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Introduction

1 General context

One of today main challenges is to have a sustainable production and use of energy and mate-

rials. This challenge drives the necessity for research on materials, to ensure their sustainable

usage in structures while guaranteeing that they fulfill their function over time. This disserta-

tion focuses on studying quasi-brittle materials, such as concrete, ceramics and ice. These

materials are widely employed across various domains like infrastructures, transportation,

and energy. In particular, concrete is the most used material in the world. According to the

Chatham House Report, it is responsible for around 8% of global CO2 emissions (Lehne &

Preston, 2018). Therefore, we must employ such materials more efficiently (for instance, by

reducing safety margins in structure design) to reduce their usage and production impact.

Accurately describing the (complex) behavior of quasi-brittle materials up to failure is

necessary to achieve this objective. In particular, it is essential to understand how a material

subjected to various loads (mechanical, thermal, etc.) behave during its life cycle. These

loads can change the material state and degrade its properties. Depending on this change,

the structure ability to fulfill its intended function may be compromised, putting equipment

and even lives at risk. The mechanical degradation of quasi-brittle materials, usually due

to the nucleation of micro-cracks, have a strong influence on their mechanical behavior.

In particular, it causes a loss of stiffness and, potentially, variations in material properties

based on its orientation. Such a degradation occurs when the material is subjected to high

mechanical loads. Accounting for this behavior change is of utmost importance for accurately

simulating and efficiently designing structures.

2 Scientific approach

This dissertation aims to model the degradation, i.e. micro-cracking, of quasi-brittle materials.

To this end, the first step consists of gathering reference data on the behavior of quasi-brittle

materials. The gathered data must then be analyzed to identify the different phenomena

occurring during their degradation process. From such a dataset, a mathematical model of

their degradation can be developed. This last task is generally divided into two sub-tasks: (1)

modeling how the degradation affects the overall behavior of the material, and (2) modeling

when and how the degradation evolves when a mechanical loading is applied.

1



Chapter 0. Introduction

Formulating a multiaxial damage model requires first gathering data on the material

degradation. It means understanding how the degradation changes over time and affects

the material behavior under different multi-axial and non-proportional loads. This process

requires precise measurement of how the material effective elastic properties change during

each loading. Moreover, each experiment must be repeated sufficiently to gather a statistically

significant amount of results. However, conducting such an extensive experimental campaign

would be difficult, if not impossible. Indeed, it would mean carrying out highly accurate

material characterization tests on significant number of specimens, some of them severely

damaged. Therefore, this work employs virtual testing as an alternative and complementary

approach to experiments. Virtual testing involves using a model, estimated to be sufficiently

accurate, of the material response at a meso-scale to simulate and study its macroscopic

behavior. The meso-scale model is chosen to be a discrete beam-particle model in this

work as it provides an explicit representation of micro-cracking. Furthermore, it accurately

considers how the micro-cracks affect the macroscopic behavior of the material. Yet, we

chose to neglect the crack closure effect for this study. The results from virtual testing in 2D

will serve to constitute a dataset of bi-dimensional effective elasticity tensors. This dataset

will be our reference to formulate the multi-axial damage model.

This dissertation pays particular attention to the rigorous analysis of anisotropy induced

by micro-cracking, the so-called anisotropic damage. To this end, mathematical notions

related to material symmetries in 2D are recalled and used. In particular, the distances of

an elasticity tensor to a symmetry class are employed to justify the necessity of anisotropic

damage models. The notion of invariants and covariants (a tensorial generalization of invari-

ants) are also used to analyze the tensors without any reference to a particular basis. After

those first analyses, we aim to formulate a model that captures how micro-cracking affects

the bi-dimensional effective elasticity tensor. We rely on a tensorial (equivariant) reconstruc-

tion formula for elasticity tensors to simplify the modeling process. This formula gives an

expression of the elasticity tensor from its invariants and (tensorial) covariants. Based on

this formula, previous works have introduced a (tensorial) damage variable, a covariant of

the effective elasticity tensor, to represent the degradation state of the material. It has the

particularity to offer explicit expressions for certain parts of the effective elasticity tensor as

functions of the damage variable. The remaining parts are modeled based on the reference

dataset. In particular, a sparse and interpretable data-driven approach is employed to formu-

late one of the parts of the model. To complete the model, we need to model the evolution

of the degradation, i.e. of damage, when a mechanical load is applied to the material. First,

we must establish a criterion to identify when damage occurs based on data from discrete

simulations. Then, we will formulate a damage evolution model to describe how degradation

evolves during mechanical loading.

To summarize, this study proposes to use a virtual testing approach as a foundation

to formulate a model of the mechanical degradation of quasi-brittle material. The virtual

experiments are performed by simulating area elements using a discrete beam-particle

model. The resulting evolutions of the area element effective elasticity tensors are stored

in a dataset. By analyzing the dataset, we highlight the need for an anisotropic damage

model to describe their behavior accurately. The dataset then serves as a reference for the

anisotropic damage model formulation. First, the impact of damage, i.e. micro-cracking, on
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the effective elasticity tensor is modeled, leading to the formulation of the state potential.

Then, a (non-standard) damage evolution law is proposed to complete the model. Non-local

damage is then discussed to introduce the application of the model to structure simulations.

3 Outline

This dissertation is organized into two parts and six chapters. The first part is mainly ded-

icated to analyzing existing works from the literature. It places this work in the context

of existing literature, justifies the research methodology, and introduces the notions and

(existing) tools employed in the second part. This part is composed of three chapters.

• Chapter 1 provides the reasons for studying quasi-brittle materials by showcasing their

behavior during mechanical degradation through experiments from the literature. It

emphasizes the key phenomena that need to be considered for accurate modeling.

This chapter then covers the modeling of material degradation and damage, cover-

ing discrete and continuous models. Special attention is given to the structure and

formulation of damage models.

• Chapter 2 offers an overview of the literature on the mathematical study of elasticity

tensors. It introduces key definitions to study the anisotropy of elasticity tensors

(elasticity tensors, symmetry classes, invariants, covariants, etc.). This chapter then

presents the harmonic decomposition, representing 2D elasticity tensors from four

(covariant) harmonic components. Based on this decomposition, it presents formulas

to reconstruct an elasticity tensor from its covariants that will be used to formulate the

state model in subsequent chapters. Finally, it introduces the concept of distance of an

elasticity tensor to a symmetry class, providing a rigorous basis for justifying modeling

choices related to anisotropy.

• Chapter 3 focuses on determining the effective elasticity tensor of a discrete area

element. It starts by introducing the beam-particle model used and then addresses

fundamental homogenization questions. First, the average stress and strain definition

in an area element are discussed, as well as the appropriate boundary conditions

to apply to the area element in the measurement procedure. After addressing those

questions, a procedure to measure the effective elasticity tensor of an area element is

described and discussed.

The second part is dedicated to the main contributions of this work and is composed of three

chapters:

• Chapter 4 is dedicated to generating and analyzing the dataset of effective elasticity

tensors. This dataset will serve as the reference for the 2D anisotropic damage model

formulation. Area elements are submitted to both proportional and non-proportional

loadings, and their effective elasticity tensors are measured at each load step. This

chapter also illustrates the measurements by analyzing a particular elasticity tensor

evolution during a non-proportional loading. Additionally, a validity check is conducted

by assessing errors in the measurement process and checking for inconsistencies in
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the dataset, such as losses of positive definiteness or increases in stiffness. Finally, a

quantified anisotropy analysis is performed.

• Chapter 5 develops an anisotropic damage state model based on the reconstruction by

covariants. The goal is to express each harmonic component of the effective elasticity

tensor as a function of damage. An anisotropic damage variable from the literature,

based on a second-order covariant of the effective elasticity tensor, is introduced. This

damage variable, coupled with the reconstruction formula, provides an exact modeling

of two (out of four in 2D) harmonic components. The two remaining harmonic compo-

nents are then modeled based on the reference dataset and using a sparse data-driven

approach for one of them. The resulting model expresses the bi-dimensional effective

elasticity tensor in terms of the initial elastic properties, a new parameter called the

harmonic pre-factor, and the damage variable. Finally, the model accuracy is assessed

by comparing it with results obtained from the discrete model.

• Chapter 6 is dedicated to the development of a non-standard damage evolution law.

This development is performed in three steps. Firstly, the initial yield surface of multiple

area elements is efficiently measured using a method proposed in this work. The

equivalent strain is then defined by fitting a polynomial of strain invariants to this

measured yield surface. Secondly, the chapter analyzes the damage evolution by

applying various strain loadings to (discrete) area elements. This investigation identifies

crucial phenomena during the degradation process, which must be incorporated into

the model. Based on the discrete results, a preliminary non-standard damage evolution

law is then proposed. Extension of the model to non-local damage is discussed.
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Part I
Generalities for the analysis

of quasi-brittle materials
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1
Mechanical degradation/damage

of quasi-brittle materials

This chapter motivates the study of quasi-brittle materials. It begins with a presentation of

different experiments to illustrate the behavior of quasi-brittle materials during their mechan-

ical degradation. It highlights various phenomena that must be accounted for to model those

materials. Then, the focus is shifted on the modeling of material degradation/damage. First, an

overview of the discrete models is provided. Then, the continuous damage models are discussed.

In particular, an emphasis is put on the structure and formulation of damage models.

Quasi-brittle materials, such are concrete or mortar, are highly used in civil engineering

structures. Ensuring their integrity is of crucial importance to guarantee its safe use. The

best way to guarantee the integrity of a structure would be to make a full-scale prototype

of the structure. Due to the scale of civil engineering structure, this method is usually

impossible. Yet, the size effect (Bažant, 1984; Bažant & Planas, 2019) makes the use of small

scale prototypes difficult.

It motivates the need of means to accurately simulate structures. To simulate the me-

chanical behavior of structures, different steps are required. The first step is to characterize

the materials of the structure. The characterization consists in measuring the response of a

material when submitted to different loadings to gather information on the material behavior.

It enables to put forward different phenomena that must be accounted for to correctly model

the material. Once enough information is acquired, it can be used to formulate models. In

material science, a model is a mathematical description of the observed phenomena valid

under certain assumptions. Using numerical (or analytical) tools, the model can be applied

to analyze the response of a whole structure to different loadings.

1 Experimental observations

This section aims at introducing and presenting the behavior of quasi-brittle material based

on experimental evidence. For most of the studies presented here, the material used in the

experiments are concrete or mortar. Bones, some composites, wood, amongst others are
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Chapter 1. Quasi-brittle materials

other example of quasi-brittle materials.

1.1 Macroscopic behavior

In general, the behavior of a material is first characterized through macroscopic mechanical

experiments. In this subsection, different tests are reviewed to showcase particularities of the

behavior of quasi-brittle material.

Cyclic behavior in tension. Different uni-axial cyclic experiments on concrete have been

carried out to characterize its behavior under a tensile loading (Terrien, 1980; Reinhardt

& Cornelissen, 1984; Reinhardt et al., 1986; Mazars & Berthaud, 1989; Mazars et al., 1990;

Nouailletas et al., 2015). For instance, results from Terrien (1980) are reported in Figure 1.1.

At the beginning of the tensile loading, the relation between strain and stress is linear which

corresponds to an elastic behavior. When the loading reaches a specific threshold called the

yield strength, the relation become non-linear. It is one of the manifestation of the damage

growth at macroscopic scale. After reaching a peak stress, the stress starts to decrease with the

strain. This part is called the softening phase which appears as the material further continues

to damage. Terrien (1980) also unloaded the material during the softening phase. Different

observations are important to mention:

1. A permanent strain still persists even if the stress goes back to 0.

2. Stress decreases almost linearly with strain during unloading.

3. The further in the softening phase, the smaller the slope during unloading.

The unloading is almost linear; thus, it can be considered as elastic. The slope of the unloading

corresponds to the effective rigidity of the material. The successive unloadings show a gradual

decrease of the effective rigidity. Those observations will be explained from local phenomena

in Section 1.3.
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Figure 1.1 • Stress strain cyclic tensile curve (adapted from Terrien (1980)).
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Unilateral effect. In its experiment, Terrien (1980) stopped to unload when the stress

returned to 0. In a similar experiment, Mazars et al. (1990) unloaded the specimen and

then applied compressive loading to it. Figure 1.2 displays stress-strain curve from the

experiment. Note that the studies of Reinhardt and Cornelissen (1984), Reinhardt et al. (1986),

and Nouailletas et al. (2015) show similar results. The curve in Figure 1.2 displays different

phases. The phase 1 is the elastic loading and the beginning of the softening phase. During

phase 2, the specimen is unloaded to almost null strain. When the stress becomes null,

a permanent strain remains. Then, the specimen is reloaded. Once again, the unloading

and the loading are almost linear with a decreased slope, corresponding to a degraded

macroscopic rigidity. Phase 3 is the end of the softening phase. During phase 4, the material

is unloaded and shows a linear stress evolution with strain. In phase 5, the stress-strain

relationship is still linear, with an increased slope compared to phase 4. Note that the slope is

close to the one in phase 1, meaning that the rigidity is close its initial value (in the elastic

phase). This stiffness recovery is the so-called unilateral effect. It also seems important to

point out that, in the range of the compressive loading, the softening in compression is not

reached. It means that the stiffness of the material is now higher in compression than in

tension.
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Figure 1.2 • Stress-strain curve of an alternating tension-compression loading applied to a

concrete cylinder (adapted from Mazars et al. (1990)).

Damage-induced anisotropy. After being subjected to a damaging loading, an initially

isotropic material can become anisotropic. It means that is degraded mechanical proper-

ties vary with the measurement direction. This phenomenon is called damage-induced

anisotropy. For instance, Berthaud (1991) subjected a square concrete specimen to uniaxial

compression in the direction e1. The evolution of Young’s modulus in directions e1 and e3

are measured and reported in Figure 1.3a. Moreover, the evolution of Poisson ratios ν12 and

ν23 are also measured and reported in Figure 1.3b. As shown on those figures, the specimen

is initially isotropic as the elastic moduli E1 = E3, and the Poisson coefficients ν12 = ν32.

During the compressive loading, E1 stays approximately constant and equal to E0 whereas
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Chapter 1. Quasi-brittle materials

(a) Young modulus. (b) Evolution of Poisson ratios.

Figure 1.3 • Evolution of the mechanical properties during a compressive loading by

Berthaud (1991).

E3 strongly decreases. In addition, the Poisson ratios become different. It shows that the

degradation can make a material mechanically anisotropic.

� Conclusion – Macroscopic behavior of quasi-brittle material
During tensile experiments on quasi-brittle structures, we observe

• an elastic phase at the beginning of the loading;

• a damaging phase when a specific threshold is reached (the yield strength);

• a softening phase (inside the damaging phase) when the tensile strength is reached;

• a nearly elastic response when unloading the specimen during the softening, with a

degraded rigidity;

• a permanent strain when going back to zero stress after softening;

• a rigidity recovery when compressing the specimen after softening.

An anisotropy of the behavior induced by the degradation, itself caused by the mechanical

loading, is also observed.

1.2 Yield surface – When does the damage growth begins ?

The softening phase starts at a specific point of the loading, which corresponds to the begin-

ning of the mechanical degradation. This part aims at presenting experimental observations

of the transition between the elastic phase and the damaging phase. For instance, Kupfer et al.

(1969), Nelissen (1972), and Lee et al. (2004) investigate the behavior of concrete under biaxial

loading. In particular, Lee et al. (2004) examine square plate concrete specimens, 200 × 200 ×
60 mm3. Two types of concrete used in Korean nuclear containment buildings are studied.

The specimens are subjected to loadings with different stress ratios (α= f1/ f2), where f1 and
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Figure 1.4 • Biaxial strength envelops for two different types of concrete under biaxial stress

(Lee et al., 2004). fc is the compressive strength of the specimen.
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f2 are principal stresses. The results of this study are represented in Figure 1.4. It shows that

the strength of the material varies with the loading direction. In particular, the strength in

compression is around ten times higher than in tension. It means that the specimen is more

resistant to damage from compressive loads than from tensile loads.

1.3 A zoom on the fracture process

To explain the macroscopic behavior of quasi-brittle materials, a look at smaller scales is

necessary. Different techniques provide means to investigate the “local” material behavior.

Mindess (1991) proposes a review of such techniques. Here, experimental results using an

Acoustic Emission Technique are presented. Based on those results, different macroscopic

phenomena (such as the unilateral effect and the damage induced anisotropy) are explained.

Acoustic Emission Techniques. The book of Grosse et al. (2022) —especially the chapter

“AE in Concrete”— provides an overview of different AE techniques. Ohtsu (1996) also gives

a historical review of early developments and applications of those techniques. Acoustic

emissions techniques are based on the release of elastic energy due to an acoustic event

which generates the propagation of an acoustic wave in the specimen. Different phenomena

can generate an acoustic event: the creation of a micro-crack, inter-granular friction, amongst

others. By placing piezoelectric transducers at different locations on the specimen surface, the

acoustic source intensity and location can be measured. Since the end of the 80s, numerous

acoustic emissions studies have been carried out to study concrete failure, see for instance

the works of Maji and Shah (1988), Rossi et al. (1990), Ouyang et al. (1991), Landis (1999), and

Saliba et al. (2016), amongst others. The work of Landis (1999) provides an analysis of the

fracture process during a 3-point bending test. Figure 1.5 shows the results from a three-point

bending test applied to a coarse mortar specimen. In those results, each acoustic event is

considered to be the creation of a micro-crack. Different phases are observed. The first phase,

from the beginning of the loading until 80% of peak load, displays few diffuse acoustic events.

This phase contains the elastic part of the loading and the beginning of the micro-cracking.

Note that the micro-cracks appear diffusely in the most loaded region of the specimen. The

second phase ranges from 80% of peak load until the peak load. This phase starts with an

increase in event rate, corresponding to an acceleration of the micro-cracking. In this phase,

bridges between existing micro-cracks appear, leading to micro-cracking localization. At the

macroscopic scale, a significant loss of rigidity is observed. The last two phases are softening

phases. During those phases, acoustic events propagate in the bulk of the material in a

localized manner. It corresponds to the propagation of a macroscopic crack in the specimen.

A conclusion of this experiment is that the mechanical degradation of quasi-brittle materials

is mainly caused by the nucleation and propagation of micro-cracks in the material. In

the next paragraphs, this observation is used to explain most of the observed macroscopic

phenomena.

Loss of stiffness. The nucleation and growth of micro-cracks create a loss of cohesion in

the material, inducing a macroscopic reduction of the stiffness. This leads to the decrease of

the observed Young modulus observed in Terrien (1980) results in Figure 1.1.
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(a) Load and intensity of acoustic events. (b) Acoustic events location and crack paths.

Figure 1.5 • Acoustic Emission applied to a coarse mortar subjected to three-point bending

(Landis, 1999).

Unilateral effect. The unilateral effect is also explained by those micro-cracks. A tensile

loading leads to the nucleation of micro-crack in directions orthogonal to the loading direc-

tion (Mazars, 1984; Lemaitre & Mazars, 1982). Then, if a compressive loading is applied in

the same direction, the micro-cracks will close and the load will be transmitted by contact

between crack faces. It leads to an apparent recovery of stiffness observed in Figure 1.2. In

practice, each individual micro-crack can be either open or close, depending on the loading.

When a crack closes, it leads to a gain of stiffness (without any change of the micro-cracking).

Permanent strain at unloading. Yet, Figure 1.1 also displays permanent strains. It is due to

the friction between the crack faces which induces irreversible strains (Andrieux et al., 1986).

State Initial Intermediate Final

Path 1
e1

e2

Path 2
e1

e2

Figure 1.6 • Different loading paths applied to a crack (adapted from Kachanov (1982)).
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For illustration purposes, the Figure 1.6 shows two loading paths applied to a crack. In

the first one, the crack is first sheared, leading to a sliding δ1, and then, a normal stress is

applied to it. In the second one, a normal stress is first applied to the crack. Due to friction,

this normal stress induces a rise of the sliding resistance; thus, it acts as a “lock” of the crack.

If the friction between crack faces is accounted for, there are different possible cases:

• Adherence. The crack surfaces adhere to each other (δ2 = 0), leading to a complete

regain of stiffness.

• Friction. The crack surfaces slide with friction (0 < δ2 < δ1); thus, the crack can still

transmit partially stress in the plane of the crack, leading to a partial regain of stiffness.

• Gliding. The crack surfaces perfectly slide (without friction) (δ2 = δ1); thus, the crack

cannot transmit stress in the plane of the crack, leading to a recovery of stiffness in the

direction normal to the crack.

Also note that, in most cases, the crack has a certain roughness, leading to additional contact

effects (which may be, at least partially, accounted for with friction).

Damage-induced anisotropy. The damage-induced anisotropy is due to micro-cracks

orientations and positions. For a uni-axial loading, micro-cracks nucleates such that the

crack plane is normal to the loading direction. Thus, the perceived loss of stiffness will

depend on the relative orientation between the crack and the direction in which the stiffness

is measured.

1.4 Conclusion on the mechanical degradation of quasi-brittle materials

To conclude this first section, let us highlight the phenomena occurring when a quasi-brittle

material is damaging and discuss which phenomena will be accounted for in the proposed

model. The model needs to represent the initial elastic phase up until the yield surface

is reached. During the damaging phase, it should also incorporate the stiffness loss due

to micro-cracking. In order to accurately represent the softening phase under multi-axial

loads, the model must additionally account for the damage-induced anisotropy. However, to

ease the modeling process, the crack closure effects, such as the stiffness recovery and the

permanent strain at unloading, will be omitted for now and left to future works.

2 Discrete models

This section aims at presenting discrete models for the modeling of quasi-brittle materials.

Three types of models – lattice, particular, and hybrid – are presented separately. A more

complete review of discrete model is provided by Bolander et al. (2021).

2.1 Lattice models

In lattice models, the material is represented by a network of 1D elements such as springs or

beams. According to Capecchi et al. (2010), lattice models were introduced through the work
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of French mechanicians in the early 1800s to make a molecular model of matter. Poisson

(1828) establishes the basis of the molecular theory of elasticity. However, this theory suffered

a critical flaw: the constitutive law of an isotropic body is characterized by only one parameter,

in so-called rari-constant elasticity theory (Love, 1892). The solution proposed by Voigt (1887)

is to modify the molecular model to define interaction through potentials, thus deviating

from a lattice model. The first lattice model to solve this issue is proposed by Hrennikoff

Figure 1.7 • Lattice patterns proposed by Hrennikoff (1941) to represent .

(1941). The principle consists of choosing specific periodic lattice patterns that capture the

correct elastic behavior of the structure. Some patterns proposed by Hrennikoff (1941) are

shown on Figure 1.7. Note that patterns such as the number 1 has a Poisson ratio close to the

one of metals. By changing the geometric parameters in the pattern number 5, Hrennikoff

(1941) states that any arbitrary Poisson ratio can be obtained. One of the first attempts to

model the fracture of elastic materials with a lattice model is made by Roux and Guyon

(1985) and Herrmann et al. (1989). These works use a periodic network of beams with a

square pattern. Beams are given random brittle failure thresholds in tension and bending.

This discrete model shows different cracking regimes during a loading: a first “controlled

regime dominated by disorder” corresponding to the diffuse micro-cracking phase, then after

reaching the brittle threshold (the peak stress is reached), a catastrophic failure happens.

Inspired by particular models, Bažant et al. (1990) proposed a lattice model which accounts

for the material heterogeneous meso-structure through random particle generation. This

model correctly reproduces micro-cracking and its localization. It also displays the size

effect observed in quasi-brittle materials. Based on the work of Herrmann et al. (1989) and

Herrmann and Roux (1990), Schlangen and van Mier (1992) used a network of brittle beams

with a triangular pattern to model concrete specimens. The authors compare two means

to introduce heterogeneities: assigning random failure to the beam and assigning different

mechanical properties to the aggregates, matrix, and bond zones. The authors found that

both approaches accurately predict the fracture pattern. The results of Schlangen and van

Mier (1992) using random bar strength are represented on Figure 1.8 along with experimental

results.
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(a) Experiment

(b) Lattice model

Figure 1.8 • Comparison of the lattice model with experiments during a four-point shear test

(adapted from Schlangen and van Mier (1992)).

2.2 Particulate models

The particulate discrete models are mostly based on the Distinct Element Method proposed

by Cundall and Strack (1979). This method considers an assembly of rigid discs in 2D and

spheres in 3D. Each particle has a mass and is subjected to inertial effect; thus, the Distinct

Element Method is a dynamic model. As shown on Figure 1.9, the only interactions between

the particles are the contacts. The motion of each particle are tracked individually. In order

to model an elastic material with this method, Kawai (1978) proposed to introduce cohesion

between rigid bodies. Instead of considering the contact between the rigid bodies, the authors

consider that they are linked with spring in the contact zone. Even if this model is based on

an assembly of rigid bodies, it is closer to a lattice method in its implementation. Meguro

and Hakuno (1989) also modified the Distinct Element Method with the objective to model

concrete structure. In their model, particles are linked with normal and tangential springs at

their interface. Moreover, the springs can fail in tension to represent the creation of a crack.

However, a failed spring keeps its stiffness when subjected to compression to model crack

closure effects. Some bi-dimensional results on the compression of a concrete specimen are

presented in Figure 1.10.

2.3 Hybrid models

Even if the boundary between particulate and lattice models is often thin, the model that

combines both approach to model quasi-brittle material is proposed by D’Addetta et al.
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Figure 1.9 • Particle interactions in the discrete model of Cundall and Strack (1979).

Figure 1.10 • Fracture process during a compression test using a particulate method (Meguro

& Hakuno, 1989).
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Figure 1.11 • Hybrid model where rigid polygonal particles are linked by beam (D’Addetta

et al., 2002).

(2002). This discrete model is an assembly of rigid particles linked by a network of beams

to obtain cohesion. Beam failure is governed by a combination of the beam elongation

and the rotations of its particles and his parametrized by two constant thresholds. Instead

of considering the particle elastic, D’Addetta et al. (2002) choose to let particles virtually

interpenetrate. Contact forces are applied to the particles when an interpenetration occurs

and directly relate to the surface/volume of interpenetration. The authors concluded that

hybrid models are promising to model and understand the failure processes of concrete or

ceramics. Since then, the hybrid models continue to be developed in particular through the

works of Delaplace (2008), Grassl and Jirásek (2010), Cusatis et al. (2011b, 2011a), Vassaux

et al. (2016), and Pathirage et al. (2023).

3 Continuous damage models

Continuous models are another category of models used to represent the behavior of quasi-

brittle materials. They account for the material mechanical degradation during loading,

including damage initiation (Lemaitre, 1992; Krajcinovic, 1996; Lemaitre & Desmorat, 2005;

Murakami, 2012). Unlike discrete models, continuous models provides a continuous de-

scription of the material. They do not explicitly account for the micro-scale phenomena but

provides their averaged representation at the macroscopic scale.

Section 3.1 gives an overview of the different progress in the formulation of damage

models. Then, Section 3.2 explains the formulation of a damage model in the framework in

the thermodynamics of irreversible process. Section 3.3 discuss the transition to structure

by focusing on non-local damage. Finally, a brief overview on the formulation of material

models using a data-driven approach is presented in Section 3.4.

3.1 An overview on the formulation of damage models

This subsection gives an overview of the growth and evolution of continuum damage me-

chanics. More details on continuum damage mechanics are available in classical references

(Kachanov, 1986; Krajcinovic & Lemaitre, 1987; Lemaitre, 1996; Lemaitre & Desmorat, 2005;

Murakami, 2012).

The first occurrence of a variable to describe the material mechanical degradation is

in the work of Kachanov (1958) where a scalar damage variable is used to account for the

degradation of the material during a creep loading. As explained by Lemaitre (1984), the

18



3. Continuous damage models

damage variable has been used in the seventies to formulate constitutive equation in the

framework of thermodynamics for different phenomena: low-cycle fatigue (Lemaitre, 1971),

coupling between damage and creep (Leckie & Hayhurst, 1974; Hult, 1974), high-cycle fatigue

(Chaboche, 1974), creep-fatigue interaction (Lemaitre & Chaboche, 1975), and ductile plastic

damage (Lemaitre & Dufailly, 1977). This representation of mechanical degradation has been

applied to model quasi-brittle materials such as concrete (Mazars, 1986; Lubliner et al., 1989;

Mazars & Pijaudier-Cabot, 1989; Grassl & Jirásek, 2006).

Effective stress. Rabotnov (1969) introduced the notion of effective stress σ̃ to discuss

tertiary creep. Lemaitre (1971) and Chaboche (1978, 1979) extended it to the coupling with

elasticity and with plasticity. Let us introduce the area unaffected by damage noted S̃ = S−SD ,

where S is an elementary area and SD is the damaged part of S. The effective stress is the

stress acting on the area S̃ which carry the load. Thus, applying the force equilibrium

σ̃S̃ =σS =⇒ σ̃= σ

1−D
, where D = 1− S̃

S
. (1.1)

The variable D is the damage variable and represents the degradation state of the material.

As specified by Cordebois and Sidoroff (1982), the definition of the effective stress can be

extended to anisotropic damage

σ̃= M(D) :σ=σ : M(D), (1.2)

where M is a fourth-order tensor with the minor and major index symmetries. The original

definition is recovered for M(D) = (1−D)I, where I is the fourth-order identity.

Principle of strain equivalence. Lemaitre (1971, 1985) proposed the principle of strain

equivalence. According to Lemaitre et al. (2009), “it states that the strain constitutive equa-

tions of a damaged material is derived from the same formalism as for a non-damaged

material except that the stress is replaced by the effective stress”. It means that the deforma-

tion of the undamaged material is equal to the deformation of the damaged material,

σ̃= E0 : ε ⇐⇒ σ= Ẽ : ε. (1.3)

Note that the strain equivalence in used as the basis to build most of the models pre-

sented in the remainder of this section. However, the direct generalization of this principle

(combined with the effective stress) is not straightforward as it does not lead to a correct

elastic potential (Cordebois & Sidoroff, 1982). There is also a principle of stress equivalence

proposed by Simo and Ju (1987) and a principle of energy equivalence (Cordebois & Sidoroff,

1982). The latter have been applied in the works of Chow and Wang (1987) and Ju (1989),

amongst others, and extended by Saanouni et al. (1994).

Normality rule. In parallel, developments have been made on the side of the evolution

law. Hill (1967) proposed the use of a normality rule for the evolution of internal variables.

For plasticity, applying the normality rule to the yield function is equivalent to applying the

principle of maximum plastic work (Hill, 1948). This work was further formalized in the
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Chapter 1. Quasi-brittle materials

framework of Standard Generalized Materials by Halphen and Son Nguyen (1975). In this

framework, the evolution of each internal variable is obtained by applying the normality rule

to a pseudo-dissipation potential (Germain et al., 1983).

Damage evolution laws. The normality rule has been applied to construct various asso-

ciated evolution law for isotropic damage (Marigo, 1981) and anisotropic damage (Halm

& Dragon, 1996, 1998; Murakami & Kamiya, 1997). Yet, there is no principle of maximum

dissipation in damage mechanics: the damage is not necessarily normal to the damage yield

surface. Thus, various models use non-associated models (Lemaitre et al., 2000). To go even

further, other models are non-standard, meaning that the evolution law does not derive from

a potential. Examples of such models are the isotropic damage models of Mazars (1984) and

Fichant et al. (1999) or the anisotropic one of Desmorat (2016).

Unilateral effect. In addition to the development of the framework of continuum damage

mechanics, research efforts also concentrate on other phenomena. For quasi-brittle materials,

we have seen that the unilateral effect is important (see Figure 1.2). One of the first attempt to

model this phenomenon is the work of Ladevèze (1983b) and Ladeveze and Lemaitre (1984) as

well as the one of Horii and Nemat-Nasser (1983), followed by Ortiz (1985). Yet, the modeling

of the unilateral effect is complicated, and several early studies have inconsistencies (see

the works of Chaboche (1992), Carol and Willam (1996), Cormery and Welemane (2002),

and Challamel et al. (2006)). In order to be consistent with thermodynamics, Lemaitre and

Desmorat (2005) and Desmorat et al. (2007) proposed two modeling constraints

• do not introduce any new damage variable to specifically model crack closure effects

(since a thermodynamics damage variable represents the state of micro-cracking,

whatever the loading sign), and

• the damage variable must influence differently the behavior in tension and in compres-

sion.

Most of existing models are based on a decomposition of strain or stress into a positive

part and a negative part. The modeling of this phenomenon is still at the core of recent

contributions (Cormery & Welemane, 2010; Goidescu et al., 2013; Desmorat & Desmorat,

2016). The crack closure effect has also been studied using micro-mechanics in the early

works of Walsh (1965a, 1965b), Kachanov (1980), and Kachanov (1982), and more recently

by Pensée et al. (2002), Cormery and Welemane (2010), and Goidescu et al. (2013)). For

instance, Desmorat and Desmorat (2016) proposed a general framework to account for crack

closure effect with open and closed cracks in 2D. The authors show that a single second-order

tensor is sufficient to represent the effect of both open and closed frictionless cracks (also

called “lubricated cracks”). In the previous presented works, the closed cracks are often

supposed to be frictionless. Yet, we have recalled that friction between crack faces induces

permanent strains (Andrieux et al., 1986). This effect is often accounted for through plasticity

(Lubliner et al., 1989; Jason et al., 2006; Ragueneau et al., 2006; Richard et al., 2010; Richard &

Ragueneau, 2013; Benelfellah, 2013).
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3. Continuous damage models

Following the work of Willam et al. (1989), Angrand (2016) proposed a method based on

non-proportional loadings to check whether there is any inconsistency regarding unilateral

effect. The idea consists in applying square loadings in the space of strain eigenvalues to a

material point. Any discontinuity in the stress response (in the strain-stress curves) indicates

an inconsistency in the model.

3.2 Formulating a damage model in the framework of thermodynamics

Most continuous models can be written in the framework of the thermodynamics of irre-

versible processes. It enables to formulate a damage model in three main steps (Lemaitre &

Chaboche, 1985),

1. the definition of the state variables, which represents the physical state of the material,

2. the definition of the state potential, which describes the relation between each state

variable and their associated thermodynamic forces,

3. the definition of the dissipation potential, which describes the evolution laws for each

state variable through their dissipation mechanisms1.

The goal of the following sections is to detail each step of this process.

3.2.1 State variables

The first step to formulate a model in the thermodynamics framework consists in choosing

mathematical variables to describe the state of the system. To model elasticity, the first

(observable) state variable is the strain tensor ε which represents the deformation of the

material. The degradation of the material is another change of state, which is accounted

for by introducing a damage variable D. The damage variable is an internal state variable

associated with a dissipative phenomenon, whereas strain is an observable state variable.

The choice of the damage variable is important as the model is only able to account for the

information given by this variable. In particular, the model will only be able to account for the

change of symmetry that the variable can represent. Thus, the tensorial nature of the damage

variable is widely discussed in classical literature (Vakulenko & Kachanov, 1971; Chaboche,

1979; Leckie & Onat, 1981; Chaboche, 1984; Lemaitre & Chaboche, 1985; Murakami, 1988;

Ramtani et al., 1992) and is still discussed in recent works (Cormery & Welemane, 2010;

Desmorat & Desmorat, 2016; Dormieux & Kondo, 2016; Fassin et al., 2019; Oliver-Leblond

et al., 2021). The main question is whether the mechanical degradation of the material can

be represented

• by a scalar variable, as in most classical damage models (Kachanov, 1958; Rabotnov,

1969; Lemaitre, 1984),

• by a single second-order tensor (Murakami & Ohno, 1978; Cordebois & Sidoroff, 1980,

1982; Murakami, 1988; Ramtani et al., 1992; Kachanov, 1993; Halm & Dragon, 1996;

1Note that the second principle of thermodynamics constrains the choice of the dissipation potential, i.e. the

evolution laws, as it must be positive.

21



Chapter 1. Quasi-brittle materials

Papa & Taliercio, 1996; Lemaitre et al., 2000; Lemaitre & Desmorat, 2005; Desmorat

et al., 2018),

• by two second-order tensors (Ladevèze, 1983b, 1995; Desmorat & Desmorat, 2016), or

• by a fourth-order tensor (Chaboche, 1978, 1979; Krajcinovic, 1985; Kachanov, 1993).

The definition of the damage variable is addressed through Chapter 2, Chapter 4, and, to a

lesser extent, in Chapter 5.

