,j—%)(qj) _ ”H%j) () ) : ng) gl [g(j)}t _ R(%,j—%)(qj) : (4.2.2)
, 2j
where ng) = H(qQJ_k —q Uk,
k=0

Proof. The relations in (4.2.1) are straightforwardly checked using the expressions of £ (G +%), FU+3) )
HU+3) and é_’(j_%), f(j_%),ﬁ(j_%) given in Sections C.lfCl.S. Recall the decomposition of the R-
matrix (C.3.1) at special points (C.3.5), (C.3.10). Since R(27)(u) is symmetric (4.1.8), we have:

R(%J)(qj-ké) _ [f(j+%)]t7_t(j+%)[g(j+%)]t ’ R(%J)(q—j—%) — [f(j—%)]tq_t(j—%)[g(j—%)}t . (4.2.3)

For the relations in (4.2.2), the first one is obtained as follows:
[]_‘(j)]t}‘(j)R(%vj_%)(qj) — [FOVFDeDYD FO) = [FO]'HU) FO) = HD g0) (D] (4.24)

where we used FUT2)gl+2) = Iyj12 and (4.2.1). The second relation in (4.2.2) is obtained
from (4.2.3), using (4.2.1). O

Similarly for €9, F) and H) given in Section C.2, one has:

Lemma 4.2.2. The following relations hold:

FORDEGD = (FO)igG) | FUDU=DeG-1[g0-D)t = Rla:d-2) (g7 | (4.2.5)
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[FU-D)EFGD Rz =) (q7) = FU=DHUD £G-D) £7G-1) (4.2.6)

Proof. The first equation in (4.2.5) is proven directly. The other relations are obtained as in
Lemma 4.2.1. 0

The following Lemmas will be used for the proof of the universal TT-relations.

Lemma 4.2.3. Assume the following from Conjecture 1 holds: the equation (3.2.29) and v\ (u)
given by (3.6.2) is invertible, then we have

(i1 . . . 1 L (51
]_—<(] >2)K+(])(uq—%)R(%,])(u—Qq—j—%)K:’(g)(uq])ggmg)

f(J 2 uqil %2 . o1
F)( Hc 225 R)e(u? g2 | T (ug? ™) K (ug ™) (4.2.7)
uq - 2

where f)(u) is given in (1.3.25), I'(u) and T'y (u) are defined in (2.1.43) and (4.1.5), respectively.

Proof. Recall that the relation (3.6.13) from Proposition 3.6.7 holds provided Conjecture 1 is true.
Now, applying (e ® id) to the latter equation using (3.5.19) and (4.1.7), one gets

./—:'(jié)Kéj) (uqfé )R(%v]) (u2q*j*% )Ki%)(uq*jfl)g(jfé

(12) (12)
25—-2
. . . .1
- (H c<u2q21+2+’“>c<u2q2ﬂ+k>> I (ug KD (w) | (4.2.8)
k=0

where we used that g(j)(uq_%) = g(j_%)(u) (%)(uq 7) due to (3.5.20). Then, taking the transpose
of (4.2.8) and replacing u — —u~!, ex — —%%, kx — —kz, from (4.1.2) and (4.1.6) one has

1 . . . . _ (i1
€U 1K D (ugh RED (u2q 7 3) K U (ug ) [F 2 )

(12)
=3 (ug—1) (P32 ' A | |
= ff(])((i)) (H C(u2q2j—k)c(u2q2j—2—k)> I‘+(uq9_1)K+(]_%)(uq_1) ‘ (4.2.9)
uq k=0

Finally, using (4.2.5), Corollary C.3.4 and the dual reflection equation, the L.h.s. of (4.2.9) becomes:

D (y2g7I3 )K+(j) (ug~2)EU-2) [Hl—2)]
1

(ug? )R (w2775 16D (ug™3)EU R RO

HU-3) FG-D | +< 2) (ug?) R

Nl 1\3\’—‘

— j‘(j—%)R(ad)(q—J—%)K"'(

— f:'(j_%)K;—(j)(uq_%)R(E’j)(U_Qq_j_i)K;_(i)(qu)R(§’j)(q_j_5)5(j_§)[ﬁ(j_i ]—1 ,

and using again Corollary C.3.4, the equation (4.2.7) follows. O

Lemma 4.2.4. The following relation holds:

—(; _( i1 . . 1 . _(x
= &0y VL VST g ) REI D (w2gET wg e, (4:2.10)
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Proof. Tnserting HU—D[HU=D]=1 = Ty, _; in the Lh.s. of (4.2.10) and using Corollary C.3.4, one
gets:

i1 . . 1 _ — /. — /.
Ky V7 (ug )RGI8 (w2 9 K (g 3) €L VO D RO (42.11)
= K3V (g ) RET D 2 i  wgh RID ()g VY

Then, using the dual reflection equation (4.1.1) and (C.3.12), one finds that (4.2.11) equals

DRG0 KD g RG2S g g, VoY)

g(j—l)]j—(j— i

(12) ¥ (12)
Finally, using again (4.1.1) and Corollary C.3.4, the equation (4.2.10) follows. O

We now show the universal TT-relations for any spin-j. These relations are new, and we call
them ‘universal” because they belong in the algebra A, and not in some representations of an algebra.
As it will be shown in Section 4.4, they generalize the conjectural TT-relations already studied in
the literature. Indeed, the latter are recovered by taking finite-dimensional representations for A,.
Recall the expressions for the quantum determinants I'(u) and I'j (u) given in (2.1.43), (4.1.5).

Theorem 4.2.5. Assume Conjecture 1. The following relation holds for all j € %N>1:

T (ug?~2)T 4 (ugi~2)

T () = TU=3) (0e=3)TE) (ugd— 2 : A
(u) 2(ug™2) T2/ (ug’™2) + 2 (D)

TU=D (ug™) (4.2.12)

with T (u) = 1.

Proof. Assuming Conjecture 1, another expression for the fused K-operators that agrees with Defin-
ition 3.5.1 is given by Proposition 3.6.9
i G-1) 1 1. 1 . (1) 1 .
KO (u) = Fiy K5~ (ug™ ) REI=2) (/) K (ug/2)EDy, (4.2.13)
We underline the step of calculations that use (4.2.1), (4.2.2), the reflection equation or the dual

reflection equation. Inserting (4.1.3) and (4.2.13) in (4.1.4), TU)(u) reads, up to an overall scalar
factor, as follows:

tr<[g<(g>]tK;r(J 5)(uq*%)R(i’fﬁ)(u”q*jfl)[(f(%)(uq]*%)[J:g%>]t

x FAKS ™ (ug ) REID (g K (g 2)E))

(422) ,ngj) tr(K;_(j_g)(uq ﬁ)R(W‘ﬁ)(u_Qq_j_l)Kf(%)(uqJ‘%)[fff%ﬂt
x Fiy ks~ (wg HRE D gk g HRGTD (@)

(52) ngj)tr(K;-(j_;)(uq HRGID (w2 KT (ugf D[F
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i1 . . 1 .
22 (19D g RE D 25 KT )

x £ Fib K™ (ugh =) RGI—2) (ug YKy, 2)(uq—%)> .

Then, from the second relation of (4.2.1) one has géf%)‘}—((f%) =1y — 7<({
account the overall factor, one gets:

1 FG-D

o Fliz) and taking into

T () = (a) + (b) , (4.2.14)

where

FO(u) ’
—(i_ —(i_ 1 .1 1. 1 . y__ L1 1
< €y Fily K w ) R @K (g ) )

Now, we rewrite the first term as follows:

f(j_%)(uq_%) +G-4 1 1 1 . +(1) 1y 141
(a) = .—tr( [KQ 2 (uq—§)[R(aJ—g)(u—2q—J—1)Kl 2 (ugi~2)] 1]

=3 (ug™ A , . A 1 A
wtr([R(%J_%)(U—Qq—j—l)]tl [R(%,]_%)(UQQJ—I)] t1 [K§2)(uq]—%)]t1
1 1 1 :
X IC;] 2)(u(f%)l(';(] 2)(uq*%) [K;r(ﬂ(uqﬁ%)]tl) ,

and using the crossing symmetry (4.1.10) we obtain

G=5)(ua—3) .. 1 . . ) ) -
= Wf(“““qjlﬁ U2 (ug ) T (ug?~2)

= T0-2) (g~ 2) TR (ugd~2) . (4.2.15)
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The latter equality is obtained using the expressions of £€U)(u), ) (u) and c(u) given in (4.1.11),
(1.3.25), (1.3.33), respectively. We now compute the second term in (4.2.14). Using (4.2.10) and
the cyclicity of the trace, it reads

(G=3) (yg—3 L 1 . . 1 .
(b) _ _f Q(UQ Q)tr(]_-(jfl)K;‘(J 2)(uq—%)R(%,]—%)(U—Qq—j—l)K;"(g)(uq]—§)

FO(w) 12
(i (i l) .1 1, 1 . i1 _ 1 S(5—
< £,V FG VK (w3 RGID (w2 K2 (g HEG,") |

Finally, using the relations (3.6.12) and (4.2.7) we get

f(j 27—-3 4
(b) = - (HH 2%~ )r(uqf—i>F+<uqﬂ‘—3>T<ﬂ'-”<uq—1>
k=0/¢=1
_ F(“qj_?)qu.]_i)T<j—1>(uq—1) . (4.2.16)

c(u?q¥)c(u?q™=?)

Therefore, inserting (4.2.15) and (4.2.16) in (4.2.14), the claim follows. O

Let us now write the generating function TU)(u) for some values of j. Recall that T(%)(u) is
expressed in terms of elements of 4, denoted Zs1, that form the commutative subalgebra Z, see
eq. (2.1.56). The generating functions T (u) for j =1, 3, follow from the TT-relation (4.2.12). In
terms of Z(u) from (2.1.55), they read:

(1)

T W) = e(u?q)e(u’q®) (T(ug?) + o) (Zug ™) + o) + £ (w) .
T(%)(u) = c(u?q)e(u?q?)e(u?) (I(uq) + Io> ( )+ Zo> <I )+ Ig>
+e(utg) 1§ (g (Z(ua) + To) + ) 137 () (Tl ™) +3p)

where c(u) is given in (1.3.33) and

(1)) _ D(ug” )0 (ug"2) )y — L@ ()
fO ( )_ (ugqg) ( 2) ) f() ( ) C(u2q3)c(u2q) . (4217)

More generally, the universal T'T-relations (4.2.12) imply that T (u) is a polynomial of order 2j
in the generating functions Z(u) with shifted arguments, and coefficients that are central in A,.
Furthermore, from the universal TT-relations, it follows that all TU)(u) (or rather their modes in
the expansion in u) belong to the same commutative subalgebra Z generated by the modes Zog 11
of T (u).

Recall that the spin—% generating function for A4, forms a commutative family [Sk&g]

[T(%)(u),T(%)(v)] =0, forallu,veC*

More generally, from Theorem 4.2.5 we have:
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Corollary 4.2.6. For allu, v € C* and j, j' € %N+, one has:

[TO (), T ()] = 0.

Remark 4.2.7. The universal TT-relations (4.2.12) is invariant under a change of normalization
of KU (u). Indeed, let g@)(u) be a scalar function and KW (u) — ¢ (u)K) (u). Recall KU (u) is
defined via the relation (3.5.1) and because R(%’j)(u) and K (u) are invertible, see Remark 3.5.8,
it follows that

27—1
gD () = g0~ (ug2 )¢ (ug=7+3 H g2 (ugi=27y . (4.2.18)

Now, consider the universal TT-relations (4.2.12) under a change of normalization of KU)(u), it is
given by

(i-3) a3 (ugi— 2
TO(y) = 2 2 (ug %)9 2 (ug 2)T(J ) (ug2)TG) (ugi2)
9V ()
Iy, a3y Ly 1 gy 3 3
+g(2)(uq3 2)g2) (ug?~2)gY D (ug™!) T (ug’~2)T'y (ug’ ) 16D (g (4.2.19)
gV (u) c(uq®)c(u?q®—?) ’ o

and using (4.2.18), the latter equation simplifies to (4.2.12).

4.2.2 Proof of the universal TT-relations using a PBW basis for A4,

One may wonder whether the universal-TT relations can be proven for the fused K-operators con-
structed by fusion (3.5.1), without any additional assumptions. Using a PBW basis for A, from
Section 2.1.2; and the explicit expression of the fused K-operator, we show that (4.2.12) indeed
holds for j = 1,%

To check the universal TT-relations for j = 1, recall that T() (u) is expressed in (2 1.55) in terms
of the generating functions Wa (u), G+ (u) defined in (2.1.1), (2.1.2). Similarly, T® (u) is computed
using the spin-1 K-operator for A, given in (3.5.7) and the fused dual K-matrix (4.1.3) for j = 1.
Then, one finds that the difference

N

TO () — TE) (ug™2) T (ug?)

reads as a quadratic combination of the generating functions Wa (u), G4 (u). Using the ordering
relations of Lemma 2.1.5, this difference simplifies to

The universal TT-relation for j = 5 is checked along the same line. The expressions being lengthy,
a symbolic Mathematica program 1s used to simplify all expressions.

In summary, the results obtained up to here are the following:
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e Firstly, we introduced in (4.1.2) spin-j dual K-matrices K+0)(u) out of fused K-matrices, and
found that they satisfy fusion formula (4.1.3). Then, from the latter and the fused K-operators
K9 (u), we defined in (4.1.4) spin-j generating functions TU) (u).

e Secondly, in the framework of the universal K-matrix introduced in the previous chapter, we
showed in Theorem 4.2.5 that TU) (u) satisfy universal TT-relations provided Conjecture 1
holds. More precisely, we only need part of this conjecture, namely: that IC(j)(u) and the
1-component evaluated universal K-matrix K@) (u) are proportional to an invertible central
element v (u) € A,((u™1)), see (3.6.1) and (3.6.2). From the universal TT-relations, we
found that all T)(u) belong to Z, the commutative subalgebra of A, generated by {Zox, 1|k €
N}, recall Section 2.1.4.

e Thirdly, independently of this universal framework and without any additional assumption,
we also showed that T(j)(u) satisfy universal TT-relations for j = 1, % It was done using a
PBW basis for A, as well as the explicit expressions of X7 (u).

4.3 Quotients of A,

The rest of this chapter is dedicated to applications of the results described earlier for A,, within
the context of quantum integrable spin-chains. Recall that the goal of this universal approach is
to unify open spin-chains, and it goes as follows. In this section, we begin by recalling spin-chain
representations of A, which in turn inspire us to introduce in Definition 4.3.1 certain quotients of
Ag, denoted as .AEIN). We also describe the quotient map (p(N ) Ag — .AEIN) and give a FRT type
presentation for AgN) in (4.3.20)—(4.3.27) in terms of the truncated Kl (u) ~ (cp(N)®id)(lC(%)(u)).
Compared to the K-operator K(%)(u) € A,((uv™1)) ® End(C?), this truncated K-operator Kl (u)
has a simpler structure because AgN) has finitely-many generators, and it belongs to .AC(IN) [u,u" ) ®
End(C?). Note that it takes the form of a Laurent polynomial in u because the generating functions
{W4x(u),G+(u)} truncate under the quotient map, and we also use an appropriate normalization
factor in (4.3.20). In the next section, we use (™) to derive universal TT-relations satisfied by
spin-j versions of TGN (u) € A((IN) [u,u"']. Then, from these relations and using the spin-chain
representations, we recover in Section 4.4 the transfer matrices of various spin-chains along with
the TT-relations they satisfy.

4.3.1 Spin-chain representations of A,

We now recall spin-chain representations of Ay, that originally appeared in [BK05b] for the XX7Z
open spin-1/2 chain with generic boundary conditions. Let us introduce the following shorthand
notation that corresponds to the spin-j irreducible representation of Uysla, recall its definition
in (3.2.2)

S3

T(E)=8y, w(F)=5_, m(K*2)=¢"7 (4.3.1)

with

(S+>mn == j,j+1—m6m,n—1 y (S—)mn - Bj,j—f—l—n(sm—l,n ) (53)mn - 2(,7 + 1-— n)(sm,n 5
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for m,n =1,2,...,25 + 1 and where B, ;, is given in (3.2.3).

We now review the spin-chain representations of A, introduced in [BK05b], with the corres-
ponding representation map

N): A, = End(C¥v Tl @ .. @ C21HY | (4.3.2)

where N € N, and j,, denotes the 2j, + 1 dimensional irreducible representation of Uyslz, with

= 1,2,...,N. Each space is indexed by a non-zero complex parameter v, corresponding to
the inhomogeneities of the quantum spin-chains and can be also identified with the evaluation
parameters of LU;sls.

Recall the FRT-type presentation of A, is given by the K-operator IC(%)( ) in (2.1.5) satisfying

the defining relation (2.1.4). Representations for A, are thus obtained by taking images of K(%)(u)
so that they satisfy (2.1.4), and they were actually found in [BK05b] as follows. First, introduce

() = (7 @id)(£E) (u)) € End(C¥**+1) @ End(C?) | (4.3.3)

o=

(
L

where E(%)( ) is given in (1.1.8). Then, the image of IC(%)( ) is identified with the dressed K-matrix

(o) K (u) L3

Ry OIS

O™ @id)(KE) () = f(u) Lfﬁv}(uvm f })(uvl) L) (434

(V]

where f(u) is a Laurent polynomial in u that will be determined later, with v, € C* and K (%)(u)
is the K-matrix from (1.2.3). By construction it satisfies the reflection equation (2.1.4) with the
substitution K(%)(u) - (W) @ id)(lC(%)(u)), recall Section 1.2.2. We thus have a representation
for A, due to its FRT-type presentation.

Note that (4.3.4) can be seen as a 2 x 2 matrix with entries in End(C¥N*! @ ... @ C%1+1),
Explicitly, for £ = 0,1,..., N — 1, the images of the alternating generators of A, on N sites are
given recursively by [BK05D)]

(9N)

wy g, + 3 _ v 4 vy
ﬁ(N)(W_k) _ (wg 2]N(J(r]1+ q(ql) g )a™) @ oW 1)(Wk) _ ﬁbmﬂrl @ 9W- )(W—k—i-l)
02, + 2 w(jN) -
# IO O W) + g% 9 W) (43.5)
y o) (Frong251g% /2 @ 0V D (Gy) + kovylq /28¢5 @ 9N D(Gy.) )
(9n) —1y,,—S8
Iyjy+1— (¢ +q7)g™) - vy + oy
I (W _ (wg " ojy 41 YN W ]I IN=1 W
( k‘+1) (q+q_1) ® ( k’-i-l) (q+q ) 2]N+1® ( k)
(9n)
_g. _ VU)W
+ ¢ @IV D ( W) + (v N(qu’; >)0 I (W) (4.3.6)

(q—q")

+
kik_(q+q1)?

