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Résumé

Mots-clés : Communication optique en espace libre (FSO), Turbulence atmosphérique,
Disponibilité de la liaison optique, Machine Learning

Les liens optiques atmosphériques font figure de game-changer pour le futur des
communications satellite-sol, que ce soit pour le rapatriement des données en-
grangées par les capteurs embarqués (télémesure) sur des satellites LEO ou pour
le développement de l’internet globalisé et de l’internet des objets (IOT) en exploitant
les satellites GEO comme relais.

L’influence de l’atmosphère reste un verrou essentiel qu’il convient de forcer pour
pouvoir garantir la disponibilité très élevée attendue de systèmes de communication.
La fiabilité de son évaluation conditionne les marges utilisées pour le dimension-
nement des futurs systèmes, notamment dans le choix des emplacements des futures
stations sols.

La performance d’un lien optique est notamment conditionnée par l’influence de
la turbulence atmosphérique. Sur un lien optique entre un satellite géostationnaire
et le sol des perturbations de l’onde optique en phase et en amplitude dégradent les
propriétés du signal et compromettent la transmission d’informations. Différentes
solutions de correction, optique adaptative à la réception, codes correcteurs, en-
trelacement, permettent de juguler ses effets. La forte variabilité spatiale et temporelle
des conditions de turbulence, et la complexité de ces différentes méthodes de cor-
rection imposent une adaptation fine et conjointe de ces méthodes aux conditions
atmosphériques locales.

L’objectif principal de cette thèse est d’améliorer notre compréhension de la disponi-
bilité des liens optiques en présence de turbulences en utilisant des instruments de
caractérisation simples combinés à de l’apprentissage machine. Nous avons proposé
une méthodologie complète permettant de prédire la marge de puissance du système
en l’absence de lien en utilisant seulement quatre paramètres intégrés facilement
mesurables de la turbulence.

Ce travail représente une étape importante vers la reconfiguration intelligente et dy-
namique des réseaux de stations sols optiques. Nous avons introduit une méthodolo-
gie innovante pour l’évaluation des turbulences et la prédiction de la disponibilité
d’un lien optique, en mettant l’accent sur une utilisation rationnelle de l’apprentissage
machine combinée à une compréhension approfondie des phénomènes physiques.
Tout en reconnaissant les limites et le besoin de mesures sur le terrain, ces travaux
promettent des communications optiques satellite-sol plus fiables et plus efficaces.
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Abstract

Keywords : Free-Space Optical (FSO) Communication, Atmospheric Turbulence, Opti-
cal Link Availability, Machine Learning

This thesis addresses the pressing need for efficient and high-capacity data trans-
mission between satellites and terrestrial infrastructure using Free-Space Optical
(FSO) communication. However, the efficacy of optical links is heavily influenced by
atmospheric turbulence, which causes signal fluctuations and wavefront distortions.
In order to mitigate atmospheric channel impairments opto-mechanical methods,
such as adaptive optics, and numerical methods such as error correcting codes and
interleaving are considered. These methods are valuable but not foolproof and ad-
verse weather conditions and strong turbulence can still disrupt communications,
necessitating a network of ground stations in regions with favourable forecasts.

The core objective of this thesis is to enhance our understanding of optical link
availability in the presence of turbulence using simple characterisation instruments
combined with machine learning. We went as far as to propose a full methodology
enabling the prediction of the system power margin in the absence of established link
using only four easily measurable integrated parameters of the turbulence.

This work represents a significant step towards the smart and dynamic reconfig-
uration of a ground stations network. We introduce innovative methodologies for
turbulence assessment and optical link prediction, emphasising a rational approach
to machine learning combined with a profound understanding of physical phenom-
ena. While recognising limitations and the need for field measurements, this research
holds the promise of more reliable and efficient ground-based satellite optical com-
munication systems.
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Résumé long

Introduction et motivations
Ces dernières années, la demande de transmission de données haut débit entre satel-
lites et infrastructures terrestres a connu un essor sans précédent, stimulée par le
développement des réseaux de données haut débits spatialisés [Hau+19] et des con-
stellations de télécommunication en cours de déploiement [Toy21].

Les limites actuelles des technologies radiofréquences (RF) sont devenues évidentes
face aux demandes croissantes de communication sol-espace. Les technologies RF,
bien que robustes et largement déployées, souffrent de certaines limitations. En
premier lieu elles sont limitées par la bande passante disponible dans les gammes
de fréquences allouées. Ainsi, la bande Ku (12 à 18 GHz), largement utilisée, offre un
débit de données maximal d’environ 500 Mbps, tandis que la bande Ka (17,3 à 21,2
GHz) permet d’atteindre environ 1 Gbps. Ces chiffres ne permettent pas de répondre
aux besoins des applications émergentes particulièrement gourmandes en débit telles
que la diffusion de vidéos haute définition, la transmission de données d’observation
de la terre et la diffusion pour un nombre croissant d’utilisateurs de l’internet par
satellite pour pallier le déficit d’infrastructures fibrées au sol.

En outre, l’attribution du spectre pour les communications RF est fortement régle-
mentée, ce qui entraîne une surcharge et un accroissement du risque d’interférences
dans certaines bandes de fréquences.

Enfin, l’aspect non directionnel des liaisons RF traditionnelles, en plus de rendre les
communications longue distance très énergivores, les rend vulnérables à l’interception
et au brouillage de signaux. Ces vulnérabilités sont préoccupantes, en particulier pour
les applications impliquant des informations sensibles telles qu’elles peuvent être
échangées dans le domaine de la défense ou dans le domaine des transactions finan-
cières.

A contrario, les systèmes de communication optiques offrent une solution convain-
cante à ces limitations. Ces liaisons optiques ont été massivement adoptées dans les
applications espace-espace, permettant des services inter-satellites à grande vitesse.
Pour autant, l’émergence de liaisons optiques sol-espace et espace-sol pour des com-
munications haut débit reste au stade de la démonstration. Elles permettraient de
fournir un accès internet (jusqu’à 1 Tb/s) et faible latence aux régions éloignées et mal
desservies. En outre, les caractéristiques de sécurité des communications optiques,
qui permettent des liaisons directionnelles et l’exploitation de méthodes de cryptogra-
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phie innovantes les rendent attractives pour les applications militaires.

Le besoin d’une large bande passante s’accompagne de la nécessité d’injecter le
signal dans une fibre optique monomode (SMF) pour l’amplifier et/ou permettre
une détection cohérente. Les fluctuations du signal injecté dues aux turbulences
atmosphériques provoquent des variations d’amplitude (de la scintillation), et des
distorsions du front d’onde.

Des méthodes physiques existent permettant d’atténuer les erreurs sur le lien,
telles que l’optique adaptative (OA) utilisée pour corriger la phase déformée et max-
imiser l’injection. Des méthodes numériques (entrelacement et codage correcteur)
sont également mises en œuvre pour compenser les pertes résiduelles d’information.
Toutefois, en présence de conditions météorologiques défavorables, par exemple
en présence de turbulences atmosphériques fortes ou d’occultation nuageuse, des
interruptions peuvent toujours survenir. Dans cet optique le concept de diversité de
site repose sur l’exploitation de stations sols disposées dans des zones géographiques
suffisamment éloignées pour pouvoir considérer les conditions météorologiques dé-
corrélées entre elles et pouvoir basculer d’une station à l’autre lorsque les conditions
de transmission de données se dégradent sur la station courante. .

Pour gérer la bascule entre les stations, l’opérateur doit pouvoir anticiper les con-
ditions de propagation sur l’ensemble des stations du réseau sol, ceci dans l’objectif
de permettre la reconfiguration du réseau et la réorientation du terminal optique à
bord du satellite dans un délai compatible de ces opérations (typiquement quelques
dizaines de minutes).

Compte tenu de la variabilité importante des conditions de turbulence en fonction
de l’emplacement des stations au sol, plusieurs initiatives ont été prises pour déployer
des instruments de caractérisation de la turbulence atmosphérique permettant de
récupérer à la fois des paramètres intégrés [Jab21] et des profils de turbulence à haute
résolution verticale [Cha+20]. Si la relation entre la performance effective des com-
munications et les profils de C 2

n et de vent à haute résolution le long de la ligne de
visée est actuellement bien documentée, une question se pose lorsqu’il s’agit de relier
les paramètres intégrés, parfois mesurés sur une ligne de visée différente, à la perfor-
mance effective d’une liaison optique. Cette question est d’autant plus pertinente que
le lien optique étant corrigé par optique adaptative, le degré de correction affectera
cette dépendance.

Il existe des indications en faveur d’une disponibilité de lien qui ne dépendrait que
de quelques paramètres intégrés. Toutefois, une telle relation entre la performance
du lien optique et les moments de la turbulence n’a jamais été clairement établie et
l’expression exacte des résidus de correction fait intervenir une combinaison com-
plexe de moments de turbulence et de profil de vent. Le manque de développement
d’expressions analytiques ne permet pas de démontrer clairement que les paramètres
intégrés sont suffisants pour caractériser la disponibilité. En revanche, des méthodes
d’apprentissage automatique associées aux modèles de performance physique exis-
tants pourraient fournir des indications cruciales pour répondre à cette question sous
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réserve qu’une méthodologie appropriée soit proposée et mise en place pour ce faire.

C’est l’objectif principal du travail présenté dans cette thèse : étudier la possibilité
d’évaluer les performances d’un lien optique corrigé par OA à partir d’un petit nombre
de paramètres intégrés en s’appuyant sur une méthode d’apprentissage numérique.

Résultats principaux
Le chapitre 1 donne un bref aperçu des percées historiques dans le domaine des
communications optiques en espace libre, ainsi qu’une description des phénomènes
atmosphériques qui ont un impact sur la liaison. L’accent est mis sur la compréhen-
sion de la turbulence optique et sur les principaux outils permettant de la modéliser.

Le chapitre 2 se concentre sur la compréhension des mécanismes de correction
d’erreur, à la fois l’optique adaptative et les méthodes numériques. Il présente égale-
ment Simplified Adaptive Optics Simulation Tool (SAOST), un modèle numérique
permettant de générer des séries temporelles de puissance optique reçue après propa-
gation dans l’atmosphère et correction par optique adaptative.

Le chapitre 3 introduit les outils d’apprentissage automatique qui seront utilisés
tout au long de cette thèse, ainsi que la manière dont ils ont été utilisés pour résoudre
des problèmes similaires dans le passé.

Les principaux résultats de ce travail sont présentés dans les chapitres 4 et 5. Dans
le chapitre 4, en nous concentrant sur un lien GEO descendant, nous avons con-
struit un métamodèle pour prédire à la fois la fonction de densité de probabilité et le
temps de demi-corrélation de la puissance optique reçue en utilisant des techniques
d’apprentissage automatique, en particulier la régression par processus gaussien (GP).

Figure 1.: Description schématique de la démarche

La démarche consiste, à l’aide de techniques usuelles de machine learning, en
l’obtention de la densité de probabilité et de la fonction d’autocorrélation de l’erreur
de phase et de la scintillation en utilisant uniquement les moments suivants :
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• r0 : le paramètre de Fried, défini comme le diamètre typique d’un télescope qui
serait limité par la turbulence atmosphérique.

• h̄ : une mesure de la dispersion verticale des couches atmosphériques, ho-
mogènes à une altitude.

• v̄ : une évaluation de la vitesse moyenne du vent dans les couches turbulentes.

• σ2
χ : la variance de log-amplitude.

Grâce à une base de données de plus de 35 000 profils de turbulence et de vent
fournie par l’université de Durham (Profils calculés à partir du modèle ECMWF sur
Tenerife pour l’année 2018. https://www.dur.ac.uk/cfai/sitecharacterisation/forecasts/),
nous avons montré que la distribution de probabilité de l’atténuation en négligeant la
scintillation (Lφ(t ) == 10log 10(ρφ(t ))) suit une distribution de Gumbel :

fLφ(x) = 1

β
e−(z+e−z ) (0.1)

où z = x−µ
β

.
La densité de probabilité du terme de scintillation est connue [Can18a] et ne dépend

que d’un paramètre : σ2
χAP

.

En utilisant un processus Gaussien avec un noyau de Matérn 5
2 , nous sommes

capables de prédire µ, β et σ2
χAP

en utilisant comme entrée uniquement les moments

r0, h̄, v̄ avec un coefficient de détermination supérieur à 0.99 dans chacun des cas
(Figure ??).

Figure 2.: Valeurs prédites avec un processus Gaussien utilisant r0, h̄ et v̄ par rapport
aux valeurs calculées de µ, β et σχAP / sur le jeu de test

Grâce à l’efficacité de la prédiction, et sous réserve de connaître σ2
χ (par la mesure),

nous sommes capables de reconstruire la distribution du flux couplé dans la fibre op-
tique avec une erreur bien inférieure à toutes les marges systèmes qui sont habituelle-
ment prises dans ce cas d’application (erreur maximale de 0.5dB sur la reconstruction

xi



du quantile à 1% du flux couplé).

La même démarche a été entreprise sur la prédiction du temps de demi-corrélation
de la phase et de la scintillation avec moins de succès. Pour garantir une bonne pré-
diction, des moments de la densité spectrale de puissance obtenus à l’aide d’un auto-
encoder ont été ajoutés aux entrées du modèle et ont permis d’obtenir les résultats de
la Figure 3 avec un coefficient de détermination de 0.99 pour la demi-corrélation de
ρφ(t ) et de 0.98 pour la demi-corrélation de ρI (t ).

Figure 3.: Prédiction du temps de demi-corrélation en utilisant un processus Gaussien
avec les entrées r0, h̄ et v̄ et l’information sur la DSP de la scintillation
mesurée sur une pupille de 5cm.

L’ensemble des résultats présentés dans ce résumé succinct a fait l’objet d’une
analyse de sensibilité détaillée dans un article publié dans l’International Journal
Communication and Networking.

L’utilisation d’un Forward Error Correction (FEC) et d’un entrelaceur dans la chaîne
de détection introduit des non-linéarités, faisant de l’accès à la marge de puissance
un problème complexe que nous avons résolu en utilisant deux outils différents pour
générer des processus non gaussiens à l’aide des statistiques prédites plus tôt.

Nous avons présenté AnySim, une approche qui offre un moyen systématique de
générer des séries temporelles non gaussiennes tout en préservant les propriétés
statistiques souhaitées, en particulier la fonction d’autocorrélation.

Ensuite, nous avons exploré ARRC, une méthode basée sur les processus aléatoires
conditionnels autorégressifs. Cette approche a été développée avec l’aide de Bernard
Picinbono pour notre application et donne des résultats très prometteurs, tout en
permettant de générer des séries à une vitesse de calcul inégalée, offrant ainsi une
alternative intéressante à des approches plus complexes.

Ces techniques sont utilisées pour obtenir la marge de puissance de l’utilisateur
final de la liaison optique, en tenant compte duFEC et de l’entrelaceur. La distribution
de l’erreur absolue évaluée sur cette marge de puissance, visible Figure 4, est bien en
dessous de la marge système prévue à 3dB.
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Figure 4.: Distribution de l’erreur absolue sur la marge de puissance. A gauche :
ARCA(1) MODCOD 9/10 ; à droite : AnySim MODCOD 9/10

Tout au long des chapitres 4 et 5, des études de sensibilité systématiques ont été
réalisées pour analyser l’impact de chacun des moments sur le modèle. Le chapitre
6 va plus loin en proposant l’étude d’une erreur systématique dans la mesure des
moments due à un décalage entre la ligne de visée réelle et celle de l’instrument de
caractérisation.

Enfin, le chapitre 7, plus exploratoire, s’est concentrée sur la capacité à prédire la
valeur des moments et donc la disponibilité à des horizons temporels de quelques
dizaines de minutes en utilisant des modèles de deep learning avancés.

Nous avons présenté un ensemble complet de résultats, en comparant différents
modèles, y compris des méthodes basées sur ARIMA, NHITS et NBEAT. Les résultats
indiquent clairement que NBEATS surpasse le modèle ARIMA + VMD correspondant
à l’état de l’art actuel.

Nous avons ensuite introduit le concept de covariables. Ce sont des séries tem-
porelles supplémentaires connues au moment de la prédiction et qui peuvent améliorer
la précision de nos modèles. En particulier, nous avons discuté de l’inclusion de la
température et de l’énergie cinétique turbulente au sol.

L’utilisation de ces covariables s’est avérée bénéfique, entraînant des améliorations
significatives de la précision des prédictions. Ces covariables ont contribué à capturer
les tendances sous-jacentes et à réduire le bruit, améliorant ainsi la capacité de nos
modèles à faire des prédictions précises.

Conclusions et perspectives
Les travaux présentés dans cette thèse représentent une étape importante dans la
progression de notre compréhension de la prédiction de la disponibilité des liaisons
optiques. Nous avons présenté une méthodologie permettant de passer de paramètres
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de turbulence intégrés à la marge de puissance en utilisant seulement des outils
mathématiques simples.

En nous concentrant sur la liaison descendante GEO, nous avons démontré que,
en supposant plusieurs hypothèses simplificatrices sur le modèle de performance du
système d’OA, quatre paramètres intégrés de la turbulence semblent suffisants pour
évaluer précisément la densité de probabilité du flux couplé. En outre, l’exploitation
du spectre de puissance temporel de la scintillation enregistrée par un récepteur de
petit diamètre permet d’évaluer le temps de corrélation de ce flux, ce qui rend la
description statistique aussi complète que possible.

L’utilisation d’un code correcteur d’erreur et d’un entrelaceur dans la chaîne de
détection introduit des non-linéarités, faisant de l’accès à la marge de puissance un
problème complexe. Nous avons abordé ce problème en proposant deux méthodes
pour générer des séries temporelles avec des statistiques non gaussiennes. L’une a
déjà été publiée et démontrée et l’autre a été développée exclusivement pour notre
application et donne des résultats très prometteurs. Avec des paramètres d’OA stan-
dard, nous avons démontré une prédiction de la marge de puissance avec une erreur
absolue de moins de 1 dB sur l’ensemble de la base de données (mai 2021 Tenerife).
En outre, le modèle est robuste aux éventuelles interruptions car il n’affiche aucun
faux positif dans la prédiction de la disponibilité.

Les outils d’apprentissage automatique peuvent apporter une contribution décisive,
à condition qu’ils soient abordés de manière rationnelle, par la compréhension des
phénomènes physiques. Les outils créés ici sont intelligibles grâce à l’utilisation des
processus gaussiens et aux nombreuses analyses de sensibilité réalisées. Au final, tout
le travail a été effectué dans le but de réduire l’incertitude des résultats.

Enfin, au cours de ce travail, plusieurs bases de données ont été exploitées et les ré-
sultats de ces dernières ont été comparés à des mesures diurnes sur site, crédibilisant
la portée de ce travail.

Nos simulations précédentes supposaient des mesures parfaites des paramètres
de turbulence. Plus tard, une propagation de l’erreur de mesure a été étudiée. Nous
avons supposé l’existence d’un instrument de caractérisation qui aurait un angle de
visée différent de celui du satellite. Cela a conduit à la conclusion que, bien que tous
les moments impactent également l’erreur commise sur la marge de puissance, une
différence dans la ligne de visée en dessous de 60 degrés limite l’erreur maximale à 1
dB, ce qui est largement dans la marge du système.

Cependant, il convient de se concentrer davantage sur l’étude des erreurs poten-
tielles introduites par les biais et le bruit des mesures instrumentales. La comparaison
entre les mesures fournies par des instruments de caractérisation tels que celui pro-
posé par Miratlas et des mesures effectuées à l’aide de l’analyseur de front d’onde sur
une liaison optique réelle est essentielle. Cela permettra de compléter l’approche de
l’erreur d’angle de visée qui a été réalisée discrètement sur une grille à mailles larges
et aidera à établir et à quantifier tous les phénomènes susceptibles d’influencer les
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mesures des paramètres intégrés.
Nous pouvons également constater que l’analyse de sensibilité à l’aide des indices

Sobol ou Shapley ne tient pas compte des queues des distributions. Cependant, ce
sont ces événements rares qui provoquent des interruptions de liaison, et une at-
tention particulière devrait être consacrée à leur compréhension. À cet égard, des
techniques telles que celles présentées dans [MAG21] seraient probablement plus
appropriées.

Il convient également de noter que tous les résultats sont basés sur un modèle
pseudo-analytique validé expérimentalement (SAOST). Cela implique une plage de
validité et des hypothèses sous-jacentes. Les plus restrictives sont sans aucun doute
l’hypothèse d’indépendance phase-amplitude, la propagation limitée aux faibles per-
turbations et la description purement monochromatique des processus en jeu. De
plus, le modèle ne contient que ce qu’on y met, et des paramètres codés en dur tels
que l’échelle externe deviennent des variables dans des conditions réelles.

Toutes ces préoccupations concernant les limitations inhérentes à ces hypothèses
bénéficieront grandement de campagnes de mesure sur le terrain. L’ONERA développe
actuellement une station sol de démonstration GEO-feeder (FEELINGS [Cyr+22]).
Son objectif principal est de valider les modèles de propagation optique à travers
l’atmosphère, y compris celui développé dans ce travail. Le télescope de 60 cm sera
mis en service sur le site de Fauga-Mauzac et sera accompagné d’une station Miratlas
pour mesurer les paramètres intégrés. La mesure simultanée de ces paramètres in-
tégrés, de la puissance optique injectée lors du fonctionnement de la liaison et des
profils de C 2

n reconstruits à partir des données de l’analyseur de front d’onde [Véd08]
permettra de constituer une base de données complète sans biais de modèle. Cette
base de données sera comparée à la fois avec des profils simulés issues de modèles
météorologiques et avec les sorties SAOST pour justifier les statistiques établies dans
cette thèse. Cette base de données permettra également de ré-entraîner les méta-
modèles, soit à partir de zéro, soit à l’aide de techniques d’apprentissage par transfert,
afin de les adapter au site d’exploitation et aux conditions réelles.

Enfin, les résultats initiaux obtenus avec les techniques de deep learning pour
la prédiction des paramètres intégrés sur de longues périodes doivent être consid-
érablement développés. Malgré des résultats prometteurs, il existe plusieurs pistes
d’amélioration. Les travaux futurs consisteront à explorer l’utilisation de covariables
différentes et futures. La capacité prédictive s’est concentrée sur le paramètre de
Fried, d’autres paramètres devraient être étudiés. Enfin, étant donné que la variabilité
de la couche au sol n’est pas finement représentée par Weather Research and Fore-
casting Model (WRF), il convient d’étudier l’impact des variations à haute fréquence
du paramètre de Fried lors de démonstrations en conditions réelles. L’utilisation
de modèles composites pour tenir compte de ces variations pourrait apporter des
solutions. Des études visant à améliorer les données obtenues par les prévisions WRF
devraient être envisagées, en utilisant par exemple le travail réalisé dans [Raf+22] où
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des méthodes d’apprentissage sont proposées pour tenir compte de mesures locales
dans les modèles de turbulence, en prenant ainsi en compte la spécificité d’un site
donné.
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Introduction

In recent years, the demand for efficient and high capacity data transmission between
space assets and terrestrial infrastructure has experienced an unprecedented surge
driven by the development of space data highways [Hau+19] and upcoming commu-
nication mega-constellations [Toy21].

The limitations of current radiofrequency (RF) technologies have become evident in
the face of the escalating demands for space-to-ground communication. RF systems,
although robust and widely deployed, face critical challenges. They are constrained by
limited available bandwidth within allocated frequency bands. For instance, the widely
used Ku-band (12 to 18 GHz) offers a maximum downlink data rate of approximately
500 Mbps, while the Ka-band (17.3 to 21.2 GHz) provides around 1 Gbps. These figures,
though remarkable in their own right, fall significantly short of the requirements for
emerging applications such as high-definition video streaming from space, earth
observation data transmission, and the ever-increasing field of internet delivery via
satellite.

In addition, spectrum allocation for RF communication is heavily regulated, leading
to overcrowding and increased interference in certain frequency bands.

Finally, the non-directional aspect of traditional RF links, on top of making long-
distance communications high energy consumption, expose them to eavesdropping
and optical jamming. These vulnerabilities are concerning, particularly for applica-
tions involving sensitive information, defense, and financial transactions.

In contrast, optical communication systems offer an interesting solution to these
RF limitations. These optical links have been massively adopted in space-to-space ap-
plications, enabling high-speed inter-satellites and efficient space data relay services,
where satellites in Low Earth Orbit (LEO) can quickly transmit data to Geostationary
Orbit (GEO) or other LEO satellites equipped with optical terminals.

However, the emergence of ground-based satellite optical links remains a relatively
new field, but one which is bound to develop further. It would enable the delivery of
high-speed (up to 1 Tb/s), low latency internet access to remote and under-served
areas, which are not benefitting from a complete and robust fibre-optic network. Fur-
thermore, the security features of optical communications, which enable directional
links and quantum cryptography, make them crucial for military applications.

With the need for high bandwidth comes the necessity to inject the signal into
a Single Mode Fiber (SMF) for amplification and/or to enable coherent detection.
Deep fluctuations in the injected signal happen due to atmospheric turbulence that
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causes amplitude variations, i.e. scintillation, and wavefront distortions in the receiver
aperture plane.

When it comes to high data rate optical links, most promising mitigation techniques
rely on the joint exploitation of aperture averaging associated to AO correction to
mitigate injected power fluctuations and the use of numerical interleaving associated
to an adequately chosen forward error correction to compensate for remaining signal
impairments.

However, no matter how good these methods are, there will always be cases where
the weather is unfavourable (cloud cover, absorption) or the turbulence is too strong to
hope for a low-latency communication channel without interruptions. The complexity
and cost associated with implementing advanced optical correction methods to ensure
high-quality corrections are substantial.

In practice,Free Space Optics (FSO) communications projects often rely on extensive
networks of ground stations. This strategic approach enables satellites to continually
target regions of the globe where favourable weather conditions are predicted. Man-
aging atmospheric transmission and turbulence conditions is indeed a critical factor,
and it is addressed through diverse site selection, as discussed in [Pou+14]. However,
it’s worth noting that, until now, the impact of turbulence on the handover process
has not been adequately addressed.

One of the primary goals of this thesis is to provide an assessment of performance,
and even predictions, regarding how turbulence influences the handover process.
To accurately predict data transmission capacity for network optimisation several
tens of minutes ahead is of critical importance as it will enable to manage relatively
time consuming operations (optical terminal reorientation, network reconfiguration)
without loss of information while accurately predicting data transmission capacity.

Considering the significant variability of turbulence conditions with the location of
ground stations, several initiatives has been taken to deploy atmospheric turbulence
characterisation instruments of different types, enabling the retrieval of both inte-
grated parameters [Jab21] and high vertical resolution turbulence profiles [Cha+20]. If
the relationship between effective communication performance and high resolution
C 2

n and wind profiles along the line of sight is well documented at the time, a question
arises when it comes to relating integrated turbulence parameters, sometimes mea-
sured on a different line of sight, to the effective performance of an optical link. This
question is all the more relevant that the optical link being corrected by AO the degree
of correction will affect this dependence.

Considering the importance of integrated turbulence parameters in the assess-
ment of AO corrected error budgets, indications exist in favour of a link performance
that would depend only on a few integrated parameters. But a relationship between
corrected optical link performance and moments of the turbulence has never been
clearly established. The exact expression of the correction residuals involves a complex
combination of moments of turbulence and wind profile, whose weightings strongly
depend on the system parameters. The tractability of analytical expressions raises real
challenges for a clear-cut demonstration that integrated parameters are sufficient to
characterise optical link availability. Machine learning methods associated with physi-
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cal performance models might provide crucial indications to answer this question.

It is the major prospect of the work presented in this thesis.

Chapter 1 provides a brief overview of historical free-space optical communications
breakthroughs, as well as a description of atmospheric phenomena that impact the
link. A focus is set on understanding optical atmospheric turbulence and the main
tools for modelling it.

Chapter 2 offers an overview of error correction mechanisms, both adaptive optics
and numerical methods. It also introduces SAOST, a numerical model for generating
time series of Reicived Optical Power (ROP) after propagation through the atmosphere
and correction by AO.

Chapter 3 introduces the state of the art of the machine learning tools that will be
used throughout this thesis.

The main results of this work are presented in chapters 4 and 5. Chapter 4 presents
how, after identification of 4 turbulence and wind profile moments, we are able,
through the use of Gaussian processes, to assess integrally the statistics of a coupled
flux time series in the case of a corrected GEO-downlink.

Chapter 5 introduces two non-Gaussian stochastic process generation techniques.
These techniques are then used to recover the end user power link margin of the
optical link, taking into account FEC and the interleaver.

Throughout Chapters 4 and 5, systematic sensitivity studies were carried out to see
the impact of each of the moments on the model. Chapter 6 goes further by inves-
tigating the influence of a difference line of sights between atmospheric turbulence
characterisation and the optical link performance assessment.

Finally, Chapter 7 presents a preliminary study of the ability to predict the state
of turbulence in advance. This is done by using deep neural networks to predict
moments at different time horizons. Addition of covariate in the learning process to
improve these predictions has also been carried out.
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1. Free Space Optical Communications –

Optical atmospheric turbulence has been of interest in astronomy for centuries
and was quite soon identified as a key limiting factor for the optical resolution of
astronomical observations.

In his Opticks treatise of 1704 [New04], Isaac Newton gives an accurate description of
atmospheric turbulence and its impact on space observation, insightful observations
at the time:

‘If the theory of making telescopes could at length be fully brought into
practise, yet there would be certain bounds beyond which telescopes could
not perform. For the air through which we look upon the stars is in a
perpetual tremor, as may be seen by the tremulous motion of shadows cast
from high towers and by the twinkling of the fixed stars. The only remedy is
a serene and quiet air, as may perhaps be found on the tops of the highest
mountains above the grosser clouds.’ (Opticks p.107 (2nd ed, 1719))

Since Newton, nearly every major astronomer has observed the impact of the atmo-
spheric turbulence and contributed to its understanding. Observation site selection
became one of the major issues in astronomical research. During the 19th century,
astronomers began to conduct mountaintop expeditions to make ever more precise
observations. Early researchers, such as Lord Rayleigh (1842-1919) and Vilhelm Bjerk-
nes (1862-1951), developed theoretical models of turbulence that were based on the
assumption of small-scale, isotropic, and homogeneous turbulence.

Technological advancements in optics, electronics, and computing at the beginning
of the 20th century enabled researchers to better understand the complex physical
processes that govern atmospheric turbulence. While a formalism was born with the
work of Karl Strehl [Str95] and Fritz Zernike [Zer38], Andrei Kolmogorov proposed
his turbulent cascade model [Kol41] in 1941 which is still used today as a basis for all
modern models.

The second half of the 20th century was marked by the development of more
advanced measurement techniques, including adaptive optics by Horace Babcock
[Bab53] and wavefront sensing by Roland Shack [Sha70]. These two methods have
significantly improved our ability to characterise and mitigate the effects of atmo-
spheric turbulence on optical systems. The theory of light propagation through a
turbulent medium becomes better established during this period with the work of
Tatarski [Tat61], Fried [Fri66], Greenwood [Gre77], and Roddier [Rod81].

Despite the fact that understanding atmospheric turbulence remains a significant
challenge for physicists, in recent years, with the growing popularity of FSO com-
munications, accurate models of atmospheric turbulence have become necessary to
design robust systems and ensure reliable high-speed data transmission through the
atmosphere. The challenge is even more demanding as it differs in many ways from
what astronomers have been interested in. Turbulence models used by astronomers
are often based on average behaviour over relatively long periods of time, on sites
selected for their ideal conditions and studied exclusively during night time (apart
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from solar imaging, for which the observation time slots are carefully selected to limit
the impact of turbulence). FSO communications systems, on the other hand, must be
designed to operate continuously, day and night, on sites close to network nodes and
therefore to densely populated areas.

1.1. Overview of free-space optical
communications breakthroughs

The first occurrence of FSO communication dates back to 1880 when Alexander Gra-
ham Bell and Sumner Tainter invented what they called the optical phone, also known
as the photophone [Bel80]. This invention consisted of an optical modulator and a
demodulator that enabled the wireless transmission of a wireless voice telephone
message at a distance of up to 213 metres. Having anticipated the mass adoption of
fibre optics, Bell went so far as to say that the invention was his "greatest achievement
[...] greater than the telephone".

Innovations slowly kept pace for 100 years until NASA achieved a breakthrough, in
1992 with the Ground/Orbiter Lasercomm Demonstration (GOLD) demonstrating the
first uplink optical communication between a telescopes located at NASA’s TMF and
the Japanese Engineering Test Satellite (ETS-VI)[WL93]. This feasibility demonstration
was quickly followed by Japan’s ETS-VI demonstration in 1994, which served as a
testament to the viability of GEO downlink optical communication channel achieving
1Mbit/s. This milestone truly underscored the growing interest and investment in
lasercom technologies across the global space community[Ara+96].

The early 2000 saw the arrival of the world’s first laser inter-satellite link achieved by
the European Space Agency (ESA) between the ARTEMIS geostationary satellite and
the french LEO observation satellite SPOT 4[FHL91]. The LOLA experiment, funded
by DGA, was the first demonstration of a link between a highaltitude aircraft and a
geostationary platform reaching 50 Mbp/s links across 40,000 km [Caz+17]. First LEO
to ground FSO links appeared later in 2006 with the Japanese space agency OICETS
LEO sattelite[Toy+12].

The second decade of the 21st century saw a tremendous amount of space optical
links mostly led by NASA and the JAXA. One of the important breakthrough that can
be noted is the 385,000 km optical link between ground and the Lunar Atmosphere
and Dust Environment Explorer done by NASA in October 2013 achieving a 622 Mbit/s
downlink and 20 Mbit/s uplink between earth and the moon orbit[Bor+09].

Today, ground-to-space optical links are becoming increasingly available, with the
emergence of numerous ground stations operated by institutions as well as the private
sector. Tesat’s TAOGS, for example, has several hundred links to its credit, testifying to
the quality of its optical payload[Sau+16; Ric+17; Hei+18].

Finally, more recently, OA precompensation has been demonstrated with a GEO
satellite on Alphasat [Sod+21].
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1.2. Atmospheric impairment
Due to it’s optical nature, the optical link is severely degraded as it propagates through
the atmosphere. In this section we will cover the atmospheric phenomena that dis-
rupt the link: cloud cover and the presence of aerosols, absorption, diffraction and
diffusion, and atmospheric optical turbulence.

The first and foremost troublesome phenomenon is cloud cover-induced blockage.
To overcome this problem, the feasibility of handover on a ground station network
has been demonstrated [Pou+14; PCR15]. The location of these stations should ideally
be close to the nodes of the network, i.e. close to high population densities. Several
studies have investigated the optimal location of these stations by studying the spatial
and temporal correlation of cloud cover [Erd+21; Gon+20; FM15]. The existence of sets
of meteorologically anti-correlated locations was highlighted, guaranteeing almost
systematically that at least one ground station has a clear sky to enable an efficient
optical link. In [Fuc+17] and in [Hau+19], it was concluded that an OGS network
with 10 OGS was necessary but sufficient to have an annual availability of 99.9%. The
proposed network is very similar to the one given as an example in Figure 1.1.

Figure 1.1.: Example of what could be an optimal European ground station network
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Up to recently, these studies are limited to estimating clear-sky propagation con-
ditions, with all clouds considered to be totally opaque. In [PCR15] and in [GC19], a
more realistic estimate of the availability of the optical link is achieved by taking into
account optically thin clouds in the link budgets, as they do not completely attenuate
the optical link. The presence of tropospheric aerosols and their impact on the link
is also being studied. To this point there are very few attempts in the open literature
to validate experimentally the contribution of atmospheric transmission to the link
budget, whereas this is currently one of the major question marks remaining in the
link budget.

1.2.1. Absorption and scattering
Another key phenomenon is the atmospheric absorption of certain wavelengths of
electromagnetic radiation. Depending on the molecules and particles present in
Earth’s atmosphere, some wavelength are more impacted than others as is shown in
Figure 1.2.

Figure 1.2.: An early atmospheric transmission curve published in “Remote Sensing:
A Survey Report” in 1967.