In the modeling of quasi-brittle materials, the simplest choice is to use a single scalar

damage variable. As it cannot account for any orientation of the micro-cracking, a model

using such a variable is called an isotropic damage model. Thanks to their simplicity, isotropic

damage models are often used to compute the degradation of concrete structures (Mazars,

1984; Grassl & Jirásek, 2006; Richard & Ragueneau, 2013). These models assume that the

material behavior remains isotropic when damaging. In accordance with damage measure-

ments (Ramtani et al., 1992; Lemaitre et al., 2000), micro-mechanics studies of micro-cracked

media, such as the ones of Chaboche (1984), Lubarda and Krajcinovic (1993), and Kachanov

(1993), show indeed that damage is not isotropic and has to be represented by a damage

tensor physically linked to the crack density:

• a fourth-order tensor in the 3D case,

• a second-order tensor in the simpler 2D case with lubricated non-interacting cracks.

3.2.2 State potential

The second step to formulate a damage model in the framework of thermodynamics consists

in defining the state potential. Let us take the Helmholtz specific free energy as the state

potential. In general, the state potential writes

ρψ(ε,D) = 1

2
ε : Ẽ(D) : ε. (1.4)

The state model is derived from the state potential (see the books of Lemaitre and Desmorat

(2005) and Lemaitre et al. (2009))

σ= ρ∂ψ
∂ε

=⇒ σ= Ẽ(D) : ε, −Y = ρ∂ψ
∂D

=⇒ Y =−1

2
ε :

∂Ẽ(D)

∂D
: ε, (1.5)

where the stress σ is the thermodynamic force associated with strain ε and relates to it

through the Hooke’s law (with the effective elasticity Ẽ(D) affected by damage), and the

energy density release rate Y is thermodynamic force associated with damage. In the state

model, the effective elasticity tensor Ẽ(D) is introduced. To formulate a state model, this

tensorial function of damage has to be defined and identified based on experimental data. It

is the main objective of Chapter 5.
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3. Continuous damage models

Examples of state potentials. The most classic choice for the state potential is

ρψ(ε,D) = 1

2
ε : (1−D)E0 : ε, E(D) = (1−D)E0 (1.6)

As specified, this type of model does not enable to account for damage-induced anisotropy.

Dragon et al. (1994) proposed, also detailed by Halm and Dragon (1996), to define the state

potential as a polynomial of (joint) invariants of the state variable

ρψ= 1

2
λ(trε)2 +µε : ε+ gε : D+α(trε)ε : D+2β tr(εεD) (1.7)

where λ and µ are the Lamé constants, α, β and g are supplementary constants to describe

the coupling between strain and damage.

Examples with unilateral effect. Until now, the presented state models neglected the

unilateral effect. In this paragraph, different state potential accounting for it are presented.

For a unidirectional isotropic model, a first approach consists in splitting the strain into a

positive and a negative part

ρψ= 1

2
(1−D)E〈ε〉2

++
1

2
(1−hD)E : 〈ε〉2

− (1.8)

where E is the Young modulus, and ε is the 1D strain, and h ∈ [0,1] is a parameter to control

the total or partial stiffness recovery in compression. The stiffness recovery in compression is

either total (unilateral effect) when h = 0, or partial (quasi-unilateral effect) when h > 0. This

type of decomposition cannot be directly generalized to the 2D and 3D cases. In those cases,

one must also rely on the hydrostatic/deviatoric split of the strain tensor

ρψ= 1

2

(
2µ(1−D)ε′ : ε′+κ(1−D)〈trε〉2

+−κ(1−hD)〈− trε〉2
+
)

(1.9)

where µ is the shear modulus and κ is the bulk modulus. In this case, the crack opening or

closure does not impact the deviatoric part of stress. This method can also be extended to

anisotropic damage model. For instance, the state model of Desmorat (2016), based on the

work of Ladevèze (1983b), in 3D is defined as

ρψ= 1

2

(
2µ

((
H−1ε

)
:
(
H−1ε

)− (H−2 : ε)2

trH−2

)
+κ

(
3〈trε〉2

+
trH2

−〈− trε〉2
+

))
(1.10)

where H = (1−D)−
1
2 . Another example of anisotropic damage model accounting for the

unilateral effect the work of Badel et al. (2007). There is still an issue in this kind of model:

the derivative of stress with respect to strain is discontinuous when going from the open

cracks to close cracks and conversely. More recently, Jefferson and Mihai (2015) proposed a

regularized version of this technique and Zafati and Richard (2019) applied it to model the

behavior of concrete (based on the work of Desmorat (2016)). Globally, the idea consists in

using a regularized positive part function.
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3.2.3 Damage criterion

The damage criterion, also called the damage growth criterion, is the component of the

model which tells whether the material is currently damaging. The damage criterion function,

denoted f (ε,D), is such that

f (ε,D) < 0 =⇒ damage stays constant, and f (ε,D) = 0 =⇒ damage grows. (1.11)

It describes whether the damage grows for any value of the state variables. Here, we will focus

on criteria based on the strains. In most work on quasi-brittle materials, the damage criterion

function has the form

f (ε,D) = εeq −C (D) (1.12)

where εeq is an equivalent strain and C (D) is the consolidation function2, which accounts

for evolution of the damage threshold with damage, i.e. the evolution of the damage yield

surface. This type of criterion function cannot account for an anisotropic growth of the yield

surface. As the consolidation is a scalar, the yield surface will keep the same form and the

growth of damage only acts as a homothety on this form. Here, we only cover the definition of

equivalent strain εeq as the choice of C (D) directly relates to the evolution law. It means that

we concentrate on the definition of the initial damage criterion (and not how the criterion is

affected by damage).

Examples of damage criteria for quasi-brittle materials are presented in the following

paragraphs. Most of those yield criteria are based on invariants of the stress or the strain

I1(ε) = tr(ε) = ε : 1, I2(ε) = tr(ε2) = ε : ε. (1.13)

de Vree. Let us start by introducing de Vree criterion (de Vree et al., 1995), which is a

modification of the von Mises criterion

εdV = γ−1

2γ(1−2ν)
I1(ε)+ 1

2γ

√(
γ−1

1−2ν
I1(ε)

)2

+ 12γ

(1+ν)2
I2(ε′) (1.14)

where γ is the ratio of the tensile and compressive strength.

Mazars. Mazars (1984) considered that the damage in concrete is purely due to local exten-

sion of the material. Thus, Mazars (1984) defined another equivalent strain as

εMaz =
√
〈ε〉+ : 〈ε〉+, 〈ε〉+ =

d∑
i=1

〈εi 〉+v i ⊗v i , 〈εi 〉+ = max(εi ,0), (1.15)

where 〈ε〉+ is the positive part of the strain tensor, d is the dimension, εi is i -th eigenvalue of

strain, and v i is i -th eigenvector of strain.

2The consolidation function is often denoted κ(D) in the classical literature. Here, κ will be used to define

the bulk modulus.
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3. Continuous damage models

Drucker-Prager. Another criterion based on invariants —that has been used for soils, rocks,

concrete, amongst others— is the Drucker-Prager criterion (Drucker & Prager, 1952). It is

defined such that

f (ε,0) = 0 ⇐⇒
√

I2(ε′) = εy +k ′I1(ε), (1.16)

where k ′ is a parameter of the equivalent strain. It leads to

εDP = εvM +kI1(ε) (1.17)

where εvM =
√

2I2(ε′) is the von Mises equivalent strain (in 2D), and k is a coefficient associ-

ated to the hydrostatic strain. Various extension of the Drucker-Prager criterion exists and

some a presented in the work of Alejano and Bobet (2012).

Other criteria. The early work of Ottosen (1977) introduces a four-parameter criterion for

concrete. Chow and Wang (1987) proposed a damage criterion function based on the energy

release rate Y. More recently, François (2008) presents other two-parameter criteria and

compares them to the experimental data from Kupfer et al. (1969). Ragueneau et al. (2008)

also compared several damage criteria function based on Mazars equivalent strain to the

same experimental data. Furthermore, Mattiello and Desmorat (2021) presents different

functions that can be used as yield criterion, with a particular focus on a specific invariant:

the Lode angle. Kolupaev (2018) provides numerous equivalent stresses that can be adapted

into equivalent strain definition.

3.2.4 Dissipation potential and damage evolution

The evolution of each internal state variable must be described as a function of the other

state variables. The evolution laws are constrained by the second principle of thermody-

namics. According to the second principle, the evolution law must be such that the intrinsic

dissipation D is always positive. Thus,

D =−ρ∂ψ
∂D

: Ḋ = Y : Ḋ Ê 0, Y =−ρ∂ψ
∂D

, (1.18)

where Ḋ is the temporal derivative of damage.

Associated damage evolution. The framework of Generalized Standard Materials (Halphen

& Son Nguyen, 1975) provides generic structure of evolution law ensuring that the second

principle is satisfied. In this framework, a dissipation potential is used to define the evolution

law. For associated damage models, the dissipation potential is supposed to be a character-

istic function of the damage criterion function f (ε,D). In practice, the damage evolution

law, is supposed to derive from the normality rule applied to the damage criterion function

(Ladevèze, 1983b),

Ḋ = λ̇D
∂ f

∂Y
(1.19)

where λ̇D is the damage multiplier satisfying the following Kuhn-Tucker conditions

f (ε,D) É 0, λ̇D Ê 0, f (ε,D)λ̇D = 0. (1.20)
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This kind of damage evolution law is called associated damage model. While this framework

clearly facilitates the formulation of an evolution law, it is restrictive as there is a unique

evolution law per damage criterion function.

Non-associated damage evolution. A less restrictive framework is provided by the non-

associated damage framework. The damage evolution is no longer normal to the yield surface

but to an arbitrary evolution potential denoted F . In this case, the damage evolution law is

given by

Ḋ = λ̇D
∂F

∂Y
, Y =−ρ∂ψ

∂D
, (1.21)

where λ̇D is still obtained from the Kuhn-Tucker conditions in Equation (1.20) which gives

the expression of the damage multiplier as a function of the damage criterion function. Using

the evolution potential corresponds to the most general case handled by the framework of

Generalized Standard Materials (Halphen & Son Nguyen, 1975). In order to satisfy the second

principle, the evolution potential depends on the state variables F (ε,D, ...). It must contain

the origin F (0,0, ...) = 0, be positive F (ε,D, ...) Ê 0, and be convex in the thermodynamic

forces.

Non-standard damage evolution. For further flexibility, the damage evolution might not

derive from an evolution potential. In this case, the damage evolution law is defined as an

arbitrary function of the state variables and thermodynamic forces

Ḋ(ε,D) = ... (1.22)

Usually, the damage evolution law is given as

Ḋ = λ̇DPD, (1.23)

where λ̇D is the damage multiplier, which still verifies the Khun-Tucker conditions in Equa-

tion (1.20), and PD is the damage direction which depends on strain and may also depend

on damage. For instance, the first anisotropic damage model studied by Desmorat (2016)

uses the damaging direction PD = 〈ε〉+ as proposed by Ramtani et al. (1992). However, the

normality assumption is lifted, so it is important to note that the positivity of the dissipation,

i.e. the second principle, is not ensured anymore and must be proved.

3.2.5 Summary: Structure of a damage model

To summarize, a damage model is assembled from several components. The first one is

the definition of a set of state variables V = {ε,D, ...}. Then, at least two scalar functions are

required

• a state potential ρψ(ε,D) from which the associated thermodynamic force are com-

puted (σ= ρ ∂ψ
∂ε , Y =−ρ ∂ψ

∂D , ...),

• a damage criterion function f (ε,D), also called yield surface,
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For the evolution of each internal variables, only damage D in the simplest case, there are

three possibilities.

• In the associated case, a dissipation potential F is defined as the criterion function

f (ε,D). It gives the damage evolution law, or damage flow rule, as Ḋ = λ̇∂ f
∂Y .

• In the non-associated case, an arbitrary evolution potential F that is positive and

convex in the thermodynamic forces is defined. It gives the damage evolution law, or

damage flow rule, as Ḋ = λ̇∂F
∂Y .

• In the non-standard case, an arbitrary damage evolution law Ḋ is directly defined as a

function of the state variables (and thermodynamic forces). In this case, the second

principle, i.e. the positivity of the dissipation, must be checked.

3.3 Non-local damage

Until now, the discussion was centered on the behavior of a material point. However, those

models are usually applied at the scale of a whole structure. This brings a new issue with

strain-softening material: there is a loss of ellipticity of the boundary value problem making

the problem ill-posed (Hadamard, 1903; Rudnicki & Rice, 1975; Benallal et al., 1989; Borré &

Maier, 1989; Benallal et al., 1993). For applications to concrete, we refer to the work of Jirásek

(2002, 2007) and Masseron et al. (2022).

This issue manifests itself in the numerical resolution of a mechanical problem with

local damage model (Bažant, 1976). For a uni-dimensional problem, the damage variable is

defined for each element of the spatial discretization. When damage occurs, it is the whole

volume of the element that is affected by damage, i.e. which dissipate energy. Once an

element starts to damage, the remaining of the domain is gradually unloaded and the strain

localizes in this element. Thus, for any discretization, the damage will always localize in one

element. The global dissipated energy, which is equal to the energy dissipated during the

damaging of the element, will change with the discretization size. It makes the mechanical

response dependent on numerical parameters.

To solve this issue, non-local damage models have been proposed (Bažant & Jirásek,

2002; Jirásek, 2004; Pijaudier-Cabot & Grégoire, 2014). The principle consists in limiting the

damage localization by replacing the damage driving mechanical quantity, often the local

equivalent strain εeq(x), by its non-local counterpart ε̄eq(x). The non-local damage driving

quantity is, in general, a spatially averaged version of the local damage driving quantity. It

prevents the localization of damage in an infinitely thin region; thus, keeping the problem

well-posed during the softening phase. From a numerical point of view, the results should be

independent of the numerical discretization and parameters (or at-least have convergence

properties). For instance, changing the spatial discretization should not affect the resulting

damage field. Another important criterion is that the solution must be consistent with

experimental results (in particular with the size effect (Le Bellégo et al., 2003)).

Non-local integral. The non-local integral approach, proposed by Pijaudier-Cabot and

Bažant (1987), is a first mean to solve this issue. To achieve that, Pijaudier-Cabot and Bažant
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(1987), inspired by the work of (Eringen & Edelen, 1972), proposed to replace the equivalent

strain εeq in the evolution law by its non-local counterpart

ε̄eq(x) = 1

VΩ(x)

∫

Ω
w(∥x − y∥/ℓc )εeq(y)dy , VΩ(x) =

∫

Ω
w(∥x − y∥/ℓc )dy (1.24)

where Ω denotes the spatial domain of the structure, w is the weight function, and ℓc is

a characteristic length parameter. The weight function w is usually taken as the Gauss

distribution function

w(∥x − y∥/ℓc ) = exp

(
−4∥x − y∥2

ℓ2
c

)
. (1.25)

Non-local gradient. Non-local gradient models are another type of localization limiters

(Peerlings et al., 1996). The equivalent strain in the damage evolution law is still replaced by

its non-local counterpart. In this case, the non-local equivalent strain ε̄eq is given by a partial

differential equation

ε̄eq(x)− c ∇2ε̄eq(x) = εeq(x), ∀x ∈Ω, (1.26)

∇ε̄eq(x) ·n(x) = 0, ∀x ∈ ∂Ω, (1.27)

where c is homogeneous to a square length and can be related to the characteristic length ℓc ,

∂Ω is the boundary of the domainΩ, and n is the outward-pointing normal to the boundary.

Note that the boundary conditions, in Equation (1.27), is an arbitrary choice as discussed

by Krayani et al. (2009). Note that Peerlings et al. (2001) shows that the non-local gradient

models relates to the non-local integral models through the Green function of the partial

differential equation.

(a) Undamaged. (b) Damaged.

Figure 1.12 • Illustration of the interaction length obtained with the non-local Eikonal ap-

proach. (Rastiello et al., 2018)

Evolving interaction length. For both integral and gradient non-local models, recent works

focus on the introduction of an evolving characteristic length. In order to understand the
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reason why, let us consider two points A and B geometrically close to each other and separated

by a crack. An illustration of an evolving interaction length, from the Eikonal approach

(Rastiello et al., 2018), is given in the Figure 1.12. This figure represents the effective distance

between the red dotted point and any other point of the domain, in two configuration. The

first configuration (Figure 1.12a) is the case where the material is undamaged. In this case,

the effective distance between two points is given by the shortest path using the Euclidian

distance. For the second configuration (Figure 1.12b), a notch is added. The strain at point x s

should not contribute much to the degradation of point at the red dot as the crack prevents

the transmission of cohesive forces, i.e. it prevents interactions. In classic non-local models,

this interaction is not prevented. Various models with an interaction length evolving with

mechanical fields have been proposed in the literature to solve this issue (Geers et al., 1998;

Pijaudier-Cabot et al., 2004; Simone et al., 2003; Giry et al., 2011; Desmorat et al., 2015; Poh &

Sun, 2017; Rastiello et al., 2018).

Regularization of the damage field. Another method consists in directly regularizing the

damage field. This is the case of the phase-field method (Francfort & Marigo, 1998; Bourdin

et al., 2000; Bourdin et al., 2008). The phase-field method is based on the balance between

the elastic energy and the energy dissipated by damage. Moreover, the localization of damage

is constrained by a penalization of the damage gradient. Note that a related approach, called

the Lip-field approach, has been recently proposed by Moës and Chevaugeon (2021) and

Chevaugeon and Moës (2022) It relies on the same type of functional, yet instead of penalizing

the damage gradient, the Lipschitz regularity constraint is applied to the internal variable

provoking the softening. Other methods based on the regularization of the damage field are,

amongst others, the Thick Level Set method (Moës et al., 2011; Bernard et al., 2012) and the

more recent graded damage (Stolz, 2019; Valoroso & Stolz, 2022).

3.4 Data-driven models

During the last decade, data-driven (constitutive) models have seen a rise in popularity.

These models aim to reduce the number of arbitrary modeling choices while emphasizing

using (reliable) experimental data. In practice, the idea is to reconstruct the Constitutive

Manifold (Ibañez et al., 2016; Ibañez et al., 2017) from the set of strain-strain couples from

experimental data. This set is composed of discrete points of the Constitutive Manifold

(σi ,εi ) and is usually called the Experimental Constitutive Manifold (ECM).

In the original data-driven approach (Kirchdoerfer & Ortiz, 2016, 2017; Carrara et al., 2020),

the Constitutive Manifold is directly replaced with the Experimental Constitutive Manifold.

The idea consists in finding the point of the Experimental Constitutive Manifold that best ver-

ifies the equilibrium (including the boundary conditions). This method has been formalized

by Ladevèze et al. (2019) as finding the intersection between the Experimental Constitutive

Manifold and the admissibility manifold Ad , which is the manifold of the stress-strain couple

verifying the equilibrium. This formalization is represented in the Figure 1.13. One of the

main advantage of this method is that it is model-free. Even if this may be a promising

method in some cases (Eggersmann et al., 2019), it is not capable of extrapolating outside

the provided dataset as the raw data points are used. Additionally, for behavior depending
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ε

σ

ECM

Ad

Figure 1.13 • Representation of the data-driven approach problem proposed by Kirchdoerfer

and Ortiz (2016) (figure adapted from Ladevèze et al. (2019)).

on internal variables, the knowledge of the stress and strain is not sufficient to fully define

the behavior and internal variables are required. Instead of directly using the Experimental

Constitutive Manifold, Ibañez et al. (2017) proposed to approximate the Experimental Con-

stitutive Manifold, using polynomials for instance. The goal is to reconstruct a continuous

version of the Experimental Constitutive Manifold to obtain a less biased3 relation between

stress and strain, with possible hidden variables. Recently, there is also a strong focus on

the reconstruction of the Experimental Constitutive Manifold while accounting for physical

constraint (As’ad et al., 2022; Bonatti & Mohr, 2022), or even thermodynamic principles (Masi

et al., 2021; Masi & Stefanou, 2023).

Let us cite the work of Ladevèze et al. (2019), Gerbaud et al. (2022), and Ladevèze et al.

(2022) who concentrate on the automatic detection of hidden/internal variables for history-

dependent material. Their method is based on the notion of univocity. For instance, if the

data contains two times the same strain ε but associated to different stresses σ1 and σ2, it

means that an internal state variable is necessary to correctly describe the relations

σ(ε, v1) =σ1, σ(ε, v2) =σ2 (1.28)

Most of the data-driven modeling approaches presented until now gives a black-box

constitutive model. This issue is addressed by the notion of interpretable machine learning

(Molnar, 2022). This subfield of machine learning aims at providing tools to obtain human-

friendly explanations of the those black-box models. To go even further, some machine

learning methods even enables to obtain “simple” analytical model. For instance, the sparse

regression method (Tibshirani, 1996) can fit a generic polynomial to data while minimizing

the number of non-zero coefficients, leading to a minimal expression for the model. Another

interesting tool for constitutive modeling is the symbolic regression (Wang et al., 2019), which

optimize the parameters and the mathematical structure of the model during the fitting

process. Based on those methods, Brunton et al. (2016) proposes a method to obtain the

system of differential equations governing of a dynamical system from measured (noised)

trajectories. It uses smoothed numerical differentiation and sparse regressions to recover

3Here, it means that no unnecessary assumptions are taken. It enables to reduce/remove the so-called model

error.
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the equations of a dynamical system from the trajectories. This technique has already been

successfully applied in numerous physic problems (for instance, see the works of Beetham

and Capecelatro (2020), Zanna and Bolton (2020), and Guan et al. (2021)). A similar approach

has been taken by Flaschel et al. (2021, 2023). In this work, the authors fit the data using

a library of pre-determined functions to “automatically discover” the underlying state and

dissipation potential.

At the other end of the scope, others researchers focused on gradually replacing com-

ponents of classic models with data-driven approach. In most case, the idea consists in

replacing the parts that are too complicated to model satisfyingly (see for instance the work

of Bonatti and Mohr (2022)). Another example is provided by Yvonnet et al. (2022, 2023)

who focus on automatically formulating an anisotropic state model (based on finite element

simulations of a volume element).

3.5 Damage models based on or enriched by discrete models

Let us finally highlight some works which formulated, at-least partially, damage models

based on discrete simulations. Rinaldi and Lai (2007) and Rinaldi (2013) performed a statisti-

cal analysis of a regular spring network with random mechanical fracture properties. This

analysis was performed in order to define a damage variable. Delaplace (2008) proposed

to use a discrete model as virtual testing machine to perform tri-tension tests on a cube

specimen. The virtual tests where used to study the sensitivity of the effective bulk modulus

to hydrostatic stress. More recently, Misra and Poorsolhjouy (2015) proposed a damage and

plasticity model at macro-scale for granular materials based on the inter-granular interac-

tion at microscale. The same group of authors also proposed other models with a similar

approach (Misra & Singh, 2013; Singh, 2014; Misra & Singh, 2015). Challamel et al. (2015) and

Hérisson (2018) proposed to “continualize” (based on asymptotic expansion) discrete lattice

system to formulate a non-local elastic and non-local damage model. Finally, the work of

Oliver-Leblond et al. (2021), on which this thesis is based, also used the discrete model as a

virtual testing machine. Square virtual specimens were submitted to several loads. During

those loadings, they studied the evolution of the effective elastic properties of the virtual

specimen. In particular, they showed that a second-order tensor, instead of a fourth-order

tensor, is sufficient to represent the micro-cracking even when the micro-cracks are strongly

interacting.

{ Summary of the Chapter

This chapter gives the basis for the formulation of a continuous damage model based on

discrete element simulations. It introduces the experimental observations on quasi-brittle

materials as well as their modeling. Experimental results from mechanical tests on quasi-

brittle material show different phenomena: loss of stiffness, damage-induced anisotropy,

and crack closure effects. Those phenomena are all explained by the nucleation and growth

of micro-cracks. To model quasi-brittle materials, we distinguish two types of models: the

discrete models and the continuous ones. The discrete models are also subdivided into three

subtypes: particular, lattice and hybrid models. They provide an accurate representation of
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quasi-brittle material failure. However, their computational cost limits their use to model

whole structures. Continuous damage models offer an averaged view of microscale effects

and are easier to applied to structure. After choosing state variable to describe the state of

the material, the construction of a continuous damage model is composed of three main

ingredients: the state potential, the damage criterion function, and the evolution law.
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2
Mathematical overview of elasticity tensors,

invariance and symmetries

This chapter provides an overview of literature on the mathematical study of elasticity tensors.

In a first part, it introduces the notions of elasticity tensors, symmetry classes, invariants

and covariants. Then, different reconstructions of an elasticity tensor from its covariants are

proposed. Those reconstruction formulas will be the basis to formulate the state model in the

next chapters. Finally, the notion of distance from a symmetry class will be introduced. It will

provide a rigorous mean to justify the modeling choice such as the type of damage variable.

In physics problems, the understanding of underlying symmetry, and consequently in-

variance, is crucial (Curie, 1894). Yet, in mechanics problems, the symmetries are often

considered by making a priori assumptions. However, they may also change during the prob-

lem. For instance, quasi-brittle materials are often considered isotropic when undamaged,

in other words, their initial behavior is invariant by rotation. It means that their material

properties can be measured in any direction, the resulting property will always be the same.

Yet, when micro-cracks nucleates, i.e., when the state of the material changes, the initial

symmetries might be lost due to the spatial distribution of micro-cracks and their orientation.

This phenomenon is the damage-induced anisotropy. In the most used damage models

(scalar damage models), this changes of symmetry is neglected; thus, neglecting the behavior

variation with the orientation of the loading.

In this study, one of the main goal is to correctly account for damage-induced anisotropy

in the proposed damage model. This objective raises different underlying mathematical

questions. This chapter aims to introduce those different questions and summarize the

answers proposed in the existing literature. As the damage model will be formulated in 2D,

most mathematical notions are introduced in 2D. Yet, most of them can be extended to the

3D case (often at the cost of an increased complexity). The first question, tackled in Section 1,

is to define the symmetry classes of 2D elasticity tensors, and the associated invariances. The

notions of invariants and covariants are also defined in this section. The second question is

whether it is possible to reconstruct an elasticity tensor from its invariants and covariants.

Section 2 recalls the harmonic decomposition, to address this question. A reconstruction of
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orthotropic elasticity tensors derived from the harmonic decomposition is also presented.

The third question centers around determining whether a given elasticity tensor possesses a

specific symmetry. Section 3 tackles this question by introducing the distances to isotropy

and to orthotropy. An upper-bound of the distance to orthotropy is also recalled.

1 Notations and definitions: elasticity tensor, symmetry classes

and invariance

This section is dedicated to the introduction of the fundamental mathematical notions used

in this chapter. We refer to the work of Forte and Vianello (1996) and Auffray et al. (2014) for

the main definitions concerning group theory, symmetry classes and symmetry strata.

Elasticity tensor. An elasticity tensor is a positive-definite fourth-order tensor E having the

index symmetries Ei j kl = E j i kl = Ei j lk = Ekl i j . The vector space

Ela(R2) = {
E | Ei j kl = E j i kl = Ei j lk = Ekl i j

}
, (2.1)

of bi-dimensional elasticity tensors, is of dimension 6. From a mechanical point of view, this

tensor represents the linear relation σ= E : ε between two second-order symmetric tensors,

the strain ε and stress σ tensors.

Orthogonal transformation. Let us now introduce the orthogonal group O(2), i.e., the

group of orthogonal transformations,

O(2) = {
Q ∈S2(R2) |QT Q =QQT = 1

}
. (2.2)

From a geometric point of the view, an orthogonal transformation is either a rotation, a

reflection, or a combination of a rotation and a reflection. In its matrix representation, its

elements can be generated by rotation and reflection (symmetry) matrices

r(θ) =
[

cosθ −sinθ

sinθ cosθ

]
, s(e2) =

[
1 0

0 −1

]
. (2.3)

Note that a rotation Q has a determinant detQ = 1, and a combination of a rotation with a

reflection as a determinant detQ =−1. The (left) action1 of an orthogonal transformation

Q ∈ O(2) on a second-order tensor t or a fourth-order tensor T is

(Q⋆ t)i j =Qi kQ j l tkl , (Q⋆T)i j kl =Qi pQ j qQkr Ql sTpqr s . (2.4)

Symmetry classes for bi-dimensional elasticity tensors. Let us start by introducing the

notion of symmetry group. The symmetry group of an elasticity tensor E is the subset

GE ⊂ O(2) of the transformations that keeps E unchanged. Mathematically, a symmetry group

GE of an elasticity tensor E in the 6-dimensional real vector space Ela(R2), is defined as

GE = {Q ∈ O(2)|Q⋆E = E}. (2.5)

1Such that (Q1Q2)⋆ t =Q1⋆ (Q2⋆ t)
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The symmetry group enables to define an equivalence relation on Ela(R2). Indeed, two

elasticity tensors E1 and E2 are in the same symmetry class if their symmetry group are

conjugate

E1 ∼ E2 ⇐⇒ ∃Q ∈ O(2) such that GE1 =QGE2Q−1. (2.6)

In other words, two elasticity tensors E1 and E2 are equivalent, i.e. have the same symmetry

class, if there exists at least one transformation Q ∈ O(2) such that the representative sym-

metry groups of E1 and E2 are the same. It leads to the definition of a symmetry class as the

conjugacy class

[GE] = {QGEQ−1; Q ∈ O(2)}. (2.7)

Thus, the symmetry class [GE] of an elasticity tensor E is a set of groups (not of elasticity

tensors); more precisely, it is here a subset of G = O(2). This subset contains all the conjugate

QGEQ−1 of the symmetry group GE.

To have properly defined the symmetry classes enables us to introduce the notion of

symmetry stratum. The symmetry stratum Σ[G] is a set of elasticity tensors that are invariant

under the action of the symmetry class [G]. Formally, it is defined as

Σ[G] = {E ∈ Ela(R2) | ∀Q ∈ [G], Q⋆E = E}. (2.8)

In order to ease the notation, instead of denoting the symmetry stratum Σ[G] using the

symmetry class symbol [G], an abbreviation of the name of the associated symmetry class

will be used. For instance, the isotropic stratum is the set of elasticity tensor that remains

unchanged by any rotation and reflection, i.e., any action of O(2). Instead of noting Σ[O(2)], it

will be denoted ΣIso.

Forte and Vianello (1996) showed that there are 8 symmetry classes 3D elasticity and

Vianello (1997) showed that there are 4 symmetry classes in the 2D case. Each 2D symmetry

classes for elasticity tensor, and their representative groups, are represented in Figure 2.1.

In this figure, the group Dn is the dihedral of order 2n, which is generated by the rotation

r(2π/n) and the reflection s(e2). Moreover, the group Z2 is the cyclic group of order 2, which

is generated by the rotation r(2π/n). This figure illustrates the four different classes, and their

representative groups:

• the isotropic class Iso, whose stratum contains the elasticity tensors invariant under

the action of the orthogonal group O(2), i.e. invariant with respect to any rotations and

reflections,

• the tetragonal class Tetra, whose stratum contains the elasticity tensors invariant

under the action of the dihedral group of order 8, denotedD4, i.e. invariant with respect

to the transformations keeping a square unchanged,

• the orthogonal class Ortho, whose stratum contains the elasticity tensors invariant

under the action of the dihedral group of order 4, denotedD2, i.e. invariant with respect

to the transformations keeping a rectangle unchanged,

• the biclinic class Bic, whose stratum contains the elasticity tensors invariant under the

action of the cyclic group of order two, denoted Z2, i.e. invariant with respect to the

identity and the reflection.
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Classes Biclinic Orthotropic Tetragonal Isotropic

Groups Z2 ⊂ D2 ⊂ D4 ⊂ O(2)

Illustrations

Figure 2.1 • Symmetry classes and their representative group for 2D elasticity tensors. The

illustrations are geometric figures in R2 representative of each of the symmetry

classes.

Figure 2.1 also contains the inclusion relationship between the groups. For instance, the

dihedral group of order four D2 is included in the dihedral group of order eight D4. It means

that an elasticity tensor invariant under the action of D4 is also invariants under the action of

D2. Note that from a mathematical point of view, the symmetry classes are exclusive, i.e an

orthotropic tensor is exactly orthotropic. Yet, from a mechanical point of view, an elasticity

tensor in a specific symmetry strata is often supposed to also belong to the less restrictive

stratum. For instance, a tetragonal tensor will also be considered as being at least orthotropic.

Invariants and covariants. A covariant of a bi-dimensional elasticity tensor E is a tensorial

function C(E) such that

C(Q⋆E) =Q⋆C(E), ∀Q ∈ O(2). (2.9)

An invariant of a bi-dimensional elasticity tensor E is a covariant of order zero of E, i.e., a

scalar function I (E) such that

I (Q⋆E) = I (E), ∀Q ∈ O(2). (2.10)

If a mechanical property is an invariant of the elasticity tensor, it means that this quantity is

independent of the measurement direction. Similarly, a covariant is a (tensorial) mechanical

quantity rotating with the measurement direction.

2 Reconstruction of an elasticity tensor from its covariants

To formulate a damage model, the first steps consist in defining the state variables (here, a

damage variable must be introduced) and the state coupling. In our case, defining the state

coupling corresponds to expressing the effective elasticity tensor as a function of damage.

To measure the damage variable D = D(Ẽ) equally in any base, it must be a covariant of the

effective elasticity tensor Ẽ

∀Q ∈ O(2), D(Q⋆ Ẽ) =Q⋆D(Ẽ). (2.11)

Indeed, the micro-cracking rotates with the material. Thus, the state variable describing the

micro-cracking must rotate with the effective elasticity tensor of the material. So, this section

is dedicated to the presentation of reconstruction formulas of the elasticity tensor from its

covariants (see also the work of Olive et al. (2017) in 3D and Oliver-Leblond et al. (2021) in

2D).
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2. Reconstruction of an elasticity tensor from its covariants

2.1 Harmonic decomposition

Harmonic tensor. Before introducing the harmonic decomposition, the notion of harmonic

tensor must be introduced. A harmonic tensor is a traceless totally symmetric tensor. We

denote byHn(R2) the vector space of harmonic bi-dimensional tensors of order n. Remark

that H0(R2) is isomorphic to R. A second-order harmonic tensor h ∈H2(R2) is a symmetric

deviatoric tensor,

h ∈H2(R2) = {
h ∈S2(R2) | trh = 0

}
, h =

[
h11 h12

h12 −h11

]
(2.12)

in Cartesian components. A fourth-order harmonic tensor H ∈H4(R2) is a totally symmetric

and traceless tensor,

H ∈H4(R2) = {
H ∈S4(R2) | ∀(i , j ), tri j H = 0

}
, (2.13)

where tri j H is the second-order tensor built from the contraction of the subscripts i and j of

the harmonic tensor H. The tensor H can be written in Kelvin notation,

[H] =




H1111 −H1111
p

2H1112

−H1111 H1111 −
p

2H1112p
2H1112 −

p
2H1112 −2H1111


 (2.14)

Harmonic decomposition. The harmonic decomposition of a tensor is its equivariant

decomposition into harmonic tensors (Spencer, 1970; Schouten, 1989). In particular, the

harmonic decomposition of a 2D elasticity tensor E (Blinowski et al., 1996; Vianello, 1997) is

E = (µ,κ,d′,H), (2.15)

such that

∀Q ∈ O(2), Q⋆E = (µ,κ,Q⋆d′,Q⋆H). (2.16)

The harmonic components of E are the invariants µ,κ ∈H0(R2) (the generalized shear and

bulk moduli, respectively), the second-order covariant d′ = d′(E) ∈H2(R2), and the fourth-

order covariant H = H(E) ∈ H4(R2). Note that the harmonic decomposition introduces a

bijection between the space of 2D elasticity tensor Ela(R2) and the direct sum of the spaces

H0(R2)⊕H0(R2)⊕H2(R2)⊕H4(R2), i.e., E = f (µ,κ,d′,H) is a bijection. In the following para-

graphs, both explicit formulas of this bijection are recalled.

Harmonic decomposition explicit reconstruction formula. The first direction of the bi-

jection consists in going from the space of harmonic components to the space of elasticity

tensors

H0(R2)⊕H0(R2)⊕H2(R2)⊕H4(R2) → Ela(R2), (µ,κ,d′,H) 7→ E. (2.17)

The harmonic decomposition provides a so-called reconstruction of the elasticity tensor E by

means of its (covariant) harmonic components through

E = 2µJ+κ1⊗1+ 1

2

(
1⊗d′+d′⊗1

)+H, (2.18)

37



Chapter 2. Mathematical overview of elasticity tensors, invariance and symmetries

where 1 is the second-order identity tensor, I is the fourth-order identity tensor (of compo-

nents Ii j kl = 1
2 (δi kδ j l +δi lδ j k )), and J = I− 1

2 1⊗1 is the so-called deviatoric projector. The

reconstruction formula (2.18) applies to all 2D elasticity tensors, possibly fully anisotropic

(i.e., biclinic). An important property of the harmonic decomposition for this work is that

each term of this expression is orthogonal to the others (Spencer, 1970). It means that each

term is independent of the others. This property will be exploited for the constitution of the

model in the next chapters. Let us also introduce the tensors Iso as the isotropic part of E, Dil
as its dilatation part, and H as its harmonic part

Iso = 2µJ+κ1⊗1, Dil = 1

2

(
1⊗d′+d′⊗1

)
, H = E− Iso−Dil. (2.19)

All three tensors Iso, Dil and H are fourth-order covariants of E. Note that the orthogonality

of the harmonic decomposition terms means that

Iso :: Dil = 0, Iso :: H = 0, Dil :: H = 0 (2.20)

Also note that in the present case, even the terms of the isotropic part are orthogonal (I ::

(1⊗1) = 0).