(k+vj;lq—1/28+q—53/2 ® 19(N—1)(Gk) tk ong 2S¢ 5% g 19(N—1)(Gk)> 7
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k(g—q ") Pt ik B _ _
I (Gpyy) = L 262 @ 9yV=1(G,) — X Al 9N (G) + Ty YND(G
(Gk+1) k:+(q—|—q*1) -® (Gk) (q_i_q,l) ® (Gk) + 2jn+1 @ (Gk+1)
+(*—q7?) (k—qu_l/zs—q‘%/Q © (PN (W)= (W) (4.3.7)
+hovy'g2S_q %2 @ (19““)<vvk+1>—19<N*1><W_k+1>))
(02 +U72)w(j1v)
ey O
- ki(g—q7')? O R 15 _1y,z
I (G AT a )" g2 o g(N-1) g,y — UN N IV (G Ios IWN-1)(G
(Gk+1) F (gt ) SL® (Gk) TE=Y ® (Gk) + Iojy+1 ® (G1)
+(@*—q7?) (k+v]‘vlq1/25+qs3/2 © (0D W)=V D (W) (4.3.8)
+hiong V2S5 g (ﬁ(N_l)(WkJrl)—ﬁ(N_l)(W—k+1)))
(02 +U72)w(]’N) N
T O
where

w[()j") N

For the special case k = 0, one has®?

I (W |p—p) = 0, I (W _g41]k=0) = 0,
kik_(q+ q_1 2
9™ (G lr=o) = 9N (G |pmo) = — q(—q—l ) Ti2jn+1) % x (2j141)

and also the initial conditions
9OWe) =, 9OwW) =9 90G) =90 G) =V (g ¢ ).

Here 5$ ) are identified with the boundary parameters e+ from the K-matrix (1.2.3). Note that

we do not need the image of all generators of A, because the image of the generating functions
Wi (u), Gy (u) truncate, as we now show.

The images of A, on spin-chain representations satisfy the following linear relations [BK05b]

N

S dMoM W) + T 1l 47N =0, Zd N)(Gpp11e) =0 | (4.3.9)
k=0

al N — (N - (N

S dMI Wi ) + 1™ 17N =0, Zd N (Grpiie) =0, (4.3.10)
k=0

ZWe use the formal convention ™) (Wy|p—0) # 9™ (W_g|k=0) and 9™ (W_ji1|k=0) # 9™ (Wki1|p=o) for
any N.
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for any ¢ € N, with £ = ¢ mod 2 and

N
dV = ()N g+ YD g oy, n=01,.,N,
by e g =1 (4.3.11)
EiN) = wéjN)agFN_l) — (v + U&Q)E;N_l) ,
and where
_ ‘ 0) (0 _ _
_ @ +orug? PO gt R e L N
ay = —1 + kk 1 ) Oy = 1 or N==2s9,..., .
(g+qt) +k—(g+q7") (g+q7")

The case ¢ = 0 is proved in [BKO05b]. The proof for ¢ > 1 is done similarly by induction. Note
that the relations (4.3.9), (4.3.10), can be interpreted as g-deformed analogs of Davies’ relations
[D90, DI1] for the alternating central extension of the ¢g-Onsager algebra. For ¢ = 1, see [BCIS8,
eq. (4.20)].

4.3.2 The quotient algebra A((]N)

Recall the algebra A, has infinitely-many generators {W_z, Wy11, Gp1, Giy1]k € N}, and the spin-
1/2 generating function T(%)(u) from (2.1.55) belongs to the commutative subalgebra Z. It is
generated by {Zokt1|k € N} from (2.1.56), and is thus infinite-dimensional. As we will see in the
following, these elements are more fundamental than T(%)(u) itself. The spin-chain representations
of A, given by (4.3.5)-(4.3.8) simplify the algebraic structure of A, and Z. Indeed, in [BK05b] the
transfer matrix of the XXZ spin-1/2 chain is expressed in terms of images of Zoi11. In this case,
they form a finite set of quantities in involution with & = 0,1..., N — 1, which corresponds to
conserved quantities of the system. This motivates us to introduce some quotient algebras of A,
inspired by the spin-chain representations. These quotients will be used in further sections in order
to describe integrable spin-j chains and their symmetries.

Let us now introduce two presentations for the quotients of 4,. The first one amounts to
define A((]N), with N € N4, as the quotient of A, by certain relations analogous to (4.3.9)-(4.3.10),

while the second presentation takes the form of a reflection equation with a truncated K-operator
1

k&M (w) € AN, v ® End(C2).

{.%L(IN)}N@\;+ as quotients of A,

Let us introduce the quotient relations that define AéN).

Definition 4.3.1. Let N be a positive integer. A,(IN) is the quotient of Aq by the relations:

N N
Zd;gN)W_k—e + mEiN) +7eM =0, Zdi(cN)GkHM =0, (4.3.12)
k=0 k=0
N B N s

Zdé‘N)WkJrlJrE 17+ 1eW™M 4 KESFN) =0, Zd;N)GkHM =0, (4.3.13)

k=0 k=0
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for any £ € N, where d(N) (N)

Let {W(_JZ),Wk+1,gk+1,gk+1]k =0,1,....,N — 1} denote the alternating generators of A,(IN). The
surjective homomorphism

are scalars, and we used the notation £ = ¢ mod 2.

M Ay — AN (4.3.14)
is such that

W s W Wi s W Gy o 6 Gy = GY) k=0,1,..,N—1. (4.3.15)

For k > N, the image of the other generators of A, follows from (4.3.12), (4.3.13).

The relations (4.3.12)-(4.3.13) are inspired by (4.3.9)-(4.3.10) for the spin-chain representations
of Ag. In particular the former relations are automatically satisfied by taking spin-chain represent-

ations 9V Of.A With the values for d,gN) ™) from (4.3.12)-(4.3.13) fixed by (4.3.11). Therefore
IN) factors through .A((ZN)

()

A, AP

9N)

End(C¥rv+l g ... @ C¥itHl)
where the quotient map go(N ) is defined by Definition 4.3.1. For simplicity we keep the notation
YN) when we actually use 9.
FRT type presentation

Due to the relations (4.3.12), (4.3.13), in the quotient A((IN) the generating functions (2.1.1),
(2.1.2) truncate to finite sums. Introduce:

N—-1 N-—1
N N N N N N
W@ =S P . W) =3 P
k=0 k=0 (4.3.16)
N—-1 N—-1
N N N
¢Mw) =3 PPweY) . ¢ =3 PP wEH) |
k=0 k=0
where Nt
(N o\ L) ek

Recall the map oY) with (4.3.15).
Lemma 4.3.2. The action of oY) on the generators of Ag is given by

1

wlg+u3q (N) g+q?

-1 -1

u2q + u*2q

(02 — u2)(ulq® — u—2q-2) F + (02 — u2)(ulq® — u—2q2

q+q
W )™ W () = W (u) + - _2)6@ +

(u? —u=?)(u?q® —u~?q 2

(u

—u2)(u2q? —u2q 2
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W (W)™ (G (w) = 68 () |

where

N
1
WY () = S (Zd,ﬁN)U’“> . (4.3.18)

k=0

Proof. Firstly, consider the image of the generating functions Wy (u), G+ (u) given in (2.1.1), (2.1.2).
For instance, from (2.1.1) one gets:

(w) = Y WUkt = ZW Uk1+ZW u-kt, (4.3.19)
keN k=N

where U = (qu® + ¢ 'u=2)/(q + ¢~ !). Now, using the linear relation (4.3.12), it follows:

Z WEJX) U—k—l _ ZW(_NN)_pU—N—p—l

oo N— 1d(N) N oo LNE S_N) oo . Ns(N)
Z Zd(zv) —k pU - Zp+1U 8 Pl ZPU " d(N)
p=0 k=0 p=0 N p=0
p 1d(N) k—N ~ 1d(N) N—p—1+k 20— 1-N 5SFN) 1€(N)
- _ p— —2n—1- -1==
o Z d(N)U )+ Z Z (N) —p U ZU d(N) tU d(
k=0 0N k=1 p=0dy n=0 N N
= 1d(N) k—N —~ (V) - dz(aN) N—k—1 o 2n 1N ESrN) 1€
— _ Jp—IN—R— _ —an—1= _r —l__
- Zd( U W+(u)+ZW7k > Y YU U
k=0 k=0 p=k+10N n=0 N N

Inserting the above expression into (4.3.19) and multiplying the result by d%v), one gets:

N-1 )
(Zd(N)Uk> W <Zdn+1Un k) . ZU—Zn—l (€S_N) + U_lg(_N))
k=0 n=0
N-1
=S wi ZdnHU" ’f)
k=0
~ (g+q 1)(u q+u 2q“) K (¢+q7")? oY)
(W2 —u?)(u?q? —u2q72) " (u?—u?)(u? —uig ) T
Dividing both sides by —(q + ¢~ 1), the expression of o) (W, (u)) follows. The action of ¢¥) on
the other generating functions is obtained similarly. O

Let us now introduce the spin—% K-operator for AéN), denoted K-V (u). Recall the spin—%
K-operator for A, in (2.1.5), then taking its image by (9™ ®id) and using Lemma 4.3.2, we define

K@M () = (u? — u2)A () (™) @ id) (K2 (u)) . (4.3.20)
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Explicitly, it reads:

(N) (V)
ANy (AT (w) B (u)
with
AN () = uaer) +ule®™ 4 (u® — u*Q)(quJ(rN)(u) - uiqulVV(_N) (w)) , (4.3.22)
DM () = ue™ 4 u_laer) + (u? - u_Q)(qu(_N)(u) — u_lq_1W+N)(u)) , (4.3.23)
2 _ -2 2 —2 1
(N () = W = uT) ke (uZq + uTq7) vy L om () 4.3.24
B (’LL) L ( q_q_l 0 (u) + q+q_1g+ (u) +w0 ) ) ( 3. )
2 _ -2 2 -2 1
N (u =) kyk (uig+u"q") L) L - (N)
cM () = i ( p— Py (u) + mg_ (w) +wy ') (4.3.25)
where h((]N) (u) is given in (4.3.18) and
wiM = —qk_*];‘_ldgm . (4.3.26)

Note that K(z:V) (u) belongs to .A((IN) [u,u™!] ® End(C?) because the truncated generating functions
Wj(EN) (u), QE_LN) (u) from (4.3.16) have only positive powers in U up to the power N. Using the fact
that ¢ is an algebra homomorphism and the definition of the truncated K-operator from (4.3.20),
it is clear that A(2+Y) (u) satisfies the reflection equation

3:V) (3:V) 3NV

L 1 1
(W)RE ) ()52 (v) = K )

RG) (u/v)Kc ()R (w) K 2N (W) RGD) (wfv).  (4.3.27)

Finally, we define the spin-1/2 generating function TGN (u) for Af,N) similarly to T(%)(u)
in (2.1.54) but with the substitution K(u) — Kz (u) for the K-operator in (4.3.21). It is com-
puted explicitly:

T(3.N) (u) = C(UQ)C(UZQQ) (I(N) (u) + h(()N) (u)Io) (4.3.28)

+24 ((uzq +u2g e + (g + q’l)a(_N)) +&_ ((qu +u 2™ 4 (g + q*1)€(+N)> :

where c(u) is given in (1.3.33) and

N—
IM@) =3 PP@IR),  with 5 = o™ (T (4.3.29)
k=0

[y

with Zog41 from (2.1.56) and PSJZ) (u) from (4.3.17). We thus notice that the commutative sub-

algebra in A((ZN), extracted from T(z:N) (u), is generated by finitely-many elements {Igj_&l\k =
0,1,...,N —1}.
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4.4 From the generating functions for 4, to the transfer matrices

Now, recall the transfer matrix for open spin-chains has been reviewed in Section 1.2.3. In this
section, we derive spin-j transfer matrices with arbitrary spin at each site, starting from the spin-j
generating functions in the commutative subalgebra of A, as follows

. (N) . (N) .
THwW) —Fs TNy v , 10l () (4.4.1)
)

) EAéN)((u—l)) €End(C¥NtTl®..@C21+1)

with n = 1,2,..., N. This is done by constructing first the fused K-operators for AgN). Then the
images of these latter under 9V) are expressed as dressed K-matrices, which in turn, makes the
connection between the generating functions for .A((JN) and the transfer matrices. Finally, the TT-
relations satisfied by tU1ntv) (4) € End(C¥V*t1@. .. ® C¥1+1) are then deduced from the universal

TT-relations for AgN) .

4.4.1 From fused K-operators to dressed K-matrices

As we have already discussed, the algebra 4, finds application in quantum integrable systems
through its quotients. Historically, the first application was the XXZ spin-1/2 chain with generic
boundary conditions [BK05a, BK05b]. In spin-chain representations, a K-operator of the form
KGN (u) given in (4.3.21) was constructed out of dressed K-matrices, recall the form in (1.2.11).

Now, in order to extend this to higher spin-j, the truncated fused K-operators for .A,(IN) are required.
We denote them KUN)(u), and they are constructed similarly to K (u) from Definition 3.5.1.

Definition 4.4.1. The truncated fused K-operators for A((]N) are given by:

KON () = ]-"g%)/cgé’m(uq—H%)R(%’j_%)(qu_j“)ICéj*%’N)(uq%)5&) , (4.4.2)
with K& (u) in (4.3.20).
By construction they satisfy the reflection equation
ROV (u o) Y (0) RO () (v) =
K5 (0) R () ) (w) ROV (u o) (4.4.3)

Then, using the expression of K (u) from (3.5.1), one shows by induction the spin-j analog

of (4.3.20)
2j—1

KM ) = | [T etwba’™ 206" (=274 | (¢ @ id) (KD (w)) (4.44)
k=1

The latter truncated fused K-operators are now related to the basic building ingredient for quantum
integrable open spin chains, namely the so-called dressed K-matrices according to the standard
terminology used in [Sk&8] and related works, see (1.2.11).

Recall the fused L-operators £U)(u) € U,sly ® End(C¥+1) are given by (3.4.6), with the funda-
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mental L-operator L(%)(u) from (1.1.8). They satisfy the Yang-Baxter algebra
. 1 : 4 1 :
RED(ufo) £ () 2§ (v) = £§) () £7 () R (u/v) (145)
with the R-matrix (3.4.4). Define the evaluation of the L-operators for any k € N

LY (u) = (7 @id)(£9) (w)) € End(C¥+!) @ End(C¥H1) | (4.4.6)

where 7/ : U,sly — End(C% 1) is given in (4.3.1).

We now relate the fused K-operators for 4, to dressed K-matrices. Recall the fused K-
matrix (3.5.22) with the fundamental K-matrix (1.2.3), and the spin-chain representations (™)
from (4.3.5)-(4.3.8). Let vy, ..., vn be nonzero scalars.

Lemma 4.4.2. The action of (9N) ® id) on the fused K-operators KUN)(u) from (4.4.2) are
()

expressed in terms of L[k} (u) as follows

(00 1) (K (w)) = Ly (wen)-- L (o) KO ()L vy )Ly vy
€ End(C¥"H @ .. @ C¥1tl g c¥tl) (4.4.7)

with the identification 55?) =€t

Proof. The proof is done by induction. The case j = = holds by [BKO5b]. Assume (4.4.7) holds
for a fixed j. We now show the case j + % For convemence consider N = 2. From the formula of
KON (4) in (4.4.2), we have:

(O™ @ id) (KU+22) ()

= 0 oia) (750 (R Y e M )

= 0 wia) (R ) R (g R R 0 el )
= 0 oid) (7P R @G e R (g e el )

where we used Corollary C.3.2 and the reflection equation (3.5.21). Below, we underline the steps
of calculation and we use the shorthand notation:

Ry = R(M’N (upe/ug) Ry = R,(jé’“’”)(ug/uk) 7 RM _ R,(jéhjg)(UkUé) ’

_ g(de) _ (Jx) 7 _ (Jx)
K=K (ue) Ly = (Lk (Uk/vz)>[e]7 Lyg = (Lk (ukW))m

Recall that two operators that act on different auxiliary and quantum spaces commute, i.e.

(L Lingm)] =0, [ Ly, Km] =0, for k #m and £ #n . (4.4.9)
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Recall also that L) (u) and Rz )(u) are invertible, their inverses are proportional to L) (u~!) and
Rz (u™1), see (3.4.15) and (3.4.16). Then, the reflection equation and the Yang-Baxter algebra
yield:

K1R12K2R12 = RngngKl , (4.4.10)
L2[2]R12ﬁ1[z] = fq[e]f?ullz[e] ; (4.4.11)
RizLojgLagg = LyjgLojg Raz - (4.4.12)

Fix j1 = %, jo =7 and uy = uq~, up = uq%. Then from (4.4.8), assuming (4.4.7) holds for a fixed
J, one has:

. 1 _ . A s s _
N @id)(KUt2D () = FraayRaaLojo) Lop Ko Lopy Lojg) Ria Ly Ly K1 Lany Lapa) €1y H

4.4.11 _ . . B
“L )]:(12>R12L2[2}L2[1}K2L2[1}L1[2}R12L2[2]L1[1]K1L1[1}L1[2}5<12)7‘l 12>

a
4.4.9 _ . -
s )]:<12>R12L2[2]L1[2]L2[1]K2L2[1]R12L1[1]K1L1[1]L2[2]L1[2]5<12>7'l<112>

4.4.11 — A ~ A A ~ _
= )f<12>RI2L2[2}L1[2]L2[1}K2L1[1}RmLm]KlleL2[2]L1[2]5<12>%<112>

(4.4.12)

=" FuoyRiaLo Lijg Lop Ly K2 Ri2 K1 Loy Lyjyy Lo Ly g 5(12)7'[(11% -

Now, using the Yang-Baxter algebra (4.4.5), the reflection equation and Corollary C.3.2 we get:

O™ @ id) (K02 (1))
= FuoLupLop € Faoy Lipy Lo € Frazy Raa Ko Rz Ky Lopy Ly Lojo) L1 Eg) Hop
(44.10) _(j+3)
= Ly~
(4.4.12) _(j+3)
= Ly’

. 1 ] 1 sy 1
(C:3.7) L[(;]—i-Q)(UU2>LS]‘*‘2)(uvl)K(J‘f’%)(u)LEi]+2)(uv1_1)L[(;}+2)(uv;l) )

+31 - = _
i 2)(le)J'-<12>K1312K25(12>]‘—<12)R12L2[1]L1[1]1‘12[2]1‘11[2]5<12>7'l<112>

+3 irl = _
i 2)(le)K(]+2)(U)]:<12>L1[1]L2[1]5<12>]:<12)L1[21L2[213125<12>H<112>

The proof extends to general N by induction on N. O

Recall that the image on spin-chain representations of the spin-1/2 K-operator was given in (4.3.4).
Using above lemma and (4.3.20), one finds that f(u) = (u? — u_2)héN)(u) in (4.3.4). In the fol-
lowing, we study the relations between the transfer matrices and the spin-j version of TGN (u) €
.A((IN) [u,u™1] given in (4.3.28). The latter is defined by analogy with TU)(u) from (4.1.4)

TUM (1) = trgee (KT (w) KN (u) € AgN)((Uil)) ; (4.4.13)

where the truncated fused K-operator KU (u) and K+U)(u) are given in (4.4.2) and (4.1.2),
respectively. Note that the truncated fused K-operators KUV (u) € ASIN) [u,u~!] ® End(C%*1)

while TUN) () e A((IN)((u*I)). The latter has finitely many terms in .A,(IN) but the presence of
factors in 1/c(u?) in KU (u) explains the fact that TUN)(u) is a Laurent series in u~! with

coefficients in A((IN) (recall our conventions).
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Using the invariance of the TT-relations of Theorem 4.2.5 under a change of normalization of
KU)(u), see Remark 4.2.7, and applying the map ¢) with (4.3.15) to (4.2.12), one finds:

3
2

o i3
T (ug/™2)T (ug/ DTN (g ) | (4.4.14)

(JvN) — (jflvN) -1 (lvN) jfl
TV (u) = TV 2 (ug2) T2 (ug’™2) + 2 (D)

where c(u) is given in (1.3.33) and

1 1
T (1) = tryp (P () BED) (qu2)52 ™ (ug)) (4.4.15)

= c(u?)e(u?q®)hS (w)h§Y (ug)p™ (D (w)) .