In the rest of this work we consider the usual wavelength used for FSO links:
1550 nanometers. This wavelength is chosen for two main reasons. The first one
being that numerous optical components have been developed for this wavelength
widely used in land-based optical fibre communication. This availability of low cost,
of the shelf, optical transceivers, amplifiers, multiplexers, etc. and the use of existing
protocols enables economies of scale and wide compatibility with existing infrastruc-
ture. The second reason is that the 1550 nm wavelength falls within a low atmospheric
absorption windows in the near-infrared spectrum. This makes it an attractive choice
for optical communication because signals at this wavelength can propagate through
the atmosphere with higher transmittance and reduced dispersion. On top of that,
wavelengths in the 1550 nm range are generally considered eye safe at higher power
compared to shorter wavelengths, like those in the visible spectrum.
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The region in the near-infrared around 1550 nm corresponds to what is usually
called the C band. It ranges from approximately 1530 to 1565 nm. The C band was
historically selected for fibre telecommunications because it is conveniently located
around the minimum absorption of standard optical fibre (0.2dB / km).

Various molecules and particles in the atmosphere can interact with and absorb
specific wavelengths of light. The primary contributors to atmospheric absorption
in the C band region include water vapour (H2O), carbon dioxide (CO2), and oxygen
(O2).

Absorption of light by these molecules results in vibration of their bonds, and the
conversion of the photon electromagnetic energy into internal energy of the absorber.
The vibrational modes correspond to energy levels of the molecules allowing them to
absorb light at characteristic wavelengths. As a result, one can see massive decline in
atmospheric transmission around this given wavelength. (Figure 1.2).

Figure 1.3.: Atmospheric transmittance around the C-band -©Geek3 - Own work, CC
BY-SA 4.0

Figure 1.3 shows the atmospheric transmittance for the selected region around the
C band, justifying the use of a 1550 nm signal in the case of FSO links operation. The
transmittance of 92.4% is given for a vertical transmission of 99 km at mid-latitude
for a clear summer day. Reality is a little more complex, with the existence of very
fine absorption bands that depend on the elevation. A complete study of the case of
optical links can be found in [Art+19].
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1. Free Space Optical Communications – 1.2. Atmospheric impairment

Figure 1.4.: Difference between Rayleigh and Mie scattering (Figure from [Bar20])

In addition to absorption, scattering effects occur due to light interaction with atmo-
spheric particles, leading to changes in its direction and intensity. Figure 1.4, shows
the two main types of scattering. The Rayleigh scattering is caused by particles that
are significantly smaller than the wavelength, mostly caused by air molecules and
mist. The intensity of Rayleigh scattering is proportional to I ∝ 1

λ4 . Consequently, in
the C band (where the wavelength is large compared to the visible wavelength), the
energy dissipated in Rayleigh scattering is almost negligible [AA12].

Mie scattering, on the other hand, is the dominant form of scattering in clear
skies conditions [AA12; Sha+15]. It is caused by particles comparable in size to the
wavelength, such as aerosols, ice crystals, or volcanic ash.

The value of Mie scattering is according to [Sha+15]:

βscat = 1.4244×10−9 1

λ1.3
(1.1)

and the atmospheric attenuation roughly equal to τ= e−βL according to Beer’s law[Bee52],
L being the propagation distance. In this case, the scattering is closely proportional to
the inverse of the wavelength, which again encourages the use of larger wavelengths.

1.2.2. Scope of work
In the rest of this PhD we consider the cloud mitigation techniques to be fully opera-
tional, we can for example site the work of Sylvain Poulenard [Pou+14; Fuc+17] that
focuses on macro phenomenons and the cloud coverage to manage the handover be-
tween stations. We also make the assumption that the attenuation due to absorption
and scattering is fully understood.

The following will focus exclusively on the description, modelling and understand-
ing of the atmospheric optical turbulence, the most limiting phenomenon when it
comes to high data rate optical link in clear sky conditions.
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1.3. Atmospheric optical turbulence
Turbulence is a complex three-dimensional phenomenon that occurs when fluid flows,
in this case the air, becomes highly irregular and unpredictable.

The study of chaotic fluid flow (turbulence) is, to date, "the most important unsolved
problem of classical physics" according to Nobel Laureate and theoretical physicist
Richard Feynman, a thought shared by Werner Heinzenberg, who was rumoured as
having replied to the question what he would ask to God if given the opportunity:

When I meet God, I am going to ask him two questions: why relativity? And
why turbulence? I really believe he will have an answer for the first.

Despite decades of research, there is no universal theory capable of describing
accurately the evolution of turbulence. Most of the industrial work is based on com-
putational fluid dynamics simulations (CFD), which are among the most demanding
simulations in terms of calculation capacity.

Atmospheric optical turbulence is no exception. It depends on the topography of
the ground and its nature, on the wind speed associated with the different layers of the
atmosphere, and on fluctuations in temperature and humidity. In short, it depends
on all the phenomena that can cause random variations of air density and humidity,
quantities on which the refractive index of the air depends.

When the wave propagates through the atmosphere it encounters regions of fluid,
of varying sizes, with slightly different refractive index. The incident wavefront, con-
sidered to be flat due to the distance from the satellite (at least for GEO), becomes
deformed as it passes through the turbulent eddies. The wavefront is so degraded as
it approaches the ground that it becomes almost impossible to inject the remaining
light into a single-mode optical fibre without massive losses. Therefore, the study
of ROP and link availability necessarily requires understanding and simulating the
impact of atmospheric turbulence on optical propagation.

1.3.1. Kolmogorov theory
Kolmogorov’s work on turbulence [Kol41] was motivated by a desire to understand
the statistical properties of this complex phenomenon. Base on Lewis Fry Richardson
work, he proposed a theory of turbulent cascades that describes how energy is trans-
ferred from large scales to small scales in a turbulent flow.

The idea behind the theory of turbulent cascades is that when energy is injected into
a fluid flow at a large scale, it dissipates into smaller and smaller scales through a series
of eddies or vortexes. This process continues until the eddies are too small to drive new
ones and energy is dissipated into heat through viscous forces at the smallest scales.
The range of scales over which this energy transfer occurs is known as the inertial
range. Within this inertial range, the turbulence is fully developed, meaning that
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the energy is dissipated primarily through non-linear interactions between different
scales of motion.

Kolmogorov proposed that within this range the statistical properties of the turbu-
lence are scale invariant. This means that the statistical properties of turbulence on
one scale are similar to those on another scale.

Figure 1.5.: Comparison between the Von Karman Spectrum and the Kolmogorov
spectrum

This key result of Kolmogorov’s theory is translated in the form of the energy spec-
trum of turbulence. The energy spectrum describes how the energy is distributed
across different scales in the flow. According to Kolmogorov, it should follow a power
law of the form E (k) ∝ k−5/3, where E(k) is the energy spectrum at a given wavenum-
ber k (cf. Figure 1.5). This prediction has since been confirmed through observations
and is known as the Kolmogorov -5/3 law.

From this modelling, two quantities emerge. The parameter L0 known as the outer
scale corresponds to the characteristic size of the largest eddies. It can also be seen as
the size of the phenomenons (meteorological perturbations) allowing for the creation
of these first eddies.

The inner scale l0 corresponds to the physical size of the viscosity regime, the eddies
below this size contain little energy and enter the dissipation regime of Figure 1.5.
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Bellow this length, all the kinetic energy is dissipated to heat because of friction.
Typical size of L0 ranges from meter to tens of meters depending on the distance

from ground while l0 ranges from millimetre near ground to the centimetre at higher
altitudes.

1.3.2. The refractive-index fluctuation profile: C 2
n(h)

1.3.2.1. Structure function

The impact of atmospheric turbulence on the availability of a free space optical
communications link relies in the local fluctuations of pressure and temperature
(relative humidity fluctuation do not impact meaningfully the refractive index at
optical wavelengths [Rod81]).

This variations are usually described using the second order structure function:

DT (δ) = 〈(T (r)−T (r+δ))2〉 (1.2)

where T (r) is the temperature at a position given by the vector r whereas δ is a distance
in the 3 dimensional space.

This ensemble average can be seen as analogue to a correlation measurement of the
temperature over a distance |δ|. The cascade theory limits the measurement of this
correlation structure to the inertial range (Figure 1.5) making this description relevant
only when l0 < |δ| < L0.

In 1949, Alexander Mikhailovich Obukhov showed, based on the work of Kolmogorov,
that the temperature structure function follows a power law [Obu+49]:

DT (δ,r) =C 2
T (r)|δ|2/3 ,with l0 < |δ| < L0 (1.3)

where C 2
T is called the temperature structure constant measured in K .m−2/3 .

Following this work, Valerian Ilich Tatarski showed in 1961 that the refractive index
structure function behaves accordingly [Tat61]:

Dn(δ,r) = 〈(n(r)−n(r+δ))2〉 (1.4)

=C 2
n(r)|δ|2/3 ,with l0 < |δ| < L0 (1.5)

where C 2
n is the refractive index structure constant measured in m−2/3.

As we will see in the rest of this work, knowledge of C 2
n(h) for altitude h ranging from

the ground level to the end of the stratosphere is crucial in the study of optical link.
The sole knowledge of this refractive index constant profile and the associated wind
profile enables end-to-end accurate simulation of the effects of the atmosphere on the
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propagation of an optical wave. One of these models will be discussed in Section 2.2.

1.3.3. C 2
n in the boundary layer and in the free atmosphere

Classic description of earth’s atmosphere is usually done using five layers even though
much more complex descriptions can be found. These layers are the troposphere,
the stratosphere, the mesosphere, the thermosphere, and the exosphere ending at
the Kármán line set at 100 km above sea level and arbitrary chosen as the limit to
outer space. 90% of the mass of the atmosphere in other hands is contained below 16
km (one should note that the exact height of the tropopause vary based on latitude).
Even though atmospheric activity remains at higher altitude with, for example, the
formation of noctilucent clouds in the mesosphere (between 50 and 80 km), the con-
centration is so low that relevant C 2

n profiles in the case of FSO communications do
not exceed heights of 20 km for a zenith sighting from the ground.

Bellow this height of 30 km are two layers, the troposphere and the stratosphere.
The troposphere is the layer ranging from ground level to about 12 kilometers. The
higher one goes in the troposphere the lower the temperature gets. It is the layer where
most of the meteorological phenomena that we are familiar with occur, with more
than 99% of the atmosphere water contained in this range.

The next layer, the stratosphere, is located between 12 and about 50 kilometres. The
limit between the troposphere and the stratosphere is characterised by an inversion
in temperature because, from this altitude, the higher up one goes, the warmer the
temperatures become. This is due to the massive absorption of ultraviolet rays from
the sun in the ozone layer that it contains.

1.3.3.1. The boundary Layer

To better describe all turbulent phenomena, another zone should be introduced that
differs greatly from the free atmosphere layers described above in the turbulence
structures it contains.

The boundary layer is the lowest portion of the Earth’s atmosphere; it differs from
the so-called free atmosphere, as it is strongly influenced by Earth surface over short
time scales.

During the day, the heating of the ground results in convective instability leading to
rise of thermal plumes, which behave differently depending on the nature of the ter-
rain. Whereas vegetation absorbs energy (heat) during the day for photosynthesis and
re-emits it in the evening, a tarmac surface will tend to radiate heat instantaneously.

The topography also has a major impact because of its influence on air flow speeds
and directions, causing for example wind shears.
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This boundary layer typically ranges from 100 m above the sea at night to 3 km
above a desert at noon. Typical height is given for 1.5 km over land.

To limit the impact of optical turbulence, astronomical observatories are usually
installed at high altitudes, the boundary layer on top of a high mountain will be thin
and standing above the boundary layer of surrounding areas.

The formation and behaviour of the boundary layer are primarily driven by diurnal
(daily) variations in solar heating and longwave radiational cooling. A description of
the boundary layer over a diurnal period is visible in Figure 1.6 then described in the
following.

Figure 1.6.: The boundary layer over a diurnal period - Source: COMET/METED

The main boundary layer phenomenon is called the convection. It is when the
turbulent kinetic energy is converted into potential energy due to warm air moving
upward and cooler air downward.

In the first metres, the turbulent kinetic energy generation due to the air-to-ground
difference in atmospheric parameters exceeds the convection. The vertical air buoyant
motion is limited, it is called the surface layer.

This surface layer is followed during the day by the mixed layer, where strong
turbulence occurs due to high wind speed and great thermal activity causing large
convection structures (buoyant turbulence).

The rest of the layers has less impact on the C 2
n profiles but for the curious reader

definitions can be found in the Glossary of Meteorology of the American Meteorologi-
cal society.

With typical values found to be around 3 to 4 orders of magnitude larger than in
the free atmosphere, modelling the C 2

n in the boundary layer is and will remain one
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of the main challenge for FSO link assessment. The behaviour of the turbulence in
the boundary layer is extremely site dependant. And while the canonical descrip-
tion in Figure 1.6 helps us understand the phenomena involved, there exists no easy
exhaustive models to describe the chaotic behaviours that take place. Large-eddy
simulation (LES) models can reproduce many traits of observed turbulent flows and
are a rapidly growing topic in boundary layer meteorology, however they are extremely
computational intensive and hard to parameterize.

High resolution C 2
n measurement can be performed thanks to rather complex

instrumentation such as Moon Limb Profiler by night [Ari+20], Sun Limb Profiler
[Ari+20], SLODAR (SLOpe Detection And Ranging), SL-SLODAR (surface-layer SLO-
DAR) [Osb+10], SHIMM(Shack-Hartmann Image Motion Monitor) [Per+23], FMCW
radars, thermosondes, etc. Such instruments are being deployed to demonstrate high-
resolution turbulence characterisation capacity on several sites throughout Europe
[Zia+22].

Still many limitations remain. On top of the cost and complexity of such instru-
ments, high resolution C 2

n profile characterisation along the line of sight of the target
used (moon, sun or star) differs from the optical links direction.

1.4. Modelling of the atmospheric turbulence
channel

Over the last three decades, many powerful models have emerged to describe the
atmosphere as accurately as possible, especially for meteorological purposes. These
models are based on a wide range of data, including local measurements taken by
weather stations, satellite or radar images, sounding balloon launches, etc.. These
models and instruments though are for meteorological purpose only and do not focus
on optical quantities.

This, combined with the difficulty of getting a refractive index measurement over
tens of kilometres, led to the creation of multiple models that try to describe the C 2

n
accurately using meteorological data.

1.4.1. Parametric modelling for average behaviour
The advantage of using parametric models is that it is possible to describe the entire
turbulent profile (C 2

n) using only the altitude and a small number of parameters. In
the literature, two of these parametric models are commonly found. The first is
the Hufnagel-Valley model [Huf74; Val80] (HV), a very simple but widely used two-
parameter model. The second, derived from it, is the Hufnagel-Andrew-Philips model
[And+12a; And+12b] (HAP).
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1.4.1.1. Hufnagel-Valley

In his 1974 paper [Huf74], Hufnagel introduced the quantity

v2 =
(

1

15×103

)∫ 20×103

5×103
w 2(h)dh (1.6)

where w is the wind speed often chosen using a Bufton wind profile. This quantity
was shown to be highly correlated to scintillation index measurement. By transitivity,
he showed that the integrated wind profile between 5 and 20km controls the strength
of turbulence in the upper layers.

Assuming an exponential decay of the turbulence through the troposphere, the
following empirical model was proposed as a description of the C 2

n profile.

C 2
n(h) = 2.2×10−53 ×h10

( v

27

)2
e

−h
100 +10−16e

−h
1500 (1.7)

This two layers model with a single parameter (v) was found to be suitable only for the
free atmosphere as the strength of the C 2

n in the boundary layer (below 1 to 3 km) was
not accounted for.

This was supposedly solved by the physician Ulrich following the recommendations
of Valley [Val80].

The newly introduced Hufnagel-Valley model became a three layer model with two
parameters:

C 2
n(h) = 0.00594(

v

27
)2(10−5 ×h)10e

−h
100 +2.7×10−16e

−h
1500 +C 2

n(0)e
−h

1000 (1.8)

Where v is according to Hufnagel’s definition and the new parameter C 2
n(0) is noth-

ing other than C 2
n at the ground-level.

1.4.1.2. Hufnagel-Andrews-Philips

Numerous experiments such as that of Kaimal [Kai+76] show that, in the convective
boundary layer, the C 2

n decrease is not exponential but on average in h−4/3 during
the day and h−2/3 at night. This led to the creation of a more realistic model by
Andrews and Philips giving their names to the Hufnagel-Andrews-Phillips HAP model
[And+12b]:

C 2
n(h) =

(
0.00594

( v

27

)2
(10−5h)10e

−h
100 +2.7×10−16e

−h
1500

)
+C 2

n(0)

(
1

h

)4/3

(1.9)

The power law describing the decrease in C 2
n in the boundary layer as a function of

the time of day has been later described as follows:
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p =


−0.11(12−T H)2 +1.83(12−T H)−6.22, 0.75 < T H < 3.5
1.45−0.02(T H −6)2, 3.5 < T H < 8.5
−0.048T H 2 +0.68T H −1.06, 8.5 < T H < 11.25

(1.10)

where the temporal hour TH is defined as:

T H = T I ME −SU N RI SE

T P
where T P = SU N SET −SU N RI SE

α
(1.11)

whereα is a parameter of the latitude; leading to a more complete HAP model which
remains the reference today:

C 2
n(h) = M [0.00594(

v

27
)2(10−5h)10e

−h
100 +2.7×10−16e

−h
1500 ]+C 2

n(0)(
1

h
)p (1.12)

M being a newly introduced parameter accounting for the background turbulence in
the free atmosphere.

More advanced parametric models exist, especially developed in the scope of de-
fence application to describe the ground turbulence and its impact on horizontal
communications systems. Some of them, such as PAMELA [Oh+04], go so far as to
account for terrain roughness and outer scale length, but require a particularly large
set of input parameters to give accurate results.

It should be noted that whatever the parametric model, they will be suitable for
describing the average value of the turbulence over a given site, but will not give an
instantaneous and accurate turbulence profile description.

It also appears that simpler models such as HAP have often been developed for
specific sites at given time of the year and it is not clear to what extent they would be
suitable to describe other sites or meteorological conditions.

1.4.2. Non parametric/ profile based modelling
As our work aims at characterising the statistics of the instantaneous received optical
power and, especially the distribution’s tail to describe the probability of interruption,
we need to work with a non parametric model based on real world meteorological
profile measurements. It will be more suitable to describe any small variation in the
turbulence induced by different meteorological conditions and should, in theory, work
for any location and any hour of the day.

Such a description can be achieved using Thrope’s method, Gladstone’s formula,
or Tatarskii’s theory, among others. In these approaches, the C 2

n profile is calculated
from precise vertical profiles of meteorological parameters (temperature, pressure,
and often wind speed and wind direction).
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1.4.2.1. Thrope’s scale

Thrope [Thr77] and Basu [Bas15] proposed a simple approach that relies only on
knowing the temperature and pressure profile. Or, to be more accurate, the profile of
potential temperature θ given by:

θ(h) = T (h)

(
P0

P (h)

)R/cp

(1.13)

Where P0 is the reference pressure (1000 hPa), R is the specific gas constant of dry
air (approximately 287 J kg−1 K−1 and cp is the heat capacity of dry air at constant
pressure (approximately 1005 J kg−1 K−1.

In an ideal case, without turbulence, the potential temperature is a strictly increasing
function with height.

The Thrope length LT is defined as the length of temperature inversion measured
in relation to a strictly ascending profile. In practical terms, it is the distance between
a measurement point in the actual profile and the same point in the profile sorted in
ascending order. The sorted profile can be seen as a temporal average profile and the
Thrope length as the deviations from this average profile. We then have:

C 2
T (h) = c1LT (h)4/3

(
δθs(h)

δh

)2

(1.14)

Where c1 was obtained by Basu [Bas15] through fitting to experimental measurements
and θs the sorted potential temperature.

1.4.2.2. Gladstone

All models such as Ziad’s [Zia16], Trinquet’s [TV07] and Masciadri’s [MVB99] describe
the C 2

T are based on the Gladstone formula to recover the C 2
n :

C 2
n(h) = 80×10−6P (h)

T (h)2
C 2

T (h) (1.15)

This formula, originally developed for astronomical observations, is powerful as
it links the refractive index structure constant to the temperature structure function.
Doing so allows a straightforward determination of C 2

n . P (h) and T (h), which are the
atmospheric pressure and temperature at altitude h, are easily measurable as macro-
meteorological parameters. The C 2

T can be measured using a differential temperature
sensor on board a meteorological balloon, but can also be modelled quite accurately
as temperature variations are more predictable than refractive-index ones.

This Gladstone formula relies on the assumption that in the free atmosphere the
pressure variations are slow and large as opposed to the temperature variations, mak-
ing the pressure structure parameter negligible and thus not present in the model. The
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atmosphere water content has little impact on propagation in the infrared domain,
and so any information on humidity is also absent.

We give here a short introduction to Masciadri’s C 2
T model, as it will be of use in

Chapter 7. Presented in [MVB99], the chosen C 2
T model is:

C 2
T (h) = 0.45L(h)4/3

(
∂θ(h)

∂h

)2

(1.16)

here θ(h) is the potential temperature introduced previously and L(h) is the Deard-
off length, analogous to an outer scale profile. It’s parametric form that is derived from
a profile of turbulent kinetic energy will be detailed in equation 7.2.

1.4.2.3. Tatarski

This outer scale based description of the C 2
n is commonly used and referred to as the

Tatarski model from the name of the physicist who introduced it in [Tat71]. The C 2
n

profile is computed using:

C 2
n(h) = 2.8M(h)2L0(h)

4
3 (1.17)

where M(h)2 =
[(

79×10−6P (h)
T (h)2

)(
dT (h)

dh +γ
)]2

, γ the adiabatic gradient≈ 9.8×10−3 K m−1

and L0 is the outer scale profile of the Kolmogorov cascade theory.

An outer scale model that seems particularly promising is the Dewan model[Dew+93].
Based on empirical consideration, this model makes the distinction between the tro-
posphere and the stratosphere as followed:

L0(h)4/3 = 101.64+42.0S(h)(Troposphere)
L0(h)4/3 = 100.506+50.0S(h)(Stratosphere)

(1.18)

where S(h) the wind shear can be calculated using the wind speed along both direc-

tions in the 2D plane S(h) =
√(

dVx
dh

)2 +
(

dVy

dh

)2
.

The simplicity of this model lies in the fact that, with only pressure, temperature and
wind profiles, we can obtain a full description of the C 2

n profile. It makes it suitable
for use with radiosounding data, as they most often do not contain more information
(except for the relative humidity).

1.4.3. Experimental considerations
Comparison between the different methods of C 2

n profile generation was conducted
at the beginning of my PhD using radiosounding data obtained at Tenerife. Even
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though several papers have found the Thorpe approach and its analog (called the
Ellison approach) to be superior than other approaches [Wu+20; Hu+23], best results
where, in our case, obtained using Masciadri’s or Dewan’s model. The little success for
the Thrope’s scale approach coming from the lack of available sounding resolution.
However, this comparison was carried out in more detail and compared to real data in
a published proceeding of the Instituto de Astrofsica de Canarias [Mon17], leading to
similar conclusions. Therefore, we invite the reader to refer to these results.

However, during this exploratory phase, we used radiosound data operated by the
GGCOS Reference Upper Air Network (GRUAN) [Tho+13]. In the measurement process,
the balloon goes up to 33 kilometres above ground where it explodes. It makes a
measurement of various meteorological quantities every given time period, providing
extremely resolved profiles of between six and seven thousand points leading to the
modelling of extremely resolved C 2

n profile.
The physical models for calculating the optical power received after propagation

of the optical wave through the atmosphere and correction by adaptive optics have
a calculation time proportional to the number of layers. The number of layers that
allows a simulation to be carried out in a reasonable time is more in the region of
one hundred than ten thousands. When trying standard decimation methods to
reduce the size of these profiles, it was shown that they led to significant errors in the
measurement of the turbulence moments (r0, τ0 and θ0 introduced in Chapter 2).

However, in Chapters 4, 5, and 6 it will be shown that, under certain conditions,
these moments contain all the information required to describe the power margin of
the optical link. These considerations led us to develop a method for decimating the
profiles, constructed in such a way as to preserve the moments. This method is fully
described in Appendix A.
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2.1. Wave propagation and adaptive optics
correction

Figure 2.1.: Detection channel of the optical link

2.1.1. Optical propagation and injection
In the following we assume the optical field to be a monochromatic plane wave. We
consider an optical wave emitted by the optical antenna of a GEO satellite located
close to 36,000 km from Earth surface. At this distance, the optical signal received on
ground from the satellite is in the far-field region (Fraunhofer region) of the satellite.
The received wavefront can thus be approximated by a monochromatic plane wave.

Under this assumption, as any other electromagnetic wave, the optical field obeys
Maxwell’s laws. The optical signal frequency being much higher than the frequency of
the refractive index temporal fluctuation, and the interaction between the different po-
larization components of the wave being negligible at the considered wavelength, the
propagation can be described using the reduced Helmholtz propagation equations:

∆Ψ(r , t )+k2n2(r , t )Ψ(r , t ) (2.1)

Where ∆ is the Laplacian operator (∇2),Ψ is the scalar electric field, k = 2π
λ

with λ the
wavelength is the wave number and n(r , t) is the refractive index fluctuation (with
respect to its statistical average) at the point represented by its coordinates in space r .

This partial differential equation has no analytical solution in the general case, how-
ever, one can be found assuming small phase perturbations. The approach consists in
solving the scalar Helmholtz propagation equation by a perturbative approach with a
perturbation described by the argument of an exponential function:

Ψ(r , t ) = exp
(
ψ0(r )+ψ(r )

)
(2.2)
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where exp
(
ψ0(r )

)
is the amplitude of the unperturbed field in an homogeneous media.

The analytical expression of ψ(r ) is given in [Fan75]:

ψ(r ) = k2

2πexp
(
ψ0(r )

) ∫
y

dr ′δn
(
r ′)exp

(
ψ0(r ′)

)exp
(
i k

∣∣r − r ′∣∣)
|r − r ′| (2.3)

The perturbation regime in which this perturbative approach remains valid is called
the Rytov regime. This assumption is supposed to be valid all over the work presented
in this thesis. The relevance of this assumption is put into perspective with respect to
encountered turbulence conditions at the beginning of Section 4.2.2.

The perturbation term ψ(r , t ) can be decomposed in:

ψ(r , t ) =χ(r, t )+ jφ(r, t ) (2.4)

with χ(r, t ) is the log-amplitude variation caused by the turbulence and φ(r, t ) is the
turbulence induced phase variations.

After propagation through the turbulent atmosphere, the perturbed wavefront
before the telescope is thus written:

Ψ′(r, t ) = A0 exp
(
χ(r, t )+ jφ(r, t )

)
(2.5)

where A0 = exp
(
ψ0(r )

)
is the unperturbed complex field amplitude.

2.1.1.1. Single mode fiber coupling

The complex field focused by the telescope is injected in a SMF to be amplified and
detected (see Figure 2.1). The instantaneous coupling efficiency ρ(t ) is given by the
overlap integralΩ(t ) between the unique Gaussian mode M0(r ) of the SMF and the
complex wavefront [SR88]:

ρ(t ) = |Ω(t )|2 (2.6)

With:

Ω(t ) =
Î

P (r ) ·Ψ′(r , t ) ·M∗
0 (r )d 2r(Î

P (r ) ·Ψ′(r , t ) ·Ψ′∗(r , t )d 2r
Î

P (r ) ·M0(r ) ·M∗
0 (r )d 2r

) 1
2

, (2.7)

and the pupil transmittance P (r ) given as:

P (r ) =
{

1 if 0 ≤ 2|r |
D ≤ 1

0 otherwise
(2.8)
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2.1.2. Adaptive optics
An AO system can be used between the telescope and the SMF (see Figure 2.1) to
correct the turbulence induced phase variation and thus maximise the coupling
efficiency.

The purpose of this part is to give a general understanding of an AO system and to
give a sense to the contributors to its error budget, which sometimes involves making
gross approximations in their descriptions.

AO is a powerful but imperfect technique and residual phase variation φr es(r , t)
remains.

In the Rytov regime, Canuet demonstrated that the mean coupling efficiency ρ̄, in a
single mode fiber of a corrected optical downlink is [Can+18]:

ρ̄ ≈ ρ0exp(−σ2
Φr es

−σ2
χ) (2.9)

where ρ0 is the instantaneous coupling efficiency in the absence of turbulence and
calculated as the overlapping integral of the plane wavefront of the incident beam
and the SMF Gaussian mode. σ2

χ is the log-amplitude variance and accounts for the
amplitude variations in the receiver aperture (scintillation) not corrected by the AO.
σ2
φr es

is the residual variance of the phase after correction .
If the errors are assumed to be uncorrelated, the error budget of the AO system is

the sum of the following contributors [Fus+06]:

2.1.2.1. The fitting error

The fitting error is due to intrinsic limitation of the AO system. The perturbed wave-
front is often decomposed on a basis of orthogonal polynomials, called the Zernike
polynomials. This basis presents the significant advantage to be described analytically
and since the work of Noll a tractable description of the statistical main properties
of the atmospheric turbulence projected on the Zernike polynomials has been pro-
posed [Nol76]. Based on this description the uncorrected modes contribution residual
variance σ2

f i t t i ng can be approximated by:

σ2
f i t t i ng ≈ 0.458(Ncor r +1)−

5
3

(
D

r0

) 5
3

(2.10)

where Ncor r stands for the maximum corrected radial order, that depends on the
number of actuators of the mirror, D is the diameter of the receiving aperture and r0 is
the Fried parameter. Fried’s parameter [Fri66] is defined as the maximum diameter
of a telescope whose resolution would be limited by atmospheric turbulence. In the
case of a plane wave considering a Kolmogorov spectrum the Fried parameter can be
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calculated according to:

r0 =
[

0.423

(
2π

λ

)2 ∫ ∞

0
C 2

n(z)d z

]− 3
5

(2.11)

where λ is the optical wavelength and C 2
n corresponds to the C 2

n along the line of sight.

2.1.2.2. The temporal error

AO relies on a close loop operation. If the computing time of the control is none
zero, the delay between the measurement and the correction introduces a residual
error that affects the controlled modes. This temporal error σ2

tempo will increase with
the speed of evolution of the turbulence relative to the sampling frequency of the
servo-control.

A gross description of this error can be given under the hypothesis of frozen flow
where the turbulent wave-fronts are described as frozen and translate across the pupil
at the wind speed V, we can write σ2

tempo for a turbulent atmosphere composed of a
single layer at altitude z as:

σ2
tempo(τ, z) = 6.88

(
V (z)τ

r0(z)

) 5
3

(2.12)

In this equation V (z) is the wind speed at altitude z and τ is the period of the AO
servo loop. Looking at the full profile integrated over z, σ2

tempo becomes

σ2
tempo(τ) =

(
τ

τ0

) 5
3

(2.13)

allowing for the introduction of parameter τ0:

τ0 =
[

2.91

(
2π

λ

)2 ∫ ∞

0
V (z)

5
3 C 2

n(z)d z

]− 3
5

(2.14)

when V (z) and C 2
n(z) are given along the line of sight.

τ0 is known as the turbulence coherence time. It is a fundamental parameter that
characterises how quickly the phase of an optical wave changes due to turbulence in
the atmosphere.

2.1.2.3. Aliasing error

The aliasing error, σ2
al i as is due to the finite dimensions of the wavefront sensor (Wave

Front Sensor (WFS)). The resolution of the spatial sampling of the phase in the pupil
is indeed conditioned by the number of micro-lenses in the WFS. Consequently, the
high spatial frequencies of the turbulence are poorly sampled and a phenomenon of
aliasing occurs.
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2.1.2.4. Noise

The noise error, σ2
n , comes from the photon noise that disturbs the readings of the

WFS and propagates into an additional variance in the AO loop correction.

2.1.2.5. Non-common path errors

Other source of errors are always present in a real system, they can come from vibra-
tions, calibration bias or any other phenomenon that could have an impact on the
quality of the correction. In the interest of keeping models simple and presenting a
general method, these sources of error are not represented. However, it is important
to carry out field experiments to ensure that the system is reliable and that its errors
are negligible.

2.1.2.6. Scintillation error

The log amplitude variance σ2
χ plays a double role in the global coupling efficiency of

the system. First, the scintillation leads to a variation of the wavefront amplitude that
is not corrected by the AO and directly affects the coupled power into the SMF, the AO
correcting only the phase fluctuation. Second, this variation of amplitude deteriorates
the readings of the WFS as it assumes a homogeneity of amplitude. Therefore, the
scintillation adds measurement noise on the WFS.

The Rytov approximation is valid for weak turbulence, where the fluctuations are
small. Under this regime σ2

χ can be approximated in the following way [Tat61; Fan75]:

σ2
χ = 0.563

(
2π

λ

) 7
6
∫ ∞

0
z

5
6 C 2

n(z)d z (2.15)

According to [GG65; Fan75], σ2
χ value is accurate when it is less than 0.3, which cor-

responds to the experimental limit of validity of the small perturbation approximation
for horizontal propagation, The case of vertical propagation was not addressed and
should be further investigated for an exhaustive study. This formula highlights that
the scintillation is a high-order moment and thus influenced by the turbulent layers
further away from the receiver.

2.1.2.7. Integrated parameters and error budget

On top of r0, τ0 and σ2
χ, another integrated parameters of the turbulence will be at

use in the following. It is the anisoplanatic angle θ0 that characterises the angular
separation between two points in a field of view where the wavefront distortions
induced by atmospheric turbulence become significantly different.
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θ0 =
[

2.914

(
2π

λ

)2 ∫ ∞

0
z

5
3 C 2

n(z)d z

]− 3
5

(2.16)

These four integrated parameters are derived from the calculation of the integral
of C 2

n and wind, with different weightings. Similarly, the main contributors to the AO
error budget can generally also be expressed using power laws that depend on these
same profiles.

A link between the error budget and the integrated parameters may therefore exist,
and it is this consideration that has led us, in the remainder of the thesis, to use
machine learning to try find a link between the two.

2.2. Modelling received optical power after AO
correction

Although the Helmholtz equation cannot be resolved analytically along the line of
sight, the statistical properties of the field can be resolved locally using a Monte-Carlo
approach [MF88]. This allows for end-to-end mobilisations of the propagation and of
of closed AO loop but at the expense of computing time, which is prohibitively long
for resolved profiles. This does not allow such models to be used on databases with a
substantial number of profiles.

2.2.1. SAOST: The Simplified Adaptive Optics Simulation Tool
An alternative approach to end-to-end modelling is the use of simplified pseudo-
analytical models to represent at least part of the data formation process. When it
comes to the simulation of the coupling efficiency, a class of simulation tools, relying
on the description of the wavefront perturbations by random draws of appropriately
filtered coefficients, gives access to realistic estimations in at least hundred times
faster timescales as it would be with end-to-end simulation tools. Such a tool has
been developed for the generation of correlated time series of received optical power
attenuation due to the telescope aperture truncation and injection into the single
mode fiber. Among these tools, we can cite the open source Fourier domain adaptive
optics simulation tool (FAST) [FTO22] or the ONERA in-house tool called SAOST
whose mechanism is described in [Con+19; Véd+16; Can18a].

We call ρφ the coupling efficiency related to residual phase defects and ρI the cou-
pling efficiency of the scintillation. Time series of ρφ and ρI are supposed to be fully
uncorrelated and are generated independently.

The parametric form of ρI can be obtained using the following approximation
[Can+18, Appendix B]
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ρI ≈ exp
(
−σ2

χ

)
exp

(
2χAP (t )

)
(2.17)

in the weak fluctuation regime (verified in section 4.2.2) of the log amplitude of the
electric field in the pupil plane χ(r, t) where σ2

χ is the variance of the punctual log
amplitude and χAP (t ) the aperture averaged log-amplitude fluctuations of variance
σ2
χAP

. The analytic model of σ2
χAP

can be found in [Rob+08].
It has been experimentally verified that the statistics of aperture averaged irradiance

is log-normal when the aperture size is bigger than the typical coherence scale of
the perturbed field[Tat71; Vet+07], which is the case here. We assume here that the
normalised irradiance fluctuations I (t ) = exp

(
2χAP (t )

)
can therefore be described by

the exponent of a normally distributed random variable χAP of parameters χAP (t ) ∼
N (−σ2

χAP
,σ2

χAP
), the average of this normal law being fixed to −σ2

χAP
to ensure energy

conservation.
The normalised irradiance distribution, I (t ), can then be described as the following

log-normal distribution:

fρI (x) = 1

2xσχAP

p
2π

exp

−
[

ln(x)+2σ2
χAP

]2

2(2σχAP )2

 , x > 0 (2.18)

σ2
χAP

being computed from the C 2
n and wind profiles in the small perturbations ap-

proximation.

