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Jo, les requins du CSU, messieurs Hugon, et les autres. Merci pour les bons délires
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le reste de la famille pour leur important soutient et les moments de repos et de
ressourcement passés en leur compagnie.

Antoine





Contents

Contents vii

List of Symbols 1

Introduction 5

1 Electromagnetic fields modeling 9
1.1 Nature and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Physics of the electromagnetic fields . . . . . . . . . . . . . . . . . . 10
1.1.2 Type of fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Fields derivatives, Stokes theorem and global properties . . . . . . 19

1.2 Usual formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Usual boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 H-conforming formulations . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.3 B-conforming formulations . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.4 Other formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Weak formulations and numerical modeling . . . . . . . . . . . . . . . . . 31
1.3.1 Weak formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Spatial discretization with Whitney finite elements . . . . . . . . . 34
1.3.3 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.4 Resolution of nonlinear problem . . . . . . . . . . . . . . . . . . . . 39
1.3.5 Discrete h-φ formulation . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3.6 Discrete B-conforming formulation . . . . . . . . . . . . . . . . . . 43

1.4 Example and motivation for multiscale methods . . . . . . . . . . . . . . . 46
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Multiscale modeling 53
2.1 Usual heterogeneous media and multiscale methods . . . . . . . . . . . . 53

vii



Contents

2.1.1 Heterogeneous materials . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.2 Homogenization and multiscale methods . . . . . . . . . . . . . . . 57

2.2 Study of the scale transition relation . . . . . . . . . . . . . . . . . . . . . . 67
2.2.1 Scale transition from free space to matter . . . . . . . . . . . . . . . 68
2.2.2 On the scale transition between different matter scales . . . . . . . 72
2.2.3 The scale transition relation selected for this work . . . . . . . . . . 81

2.3 Derivation of the two scale magnetoquasistatic equations . . . . . . . . . . 86
2.3.1 Macroscopic homogenized law . . . . . . . . . . . . . . . . . . . . . 86
2.3.2 Modeling of the cell fields . . . . . . . . . . . . . . . . . . . . . . . . 89
2.3.3 Derivation of the B-conforming discretized formulation . . . . . . 96
2.3.4 Derivation of the H-conforming discretized formulation . . . . . . 99

2.4 Upscaling the electromagnetic fields . . . . . . . . . . . . . . . . . . . . . . 101
2.4.1 Strength fields upscaling . . . . . . . . . . . . . . . . . . . . . . . . 101
2.4.2 Flux fields upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3 Numerical validation 111
3.1 Cell problem validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.1.1 Chained cell problems methodology . . . . . . . . . . . . . . . . . . 114
3.1.2 Accuracy of the solutions of the cell problem . . . . . . . . . . . . . 115
3.1.3 Sensitivity to the discretization and the choice of upscaling method 121
3.1.4 Parametric study of the validity of the magnetic field strength

upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2 Multiscale validation on magnetoquasistatic 3D problems . . . . . . . . . 127

3.2.1 Transient linear results . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2.2 Transient nonlinear results . . . . . . . . . . . . . . . . . . . . . . . 134
3.2.3 Accuracy convergence of the multiscale method . . . . . . . . . . . 140
3.2.4 Extrapolation of the results beyond FEM capabilities . . . . . . . . 145
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

General conclusions 149

Bibliography 153

A Appendix 167
A.1 Electromagnetism quantities and their SI unit. . . . . . . . . . . . . . . . . 167
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h (bold) vector or tensor fields
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Introduction

Electricity is massively used as an energy vector thanks to the very high efficiency
involved in its conversions as well as its easy transport and distribution. Using the
electric energy involves energy conversion systems such as electrical generators, motors,
transformers and actuators. In these devices, the losses of energy are mainly of elec-
tromagnetic origin. They occur in particular in heterogeneous materials and structures,
such as the windings and magnetic cores.

Figure 0.1: Electric transformer with laminated magnetic core (left) and magnetic composites (right)

Indeed, laminated materials have been traditionally used to reduce eddy current losses in
motors, generators and transformers (see e.g. the left image in Figure 0.1). Subsequently,
magnetic composites (right of the figure) have emerged as an alternative to laminated
cores. These materials are obtained by compacting iron powders with a non-conducting
matrix, leading to a globally magnetic material with insulated grains, which limits the
eddy current losses.

Although the margin for gains in efficiency of electric devices is limited, any improvement
leads to important global energy savings due to the number of devices used worldwide.
Such improvement is greatly facilitated by efficient numerical tools able to predict the
performances of new designs, especially the energy efficiency. The faster the simulation,
the easier it is for the engineers to explore the design space and find better solutions.
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Introduction

However, the numerical modeling of heterogeneous materials is a significant challenge
that presents, depending on the setting, up to four difficulties:

1. nonlinear and hysteretic behavior of the magnetic components

2. complex dynamic effects due to electromagnetic couplings: the eddy currents
are difficult to compute (meshing of the skin depth), and may affect the overall
magnetic behavior of the medium (dynamic hysteresis)

3. the multiscale 3D structure of these materials

4. and their possible stochastic geometric distribution

The wide range of available numerical techniques provide different tradeoffs between
accuracy and computational costs. The more accurate and general techniques, such as
the Finite Element Method (FEM), involve computing the electromagnetic fields maps.
But they cannot directly handle the third difficulty because they require a fine scale
discretization of the heterogeneous geometry, which leads to unsatisfiable needs in
memory and computational power.

Instead, the current common practice in the industry is to use material models which
approximate the overall behavior of the materials using fairly light parametric mod-
els, and are fitted with measurements made on material samples. They treat all the
aforementioned difficulties, but their accuracy and extrapolation ability are limited.

A promising direction to further improve the accuracy is to study the multiscale modeling
of electromagnetic fields. Initially developed by the mechanical engineering community,
the so-called homogenization and multiscale computational methods have also proved
their worth in electromagnetism. But to the extent of our knowledge, at the beginning of
this work, they had mainly been used in linear time harmonic regime [1, 2, 3, 4, 5], or
on 2D geometries only for problems taking magnetically nonlinear material laws into
account [6, 7, 8, 9, 10, 11]. There were applications on 3D nonlinear magnetoquasistatic
problems, but only in the specific case of laminated cores [12, 13, 14, 15].

The work that will be presented in this thesis aims to prove the capabilities of multiscale
methods to solve 3D magnetoquasistatic transient problems featuring nonlinear magnetic
behavior and strong dynamic effects, on periodic medium. We thus address the first
three difficulties previously described. The work was made in the Electrical Engineering
laboratory of Grenoble, the G2Elab, with a funding provided by the Université Grenoble-
Alpes (UGA). This work also benefited from fruitful collaborations with three researchers
from the Tampere university (TAU) in Finland, Janne Ruuskanen, Paavo Rasilo and Timo
Tarhasaari, who are co-authors of our scientific publications.

On the numerical viewpoint, the work focuses on the heterogeneous multiscale method
(HMM) [16, 17, 10]. It features solving for a macroscopic problem where the heteroge-
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Introduction

neous material is homogenized. The physical behavior of this homogenized domain
is given by equivalent homogenized material laws computed from fine scale problems.
The latter are solved on one spatial period of the material called the cell, such that the
solutions accurately correspond to the initial problem. The cell problems are independent
of each other and are solved in parallel, one is associated to each point of the macroscopic
mesh where the homogenized law is needed.

HMM has the advantages to be quite general as it makes no assumptions on the direction
of the fields nor the choice of fine scale material laws. Yet, it allows a drastic reduction of
the computational costs, because the latter do not depend on how small the fine scale
features are anymore. However, this method requires the possibility to define a smooth
macroscopic field at the scale of the device. This assumption will be called the scale
separation hypothesis in this thesis.

Magnetoquasistatic problems are usually solved using magnetic flux (B-)conforming
formulations for which the unknown is the magnetic induction and where the magnetic
field strength is computed via the material law, or the dual H-conforming formulations
for which the roles are reversed. In addition to meeting the technical challenge of
implementing and validating the HMM on 3D time dependent nonlinear problems, the
main contribution of this thesis is to make the B-conforming formulations robust to the
second difficulty mentioned earlier. It is the emergence of complex dynamic effects in
the homogenized magnetic law due to electromagnetic couplings at the fine scale, in
particular the confined eddy currents, that may be responsible for macroscopic dynamic
hysteresis.

Indeed, Meunier et al. warned from 2008 [7, 4] that computing the macroscopic magnetic
field strength and electric field strength using the standard method could fail in presence
of strong confined eddy currents. Computing the macroscopic magnetic strength is
tantamount to computing the macroscopic reluctivity, the capacity to do it is mandatory
to use the B-conforming formulation in multiscale modeling.