Decomposition formula. The second direction of the bijection consists in going from the

space of elasticity tensors to the space of harmonic components

Ela(R2) →H0(R2)⊕H0(R2)⊕H2(R2)⊕H4(R2), E 7→ (µ,κ,d′,H). (2.21)

First, the dilatation tensor d(E) and the Voigt tensor v(E) must be introduced

d = tr12 E = tr34 E = E : 1, v = tr13 E. (2.22)

Both the dilatation and the Voigt tensor are second-order covariants. Also note that in 2D, their

deviatoric parts are equal d′ = v′. The scalar components of the harmonic decomposition of

E are

µ= 1

8
(2trv− trd) , κ= 1

4
trd. (2.23)

The covariant d′(E) is the deviatoric part

d′ = d− 1

2
(trd) (2.24)

of the dilatation tensor d. Finally, the covariant H(E) is the fourth-order harmonic part of E,

which is calculated thanks to the decomposition formula

H = E−2µJ−κ1⊗1− 1

2

(
1⊗d′+d′⊗1

)
. (2.25)

Minimal integrity basis. In this work, others invariants of the elasticity will be used. Thus,

let us also introduce the scalars

I2(E) = I2(d′) = ∥d′∥2 = d′ : d′, J2(E) = ∥H∥2 = H :: H, and K3(E) = d : H : d, (2.26)

which are three other invariants of the elasticity tensor. Note that (µ,κ, I2, J2,K3) forms a

minimal integrity basis of the invariant algebra of the elasticity tensor in 2D under the action

of the orthogonal group O(2) (Vianello, 1997).
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2.2 Harmonic square – Reconstruction of orthotropic elasticity tensors

To obtain a reconstruction formula dedicated to orthotropic elasticity tensors, we have to

introduce the harmonic product h1∗h2 ∈H4(R2) of two second-orders harmonic tensors h1,

and h2. In 2D, it is defined as the fourth-order harmonic tensor (Olive et al., 2017)

h1∗h2 = h1 ⊗h2 −
1

2
(h1 : h2) J, J = I− 1

2
1⊗1, (2.27)

where J is the so-called deviatoric projector2. Desmorat and Desmorat (2015) showed that

any 2D fourth-order harmonic tensor H ∈H4(R2) can be written as a harmonic square,

H = 2Λe∗e, tre = 0, ∥e∥ = 1, (2.28)

where e ∈H2(R2) is a unit second-order deviatoric eigentensor associated with a non-zero

eigenvalue Λ or −Λ of the harmonic tensor H. Note that Equation (2.28) is not a so-called

reconstruction formula for H since e is defined up to a sign and is not a covariant of H.

A more interesting formula is obtained when H = H(E) is the fourth-order harmonic part

of an (exactly) orthotropic elasticity tensor E, still in 2D. In that case, we have (Oliver-Leblond

et al., 2021),

H = 2K3(E)

I 2
2 (E)

d′(E)∗d′(E). (2.29)

Remark that the covariants —including invariants— involved are covariants of the elasticity

tensor, which is orthotropic, not of the harmonic tensor H, which has the square ([D4])

symmetry (Verchery, 1982; Vianello, 1997; Vannucci, 2005). This means that we have the

following (orthotropic) elasticity tensor reconstruction formula (by means of its covariants)

in 2D

E = 2µJ+κ1⊗1+ 1

2

(
1⊗d′+d′⊗1

)+ 2K3

I 2
2

d′∗d′, (2.30)

where µ, κ, I2 and K3 are invariants of the elasticity tensor (defined by Equations (2.23)

and (2.26)), and d is a second-order covariant of E (defined by Equation (2.22)). Remark that

for this formula to hold, it is necessary that d′ ̸= 0 since I2(d′ = 0) = 0. In other words, it is

necessary that the dilatation tensor d = d(E) —which inherits the symmetry of E (Olive et al.,

2022)— and therefore E, are orthotropic.

2.3 Remark on harmonic decomposition and symmetry classes

Vianello (1997) proposes algebraic conditions to determine if an elasticity tensor E = (κ,µ,d′,H)

is in a specific symmetry stratum (see also the work of Vannucci (2005) in the polar decompo-

sition framework). Those conditions are expressed as polynomial equations of its invariants.

Let us consider an elasticity tensor E and its invariants

I1 = κ, J1 = 2µ, I2 = d′ : d′, J2 = H :: H, K3 = d′ : H : d′. (2.31)

The 2D elasticity tensor E is

2Consider t ∈S2(R2), then J : t = t− 1
2 trt1 = t′.
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• isotropic (circle symmetry) if

I2 = 0 and J2 = 0, (2.32)

• tetragonal (square symmetry) if

I2 = 0 and J2 ̸= 0, (2.33)

• orthotropic (rectangle symmetry) if either

I2 ̸= 0 and J2 = 0, or I2 ̸= 0, J2 ̸= 0 and I 2
2 J2 −2K 2

3 = 0, (2.34)

• biclinic otherwise.

This classification is also represented in Figure 2.2 where the different symmetry breaking

conditions are shown.

Symmetry classes Symmetry bifurcations

Biclinic [Z2]

Orthotropic [D2]

Tetragonal [D4]

Isotropic [O(2)]

J2 = 0, or

I 2
2 J2 −2I 2

3 = 0 and J2 ̸= 0

I2 = 0

J2 = 0

Figure 2.2 • Symmetry bifurcation diagram for bi-dimensional elasticity tensors (Vianello,

1997).

For illustration purposes, let us now apply the harmonic decomposition to an elasticity

tensor of each symmetry stratum. It gives the following expressions of the elasticity tensor

• E is biclinic gives,

E = 2µJ+κ1⊗1+ 1

2

(
1⊗d′+d′⊗1

)+H, (2.35)

• E is orthotropic (rectangle symmetric) gives,

E = 2µJ+κ1⊗1+ 1

2

(
1⊗d′+d′⊗1

)+ 2K3

I 2
2

d′∗d′, (2.36)

• E is tetragonal (square symmetric) gives,

E = 2µJ+κ1⊗1+H, (2.37)
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• E is isotropic (circle symmetric) gives,

E = 2µJ+κ1⊗1. (2.38)

Let us note the particular case in orthotropy where J2 = 0, called the special orthotropy or the

R0-orthotropy by Vannucci (2002). In this case, the harmonic part vanishes, thus,

E special orthotropic ⇐⇒ E = 2µJ+κ1⊗1+ 1

2

(
1⊗d′+d′⊗1

)
. (2.39)

3 Distance to isotropy – Distance to orthotropy

The determination of the symmetry class of a measured elasticity tensor is a difficult problem

(Gazis et al., 1963; François, 1995; François et al., 1998; Moakher & Norris, 2006; Diner et al.,

2011). A cause is that the measurement orientation might not correspond to the principal

direction of the expected symmetry class, which prevents direct identification by comparison

to normal forms (in Kelvin notation). Furthermore, experimental measurements provide

a noised approximation of the material’s elastic properties (Roux et al., 1985; Migliori et

al., 1993); thus, preventing the direct application of the polynomial conditions presented

in Equations (2.32) to (2.34). For those two reasons, the measured elasticity tensor will

generically be biclinic in 2D (and triclinic in 3D).

3.1 Distance to a symmetry class

Those issues can be mitigated by calculating the distance to the expected elasticity symmetry

class, more precisely, the distance to the considered symmetry stratum (which is the set of

all tensors which have the same symmetry class). This usually consists, first, in finding the

elasticity tensor E∗ in the symmetry stratum Σ which is the closest to the measured elasticity

tensor E, and second, in calculating the distance between E and E∗. The distance to the

symmetry stratum Σ is

dΣ(E) = min
E∗∈Σ

∥E−E∗∥. (2.40)

If this distance is equal to 0, the elasticity tensor E is in the symmetry stratum. We also

introduce the relative distance to the symmetry stratum Σ as

∆Σ(E) = min
E∗∈Σ

∥E−E∗∥
∥E∥ . (2.41)

Note that both Equations (2.40) and (2.41) have the same minimizer E∗.

3.2 Distance to isotropy

In the case of isotropy, the harmonic decomposition provides, by orthogonal projection

(Vianello, 1997), the closest isotropic tensor E∗ to E as its isotropic part E∗ = Iso(E) (as

defined by Equation (2.19)),

dIso(E) = min
E∗∈ΣI so

∥E−E∗∥ = ∥E− Iso(E)∥ =
√
∥Dil(E)∥2 +∥H(E)∥2. (2.42)
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This result is obtained from the orthogonality of the harmonic terms (see Equation (2.20)).

Indeed, as the tensor E∗ is isotropic, its harmonic decomposition is E∗ = Iso(E∗). These

properties lead to the following triangular equality

∀E∗ ∈ΣI so , ∥E−E∗∥2 = ∥Iso(E)− Iso(E∗)∥2 +∥Dil(E)∥2 +∥H(E)∥2
︸ ︷︷ ︸

constant ∀E∗

. (2.43)

The last two terms are constant for any isotropic tensor E∗ and only depends on the elasticity

tensor E. Thus, the minimum of the distance to isotropy is reached when

Iso(E∗) = Iso(E) =⇒ E∗ = Iso(E). (2.44)

3.3 Distance to orthotropy

The calculation of the distance to 2D elastic orthotropy requires more mathematical develop-

ment (Vianello, 1997; Antonelli et al., 2022). In this subsection, the results of Antonelli et al.

(2022) are recovered via complementary developments.

The minimization problem to solve in order to obtain the distance to orthotropy is

dOrt(E) = min
E∗∈ΣOr t

∥E−E∗∥. (2.45)

The first step to calculate this distance consists in parametrizing the orthotropic tensors E∗,

in Kelvin notation,

E∗ =Q⋆A, Q =
(

cosθ −sinθ

sinθ cosθ

)
, [A] =




A1111 A1122 0

A1122 A2222 0

0 0 2A1212


 , (2.46)

where Q is a rotation matrix, A is the normal form of orthotropic 2D elasticity tensors, [A]

stands for its Kelvin notation, and (Q ⋆A)i j kl = Qi pQ j qQkr Ql s Apqr s is the action of the

rotation Q on the fourth-order tensor A. With this parametrization, the minimization problem

becomes

dOrt(E) = min
θ∈[0,2π],
A∈NOrt

∥E−Q⋆A∥, (2.47)

where NOrt is the vector space of orthotropic elasticity tensor of normal form Equation (2.46).

By applying the harmonic decomposition to E and A, and using the orthogonality of its parts

(by Equation (2.20)), we obtain

dOrt(E)2 = min
θ,A

(∥Iso(E)− Iso(A)∥2 +∥Dil(E)−Q⋆Dil(A)∥2 +∥H(E)−Q⋆H(A)∥2) . (2.48)

Let us treat each part, i.e. each independent minimization problem, separately:

• For the isotropic part, by Equation (2.42),the closest isotropic tensor is the isotropic

tensor itself,

Iso(A) = Iso(E). (2.49)
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• For the dilatation part term, we can introduce the deviatoric part of the dilatation

tensor for the elasticity tensor E

d′(E) =
[

d ′
11 d ′

12

d ′
11 −d ′

11

]
,

d ′
11 =

1

2
(E1111 −E2222) ,

d ′
12 = E1112 +E2212,

(2.50)

and for the orthotropic elasticity tensor Q⋆A

d′(A) = d∗
[

1 0

0 −1

]
, Q⋆d′(A) = d∗

[
cos2θ sin2θ

sin2θ −cos2θ

]
, (2.51)

• For the harmonic part term, we can introduce the harmonic parts (in Kelvin notation)

of the elasticity tensor E

[H(E)] =




H1111 −H1111
p

2H1112

−H1111 H1111 −
p

2H1112p
2H1112 −

p
2H1112 −2H1111


 , (2.52)

where,

H1111 =
1

8
(E1111 −2E1122 −4E1212 +E2222) , H1112 =

1

2
(E1112 −E2212) , (2.53)

and of the orthotropic elasticity tensor Q⋆A

[H(A)] = H∗




1 −1 0

−1 1 0

0 0 −2


 , (2.54)

[Q⋆H(A)] = H∗




cos4θ −cos4θ
p

2sin4θ

−cos4θ cos4θ −
p

2sin4θp
2sin4θ −

p
2sin4θ −2cos4θ


 . (2.55)

We have then, by Equation (2.18),

dOrt(E)2 = min
θ,d∗, H∗

(∥d′(E)−Q⋆d′(A)∥2 +∥H(E)−Q⋆H(A)∥2) . (2.56)

The minimizations with respect to d∗ and to H∗ give

d∗ = d ′
11 cos2θ+d ′

12 sin2θ, H∗ = H1111 cos4θ+H1112 sin4θ. (2.57)

Moreover, the minimization with respect to θ ends up to the equation

A cos8θ+B sin8θ+C cos4θ+D sin4θ = 0, (2.58)

where (Antonelli et al., 2022):

A = 2(E1111 −2E1122 −4E1212 +E2222)(E1112 −E2212) = 32H1111H1112,

B = 4(E1112 −E2212)2 − 1

4
(E1111 −2E1122 −4E1212 +E2222)2 = 16

(
H 2

1112 −H 2
1111

)
,

C = 2(E1111 −E2222)(E1112 +E2212) = 4d ′
11d ′

12,

D = 2(E1112 +E2212)2 − 1

2
(E1111 −E2222)2 = 2

(
d ′2

12 −d ′2
11

)
.

(2.59)
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Setting θ = 1
2 arctan t , we obtain the fourth-order polynomial in t ,

(A−C ) t 4 + (2D −4B) t 3 −6A t 2 + (2D +4B) t + A+C = 0. (2.60)

The roots tk of the polynomial are obtained by symbolic resolution of the polynomial, using

SymPy (Meurer et al., 2017), and then evaluated numerically. The root retained corresponds

to either to the solution θ = 1
2 arctan(tk ) or to the solution θ = 1

2 arctan(tk )− π
2 that minimizes

dOrt(E)2. Finally, the distance to orthotropy is obtained by injecting the minimizers —d∗ and

H∗ both from Equation (2.57), and θ— and taking the square root of Equation (2.56).

3.4 Upper-bounds of the distance to orthotropy

Using the orthotropic reconstruction formula (2.30), Oliver-Leblond et al. (2021) proposed

an upper bound of this distance

dOrt(E) = min
E∗∈ΣOr t

∥E−E∗∥ É ∥E−Eup∥ = d up
Ort, (2.61)

where

Eup = 2µJ+κ1⊗1+ 1

2

(
1⊗d′+d′⊗1

)+ 2K3

I 2
2

d′∗d′, (2.62)

where the bulk κ and shear µ moduli are given by Equation (2.23), and the dilatation tensor

is by Equation (2.22) as d = E : 1. This formula provides an estimation of the distance to

orthotropy that is easier to calculate than the real distance. Note that if the upper-bound is

close to 0, it means that the elasticity tensors is close to orthotropy. However, if the upper-

bound is far from 0, no conclusion can be drawn.

{ Summary of the Chapter

The objective of this chapter was to introduce the different mathematical tools used in the

formulation of the model. After giving various fundamental definitions (elasticity tensor,

symmetry stratum, invariant, covariant, ...) and their interpretation, the harmonic decompo-

sition have been presented. Two different reconstruction formulas of the elasticity tensor

have been recalled: one for any elasticity tensor and one for the orthotropic ones. Then, the

distances to isotropy and to orthotropy have been presented, as well as an upper-bound of

the distance to orthotropy.

This chapter introduced the fundamental mathematical tools for this study. The distance

to symmetry classes will enable to check in which symmetry stratum an elasticity tensor is. In

Chapter 4, those distances will be applied to analyze the dataset of effective elasticity tensors

generated in the Chapter 3. The results of the distances to symmetry stratum will enables

to make and justify assumptions for the model. The reconstruction formulas proposed in

this chapter will be used as the basis for the state model in Chapter 5. Now that all the

fundamental tools are introduced, the next step consists in generating the reference dataset

for the constitution the model.
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3
From discrete to continuous:

Measurement of effective elasticity tensor

This chapter aims to bridge the discrete beam-particle model to a continuous model. In

particular, the objective is to measure the effective elasticity tensor associated with a discrete

(beam-particle) area element. It begins with a presentation of the beam-particle model. Then,

it raises different classical questions in homogenization: How to measure strains and stresses?

Which type of boundary condition should be used on the area element? Those questions are

treated individually to propose a complete measurement procedure, which is then summarized

and discussed.

Before formulating a model, the first steps consist in gathering data on the phenomenon

to represent. In this study, the continuous model will be based on virtual experiments.

Virtual tests are an approach, complementary to experiments, which consists in performing

numerical experiments using an accurate material model, at micro-scale or meso-scale, to

get information on the macroscopic behavior. Performing virtual experimental campaign has

the advantages of being simple to reproduce and to set up compared to a real experimental

campaign (for instance, on concrete specimens in our case). However, the virtual experiments

might be biased due to the potential modeling errors.

For instance, Wriggers and Moftah (2006) performed virtual experiments using a nu-

merical model of concrete. In this work, the concrete meso-structure is represented by a

matrix, which behavior is represented by an isotropic damage model, containing a randomly

distributed aggregates, with an elastic behavior. The authors performed finite element sim-

ulations of 3D cubic specimens under uni-axial compression. The strain-stress responses

of the model is found to accurately depicts the experimental results. Virtual testing has also

been used by (Reese, 2003) for fiber-reinforced rubber membranes, Rinaldi and Lai (2007)

and Rinaldi (2013) for quasi-brittle materials, amongst others.

In this work, we will use a discrete (beam-particle) model as the meso-scale model for

quasi-brittle material. The main focus of this chapter is to propose and verify a procedure to

measure the effective, i.e. damaged, elasticity tensor of 2D square area elements modelled

with the discrete model.
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Chapter 3. Measuremement of effective elasticity tensors

1 Meso-scale model of quasi-brittle materials: Beam-particle

model

1.1 Presentation of the beam-particle model

The discrete model used in this thesis comes from the work of Delaplace (2008), Vassaux

(2015), and Vassaux et al. (2016). The latter reference provides an extensive description of

the model, summarized here. The beam-particle model is confronted with experimental

results by Oliver-Leblond (2019). It is suitable for predicting crack initiation, propagation,

and closure effects. Here, the description of the beam-particle model is limited to the bi-

dimensional case and the crack closure effects are not considered. Square 2D area elements —

uncracked and cracked — will be modeled by the beam-particle model. In this subsection, the

model is presented in distinct steps: generation of the geometry of rigid particles, modelling

of elastic cohesion, modelling of failure and modelling of contact and friction.

Positioning particle centers. The procedure to generate the mesh is illustrated on Figure 3.1.

The material is represented with an assembly of rigid particles. The spatial distribution of

particles – based on the work of Moukarzel and Herrmann (1992) – is obtained by randomly

placing the particle centers in the cells of a square grid (step 1). The cell size – length of a

square cell side – is defined as l̄b . This length is proportional to the average distance between

neighbor particle centers. Particle centers outside the boundary of the domain are removed.

At this point, the mesh is a set of particle centers {x p |p ∈ [1, Np ]} where p denotes the particle

index and Np is the total number of particles in the domain. As shown by D’Addetta et

1 2

3

Particle center

Beams

Particle borders

Figure 3.1 • Illustration of the mesh construction in the beam-particle model.

al. (2002), the spatial randomness in the particle positioning enables to obtain an (nearly)
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1. Meso-scale model of quasi-brittle materials: Beam-particle model

isotropic beam orientation. This geometric isotropy directly relates to the isotropy of the

mechanical behavior.

Cohesion. Beams are added between neighbor centers to model the cohesion between

neighbor particles. The geometric supports of the beams is the Delaunay triangulation

(Delaunay, 1934) of the set of particle centers (step 2). The borders of the particles are given

by the dual of the Delaunay triangulation: the Voronoi tessellation of the particle centers

(step 3). Each particle has three degrees of freedom in 2D, the displacements in e1 and e2 axis

represented by the displacement vector up and the rotation along the out-of-plane axis θp .

Figure 3.2 illustrates those degrees of freedom. The beams are modelled with Euler-Bernoulli

p

q

θp

θq

up

uq

Figure 3.2 • Representation of a beam and illustration of the degrees of freedom.

behavior. The cohesion forces and moment relate to the displacement through the relations

(in the beam local frame)

Fn,pq = Epq Apq

lpq
(up −uq ) ·npq

Ft ,pq = 12Epq Ipq

l 3
pq

(up −uq ) · t pq −
6Epq Ipq

l 2
pq

(θp −θq )

Mpq = 6Epq Ipq

l 2
pq

(uq −up ) · t pq +
4Epq Ipq

lpq

(
θp − θq

2

)
(3.1)

where Fn,pq (respectively Ft ,pq ) is the cohesive force in the direction normal (respectively

tangential) to the section of the beam pq , and Mpq is the cohesive moment in out-of-plane

direction. At this step, the parameters of the beam b are its length lb , its area Ab , its Young

modulus Eb , and its coefficient of inertia αb = 64Ibπ

A2
b

(which is used to set the flexural moment

of inertia Ib = αb
A2

b
64π ). The geometric properties of the beams, length lb and area Ab , are

calculated from the mesh geometry. The length of the beam between particles p and q is

the distance between the particles centers lpq = ∥x p −x q∥2. The average beam length relates

with the cell size l̄b of the grid used to position particle centers. The area of the beam linked

particles p q is proportional to the size of the border between those particles. The mechanical

properties, Young modulus Eb and coefficient of inertia, are constant for all beams. They are

identified by fitting the macroscopic (initial) elastic properties of the material. At this point,

the discrete model can represent an elastic material (with local rotation of the particles).
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Failure. To incorporate cracking into the model, brittle failure properties are added to the

beams. A Mohr-Coulomb failure criterion is chosen (Delaplace, 2008; Vassaux et al., 2016)

fpq = εpq

εcr
pq

+ |∆θpq |
∆θcr

pq
> 1, εpq = ∥up −uq ∥2, ∆θpq = θp −θq , (3.2)

where εpq is the beam extension, εcr
pq is the beam extension threshold, ∆θpq is the difference

of particle rotation, and ∆θcr
pq is the difference of particle rotation threshold. If this criterion

is reached during a loading, the beam is removed from the beam network. In order to account

for failure heterogeneity, the failure thresholds are randomly assigned to each beam following

Weibull distributions. The probability density functions associated with each threshold are

Wε(x) = k

λε,cr

(
x

λε,cr

)k−1

e
−

(
x

λε,cr

)k

and Wθ(x) = k

λθ,cr

(
x

λθ,cr

)k−1

e
−

(
x

λθ,cr

)k

(3.3)

where λε,cr is the scale factor in extension, λθ,cr is the scale factor in rotation and k is the

shape factor . As the failure thresholds in extension εcr
b and in rotation ∆θb are supposed

to be correlated, the shape factor is shared for both thresholds. In practice, a threshold are

obtained in one draw of the Weibull distribution and scaled for extension and rotation. It

induces a correlation between both failure thresholds εcr
b and ∆θb of a beam.

Contact. Accounting for contact and friction between particles enables to model crack

closure effects. It is essential when considering alternated loadings, where cracks might close

(for instance, during a tensile cyclic loading). In this work, loadings are chosen such that

cracks remain mainly open; thus, contact and friction between particles are not accounted

for. For more details, Rima (2021) carried out a detailed study of contact and friction in the

beam-particle model.

1.2 Parameters of the beam-particle model

For this work, the parameters of discrete model are given in Table 3.1. They correspond

to a quasi-brittle material with a Young modulus E = 36.35 GPa, a Poisson ratio ν = 0.22,

and a tensile strength ft = 5 MPa. Note that the elastic properties are equivalent to a bulk

modulus κ = 30.0 GPa and a shear modulus µ = 19.4 GPa. Note that this model has been

Name Symbol Value Unit

Average beam length l̄b 0.002 m

Young’s modulus Eb 60 GPa

Coefficient of inertia αb 0.85 -

Scale factor (extension) λε,cr 5.0×10−4 -

Scale factor (rotation) λθ,cr 2.8×10−3 -

Shape factor k 1.0 -

Table 3.1 • Parameters of beam-particle model

validated (in 2D) through a range of experiments (tension, compression, 3-point bending
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1. Meso-scale model of quasi-brittle materials: Beam-particle model

tests, mixed mode I-II failure, ...) with parameters of similar magnitudes (Vassaux et al., 2016;

Oliver-Leblond, 2019).

1.3 Implementation and numerical resolution

Let us consider a domain defined by a set of particles P containing Np particles and a set of

beams B containing Nb beams. For each beam in the domain, there is a linear relationship

between the cohesion forces F pq and the movement of the particles (up ,θp ,uq ,θq , given by

the Euler-Bernoulli behavior. Let us consider a beam b linking the particles p and q . The

cohesion forces of the beam on each particles in the beam frame are



F coh
n,b→p

F coh
t ,b→p

M coh
z,b→p

F coh
n,b→q

F coh
t ,b→q

M coh
z,b→q




︸ ︷︷ ︸
Fcoh,pq

=




Epq Apq

lpq
0 0 −Epq Apq

lpq
0 0

0
12Epq Ipq

l 3
pq

−6Epq Ipq

l 2
pq

0 −12Epq Ipq

l 3
pq

6Epq Ipq

l 2
pq

0 −6Epq Ipq

l 2
pq

4Epq Ipq

lpq
0

6Epq Ipq

l 2
pq

−2Epq Ipq

lpq

−Epq Apq

lpq
0 0

Epq Apq

lpq
0 0

0 −12Epq Ipq

l 3
pq

6Epq Ipq

l 2
pq

0
12Epq Ipq

l 3
pq

−6Epq Ipq

l 2
pq

0
6Epq Ipq

l 2
pq

−2Epq Ipq

lpq
0 −6Epq Ipq

l 2
pq

4Epq Ipq

lpq




︸ ︷︷ ︸
Kloc,b




un,p

ut ,p

θp

un,q

ut ,q

θq




︸ ︷︷ ︸
ub

(3.4)

Note that the cohesion forces can be written in the global coordinate system using the rotation

matrix Rb associated to the beam pq . The global equilibrium of the medium is given by the

equilibrium of each particles

∀p ∈P ,
∑

b∈Bp

(
Fcoh

b→p +F ext→p

)
= 0 (3.5)

where Bp is the set of beams linked to particle p and F ext→p is the vector of external forces

applied to the particle p. This set of equations can be written as a linear system
(

A
b∈B

Kloc,b

)
·u+Fext = 0 (3.6)

where A
b∈B

denotes the operator that assembles the global stiffness, u is the vector of displace-

ments and rotations for all particles, and Fext is the vector of external forces.

1.4 Application of boundary conditions

Let us consider a domainΩ with boundary ∂Ω. Each particle within the domain and in each

direction can have either forces/moment or displacements/rotation imposed upon them.

If nothing is imposed on a particle, it means that a null force is being applied to it. In ho-

mogenization, different types of classical boundary conditions are often used: Kinematically
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Uniform Boundary Conditions (KUBC), Statically Uniform Boundary Conditions (SUBC), and

Periodic Boundary Conditions (PBC).

×Remark 3.1 For Kinematically Uniform Boundary Conditions and Statically Uniform

Boundary Conditions, particle rotations are free. It means that a null moment is applied

to each particle on the boundary.

Kinematically Uniform Boundary Conditions. For Kinematically Uniform Boundary Con-

ditions, the strain is imposed on the whole boundary of the domain

∀p ∈ ∂P , up = εimp · x p (3.7)

where ∂P is the set of particle on the boundary ∂Ω and εimp is the imposed strain. In the

numerical implementation of the discrete model, the displacements are imposed by applying

a substitution method.

Statically Uniform Boundary Conditions. For Statically Uniform Boundary Conditions, the

stress is imposed on the whole boundary of the domain

∀p ∈ ∂P , F ext→p =σimp ·n∂Ω,p Sp (3.8)

where n∂Ω,p is the normal to the boundary ∂Ω at the particle p, Sp is the generalized surface

associated to the border of the particle 1, and σimp is the imposed stress. From the numerical

point of view, Statically Uniform Boundary Conditions only requires to fill the vector of

exterior forces Fext with the force applied to each individual particle of the boundary. Note that

rigid body motions must also be prevented. It is usually done by blocking the displacements

(and rotation) of one particle.

Periodic Boundary Conditions. For Periodic Boundary Conditions, a periodic strain is

imposed on the whole boundary of the domain. In practice, this boundary condition is more

complex than the previous ones. Firstly, it requires the domain to be geometrically periodic.

As shown on Figure 3.3, this is achieved by adding a layer of guided particles on upper and

right sides of the domain. Each guided particle is associated to a guiding particle on the

opposite side of the area element. Note that a guiding particle might guide multiple particles.

The Periodic Boundary Conditions induces a relation between displacements of the guiding

and the guided particle

uguided = uguiding +εimp · (xguided −xguiding), (3.9)

θguided = θguiding. (3.10)

In this work, different methods have been applied to impose Periodic Boundary Conditions:

a penalization method, a substitution method and by introducing Lagrange multipliers. The

penalization method is not retained as it requires the introduction of an arbitrary numerical

1In 2D, the length associated to the border of the particle p is the length of the cell border used in the grid to

position particle centers (see Figure 3.1).
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1
8

7

6

3

2
3

2

1

8
1

7

6

5

4

4

5

1

Figure 3.3 • Illustration of a periodic beam-particle mesh. The dashed square is the domain

boundary ∂Ω. Red boxed particles are guiding particles. Green circled particles

are guided particles. Guided particles have the same number as their guiding

particle.

parameter. The substitution method leads to changes in the stiffness matrix which are too

complex to maintain. It adds complexity to the subtraction of broken beam stiffness. Finally,

the only remaining option – and the chosen one – is the use of Lagrange multipliers. It has the

advantages to not modify the initial stiffness matrix (only add rows and columns). However,

the matrix with Lagrange multipliers is no longer positive definite.

×Remark 3.2 The in-lab discrete model code, named DEAP, used in this work used a linear

solver based on the Cholesky decomposition. Due to the loss of positive definiteness of the

stiffness matrix, this solver could no longer be used. With the help of the Simulation Center at

LMPS, we added support for SuiteSparse solvers DEAP. In particular, the SPQR solver (Davis,

2011) based on the QR decomposition is used.

Finally, the rigid body motions must also be prevented, which is done by imposing the

displacements and rotation of one particle to be zero.

2 Homogenization and its applications to discrete models

This section aims at presenting the existing approaches in homogenization – in general,

and specifically for discrete medium . It also contains a discussion on the existence of a

Representative Volume Element, which is a major assumption in homogenization.

2.1 General principle of homogenization

In general, homogenization studies consider (at least) three scales of observations
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1. Micro-scale. It is the scale of the heterogeneities. Here, its characteristic length is the

average size of the particle (or equivalently, the average length of the beams in the

model).

2. Meso-scale. It is an intermediate scale which is large enough to consider the material

as homogeneous but small relative to the macro-scale. Here, this scale will be chosen

such that the average elastic properties does not change when its characteristic length

increases. This will be the scale of the elementary domain.

3. Macro-scale. It is the scale of the structure. Its characteristic length depends on the

size of the structure.

In homogenization, the material is considered as homogeneous at the macro-scale. The

idea revolves around identifying a homogeneous material having mechanical properties

equivalent to the average properties of the heterogeneous material at the meso-scale. Instead

of representing the whole micro-structure, the homogeneous material can be used at the

macro-scale. It leads to less complex models and simulations.

This scale transition is formalized by Hill’s lemma (Hill, 1963), also called Hill-Mandel

condition or macro-homogeneity condition:

σ : ε−σ : ε= 1

VΩ

∫

∂Ω
(u −ε · x)(σ ·n −σ ·n)dx (3.11)

where • denotes the averaging operator

• = 1

VΩ

∫

Ω
•(x)dx , (3.12)

VΩ is the volume of domain Ω, and n is the normal the boundary ∂Ω. A recent proof of

this lemma is provided by Qu and Cherkaoui (2006) among many others. A corollary of this

condition states that for any statically admissible stress field and any kinematically admissible

strain field, the average of the macro-scale energy 1
2 σ : ε is equivalent to the average of the

micro-scale energy 1
2 σ : ε. From a mathematical point of view, it reads

∀x ∈ ∂Ω,
(
σ(x) ·n −σ(x) ·n

)× (
u(x)−ε(x) · x

)= 0 =⇒ σ : ε=σ : ε. (3.13)

Any boundary conditions where either σ(x) ·n = σ(x) ·n or u(x) = ε(x) · x is satisfied for

each individual points of the boundary verifies the Hill’s lemma. In particular, three types of

boundary conditions verifying those conditions are frequently used:

• Kinematically Uniform Boundary Conditions (KUBC). The strain is imposed on the

whole boundary

∀x ∈ ∂Ω, u(x) = εimp · x . (3.14)

• Statically Uniform Boundary Conditions (SUBC). The stress is imposed on the whole

boundary

∀x ∈ ∂Ω, σ(x) ·n =σ(x) ·n. (3.15)
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• Periodic Boundary Conditions (PBC). The boundary is split in two parts ∂Ω= ∂Ω+⊕
Ω−

where
⊕

denotes the direct sum2. ∂Ω+ and ∂Ω− are the guiding and guided parts of the

boundary. The Periodic Boundary Conditions impose the periodicity of displacement

∀x+ ∈Ω+ and associated x− ∈Ω−, u(x−) = u(x+)+εimp · (x−−x+), (3.16)

and the anti-periodicity of stress

∀x+ ∈Ω+ and associated x− ∈Ω−, σ(x+) ·n =σ(x−) ·n. (3.17)

In practice, Kinematically Uniform Boundary Conditions give an upper bound of the effective

elasticity tensor whereas Statically Uniform Boundary Conditions gives a lower bound. With

Kinematically Uniform Boundary Conditions, the border of the domain are kept straight, as if

they were infinitely rigid, leading to an artificial stiffening of the domain. Conversely, Statically

Uniform Boundary Conditions tends to artificially soften the domain. The Periodic Boundary

Conditions are usually considered as a good intermediate estimation of the effective elastic

properties (Tian et al., 2019). Note that other mixed boundary conditions are also used in the

literature and not considered here.

2.2 Existence of a Representative Volume Element for softening materials

The quasi-brittle material is modelled at a meso-scale using the beam-particle model. This

model is discrete, meaning that the mechanical quantities (displacements and forces) are not

defined continuously. Additionally, this model is also heterogeneous due to the randomness

of the particle geometries and their spatial distribution. It means that if one could measure

the local strain/stress in the material, the strain/stress field would be heterogeneous.

An important remark is that the effective heterogeneity of a material depends on the

observation scale. Most materials are highly heterogeneous when observed at a micro-

scale. In most practical cases, properties at a larger scale are sufficient to represent the

material. Those properties are volume-average of the meso-scale quantities. In general,the

overall properties can be seen as homogeneous at this new (macro-)scale. At this point, it is

important to discuss the existence of such macro-scale.

Let us consider a material with heterogeneity at the meso-scale, which is order of magni-

tude smaller than the macro-scale. Finding an Representative Volume Element (RVE) consists

in finding a volume of material such that the average of the meso-scale quantities is constant

when increasing the size of the volume. Such volume always exists in elasticity. However,

note that the studied structure might be smaller than this RVE. In this case, the scale cannot

be separated. When a softening behavior is observed, the properties associated with the

softening behavior will not converge when increasing the size of the averaging volume. This

issue directly relates to the size effect. Present work does not aim at tackling those questions.

In-depth discussions on the existence of an RVE can be found in the works of Stroeven et al.

(2004), Gitman et al. (2007), Pelissou et al. (2009), Nguyen et al. (2010, 2011), and Shahin et al.

(2022).

2The direct sum is defined such thatΩ=Ω1
⊕
Ω2 ⇐⇒ Ω=Ω1 ∪Ω2 andΩ1 ∩Ω2 =;.
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An implicit aim of this work is to determine whether it is possible to formulate an

anisotropic damage model able to correctly represent the effective elastic properties when

the elastic properties soften. Note that it means that the material parameters linked to dam-

age will depend on the size of the averaging volume used for identification, exactly as in

experiments. In the present work, a bi-dimensional domain at the meso-scale of fixed size is

considered. It is called an area element instead of a Representative area element, since its

behavior is softening and thus not representative.