The description of ρφ yields a more complex process. The corrected turbulence
phase φ(r , t ) is decomposed on the Zernike’s polynomial basis up to a certain order
index N with the Zernike coefficient being ai for i = 2, 3, · · · , N .

These coefficients ai are obtained through random draws considering a Gaussian
distribution of variance σ2

ai
. Let n be the number of corrected modes by the AO. If

N ≥ i > n, the modal variance is the one of the uncorrected mode given by Noll’s
equation [Nol76]. The sum of the modal variance of the uncorrected mode is the
fitting error. The number of corrected modes (piston excluded) up to a given radial
order Ncor r can be computed according to:

n = (Ncoor +1)(Ncoor +2)

2
−1 (2.19)

For the corrected modes, the modal variance is obtained by adding the contribution
of the aliasing error according to the modal distribution given in [RVL98; Nei08] and
the temporal error term whose modal expression is found in [CRM95].

The generation of correlated temporal series is simply done by drawing the random
coefficients according to the temporal spectra of the Zernike coefficients given in
[CRM95] and the temporal characteristics of scintillation described in [Rob+08].
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On the duration of a single time series turbulence conditions are assumed to be
stationary. The temporal characteristics of turbulence residuals rely on the frozen
flow approximation (temporal evolution of the turbulence is approximated by a lateral
translation of a phase screen with spatial statistics described by Kolmogorov’s power
law). This process neglects by construction the impact of turbulence induced boiling.

SAOST also neglects the influence of non-common path aberrations between the
wavefront sensor and the injection path, assumes a perfect wavefront sensor (not
sensitive to scintillation), a Zernike description of the correction phase and an in-
finitely fast deformable mirror (the delay in the loop mostly comes from integration
time of the wavefront sensor and calculation of the control voltages sent to the mirror).

Comparison between SAOST and end-to-end models can be found in [Can+18].
Experimental validation has been conducted under relevant conditions for a GEO
feeder link and can be found in [Bon+22].

2.3. Data reliability mechanisms
Due to cost and technological limitations, AO systems are still imperfect. Furthermore,
they only impact the phase error and do not correct scintillation induced fadings. For
this reason, numerical methods have to be used allowing for a robust system that
would not be impacted by strong fading and loss of bits of data.

On the transceiver part, the signal is coded and modulated. This step is referred to
as MODCOD for Modulation and Coding. On top, an interleaver is usually used to
introduce randomness in the signal and uncorrelate error bursts.

2.3.1. Modulation
The first part of the MODCOD, the modulation, is the process of varying one or more
properties of a carrier signal (usually its amplitude, frequency, or phase) in accordance
with the information being transmitted. To put it simply, this is the transformation
that enables to go from a digital signal in bits to a physical signal that can be sent
(electrically or optically).

We can cite two types of modulations that are often used for optical communica-
tions, the first is called On-Off Keying (OOK) and the second, Quadrature Phase Shift
Keying (QPSK).

In OOK modulation, the bits in the numerical signal (0s and 1s) directly map to the
presence or absence of the carrier signal.

• When you want to transmit a "1," you send a signal with a high amplitude.

• When you want to transmit a "0," you send a signal with low amplitude.
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In QPSK modulation, the link between the bits of the numerical signal and the
modulated optical signal is a bit more complex because QPSK encodes two bits of
binary data in each symbol by using different phases of the carrier signal.

• With QPSK, binary data are group into pairs (e.g., 00, 01, 10, 11), and each pair
corresponds to a different phase of the carrier signal.

• The carrier signal is then modulated by shifting its phase to one of four possible
values (0, π2 , π, or 3π

4 ) based on the binary pair.

This allows to transmit multiple bits simultaneously, making QPSK more bandwidth-
efficient than OOK, which transmits one bit per symbol by turning the carrier on or
off. On the other hand, the detector must be able to discriminate between the four
phase states, which makes it more sensitive to noise than a simple OOK modulation.
In the following, only OOK modulation is considered.

2.3.2. Forward error correction
In the literature, we find, for the coding, the term FEC for "Forward error correc-
tion"[KS10]. This error-correcting code adds redundancy bits to the signal that the
receiver uses to correct any transmission errors.

One can define the coding rate as a measurement of the redundancy added to the
signal:

R = k

n
(2.20)

where k is the number of information bits which constitute the message and n the
number of transmitted bits including the redundancy.

The parameter T is given as the maximum number of errors acceptable for recon-
structing the information.

Figure 2.2.: Simplistic example of a 3 bit repetition, R = 3 and T = 1

In the simplistic example of Figure 2.2, the FEC consists of repeating the same bit of
information 3 times. In these circumstances, R is equal to three but T is only equal to
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one.

Throughout the scope of this thesis, two FEC will be studied, one with a lot of
redundancy, R = 3

10 , and the other less so, R = 9
10 .

2.3.3. Interleaver
The errors in the signal detection are not only errors due to measurement noise but
also errors due to propagation through the turbulent atmosphere. The properties of
the turbulent channel lead to deep fadings over characteristic times much longer than
the period of the carrier signal (duration of a bit). As R is generally chosen to be close
to one to keep bandwidth high, we are susceptible to attenuations that impede the
detection of most or all of a data word, as can be seen in the first line of the bottom of
the Figure 2.3. As illustrated on the Figure the bits underlined in red are lost.

Figure 2.3.: Visualisation of the effect of an interleaver on a turbulent channel

The solution lies in the application of an interleaver, which consists of sending the
bits of the same word non-consecutively and therefore interleaved with other words
as can be seen in the second line of Figure 2.3.

In doing so, we randomise the error and find ourselves in a case analogous to an
uncorrelated channel, with random detection noise. The third line of Figure 2.3 il-
lustrates the reconstruction where the error is distributed over all words and fully
rectified by the FEC.

The application of an interleaver introduces latency into the signal, since all bits
of information must be received before the word can be reconstructed. All the infor-
mation corresponding to the interleaving duration shall be buffered to be processed
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simultaneously. Therefore, a compromise must be chosen between the loss of band-
width due to the redundancy introduced by the FEC and the latency brought be the
interleaver. The characteristics of the channel are at the heart of this compromise.

Several types of interleaver exist but in the following we will only consider a convo-
lutional interleaver, a brief explanation of which is given here.

Figure 2.4.: Architecture of a convolutional interleaver and deinterleaver

A convolutional interleaver consists of n delay lines, which are essentially memory
elements or buffers. Each delay line can store d symbols. The stream of data bits is
distributed across these n delay lines, filling the first delay line first with d symbols,
then the next one with d symbols, and so on until the n delay lines are filled.

In the detection part, the data are stored in the same n ×d matrix but this time the
output is obtained by reading one symbol of each of the n delay lines in a systematic
way until all the interleaved data are generated.

2.3.3.1. Mutual information

Mutual information quantifies the amount of information that can be reliably trans-
mitted. It is a direct measure of how much of the original data’s information can be
preserved and correctly received at the destination. It is typically denoted as MI and is
measured in bits per channel.

Lets assume the following channel
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where:

• W is the message to be transmitted;

• X is the channel input symbol ( X n is a sequence of n symbols) taken in an
alphabet X ;

• Y is the channel output symbol ( Y n is a sequence of n symbols) taken in an
alphabet Y ;

• Ŵ is the estimate of the transmitted message;

• fn is the encoding function for a block of length n;

• p(y | x) = pY |X (y | x) is the noisy channel, which is modeled by a conditional
probability distribution of receiving the symbol y knowing that the symbol x
was sent.

• gr is the decoding function for a block of length n.

X and Y are random variables.

The mutual information is defined as:

I (X ;Y ) =∑
x,y
P(x, y) log

P(x, y)

P(x)P(y)
(2.21)

where P(x) and P(y) are the marginal distributions.

The choice of MODCOD directly impacts the mutual information of the communi-
cation system. Higher-order modulation schemes can transmit more information per
symbol, but will be more susceptible to noise and errors resulting in lower MI. In the
same way, a more robust MODCOD FEC increases MI by adding redundancy to the
transmitted data, but at the cost of lower data rates. Finally the interleaver improves
the mutual information by reducing the susceptibility to burst errors but at the cost of
latency in the signal.

The required mutual information represents the minimum amount of mutual infor-
mation that needs to be maintained between the emitter and the receiver to ensure
reliable communication. It is determined by the atmospheric conditions, the detection
channel (level of noise and interference), and the desired bit error rate. Designing an
effective communication system is always a tradeoff between achieving the required
MI while keeping the best bandwidth and the lowest latency.
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In our study, MI will not be calculated from the analytical expressions and thus we
do not make assumptions on the detection channel. Airbus provided the equivalent
between the instantaneous ROP and the associated MI from an experimental setup
that incorporates the characteristics of the modulation/demodulation chain mea-
sured in the laboratory. The optical downlink signal between the on-board terminal
described in [Ber+23] and the ESA OGS is considered. The communication chain
equipment (Laser Communication Electronic, Modems and Laser Power Electronics)
considered are described in [Pou+23] where one can find the equivalence between the
ROP and the bit error ratio.

Having access to this information, the determination of the link power margin from
a time series of ROP is a straightforward process:

• a correlated temporal series of ROP is generated,

• the corresponding mutual information time series is obtained as a function of
ROP,

• the effect of the convolutional interleaver is emulated by applying a moving
averaging window over the time series of MI whose size corresponds to the
depth of the simulated interleaver,

• if the minimum of the interleaved series of mutual information is higher than
the required mutual information, the process is repeated on the time series of
ROP with an artificially poorer link budget until the required mutual information
is reached.

• The power margin of the link is obtained as the difference between the original
link budget and the worst one.

2.4. Downlink static link budget
In this thesis, we focus on a high bandwidth (10 Gbps) GEO-downlink telecommuni-
cation link. We report here the static losses link budget obtained while considering
other losses that those due to atmospheric turbulence.

The downlink link budget in the absence of turbulence is defined as follows.

For the onboard terminal we used the downlink link budget from the paper [Roy+15]
and consequently considered a contribution of 110.4 dBW = 0 dBW + 114.1 dB - 3 dB -
0.7 dB to the transmission as presented in Table 2.1.

The channel static losses considered are those proposed in [Pou+14] including fine
cirrus clouds and absorption losses with a line-of-sight contribution of -5.4 dB. The
free space propagation losses were computed according to [KD74] for a GEO satellite
and are -289.85 dB.
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Parameter Downlink
Tx diameter [cm] 25.0
Tx power [W] 1.0
Tx power [dBW] 0.0
Tx antenna gain [dB] 114.1
Tx optical loss [dB] −3.0
Tx pointing loss [dB] −0.7

Table 2.1.: Onboard terminal link budget contribution

Parameter Downlink
Rx Optical Antenna Gain [dB] 121.63
Rx Optical Transmission [dB] −3.6
Rx Static aberration losses [dB] −0.5
Rx Optical Transmission margin [dB] −1.0

Table 2.2.: OGS link budget contribution

Finally, the ground station budget is the one of the upcoming ONERA’s OGS FEEL-
INGS [Cyr+22] given in Table 2.2.

The addition of all this contributors leads to a 15 µW link budget or −38.33 dBm.
This is the value used throughout the remainder of this work.
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3. Machine Learning for Link Availability Assessment – 3.1. State of the art of the use
of Machine learning for link availability assessment

In this chapter, we aim at providing a brief overview of the machine learning tools
that will be used throughout this thesis: metamodels, deep learning models for time
series prediction and global sensitivity indices, starting by describing how they have
been used on similar problems in the past.

3.1. State of the art of the use of Machine learning
for link availability assessment

Over the past ten years, some studies have taken advantage of machine learning to
estimate atmospheric turbulence or predict temporal changes. Most focus on evalu-
ating C 2

n near the land surface, such as [Bas+20] and [WB16], which propose to use a
multilayer perceptron (MLP) trained, respectively, on seven measured meteorological
input variables: wind speed, temperature and temperature gradient, soil temperature,
relative humidity, net radiation and sol water content, or only five input variables:
wind speed, relative humidity, pressure, wind shear and potential temperature gra-
dient. In [Su+20], only four meteorological variables are used: surface temperature,
temperature, wind speed, and relative humidity measured at 0.5 m and 2 m. The
prediction results are generally accurate but associated with a particular scenario. In
addition to these multilayer perceptron metamodels, [Jel+21] compared three other
metamodels: polynomial regression, random forest and boosted regression trees with
six input variables: air temperature, air-water temperature difference, pressure, rela-
tive humidity, wind speed and solar radiation. Best results were obtained with random
forest but the predictions were not always accurate.

Some deep neural networks have also been used more recently: in [Lam+20] a
ResNet residual network is proposed to retrieve the refractive index structure param-
eter from the height above sea level and the corresponding wind speed, instead of
relying on analytical formulae. The performances are promising, but it would require
to collect training data from many different places on earth in order to deliver accurate
results. A recent Ph.D. work aimed at forecasting future daytime C 2

n conditions from
prior meteorological data: wind speed, pressure, temperature, relative humidity, and
solar irradiance and C 2

n measurements [Gro21]. Neural networks (multilayer percep-
tron and recurrent neural network) are used to create a low-altitude model capable of
forecasting C 2

n up to four hours later using sixteen hours of prior measurements. The
forecast quality is not always sufficient, best in the middle of the day, moderate in the
morning, and generally worst in the evening.
Finally, some recent approaches [Vor+20] use a deep neural network to infer the at-
mospheric turbulence refractive index structure parameter C 2

n from short-exposure
images of turbulence-induced laser beam intensity scintillation.

Other studies focus instead on temporal prediction of the integrated turbulence
parameters. Among these we can cite [Mil+19], where turbulence nowcasting, i.e. the
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ability to forecast the turbulence conditions over the next two hours, is investigated
at Paranal Observatory. MLP performed best among the three metamodels tested:
random forest, MLP and long short-term memory (LSTM) deep network trained on
one or two hours history of meteorological and integrated turbulence parameters
such as seeing, coherence time, temperature, pressure, wind speed, and direction. In
[Gio+20], a random forest metamodel is trained to predict seeing over the next two
hours on a large atmospheric database measured by the Calern Atmospheric Turbu-
lence Station, including ground meteorological conditions, vertical profiles of the C 2

n
and integrated parameters characterising the optical turbulence: seeing, isoplanetic
angle, and coherence time.
As far as FSO are concerned, machine and deep learning methodology mostly focus on
compensating the effects of atmospheric turbulence on the performance of the whole
single input single output (or SISO) and multiple input multiple output (or MIMO) FSO
system [AKN22] or on predicting parameters of the FSO channel [Esm+21], such as
optical signal-to-noise ratio. Closer to the methodology we propose in this paper, two
publications aim to predict the RSSI (Received Signal Strength Indicator) of the FSO. In
[Tót+18], pressure, air temperature, particle concentration, visibility, relative humidity,
and wind speed in different past time horizons are used as input variables for the
metamodels. The best results were obtained with the random forest and enabled to
retrieve some behavioural patterns of the atmosphere that influence RSSI. [Lio+21]
compared different metamodels: k-nearest neighbors, tree-based methods-decision
trees, random forest, gradient boosting and MLP trained on seven local atmospheric
parameters: wind speed, pressure, temperature, humidity, dew point, solar flux and
air-sea temperature difference. Best determination coefficient R2 is 0.949, and is
obtained with the MLP metamodel.

3.2. Usual supervised machine learning techniques
• KNN

The k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learn-
ing method that can be used both for classification and regression. The concept
is quite simple: the class of an input is the most common class among its k
nearest neighbors (k is a small integer, typically 3 or 5). In the regression case,
its output value is the average of the values of its k nearest neighbors. The best
choice of k depends upon the data and must be tuned thanks to hyperparam-
eter optimization. Generally, the distance metric for continuous variables is
the Euclidean distance and thus the algorithm is not robust to outliers or noisy
features.

• Gradient Boosting

Gradient boosting is a supervised learning method, and consists in creating
multiple weak models, which are typically simple decision trees , and combining
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them in an ensemble to get a strong metamodel [HTF09]. Starting from a first
simple metamodel, it then iteratively improves the prediction by focusing at each
new step on the residuals (i.e. prediction errors) from the previous stage and
minimizing the loss function by adding weak learners using gradient descent.
It can be used either for classification or for regression, using different loss
functions, like mean squared error (MSE) for regression and log-likelihood for
classification. This method is quite popular for its prediction speed and accuracy,
particularly with large and complex datasets.

• MLP

A neural network can be described as an oriented graph built up from a set of
neurons, which are non-linear parametric functions organized in successive
layers. These layers exchange informations, but all the neurons of a layer work
in parallel. The most used network is the multi hidden layer back-propagation
network, or multi-layer perceptron (MLP): the unknown parameters, or weights,
are associated to the neurons inputs. The neurons thus simply consist in a
non-linear function F , the activation function, applied to a potential ψ : ψ =
w0 +

N∑
i=1

wi xi where the n xi are the input data and the wi the weights. It can be

used for regression and for classification.

[HSW89] and [Bar93] theorems state that a single hidden layer MLP set up of
a finite number of neurons, with the same non-linear activation function, like
the hyperbolic tangent, and a linear output neuron, is a parsimonious univer-
sal approximator. If we choose the hyperbolic tangent as nc hidden neurons
activation function, the MLP ϕ has the following form:

ϕ(x, w) =
nc∑

i=1
wnc+1,i tanh

(
n∑

j=1
wi j x j +wi 0

)
+wnc+1,0 (3.1)

which is not explicit, but parsimonious: there are q = (n +2)nc +1 weights.

These q weights w j are estimated by supervised training: a cost function J
with a weight decay penalisation, to prevent large parameters values and thus
instabilities, is minimised.

J (w) = 1

2

N∑
i=1

∥∥yi −ϕ(xi , w)
∥∥2 + α

2

q∑
j=1

w 2
j (3.2)

Finding the optimal weights is very difficult in practice, and algorithms only
provide local minima of the error function. The generic approach to minimizing
J is by gradient descent. In this work, the minimization is done with the L-BFGS
algorithm (limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm), de-
scribed in [LN89], which, at each iteration, makes a variation of the parameter
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that depends on the gradient and on an approximation of the Hessian of the
total squares error.

The framework of the MLP leads to an easy computation of the gradient: it can
be computed by a forward and backward sweep over the network, and only the
quantities local to each unit have to be kept track of. This algorithm is called
backpropagation. In this work, we use the scikit-learn python package to build
the MLP metamodel.

• Gaussian Process

In the field of machine learning, a Gaussian process (GP) is a powerful statistical
model that treats functions as random variables. It provides a flexible framework
for modeling complex data patterns and making predictions. A GP is defined by
the following distribution:

f (x) ∼GP (m(x),R(θ,x,x′)) (3.3)

Here, f (x) represents a function drawn from a Gaussian process, m(x) is the
mean function that captures the expected value of the function at each input
x, and R(θ,x,x′) is the covariance function (kernel) that captures the pairwise
relationships and similarity between input points x and x′, θ being the hyper-
parameter.

By utilizing observed data, a GP allows us to compute the posterior distribution
over functions that are consistent with the data. This distribution can be used
to make predictions at new, unseen input points. The predictive distribution is
obtained by conditioning on the observed data, providing estimates of both the
expected value and uncertainty of the predictions.

In this study, we focus on a stationary process Z , which means that, for new
points, the prediction consists of a linear combination of the observed values,
with weights that depend on the distance between the new input point and
the training data. The assumption is that, the closer the inputs are, the more
correlated the outputs are. The kernel is thus a similarity function.

The Radial Basis Function (RBF) kernel [Buh03] is the most widely used kernel
and is nothing more than a squared exponential distance between two given
points:

R
(
x −x ′)= exp

(
−∥∥x−x′∥∥2 /2σ2

)
(3.4)

with σ the kernel length scale. The value of the RBF kernel decreases with
distance from one when x = x ′ to 0 for an infinite distance.
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Sums of radial basis functions find use in approximating given functions, this
approximation process can be seen as a rudimentary form of neural networks.
Recently RBFs started playing a crucial role in GP modeling where they are
commonly used as covariance functions. RBF kernel can capture both short-
range and long-range dependencies in the data, making it suitable for handling
different types of input spaces and complex functions.

The Matérn 5/2 kernel [RW05, Chapter 4] is a specific form of the Matérn kernel
and an extension of the radial basis function kernel. Like the RBF kernel, the
Matérn kernel is used to define the similarity or correlation between different
input points in the dataset. It computes the similarity of two given points x and
x ′ in dimension d as follows:

R
(
x −x ′)=σ2

1+p
5

d∑
j=1

∣∣∣x j −x ′
j

∣∣∣
θ j

+5

3

d∑
j=1

(
x j −x ′

j

)2

θ2
j

exp

−p5
d∑

j=1

∣∣∣x j −x ′
j

∣∣∣
θ j

 (3.5)

where the θ j (length scales) are the hyperparameters and should be optimized
in addition to σ2 (variance). It combines a polynomial term and an exponential
term to model the correlation between data points. It is known for its smooth-
ness and differentiability up to two times. It is often preferred when there is a
need to capture both short-range and long-range dependencies in the data. The
kernel function decays rapidly as the distance between points increases, but
still allows for some correlation even at larger distances. This property makes it
suitable for modeling processes with moderate smoothness and irregularities.

The constant kernel is equivalent to a constant value:

R
(
x −x ′)= k . (3.6)

It is often used as part of a product-kernel where it scales the magnitude of the
other kernel or as part of a sum-kernel, where it modifies the mean of the GP.
Here we use it only in a product kernel. All the features are standardised by
removing the mean and scaling to unit variance before the training of the GP,
thus the mean is always 0. By incorporating the constant kernel in the product-
kernel, it allows for controlling the overall amplitude or scaling factor of the
covariance structure. This can be particularly useful when dealing with data
that exhibit different scales or when fine-tuning the influence of different kernel
components.
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The white kernel[RW05, Chapter 4], also known as the white noise kernel, is a
covariance function commonly used in GP regression to model measurement
errors or uncertainties in the data. It introduces uncorrelated white Gaussian
noise to the covariance structure.

Mathematically, the white kernel is defined as follows:

R(x −x ′) =σ2 ·δ(x −x ′) (3.7)

where δ is the Kronecker delta function, which returns 1 when x equals x ′ and
0 otherwise. The parameter σ2 represents the variance of the white Gaussian
noise. This means that the white kernel assigns a non-zero covariance only when
the input points x and x ′ are identical, indicating that there is noise associated
with that specific point.

The versatility of GP models lies in their ability to capture a wide range of patterns
without imposing specific parametric forms. The choice of covariance function
enables the modeling of various types of relationships and dependencies in the
data.

This probabilistic model enables the estimation of predictive distributions, pro-
viding not only point predictions but also a measure of uncertainty associated
with each prediction. This is particularly valuable in situations where having
a quantification of the uncertainty is important for decision-making and risk
assessment in many real-world applications or further analysis.

3.3. Machine learning for time series prediction

3.3.1. ARIMA
While ARIMA is not a machine learning algorithm per se, it is commonly used along-
side machine learning methods in time series forecasting and analysis. In recent years,
there has been a growing overlap between traditional statistical methods like ARIMA
and modern machine learning techniques, with practitioners often combining them
to achieve more accurate and robust predictions.

ARIMA is a time series forecasting model that combines autoregressive, differencing
and moving average components to predict future values based on past observations
and patterns. ARIMA, which stands for Autoregressive Integrated Moving Average, is a
powerful time-series forecasting model commonly used in various fields to predict
future values based on historical observations and patterns. It combines three key
components to capture and model the underlying time series data.

The autoregressive component of ARIMA models the relationship between the
current value of the time series and its past values. It is mathematically expressed as:
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X t = c +φ1X t−1 +φ2X t−2 + . . .+φp X t−p +εt (3.8)

where,

• X t represents the current value of the time series at time t .

• c is a constant.

• φ1,φ2, . . . ,φp are autoregressive parameters accounting for the influence of past
values on the current value.

• X t−1, X t−2, . . . , X t−p are lagged values of the time series.

• εt is a white noise error term.

When the time series is non stationnary in the sense of mean (but not variance) the
integrated component acts as a differencing step, that can be applied as many time as
nescessary to eliminate the non-stationarity. It can be be expressed as:

Yt = (1−B)d X t (3.9)

where,

• Yt represents the differenced series at time t .

• B is the backshift operator (a delay operator).

• d is the order of differencing required to make the time series stationary.

• X t is the original time series.

The differenced series Yt is obtained by applying the difference operator (1−B)d to
the original time series X t . This differencing helps remove trends and make the time
series stationary, which is a fundamental requirement for ARIMA modeling.

The moving average component models the relationship between the current value
of the time series and past white noise error terms. Mathematically, the MA compo-
nent can be expressed as:

X t =µ+εt −θ1εt−1 −θ2εt−2 − . . .−θqεt−q (3.10)

where,

• µ is the mean of the time series.

• εt is the white noise error term at time t .

• εt−1,εt−2, . . . ,εt−q are lagged error terms.

• θ1,θ2, . . . ,θq are moving average parameters representing the influence of past
error terms on the current value.
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In summary, ARIMA combines these three components (AR, I, and MA) to model
time series data and make future predictions. The parameters φi , d , and θ j are
estimated from the historical data, and the model is used to forecast future values
based on the identified patterns and relationships within the time series.

3.3.2. LSTM
Long Short-Term Memory (LSTM) [HS97; Lin+21] is a type of recurrent neural network
designed for sequence modeling, making it well-suited for time series forecasting and
natural language processing.

They work with three main components. The first is called a memory cell, and it
allows the LSTM to store and access information over long sequences. The second,
the input gate, controls what information is stored in the memory cell. Finally, the
output gate determines which information from the memory cell is passed on to the
output. It uses a sigmoid activation function in combination with the current input
and previous hidden state to decide what to output.

LSTMs process input sequences step by step, updating their memory cell and hidden
state at each time step. This allows them to capture patterns and dependencies in
sequential data. They are known for their ability to handle both short-term and
long-term dependencies, making them a powerful tool.

3.3.3. Advanced time series forecasting
Some deep neural network have been specifically designed for time series forecasting.
In this area, N-BEATS (Neural Basis Expansion Analysis for Time Series) and N-HITS
(Neural Hierarchical Time Series) represent two innovative deep learning architectures
that have garnered attention for their ability to capture intricate temporal patterns and
dependencies within chronological data. Deep learning methods dedicated to time
series are developing fast, our aim here was not to benchmark all the latest methods,
but to assess the added value of a high-performance deep method (N-BEATS is ranked
3rd for time series few-shot learning on paperwithcode for the TimeHetNet dataset)
compared with more traditional methods such as ARIMA. Our method’s choice was
guided by available implementation in a widely used python toolbox, such as DARTS.

3.3.3.1. N-BEATS

N-BEATS [Ore+19], characterised by its stack of fully connected layers organised into
blocks, stands out for its adaptability in capturing diverse temporal patterns. based on
backward and forward residual links Each block consists of a multilayer perceptron
and encompasses multiple fully connected sub-layers, each containing learnable
basis functions. Another important feature of these blocks is that they are based on
backwar and forward residual links, meaning that they learn to predict not only the
future data points in the form of a forecast but also to predict the input data as well in
the form of a backcast.The backcast output is used to clean the inputs of subsequent
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blocks, while the forecasts are summed up to compose the final prediction.

Figure 3.1.: Architecture de N-BEATS, figure issue de [Ore+19]

These basis functions are capable of learning the complex nuances present in
the time series, allowing N-BEATS to flexibly use these functions to capture a wide
spectrum of temporal behaviours. The blocks are grouped in stacks, and each stack
is devoted to learn a different characteristic of the time series. N-BEATS also gives a
measurement of uncertainty in its predictions and thus offer a more comprehensive
approach.

3.3.3.2. N-HITS

Long-horizon forecasting still remains a big challenge for N-BEATS due to predic-
tion volatility and computational complexity. To address this challenge , the Neural
Hierarchical Interpolation for Time Series (N-HITS) was created [Cha+22] 3 years
later. Built on the foundation of N-BEATS, it introduced innovations oriented to-
wards long-horizon forecasting. N-HITS introduces a hierarchical interpolation and
multi-rate input processing approach to specialize its partial outputs across diverse
frequencies within the time series. This specialisation, not only enables the accurate
prediction of different signal bands, it also lowers significantly memory consumption
and computational time.

46



3. Machine Learning for Link Availability Assessment – 3.4. Sensitivity analysis

3.3.3.3. Probabilistic forecasting

In order to increase the confidence in the prediction results obtained, a probabilistic
prediction can be performed. Indeed, being able to construct a confidence interval
around the prediction value is a crucial issue in the analysis and interpretation of
future temporal predictions. The main probabilistic forecasting methods include:

• estimating the parameters of a selected distribution, such as Gaussian. The neu-
ral network is trained by minimizing the negative log-likelihood of the training
samples. In cases where prior information is accessible, the training process
also includes regularization through a Kullback-Leibler divergence term. This
regularization helps align the predicted distribution with the one defined by the
prior parameters.

• performing quantile regression with chosen quantile values. The neural network
is then trained with the pinball loss. This produces an empirical non-parametric
distribution. If α is the quantile of interest, y the output and z the quantile
forecast, the pinball loss function can be written as:

Lα(y, z) = (y − z)α if y ≥ z (3.11)

= (z − y)(1−α) if z > y (3.12)

• using Monte Carlo dropout, which can also be used as a way to capture model
uncertainty. Dropout was first used at training time, as a regularisation method
to prevent overfitting. The main idea is quite simple: it boils down to randomly
removing nodes or neurons during training, thus simplifying the model and
preventing it from memorising the training data. Monte Carlo Dropout con-
sists in applying dropout during inference time, in order to produce multiple
predictions for a single input.

• using conformal predictions methods adapted to time series. Conformal pre-
diction is a very general method to build predictive intervals for any black-box
predictive model, including neural networks, which are valid in the meaning
of achieving nominal marginal coverage, built using finite sample, and do not
request specific distributional assumptions except that the data are exchange-
able. It is a quite popular method on the rise. Of course, as far as time series are
concerned, the exchangeability assumption is not met, and different solutions
have been proposed to tackle distribution shifts [Zaf+22][XX21][JBA22].

3.4. Sensitivity analysis
In this study, we utilise the Sobol’ indices [Sob01], also known as variance-based
sensitivity analysis, to assess the importance of input variables in the uncertainty of
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the output. The Sobol’ indices, thanks to functional analysis of variance (FANOVA),
allow us to decompose the variance of the output of interest, denoted as Y , into
fractions that can be attributed to each input variable or subsets of variables used
in our metamodel. Sobol indices sum to one and are positive and thus can be used
to assess the effects of the variables on the output. However, they assume mutual
independence between the input variables. In the following, this will not always
be verified; nevertheless, some other indices derived from these Sobol’ indices and
will enable us to rank the input variables based on their contribution to the output
uncertainty.

The first-order Sobol’ indices, denoted as Si with i ∈ D = {1, ..d} and d is the number
of uncertain inputs, quantify the individual contribution of a specific input variable
Xi to the output variance. On the other hand, the total Sobol’ indices, denoted as
STi , measure the contribution of the studied input variable Xi to the output variance,
accounting for all its interactions with other input variables of any order. Estimating
the Sobol’ indices is achieved using a Monte Carlo method, and they can be expressed
as follows:

Si = Var(E[Y |Xi ])

Var(Y )
(3.13)

STi = 1− Var(E[Y |X∼i ])

Var(Y )
(3.14)

Here, E represents the expectation (or mean) of the random variables. First-order
indices range from 0 to 1, and the difference between 1 and their sum reflects the
overall influence of interaction effects. If the total index associated with an input
variable is close to zero, it implies that the input has a negligible impact on the output
variability and can be set at a constant value. Conversely, Sobol’ indices close to one
indicate a significant influence of the input variable on the output.

Although Sobol’ indices are commonly used to assess the sensitivity of simulation
codes to specific inputs, it is important to note that their interpretation becomes chal-
lenging when dealing with correlated inputs. In our case, the integrated parameters of
the turbulence considered in the following are most likely strongly correlated as they
all relate to the moments of the same profiles. To address correlated inputs, methods
based on Shapley values from cooperative game theory have been developed [Owe14;
SNS16; IP19]. The associated Shapley indices always sum to one, are non-negative,
and provide a straightforward and intuitive way to interpret the effects of interactions
and contributions of dependencies between the involved inputs on the total output
variance. The idea is to redistribute a value v between all players (here the input
variables) of a coalition thanks to some allocation scheme. The Shapley effects can be
written as:

Shi =
∑

A∈P (D);i∈A

∑
B∈P (A)(−1)|A|−|B |ST

B

|A| (3.15)

where P (D) is the power-set of D , that is to say the set of subsets of D .
However, Shapley effects may sometimes attribute a non-zero part of the output
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variance to some input that does not contribute at all to the deterministic model, only
because it is correlated with influential other inputs [Ioo+21]. In order to address this
issue, [Her+22] have proposed to make use of another allocation system, the propor-
tional values [Ort00], and obtained new sensitivity indices called the proportional
marginal effects (PME). The PME indices lead to a proportional redistribution of the
Sobol’ indices: the greater the marginal contribution of the variable, the greater its
share of the variance. Moreover, they allow to allocate a null indice to variables that
have no link with the output of interest (exogeneous variables), but are correlated to
influential variables.

By considering both the Sobol’ indices and the Shapley and PME indices, we gain
valuable insights into the sensitivity and interplay of input variables, allowing us
to understand their influence on the variability of the output in the presence of
correlations.
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Knowledge of turbulence and wind profiles at kilometre vertical resolution along
the line of sight guarantees a precise assessment of fading statistics [Can+18] hence
an accurate evaluation of optical link performance. However, as discussed in 1.4,
measuring accurate C 2

n and wind profiles requires instruments that are both expensive
and complex to operate. Despite these challenges, emerging initiatives seek to sys-
tematically document integrated turbulence parameters using simpler instruments
[Jab21]. Observatories have long been deploying integrated parameter characterisa-
tion facilities.

Considering the importance of integrated turbulence parameters in the assessment
of AO corrected error budgets, there are indications in favour of a link performance
that would depend only on a few integrated parameters, but such a relation between
corrected optical link performance and integrated turbulence parameters has never
been clearly established. The exact expression of the correction residuals involves a
complex combination of the C 2

n profile and the wind moments (Section 2.1.2). Their
weightings depend on the AO loop parameters, including the number of corrected
Zernike modes, the correction frequency, and the loop delay, among others. Sources
of noise for the wave front sensor and the detection channel are also impacted by the
values of these integrated parameters.

However, the tractability of analytical expressions raises real challenges for a clear-
cut demonstration that integrated parameters are sufficient to characterise optical
link availability. Machine learning methods associated with physical performance
models might provide crucial indications to answer this question. In the following,
we will expose a methodology enabling the user to assess the statistics of the error
residuals and the coupled flux in the ground station. This methodology will be tested
on different AO cases to assess the dependence of the dimensioning parameters on
certain integrated parameters.

4.1. Integrated parameters estimation
Our work focusses on the assessment of injected power statistics. It appears that, un-
der certain conditions, the average coupled power into the SMF may be described with
a few sets of integrated parameters of the C 2

n and wind profiles. Intuitively we are led
to look at the same parameters r0, τ0, θ0 and σ2

χ, the most commonly used integrated
parameters in asronomical observations. Fried parameter (r0), atmospheric coher-
ence time (τ0), and isoplanatic angle (θ0) are leveraged to optimize and dimension
AO systems for ground-based telescopes[Har98]. The Fried parameter, representing
the scale of turbulence-induced variations in the atmosphere, guides the design of
deformable mirrors and the wavelength selection, while a shorter atmospheric coher-
ence time prompts quicker adjustments of the deformable mirror to track turbulence
changes. The isoplanatic angle, indicating the angular region with consistent turbu-
lence effects, influences the selection of the field of view. Utilising this information,
astronomers can calibrate AO systems for optimal compensation of atmospheric
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turbulence, resulting in sharper and higher-resolution images of celestial objects.
We aim at showing how these parameters contribute to the error budget of a classic

detection channel with an AO system and determine how they could play a role in the
prediction of the distribution and the autocorrelation function of the ROP.