To circumvent this issue, we propose a new definition of the transition from the fine scale
fields to the macroscopic ones. It is close to the definition used in multiscale methods
for high-frequency electromagnetic problems [18, 19, 20, 21]. Also, four new numerical
implementations of the magnetic field upscaling are proposed. It will be numerically
shown that the new definition is required to use the B-conforming formulation for
problems where the fine scale eddy currents create dynamic hysteresis in the macroscopic
magnetic law.

The thesis has been divided in three chapters which are organized as follows. The first one
is dedicated to the modeling of electromagnetic fields, and to their numerical computation
using the finite element method. For that, local and global Maxwell’s equations, the main

7



Introduction

properties of electromagnetic fields as well as the different formulations are introduced.
We also review the elementary techniques required to solve magnetoquasistatic problems
such as the spatial discretization, the temporal discretization and the linearization of
nonlinear equations.

The second chapter focuses on multiscale modeling. We first describe different materials
and situations for which multiscale modeling is required in electrical engineering, and we
review the existing methods used for the numerical computation of multiscale electromag-
netic fields. Then, a multiscale model is derived all the way from the choice of equations
and macroscopic fields definition to the numerical implementation. The method is based
on HMM, and is valid on periodic media with an electrically insulated periodic cell. The
discrete problems at each scale are discretized using the techniques introduced in chapter
one. The original contributions to the model are the new scale transition relation defining
the macroscopic fields, and four numerical techniques implementing the computation of
the macroscopic magnetic strength field.

In the third and last chapter, we provide and analyze the results of the numerical
experiments conducted to validate the proposed model, using the GetDP [22] and Gmsh
[23] softwares. The behavior of the cell problem alone is studied in the first section
to validate that its H and B-conforming formulations are dual from each other, and to
show that the proposed upscaling techniques behave as expected. In the second section,
the accuracy of the proposed B-conforming multiscale formulation is validated on 3D
transient magnetoquasistatic problems, featuring linear and nonlinear materials laws
at the fine scale. We show the robustness of the method in the presence of strong skin
effect and dynamic hysteresis in the homogenized magnetic law. We also validate the
convergence properties of the multiscale method and apply it to a problem which cannot
be solved using standard FEM.
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Chapter 1

Electromagnetic fields modeling

In this work, we study electromagnetic problems at low and medium frequencies, which
are used to model a wide range of the electromagnetic devices like electric machines,
power transformers, etc.

This chapter aims at introducing the electromagnetic fields and their property, the
fundamental equations that govern their behavior, the common formulations used to
solve for these fields and how they are usually computed with the help of computers
and the finite element method.

1.1 Nature and properties

Some remarks and notations

Before introducing the electromagnetic fields and the equations that govern them, we
introduce some notations.

Our domain of study is an open set named Ω with a smooth boundary ∂Ω.

The positions of the points of Ω are denoted x. The coordinates of x are expressed in the
usual Cartesian frame of reference with axes named x, y and z, with the Cartesian basis
vectors denoted ei for i = {x, y, z}.

We write vectors and tensors with bold font and scalars with regular font. For example,
the writing of x in terms of its component on each axis is x = xex + yey + zez where
x, y, z are x’s Cartesian coordinates.

In physics, fields are functions defined at each point x and at each time instant t of a
defined space and time range. The explicit dependency of a field with space and time
are often omitted for clarity, e.g. with f (x, t) can be written f (x) or f .

9



1. Electromagnetic fields modeling

A summary of the notations used in this document are available in the List of Symbols
page 1.

1.1.1 Physics of the electromagnetic fields

Several models are available to describe the electromagnetic fields depending on the
scale at which they are studied. In this thesis, we study the model of electromagnetism
in continuous media which is valid from the microscale to wider scales, which enables
to study the manufactured electromagnetic devices and their components up to the
microscale. In particular, we will focus on the magnetoquasistatic problems, used for
modeling in low frequency electromagnetic fields.

The Table A.1 in Appendix A.1 is a summary of the different electromagnetic quantities,
including macroscopic quantities and fields, with their units in the international unit
system.

Maxwell’s equations

The heart of the electromagnetic model in continuous media are the four Maxwell
equations. They are stated below in their local or differential version using the differential
operators from vector field analysis. The operators definition and some explanation of
their meaning will be given later in Section 1.1.3.

The four equations are:
the Maxwell-Ampère law

curl h = ∂td + j, (1.1)

the Maxwell-Faraday law
curl e = −∂tb, (1.2)

the Maxwell-Gauss conservation law for electricity

div d = ρ, (1.3)

and the Maxwell-Gauss conservation law for magnetism

div b = 0. (1.4)

These equations can only be used if completed with additional relations between the
fields.

10



1.1. Nature and properties

Constitutive relations

The electromagnetic properties of continuous medium are most of the time determined
by the relations between three couples of electromagnetic fields, b and h, j and e, and
d and e. Those constitutive relations or constitutive laws are commonly modeled using
tensors, as follows.

The permeability tensor µ links the magnetic flux density b with the magnetic field strength
h with the relation

b = µ·h. (1.5)

It is also common to use the inverse law and consider the magnetic reluctivity tensor
ν = µ−1 with the relation

h = ν·b. (1.6)

When the relations are linear, the tensors are constant. But they can also be nonlinear,
and should be written b(h) = µ(h)h or h(b) = ν(b)b, but the dependency of the tensor
with the variable is often omitted as in (1.5) and (1.6) to simplify the notations. To note,
additional terms are necessary to account for hysteresis in the material law.

In conducting materials, the conductivity σ (assumed to be a scalar quantity in this thesis)
links the electric current density j with the electric strength e with the relation

j = σe, (1.7)

or conversely, using the electric resistivity ρ = σ−1, the relation is

e = ρj. (1.8)

Domains with conductivity equal to 0 are called nonconducting domains and denoted
with a N subscript like ΩN, conversely conducting domains are indicated with a C
subscript like ΩC.

Finally, the relation between the electric displacement d and the electric field strength e
is described with the permittivity tensor ε by

d = ε·e. (1.9)

There exist fundamental scalar permeability µ0 called vacuum (or free space) permeability.
It is a physical constant which has the approximated value

µ0 = 4π.10−7 ≃ 1.256 637 06× 10−6 H.m−1. (1.10)

11



1. Electromagnetic fields modeling

Likewise, the vacuum permittivity ε0 is the fundamental dielectric permittivity and has
the approximated value

ε0 =
1

µ0c2 ≃ 8.854 187 81× 10−12 F.m−1, (1.11)

with c = 299 792 458 m.s−1 the speed of light.

As µ0 is the ”basic” underlying permeability, a medium permeability is often described
in terms of its relative permeability µr such that

µ = µ0µr. (1.12)

We also introduce the vacuum reluctivity ν0 = 1
µ0

and relative reluctivity νr such that

ν = ν0νr, (1.13)

and the relative permittivity εr such that

ε = ε0εr. (1.14)

Interface conditions

An interface is the common boundary of two different media. As the material laws are
often discontinuous at the interfaces, the Maxwell equations lead to discontinuity of the
fields’ traces at the interfaces and to so-called interface conditions.

The notion of trace of a field is necessary not only to define the interface conditions,
but also to define the boundary conditions, introduced in Section 1.2.1, and the integral
forms of Maxwell’s equations, introduced in Section 1.1.3.

Let n be the unit normal vector to a surface S. The normal trace of a vector field f on
S is defined by f (x) · n(x)

∣∣
x∈S, abbreviated f · n

∣∣
S or f · n if there is no ambiguity on S.

The tangential trace of f on S is f (x)× n(x)
∣∣

x∈S abbreviated f × n
∣∣
S or f × n.

n

t1

n

t2

n
f

f · n
f

f × n

n
f

(n× f )× n
( f · n)n

Figure 1.1: From left to right: a surface with a local frame with unit normal vector n and unit tangent vectors
t1 and t2, the normal trace of a vector f , the tangential trace of f , the normal and tangential components of f
such that f = ( f · n)n + (n× f )× n. The traces depend on the orientation of the surface, that is the choice of
n or −n as outward direction, while the normal and tangential components do not.
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1.1. Nature and properties

Also, the trace of a scalar field φ on S is simply φ(x)
∣∣
x∈S

.

For an interface S between two media Ω1 and Ω2 with S oriented such that n
∣∣
S

points
towards Ω1, the four interface conditions read

(h1 − h2)× n
∣∣
S
= jS, (1.15)

(e1 − e2)× n
∣∣
S
= 0, (1.16)

(d1 − d2) · n
∣∣
S
= ρS, (1.17)

(b1 − b2) · n
∣∣
S
= 0, (1.18)

where ρS is a surface charge density in C.m−2 and jS is a surface current density in
A.m−1 (it should not to be confused with source current js), that is a current tangent
to the surface (jS · n

∣∣
S
= 0) and only defined on the interface using a Dirac distribution

attached to the interface.