3 Measurement procedure for the elasticity tensor of discrete

area elements

This section briefly presents the procedure applied to measure the effective elasticity tensor

associated to a micro-cracked area element.

3.1 Foundations of the measurement procedure

Let us consider three linearly independent strain ε(i ) states and the associated stresses σi in

Kelvin notation
[
ε(i )

]
=




ε(i )
11

ε(i )
22p

2ε(i )
12


 ,

[
σ(i )

]
=




σ(i )
11

σ(i )
22p

2σ(i )
12


 . (3.18)

The elasticity tensor in Kelvin notation is the 3×3 symmetric matrix

[E] =
([[

σ(1)
]

,
[
σ(2)

]
,
[
σ(3)

]]
·
[[
ε(1)

]
,
[
ε(2)

]
,
[
ε(3)

]]−1
)S

. (3.19)

The strain states
[
ε(i )

]
must be orthogonal to each others (i.e. linearly independent) so that

the matrix associated to strains is invertible.

×Remark 3.3 The strain states matrix is 3×3. For this matrix to be invertible, the vector

family formed by its columns must be a basis of R3. Thus, the family of strain loads must have

a cardinality of 3 and contains linearly independent vectors.

This expression means that the effective elasticity tensor can be determined by applying three

orthogonal (elastic) measurement loadings to the area element and measuring its strain and

stress. Nevertheless, several questions need further details, namely, the determination of the

appropriate loading/boundary conditions to be applied to the area element, the calculation

of the strain, and the calculation of the stress. Those different questions are tackled in the

next subsections.

3.2 Strain measurement

Different reviews of strain averaging in discrete (granular) material are available in the litera-

ture in 2D (Bagi, 2006) and in 3D (Drummen, 2006; Durán et al., 2010). In those works, the

strain averaging methods are classified into two categories:
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1. Equivalent continuum. The idea is to define an equivalent continuum from the ge-

ometry of the meso-structure. The average strain of this equivalent continuum is the

average strain of the discrete domain.

2. Best-fit. This type of methods consists in finding the strain tensor that best fits the

particle displacement field.

This subsection describes and compares the different strain measurement proposed in the

literature. It mainly aims at comparing and verifying the validity of different methods to

measure strain in presence of micro-cracks.

3.2.1 "Experimental" method

The principle of this method is to compute the strain tensor as it might be done experimentally.

The measurement of strain is carried out by measuring the elongation of the area element in

each directions. For this method, the strain definition is

ε=



1
L1

(
utop

1 −ubot
1

)
1

L2

(
uright

1 −uleft
1

)

1
L1

(
utop

2 −ubot
2

)
1

L2

(
uright

2 −uleft
2

)

 (3.20)

where uface
• is the average displacement in the direction • of the specified face. In practice,

the average displacement in all the directions of each faces of the square area element are

computed in post-processing. The lengths L1 and L2 correspond to the side of the square

domain.

3.2.2 Bagi’s method

(Bagi, 1996) defined the strain tensor in a granular assembly by introducing an equivalent

continuum. This equivalent continuum is the union of cells (surfaces in 2D) in the mesh. This

method consists in calculating the strain of each cell and then average it over the equivalent

continuum. The author proposed two equivalent continua:

• Material Cell System (MCS). In the MCS, the cells are the faces in the Voronoï tessella-

tion of the particle centers, i.e. a cell is a particle.

• Space/void Cell System (SCS). In the SCS, the cells are the faces in the Delaunay

triangulation of the particle centers, i.e. a cell is a space between three connected

beams.

In the beam-particle model, the particle are considered as rigid. Moreover, the deformation

is carried by the beams. It makes more sense to use the Space Cell System as the equivalent

continuum. In this definition of a cell, the deformation of beams, as well as the discontinuous

displacement resulting from their failure, are considered together as part of the overall

deformation of the cell. The Space Cell System is represented on Figure 3.4. The average

strain of equivalent continuum is defined as

ε= 1

VSCS

∫

SCS
(∇u(x))S dx (3.21)
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Particle center

Beams

Particle borders

Space cell system

Figure 3.4 • Illustration of the space cell system as described by Bagi (1996).

where VSCS is the (generalized) volume of the Space Cell System and •S = 1
2

(•+•T
)

is the

symmetrization operator. In the discrete media, Bagi defined the average strain as the

volume-weighted average of strain over the cells

ε= 1

VSCS

∑
c∈CSCS

Vcεc dx (3.22)

where CSCS is the set of cells in the Space Cell System, Vc is the volume of cell c ∈CSCS and εc

is the strain of cell c.

×Remark 3.4 As shown by Figure 3.4, the volume VSCS of the Space Cell System is not equal

to the volume of the domain. The volume of the domain contains a part of the (rigid) particles

which does not deform (the white part in the Figure 3.4). Thus, it does not contribute to

the elastic behavior. The volume of the Space Cell System will be the volume of interest for

averaging.

p

q

r

t pq

t qr

t r p

Figure 3.5 • Representation of a cell. The particle centers are represented by black circles, the

grey line are the particle borders, and the black line are the beams.

The next, and final, step consists in defining the deformation of a (triangular) cell. A repre-

sentation of the cell is proposed in Figure 3.5. Bagi (1996) proposed to define the strain of a

cell c as

εc =
1

Sc

∑
(p,q)∈Bc

lpq
up +uq

2
⊙ t pq (3.23)
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where 1
Sc

is the surface of the cell c, Bc is the set of beams in the cell c, ⊙ is the symmetrized

tensor product (a⊙b = (a⊗b)S) and t pq is the tangent vector to the section of the beam pq .

Note that t pq and t qp are opposed. The particles centers are ordered in the beams of the cell

such that t pq is the outward-pointing normal to the border of the cell.

3.2.3 Bagi’s method on boundary

The direct application of Bagi’s method is computationally costly. Instead of averaging the

displacement gradient over the Space Cell System, we can apply the divergence theorem to

rewrite the average as a surface integral. The average (symmetric) strain is defined as

ε= 1

VSCS

∫

∂SCS
u(x)⊙n(x) dx (3.24)

where ⊙ denotes the symmetrized tensor product (a⊙b = 1
2 (a⊗b+b⊗a)), and n(x) is the

outward-pointing normal to the boundary of the Space Cell System ∂SCS. Expressing the

average strain as a function of the discrete quantities leads to

ε= 1

VSCS

∑
(p,q)∈∂B

lpq
up +uq

2
⊙ t pq (3.25)

where ∂B is the set of beams on the boundary of the Space Cell System.

3.2.4 Cundall’s method

This approach was proposed by Cundall and is described by Bagi (2006). This definition

originates from the study of granular materials. Its principle is to fit the average strain to the

displacement gradient of the particle centers.

Let us approximate the displacement up of a particle p as

∀p ∈P , up ≈ u +ε ·x p (3.26)

where u = 1
Np

∑
p∈P up is the average displacement of the particle which corresponds to a

rigid body motion, and Np is the number of particles. In order to simplify this expression, the

average – over all the particles – of both side is subtracted to obtain

∀p ∈P , up − 1

Np

∑
p∈P

up ≈ ε · x p − 1

Np

∑
q∈P

ε · x q . (3.27)

Let us introduce the particle position ∆x p = x p −x relative to the average particle position

x (geometrical center), and the displacement ∆up = up −u relative to the average particle

displacement u. The expression simplifies into

∀p ∈P , ∆up ≈ ε∆x p (3.28)

Replacing the approximation by an equality leads to an overdetermined linear system of

equations. The principle of this approach consists in minimizing the least-square error LSE

associated to this relation

ε= argmin
ε∗

∑
p∈P

(
∆up −ε∗∆x p

)T (
∆up −ε∗∆x p

)

︸ ︷︷ ︸
LSE(ε∗)

(3.29)
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The expression of the average strain is obtained by minimizing LSE(ε), which gives

∂LSE(ε)

∂ε
= 02 =⇒ ε=

( ∑
p∈P

∆up∆xT
p

)( ∑
p∈P

∆x p∆xT
p

)−1

(3.30)

The developments to obtain this expression are given in Appendix A.

3.2.5 Cundall’s method on boundary

Then, Cundall’s strain definition as also been applied by considering only the particles on the

boundary. The whole development is the same as for the previous method. Thus, the average

strain rewrites

ε=
( ∑

p∈∂P
∆up∆xT

p

)( ∑
p∈∂P

∆x p∆xT
p

)−1

(3.31)

where ∂P denotes the set of particles on the boundary of the domain.

3.2.6 Comparison

The five different definitions of the average strain are compared in this paragraph. To verify

and assess the averaging methods, three strain loadings (Kinematically Uniform Boundary

Conditions) are applied to a square area element until its failure. Those loadings are

εbitension
imp = 10−4 t

[
1 0

0 1

]
, εtension

imp = 2×10−4 t

[
1 0

0 0

]
, εshear

imp = 2×10−4 t

[
0 1

1 0

]
, (3.32)

where t ∈ [0,1] is the loading parameters which is discretized into 100 load steps. For illustra-

tion purpose, Figure 3.6 shows measured strains ε11,meas as functions of the imposed strain

ε11,imp. Ideally, the measured strain is equal to the imposed strain. One can readily discern

the difference between the strain predicted by Cundall’s method on the whole domain and

the other methods. This difference is explained further in this section.

Error analysis. For a better comparison of the different methods, let us introduce the

relative error between the measured strain with method “meas” and the imposed strain

eε,meas =
∥εmeas −εimp∥

∥εimp∥
(3.33)

where εmeas is the average strain measured with one of the methods, and ∥ • ∥ denotes

the Frobenius norm. Figures 3.7 to 3.9 contain the evolution of the error during the three

proposed loadings. Those figures show that most methods gives an average strain close to

the imposed strain. However, Cundall’s (P ) method and the "Experimental" method give

results that are far from the imposed strains. Those errors are explained in the following

paragraphs.
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Figure 3.6 • Comparison of the measured strain with the imposed strain for a tension im-

posed strain (with Kinematically Uniform Boundary Conditions) in the direction

e1.
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Figure 3.7 • Comparison of the measured strain with the imposed strain for a bitension

imposed strain (with Kinematically Uniform Boundary Conditions) via error

calculation. The methods with P are applied on the whole domain whereas the

methods whit ∂P are applied on the boundary.
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Figure 3.8 • Comparison of the measured strain with the imposed strain for a tension im-

posed strain (with Kinematically Uniform Boundary Conditions) via error cal-

culation. The methods with P are applied on the whole domain whereas the

methods whit ∂P are applied on the boundary.
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Figure 3.9 • Comparison of the measured strain with the imposed strain for a shear imposed

strain (with Kinematically Uniform Boundary Conditions) via error calculation.

The methods with P are applied on the whole domain whereas the methods

whit ∂P are applied on the boundary.
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“Experimental” method error. The main source of error in the “Experimental” method

is mainly due to the choice of length. Currently, the geometric length, corresponding to

the side of the area element, is utilized as the reference length for measuring average strain.

However, this length does not correctly represent the region of the area element capable of

undergoing deformation, i.e. the length of the lattice domain. It is important to highlight

that this effective length is smaller than the geometric length of the area element, as depicted

in Figure 3.4. To rectify this measurement error, it is necessary to substitute the geometric

length of the area element with the effective length. The latter can be obtained as the average

distance between opposed particle along boundaries in the direction e1 and e2. For instance,

the effective distance L1 in the direction e1 would be

L1 =
1

Np,top

∑
p∈P top

∣∣x p,top ·e1 −x p,bot ·e1
∣∣ (3.34)

where Np,top is the number of particles on the top face, P top is the set of particle on the top

face, x p,top is the position of the particle p on the top face, and x p,bot is the position of the

particle on the bottom face associated to particle p. As this error on the effective distance

outweighs others sources of errors and acts as a factor of the measured average strain (see

Equation (3.20)), the error seems to stay constant during the loadings.

Cundall’s method error. For Cundall’s best-fit strain, the measured average strain deviates

from the imposed strain when micro-cracking occurs. It is even more pronounced when

there is a macro-crack. The main issue is that the measured average strain depends on the

location of cracks. In Figure 3.10, a regular square area element consisting of 10×10 particles

is depicted. Each particle has a side length of 0.1 m. The area element is subjected to a tensile

strain in the horizontal direction

εimp =
[

0.1 0

0 0

]
. (3.35)

We examine four distinct cases: one where the area element remains uncracked under the

applied loading (a), and three cases where the cracks localized at different locations in the

material. According to Cundall’s best-fit strain, the deformation for those cases are

εa
Cundall =

[
0.10 0

0 0

]
, εb

Cundall =
[

0.094 0

0 0

]
, (3.36)

εc
Cundall =

[
0.12 0

0 0

]
, εd

Cundall =
[

0.094 0

0 0

]
. (3.37)

For a same applied strain, crack localization influences the average strain value in the area

element. For this work, it means that Cundall’s best-fit strain is not adequate. Note that, in

this exemple, Cundall’s strain restricted to the boundary should not be affected by this issue

as it is neglect the particle inside the domain. As shown by Figure 3.10, the particles on the

boundary of each specimen have the same displacements. Yet, for another loading, such as

an “experimental” loading, the same issue could arise.

� Conclusion – Strain measurement
In this subsection, several strain averaging approaches are compared, namely the “Experi-

mental”, Bagi, and Cundall methods. The last two were applied both on the boundary and
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a. Uncracked b. Cracked at 0.2 m

c. Cracked at 0.5 m d. Cracked at 0.8 m

Figure 3.10 • Illustration depicting the dependency of Cundall’s average strain on the po-

sition of the crack. The colors corresponds to displacement magnitude. The

deformation is depicted without any scale factor. The black lines corresponds

to the cracks.

62



3. Measurement procedure for the elasticity tensor of discrete area elements

the entire domain of the area element. To evaluate their performance, specific strains are im-

posed, and the average strain is computed using each method. Both imposed and measured

strains are then compared. The “Experimental” and Cundall approaches have been shown to

be flawed. In particular, the Cundall approach is not well-defined when a strain localization

occurs. In contrast, Bagi’s method demonstrated sufficient accuracy in calculating average

strain. Additionally, when applied to the boundary of the domain, Bagi’s method showed

lower computational costs compared to applying it to the entire domain. Furthermore, the

implementation of Bagi’s method on the boundary is more straightforward. Therefore, for

the rest of this document, Bagi’s method will be employed to compute the average strain in

the area element.

3.3 Stress measurement

The definition of average stress are less discussed than the definitions of average strain in the

literature. To our knowledge, the first definition of the average stress in a granular material

– with spherical particles – have been proposed by Drescher and de Josselin de Jong (1972).

After the work of Drescher and de Josselin de Jong (1972), many authors – Christoffersen et al.

(1981), Rothenburg and Selvadurai (1981) among others – proposed similar definitions of

the average stress tensor based on the contact forces between particles with arbitrary shape.

Like for the strain, local definitions of the stress have also been proposed in the literature.

Those methods are also based on the definition of an equivalent continuum. As the forces

are transmitted by particles borders (through the beam), the equivalent continuum proposed

by Bagi (1996) is the Material Cell System (see Section 3.2.2). More recent propositions in the

literature mainly tackle the definition of generalized stress in higher-order continua, which is

out of the scope of this study. Here, only the definition proposed by Drescher and de Josselin

de Jong (1972) is presented and studied.

3.3.1 Drescher’s method

According to Drescher and de Josselin de Jong (1972), the average stress tensor in the area

elementΩ can be defined as

σ= 1

VΩ

∫

Ω
σ(x) dx

divergence theorem=⇒ σ= 1

VΩ

∫

∂Ω
x ⊙ t (x) dx (3.38)

where t is the traction vector. In order to define the stress from the discrete quantities, an

equivalent continuum must be considered, here the Space Cell System. As the forces on the

boundary of the Space Cell System are concentrated at particle centers, the surface integral

reads

σ= 1

VSC S

∑
p∈∂P

x p ⊙ fp dx (3.39)

where fp is the sum of cohesion forces – from the beams – applied to the particle.

3.3.2 Verification of Drescher’s method

Verification procedure. Due to cracking, applying a stress on the boundary of the domain

may result in a complete failure right after peak stress. Furthermore, after cracking, the area
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element may split into different independent parts. It leads to an ill-posed problem due to

the apparition of rigid body motions in those parts. This is an issue as we want to verify the

stress averaging in the presence of cracks. Based on those remarks, the verification of stress

averaging cannot be carried out with the same method as for the strain. Instead, a strain

loading is first applied on the area element to gradually crack it. This loading is discretized

into 100 load steps. Then, the cracks at each load steps are extracted to generate a pre-cracked

area element. Finally, a stress is applied on the pre-cracked area element using Statically

Uniform Boundary Conditions.

Application. Let us consider a square area element of 0.2 × 0.2 m2 with a beam length of

l̄b = 0.02 m leading to 10 square particles in each direction. The geometric length of the

domain is L = 0.02 m whereas the effective length (length of the lattice) is L− l̄b = 9×0.02 m.

To apply a bitension stress loading, we apply a force fp = 1 N on each particle of the boundary

in the direction normal to the boundary (see Figure 3.11). It corresponds to applying a stress

Bitension (SUBC) Tension (SUBC) Shear (SUBC)

Figure 3.11 • Illustration of the loadings for the verification of the stress averaging.

tensor

σbitension
imp = 10× fp

L− l̄b

[
1 0

0 1

]
= 10

0.18

[
1 0

0 1

]
≈ 55.55...

[
1 0

0 1

]
. (3.40)

The same procedure is applied for tension and shear loadings (also illustrated on Figure 3.11).

For those methods, the imposed tensors are

σtension
imp = 10× fp

L− l̄b

[
1 0

0 0

]
and σshear

imp = 10× fp

L− l̄b

[
0 1

1 0

]
. (3.41)

After applying this procedure, we obtain 101 stress measurements for different cracking

of the area element. The average and standard deviation of each components of the stress

tensor are computed for each damaging loadings. As the imposed stress is constant during

those loadings, the average should be the imposed stress and the standard deviation should

be null. The results are summarized in the Table 3.2. The average measured stress tensors are

close the imposed value. The standard deviations are several orders of magnitude below the

imposed value. It validates the stress averaging method of Drescher in this case.
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3. Measurement procedure for the elasticity tensor of discrete area elements

Imposed Measured (average) Measured (standard deviation)

Bitension σ11 [MPa] 10
0.18 = 55.5... 55.56 1.82×10−7

σ22 [MPa] 10
0.18 = 55.5... 55.56 1.57×10−7

σ12 [MPa] 0 5.21×10−7 1.28×10−7

Tension σ11 [MPa] 10
0.18 = 55.5... 55.56 1.74×10−7

σ22 [MPa] 0 −1.32×10−7 1.29×10−7

σ12 [MPa] 0 −1.46×10−8 2.72×10−7

Shear σ11 [MPa] 0 −2.40×10−13 2.30×10−13

σ22 [MPa] 0 −1.96×10−13 −1.12×10−13

σ12 [MPa] 10
0.18 = 55.5... 55.56 0

Table 3.2 • Comparison of imposed stress and measured stress for pre-cracked area elements.

� Conclusion – Stress averaging
In this subsection, Drescher’s stress averaging method has been presented and validated in

the context of our study.

3.4 Measurement loadings

The last question to tackle in the measurement procedure is the choice of the measurement

loading. As presented in the Section 2, this choice is highly important in the homogenization

process.

Presentation. In this study, only Kinematically Uniform, Periodic and Statically Uniform

Boundary Conditions are considered. Note that Oliver-Leblond et al. (2021) proposed other

type of boundary conditions and measurement loadings – which do not necessarily verify

Hill’s lemma – that are not studied here. For Kinematically Uniform and Periodic Boundary

Conditions, three orthogonal strain loadings are applied

ε(1)
imp =

[
ε 0

0 0

]
, ε(2)

imp =
[

0 0

0 ε

]
, and ε(3)

imp =
[

0 ε

ε 0

]
(3.42)

where ε is a small strain value such that the behavior remains elastic during measurement

loadings. In practice, we choose ε= 10−8. For Statically Uniform Boundary Conditions, three

orthogonal stress loadings are applied

σ(1)
imp =

[
σ 0

0 0

]
, σ(2)

imp =
[

0 0

0 σ

]
, and σ(3)

imp =
[

0 σ

σ 0

]
(3.43)

where σ is a small stress value such that the behavior remains elastic during measurement

loadings. In practice, we choose σ such a force on 1 N is applied on each particles of the

boundary that contribute to the stress.
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Chapter 3. Measuremement of effective elasticity tensors

Comparison. In order to choose one of the measurement loading, the results given by each

method are compared. For this comparison, let us consider an area element of 0.2×0.2 m2

with the parameters proposed in Table 3.1. Figure 3.12 shows different cracking patterns

obtained during loadings of the area element. The columns correspond – from left to right

– to an uncracked area element, one with diffuse micro-cracking due to tension, another

with localized cracking due to tension, and a last area element with a localized cracking

due to bitension. In the rows, the associated elasticity tensors are given for, from top to

bottom, Kinematically Uniform, Periodic and Statically Uniform measurement loadings. By

comparing the first three area elements, we can observe that – for each types of elementary

loading – the stiffness will decrease with the “amount” of micro-cracking. Moreover, the

damage-induced anisotropy can already be observed: the uncracked area element displays

nearly isotropic3 whereas the second and third area elements show a loss of isotropy. For

instance, this loss of anisotropy is manifested by the difference between the two first diagonal

components (E1111 ̸= E2222). From now, let us restrain ourself from any more mechanical

interpretations and keep them for the remaining chapters. From the perspectives of the

measurement of elasticity tensors, the classical results from homogenization are recovered:

Kinematically Uniform Boundary Conditions predict stiffer elastic properties, whereas Stat-

ically Uniform Boundary Conditions predict more compliant elastic properties. Periodic

Boundary Conditions provide intermediate results. Note that for the area element 4 – with

localized cracking from bitension – Statically Uniform elementary loadings lead to undefined

components. As explained before for the application of the stress on the area element, rigid

body motions arises due to the cracking of the area element into multiple parts.

×Remark 3.5 The rigid body motions of each part could be blocked individually. However,

this method will tends to rigidify the area element by blocking a previously free movement;

thus, leading to an over-estimation of the stiffness. Another option is to introduce a negligible

residual stiffness between each independent parts. Yet, this option is also biased. By adding

a beam with a negligible stiffness between independent parts, the relative rotation of the

independent components will depend on the positions of beam extermities in each parts.

� Conclusion – Measurement loadings
In this subsection, different measurement loadings based on homogenization theory are

compared. The classical results from homogenization are recovered: Kinematically Uniform

Boundary Conditions (respectively Statically Uniform Boundary Conditions) gives an upper-

bound (respectively a lower-bound) of stiffness. The Periodic Boundary Conditions give

an intermediate estimation of the effective elasticity tensor. Based on this motivation, the

Periodic Boundary Conditions measurement loadings are retained for the measurement

procedure.

3.5 Summary and illustration of the measurement procedure

To summarize and illustrate the procedure, Figure 3.13 is a schematic of the whole measure-

ment process. The input of this process is an area element (cracked or uncracked). The first

3The distance to a symmetry class will be quantifier further in the thesis.
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Chapter 3. Measuremement of effective elasticity tensors

steps consist in applying the three measurement loadings using Periodic Boundary Condi-

tions. Then, the strain is measured using Bagi’s method on the boundary of the domain as

proposed in Equation (3.25). The stress is also measured using Drescher’s method as defined

in Equation (3.39). Once the strain and stress is computed for each measurement loadings,

the elasticity tensor is computed using Equation (3.19). To conclude this summary, the

procedure to measure the effective elasticity tensor is formally recapitulated in Algorithm 1.

Algorithm 1: Measurement of the evolution of effective elasticity tensor

Data: Area element (uncracked or cracked)

foreach measurement loading i do
Apply Periodic (elastic) measurement loading εimp

(i );

Compute average strain ε(i ) from Equation (3.25);

Compute average stress σ(i ) from Equation (3.39);

end
Compute effective elasticity tensor from Equation (3.19);

Result: Effective elasticity tensor E

3.6 Limitations of the measurement procedure

This section aims at recalling the different assumptions in the measurement procedure and

discussing the different sources of error.

Symmetrization of strain/stress. The first important assumption in this procedure is that

the discrete medium is supposed to be a linear elastic medium in small strains. It means

that the behavior of the material is assumed to be represented by a fourth-order tensor with

minor and major symmetries. In the discrete model, the particles also have rotation degrees

of freedom. It means that the discrete medium would be better modelled using a generalized

medium (Forest & Sab, 1998).

{ Summary of the Chapter

This chapter aims to establish a connection between the discrete beam-particle model and a

continuous model. Firstly, a presentation of the beam-particle model is provided, followed

by a brief introduction to homogenization to structure the measurement procedure. Based

on homogenization theory, a procedure to measure the effective elasticity tensors of cracked

square area elements, with possible micro-cracking, is proposed. The procedure involves

applying three independent (measurement) loadings to the area element. Different choices

for the measurement loadings (Kinematically Uniform, Periodic, Statically Uniform Boundary

Conditions) are compared and the Periodic boundary Conditions are retained. After compar-

ing different averaging methods for strain and stress, the average strain is computed using

Bagi’s method and the average stress with Drescher’s method. Using the average strains and

stresses from the three measurement loadings, the effective elasticity tensor is calculated.
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3. Measurement procedure for the elasticity tensor of discrete area elements

Cracked specimen

Apply measurement loading (PBC)

ε(1)
imp =

[
ε 0

0 0

]
ε(2)

imp =
[

0 0

0 ε

]
ε(3)

imp =
[

0 ε

ε 0

]

Measure strain

ε(1) = 10−8

[
1 0

0 0

]

and stress (Pa)

σ(1) =
[

71.8 7.90

7.90 16.3

]

Measure strain

ε(2) = 10−8

[
0 0

0 1

]

and stress (Pa)

σ(2) =
[

16.3 25.3

25.3 374

]

Measure strain

ε(3) = 10−8

[
0 1

1 0

]

and stress (Pa)

σ(3) =
[

15.8 156

156 50.6

]

Compute elasticity tensor (GPa)

E =




7.18 1.62 1.18

1.62 37.4 3.79

1.18 3.79 15.6




Figure 3.13 • Illustration of the measurement of an elasticity tensor
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Chapter 3. Measuremement of effective elasticity tensors

An algorithm and a schematic illustration of an elasticity tensor measurement from the

discrete model are proposed to summarize the procedure. It is important to remark that this

procedure is restricted to the transition from a discrete model to a linear elastic medium.
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Part II
Contributions to the modeling

of quasi-brittle materials
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4
Generation and analysis of the dataset

of effective elasticity tensors

This chapter introduces the generation and analysis of the dataset of effective elasticity ten-

sors that will be the foundation for formulating the damage model. Proportional and non-

proportional loadings are applied to area elements, and the evolution of the effective elasticity

tensor is measured at each time step of the different loading cases. These measurements form

the reference dataset. For illustration purposes, we analyze a measurement during a non-

proportional loading. A validity check is then performed over the dataset by evaluating the

symmetrization errors in the measurement procedure. The positive definiteness and the de-

crease of the measured elasticity tensors during the cracking process are also checked. Finally, a

quantified anisotropy analysis is performed.

In the previous chapter, a procedure to measure the effective elasticity tensor of —

uncracked or cracked— discrete area elements has been presented. In this chapter, pro-

portional and non-proportional damaging loadings are applied to the area elements. The

measurement procedure is used at each load step of the loadings to obtain the evolution

of the elasticity tensor during the loadings. All the measured evolutions are then stored in

one dataset, which will be used to formulate an anisotropic damage model in the following

chapters. Verification of the dataset is also presented in this chapter to display its limits and

prevent potential mechanical inconsistencies. For instance, both the positive definiteness

and the irreversible decrease of the elastic properties are checked. Finally, the dataset is

analyzed from a mechanical point of view.

1 Generation of a dataset of effective elasticity tensors

This section is dedicated to generating a large dataset of effective elasticity tensors. To consti-

tute the dataset, 36 area elements with different microstructures (but with the same discrete

model properties) are submitted to 21 mechanical loadings. “Different microstructures”

means different random positioning of the particle centers and different random draw for

the beam failure properties. Thus, the particle distribution at the meso-scale are different for
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Chapter 4. Generation and analysis of the dataset

each distinct area elements (see Section 1.1 of Chapter 3). Each area element is a square of

0.2m×0.2m, with an average beam length l̄b = 0.002m. Thus, the area elements comprise

100×100 particles.

1.1 Measuring the evolution of an effective elasticity tensor

The procedure from Chapter 3 is now applied to measure the evolution of the effective

elasticity tensor during damaging loading. The whole evolution measurement is illustrated

t
Damaging

loading
Cracking

patterns

[
σ(1)

]
,
[
ε(1)

]

[
σ(2)

]
,
[
ε(2)

]

[
σ(3)

]
,
[
ε(3)

]

Measure of elastic-

ity tensor (loadings

and homogenization)




49.8 10.3 0.04

10.3 49.8 −0.04

0.04 −0.04 38.5







34.0 5.83 −0.07

5.83 34.1 0.15

−0.07 0.15 27.9







6.22 0.22 1.02

0.22 6.33 1.64

1.02 1.64 8.84




Elasticity tensor in

Kelvin notation [GPa]

Figure 4.1 • Illustration of the procedure for measuring the effective elasticity tensor evolu-

tion during a damaging loading.

in Figure 4.1. The first step consists of applying a damaging loading to the area element. The

damaging loadings are applied until the failure of the area element, i.e. the localization of

micro-cracking. The cracking patterns are then extracted at each load step of the damaging

loading, and pre-cracked meshes are generated from the patterns. Finally, the procedure to

measure the effective elasticity tensor is applied to each pre-cracked mesh, i.e. each load

step. The measured tensors are then grouped to obtain the whole evolution of the effective

elasticity tensor.

1.2 Damaging loadings

Various damaging loadings are applied to the area elements. Different types of boundary

conditions (kinematically uniform, periodic, and “experimental” boundary conditions) are

imposed among the loadings. During kinematically uniform and periodic loadings, the strain

is set on the area element’s whole boundary ∂Ω. Each load step adds an increment of strain

∆ε(x) to the currently imposed strain. The strain at load step i is

ε0 = 0, εi = εi−1 +∆εi . (4.1)
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1. Generation of a dataset of effective elasticity tensors

During “experimental” loading, a displacement is imposed on the sub-parts of the boundary

∂Ω. Each load step adds an increment of displacement ∆u(x) to the currently imposed

displacement. The displacement at load step i , on a sub-part of the boundary ∂Ωu , is

∀x ∈ ∂Ωu ,





u0(x) = 0,

ui (x) = ui−1(x)+∆ui (x).
(4.2)

In practice, the boundary ∂Ωu = {
x = (x, y) | x = 0

}
corresponds to the layer of particle having

their center in the rectangle defined by [0, l̄b]× [0,L]. Tables 4.1 and 4.2 provide a description

of all the damaging loadings included in the dataset. The first important remark is that the

Type Name
Load steps (i ) Strain incs ∆εi ×106

Start End ε11 ε22 ε12

KUBC bitension 1 100 6 6 0

shear 1 100 0 0 15

tension 1 100 10 0 0

shear → tension 1 50 0 0 10

50 100 20 0 0

tension → shear 1 50 10 0 0

50 100 0 0 20

tension → tension 1 50 10 0 0

50 100 0 10 0

(Willam et al., 1989) 1 100 4 0 0

100 200 2 1 3

PBC bitension 1 100 5 5 0

shear 1 100 0 0 10

tension 1 100 3 0 0

shear → tension 1 50 0 0 10

50 100 40 0 0

tension → shear 1 50 10 0 0

50 100 0 0 20

tension → tension 1 50 6 0 0

50 100 0 6 0

(Willam et al., 1989) 1 100 8 0 0

100 200 4 6 2

Table 4.1 • Kinematically Uniform (KUBC) and Periodic PBC damaging loadings. For periodic

(PBC) loadings, a particle is locked in displacement to prevent rigid body motions.
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Chapter 4. Generation and analysis of the dataset

Name
Load steps

Displacement incs ∆ui (x) (µm)

x = 0 x = L y = 0 y = L

Start End u1 u2 u1 u2 u1 u2 u1 u2

bitension 1 100 0 - 1.2 - - 0 - 1.2

tension 1 100 0 - 1 - - - - -

shear 1 100 - 0 - 0.8 0 - 0.8 0

simple shear 1 100 - - - - 0 0 0 4

shear → tension 1 50 - 0 - 1.6 0 - 1.6 0

50 100 0 - 2 - - - - -

tension → shear 1 50 0 - 1 - - - - -

50 100 - 0 - 1.6 0 - 1.6 -

tension → tension 1 50 0 - 1.2 - - - - -

50 100 - - - - - 0 - 1.2

Table 4.2 • “Experimental” (EXPE) loadings. The cells x = ... and y = ... denotes the face of the

area element on which the displacement is applied. For most of those loadings,

an additional constraint is applied to a particle to prevent rigid body motion.

loadings are all such that the area element is mostly loaded in extension. It is necessary as the

contact and friction between micro-crack faces is neglected; thus, the loadings are such that

most cracks remain open. Also, note that loadings are separated into proportional and non-

proportional loadings. For this dataset, the non-proportional loadings are highly important

as they enable the rotation of the principal strain/stress directions during the loading. It

leads to a misalignment of the loading direction with the initial cracks, thus changing the

damaging direction during the loading.

×Remark 4.1 Instead of using physical loadings to generate micro-cracks, one could try to

create random micro-cracking patterns by randomly breaking beams. This method does not

account for the interactions of micro-cracks during the loading. We preferred to apply true

mechanical loadings, as they constrain the micro-cracking patterns to “physically reachable”

ones.

1.3 A dataset of 76 356 effective elasticity tensors

The dataset of effective elasticity tensors is constituted by applying the measurement method

(described in Section 1.1) to 36 different area elements submitted to the damaging loading

(presented in Section 1.2). Each of the 21 mechanical loading is discretized into 100 loading

steps. The database contains 36×21 = 756 evolutions of elasticity tensors, each containing 101

elasticity tensors, leading to 76 356 elasticity tensors. Note that some elasticity tensors appear

multiple times in the dataset (in particular when the area element is not yet damaged). Thus,

the dataset contains the evolution of the effective elasticity tensor for various proportional

and non-proportional loadings until failure. This dataset (Loiseau et al., 2023b) is available at
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1. Generation of a dataset of effective elasticity tensors

Figure 4.2 • Illustration of localized cracking patterns in the dataset.
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https://doi.org/10.57745/LYHM4W. To illustrate the content of the dataset, Figure 4.2 shows

a grid of final cracking patterns for various loadings.

2 Illustration of the evolution of the effective elasticity tensor

This section aims to illustrate, on a specific loading, the quantities and tools used to analyze

the dataset.

2.1 Presentation of the non-proportional loading

For this study, we choose a non-proportional periodic “tension → tension” loading (as defined

in Table 4.1). This loading is composed of two parts: the first one during which a tension

along the x-axis is gradually applied, then, in the second part, the tension along x-axis is

maintained, and a tension along y-axis is gradually applied. The evolution of the measured

strain and stress during the loading is represented on Figure 4.3. At each 20 load step, the

cracking patterns are also displayed in Figure 4.4.

0 20 40 60 80 100

0

1

2

3

·10−4

Load step

Strain

ε11
ε22
ε12

0 20 40 60 80 100

0

2

4

Load step

Stress [MPa]

σ11
σ22
σ12

Figure 4.3 • Evolution of strain and stress during the periodic “tension→tension” loading.

During the first half of the loading, the classic behavior of quasi-brittle material is re-

covered. First, we observe an elastic phase where the stress component σ11 grows linearly

with the imposed strain. The Poisson effect also induces the growth the stress component

σ22. This initial elastic phase is followed by a loss of stiffness. The cracking pattern at t = 20

shows that diffuse micro-cracking occurred. Also, note that most cracks are orthogonal to the

loading direction. It is then followed by stress drop, which is explained by the localization

of the micro-cracking process where the micro-cracks bridge into a macro-crack1. At the

middle of the loading, the stress component σ11 is highly reduced, reflecting a loss of rigidity

along the x-axis. When the second half of the loading starts, the stress σ22 grows linearly

1Remark that the area element is periodic, and the crack crosses the boundary.
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2. Illustration of the evolution of the effective elasticity tensor

Load step 0

e1

e2

Load step 20

e1

e2

Load step 40

e1

e2

Load step 60

e1

e2

Load step 80

e1

e2

Load step 100

e1

e2

Figure 4.4 • Evolution of micro-cracking during the periodic “tension→tension” loading.
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with (nearly) the initial stiffness previously observed along the x-axis. Also note that the

Poisson effect is also reduced due to the micro-cracking. It means that the y-axis direction

has been less affected by the micro-cracking. This goes until load step 60 when micro-cracks

nucleate in the direction normal to the y-axis. Once again, we observe a first diffuse micro-

cracking followed by a localization of the cracking process. A stress drop once again marks

this transition.