These parameters can be estimated using the AO loop information themselves
[Fus+04]. In the case of a ground station, however, where the link has not yet been
established, they can be provided by easily deployable instruments and give relevant
information on the link power margin.

• Experimentally, Fried’s parameter can be estimated either from the jitter of a star
at the focal plane of an imager or more robustly thanks to differential imaging,
such as performed with a DIMM [Tok02].

• The estimation of θ0 can be derived, for instance, from limited aperture averaged
scintillation by night-time [LH79] or thanks to a Shabar measurement by day-
time [Bec01].

• The turbulence coherence time τ0 can be extracted from the temporal analysis
of the jitter of a bright enough point source image [Con94].

• Finally, the point source log-amplitude variance σ2
χ can also be measured. In

[Rod81, Chapter 8], it is demonstrated that stellar irradiance fluctuations can be
measured through an aperture smaller than their typical scale. During day time,
we could consider using the Shabar of [Bec01] to estimate σ2

χ on the sun.

A study of how a measurement error on the moments impacts the prediction of the
link availability will be conducted in 6.

As shown in equation 2.12 and equation 2.16, in the plane wave approximation
(used in SAOST), τ0 and θ0 are both defined using Fried’s parameter r0: we can instead
use parameters v̄ and h̄ that are decoupled from r0, independent of the wavelength
and independent of the line of sight:

v̄ =
[∫ ∞

0 v(z)
5
3 C 2

n(z)d z∫ ∞
0 C 2

n(z)d z

] 3
5

, (4.1)

and

h̄ =
[∫ ∞

0 z
5
3 C 2

n(z)d z∫ ∞
0 C 2

n(z)d z

] 3
5

(4.2)

where v̄ and h̄ are related to τ0 and θ0 with:

τ0 = 0.314
r0

v̄
(4.3)

and
θ0 = 0.314

r0

h̄
(4.4)
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These two parameters have a physical meaning (see Section 2.1.2), while v̄ [RGL82],
homogeneous to a speed, describes an average wind speed over turbulent layers, h̄
[Rod81] is a measure of the height dispersion of atmospheric layers, homogeneous to
an altitude. It provides an assessment of the physical origin for the angular decorrela-
tion of the phase perturbations while being independent from the turbulence strength.

4.2. Creating a database
In order to describe the received optical power statistics using the previously defined
set of integrated parameters from the C 2

n and wind profiles, the best approach is to
build a large database of such profiles.

To our knowledge, there is no experimental database available that would be repre-
sentative of the various atmospheric conditions. Databases such as the one presented
in [Osb+18] at Paranal are targeted towards astronomical usage and thus mostly cover
night periods in very good turbulence cases in regards of what could be encountered
by an optical telecommunication ground station. This leads us to use a database
from an atmospheric reanalysis model. Indeed, data provided by numerical models
present the advantage of precisely controlling the underlying hypothesis and input
parameters at the expense of more questionable relevance.

Our work aims at characterising the statistics of the instantaneous received optical
power and especially the distribution’s tail, to describe the probability of interruption,
we thus need to work with a theoretical model that would describe any small variation
in the turbulence induced by different meteorological conditions and would work for
any location and any hour of the day.

4.2.1. ERA5 and Durham University’s model
The database of profiles we exploited was provided by Durham University. Wind and
C 2

n profiles were obtained through a global turbulence model, capable of converting
meteorological data from a general circulation model into 3-dimensional optical
turbulence maps. This model based on Tatarskii’s is developed in [OS18]1 and was
confronted successfully to on site integrated parameters measurements in Tenerife. It
was improved to include a separate boundary layer and enable stronger turbulence
strength near the ground to be modelled [OCJ23].

The general circulation model used is ERA5 [Ser19] from European Centre for
Medium range Weather Forecasts (ECMWF). This model, from which the turbulence
is calculated, has a spatial resolution of 0.3° along latitude and longitude and provides
a forecast for every hour. We chose a grid of 11 by 11 points around Tenerife’s island
(with a spatial resolution of ≈ 30km), which is a site of interest for a potential future
ground station, and focused on the first 19 days of march 2018. It leaves us with 121

1The equation used by Osborn and Sarazin is dimensionally incorrect, the turbulent kinetic energy is
defined as the wind shear in s−1. This was pointed out by S. Basu.
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simultaneous measurements for each hour, with some missing values. On the overall
19 days considered, we thus have 37059 profiles on 113 pressure levels each. The
pressure levels sampling is non-linear such as the resolution is better near ground, as
it can be seen in the Figure 4.1.

Figure 4.1.: Sampling of the 113 pressure levels of the ERA5 model used, given in
altitude above ground. Zoom on the right represents the first vertical 5
kilometres.

The spatial mesh is sufficiently loose to justify the independence between these
profiles. In addition, some profiles correspond to a location above the ocean, others
above the island, giving access to different environments (see Figure 4.2).
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Figure 4.2.: Tenerife with OGS-Rx accurately localized by red dot. The purple line
indicate Teleo’s operational line of sight at 33,2° . Each coloured squared is
a point of the grid at a given time. The value is the ground altitude seen by
ERA5 for each of the points.

Past weather observations and model output that the center has gathered and
archived over the years is freely available directly on ECMWF website.

In the following, we consider that these profiles are representative of measured data
and could be obtained with instruments directly measuring turbulence along the line
of sight.
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Figure 4.3.: Example of C 2
n (left) and wind (right) profiles from the database. Given for

a 30° elevation in meters above ground.

4.2.2. Statistical description of the database of profiles
We report in Figure 4.4 the distribution and cumulative distribution of Fried’s parame-
ter, h̄, v̄ andσ2

χ for all profiles of the database. All evaluations in this section and in the
following are done at a 1.55 µm wavelength for a 30° elevation unless stated otherwise.
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Figure 4.4.: Statistics of the selected integrated parameters of the turbulence for the
database presented in section 4.2.1.

The quality of the dataset can be inferred from the variability of the integrated
parameters. Even though the selected profiles all belong to the first 19 days of the same
month, the range of the integrated parameters is conform to what we could expect
from a dataset representative of the diversity of conditions that can be encountered
in a real life scenario (see some measurements done at Teide Observatory [Per+06;
Sol+13; Gar+09]). With a r0 ranging from a few centimetres up to 60 centimetres, we
have profiles considered as representative of very challenging turbulence conditions
while the larger values are the one expected from an astronomical site during night
time. h̄, v̄ also show great variability over the whole range of expected values and
reinsure us about our ability to have a generalist approach despite the use of a finite
dataset.

As one can see in Figure 4.4, point source log-amplitude variance is very rarely
above 0.3, which tends to consolidate the Rytov regime hypothesis that is necessary
to use SAOST to simulate time series of ROP. Less than 0.05% of our 37059 profiles
have a σ2

χ ≥ 0.3. The limit of the Rytov regime has been experimentally fixed for

horizontal propagation [GG65] to σ2
χ ≈ 0.3. Horizontal propagation corresponds to

a particular configuration where the C 2
n can be considered constant. Vertical path

propagation differs from close-to-ground propagation. Several characteristics of the
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propagation medium, such as the inner and outer scale, might be different to what
is experienced few meters from ground and over short distances. Meanwhile, the
horizontal propagation case being to some extent a worst case scenario for the slant
path, σ2

χ ≈ 0.3 might be considered as a lower bound for the limit of the Rytov regime.
This analysis could be consolidated by numerical simulations, however considering
the significant ambition of such a study with respect to the small number of cases
involved, it should be kept as a perspective work.

4.2.3. The associated database of ROP
All the generations of power attenuation’s time series have been done with the same
parameters of a state of the commercial off-the-shelf AO components. We assume
an AO system that corrects the first 10 radial orders with a frequency of 2 kHz. The
simulation is done with a time sampling of 4 kHz for a duration of 10 seconds, which
gives us 40.000 points per time series. The telescope has a 60 cm diameter.

We adopt in this part the same approach as in SAOST [Can18b], i.e. to consider
independently the effects due to the phase error and those due to the scintillation;
the benefit of this dissociation is to be able to interpret the results more easily. The
same notation as in chapter 2 is chosen with ρφ the coupling efficiency neglecting
the impact of scintillation, and ρI the term of scintillation. fsm f , the coupled flux in a
single mode fiber, is the product of both.

4.3. Estimating the PDF of ROP
We aim to train a machine-learning algorithm that would give us the Probability Den-
sity Function (PDF) of ρφ and of ρI . In a second step, we will also want to estimate the
half-correlation time of those quantities. One usual and effective way to describe a
distribution using machine learning is to parameterise the PDF and then use a model
to estimate the parameters.

From the parametric form of ρI detailed in equation 2.18 and 2.17 we can easily
deduce that the parametric expression of the ρI ’ distribution depends only on the two
parameters σ2

χ and σ2
χAP

.
While measuring the punctual log amplitude requires choosing a collector that

is small enough to limit the impact of pupil averaging but large enough to provide
sufficient flux, measuring the full pupil poses greater implementation difficulties
because of the need for a large collector. Since this variance is not easily measurable,
we investigate in which extend the assessment of σ2

χAP
is possible using the selected

moments r0, h̄ and v̄ .
Regarding the distribution of ρφ, we choose to study

Lφ(t ) = 10log10

(
ρφ(t )

)
(4.5)
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the loss in power induced by the phase fluctuation in dB, as it enables to emphasize
the impact of the smaller values of ρφ(t ), that are the critical values for the application.

Studying the distribution of ρφ(t ) on our 37 k profiles, we highlighted that it has an
exponential decay, which is consistent with the closed form of the distribution already
proposed by Canuet [Can18b].

If X has an exponential decay then − log(X) follows a standard Gumbel distribution.

We assume that X follows a distribution from an exponential family

fX (x|θ) = h(x)g (θ)exp
[
η(θ)T (x)

]
(4.6)

with θ called the parameter of the family, g (θ) and η(θ) defined functions, h(x) = xγ,
T (x) = xα and α≥ 0.

Remark:
if h(x)g (θ) = λδ(x > 0), η(θ) =−λ and T (x) = x with λ> 0 then fX (x|θ) is an expo-
nential distribution.

The PDF of Y =− log(X) is expressed as follows:

fY (y |θ) = e−y h
(
e−y)

g (θ)exp
[
η(θ)T (e−y )

]
(4.7)

which leads to
fY (y |θ) = e−(1+γ)y g (θ)exp

[
η(θ)e−αy]

(4.8)

It can be reformulated (up to a scale factor) as a Gumbel distribution:

fY (y |θ) = 1

β
e−(z+e−z ) (4.9)

with z = x−µ
β

We verified numerically that the distribution that best fit the distribution of Lφ(t ),
with respect to the Bayesian information criterion (model simplicity vs. data fit) and
sum of square error, is a Gumbel distribution of the following form:

1

β
e−(z+e−z ) (4.10)

where z = x−µ
β .

This result is particularly interesting as, with the Gumbel distribution being a good
enough approximation of the PDF of power attenuation, we can describe the PDF
with only two parameters, µ and β, that contain all the information on the statistic of
power attenuation.

The quality of the fit can be seen by looking at the relative error measured between
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Relative error
Quantile

0.001 0.003 0.01 0.03 0.1

Mean 1.43% 0.91% 0.57% 0.37% 0.19%
1% 0.02% 0.01% 0.01% 0.01% 0.01%

50% 1.17% 0.75% 0.48% 0.33% 0.17%
99% 5.36% 3.28% 1.92% 1.14% 0.54%

Table 4.1.: Relative errors on quantiles with the Gumbel fit over the 37059 power atten-
uation’s series.

the quantiles of the experimental distribution and those of the theoretical distribution.
We show in table 4.1 the statistics of relative error made on some relevant quantiles.
The statistics are given for the whole database. Such small relative errors emphasize
to which extent our fit is appropriate. It is to be noticed that, the number of data
of our simulations being finite, the error on the smallest quantiles can be due to a
lack of data to precisely estimate the latest, as much as a non ability of the Gumbel
distribution to describe precisely the smallest quantiles. Further work in this regard
was not conducted but this is a very encouraging intermediate result that will need to
be confirmed in the field. This will require access to a large volume of experimental
data, which will be possible by 2024 with the operation of the FEELINGS ground
station as part of the first satellite-ground links, for which we will have access to all
the hypotheses, conditions, and data.

Figure 4.5 aims at visually illustrating the goodness of the fit in the diversity of
conditions encountered. We computed an average value of power attenuation as well
as the two extrema.
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Figure 4.5.: Gumbel fit on the distribution of Lφ in three cases: first one in blue cor-
responds to the minimum of coupling efficiency, second one in orange
is an average coupling efficiency and last one in green is obtained for the
profile with the highest coupling efficiency.

In this section we demonstrated that knowledge of µ, β and σ2
χAP

, associated with

the measured values of σ2
χ, are sufficient and necessary to describe the PDF of the

received optical power. As a result, the next sections will focus on the assessment of
the 3 unknown parameters µ, β and σ2

χAP
using usual machine learning techniques

and the set of measured moments as inputs.

4.3.1. Methodology
Our database was split in two datasets: one training set containing 10% of the ran-
domly selected profiles and a test set containing the remaining 90%. The results of the
regression is presented in figure 4.6 for the assessment of µ and β and in figure 4.7 for
the assessment of σ2

χAP
. The formalism used for the figure is the same one that will be

used for any future model. It contains only the points from the test set, the abscissa
corresponds to the value obtained with the numerical direct model SAOST and the
ordinates gives the output of the machine learning metamodel. When the ordinate is
equal to the abscissa, the prediction of the metamodel is nearly perfect and all points
are on the diagonal (red dashed line). The deviation from the diagonal is related to the
prediction error of the metamodel. To compute it we rely on the coefficient of deter-
mination R2, which stands for the percentage of the output variance explained by the
metamodel, but computed on n test data Yi instead of training ones (it is traditionally

61



4. ROP’s Statistics Assessment – 4.3. Estimating the PDF of ROP

named Q2 in machine learning papers):

R2 = 1−
∑n

i=1(Yi − Ŷi )2∑n
i=1(Yi − Ȳ )2

(4.11)

where Ȳ is the mean of the test data and Ŷi stands for the output of the metamodel
for the same input values as Yi . R2 is between 0 and 1, and should be close to 1 for an
accurate metamodel prediction.

4.3.2. Linear regression
Figure 4.6 to figure 4.9 are here to present a baseline and validate our prior intuitions.
Figure 4.6 and 4.7 show the results of the simplest model one can think of, the linear
regression. Inputs of the linear regression are r0, h̄ and v̄ and the output is either an
assessment of µ, β or σ. Visually and through the R2 score, one can see that the results
are unsatisfactory, even though a trend exists for small values of µ and large values of
β, which correspond to a case of strong turbulence (low average coupled flux with a
high variance).

Figure 4.6.: Linear regression on r0, h̄ and v̄ to assess the values of µ (left) and β (right).
Simulated value (SAOST) in abscissa, output of the model in ordinate. Only
for the test set.
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Figure 4.7.: Linear regression on r0, h̄ and v̄ to assess the values ofσ2
χ. Simulated value

(SAOST) in abscissa, output of the model in ordinate. Only for the test set.

The first test to improve this prediction was to make the linear regression on 1
r0

5/3
,

h̄5/3 and v̄5/3 instead of r0, h̄ and v̄ (Figure 4.8 and 4.9). We expect the results to be bet-

ter as the error budget of the AO depends linearly on 1
r0

5/3
, h̄5/3 and v̄5/3 under strong

simplification (see the section about the error budget of an AO 2.1.2). As expected,
the R2 score on µ and β which fully describes the turbulent phase is increased by
almost 25% in each case (Figure 4.8). The change in the input variables does not have
a positive impact on the prediction of the scintillation, but there was no indication in
this sense either.

Figure 4.8.: Linear regression on 1
r0

5/3
, h̄5/3 and v̄5/3 to assess the values of µ (left) and

β (right).
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Figure 4.9.: Linear regression on 1
r0

5/3
, h̄5/3 and v̄5/3 to assess the values of σ2

χ

4.3.3. MLP
In order to improve the prediction quality, we focused on non-linear metamodels,
and first on a Multi-layer Perceptron regressor (MLP). Different configurations where
tested with 1 to 3 hidden layers and either 20, 50 or 100 neurons per layer. In each of
the cases 3 functions were tested as the activation layer:

• A logistic sigmoid function: f(x) = 1 / (1 + exp(-x))

• A tanh (or hyperbolic tan) function: f(x) = tanh(x)

• A rectified linear unit function (relu): f(x) = max(0, x)

Starting with the normalised values of r0, h̄ and v̄ as inputs, we found that the best
prediction score is obtain for a 3 hidden layers model with 50 neurons per layer and a
tanh activation function resulting in the prediction of figure 4.10.
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Figure 4.10.: MLP metamodel on r0, h̄ and v̄ to assess the values ofµ (left) andβ (right).
Simulated value (SAOST) in abscissa, output of the model in ordinate.
Only for the test set.

Better predictions start to emerge with the use of this non-linear metamodel.

Doing the same data pre-processing as for the linear regression and using this time
1
r0

5/3
, h̄5/3 and v̄5/3 as inputs, we find that the bestfitting model still has 3 layers but

this time with repectively 50, 100 an 50 layers. The best activation function is now the
relu function and the results can be seen in Figure 4.11

Figure 4.11.: MLP metamodel on 1
r0

5/3
, h̄5/3 and v̄5/3 to assess the values of µ (left) and

β (right). Simulated value (SAOST) in abscissa, output of the model in
ordinate. Only for the test set.

This change produces much better results and shows once again that moments do
indeed come into play to the 5/3 power in the definition of µ and β.
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Kernel Score µ Score β
RBF -6.776 -0.814
Matern 0.994 0.994
Constant*RBF+White 0.946 0.685
Constant*Matern+White 0.999 0.999

Table 4.2.: Score on the assessment of µ and β for different kernels

4.3.4. Gaussian process
As seen in chapter 3, a GP writes the output of interest as the sum of a regression part,
a constant term in this study, and a centered stochastic process Z :

γ(x) =β0 +Z (x) (4.12)

where the stochastic part Z (x) is a Gaussian centered process fully characterized by
its covariance function Cov(Z (x), Z (u)) =σ2R(θ, x,u) with σ2 the variance of Z and
R the correlation function, or kernel, that accounts for spatial correlation effects and
θ the hyper-parameter.
In this study, we focus on a stationary process Z , which means that, for new points,
the prediction consists of a linear combination of the observed values, with weights
that depend on the distance between the new input point and the training data. The
assumption is that, the closer the inputs are, the more correlated the outputs are. The
kernel is thus a similarity function.

In a first step, we focused on the assessment of µ and β, the parameters that de-
scribe the coupled flux, while neglecting the impact of scintillation, in order to ease
the analysis of the results.

We were led to test different kernels to determine which one best fits with our
problematic. To do so and reduce the computational cost, we trained four different GP
with different kernels for the prediction of µ and β using the training set (10% of the
database). The R2 score given in table 4.2 is calculated on the test set (the remaining
90% of the database).

This probabilistic model enables the estimation of predictive distributions, provid-
ing not only point predictions but also a measure of uncertainty associated with each
prediction. This is particularly valuable in situations where having a quantification of
the uncertainty is important for decision-making or further analysis.

4.3.4.1. Results: GP on the determination of µ and β

Judging at the R2 scores presented in table 4.2 it appears clear that the best kernel one
can use to determine the statistics of coupled flux is a Matérn kernel. The addition of
a constant product-kernel and a white sum-kernel brings real benefit on the points
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on which the prediction error was large, which has the effect of slightly improving the
overall score to an outstanding value superior to 0.999 in both cases. Figure 4.12 illus-
trate the goodness of the fit with such a kernel. On the left, we can see the predicted
values of µ as a function of their true values (as given by the physical model) for each
point of the test set.

Figure 4.12.: Results of the GP to assess the values of µ and β using r0, h̄ and v̄ as
inputs

After finding satisfactory results with this GP metamodel, a sensitivity analysis
conducted according to section 3.4 gave us informative input on the impact of r0, h̄
and v̄ on the final results of this GP (Figure 4.13). Sensitivity indices were estimated
using "Sensitivity: Global Sensitivity Analysis of Model Outputs" [Ioo+21], an open
source, GPL-2 licensed, R library developed for the treatment of uncertainties. Due
to the correlations among the 3 input variables, we focused on the first order sobol
indices, Shapley indices and PME indices (presented in section 3.4).

As expected, r0 has the strongest impact on the final variance and, according to
Sobol’ indices, accounts for approximately 80% of the total variance in both cases. v̄
accounts for the rest of the variance while h̄ as very little effect: its Sobol’ and PME
indices are indeed almost equal to zero. It is interesting to compare Shapley and PME
indices for v̄ and h̄: v̄ has an effect on the GP predicted output and, thanks to its
correlations and interactions with the 2 other input variables, its Shapley and PME
effects are larger than its first order Sobol indice.

On the contrary, h̄ has a non negligible Shapley effect due to correlations with the 2
other input variables, but its PME indice is very small, and this variable is thus non
influential.
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Figure 4.13.: Sensitivity analysis on the prediction of µ and β using r0, h̄ and v̄

This conclusion is not surprising, as the downlink AO error budget described in
section 2.1.2 involves the terms r0 (equation 2.10) and v̄ (equation 2.13). h̄ signs for
the sensitivity of the injection efficiency to the vertical distribution of the turbulence.
As the residual error variance in the error budget is, in the current considered case,
the result of an integral over the overall turbulence profile, this very little sensitivity to
h̄ was expected.

The lower impact of the term h̄ brought us to consider another GP taking as inputs
only the two parameters r0 and v̄ . The error made by this GP can be seen on figure
4.14 and shows very high R2 scores comparable to the ones of figure 4.12, underlying
the irrelevance of the input h̄.

Figure 4.14.: Results of the GP to assess the values of µ and β using r0 and v̄ as inputs

One can notice that, on a small number of points for low values of µ, the error is
noticeably greater than in the previous case. These small values of µ correspond to
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low values of the mean of the Gumbel law, and thus worst case scenario with a low
average coupled flux.

4.3.4.2. Analyzing central moments: mean and variance assessment

Talking in term of µ and β is not necessarily the most intuitive and results would
happen to be a lot more readable on the mean and the variance of the distribution.
That is what is done in this section.

The mean of the Gumbel law depends on µ and β in the following way:

Mean =µ+γβ (4.13)

where γ is the Euler constant and the variance σ2 is given by:

σ2 = π2

6
β2 (4.14)

4.3.4.3. Results: Gaussian process combined with adaptive learning

In figure 4.15, one can see the results of the training process in terms of mean and
variance instead of µ and β with respectively a R2 score of 0.999 and 0.997. Even
though these scores are very high, we can visually see that variance in the prediction
error is higher for low values of the mean of the Gumbel law and high variance.

Figure 4.15.: Results of the GP to assess the values of the mean and the variance of the
coupled flux distribution using r0 and v̄ as inputs

Adaptive learning can be used to overcome this problem. It consists of training the
model n times with the inclusion of new training points after each iteration, from
the remaining 90% data. The new train data that is added to the train database is
the data for which the prediction error is the highest. It is then removed from the
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test database. This dynamic approach enables to continuously update the model’s
performance. Instead of solely relying on an initial training set that might not cover the
worst cases, this method allows the model to adapt and learn from the worst examples
encountered during validation, making it more robust to handle all scenarios.

After 10 iterations, we obtain the results of figure 4.16, where the R2 score did not
evolve much but where the error is minimal on all points considered in the test set.

Figure 4.16.: Results of the GP to assess the values the mean and the variance of the
coupled flux distribution using adaptive learning with r0 and v̄ as inputs.

4.3.4.4. Results: Gaussian process on the determination of σ2
χAP

Doing the same steps as before to assess the scintillation distribution and using a
similar Gaussian process, with the same kind of kernel, gives a score of 0.996. This is
a remarkable result, as it enables us to estimate the scintillation rate averaged over
a pupil of substantial diameter without having to deploy a disproportionately large
instrument.
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Figure 4.17.: Results of the GP metamodel to assess the value of σχAP using r0, h̄ and
v̄ .

Figure 4.18.: Sensitivity analysis on the prediction of σχAP using r0, h̄ and v̄

Sensitivity analysis can also be conducted for the prediction of σ2
χAP

where, accord-
ing to figure 4.18, the impact of v̄ seems very low: its first order Sobol’ and PME indices
are almost equal to zero, and its Shapley indice is larger, but also accounts for its
correlation with the two other input variables. We remind here that both Shapley and
PME indices account for both correlations and interactions among input variables, but
that PME indices can enable to identify exogeneous variables and associate them very
small sensitivity indices. Removing v̄ from the input parameters of our metamodel
leads us to a prediction score of 0.995 (Figure 4.19), very close to the 0.996 obtained
with v̄ . This result was to be expected, as expressions of the variance of log-amplitude
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averaged on a pupil that can be found in the literature are independent of the wind
speed profile [Zia+00].

Figure 4.19.: Results of the GP metamodel to assess the value of σχAP using r0 and h̄.

The input reduction can be pushed even further by choosing as the only input of
the model the ratio r0

h̄
∝ θ0. The results of this univariate model can be seen on figure

4.20: there is no significant change in the R2 score and one can say that, at least under
the weak fluctuation approximation, the PDF of the scintillation only depends on θ0.

Figure 4.20.: Results of the GP to assess the value of σ2
χAP

using as a single input r0

h̄
.
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This implies that one can find a power law between σ2
χAP

and θ0 such as:

σ2
χAP

= a ×θb
0 (4.15)

Experimentally, using results of figure 4.20 for a pupil diameter of 60 cm, we get
a = 0.06 an b =−1.62. The power law describes σ2

χAP
with a coefficient of determina-

tion of 0.99 (figure 4.21).

Figure 4.21.: σ2
χAP

as a function of θ0 (µr ad). In red a curve fit with the law σ2
χAP

=
a ×θb

0 .

4.3.4.5. Impact of the receiver aperture in the evaluation of the variance
term of the integrated intensity on the pupil from θ0.

The amount of scintillation affecting a system can be defined using the scintillation
index σ2

I , the normalized variance of the field intensity. It is related to the variance of
the log-amplitude by [Mah00, Equation 3.31]

σ2
I =

〈
I 2

〉
〈I 〉2

−1 = exp
(
4σ2

χAP

)
−1 (4.16)

The analytical description of σ2
I given in [Véd08] follows:

σ2
I = 9.62λ−2

∫
dhC 2

N (h)P (h), (4.17)
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where for a circular pupil of diameter D:

P (h) =
∫ ∞

0
f −8/3 sin2 (

πλh f 2)×(
2J1(πD f )

πD f

)2

d f , (4.18)

with f the spatial frequency and J1 the first order Bessel function. Note that this
expression is provided assuming a Kolmogorov power spectral density for index of
refraction fluctuations. No outer scale parameter is taken into account.

This equation of the log-amplitude variance takes into account the diameter over
which it is averaged. It raises the question to know how the relationship between θ0

and σ2
χAP

is impacted by the value of D and to what extend the scintillation impact
can be assessed using only this input. Figure 4.22 shows the same as figure 4.21 for
different sizes of the averaging pupil at 1.5µm.

One can see that, for small pupils values, θ0 and σ2
χAP

are uncorrelated but, with
pupils higher than 10 cm, these two quantities become highly correlated with the
values of σ2

χAP
that can be described as power laws of θ0, with coefficient of determina-

tion higher than 0.98. Figure 4.23 shows this coefficient of determination as a function
of the pupil diameter.
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Figure 4.22.: σ2
χAP

as a function of θ0 for different values of the pupil diameter. In red a

curve fit with the law σ2
χAP

= a ×θb
0 .
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Figure 4.23.: Coefficient of determination of the fit of σ2
χAP

as a power law of θ0, ac-
cording to the pupil diameter.

As a reminder

θ−5/3
0 (z) = 114.7λ−2

∫ L

0
dzC 2

N (z)z5/3, (4.19)

along the line of sight. Using the formula of P (h) for a central obscuration ratio ϵ,

P (h) = 1(
1−ϵ2

)2

∫ ∞

0
f −8/3 sin2 (

πλh f 2)
×

[
2J1(πD f )

πD f
−ϵ2

(
2J1(ϵπD f )

ϵπD f

)]2

d f ,

(4.20)

Aziz Ziad et al [Zia+00] showed that P (h) ≈ P (h0) (h/h0)5/3 for a pupil diameter
D = 10cm and a central obscuration ϵ = 0.4 at a wavelength λ = 0.5µm. This leads
to θ−5/3

0 = Kσ2
I and thus, an accurate way to measure the isoplanatic angle using an

instrument with a 10 cm pupil.
In our case with no central obscuration and a wavelength λ= 1.5µm, one can see

that the error is minimal for a pupil around 20 cm in diameter. However, the relation
between θ0 and the scintillation index is not linear, thus making analytical develop-
ment more complex, and this point was not investigated further in this study.

The conclusion of this study is that the isoplanatic angle can be infered by an
instrument such as the one developed in [Zia+00]. From the isoplanatic angle, the
scintillation index and thus the log-amplitude variance can be calculated as soon as
the pupil diameter is above 10 cm. The ideal case for determining precisely the log-
amplitude statistics using θ0 would be when the ground station telescope diameter is
close to 20 cm, however with a telescope of 60 cm, the prediction error remains small.
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This result strongly depends on the impact of the outer scale and the wavelength
considered. These conclusions would also have to be weighted by the elevation of the
satellite that plays a major role. These considerations have not been studied in the
context of this thesis, the aim of which is to lay the foundations of a methodology that
remains to be refined.

4.3.4.6. PDF reconstruction

Figure 4.24.: PDF computed from SAOST time series and PDF computed from our
metamodel with, from left to right: Lφ(t), ρI and the received optical
power.

As we are able to predict µ, β and σχAP from the moments, the next step is to re-
construct the probability density of the received optical power using the parametric
descriptions of Lφ(t) (equation 4.5) and ρI (equation 2.17). An example is given in
figure 4.24 where, for one randomly selected profile, we can see, from left to right, the
statistical reconstruction of Lφ(t ), ρI and the received optical power.

In order to characterize the relevance of our estimation on the received optical
power’s statistic, we can compute the absolute error made on the mean and standard
deviation of the reconstructed PDF of the received optical power.

The absolute error is a measure of the difference between the approximate value
and the exact or true value of a quantity. Mathematically, the absolute error (∆x) for a
given quantity x is calculated as:

∆x = |xapprox −xtrue| (4.21)

where:

xapprox is the approximate value of x,

xtrue is the true or exact value of x.
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We also look at the absolute error on the 1% quantile of the received optical power
(see red dashed line on figure 4.24) as we want a faithful reproduction of the tail of the
distribution. Statistics on the absolute error associated to our 37 k profiles can be seen
in figure 4.25.

Figure 4.25.: Histogram and CDF of the absolute error on prediction of the mean, the
standard deviation and the 1% quantile.

In all profiles, the prediction error on the value of the quantile 1% is inferior to
0.7 dB, which is consistent with the current assumptions made in the commonly used
link budgets (margins are typically 3 dB).

We have to put into perspective this value with the fact that the temporal series of
ROP generated with SAOST are finite and thus part of the error is due to the non perfect
convergence of the random variable. The weight of this error due to convergence in
the overall error has yet to be determined.

4.3.5. Influence of the AO design
Our model to predict the PDF of the fsm f was validated on other AO cases. We settle
on two other AO cases that where chosen to give more weight either to the spatial
error term or to the temporal error one.

This new dimensioning has led to the fitting error being divided by 2 and the time
error multiplied by 2.

In practice we took the asymptomatic evaluation of the fitting error proposed by
Conan in [Con94]:

σ2
f i t t i ng ≈ 0.458(Ncor r +1)−

5
3

(
D

r0

) 5
3

(4.22)

and the approximated expression of the temporal error given in [RF23]:

σ2
tempo = 0.243 f

− 5
3

bω

(
v̄

r0

) 5
3

(4.23)
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where fbω the servoing bandpass is given by:

fbω = 1

2πT

√
g

1+2τT
(4.24)

τ, the loop delay, is chosen constant as 2 in our case, g , the gain of the loop, is chosen
such as g ≈ 1

1+τ/T and T is the sensor integrating time given as T = 1
fsamp

with fsamp

the loop sampling frequency.

Lets write σ2(1)

f i t t i ng and σ2(1)

tempo , respectively the average fitting and temporal error
of our main AO dimensioning of 10 radial orders and a sampling frequency of 2kH z,
for a given case of turbulence and wind profile. We want to find two other designs (2)

and (3) such as:

σ2(1)

f i t t i ng = 2σ2(2)

f i t t i ng = 1

2
σ2(3)

f i t t i ng

σ2(1)

tempo = 1

2
σ2(2)

tempo = 2σ2(3)

tempo ∀r0, v̄
(4.25)

This gives us:
N (1)

cor r = 10

N (2)
cor r = 15.67 ≈ 15

N (3)
cor r = 6.26 ≈ 6

and:
f (1)

samp = 2000H z

f (2)
samp = 1318.5H z ≈ 1300H z

f (3)
samp = 3033H z ≈ 3000H z

SAOST simulations were run for these two AO cases on 5000 profiles to reduce com-
putational time. These 5000 profiles where chosen such as they cover uniformly the
space of averaged coupled flux obtained with the main AO dimensioning. In other
words, we started by sorting the 37059 profiles based on the averaged coupled flux
obtained with SAOST with a correction of 10 radial order with a 2kHz sampling fre-
quency. Then, on this sorted database, we drew 5000 evenly distributed pairs of C 2

n
and wind profiles.

Results of these 5000 simulations can be seen on figure 4.26 that displays the dis-
tribution of fitting error, temporal error as well as total error for each of the AO cases.
Figure 4.27 displays the distribution of of µ in dB , β and σ2

χAP
for the same AO cases.

From figure 4.26, one can see that the error terms behave overall as anticipated,
with a factor of 2 in the distributions sizes between each AO cases. The total error, on
the other hand, stays quite well approximated by the sum of the fitting and the total
error no matter the case, meaning than no other term of the AO error budget becomes
predominant or has a significant impact, even the aliasing error, which we might have
thought would have had a bigger impact.

79



4. ROP’s Statistics Assessment – 4.3. Estimating the PDF of ROP

(a) AO case 1: 10 Ncor r ; 2kHz

(b) AO case 2: 15 Ncor r ; 1.3kHz

(c) AO case 3: 6 Ncor r ; 3kHz

Figure 4.26.: Fitting, temporal and total residual error’s variance for each of the AO
cases considered.

On figure 4.27, the (a) panel shows the distribution of µ in dB , β and σ2
χAP

for the
37059 profiles and serves as a reference for the AO cases (b) and (c) displayed in
the middle and bottom panel. First thing to consider is the lack of variations in the
σ2
χAP

’s distribution over the different cases (the top panel distribution is smoother
only because it’s estimated on a larger amount of points). It is an experimental val-
idation of Chapter 2 claim, i.e. AO only corrects the phase distortion but does not
impact the scintillation, thus the scintillation is, under our initial assumptions (SAOST)
completely independent from the residual error’s variance.
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(a) AO case 1: 10 Ncor r ; 2kHz

(b) AO case 2: 15 Ncor r ; 1.3kHz

(c) AO case 3: 6 Ncor r ; 3kHz

Figure 4.27.: Distribution of the parameters of the PDF of fsm f depending on the AO
cases.

The distributions of µ and β, on the other hand, behave differently depending on
the AO case. Case (b) emphasizes best this phenomenon where µ and β distributions
have much heavier tails than in the base case (a). This is simply explained by the total
residual error distribution (figure 4.26 (b)) that takes more extreme values due to a
very strong temporal error on some profiles. More residual error on the phase induces
automatically a decrease of the average coupling efficiency and a higher variance in
the coupling efficiency time series. The same phenomenon can be noted for case (c),
but on a smaller scale.