Magnetoquasistatic equations

This study is focused on the so-called low frequency inductive devices, i.e. they operate
below few GHz of frequency and mainly driven by magnetism. Such devices can
be electrical machines or low frequency power electronics and transformers. When
modeling these devices, the displacement currents and medium dielectric permittivity
can be neglected, leading to the following magnetoquasistatic (MQS) Maxwell equations

curl h = j, (1.19)

curl e = −∂tb,

div b = 0,

that are completed with the constitutive laws (1.5) and (1.7).

Magnetostatic equations

At very low frequency or when the electric energy is negligible in comparison with
the magnetic energy, the effect of Faraday law (1.2) in magnetoquasistatic equations is
negligible and the equation can be removed. Then, plugging the b-h relation (e.g. (1.5))
into Maxwell Gauss’s law for magnetism (1.4) leads to the system:

curl h = js,

div b(h) = 0,

13



1. Electromagnetic fields modeling

where the current should be known in advance and prescribed, it is thus named js for
source current.

This couple of equations is called the magnetostatic equations. Magneto because it relates
only to the magnetic fields and constitutive law, and static because the solutions are
independent of the past as there is no time derivative anymore. The electric and magnetic
behaviors are said to be decoupled.

1.1.2 Type of fields

In this section, the electromagnetic fields are classified in four categories that describe
some of their essential properties, in particular the dimension of the geometric entities
on which they can be integrated to yield their macroscopic physical meaning. These
categories, further called field types, correspond to the differential forms of degree zero to
three (also called 0-forms, 1-forms, 2-forms and 3-forms) defined by the de Rham - Hodge
theory. The use of this framework in the computational electromagnetic community was
pushed by Bossavit in [24], where he briefly introduces it and gives references for more
detailed studies. Additionally, [25] explains how to translate between the differential
form and the usual differential calculus language, and [26] reviews the theory and how
it is used in engineering.

Beyond the power of the differential geometry framework to express the electromagnetism
laws in a synthetic way compared to the usual differential calculus framework, adopting
this point of view helps to understand what continuity naturally suits each type of
electromagnetic field. But although we classify fields into these four types in order to be
able to state only once the properties that are general to all fields of a given type, the
equations in this thesis remain within the usual framework of differential calculus.

Potential fields

Scalar potential fields φ0 (further called ”scalar potentials” for shortness) are simply scalar
function φ of space and time, this means that the value of φ0 at a point x, called φ0

x,
is the scalar quantity defined by φ0

x := φ(x), where ”:=” denotes the definition of the
left-hand side.

Usual potential fields in physics include altitude and temperature. In electromagnetism,
we encounter the electric scalar potential v and magnetic scalar potential φ, that will be
introduced in Section 1.2. These fields all share the following behavior.

Formally, a scalar potential φ0 can be integrated on a set of oriented points P, e.g.
P = {−{a}, {b}}, where the signs refer to the point’s orientations. Those orientations
are useful to consistently describe the boundaries of oriented paths, e.g. if γ is an
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1.1. Nature and properties

oriented path joining point b from point a, we can write ∂γ = {−{a}, {b}}. The integral
of φ0 on P is defined by ∫

P
φ0 := −φ(a) + φ(b). (1.20)

A potential field φ0 is continuous (in space) when the associated scalar function φ is
continuous. The continuity of potential fields matters because it impacts the smoothness
of their gradient, and the latter are commonly used in computational electromagnetics.

Strength fields

A strength fields h1 is defined based on a vector field h. The strength fields in electromag-
netism are the magnetic field strength h, the electric field strength e, the magnetic vector
potential a and the electric vector potential.

The strength fields are locally evaluated on infinitesimal paths by averaging the associated
vector field tangentially to the paths. For example, the value of a strength field h1 at x on
an infinitesimal path dl = tdl, of direction t and length dl = 2ε, is the scalar quantity
defined by

h1
x(t dl) :=

∫
u∈[−ε,ε]

h(x + ut) · t du ∼
ε→0

h(x) · t dl.

A strength field h1 is tangentially continuous across a path γ at x0 ∈ γ when its value
h1

x(t dl) varies continuously with x in the vicinity of x0 for a fixed dl > 0, where t is the
unit tangent vector to γ at x0.

The tangential continuity is related to the smoothness of the curl of strength fields, and is
often required across interfaces, so for any direction t tangent to the interface. For exam-
ple, Figure 1.2 illustrates a tangentially continuous strength field, and a discontinuous
one. Their underlying vector fields and their values on vertical and horizontal paths are
plotted.

The physical meaning of a strength field is given by its path integrals. The integral of h1

on a path γ = {γ(u) | u ∈ [0, 1]} is defined by∫
γ

h1 :=
∫

γ
h · t dl =

∫
u∈[0,1]

h(γ(u)) · γ′(u)du, (1.21)

where t = γ′
∥γ′∥ is the unit tangent vector to γ at a given point γ(u), and dl corresponds

to ∥γ(u)∥du. But from now on, we will omit dl and write∫
γ

h · t (1.22)

the path integral (1.21). When γ is a closed path, (1.22) is called circulation of h along γ.
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Figure 1.2: Example of tangentially continuous (top) and discontinuous (bottom) strength fields. The map of
the values of the strength fields on horizontal infinitesimal paths with respect to the position is shown in the
middle, and that on vertical infinitesimal paths on the left. We see that the bottom maps are discontinuous,
showing that the bottom strength field is tangentially discontinuous.

Flux fields

Similarly to the strength fields, a flux density field b2 - that we abbreviate by flux field - is
defined based on vector fields b, but is not of the same nature. A flux field is locally
evaluated on infinitesimal surfaces by averaging the underlying vector field normally to
the surface. More precisely, the value of a flux field b2 at x on an infinitesimal surface dS
of normal n = t1 × t2 and surface dS = ε2 is the scalar defined by

b2
x(n dS) :=

∫
u,v∈[−ε,ε]

b(x + ut1 + vt2) · n du dv ∼
ε→0

b(x) · n dS.

The flux density fields in electromagnetism include the magnetic flux density b, the free
current density j, the displacement current density ∂td and the Poynting vector s = e× h.

A flux field b2 is normally continuous across a surface S at x0 ∈ S when its value b2
x(n dS)

varies continuously with x in the vicinity of x0 for a fixed dS > 0, where n is the unit
normal vector to S at x0.

The normal continuity is related to the smoothness of the divergence of flux fields, it often
required across interfaces. For example, Figure 1.3 illustrates the normal (dis)continuity
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1.1. Nature and properties

of the flux fields associated with the same vector fields as those of Figure 1.2. It is impor-
y

b bx
2(ex dS)

ex dS

bx
2(ey dS)

ey dS

-0.5

0.0

0.5

1.0

x

y

x

ex dS

x

ey dS

-0.5

0.0

0.5

1.0

Figure 1.3: Example of normally discontinuous (top) and continuous (bottom) flux fields. The map of the
values of the flux fields on infinitesimal surface normal to ex with respect to the position is shown in the middle,
and that on surfaces normal to ey on the left. We see that the top maps are discontinuous, showing that the
top flux field is normally discontinuous.

tant to note that the top vector field is a continuous strength field but a discontinuous
flux field, and vice versa for the bottom one.

The physical meaning of a flux field is given by its surface flux integrals. The flux of b2

through a surface S = {σ(u, v)|u, v ∈ [0, 1]} is∫
S

b2 :=
∫

S
b · n dS =

∫
u,v∈ [0,1]

b(σ(u, v)) · (∂uσ(u, v)× ∂vσ(u, v)) du dv (1.23)

where ∂uσ = ∂σ
∂u , ∂vσ = ∂σ

∂v and n = ∂uσ×∂vσ
∥∂uσ×∂vσ∥ is the unit normal vector to S at a given

point σ(u, v), and dS corresponds to ∥∂uσ× ∂vσ∥du dv.

In the rest of the manuscript, we will omit dS and write∫
S

b · n (1.24)

the flux (1.23).
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1. Electromagnetic fields modeling

Density fields

A scalar density fields ρ3 - that we abbreviate by density fields - is represented by a scalar
field ρ similarly to the potential fields, but they are not of the same nature. A density
fields is locally evaluated of infinitesimal volume domains by averaging the associated
scalar field in the volume. Indeed, the value of a density field ρ3 at x on an infinitesimal
cube of width ε is

ρ3
x(dV) :=

∫
u,v,w∈[−ε,ε]

ρ(x + uex + vey + wez)du dv dw ∼
ε→0

ρ(x)dV, (1.25)

where dV represents the infinitesimal domain volume 8ε3.