2.2 Evolution of the effective elasticity tensor

This subsection aims to briefly investigate the evolution of the effective elastic properties

during the loading.

2.2.1 Cartesian components

Let us start by analyzing the evolution of the effective elasticity tensor in a “classic” way using

its Cartesian components. Their evolution is represented in Figure 4.5. The elasticity tensors

associated to the load steps represented in this figure are, in GPa and using Kelvin notation,

Load step 0 Load step 20 Load step 40


49.73 10.27 0.05

10.27 49.73 −0.05

0.05 −0.05 99.45







37.27 8.71 0.39

8.71 48.28 0.04

0.39 0.04 96.57







5.44 0.38 0.09

0.38 39.78 −0.57

0.09 −0.57 79.55




Load step 60 Load step 80 Load step 100


2.08 −0.32 −0.81

−0.32 37.34 −1.78

−0.81 −1.78 74.69







1.45 −0.69 −0.17

−0.69 9.00 −0.42

−0.17 −0.42 18.00







1.14 −0.39 −0.15

−0.39 2.24 −0.58

−0.15 −0.58 4.48




(4.3)

This first part shows a significant decrease in the elastic component E1111. It starts to

decrease almost linearly with the loading till around the load step 30. Note that this load

step corresponds to the stress peak in Figure 4.3. After this point, the localization of micro-

cracking occurs (see Figure 4.4) and there is a sharp decrease in E1111. In this first part, the

component E2222 is less affected by cracking than E1111. Thus, we expect a loss of isotropy

during this first part of the loading. We also observe a significant drop of E1212 and E1122. In

the second half of the loading, the component E2222 gradually decreases as the loading along

the y axis increases.

2.2.2 Harmonic components

To illustrate the harmonic decomposition, Figure 4.6 displays the evolution of the effective

elasticity tensor in terms of the harmonic components. It shows that the micro-cracking

during the first half of the loading causes a decrease in the shear modulus µ and the bulk

modulus κ. This decrease is accompanied by an increase (in norm) of the dilatation tensor

deviatoric part through its component d ′
11. As shown in the Chapter 2, it means that the

isotropy is lost (otherwise, only the invariants µ and κ would be non-null). More specifically,

it means that the elasticity tensor is at least orthotropic. A slight increase in the harmonic
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2. Illustration of the evolution of the effective elasticity tensor
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Figure 4.5 • Evolution of the Cartesian components of the effective elasticity tensor during a

PBC “tension→tension” loading.
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Figure 4.6 • Evolution of the harmonic components of the effective elasticity tensor during a

PBC “tension→tension” loading.
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Chapter 4. Generation and analysis of the dataset

part is also observed. The elasticity tensor may also be anisotropic depending on the relative

orientation between the dilatation and the harmonic components. Note that the deviatoric

part of the dilatation tensor decrease at the end of the loading as the micro-cracking increases

and, thus, the overall stiffness tends to zero.

2.3 Evolution of the distances to symmetry class

To obtain a quantitative view of the anisotropy, the relative distances of the effective elasticity

tensor to isotropy and orthotropy (introduced in Section 3) are the focus of this subsection.

Figure 4.7 presents their evolution during the loading. The first observation is that the initial
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Figure 4.7 • Evolution of the relative distances ∆Σ̄ = dΣ̄/∥E∥ of the effective elasticity tensor

to isotropy and orthotropy during a PBC “tension→tension” loading.

distance to isotropy is small. The distance to isotropy grows when the cracking starts (around

load step number 10). The damaged material will react differently to the same strain loading

applied in two different directions. Note that the distance to orthotropy (and its upper bound)

stays null during the first part of the loading. It means that the effective elasticity tensor stays

orthotropic during the first half of the loading, which is consistent with the growth of the

dilatation part. However, the effective elasticity grows farther from orthotropy at the end of

the loading. Note that it also get closer to isotropy at the end of the loading.

×Remark 4.2 The two last statements may seem incompatible. Yet, it means that the isotropic

part become a higher proportion of the tensor. As the distance to orthotropy remains unaffected

by the isotropic part, it may grow even if distance to isotropy decreases. Note that the distance

to isotropy is also an upper-bound of the distance to orthotropy.

3 Assessment of the dataset

Before starting any mechanical analysis of the dataset, let us check the validity of the mea-

sured elasticity tensors. When the area element in uncracked, it behaves like an isotropic

linear elastic material. However, when micro-cracking occurs and induces heterogeneity, it
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3. Assessment of the dataset

may become more complex. In this thesis, we assume that the macroscopic behavior of the

area elements stay linear elastic. This section focuses on the verification of this assumption.

Actually, higher-order continuum might be required to correctly represent the deformation

and cohesive force in the area element. In this case, an effective elasticity tensor is not

sufficient to represent the current state in the material.

3.1 Evaluation of symmetrization errors

In the measurement procedure, different index symmetrizations have been applied to rep-

resent the behavior of the area element with linear elasticity. The symmetrization errors

represent the difference between the behavior of the area element and its equivalent linear

elastic material.

Symmetrization of the strain tensor. Let us start by studying the symmetrization errors

on the strain measurement. Before defining the symmetrization error, let us introduce the

un-symmetrized deformation, which is Equation (3.25) with a tensorial product ⊗ instead of

the symmetrized one ⊙,

e = 1

VSCS

∑
(p,q)∈∂B

lpq
up +uq

2
⊗ t pq , ε= 1

2

(
e+eT

)
. (4.4)

Thus, the relative symmetrization error on the strain tensor is

esym
ε = ∥e−ε∥

∥e∥ = ∥eA∥
∥e∥ (4.5)

where eA = 1
2

(
e−eT

)
is the antisymmetric part of e.

For each measurement loading (three per elasticity tensor), the un-symmetrized deforma-

tion e is calculated. Table 4.3 contains different percentiles of the error distribution over the

whole dataset. It shows that the strain symmetrization error can reach up to 11.1% of the total

Percentage
Percentile of strain symmetrization error

Loading (1) Loading (2) Loading (3)

50% 0.0052% 0.0051% 0.0065%

90% 0.045% 0.033% 0.044%

95% 0.091% 0.056% 0.086%

99% 0.32% 0.14% 0.21%

100% 11.1% 4.5% 10.2%

Table 4.3 • Percentiles of the strain symmetrization errors for each measurement loading.

measured strain. However, 99% of the strain measurements for each of the measurement

loadings have a symmetrization error below 0.32%. It means that a symmetric second-order

strain tensor can represent most of the deformation states.
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Chapter 4. Generation and analysis of the dataset

Symmetrization of the stress tensor. Now, we can study the symmetrization errors in the

stress measurement. Once again, let us introduce the un-symmetrized stress tensor, which is

Equation (3.39) with a tensorial product instead of the symmetrized one,

s = 1

VSC S

∑
p∈∂P

x p ⊗ fp dx , σ= 1

2

(
s+sT

)
(4.6)

As for the strain, we define the relative symmetrization error on the stress tensor as

esym
σ = ∥s−σ∥

∥s∥ = ∥sA∥
∥s∥ (4.7)

where sA = 1
2

(
s−sT

)
is the antisymmetric part of s.

We compute the un-symmetrized stress for each measurement loading associated with

each measured elasticity tensor. Then, the associated error is also calculated. Table 4.4

contains different percentiles of the stress symmetrization error distribution over the whole

dataset. A small part of the measured stress tensors (less than 1%) have a large stress sym-

Percentage
Percentile of stress symmetrization error

Loading (1) Loading (2) Loading (3)

50% 0.0022% 0.0017% 0.0035%

90% 0.014% 0.0088% 0.027%

95% 0.024% 0.018% 0.062%

99% 0.21% 0.062% 1.7%

100% 67.3% 28.1% 70.7%

Table 4.4 • Percentiles of the stress symmetrization errors for each measurement loading.

metrization error. Note that all the stress tensors with an error above 1% are associated to

highly damaged area element (with a localized cracking pattern).

Major symmetrization. Finally, the last symmetrization performed is the major symmetriza-

tion of the effective elasticity tensor from Equation (3.19). To simplify the calculation, let us

consider the un-symmetrized elasticity tensor in Kelvin notation

[
Ensym

]=
[[
σ(1)

]
,
[
σ(2)

]
,
[
σ(3)

]]
·
[[
ε(1)

]
,
[
ε(2)

]
,
[
ε(3)

]]−1
, [E] = 1

2

([
Ensym

]+ [
Ensym

]T
)

.

(4.8)

The major symmetrization error is defined as

esym
maj =

∥ [Ensym]− [E]∥
∥ [Ensym]∥ . (4.9)

This error has been computed for each measurement in the dataset. Table 4.5 contains

different percentiles of the major symmetrization error distribution over the whole dataset.

This table shows that more than 20% of the measurements have a major symmetrization

error above 10%. Those results again highlight that an effective elasticity tensor might only

partially describe the behavior of the (damaged) area element. Yet, most of the measured

effective elasticity tensors have a small major symmetrization error.
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3. Assessment of the dataset

Percentage Percentile of major symmetrization error

50% 2.93%

60% 5.18%

70% 8.85%

80% 16.3%

90% 20.3%

95% 21.5%

99% 23.1%

99.5% 23.5%

100% 59.7%

Table 4.5 • Percentiles of the major symmetrization errors for each measurement loading.

×Remark 4.3 As this is a fundamental assumption in the modeling process, those errors can-

not be compensated. The discrete model’s tensile curves will not match the curve reconstructed

from the effective elasticity tensor.

Strain–Stress curve reconstruction. Now, let us show how the symmetrizations change

the predicted stress. To do this, let us consider the non-proportional loading (periodic

“tension→tension”) used in Section 2. During this loading, the (symmetric) stress σ has

been measured. This measured stress is compared to the stress E : ε predicted using the

measured effective elasticity tensor E and the measured (symmetric) strain ε. Figure 4.8
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Figure 4.8 • Comparison the symmetrized stress from the discrete model σ (reference) to the

stress from the measured effective elasticity tensor E : ε.

contains the evolution of stress during this non-proportional periodic loading. When the

micro-cracks start to nucleate (when the response is no longer linear), the stress obtained

from the effective elasticity tensor slightly deviates from the measured stress. It is due to the

major symmetrization. It means that an effective elasticity tensor cannot exactly describe the

behavior of the area element.
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Chapter 4. Generation and analysis of the dataset

3.2 Positive definiteness of elasticity tensors

The next assumption needing a check is the positive definiteness of the effective elasticity ten-

sors. For that, we have to compute the eigenvalues E1, E2, and E3 for each tensor in the dataset

and check that they are all positive or null. Figure 4.9 shows the histogram of the eigenvalues

for the whole dataset. The whole range of eigenvalues goes from min(E1,E2,E3) =−1.29 GPa
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Figure 4.9 • Histograms of elasticity tensor eigenvalues.

to max(E1,E2,E3) = 39.8 GPa. This range is discretized into 50 intervals to constitute this his-

togram. Those intervals are chosen such that no interval contains both positive and negative

values, i.e. there is an interval with 0 as upper-bound and another with 0 as lower-bound.

The main observation is that some tensors have negative eigenvalues. Note that negative

eigenvalues happen for highly cracked tensors. The tensors with at least one negative eigen-

value are filtered out for the remainder of this work to avoid any physical inconsistency in the

data set.

×Remark 4.4 The symmetrization errors (from Tables 4.3 to 4.5) have been computed once

again after filtering the dataset and are reported in Appendix B. Globally, the symmetriza-

tion errors decreased by filtering the dataset. It means that elasticity tensors with a high

symmetrization error are more likely to not be positive definite.

3.3 Irreversible decrease of the elasticity tensors

The second assumption we must check is the irreversible decrease of the effective elasticity

tensor during a damaging loading. Indeed, in the discrete simulation, the micro-cracking is

either constant or increasing. Furthermore, micro-cracks cannot be closed. Thus, no increase

in stiffness should be observed.

From an energetic perspective, if a constant strain ε is applied to the material, the elastic

energy must decrease as the micro-cracking grows. At a given instant t and for any applied

strain ε, the elastic energy stored in the material is

∀ε ∈S2(R2), E = 1

2
ε : E(t ) : ε, (4.10)
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3. Assessment of the dataset

where S2(R2) is the space of symmetric second-order tensors in R2. The irreversible decrease

of the effective elasticity tensor corresponds to

∀ε ∈S2(R2),
∂E

∂t
= 1

2
ε :

∂E(t )

∂t
: εÉ 0, (4.11)

which can be written in Kelvin notation

∀




ε11

ε22p
2ε12


 ∈R3,

∂E

∂t
= 1

2




ε11

ε22p
2ε12


 :

∂

∂t




E1111 E1122
p

2E1112

E1122 E2222
p

2E1222p
2E1112

p
2E1222 2E1212


 :




ε11

ε22p
2ε12


É 0,

(4.12)

This inequality is verified if and only if the (pseudo-)temporal derivative of the effective

elasticity tensor is negative semi-definite (by definition of the negative definiteness). Note

that a second-order (real) symmetric tensor is negative definite if and only if its eigenvalues

are negative.

×Remark 4.5 At this point, it seems necessary to recall that the derivative of the eigenvalue
∂Eeig

∂t are not equal to the eigenvalues of the derivative
(
∂E
∂t

)
eig

(see the proof based on the polar

decomposition in Appendix C). Indeed, the derivative of eigenvalues does not account for a

rotation of the eigenbasis. During a rotation of the eigenbasis (which happens during non-

proportional loadings), one of the elasticity tensor eigenvalues might increase, whereas the

other decreases while the elasticity tensor still decreases.

The measured evolution is discrete; thus, we must check that the eigenvalues of the elasticity

tensor increments (∆E)i are all negative. Figure 4.10 contains the histogram of eigenvalues
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Figure 4.10 • Histograms of eigenvalues of the increments of effective elasticity tensor.

of the increments. The range of increments eigenvalues goes from -43 GPa to 0.89 GPa and

is discretized into 50 intervals to constitute this histogram. Note that, unlike conventional

histograms, the intervals are half-open on the left to include the zeros on the negative side

(the intervals around zero are ]−0.89,0] and ]0,0.89] in GPa). The histogram shows that some

increments are not negative definite. It is most likely due to the index symmetrizations. Note

that this is an issue for the construction of the evolution model. As the negative increments

are small, we choose to enforce the growth of damage (i.e. decrease of the stiffness tensor) in

the evolution model instead of further modifying the dataset.
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Chapter 4. Generation and analysis of the dataset

� Conclusion – Assessment of the dataset
The produced dataset contains inconsistencies from the mechanical point of view. In a

minority of cases, the stress and strain symmetrization errors are non-negligible. It means

that an elastic material cannot necessarily model the effective behavior of the area element.

After studying the tensors positive definiteness, we decided to filter out the effective elasticity

tensors with at least one negative eigenvalue. We have also seen that some evolution contains

positive increments of rigidity, which is inconsistent. This issue will be circumvented by

assuming that the damage is increasing in the evolution model.

4 Anisotropy analysis

This section analyzes the anisotropy of the effective elasticity tensors in the dataset. This

analysis will allow us to make and justify different assumptions in the formulation of the

model. The distances to symmetry classes (introduced in Section 3) are applied to the dataset

to analyze (i) the initial distance to isotropy for each microstructure, and (ii) the distribution

of relative distance to isotropy and orthotropy in the dataset.

4.1 Initial distance to isotropy

As specified before, most existing anisotropic damage models consider that the material is

initially isotropic. Thus, we must check to what extent the initial (elastic) area element is

isotropic. This subsection aims to check whether this assumption is valid in the dataset. To

check it, we compute the distance to isotropy by Equation (2.42) for the 36 microstructures

in the dataset. The initial distance to isotropy, for each micro-structures, are reported in
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Figure 4.11 • Initial distance to isotropy for each microstructure in the dataset.

Figure 4.11. The initial relative distances to isotropy are between ∆min
Iso = 0.007 and ∆max

Iso =
0.016. Moreover, the mean value is ∆mean

Iso = 0.0102, and the standard deviation is ∆mean
Iso =

0.0018. It means that the initial elastic properties of the effective elasticity tensors can be
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4. Anisotropy analysis

represented by an isotropic elasticity tensor with an error smaller than 1.6%. This error is

considered sufficiently small to assume, in the formulation of the damage model, that the

behavior is initial isotropic. If there is any anisotropic effective elasticity tensor in the data,

which we will change in the next subsection, it means that the anisotropy is damage-induced.

×Remark 4.6 In practice, the initial distance to isotropy directly correlates with the number

of particles in the area element. Area elements containing fewer particles, for instance 20×20,

will exhibit a higher distance to isotropy than area elements with more particles, for instance

100×100. We fixed the beam length in the beam-particle model to obtain a good compromise

between the distance to isotropy and the computational cost. Thus, we set the beam length

such that the distance to isotropy is around 1%.

4.2 Analysis of distance to isotropy and orthotropy

Another key question in damage mechanics is which type of damage variable to use (one

scalar damage variable, one second-order tensor, two second-order tensors, one fourth-

order tensor). An underlying question is whether the effective elasticity tensor of a damaged

quasi-brittle area element is close to a specific symmetry class. For instance, if it is close to

isotropy, a single scalar variable is sufficient to fully represent the effect of micro-cracking2.

On the other hand, if it is close to orthotropy, then at least a second-order damage variable is

necessary.

To answer this question, let us now analyze the distributions of distances to isotropy and

orthotropy in the dataset. Those analyses will be used in the next chapter to justify modeling

choices. For instance, the distances of the elasticity tensors to isotropy or to orthotropy

can also be used to justify the tensorial nature of the damage variable (Oliver-Leblond et

al., 2021). These distances have been computed for each elasticity tensor in the dataset.

The corresponding histograms are plotted in Figures 4.12a and 4.12b. In Figure 4.12a, the

distribution of the relative distance to isotropy, defined in Equation (2.42), shows that a large

part of effective elasticity tensors in the dataset is far from being isotropic. It means that a

scalar (isotropic) damage variable is insufficient to represent the loss of stiffness (due to micro-

cracking). In the Figure 4.12b, the distribution of the relative distance to orthotropy, defined

in Equation (2.61), shows that most of the tensors in the dataset are close to being orthotropic.

It means that the effective elasticity tensor can be modeled as remaining orthotropic during

the mechanical loadings of the whole dataset. It also means that a second-order damage

variable might be sufficient to represent the impact of micro-cracking on the elasticity tensor.

From the reconstruction formula (2.30) and in accordance with Desmorat and Desmorat

(2016), this implies that at most two second-order tensors are required to represent the

impact of micro-cracking on the bi-dimensional elasticity tensor.

2However, it does not mean that the effective elasticity tensor is proportional to the initial elasticity tensor

(with a relation of the type Ẽ(D) = (1−D)E0). It might be a more complex function of scalar damage Ẽ(D).
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Figure 4.12 • Histograms of relative distances to symmetry classes over the dataset

{ Summary of the Chapter

The objective of this chapter was to generate a dataset of effective elasticity tensors and

analyze it. By submitting an area element to 21 proportional and non-proportional multiaxial

loadings and applying the measurement procedure, a dataset of 76 756 effective elasticity

tensors has been constituted. This data will serve as our reference in the following chapters.

After illustrating its content, we showed that some symmetrization errors are not negligi-

ble, indicating that an elasticity tensor cannot exactly represent the micro-cracked specimen.

Then, we showed that some measured tensors have negative eigenvalues values. Those

tensors have been filtered out. A few inconsistencies are also present in the effective elasticity

tensors evolution, as a minority of increments are positive. We will impose damage growth in

the damage evolution model to verify the second principle.

Calculating the distance of the tensors to isotropy and orthotropy provides other essential

results. First, the effective elasticity tensor of the area elements are initially isotropic. Then,

the distance to isotropy is significant for a large part of tensors; thus, most effective elasticity

tensors deviates from isotropy due to micro-cracking. Thus, we will be able to assume that the

anisotropy of the effective elasticity tensor is damage-induced. It also justifies the need for an

anisotropic (tensorial) damage variable, and more precisely for an orthotropic (second-order

tensorial) one. Indeed, most effective elasticity tensors stay close to orthotropy during the

degradation process, meaning that the orthotropic reconstruction by covariant, presented in

Section 2.2, can be used to model the effective elasticity tensor.
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5
Formulation of an anisotropic state model

This chapter focuses on developing an anisotropic damage state model using harmonic de-

composition, where each harmonic component of the effective elasticity tensor is modeled as a

function of damage. First, we introduce an anisotropic damage variable from the literature,

based on a second-order covariant of the effective elasticity tensor, enabling an exact modeling

of both the bulk modulus and the deviatoric part of the dilatation tensor. Then, we model the

shear modulus and the harmonic part using the dataset of computed effective elasticity tensors

to complete the state model. It gives a model of the effective elasticity tensor as a function of

the initial elastic properties and the damage variable. Finally, its accuracy is evaluated by

comparing it with results from the beam-particle model.

In the previous chapter, a reference dataset based on a discrete beam-particle model has

been constructed and analyzed. Our objective in this chapter is to formulate an anisotropic

damage state model to model the effective elasticity tensor in this dataset. In other words,

we aim to determine the general coupling of elasticity with damage Ẽ = Ẽ(D). As specified in

Chapter 2 (Section 2), the harmonic decomposition provides a bijection between an elasticity

tensor E and its harmonic components (µ,κ,d′,H). It means that an anisotropic damage

model can be formulated by expressing each harmonic component as a function of a damage

variable (to be defined) and apply the harmonic reconstruction formula

Ẽ(D) = 2µ̃(D)J+ κ̃(D)1⊗1+ 1

2

(
1⊗ d̃′(D)+ d̃′(D)⊗1

)+ H̃(D). (5.1)

As seen in the Chapter 1 (Section 3.2), to reach this objective we need to (1) introduce a

damage variable to represent the micro-cracking (in Section 1), and (2) model its impact on

the elastic behavior (in Section 2). After reaching this first objective, the proposed model is

then assessed by comparing its prediction to the reference in Section 3. It is then applied to

illustrate its results in Section 4.

1 Definition of a covariant (tensorial) damage variable

This section introduces the damage variable D, i.e. the internal state variable representing the

micro-cracking of the quasi-brittle material. As shown in Chapter 4 (Section 2), the elasticity
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Chapter 5. Anisotropic state model

tensor E of a quasi-brittle material evolves during loading, for instance, due to damage. In

accordance with the analysis of the dataset performed in the Chapter 4 (Section 4.1), we will

assume that it has the initial isotropic value

E0 = 2µ0J+κ01⊗1. (5.2)

The initial dilatation tensor is then isotropic (i.e., spherical),

d0 = E0 : 1 = 2κ01. (5.3)

The damage variable is set to zero when the effective elasticity tensor E is the initial elasticity

tensor E0. The eigenvalues of the damage tensor are usually bounded by one.

Definition of a damage variable. The analysis of distance to orthotropy in the dataset (see

the Section 4.2 of Chapter 4) showed that most the effective elasticity tensors are close to

orthotropy. Thus, a second-order damage tensor may be sufficient to represent damage. By

Equation (2.23), the bulk modulus κ is exactly reconstructed from the dilatation tensor d.

This has led (Oliver-Leblond et al., 2021) to define the dimensionless damage variable D as

the second-order tensor

D = 1− d

2κ0
. (5.4)

This damage variable is indeed zero when the effective elasticity tensor E is the initial elasticity

tensor E0 and its eigenvalues are bounded by one.

×Remark 5.1 Since the initial dilatation tensor is given by d0 = tr12 E0 = 2κ01, we have the

equalities

D = 1

2κ0
tr12(E0 −E) = (d0 −d) ·d−1

0 = d−1
0 · (d0 −d). (5.5)

Advantage of the damage definition. The mapping in Equation (5.4) provides a bijection

between the damage variable D and the effective dilatation tensor d̃. Indeed, the latter is

related to D as

d̃(D) = 2κ0 (1−D) . (5.6)

Thus, the deviatoric part of the dilatation tensor can be expressed as the function of damage

d̃′(D) =−2κ0D′. (5.7)

Moreover, the bulk modulus κ also directly relates to damage D

κ̃(D) = 1

4
tr d̃(D) = κ0

(
1− 1

2
trD

)
. (5.8)

It means that only the models of the effective shear modulus µ̃ and the effective harmonic

part H̃ as damage functions are required to complete the state model. Also note that if the

damage D and the initial elastic properties µ0 and κ0 are known, the bulk modulus and the

dilatation tensor are also exactly modeled.
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2. Completing the state model

2 Completing the state model

Currently, the damage state model is already half formulated. Indeed, the Equations (5.6)

and (5.8) enable to model two terms (the bulk modulus and the deviatoric part of the dilata-

tion tensor) out of four in the harmonic reconstruction formula

E = 2µ̃(D)J+ κ̃(D)1⊗1+ 1

2

(
1⊗ d̃′(D)+ d̃′(D)⊗1

)+ H̃(D). (5.9)

In this section, we will use the dataset to model the shear modulus µ and the harmonic part

H as damage functions.

2.1 Modeling the shear modulus

2.1.1 Basis of the model

We recall first the expression of the generalized shear modulus µ of the elasticity tensor E,

µ= 1

8
(2trv− trd) , d = E : 1, v = tr13 E. (5.10)

The Equation (5.6) already expresses the dilatation tensor from damage. Thus, to express µ

as a function of damage tensor D, we need to exhibit a relation between the trace trv of the

Voigt tensor and the damage tensor D. To ease the modeling process, an intermediate scalar

variable Dv, such that trv = trv0(1−Dv), is introduced,

Dv =
trv0 − trv

trv0
. (5.11)

It can be interpreted as a damage variable based on tr(v). Since it represents the same micro-

cracking pattern as D, and it is independent of D (from a mathematical point of view), it

could be considered as an additional thermodynamic (internal) variable. However, Figure 5.1

shows that, from a mechanical point of view, the variable Dv can be modeled as a function of

the damage variable D. Thus, it only serves as a intermediate variable to ease the modeling

formulation of the model. Indeed, Figure 5.1 contains a scatter plot of Dv as a function of the

two eigenvalues D1 and D2 of the damage tensor D for each elasticity tensor of the dataset. It

shows that the dataset’s points (D1,D2,Dv) are grouped around a surface. Thus, Dv can be

modeled as a function of damage by a constitutive equation Dv = Dm
v (D), where the upper

script m stands for model. In practice, we approximate Dv by the linear combination of

invariants of D,

Dm
v (D) = c1 I1(D)+ c2 I2(D), Ik (D) = tr(Dk ) = Dk

1 +Dk
2 , (5.12)

where Ik (D) are invariants of D, and ck are the parameters of the model. A second expression

Dm
v (D) = c1 I1(D)+ c2 I2(D)+ c3 I3(D), I3(D) = 1

2

(
3I1(D)I2(D)− I 3

1 (D)
)

, (5.13)

will also be studied (but the two-term expansion in Equation (5.12) will prove sufficient).

The modeling process will be carried out in two steps. The first step involves deriving and

justifying some physical constraints on the material constants ck . Those constraints will limit

the number of independent parameters of the model. The second step consists in identifying

the parameters ck .
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Figure 5.1 • Damage Dv as a function of the eigenvalues D1 and D2 (D2 > D1) of the damage

variable D over the dataset. Each colored point is the value of Dv for an elasticity

tensor of the dataset. The black dots are the projections of the data points onto

the planes (D1,Dv), (D2,Dv) and (D1,D2).

2.1.2 Physical constraints

Constraint 1 – Undamaged state. For an undamaged state, the trace of the Voigt tensor

keeps its initial value, trv = trv0,

Dm
v (D = 0) = 0 (5.14)

This constraint is satisfied by both Equation (5.12) and Equation (5.13) since the invariants of

D vanish (Ik (D = 0) = 0).

Constraint 2 – Fully damaged state. The effective elasticity tensor is a null fourth-order

tensor for a fully damaged state. We have then trv = 0, which implies Dm
v (D = 1) = 1 and,

2
n∑

k=1
ck = 1, n = 2,3. (5.15)

Constraints 3 – Diffuse micro-cracking. In the early degradation stage, the micro-cracking

is diffuse (in the sense that it is not localized within the area element). In Figure 5.1, this

stage corresponds to the region where the damage eigenvalues D1 and D2 are small. We

observe that the points (D1,D2,Dv) are close to a plane in this region. It corresponds to the

assumption of non-interacting cracks (as defined by Kachanov (1992)). Kachanov (1992)

shows that — in 2D — as long as the micro-cracks are not interacting, the gain in compliance

is a totally symmetric fourth-order tensor. This property is not satisfied anymore when the

micro-cracking is localized. This observation guided us to check if this property is satisfied

by the weakly damaged elasticity tensors of the dataset. Assuming in the early damage stage

that the stiffness loss ∆E = E−E0 is totally symmetric implies

tr12 (E−E0) = tr13 (E−E0) (5.16)
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2. Completing the state model

which leads to

trd− trd0 = trv− trv0. (5.17)

It means that we have, at low damage,

Dv =
trd0 − trd

trv0
. (5.18)

Taking the trace of the definition in Equation (5.6), giving trd = 2κ0(2− trD), and using the

relation between initial properties, trd0 = 4κ0 and trv0 = 4µ0 +2κ0, we get, at low damage

still,

Dv =
κ0

2µ0 +κ0
I1(D), (5.19)

and
∂Dv

∂D

∣∣∣∣
D=0

= κ0

2µ0 +κ0
1 (diffuse micro-cracking assumption). (5.20)

Figure 5.2 provides a check of this assumption in the dataset of elasticity tensor. For small

Figure 5.2 • Check of the assumption of total symmetry of the stiffness loss tensor: the dots

in black correspond to the value in the dataset, and the red dots correspond to

the Dv computed via Equation (5.20).

values of the damage (trD < 1), the values of Dv obtained by the diffuse micro-cracking

assumption provide an accurate model for the values from the dataset.

For both constitutive Equations (5.12) and (5.13), the diffuse micro-cracking constraint

leads to
∂

∂D

∣∣∣∣
D=0

(
n∑

k=1
ck Ik (D)

)
= κ0

2µ0 +κ0
1, i.e., c1 =

κ0

2µ0 +κ0
. (5.21)

2.1.3 Determination of the parameters ck

Model with two terms. For the first two-term expression in Equation (5.12), the physical

constraints lead to

c1 =
κ0

2µ0 +κ0
, and c2 =

1

2
− c1, (5.22)
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so that,

Dm
v (D) = κ0

2µ0 +κ0
(I1(D)− I2(D))+ 1

2
I2(D). (5.23)

Thanks to the physical constraints, no material parameter needs to be introduced for this

first model.

Model with three terms. Applying the physical constraints to the three-term expression in

Equation (5.13) leads to

c1 =
κ0

2µ0 +κ0
, c2 =

1

2
− c1 − c3, (5.24)

and

Dm
v (D) = κ0

2µ0 +κ0
(I1(D)− I2(D))+ 1

2
I2(D)+ c3 (I3(D)− I2(D)) . (5.25)

The parameter c3 is determined via a regression over the whole dataset. We get the small

value

c3 = 0.103, (5.26)

to be compared to the particular case c3 = 0 giving the two-term expression in Equation (5.23).

Unification of both models. The effective shear modulus has been derived as

µ̃(D) = 1

8

(
2tr ṽ− tr d̃

)
, tr ṽ = tr13 tr Ẽ = trv0(1−Dm

v (D)) (5.27)

with for Dm
v (D), function of the invariants trD, D : D and I3(D) = tr(D3), either the no-

additional parameter function in Equation (5.23) or the one-additional parameter function

in Equation (5.25). Replacing the intermediate variable Dv by its expression as a function of

damage D in the expression of the shear modulus gives

µ̃(D) =µ0 −
1

4
κ0 trD+ 1

4

(
κ0 −2µ0

)
D : D+m

(
D : D− tr(D3)

)
, (5.28)

where the non-linear shear-damage coupling parameter is

m = 1

2

(
κ0 +2µ0

)
c3, c3 = 0.103. (5.29)

This expression unifies both models into a single one as m = 0 corresponds to Equation (5.23)

and m ̸= 0 to Equation (5.25).

2.2 Modeling the harmonic part

2.2.1 Basis of the model

The next step consists of modeling the harmonic part as a damage function. The relative

distance to orthotropy remains small for most elasticity tensors of the dataset as shown in

the Section 4.2 of Chapter 4. We thus make the simplifying assumption that the effective

elasticity tensors E are orthotropic. It means that we can apply the harmonic square formula
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2. Completing the state model

in Equation (2.29) to model the harmonic part. By Equation (2.29), the harmonic part of a 2D

orthotropic elasticity tensor can be written as the harmonic square

H = 2K3

I 2
2

d′∗d′ =±∥H∥ d′∗d′

∥d′∗d′∥ ,
∥∥d′∗d′∥∥= 1p

2
d′ : d′ = 1p

2
I2, (5.30)

depending on the sign of the invariant of the elasticity tensor K3(E) = d : H : d. Let us recall

that the Equation (5.6) already gives the relation between the dilatation tensor d and damage

D. Based on this parametrization, the modeling of the harmonic part of the elasticity tensors

in the dataset can be carried out in two steps:

1. choosing an orientation (the sign) and

2. modeling the harmonic part norm ∥H∥ as a function of the damage variable D.

×Remark 5.2 Note that the orientation must be well-predicted when the relative norm of

the harmonic part ∥H∥/∥E∥ is large. When the harmonic part is small (when ∥H∥/∥E∥≪ 1), a

misprediction of the orientation has a negligible effect on the predicted elasticity tensor.

2.2.2 Orientation of the harmonic part

A first indicator of the harmonic part H orientation is the sign of the invariant K3(E) or, in an

equivalent manner, the sign of K 1/3
3 (E) (which is in GPa). Figure 5.3a shows the histogram of
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(b) Stacked histogram of O+(E).

Figure 5.3 • Histogram of two indicators for the sign of the harmonic part over the dataset.

the invariant K3(E)1/3 over the dataset. It shows that the negative values of K3(E)1/3 are smaller

(in absolute value) than the positive values of K3(E)1/3. When taking the cube of K3(E)1/3, the

positive values are an order of magnitude larger than the negative values. However, a large

value of K3 does not mean that the harmonic part is large, whereas a small value of K3 does

mean that the harmonic part is small (see Equation (2.29) and remark 5.2).
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Another orientation indicator is the norm of the difference between the normalized

harmonic part and the normalized harmonic square

O+(E) =
∥∥∥∥

H

∥H∥ −
d′∗d′

∥d′∗d′∥

∥∥∥∥
2

. (5.31)

The histogram of the orientation indicator O+(E) over the dataset is plotted in Figure 5.3b. It

mainly exhibits two peaks, one at 0, corresponding to the plus sign in Equation (5.30), and

one at 4, corresponding to the minus sign. To decide which sign is the best for the model, the

dataset is split into two colored parts:

• a blue part when the harmonic part is negligible (∥H∥2/∥E∥2 lower than 2%), and

• a red part when the harmonic part is significant (∥H∥2/∥E∥2 larger than 2%).

Figure 5.3b shows that a higher number of elasticity tensors have a significant harmonic

part in the positive orientation (O+(E) = 0) than in the negative orientation (O+(E) = 4). This

observation is consistent with the analysis based on the invariant K3. It also indicates that

the preferred orientation is + d′∗d′
∥d′∗d′∥ (plus sign in Equation (5.30)).

For the remaining of this subsection, we use the proportionality of the deviatoric part of

the dilatation tensor with damage d′ =−2κ0 D′ (by Equation (5.6)), and model the harmonic

part of the effective elasticity tensors with a plus sign, by setting (with a slight abuse of

notation)

H = H(D) = H m(D)
D′∗D′

D′ : D′ , D′∗D′ = D′⊗D′− 1

2
(D′ : D′)J, (5.32)

where H m =
p

2∥H∥ is a positive function (to be determined) of the tensorial damage variable

D.

2.2.3 Is the harmonic part norm a function of damage ?

To identify the constitutive equation H m(D), the first step is to check if the norm ∥H∥ of the

harmonic part can be represented by a function of the tensorial damage variable D (through

its invariants). Figure 5.4 shows the harmonic part norm ∥H∥ versus the damage invariants

I1(D) = trD and I2(D′) = D′ : D′. Even if the discrepancy is large, especially in the region where

I1(D) > 1, this figure indicates that it should be possible to approximate the norm ∥H∥ by a

function of the two damage invariants I1(D) and I2(D′).