We ran the GP to predict µ, β and σ2
χAP

using r0, h̄ and v̄ as input. The training set
was this time composed of 70% of the data to keep approximately the same number
of training profiles as in the previous section. Figure 4.28 illustrates the results of
the prediction on the test set (30% of the 5000 profiles). As expected, the prediction

81



4. ROP’s Statistics Assessment – 4.3. Estimating the PDF of ROP

score is the same no matter the AO for σ2
χAP

. We can also see that the R2 score stays
approximately the same for the prediction of the coupled efficiency PDF parameters,
no matter the number of corrected radial orders and the sampling frequency (as long
as one stays in the range of these studied common values).

(a) AO case 2: 15 Ncor r ; 1.3kHz

(b) AO case 3: 6 Ncor r ; 3kHz

Figure 4.28.: Prediction of the parameters of the PDF of fsm f depending on the AO
cases.
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(a) AO case 2: 15 Ncor r ; 1.3kH z

(b) AO case 3: 6 Ncor r ; 3kHz

Figure 4.29.: Sensitivity analysis on the prediction of µ and β depending on the AO
cases.

The result of the sensitivity analysis in figure 4.29 is particularly illustrative about
the phenomena that take place in the prediction process.

With AO number two, where the sampling frequency is the lowest and thus where
the temporal error has the strongest impact, we measure a contribution of v̄ in the
output variance significantly larger for the 3 indices than in our base case, shown in
figure 4.13. This is the expected behaviour with a temporal error that depends mostly
on the value of v̄ .

The second plot shows the opposite phenomenon. As the temporal error becomes
negligible, the impact of v̄ on the prediction accuracy becomes negligible as well,
and the 3 associated sensitivity indices are very small. The machine learning model
uses mostly r0 to describe the output variance and relies on the value of h̄ to describe
small variation in the results giving h̄ a stronger influence that it had in the other cases
for the first order Sobol’ and Shapley indices. On the other hand, its PME indice is
almost null, which underlines the interest to analyze both Shapley and PME indices:
Shapley indices can give an estimation of the influence of the variable, and PME
indices identify possible exogeneous variables.
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4.4. Results on the half-correlation time
The next step of our study is to be able to estimate the auto-correlation time of the
received optical power using the same moments. Knowledge on the temporal behav-
ior of the received optical power is fundamental, as the duration of the fading in the
received signal will dictate the use of numerical mitigation techniques and the latency
in the telecommunication protocol.

Once again, it should be noted that analytical expressions exist to describe the
auto-covariance of Lφ [Can+18] and of ρI [Rob+08][SYF14]. The ultimate goal is to
estimate those auto-covariance functions using a small number of instruments but,
in order to simplify the problem, we first look at the half-correlation time of Lφ and ρI

time series independently. A simplistic way to predict the auto-covariance could then
be to fit an exponential decay law matching the estimated half-correlation time.

4.4.1. Metamodel construction
The approach is exactly the same as for the prediction of the PDF: half-correlation
times were computed using SAOST and we use r0, h̄ and v̄ as inputs of our metamodels.
Once more, best results were obtained using GP regression with a Matérn 5/2 kernel.

Figure 4.30.: Prediction of the half-correlation time using GP on inputs r0, h̄ and v̄ ;
x axis shows the real value and y the predicted one. On the left the half-
correlation neglecting scintillation effects and on the right

neglecting phase effects.

Figure 4.30 shows that the prediction using r0, h̄ and v̄ is able to recreate the trend,
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but that it lacks precision with a high variance on the distribution of the error. The
chosen input moments do not account well enough for the temporal aspect of the
turbulence, and it is then necessary to consider an additional measurement.

One way to recover the missing temporal information on the atmospheric layer is
through measurement of the power spectral density of the scintillation on a small
pupil instrument. To simulate the measurement of such an instrument, we used
the expression given in [SYF14] and calculated the power spectral density of the
scintillation for a 5 cm pupil at a wavelength of 1500 nm. Simulation was done on one
hundred points spaced evenly on a log scale from 10−4 Hz up to 103 Hz.

Figure 4.31.: Architecture of the autoencoder used to encode the power spectral den-
sity.

In order to add information associated to the scintillation spectrum in our model,
we wish to reduce the data dimension while keeping the maximum of information.
Indeed, there is a lot of information redundancy in the 100 points used to simulate the
power spectrum density, but these points have to be decimated in a non-linear way if
we want to keep the relevant information no matter the profile.

To do so, we used a convolutional autoencoder, a kind of neural network extensively
used for data reduction. The underlying concept is simple, the architecture consists of
two parts, an encoder and a decoder. The encoder learns an encoding of the data and is
validated and refined by attempting to regenerate the inputs from the latent space with
the decoder. In our case, the input data is of dimension 100 and the encoded data of
dimension 5, (the architecture can be found in Figure 4.31). Increasing the dimension
of the latent space above 5 did not resulted in significant reconstruction improvement.
In figure 4.32, we can see an example of reconstruction on two randomly picked power
spectral density from our database. The real PSD (Power spectral density) computed
from [SYF14] is represented in blue, while the output of the decoder applied on the
encoding of the PSD in the 5 dimension latent space is in orange. We can see that
most of the information is conserved in the latent space.
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Figure 4.32.: Comparison of the computed PSD and the one reconstructed using the
autoencoder.

We then built a new GP, this time with 8 inputs: the 3 previous moments and the 5
encoded values of PSD.

Figure 4.33.: Prediction of the half-correlation time using GP on inputs r0, h̄ and v̄ and
information on the PSD of scintillation for a 5cm pupil. The same other
parameters as in figure 4.30.

As anticipated, with the added temporal information, we obtained much more
satisfactory results than the ones described in figure 4.30 (see Q2 figure 4.33: 0.99 and
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0.98 against Q2 figure 4.30: 0.88 and 0.84).

4.4.2. Sensitivity analysis
Using the same tools as the ones described in section 4.1.2, we conducted a sensitivity
analysis and calculated first order Sobol’ indices as well as Shapley and PME indices
for each of the models described in 4.2.1.

Figure 4.34.: Sensitivity analysis of the model described in Figure 4.30.

Figure 4.35.: Sensitivity analysis of the model described in Figure 4.33.

The results of the metamodel taking only r0, h̄, and v̄ as inputs can be seen in Figure
4.34, while sensitivity analysis results computed on the model with the PSD added to
the inputs are shown in Figure 4.35. In both cases, we can clearly see that the most
influential variable is v̄ , which is not surprising given the fact that the correlation time
depends on the displacement speed of the turbulent layer.

When adding the 5 moments of PSD (D1 to D5 in Figure 4.35), we obtain some
interesting values. It can be noted that, while D1 and D5 have a lot of influence on the
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metamodel outputs, D2 seems to have very little. It would be interesting to look further
into the characteristics of the autoencoder to better understand what features of the
PSD each encoded value represents most, and thus what part of the PSD function is
important in the description of the demi-correlation time of the ROP. This study is not
trivial and will not be conducted here.

4.4.3. Influence of the AO design
Using the same two AO cases as in 4.3.5, we can try to assess the impact of the AO
parameters on the prediction of the half-correlation of the coupled flux time series. In
section 4.3.5 we explain how the scintillation behaviour is not impacted by the choice
of the AO dimensioning. We will thus study exclusively the half-correlation of the
coupling rate taking only the phase effects in consideration.

In Figure 4.36 we can visualise the values taken by this half-correlation of the cou-
pling rate depending on the AO case. In both cases, the half-correlation time is almost
the same with however a longer distribution tail and higher maximum values for AO
case 2 (9 ms against 7 ms). As a reminder AO case 2 has a loop frequency of 1.3 kHz
against 3 kHz for AO case 3. This result make sense as a faster response times and
higher-speed actuators allow to correct for changes in the atmosphere more effectively,
thus resulting in a shorter half-correlation time.

Figure 4.36.: Half-correlation of the coupling rate neglecting the scintillation for the 2
other cases of AO

Figure 4.37 shows the prediction accuracy of the model using only r0, h̄ and v̄ as
inputs as well as the accuracy using the model enriched with the knowledge on the
PSD of the scintillation using the transformer considering the second AO case (15
radial orders and 1.3 kHz). Figure 4.38 shows the same thing for the third case of AO
case (6 radial orders and 3 kHz).
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Figure 4.37.: Assessment of the half-correlation using 3 moments (left) and the 3 mo-
ments plus the 5 parameters of the PSD (right) for AO case 2

Figure 4.38.: Assessment of the half-correlation using 3 moments (left) and the 3 mo-
ments plus the 5 parameters of the PSD (right) for AO case 3

It seems that the quicker the AO system, the more accurate the prediction of the half-
correlation time will be in spite of the lower number of corrected radial orders. This is
true with or without the addition of the temporal information of the scintillation, also
when considering our standard AO case of 10 kHz.
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Figure 4.39.: Sensitivity analysis of the half-correlation assessment using 3 moments
plus the 5 parameters of the PSD (right) for AO case 2 (left) and 3 (right)

The sensitivity analysis performed in figure 4.39 shows that the model used to
predict the half-correlation time depends for the most part on v̄ in the quick AO
case while in the slower AO case, v̄ and h̄ both have a significant contribution. D1

and D5 are also influential in this case. We know that h̄ ∝
(∫ ∞

0 v(z)
5
3 C 2

n(z)d z
) 3

5
and

v̄ ∝
(∫ ∞

0 z
5
3 C 2

n(z)d z
) 3

5
. This translates in the fact that h̄ is weighted mainly by the

upper layers (where z is large) while v̄ is weighted by the lower and intermediates
layers where the C 2

n takes large values.

Looking at the error distribution of Figure 4.26, we can see that the autocorrelation
function depends on two different phenomena depending on the studied AO case. In
the case (2) at 1.3 kHz, the temporal error is the main source of error and the main
contributor to the autocorrelation in the corrected signal. This error, and thus the
autocorrelation of the corrected signal, is impacted both by h̄ (for the angular decorre-
lation) and v̄ (for the temporal decorrelation) wich translate in the sensitivity analysis
of Figure 4.39.

On the other hand, for AO case (3), the fitting error clearly prevails. It is the time
signature of the lowest order uncorrected modes (wich are the most energetic) that
gives the signal its correlation. Since the fitting error depends neither on the layer
height nor on the C 2

n profile, the time signature of the residual (and therefore its
correlation) depends only on the velocity of the layers that contribute most to these
lowest orders, described almost solely by v̄ .

4.5. Discussions
In this chapter, we studied the possibility to assess downlink GEO to ground optical
link ROP statistics by applying a machine learning methodology. We demonstrate that,
assuming several simplification hypotheses on the AO system performance model,
a set of a small number of integrated turbulence parameters appears sufficient to
precisely assess ROP statistics. Moreover, exploiting the temporal power spectrum of
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the scintillation recorded by a small diameter receiver eases the evaluation of the ROP
correlation time.

The results presented rely on the representativeness of the numerical model de-
scribing the influence of the propagation channel, it assumes a Rytov regime and a
decorrelation of phase and amplitude perturbations.

The first hypothesis, regarding compatibility with the Rytov regime, has been veri-
fied with the data used in this study, but its validity at lower altitudes or under more
severe turbulence conditions could be compromised. A study should be carried out to
evaluate the difference between the performance evaluation provided by our meta-
model and that obtained by an end-to-end model in cases of very severe turbulence,
which would deepen our understanding of the limitations of the approach.

The second hypothesis, concerning the decorrelation of phase and amplitude per-
turbations, is widely accepted in the community, as it is justified by the fact that the
phenomena causing these perturbations are generated at different distances from the
receiver, and are therefore uncorrelated. The simulations mentioned in the previous
paragraph would also contribute to strengthen the understanding of the limitations
implied by this assumption.
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The goal of Chapter 4 was to provide models to assess the statistics of a ROP time
series using a small set of easily measurable moments. However, the statistic of ROP is
not sufficient to manage successfully the handover between ground stations and the
necessity arises of obtaining, using the same moments, information on the link power
margin.

The link availability and the link power margin are calculated on the interleaved
time series of ROP. The process, described in Chapter 2, consists of a non-linear trans-
formation of the time series of ROP to the time series of MI. The interleaver is then
modelled as a moving average on this MI time series. Given the non-linearity of the
transformations that take place in the description of the power margin, we believe
that it is not possible to obtain the power margin based solely on the ROP statistics
obtained from the models of Chapter 4. This problem can be addressed using series
generation methods. By generating a series stochastically equivalent to the initial ROP
series from the predicted statistics, we shall be able to take into account the impact of
interleaving and of the corrector code.

Although generating Gaussian processes is relatively easy due to their well-defined
properties, the generation of stochastic processes with arbitrary marginal distributions
presents a significant challenge. Our study falls within the broad field of the need to
generate non-Gaussian stochastic processes, with the aim of generating two types
of correlated process, one being a Gumbel-type PDF and the other being lognormal.
The following section explores the difficulty in achieving this objective and proposes
potential solutions to address this gap.

5.1. Methods for the generation of stochastic
processes with arbitrary marginal distributions

Gaussian processes are widely used due to their simplicity and analytical tractabil-
ity. Their generation involves specifying a mean function and a covariance function.
Using techniques such as Cholesky decomposition or spectral methods, it is rela-
tively straightforward to generate samples from a Gaussian process [AM88]. This
simplicity arises from the inherent properties of Gaussian processes, which enable
easy characterisation of their statistical behaviour.

During Cholesky decomposition, a multivariate normal distribution is generated
with zero mean and a covariance matrix that depends on the covariance function of
the process. The Cholesky decomposition is then used to transform the multivariate
normal distribution into a Gaussian process.

Spectral representation, on the other hand, involves representation of the process
as a sum of sinusoidal functions with random coefficients. Random coefficients are
generated from a multivariate normal distribution with zero mean and a covariance
matrix that depends on the spectral density of the process.

In contrast to Gaussian processes, generating stochastic processes with arbitrary
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marginal distributions is a complex task. Non-Gaussian processes often have com-
plex statistical properties, such as highly skewed or heavy-tailed distributions, which
require more sophisticated simulation techniques. Additionally, non-Gaussian pro-
cesses may have prescribed covariance and marginal distribution functions that need
to be satisfied during the simulation process, which further complicates the gen-
eration process. The marginal distributions of individual data points are not only
determined by their own characteristics, but are also influenced by interactions and
dependencies with other points in the process.

Despite the significance of generating stochastic processes with arbitrary marginal
distributions, there are limited methods available to accomplish this task. Unlike
the straightforward techniques used for Gaussian process generation, reproducing
desired marginal distributions with the adequate autocorrelation function requires
more sophisticated approaches that consider both the marginal characteristics and
the dependencies between data points.

Traditionally, transformation methods are used. Also called translation-based sim-
ulation approaches, these methods for generating non-Gaussian processes assume
a compatible relationship between the prescribed covariance function and the pre-
scribed marginal distribution function. These approaches involve generating a Gaus-
sian process and then transforming it into a non-Gaussian process by applying a
non-linear transformation that preserves the covariance function. The non-linear
transformation is chosen on the basis of the prescribed marginal distribution func-
tion [Cho03; Gri98; Gri07; XZ19]. However, this method is not applicable to repro-
duce higher-order statistics of the object function in the simulated sample functions
[Cho03]. Due to its nature, it may also not be applicable when the target covariance
and marginal distribution functions are specified independently, leading to difficulties
in finding suitable translation functions that simultaneously satisfy both requirements.

Other methods exist. [PL98] presents a method for generating baseband and nar-
rowband non-Gaussian processes with any specified marginal probability density
function using stochastic differential equations. [ZC14] uses non-linear filters to gener-
ate non-Gaussian stochastic processes that match the spectral density and probability
density.

In this work, we focus on two specific methods, one transformation method, AnySim,
developed by [Tso18]. The other one, a discrete-time models for stationary time series
generation, ARRC (Auto Regressive with Random Coefficients) is presented in [Pic10].

AnySim aims at the preservation of the marginal distribution and correlation struc-
ture of the process. The main strength comes from the fact that it is the only available
complete package [TKM20] that allows for the simulation of non-Gaussian univariate
and multivariate processes, stationary or cyclostationary (with varying periodicity), at
different time scales. It can also be used for disaggregation of coarser-level sequences
to finer-level sequences as well as for the generation of random fields with target
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spatiotemporal correlation structure. Further details will be given in section 5.1.2.
The second model, ARRC, was obtained from a collaboration with B. Picinbono

and was developed as an extension of his model [Pic10]. This model offers fewer
functions than AnySim and is limited to discrete-time modelling for stationary time
series data. On the other hand, the fact that it uses only recursive generation and
not transformation methods makes it a particularly computationally inexpensive and
therefore fast model. Where ARRC’s complexity is in o(n), AnySim’s is in o(n3) because
of the necessary matrix inversions in transformation methods.

As a reminder to the reader, the ARMA (Autoregressive–moving-average model)
model is a mathematical representation used to describe the behaviour of a stochastic
process or signal over time. It combines two components: the autoregressive (AR)
component, which captures the linear dependence of the signal on its own past values,
and the moving average (MA) component, which represents the linear dependence on
past error terms or residuals. By specifying the appropriate parameters for the AR and
MA components, an ARMA model can be used to simulate or analyse various types of
signal; however, the traditional ARMA model assumes Gaussian distribution, which
makes it unsuitable for our application.
In [Pic10] a method for the generation of ARMA signals, with arbitrary specified sym-
metric marginal distribution functions, is presented. This is achieved by starting with
a sequence of independent and identically distributed (IID) random variables with
uniform distribution, and then transforming them to obtain a sequence of IID random
variables with the desired marginal distribution function. The resulting ARMA signal
will then have the desired marginal distribution function, and its autocovariance
function can be computed using the algorithm presented in the article. However,
this method was limited to the case of a probability function of symmetric density,
which is not our case. On top of that, the auto-regressive coefficients associated with
our stochastic process do not verify the necessary assumptions in equation 4 of the
article, as it will be discussed in section 5.1.3. This limitation led us to develop a more
complete version of the model in collaboration with B. Picinbono.

Each method will be described and explained using two sets of profiles that have
been chosen to represent two different correction conditions. The first embodies a
case of favourable correction conditions for the standard AO correction used before.
It corresponds to a couple of C 2

n and wind profiles for which the average coupled flux
is higher than 95% of the entire population of profiles. They will be designated as the
"Good correction" set in what follows. The second set of profiles aims to represent
less favourable turbulence conditions, with an average coupled flux only higher than
5% of all cases. The profiles pertaining to this population correspond to the "Poor
correction" set in what follows. The following figures (5.1, 5.2, 5.3) show the two sets
of profiles, as well as how they statistically compare to the rest of the database.
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Figure 5.1.: The two sets of profiles, one in green for a good case of correction and one
in red for a poor correction case.

Figure 5.2.: The integrated parameters of the two previous sets of profiles (same
colours) compared to the whole database.

Figure 5.3.: The values of coupling efficiency of the two previous sets of profiles (same
colours) compared to the whole database for our standard case of AO.
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5.1.1. System
We remind the reader that the process for the power margin is explain in Section
2.3.3.1.

As long as the relation between the time series of ROP and the time series of MI is a
monotonically non-decreasing function, the method will be the same. In order to sim-
plify the description and give practical examples, we rely on the relation between the
ROP and the MI provided by Airbus [Pou+23] and visible in Figure 5.4. The downlink
budget excluding turbulence is −38.33 dB and is detailed in Chapter 2.

Figure 5.4.: Mutual Information vs received optical power, in red a zoom on the satu-
ration zone

5.1.2. AnySim
As explained in the introductory paragraph, AnySim presents many advantages for
the stochastic simulation of random variables, stochastic processes and random fields,
with any marginal distribution and dependence structure. This powerful toolbox has
been extensively validated in various publications, including [TKM20; Kos20; Kos+19;
Tso18; KM18] where the flexibility of the tool is demonstrated on various applications
such as rainfall, runoff, temperature, wind speed, and more.

In our work, we use only a small part of AnySim capabilities, as our goal is to
generate a stationary non-Gaussian univariate process. For this specific application,
AnySim uses the Autoregressive To Anything (ARTA) model developed in 1996 by
[CN96]. The ARTA model is a sophisticated stochastic simulation approach that
combines principles from autoregressive linear models and the concept of Nataf’s
joint distribution model (NDM)[Nat62] to simulate correlated non-Gaussian time
series with arbitrary marginal distributions. The core idea behind the ARTA model is
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to transform an auxiliary Gaussian autoregressive process with zero mean and unit
variance, into a target domain that adheres to desired marginal distributions and
correlation structures. This transformation involves the use of inverse cumulative
distribution functions (ICDFs), enabling the generation of time series that retain
the prescribed statistical characteristics. The model’s effectiveness lies in its ability
to provide realistic representations of stochastic processes while maintaining the
specified correlation and marginal features.

The advantage of using AnySim here is that it provides a complete and simple
working framework in the only available well supported and fully tested library.

The generation method is quite straightforward. First, the type of process to be
simulated is identified (in this case a univariate stationary non-Gaussian process) and
the appropriate target marginal distributions as well as the target correlation structure
are assigned using only the relevant integrated parameters coupled with the machine
learning models developed in Chapter 4. Regarding the half-correlation, we used the
metamodel which exploits the temporal spectrum of scintillation. ARTA, the stochas-
tic generation model, is then used to simulate the auxiliary Gaussian process[CN96;
TKM20].

It is implemented through two key R-functions: EstARTAp and SimARTAp:
EstARTAp is used to estimate the parameters of the auxiliary (Gaussian) autoregressive
model of order p using the nonparametric density matching (NDM) method.
SimARTAp is used to generate synthetic data according to a target stationary process. It
takes the estimated parameters from EstARTAp and uses them to simulate the autore-
gressive process. The simulated Gaussian data is then transformed into the desired
non-Gaussian process using the Nataf transformation method. This transformation
is a mathematical procedure that maps the simulated Gaussian data to the desired
non-Gaussian distribution. It ensures that the statistical properties of the simulated
data, such as their marginal distribution and autocorrelation, match those of the
target process [Nat62].

Following this methodology, we were able to generate time series of coupled flux
and of scintillation. The autocorrelation model that we used is one of the default ones
implemented in AnySim called CAS. CAS stands for the Cauchy-type two-parameter
correlation structure. It is a correlation structure introduced by Koutsoyiannis [Kou00]
that is designed to capture a wide range of processes and is used to simulate spatial
and temporal dependencies in various applications.

The CAS correlation structure is defined by the following equation:

ρCAS
τ (β,κ) = (1+κβτ)−1/β,τ≥ 0 (5.1)

In this equation, β and κ are model parameters, and τ represents the time lag. The
CAS correlation structure can model both short-range dependence (SRD) and long-
range dependence (LRD) depending on the values of its parameters. When β= 0, it
represents SRD, while β> 0 represents LRD.
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In our case, it is quite clear that we have a SRD as the correlation function becomes
zero after a few milliseconds or a few tens of milliseconds. We thus use β= 0 and the
correlation structure becomes:

ρCAS
τ (β,κ) = (1+κτ)−1,τ≥ 0 (5.2)

also known as the exponential correlation structure, which is commonly used for
simulating processes with rapid fluctuations and high variability, such as precipitation
and temperature.
τ can be easily calculated using the half-correlation time predicted by the Gaussian
processes of Chapter 4. A more complex correlation structure could have been chosen
but, as it would have been defined by more than one parameter, it would therefore
have required the creation of other metamodels. Given the large error in predicting the
half-correlation time (section 4.4), we can question the relevance of trying to predict
other, more complex parameters. In section 5.2.1, we will show that the error made on
the determination of the correlation time has a low impact on the description of the
power margin.

One can see an example of the generation of coupled flux time series using AnySim
on the predicted value of distribution and half-correlation time on Figure 5.5. Visually
we observe the same order of magnitude and approximately the same fading duration
in both cases (Observed and Generated cases). This is validated by the graphs of Figure

Figure 5.5.: Generated time series of coupling efficiency using AnySim compared to
the targets for the two profiles described in Figure 5.1.

5.6, where the distribution of coupling efficiency (the term "coupling rate" used in the
title is used interchangeably in this chapter) given by SAOST (named in the following
as target values) and the one obtained after AnySim generation are compared as well
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as the autocorrelation functions. One can see that the distribution function are not
perfectly matching, with a mean coupled flux that is a bit underestimated by AnySim
compared to the SAOST case. This is not due to the time series generation process, but
to the fact that the prediction uses only the moments (ML model). As illustrated by
the red dashed distribution in Figure 5.6, the error is due to the error on the predicted
value of the distribution (µ and β ) using algorithms of Chapter 4. For poor correction,
the predicted values of µ and β are respectively -2.52 and 0.33 versus -2.44 and 0.31
for the real values. In the case of a good correction we have a predicted µ of -1.04 that
differs from the real value of -1.03 and a predicted β equal to the real value of 0.02.

Regarding the autocorrelation function, the half-correlation time is well approxi-
mated in both cases, but the target (SAOST) function has a faster decay. The impact of
the error on the autocorrelation function on the prediction of the power margin will
be detailed in section 4.30, but we anticipate it to be very low due to the presence of a
convolutional interleaver in the detection chain.

Figure 5.6.: Generated distribution and autocorrelation of coupled flux using AnySim
compared to the target.

Figures 5.7 and 5.8 show the scintillation time series and their associated statistics.
The overlay of observed and generated distributions indicate a very good match.
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However, the error is large on the prediction of the autocorrelation function, especially
for the case of good correction. The error on the half-correlation time remains low
with a target value of 10.5 ms against a predicted value of 11.4 ms. From Figure 5.6 and
5.8, one can see that the case chosen for its high average coupled flux is a case with
both very good AO correction and with a low scintillation impact. The small variations
in phase and intensity are also slower than in the case of poorer correction. This is
consistent with the much more favourable wind profile of the "Good correction" case.

Figure 5.7.: Generated time series of scintillation using AnySim compared to the target
series

The generation of the coupled flux time series illustrated by Figure 5.9 and 5.10 is
done by multiplying the generated time series of coupling efficiency with the gener-
ated time series of scintillation 4.3. The impact of the scintillation is clearly visible,
especially on the autocorrelation function due to the limited contribution of the
coupling efficiency (thanks to the AO correction).

From these two time series of coupled flux, mutual information time series were
computed. From these MI time series the power margins were calculated as a function
of the interleaver size. We assume a 9/10 FEC overhead for the system presented
earlier, corresponding to the required mutual information of 0.94 (2.3.3.1). With an
interleaver size varying from 0 to 150 ms, Figure 5.11 shows the estimated power
margin using AnySim and machine learning metamodels against the power margin
obtained directly through SAOST.

With no interleaver or an interleaver close to 0, the error made on the power margin
gets close to 1 dB. The error is the biggest for the case of poor correction. Because of
the tail of the distribution and the finite nature of the series studied, the better the
correction and the longer the interleaver, the greater the probability of having a small
error in estimating the minimum of the time series.

For both considered cases, the error gets extremely small and well under the system
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Figure 5.8.: Generated distribution and autocorrelation of scintillation using AnySim
compared to the target series.
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Figure 5.9.: Generated time series of coupled flux using AnySim compared to the
target series

Figure 5.10.: Generated distribution and autocorrelation of scintillation using AnySim
compared to the target series.
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margin (commonly a few dB, here 2 dB ) when the interleaver gets above 100 ms,
which is typically the range of interest.

Figure 5.11.: Estimated power margin using AnySim and machine learning metamod-
els compared to target one.

5.1.3. Extended ARMA: ARRC
As introduced in the beginning of this chapter, B. Picinbono showed [Pic10] the pos-
sibility of introducing random coefficients into the defining recurrent equations of
widely used ARMA models, thus generating random signals with the spectral proper-
ties of ARMA signals and an arbitrary marginal distribution. The new model is called
the ARMA with Random Coefficients (ARMARC) model.

In the following, we chose to study an ARRC (auto regressive with random coeffi-
cients) model, the autoregressive part of the ARMARC model, as well as the value of
the coefficients. An AR model alone can capture the linear dependence of a signal on
its own past values, which shall be sufficient to translate correctly the autocorrelation
function. The MARC (moving average with random coefficients) model can always be
implemented later if needed.

5.1.3.1. ARRC(5) & ARRC(4)

We base the first part of this section on the study of the coupling efficiency of the
poor AO correction case. In the course of the article [Pic10], several assumptions were
made. The first concerned the probability law of the white noise generator used in
the model studied, assuming that its probability density function was a symmetrical
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(or even) function. This symmetry is convenient as it leads to the nullity of all odd
moments associated with this PDF, and the same explicit or implicit assumption is
used in most published work as a way to simplify the calculations. However, this
symmetry condition is not valid for the representation of the coupled flux into the
SMF. Through analysis it appears that, as long as the regression vector a contains only
positive components ai , the symmetry condition is sufficient but not necessary.
Focusing on this case, we first need to determine the order of the ARRC model, as
well as the values of the coefficients. Multiple methods are proposed in literature,
but the most widely used is to compute the partial autocorrelation function (Partial
Autocorrelation Function (PACF)). The Box-Jenkins method [And77] indicates that
the order of the AR process can be determined by identifying the last significant spike
in the PACF plot. The lag corresponding to this spike represents the order of the AR
process. A significant spike is often set at ±2/

p
n, where n is the number of data points

(in our case n = 20000). According to Figure 5.12, the case of poor correction would
correspond to an AR(5) process.

Figure 5.12.: Partial autocorrelation function of the target (SAOST) time series for the
poor correction case.

The Yule-Walker equations are a set of equations that can be used to estimate the
coefficients of an AR process[Yul27; Wal31]. After determining the order of the process
and making sure the process is stationary (which is the case by construction), we
find the 5 coefficients of the AR process given in Table 5.1. When determining the
appropriate order for an AR process, it is important to consider the significance of
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Table 5.1.: AR(5) coefficients calculated on the of the target (SAOST) time series for the
poor correction case.

Coefficient a1 a2 a3 a4 a5

Value 2.889 -3.488 2.188 -0.682 0.075

the coefficients. In this case, the last coefficient is negligible compared to the rest,
which suggests that these lag have minimal impact on the current value of the time
series, even though it appeared to be non-negligible in the PACF. In these cases, it is
appropriate to consider a lower-order AR process. The coefficient of the associated
AR(4) process determined using Yule-Walker equations are given in Table 5.2.

Table 5.2.: AR(4) coefficients calculated on the of the target (SAOST) time series for the
poor correction case.

Coefficient a1 a2 a3 a4

Value 2.853 -3.342 1.937 -0.468

According to [Pic10], multiple conditions are required to ensure the validity of the
ARRC(4) process. First, in order to obtain a signal Xk with finite variance (stability
problem), the vector a must belong to a domain called stability domain, ensuring that
the roots of D(z), where D(z) = zr − (

a1zr−1 +a2zr−2 + . . .+ar
)
, are located inside the

unit circle. This is verified in our case where the roots of D(z) can be visualised in
Figure 5.13.
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Figure 5.13.: The roots of D(z) with the coefficients calculated in Table 5.2.

The second condition given in [Pic10] is that S =∑4
i=1 |ai | < 1. It is not respected

here, as S = 8.60. A method developed within the collaboration is exposed here. If the
sum S of the modulus of a1, a2, a3 and a4 exceeds 1, it is possible to perform a similar
partition as the one proposed in the equation 4 of the article using a larger interval. It
is sufficient to choose an interval [0, D] with 1 < D < S and partition it into five parts
with measures |a1|, |a2|, |a3|, |a4|, D −|a1|− |a2|− |a3|− |a4| .

The recursive process to generate the ARRC signal is then defined in the following
way:

Xk = ϵ1 A1Xk−1 +ϵ2 A2Xk−2 +ϵ3 A3Xk−3 +ϵ4 A4Xk−4 + A5Wk (5.3)

Ai are Bernoulli random variables (i.e. with two possible values: 0 and 1) that take
the value 1 with probabilities proportional to |a1|, |a2|, |a3|, |a4|, D −|a1|− |a2|− |a3|−
|a4| respectively, for i equal to 1, 2, 3, 4, or 5. ϵi = ai

|ai | is the sign of the coefficient i .
It is then straightforward to follow the demonstration from [Pic10] and verify that

the generator noise W and the signal X have the same marginal probability distribu-
tion, at least if the distribution of W is symmetric, as in [Pic10]. The non-symmetric
case is more complex to analyse, and currently, no satisfying results are being reported.
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Figure 5.14.: Time series of coupling efficiency generated using ARRC(4) method com-
pared to the target series for the poor correction case.

Figure 5.15.: Statistics of the time series of coupling efficiency generated using ARRC(4)
method compared to the target series for the poor correction case.

The series generated according to this method can be found in Figure 5.14 with the
associated statistics in Figure 5.15. As one can see, we make an overly large error on
the prediction of the autocorrelation function.

This might be due to the fact that the symmetry of the probability density function
seems necessary when the regression vector a contains components ai that are not all
of the same sign. In this situation, we can introduce two vectors a+ and a− to isolate
the positive and negative parts. Thus, the components of a+ are ai if ai ≥ 0 and 0
otherwise, and the same applies to a−. It was verified that, in this case, the PDFs of the
generated time series are those of the model generating noise W.

However, the way to combine a+ and a− opens up several options that can lead
to laborious calculations. This question of how well the ARRC(4) process could re-
produce the statistics of the coupling efficiency remains open at this stage. However
interesting this ARRC method initially seemed, especially regarding computational
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costs, we were led to to the same approximation as in the previous section (5.1.2).
This approximation considers a decreasing exponential autocorrelation function de-
fined by the sole parameter of the half-decorrelation time. The resulting change in
the description of the autocorrelation causes variation in the generation model. In
fact, whatever the series, if it has an exponential autocorrelation function it can be
described by an ARRC(1) process.

5.1.3.2. ARRC(1)

ARRC(1) means a time series X = (X0, X1, X2, ...) where Xk would depend only on Xk−1

and thus an autocorrelation function which would be equivalent to a decreasing
exponential function. Using equation 5.3 at order one:

Xn = Bn Xn−1 + (1−Bn)Wn (5.4)

where Wn is the white noise with the same marginal distribution as ρφ, Bn is a
Bernoulli random variable that takes the value 1 with probability a and 0 with proba-
bility 1−a, a being the ARRC(1) coefficient.

From the induction of equation 5.4 assuming X1 = W1, one can deduce that the
stationary distribution X and Wn have the same marginal distribution. Let us write
γ(k, a) the auto covariance function at lag k.

γ(k, a) =E(
(Xn −µ)(Xn−k −µ)

)
=E(Xn Xn−k )−µ2 (5.5)

where µ is the mathematical expectation of the stochastic process.

γ(0, a) = E(X 2
n)−µ2 =σ2 (5.6)

where σ2 is the variance of the stochastic process. We can calculate:

γ(1, a) =E(Xn Xn−1)−µ2

=E [aXn−1 + (1−a)Wn)Xn−1]−µ2

=aE(X 2
n−1)+ (1−a)E(Xn−1Wn)−µ2

=a
(
E(X 2

n−1)−µ2)
=σ2a

(5.7)

using the fact that Wn and Xn are independent, Wn being a white noise.
Using a standard mathematical induction, one can show that:

γ(k, a) =σ2a|k| (5.8)

Leading to

a = e
l n(0.5)

τhal f −cor r el ati on (5.9)
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with τhal f −cor r el ati on the half-correlation time, that can be easily determined using
the machine learning metamodels of the previous chapter.

Using this ARRC(1) model with the analytical expression of a, we generated the time
series of Figure 5.4 corresponding to the statistics of Figure 5.17.

Figure 5.16.: Time series of coupling efficiency generated using ARRC(1) method com-
pared to the target series for the poor correction case.

Figure 5.17.: Statistics of the time series of coupling efficiency generated using ARRC(1)
method compared to the target series for the poor correction case.

The marginal distribution is still accurate, even though it would need far more
points to converge due to the structure of the generation method. To mimic the target
(SAOST) series, only 4 000 points where used leading in a 10 seconds simulation.

The autocorrelation function fits better than in the ARRC(4) case.

Using ARRC(1) to generate series of ρφ and ρI and knowing σ2
χ, we can easily gener-

ate time series of fsm f . Using the same formalism as in the last section, we plotted
the statistics of fsm f generated from ARRC(1) and the machine learning metamodels
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for both, the poor and the good case of correction in Figure 5.18. Once again, the
marginal distribution did not converge but seems to accurately match the one of the
initial signal and the fit of the autocorrelation function is more convincing than in
AnySim cases.

Figure 5.18.: Generated distribution and autocorrelation of scintillation using ARRC(1)
compared to the target one.