There is no requirement on the continuity of ρ to ensure the continuity of ρ3, the volume
average already makes it smooth.

The physical meaning of the density field is given by its volume integrals. The integral of
ρ3 on a domain V reads∫

V
ρ3 :=

∫
V

ρ dV =
∫
(u,v,w)∈V

ρ( (u, v, w) ) du dv dw, (1.26)

where dV corresponds to du dv dw. From now on, we will omit dV and write∫
V

ρ (1.27)

the integral (1.26).

There are many examples of density fields in physics, from the mass density field in
mechanics to species volume concentrations in chemistry. In electromagnetism, the first
that comes in mind is the electric charge density ρ. But there are many others, namely
the energy and power densities:

• the magnetic energy density 1
2 h · b, or 1

2 µ b·b if µ is scalar,

• the magnetic power density h · ∂tb,

• the electric energy density 1
2 e · d, or 1

2 ε e · e if ε is scalar,

• the electric power density e · ∂td,

• the total electromagnetic energy density u = 1
2 (h · b + e · d),

• the Joule losses power density j · e, or σe·e or ρj·j if σ is scalar.
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1.1. Nature and properties

Hodge operator

To keep the consistency of the previously introduced model of the fields with Maxwell’s
equations, it should be noticed that the product of a field by a material law exchanges
the type of the field. For example, the product by the conductivity σ and permeability µ

respectively change the strength fields e and h into the flux fields j and b.

Conversely, the product by the resistivity ρ and reluctivity ν change flux fields into
strength fields. In theory of the differential forms, the material laws are called Hodge
operators [24, 26].

1.1.3 Fields derivatives, Stokes theorem and global properties

Maxwell’s equations and many electromagnetism relations are described using the
differential operators gradient (grad ), curl (curl ) and divergence (div ).

In this section, some properties of these differential operators related with the field types
and field integrals are presented. In particular, we introduce the generalized Stokes theorem
used to derive the global Maxwell equations, which are themselves useful to define the
macroscopic electric and magnetic quantities like the current, the voltage, the flux, etc.

Formally, the generalized Stokes theorem [26] states that the integral of the exterior
derivative dω of a differential form ω over a domainM equals the integral of ω itself on
the boundary of the domain ∂M, that is∫

M
dω =

∫
∂M

ω. (1.28)

To use the theorem on the electromagnetic fields, we need to replace the exterior derivative
d with the appropriate differential operator grad , curl or div and to integrate on the
appropriate type of domain (point, path, surface or volume) according to the type of
field involved.

Gradient, path integral and voltage

A scalar potential is sometimes called a ”grad conform” field because its natural derivative
is the gradient operator. Scalar potentials are thus often taken in the function space
H1(Ω) = H(grad; Ω).

The gradient of a scalar potential v is a strength field. Let γ be an oriented path from a
point a to a point b, which means that ∂γ = {{b},−{a}}. We can integrate grad v along
γ and apply the Stokes theorem to get∫

γ
grad v · t =

∫
∂γ

v = v(b)− v(a), (1.29)
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1. Electromagnetic fields modeling

which is the so-called gradient theorem for path integrals.

In electrostatics, the electric field e is written as the gradient of an electric scalar potential
v. The expressions of (1.29) then give the voltage between a and b. This voltage can be
computed with a path integral of e on any path linking a to b as the right-hand side
(RHS) is clearly independent of γ, e is said to be conservative.

Curl, Stokes theorem and Ampère’s circuital law

A strength field is sometimes called a ”curl conform” field because its natural exterior
derivative is the curl operator. Thus, strength fields are often taken in the function space
H(curl; Ω).

The curl of a strength field h is a flux field, and the generalized Stokes theorem (1.28)
applies to its integral over a surface S and yields∫

S
curl h · n =

∫
∂S

h · t (1.30)

which is the classic form of the Stokes theorem.

In magnetoquasistatic, one gets the Ampère’s circuital law (also called Ampère’s theorem) by
applying theorem (1.30) to the magnetic field strength and combining it with Maxwell-
Ampère law (1.19), it yields

I =
∫

S
j · n =

∫
∂S

h · t. (1.31)

Indeed, Ampère’s theorem states that the current I going through a surface S equals the
path integral of the magnetic field strength on the boundary of S. It is also called the
integral or global Maxwell-Ampère law.

Divergence and Gauss’s laws

A flux field is sometimes called a ”div conform” field because its natural exterior
derivative is the divergence. Thus, flux fields are often modelled as belonging to the
function space H(div; Ω).

The divergence of a strength field d is a density field, and the Stokes theorem applied to
its integral over a domain V reads∫

V
div d =

∫
∂V

d · n, (1.32)

this is called the divergence theorem.

Combining the divergence theorem where d is the electric displacement with the Maxell-
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1.1. Nature and properties

Gauss law for electricity (1.3) yields the Gauss law for electric charges

Q =
∫

V
ρ =

∫
∂V

d · n, (1.33)

which states that the total charges Q contained in a given volume V equals the flux of
the electric displacement threw its boundary. This is also called the global Maxwell-Gauss
law for electricity.

The global Gauss law for magnetism is derived in the same way from (1.4) and reads∫
∂V

b · n = 0, (1.34)

one says that the magnetic flux density b is solenoidal or incompressible. The physical
interpretation of this law is that there exist no magnetic charges.

The divergence theorem also applies on the local Poynting theorem to give the global
Poynting theorem, where the involved flux field is the Poynting vector s = e× h, an
energy flux density.

Other properties and summary diagrams

To finish with this section on the nature and properties of the electromagnetic fields,
two diagrams provide a summary of the main information. Figure 1.4 represents the
properties of the four types of fields related to their exterior derivatives and integrals,
and holds the necessary information to apply the Stokes theorem (1.28).

degree /
dimension

0 1 2 3

φ
d−−−−→

grad
h

d−−−−→
curl

j, d
d−−−−→

div
ρ dd• = 0

integrated on

y y y y
P

∂←−−−− γ
∂←−−−− S

∂←−−−− V ∂∂• = ∅

fields values φ h·t dl j·n dS ρ dV

Figure 1.4: Summary of field types and geometric entities properties related to their exterior derivatives and
integration introduced in subsections 1.1.2 and 1.1.3.

The two equations on the right of Figure 1.4 have not been introduced yet. The second
one

∂∂• = ∅ (1.35)

relates to geometric entities (paths, surfaces. . . ) and means that all boundaries are closed.
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1. Electromagnetic fields modeling

For example, the boundary of a ball V is a sphere S = ∂V, and S has no boundaries, that
is ∂S = ∅. S is called a closed surface.

Similarly, the first equation
dd• = 0 (1.36)

which is commonly known as

curl grad • = 0 (1.37)

div curl • = 0 (1.38)

and is stated ”all exact forms are closed” in the language of differential geometry. Equations
(1.35) and (1.36) are the base of the so-called Homology and Cohomology theories that
are useful to work with potentials, which are essential in computational electromagnetism
[24]. They also help to define the different Helmholtz-Hodge decompositions (HHD), which
will be used to analyze the properties of the fine scale fields in Section 2.3.2. The HHD
detailed in [25, 27], and its numerical implementation is deeply studied in [28].

The (co)homology theories mainly introduce three concepts of interest for us, we cannot
explicitly define theme here and refer again to [24, 25, 26]. But an overview of the useful
notations can be given. The homology groups Hn(Ω) contain sets of geometric entities
of Ω of dimension n = 0, 1, 2, 3, which respectively are (particular) points, closed paths,
closed surface and volumes. The de Rham cohomology groups Hn(Ω) contain sets of
harmonic fields of degree n. Harmonic fields of degree 1 and 2 are fields with vanishing
curl and divergence, and the Hn(Ω)spaces for a 3D domain Ω can usually be defined by

H0(Ω) = {constant scalar on connected components of Ω},

H1(Ω) = { hn s.t. div hn = 0, curl hn = 0, n · hn = 0},

H2(Ω) = { ht s.t. div ht = 0, curl ht = 0, n× ht = 0},

H3(Ω) = ∅.

(1.39)

The dimension of the (co)homology spaces are the so-called Betti numbers βn. They verify
βn = dim(Hn(Ω)) = dim(Hn(Ω)), and usually have the following intuitive meaning:
β0 is the number of connected components of Ω, β1 is the number of tunnels or handles
that Ω forms, β2 is the number of cavities enclosed by Ω.

The second diagram, in Figure 1.5, is a Tonti diagram [24, 29]. It specifically represents
the relations between the electromagnetic fields in terms of spatial/exterior derivatives
(up/down movement in the graph), time derivatives (behind/front) and duality by
Hodge operator (left/right, including the constitutive relations).