×Remark 5.3 Figure 5.4 shows that the norm of the harmonic part does not vanish when the

damage variable D is equal to the second-order identity 1. Moreover, for the effective elasticity

tensors in the dataset such that I1(D) ≈ 2 and I2(D′) ≈ 0, different values of the norm ∥H∥ are

associated with the same value of damage. This means that the definition in Equation (5.4)

of the damage variable is insufficient in these few cases to fully represent the variations of the

effective elasticity tensor due to highly interacting micro-cracks. To account for those variations,

a second (internal) damage variable, possibly of higher order, could be used (see the works

of Cormery and Welemane (2010) and Desmorat and Desmorat (2016) for instance). Yet, the

accuracy gain might not be worth the increased modeling complexity.
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Figure 5.4 • Norm of the harmonic part (in GPa) as a function of the damage invariants I1(D)

and I2(D′) = D′ : D′. The black dots are the projection of the data onto the planes

(I1(D), I2(D′)), (I1(D),∥H∥) and (I2(D′),∥H∥).

2.2.4 Physical constraints

As for the modeling of shear modulus, let us frame the (state) modeling of the function H m(D)

by physical assumptions/constraints.

Constraint 1 – Initial isotropy. The assumption of initial isotropy imposes that

H m(D = 0) = 0. (5.33)

Constraint 2 – Full damaged state. We also assume that the effective elasticity tensor E
vanishes when the material is fully damaged. It implies that the harmonic part H must vanish

when the damage grows to D = 1,

H m(D = 1) = 0. (5.34)

Constraint 3 – Hydrostatic damage. Figure 5.4 shows that the harmonic part norm ∥H∥
remains small when the damage invariant I2(D′) is small. We can assume that

H m(I1(D), I2(D′) = 0) = 0. (5.35)

This new condition includes both previous assumptions.

×Remark 5.4 The condition in Equation (5.35) is satisfied when the damage is purely hydro-

static ( i.e., when D = 1
2 (trD)1). If the damage is hydrostatic, both the dilatation part Dil and

the harmonic part H are obtained null (by the formula in Equation (2.18)). Thus, the modeled

2D effective elasticity tensor E(D) is isotropic during a hydrostatic damaging process.
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2.2.5 Modeling the harmonic part norm

The modelling of the harmonic part is intricate due to the complex shape of the surface and

the discrepancy. To overcome this difficulty, we choose to use a sparse regression method

to guide the modeling process. This method enables us to postulate a generic parametrized

function for the model, such as a polynomial, and let the regression filter out the unnecessary

parameters.

×Remark 5.5 As a first approach, multiple attempts to intuit a model of the harmonic part

have been made in this work but proved to be inconclusive. In particular, we tried to intuit

models of the amplitude of the harmonic part both via the invariant K3 and via the harmonic

part norm ∥H∥. Yet, most attempts to formulate the model by fitting various functions failed.

We choose to use the sparse regression has a means to solve this initial setback.

Sparse regression. A sparse regression method, the LASSO regression proposed by Tibshi-

rani (1996), has been applied to a (multivariate) polynomial in the damage invariants I1(D)

and I2(D′). This optimization method aims at fitting a parametrized function to data while

penalizing the number of non-zero parameters. Adding minimization constraints provides

the means to enforce physical assumptions (Gaines et al., 2018). The constrained LASSO

regression for the polynomial modeling of the function H m(D) =
p

2∥H(D)∥ (introduced in

Equation (5.32)) recasts as the minimization problem

min
hn1n2

Nela∑
i=1

(p
2∥Hi∥−

∑
n1,n2

hn1n2 I1(Di )n1 I2(D′
i )n2

)2

+α
∑

n1,n2

|hn1n2 |, (5.36)

where Nela is the number of elasticity tensors in the dataset, hn1n2 are the coefficients of the

sought polynomial, i.e., the model parameters, and α is an arbitrary hyperparameter of the

method. The first term corresponds to a classical regression with a least-square error. The

second term (with the factor α) penalizes the sum of the absolute values of the parameters

hn1n2 . In practice, the higher the hyperparameter α, the fewer the non-zero parameters. The

coefficient of determination of the regression

r 2 = 1−
∑Nel a

i=1

(p
2∥Hi∥−

∑
n1,n2 hn1n2 I1(Di )n1 I2(D′

i )n2
)2

∑Nel a
i=1

(p
2∥Hi∥−mean

(∑
n1,n2 hn1n2 I1(Di )n1 I2(D′

i )n2
))2 (5.37)

is introduced as an indicator of the accuracy of the regression. In practice, we carry out

the minimization for different values of α to find a good compromise between the model

accuracy and the number of non-zero parameters.

Application of the sparse regression. As shown in Figure 5.5, the best compromise between

the model’s accuracy (evaluated via the coefficient of determination r 2 and the number of

non-zero parameters) has been obtained for α= 0.0023 GPa. After this value, the number of

non-zero parameters rises while the coefficient of determination r 2 reaches a plateau. The

retained model is the one-parameter polynomial expression

H m(D) = h I 4
1 (D)I2(D′), h = h41 = 18.8 GPa, (5.38)
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Figure 5.5 • Illustration of the compromise between the precision and the number of non-

zero parameters in the constrained LASSO regression. The dashed line shows

the best compromise for us (α= 0.0023 GPa).

where h is the so-called harmonic pre-factor. Combined with Equations (2.27) and (5.32), the

previous expression means that the simple constitutive equation should satisfyingly model

the effective harmonic part of the elasticity tensors of our large dataset

H̃(D) = h (trD)4 D′∗D′, D′∗D′ = D′⊗D′− 1

2
(D′ : D′)J, (5.39)

which expresses the harmonic part of the 2D effective elasticity tensors as a function of the

damage variable D only. Recall that J = I− 1
2 1⊗1 is the deviatoric projector.

×Remark 5.6 The sparse regression has also been applied to the invariant K3 to obtain its

model K m
3 (D). Yet, the “accurate” models of the harmonic based on K3 required too many

parameters to be attractive.

2.2.6 Neglecting the harmonic part

As an alternative to the polynomial expression in Equation (5.39), it is also worth neglecting

the harmonic part H and simply setting h = 0, i.e.,

H(D) = 0. (5.40)

Indeed, as shown in Figure 5.6, the harmonic part is a small proportion of the effective

elasticity tensor in most cases. Due to these observations, it is sometimes possible to neglect

the harmonic part.

×Remark 5.7 The modelling assumption h = 0, being equivalent to H(D) = 0 or J2(E) = H ::

H, makes the effective elasticity tensor r0-orthotropic in the sense of Vannucci (2002, 2005).

101



Chapter 5. Anisotropic state model

0 0.2 0.4 0.6 0.8 1
0

1

2

3
·104

∥Iso∥2/∥E∥2

N
o.

o
fe

la
st

ic
it

y
te

n
so

rs

0 0.2 0.4 0.6 0.8 1

∥Dil∥2/∥E∥2

0 0.2 0.4 0.6 0.8 1

∥H∥2/∥E∥2

Figure 5.6 • Proportion of each part of the elasticity tensor for each tensor in the dataset.

2.3 Summary of the proposed anisotropic damage state model

Let us summarize the constitutive equations obtained previously. These equations are

obtained from the elasticity tensors reconstruction formulas in Equations (2.18) and (2.30),

the performed virtual beam-particle computations, and cross-identification over the large

effective elasticity tensors dataset. Let us also switch to standard Continuum Mechanics

notations and mark with a tilde the effective (damaged) quantities, such as the effective

elasticity tensor Ẽ = Ẽ(D), the effective generalized shear and bulk moduli µ̃= µ̃(D), κ̃= κ̃(D),

the effective harmonic tensor H̃ = H̃(D). We recall and rewrite the state equations obtained

by using the relation

d̃ = 2κ0 (1−D) , (5.41)

between the effective dilatation tensor d̃ = Ẽ : 1 and the second-order damage variable D.

Effective elasticity tensor. The proposed anisotropic damage coupling is based on the

damage dependency of each component of the harmonic decomposition

Ẽ(D) = 2µ̃(D)J+ κ̃(D)1⊗1−κ0
(
1⊗D′+D′⊗1

)+ H̃(D), (5.42)

of the effective bi-dimensional elasticity tensor. Table 5.1 summarizes the simplified expres-

Quantity Model

Shear modulus µ̃(D) =µ0 − 1
4κ0 trD+ 1

4

(
κ0 −2µ0

)
D : D+m

(
D : D− tr(D3)

)

Bulk modulus κ̃(D) = κ0
(
1− 1

2 trD
)

Dilatation tensor d̃ = 2κ0 (1−D)

Harmonic part H̃(D) = h (trD)4 D′∗D′

Table 5.1 • Summary of the constitutive equations for the proposed anisotropic damage state

model.

sions of each harmonic component as functions of the initial elastic properties (µ0 and κ0)

and the damage state variable.

102



2. Completing the state model

State potential. The corresponding elasticity law coupled with anisotropic damage derives

from a thermodynamic potential, the Helmholtz free energy density ρψ function of the strain

and the damage, as

σ= ρ∂ψ
∂ε

= Ẽ(D) : ε, (5.43)

where

ρψ= 1

2
ε : Ẽ(D) : ε= µ̃(D)ε′ : ε′+ 1

2
κ̃(D) (trε)2 −κ0 D′ : ε′ trε+ 1

2
h (trD)4 ε′ :

(
D′∗D′) : ε′,

(5.44)

is a polynomial of simple and joint invariants of the state variables, i.e., of the strain and

damage tensors. It details as

ρψ(ε,D) =
(
µ0 −

1

4
κ0 trD+ 1

4

(
κ0 −2µ0

)
D : D+m

(
D : D− tr

(
D3))

)
ε′ : ε′

+ 1

2
κ0

(
1− 1

2
trD

)
(trε)2 −κ0 D′ : ε′ trε+ 1

2
h (trD)4 ε′ :

(
D′∗D′) : ε′.

(5.45)

Using the definition of the harmonic product in Equation (2.27), this state potential can be

rewritten as

ρψ(ε,D) =
(
µ0 −

1

4
κ0 trD+ 1

4

(
κ0 −2µ0

)
D : D+m

(
D : D− tr

(
D3))− 1

4
h (trD)4 D′ : D′

)
ε′ : ε′

+ 1

2
κ0

(
1− 1

2
trD

)
(trε)2 −κ0 D′ : ε′ trε+ 1

2
h (trD)4 (

D′ : ε′
)2 .

(5.46)

Thermodynamic force associated with damage. The thermodynamic force associated with

the damage is then the symmetric second-order tensor

Y =−ρ∂ψ
∂D

=
(

1

4
κ01+ 1

2

(
2µ0 −κ0

)
D+m

(
3D2 −2D

)+h (trD)3
(

1

2
(trD)D′+ (

D′ : D′) 1
))
ε′ : ε′

+ 1

4
κ0 (trε)2 1+κ0 (trε) D′−h (trD)4 (

D′ : ε′
)
ε′.

(5.47)

Parameters of the model. The parameters of the final model are the initial shear modu-

lus µ0, the initial bulk modulus κ0, the (optional) shear-damage coupling parameter m =
1
2

(
κ0 +2µ0

)
c3 and the harmonic pre-factor h. They are summarized, with their value identi-

fied from the dataset, in Table 5.2.

×Remark 5.8 At this point, it seems necessary to point out that, for certain values of the

parameters, this state model might not be positive definite for all possible damage values. The

damage tensors for which the effective elasticity tensor is not positive definite are not reached

in our dataset. It means no damage evolution enables reaching regions (in the damage space)

where the effective elasticity tensor is negative definite. This problem is discussed in more detail

in the next chapter.
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Name Symbol Value in GPa

Initial shear modulus µ0 19.4

Initial bulk modulus κ0 30

Non-linear shear-damage coupling parameter m 3.54

Harmonic pre-factor h 18.8

Table 5.2 • Summary of the constitutive parameters (and their value for the 76 356 elasticity

tensors dataset).

3 Assessment of the models

This section provides assessments over the dataset of several modeling choices —summarized

in the previous section— for the coupling bi-dimensional elasticity-anisotropic damage:

• simplified modeling with vanishing parameters m = 0 and/or h = 0, and

• full modeling with non-zero parameters m = 3.54 GPa and/or h = 18.8 GPa.

Each computed (micro-cracked) elasticity tensor Ei from the dataset has an isotropic part

Isoi , a dilatation part Dili and a harmonic part Hi (determined by harmonic decomposition

in Equation (2.18)). For the assessments, the damage D = Di is taken as equal to the damage

variable Di = 1−di /2κ0 = 1−Ei : 1/2κ0 measured for Ei in the dataset.

To be quantitative, the error between a tensor Ei of the dataset and the anisotropic damage

modeling Ẽ = Ẽ(D) is defined as

∥∥Ei − Ẽ(Di )
∥∥=

√
∥Isoi − Ĩso(Di )∥2 +∥Dili − D̃il(Di )∥2 +∥Hi − H̃(Di )∥2, (5.48)

where, by the formulas of the previous section,

Ĩso(D) = 2µ̃(D)J+ κ̃(D)1⊗1,

D̃il(D) =−κ0
(
1⊗D′+D′⊗1

)
,

H̃(D) = h (trD)4 D′∗D′.

(5.49)

Since the fourth-order isotropic (Iso), dilatation (Dil) and harmonic (H) parts are orthogonal

(see Equation (2.20)), the errors associated with each part are uncorrelated. It implies that

the parameter m influences the isotropic part only and that the parameter h influences the

harmonic part only.

×Remark 5.9 Note that the dilatation part has no modeling error since

D̃il(Di ) =−κ0
(
1⊗D′

i +D′
i ⊗1

)= Dil(Ei ). (5.50)

×Remark 5.10 In this section, duplicated tensors during a loading (two successive tensors

with no crack growth) are filtered out to construct the histogram plots.
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3. Assessment of the models

3.1 Assessment of the isotropic part model

Let us first analyze the contribution of the isotropic part to the modeling error. A histogram

of the relative error on the isotropic part ∥Isoi − Ĩso(Di )∥/∥E0∥ is plotted in Figure 5.7a. The

relative error range [0,1] is discretized in 500 intervals for this histogram and all the following

ones. It shows that both modeling, with vanishing value m = 0 and with non-zero value

m = 3.54 GPa, can represent well the isotropic part of all micro-cracked tensors in the dataset

(with a relative error below 10%). Figure 5.7b provides the Cumulative Distribution Function
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Figure 5.7 • Histograms and Cumulative Distribution Functions of the relative error on the

isotropic part over the dataset for both values of the parameter m (results inde-

pendent of the harmonic pre-factor h).

associated with this histogram. The numbers of tensors in each interval are cumulated with

the relative error going from 0 to 1. Afterward, the cumulated number is divided by the total

number of tensors to define the Cumulative Distribution Function (such that it reaches 1

when the error is 1). This plot shows that most isotropic parts are modeled with an error

below 10%.

Percentile (error) 1 % 2 % 5 % 10 %

m = 0 50.0 % 65.7 % 92.2 % 99.9 %

m = 3.54 GPa 46.4 % 74.3 % 97.0 % 99.9 %

Table 5.3 • Proportion of tensors with a relative error on the isotropic part below 1%, 2%, 5%

and 10% for both value of m (results independent of the harmonic pre-factor h).

More quantitative results are provided in Table 5.3, which focuses on different percentiles

of the histogram. Each percentile corresponds to a percentage of elasticity tensors Ei with

a modeling error — on the isotropic part — below the given threshold. For instance, the
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Chapter 5. Anisotropic state model

5-percentile gives the proportion of tensors modeled with an error below 5%. This table is

obtained from the Cumulative Distribution of the error by fixing the error (in the x-axis) and

reading the associated cumulative proportion of tensors (in the y-axis). The Table 5.3 shows

that the case m = 3.54 GPa models 74.3% of the effective elasticity tensor with less than 2%

of error, whereas the case m = 0 models only 65.7% of them. Thus, the case m = 3.54 GPa

provides a slightly more accurate model of the isotropic part than the simplified case m =
0. However, it requires the introduction of the additional material parameter m = 1

2 (κ0 +
2µ0)c3. As the gain in accuracy is small compared to the increase of modeling/identification

complexity by adding a parameter, we propose to retain m = 0 (i.e., Equation (5.23)) for the

modeling of the coupling of the shear modulus with anisotropic damage.

3.2 Assessment of the harmonic part model

Let us now analyze the contribution of the harmonic part to the modeling error. Figure 5.8a
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Figure 5.8 • Histograms and Cumulative Distributions Functions of the relative error on

the harmonic part over the dataset for both values of the harmonic pre-factorh

(results independent of the parameter m).

shows the histogram of the relative error on the harmonic part ∥Hi − H̃(Di )∥/∥E0∥. It indicates

that the case h = 18.8 GPa substantially improves the modeling compared to neglecting the

harmonic part (case h = 0). Note that for h = 18.8 GPa, the contribution of the error on the

harmonic part is at the same level as the contribution due to the isotropic part. Figure 5.8b

provides the Cumulative Distribution Function of this histogram. It shows that setting

h = 18.8 GPa enables predicting most harmonic parts of the dataset with an error below 5%.

In contrast, the errors associated with the case h = 0 reach around 12% before modeling most

harmonic parts.

More quantitative results are provided in Table 5.4, where different percentiles of the

histogram are given (as in Table 5.3). Once again, a percentile corresponds to the percentage

106



3. Assessment of the models

Percentile (error) 1% 2% 5% 10%

h = 0 36.5% 52.1% 75.0% 95.0%

h = 18.8 GPa 48.3% 74.5% 98.8% 100%

Table 5.4 • Proportion of tensors with an error on harmonic part below 1%, 2%, 5% and 10%

for both values of the harmonic pre-factor h (results independent of the parameter

m).

of elasticity tensors with a modeling error – on the harmonic part – below a given threshold.

It shows that setting h = 18.8 GPa enables the modeling of most harmonic parts of the dataset

(98.8%) with an error below 5%, which is far higher than in the case for h = 0 (75.0 %). Thus,

the case h = 18.8 GPa, thus using Equation (5.38) instead of neglecting the harmonic part

(h = 0), significantly improves the accuracy of the modeling.

3.3 Assessment of the complete elasticity tensor model

Let us complete the previous independent results by analyzing the modeling error on the

whole elasticity tensor. Below, we gradually add each ingredient of the modeling (the isotropic

part, then the dilatation part, then the harmonic part) up to the complete modeling Ẽ(D). It

allows us to quantify the exact contribution of the different parts of the anisotropic damage

model.
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N
o.

o
ft

en
so

rs
E

(D
)

E0(1−d)
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Figure 5.9 • Histogram and Cumulative Distribution Functions of the total relative error on

the effective elasticity tensors over the dataset for m = 0 and h = 18.8 GPa.

Figure 5.9 shows the relative error’s histogram and Cumulative Distribution Function

on the effective elasticity tensor for the different modelings. Different percentiles of the

histogram are provided in Table 5.5. The first line of the table,

E0(1−d), d = 1−∥E∥/∥E0∥, (5.51)
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Percentile (error) 1% 2% 5% 10% 20% 30% 40%

(1−d)E0 7.14% 13.3% 26.7% 43.8% 61.8% 82.7% 99.4%

Ĩso(D) 7.45% 14.2% 27.0% 44.2% 63.3% 87.2% 99.9%

Ĩso(D)+ D̃il(D) 25.6% 36.6% 64.0% 94.4% 100% 100% 100%

Ẽ(D) 27.2% 47.8% 88.1% 99.8% 100% 100% 100%

Table 5.5 • Proportion of tensors with a total error below 1%, 2%, 5%, 10%, 20%, 30% and

40%.

corresponds to an isotropic model (with scalar damage variable D) as it can be found in the

classic literature (Mazars, 1984; Lemaitre & Chaboche, 1985; Lemaitre, 1992). The second

line of the table Ĩso(D) corresponds to the isotropic part only of the proposed modeling

(Ẽ = Ĩso(D) with m = 0). The third line Ẽ = Ĩso(D)+ D̃il(D) (with m = 0 still, and h = 0) adds

the modeling of the dilatation part, and the fourth line considers the whole damage model

Ẽ = Ĩso(D)+ D̃il(D)+ H̃(D) with m = 0 and h = 18.8 GPa.

Both isotropic models provide a poor estimation of the elasticity tensors of the dataset.

This outcome was expected due to the predicted effective elasticity tensors being isotropic.

However, they should be anisotropic, as shown in Chapter 4. Adding the dilatation part to

the model, i.e., modeling anisotropic damage, clearly improves its accuracy as it enables to

account for anisotropy induced by micro-cracking. Accounting for the harmonic part (by the

second-order damage tensor D still) also improves the modeling, bringing the proportion of

the effective elasticity tensors with less than 5% of error from 64.0% of the dataset (for the

model with h = 0, i.e. H̃(D) = 0) to 88.1% of the dataset(for h = 18.8 GPa).

Let us finally check whether it is possible or not to model the influence of micro-cracking

on the elasticity tensor up to high levels of damage. This modeling feature is particularly

challenging to obtain from a micro-mechanics homogenization approach (Kachanov, 1993;

Ponte Castañeda & Willis, 1995; Cormery & Welemane, 2010; Dormieux & Kondo, 2016).

Percentile (error) 1% 2% 5% 10% 20% 30% 40%

(1−d)E0 1.26% 4.28% 15.7% 29.4% 39.8% 69.1% 98.9%

Ẽ(D) 10.1% 30.0% 78.9% 99.6% 100% 100% 100%

Table 5.6 • Proportion of highly damaged tensors (Dmax > 0.7) with a total error below 1%,

2%, 5%, 10%, 20%, 30% and 40%.

In Figure 5.10, we reproduce the histogram and Cumulative Distribution of relative errors

with a filter to keep only the elasticity tensors associated with high damage value (Dmax =
max(D1,D2) > 0.7). The differences between the filtered and the unfiltered distributions

correspond to the relative errors for tensors with low damage (diffuse micro-cracking). The

histogram in Figure 5.10 shows that isotropic models do not correctly describe the effective

elasticity tensors with high damage values. Table 5.5 shows that only 15.7% of highly damaged

tensors (with Dmax > 0.7) are reconstructed with an error below 5% (versus 26.7% for the

whole dataset). It indicates that the isotropic model does not predict the highly damaged
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4. Illustration of the state model accuracy: Non-proportional loading analysis
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Ẽ(D)
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Figure 5.10 • Histograms and Cumulative Distribution Functions of total error for large values

of damage. The histogram and cumulative distribution of total error over the

elasticity tensors in the dataset is also reproduced.

tensors well; thus, it does not accurately model the strong micro-cracks interactions stage.

The complete anisotropic damage modeling Ẽ = Ĩso(D)+ D̃il(D)+ H̃(D) (with m = 0 and

h = 18.8 GPa) is able to model 78.9% of the tensors with an error below 5% (and 99.6% of the

tensors with an error below 10%). It thus provides an accurate damage state coupling for the

effective elasticity tensor, even for highly damaged specimens. This result emphasizes the

strength of the proposed approach based on a beam-particle discrete element description to

model the anisotropic damage in quasi-brittle materials.

4 Illustration of the state model accuracy: Non-proportional

loading analysis

To illustrate the ability of the model to represent the coupling between anisotropic dam-

age and effective elastic properties, let us detail both the beam-particle model response

and the anisotropic damage Ẽ = Ẽ(D) response for the Periodic Boundary Condition (PBC)

“tension→tension” loading of Table 4.1 of Chapter 4.

×Remark 5.11 A similar analysis has been carried out for a periodic (PBC) “shear→tension”

loading Loiseau et al. (2023a).

Damaging loading. The evolution of strain ε and damage D —computed by the beam-

particle model— for this loading are represented in Figure 5.11. It is composed of two stages.

A periodic (PBC) tension loading along the direction e1 is applied during the first stage until

load step 50. Then, in the second stage, the tension loading is maintained while another

tension is applied along the direction e2. Figure 5.12 shows the micro-cracking progression
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Figure 5.11 • Evolution of strain and damage during the periodic (PBC) “tension→tension”

loading.
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Figure 5.12 • Evolution of micro-cracking during the periodic “tension→tension” loading

(reproduced from Chapter 4).
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4. Illustration of the state model accuracy: Non-proportional loading analysis

at load steps 0, 20, 40, 60, 80, and up to the final step 100. At the start of the loading, the area

element is uncracked. The first micro-cracking localization (orthogonal to e1) between step

20 and 40 corresponds to the significant increase of damage D11 around the load step 30.

The second micro-cracking localization (orthogonal to e2) leads to the significant increase of

damage D22 (between steps 60 and 80).

The periodic (PBC) tension→tension non-proportional loading case is used to investigate

the different damage state couplings, by comparing them to the reference discrete element

data: an elasticity–damage coupling with isotropic damage variable d (by σ= E0(1−d) : ε)

and elasticity–anisotropic damage couplings with damage variable D (by σ= Ẽ : ε),

• the first one Ẽ = Ĩso(D)+ D̃il(D), with material parameters m = 0 and h = 0,

• the second one Ẽ = Ĩso(D)+ D̃il(D)+ H̃(D), with material parameters m = 3.35 GPa and

h = 17 GPa.

Thanks to the orthogonality of the harmonic decomposition terms, it covers all the possible

combinations of parameters m and h.

Stress history. Let us first illustrate the proposed model by calculating the stress evolution

during a non-proportional loading. We consider that the state of the material, i.e. strain ε

and damage D, is known exactly at each load step. The proposed anisotropic damage state

model is applied to recover the stress evolution during the periodic (PBC) “tension→tension”

loading. Figure 5.13 shows that a simple isotropic damage model (black line) is not sufficient

to correctly predict the macroscopic stress state of the material. Even in the (early) diffuse

micro-cracking stage, the stress component σ11 are overestimated compared to the reference

values (red line). After the first localization, the reference stress σ11 drops, whereas the

stress σ11 predicted with the isotropic model stagnates for a few load steps and then grows.

During the second stage of the loading, the stress σ11 from the isotropic model is completely

mispredicted. Also note that the slope of the component σ11 between steps 50 and 60 is

underestimated by the isotropic model. On the other hand, the proposed anisotropic damage

modeling provides an accurate stress state prediction up to the very end of the loading, close

to the discrete element reference for both values h = 0 and h = 18.8 MPa.

Effective elasticity tensor evolution. To complete the analysis, we provide in Figure 5.14,

for the different models, the history of the six harmonic components of the effective elasticity

tensor, namely κ̃, µ̃, d̃′ = (d̃ ′
i j ) and H̃ = (H̃i j kl ). The components of the reference discrete

element elasticity tensors are reported as red lines. As the damage D = 1−E : 1/2κ0 is known,

both the bulk modulus κ̃ and the deviatoric part of the dilatation tensor d̃′ are exactly modeled

(as explained in Section 1). The shear modulus is correctly predicted by both m = 0 and

m = 3.54 GPa cases, close to each other. This tension→tension non-proportional loading

leads to the significant growth of the dilatation part, which is neglected by the isotropic

model. It also induces the growth of the harmonic part, which is neglected by both the

isotropic model and the proposed model when h = 0. Yet, setting h = 18.8 GPa provides a

good modeling of the harmonic part.
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elings (m = h = 0 in blue, and m = 3.54 GPa, h = 18.8 GPa in green) with the

reference data (E, in red) during the periodic (PBC) “tension→tension” loading.
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To conclude, Figure 5.15 displays the relative errors associated with the isotropic and

harmonic parts during this loading. For h = 0, the most significant part of the error is due to

the modeling of the harmonic part. Accounting for the harmonic part in the model halves

the error on the harmonic part.

{ Summary of the Chapter

This chapter aims to develop an anisotropic damage state model. We employed an orthotropic

reconstruction of the effective elasticity tensor (from covariants) based on the harmonic

decomposition to ease the formulation. It shifts the formulation process from modeling the

entire elasticity tensor to its harmonic components. First, the damage variable is introduced

to represent the micro-cracking. It is based on the dilatation tensor, a covariant of the

effective elasticity tensor. The damage variable is itself a covariant of the effective elasticity

tensor. This choice of damage variable enables us to model exactly two (out of four) harmonic

components: the bulk modulus and the deviatoric part of the dilation tensor. By analyzing the

dataset, we proposed a model for the effective shear modulus as a function of damage. This

model introduces an optional parameter, the non-linear shear-damage coupling parameter.

We then applied a sparse regression to fit a polynomial of damage invariants to the dataset to

obtain a model for the harmonic part. This model also introduces a parameter, the harmonic

pre-factor. The effective elasticity tensor model is assessed by comparison to the dataset.

It shows that the proposed model of the effective elasticity tensor is well-predicted, thus

showing that a second-order tensor for this dataset accurately represents the micro-cracking.

The necessity of considering damage-induced anisotropy in the model is also emphasized.
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6
Formulation of an evolution model

This chapter presents the formulation of a non-standard damage evolution law aiming at

representing the continuous (macroscopic) damage evolution computed from the discrete area

elements. The cross-modeling process to formulate the model is composed of three steps. The

first step aims to determine the initial yield surface (or criterion function) of discrete area

elements. The initial yield surface of multiple area elements is measured using an efficient

method proposed in this work. The equivalent strain is then defined by fitting a polynomial

of strain invariants to the measured yield surface. The second step is to analyze the damage

evolution during some loading cases applied with periodic strain boundary conditions. This

analysis identifies and highlights the phenomena occurring during the degradation process,

which need to be considered in the model. Subsequently, a macroscopic damage evolution

model is proposed.

The state model proposed in the Chapter 5 must be completed with a damage evolution

law to formulate an anisotropic damage model. The damage evolution model describes,

given the state of the area element (here, described by strain and damage), (1) whether the

damage grows in the material, and (2) how the damage evolves (when it evolves). We will

first focus on determining the damage criterion in order to address the first question. This

step will be carried out in two stages. First, a method to efficiently measure the yield surface

of a discrete area element is proposed and applied to multiple area elements. Then, we will

exploit the results to define a damage criterion function, particularly the equivalent strain.

Then, the second stage consists in defining how the damage evolves. A damage evolution

law is proposed after investigating the damage evolution in the reference dataset. Different

changes of damage variables are compared to naturally bound the principal damages to

1 and to ease the modeling. A damage evolution law, based on the introduced variable, is

then proposed and compared to the reference damage evolution from the dataset. Finally,

non-local damage is briefly discussed to show how the proposed model can be adapted to

structures.
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1 Determination of the damage criterion function

from virtual testing

Let us first focus on the determination of the initial damage criterion function at zero damage

f = f (ε,D = 0). More precisely, we focus on the definition of the equivalent strain εeq = εeq(ε)

(in the spirit of Mazars (1984), de Vree et al. (1995), and Ragueneau et al. (2008)) associated

with a bi-dimensional discrete (beam-particle) area element. The equivalent strain εeq is

assumed to be a function of the strain tensor (to be determined). The criterion function f

defines the elasticity domain as

f = εeq −εD < 0 → elasticity. (6.1)

As in the previous Chapter, our cross-modeling approach consists in applying Periodic

Boundary Condition (PBC) to the area element, with (multi-axial) applied strains. One then

measures (or calculates) when damage initiates. The first step is to define the criterion

corresponding to the onset of damage (i.e., to “when the damage starts”) for a given loading

on an area element. Once the criterion is defined, we have to measure the elasticity limit

locus by applying loadings in different directions. To make this procedure efficient, we want

to carry out the measurement with as few simulations as possible.

1.1 Measurement of the yield surface of a beam-particle area element

Micro-cracking criterion. First, we need to define “when the damage starts” in a (discrete)

area element. To achieve that, we must first define what means the onset of macroscopic

damage from the beam-particle model. Several definitions could be considered, such as

a significant loss of linearity in the macroscopic stress-strain relationship (as done in ex-

periments) or a significant growth of the damage variable (since we can compute it). Here,

as a first approach, we choose to define the damage criterion based on the first appearing

micro-crack. Recall that the failure criterion fb of a beam b (between particles p and q) is

fb = εpq

εcr
pq

+ |∆θpq |
∆θcr

pq
> 1, εpq = ∥up −uq∥, ∆θpq = θp −θq , (6.2)

where εpq is the beam extension and εcr
pq its associated failure threshold, ∆θpq is the differ-

ence of particle rotation and ∆θcr
pq its associated failure threshold. As we want to determine

when the first beam breaks, we must determine which beam will reach the failure criterion

first.

A fast method to measure the yield surface. Let us consider that a periodic boundary

conditions strain proportional loading εimp with a norm ∥εimp∥ is applied to the area element.

The norm must be sufficiently small so that the behavior remains linear (in our case so that

no beam breaks). To find the first broken beam b∗, one must determine the first beam to

reach this criterion. Thus, the beam b∗ with the largest failure criterion function fb∗ is then

b∗ = argmax
b

fb . (6.3)
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1. Determination of the damage criterion function from virtual testing

As the behavior remains linear, the displacements and rotations of each particle p are pro-

portional to the norm of the imposed strain

up = ∥εimp∥u(1)
p , θp = ∥εimp∥θ(1)

p , (6.4)

where •(1) denotes the displacement/rotation for unitary loading (with a norm ∥εimp∥ = 1 and

no beam breaking, i.e. an elastic behavior), which only depend on the loading orientation.

Only monotonic proportional loadings are considered here, so the factor ∥εimp∥ is assumed

to be positive. Thanks to this proportionality property, the beam failure criterion function

is a homogeneous function of the loading amplitude, i.e. of the norm of the imposed strain

∥εimp∥, and can be rewritten

fb∗ = ∥εimp∥ f (1)
b∗ , f (1)

b∗ =
(
ε(1)

b∗

εcr
b∗

+
|∆θ(1)

b∗ |
∆θcr

b∗

)
= fb∗

∥εimp∥
. (6.5)

Finally, the first failing beam b∗ breaks (and thus the macroscopic damage starts) when the

criterion function attains fb∗ = 1. The associated strain εD is the yield strain (tensor)

∥εD∥ f (1)
b∗ = 1 =⇒ ∥εD∥ = ∥εimp∥

fb∗
, thus εD = ∥εD∥ εimp

∥εimp∥
= 1

fb∗
εimp (6.6)

where εimp is the imposed strain (such that no beam break) and f∗ is the value of the highest

failure criterion, i.e. the failure criterion associated to the first breaking beam. This method

requires only one elastic resolution per loading direction to obtain the yield strain. It is thus

an efficient technique to determine the yield surface of an area element.

×Remark 6.1 This method also works for other types of simulation, as far as the mesoscale

damage indicator (here, the beam failure criterion) is homogeneous in the loading amplitude.

Application to an area element. Let us now apply this method to area elements. The first

step is to discretize the imposed loading. As all possible strain loads can be diagonalized in

their principal basis (as the strain is symmetric real), it can be parametrized as

ε(k)
imp = ∥εimp∥

[
cos 2kπ

Ndir
0

0 sin 2kπ
Ndir

]
, k ∈ {0, ..., Ndir −1}, (6.7)

where Ndir is the number of loading directions. Here, we chose to use Ndir = 256 directions

and a loading amplitude ∥εimp∥ = 10−8.

×Remark 6.2 Note that this parametrization works here because we consider the material to

be initial isotropic. Otherwise, another strain parametrization where the principal basis of the

loading rotates is required to cover the loading space fully.

The measurements have been replicated onto eight different area elements, i.e. with different

micro-structures and spatial distributions of failure threshold. The procedure to measure the

yield surface is summarized in Algorithm 2. The results from applying this measurement

procedure are reported in the Figure 6.1. In particular, the Figure 6.1a displays the yield strains
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Figure 6.1 • Measurement of the yield surface.
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2. Analysis of damage evolution

Algorithm 2: Procedure to measure the yield surface

Set the imposed strain norm ∥εimp∥;

Set the number of loading directions Ndir;

Initialize the list of yield strain tensors;

for k ← 0 to Ndir −1 do

Set the imposed strain εimp = ∥εimp∥
[

cos 2kπ
Ndir

0

0 sin 2kπ
Ndir

]
;

Apply the strain loading εimp to the area element;

Calculate the failure threshold fb for each beam;

Find the first failing beam b∗ = argmaxb′ fb′ ;

Calculate the yield strain tensor εD = 1
fb∗

εimp;

Store the yield strain tensor εD into the list;

Result: List of yield strain tensors for varying loading directions.

in the space of strain trace tr(ε) and von Mises equivalent strain εvM =
p

2ε′ : ε′. Applying a

linear regression on the strain invariants shows that the yield strain fits the linear equation

εD,vM =−0.530tr(εD )+5.93×10−5, (6.8)

which a coefficient of determination r 2 = 0.998. Thus, damage starts to grow when

εeq = εvM +k tr(ε) >C0, k = 0.530, C0 = 5.93×10−5. (6.9)

This criterion is a Drucker-Prager criterion and introduces two material parameters: κ0 the

initial yield strain and k the dilatation parameter. For illustration purposes, the criterion is

also reported in the space of principal strains in the Figure 6.1b and in the space of principal

stresses in the Figure 6.1c.