Figure 5.19 shows the power margin depending on the interleaver size calculated
with ARRC(1) and compared to the ground truth (SAOST).

Results are similar to the ones given in Figure 5.11 for AnySim.
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Figure 5.19.: Power margin depending on the interleaver size calculated with ARRC(1)
compared to the ground truth.

Two alternative approaches have been proposed for generating ROP time series
from the evaluation of moments. These methods make it possible to evaluate power
margins with a very small error (below 1 dB) under a wide variety of conditions. This
makes it possible to control performance without requiring highly precise information
about the state of the channel in the medium term and thus is a crucial step in the
development of future operational systems. However, the use of only two profiles is
not sufficient to compare the accuracy in the determination of the power margin to
each of the model. This comparison will be carried out in depth in the next section
by showing the error on the power margin estimation for every time series of the
database.

5.2. Results
In the following, two cases are studied, our system requirements with an interleaver
size of 100 ms are constant. In one case, we look at a MODCOD 9/10 with a required
mutual information of 0.94, and in the other a MODCOD 3/10 with a required mutual
information of 0.12.

The two methods are compared on all times series in our database. The time series
are generated using the distributions provided by the machine learning models using
the moments as input.

5.2.1. Impact of the half-correlation time
The generation of random time series of 5 seconds with a 4 kH z sampling, i.e. 20.000
occurrences to ensure good statistical convergence, is very memory intensive. In this
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small section, we limited our simulation to 5.000 pairs of profiles randomly selected
in our database. The generation of random time series was performed two times with
AnySim, once using the half-correlation time computed using only r0, h̄, v̄ and σ2

χ

and once with the scintillation PSD added to the prediction of the half-correlation
time. The following results of power margin are given using our system requirement
with an interleaver size of 100 ms coupled to a MODCOD 9/10 with a required mutual
information of 0.94 and a MODCOD 3/10 with a required mutual information of 0.12.

Figure 5.20.: Distribution of power margin error using AnySim for MODCOD 3/10
(top) and 9/10 (bottom) - interleaver 100ms. In blue using the model with
r0, h̄, v̄ and σ2

χ in yellow when the PSD of scintillation is added.

In Figure 5.20 we can compare the probability density function of the power margin
error with or without the use of the PSD in the models. The power margin error is
calculated as the absolute value of the difference in the power margin error given by
SAOST and given after the generation of time series using AnySim. When the temporal
PSD of scintillation is added to the input (yellow in Figure 5.20), no significant im-
provement is observed, we even have a maximal error a bit higher in both MODCOD
cases, which might be attributed to the convergence error of the estimation due to
the limited length of the considered time series. In this specific case of a 100 ms
interleaver, significantly larger than the half-correlation time (ranging in the 10th of
milliseconds), a better prediction of the half-correlation does not translate into better
prediction of the power margin.This confirms the relevance of the interleaving process.

The same results have been obtained using ARRC(1), where the use of the scintil-
lation PSD does not improve the evaluation of the power margin. This means that,
in the system considered here, the use of an additional instrument to measure the
scintillation spectrum would only bring about extra complexity without visible im-
provements. In the following, we don’t take into account such instrument and results
of power margin are calculated exclusively with r0, h̄, v̄ and σ2

χ.
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5.2.2. Comparison between AnySim and ARRC(1)
Running both models on each MODCOD case for the entire database shows the differ-
ence in terms of complexity in the models. We generated the 37059 times series of 10
seconds each sampled at 4 kH z using the AO parameters of our main system, ie. 10
corrected radial order and an AO frequency of 2 kH z. While it takes few minutes to
generate this series using ARRC(1), ARCA requires more than 24 hours to run for each
case of MODCOD, using a single processor.

The algorithm used to determine the power margin from the generated time series
detailed in Chapter 3 takes about 8 hours on a single core CPU for each model and
MODCOD case. However, moving the operations on a standard GPU with 8 Gb of
VRAM enabled us to reduce this time to only a few minutes. The computation of
the power margin was done with a resolution of 0.1 dB, hence the large bars on the
histograms of Figure 5.23.

114



5. Predicting the Link Availability – 5.2. Results

Figure 5.21.: Distribution of the estimated power margin with time series generation
versus the distribution of the target power margin.
Upper left: ARRC(1) MODCOD 9/10; Upper right: AnySim MODCOD
9/10; Lower left: ARRC(1) MODCOD 3/10; Lower right: AnySim MOD-
COD 3/10

From Figure 5.22 one can see that the score is approximately the same with AnySim
showing a better score in the case of low redundancy in the correction code (high
MODCOD) and ARRC(1) a better score in the other case. Based on this Figure, it is
hard to tell if a model should be privileged regarding accuracy only. When taking
computation time into account, ARRC is the clear winner.

The number of false-positive and false-negative on the link availability are particu-
larly interesting as they are representative of the accuracy of our availability model.
Focusing on the higher MODCOD case (in the MODCOD 3/10 case we don’t encounter
link outage), one can see that for both models there is a non-negligible amount of
false negatives on the availability of the link ( −1 in ordinate associated to a positive
value in abscissa). There are 32 cases in the database where the link is not available
when our model detects 74 occurences of these interruptions (both for ARRC(1) and
AnySim) leading to a total of 42 false negatives. This means that 0.11% ( 42

37059−32 ) of the
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time, we could have had a viable link, but our model returned information about an
unavailable ground station. This unfortunate result must be put into perspective with
the fact that in these 0.11% of cases, the power margin is less than 1dB, which, in an
operational case where large margins are taken, would have led us to choose another
station anyways.

There appear to be no false-positives. The lack of false positive is very good for an
industrial use of the models. It would be harmful to handover the link to a station
thinking think is available but is not in reality causing an unexpected shortage.

Figure 5.22.: Generated vs real power margin with R2 score for each case
Upper left: ARRC(1) MODCOD 9/10; Upper right: AnySim MODCOD
9/10; Lower left: ARRC(1) MODCOD 3/10; Lower right: AnySim MOD-
COD 3/10

Figure 4.26 shows the distribution of the error made by each of the models on the
two MODCOD scenario with the given 100 ms interleaver. It can be seen that both
models behave very similarly, however, with a longer distribution tail on the error
made by ARRC(1). This is probably due to the fact that with the ARRC method, the
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probability density does not converge with 4000 points (Figure 5.17). A larger number
of points could be considered, but this would imply a more computationally expensive
estimation of the power margin. A compromise has to be found and this number of
points is satisfactory in view of the 2dB system margins.

Figure 5.23.: Distribution of the absolute error on the power margin.
Upper left: ARRC(1) MODCOD 9/10; Upper right: AnySim MODCOD
9/10; Lower left: ARRC(1) MODCOD 3/10; Lower right: AnySim MOD-
COD 3/10

5.2.3. Sensitivity analysis
A sensitivity analysis was performed to find which of the inputs has the biggest impact
on the power margin estimation.
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Figure 5.24.: Sensitivity analysis for each of the studied cases

In Figure 5.24 it can be seen that, regardless of the case, σ2
χ has the greatest impact

on the predicted value of the power margin, accounting for more than 40% of the
variance according to Shapley values. This result was expected as the value of σ2

χ

intervenes directly in the definition of the optical power received with the exp
(
−σ2

χ

)
factor of fsm f . The total Sobol’ indices presented here do not account for effects due
to the correlations among variables, which explains why they are quite low.

r0 has also a strong impact, it intervenes in every contributor of the adaptive optics
error budget considered here.

If a trade-off has to be made in the instrument that will be chosen for this applica-
tion, the priority should be given to an accurate measurement of σ2

χ and r0. h̄, which
has the least impact here, could on the other hand be approximately measured, or,
even set to a constant average value. However, this is only true for this specific case
of a downlink GEO case with our 10 radial orders, 2 kHz, AO system. h̄ will probably
have a much bigger impact on the uplink case, as the anisoplanatic error will become
an important term in the error budget. For a LEO downlink case the temporal error
will become the predominant error term due to a big slew rate, then the impact of v̄
should appear significantly bigger.

Throughout this chapter, two approaches have been developed to take account
of the impact of interleaving in the process of making data transmission more reli-
able. These two approaches make it possible to generate ROP time series from the
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metamodels developed in Chapter 4. The errors obtained on the power margin are
of the order of a dB in the wide variety of cases studied. These approaches make it
possible to obtain a representative performance evaluation of a set of profiles in a few
milliseconds using ARRC to a few seconds using AnySim.
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All the study presented in chapter 4 and 5 is based on the sole knowledge of r0, h̄, v̄
and σ2

χ.
So far, we considered error-free measurements of these moments while in practice

there are numerous sources of error on their measurements [Boo17]. On top of ne-
glecting measurement noise, we only considered, in the simulation of the moments
measurement, an instrument with an infinitely small spectral width. These errors are
to be taken into account for the deployment of the models in operational conditions,
but have not been studied in the scope of this PhD due to time constraints. Nonethe-
less, we were able to study the impact of a deviation between the line of sight of the
instrument and the one of the telescope.

6.1. Impact of deviation in the line of sight
Instruments such as the one produced by Miratlas will typically measure the moments
using an array of sensors at a the elevation angle of a bright star during night and
the sun during daytime. On the other hand, the typical mission scenario for the GEO
satellite and the Tenerife site where the ESA OGS is located implies an elevation of 30◦.
The difference between the line of sight of the OGS and the one of the instrument is, to
our understanding, the main source of error on the moments in these conditions. An
expeditious study was conducted to estimate this error and it’s impact on the power
margin estimation.
So far, integrated parameters were given using the Durham University database. There,
profiles were taken at a zenith angle and stretched to simulate a measure at 30◦. In
the following, we create composite profiles to calculate the integrated parameters as
seen by the ground station. This is done by projecting section of profiles on the line of
sight, as illustrated by figure 6.1.

Figure 6.1.: Method for the creation of composite profiles
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r0 σ2
χ v̄ h̄

mean std max mean std max mean std max mean std max
angle

10◦ 0.849 1.281 16.483 4.519 5.380 89.031 2.250 2.792 29.658 3.926 4.201 47.664
20◦ 0.375 0.735 12.530 2.132 2.460 33.269 1.023 1.258 11.521 1.916 1.989 19.282
30◦ 0.295 0.727 11.220 1.711 2.192 32.297 0.845 1.075 9.191 1.544 1.781 18.623

Table 6.1.: Error in % made on the moments for different elevations

The distance between two profiles Pn and Pn+1 in metres is calculated from the coor-
dinates and written d(Pn ,Pn+1). For each profile, a section [Hn−1, Hn] corresponding
to the intersection with the line of sight is selected with

Hn = Hn−1 +d(Pn ,Pn−1)∗ tan(elevation). (6.1)

The final profile is the concatenation of the multiple projected portions Pn [Hn−1,Hn ]
si n(elevation) .

Figure 6.2.: Composite profile creation for a 30◦ elevation

Figure 6.2 illustrates, for the first date, the creation of a composite C 2
n profile (the

methodology is similar for wind profiles) for a 30◦ elevation. In this case, only 3 profiles
are being used due to the 0.3◦ spatial resolution of the database, while an elevation of
20◦ brings into play 5 profiles and one of 10◦ 8 profiles.

6.2. Error on the moments
For each case, the composite profile is created using a starting point in the center
of the ECMWF simulation at the exact point of ESA’s OGS. The composite profile is
created assuming a line of sight that would be orientated towards the east. There is
one composite profile per time sample, that is, 923 profiles. The statistics of relative
error on the moments coming from these profiles compared to a measurement done
at the zenith angle are given in table 6.1 in %. The distribution of the error on each of
the integrated parameters for the different elevation angles is visible in figure 6.3.
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Figure 6.3.: Distribution of the error on each of the moments for different elevations
(in ◦)

The farther the turbulence layer, the higher the impact from a difference in elevation.
While the instrument and the telescope see mostly the same ground layer, they see
distant layers that are far apart and potentially fully uncorrelated. This explains why
the error is the largest for σ2

χ and smallest for r0. As explained in chapter 4, while r0

accounts mostly for the ground layer, the intensity variance caused by atmospheric
turbulence is mostly impacted by distant layers.
Due to the construction method, no matter the elevation, the ground layer is the same
as we don’t benefit from sufficiently fine spatial sampling. This may represent a strong
limitation in the method by underestimating the error at the lowest order moments
(typically r0). Further investigation should be conducted using a database with much
smaller spatial sampling, or, using two instruments with different lines of sight. Such
work is being conducted at Durham University and initial results are presented in
[Wes+23].

The goal being to present a methodology and giving a first estimation of the propa-
gation of error on the moments in the determination of the power margin, we consider
the orders of magnitude to be sufficient and proceed with the values of figure 6.3.
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False Positive False Negative True Positive True Negative Sensitivity Specificity Precision
Elevation

10° 5.31 4.01 34.99 55.69 89.72 91.30 86.83
20° 0.87 0.54 94.04 4.55 99.43 84.00 99.09
30° 0.11 0.00 99.57 0.33 100.00 75.00 99.89

Table 6.2.: Main elements of the confusion matrix given in % at different elevations

6.3. Error on the associated power margin
In the computation of the moments of 6.1, the moments obtained along the true line
of sight are compared to the moments obtained by a transformation of a measurement
at the zenith angle. Considering the measurement along the line of sight as the truth
regarding the availability of link power, table 6.2 gives a good idea of what can be
expected using an instrument that would have a zenith line of sight combined with
our models. In the event that the link is available, the outcome is considered positive
and negative if the link is interrupted. A false positive event describes the case of a link
being determined as available using the moments measured at a zenith angle but that
is not considering the true line of sight. The opposite case is called a false negative.

The sensitivity (True Positive Rate or Recall) measures the proportion of actual
positive cases that are correctly identified by the model.

Sensitivity = True Positives

True Positives+False Negatives

The specificity (True Negative Rate) measures the proportion of actual negative
cases that are correctly identified by the model.

Specificity = True Negatives

True Negatives+False Positives

The precision (Positive Predictive Value) measures the proportion of positive cases
predicted that are correctly identified.

Precision = True Positives

True Positives+False Positives

From table 6.2, we can confidently say that, as expected, when the difference be-
tween the real line of sight and the instruments line of sight increases, the sensitivity
increases. We even obtain a 100% sensitivity at a 60◦ difference (30◦) elevation as all
actual positive cases are identified correctly. The same argument however is not valid
for the specificity, which appears to be decreasing when our model should be gaining
in accuracy. This is due to the fact that, at a 10◦ elevation, the link is not available in
65% of the cases (600 cases out of the 923) with this number dropping to 0.43% (4
cases) at a 30◦ elevation. The 49 false positive values of the 10◦ case consequently
impact less the specificity than the one in the 30◦ case.
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Suppose a system blindly following our assessment and establishing a link whenever
it is said to be available by our model. It would result in a failure every-time we
encounter a false positive. This rate of failure can be given as the number of false
positive over the total number of positive assessed values. In other words, the system
would work successfully at a rate that is no other than the precision given in table 6.2.
This precision is insufficient in the case of a 10◦ elevation in an operational situation,
yet, for a 30◦ elevation the scenario of a different line of sight between the instrument
and the satellite can be considered with an availability guaranteed in 99.9% of the
time.

The result has to be put in perspective with the vastly resilient AO system considered
which allows for some discrepancy in the moments and a study database with very
little set of profiles that lead to link downtime.

Focusing now on the link power margin (only true positive cases are considered
where a power margin can be calculated), the distribution of absolute error is visible
in Figure 6.4.

Figure 6.4.: Absolute error on the power margin for the true positive cases for the
different elevation angles

The absolute error on the power margin is kept relatively low especially for the case
of interest in our study of a 30◦ elevation with a maximum error of 1dB , which is about
the same as the error made by our machine learning model with series generation.
As explained in the previous section, the error on some of the low order moments is
underestimated using this description with composite profile, but overall our resilient
AO combined with the low error shown here reassures us about the ability to deter-
mine the availability of the link using unsophisticated instruments.
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Figure 6.5.: Sensitivity analysis on the absolute error on the power margin as a function
of the relative error on the moments for different elevations

Figure 6.5 shows 3 sensitivity analyses for the 3 elevation angles considered. These
sensitivity analyses provide the sensitivity of the absolute link power margin error to
the relative error made on the description of each of the moments. The vertical bars
correspond to ± the variance of the sensitivity indices. No single variable appears to
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dominate the others, regardless of the elevation angle. This means that an error of x%
on one or another variable will not significantly impact the results. The main factor
that will impact the error on the power margin is thus the amplitude of the relative
error on the moments that is, according to figure 4.26, predominant for σ2

χ and h̄. If
one wants to lower the error on the power margin, the focus should be on measuring
these two quantities along the line of sight prior to the rest.

It should be pointed out one final time that this conclusion is based on a discrete
database and a partial representation of the spatial correlation of turbulence profiles
(especially at ground level). The results need to be fleshed out on a larger number
of data from measurements or from a finer simulation database of ground layer
turbulence structures (e.g. Large Eddy Simulation (LES) simulations).
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In chapter 4 and 5, I demonstrated the possibility to assess the availability of a free
space optical link using a small set of integrated parameters. The forecasting capacity
of the turbulence profiles are already exploited on astronomical observatories to plan
nighttime observations[OS18]. It raises the perspective of a real forecasting capacity
of AO corrected FSO systems if the daytime forecasting challenge is addressed. We
investigate the potential use of ML approaches to face this challenge.

7.1. Database construction
In chapter 4 and 5, I presented a way to assess the availability of a free-space optical
link using a small set of integrated parameters. For this purpose, we used a database
of atmospheric profiles provided by Durham university. The general circulation model
used (ECMWF) has a spatial resolution of 0.3° along latitude and longitude (a spatial
resolution of ≈ 30km around Tenerife) and provides an hourly forecast. This was
appropriate to build the required database to feed the statistical analysis.

In the following section, we aim at predicting the temporal evolution of the small set
of integrated parameters identified earlier in a near future, typically a few hours. The
database used so far is evidently not appropriate for this application, as the temporal
sampling is of one hour.

To overcome this need for a much more temporal-resolved database, we worked
with WRF where the temporal resolution can be as low as 5 minutes. There are several
possibilities to assess the C 2

n profiles from WRF database, the main challenge being to
properly parameterise the WRF output to ensure the relevance of the calculated quan-
tities, particularly in the boundary layer. We choose to investigate two approaches
that are summed up in what follows. The first approach, based on the state of the art
opened literature and Dewan’s strategy to explicit the dependence of C 2

n to the outer
scale profile, will be called "Dewan’s approach", this strategy has been implemented
at ONERA, in collaboration with the Electromagnetism and Radar department that
provided WRF outputs; the second one, based on the exploitation of the turbulent
kinetic energy (TKE) will be denoted the "TKE approach", this strategy has been im-
plemented by F. Quatresooz (Louvain University) and the results were provided to
ONERA in the framework of a scientific collaboration.

7.1.1. Geographical location
C 2

n profile estimation from WRF outputs has been performed using the two strate-
gies previously cited. To estimate the reliability of the results, we selected a location
and a time period for which we had access to local integrated parameter measure-
ments. Four temporal periods were selected, April, July, August and October of 2021 to
cover different seasons. Simulations were done for the Teide observatory (28.30228,
-16.51032) at altitude 2390 m where an instrument measuring integrated parameters
has been installed by Miratlas.
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7.1.2. WRF simulations
The Weather Research and Forecasting (WRF) model is a prominent numerical weather
prediction system that is used to simulate atmospheric processes. Operating on a
grid-based framework, WRF employs sophisticated numerical methods to charac-
terize interactions within the atmosphere. Simulations involve data initialisation,
integration of governing equations, and post-processing. Key parameters include
grid resolution, time step, initial and boundary conditions, physics parameterizations
(microphysics, convection, radiation, etc.), land surface and ocean models, nested
domains for localised refinement, and output settings. The versatility of WRF requires
skillful parameter selection to achieve accurate results, making it indispensable for
weather research and prediction.

In the data provided by the University of Louvain [Qua+23b], the WRF configuration
makes use of the following physical schemes: WSM6 [HL06] for microphysics, Tiedtke
[ZWH11] for cumulus physics (only in domain d01), Dudhia [Dud89] and RRTM
[Mla+97] for short-wave and long-wave radiations, revised MM5 [Jim+12] for the
surface layer, and MYNN 2.5 [NN09] for planetary boundary layer physics. Three
nested domains, detailed in Table 7.1, enable one to reach a horizontal resolution
of 1 km, while 80 levels are used vertically. These levels are distributed between the
ground and the upper pressure of the atmosphere, set to 5000 Pa, with a smaller
level spacing close to the ground. For each day, simulations start at 18h00 the day
before, ensuring a lead time of 6 hours. Then, outputs are saved every 5 minutes
above the location of interest, for the full day (i.e., from 00h00 to 00h00 the next day).
Atmospheric parameters outputs simulated with WRF at ONERA and in Louvain are

Domain
Grid resolution

(km)
Number of
grid points

Domain size
(km)

Number of
vertical levels

d01 9 112×112 1008×1008 80
d02 3 112×112 336×336 80
d03 1 112×112 112×112 80

Table 7.1.: Grid parameters from WRF simulations.

plotted on figure 7.1. Wind profiles are plotted on figure 7.2. These plots illustrate
the very comparable parametrisation of WRF for the two approaches for 4 random
occurrences. These profiles are very similar and comfort the accuracy of our WRF
database.

7.1.3. C 2
n modelling

7.1.3.1. Dewan’s approach

In order to assess the C 2
n profile from atmospheric turbulent parameters this approach

consists in exploiting traditional Tatarskii modelisation [Tat71] f equation 1.17 with
the outer scale profile calculated following Dewan’s description [Dew+93] that we
remind is defined as:
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Figure 7.1.: Comparison between the temperature profile extracted from the dataset
using TKE (orange) and from the one using Dewan’s (blue) for 4 random
occurences

Figure 7.2.: Comparison between the wind profiles extracted from from the dataset
using TKE (orange) and from the one using Dewan’s (blue) for 4 random
occurrences. Full line zonal and dashed line meridional
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L4/3
0 = 101.64+42.0S(Troposphere)

L4/3
0 = 100.506+50.0S(Stratosphere)

(7.1)

where S the wind shear is S =
√

dV 2
x

d z + dV 2
y

d z .

7.1.3.2. Turbulent Kinetic Energy approach

A recent alternative has been proposed by Florian Quatresooz [Qua+23a]. The idea
consists in exploiting C 2

n model, Astro-Meso-Nh, presented in [MVB99]. This model
is also based on the Gladstone’s relationship linking the refractive index structure
parameter to the temperature structure parameter introduced in equation 1.15. The
chosen C 2

T model is the one of Masciadri given in equation 1.16. The outer scale
depends on the turbulent kinetic energy e rather than the wind shear. The model is
given by:

L =
√√√√ 2e

g
θv

∂θv
∂z

(7.2)

where e is the Turbulent Kinetic Energy (TKE), g is the gravity of Earth and θv is the
virtual potential temperature obtained from θv = θ(1+0.61r ) for unsaturated air with
mixing ratio r of water vapor.

TKE is a fundamental concept in fluid dynamics that quantifies the mean kinetic
energy associated with the chaotic motion of fluid particles in turbulent flows. It
characterises the energy contained within eddies, expressed as the root-mean-square
velocity fluctuations.

The use of a TKE-based model offers a more comprehensive framework for describ-
ing the C 2

n . Unlike the Dewan approach that solely rely on wind shear, the TKE-based
model takes into account the intricate interplay between velocity fluctuations, temper-
ature variations, and turbulent eddies. By capturing the intricate details of turbulence
dynamics, it should be more appropriate to describe optical turbulence near the
ground in the boundary layer.

As seen in Figure 7.3, depending on the method used, the C 2
n profiles differ strongly

by multiple orders of magnitude.
As our study focuses mainly on integrated parameters, we compared them for the

two models in figure 7.4. Each graph represents the average and the confidence
interval of the given integrated parameter depending on the time of the day for the
first 14 days of April 2021. The orange curves are obtained from the TKE modelisation
and the blue ones from Dewan’s. All calculations have been done for a zenith angle
at 550 nm. The most consequential difference between the two models. Where the
Dewan’s approach gives equivalent moments at all times of day, with no variability
from day to day, the data obtained using the TKE represents the expected diurnal cycle
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Figure 7.3.: Comparison between zenital C 2
n profile extracted from TKE and from

Dewan approach for 4 random occurences
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extremely well, with a wide range of values whatever the parameter observed.
The diurnal cycle is a well-known cycle caused by differences in air and soil heating

between night and day [SS13], and even at different times of day. The greater the
temperature difference between the ground and air or between different air masses,
the greater the force of the turbulence. This is particularly visible on the orange curves
where the values of r0, τ0 and θ0 are at their minimum around 2pm (i.e. 12pm solar
time) and where the value of σ2

χ, the variance of log-amplitude, is at its maximum at
the same time.

Figure 7.4.: Comparison between the averaged moments profile extracted from the
TKE approach (orange) and from Dewan’s (bleu) for an zenith angle mea-
surement at 550 nm

The lack of variability in the moment calculated with the wind shear based model
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gives us low confidence in its ability to reproduce real world conditions, especially
when the TKE based model is reproducing the highly expected temporal cycle. In the
following, all the prediction work is thus based on C 2

n profiles generated for the TKE
outer scale model with WRF data from the University of Louvain.

Thorough validation and calibration against real on-site measurements where con-
ducted in the next section to assess the reliability of the model on the model for
practical applications.

7.2. Comparison to on site measurements
On-site measurements were provided by Miratlas through an instrument deployed at
the Teide observatory. Miratlas designs, manufactures and operates the Integrated Sky
Monitor (ISM), a device monitoring the optical atmospheric conditions in a compact,
rugged, and carrier grade package. The ISM array of sensors visible in Figure 7.5,
provides all-sky images both in the visible and thermal range along with measure-
ments of the Fried parameter by day and night, incoming integrated solar energy, sky
brightness in the visible as well as in the telecom bands, integrated water vapor and
other relevant meteorological parameters. At Teide, the instrument is positioned on
a 7 metre high tower to limit the sensitivity to the most intense ground phenomena.
During year 2021, r0 was measured only during day time due to a failure of the night
time instrument.

However, since the systems dedicated to Free Space Optics will have to cover all
the turbulence conditions likely to be encountered, they are designed for demanding
turbulence conditions, which almost always occur during the day. In this respect,
the database supplied by Miratlas provides representative measurements, as it covers
daytime conditions.

Figure 7.5.: Miratlas Integrated Sky Monitor.

First step of validation of Louvain’s WRF data has been to look at the meteorological
parameters on the ground level.
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Figure 7.6.: Comparison of the temperature and humidity on the ground level ob-
tained through WRF (orange) and measured through the local meteoro-
logical station (blue)

As we can see on figure 7.6, we are confident in Louvain’s WRF simulation. The
trend is well represented, here through the month of April, but similar comparisons
are obtained for the other months. Nevertheless, a systematic error appears on the
simulation of the ground layer temperature using WRF, this could be due either to the
height of the first layer not being extremely accurate or due to the fact that the nature
of the ground is not accounted for in our simulations.

The high frequency variation in temperature or relative humidity over short time
scales is not accurately described, this is even more visible when comparing the r0

values in April as we did in Figure 7.7. Miratlas’ Fried parameter is measured only
during day time but it is enough to see that WRF at best gives an average value of
the Fried parameter over a couple of hours but does not translate the high frequency
variability.
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Figure 7.7.: Comparison of the r0 obtained through WRF (orange) and measured
through the local meteorological station (blue)

The reasons are numerous:

• WRF simulations are conducted on a grid with a large spatial resolution com-
pared to the local variations in atmospheric parameters. This is particularity
true for fine-scale processes such as optical turbulence parameters that have,
close to the ground, an outer scale of a few metres.

• WRF uses parametrisation schemes to simulate the processes at unresolved
scales like turbulence and boundary layer interactions, which are the processes
contributing to large-scale variability. Nonetheless, these parametrisation schemes
are only statistical models.

• The region being simulated presents complex terrain and heterogeneous land,
which leads to challenges in accurately representing local atmospheric condi-
tions that cannot be solved using only WRF.

• The 5 minutes temporal resolution of WRF involves temporal averaging, which
smooths out high-frequency variability, while the local measurement consists of
the acquisition of a point every minute without any averaging being done.

Figure 7.8 shows the same comparison but with Miratlas’ r0 averaged over 20 min-
utes, 20 minutes being a characteristic time for programming the handover from one
ground station to another. With this figure, the similarity between the two data sets
starts to emerge. Nonetheless, it remains clear that the WRF simulation only translates
the general trend over a few hours.
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Figure 7.8.: Comparison of the r0 obtained through WRF (orange) and the average
value over 20 minutes of r0 measured through the local meteorological
station (blue)

Although we might assume WRF will be suitable to predict the trend of the r0 and
the other moments, having a clear understanding of the high frequency variation
observed in the on site measurements is important to put into perspective the validity
of our approach.

In figure 7.9 we intend to characterise those small variations. For doing so, we
subtract a 20 min moving average from the raw data. The time series obtained is
shown for the first 6 days of April. This "noise" is not constant over time and not white.
Through Figure 7.10, we can see however that it is strongly uncorrelated and has a
more or less Gaussian distribution. We also see that the variation of r0 to the average
values is usually less than 10 centimetres with a maximum value of 40 centimetres.
This is a variation of up to 200% of the average r0 value.
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Figure 7.9.: r0 Miratlas after subtraction of a 20 min width sliding average (Trend)
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Figure 7.10.: Distribution and autocorrelation of the noise in the r0 Miratlas without
the trend (20 minutes averaged)

Even so, these greatest variations are towards a bigger r0 which means a reduction
in the turbulence strength and a better link availability. We are only interested in the
negative variation of r0 as they are the ones that will compromise our estimate of the
availability of the link. These variations can be up to 20 centimetres and will most
certainly impact the link in a way that will not be anticipated using WRF and the deep
learning model for temporal prediction.

This is an elementary characterisation, and the approach should be systematised
by studying both the impact of a sliding window of variable size and the temporal
frequency content of the r0 measurements in order to identify the duration for which
the fluctuations in the Fried parameter measured are fully uncorrelated.

Also, one should note that if the amplitude of the variations remain under control
and the AO (or system) is sized with a sufficient margin, a high level of short-term
accuracy might not be necessary. Nonetheless, a reliable prediction of short term
behaviour would benefit the optimization and the operation of the AO (either its sizing
in the design phase, or its operation in the operational phase).

The macroscopic analysis we carried out was only using data from the Tenerife
observatory, an astronomical site. However, future ground stations will be set up in
peri-urban environments (close to network nodes). As far as short-term prediction is
concerned, it will be for the most part only linked to the characteristics of the siting
site. The adjustment to short-term turbulence conditions should therefore preferably
be carried out on representative data, such as that which will be produced by the
FEELINGS ground station before the end of 2023, located 30 km south of Toulouse, on
the ONERA site at Fauga-MAuzac.

This work will be the subject of a follow-up to the thesis currently being prepared
(post-doc proposed).
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WRF simulations are able to capture the larger-scale trends and patterns in the
atmospheric data. They give us an idea of the evolution of each layer of the atmo-
sphere for kilometres around the observation point. Due to their nature, they are not
exceptionally site-dependent and shall easily be generalised to all ground stations.

These considerations led us to continue the prediction work on WRF data only, for
exploratory purposes and with the aim of developing interesting models for forecasting
over mid-term time periods.

7.3. Use of machine learning for temporal
prediction

The work presented in the following has, for the most part, been conducted by Alex
Poiron, an intern who under my supervision spent 6 months at ONERA.

7.3.1. Method
The first trial for the prediction of the integrated parameters of turbulence has been
carried out with simple machine learning models to understand what it takes to predict
the r0 on different time scales. Based on recent papers [Raf+22][BM19][Li+23][MMT20]
[CLB21][THH18][DDB20][Liu+21] on this exact topic, we were first led to test a basic
ARIMA model detailed in 3.3.1 .
In [Li+23] an enhanced model was proposed based on the use of variational mode
decomposition (VMD). Mode decomposition techniques such as Seasonal Decom-
position of Time Series (STL) or Empirical Mode Decomposition (EMD) can typically
be used to decompose a time series into its underlying components, such as trend,
seasonal, and residual components. This decomposition often helps to better un-
derstand the underlying patterns and fluctuations present in time series, which is
useful for identifying seasonality, trends, or other non-stationary behaviours that
might influence the choice of ARIMA parameters.

The VMD emerges as an innovative signal decomposition technique, contrasting
with EMD. It introduces a distinct paradigm for signal decomposition augmenting
EMD’s capabilities and addressing its limitations [DZ14]. While EMD recursively
identifies extrema and envelopes to isolate signal modes, VMD adopts a variational
approach, enforcing specific bandwidth attributes. This optimization-based method
refines modes iteratively through Wiener filtering and spectral center frequency up-
dates via an ADMM (Alternating Direction Method of Multipliers) algorithm. VMD’s
emphasis on prescribed frequency traits leads to enhanced tone detection, separation,
and noise robustness relative to EMD.
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Later on, two models using deep neural network temporal prediction are also used,
N-BEATS and N-HITS presented in 3.3.3.1 and 3.3.3.2.

In the following, to evaluate the performance of our prediction models, two metrics
are used: MAE and RMSE.

The MAE measures the average absolute difference between the predicted values
and the actual values. It is defined by the formula:

MAE = 1

n

n∑
i=1

∣∣yi − ŷi
∣∣ (7.3)

where:

n : number of data points

yi : actual value of the target variable for the i -th data point

ŷi : predicted value of the target variable for the i -th data point

The MAE is advantageous because of its simplicity and easy interpretability. It pro-
vides a straightforward measure of the average prediction error and is less sensitive to
outliers compared to RMSE. This makes MAE particularly suitable when outliers are
present in the data.

The RMSE on the other hand is a widely used metric that calculates the square root
of the average of the squared differences between the predicted values and the actual
values:

RMSE =
√

1

n

n∑
i=1

(
yi − ŷi

)2 (7.4)

The RMSE is advantageous because it penalises larger errors more heavily than
smaller errors. It thus provide a better indication of the model’s performance when
dealing with larger deviations between predicted and actual values. Nonetheless, it is
more sensitive to outliers compared to MAE.

The training process is always the same. Each month is separated into 2 times 15
days, the first being used as a training set for the models, and the second being used
as validation set. It was determined that the prediction gives the best results for an
input time series of the model of 5 to 7 days. All parameters were fine tuned using
Optuna, a framework for hyperparameter optimization in machine learning. It acts
as a grid search on the hyperparameters of the models by iteratively trying different
values and keeping the ones that perform the best.
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7.3.2. Results

7.3.3. Arima
Taking the example of a model trained on 12 days of data and validated on the next 2
days, we obtain the results shown in Figure 7.11. The first mode of the diurnal cycle is
represented, but soon the prediction converges towards a mean value.
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Figure 7.11.: Prediction of an ARIMA model for r0 prediction, trained on the first 12
days of April WRF data and validated on the next 2 days
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Figure 7.12.: ARIMA model on each mode of the decomposition proposed by [Li+23]
for r0 prediction trained on the first 12 days of April WRF data and vali-
dated on the next 2 days

Results obtained with VMD decomposition on the same test example presented on
figure 7.12 show a huge improvement in ability to predict the forthcoming r0 up to two
days ahead, due to the very periodic scheme of this dataset. The results of the VMD
and the prediction of each of the modes can be seen on the left figure. The number of
modes on which to base the prediction is chosen as the number of modes that share a
correlation coefficient with the original time series of more than 0.2. Doing this, we
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make sure all the relevant modes are being accounted for while limiting the compu-
tation to only those modes. On the example of figure 7.12, this corresponds to 5 modes.

Figure 7.13 shows the two metrics as a function of time in the prediction of r0 using
ARIMA + VMD for 10 independent predictions in the month of April. The black bars
show the best and worst score obtained over the 10 predictions. The value of the score
is contained below 0.05 with both metrics for about 20 points (i.e. 100 minutes) but
then quickly diverges towards larger values with a large variability depending on the
case.
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Figure 7.13.: Scores on the prediction of r0 as a function of time with associated error
(April)

This result and the same result for the prediction of the other moments will be the
baseline of upcoming prediction methods. What has been done here will also be done
for different months, giving us an indication of the versatility of our models in front of
different atmospheric conditions.