22



1.2. Usual formulations

e

v

b

0

a

0

−∂tb

0

j

h

φ

d

ρ

∂t

−∂t

grad

curl

div

grad

curl

div

h = µb

d = εe

j = σe

Figure 1.5: Tonti diagram for the electromagnetic fields (inspired from [10, Figure 2.8]). The thick lines
represent actual equality relations in MQS or statics.

1.2 Usual formulations

Section 1.1 introduced some general properties of the electromagnetic fields. The current
section will focus on describing how these notions are assembled in sets of equations -
called formulations used to model the behavior of actual devices in electrical engineering.

1.2.1 Usual boundary conditions

In any partial differential equation (PDE) model, it is necessary to specify the so-called
boundary conditions (BC). They are relations that relate to the field traces at the domain
boundaries to ensure that the problem is well-defined, namely that the solution is unique
and has the expected physical properties. Different boundary conditions commonly used
in magnetoquasistatic (MQS) and their physical meaning are presented next.

Null normal magnetic flux density

This condition is used on boundary far from the device where the fields vanish to ensure
that there are no magnetic flux leakages. When the problem is symmetric with an
anti-symmetry of the current sources, the induction is tangential to the symmetry plane
and the null normal magnetic flux condition also applies, as illustrated in Figure 1.6.

The condition reads
b · n∣∣

Γb
= 0 (1.40)

where Γb ⊂ ∂Ω is the aforementioned boundary.
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Figure 1.6: Geometry of a coil with current source js surrounded by air with exterior boundary. This geometry
admits three symmetry planes: Px = {x = 0}, Py = {y = 0} and Pz = {z = 0}. b and h (which are collinear in

air) are normal to Pz (the plane of current symmetry), and tangent to the others. Only 1/8th of the geometry is
necessary for the computation, if the boundaries Γb = Px ∪ Py and Γh = Pz are added.

Null tangential magnetic field strength

When the geometry is cut on a symmetry plane Γh ⊂ ∂Ω which is a symmetry plane for
the current (e.g. Pz in Figure 1.6), the normal current to the plane is 0 because otherwise
it would be discontinuous. Similarly, the tangential component of the magnetic field is
also 0, that is

h× n
∣∣
Γh

= 0, (1.41)

j · n∣∣
Γh

= 0. (1.42)

Periodic boundary condition

When the geometry repeats itself or is invariant in one or several directions, it may not
be necessary to consider the complete geometry. Instead, it is possible to cut it and apply
periodic boundary condition to simulate the complete domain.

k
Γ−

Γ+

k

Γ+ = Γ−
γ

σ

P

Figure 1.7: A periodic domain Ω of period k (left) and one periodic unit cell that generates it (right). Γ+ and
Γ− correspond to one surface of Ω, so assuming that the fields had a unique value on any point P, path γ and
surface σ, the values of the fields should be constant by translation from Γ− to Γ+ in the cut domain.

The periodic boundary Γp is then composed of two parts, Γ+ and Γ−, such that Γ+ is the
translation by a period vector k of Γ−:

Γ+ = {x + k | x ∈ Γ−}.
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1.2. Usual formulations

The constraint to apply depends on the field type. The value of the field should be the
same on translationally symmetric points, lines and surfaces of Γp. In other word, the
field values should be unique on Γp if two copies of the periodic domain would be put
side-by-side such that Γ+ and Γ− are stacked, as shown in Figure 1.7.

The periodicity of a scalar field φ, a strength field h and flux field b on Γp is respectively
defined by

φ(x + k)
∣∣
Γ+

= φ(x)
∣∣
Γ−

,

h(x + k)× n
∣∣
Γ+

= h(x)× n
∣∣
Γ−

, (1.43)

b(x + k) · n∣∣
Γ+

= b(x) · n∣∣
Γ−

.

There is no constraint for scalar densities, as they cannot be evaluated on a boundary (a
surface doesn’t contain any volume).

Anti-periodic boundary condition

The anti-periodic boundary conditions on a periodic boundary Γa = Γ+ ∪ Γ− (a subscript
means anti-periodic) are

φ(x + k)
∣∣
Γ+

= − φ(x)
∣∣
Γ−

,

h(x + k)× n
∣∣
Γ+

= − h(x)× n
∣∣
Γ−

, (1.44)

b(x + k) · n∣∣
Γ+

= − b(x) · n∣∣
Γ−

.

They may happen when the sources in the domain have alternating signs in two consecu-
tive repetition of the periodic domain.

1.2.2 H-conforming formulations

There are numerous equations featuring different unknown fields in the electromagnetic
problems description. But in order to solve for them, it is more convenient to eliminate
several fields and equations by combining them while keeping one or two unknown fields.
This leads to the definition of different formulations of the equations. The eliminated
equations will be said to be strongly satisfied, while the equations that appear in the
formulation that need to be solved for will be weakly satisfied.

The two main families of formulation choose to satisfy strongly either the left or right
side of the Tonti diagram (Figure 1.5). We introduce first the H-conforming formulations,
where the unknown will be the magnetic field strength h or the magnetic scalar potential
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1. Electromagnetic fields modeling

φ. The physical continuity properties of h, the left side equations of the Tonti diagram
and the material laws will be strongly respected.

This leads to approximate the right side quantities in the wrong space (e.g. b as a
strength field), and to weakly satisfy the Faraday’s law and Gauss’s law for magnetism.
The weakly satisfied laws are the ones it is necessary to solve for, as shown next in the
derivation of the formulation.

Magnetoquasistatic formulation

The general magnetoquasistatic H-conforming formulation is derived by injecting b = µ·h
(1.5), and e = ρj = ρcurl h (1.8)-(1.19) in Faraday and Gauss laws (1.2)-(1.4), which yields

curl (ρcurl h) + ∂t(µh) = 0, (1.45)

div (µ·h) = 0. (1.46)

The formulation (1.45)-(1.46) is to be completed with appropriate boundary conditions,
interface conditions and sources.

Magnetic scalar potential and gauge

In magnetostatics or in non-conducting regions, solving (1.46) is enough respectively
because ∂t(µh) = 0 or curl (ρcurl h) = 0. In both cases, the unknown part of h is curl
free and can be decomposed in the gradient of a magnetic scalar potential φ plus possibly
a finite number of other terms ht,i, leading to the equation

div( µ·(−grad φ + ht,i)) = 0. (1.47)

Indeed, curl h = 0 in a domain Ωx ⊂ Ω implies that

h = −grad φ + ht,i (1.48)

where ht,i for i = 1, . . . β1
1 lies in H1(Ωx), the first cohomology group of Ωx [24, 30].

Ways of dealing with the cohomology terms in practice are detailed in Section 1.3.5.

There is also a gauge issue for the potential φ. As the gradient of a constant is 0,
grad (φ + C) = grad φ for any field C constant on each connected components of Ω2.

To uniquely define the scalar potentials φ, it is necessary to fix the degree of freedom
(DoF) of the choice of C. It is for example possible to fix the potentials at one point of

1Ωx forms β1 tunnels, the first Betti number of the domain.
2The number of connected components of Ωx is β0, the zeroth Betti number of the domain.
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1.2. Usual formulations

each connected component of Ω, or to fix their average value over each. In any case, the
corresponding function space for φ is called H(grad; Ωx)\Rβ0 , where the β0 superscript
is omitted when the domain is connected (β0 = 1).

The space H(grad; Ωx)\Rβ0 is the smallest space that contain a potential for any gradient
field in H(curl; Ωx) [31].

In practice, it often happens that there is a boundary of Ωx where the potential is fixed
with a Dirichlet BC. In this case, the scalar potential is already gauged.

Sources for H-conforming formulation

In general, a source term with an appropriate boundary condition (Dirichlet, Neumann,
etc.) or by adding a term in the volume. In H-conforming formulation, in volumes where
the current is known, the magnetic field can be split in a prescribed source hs and an
unknown reaction field hr with

h = hs + hr,

where hr might be computed with a scalar potential φ.

Usually, hs is deduced from a known current source distribution js to fullfill curl hs = js,
e.g. by applying Biot-Savart formula

hs(x) =
1

4π

∫
Ω

js(y)× (x− y)
∥x− y∥3 dy ∀x ∈ Ω. (1.49)

Things are more complicated in case of coupled formulations with different set of
equations on subset of Ω. The volume sources are not necessarily defined in each subdo-
main, and are then transmitted via tangential continuity of h through the subdomain
boundaries.

In a nonconducting subdomain surrounding a coil fed with current js, it is common to
set the source by fixing ht,i in (1.48) consistently with js to respect Ampère’s law, possibly
with a circuital equation [32, 33, 34].