4.4.2 Relations to transfer matrices

Recall the transfer matrices for open spin-chains was reviewed in Section 1.2.3. The explicit
construction of local conserved quantities associated with various examples of quantum integ-
rable open spin chains of length N with generic integrable boundary conditions (higher XXZ spin
chains [FINRO7], alternating spin chains [CYSW14], ...) is now revisited in light of previous results.
For these models, it is well-known that all local conserved quantities are derived from a transfer
matrix [Sk88]:

(01 () = gy (KO () T () KO () FGE) () (4.4.16)

where the generalizations of the monodromy matrices from (1.1.11), (1.2.12) are

Téfﬁjn}w)(u) _ R%Z’j)(uw) . R%,j) (uv1) | (4.4.17)
Ti?;éjn}N)(u) _ R&J;’j) (uvl—l) . ..R%];”j) (uy&l) , (4.4.18)

and with RU72)(u) given in (3.4.3). Note that v, are the so-called inhomogeneities and they are
exactly the non-zero complex parameters v, introduced in the spin-chain representation of A, given
by (4.3.5)-(4.3.8). Here, we use the notation {j,}~n = (j1,J2,...,jn) that denotes the spin of the
representation located at site n of the chain, whereas j denotes the spin of the auxiliary space ‘a’.

Among the conserved quantities of interest, local ones such as the Hamiltonian are derived from
the transfer matrix [Sk88] for a suitable choice of parameters (7, {j,}n) and {v,}. Typically we are
interested in homogeneous case where all j, = j and v, = 1, then the Hamiltonian is local. Up to
an overall factor, adjusting the scalar term Hy one has:

d o
Hxxz —Ho~ In(t0492) (1)) = 0 =1 - (4.4.19)

Example 4.4.3. Fizing j, jn, and v, to some values, we recover from (4.4.19) the XXZ Hamiltonian
with generic boundary conditions:

1 _
(i) For j = jn = L, v, =1 ¥n, we get HZLs" (ks , e, ki, Es) given in (1.2.17).

(i) For j = jn =1, v, = 1 ¥n, we get HIY (ks, 4, ks, 22) given in (1.3.49).
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Now, we relate the generating function (4.4.13) to the transfer matrix (4.4.16). To do so, first
recall the images of the truncated fused K-operators are expressed in Lemma 4.4.2 in terms of
evaluations of L-operators (4.4.6). Actually, they are proportional to the R-matrix from (3.4.3).

Indeed, one finds
-1

2jn—225—1
L () [H [1 cCugt =1 RO () | (4.4.20)
k=0 ¢=0
with
(l) 29n—2 ' ) -1 -
Ly () = [ IT clug"*=2)|  RU»2)(u) . (4.4.21)
k=0

Recall 9(V) is given by (4.3.5)-(4.3.8).

Proposition 4.4.4. The spin-j generating function for AgN) specializes to the transfer matriz (4.4.16)

N 2jn—22j-1 -1
9N (TG [

H H Hc J+j”_k_é_lvn)c(quﬂ"_k_e_lvgl)] t(j’{j"}N)(u). (4.4.22)

n=1 k=0 ¢=0

Proof. Tt is straightforward starting from the definition of TUN) () in (4.4.13), and using (4.4.7)
with (4.4.20). 0

Now, recall the quantum determinants I'x. (1), and 8U) (u) given respectively in (4.1.5), (4.1.6), (4.1.11).

Proposition 4.4.5. The transfer matriz t0-Un3N) (4) from (4.4.16) satisfies the TT-relation:
t(j’{jn}N)(u) — t(j—%:{jn}N)(uq—%)t(%u{jn}N)(qu—%) (4.4.23)
N 3 i3
s ) T D@D et
[ T18 wg™2on) 8597 (™20 | =2y o oy 0 g™

n=1

where SU)(u) is given in (4.1.11).

Proof. Recall the universal TT-relations satisfied by T@N)(v) in (4.4.14), and that spin-chain rep-
resentations for TWN)(u) lead to transfer matrices in Proposition 4.4.4. The TT-relations (4.4.23)
are obtained as the images of 9(V) on (4.4.14). We thus only need to compute the image of the
quantum determinant I'™) () from the first line of (4.4.15). Recall Té];éj"}N)(u) is given in (4.4.17).
One has [Sk88, Prop. 6]: 7

1

—(3 ~(3 in lfl n - 1 n
tI']_Q(P12 f?\}{jn}N)(u)Kl (2)(U)T1(j\}{] }N)(u) Rg% 2)(qu ) 2( {J }N)(UQ)KQ (2)(Uq) 2(2 {] }N)( ))

1 . (1 . N . .
= (1 ()T ()P (w) = | TT 89 (uqua) 897 (uguy, ) | T (u)
=1
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where 8U)(u) is given in (4.1.11) and v(T'(u)) = tr12(ProT1 (u)To(ug)). From (4.4.15), it follows:

N
[HBW(uqvn)ﬁ(j")(uqvf) I_(u)
I M) (1)) = n=1 . (4.4.24)

N 2jn,—2
[H R e T s N R (T

n=1 k=0

After simplifications, using (4.4.22), (4.4.24), one finds that the image of the TT-relations (4.4.14)
under 9V) maps to (4.4.23). O

By specialization of (4.4.23), one recovers some examples of TT-relations conjectured in the
literature. For instance, the choice j, = j € %NJF, v, = 1Vn, corresponds to the TT-relations
satisfied by the transfer matrix of the spin-j XXZ open spin chain [FNRO07, eq.(2.16)]. Whereas
the choice jo, = s, jop+1 = &' Vp and 5,5 € %N+, corresponds to the TT-relations conjectured for
the alternating spin chain of length N even [CYSW14, eq. (3.1)].

4.4.3 The case of the ¢-Onsager algebra

As we now describe, the transfer matrix can be written in terms of the two fundamental alternating
generators. From the spin-chain representations (4.3.5)-(4.3.6) one has in particular:

19(N) (W(SN)) — <k+UNq1/2S+qS3/2 _|_ k,’UR{lq—l/QsiqSS/Q) ® H(2j1+1)><.-.><(2jN71+1)

+ g% @ MWy | (4.4.25)
19(N) (WfN)) — (k‘.t,.’(};[lq—l/QS_i_q_Sii/Q + ]{j_’Uqu/QS_q_S:S/Q) (9] H(2j1+1)><---><(2j]\771+1)
+q 5 @MWy (4.4.26)

These are non-local operators associated with the spin chain.

Recall that the defining relations of the g-Onsager algebra are the same as for A, but in addition
the central elements Ay € A, are fixed to some scalars 20541 € C, see Section 2.2. In spin-chain
representations, A, factors through O, because the images of the central elements A1 under YW

are indeed scalars.

We now study the commutative subalgebra Z in more details for the special case of the g-Onsager
algebra O.

Remark 4.4.6. Let deg: O, — N denote the total degree of a polynomial in the alternating gener-
ators Wy, Wy such that

deg(Wi) = degWis1) =2k +1,  deg(Grs1) = deg(Grr1) =2k +2 .

Inserting the expressions (2.2.6) and (2.2.5) into (2.1.56), it follows that the coefficients Zog11
of the generating function TU)(u) are polynomials in Wy, Wi, such that

deg(Zops1) = 2k + 2 . (4.4.27)
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For instance for £ = 0 in (2.1.56), one has

1 k_ k
Ty =esWo+e-W) + o (k([wl,wo}q +61) + ki([wo,wl]q + 61)> : (4.4.28)
- +

Finally, from (4.3.28) and using the explicit form of the Zoj11’s in terms of the alternating generators
given by (2.1.56) and (4.4.27), it follows from Proposition 4.4.5:

Corollary 4.4.7. The transfer matriz t9=3~) (u) from (1.3.26) is a polynomial of total degree
4Nj in the images of the fundamental alternating generators V) (WSN)), 9N (WfN)).

In the g-Onsager algebra, Zog 1 from (2.1.56) is expressed in terms of Wy, Wi and dg41. On
the spin-chain representations, or under the image of 9¥), the expressions of the latter scalars can
be extracted as follows. Recall the quantum determinant I'(u) defined in (2.1.44) is fixed in O,
as (2.2.2). Therefore, its image on the spin-chains is

(Wq® —u?q?)

9T () = = =) <5<é>(u) - q_2’;_1> , (4.4.29)

with 6(2)(u) from (2.2.3). Using (4.4.15) with (4.4.24), we get the following equation

I () e(u?)e(u®®)hSY (w)h$ (ug)

N 2jp—2
: [H Hc(qunk%vwc(qunk%vn1>c<uqfnk+%vn>c<uqf"’f+%vnl>]
n=1 k=0

N
_ [Hﬂ(j")(uqvn)ﬂ(j”)(uqvn1) ).

n=1

where I'_ (u) is given in (4.1.6), and thus the scalars dy; can be extracted by comparing the powers
in u on both sides of this equation.

4.5 Hidden symmetries

In Chapter 1, the representation-dependent approach was considered with the spin—% transfer mat-
rix from Definition 1.2.7. As an example, the XXZ spin—% Hamiltonian with generic boundary
conditions was constructed in Proposition 1.2.8. An inconvenience of using this approach is that
the algebraic structure is not transparent. As a consequence, since the Hamiltonian is generated
from a transfer matrix, finding its symmetries is not necessarily an easy task. Through certain
choices of the boundary parameters, some symmetries were exhibited in Examgle 1.2.9 for the spin-
%, and in Example 1.3.7 for the spin-1. For instance Hg?))(d;ag (e4,2+) and Hg?))(sg are respectively
invariant under the total magnetization S* and the action of Uysla on N-fold tensor product of its
fundamental representations. However, one can ask if there exists non-trivial symmetries for more
general boundary conditions.

The goal of this section is to use a universal approach in order to find symmetries for a large class
of models, such as the open XXZ spin-j chains or the alternating spin chains, in a more systematical
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way. This is done by using the underlying structure of the generating function T(%)(u) € A,((u™h))
together with the universal TT-relations satisfied by TU)(u). The idea is to find the centralizer of
the commutative subalgebra Z, and the first step is to study commutation relations between Zoj 41
and all generators W_g, Wg.1, Ggy1, ék+17 but we explore now only a few of them.

4.5.1 Study of the exchange relations in A,

Now, recall that the abelian subalgebra 7 of A, is generated by the elements {Zy;+1|k € N} given
in (2.1.56). The spin-3 universal transfer matrix T(%)(u) is expressed in terms of these Zo1,
see (2.1.55). We now study commutation relations between them and the first generators of A,
namely: Wy and W;.

For convenience introduce

-/ -/
_ _ 1 k k-~
k1 = Sy W +8 Wy + 2—q2 (szkH + k"GkH)

where Eli, k! € C and g € C*. The only difference with Zyy 1 is their parameters.
Proposition 4.5.1.
W012k+1 = IékHWo s (451)

under the condition

_ I ke  k_ [
5 CERSE TR TRl (4.5.2)

Proof. Using the defining relations of Ay given in (2.1.17)-(2.1.27) the Lh.s. of (4.5.1) becomes

_ _ 1 k k_ ~
WoZogq1 =4 WoW_ + - WoWp i1 + pr—; (ﬁWOGkH + IZWOGkH)

1 ke ko o
= <5+Wk +e_Wgy1 + 2—q? (fq *Glg1 + QQGkH))WO

k
_ Gpg1 — Grya 1 kEy 4 k-
_ — — —q)(W_p_1 — W . 4.5.3
+z . Z _q_2p(k+q . q)(W_k—1 k1) ( )
On the other hand,
-/ -/
! —/ —/ 1 k;_;’_ k_ ~
Ty Wo = EW_f +8_ Wi + qQ_q_2<k/+Gk+1 + ijkH) Wo . (4.5.4)

Wi11, W_g_1 are linearly independent from Wq, W_j, G411, Ck+1 then comparing the linear terms
from both sides of (4.5.1) we get

B,

- 45.5
i (4.5.5)

g =0,
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and the second line of (4.5.3) vanishes. Now the Lh.s. reads :

7 1 ki o k- ¢
WoZok+1 = <6+W—k + W(Hq Gr+1 + 74 Gk—l—l))WO : (4.5.6)

The conditions (4.5.2) follow from (4.5.5), using the PBW basis from (2.1.42) and by equating (4.5.4)
with (4.5.6). 0

Similarly an exchange relation for Wi is obtained.

Proposition 4.5.2.

WiZopi1 = IékHWl, (4.5.7)
under the condition
k k_ ke Ey
g o=8,=0, # =z_, —Lt=_—g42, E=IEE2 4.5.8
+ + Ky k:_q K, ]‘fiq ( )

From the above propositions, we have:

Corollary 4.5.3. The generators Wy, W1 commute with Zok11 from (2.1.56) as follows.

(i) [Zok+1,Wo] =0,
iffe_ =ky =0.

(ii) [Zok+1,W1] =0,
lff §+ = Ei = O

Remark 4.5.4. The above corollary can be understood differently. Recall Top1q from (2.1.56). In
the first case, we have Iopr1 = W_p and the commutation follows from the first relation in (2.1.20)
for £ = 0; while in the second case Lop+1 = Wgi1 and the commutation relation is obtained from
the second relation in (2.1.20) for £ = 0.

4.5.2 Application to quantum integrable spin-chains

The goal is now to find non-trivial symmetries for various Hamiltonians. To this end, it is helpful
to keep in mind the picture with the maps given in (4.4.1).

Firstly, recall that the spin—% generating function for A, is expressed in terms of Zoi41 (2.1.55).
Then, due to the universal TT-relations (4.2.12), it follows that T)(u) is a polynomial of order
2j in T(%)(u). Therefore, the commutation relations from Corollary 4.5.3 imply that Wy and Wy,
respectively commute with T (u) for this specific choice of the boundary parameters. Note that
9N (TU)(u)) is proportional to the transfer matrix t@1n}~) (4) due to (4.4.22). Consequently, the
spin-chains representations for Wy and W1 commute respectively with the corresponding transfer
matriz for any spin values j, j, and inhomogeneities v, forn =1,2,... N. Below we study in more
details the homogeneous case where all j, = j and v, = 1.
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1-boundary cases

Recall the Hamiltonians of the XXZ spin-1/2 and spin-1 with generic boundary conditions are
constructed in Proposition 1.2.8 and equation (1.3.48). More generally, by taking the logarithmic
derivative of the spin-j transfer matrix t0-Un}~)(y) given in (4.4.16), and setting all the spins

Jn = 7 as well as the inhomogeneities v, = 1, one can extract the XXZ spin-j Hamiltonian with

generic boundary conditions. We denote them by Hgg))‘?ezn(ki, €+, k+,24). Then, fixing the boundary

parameters as:

HOS (s es) = HOET (ke e = 0,54 = 0)
HP oy (hayen) = HPET (keyen, e = 0,6 = 0)
it follows from Corollary 4.5.3 that they enjoy the following symmetries
Proposition 4.5.5. The following commutation relations hold for any j € %NJF

(M7 (kes2), 0O WO g ymy] =0 (M@K, 22), 0V (W) ] = 0, (45.9)
where 9N (W), 9N (Wy) are given in (4.4.25), (4.4.26).

Explicitly, for j = %, 1, the corresponding Hamiltonians read:

1

(3)+ L 2 9—q 2 _
Hixy(kt,e4) = b(2) + i ( 1 (e4 —e_)oi + kyoy +k_oy ) (4.5.10)
-1
q—q z
:F 2 O’N’
HOE (ks ex) = b (4.5.11)
1

kik- —eye (q+q71) — (63 +€2)
-1 k2 (sH)2 + k2 (s7)2
x <<6+6(q‘1 —q) +kiko qjq_ ) (s7)° + (€2 —€5)si + (o) R ()

q—q!

q q

20 +4q7h) : - : e
+ W(eJr(kJr[sf’sl]q%+k‘*[51’81 ]q%)‘F& (k+[51+,81]q,% + k_[s7, 51 ]qﬁ))

z
:FSNa

where the bulk terms b(2) and b are respectively given in (1.2.18) and (1.3.50), and with the
spin-1 matrices from (1.3.51). Note that the left boundary parameters (site 1) are free.

To conclude this chapter, we discuss how the image of the g-Onsager generators can prove to be
useful in diagonalizing Hamiltonians with the symmetries (4.5.9). Recall the Hamiltonian (1.2.23),
which commutes with the total magnetization 5%, has been diagonalized using the algebraic Bethe
Ansatz (ABA) in [Sk&88], see the review in Section A.2. Let us consider the case where all the
spin-values are set to j, = 1/2. The images of Wy and W; are similar in many ways to 5%, as we
now see.
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Firstly, the spin-1/2 total magnetization operator S* has N + 1 distinct eigenvalues degenerated
CYy times, with n = 0,1,..., N, where C}, are binomial coefficients. The associated eigenvectors
are the usual spin basis vectors of the space (C?)®V. In the ABA setting, the reference state for
Hg(%))(d;ag from Example 1.2.9, is simply given by the highest eigenvector of S?, i.e. when all spins
are up (A.1.7).