×Remark 6.3 The Appendix D shows the yield surface data in the space (tr(ε),
p〈ε〉+ : 〈ε〉+).

A line in this space corresponds to the 2D Mazars-Drucker-Prager equivalent strain

εeq =
√

〈ε〉+ : 〈ε〉++k tr(ε). (6.10)

Nevertheless, this appendix shows that the data points do not form a line in this space.

2 Analysis of damage evolution

Before formulating a complete damage model, we have first to investigate the evolution of the

damage variable D during various loadings on the discrete area elements. For each effective

elasticity tensor Ẽ of the dataset, damage is calculated from the dilatation tensor using the

damage definition proposed in Equation (5.4).
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A

B

Figure 6.2 • Principal damages for the whole dataset. The principal damages are sorted such

that D1 Ê D2 during most of the loading. A and B denotes two regions that are

not represented in the dataset.

Step 7

e1

e2

Step 12 Step 16 Step 18 Step 19 Step 35

Figure 6.3 • Formation of a macro-crack during a Kinematically Uniform Boundary Condition

tension loading along the direction e1. Only the part of the area element where

the macro-crack occurs is shown.
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2. Analysis of damage evolution

2.1 Damage multi-axiality

Figure 6.2 contains the principal damages associated with each second-order damage tensor

measured for our dataset. Observe that the dataset does not cover the whole principal

damage space. Two regions are not covered: the region A (D1 > 0 and D2 ≈ 0) and the region

B. Adding more load cases to the dataset would enable it to reach region B. However, the

void in region A is due to physical reasons. To illustrate these reasons, Figure 6.3 shows the

formation of a macro-crack during a tension loading with Kinematically Uniform Boundary

Conditions along the direction e1. The damage must evolve such that only one principal

damage grows (D1 > 0 and D2 = 0) to reach the region A. Thus, the damage must be purely

uni-axial to reach this region. However, during micro-cracking initiation, a statistical effect

predominates: the weakest beams tend to fail first (see steps 7 and 12). In this phase, the

micro-cracks predominantly form perpendicular to the loading direction. Still, some weaker

beams might not be exactly aligned with the loading direction, thus being a first source of

damage multi-axiality. Following this initial diffuse (statistical) micro-cracking phase, the

micro-cracking localizes (see steps 16, 18, and 19). Several phenomena prevent the damage

from being purely uni-axial in this phase. First, the micro-cracking becomes deterministic,

primarily due to stress localization around existing micro-cracks during the localization.

Beams fail where the stress localizes, even if they are not in the direction of the loading,

thus generating cracks that are not orthogonal to the loading. Moreover, macro-cracks will

form by bridging (possibly misaligned) micro-cracks during this phase. The micro-cracks

contributing to bridging the initial micro-cracks (being bridged) are not necessarily aligned,

thus generating new misaligned micro-cracks and further contributing to the damage multi-

axiality. Furthermore, geometric heterogeneity prevents micro-cracking from localizing into a

straight line/plane. Note that all those phenomena are directly linked to the quasi-brittleness

property. Indeed, the existence of a process zone prevents the damage variable from having

exactly null principal damage components.

2.2 Focusing on three proportional loadings

As a first approach, we start by investigating three specific proportional loading cases with

periodic strain boundary conditions: bitension (purely hydrostatic), tension (both hydrostatic

and deviatoric), and shear (purely deviatoric).

Bitension loading. Let us start by examining damage evolution during bitension loading

cases with periodic boundary conditions. Figure 6.4a displays the evolution of the damage

components when this loading is applied to 36 micro-structures. An initial phase of elasticity

is observed, where the damage remains zero. Then, damage starts to grow almost linearly

with the loading. This phase corresponds to diffuse micro-cracking. The variability starts

to grow at some point, and the damage accelerates. It is when the micro-cracking localizes,

ending up in the failure of the area element. In the final stage, the damage rate reduces,

the components D11 and D22 asymptotically tend to 1, and the component D12 tends to

zero. The Figure 6.4b shows the principal damages D1 and D2 evolution. They are sorted

such that D1 > D2 during most of the loading. This plot shows that there is almost always a
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direction in which the micro-cracking localizes before the other one. Thus, even if the loading

is hydrostatic, the damage tensor is not purely hydrostatic, leading to a loss of isotropy. This

phenomenon is not restricted to our discrete model and also occurs in experiments.

×Remark 6.4 This phenomenon is purely due to statistical effects, and accounting for it in a

deterministic model might not be possible. In macroscopic modeling, we will assume that the

damage state remains equi-biaxial (D1 = D2).

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Load step

D
am

ag
e

co
m

p
o

n
en

ts

D11 D22 D12

(a) Damage components

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Load step

P
ri

n
ci

p
al

d
am

ag
es

D1 D2

(b) Principal damages

Figure 6.4 • Damage evolution during bitension loads with periodic boundary conditions.

Tension loading. Let us now study damage evolution during tension loading along the axis

e1-axis with periodic boundary conditions. Figure 6.5a displays the evolution of the damage

components when this loading is applied to the 36 area elements. Once again, we first observe

an elastic phase where the damage remains zero. Then, damage starts to grow almost linearly

with the loading during the diffuse micro-cracking phase. The damage not only grows along

the e1-axis but also along the e2-axis. When the micro-cracking localization occurs, the

damage rate increases. Note that the damage localization does not always happen at the

same load step. It is mainly due to the mesoscale heterogeneity, particularly the randomness

of failure thresholds. After the localization, the damage rate reduces, and the component D11

asymptotically tends to 1. Figure 6.5b shows that the principal damages are indeed bounded

in the interval [0,1]. Moreover, even on the principal basis, the damage is not uni-axial.

Shear loading. Figure 6.6 displays the damage components evolution during a shear loading

with periodic strain boundary conditions for the 36 area elements. The observations are

similar to the case in tension. The main difference is that the localization process is slower

than in bitension and tension, and the variability is smaller.
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Figure 6.5 • Damage evolution during tension loads with periodic boundary conditions.
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Figure 6.6 • Damage evolution during shear loads with periodic boundary conditions.
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Analysis using invariants. To analyze the results, let us use the parametrization, presented

in Appendix E, of the second-order damage tensor D,

D = ∥D∥p
2

(
Dm1+

√
1−D2

mR(θ)

)
, R(θ) =

[
cos2θ sin2θ

sin2θ −cos2θ

]
(6.11)

Indeed any symmetric second-order tensor D can be parameterized by its (invariant) norm

∥D∥, its (invariant) hydrostatic (mean) damage biaxiality Dm and the orientation of its devia-

toric part θ, defined as

∥D∥ =
p

D : D, Dm = tr(D)p
2∥D∥

, θ = 1

2
arctan

(
D ′

12

D ′
11

)
. (6.12)

Note that the deviatoric angle θ is undefined when the deviatoric part is null, i.e. when

Dm = −1 or Dm = 1. Let us now analyze the damage evolution based on invariant the
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Figure 6.7 • Damage evolution using the proposed parametrization during three load cases

with periodic boundary conditions: bitension, tension, and shear.

invariant damage norm ∥D∥, invariant hydrostatic damage bixiality Dm , and the deviatoric

angle θ, represented in Figure 6.7. Let us first focus on the bitension load cases. The negative
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3. Anisotropic non-standard damage evolution law for proportional loadings

point around load step 10 for the hydrostatic damage biaxiality Dm is due to a numerical

approximation errors biasing the ratio tr(D)/(
p

2∥D∥) when both the trace tr(D) and ∥D∥
are close to zero. The figure also shows that the damage biaxiality Dm slightly decreases

in almost all the cases during the localization stage (between load steps 20 and 40). It

means the deviatoric part grows for almost all the micro-structures during the localization

phase. However, the orientation of the deviatoric part, given by the deviatoric angle θ, is

mostly random. As explained before, it is due to the random variations in the micro-crack

orientations.

For the tension load cases, we can observe that the hydrostatic damage biaxiality Dm

gradually increases during the diffuse micro-cracking phase and then stabilizes after the

damage localization. The orientation of the deviatoric part slightly varies during the loading.

Note that the deviatoric angle corresponds to the deviatoric angle of the applied tensile strain.

3 Anisotropic non-standard damage evolution law

for proportional loadings

The evolution law is assumed of the form

Ḋ =




0 if f < 0 or ḟ < 0,

λ̇DPD if f = 0 and ḟ = 0,
(6.13)

where λ̇D the damage multiplier, which usually derives from the damage criterion function

f = f (ε,D) (using the Kuhn-Tucker conditions λ̇D Ê 0, f É 0, λ̇D f = 0), and where PD is the

damaging direction. In the case of proportional loadings, the choice of damage criterion

function can be restricted to (Mazars, 1986)

f (ε,D) = εeq −C (D), εeq = εvM +k tr(ε), C (D = 0) =C0, (6.14)

where εeq is the equivalent strain (the Drucker-Prager equivalent strain in our case, by Equa-

tion (6.9)), and C (D) is the consolidation function.

3.1 Bounding damage

One can apply a change of variable to guarantee that damage eigenvalues are bounded in the

interval [0,1] and simplify the modeling. For instance, Ladevèze (1983a, 1995) proposed to

use the variable h = (1−D)−
1
2 . Moreover, Mattiello and Desmorat (2021) proposed to ease the

formulation of the evolution model by generalizing the change of variable as

∆̇=G (D,Ḋ), (6.15)

where ∆̇ is a positive semi-definite symmetric second-order tensor. The idea consists in

defining an auxiliary variable∆, being a function of the damage D, whose evolution is simpler

to describe from the mechanical quantities. Ideally, we want to define an auxiliary variable

whose evolution is linear in strain.
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Let us consider the two following auxiliary variables

D = 1− (1+∆a)−α ⇐⇒ ∆a = (1−D)−
1
α −1, (6.16)

D = 2

π
arctan(∆αb ) ⇐⇒ ∆b =

(
tan

(π
2

D
)) 1

α
, (6.17)

where α is a parameter, called damage exponent, controlling the early damage rate. The

function (here, power and arctan), noted g in the following example, are applied in terms of

principal values

g (D) =
2∑

I=1
g (D I )n I ⊗n I , D =

2∑
I=1

D I n I ⊗n I , ∥n I∥ = 1, (6.18)

where D I is the I -th principal value of D and n I is its I -th unit eigenvector. Other methods to

apply such functions are proposed by Higham (2008). The proposition in Equation (6.16) is

a generalization of the variable proposed by Ladevèze (1983a, 1995) (when α= 2). It is also

modified to be null when the damage is null.

For illustration purposes, the Figure 6.8 shows the principal damage as a function of the

auxiliary variable for both changes of variable and different values of the damage exponent α.

With both functions, the principal damage tends asymptotically to 1, as expected. Neverthe-

less, one main difference between both variable changes is the slope monotonicity. Indeed,

the slope of∆a , from Equation (6.16), is strictly decreasing with damage. However, the slope

of∆b , from Equation (6.17), is first small, then grows till the principal damage reaches 0.5,

and decreases such that the principal damage asymptotically tends to 1. In the following, we

will see that this non-monotonicity of the slope is crucial to account for the (early) diffuse

micro-cracking stage correctly.
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Figure 6.8 • Relation between the principal damages Di and the principal values of the

auxiliary variables ∆i .

×Remark 6.5 For more flexibility, one could introduce the change of variable

D = 2

π
arctan

((
∆c /β

)α) ⇐⇒ ∆c =β
(
tan

(π
2

D
)) 1

α
, (6.19)

where the parameter β is the principal value of∆c at which the slope starts to decrease.
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3. Anisotropic non-standard damage evolution law for proportional loadings

We can now study the evolution of both auxiliary variables during the bitension and

tension loading cases. We calculate the mean damage evolution during both loading cases

and then applied both changes of variables (in Equation (6.16) and Equation (6.17)). The

evolution of both auxiliary variables, for different values of the damage exponent α, are

reported in Figure 6.9 for the bitension load case. The first observation is that, during

the early damage stage (damage starts when ε11 = C0/(2k) ≈ 5.6× 10−5), the variable ∆a ,

from Equation (6.16), does grow at a small rate. However, the second variable ∆b , from

Equation (6.17), grows almost linearly during the whole damage process for α = 3 (red

line with square marks). For the tension load case, both auxiliary variables are reported in

Figure 6.10. Once again, the auxiliary variable ∆a evolves in two stages (after the elastic

phase). Indeed, it grows at a small rate in the diffuse micro-cracking stage and then grows

(almost linearly for α = 4) after the localization. For this case, the auxiliary variable ∆b is

again almost linear with the strain. It also better catches the diffuse micro-cracking phase.
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Figure 6.9 • Evolution of the proposed auxiliary variables (to describe damage evolution)

during a bitension loading for different values of the damage exponent α.

3.2 A first evolution law for bitension load cases

To model the damage evolution, our process is to start with a simple law that can be progres-

sively enhanced to cover more loading cases. So, let us start with the non-standard damage

evolution law defined by

∆̇= λ̇ 〈ε〉+
∥〈ε〉+∥

, f (ε,∆) = εeq −C (∆), C (∆) =C0 +S1 tr(∆)+ S2

2
∆′ :∆′, (6.20)

where 〈ε〉+ denotes the positive part of the strain, S1 and S2 are the hydrostatic and deviatoric

damage strength parameters: the higher Si , the higher the damage resistance and the lower

127



Chapter 6. Evolution model

0 0.5 1 1.5 2 2.5 3

·10−4

0

2

4

Strain ε11

Component 11

0 0.5 1 1.5 2 2.5 3

·10−4

0

2

4

Strain ε11

Component 12

0 0.5 1 1.5 2 2.5 3

·10−4

0

2

4

Strain ε11

Component 22∆a = (1−D)−
1
α −1

∆b = (
tan

(
π
2 D

)) 1
α

α= 2
α= 3
α= 4

Figure 6.10 • Evolution of the proposed alternative variables (to describe damage evolution)

during a tension loading for different values of the damage exponent α.

the damage rate (as shown below in Equation (6.21)). For this choice of consolidation

function, the damage multiplier λ̇ is calculated in Appendix F, and its expression is

λ̇= ε̇eq

S1 tr(P)+S2P′ :∆′ , (6.21)

where the damaging direction is P = 〈ε〉+/∥〈ε〉+∥. This damage evolution law, with both

changes of variable, has been implemented using MFront (Helfer et al., 2015). The MFront

code of the model is available in Appendix G.

Fitting bitension load case. As a first test, we fit the model, with each change of variable, to

the bitension load case from the discrete model using the procedure explained in Appendix H.

We chose to fit all the parameters linked to evolution (α,S1, and S2) and the parameters

of the yield surface (C0 and k). The elastic parameters are left unchanged. As the strain is

hydrostatic, the damage will be hydrostatic during the loading. Thus, the term associated

with the deviatoric strength S2 in the consolidation will have no influence. For now, we chose

to set it to zero.

×Remark 6.6 In the bitension case, the loading criterion is

k tr(ε) >C0 =⇒ tr(ε) > C0

k
. (6.22)

It means that when we fit the models to a bitension load case, only the ratio C0/k is fitted for

the damage criterion, i.e. different couples (C0,k) gives the same results.
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Name Symbol Unit D = 1− (1+∆a)−α D = 2
π

arctan(∆αb )

Initial shear modulus µ0 GPa 19.5 19.5

Initial bulk modulus κ0 GPa 30.0 30.0

Harmonic pre-factor h GPa 17.0 17.0

Initial damage threshold C0 1 1.82 ·10−4 3.40 ·10−5

Dilatation parameter k 1 1.149 1.076

Damage exponent α 1 7.47 3.187

Hydrostatic damage strength S1 1 3.95 ·10−4 1.08 ·10−4

Deviatoric damage strength S2 1 0 0

Table 6.1 • Parameters of the model fitted to the bitension load case.

The fitted parameters are reported in Table 6.1. The damage and stress evolution during the

bitension load cases are shown in Figure 6.11 and Figure 6.12. The reference results from

the discrete simulations are also shown for comparison purposes. Both auxiliary variables
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Figure 6.11 • Comparison of the damage evolution during a bitension load case predicted

with both changes of variable.

give a good fit in terms of late damage evolution. However, in both cases, the damage

initiation is modified to enable fitting the later stage. Indeed, using the auxiliary variable

∆a = 1− (1+∆a)−α leads to a highly delayed damage initiation. The damage starts when

ε11 =C0/(2k) ≈ 8×10−5, when using∆a from Equation (6.16), instead of ε11 ≈ 5.6×10−5 for the

reference. It is caused by the early damage rate being too high (and only decreasing afterward),

which causes the damage initiation to be delayed to compensate. It is due to the derivative of
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Figure 6.12 • Comparison of the stress evolution during a bitension load case predicted with

both changes of variable.

the change of variable being monotonic, which makes the damage rate decreasing as shown

in Figure 6.8). On the contrary, the damage starts when ε11 = C0/(2k) ≈ 1.68×10−5 when

using ∆b , from Equation (6.17), instead of ε11 ≈ 5.6×10−5 for the reference. Nevertheless,

the damage growth starts with a very small damage rate. As this second auxiliary variable∆b

has a non-monotonic derivative, the damage rate can first be small, then grow during the

localization of micro-cracking, and finally decrease after the micro-cracking localization. It is

important to note that this auxiliary variable provides a better fit of early damage and thus

of the stress peak as shown on Figure 6.12. For now, we choose to use the auxiliary variable

∆=∆b from Equation (6.17) for the proposed model.

4 Summary of damage model

In this section, the damage model is summarized. Possible extensions to non-local damage

are also presented to enable its application to structures.

4.1 Damage model

The proposed local anisotropic damage model for quasi-brittle materials comprises the

following components.

• Elasticity coupled with damage.

σ= Ẽ(D) : ε (6.23)
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• Effective elasticity tensor.

Ẽ(D) = 2µ̃(D)J+ κ̃(D)1⊗1−κ0(1⊗D′+D′⊗1)+ H̃(D), (6.24)

where

µ̃(D) =µ0 −
1

4
κ0 trD+ 1

4

(
κ0 −2µ0

)
D : D+m

(
D : D− tr(D3)

)
, (6.25)

κ̃(D) = κ0

(
1− 1

2
trD

)
, (6.26)

H̃(D) = h (trD)4 D′∗D′, D′∗D′ = D′⊗D′− 1

2
(D′ : D′)J. (6.27)

• Auxiliary damage variable.

∆=
(
tan

(π
2

D
)) 1

α ⇐⇒ D = 2

π
arctan(∆α), (6.28)

where the functions are applied to the principal damages as specified in Equation (6.18).

• Damage criterion.

f = ε̄eq −C (∆) É 0, εeq = εvM +k tr(ε), C (∆) =C0 +S1 tr∆+ S2

2
∆′ :∆′, (6.29)

where εvM =
p

2ε′ : ε′ is the von Mises equivalent strain, and ε̄eq is the non-local equiv-

alent strain. The non-local equivalent strain for the local damage model is ε̄eq = εeq.

Different choices of non-local equivalent strain are proposed in Section 4.3 for the

non-local damage model.

• Evolution law.

∆̇= λ̇P, P = 〈ε〉+
∥〈ε〉+∥

, λ̇=
˙̄εeq

S1 tr(P)+S2P′ :∆′ , (6.30)

where the damage multiplier λ̇ is obtained from the Kuhn-Tucker loading-unloading

conditions f É 0, λ̇Ê 0, λ̇ f = 0.

×Remark 6.7 This model still has to be extended for loading cases other than bitension. As a

short-term perspective, the damaging direction P must be studied to fully model damage in

tension.

4.2 Parameters of the local damage model

There are eight parameters (excluding the optional non-linear shear-damage parameter m):

• the initial bulk modulus κ0, the initial shear modulus µ0, and the (new) harmonic

prefactor h for the constitutive equation,

• the damage exponent α for the change of variable,

• the initial damage threshold C0 and the dilatation parameter k for the damage criterion

function (with no damage),

• the hydrostatic damage strength S1 and the deviatoric damage strength S2 for the

consolidation.
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4.3 Non-local damage

In order to make the present damage model non-local, let us recall different definitions of

the non-local equivalent strain from the literature.

Integral Non-Local (Pijaudier-Cabot & Bažant, 1987). The non-local equivalent strain is

ε̄eq(x) = 1

VΩ(x)

∫

Ω
w(∥x − y∥/ℓc )εeq(y)dy , w(∥x − y∥/ℓc ) = exp

(
−4∥x − y∥2

ℓ2
c

)
, (6.31)

whereΩ is the domain of the structure, VΩ(x) = ∫
Ωw(∥x − y∥/ℓc )dy normalizes the integral,

w is a weight function, and ℓc is a characteristic length.

Implicit Gradient Non-Local (Peerlings et al., 1996). The non-local equivalent strain is the

solution of the boundary value problem

ε̄eq − c ∇2ε̄eq = εeq, inΩ, (6.32)

∇ε̄eq ·n = 0, on ∂Ω, (6.33)

where c is homogeneous to a square length and can be related to the characteristic length ℓc ,

∂Ω is the boundary of the domainΩ, and n is the outward-pointing normal to the boundary.

Eikonal Integral Non-Local (Desmorat et al., 2015). The non-local equivalent strain is

expressed as

ε̄eq(x) = 1

VΩ

∫

Ω
w(ℓ(x , y)/ℓc )εeq(y)dy , (6.34)

where ℓ is an effective (Riemannian) distance influenced by the damage field, which verifies

an eikonal equation

∇ℓ(x , y) ·g−1 ·∇ℓ(x , y) = 1, ℓ(x , x) = 0, g−1 = 1−D, (6.35)

where g is an arbitrarily chosen symmetric second-order (metric) tensor, function of damage.

Rastiello et al. (2018) and Thierry (2021) discussed the numerical aspects associated with this

model.

Eikonal Gradient Non-Local (Desmorat et al., 2015). In this model, the non-local equiva-

lent strain is the solution of

ε̄eq − c
1√

detg
∇·

(√
detg g−1 ·∇ε̄eq

)
= εeq, inΩ, (6.36)

∇ε̄eq ·n = 0, on ∂Ω, (6.37)

where g is the metric and can be defined as proposed in Equation (6.35). A non-intrusive

implementation of this approach, based on a thermo-mechanical finite element solver,

has been proposed by Marconi (2022). This approach has also been further studied and

formalized by Ribeiro Nogueira et al. (2023).
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Localizing Gradient Non-Local (Poh & Sun, 2017). With this non-local model, the equiva-

lent strain is the solution of

ε̄eq − c ∇· (g (D) ·∇ε̄eq
)= εeq, inΩ, (6.38)

∇ε̄eq ·n = 0, on ∂Ω, (6.39)

where g is an interaction function of damage. The authors proposed to use

g (D) = (1−R)exp(−ηD)+R −exp(η)

1−exp(−η)
, (6.40)

where D is the damage in the isotropic case, and that could be set as a damage invariant, such

as tr(D), in the anisotropic case, η is a material parameter, and R is the parameter controlling

residual interactions when the material is fully damaged.

Stress-based Integral Non-Local (Giry et al., 2011). In this model, the non-local equivalent

strain is expressed as

ε̄eq(x) = 1

VΩ(x)

∫

Ω
w(∥x−y∥/ℓc )εeq(y)dy , w(∥x−y∥/ℓc ) = exp

(
−

(
2∥x − y∥

ℓcρ(x ,σ(y))

)2)
, (6.41)

where ρ is a scalar function of the stress quantifying the interactions.

Stress-based Gradient Non-Local (Vandoren & Simone, 2018). The non-local equivalent

strain verifies the boundary value problem

ε̄eq −∇· (c ·∇ε̄eq
)= εeq, inΩ, (6.42)

(c ·∇ε̄eq) ·n = 0, on ∂Ω, (6.43)

where c is called the symmetric anisotropic gradient matrix, which weights the contributions

to the Helmholtz equation of the different gradient terms. Vandoren and Simone (2018)

proposed a first expression for c based on the principal stress,

c = cσ = c

(
σ

ft

)2

, (6.44)

where ft = EC0 is the tensile strength, E is the Young modulus, and the square is applied to

the principal stresses (as in Equation (6.18)). In order to differentiate the behavior in tension

and compression, the authors also proposed to define the matrix c as

c = σ̄eq ft

max(σ1,σ2)
cσ, (6.45)

where σ̄eq is a non-local equivalent stress defined as σ̄eq = (1−D)E ε̄eq in the isotropic case,

σi is the i -th principle stress, and cσ is given by Equation (6.44). For this second choice of c,

the extension to anisotropic damage does not seem straightforward.
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{ Summary of the Chapter

In this chapter, the model is completed by proposing a preliminary (non-standard) damage

evolution model and discussing its extension for structure computations as a non-local

damage model.

The first step in the construction of the model is the analysis of the micro-cracking

initiation in the area elements. In particular, an efficient method is proposed to obtain the

yield surface of the discrete area element. Based on those results, the equivalent strain in the

damage criterion is shown to be a Drucker-Prager equivalent strain. This result may seem

surprising, but recall that the present work is dedicated to 2D.

Then, the damage evolution in the area elements is analyzed. In particular, the importance

of damage bi-axiality is emphasized: even in uni-axial loading cases the damage will be bi-

axial. Then, a non-standard damage evolution law is proposed. To ease the damage bounding,

two (parametrized) change of variables are studied. A consolidation function, being a linear

combination of damage invariants, is proposed. By fitting the damage evolution to a bitension

load case, both changes of variables are compared. Choosing a change of variable with a

non-monotonic derivative enables to better model the damage evolution during the diffuse

micro-cracking stage. The non-standard damage evolution law proposed in this work still

has to be extended, especially the damaging direction P.

Finally, with the aim of applying the model in structural simulations, non-local damage

is discussed. The classic models, with constant interactions, and more recent models, with

varying interactions, are presented and discussed. The application to structure is left for

future work.
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This work aimed at formulating an anisotropic damage model based on virtual tests per-

formed using a discrete model. A literature review in Chapter 1 presented the complex

macroscopic behavior observed in quasi-brittle materials, such as concrete, and the physical

mechanisms causing its degradation. In this work, we focused on the coupling between

elasticity and damage, by studying the impact of microcrack formation and coalescence on

the material behavior (and neglected certain phenomena such as crack closure effects). In

particular, the damage-induced anisotropy is one of the main focus.

Due to the complexity of conducting a representative experimental campaign, we decided

to perform a virtual testing campaign. To this end, we presented the beam-particle model in

Chapter 3, which explicitly represents micro-cracking and accurately describes its impact

on the macroscopic behavior of the material. We performed virtual experiments on area

elements by applying various complex loadings. In Chapter 4, the effective elasticity tensors

of the area elements were measured during those virtual experiments. The results have been

compiled into a dataset of 76 356 effective elasticity tensors (Loiseau et al., 2023b).

One of this thesis main focuses is the anisotropy induced by mechanical degradation. In

the Chapter 4, an analysis of the dataset, using distances to a symmetry class, shows that most

effective elasticity tensors are not isotropic. It means that micro-cracking indeed induces an

anisotropic behavior. Moreover, it is shown in Chapter 5 that an isotropic model completely

mispredicts the evolution of the stress tensor during a non-proportional loading. The analysis

of the dataset also suggested that a second-order tensor can be sufficient to represent the

state of micro-cracked area elements.

The next step was to formulate a model for the coupling between effective elasticity and

(anisotropic) damage. For this purpose, a reconstruction formula of an elasticity tensor from

its (tensorial) covariants is presented in Chapter 2. This formula is based on the harmonic

decomposition, which enables to represent an elasticity tensor E from its four harmonic

components: the shear modulus µ, the bulk modulus κ, the deviatoric part of the dilatation

tensor d′ and the harmonic part H. The idea to formulate the model consists in expressing

each effective harmonic component as a function of damage D. The corresponding definition

of damage coupled with the reconstruction formula explicitly gives back the exact expression

of both the effective bulk modulus κ̃ and the deviatoric part of the dilatation tensor d̃′ in

terms of damage D. To model the effective shear modulus µ̃, we chose to express it as a

linear combination of damage invariants. Different assumptions are taken to determine the

coefficients introduced in this expression, being potential model parameters, as function

of the known initial elastic parameters. In particular, we assume that the rigidity loss stays

totally symmetric when the cracks do not interact (mostly during early damage). Thanks to
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those assumptions, an accurate model of the effective shear modulus µ̃ is obtained without

introducing any new model parameter. The modeling of the harmonic part has been a more

difficult task. Its dependency on damage is less obvious, and discrepancies are observed.

Still, a simple model could be obtained by applying a sparse and interpretable data-driven

technique (the sparse regression, called LASSO, with optimization constraints). This model

introduces one new parameter: the harmonic pre-factor h. Finally, the effective elasticity ten-

sor is then obtained by applying the reconstruction formula Ẽ(D) = Ẽ(µ̃(D), κ̃(D), d̃′(D),H̃(D)).

This coupling between elasticity and damage is then formalized into a thermodynamic state

potential.

To complete the model, we formulate, in Chapter 6, a model for the damage evolution

during the micro-cracking process. We first determined the yield surface of the discrete

area elements through an efficient method. Based on the homogeneity of the meso-scale

degradation criterion with respect to the loading amplitude, this method enables us to

determine one point of the yield surface with only one elastic resolution. By performing a

linear regression on the invariants of the measured yield strains, we showed that the damage

criterion of the area elements is —in the present case— a Drucker-Prager criterion. An

analysis of the damage evolution highlighted that the damage growth is multi-axial, even if

the load is purely uni-axial. To propose a non-standard damage evolution model, a change of

variable is first applied so as to bound damage and ease the evolution formulation. A change

of variable with a non-monotonic derivative, i.e. rate, is essential to capture the early damage

evolution correctly. A preliminary damage evolution model is then proposed and applied to

a bitension loading case. In the previsions of future applications of the proposed model to

structures, non-local damage models are briefly discussed. Moreover, non-local formulations

of the anisotropic damage model have been proposed.

Various extensions to this work are possible. The dataset could easily be extended in the

short term to cover the principal damage space better. In particular, using the parametrization

in Appendix E has enabled us to set a loading amplitude and to systematically discretize

the loading direction (as both orientation parameters belong in a closed space). Moreover,

generating another dataset, using another mesoscale model for virtual testing, and fitting the

proposed damage model to this new dataset would enable us to check whether the proposed

model is generic or specific to our dataset. The damage evolution model should also be

completed to predict damage evolution during proportional multi-axial loadings better. It

means determining the damage direction PD predicting (1) the ratio between the hydrostatic

and deviatoric parts and (2) the orientation of the damage tensor.

The modeling of damage evolution in non-proportional loading cases is also not much

discussed in this work. Indeed, it highly complexifies the evolution modeling problem,

requiring accounting for the crack closure effect. From the virtual testing point of view,

contact and friction between particles can be enabled. Desmorat and Desmorat (2016)

showed that in a 2D isotropic medium, the effect of open and frictionless closed crack on

the effective elasticity tensor can be modeled by two second-order tensors. Their framework,

general in 2D, could be used to extend the model proposed in the present thesis, where only

open cracks were considered.
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Finally, another extension of this work is reproducing this study in a tri-dimensional

setting. In this case, the number of symmetry classes to study goes from 4 to 8. However, the

3D harmonic decomposition (Olive et al., 2017) could be used as a basis of the model. One of

the main difficulties is the growing number of independent harmonic components to model.

Indeed, in 2D, there are two invariants, one second-order and one fourth-order covariant.

In contrast, there are two invariants, two second-order covariants, and one fourth-order

covariant in the 3D case. Moreover, even if a generic method to compute the distance of an

elasticity tensor to symmetry classes has been proposed by Azzi et al. (2022), these methods

have yet to be applied to each of the eight symmetry classes in 3D. Finally, due to the increased

complexity of the 3D case, it might need to rely even more on interpretable data-driven tools.

Note that another approach, in the 3D case, could be to rely on an integrity basis of the couple

(ε,D) as done in the work of Taurines et al. (2022, 2023) to model a magneto-mechanical

coupling.

To conclude, this study illustrates the potential benefits of adopting sparse and inter-

pretable data-driven approaches for modeling. Their use, often overshadowed by more

popular “black box” deep learning approaches, enables us to systematically and efficiently

cover diverse possible models while accounting for physical constraints. Coupling sparse

data-driven approaches with adapted mathematical tools (decomposition, invariants, etc.)

simplifies the modeling process while efficiently using available data.
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A Calculation of Cundall’s best-fit strain

This appendix describe the calculation to obtain the average strain by Cundall’s best-fit

method. Let us recall that the average strain is defined as

ε= argmin
ε∗

∑
p∈P

(
∆up −ε∗∆x p

)T (
∆up −ε∗∆x p

)

︸ ︷︷ ︸
LSE(ε∗)

(46)

The minimization of LSE(ε∗) is obtained by finding a stationary point

∂LSE(ε)

∂ε
= 02 (47)

Let us start by developing the expression of the least-square error LSE

LSE(ε) =
∑

p∈P

(∆up −ε∆x p )T(∆up −ε∆x p ) (48)

⇐⇒ LSE(ε) =
∑

p∈P

(∆uT
p −∆xT

pε
T)(∆up −ε∆x p ) (49)

⇐⇒ LSE(ε) =
∑

p∈P

∆uT
p∆up −∆xT

pε
T
∆up −uT

pε∆x p +∆xT
pε

Tε∆x p (50)

Before deriving LSE with respect to the average strain ε, let us introduce derivation

formulas
∂aTXb

∂X
= abT,

∂aTXTb

∂X
= baT, and

∂aTXTXb

∂X
= XbaT +XabT. (51)

The derivation leads to
∂LSE(ε)

∂ε
=

∑
p∈P

(
02−∆up∆xT

p −∆up∆xT
p +2ε∆x p∆xT

p

)
(52)

⇐⇒ ∂Z

∂ε
= 2ε

∑
p∈P

(
∆x p∆xT

p

)
−2

∑
p∈P

(
∆up∆xT

p

)
(53)

The stationnary point is attained if this derivative is equal to zero 02. The average strain ε is

solution of the equation

2ε
∑

p∈P

(
∆x p∆xT

p

)
−2

∑
p∈P

(
∆up∆xT

p

)
= 0 ⇐⇒ ε=

( ∑
p∈P

∆up∆xT
p

)( ∑
p∈P

∆x p∆xT
p

)−1

(54)

Finally, Cundall’s average strain is obtained as

ε=
( ∑

p∈P

∆up∆xT
p

)( ∑
p∈P

∆x p∆xT
p

)−1

(55)
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B Symmetrization errors in the filtered dataset

In this section, the symmetrization errors (from Tables 4.3 to 4.5) have been computed after

filtering the dataset to remove the elasticity tensors that are negative definite. The new results

are reported in Tables 2 to 4

Percentage
Percentile of strain symmetrization error

Loading (1) Loading (2) Loading (3)

50% 0.0044% 0.0043% 0.0064%

90% 0.0401% 0.0271% 0.0404%

95% 0.0743% 0.0429% 0.0837%

99% 0.277% 0.0972% 0.197%

100% 2.15% 0.369% 3.41%

Table 2 • Percentiles of the strain symmetrization errors for each measurement loading in

the filtered dataset.

Percentage
Percentile of stress symmetrization error

Loading (1) Loading (2) Loading (3)

50% 0.0020% 0.0016% 0.0041%

90% 0.0137% 0.0080% 0.0310%

95% 0.0229% 0.0163% 0.0692%

99% 0.0784% 0.0511% 0.552%

100% 6.40% 0.893% 9.68%

Table 3 • Percentiles of the stress symmetrization errors for each measurement loading in the

filtered dataset.

Percentage Percentile of major symmetrization error

50% 1.33%

60% 2.03%

70% 3.04%

80% 4.59%

90% 6.75%

95% 8.12%

99% 9.59%

99.5% 9.78%

100% 9.99%

Table 4 • Percentiles of the major symmetrization errors for each measurement loading in

the filtered dataset.
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C Eigenvalues of the derivative vs. Derivative of the eigen-

value

In this Appendix, let us quickly show the difference between (i) the eigenvalues of the deriva-

tive of the effective elasticity tensor, and (ii) the derivative of the eigenvalues of the effective

elasticity tensor. This illustration is made with second-order tensor t of R2. Yet, it generalizes

to higher order tensors and higher dimensions.