1.2.3 B-conforming formulations

The B-conforming formulations respect strongly the right side of the Tonti diagram. The
unknowns are the fields b and e (or more precisely a and v that are defined below). They
are approximated in spaces strongly ensuring their continuity. The material laws and the
right side equations (1.2)-(1.4) are strongly satisfied.

The weakly satisfied equations, the one the formulation is based on, is the Ampère law
(1.19).

27



1. Electromagnetic fields modeling

Magnetic vector potential

In order to strongly respect div b = 0 (1.4) and eliminate it from the system, we introduce
the magnetic vector potential (MVP) a such that

b = curl a. (1.50)

a is a strength field and (1.50) always works because (1.4) is true everywhere in Ω (there
can be no cohomology issue). Eq. (1.50) implies (1.4) as div curl a = 0 (1.38).

Electric scalar potential

Faraday’s law can also be eliminated from B-conforming formulations by introducing
the electric scalar potential v.

In electrostatics, the time derivatives vanish and Faraday’s law (1.2) becomes curl e = 0.
Similarly to the magnetic potential φ, the electric potential v is defined such that

e = −grad v. (1.51)

In MQS, v is defined in relation with a. There is −∂tb = −∂tcurl a = curl (−∂ta), that
lead to curl (e) = curl (−∂ta) due to (1.2). This means that e and ∂ta can differ from a
gradient, because curl grad • = 0 (1.37). So v is then defined by

e = −∂ta− grad v. (1.52)

Sometimes, like when modeling coils, the current is split in a known ”source” part js

and an unknown part σe, and the full expression of the current is

j = js − σ(∂ta + grad v). (1.53)

Both terms generally belong to different domains of the device.

Magnetoquasistatic formulation

Plugging h = ν · b = ν · curl a (1.6)-(1.50) and j = js − σ(∂ta + grad v) (1.53) into
Ampère’s law (1.19) yields the MQS B-conforming formulation

curl (ν·curl a) + σ(∂ta + grad v) = js,

div(js − σ(∂ta + grad v)) = 0,
(1.54)
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1.2. Usual formulations

where the second equation is obtained by taking the divergence of the first one. This
second equation is sometimes needed because there are two unknown fields in the
formulation, it accounts for the conservation of the current.

As for H-conforming formulation, the boundary conditions, interface condition and
optional volume sources are required.

As the choice of v is free, it is sometimes taken to be 0. The MVP is then noted a∗,
defined by e = −∂ta∗ and called modified MVP or ”A star”. The a∗ formulation writes

curl (ν·curl a∗) + σ∂ta∗ = js, (1.55)

as the second equation is no more needed.

Magnetostatic formulation

In magnetostatics and in nonconducting domains, (1.54) is reduced to

curl (ν·curl a) = js. (1.56)

The equations (1.54) and (1.56) might coexist in different subdomains of Ω, in which case
they are coupled by the (tangential) continuity of a at the domains interfaces.

Sources for B-conforming formulation

As stated above, the most frequent source in B-conforming formulation is to split
j = js − σ∂t(a + grad v) and to put the source js in the RHS.

In nonmagnetic regions (where ν = ν0), the source/reaction splitting a = as + ar can
be done [35, 36] where ar is the reaction field and as is computed with Biot-Savart law,
which then writes

as(x) =
1

4πν0

∫
Ω

js(y)
∥x− y∥dy ∀x ∈ Ω. (1.57)

It is also possible to use a hs source by splitting h = hs + νcurl ar, where hs is computed
with (1.49), such that the first equation of (1.54) writes

curl (ν·curl ar) + σ(∂tar + grad v) = −curl hs.

Gauging the potentials

None of previously introduced φ and a have been properly defined, it is necessary to
add appropriate gauge conditions to make them unique.
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1. Electromagnetic fields modeling

The electric scalar potential should be taken in H(grad; Ω)\R for the same reason given
in Section 1.2.2 for the magnetic scalar potential φ.

Similarly, a is not uniquely defined until the gauge freedom of adding curl free fields is
fixed. One possible gauge is the Coulomb gauge, defined by

div a = 0. (1.58)

Another possibility is the Lorenz gauge, but it is not often used in MQS fields compu-
tation. But the more common gauges are set numerically after the discretization of the
equations, they are detailed in Section 1.3.6.

The modified MVP a∗ doesn’t need a gauge in the conducting domain, only in the air or
other nonconducting domains.

1.2.4 Other formulations

To finish with the formulation, we mention two other kind of formulations which are
less commonly used. They both weakly satisfy Faraday and Ampère laws.

E-H conforming formulation

The e− h formulation is often used in high-frequency problems [37], especially for homog-
enization [1, 2, 38], could also be used in magnetoquasistatic, under the form

curl h = σe,

curl e = −∂tµ·h,

in conducting region, and div(µh) = 0 (1.46) in nonconducting regions. This formulation
doesn’t feature differential operator composition in the conducting domain, so the order
of spatial derivatives is 1 instead of 2, but it requires a couple of vector unknowns instead
of one.

A-T conforming formulation

The a − t formulations is rarely used but has been recently studied for multiscale
formulations [39], so we quickly introduce it here. It reads

curl (ν·curl a) = curl t,

curl (ρcurl t) = −∂tcurl a,

in conducting region, and curl (ν·curl a) = 0 (1.56) in nonconducting regions. This
formulation uses two vector potentials, which enables to strongly satisfy both Gauss’s
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1.3. Weak formulations and numerical modeling

laws, but costs the approximation of the double spatial derivatives compared with the
E-H formulation. But its main advantage is to use e(j) and h(b) material laws, which are
hopefully easier to work with than the inverse laws j(e) and b(h) in highly nonlinear
settings (superconductivity and or ferromagnetism).

1.3 Weak formulations and numerical modeling

This last section is devoted to the numerical modeling of electromagnetic fields, which is
the approximation of the fields and their numerical computation on a computer. The
main steps leading to the numerical resolution of the formulations introduced in the
previous section are reviewed. Those steps are the derivation of the weak formulation,
the space and time discretization of the equations using the finite element method and
finite difference method, and finally the linearization of the nonlinear problem. These
steps are then applied to both H and B-conforming formulations.

The chapter ends with an example showing the limits of the single scale FEM on a
periodic geometry.

1.3.1 Weak formulations

The Galerkin method, a core principle of FEM [40], uses a weak formulation of the PDE
as an intermediate step towards its discretization.

In general, the weak form of an equation is a version of the equation which is less
restrictive than the original/strong form, so the solution of the strong form is a solution
of the weak one, but the reverse is not necessary true. They are usually defined with a
scalar product of the unknown field with so-called test functions that we will write with a
•′ symbol.

For PDE discretization, the standard framework is to model the fields in the Sobolev
spaces H(grad; , ) H(curl; , ) etc [40]. The scalar products of these spaces are based on
that of L2, the integral of the product of the fields : < u, v >L2=

∫
uv. Weak forms with

integrals are convenient because they minimize the error in average in Ω rather than the
error on the fields pointwise values. So they reduce the error on integral quantities that
we are interested in.

They also lead to reduce the order of space derivatives with the following integration by
part formulas: ∫

Ω
div b φ′ = −

∫
Ω

b · grad φ′ +
∫

∂Ω
b · n φ′ (1.59)
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1. Electromagnetic fields modeling

for any b in H(div; Ω) and φ′ in H1(Ω), and∫
Ω

curl h · a′ =
∫

Ω
h · curl a′ −

∫
∂Ω

h× n · a′ (1.60)

for any h and a′ in H(curl; Ω).

With the standard Ritz-Galerkin method used in FEM, the test fields are taken in same
space as the unknown field. There are many resources explaining the method and
studying mathematically the equivalence of the weak and strong formulations [40, 34, 41,
30, 42].

a-v weak formulation example

As a first example, the weak formulation of the a-v (1.54) in the following setting
described in Figure 1.8 is derived. The domain Ω includes a coil Ωs fed with an imposed
current js, and a conducting domain ΩC assumed disjoint from Ωs (the conductivity of
Ωs is ignored as the current is known there). We assume the continuity of all fields at the
subdomain interfaces, and that the exterior boundary has null magnetic flux and null
tangential magnetic strength boundary conditions (1.40)-(1.41), namely ∂Ω = Γb ∪ Γh.
The conducting domain’s boundary is disjoint from Γb, but may have a comon part with
Γh. We split it into ∂ΩC = ΓC\N ∪ (Γh ∩ ∂ΩC), where ΓC\N = ∂ΩC ∩ ∂ΩN is the interface
between the conducting and the nonconducting domains.

Γh

Γb

Ωs

Ω

ΩN

ΩC

ΓC\N

Figure 1.8: Sketch of the physical domain.