Secondly, the images of the generators of the ¢-Onsager algebra 9™ (Wg) and 9(V)(W;) have
been diagonalized in [B06, Prop. 3.3]. Each of them has N + 1 distinct eigenvalues indexed by n =
0,1,..., N, degenerated C}; times, so the same degeneracy as for S*. The associated eigenvectors
are linear combinations of spins either up or down at each sites, i.e. all the eigenvectors have
nonzero entries in canonical basis with respect to the standard spin basis. Let ¢ = e?, ¢ € C and
a,a*,n,m € C be certain parametrization of the boundary parameters ki,ey given in [BVZI17,

eq. (3.3)] by

q—q " ntn’ ntn’

q" , er=q 2 cosha, e_=gq 2 cosha™.

The non-degenerate eigenvector of 9(V)(Wy) with eigenvalue )\(ON) = cosh(a + ¢N )e(b(MTn)) is ob-
tained recursively:

YD = g @ (TN gy 1)) ) (15.12)

where |1) = (1,0), [{) = (0,1), with the initial value:

it = e HUTI ) 1) (4.5.13)

It is the analog of the highest eigenvector of S?. This vector can be used as a reference state in
the setting of ABA. Indeed, the reference state, as a highest weight vector for a gauge transformed
monodromy matrix, was constructed in [CLSWO02, YZ07], and then observed in [BK07, eq. (63)]
that it agrees with (4.5.12).

More generally, for any spin values at each site, 9") (Wg) and 9V) (W) have also been studied
in [BVZ17]. The images of the generators of the ¢-Onsager algebra have been first expressed in
terms of ¢-difference operators acting in the linear space of multivariable polynomials of total degree
2(j1+J2+...Jn), in the variables z1, 29, ..., zny. Then, the corresponding spectral problem for W
and W has been solved, with explicit expressions for the multivariable polynomial eigenvectors and
eigenvalues that are given in terms of g-Pochhammer functions. The situation with degeneracy of
eigenvalues of (M) (W) is similar to the spin-1/2 case. In particular, there is a non-degenerate
eigenstate analogous to (4.5.12). We expect that it plays the role of a reference state for the
corresponding ABA.



Chapter 5

Conclusion and perspectives

To conclude, we briefly recall what has been done in this thesis and then give some perspectives.

5.1 Conclusion

The first chapter is a review on how to construct quantum spin-chains using the formalism of the
transfer matrix. The second chapter gathers known information about the g-Onsager algebra and its
alternating central extension Ay, such as their different presentations, comodule algebra structures,
and PBW bases. The quantum algebras Uysla, Uq;lg, LUysly are also recalled. In short, Chapters 1
and 2 are basically review chapters that introduce the necessary material to address three problems
answered in Chapters 3 and 4:

e Problem 1:

The different universal K-matrices, as defined in [BKol5, Kol7, AV20, AV22] (recall the dis-
cussion of these constructions in Introduction), do not allow for the treatment of K-operators
solutions to the reflection equation with spectral parameter (0.0.15) and with a physical co-
action of the form (0.0.16).

e Problem 2:

The spin-1/2 K-operator for the alternating central extension of the g-Onsager algebra A, was
introduced in [BS09], recall Definition 2.1.1, but its spin-j version has never been constructed.

e Problem 3:

One can construct a spin-1/2 generating function in Z, the commutative subalgebra of A,
generated by {Zyx+1|k € N} given in (2.1.56), from its spin-1/2 K-operator (2.1.5). This
object has indeed been studied for the spin-1/2 XXZ chain in [BK05a, BK05b], but for a
quotient of A,. Moreover, a generating function for spin-j in the commutative subalgebra of
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A, has never been constructed, and its connection to spin chains remains to be investigated.
And finally, a universal version of T'T-relations was never studied.

Let us briefly summarize the answers of the above problems. Chapter 3 tackle the first two problems.
Firstly, we introduced in Definition 3.1.7 a universal K-matrix 8 € B ® H, where B is a comod-
ule algebra over a Hopf algebra H, and show it satisfies a i-twisted reflection equation (3.1.14).
For a pair of consistent twists and using a formal evaluation representation for H = LUjgsla, we
show that the evaluation of & and one of its axioms lead respectively to a spectral-dependent K-
operator (3.2.29) that satisfy the reflection equation (3.2.43) and has the physical coaction (3.2.46).

Secondly, studying the tensor product of formal evaluation representations of LUysl2, we con-
structed LU,slz-intertwining operators. The latter are used to obtain fusion and reduction prop-
erties satisfied by L- and K-operators. In particular, based on the results in Proposition 3.4.8 and
Remark 3.4.10, and also independently of the above universal framework, we provided a new set of
K-operator solutions to the spectral parameter dependent reflection equation, see Theorem 3.5.2.
These solutions denoted KU (u) € A, ® End(C¥*!) are expressed in terms of generating func-
tions of the centrally extended ¢-Onsager algebra A,. We also gave explicit formulas for the fused
R-matrices and the fused K-operators in (3.5.9), (3.5.10), whose expressions contain only the funda-
mental R-matrix and K-operator. Fused K-matrices were also obtained by applying one-dimensional
representations of 4, to KU )(u), see Definition 3.5.5. Additionally, we proposed a relation between
the K-operators coming from the evaluation of £ and the fused K-operators, see Conjecture 1. Sup-
porting evidence was also provided.

Thirdly, Chapter 4 answers the last problem as follows. First, using the fused K-operators
IC(j)(u), we have introduced spin-j generating functions in the commutative subalgebra of A,
denoted T (u). Then, we assumed the 1-component evaluation of K is proportional to KO (u), by
an invertible central element v\9)(u) € A,((u™!)), see the equation (3.6.1) with (3.6.2). Note that
these assumptions are parts of Conjecture 1. Using them we have shown in Theorem 4.2.5 that
TU)(u) satisfy recurrence relations (universal TT-relations) that involve central elements in Ay
Finally, we considered applications of these relations in the context of quantum integrable systems
and found that on quantum spin-chains TU )(u) are represented by the so-called transfer matrices
that describe the physical evolution of the system, i.e. they generate the Hamiltonians. More
precisely, we begin with recalling the spin-chains representations of A4, and noticed that the image
of the generating functions for A, truncates. This motivated us to refine the above analysis done

for Ay, by introducing AgN) which is a quotient algebra of A, by the relations (4.3.12)-(4.3.13). We
found a quotient map p(N) Ay — AC(IN) in (4.3.15), that allowed us to get a FRT type presentation
for .AgN), as well as truncated fused K-operators. Using the latter, we defined in (4.4.13) the analog

for AgN) of the spin-j generating functions in Z, denoted TU)(u), and found they satisfy universal
TT-relations (4.4.14). Then, using the spin-chain representations (that automatically verifies the
quotient relations of .A((IN)), we recover the transfer matrices of various spin-chains along with the
TT-relations they satisfy. This universal approach is also useful to explore symmetries in spin-
chains, as it was discussed in Section 4.5.
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5.2 Perspectives

The work presented in this thesis opens the way for the following perspectives.

5.2.1 The alternating central extension of the positive part of quAlg

In this thesis, we worked with K-operators that satisfy reflection equations. There exists, however,
more general equations that we are now interested in. Indeed, the reflection algebra [C84, Sk&8] can
be viewed as a limiting case of the quadratic algebras introduced by Freidel and Maillet in [FM91].
For instance, as pointed out in [[K592], a Freidel-Maillet type equation can involve two different R-
matrices (that might be associated to different Hopf algebras) and a K-operator. For convenience,
we use the terminology K-operator for solutions of such equations. We hope this will not bring any
confusion with the K-operator solutions of the reflection equation studied in this thesis. For instance,
using this more general setting, a Freidel-Maillet type presentation for the so-called alternating
central extension of the positive part of quAlg has been introduced in [B20].

Let us denote by Uqu the algebra generated by A, B that satisfy the g-Serre relations
[A7 [Av [Av B]Q]qfl] =0, [Bv [B7 [B7 A]Q]qfl] =0.

Two embeddings of U;’ into Uq;\lz are known, see the discussion in [B20, Sec.2]. The image of the

first one is the positive part of the Drinfeld-Jimbo presentation of Uq;’\lg with
A EO s B— F; s

while the second corresponds to the positive part of the equitable presentation of Uq;lg generated
by yg,y1, as introduced in [IT03], with

A»—>y(')", B»—>yf‘.

We now discuss the alternating central extension of U, q+ , referred to as L{q+ , which bears a certain
resemblance to A,;. The precise relation between U; and u; is studied in details in [T'19]. The

algebra L{q+ has a presentation in terms of generators {W_, Wg41, Gg+1, Gk+1|k € N} and relations,

see [T'19, Def. 3.1]. In [B20], a so-called Freidel-Maillet type presentation has been introduced that

we now review. Recall the fundamental R-matrix from (1.1.5) and let?*

R(2) = diag(1,q L g1, 1) (5.2.1)

that satisfies the Yang-Baxter equation (1.1.4) but with the substitution R(%’%)(u) — R(%’%), and

also
11

11y _c1 1y _1 1y  _(11 (11 11
RE? (/) REVREY = B3P RZVRE (ufv) | (5.2.2)

24Notice that R(2'2) is (up to a scalar factor) the spin-1/2 evaluation representation of the Cartan part of the
universal R-matrix (B.1.4), given by qéhl@hl, as one can easily check from (B.2.17).
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Introduce the generating functions:

W) => W, U Wo(u) =) WU

keN keN
Gi(u) = Z G U1, G (u)= Z G U1
keN keN

where the shorthand notation U = qu?/(q+¢~!) is used. The defining relations of Z/{qJr are given by
the so-called Freidel-Maillet equation® [FM91, eq. (14)]

_(1 _(1 _(1 _ _(1
RGD (u/0)KF () RGP (0) = £ (0)RE DL () RGP (ufv) (5.2.3)

with the R-matrices (1.1.5), (5.2.1) and the spin-1/2 K-operator [B20]

—1
ugWy. () a9+ (W) + %) (5.2.4)

K@) (u) = ( .
it 9- () + ugW-—(u)

where k4 € C*.

The algebra L{qJr is also a comodule algebra®® over H = LUysly, see [B20, Lem.5.25] for the
coaction. The center of Z/{q+ is generated by the quantum determinant I'(u) [320, Prop. 3.3]:

T i _/6(%) *(%é)ﬁ(%)
(U)—”l?(Pm 12 (u)Ry3 2 (UQ)) (5.2.5)

Recall the FRT type presentation for the ¢g-Onsager algebra O, in Section 2.2.1. It is given by
the reflection equation (2.1.4) satisfied by (2.1.5), and the quantum determinant I'(u) in (2.1.44)
is set to a scalar as in (2.2.2). The situation is similar for Uqu . Indeed, the Freidel-Maillet type
presentation for Uqu is given by the Freidel-Maillet equation satisfied by (5.2.4), and setting the
quantum determinant (5.2.5) to a scalar as in [B21, Lem. 4.5].

It is natural to pose similar questions to those for A4,.

Questions
(i) What would be the universal K-matrix framework that leads after evaluation to K-operator
solutions of the Freidel-Maillet equation (5.2.3) ?

(ii) How to construct fused K-operators for Z/{(;F that solve higher spin versions of Freidel-Maillet
equations (5.2.3), see eq. (5.2.8) below ?

(iii) What are the universal T'T-relations satisfied by the analogs of TU)(u) for U, ?

(iv) What types of physical systems with mutually conserved quantities can we derive from these
K-operators 7

*The equation (5.2.3) is a special case of [FM91, eq. (14)] with A1z = D12 = R(2:2)(u/v), Bis = Cha = R(2:2),
_ (1 _ (L
T = K (u), T» = K52 (0).
26 Actually it is a left comodule algebra in [B20], while in this thesis we always use right comodule algebras. A right
coaction is similarly obtained by using in the latter reference the opposite coproduct.
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We have already found solutions to some of these questions. The results presented here, actually

constitute an upcoming paper Fused K-operators and universal TT-relations for the positive part of
Ugsla. We now answer or give research directions for these questions.

Elements of response

(i)

(i)

Recall that our motivation in establishing the axioms of & € B ® H in Definition 3.1.7
was firstly to construct K-operator solutions of the reflection equation with spectral para-
meter. Secondly, to ensure that the specialization of (K2) results in a physical coaction of
the form (0.0.16). For B = A,, H = LUysly and the twist pair (¢, J) = (1,1 ® 1), we indeed
showed these two aspects.

Now, if we consider the comodule algebra B = Z/l(;|r over H = LUjsly, the situation is different.
Indeed, in this case, the K-operator satisfy now the Freidel-Maillet equation (5.2.3). Moreover,
the coaction takes the form [B20]

(0 @id) (K2 (w) = (£D))y (KB (w) 1y (£ (w)) (5.2.6)
where £(2) satisfies analog of the RLL equation (1.1.9) with R(2+2) which is different from
the physical coaction (0.0.16). Importantly, the algebra Z/{(;|r involves two different R-matrices
associated respectively to H = LU,sly and its Cartan subalgebra. It is not possible to ob-
tain the above coaction (5.2.6) by evaluating (K2) because there are no automorphism 1 of
LUygslz that can give a diagonal matrix out of the evaluation of (%w)gl. As a consequence, a
modification of the axiom (K2) is needed to treat this more general framework.

We want to construct fused R-matrices and fused K-operators that satisfy

Rgl’jQ)(u/v)R%l’j?’)R%Z’j?’) _ R%z,js)R%Ljs)Rgl,jz)(u/v) ’ (5.2.7)
ROV (ufo) K () RO K2 (0) = K52 (0) ROV Y (u) RO (u/v) - (5.2.8)

where RU172)(u) are given in (3.4.11). Recall the intertwining operator & U+3) is fixed by
Lemma C.1.1 and its pseudo-inverse FUt+3) s given in (C.1.6) with (C.1.7), (C.1.8). First,

recall R(3'2) is associated to the Cartan subalgebra of LU,sly, and so we can use same the
intertwiner to construct fused R-matrices. Introduce

o ) =(La) =(j1—1 o) (4
RUI2) — ]:g;;R%’”)R;J; 2’”)5(({;3 , (5.2.9)

with

- . N /1. 1y 411 .
R(%’j) :,F(]) Rg;):] 2)R1%72)g(]) (5210)

and where R(2'2) is given in (5.2.1). We can show by induction that they indeed satisfy (5.2.7).
Then, we introduce fused K-operators K9 (u) € U ((u)) ® End(C¥+!) as

. N (L1 . _ . (s 1 .
KO () = FOLRE (g 773 RETDRY ™ (ug?)el) (5.2.11)
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(iii)

(iv)
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where £(2) (u) is defined in (5.2.4). Similarly to the proof that fused K-operators /) (u) satisfy
the reflection equations (3.5.2), we can also prove by induction that KU) (u) satisfy (5.2.8). Ad-
ditionally, studying one-dimensional representations for U; , we also obtain K-matrix solutions
of the Freidel-Maillet equation out of these K-operators, and find they satisfy a fusion formula.
The fused K-matrices are thus given by (5.2.11) with the substitution ) (u) — KU)(u), and
with the fundamental K-matrix

where ki, ey € C. Note that it is related with the K-matrix (1.2.3) from [GZ93, dVR94]
K@) (u) = u2K@) (u) + O(u™?) .

They satisfy the Freidel-Maillet equation (5.2.8) with KU (u) — K (u).

In order to construct the analog of T)(u) for Z/l(;r , we first introduce fused dual K-matrices as

K0 (u) = (KD ()] o e mes
that satisfy the dual Freidel-Maillet equations
ROSE) (o fu) KO (@) [ROM) RO () = RO ()[R LR () ROV o)

Then, we define spin-j generating functions in Z, a commutative subalgebra of Z/{q+ , as

TO () = try, () (K0 ()9 (w)) -

Note that T is straightforwardly extracted from T(%)(u). Recall T'(u) is given in (5.2.5), and
introduce the quantum determinant of KT (u) as
_ kik_
THu) = ——— —u 2.2 .
==y !
Using the PBW basis for U from [T'19, Thm. 10.2], we show for j = 1,3/2 that TU)(u) satisfy
the universal TT-relations

TO(w) = T2 (ug2)TE (ug?~2) + D(ug’2)T (ug’2)TU D (ug™?) | (5.2.12)
with T©) (u) = 1. Asfor Ay, we also expect to find a proportionality relation between the fused

K-operators K£U)(u) and a l-component evaluation of a universal K-matrix in Ur @ LUysly
that would allow to show (5.2.12) for any spin-j.

The last question is about specializations of the K-operators to quantum integrable systems.
First recall that 9(V), defined in (4.3.2), provides spin-representations for Ag. Its analog for
U, is actually known and can be found in [B20, eqgs. (4.16)-(4.19)]. Then, we can show that
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the image of the fused K-operator K£U)(u) takes the form

E[(]{}}- . .jjgff((j) (U)Lfff (u)- - 'Lffv)] (1) € End(C¥N+lg .. ©C2itl g+l

where f/ff]) o RULI) is the evaluation in spin-j representation of £U) that appears in (5.2.6).
Note that it is a spin-j generalization of [B20, Prop.4.1], and it is the analog of the image
of KU)(u) on spin-chain representations given in (4.4.7). The first case to consider would be
j =1/2 and all the quantum space fixed to j, = 1/2, with n = 1,2,... N. It is an interesting
question to ask what are the interaction terms in the corresponding Hamiltonians, whether
they are local or not.

5.2.2 Construction of a universal K-matrix

Recall Tolstoy and Khoroshkin first obtained a factorized form of the universal R-matrix associated
with the untwisted affine Lie algebras in [K'T92a] and they gave it explicitly for H = quAlg in [KT92b,
eq. (58)]. Then, Damiani in [Da98] gave a detailed construction of R for H = U,(g). The universal
R-matrix is expressed in terms of the root vectors of H, see its explicit form for H = LU,sl> in our
conventions in Appendix B. In the present thesis, we have introduced an axiomatic definition of a
universal K-matrix 8 € B ® H in Definition 3.1.7. For our purpose, we mostly considered the case
where B = A, and H = LU;sl. Some question naturally arises.

(i) What is the explicit expression for a universal K-matrix £ for a comodule algebra B = A, or
B =04 over H = LUysly ?