7.3.4. Deep neural network for temporal prediction
While being able to reproduce the results of [Li+23] purely on WRF data already brings
our work to the state of the art in optical turbulence prediction, we explored the
general state of the art in time series forecasting with the use of deep neural network
specialised for this task that are N-BEATS and N-HITS presented in 3.3.3.1 and 3.3.3.2.
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The best results were obtained with N-BEATS while Neural Hierarchical Interpola-
tion for Time Series Forecasting (N-HITS) is usually more suitable for long trends and
requires a more complex parametrisation. Figures 7.14 and 7.15 show four relevant
examples of the kind of probabilistic prediction obtained using N-BEATS. For each
of these cases, we have applied quantile regression with quantiles corresponding to
a 95% confidence interval. Conformal predictions methods are quite new for uncer-
tainty quantification and it would be interesting to compare the associated confidence
intervals with our quantile regression ones, all information are to be found in Section
3.3.3.3.
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Figure 7.14.: Two examples of prediction of r0 over one day using N-BEATS for July
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Figure 7.15.: Two examples of prediction of r0 over one day using N-BEATS for April

The model visually gives impressive prediction but is still basic as it only uses
moments from the past 7 days to predict the upcoming ones. This results in good
trend prediction, but the model would not be able to anticipate unexpected variation
due for example to high ground turbulence (sudden change in temperature or wind
speed).
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7.4. Introduction of covariates in the deep learning
models

One way to improve the prediction efficiency is through the use of past covariate.
Past covariates are time series that are known at the time of prediction and can be
used to improve the accuracy of deep learning models. For example, adding the
measurement of temperature or wind speed to the input time series of r0 would allow
the model to learn the relationship between the past meteorological condition and
the future r0, which could improve the precision of the meteorological conditions and
the predictions.

There are a few reasons why using past covariates can improve the accuracy of deep
learning models for time series prediction. First, past covariates can help capture the
underlying trends and seasonality of the time series. Second, they help reduce the
noise in the time series. This is important because noise can make it difficult for deep
learning models to learn the underlying patterns in the data. Using past covariates,
the model can filter out some of the noise and focus on the more important patterns.
Third, past covariates can help to prevent overfitting, a phenomenon that occurs when
a model learns the training data too well and is unable to generalise to new data. By
using past covariates, the model is forced to learn the underlying patterns in the data.

Looking at correlations between the moment of interests and the meteorological
data available in WRF simulations, we selected two covariates. Temperature at a
ground level, that can be easily measured by any meteorological station, and the
ground TKE, as it is directly related to the intensity of the turbulence close to the
ground, as illustrated by the impact of the TKE on the ground C 2

n . Instruments can
also be used for this purpose; for example, an ultrasonic anemometer combined with
an infrared gas analyser can determine wind speed, as well as fluctuations in wind
speed that contribute to TKE [FV92]; it also allows one to measure the exchange of
mass, momentum, and energy between the Earth’s surface and the atmosphere pro-
viding information about turbulent fluxes and thus TKE.

The use of these covariates significantly improves the score with metrics decreasing
by 5 to 15% depending on the case (lower is better). All metrics are visible in the next
section.

We can visually interpret the improvement using figure 7.16 and 7.17 where we show
how the addition of covariates impact the prediction for two different dates . Figure
7.16 shows that the addition of the TKE as a covariate does improve the model with a
prediction that sticks to reality for a much longer period. Yet, it does not impact, in the
presented case, the confidence interval. The addition of the temperature, on the other
hand, for the considered prediction in October, has a big impact on the confidence
interval, making our prediction much more probable and thus accurate.
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Figure 7.16.: Comparison of N-BEATS with (yellow) and without (purple) TKE as a past
covariate for a prediction of a few hours the 22nd of April.
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Figure 7.17.: Comparison of N-BEATS with TKE (purple) as a past covariate and with
T° + TKE (yellow) as past covariates for a prediction of a few hours the
22nd of October.

7.5. Results
• We ran training of the model for each of the 4 months using 50 input time series

per month. These 50 time series are obtained by randomly selecting 7 day series
in the 15 first days of the month, enabling the model to see different starting and
ending times even if a lot of series share common days.
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Moments r0 τ0 θ0

ARI M AV MD 0.100/0.087 0.128/0.117 0.119/0.109
N H I T S 0.096/0.081 0.128/0.118 0.127/0.120
N BE AT S 0.071/0.061 0.075/0.068 0.083/0.076
N BE AT ST K E 0.069/0.059 0.073/0.066 0.076/0.069
N BE AT ST K ET 0.061/0.049 0.070/0.063

Table 7.2.: Prediction score for the different models and different moments of interest.
The left score is the RMSE and the right one the MAE

• Each model was evaluated for 10 test series on the last 15 days of each month,
which is a total of 40 test series. Each test series is composed of eight days, seven
input days, and one day to parse the goodness of the models output.

• These two steps were done using two different seeds, allowing for a score less
dependent on the choice of the training sets while keeping the same training
and testing data for each of the models allowing for a better comparison. This
brings the number of conducted tests to 80 per models .

• Final MAE and RMSE scores were obtained as an average value of the scores
obtained on each of the 80 tests.

From all scores presented in Table 7.2, it is clear that the latest temporal prediction
model N-HITS does not behave better than the ARIMA based method in our case
and the reasons remain unclear. It could be that the more complex architecture of
N-BEATS, even though it is slower, allows us to learn more complex patterns in the
data, which can lead to better predictions. The ability of N-HITS to capture long-term
dependency much better than N-BEATS is probably not as relevant in our case, since
there is little long-term dependency in moments due to the nature of atmospheric
phenomena.
In spite of this, N-BEATS outperforms the current state-of-the-art ARIMA + VMD
model no matter the moment considered. The prediction score can slightly be im-
proved with the addition of the TKE as a past covariate and even further adding the
temperature measured near the ground as well.

7.6. Potential improvements in temporal prediction
of moments

Despite the promising results presented in the previous section, there remain several
avenues to enhance and refine the temporal prediction of time series of integrated
parameters using deep learning models.
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This work has allowed us to assess the feasibility of a prediction model. Despite this,
a high amount of exploration still on the direct integration of other relevant parame-
ters has to be conducted, rather than using specific weather values as supplementary
information and incorporating additional parameters that are inherently related to
the moments of the turbulence. Another notable direction for improvement is the ex-
ploration of deep learning models’ performance when using future co-variables. The
models discussed in this work predominantly focused on past covariate information,
potentially overlooking valuable insights from future data. Using future covariates,
possibly through the application of methods such as the NBEATSxx [Oli+21] model,
could enable more accurate and forward-looking predictions. This future covariate
could be estimated using the mesoscale meteorological model around the site.

Doing so implies the creation of a composite model, combining widely used meteo-
rological model with deep neural networks, designed for the prediction of parameters
specific to optical turbulence and trained to account for the site specificity such as the
topography and the ground station architecture.

A composite model that combines the strengths of both the WRF predictions for
trends and another model for capturing high-speed variability in the measured on site
data could also be envisaged.

Even so, it seems complex to predict high-frequency variations precisely because
of the number of phenomena that affect them and the pseudo-random nature that
results. It should be possible to construct a statistical model capable of predicting the
amplitude and correlation of high frequency integrated parameter variations based
on ground data or simulations capable of taking account of topography and turbulent
phenomena close to the ground, such as LES [BC15] simulations.

Robust uncertainty estimation is important for making informed decisions based on
model predictions, thus incorporating measures of uncertainty from both models will
be necessary. This will help provide a sense of the reliability and confidence associated
with the composite predictions.

It should also be kept in mind that near-ground turbulence can change rapidly
due to a change in vegetation, or anything else impacting ground topography. The
composite model should be designed to adjust in near-real time to capture these
changes. Regular updates based on new on-site measurements and new WRF data
will improve accuracy.

This perspective is of great interest for the future of optical communication systems
and should be pushed forward. It entails a model capable of forecasting long-term
availability of an optical link with an associated probability that could be tuned for a
given location and ground station.
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Conclusion

Highlights and conclusions
This thesis embarked on a journey to address the ever-growing demand for efficient
and high-capacity data transmission between satellites and ground stations. The
limitations of traditional RF technologies have emphasised the need for innovative
solutions, especially in the face of escalating demands for space-to-ground communi-
cation.

The need to inject the signal in a single-mode optical fibre for amplification and
coherent detection emphasises the sensitivity of the link to atmospheric turbulence.
Scintillation and wavefront distortions emerge as significant hurdles that need to
be overcome for seamless communication. Although wavefront distortions can be
partially corrected using adaptive optics, this comes at the cost of increased complexity
and expense. Managing scintillation and residual power fluctuations requires effective
data processing, including the application of suitable error correction codes and
interleaving techniques.

Adverse weather conditions such as cloud blocking and challenging turbulence can
disrupt even the most advanced systems, jeopardizing the promise of low-latency
communication channels. To mitigate these challenges, the implementation of site
diversity, which involves dynamic routing of information through optical ground
stations less affected by environmental factors, offers a promising solution. Such a
dynamic routing will rely on the ability to anticipate several minutes to tens of minutes
in advance the compatibility of the propagation channel with very high data rates
optical links. The question of cloud blocking being already answered, we focus in this
manuscript on the impact of atmospheric turbulence on the performance evaluation
of an optical link and on the possibility of anticipating it.

According to the open literature, AO performance evaluation usually requires the
access to high vertical resolution turbulence and wind profile to meet application
related specific requirements. For astronomy, ESO conducts high vertical resolution
site testing campaigns to accurately qualify astronomical sites. For optical links, ESA
is currently founding an ambitious site characterisation project (ANATOLIA) to gather
statistics of vertical high-resolution turbulence profiles on different sites.

At the beginning of this work, the need for high vertical resolution both turbulence
and wind profiles to describe accurately the performance of an AO corrected optical
link was unclear. It is with this in mind that we have embarked on an exploratory
process to try to determine the possibility of a link power margin assessment using a
small number of integrated parameters that can be measured easily and at minimal
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costs.

In the chapter 4, we focused on assessing the statistics of the received optical power
into a SMF after AO correction.

Focusing on the GEO-downlink and assuming several fully justified simplification
hypotheses on the AO model, we constructed a metamodel to predict both the prob-
ability density function (PDF) and the half-correlation time of the received optical
power using machine learning techniques, particularly Gaussian process (GP) regres-
sion. The metamodel incorporated a set of four critical atmospheric parameters, the
Fried parameter (r0), an average wind speed (v̄), an average altitude of turbulence
layers (h̄) and the log-amplitude variance (σ2

χ).

The results showed that these four parameters appear sufficient to accurately assess
ROP probability density function.

Taking into account the temporal characteristics of the downlink received signal, we
demonstrated that adding the temporal power spectrum of the scintillation recorded
by a small diameter receiver to the other parameters enables the evaluation of the ROP
correlation time. This result will be of particular interest to optimise the specificities
of the interleaving process, such as the length of the interleaver.

The key atmospheric parameters to be included in the simulation were identified
through a sensitivity analysis that demonstrates the complementary of each quantity.
This approach, conducted on the downlink, could easily be generalised to the uplink
with potentially different conclusions, due to the significant impact of point ahead
angle anisoplanatism that is expected on the uplink.

Exploring the impact of different AO system configurations on the precision of the
meta-models demonstrated the flexibility of the models to a wider range of scenarios.

The use of a FEC and an interleaver in the detection chain introduces non-linearities,
making access to the power margin a complex problem which we have solved using
two different tools for generating non-Gaussian processes.

First, we introduced AnySim, an approach that offers a systematic way to generate
non-Gaussian time series while preserving the desired statistical properties, particu-
larly the autocorrelation function.

Next, we explored ARRC, a method based on autoregressive conditional random
processes. This approach has been developed together with Bernard Picinbono for
our application and gives highly promising results, while allowing to generate series
at unrivalled computing speed, providing a valuable alternative to more complex
approaches.

With standard low budget AO parameters, we demonstrated, using both methods, a
prediction of the power margin with an absolute error of less than one dB on all the
database (May 2021 Tenerife). The model seems robust to possible interruptions as it
does not display any false positives on the availability prediction.
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Machine learning tools can make a decisive contribution, on the condition that they
are approached rationally through an understanding of physical phenomena. The
tools created here are intelligible thanks to the use of Gaussian processes, autoregres-
sive processes, and the numerous sensitivity analyses carried out. The methodology,
thanks to the adaptability of the machine learning tools exploited within the study,
could be transposed to the exploitation of real measured quantities when the neces-
sary inputs will be available. Ultimately, all the work was carried out with a view to
mitigating uncertainty in the results.

The last part of this work, more exploratory, focused on the ability to predict the
value of moments and therefore availability over long periods of time using cutting-
edge deep learning models. We presented a comprehensive set of results, comparing
different models, including ARIMA-based methods, NHITS and NBEAT. The results
clearly indicated that NBEATS outperformed the current state-of-the-art ARIMA +
VMD model across all moments of interest.

We later introduced the concept of covariates, which are additional time series that
are known at the time of prediction and can enhance the accuracy of our models.
Specifically, we discussed the inclusion of temperature and the ground turbulent
kinetic energy (TKE) that can be obtained through ground meteorological stations.

Incorporation of covariates proved to be beneficial, leading to significant improve-
ments in prediction accuracy. These covariates helped capture the underlying trends,
reduce noise, and prevent overfitting, ultimately enhancing our models’ ability to
make accurate predictions. We demonstrated this improvement through visual repre-
sentations as well as prediction accuracy scores.

Limitations and next steps
Our earlier simulations assumed flawless measurements of the turbulence parame-
ters. Later, a propagation of a measurement error has been studied. We assumed a
characterisation instrument that would have a different aiming angle than the satellite.
This led to the conclusion that, while all moments are equally impacting the error
made on the power margin, a difference in line of sight bellow 60◦ limit the maximum
error to 1 dB, thus well within the system margin.

However, significant focus should still be put on studying the potential errors intro-
duced by instrumental measurements bias and noise. Comparison between measure-
ments yield by characterisation instruments such as the one proposed by Miratlas,
and measurements conducted through the WFS on a real optical link is essential. This
in the goal to complement the angle-of-sight error approach that has been carried out
discretely on a large-mesh grid, and to establish and quantify all the phenomena that
will most likely impact integrated parameters measurements.
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We can also observe that sensitivity analysis using Sobol or Shapley indices does not
take into account the tails of distributions. However, it is these rare events that cause
link interruption, and special attention should be devoted to understanding them. In
this regard, techniques such as the one presented in [MAG21] would likely be more
suitable.

It is also to be noted that all results are based on an experimentally validated pseudo-
analytical model (SAOST). This implies a range of validity and underlying hypotheses.
The most restrictive are undoubtedly the phase-amplitude independence assump-
tion, the log-amplitude representation limited to small perturbations, and the purely
monochromatic description of the processes at play. Furthermore, the model only
contains what’s inside, and hard-coded parameters such as the ground outer scale
become variables in real-life conditions. Investigating the impact of the outer scale on
the conclusions raised here shall be considered a priority.

All these concerns about the limitations inherent in these hypotheses would really
benefit from field measurement campaigns. ONERA is currently developing a ground
station for GEO-feeder demonstration (FEELINGS [Cyr+22]). Its primary objective
is to validate models of optical propagation through the atmosphere, out of which
the one developed in this work. The 60 cm telescope will be commissioned at the
Fauga-Mauzac site, and will be accompanied by a Miratlas station for measuring
integrated parameters. Simultaneous measurement of these integrated parameters, of
the optical power injected during link operation, and of the C 2

n profiles reconstructed
from the WFS data [Véd08] will allow for the building of a comprehensive database
without model bias. This database will be compared both with simulated profiles and
with SAOST output to justify the statistics established in this thesis. Finally, it will
enable the metamodels to be retrained, either from scratch or with the help of transfer
learning techniques, in order to adapt them to the actual site and operating conditions.

Finally, the initial results obtained with the state-of-the-art machine learning models
for the prediction of parameters integrated over long periods of time need to be
significantly expanded. Despite the promising results, we acknowledged that several
avenues for improvement exist. Future work will involve exploring the use of different
and future covariates. Predictive capacity primarily focused on the Fried parameter,
and other parameters should be studied. Finally, given that the variability of the
surface layer is not finely represented by WRF, one should study the impact of high-
frequency variations in Fried parameter during real-world demonstrations. It would
then be advisable to supplement the study with the creation of composite models
to account for these variations. Studies on improving the data obtained through
WRF predictions should be considered, using for example the work done in [Raf+22]
where "site learning" methods are proposed to account for local measurements in the
turbulence model, thus taking into account the specificity of a given site.
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n profile decimation method

suited to the study of turbulence

A.1. Database
Models understanding and comparison was done using profiles measured using
radiosonde operated by the GGCOS Reference Upper-Air Network (GRUAN) [Tho+13].

Figure A.1.: GRUAN is envisaged as a global network of eventually 30-40 radiosonding
stations.

GRUAN is described as follow on their website :

The Global Climate Observing System (GCOS) Reference Upper-Air Net-
work (GRUAN) is an international reference observing network of sites
measuring essential climate variables above Earth’s surface, designed to
fill an important gap in the current global observing system. GRUAN mea-
surements are providing long-term, high-quality climate data records from
the surface, through the troposphere, and into the stratosphere. These
are being used to determine trends, constrain and calibrate data from
more spatially-comprehensive observing systems (including satellites and
current radiosonde networks), and provide appropriate data for studying
atmospheric processes. GRUAN is envisaged as a global network of eventu-
ally 30-40 sites that, to the extent possible, builds on existing observational
networks and capabilities.
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Gauss-Legendre quadrature

Data for the site of Tenerife, a site of interest for the rest of this work, was obtained
directly from their website. This dataset contains two balloon release a day, one at
midday, the other at midnight. The balloons measure the air pressure as well as the as-
sociated geopotential height, the air temperature, the relative humidity, and the zonal
and the meridional wind speed. Over its course from ground to about 33 kilometres
above ground where it explodes, the balloon makes a measurement every given time
period providing extremely resolved profiles of between six and seven thousand point
depending on the conditions and the ascension speed.

While a SAOST simulation using a 100 layers profile takes about 3 minutes, the
same study using a 6000 layers profile will take up to two days. Through our need
to generate large databases came the need to be able to decimate profiles while pre-
serving moments, which, we understood, are the defining parameters of system link
availability.

A.2. Gauss-Legendre quadrature
This optimal decimation is done using the Gauss-Legendre quadrature, a method pre-
sented in an optimal approach to reduce the number of observations. This approach
has been originally developed to reduce the size of maximum likelihood problems
developed in [Mus93; PM23].

Let Yh be the measures of the C 2
n at a given height h. We have a sample Yh1 , · · · ,Yhn .

We assume that the Yth are uncorrelated, Gaussian, and have the same standard
deviation σ. Of course, this strong assumption is not satisfied in our case, where we
have non-stationarities (jumps) and correlations in the C 2

n profile. However, we still
use this method relying on the associated mathematical arguments.

The measures result from a non-linear function of a hidden state (modelling of C 2
n

introduced in Chapter 1). The goal is to reduce the size of the sample with minimal
loss of information, particularly preserving moments.

Let 1 ≤ m ≤ n be the new number of observations. The new set of observations
denoted by

(
Ỹ1, · · · , Ỹm

)
will be given as a linear combination of the original set of

observations
(
Yt1 , · · · ,Ytn

)
,

Ỹi = 1

∥Φi∥2

hn∑
h=h1

Φi (h)Yh , (A.1)

with ∥Φi∥2 =∑hn
h=h1

Φ2
i (h) whereΦi is the Lagrange polynomial of degree m −1.

For any 1 ≤ i ≤ m, let us introduceΦi the Lagrange polynomial of degree m−1 such
that

Φi (h) =
{

1 if h = Hi

0 if h = H j ̸= Ti .
(A.2)
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where H1 ≤ ·· · ≤ Hm are the roots of the Legendre polynomialΨm of degree m. One
can prove that for any i ̸= j with 1 ≤ i , j ≤ m, Hi is a real such that:

h1 ≤ Hi ≤ hn and Hi ̸= H j . (A.3)

If m = n, then Hi = hi , for any 1 ≤ i ≤ m = n.
We have : 〈

Ψm ,h j
〉
= 0 (A.4)

for any integer 0 ≤ j ≤ m −1 with the scalar product :

〈 f , g 〉 =
hn∑

h=h1

f (h)g (h) (A.5)

In [MO05] and [VO09], it is shown that the Ỹi are independent Gaussians of reduced
standard deviation σ

∥Φi ∥2
. Moreover, the information contained in these new measure-

ments is close to that contained in the initial measurements. In particular, if we work
with this reduced sample (m << n), we preserve the moments.

A robust and optimal method for finding Legendre polynomials roots is described
in [GW69]. The eigenvalues of the Jacobi matrix give the zeros assuming known poly-
nomial recursion coefficients; the paper also shows how to compute these coefficients
from a QR decomposition of a Hankel matrix. Analytic recursive expressions are
provided that greatly facilitate the implementation of this approach.

A.3. Results
We extracted from GRUAN database all radiosonding data for the station of Tenerife
over the whole year 2020. With two releases a day, it corresponds to 730 set of ra-
diosonding data. From this data were generated 730 sets of C 2

n and wind profile using
Dewan’s model of equation1.18, each having six to seven thousand layers.
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Figure A.2.: Gauss-Legendre interpolation of the C 2
n profile and associated wind profile

The Gauss-Legendre decimation method was applied on each of the C 2
n profile with

a generation of 50 output points. Doing the same decimation on the wind profile does
not guarantee to find the same 50 sampling heights.

Wind profiles have a more stationary nature than C 2
n , variations occur over wider

altitude range. We thus kept the sample points returned by the Gauss-Legendre
method on the associated C 2

n profile and took the wind profile on these points with a
simple linear interpolation between them.

This process can be seen in on Figure A.2 for the first profile of the set (01/01/2020
- 11:00). In blue are the original C 2

n and average wind profiles. In yellow is the C 2
n

profile obtained through Gauss-Legendre interpolation preserving the moments. In
red is the decimated wind profile with the sampling (red dots) of the Gauss-Legendre
interpolation calculated on the C 2

n .

Figure A.3 shows the difference in distribution over the whole database between the
moments computed from the 50 layers interpolated profiles compared to moments
computed from the 6000+ layers profiles.
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Figure A.3.: Moments from the 50 layers interpolated profiles compared to moments
from the 6000+ layers profiles

While we can see that the method is not perfect because the distribution of the
moments is not reproduced exactly, this method is still an excellent way of obtaining
profiles with a very small number of layers, while retaining the main turbulence
statistics for the entire database. This enables accurate statistical site studies.
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B. Statistical description without
the use of moments

Another way that was explored to estimate the link power margin is to skip the time
series generation step and to use a fully statistical approach to describe the impact of
the conversion to mutual information and of the interleaver.

This was done as AIRBUS wanted to explore a way to determine link availability
without knowledge of the moments and knowing only the statistics of the flux (mean,
variance, half-correlation time) measured on a time series of 900ms. The question
raised by this problem is how accurately the minimum of a 10 seconds interleaved
time series of mutual information can be estimated using only those informations
measured on a short time scale.

Using the mutual information law introduced at the beginning of chapter 5 in figure
5.4, two regimes are to be taken into account. The first is the case of strong turbulence
(with an injection of optical power from ≈−55 up to ≈−45dBm), where the relation
between ROP and mutual information is nearly linear, and the second is the case of
weak turbulence (with a ROP always >−45dBm), where a threshold effect occurs and
mutual information is almost constant no matter the value of ROP.

These two regimes, illustrated by figure B.1, have to be studied independently as the
autocorrelation function has a very different behaviour in each case.

In a case of weak turbulence, the value of the mutual information saturates to a
value superior to 0.999, being constant no matter the time, and we end up with a
fully decorrelated signal time series (figure B.2). On the other end, in the case of low
values of ROP, the variations of MI are synchronised with the variations of ROP, the
autocorrelation functions are very close in shape and values (but not exactly the same,
as the relation is not truly linear and a threshold effect still exists for the highest values
of ROP).

In other words, we see that the autocorrelation function will impact the determina-
tion of the link availability in the case of a poorly corrected signal but not in the case
of a "good correction" where the MI is constant ≈ 1.
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Figure B.1.: Temporal serie of ROP (blue) vs MI (red) on an average case of turbulence
(top) and a case of weak turbulence (bottom).

Figure B.2.: Autocorrelation of ROP (blue) vs MI (orange) on an average case of turbu-
lence (left) and a case of weak turbulence (right).
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corrected signal

B.1. Impact of the half-correlation on the minimum
of an interleaved MI time series for a poorly
corrected signal

B.1.1. Autocorrelation fit
In the following, we are led to study the time series shown in the previous section
that correspond to the worst time series (in terms of ROP) of our database, where the
saturation regime of MI is not reached.

To simplify the study, an approximation is made, that is, considering the autocorre-
lation function of the MI time series as a decreasing exponential function: exp(−kx),
x being the time delay. This does not impact the general methodology, and the validity
of this approximation will be discussed later on.

Figure B.3.: Exponential approximation of the autocorrelation of MI.

B.2. Comparison with uncorrelated time series
The first study we conducted was to compare the impact of the interleaver on cor-
related and uncorrelated time series. Uncorrelated time series were obtained as a
random permutation of the correlated time series of MI. Thus, they share the same
exact distribution but in a fully uncorrelated order.

Figure B.4 shows in both normal and log scale the value of the minimum of the
interleaved time series for both the correlated and uncorrelated cases, as a function
of the length of the interleaver. This is given for the example case of an average ROP
visible in the top section of figure B.1.

As can be seen, for a given interleaver size, the correlation affects the minimum
level of the interleaved series of MI
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Figure B.4.: Minimum of MI time series vs interleaver size (in log scale on the right).
In blue for the correlated time series and in red for an uncorrelated time
series with the same distribution.

This can be put in equations, assuming that the minimal value of the given time
series can be approximately described as the lower bound of a confidence interval
of the values taken by the MI. Under this hypothesis, the confidence interval can be
written as Pr (µ−ασ≤ X ≤µ+ασ) ≈ 100% where µ is the mean of the MI time series
and σ its standard deviation. α is a positive real value that depends on the law of X
and, in the Gaussian case, it is common to takeα= 3 for a confidence interval of 99.7%
or α= 5 for 99.999994%.

µ is a constant for any interleaver size or correlation function, but the latest is not

true forσ. For a size n interleaverσ2(Xi nter ) =V ar (Xi nter ) =V ar
(∑n

i=0 Xi

n

)
where Xi is

the random variable associated with the stochastic process associated to the temporal
series of MI at a delay i .

V ar (Xi nter ) =
∑n

i=0 V ar (Xi )

n2
= V ar (X )

n
(B.1)

in the uncorrelated case.
In the case of correlated random variables with an exponential correlation function,

the analytic expression of the variance is the following :

V ar (Xi nter ) =
∑n

i=0 V ar (Xi )

n2
+ 2

n

∑
1≤i< j≤n

cov(Xi , X j ) = V ar (X )

n
+ 2

n
V ar (X )

∑
1≤i< j≤n

e−k( j−i )

(B.2)
With :
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∑
1≤i< j≤n

e−k( j−i ) =
n∑

j=2
e−k j

j−1∑
j=1

eki

=
n∑

j=2
e−k j ek j −ek

ek −1

=
n∑

j=2

1−e−k( j−1)

ek −1

= 1

ek −1

(
(n −1)−

n−1∑
j=1

e−k j

)

= (n −1)ek +e−k(n−1) −n

(ek −1)2

Figure B.5 shows for both cases the evolution of the variance with the interleaving
time, calculated from the time series and evaluated from the above equations. Our
model of exponential correlation structure seems to overestimate the variance for
larger values of n on this set of profiles. The reason for that was not further investigated,
since the figure B.5 is only shown for illustration purposes of the method.

Figure B.5.: Evolution of the variance with the interleaving time, computed from the
time series and evaluated from the above equations. 1ms = 4points so for
100ms, n=400
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B.3. Results
The fitting of the curves obtained in figure B.4 with law in µ−ασ(n), is presented in
figure B.6.

Figure B.6.: Law of the min vs µ−3σ and µ−5σ. 1ms = 4points so for 100ms n=400

For this one particular time serie, the fitting law inµ−α∗σ is accurate for large values
of the interleaver (from 100ms ==> n=400). A low σ and a soft tailed distribution
(large interleavers) makes it easy to determine the minimum value using a confidence
interval, but these conditions are not met in the case of an heavy tailed distribution
and deep fading associated with a small interleaver size.

B.3.1. Results on the database using a 900ms time series as
input

Figure B.7 shows the comparison between the prediction using the statistical method
with statistics from a 900 ms times series compared to the minimum value of mutual
information of an interleaved time series computed from a 10 seconds simulation.
Choosing 0.94 as the value of required mutual information (as previously for a MOD-
COD 9/10), one can see that not every series where the availability of the link is not
guaranteed is identified as so (right panel of figure B.7). On the 52 series where the
link is not available, the statistics method gives a false positive in 13 cases, meaning
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25% of the time. Error on the prediction of the exact value is shown in figure B.8 and is
up to 3% on the selected cases.

Figure B.7.: Assessment of the minimum of the interleaved series of MI using the
statistical method.

Figure B.8.: Absolute and relative error(in %) on the assessment of the minimum of
the interleaved MI series (when the link is not available (min<0.94))

B.3.2. Impact of the half correlation time on the prediction
We saw that the autocorrelation has very little impact for good correction, and for
bad correction the impact of the autocorrelation can be calculated. The error on
the half-correlation time can be reported as an error on the standard deviation as

k = −l og (0.5)
hal f cor r el ati on , this error decrease as a factor of n.

Lets consider our series of MI. The series are made of 40000 points for 10 seconds.
The half correlation time is 9 points ie. 2.25 ms. k =−l og (0.5)/9 = 0.077. The variance
is 0.009 and the mean is 0.924. Taking a 50 ms interleaver, i.e., n = 200, we have the
variance of the interleaved series V ar (k =− ln(0.5)/9,n = 200) = 0.0011, µ−3σ= 0.82.
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Now let us assume that we did a 100% mistake on the half correlation time with
k =− ln(0.5)/18, V ar (k =− ln(0.5)/9,n = 200) = 0.0021, µ−3σ= 0.79. In this precise
case a error of 100% on the autocorrelation time results in a 5% error on the value of
µ−3σ. If we were to consider a 100 ms interleaver, this error would only be of 3%.

B.4. Limitations
One should notice that this method can be used to determine the link availability
with little knowledge on the fsm f . However, due to the non linearity of the MI trans-
formation and the interleaving process and due to the lack of information about the
distribution of fsm f , the limits of this statistical description quickly appear, with the
impossibility to asses the power margin. This method is only useful to assess the
minimum value of mutual information associated to an interleaved series of fsm f

with an associated error much larger than what was obtained through time series
generation.
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Summary

With the development of free space optical links (FSO) for space-ground communica-

tions comes the need to mitigate the effects of the atmospheric turbulence to guar-

antee a lossless connection. By having a network of addressable ground stations, we

want to guarantee to always target a point where the link is available. Assuming

atmospheric transmission is managed thanks to site diversity, we focus only on the

influence of atmospheric turbulence on the signal injected into a single mode fiber on

the downlink. The use of adaptive optics (AO) is assumed to avoid turbulence-

induced signal disruptions and enable a sufficiently high level of received signal for

data transmission. Up to now, AO performance adequate assessment required the

knowledge of high-resolution C2
n and wind profiles. With the advent of integrated

atmospheric parameters measurement instruments, we investigate here the possibil-

ity to estimate AO-corrected performance from a limited number of integrated

parameters. In this paper, we propose to use a Gaussian process metamodel to assess

the statistics of the received optical power after an AO correction. Taking as input

only four integrated parameters of the turbulence profile and associated wind profile,

which can be measured with simple instruments, the estimation error on the value of

the 1% quantile of the received optical power is inferior to 0:7dB. We also demon-

strate the possibility to estimate the half correlation time of the received optical

power using the same integrated parameters.

K E YWORD S

adaptive optics, FSO, machine learning

1 | INTRODUCTION

To match the growing need for data transmission between the ground and space that is driven by the development of space data highways1 and

upcoming mega communication constellations,2 optical links become an increasingly credible alternative to radiofrequency links. Offering a favor-

able size, weight and power, and frequency allocation free and intrinsically secured very high data rate transmission, the implementation of optical

communication between space and the ground is the subject of sustained developments. Many projects are ongoing to establish such a link
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between a GEO satellite and a fixed Earth ground station for missions such as Internet delivery and/or data repatriation from point to point on

earth. However, the development of these atmospheric optical links remains conditioned by their availability, which is highly dependent on the

atmospheric channel: absorption, scattering, and turbulence. Cloud masking issues can be managed thanks to site diversity,3 and we focus here on

atmospheric turbulence influence.

With the wish for very high bandwidth comes the necessity to inject the signal into a single mode optical fiber (SMF) to be amplified and/or

to enable coherent detection. Deep fluctuations in the injected signal happen due to atmospheric turbulence that causes amplitude variations,

that is, scintillation and wavefront distortions. A significant telescope aperture enables averaging of the scintillation effects as the size of the

speckles becomes small in comparison with the receiving aperture. Phase-related fadings in the received signal can be reduced with the use of

adaptive optics (AO) systems to correct the distorted wavefront and maximize the coupling efficiency in the SMF.4,5 AO and pupil averaging,

because of technological and cost limitation, does not perfectly correct for turbulent channel errors. To maximize the retrieved information, digital

mitigation techniques can be used such as forward error correction on an interleaved signal6 in addition to the physical mitigation technics. For-

ward error coding will operate efficiently if the error probability (hence fading probability) remains reasonable on the interleaved signal. The size

of the interleaving window depends on temporal characteristics of the received optical power (ROP) such as the typical coherence time.7 Those

techniques will have a big impact on the bandwidth and on the latency of the whole system and thus must be adequately scaled according to the

ROP. Knowing what would be the ROP distribution and ROP coherence time on any site and at any moment would give us precious information

on how to adapt the system in real time. However, this statistic highly depends on turbulence conditions knowledge along the line of sight and on

the AO system. Considering the significant variability of turbulence conditions with the location of ground stations, several initiatives have

recently been taken to gather local measurements of the most relevant atmospheric parameters with respect to AO-corrected optical links. Some

of these initiatives deploy high vertical spatial resolution measurements,8 whereas others focus on integrated turbulence parameters.9

Knowledge of the turbulence and wind profiles at kilometer vertical resolution along the line of sight guarantees to precisely assess fading

statistics,10 hence an accurate optical link performance evaluation. High-resolution atmospheric turbulence characterization can be performed

thanks to rather complex instrumentation such as Moon Limb Profiler by nighttime11 or Sun Limb Profiler.11 Such instruments are being deployed

to demonstrate high-resolution turbulence characterization capacity on several sites over Europe.12 They will provide high-resolution C2
n profile

characterization along the line of sight between the ground and the direction of the target used, which might be different from the optical links

direction, the impact of this difference of line of sight on the optical links availability being hardly documented. Initiatives to systematically docu-

ment integrated turbulence parameters sometimes with really simple instrumentation are also emerging.13 Considering the importance of inte-

grated turbulence parameters in the assessment of AO-corrected error budgets, indications exist in favor of a link performance which would

depend only on a few integrated parameters, but such a relation between corrected optical link performance and integrated turbulence parame-

ters has never been clearly established so far. The exact expression of the correction residuals involves a complex combination of moments of the

C2
n profile and wind, whose weightings depend on the number of corrected modes and the tractability of analytical expressions raises real chal-

lenges for a clear-cut demonstration that integrated parameters are sufficient to characterize optical link availability. Machine learning methods

associated to physical performance models might provide crucial indications to answer this question.

It is the major prospect of this paper: investigating the possibility to assess AO-corrected optical link availability from integrated turbulence

parameters by machine learning and to identify the compulsory parameters to be monitored, thanks to a sensitivity analysis.