Each equation of (1.54) is integrated over Ω and multiplied by the appropriate test
functions, respectively a′ and v′:∫

Ω
curl (ν·curl a) · a′ +

∫
ΩC

σ(∂ta + grad v) · a′ =
∫

Ωs

js · a
′,∫

ΩC

div(σ(∂ta + grad v)) v′ = 0,
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where the integrals have been restricted to the domains where the terms are not neces-
sarily zero.

Those two equations both contain a differential operator composition, respectively curl-
curl and div-grad, that have to be split with respectively (1.60) and (1.59).

Using (1.60) with ν·curl a in place of h yields∫
Ω

curl (ν·curl a) · a′ =
∫

Ω
ν·curl a · curl a′ −

∫
∂Ω

(ν·curl a)× n · a′.

The integral over ∂Ω, called boundary term can be split on Γb and Γh, and we show that it
is null. On Γh, the integrand vanishes as by definition 0 = h× n = ν·curl a× n.

On Γb, one remarks that a× n = 0 is sufficient to have 0 = curl(a) · n = b · n. In fact,
a× n could be the gradient of any surface potential, but only the curl of b matters, so
one can choose to impose a× n = a′ × n = 0 on Γb. By doing it, the triple product
(ν ·curl a) × n · a′ = −(a′ × n) · (ν ·curl a) cancels, and the whole boundary term is
removed.

To split the div-grad term, (1.59) is used in the conducting domain with σ(∂ta− grad v)
and v′ in place of b and φ′, we get∫

ΩC

div σ(∂ta + grad v) v′ = −
∫

ΩC

σ(∂ta + grad v) · grad v′

+
∫

∂ΩC

σ(∂ta + grad v)·n v′.

Again, the boundary term disappears. Indeed, the continuity of the current through the
interface ΓC\N with the null current in the nonconducting domain yields 0 = j · n

∣∣
ΓC\N

.

As there is also j · n
∣∣
Γh

= 0 by definition of Γh, we have σ(∂ta− grad v) · n
∣∣
∂ΩC
= 0.

We finally get the following weak formulation of (1.54):
find a and v s.t.∫

Ω
ν·curl a · curl a′ +

∫
ΩC

σ(∂ta + grad v) · a′ =
∫

Ωs

js · a
′,∫

ΩC

σ(∂ta + grad v) · grad v′ = 0, ∀a′, v′
(1.61)

where a, a′ are in H0,Γb(curl; (Ω)) and v, v′ are in H(grad; ΩC)\R. The formulation
(1.61) would be the same if there were periodic or anti-periodic boundary conditions,
only the function spaces in which the fields are defined change.

Although any solution of (1.61) yields correct b and e, the solution is not unique due to
the Gauge freedom. This a-v formulation is commonly gauged after discretization as
described in Section 1.3.6.
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It is possible to mathematically study the equivalence of the strong and weak forms of
the formulations [41, Section 3.3], or directly the existence and uniqueness of the solution
of the weak forms, see [40].

1.3.2 Spatial discretization with Whitney finite elements

FEM consists in approximating the unknown field as the sum of polynomial basis func-
tions with small support, leading to a sparse linear system when the weak formulation is
discretized.

A finite element basis is defined on a mesh, which is a discretization of the domain. We
note Ωh a mesh approximating Ω. It is made of different entities, namely:

• 3D polyhedra called elements K(Ωh) = {ki | 1 ≤ i ≤ Nk},

• 2D polyhedra faces F (Ωh) = { fi | 1 ≤ i ≤ N f },

• 1D edges E(Ωh) = {ei | 1 ≤ i ≤ Ne},

• and 0D nodes (or vertices) N (Ωh) = {ni | 1 ≤ i ≤ Nn},

where Nn, Ne, N f and Nk are respectively the number of nodes, edges, faces and elements
of the mesh.

The length h is the maximum radius of an element of Ωh. In this work, we assume that
all meshes are conforming, meaning all intersection of elements of the mesh is either
empty or an entity of the mesh. Any boundary of a set of elements of same dimension of
Ωh is a set of lower dimension elements of Ωh.

There are numerous possible finite element bases, they differ in the type of field they
represent (scalar, vectors of forms), the geometric element on which they are defined,
their regularity, their continuity at element boundaries, the degree of their polynomials
and associated number of degrees of freedom (DoFs), etc.

Among all FEM spaces, the Whitney elements are frequently used in MQS. It is a family of
finite elements using polynomial basis functions that respect the physical properties of
each field type [43]. They were initially developed on so-called simplicial or tetrahedral
meshes which contain only tetrahedra elements and triangular faces, but where gen-
eralized to other element types, including quadrangles, hexahedra and pyramids. The
following paragraphs describe the four elements corresponding to the four types of field
and their properties.

Nodal or Lagrangian elements

The Lagrangian finite element space W0(Ωh) is a space of scalar function on Ωh. It is
also called nodal elements space because its basis functions (or shape functions) φi are
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defined for every node ni ∈ N (Ωh) and are supported by the elements containing ni (see
Figure 1.9). The shape functions are defined such that their values at the mesh nodes are

Figure 1.9: Nodal element basis function associated with the central node. The color of the dots indicate the
scalar value at the point, the darker is 0 and the lighter color is 1 (at the central node).

φi(nj) = δij. A field v inW0(Ωh) can be decomposed in

v(x) = ∑
i

vi φi(x),

where vi are the DoFs, the unknown of the FEM problem. Fields inW0(Ωh) verify the
node interpolation property

v(ni) = vi. (1.62)

It can also be proven that each shape function is continuous on Ωh independently of the
others, and so is any v inW0(Ωh). It is due to the fact that each nodal basis function is
continuous on its support, and vanishes at its support boundary [24].

Finally, W0(Ωh) is a space of continuous scalar function controlled by their values
at points, like the electric scalar potentials v and magnetic scalar potential φ, having
well-defined gradients. W0(Ωh) is thus a finite dimensional subspace of H1(Ω), which
explains why it is the appropriate space to discretize the potential fields. Nodal elements
are also called Whitney 0-forms.

Edge or Nedelec elements

The Nedelec finite element space W1(Ωh) [44] is the space for discretized strength fields
on Ωh. It is also called edge elements space as its shape functions φi are defined for every
edge ei ∈ E(Ωh) and supported by the elements containing ei (see Figure 1.10). The
shape functions are defined such that the values of the associated strength field on the
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Figure 1.10: The edge element basis function associated to the central edge (in red), plotted separately in the
three elements of its support.

mesh edges are
∫

ej
φi(x) · t = δij. A field h in W1(Ωh) is decomposed in

h(x) = ∑
i

ci φi(x),

where ci are the DoFs, which are the path integral of h over edges ei:∫
ei

h(x) · t = ci. (1.63)

The edge shape functions are tangentially continuous across any path (and surface) in the
volume of Ωh, because they are continuous in the interior of the elements, tangentially
continuous across the interior facets of their support, and their tangential traces vanish
at their support boundary [24, 45]. However, they are not normally continuous.

We have seen that W1(Ωh) (also called Whitney 1-forms) is a space of discrete continuous
strength fields controlled by its path integral over the mesh edges, such as h, e, a and t
(see page 15). Their curl is well-defined and W1(Ωh) is a finite dimensional subspace of
H(curl; Ω).

Facet or Raviart-Thomas elements

The Raviart-Thomas finite elements space W2(Ωh) [46] is the space for discretized flux
fields on Ωh. It is also called facet elements space as its shape functions φi are defined for
every facet fi ∈ F (Ωh) and supported by the elements containing fi (Figure 1.11). The
shape functions are defined such that the values of the associated flux fields through the
mesh facets are

∫
f j

φi(x) · n = δij. A field b in W2(Ωh) is decomposed in

b(x) = ∑
i

ϕi φi(x),
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Figure 1.11: Facet element basis function (middle) associated to the interior facet (left), and its divergence
(right).

where ϕi are the DoFs, which are the flux of b through facets fi,∫
fi

b(x) · n = ϕi. (1.64)

The facet shape functions are normally continuous across any surface in Ωh, because
they are continuous inside the elements, normally continuous across the facet in their
support and are their normal trace vanish at their support boundary [24]. However, they
are not tangentially continuous.

Finally, the Whitney 2-forms W2(Ωh), used to interpolate b and j, are discrete continuous
flux fields controlled by their flux through the mesh facets. Their divergence is well-
defined, W2(Ωh) is a finite dimensional subspace of H(div; Ω).

Volume elements

The lower possible degree for a polynomial representing continuous density field in Ωh

is simply a constant by element polynomial, as a density field is always continuous. The
shape functions φi of the volume elements W3(Ωh) are defined such that

∫
k j

φi(x) = δij

for k j ∈ K(Ωh), that is

φi(x) =
1ki(x)
vol(ki)

where vol(ki) is the volume of ki and 1ki is the indicator function of ki.