Finding an explicit expression for a universal K-matrix that satisfies equations (K1)-(K3) is
highly desirable. For instance, this is essential in order to establish Conjecture 1, which plays a
crucial role in proving the universal TT-relations in Theorem 4.2.5. Let us now explore potential
research directions for addressing the question mentioned above.

Elements of response

e Let us stress that we do not expect the universal K-matrix to be in B ® LU,sla, but rather
in an appropriate completion of the tensor product. For the finite Dynkin diagrams case,
one-leg universal K-matrices are known to be written in the form of finite product of infinite
sums [DKo018], see [CGI2, KS92] for H = Ugsly. In the affine case, R is even expected to be
of the form of an infinite product over root vectors of B, as it is the case for the universal
R-matrices. In this perspective, recall the root vectors of B = O, are known [BK17], as well
as their relations with the alternating generators of B = A, [T21c].

Let us consider the choice for the twist pair (¢, J) = (n,1® 1), where 7 is defined by (3.1.12).
By definition, the universal K-matrix should satisfy the axioms (K1)-(K3). The key equation
that needs to be solved to derive an expression for K is the twisted intertwining relation (K1),
which is given by:

RI0b)=0"b) R, forallbeB. (5.2.13)

It is sufficient to consider the elements of the set {Wqy, W1, Agi1,k € N} for b, where Agiq
are central elements. This follows from the fact that A, is the central extension of O, — it is
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generated by Wo, Wy and its center [T21a]. The coaction 6(Wp) and 6(W;) are given for A,
by (2.4.2)-(2.4.3). However, the §(Ag+1)’s are not known. They should be extracted from the
coaction of the quantum determinant I'(u), but this has not been studied yet. A first step on
that direction would be to find the expression for §(I'(w)). This could be reached as follows.
Firstly, we choose an ansatz for §(I'(u)) of the form

I(u)® ZPBW elem. of LUyslo

such that it gives d,,(I'(u)), given in (3.5.27), after evaluation. Secondly, imposing the coasso-
ciativity and counital conditions given in Definition 2.4.1, we expect this sets the expression
for 6(T'(u)).

In [KKT92b], it is shown that a solution of the intertwining relation (R1) is unique and auto-
matically satisfies (R2)-(R3). For the universal K-matrix, we expect that a solution of the
above equation (5.2.13) similarly satisfies (K2)-(K3).

Now, consider B = Oy, where the coaction is explicitly known. Let us recall that the universal
R-matrix for H = Ujysly was constructed using the following key ingredients [Da98]:

— PBW bases of qu;

— the Killing form;

— the braid group action;

— the coproduct formulas for root vectors.
The final expression of the universal R-matrix for H = quAZQ is then given in terms of dual
PBW bases of U;’ and U, (dual with respect to the Killing form). The construction of a
universal K-matrix could draw inspiration on this approach. Some of the above-mentioned key
ingredients are known for Oy such as the root vectors and the braid group action [BIX17]. What

is missing is an appropriate concept of the Killing form and the explicit coaction expression
for the root vectors of O,.

Recall that B = Oy is a right coideal subalgebra defined by the embedding O, — Uq;lg [BB12]

Wo = ki By +k_q 'K +e, K, (5.2.14)
Wy — kl,E() + kﬁrqleoKo +e_ Ky, (5.2.15)

where ki, k| ,ex € C, and such that (2.2.8)-(2.2.9) are satisfied for
p=kik_(a+q )*, P =Kk (a+q )

In this case, finding an expression of a universal K-matrix might be simpler. Indeed, recall
that such case was discussed in the second item of Remark 3.1.10. Instead of solving (5.2.13),
it is sufficient to solve for all b € B:

Kb = n(b)K | (5.2.16)

where K € H, or in an appropriate completion of H. If such a solution K exists and satis-
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fies (3.1.22), then the two-leg universal K-matrix of the form
R =R R (5.2.17)

satisfies (K1)-(K3) as was shown in (ii) of Remark 3.1.10. Then, one should take an ansatz
for K in terms of the root vectors of Uq;\lg, and insert this expression in (5.2.16) for b as
in (5.2.14)-(5.2.15). In practice, this makes use of ordering relations [Da93] between the root
vectors and E;, F;, K;, i =0, 1.

In [AV20], existence results were given for a universal K-matrix IC € B, where B is a certain
coideal subalgebra of H (a quantum symmetric pair), and with a specific choice of twist pair
(different from ours). Notably, the ¢g-Onsager case is discussed in [AV20, Sec.9.5]. In [AV22],
they show that K evaluated on finite-dimensional representations satisfies the spectral para-
meter dependent reflection equation (3.5.21). Recall that we do not know if a universal
K-matrix & € B ® LU;sly exists for B = O, and our choice of twist pair (¢,J) = (7,1 ® 1).
It is thus desirable to show existence of & with our twist pair, for instance, in the ¢-Onsager
case. One idea is to gauge transform K from [AV20] to a new K that satisfies (5.2.16), and
then construct 8 with (5.2.17). In more details, in [AV20], the cylindrical structure has been
introduced as the data of a quasi-triangular bialgebra (H,R,A), with a coideal subalgebra
B C H together with a pair of consistent twists. In order to apply existence results of [AV20],
one should use a gauge transformation of the cylindrical structure, see [AV20, Rem. 8.11]
and [AV22, Cor. 3.6.1], such that it results in the twist pair (n,1 ® 1). It is however not clear
whether it is possible, and if so, how different will be A and J after the gauge transforma-
tion. In particular, the fusion formula for the K-operators might be affected by non-trivial J,
as well as the transfer matrix from Section 1.2.3. It remains a challenge to find such gauge
transformation.

Finally, let us mention a special case. Setting, p = p* = 0, the ¢g-Dolan-Grady relations reduce
to the g-Serre relations (2.3.8) satisfied by Wy, Wi. Thus, O, degenerates to Ulf . If a solution
of (5.2.16) for this positive part existed, it should necessarily take the form (5.2.17). However,
from the expression of the universal R-matrix given in (B.1.4), it is clear that the first component
of (5.2.17) also contains Fy, F; which do not belong to UqJr . We thus claim, in this case, that
the universal K-matrix defined with our axioms (K1)-(K3) does not exist for U;". This leads us
to a more general framework behind Freidel-Maillet equations (5.2.8), as discussed in (i) for the
alternating central extension of U,
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Appendix A

Some applications of the algebraic Bethe ansatz

In this appendix, we review the algebraic Bethe ansatz to obtain the eigenvalues and the corres-
ponding eigenvectors of the transfer matrix. First, we apply it for the XXZ spin-1/2 chain with
periodic boundary conditions [STF79], and then for the XXZ spin-1/2 chain with diagonal boundary
conditions [Sk&8].

A.1 Closed XXZ spin—% chain with periodic boundary conditions

Recall that periodic spin-chains are studied using the Yang-Baxter algebra, the RTT equation and
the transfer matrix, see Definitions 1.1.1, 1.1.5 and 1.1.6, respectively. In particular the Hamiltonian
of this spin-chain is derived from the transfer matrix, see Prop. 1.1.7. Now, we diagonalize the
transfer matrix using the algebraic Bethe ansatz.

Let us fix all the algebraic elements that we have introduced until now. Consider the R-matrix
in (1.1.5) and let

a®V(u) =ug—utgt, bV (uw)=u—ut, SV =qg—qt. (A.1.1)

The Hamiltonian of the system is given by (1.1.16) and it enjoys the U(1) symmetry
N
[HY, 5, 9% =0,  57=> o, (A.1.2)
k=1

The monodromy matrix defined in (1.1.11) with the R-matrix given in (1.1.5), can be seen as a
two-by-two matrix as follows:

Ton(u) = (?((Z)) g(ég) : (A.1.3)

N
where A(u), B(u),C(u) and D(u) € ®End(Vm), with the quantum spaces Vj; = C* here. Then,

i=1

141
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the transfer matrix in (1.1.14) reads

tMN) (u) = A(u) + D(u) . (A.1.4)

Now, in order to apply the algebraic Bethe ansatz, we need exchange relations between A(u),
B(u), C(u) and D(u). They are obtained by inserting T n(u) of the form (A.1.3) in the RTT
relation (1.1.6), and by comparing the resulting matrix entries. In particular, the following will be

useful
[B(u), B(v)] =0,
A(v)B(u) = ZZZEZ;Z; Blu)A(v) - bﬁvcf;/wl’a’(v)A(w : (A15)
DBY) = o g B0)D() — = BID)
Besides, we will also need the action of A(u) and D(u) on [[oL, B(uy) with uj, € C*.

Proposition A.1.1. The following relations hold for M =1,2,... N:

AT By — T /) o g [V rra® ) g
<u>kH1 () = 1Ly, uy B <u>+n2_1 ) <u>£¢1 (T B Al |
P[50 = [T ) 0 Dy + 3 |- ) [T /) () Do
G LIPS = L g7 g P TN 5V () “],gilbw(uk/uw R

Proof. The proof is done by induction on M, using the exchange relations (A.1.5) and the property
bV (v/u) = —b5Y (u/v). O

The algebraic Bethe ansatz relies on the exists on a reference state called the pseudo-vacuum
state. It is a highest weight state denoted |{}), that satisfies:

D(u) ) = d(u) [1) (A.1.6)

where a(u) and d(u) are some scalar functions. If such state exists?, then one constructs eigenstates
of the transfer matrix in the form H{yzl B(ug) |ft), M =1,2,..., N, called the Bethe states, provided
the {uy} satisfy some relations called the Bethe equations.

Let us apply the ABA to the N sites periodic spin—% XXZ chain. Firstly, due to the U(1)
symmetry of the Hamiltonian (A.1.2), an easy reference state exists and a solution of (A.1.6) is

2TThe relations in (A.1.6) correspond to a highest-weight state. Another possibility is to consider the reference state
as a lowest weight state defined by A(u) [{) = a(u) [{), D(u) ) = d(u) [{}) and B(u) |§) = 0.
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given by
il 1
=@t win = (g) - (A17)
k=1
It corresponds to the completely ferromagnetic state with all spins up. Then, the action of A(u)
and D(u) on this reference state gives

a(u) = @ (@)Y, dw) = 0 ()" . (A.18)

Secondly, define the Bethe states for M = 1,2,..., N, by taking the eigenvectors of ¢t(N) (u) of the
form

M
[ {ur}) = T B 1) - (A.1.9)
k=1

Since |f) is the completely ferromagnetic state, then M is interpreted as the number of excitations,
so |p™M): {uy}) is a state with M spins down. Finally, we solve the eigenvalue problem of the
transfer matrix [STE79, TE79].

Theorem A.1.2. The Bethe states |™); {u}) are the eigenvectors of the transfer matriz t™N) (u)
in (A.1.4) with the associated eigenvalues

(M) B - uk/u M u/uk
A (u; {ur}) = au H H (A.1.10)

where a(u) and d(u) are given in (A.1.8), and provided that the scalars u,, n =1,2,..., M satisfy
the Bethe equations

a(uy) 11 a® (ug/un)
i) = kl;[laﬁv(un/uk) : (A.1.11)
k#n

Proof. Compute t™)(u) [ {u}) = (A(u) + D(u)) [v™M); {ut}) using (A.1.9) and Proposi-
tion A.1.1. Then, the eigenvalues A (u; {u;}) are obtained by imposing the vanishing of the
unwanted terms of the form

M
w) [ BCuw) 11) (A.1.12)
k=1
k#n
which amounts to impose the Bethe equations (A.1.11). O

Here we have treated the case of the XXZ spin-chain with periodic boundary conditions and
we have solved the spectral problem via Bethe ansatz. In addition, there exists the so-called anti-
periodic (or twisted) boundary conditions, defined®® by af\, 41 = ai’faiaf , whose spectral problem
cannot be solved by Bethe ansatz. Indeed, the U(1) symmetry is broken and the transfer matrix
does not have an obvious reference state. However, the transfer matrix can be diagonalized using
the off-diagonal Bethe ansatz and the correlation functions, form factors are also obtained. As it
goes beyond this thesis, we refer the interested reader to [ODBA] for more information on this topic.

Z8More generally, it is defined by a}v+1 =Kot Ki_l7 where K is a two-by-two unitary matrix.
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A.2 Open XXZ spin—% chain with diagonal boundary conditions

We now review the application of the algebraic Bethe ansatz for the XXZ closed spin-1/2 chain with
diagonal boundary conditions [Sk88]. The diagonalization of the transfer matrix defined in (1.2.15)
can be done similarly to the case of the N sites periodic spin—% XXZ chain studied in Appendix A.1.
However, care must be taken in choosing the resolution method. Indeed, recall that the algebraic
Bethe ansatz relies on the existence of a reference state.

For instance, consider the XXZ spin—% chain with diagonal boundary conditions. As it is mostly
used in the literature for this case, we adopt the trigonometric R-matrix (1.1.3). A solution of the
reflection equation is given by [C84]:

K90\, ) = <sh()\0+ £) sh(—g\ .\ 5)) ’ (A.2.1)

where £ € C. Now, following [Sk&88], consider the left and right boundary K-matrices defined
respectively by
K" () =K(\&), K" =K'\ +n,60), (A.2.2)

where {1 € C. Note that these matrices are related with the ones in (1.2.3) and (1.2.6) by setting
kr =ks=0,q=-exp(n), u=exp(\), e+ = Texp(££_) and 4 = +exp(£E£,).

Then, the corresponding Hamiltonian of the system is
‘ N-1
HYE, = 3 (okot s + ooty + cosh()ofoiy, ) +coth(-)of + coth(€y)oky . (A.23)
k=1

Note that it has U(1) symmetry
dia, z
M55, 57| =0, (A.2.4)

where 5% is given in (A.1.2). In this case, a reference state exists so that the algebraic Bethe ansatz
can be applied [Sk&8]. The method is similar to the case of the closed spin-chains described in
Section 1.1.

The analog of the exchange relations (A.1.5) are more complicated because the underlying
algebra is now the reflection algebra. They are obtained as follows. Writing the double-row mono-

Tox) = (0] 0y (A25)

dromy matrix as

the exchange relations between these operators are extracted by inserting (A.2.5) and the tri-
gonometric R-matrix (1.1.3) in the reflection equation (1.2.13) with the substitution R(uv) —
RY¥ (A + X2), R(u/v) — R¥ (A — \2) and Ty n(u) — Tan(A1). For instance, one has for Ay,
X € C:

[B(A1), B(A2)] =0,
sh(A1 + A2)sh(Ar — Ag — 1)

ARDBR) = G55 R + sl — o)

B(A2)A(M)
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sh(n)sh(A1 + A2)
sh(A1 — Ag)sh(A1 + A2 + 1)
sh(A1 — A2 +n)sh(A1 + A2 + 2n)
sh(A1 — A2)sh(A1 + X2 + 1)
sh(n)sh(A1 + A2 + 2n)
B(A)D(A
sh(A1 — A2)sh(A + A2 + 1) M)DRa) +

sh(n)
sh(A1 + X2 + n)B(Al)D(AQ) ’
2sh?()ch(n)
B()\2)D()\1) B Sh(/\l — )\2)5h(>\1 + )\2 =+ 17)
sh(n)sh(A1 — A + 27)
Sh()\l — )\Q)Sh()\l + Ao + ’f]) B()\l)A()\2) '

_|_

B(A1)A(A2) —

D(A)B(A2) = B(A2)A(A)

Then, following [Sk88], introduce D(X) = sh(2X +n)D(A) —sh(n).A()) so that the last two relations
slightly simplify as

ACB0) = S iy 0O
" sh(2h + n)i(&)l o+ n)B(Al) D(x2) + sh(2)\sghf7)7\)2s);}(1)(\117) AQ)B (A1) ARa)
D(A)B(v) = T2 MR =2 L 00 D(n)
P a0 e B0 — BP0
Here, the transfer matrix is given by
() = SBEAFZShA+ &4) oy shAF 0 =64 550 (A.2.6)

sh(2X +n) sh(2A +n)

Due to the U(1) symmetry, a highest-weight state |{) exists and it satisfies

D) ) = dN) 1) (A.2.7)

so that one constructs Bethe states [1)(™);{\;}). As for the closed spin-chains, they are given
by (A.1.7) and (A.1.9) with u; — A, respectively. Therefore, the algebraic Bethe ansatz can be
applied and we refer the reader to [Sk88] for details of the following.

Theorem A.2.1. The Bethe states |1™); {\;}) are the eigenvectors of the transfer matriz t(N)(X)
in (A.2.6) with the associated eigenvalues

sh(2A +2) sh(X — Ax — 7)sh(\ + )
sh(2\ + 77) BA+&4) H sh(A — Ag)sh(A + A\ +n)

ACD; {Ak}) = a(N)

— ()

sh(/\ TR ﬁ (A — A+ 7)sh(\ + A + 21)

h(2\ + ) i sh(A — Ag)sh(A + A + 1)
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provided that the scalars A\,, n =1,2,..., M satisfy the Bethe equations

a(An) sh(2An)sh(A, +&4) 1]—”[ sh(An — Ao + 0)sh( + A + 2n)

CZ(/\n) Sh(ng /. >\m) B k=1 Sh(>\n - )\k - U)Sh()\n + )\k‘)
k#n

(A.2.8)

The algebraic Bethe ansatz is a useful technique for some systems but it has its limits. Here,
we have considered diagonal boundary conditions so that the Hamiltonian satisfies the U(1) sym-
metry (A.1.2) and the Bethe ansatz is applied. However, for more general boundary conditions such
as (1.2.17), the U(1) symmetry is broken, the reference state is no longer obvious and this method
cannot be applied.

As discussed in the introduction, this problem can be solved as follows. For instance, using
a set of gauge transformations, the non-diagonal®® XXZ spin—% chain was solved in [CLSW02].
Some techniques have been developed to solve models without U(1) symmetry such as the modified
algebraic Bethe ansatz, see instance [Beld, BP14, ABGP15]. Alternative approaches also exist,
they use functional relations [G08] or the g-Onsager algebra [BK05b, BB12].

2The boundary conditions are not the most general because some constraints are imposed on the left and right
K-matrices.



Appendix B

The universal R-matrix

In this appendix, we compute formal evaluations of the universal R-matrix. Firstly, we give the
factorized expression of the universal R-matrix for H = LUysly in terms of root vectors [KT92a]
using our conventions. Secondly, evaluations of the universal R-matrix are considered. In particular,
we give expressions of the affine L-operators L (u) and [L~(u™1)]™!, as defined in (3.2.9). Then,
the spin—% L-operator L(%)(u) is computed by evaluating L™ (u), and finally we compute the spin—%
R-matrix.