Let us recall the polar decomposition of the second-order tensor t

t = 1

2
tr(t)1+ tvMr(θt), r(θt) =

[
cos(2θt) sin(2θt)

sin(2θt) −cos(2θt)

]
. (56)

Derivative of eigenvalues. Let us find the eigenvalues of t using the polar decomposition to

parametrize t. The eigenvalues of t are the roots of characteristic polynomial

det(t−λ1) =⇒ λ2 − tr(t)λ+ 1

4
tr(t)2 − t2

vM = 0. (57)

The eigenvalues are

T1 =
1

2
tr(t)+ tvM, T2 =

1

2
tr(t)− tvM. (58)

Their derivatives are

∂T1

∂t
= 1

2

∂ tr(t)

∂t
+ ∂tvM

∂t
,

∂T2

∂t
= 1

2

∂ tr(t)

∂t
− ∂tvM

∂t
. (59)

Eigenvalues of derivative. Let us now compute the eigenvalues of the derivative of t. Using

the polar decomposition, the derivative is

∂t

∂t
= 1

2

∂ tr(t)

∂t
1+ ∂

∂t
(tvMr(θt)) = 1

2

∂ tr(t)

∂t
1+ ∂tvM

∂t
r(θt)+ tvM

∂r(θt)

∂t
. (60)

Note that the expression is similar to the polar decomposition with an additional term

corresponding to the rotation of the deviatoric part. This rotation also induces a rotation of

the eigenbasis. At this point, we can already conclude that, in the general case,

(
∂t

∂t

)

1
= 1

2

∂ tr(t)

∂t
+ ∂tvM

∂t
+ f

(
tvM

∂r(θt)

∂t

)
,

(
∂t

∂t

)

2
= 1

2

∂ tr(t)

∂t
− ∂tvM

∂t
+ g

(
tvM

∂r(θt)

∂t

)
(61)

Conclusion. The derivative of the eigenvalues do not account for the variation due to the

rotation of the eigenbasis. It only accounts for the variations of amplitude.
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D Mazars-Drucker-Prager equivalent strain

−8 −6 −4 −2 0

·10−3

0

2

4

6

·10−3

Trace of the strain tr(ε)

M
az

ar
s

eq
u

iv
al

en
ts

tr
ai

n
p 〈ε

〉 +
:〈ε

〉 +

(a) All data points

−5 −4 −3 −2 −1 0 1

·10−4

0

1

2

3

4

·10−4

Trace of the strain tr(ε)
M

az
ar

s
eq

u
iv

al
en

ts
tr

ai
n
p 〈ε

〉 +
:〈ε

〉 +
(b) Focus around the origin

Figure 13 • Representation of the yield surface in the space of invariants corresponding to the

modified Mazars-Drucker-Prager equivalent strain (εeq =p〈ε〉+ : 〈ε〉++k tr(ε)).
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E Another parametrization of second-order tensors

In this appendix, we introduce a parametrization of symmetric second-order tensor in R2

and describe how it is derived from the polar decomposition.

Polar decomposition. First, the polar decomposition of a symmetric second-order tensor t
in R2 is (Verchery, 1982; Vannucci, 2005; Desmorat & Desmorat, 2015)

t = 1

2
tr(t)1+ tvMR(θ), R(θ) =

[
cos2θ sin2θ

sin2θ −cos2θ

]
(62)

where

tr(t) = t : 1, tvM =
√

1

2
t′ : t′, θ = 1

2
arctan

(
t ′12

t ′11

)
, (63)

are the polar components of the tensor t.

Hydrostatic proportion. This parametrization aims to separate the amplitude and the

direction of the tensor. First, we factor the norm of the tensor (which will become the

amplitude parameter)

t = ∥t∥
(

1

2

tr(t)

∥t∥ 1+ tvM

∥t∥ R(θ)

)
. (64)

The next step consists in highlighting that there is a triangular equality due to the orthogonal-

ity between the hydrostatic and deviatoric parts

∥t∥2 =
∥∥∥∥

1

2
tr(t)1

∥∥∥∥
2

+
∥∥t′

∥∥2 =⇒ ∥t∥2 = 1

2
tr(t)2 +2t 2

vM. (65)

Let us introduce the (signed) hydrostatic proportion Dm of t,

Dm = tr(t)p
2∥t∥

∈ [−1,1] (66)

which is an invariant of the tensor t. The hydrostatic proportion Dm directly relates to the

deviatoric proportion through Equation (65)

tvM = ∥t∥ 1p
2

√
1−D2

m (67)

By replacing in the polar decomposition Equation (62), we obtain

t = ∥t∥p
2

(
Dm1+

√
1−D2

mR(θ)

)
, (68)

where ∥t∥ is the norm of the strain tensor, Dm is the hydrostatic proportion, and θ is the

deviatoric angle.
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Interpretation of the hydrostatic proportion. Some specific values of the hydrostatic

proportion Dm are

• Dm =−1, when the tensor t is purely hydrostatic with a negative trace;

• Dm = 0, when the tensor t is purely deviatoric;

• Dm =+1, when the tensor t is purely hydrostatic with a positive trace.

×Remark .8 By setting Dm = cos(φh), we obtain

t = ∥t∥p
2

(
cos(φh)1+ sin(φh)R(θ)

)
. (69)

This decomposition can be qualified as “spherical” as the tensor is parametrized by an ampli-

tude ∥t∥ and two angles: the hydrostatic angle φh and the deviatoric angle θ. However, the

physical interpretation of φh is less direct.
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F Calculation of the damage multiplier

The damage multiplier λ̇ is obtained from the Kuhn-Tucker conditions (λ̇Ê 0, f É 0, λ̇ f = 0).

When the damage grows

ḟ = 0 =⇒ ε̇eq − Ċ (∆) = 0 =⇒ ε̇eq − ∆̇ :
∂C

∂∆
= 0. (70)

By replacing the (auxiliary) damage evolution ∆̇= λ̇P, we obtain

ε̇eq − λ̇P :
∂C

∂∆
= 0 =⇒ λ̇= ε̇eq

P : ∂C
∂∆

. (71)

In the proposed model, the consolidation is

C (∆) =C0 +S1 tr(∆)+ S2

2
∆′ :∆′ =⇒ ∂C

∂∆
= S11+S2∆

′. (72)

Thus, the multiplier is

λ̇= ε̇eq

P : (S11+S2∆
′)

=⇒ λ̇= ε̇eq

S1 tr(P)+S2P′ :∆′ (73)
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G MFront code for the proposed model

The MFront code for the model is composed of two files (provided below),

1. the model.mfront file containing the main parts of the model and the integrator

function,

2. the TFEL_loiseau.hxx file containing auxiliary functions.

With MFront installed and both files in the current directory, the model can be compiled for

the Cast3m using the command

mfront -I $PWD --obuild --interface=castem loiseau.mfront

The codes for both files are provided in the following listings. This version of the code

proposed here is working on the version 4.0 and 4.10 of MFront. It is now guaranteed to

work with other versions.

Listing 1 • model.mfront file

@DSL ImplicitII;

@Behaviour loiseau;

@ModellingHypothesis PlaneStrain ;

@Includes {
#include "TFEL_loiseau.hxx"
}

// Define pi
@Parameter pi = 3.141592653589793;

// Define the parameters
@MaterialProperty stress young;
young.setGlossaryName("YoungModulus");
@MaterialProperty real nu;
nu.setGlossaryName("PoissonRatio");
@MaterialProperty real h;
@MaterialProperty real k;
@MaterialProperty real C0;
@MaterialProperty real alpha;
@MaterialProperty real S1;
@MaterialProperty real S2;
@MaterialProperty real gamma;

// Define the state variables
@StateVariable stensor <2u,real > HD;

// Define damage
@AuxiliaryStateVariable stensor <2u,real > Da;

// Define initial elastic properties as local variables
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@LocalVariable stress mu0;
@LocalVariable stress ka0;

// Define invariants and covariants
@LocalVariable stress mu;
@LocalVariable stress ka;
@LocalVariable stensor <2u,real > dp;
@LocalVariable st2tost2 <2u,real > H;
@LocalVariable st2tost2 <2u,real > E;
@LocalVariable st2tost2 <2u,real > E0;
@LocalVariable st2tost2 <2u,real > E0_inv;

// Define constant local variables
@LocalVariable stensor <2u,real > I2;
@LocalVariable st2tost2 <2u,real > I4;
@LocalVariable st2tost2 <2u,real > I2xI2;
@LocalVariable st2tost2 <2u,real > J4;

@InitializeLocalVariables{
// Define tensorial constants
I2(0) = 1.;
I2(1) = 1.;
I2(2) = 0.;
I2(3) = 0.;
I2xI2 = I2^I2;
I4(0,0) = 1.;
I4(1,1) = 1.;
I4(3,3) = 1.;
J4 = I4 - 1./2. * I2xI2;
// Store initial elasticity properties
mu0 = young /(2.*(1.+ nu));
ka0 = young /(2.*(1. -nu));
// Store initial invariants and covariants
E0 = 2.*mu0*J4 + ka0*I2xI2;
E0_inv = 1./(2.* mu0)*J4 + 1./(4* ka0)*I2xI2;
// Compute deviatoric part of damage
const auto Da_dev = tfel::math:: extensions ::dev(Da, I2);
// Compute damage invariants
const auto I1_Da = Da|I2;
const auto I2_Da = Da|Da;
// Update the bulk modulus
ka = tfel::math:: extensions ::ka(ka0 , I1_Da);
// Update the shear modulus
mu = tfel::math:: extensions ::mu(mu0 , ka0 , I1_Da , I2_Da);
// Update the dilatation tensor
dp = tfel::math:: extensions ::dp(ka0 , Da_dev);
// Update the harmonic tensor
H = tfel::math:: extensions ::H(h, I1_Da , Da_dev , J4);
// Update the elasticity tensor
E = 2.*mu*J4 + ka*I2xI2 + (1./2.) *((I2^dp) + (dp^I2)) + H;

}

@PredictionOperator{
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// Set the effective elasticity tensor as the prediction operator
Dt = E;

}

@Predictor{
sig = E*eval(eto+deto);

}

@Integrator{
// Compute equivalents strain at previous load step (n-1)
const real eto_eq_nm1 = tfel::math:: extensions ::epseq(eto , k, I2);
// Compute equivalent strain at current load step (n)
const stensor <2u,real > eto_n = eval(eto+deto);
const real eto_eq_n = tfel::math:: extensions ::epseq(eto_n , k, I2);
// Compute H(D) and its invariants at previous load step (n-1)
const stensor <2u,real > HD_nm1 = HD;
const stensor <2u,real > HD_dev_nm1 =

tfel::math:: extensions ::dev(HD_nm1 , I2);
// Compute H(D) and its invariants at previous load step (1)
const stensor <2u,real > HD_n = eval(HD + dHD);
const stensor <2u,real > HD_dev_n =

tfel::math:: extensions ::dev(HD_n , I2);
// Compute consolidation function
const real C1_nm1 = S1*( HD_nm1|I2) + 1./2.* S2*( HD_dev_nm1|
HD_dev_nm1);
// Compute the damage residual
if (eto_eq_n - (C0 + C1_nm1) > 0) {

// Increment of equivalent strain
const real d_eto_eq = eto_eq_n - eto_eq_nm1;
// Compute the denimator for the model
const stensor <2u,real > dCdHD = S1*I2 + S2*HD_dev_n;
// Compute the damage direction
stensor <2u,real > p_HD_n = positive_part(eto_n);
// Normalize the damaging direction
p_HD_n /= sqrt(p_HD_n|p_HD_n);
// Compute the Lagrange multiplier increment
const auto dl = d_eto_eq / (p_HD_n|dCdHD);
// Compute damage increment (from the model)
const auto dHD_mod = dl * p_HD_n;
// Residual associated to HD
fHD -= dHD_mod;

}
}

@UpdateAuxiliaryStateVariables{
// Update damage damage
Da = tfel::math:: extensions :: compute_damage(HD, alpha);

}

@ComputeFinalStress{
// Compute deviatoric part of damage
const auto Da_dev = tfel::math:: extensions ::dev(Da, I2);
// Compute damage invariants
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const auto I1_Da = Da|I2;
const auto I2_Da = Da|Da;
// Update the bulk modulus
ka = tfel::math:: extensions ::ka(ka0 , I1_Da);
// Update the shear modulus
mu = tfel::math:: extensions ::mu(mu0 , ka0 , I1_Da , I2_Da);
// Update the dilatation tensor
dp = tfel::math:: extensions ::dp(ka0 , Da_dev);
// Update the harmonic tensor
H = tfel::math:: extensions ::H(h, I1_Da , Da_dev , J4);
// Update the elasticity tensor
E = 2.*mu*J4 + ka*I2xI2 + (1./2.) *((I2^dp) + (dp^I2)) + H;
// Compute the stress
sig = E*eto;

}

@TangentOperator{
// This should be L in dsig/dt=L:deps/dt
Dt = E;

}

Listing 2 • TFEL_loiseau.hxx file

#ifndef LOISEAU_TFEL
#define LOISEAU_TFEL 1

namespace tfel::math:: extensions {
/**
* Compute the deviatoric part of a second order tensor.
*/

template <typename real >
stensor <2u, real > dev(const stensor <2u, real > &T,

const stensor <2u, real > &I2) {
return T - 1. / 2. * (T | I2) * I2;

}

/**
* Compute damage.
*/

template <typename real >
stensor <2u, real > compute_damage(const stensor <2u, real > &HD ,

const real &alpha) {
// Make a local copy of HD
stensor <2u, real > ls(HD);
// Declare and compute eigenvalues and eigenvectors
tvector <3u, real > vp;
tmatrix <3u, 3u, real > m;
ls.computeEigenVectors(vp, m);
// Compute eigentensors
stensor <2u, real > n0 , n1, n2;
stensor <2u, real >:: computeEigenTensors(n0 , n1 , n2, m);
// Add terms associated to each eigenvalues
real pi = 3.141592653589793;
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stensor <2u, real > func_HD = 2./pi*atan(pow(vp(0), alpha))*n0 +
2./pi*atan(pow(vp(1), alpha))*n1 +
2./pi*atan(pow(vp(2), alpha))*n2;

// // Uncomment to use the change of variable based on Ladeveze
// stensor <2u,real > func_HD = (1.-pow (1.+vp(0), -alpha)) * n0 +
// (1.-pow (1.+vp(1), -alpha)) * n1 +
// (1.-pow (1.+vp(2), -alpha)) * n2;
// Return the tensor
return func_HD;

}

/**
* Compute the bulk modulus.
*/

template <typename real > real ka(const real &ka0 ,
const real &I1_Da) {

return ka0 * (1. - 1. / 2. * I1_Da);
}

/**
* Compute the shear modulus.
*/

template <typename real >
real mu(const real &mu0 ,

const real &ka0 ,
const real &I1_Da ,
const real &I2_Da) {

return mu0 - 1./4.* ka0*I1_Da + 1./4.*(ka0 -2.* mu0)*I2_Da;
}

/**
* Compute the deviatoric part of the dilatation tensor.
*/

template <typename real >
stensor <2u, real > dp(const real &ka0 ,

const stensor <2u, real > &Da_dev) {
return -2.*ka0*Da_dev;

}

/**
* Compute the harmonic part.
*/

template <typename real >
st2tost2 <2u, real > H(const real &h, const real &I1_Da ,

const stensor <2u, real > &Da_dev ,
const st2tost2 <2u, real > &J4) {

return h*pow(I1_Da , 4.) *
(( Da_dev ^ Da_dev) - 1./2.*( Da_dev | Da_dev)*J4);

}

/**
* Compute Drucker -Prager equivalent strain.
*/
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template <typename real >
real epseq(const stensor <2u, real > &eps ,

const real &k,
const stensor <2u, real > &I2) {

// Compute the deviatoric part of the tensor
const auto eps_dev = dev(eps , I2);
// Compute von Mises equivalent strain
const auto eps_vM = sqrt (2. * (eps_dev | eps_dev));
// Compute and return Drucker -Prager equivalent strain
return eps_vM + k * (eps | I2);

}
} // namespace tfel::math:: extensions
#endif /* LOISEAU_TFEL */
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H Procedure employed to fit the model

Model parameters are identified through a parametric study. The elastic parameters are

set before the identification process. The other parameters are sampled using the Latin

Hypercube Sampling method (McKay et al., 1979). The parameter space being sampled is

C0 ∈ [10−6,10−4], k ∈ [0.1,4], α ∈ [0.1,10], S1 ∈ [10−5,10−3], S2 ∈ [10−5,10−3].

(74)

Those intervals are the lower and upper bounds to fit the proposed model. Depending on

the modeling choices, they have been refined during the fitting process (mainly to ensure

the convergence of the non-linear solver). Also note that the parameters C0, S1, and S2

are sampled with a logarithmic scale. Finally, this parameter space has been sampled with

216 = 65 536 points, i.e. parameter sets.

Using the MTest utility from MFront, the reference loading cases (bitension, tension,

and shear) are applied to a material point for each parameter set. The stress and damage

responses predicted with the model are then compared to the results from the reference

beam-particle simulations. The error is quantified between the stress and damage evolutions

with

eσ =
∑Nt

k=1 ∥σk
model −σk

ref∥∑Nt
k=1 ∥σk

ref∥
, eD =

∑Nt
k=1 ∥Dk

model −Dk
ref∥∑Nt

k=1 ∥Dk
ref∥

(75)

where Nt = 100 is the number of load steps, •k is the tensor (σ or D) at load step k. The set of

parameters with the smallest errors are chosen as the best fitting results.
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I Extended abstract in French

I.1 Contexte général

L’un des principaux défis actuels est d’assurer une production et une utilisation durables

de l’énergie et des matériaux. Ce défi rend nécessaire la recherche sur les matériaux, afin

d’assurer leur utilisation durable dans les structures tout en garantissant qu’ils remplissent

leur fonction au fil du temps. Cette thèse se concentre sur l’étude des matériaux quasi-fragiles,

tels que le béton, les céramiques ou encore la glace. Ces matériaux sont largement utilisés

dans divers domaines tels que les infrastructures, le transport et l’énergie. En particulier,

le béton est le matériau le plus utilisé au monde. Selon le rapport de Chatham House, la

production de ciment est responsable d’environ 8% des émissions mondiales de CO2 (Lehne

& Preston, 2018). Il est donc nécessaire d’employer ces matériaux de manière plus efficace

(par exemple, en réduisant les marges de sécurité dans la conception des structures) afin de

réduire leur utilisation et l’impact de leur production.

Il est donc essentiel de comprendre comment un matériau se comporte au cours de

son cycle de vie. Pour atteindre cet objectif, il faut décrire avec précision le comportement

(complexe) des matériaux quasi-fragiles jusqu’à leur rupture. En particulier, quand il est

soumis à diverses charges (mécaniques, thermiques, etc.), l’état du matériau peut changer et

ainsi dégrader ses propriétés mécaniques. En fonction de ce changement, la capacité de la

structure à remplir sa fonction peut être compromise, mettant potentiellement en danger des

vies humaines ainsi l’équipement. La dégradation mécanique des matériaux quasi-fragiles,

généralement due à la nucléation de microfissures, a une forte influence sur leur comporte-

ment mécanique. Elle entraîne notamment une perte de rigidité et, potentiellement, des

variations des propriétés du matériau en fonction de son orientation. Une telle dégradation

se produit lorsque le matériau est soumis à des chargements mécaniques élevées. La prise en

compte de ce changement de comportement est de la plus haute importance pour réaliser

des simulations précises et ainsi pouvoir faire un conception efficace des structures.

I.2 Approche scientifique

Cette thèse vise à modéliser la dégradation, c’est-à-dire la microfissuration, des matériaux

quasi-fragiles. La première étape consiste à rassembler des données de référence sur le

comportement des matériaux quasi-fragiles. Les données recueillies doivent ensuite être

analysées afin d’identifier les différents phénomènes qui se produisent au cours de la dégra-

dation. À partir d’un tel ensemble de données, un modèle mathématique de leur dégradation

peut être développé. Cette dernière tâche est généralement divisée en deux sous-tâches : (1)

modéliser comment la dégradation affecte le comportement du matériau, et (2) modéliser

quand et comment la dégradation évolue lorsqu’une chargement mécanique est appliqué.

Pour formuler un modèle d’endommagement multiaxial, il faut d’abord recueillir des

données sur la dégradation du matériau. Il s’agit de comprendre comment la dégradation

évolue dans le temps et affecte le comportement du matériau sous différentes charges multi-

axiales et non proportionnelles. Ce processus nécessite une mesure précise de l’évolution des

propriétés élastiques effectives au cours de chaque chargement. En outre, chaque expérience
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doit être répétée suffisamment pour obtenir un nombre de résultats statistiquement signifi-

catif. Cependant, il serait difficile, voire impossible, de mener une campagne expérimentale

d’une telle ampleur. En effet, il faudrait réaliser des essais de caractérisation des matériaux

très précis sur un nombre important d’échantillons, dont certains fortement endommagés.

C’est pourquoi ce travail utilise les essais virtuels comme une approche alternative et com-

plémentaire aux expériences. Les essais virtuels consistent à utiliser un modèle, estimé

suffisamment précis, donnant réponse du matériau à une méso-échelle pour simuler et

étudier son comportement macroscopique. Dans ce travail, le modèle à méso-échelle choisi

est un modèle discret beam-particle qui fournit une représentation explicite de la microfis-

suration. En outre, il prend en compte de manière précise l’impact des microfissures sur le

comportement macroscopique du matériau. Cependant, nous avons choisi de négliger l’effet

de fermeture des fissures pour cette étude. Les résultats des essais virtuels en 2D serviront à

constituer un ensemble de données de tenseurs d’élasticité effective bidimensionnels. Cet

ensemble de données sera notre référence pour formuler le modèle d’endommagement

multiaxial.

Cette thèse porte une attention particulière à l’analyse rigoureuse de l’anisotropie induite

par la microfissuration. En mécanique de l’endommagement, ce phénomène est appelé

anisotropie induite par l’endommagement (damaged-induced anisotropy). Pour étudier

cette dernière, des notions mathématiques liées aux symétries des matériaux en 2D sont

rappelées et utilisées. En particulier, la distance d’un tenseur d’élasticité aux différentes

classes de symétrie sont utilisées pour justifier la nécessité de modèles d’endommagement

anisotrope. La notion d’invariants et de covariants (une généralisation tensorielle des invari-

ants) est également utilisée pour analyser les tenseurs sans référence à une base particulière.

Après ces premières analyses, nous visons à formuler un modèle qui rend compte de la

manière dont la microfissuration affecte le tenseur d’élasticité effectif en 2D. Nous nous

appuyons sur une formule de reconstruction tensorielle (équivariante) pour les tenseurs

d’élasticité afin de simplifier le processus de modélisation. Cette formule donne une ex-

pression du tenseur d’élasticité à partir de ses invariants et covariants (tensoriels), aussi

appelés composantes harmoniques. La principale idée pour la formulation du modèle con-

siste à modéliser les composantes harmoniques en fonction de l’endommagement, puis à

utiliser la formule de reconstruction pour obtenir le tenseur d’élasticité effectif comme une

fonction de l’endommagement. Sur la base de la formule de reconstruction, des travaux an-

térieurs ont introduit une variable d’endommagement (tensorielle), un covariant du tenseur

d’élasticité effectif, pour représenter l’état de dégradation du matériau. Elle a la particularité

d’offrir des expressions explicites pour deux (sur quatre) des composantes harmoniques

comme des fonctions de la variable d’endommagement. Les composantes harmoniques

restantes sont modélisées sur la base de l’ensemble de données de référence. En particulier,

une approche parsimonieuse et interprétable est employée pour formuler l’une des parties

du modèle. Pour compléter le modèle, nous devons modéliser l’évolution de la dégrada-

tion, c’est-à-dire de l’endommagement, lorsqu’un chargement mécanique est appliqué au

matériau. Tout d’abord, nous devons établir un critère permettant d’identifier le moment

où l’endommagement se produit, sur la base des données issues de simulations discrètes.

Ensuite, nous formulerons un modèle d’évolution préliminaire de l’endommagement pour

décrire la façon dont la dégradation évolue au cours d’un chargement mécanique.

154



I. Extended abstract in French

En résumé, cette étude propose d’utiliser une approche basée sur des essais virtuels pour

formuler un modèle de d’endommagement anisotrope pour les matériaux quasi-fragiles.

Les expériences virtuelles sont réalisées en simulant des éléments de surface à l’aide d’un

modèle discret beam-particle. Les résultats de ces simulations, c’est-à-dire les évolutions

des tenseurs d’élasticité effectifs des éléments de surface, sont stockées dans un ensemble

de données. En analysant ces résultats, nous mettons en évidence la nécessité d’un modèle

d’endommagement anisotrope pour décrire leur comportement. L’ensemble de données sert

ensuite de référence pour la formulation du modèle d’endommagement anisotrope. Tout

d’abord, l’impact de l’endommagement, i.e. micro-fissuration, sur le tenseur d’élasticité

effectif est modélisé, ce qui conduit à la formulation du potentiel d’état. Ensuite, une loi

d’évolution de l’endommagement (non standard) est proposée pour compléter le modèle.

L’endommagement non-local est ensuite discuté pour introduire l’application du modèle à

la simulation de structures.

I.3 Organisation de la thèse

Cette thèse est organisée en deux parties. La première partie, constituée des chapitres 1, 2 et

3, est principalement consacrée à l’analyse des travaux existants dans la littérature. Elle situe

ce travail dans le contexte de la littérature existante, justifie la méthodologie de recherche

et introduit les notions et les outils (existants) utilisés dans la deuxième partie. La seconde

partie, constituée des chapitres 4, 5 et 6, est dédiée aux principales contributions de ce travail:

la génération de l’ensemble de donnée de référence, la formulation du modèle d’état et la

formulation d’une loi d’évolution préliminaire.

I.4 Principaux résultats et conclusions

Le chapitre 1 présente les observations expérimentales sur les matériaux quasi fragiles

pour justifier leur étude et le besoin de les modéliser. Les résultats expérimentaux d’essais

mécaniques sur des matériaux quasi fragiles montrent différents phénomènes : perte de

rigidité, anisotropie induite par l’endommagement et effets de fermeture des fissures. Ces

phénomènes sont tous expliqués par la nucléation et la croissance de microfissures. Pour

modéliser les matériaux quasi-fragiles, on distingue deux types de modèles dans ce travail :

les modèles discrets et les modèles continus. Les modèles discrets sont également subdivisés

en trois sous-types : les modèles particulaires, les modèles treillis (lattice) et les modèles

hybrides. Ils fournissent une représentation précise de la rupture des matériaux quasi fragiles

en tenant compte explicitement de la microfissuration. Toutefois, leur coût de calcul limite

leur utilisation pour modéliser des structures entières. Les modèles d’endommagement con-

tinus offrent une vue homogénéisée (à l’échelle macroscopique) des effets de la dégradation

(à l’échelle mésoscopique). Ce point de vue homogénéisé permet, entre autre, de simuler

des structure à moindre coût. Pour finir, ce chapitre présente aussi la formulation de modèle

d’endommagement. Après avoir choisi une variable d’état pour décrire l’état du matériau,

un modèle d’endommagement continu se compose de trois ingrédients principaux : un

potentiel d’état, une fonction de critère d’endommagement et une loi d’évolution. Différents

modèles d’endommagement issus de la littérature sont aussi présentés de ce chapitre.
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L’objectif du chapitre 2 est de présenter les différents outils mathématiques utilisés dans

la formulation du modèle. Dans un premier temps, des définitions fondamentales pour

ce travail (tenseur d’élasticité, strate de symétrie, invariant, covariant, ...) ainsi que leurs

interprétations sont données. Ensuite, la décomposition harmonique est introduite. Sur cette

base, deux formules différentes de reconstruction du tenseur d’élasticité sont rappelées : une

pour un tenseur d’élasticité génériques et une pour les tenseurs orthotropes. Ces décom-

positions serviront de base pour la formulation du modèle d’endommagement. D’autres

outils mathématiques sont aussi introduits : les distances à l’isotropie et à l’orthotropie,

ainsi qu’une borne supérieure de la distance à l’orthotropie. Ces distances permettent de

vérifier dans quelle strate de symétrie se trouve un tenseur d’élasticité et sont utilisées dans

les chapitres suivants pour la modélisation.

Une fois tous les outils fondamentaux présentés, l’étape suivante consiste à générer

l’ensemble de données de référence pour la constitution du modèle. Cet ensemble de

données doit contenir des évolutions du tenseur d’élasticité effectif d’éléments d’aire quasi-

fragiles soumis à différent chargements mécaniques. Le chapitre 3 introduit le modèle discret

beam-particle et montre comment obtenir les propriétés élastiques effectives d’éléments

d’aire microfissurés dans le modèle discret. Après une présentation du modèle beam-particle,

une brève introduction à l’homogénéisation est fournie. Sur cette base, une procédure de

mesure des tenseurs d’élasticité effective d’éléments d’aire carrés, éventuellement micro-

fissurés, est proposée. La procédure consiste à appliquer trois chargements élastiques in-

dépendants, aussi appelés chargements de mesure, à l’élément d’aire. Différents choix de

chargements de mesure (conditions aux limites cinématiquement uniformes, périodiques,

ou statiquement uniformes) sont comparés et les conditions aux limites périodiques sont

retenues. Après avoir comparé différentes méthodes de calcul des déformations et con-

traintes moyennes, la déformation moyenne est calculée à l’aide de la méthode de Bagi (1996)

et la contrainte moyenne à l’aide de la méthode de Drescher and de Josselin de Jong (1972).

En utilisant les déformations et les contraintes moyennes des trois charges de mesure, le

tenseur d’élasticité effectif est calculé. Un algorithme et une illustration schématique d’une

mesure du tenseur d’élasticité à partir du modèle discret sont proposés pour résumer la

procédure en Section 3.5.

Le chapitre 4 a pour but de générer un ensemble de données de tenseurs d’élasticité

effective et de l’analyser. En soumettant un élément d’aire à 21 chargements multiaxiaux

(proportionnels et non proportionnels) et en appliquant la procédure de mesure proposé

au chapitre précédent, un ensemble de 76 756 tenseurs d’élasticité effectifs a été constitué.

Ces données nous serviront de référence dans les chapitres suivants. Après avoir illustré

son contenu, nous avons montré que certaines erreurs de symétrisation dans la procédure

de mesure ne sont pas négligeables, ce qui indique qu’un tenseur d’élasticité ne peut pas

représenter exactement l’échantillon microfissuré. En particulier, un milieu de Cauchy n’est

peut-être pas suffisant pour décrire le milieu micro-fissuré. Liées à ces erreurs, nous avons

montré que certains tenseurs mesurés ont des valeurs propres négatives. Nous avons fait le

choix de retirer ces tenseurs de l’ensemble de données pour la suite. Quelques incohérences

sont également présentes dans l’évolution des tenseurs d’élasticité effective, car une minorité

d’incréments sont définis positifs. Ces données ne sont pas filtrées mais nous imposerons

une croissance de l’endommagement dans le modèle d’évolution de l’endommagement pour
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garantir le respect du second principe. Le calcul de la distance des tenseurs à l’isotropie

et à l’orthotropie fournit d’autres résultats essentiels. Tout d’abord, le tenseur d’élasticité

effectif des éléments d’aire étudiés est isotrope quand ils ne sont pas micro-fissurés. Ensuite,

la distance à l’isotropie devient significative pour une grande partie des tenseurs effectifs

(endommagés). Ainsi, la plupart des tenseurs d’élasticité effectifs s’écartent de l’isotropie

lorsque les microfissures apparaissent. Cela confirme que l’endommagement induit une

anisotropie du comportement effectif. De plus, la plupart des tenseurs d’élasticité effective

restent proches de l’orthotropie pendant le processus de dégradation. Cette observation

justifie la nécessité d’une variable d’endommagement anisotrope (tensorielle), et plus pré-

cisément d’une variable orthotrope (tensorielle du second ordre). De plus, cela signifie que la

reconstruction orthotropique par covariants, présentée dans la Section 2.2, peut être utilisée

pour modéliser les tenseurs d’élasticité effectifs.

Le chapitre 5 vise à développer un modèle d’état tenant compte de l’endommagement

anisotrope dans le matériau, c’est-à-dire un modèle du couplage entre l’endommagement

anisotrope et l’élasticité effective. Pour ce faire, nous avons utilisé la reconstruction or-

thotrope du tenseur d’élasticité effectif (à partir de covariants) basée sur la décomposi-

tion harmonique pour faciliter la formulation. Ainsi, le problème de modélisation passe

de la formulation de l’ensemble des composantes indépendentes du tenseur d’élasticité

en fonction de l’endommagement à celle de ses composantes harmoniques (invariants et

covariants). Tout d’abord, la variable d’endommagement est introduite pour représenter

la microfissuration. Elle est basée sur le tenseur de dilatation, un covariant du tenseur

d’élasticité effectif. La variable d’endommagement est alors elle-même un covariant du

tenseur d’élasticité effectif. Ce choix de la variable d’endommagement nous permet de

modéliser exactement deux composantes harmoniques (sur quatre) : le module de com-

pressibilité κ et la partie déviatorique du tenseur de dilatation d′. La suite de ce chapitre

consiste alors à modéliser en fonction de l’endommagement les deux composantes har-

moniques restantes: le module de cisaillement µ et la partie harmonique H. En analysant

l’ensemble de données, nous avons proposé un modèle pour le module de cisaillement µ

effectif en fonction de l’endommagement. Ce modèle introduit un paramètre optionnel, le

paramètre de couplage cisaillement-endommagement non linéaire m. Pour modéliser la

partie harmonique, une analyse des données montrent que la partie harmonique peut-être

modéliser en fonction de l’endommagement. Cependant, la relation entre les deux est com-

plexes à determiner. Pour résoudre ce problème, nous avons choisit de représenter cette

relation par un polynôme générique d’invariants de l’endommagement. Afin d’identifier (et

filtrer) les nombreux paramètres de ce modèle, nous avons appliqué une régression parsi-

monieuse (sparse regression). Cette regression parsimonieuse permet d’automatiquement

rendre nul les coefficients non-nécessaires au modèle. Après régression, le modèle proposé

pour la partie harmonique introduit seulement un paramètre, le pré-facteur harmonique

h. Avant de conclure ce chapitre, le modèle de tenseur d’élasticité effectif est évalué par

comparaison avec l’ensemble de données. Il en ressort que le modèle proposé permet de

prédire de manière satisfaisante les tenseurs d’élasticité effectifs de l’ensemble de données.

Indirectement, ces résultats montrent qu’un tenseur d’endommagement du second ordre

est suffisant pour représenter l’impact de la microfissuration sur l’élasticité effective pour

l’ensemble de données considéré. La nécessité de prendre en compte l’anisotropie induite
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par l’endommagement dans le modèle est également soulignée. En effet, on montre que

la prédiction des contraintes (en connaissant la déformation et l’endommagement) par un

modèle isotrope peut être très éloignée de la référence contrairement à la contrainte prédite

avec le modèle anisotrope proposé.

Dans le chapitre 6, le modèle est complété en proposant une loi d’évolution (prélimi-

naire) non-standard de l’endommagement. La première étape de la construction du mod-

èle est l’analyse de l’initiation de la microfissuration dans les éléments d’aire. En partic-

ulier, une méthode efficace est proposée pour obtenir la surface d’élasticité de l’élément

d’aire discret. En appliquant cette méthode, on détermine que la déformation équivalente

dans le critère d’endommagement peut être modélisée par la déformation équivalente de

Drucker-Prager. Ce résultat peut sembler surprenant, mais rappelons que le présent tra-

vail est consacré aux cas 2D. Ensuite, l’évolution de l’endommagement dans les éléments

d’aire est analysée. En particulier, l’importance de la bi-axialité de l’endommagement est

soulignée : même dans les cas de chargement uni-axial, l’endommagement sera bi-axial. Une

loi d’évolution de l’endommagement non standard est ensuite proposée. Pour faciliter la lim-

itation de l’endommagement, l’évolution est formulée sur une variable d’endommagement

auxilaire. Cette technique permet de borner l’endommagement simplement et de faciliter

la formulation du modèle d’évolution. Deux variables d’endommagement auxiliaires sont

proposées. De plus, une fonction de consolidation, formulée comme une combinaison

linéaire d’invariants de l’endommagement, est proposée. En indentifiant la loi d’évolution

de l’endommagement à un cas de chargement en bitension, les deux choix de variables

auxiliaires sont comparés. Le choix d’un changement de variable avec une dérivée non

monotone permet de mieux modéliser l’évolution de l’endommagement pendant la phase de

microfissuration diffuse. En effet, le taux d’endommagement des lois classiques est générale-

ment haut en début d’endommagement puis décroit. La variable auxiliaire proposée dans ce

travail permet d’avoir un taux d’endommagement d’abord faible (correspondant à la phase

de microfissuration diffuse), puis qui augmente durant la coalescence et qui diminue pour

que les endommagement principaux atteignent asymptotiquement 1. Cependant, la loi

d’évolution non standard proposée dans ce travail doit encore être étendue, en particulier la

direction d’endommagement P. Enfin, dans le but d’appliquer le modèle à des simulations

structurelles, l’endommagement non local est abordé. Les modèles classiques, avec des

interactions constantes, et les modèles plus récents, avec des interactions variables, sont

présentés et discutés. L’application à la simulation de structures est laissée pour des travaux

futurs.
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