Over the past 10 years, some studies have taken advantage of machine learning for atmospheric turbulence estimation or temporal predic-

tion. Most focus on assessing C2
n near the land surface, such as Wang and Basu14,15 which propose to use a multilayer perceptron (MLP) trained,

respectively, on seven measured meteorological input variables: wind speed, temperature and temperature gradient, soil temperature, relative

humidity, net radiation and sol water content, or only five input variables: wind speed, relative humidity, pressure, wind shear, and potential tem-

perature gradient. In Su et al,16 only four meteorological variables are used: temperature of the surface, temperature, wind speed, and relative

humidity measured at 0.5 and 2 m. Prediction results are overall accurate but associated with a particular scenario. In addition to these MLP meta-

models, Jellen et al17 compared three other metamodels: polynomial regression, random forest, and boosted regression trees with six input vari-

ables: air temperature, air-water temperature difference, pressure, relative humidity, wind speed, and solar radiation. Best results were obtained

with random forest, but the predictions were not always accurate. Some deep neural networks have also been used more recently: in Lamprecht

et al,18 a ResNet residual network is proposed to retrieve the refractive index structure parameter from the height above sea level and the

corresponding wind speed, instead of relying on analytical formulae. The performances are promising, but it would require to collect training data

from many different places on earth in order to deliver accurate results. A recent PhD work aimed at forecasting future daytime C2
n conditions

from prior meteorological data: wind speed, pressure, temperature, relative humidity and solar irradiance, and C2
n measurements.19 Neural net-

works (MLP and recurrent neural network) are used to create a low-altitude model capable of forecasting C2
n up to 4 h later using 16 h of prior

measurements. The forecasting quality is not always sufficient, best in the middle of the day, moderate in the morning, and generally worst in the

evening.

Finally, some recent approaches20 use deep neural network to infer the atmospheric turbulence refractive index structure parameter C2
n from

short exposure images of turbulence-induced laser beam intensity scintillations.

2 KLOTZ ET AL.
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Other studies focus instead on integrated turbulence parameters temporal prediction. Among these, we can cite Milli etal.,21 where turbu-

lence nowcasting, that is, the ability to forecast the turbulence conditions over the next 2 h, is investigated at Paranal Observatory. MLP per-

formed best among the three metamodels tested: random forest, MLP, and long short-term memory (LSTM) deep network trained on 1 or 2 h

history of meteorological and integrated turbulence parameters such as seeing, coherence time, temperature, pressure, wind speed, and direction.

In Giordano et al,22 a random forest metamodel is trained to predict the seeing over the next 2 h on a large atmospheric database measured by

the Calern Atmospheric Turbulence Station, including ground meteorological conditions, vertical profiles of the C2
n , and integrated parameters

characterizing the optical turbulence: seeing, isoplanatic angle, and coherence time.

As far as free space optical links (FSO) are concerned, machine and deep learning methodology mostly focus on compensating the effects of

atmospheric turbulence on the performance of the whole single input single output (or SISO) and multiple input multiple output (or MIMO) FSO

system23 or on predicting parameters of the FSO channel,24 such as optical signal-to-noise ratio. Closer to the methodology we propose in this

paper, two publications aimed at predicting the RSSI (received signal strength indicator) of the FSO. In T�oth et al,25 pressure, air temperature, par-

ticle concentration, visibility, relative humidity, and wind speed at different past time horizons are used as input variables for the metamodels.

Best results were obtained with random forest and enabled to retrieve some atmosphere behavioral patterns influencing RSSI. Lionis et al26 com-

pared different metamodels: k-nearest neighbors, tree-based methods-decision trees, random forest, gradient boosting, and MLP trained on seven

local atmospheric parameters: wind speed, pressure, temperature, humidity, dew point, solar flux, and air-sea temperature difference. Best deter-

mination coefficient R2 is 0.949 and is obtained with the MLP metamodel.

Here, we focus on the injected power statistics assessment, and we consider input variables associated to the turbulence profile and to the

wind profile in a perspective to identify a minimum of compulsory parameters. Using machine learning on a database of turbulence profiles over

Tenerife and a physical AO modeling tool, we propose a metamodel to estimate the probability density function (PDF) of the injected power into

the single mode fiber of the receiver of the optical ground station. We further develop this metamodel to be able to assess the autocorrelation

function of the injected power. For our method to be suitable for a massive deployment of ground stations around the world, we wish to use

exclusively data provided by simple and easily deployable instruments.

Section 2 describes our atmospheric channel model and the profiles database, Section 3 presents the methodology, including metamodel con-

struction and sensitivity analysis, and Section 4 discusses the numerical results.

2 | ATMOSPHERIC CHANNEL MODELING

The metric of free space optical communication availability in the case of a coded channel is given by Shannon's noisy-channel coding theorem27

that states that for successful decoding with arbitrarily small error probability, the capacity of a communication channel must be greater than the

rate of the code used (the proportion in bits of the datastream that is useful, i.e., nonredundant). Unfortunately, due to slow-fading or other ran-

dom factors, the channel capacity can fall below the code rate, hence compromising error-free decoding. In other words, the probability of inter-

ruption of the turbulent channel is PoutageðR0Þ¼P CðSNRÞ<R0ð Þ, where C is the channel capacity defined by Shannon27 as the maximal data rate

that can be achieved with the given channel, SNR is the electrical signal-to-noise ratio, and R0 is the coding rate of the forward error

correction code.

The capacity and, on a wider scale, the SNR are strongly dependent on the reception system. The challenge of accounting for all the intricate

phenomena arising from different types of receiving chains is beyond the scope of this article. We present here a proof-of-concept study in a

straightforward scenario, and we focus our attention on the received power into a SMF (the ROP) statistics. Looking at the ROP statistics will

allow us to take into account the interleaving and the coding while avoiding strong hypothesis on the noise statistic, which allows a more exhaus-

tive approach. In the very simplistic case of a noise that would be independent of the signal, we can show that there exists a bijection between

the channel capacity fluctuations and the fluctuations of the ROP.28

In order to train our metamodel to estimate the ROP statistics, we first need access to a database of ROP and associated turbulence measure-

ments. All those data are obtained thanks to simulations that we want to be as representative as possible of the most significant phenomena that

affect AO performance in the limit of tractability of the model, in the prospect to build a methodology and identify the most adapted ML tools to

extract relevant informations from the data. A necessary adaptation of the inputs used in the metamodel will be needed when switching to exper-

imental data. In this section, we describe the AO correction modeling, the database, and the system hypotheses.

2.1 | Modeling of the ROP after AO correction

In this work, we study separately the impact of the scintillation on the ROP and the impact of the distorted phase. We call ρϕ the coupling effi-

ciency neglecting the impact of scintillation and ρI the term of scintillation. Correlated time series of ρϕ and ρI are obtained by modeling the fluctu-

ation of the coupled flux in a SMF with a pseudo-analytic AO modeling tool called SAOST (simplified adaptive optics simulation tool).10,29,30 This

KLOTZ ET AL. 3
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model neglects the influence of noncommon path aberrations between the wavefront sensor and the injection path and assumes a perfect

wavefront sensor (not sensitive to scintillation), a Zernike description of the correction phase, and an infinitely fast deformable mirror (the delay in

the loop mostly comes from integration time of the wavefront sensor and calculation of the control voltages sent to the mirror). Comparison

between SAOST and end-to-end models can be found in Canuet.31 Experimental validation has been conducted in relevant condition for a GEO

feeder link and can be found in Bonnefois et al.32

In case of moderate turbulence strength, terms of interaction between the scintillation, mostly caused by distant turbulence, and the phase

effects, related to close to ground phenomena, can be neglected, and thus, SAOST works under the assumption of independence between ρϕ and

ρI. Let fSMF ¼ ρϕ ∗ρI be the coupling efficiency in a SMF after propagation through atmosphere and AO correction. Analytical expressions of fSMF

and its distribution under the hypothesis of independence are described in more details in Canuet et al.10 Scintillation influence is simulated

assuming the small perturbation approximation in the Rytov regime. In practice, this constrains the validity of the approach to limited Rytov vari-

ance (typically when the point source log-amplitude variance σ2χ <0:3) which corresponds to the experimental limit of validity of the small pertur-

bation approximation for horizontal propagation as first identified in Gracheva and Gurvich.33 This strong limitation in the case of horizontal

propagation is, to our understanding, not restrictive when dealing with vertical propagation where σ2χ takes low values. In the database presented

in the following part containing 37,059 profiles, less than 0.05% have a σ2χ ≥0:3.

We adopt in this paper the same approach as in SAOST, that is, to consider independently the effects due to the phase error and those due

to the scintillation; the benefit of this dissociation is to be able to interpret our results more easily.

2.1.1 | Residual phase error model

The residual phase error is computed in SAOST using a Monte Carlo approach. Following the algorithm described in Roddier,34 random occur-

rences of Zernike coefficients are sampled to describe the corrected phase. The temporal correlation of the ROP time series is obtained by filter-

ing the raw Zernike coefficients by a temporal power spectral model35 in the Fourier domain. Some hypothesis have to be made on the

turbulence condition of which we can cite von Kármán statistics for the index of refraction fluctuations spectrum assuming a fixed outer scale.

More details and comparisons with an end-to-end simulation can be found in Canuet.31

2.1.2 | Scintillation impact

The temporal impact of scintillation on the coupling efficiency can be approximated by the product10

ρI ¼ exp �σ2χ

� �
expð2χAPðtÞÞ ð1Þ

in the weak fluctuation regime of the scintillation index χðr,tÞ where σ2χ is the variance of the punctual log-amplitude and χAPðtÞ is the log-

amplitude averaged on the receiver aperture.

Under weak irradiance fluctuation hypothesis, we have χAPðtÞ�N �σ2χAP ,σ
2
χAP

� �
. We can then write the normalized irradiance distribution,

expð2χAPðtÞÞ, as the following log-normal distribution36,37:

fρI ðxÞ¼
1

2xσχAP
ffiffiffiffiffiffi
2π

p exp �
lnðxÞþ2σ2χAP

h i2
2 2σχAP
� �2

2
64

3
75, x>0 ð2Þ

2.2 | System hypothesis and training database

2.2.1 | AO and simulation parameters

In the following, all the generations of power attenuation's time series will be done with the same parameters of AO. We assume an AO system

that corrects the first 10 radial orders with a frequency of 2kHz. The simulation is done with a time sampling of 4kHz for a duration of 10 s which

4 KLOTZ ET AL.
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gives us 40.000 points per time series. Our telescope is taken with a pupil of 60cm. These choices are being made as they assume a relatively sim-

ple and cost effective hardware for this type of application.

2.2.2 | Atmospheric conditions database

As we want to describe the ROP statistics using a set of integrated parameters from the C2
n and wind profile, the best approach is to build a large

database of such profiles.

It should be noted that knowledge of the C2
n and wind profiles at kilometer vertical resolutions guarantees an accurate optical link perfor-

mance evaluation using simulation tools such as end-to-end modeling of the atmospheric propagation and the correction by AO. Unfortunately, it

is challenging to determine the profile of C2
n with altitude even with complex and expensive instruments such as SLODAR (slope detection and

ranging), SCIDAR (scintillation detection and ranging) and SODAR (sonic detection and ranging).38–40 In addition to this, these profiles present the

risk to be affected by measurement noise (hence, influencing the metamodel). To our knowledge, there is no experimental database available that

would be representative of the various atmospheric conditions, which leads us to use a database from an atmospheric reanalysis model. Indeed,

data provided by numerical models present the advantage to precisely control underlying hypothesis and input parameters at the expense of a

more questionable relevance. As the first goal of this work being to demonstrate the possibility to rely on a metamodel for performance assess-

ment in relevant conditions, the possibility to cover a large scope of atmospheric conditions justifies in itself to exploit data obtained from a

numerical model.

There exist models based on empirical measurements, some nonparametric such as Greenwood's,41 H-V Night,42 and AFGL AMOS43 and

some parametric such as the famous Hufnagel–Valley model,44 its enhanced version the Hufnagel–Andrews–Phillips45 model, or the Sadot–

Kopeika46 model. All those models are suitable to describe the average value of the turbulence over a given site and are useful for site selection,

but they will not give an instantaneous and accurate turbulence profile description. Overall, these models have been developed for specific sites

at given time of the year, and it is not clear to what extent they would be suitable to other sites or meteorological conditions.

As our work aims at characterizing the statistics of the instantaneous ROP and, especially, the distribution's tail to describe the probability of

interruption, we need to work with a theoretical model that would describe any small variation in the turbulence induced by different meteorolog-

ical conditions and would work for any location and any hour of the day.

Such a description is achieved using Gladstone's formula and Tatarskii's36 theory with a model for the outer scale such as Dewan's47 or

HMNSP99.48 In this approach, the C2
n profile is calculated from precise vertical profiles of meteorological parameters (temperature, pressure, rela-

tive humidity, wind speed, and wind direction).

Our database of profiles was provided by Durham University. Wind and C2
n profiles were obtained through a global turbulence model capable

of converting meteorological data from a general circulation model, into three-dimensional optical turbulence maps. This model based on

Tatarskii's is developed in Osborn and Sarazin49 and was confronted successfully to on site measurements in Paranal. It was improved to include a

separate boundary layer and enable stronger turbulence strength near the ground to be modeled.50

The general circulation model used is ERA551 from the European Centre for Medium range Weather Forecasts (ECMWF). This model, from

which the turbulence is calculated, has a spatial resolution of 0.3� along latitude and longitude and provides a forecast for every hour. We chose a

grid of 11 by 11 points around Tenerife's island (with a spatial resolution of ≈ 30 km), which is a site of interest for a potential future ground sta-

tion, and focused on the first 19 days of March 2018. It leaves us with 121 simultaneous measurements for each hour, with some missing values.

On the overall 19 days considered, we thus have 37,059 profiles on 113 pressure levels each. Historical data are freely available on ECMWF

website.

These 37,059 C2
n and wind profiles cover a large set of condition. In the following, we consider that these profiles are representative of field

data and could be obtained with instruments directly measuring turbulence along the line of sight.

3 | MACHINE LEARNING METHODOLOGY

As described in Sections 2.1, we consider the residual phase error and the scintillation as two independent phenomenons and the quantity of

interest, the coupled flux in a single mode fiber, as the product of both.

In Sections 2.1.2, we presented our scintillation simulation model, which is based on a parametric expression of the distribution that depends

only on the two parameters σ2χ and σ2χAP (Equation (1)). However, the latter is not easily measurable, as it would require an instrument with the

same pupil size as our telescope. Our first goal is therefore to be able to assess σ2χAP with machine learning using a small number of easily measur-

able parameters. Our second goal is to describe the PDF of ρϕ with the minimum amount of variables and be able to determine those variables

from the same small number of measurable parameters.

KLOTZ ET AL. 5

 15420981, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sat.1497 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

B. Statistical description without the use of moments – B.4. Limitations

175



Figure 1 sums up the methodology; the upper boxes with full lines represent the current state of modeling the statistic of ROP. It requires

the use of C2
n and wind profiles coupled with a physical model of light propagation through the atmosphere and wavefront correction with an AO

loop. What we aimed at is represented by the dashed box and arrows as we want to shortcut the heavy process of profiles measurement and sim-

ulation thanks to machine learning on a small number of integrated parameters easily measurable.

3.1 | Residual phase error distribution description

A usual and effective way to predict a distribution using machine learning is to parameterize this distribution and then use a metamodel to predict

each parameter.

Here, we were led to study

LϕðtÞ¼10log10ðρϕðtÞÞ ð3Þ

the loss in power induced by the phase fluctuation in dB as it gives a bigger weight to the low values of ρϕðtÞ that are the critical values for our

application.

Studying the distribution of ρϕðtÞ on our 37 k profiles, we highlighted that it has an exponential decay, which is consistent with the closed

form of the distribution already proposed by Canuet.31 We can show that the logarithm of an exponential distribution is a Gumbel distribution,

and we verified experimentally that the distribution that best fit the distribution of our loss LϕðtÞ, in perspective with the Bayesian information cri-

terion and sum of square error, is a Gumbel distribution of the following form:

1
β
e�ðzþe�zÞ ð4Þ

where z¼ x�μ
β .

This result is particularly interesting as, with the Gumbel distribution being a good enough approximation of the density probability of power

attenuation, we can describe the PDF with only two parameters, μ and β, that contain all the information on the statistic of power attenuation.

The quality of the fit can be seen by looking at the relative error measured between the quantiles of the experimental distribution and those

of the theoretical distribution. We show in Table 1 the statistics of relative error made on some relevant quantiles. The statistics are given for the

whole database. For example, the relative error on the 0.01 quantile is, in average, of 0.57% and is below 1.92% in 99% of the cases. Such small

relative errors emphasize to which extent our fit is appropriate. It is to be noticed that, the number of data of our simulations being finite, the

error on the smallest quantiles can be due to a lack of data to precisely estimate the latest, as much as a nonability of the Gumbel distribution to

F IGURE 1 Schematic description of the method proposed in this paper.
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describe precisely the smallest quantiles. Further work in this regard was not conducted as the quality of the approximation is good enough for

our application.

Figure 2 aims at visually demonstrating the goodness of the fit in the diversity of conditions encountered. We selected three sets of C2
n and

wind profiles from the whole database, one corresponding to the average value of mean power attenuation over the 37,059 profiles (orange), one

to the worst value of mean power attenuation (blue), and the last one to the best value of mean power attenuation (green).

3.2 | Gaussian process (GP) metamodel

Different machine learning techniques have been tested of which we can cite gradient boosting, MLP, support vector machine regression, and

GPs.52 Best results were obtained for a GP, and we only describe this metamodel here.

A GP writes the output of interest as the sum of a regression part, a constant term in this study, and a centered stochastic process Z:

γðxÞ¼ β0þZðxÞ ð5Þ

The stochastic part ZðxÞ is a Gaussian-centered process fully characterized by its covariance function CovðZðxÞ,ZðuÞÞ¼ σ2Rðx,uÞ with σ2 the

variance of Z and R the correlation function, or kernel, that accounts for spatial correlation effects.

In this study, we focus on a stationary process Z, which means that, for new points, the prediction consists of a linear combination of the

observed values, with weights that depend on the distance between the new input point and the training data. The assumption is that the closer

the inputs are, the more correlated the outputs are. The kernel we chose is a Matérn 5/2 kernel, an extension of the radial basis function kernel,

TABLE 1 Relative errors on quantiles with the Gumbel fit over the 37,059 power attenuation's series.

Quantile

Relative error 0.001 0.003 0.01 0.03 0.1

Mean 1.43% 0.91% 0.57% 0.37% 0.19%

1% 0.02% 0.01% 0.01% 0.01% 0.01%

50% 1.17% 0.75% 0.48% 0.33% 0.17%

99% 5.36% 3.28% 1.92% 1.14% 0.54%

F IGURE 2 Gumbel fit on the distribution of Lϕ in three cases: First one in blue corresponds to the minimum of coupling efficiency, second
one in orange is an average coupling efficiency, and the last one in green is obtained for the profile with the highest coupling efficiency.

KLOTZ ET AL. 7
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one of the most commonly used forms of kernel. The Matérn kernel computes the similarity of two given points x and x0 in dimension d as

follows:

R x�x0ð Þ ¼1þ
ffiffiffi
5

p Xd
j¼1

xj�x0j
� �

θj
þ

5
3

Xd
j¼1

xj�x0j
� �2

θ2j
exp �

ffiffiffi
5

p Xd
j¼1

xj�x0j
� �

θj

0
@

1
A

ð6Þ

where the θj are the hyperparameters and should be optimized in addition to β0.

One of the advantages of GPs is that an estimate of the uncertainty associated with the prediction is available.

In order to evaluate the predictive ability of the metamodel, we rely on the predictivity coefficient Q2, which stands for the percentage of the

output variance explained by the metamodel. It is the same as the determination coefficient R2 but computed on n test data Yi instead of training

ones:

Q2 ¼1�
Pn

i¼1ðYi� bYiÞ
2

Pn
i¼1ðYi�YÞ2

ð7Þ

where Y is the mean of the test data and bYi stands for the output of the metamodel for the same input values as Yi. Q2 is between 0 and 1 and

should be close to 1 for an accurate metamodel prediction.

3.3 | Choice of relevant inputs

We have based our choice of integrated parameters on the integrated parameters regularly used to describe the error budget of an AO. The first

chosen parameter is Fried's parameter, an essential parameter when one is interested in the effects of turbulence. Fried's parameter r0 is defined

as the typical diameter of a telescope whose resolution would be limited by atmospheric turbulence. In the case of a plane wave, considering a

Kolmogorov spectrum, we have along the line of sight:

r0 ¼ 0:42
2π
λ

� �2 ð∞
0

C2
nðzÞdz

2
4

3
5�3

5

ð8Þ

where λ is the wavelength (1.55 μm). Experimentally, Fried's parameter can be estimated either from the amplitude jitter of a star at the focal

plane of an imager or more robustly thanks to differential imaging such as performed with a DIMM.53

The second parameter, denoted h,54 is a measure of the height dispersion of atmospheric layers, homogeneous to an altitude:

h¼

ð∞
0
z
5
3C2

nðzÞdzð∞
0
C2
nðzÞdz

2
664

3
775

3
5

ð9Þ

It provides an assessment of the physical origin for the angular decorrelation of the phase perturbations (the influence of distant turbulence

layers) while being independent from the turbulence strength. It is useful to characterize and compare different profiles. h is related to Fried's

parameter and the isoplanatic path θ0 by55:

θ0 ¼0:314
r0
h

ð10Þ

The estimation of h can therefore be performed thanks to a measurement of θ0, which is derived, for instance, from limited aperture averaged

scintillation by nighttime56 or thanks to a Shabar measurement by daytime.57 The last parameter, denoted v, describes an average wind speed

over the turbulent layers59 and similar to h is given as follows:

8 KLOTZ ET AL.
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v¼

ð∞
0
vðzÞ53C2

nðzÞdzð∞
0
C2
nðzÞdz

2
664

3
775

3
5

, ð11Þ

where v is the modulus of the transverse wind velocity. It is related to the turbulence coherence time τ according to the following:

τ¼0:314
r0
v

ð12Þ

The turbulence coherence time can be extracted, for instance, from the temporal analysis of the jitter of a bright enough point source image.

This evaluation can then be exploited to provide an estimation of v.

r0, h, and v are quantities that characterize the phase of the wave and σ2χ the intensity fluctuations. The link between phase and intensity per-

turbations involves diffraction, which is not accounted for in the calculation of the integrated parameters, hence the need to be able to measure

σ2χ

The Rytov approximation discussed in Section 2.1 assumes that the refractive index fluctuations are small compared with the mean refractive

index, allowing for linearization of the wave propagation equation. This approximation is valid for weak turbulence, where the fluctuations are

small and the wavefronts do not experience significant bending. Under this regime, σ2χ can be approximated in the following way:

σ2χ ¼0:563
2π
λ

� �7
6
ð∞
0

z
5
6C2

nðzÞdz ð13Þ

According to,33,58 σ2χ value is precise when it is less than 0.3, which is in accordance with the studied database.

Based on this considerations, the point source log-amplitude variance σ2χ is supposed to be measured from the scintillation of a bright point

source with a small diameter instrument.

Thus, the PDF of the scintillation only depends on the unknown parameter σ2χAP .

3.4 | Sensitivity analysis

In this study, we rely on Sobol's indices,60 also known as variance-based sensitivity analysis. The variance of the output of interest Y is

decomposed into fractions, which can be attributed to each of the moments we use here as input variables for our metamodel. The values of

Sobol's indices enable to rank input variables according to their importance in the uncertainty of the output. The first-order Sobol index Si charac-

terizes the contribution of a given input Xi to the output variance, and the total Sobol index STi measures the contribution to the output variance

of the studied input Xi , including all variance caused by its interactions of any order with all other input variables. They are estimated thanks to a

Monte Carlo method and can be written as follows:

Si ¼VarðE½YjXi�Þ
VarðYÞ ð14Þ

and

STi ¼1�VarðE½YjX�i�Þ
VarðYÞ ð15Þ

where E stands for the esperance of the random variables and X�i all X except Xi. First-order indices vary between 0 and 1, and the difference

between 1 and their sum characterizes the global influence of interaction effects. If the total index associated to an input variable is close to zero,

this input has a negligible impact on the output variability and can be set at a constant value. On the contrary, Sobol's indices close to one indicate

that the input variable is influent.

Sobol' indices are very often used to determine the sensitivity of a simulation code to a specific input but works under the assumption of

independence between input variables; their interpretation becomes hazardous in the case of correlated inputs. In our case, r0, h, and v are

strongly correlated being all moments of the same profiles. To deal with correlated inputs, methods have been developed around Shapley values,

which come from the field of cooperative games theory.61,62 The associated Shapley indices are designed as a simple and easy way to interpret

effects of the interactions and dependences contributions between the inputs involved on the total output variance.

KLOTZ ET AL. 9
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4 | NUMERICAL RESULTS

4.1 | Probability density assessment

4.1.1 | Metamodel construction

Our database is split in two datasets: one training set containing 15% of the profiles randomly selected and a test set containing the remaining

85%. This arbitrary choice corresponds to 5558 randomly selected profiles. Less profiles would be enough to learn the few parameters of this GP

as long as they cover the variability of the encountered cases.

The complexity of GP algorithms is Oðn3Þ due to the need to invert an n�n matrix; a 15% training set is a good trade-off between prediction

accuracy and learning time with 20 min of single core time on a modern processor for the training process.

The input vector of Equation (5) is x¼ðr0,h,vÞ.
Figure 3 shows the estimated value against the one obtained with our metamodel. The coefficient of determination Q2 is superior to 0.99 in

every case and shows how observed outcomes are predicted by the model. We find 0.9994 for the prediction of μ, 0.9992 for β and 0.9969 for

σχAP .

As we are able to predict μ, β, and σχAP from the moments, the next step is to reconstruct the probability density of the ROP using the para-

metric descriptions of LϕðtÞ (Equation (3)) and ρI (Equation (1)). An example is given in Figure 4 where, for one randomly selected profile, we can

see, from left to right, the statistical reconstruction of LϕðtÞ, ρI , and the ROP.

In order to characterize the relevance of our estimation on the ROP's statistic, we can compute the absolute error made on the mean and

standard deviation of the reconstructed PDF of the ROP. We also look at the absolute error on the 1% quantile of the ROP (see red dashed line in

Figure 4) as we want a faithful reproduction of the tail of the distribution. Statistics on the absolute error associated to our 37 k profiles can be

seen in Figure 5.

On all profiles, the prediction error on the value of the 1% quantile is inferior to 0.7 dB which is compatible with current assumptions done in

commonly used link budgets (margins are typically 3dB).

Once again, we have to put into perspective this value with the fact that the temporal series of ROP generated with SAOST are finite, and

thus, part of the error is due to the nonperfect convergence of the random variable. The weight of this error due to convergence in the overall

error has yet to be determined.

4.1.2 | Sensitivity analysis

After finding satisfactory results with our metamodel, we want to describe the impact of each input variable on each output. To do so, we are

using sensitivity indices: first and total order Sobol indices as well as Shapley indices, which were presented in Sections 3.4. Sensitivity indices

were estimated using “Sensitivity: Global Sensitivity Analysis of Model Outputs”,63 an open source, GPL-2 licensed, R64 library developed for the

treatment of uncertainties.

F IGURE 3 Predicted values with a Gaussian process using r0, h, and v versus real values of μ, β, and σχAP on the test data.

10 KLOTZ ET AL.

 15420981, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sat.1497 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

B. Statistical description without the use of moments – B.4. Limitations

180



In Figure 6, we notice that the variability of h has little impact on μ and β. We thus can wonder if we would be able to predict the value taken

by μ and β with the same accuracy if we were to fix the value of h. Doing so and using the same GP structure as the one described in Sections

3.2, we obtain a prediction score of 0.9988 for μ and 0.9984 for β. The slight decrease in Q2 is due to a bigger error on the small values of μ and

F IGURE 4 Probability density function (PDF) computed from simplified adaptive optics simulation tool (SAOST) time series and PDF
computed from our metamodel with, from left to right: LϕðtÞ, ρI, and the received optical power.

F IGURE 5 Histogram and CDF of the absolute error on prediction of the mean, the standard deviation, and the 1% quantile.

F IGURE 6 Sensitivity analysis on μ, β, and σchi. Red: first Sobol indices; blue: total Sobol indices; green: Shapley indices.

KLOTZ ET AL. 11
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the large values of β, that is, the cases were the residual phase error after AO correction is the highest. Even if h is not essential to adequately

describe the residual phase error, the additional information it provides on the structure of the profile allows better treatment of cases of strong

turbulence where the correction by AO is the worse.

Same analysis can be conducted for the prediction of σχAP where, according to Figure 6, the impact of v seems very low: Its total Sobol index

is almost equal to zero, and its Shapley index is larger but also accounts for its correlation with the two other input variables. Removing v from

the input parameters of our metamodel leads us to a prediction score of 0.9955, very close to the 0.9969 obtained with v. This result was to be

expected as expressions of the variance of log-amplitude averaged on a pupil that can be found in the literature are independent of the wind

speed profile.65

4.2 | Autocorrelation assessment

The next step of our study is to be able to estimate the autocorrelation time of the ROP using the same moments. Knowledge on the temporal

behavior of the ROP is fundamental as the duration of the fading in the received signal will dictate the use of numerical mitigation techniques and

the latency in the telecommunication protocol.

Once again, it should be noted that analytical expressions exist to describe the auto-covariance of Lϕ
10 and of ρI.

66,67 The ultimate goal is to

estimate those autocovariance functions using a small number of instruments but, in order to simplify the problem, we first look at the half-

correlation time of Lϕ and ρI time series independently. A simplistic way to predict the autocovariance could then be to fit an exponential decay

law matching the estimated half correlation time.

4.2.1 | Metamodel construction

The approach is exactly the same as for the prediction of the PDF: Half-correlation times were computed using SAOST, and we use r0, h, and v as

inputs of our metamodels. Once more, best results were obtained using GP regression with a Matérn 5/2 kernel.

Figure 7 shows that the prediction using r0, h, and v is able to recreate the trend but that it lacks precision with a high variance on the distri-

bution of the error. The chosen input moments do not account well enough for the temporal aspect of the turbulence, and it is then necessary to

consider an additional measurement.

One way to recover the missing temporal information on the atmospheric layer is through measurement of the power spectral density (PSD)

of the scintillation on a small pupil instrument. To simulate the measurement of such an instrument, we used the expression given in Shen et al67

and calculated the PSD of the scintillation for a 5cm pupil at a wavelength of 1500nm. Simulation was done on 100 points spaced evenly on a log

scale from 1e�4Hz up to 1000Hz.

In order to add information associated to the scintillation spectrum in our model, we wish to reduce the data dimension while keeping the

maximum of information. Indeed, there is a lot of information redundancy in the 100 points used to simulate the power spectrum density, but

these points have to be decimated in a nonlinear way if we want to keep the relevant information no matter the profile.

Trials were done using the cutoff frequency, slope, and magnitude of the PSD, but these added input did not result in significant improve-

ments of the prediction score. This is due the fact that it is sometimes hard to extract and define this parameters due to multiple regimes in the

PSD of the scintillation.

To extract relevant features of the PSD without analyzing each case manually, we used a convolutional autoencoder, a kind of neural net-

work extensively used for data reduction. The underlying concept is simple; the architecture consists of two parts, an encoder and a

decoder.68 The encoder learns an encoding of the data and is validated and refined by attempting to regenerate the inputs from the latent

space with the decoder. In our case, the input data are of dimension 100 and the encoded data of dimension 5, as shown on Figure 8. A value

of 5 was shown to be the minimal value that enables accurate reconstruction of the PSD whatever the profiles might be; increasing the dimen-

sion of the latent space above 5 did not result in significant reconstruction improvement. In Figure 9, we can see an example of reconstruction

on two randomly picked PSDs from our database. The real PSD computed from Shen et al67 is represented in blue, while the output of the

decoder applied on the encoding of the PSD in the 5 dimension latent space is in orange. We can see that most of the information is con-

served in the latent space.

We built a new GP; this time with eight inputs: the three previous moments and the five encoded values of the PSD.

As anticipated, with the added temporal information, we obtained much more satisfactory results than the one described in Figure 7 (see Q2

in Figure 10: 0.99 and 0.98 against Q2 in Figure 7: 0.88 and 0.84)

12 KLOTZ ET AL.
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4.2.2 | Sensitivity analysis

Using the same tools as the ones described in Section 4.1.2, we conducted a sensitivity analysis and calculated first and total Sobol indices as well

as Shapley indices for each of the models described in Section 4.2.1.

Results for the metamodel taking only r0, h, and v as inputs can be seen in Figure 11, while sensitivity analysis results computed on the model

with the PSD added in the inputs are shown in Figure 12. In both cases, we can clearly see that the most influential variable is v, which is not sur-

prising given the fact that the correlation time depends on the displacement speed of the turbulent layer.

When the five moments of the PSD are added (D1 to D5 in Figure 12), we obtain some interesting values. It can be noted that while D1

and D5 have a lot of influence on the metamodel outputs, D2 seems to have very little. It would be interesting to look further into the

F IGURE 7 Prediction of the half-correlation time using Gaussian process (GP) on inputs r0, h, and v; x-axis shows the real value and y-axis the
predicted one. On the left are the half-correlation neglecting scintillation effects and on the right are neglecting phase effects.

F IGURE 8 Architecture of the autoencoder used to encode the power spectral density (PSD)

KLOTZ ET AL. 13
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weights of the autoencoder to better understand what features of the PSD does each of the encoded value represent most and thus what

part of the PSD function is important in the description of the demicorrelation time of the ROP. This study is not trivial and will not be con-

ducted in the context of this article.

F IGURE 9 Comparison of real and reconstructed power spectral density (PSD)

F IGURE 10 Prediction of the half-correlation time using Gaussian process on inputs r0, h, and v and information on the power spectral
density (PSD) of scintillation for a 5 cm pupil. Same other parameters as in Figure 7

14 KLOTZ ET AL.
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5 | DISCUSSIONS

The results presented in this study rely on the representativeness of the numerical model describing the influence of the propagation channel, but

this model has three main limitations: (1) it assumes that we are in a Rytov regime, (2) it assumes a decorrelation of phase and amplitude distur-

bances, and (3) it ignores the potential influence of uncorrected static aberrations, assumes a perfect wavefront sensor and a perfect deformable

mirror, and neglects the noises affecting the detection chain.

The first hypothesis, regarding compatibility with the Rytov regime, has been verified with the data used in this study, but its validity at lower

altitudes or under more severe turbulence conditions could be compromised. A study should be carried out to evaluate the difference between

the performance evaluation provided by our metamodel and that obtained by an end-to-end model in cases of very severe turbulence, which

would deepen our understanding of the limitations of the approach.

The second hypothesis, concerning the decorrelation of phase and amplitude perturbations, is widely accepted in the community, as it is justi-

fied by the fact that the phenomena causing these perturbations are generated at different distances from the receiver, and are therefore

decorrelated. The simulations mentioned in the previous paragraph would also contribute to strengthen the understanding of the limitations

implied by this assumption.

Concerning the third hypothesis, on the influence of the various assumptions made to simulate the ROP, these assumptions were intention-

ally made to ease the understanding of limitations raised by AO before the proposed methodology being applied on data obtained by a real sys-

tem. In order to validate the methodology experimentally, a proper approach could be to select experimental data so that they respect the

underlying hypothesis of the physical model used to build the methodology. The possibility to extend the approach to more complex cases (where

the assumptions made are no longer valid) would still have to be investigated and would probably necessitate to increase the number of parame-

ters in the metamodel.

F IGURE 11 Sensitivity analysis of the model described in Figure 7. Red: first Sobol indices; blue: total Sobol indices; green: Shapley indices.

F IGURE 12 Sensitivity analysis of the model described in Figure 10. Red: first Sobol indices; blue: total Sobol indices; green: Shapley indices.
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6 | CONCLUSION

We studied here the possibility to assess downlink GEO to ground optical link ROP statistics by applying a machine learning methodology. We

demonstrate that, assuming several simplification hypotheses on the AO system performance model, a set of a very small number of integrated

turbulence parameters appears sufficient to precisely assess ROP statistics. Moreover, exploiting the temporal power spectrum of the scintillation

recorded by a small diameter receiver eases the evaluation of the ROP correlation time. An experimental validation of such a methodology could

be conducted on real data, first by restricting the cases of application to those where the assumptions made to build the metamodel are satisfied.

Further investigations are being conducted to extend the method to the uplink case and to evaluate the impact, in terms of performance assess-

ment, of a deviation of the instrument aiming angle to the link line of sight.
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