B.1 Construction of the universal R-matrix

B.1.1 Root vectors

Let us first recall the definition of the root vectors of LUysla. We adapt the construction in [BGKNR12]
to our choice of coproduct. Let us set

_1 _1 1 1
[ E1K1 2 y Cf—a — EOK() 2 5 fa = K12F1 N f(g_a = K02F0 . (Bll)
The other root vectors are defined by the recursion relations:

/ -1
€rs — 4 [ea—l—(kz—l)(s? 6(5—04](1 5

eaths = 217 [eatk-1)5-€5] »
es—atks = (215 ' [€5: €5—at(v—1)0] » (B.12)

frs = alfs-a; for—1)6lg-1 5
2]_1[f(§7 fa+(l€—1)5] ’
2]_1[f5—a+(k—1)67 fé} ) ke N+ .

fa+k6 = [ q
f5—oz+k6 = [ q

147
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The root vectors ey, frs are defined via the generating functions

(a—q Zekaz = log <1+ 9—q Zekaz > ;
- q’l)kaasz = log ( (¢—q kaaz ) :
k=1

B.1.2 Factorized form of the universal R-matrix

Let {a+kd}32,U{kd}32,U{0 —a+kd}2, be the positive root system of sly. We choose the root
ordering as

o, a+0, .., a+kd, .00, 20, .., 06, o, o, (0—a)+mb,..., (0—a)+d, 0 —a, (B.1.3)

for any k, ¢, m € N. Then, the universal R-matrix obtained by Khoroshkin and Tolstoy takes the
following factorized form

R = RTROR—gam®m (B.1.4)
where30
=[] expy2 (0= 0 Vearrs @ fatrs) - (B.1.5)
0 -1 - k
R” = exp <(q —q )Zmeké ® szS) , (B.1.6)
k=1 q
R™ = H expy-2 ((¢— g es—atks ® fs—atks) (B.1.7)

with ¢"* = K| and the g-exponential is

equ =1+ Z . )t = (1)q(2)g -+ (k)gs (k)g = (B.1.8)

We also notice that [egs, es5] = 0 = [fis, fes] for any k, ¢, and so the exponent in (B.1.6) can be also
written in the form of semi-infinite product of exponents involving only one term ~ eps ® fis.

B.2 Evaluations of the universal R-matrix.

In the previous subsection, the explicit form of the universal R-matrix was recalled. It is expressed
as a product of g-exponentials with root vectors in the arguments. Now, we evaluate the second
tensor product component of the universal R-matrix by taking its image under the formal evaluation

0 7
3%We use the notation Ha(k) =a(n)a(n —1)...a(0) and Ha(k‘) = a(0)a(1)...a(n), for any function a(n).
k=0
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representation. As it is well known, evaluations of the universal R-matrix lead to L-operators and
R-matrices.

B.2.1 Evaluated root vectors

The action of formal evaluation representation defined in (3.2.5) on the first root vectors gives

N

evy(es_q) = wIFK? , evy(eq) = wlEK"? , evy (K§)

)=K3 . (B.2.2)

K3, (B.2.1)

ol ol

evufsca) =ug 'EK "3, evy(fa) =ug 'FK3 evu (K

The image of the other root vectors of LUysly in (B.1.2) under the evaluation map are obtained by
induction similarly to [BGIKNR12, Sect.4.4]. They are given for k € N by:

evy(airs) = (D Fu=2 "1k EK— k=3
evy(es—_a = (—1)ky 261 kFK k+s ,
(es—a+ks) = (—1) (B.2.3)
eVulfaths) = (1) g PR
eVu(foaJrké) :( 1)ku2k+l k— 1EKI€7—
and for k € Ny
evy(€ehs) = (1) a2 B, F] o KM
-1 k*lquk 3 B
evulers) = L (O (K.
B.2.4
eVu(fllcé) = (_1)k_1u2k[E7F]q*kKk_1 ) ( )
(—1)F~tu?k k| —ky\gok
evy = (Cp — (¢" + K",
(frs) (q—q*l)k;( k—(¢" +q ")K")
where the elements C}, are defined by the generating function
) Lk
Z(—l)k—lckT =log(1+Cz"1+27%), zeC, (B.2.5)

k=1

and where C' is the central element of Uysly given in (2.3.5). For instance, by expanding (B.2.5) the
first elements of C}, are obtained

Ci=C, (Cy=C*-2, (3=C*-3C, Ci=C*"—4C*+2. (B.2.6)

Recall E is the matrix with zero everywhere except 1 in the entry (a, ). The matrix multiplication

obeys
EwEeq = 6b,cEad . (B27)

In this notation, the spin—% finite-dimensional representation of Ugsly reads

N

1 1
§(Km) =q¢"E11 +q "Es 7T§(E) = FEio ™ (F) = Fo1 , (B.2.8)
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and the central elements become
w2 (0) = (P + ¢ D,  73(Ch) = (@ +q M), . (B.2.9)

In order to obtain affine L-operators and R-matrices from the universal R-matrix, one also
1

needs the image of the root vectors under the formal evaluation representation m2: LU,sly —
End(C?)[u*!] from (3.2.7), which is given by:

Wé(ea%é) = (—1)ku_2k_1q%E12 )
Wé(eéfaﬂcé) = (‘DkU*Qk*lqéEQl ;
i (focrka) = (~1)fu g3 By,
Wé(fé—wrk:&) = (~1)Fu g2 By
i (ehs) = (~ )P (B — g7 B) | (B.2.10)
Wé(eké) = (—1)]61“%[12(1(qu11 —q FEy) ,
Wé(fllca) = (-1 "¥(q7 By — qE) |
Wé(fké) = (—1)]671“%@((1%]511 — ¢"Ey) .

k

Recall that L™ (u) are defined in (3.2.9). We now compute explicitly L*(u) and [L~(u1)]7L.

B.2.2 The affine L-operators
L (u)

Recall the factorized form of the universal R-matrix (B.1.4). We now compute the image of R,
1
RO, q%}”@hl under the action of (id @ n2_,). First, from (B.1.5) and with (B.2.10) we get:

4
1
([der2,)(R") = H eXPg—2 ((_Uﬂ)kufl(q - qfl)(f%@owrké ® E21>

k=0

=1® (E11 + Fy) + et (u) ® By (B.2.11)
where
1
et(u)=(¢g—q¢ "g 2u™? < (—uz)keaHa;) . (B.2.12)
k=0

Similarly, from (B.1.7) and with (B.2.10) we have:

&

. 1 _ _ _ 1y 1

(ide w2 )0) = [Texpys ((—u 2 u™(a = a7 2esarns © Fiz)
k=0

=1® (B + En)+ fT(u) @ B2, (B.2.13)
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where
1
frw) =(g—q Vg 2u! (Z(_u%k%_a”ﬂ;) . (B.2.14)
k=0
A straightforward calculation from (B.1.6) and using (B.2.10) yields
1 .
(i[d@n2,)(R) =k (u) ® E11 + kT (u) @ Ea | (B.2.15)

where

0 w2 —1)k
k+(U)=eXp< q—q Z — 5>,

k=1 ¢* +4q

(B.2.16)

N ® (—u~2q

k+(U)=eXp<q—q P > -

k=1 ¢*
1
Then, using 73 (h1) = E11 — E922, we get
1 1 _1
(ideo w2 @z EM) = K2 @ iy + K| 2 ® Eay . (B.2.17)

Finally, combining (B.2.11)-(B.2.17), we get

L*(u)z( L TR fﬂu)fﬂu)f(ﬁ _1>. (B.2.18)
(kT (WK? k(WK ? + et (wkT(u) [T (u)K, °

Note that from the definition of et (u), f*(u), k™ (u), k™ (u) in (B.2.12), (B.2.14), (B.2.16) it is easy
to see that L™ (u) is a formal power series in ™!, i.e. Lt (u) is in LUgsla((u™1)) ® End(C?). We
note that up to conventions, the expression (B.2.18) matches with the one given in [DF93, eq. (4.8)].

L@ )

=

Consider p o R* = 9{;, poRY = RY,. We now compute their image under the action of (id®w>_,)

u

to obtain the expression of [L~ (u~1)]~! defined in (3.2.9). First, it follows from (B.1.5) and (B.2.10)

1 1
(id®7i)(Ry;) = H eXPy-2 ( Vg =72 farks ® E12)

=1® (Ell + EQQ) + f_ (u) ® Fio (B219)

where .
F(u) = (¢— g "gzu™! (Z(_u2)kfa+k§> : (B.2.20)

k=0

Similarly, from (B.1.7) and using (B.2.10)

1 1
(i[d®7i)(Ry,) = H exXp,-2 ( —u ) g — a2 f—aths ® E21>
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=1® (B + Fx») +e (u) ® Fy (B.2.21)
where .
e (u) =(q— q_l)q%u_l (Z(—U_Q)kf5a+k5> . (B.2.22)
k=0
Then from (B.1.7) and using (B.2.10) we get
(id @ 72 )(RY) = k(1) @ By + k= (u) @ Eas | (B.2.23)
where .
oo —U_2
k™ (u) = exp (—(q - ql)ZMfm) :
i 4 +4q
(B.2.24)
7 Ly (g
k™(u) =exp | (¢ —¢ )kZleka .
Finally, combining (B.2.19)-(B.2.23) and (B.2.17), we get
S <k_(U)K1%~+ F@E e @K @k @K, é) O Bas)
k™ (u)e™ (u) K} k™ (u)K, 2

Note that from the definition of e~ (u), f~(u), k= (u), k= (u) in (B.2.22), (B.2.20), (B.2.24) it is
casy to see that [L~(u~1)] 7! is a formal power series in v, i.e. [L™(u™1)]7t is in LU sla((u™1)) @
End(C?). We note that up to conventions, the expression (B.2.25) matches with the one given
in [DF93, eq. (4.9)].

B.3 The spin—% L-operator L(%)(u)

We now compute the spin—% L-operator L(%)(u) defined in (3.2.12). It is obtained by taking the
image of L™ (u) under the formal evaluation with (ev, ® id).

Recall the expression of L™ (u) in (B.2.18). The spin—% L-operator is then obtained by evaluating
et(u), fH(u), k*(u), k*(u) defined in (B.2.12), (B.2.14), (B.2.16). Let us first introduce the
function [BGKNR12]

N G Wb
A(u)_;(qk+q_k) o (B.3.1)

where the central elements C}, are defined by (B.2.5). Note that it satisfies

A(ugq) + Alug™") = —log(1 — Cu + u?) . (B.3.2)
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From the evaluated root vectors (B.2.1) and (B.2.4), we get:

l)qféuflvflEKfé (1- u72v72q71K71)71 ,

evy(e™(u)) = (¢ — ¢~

evo(fF(w) = (¢ — ¢ N 2u" 0 FKE (1—u 20 2K 1) 7 (B3.3)
evy (kT (u)) = RN (1 _ u’20*2q*1K*1) 7 3.
evy (kT (u)) = e~ MuT*0%q) (1- ’LL_2’U_2(]K_1)_1

For instance, let us now compute the evaluation of the matrix entry (2,2) of L™ (u) in (B.2.18), it
reads:

evo(L (1)) = eva (B () ] # 4 e (k™ (u) /() )
_ (efA(u’2v’2q) i eA(u*2v’2q’1)u72v72(q _ q’l)QEF> (1 _ quUfqufl)—l K-t
= A3 (1 +u Tt = u_2v_2(C — (¢ — q_l)zEF)> (1 — u_2v_2qK_1)71 K3 ,
where we used (B.3.2) on the third line, and where C is defined in (2.3.5). Then, we obtain
v, (L* (u))og) = X0 (K3 —u 072 K )
Computing the other entries, we have

L) (uv) = (ev, @ id) (L (w)) = p(uv) £ (uv) |

where p(u) and L(%)(u) are given respectively in (3.2.17) and (1.1.8).
Similarly, evaluating the affine L-operator in (B.2.25), we have

(evy @id) (L ()] ™) = palu/0) £ (u/v) = LG (u/v) .

B.3.1 The spin-% R-matrix.

As we already mentioned, the universal R-matrix provides a way of obtaining R-matrices. So, to
conclude this appendix, we compute the spin—% R-matrix coming from the evaluation of R with the

following relation
1 1

R=2) (ufv) = (rd @ 72)(R) .
1
Recall the spin—% L-operator from (3.2.12). Then, due to the decomposition 7; = 7o ev,, one has

1
T2

&
2 (u(u)) R (u)

R(%%)(u)

(

where we used the spin-1 finite-dimensional of Uysly in (4.3.1) and with w%(,u(u)), R(%’%)(u), given
respectively in (3.2.19), (1.1.5).
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Appendix C

Intertwining operators

C.1 The intertwining maps £U+2) and FU+2)

We now study the spin-(j + %) sub-representation when w1 /us = ¢~/ 7%, and give the corresponding
intertwining operator explicitly. Introduce the two linear operators £0+2) and FUT2) for any
C 1

gl+s), cU+? 5 €2 @ CYH (C.1.1)
FG+3). €2, @ CHT o CU2 (C.1.2)
given by:
o 45+225+2 (-+l) .. L1 c1
gUra) = NN VBT FURDEID) <y, (C.1.3)
a=1 b=1

1
where Si]; 2)

1 at position (a,b) and 0 otherwise. Here, we choose the bases of the source {|j + %,m)} with
m :]+ %7 ,7 - %7 cey _j + %7 _j - % and the ta'rget {H\> ® ‘j7j>7 SR H\> ® |.7a _]>7 |\L> ® ’jv]>7 cey

il :
We now calculate the coefficients 52]: 2) from (C.1.3) provided £V +3) isa LU,slz-intertwiner for

are certain scalars, Eéjg 72) denotes the matrix of dimension (2j; + 2) x (2ja + 2) with

the conditions uj /uy = g7 =3 and Uy = uq%, that was found in the previous subsection for j € %N +-
First of all for j = 0, we have for any u that 7 = ¢, where the counit is defined in (2.3.10), i.e. the
trivial representation of LU,sls. Then identifying C? ® C with C2, it follows from (C.1.1), (C.1.2)

and (C.1.3) that £(2) = F(2) = I,

Lemma C.1.1 ([LBG23, Lem.3.1]). Let uj/us = qﬂ;% and uy = uq%, then the map glta)
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in (C.1.3) is a LU;slp-intertwiner

EUH) (m, 2)(2) = (r2 ;@ | )(A@)ETHD | Va € LUyl (C.1.4)

if and only if its entries are given for any j € %NJF by

not (+3)
(G+3) (G+3) B (G+3) Emm’
gl =1 ’ gl—i—n?l-‘,—n = H B — ) <c:2]—§-1—&—m 1+m — [m]qB _— ) (015)
p=0 j+%7j+%*p ]+2,j+*7m

wheren=1,2,...,2j,m=1,2,...,2j+1 and Bj,, is given in (3.2.3), and all the other entries
are zero.

Note that this intertwining property is of prior importance for the construction of fused L- and
K-operators.

We now give an expression of F (7+3) which is a pseudo-inverse of £V +3). Tt takes the form:

27424542
FUHD =3 S FVEGY (C.L6)
a=1 b=1

1
where .FO(LJ; 2)

the entries of FU+3) for n = 2,3, ...,25+1 as follows:

are scalars. The solution of FUT3)g0+3) — ;42 is not unique. For instance, we fix

(G+3) S(T_Z%')
=1 F, ALl C.1.7
3 nn+2j g(]_i_%) 9 (c/‘(]—i_%) 27 ( )
(Enn ®)? + (Eptatn)

(G+3)
]:1,1 2

(+3) o(+3)
G+3) G+ - G+ 1= Fani2i€ntain
Fojrsaje = (€13 5540) h, Fon? = S(HJ%) I (C.1.8)

and all other entries are zero. This choice is important because it allows the factorization of the
R-matrix as in Lemma C.3.1 below. We finally note that any pseudo-inverse of £ G +%), in particular
the one given above, is not a LUslo>-intertwiner because the sub-representation involved is not a
direct summand, recall the structure in Fig. 3.3.

,_.

C.2 The maps V-3 and FU—2)

We now study the spin-(j — %) sub-representation when w; /uy = qj+%. Introduce the two maps

£6=3) and FU~=2) for any j € %NJF:
gU=2): C¥ - 2, @ CHt | (C.2.1)
FU=3).C2 @ C¥ ¥ (C.2.2)
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given by:
—,- 1 4J+2 2] _(‘_l) .. 1N —/ 1
00 = USSR, p0bsob o cas
a=1 b=1
(i1 .
where 56(1]17 2) are certain scalars. The bases of the source and the target of £ (=3) are respectively

’]7]>77’~L> ® ‘]7 _.7>}

Lemma C.2.1 ([LBG23, Lem.3.2]). Let uj/us = qj+% and uy = uq%, then the map g2
in (C.2.3) is a LUyslp-intertwiner

Jun

@) = (rin @7

VA@)EY"2) | Yz e LUysly (C.2.4)

N

)(TFZ_

NI

g6~

if and only if its entries are given for any j € %N+ by

n—1

~(7-3) ~(7—3) Bjj-p-1 -4 [m = 2jlq oi-3)
o1 =1, Einin = HB jlj ’ ’ €912 tm, 1 tm = B - q52+n”il+m , (C25)
p=0"J—%.d—35—P Jy—m
wheren =1,2,...,2j -1, m=0,1, ..., 2j —1 and Bj,, is given in (3.2.3), and all the other

entries are zero.

We now give expression of F (1=3) which is a pseudo-inverse of £ (1=3). Tt takes the form:

R N
Foh 23S gt 29
a=1 b=1

(i1 T
where F lgjb 2) are scalars. The solution of FU—3)£0-3) = I; is not unique. Similarly to the fusion

case above, we fix the entries of F=2) for n = 1, 2, ..., 27 this way:
-3 ~(i-3)  &l-3%)
ﬁ(j—%) _ Ent2it1n f(j—%) =Pt Co
2L T SG-3) e -3) o mntl T s(i—3) ’ (C.2.7)
(5n+1,n) + (5n+2j+1,n) 5n+1,n

— .1
and all other entries are zero. We note that, similarly to the previous case, F (U=3) is not an
intertwiner.

In summary, imposing some conditions on the ratio of evaluation parameters as in Lemmas C.1.1

and C.2.1, the tensor product representation of LU, sl> admits a non-trivial sub-representation either
1

of spin-(j + %) or of spin-(j — 5). And we have constructed intertwining operators &£ Ut+3). C? @
C%+1 5 C%+2 and EU-3): C2 @ C¥+! - C%, and their pseudo-inverses FU+3) and FU-3),
respectively.

In what follows, we will need action on tensor product using opposite coproduct. For this new
action®!, the corresponding intertwining operators appear at different evaluation parameters.

31Recall that for a bialgebra H, we can define another bialgebra H°°? with the coproduct A°. Therefore, A°P also
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Remark C.2.2. Consider the opposite coproduct A°? = p o A with the definition for A in (2.3.9).
Using now the action of LU;sly on the tensor product given by AP, the above sub-representation
analysis is done similarly. Then, we find that the conditions on the evaluations parameter are
different: for the spin-(j + %) sub-representation uj /uy = +¢’ +3 and u = uzq%; and for the spin-
(j — %) sub-representation wuj /uy = :I:q_j_% and u = uzq%. However, it leads to the intertwining
operator £0F2) (resp. g(j—%)) with the same matrix elements as in (C.1.5) (resp. in (C.2.5)), that
satisfy

G+1) (I3 3 j op (G+3)

evTel(my ) (z) = (72 ; em AP ()Y (C.2.8)
G-3) (2 2 i op ()£ 1)
E (mu ?)(x) = ( wg-i-1 O q*%)(A (x)EV—2) . (C.2.9)

C.3 Additional properties

We (ionclude this section Withla few observations on relations between the intertwining operator
& (J;F?), its pseudo-inverse FU12) and the R-matrix. In the literature the expression of the R-matrix
RZ9)(4) € End(C? @ C%11) is known [KR83, DN02]. It reads:

(607 (o ©W(F) + 0 © 7 (B)) +ughlorsa 170w (ID) -ty §lueasrsem (1)

(C.3.1)

where 7/ (E), ©/(F) are given in (3.2.2), (W](H))mn =2(j+1—n)0mpn, withm, n =1, 2, ..,

2j + 1, and where we use the scalar function ¢(u) in (1.3.33). Note that this R-matrix satisfies the
unitarity property

275—1
R () RGI) (u~ (H c(ug’ 2 %) e(u lqi+é—k)) Lyjio - (C.3.2)

Let HUt2) and U~2) be invertible diagonal matrices given by:

+
HITD L uRy (C.3.3)

AT AT (C.3.4)

HOt2) = Dlag(’Hgﬁ_ 2)

A3 — Diag(AY ™
1
where H%—i_?) nd H,,

Inspired by [BLN15], the R-matrix (C.3.1) admits two special points for which its rank drops
below its maximum. Then at these points, the R-matrix decomposes in terms of the intertwining

(G—3)

are scalars.

operator £U+3) and the operator ]:(j"'%), defined above, as follows:

defines an action of the algebra H on the tensor product of H-modules.
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Lemma C.3.1 ([LBG23, Lem. 3.5]). The R-matriz (C.3.1) at the point u = ¢’T2 decomposes as
R(%J)(qﬁ%) — glt3)yU+3) Fl+3) 7 (C.3.5)

) is fixed by Lemma C.1.1 FU+3) s given in (C.1.6) with (C.1.7), (C.1.8) and the

where £Ut3

entries of HU +3) are
H(ﬁ ) _ 21]12) _ (HC 25— ) 2]+1 g 1) ’
C.3.6)
25—2 _1 (
,Hglj—i- )_ Hc(qzjfk) (¢—q " )Bj—j—11n

(]+ ) ~(+3)

k=0 g ]:n n+2]

)

forn=2,3,...,25+1.
Then, with the decomposition (C.3.5) and using the pseudo-inverse property FUt2)g0+3) =
I5;42, we have:
Corollary C.3.2. The following relations hold:
D H+2) = RGI) (git2)glita) | (C.3.7)
FUrRGI) (gi+2) (C.3.8)
(C.3.9)

fH(Hl)]:(J'Jrl) —
g(j—i-%)]:(j-%%)R(%J)(qj%—%) ‘

We note that Lemma C.3.1 and Corollary C.3.2 are used many times to prove important results

such as the reflection equation in Theorem 3

Similarly to Lemma C.3.1, for the second special point we have
The R-matriz (C.3.1) at the point u = ¢~/ 2 is decomposed

Lemma C.3.3 ([LBG23, Lem. 3.7])
(C.3.10)

as:

R (g72) = U242 Fli—3) |
where £U73) is fixed by Lemma C.2.1, FU-3) is given in (C.2.6) with (C.2.7) and the entries of
ﬂ(j_%) are

- %2 _ o NB. .

7(0—3 —k— q—dq —j+n
g2l - (Hc(q k 1)) (_(jl) ) o (C.3.11)
k=0 gn+2§'+1,nfn,n—&?1
forn=1,2,..., 2j.
Besides, from the above decomposition and FU~2)E0~32) = Ip;, it follows
Corollary C.3.4.
£U=2)U3) = RGA (g7—2)El=2) |
#G-3) Fli—3 :]?(jfg)R(%u)(quf%) 7 (C.3.12)
RGD (qI73) = EU-2) FU=2) Rz (g=i—2)



160 Appendix C. Intertwining operators



Bibliography

[ABBBQ)] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter and G.R.W. Quispel, Surface
exponents of the quantum XXZ, Ashkin-Teller and Potts models, J. of Phys. A 20 (1987),
6397.

[ABGP15] J. Avan, S. Belliard, N. Grosjean and R.A. Pimenta, Modified algebraic Bethe an-
satz for XXZ chain on the segment—III-Proof, Nucl. Phys. B 899 (2015), 229-246;
arXiv:1506.02147.

[AV20] A. Appel and B. Vlaar, Universal k-matrices for quantum Kac-Moody algebras, Rep. Th. of
the American Math. Soc. vol. 26 (2022), 764-824; arXiv:2007.09218.

[AV22] A. Appel and B. Vlaar, Trigonometric K-matrices for finite-dimensional representations of
quantum affine algebras (2022); arXiv:2203.16503.

[B31] H. Bethe, Zur theorie der metalle: I. Eigenwerte und eigenfunktionen der linearen atomkette,
Zeitschrift fiir Physik 71 (1931), 205-226.

[Ba72] R. J. Baxter, Partition function of the eight-vertex lattice model, Annals of Phys. 70 (1972),
193-228.

[B04] P. Baseilhac, Deformed Dolan-Grady relations in quantum integrable models, Nucl. Phys. B
709 (2005), 491-521; arXiv:hep-th/0404149.

[B05] P. Baseilhac, An integrable structure related with tridiagonal algebras, Nucl. Phys. B 703
(2005), 605-619; arXiv:math-ph/0408025.

[B06] P. Baseilhac, A family of tridiagonal pairs and related symmetric functions, J. Phys. A 39
(2006), 11773; arXiv:math-ph/0604035.

[B20] P. Baseilhac, The alternating presentation of Uq(g/l\g) from Freidel-Maillet algebras, Nuclear
Phys. B 967, 115400, arXiv:2011.01572.

[B21] P. Baseilhac, On the second realization for the positive part of qu;\ZQ of equitable type, Lett.
Math. Phys. 112 (2022); ttps://arxiv.org/abs/2106.11706arXiv:2106.11706.

[Be94] J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994),
555-568.

[Beld] S. Belliard, Modified algebraic Bethe ansatz for XXZ chain on the segment -I- Triangular
cases, Nucl. Phys. B 892 (2015) 1-20; arXiv:1408.4840.

161


https://arxiv.org/abs/1506.02147
https://arxiv.org/abs/2007.09218
https://arxiv.org/abs/2203.16503
https://arxiv.org/abs/hep-th/0404149
https://arxiv.org/abs/math-ph/0408025
https://arxiv.org/abs/math-ph/0604035
https://doi.org/10.1016/j.nuclphysb.2021.115400
https://doi.org/10.1016/j.nuclphysb.2021.115400
https://arxiv.org/abs/2011.01572
https://arxiv.org/abs/1408.4840

162 Bibliography

[BB09] P. Baseilhac and S. Belliard, Generalized q-Onsager algebras and boundary affine Toda field
theories, Let. Math. Phys. 93 (2010), 213-228; arXiv:0906.1215.

[BB12] P. Baseilhac and S. Belliard, The half-infinite XXZ chain in Onsager’s approach, Nucl.
Phys. B 873 (2013), 550-583; arXiv:1211.6304.

[BB16] P. Baseilhac and S. Belliard, Non-Abelian symmetries of the half-infinite XXZ spin chain,
Nucl. Phys. B 916 (2017) 373-385; arXiv:1611.05390.

[BB17] P. Baseilhac and S. Belliard, An attractive basis for the g¢-Onsager algebra;
arXiv:1704.02950.

[BBC18] P. Baseilhac, S. Belliard and N. Crampé, FRT presentation of the Onsager algebras, Lett.
in Math. Phys. 108, 2189-2212; arXiv:1709.08555.

[BC13] S. Belliard and N. Crampé, Heisenberg XXX Model with General Boundaries: Figenvectors
from Algebraic Bethe Ansatz, SIGMA 9 (2013), 072; arXiv:1309.6165.

[BC18] P. Baseilhac and N. Crampé, FRT presentation of classical Askey—Wilson algebras, Lett.
Math. Phys. 109, 2187-2207; arXiv:1806.07232.

[BDGZ93] A.J. Bracken, G.W. Delius, M.D. Gould, Y.-Z. Zhang, Infinite Families of Gauge-
Equivalent R-Matrices and Gradations of Quantized Affine Algebras, Int. J. Mod. Phys. BS:
3679-3691 (1994); arXiv:hep-th/9310183.

[BK05a] P. Baseilhac and K. Koizumi, A new (in)finite-dimensional algebra for quantum integrable
models, Nucl. Phys. B 720 (2005), 325-347; arXiv:math-ph/0503036.

[BK05b] P. Baseilhac and K. Koizumi, A deformed analogue of Onsager’s symmetry in the XXZ
open spin chain, J. Stat. Mech. 0510 (2005), P005; arXiv:hep-th/0507053.

[BKO7] P. Baseilhac and K. Koizumi, Ezact spectrum of the XXZ open spin chain
from the q-Onsager algebra representation theory, J. Stat. Mech. (2007), P09006;
arXiv:hep-th/0703106.

[BK17] P. Baseilhac and S. Kolb, Braid group action and root vectors for the q-Onsager algebra,
Transform. Groups 25 (2020), 363-389; arXiv:1706.08747.

[BKo15] M. Balagovi¢ and S. Kolb, Universal K-matriz for quantum symmetric pairs, J. Reine
Angew. Math. 747 (2019), 299-353; 1507 .06276v2.

[BP14] S. Belliard and R.A. Pimenta, Modified algebraic Bethe ansatz for XXZ chain on the segment
— II — general cases, Nucl. Phys. B 894 (2015) 527-552; arXiv:1412.7511.

[BS09] P. Baseilhac and K. Shigechi, A new current algebra and the reflection equation, Lett. Math.
Phys. 92 (2010), 47-65; arXiv:0906.1482.

[BT17] P. Baseilhac and Z. Tsuboi, Asymptotic representations of augmented g-Onsager algebra
and boundary K-operators related to Baxter @Q-operators, Nucl. Phys. B 929 (2018) 397-437;
arXiv:1707.04574.

[BGKNRI12] H. Boos, F. Géhmann, A. Klimper, K. S. Nirov and A. V. Razumov, Uni-
versal R-matriz and functional relations, Reviews in Math. Phys. 26 (2012), 1430005;
arXiv:1205.1631.

[BLN15] N. Beisert, M. de Leeuw and P. Nag, Fusion for the one-dimensional Hubbard model, J.
Phys. A 48 (2015), 324002; arXiv:1503.04838.

[BW13] H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum
symmetric pairs, Paris: Société mathématique de France (2018); arXiv:1310.0103.

[BVZ17] P. Baseilhac, L. Vinet and A. Zhedanov, The g-Onsager algebra and multivariable q-special
functions, J. Phys. A 50 (2017), 395201; arXiv:1611.09250.


https://arxiv.org/abs/0906.1215
https://arxiv.org/abs/1211.6304
https://arxiv.org/abs/1611.05390
https://arxiv.org/abs/1704.02950
https://arxiv.org/abs/1709.08555
https://arxiv.org/abs/1309.6165
https://arxiv.org/abs/1806.07232
https://arxiv.org/abs/hep-th/9310183
https://arxiv.org/abs/math-ph/0503036
https://arxiv.org/abs/hep-th/0507053
https://arxiv.org/abs/hep-th/0703106
https://arxiv.org/abs/1706.08747
https://arxiv.org/abs/1507.06276v2
https://arxiv.org/abs/1412.7511
https://arxiv.org/abs/0906.1482
https://arxiv.org/abs/1707.04574
https://arxiv.org/abs/1205.1631
https://arxiv.org/abs/1503.04838
https://arxiv.org/abs/1310.0103
https://arxiv.org/abs/1611.09250

Bibliography 163

[BZ66] E. Brezin and J. Zinn-Justin, A solvable N-body problem, CEN de Saclay, Gif-sur-Yvette
(1966).

[C84] 1. V. Cherednik, Factorizing particles on a half-line and root systems, Th. and Math. Phys.
61 (1) (1984).

[C92] I. V. Cherednik, Quantum Knizhnik-Zamolodchikov equations and affine root systems, Comm.
Math. Phys. 150 (1) (1992), 109-136.

[CG92] E. Cremmer and J.-L. Gervais, The quantum strip: Liouville theory for open strings, Com-
mun. Math. Phys. 144 (1992) 279.

[CGO3] V. Chari and J. Greenstein, Quantum loop modules, Rep. Th. 7 (2003), 56-80.
Algebraic Bethe ansatz for the open XXZ spin chain with non-diagonal boundary terms via
Uysly symmetry; arXiv:2212.09696.

[CLSWO02] J. Cao, H.-Q. Lin, K.-J. Shi and Y. Wang, Ezxact solution of XXZ spin chain with
unparallel boundary fields, Nucl. Phys. B 663 (2003), 487-519; arXiv:cond-mat/0212163.

[CP91] V. Chari and A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991),
261-283.

[CP94] V. Chari and A. Pressley, Quantum affine algebras and their representations,(1994);
arXiv:hep-th/9411145.

[CP95] V. Chari and A. Pressley, A guide to quantum groups, Cambridge university press (1995).

[CYSW14] J. Cao, W-L. Yang, K. Shi and Y. Wang, FEzact solution of the XXZ alternat-
ing spin chain with generic non-diagonal boundaries, Ann. of Phys. 354 (2015) 401;
arXiv:1409.3646.

[D90] B. Davies, Onsager’s algebra and superintegrability, J. Phys. A 23 (1990), 2245-2261.

[D91] B. Davies, Onsager’s algebra and the Dolan-Grady condition in the non-self-dual case, J.
Math. Phys. 32 (1991), 2945-2950.

[Da93] I. Damiani, A Basis of Type Poincaré-Birkhoff-Witt for the Quantum Algebra of Uq;lg7 J.
Alg. 161 (1993), 291-310.

[Da98] I. Damiani, La R-matrice pour les algébres quantiques de type affine non tordu, In Annales
scientifiques de ’Ecole normale supérieure (Vol. 31, No. 4, pp. 493-523) (1998).

[Dr86] V. G. Drinfeld, Quantum groups, Proc. ICM-86 Berkeley 1 New York: Academic Press
(1986), 789-820.

[Dr88] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, In Sov. Math.
Dokl. Vol. 32 (1988), 212-216.

[Dr89a] V. G. Drinfeld, Quasi-Hopf algebras, In Algebra i Analiz, 1:6, 114-148; Leningrad Math.
J. (1990), 1419-1457.

[Dr89b] V. G. Drinfeld, Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, In Problems
of modern QFT (1989), 1-13.

[DF93] J. Ding and I. B. Frenkel, Isomorphism of two realizations of quantum affine algebra
U,(gl(n)), Commun. Math. Phys. 156 (1993), 277-300.

[DKo18] L. Dobson and S. Kolb, Factorisation of quasi K-matrices for quantum symmetric pairs,
Selecta Mathematica 25 (2019), 1-55; arXiv:1804.02912.

[DKMO02] J. Donin, P. P. Kulish and A. I. Mudrov, On a universal solution to the reflection equation,
Lett. Math. Phys. 63 (2003), 179-194; arXiv:hep-th/0210242.


https://arxiv.org/abs/2212.09696
https://arxiv.org/abs/cond-mat/0212163
https://arxiv.org/abs/hep-th/9411145
https://arxiv.org/abs/1409.3646
https://arxiv.org/abs/1804.02912
https://arxiv.org/abs/math/0210242

164 Bibliography

[DMO1] G. W. Delius and N. J. MacKay, Quantum group symmetry in sine-Gordon and af-
fine Toda field theories on the half-line, Commun. Math. Phys. 233 (2003), 173-190;
arXiv:hep-th/0112023.

[DNO02] G. W. Delius and R. I. Nepomechie, Solutions of the boundary Yang-Baxter equation for
arbitrary spin, J. Phys. A 35 (2002), 341-348; arXiv:hep-th/0204076.

[dVR93] H. J. De Vega and A. G. Ruiz, Boundary k-matrices for the siz vertex and the n (2n-1)
an-1 vertex models, J. Phys. A 26 (1993), L519; arXiv:hep-th/9211114.

[dVR94] H.J. de Vega and A. Gonzalez-Ruiz, Boundary K-matrices for the XYZ, XXZ AND XXX
spin chains, J. Phys. A 27 (1994) 6129; arXiv:hep-th/9306089.

[FMOI1] L. A. Freidel and J. M. Maillet, Quadratic algebras and integrable systems, Phys. Let. B
262, 278-284.

[FNRO7] L. Frappat, R. Nepomechie and E. Ragoucy, Complete Bethe Ansatz solution of the
open spin-s XXZ chain with general integrable boundary terms, JSTAT 09 (2007) P0900;
arXiv:0707.0653v2.

[FRT87] L. D. Faddeev, N. Y. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and
Lie algebras, LOMI preprint, Leningrad, (1987) ; Leningrad Math. J. 1 (1990) 193.

[FR92] I. B. Frenkel and N. Y. Reshetikhin, Quantum affine algebras and holonomic difference
equations, Comm. Math. Phys. 146(1) (1992), 1-60.

[GO8] W. Galleas, Functional relations from the Yang-Baxter algebra: eigenvalues of the XXZ model
with non-diagonal twisted and open boundary conditions, Nucl. Phys. B 790 (2008), 524-542;
arXiv:0708.0009.

[GZ93] S. Ghoshal and A. B. Zamolodchikov, Boundary S matriz and boundary state in two-
dimensional integrable quantum field theory, Int. J. Mod. Phys A 9 (1994), 3841-3885;
arXiv:hep-th/9306002 .

[Hel7] D. Hernandez, Avancées concernant les R-matrices et leurs applications, Séminaire Bourbaki
(2017), 69.

[H28] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Physik 49 (1928), 619-636.

[IK94] T.Inamiand H. Konno, Integrable XYZ spin chain with boundaries, J. of Phys. A:27 (1994).

[I0Z96] T. Inami, S. Odake and Y-Z. Zhang, Reflection K-matrices of the 19-vertex model and
XXZ spin-1 chain with general boundary terms, Nucl. Phys. B 470 (1996), 419-432;
arXiv:hep-th/9601049.

[IT03] T. Ito and P. Terwilliger, Tridiagonal pairs and the quantum affine algebra Uq.;\lg; The
Ramanujan Journal 13 (2007), 39-62; arXiv:math/0310042.

[IT09] T. Ito and P. Terwilliger, The augmented tridiagonal algebra, Kyushu J. of Math. 64 (2009),
81-144; arXiv:0904.2889.

[ITT04] T. Ito, K. Tanabe and P. Terwilliger, Some algebra related to P-and Q-polynomial associ-
ation schemes, (2004); arXiv:math/0406556.

[J85] M. Jimbo, A g-difference analogue of U(g) and the Yang-Baxter equation, Let. in Math. Phys.
10 (1985), 63-69.

[J86] M. Jimbo, A g-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Bazter equation, Lett.
Math. Phys. 11 (1986), 247-252.

[Ka79] M. Karowski, On the bound state problem in 1+ 1 dimensional field theories, Nucl. Phys. B
153 (1979), 244-252.


https://arxiv.org/abs/hep-th/0112023
https://arxiv.org/abs/hep-th/0204076
https://arxiv.org/abs/hep-th/9211114
https://arxiv.org/abs/hep-th/9306089
https://arxiv.org/abs/0707.0653
https://arxiv.org/abs/0708.0009
https://arxiv.org/abs/hep-th/9306002
https://arxiv.org/abs/hep-th/9601049
https://arxiv.org/abs/math/0310042
https://arxiv.org/abs/0904.2889
https://arxiv.org/abs/math/0406556

Bibliography 165

[Kol12] S. Kolb, Quantum symmetric Kac—Moody pairs, Adv. in Math. 267 (2014), 395-469;
arXiv:1207.6036.

[Kol7] S. Kolb, Braided module categories via quantum symmetric pair, Proc. Lond. Math. Soc.
121 (2020), 1-31; arXiv:1705.04238.

[KMNT16] N. Kitanine, J.M. Maillet, G. Niccoli and V. Terras, The open XXX spin chain in the
SoV framework: scalar product of separate states, J. Phys. A 50 (2017), 224001.

[KR83] P. P. Kulish and N. Y. Reshetikhin, Quantum linear problem for the sine-Gordon equation
and higher representations, J. Sov. Math. 23 (1983), 2435-2441.

[KR87] A. N. Kirillov and N. Y. Reshetikhin, Ezact solution of the integrable XXZ Heisenberqg model
with arbitrary spin. 1. The ground state and the excitation spectrum, J. Phys. A 20 (1987),
1565.

[KS12] A. Klimyk and K. Schmiidgen, Quantum groups and their representations. Springer Science
Business Media (2012).

[KS82] P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method recent developments,
Integrable quantum field theories (1982), 61-119.

[KS92] P. P. Kulish and E. K. Sklyanin, Algebraic structures related to reflection equations, J.
Phys. A (1992), 5963; arXiv:hep-th/9209054.

[KRS81] P. P. Kulish, N. Y. Reshetikhin and E. K. Sklyanin, Yang—Baxter equation and represent-
ation theory: I, Lett. Math. Phys. 5 (1981), 393-403.

[KSS92] P. P. Kulish, R. Sasaki and C. Schwiebert, Constant solutions of reflection equations and
quantum groups, J. Math. Phys. 34 (1993), 286-304; arXiv:9205039.

[KT91] S. M. Khoroshkin and V. N. Tolstoy, Universal R-matriz for quantized (super) algebras,
Comm. Math. Phys. 141 (1991), 599-617.

[KT92a] S. M. Khoroshkin and V. N. Tolstoy, The universal R-matrixz for quantum untwisted affine
Lie algebras, Funct. Anal. Appl. 26 (1992), 69-71.

[KT92b] S. M. Khoroshkin and V. N. Tolstoy, The uniqueness theorem for the universal R-matriz,
Lett. Math. Phys. 24 (1992), 231-244.

[KY19] S. Kolb and M. Yakimov Symmetric pairs for Nichols algebras of diagonal type via star
products, Adv. in Math. 365 (2019), 107042; arXiv:1901.00490.

[Le99] G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Alg. 220 (1999), 729-767.

[LBG23] G. Lemarthe, P. Baseilhac and A. Gainutdinov, Fused K-operators and the q-Onsager
algebra (2023); arXiv:2301.00781.

[Le99] G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Alg. 220 (1999), 729-767.

[Lu76] M. Liischer, Dynamical charges in the quantized renormalized massive Thirring model, Nucl.
Phys. B 117(2) (1976), 475-492.

[M64] J. B. McGuire, Study of exactly soluble one-dimensional N-body problems, J. of Math. Phys.
(5) (1964), 622-636.

[MNO92] L. Mezincescu and R. I. Nepomechie, Fusion procedure for open chains, J. Phys. A 25
(1992).

[MN97] L. Mezincescu and R. I. Nepomechie, Fractional-spin integrals of motion for the boundary
Sine-Gordon model at the free fermion point, Int. J. Mod. Phys. A 13 (1998), 2747-2764;
arXiv:hep-th/9709078.

[NO2] R.I. Nepomechie, Solving the open XXZ spin chain with nondiagonal boundary terms at roots
of unity, Nucl. Phys. B 622(3) (2002), 615-632; arXiv:hep-th/0110116.


https://arxiv.org/abs/1207.6036
https://arxiv.org/abs/1705.04238
https://arxiv.org/abs/hep-th/9209054
https://arxiv.org/abs/hep-th/9205039
https://arxiv.org/abs/1901.00490
https://arxiv.org/abs/2301.00781
https://arxiv.org/abs/hep-th/9709078
https://arxiv.org/abs/hep-th/0110116

166 Bibliography

[O44] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,
Phys. Rev. 65 (1944), 117.

[ODBA] — Y. Wang, W.L. Yang, J. Cao and K. Shi, Off-diagonal Bethe ansatz for exactly solvable
models, Springer Berlin Heidelberg (2015).

— J. Cao, W.L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz and exact solution of
a topological spin ring, Phys. Rev. Lett. 111 (2013).

- Y. Qiao, Z. Xin, X. Xu, K. Hao, T. Yang, J. Cao and W.L. Yang, Correlation functions
of the XXZ spin chain with the twisted boundary condition, J. of Math. Phys. 61(3) (2020),
033502.

[P13] B. Pozsga, The generalized Gibbs ensemble for Heisenberg spin chains, J. of Stat. Mech. Th.
and Exp. (2013), P07003; arXiv:1304.5374.

[Pe87] J.H. Perk, Star-triangle equations, quantum Lax pairs, and higher genus curves, Proc. Symp.
Pure Math. Vol. 49 (1989), pp. 341-354.

[PS90] V. Pasquier and H. Saleur, Common structures between finite systems and conformal field
theories through quantum groups, Nucl. Phys. B 330 (1990), 523-556.

[RS90] N.Y. Reshetikhin and M.A. Semenov-Tian-Shansky, Central extensions of quantum current
groups, Lett. Math. Phys. 19 (1990), 133-142.

[RSV14] N. Reshetikhin, J. Stokman and B. Vlaar, Boundary quantum Knizhnik—Zamolodchikov
equations and fusion, in Annal. H. Poincaré (Vol. 17, No. 1, pp. 137-177) (2016);
arXiv:1404.5492.

[STF79] E. K. Sklyanin, L. A. Takhtadzhyan and L. D. Faddeev, Quantum inverse problem method
L., Teor. Mat. Fiz. 40 (1979), 194.

[Sk88] E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988),
2375-23809.

[Sk92] E. K. Sklyanin, Quantum inverse scattering method. Selected topics, (1992); arXiv:hep-
th/9211111.

[Sk95] E. K. Sklyanin, Separation of Variables. New Trends, Progress of Th. Phys. Supp. 118
(1995), 35-60; arXiv:solv-int/9504001.

[tDHO98] T. tom Dieck and R. Haring-Oldenburg, . Quantum groups and cylinder braiding, Forum
Mathematicum, 10(5) (1998), pp. 619-639.

[T99] P. Terwilliger, Two relations that generalize the g-Serre relations and the Dolan-Grady re-
lations, Proc. of the Nagoya 1999 Int. workshop on phys. and combinatorics. Editors A. N.
Kirillov, A. Tsuchiya, H. Umemura. 377-398; arXiv:math/0307016.

[T19] P. Terwilliger, The alternating central extension for the positive part of Uq(;lg). Nucl. Phys.
B 947 (2019), 114729; arXiv:1907.09872 .

[T21a] P. Terwilliger, The alternating central extension of the g-Onsager algebra, Comm. Math.
Phys. 387 (2021) 1771-1819; arXiv:2103.03028.

[T21b] P. Terwilliger, The compact presentation for the alternating central extension of the g-
Onsager algebra; arXiv:2103.11229.

[T21c] P. Terwilliger, The g-Onsager algebra and its alternating central extension, Nucl. Phys. B
975 (2022) 115662; arXiv:2106.14041.

[T21d] P. Terwilliger, A conjecture concerning the g-Onsager algebra, Nucl. Phys. B 966 (2021)
115391; arXiv:2101.09860.


https://arxiv.org/abs/1304.5374
https://arxiv.org/abs/1404.5492
https://arxiv.org/abs/hep-th/9211111
https://arxiv.org/abs/hep-th/9211111
https://arxiv.org/abs/solv-int/9504001
https://arxiv.org/abs/math/0307016
https://arxiv.org/abs/1907.09872
https://arxiv.org/abs/2103.03028
https://arxiv.org/abs/2103.11229
https://arxiv.org/abs/2106.14041
https://arxiv.org/abs/2101.09860

Bibliography 167

[T21e] P. Terwilliger, The alternating central extension of the Onsager Lie algebra, Comm. Alg.
Phys. 51 (2021), 330-349; arXiv:2104.08106.

[Ts19] Z. Tsuboi, Generic triangular solutions of the reflection equation: Uq(gl\g) case, J. Phys. A
53 (2020) 225202, arXiv:1912.12808.

[TE79] L. A. Takhtadzhan and L. D. Faddeev, The quantum method of the inverse problem and the
Heisenberg XYZ model, Rus. Math. Surv. , 34 (5) (1979), 11.

[V15] B. Vlaar, Boundary transfer matrices and boundary quantum KZ equations, J. Math. Phys.
56(7) (2015); arXiv:1408.3364 .

[VR16] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. of Stat.
Mech.: Th. and Exp. (2016), 064007; arXiv:1604.03990.

[Ya67] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive
delta-function interaction, Phys. Rev. Lett 19 (1967), 1312.

[YNZ05] W-L. Yang, R. I. Nepomechie and Y-Z. Zhang, Q-operator and T-Q relation from the
fusion hierarchy, Phys. Lett. B 633 (2006) 664-670; arXiv:hep-th/0511134.

[YZ07] W-L. Yang and Y. Z. Zhang, On the second reference state and complete eigenstates of the
open XXZ chain, Journal of High Energy Physics 04 (2007), 44; arXiv:hep-th/0703222.

[Z91] A. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE
scattering theories, Phys. Lett. B253 (1991), 391-394.

[Zh95] Y.K. Zhou, Row transfer matriz functional relations for Baxter’s eight-vertex and siz-vertex
models with open boundaries via more general reflection matrices, Nucl. Phys. B 458 (1995),
504-532; arXiv:hep-th/9510095 .

[ZF'80] A. B. Zamolodchikov and V. A. Fateev, Model factorized S-matriz and an integrable spin-1
Heisenberg chain, Sov. J. Nucl. Phys. 32 (1980), (Engl. Transl.);(United States).

[ZZ79] A. B. Zamolodchikov and A. B. Zamolodchikov, Factorized S matrices in two-dimensions
as the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979),
253-291.


https://arxiv.org/abs/2104.08106
https://arxiv.org/abs/1912.12808
 https://arxiv.org/abs/1408.3364
https://arxiv.org/abs/1604.03990
https://arxiv.org/abs/hep-th/0511134
https://arxiv.org/abs/hep-th/0703222
https://arxiv.org/abs/hep-th/9510095




fil

‘ e
universite INSA Universite

de TOURS CENTRE VAL DE LOIRE d’'ORLEANS
Guillaume LEMARTHE

Solutions universelles de ’équation de réflexion, I’algebre ¢-Onsager et applications.

Résumé

L’objectif de cette these est de développer un cadre permettant d’obtenir des opérateurs K de spin-j avec parametre spectral,
solutions de 1’équation de réflexion et appartenant & B ® End(C?*1)((u)), ott B est une algébre comodule sur une algébre de Hopf
H. A partir de ces opérateurs K, nous obtenons des relations-TT universelles satisfaites par des matrices de transfert universelles
dans la sous-algebre commutante de B qu'’ils génerent. Ce nouveau cadre proposé est spécialisé a B = Ay, 'extension centrale
de I'algebre g-Onsager, et H = LU,sls, l'algebre quantique a boucle de sl3, offrant une approche universelle a diverses chaines de
spins quantiques ouvertes (spin-j, spin-ji,jo alternantes, ...) avec conditions aux bords génériques. Les trois problémes suivants
sont étudiés et résolus.

Premiérement, nous introduisons une définition axiomatique d’une matrice K-universelle & € B ® H satisfaisant une équation
de réflexion universelle. Elle requiert la donnée d’une paire de twist composée d’un twist ¢ (un certain automorphisme de H) et
d’un twist de Drinfeld. Cette définition étend les travaux de Balagovi¢-Kolb et Appel-Vlaar. Pour H = LU,sl> et une certaine
paire de twist fixée, nous montrons que I’évaluation de la composante tensorielle H de £ a une représentation d’évaluation formelle
(de dimension infinie) de spin-j mene & des opérateurs K avec parametre spectral KU (u).

Deuxiémement, en nous inspirant de 1’évaluation d’un des axiomes de la matrice K-universelle, et en considérant les produits
tensoriels des représentations d’évaluation formelle de LU,sly dans les cas oll apparaissent une sous-représentation de spin-j, nous
introduisons un opérateur K de spin-j fusionné K) (u) € A, ® End(C?*1)((u)). Ces derniers sont construits & 1’aide d’opérateurs
d’entrelacs de LU,sls. Ils sont une généralisation spin-j de l'opérateur K de spin-1/2 introduit par Baseilhac et Shigechi en 2009.
Nous montrons indépendamment du cadre universel, que toutes ces opérateurs K fusionnés satisfont les équations de réflexion.
Ensuite, nous conjecturons une relation de proportionnalité entre V) (u) et I'évaluation de la matrice K-universelle KU (u). Elle
est appuyée en montrant que KU )(u) vérifie un ensemble de relations similaires a I’évaluation des axiomes de K.

Troisiémement, une fonction génératrice de spin-j (appelée matrice de transfert universelle) dans la sous-algébre commutante
de A, est obtenue grace aux operateurs K fusionnés IC(j)(u) que nous avons construits. Sous réserve que la conjecture reliant
K(j)(u) et KU )(u) soit vraie, nous prouvons que ces fonction génératrices satisfont des relations-TT universelles qui permettent
de réduire récursivement le probléme spectral de spin-j & celui de spin-1/2. En spécialisant A, & certaines représentations de
N produits tensoriels, nous retrouvons les matrices de transfert de diverses chaines de spin ainsi que les relations-TT qu’elles
satisfont, et aussi des symétries non triviales pour les hamiltoniens correspondants.

Mots clés: Algebres quantiques affines, algebre ¢-Onsager, chaines de spins quantiques, équation de réflexion, opérateurs K,
matrices R et K universelles, relations-TT universelles.

Abstract

The goal of this thesis is to develop a framework for obtaining spin-j K-operators with spectral parameter and which are solutions
to the reflection equation. They belong to B®End(C* 1) ((u)), where B is a comodule algebra over a Hopf algebra H. From these
K-operators, we derive universal TT-relations satisfied by wuniversal tranfer matrices in the commutative subalgebra of B they
generate. The proposed new framework is specialized to B = A, the central extension of the ¢-Onsager algebra, and H = LU,sls,
the quantum loop algebra of sly, providing a universal approach to various quantum spin chains (spin-j, alternating spin-j, jo,
etc.) with generic open boundary conditions. The following three problems are studied and solved.

Firstly, we introduce an axiomatic definition of a universal K-matrix & € B ® H satisfying a universal reflection equation. It
requires the data of a pair of twists consisting of a twist ¢ (a certain automorphism of H) and a Drinfeld twist. This definition
extends the work of Balagovié-Kolb and Appel-Vlaar. For H = LU,sl, and a certain fixed pair of twists, we show that the
evaluation of the tensor component in H of & at a formal (infinite-dimensional) evaluation representation of spin-j leads to K-
operators with spectral parameters KU (u).

Secondly, drawing inspiration from the evaluation of one of the axioms of the universal K-matrix and considering the tensor
products of formal evaluation representations of LU,sl in the cases where a spin-j sub-representation appears, we introduce fused
spin-j K-operators KU (u) € A, ® End(C%*1)((u)). These operators are constructed using LU, slo-intertwining operators. They
are a spin-j generalization of the spin-1/2 K-operator introduced by Baseilhac and Shigechi in 2009. We also show independently of
this universal framework that all of these fused K-operators satisfy the reflection equations. Then, we conjecture a proportionality
relation between KU (u) and the evaluated universal K-matrix K)(u). This conjecture is supported by showing that K (u)
satisfies a set of relations similar to the evaluated axioms of K.

Thirdly, a generating function for spin-j (called universal transfer matrix) in the commutative subalgebra of A, is obtained using
the fused K-operators KU)(u) that we constructed. Provided that the conjecture relating K)(u) and KU)(u) holds, we prove
that these generating functions satisfy universal-TT relations which allow to reduce recursively the spectral problem of spin-j to
the one for spin-1/2. By specializing A, to certain N-tensor product representations, we recover the transfer matrices of various
spin chains along with the TT-relations they satisfy, and also find non-trivial symmetries for the corresponding hamiltonians.

Keywords: Quantum affine algebras, g-Onsager algebra, quantum spin-chains, reflection equation, K-operators, universal R-
and K-matrices, universal TT-relations.
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