A density field ρ inW3(Ωh) is written

ρ(x) = ∑
i

qi φi(x), (1.65)
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where qi are DoFs, which are the integrals of ρ over elements ki,∫
ki

ρ(x) = qi. (1.66)

But these shape functions have the particularity to have disjoint support, they are all
orthogonal one from each other for the L2 norm (

∫
Ωh

φi φj = 0 when i ̸= j). So they
cannot be used with usual Galerkin method and FEM. Instead, they are used with
discontinuous Galerkin method or with the finite volume method (FVM) [47].

The Whitney element spaces are subspace of the Sobolev spaces, which are generally
used to derive the weak formulations. Although many other FEM spaces could be
used to discretize them, we will restrict ourselves to Whitney elements. In the rest of
the document, we will write with a h subscript the Sobolev spaces discretized in the
appropriate Whitney FEM space, e.g. H1

h(Ω) isW0(Ωh).

It is straightforward to discretize the Sobolev spaces with prescribed traces with the
Whitney elements, one just has to fix the DoFs associated with the shape function
supported by the boundary mesh entities.

1.3.3 Time discretization

There exist several types of methods to deal with the time variation and time derivatives
of PDEs. Harmonic and multi-harmonic methods provide the best compromises to solve
respectively linear and non-linear steady-state problems, because they use global basis
functions [48]. More involved extensions exist to treat transient problems, but the study
of the time discretization or of irregular or stiff time variations is not the aim of this
work. We use the basic but general finite difference time discretization method, and we
implicitly assume that the functions and fields vary smoothly in time, allowing us to
exchange spatial and time derivatives.

We will use the θ-scheme method with θ a parameter in [0, 1]. It is a finite difference or
time stepping scheme, which generalizes the explicit Euler (θ = 0), implicit Euler (θ = 1)
and Crank-Nicolson (θ = 0.5) methods. The solution will be computed at a set of time
steps tn, separated by a step size of ∆t = tn − tn−1, with n the time instant number, also
called time steps (TS) number.

The discretization of a time dependent ODE system M dy(t)
dt = f (t, y(t)) with the θ-

scheme reads

M (y(tn)− y(tn−1)) = ∆t [(1− θ) f (tn−1, y(tn−1)) + θ f (tn, y(tn))] (1.67)

where f is a vector functions and M a matrix.
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By default, we use the method with θ = 1 and omit the time dependency and the index
of the current time step to write time discretized equation, e.g. (1.67) becomes

M
(

y− yn−1
)
= ∆t f (y). (1.68)

To note, only θ > 0.5 may be used in the formulation studied in this work. Indeed,
θ > 0.5 is necessary when solving PDE systems where some derivative isn’t defined
in the full domain Ω, in other word, when M is not of maximum rank. This is the
case for B-conforming MQS equations as the time derivative ∂ta is not defined in the
nonconducting domain ΩN. Such equations are called Algebraic PDEs [49, 50].

Sometimes, when the convergence of a resolution is difficult, some adaptive time stepping
can be used. The step size is shortened if the resolution converges badly, and sometimes
extended is the convergence is very good. The step size ∆tn = tn − tn−1 thus depends on
n.

For comparison with (multi-)harmonic methods, one should be careful that time stepping
can introduce a time offset on the phase of the solution, as it is initialized to 0. Setting a
very short first time step (or computing initial solutions to have consistent solution time
derivative) can improve accuracy.

1.3.4 Resolution of nonlinear problem

Although it is convenient and often enough to approximate the material law tensors
as constants, some problems require considering the nonlinearity of the material law.
Common examples are the nonlinear magnetic response of ferromagnetic materials, or
the variable electric conductivity with temperature.

But the nonlinear matrix system of equations that one gets after spatial and temporal
discretization of a PDE is impossible to solve directly with a computer. So-called iterative
linearization methods are required. We will use the classic Newton-Raphson (NR) method
[51] in this work.

Let
F(X) = 0 (1.69)

be a nonlinear equation derived from a FEM formulation, where X is the unknown
vector, and F is a vector function nonlinearly dependent on X. The Newton-Raphson
method at iteration k + 1 consists in solving the linear system

JF
k · (X − Xk) + Fk = 0, (1.70)
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where Xk is the solution of the previous nonlinear iteration, Fk is F(Xk) and JF
k = ∂F

∂X (Xk)

is the Jacobian of F at Xk. It is common to relax a Newton-Raphson iteration if the
convergence is difficult, or to over relax in it is too fast. It means that the next iterate
Xk+1 is defined by

Xk+1 = ωX + (1−ω)Xk (1.71)

where ω ∈ (0, 2) is the relaxation factor and X is solution of (1.70). A relaxation factor of
ω = 1 corresponds to unrelaxed NR, ω < 1 to relaxed NR for difficult convergence and
using ω > 1 is called over relaxation to speed up an easy convergence. Several methods
are available for choosing the relaxation factor, like linear or binary search or adaptive
relaxation [52, 53].

If the series
(

Xk
)

k
converges, the limit is solution of the aforementioned problem (1.69).

In practice, one or several stopping criteria are necessary to decide whether the method
converged or not, e.g. the following:

Residual norm R(X) = ∥F(Xk+1)∥ < Rtol

Relative residual norm RR(X) = ∥F(Xk+1)∥
∥F(X0)∥ < RRtol

Increment I(X) = ∥Xk+1 − Xk∥ < Itol

Relative increment RI(X) = ∥Xk+1−Xk∥
∥Xk+1∥ < RItol.

To avoid multiplying the indices and equations, we may omit the NR index k and
associated terms in the nonlinear problem formulations. Also, it often happens that
some term T of the weak formulation do not contain any nonlinear step. In this case,
the term is a linear function (at least integration and multiplication by the test function
happen), so the differential (X → JT · X) is the function T itself and (1.70) becomes
T(X − Xk) + Tk = T(X)− Tk + Tk = T(X) = 0. So linear terms are left unmodified in
the NR scheme for FEM.

We now have all the tools required to write the discrete form of the MQS formulations.

1.3.5 Discrete h-φ formulation

The weak form of the MQS problem (1.45)-(1.46) fully discretized with h-φ formulation
in the specific case of a massive inductor (where the current density distribution is
unknown in the inductor) is given below for reference without deep explanation. We
refer to [41, 30] for the details of the formulation derivation.
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1.3. Weak formulations and numerical modeling

Find h ∈ H0,Γh,h(curl; ΩC) and φ ∈ H0,Γh,h(grad; ΩN) such that

∫
ΩC

ρ curl (h) · curl h′ +
∫

ΩC

1
∆t

(
b(h)− bn−1

)
· h′ = 0, (1.72)∫

ΓC\N
h× n · h′ =

∫
ΓC\N

(grad φ + ht)× n · h′, (1.73)∫
ΩN

b(grad φ + ht) · grad φ′ = 0, (1.74)

for all h′ ∈ H0,Γh,h(curl; ΩC) and all φ′ ∈ H0,Γh,h(grad; ΩN), where:

• h = grad φ + ht in ΩN

• ΓC\N = ∂ΩC ∩ ∂ΩN is the interface between the conducting and nonconducting
domains,

• ht ∈ H1
h(ΩN) is a discretized cohomology term which can be used to impose the

current in the inductor,

• b(h) is µ·h in the linear case,

• b(h) is ∂b
∂h

k
(h− hk) + µ(hk)·hk in the nonlinear case, where k indicates a quantity

from the previous NR iteration,

• bn−1 is νn−1 · hn−1, the solution at the previous time step.

It is possible to eliminate equation (1.73) by ensuring it strongly via some constraints in
the function spaces. As the gradients of node elements form a subspace of edge elements,
it is possible to impose the traces equalities with linear constraints between the boundary
DoFs. Those linear constraints eliminate some DoFs and equation (1.73). We refer to the
documentation of GetDP [22, section 7.5.6] for an example of implementation.

There are three ways to implement the discrete cohomology term ht, they are described
next.

Cohomology term in ΩN

In electrical engineering, the usual reason for the existence of the ht cohomology terms
in the nonconducting domain ΩN is the presence of NC closed thick inductors and coils
called (ΩC,i)1≤i≤NC

and forming loops - they have β1(ΩC,i) = 1. In this case, if we
assume that Ω is simply connected (which is a weak assumption as it contains an air box
around the device), then β1(ΩN) = NC and there are NC independent ht,i terms.

The cohomology terms are responsible for the correctness of the Ampère’s theorem in
ΩN. Indeed, if a total current of Ii feeds ΩCi, and if Ci is a cycle of edges of ΩN looping
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around ΩCi (meaning Ci ∈ H1(ΩN)), then Ampère’s theorem requires∫
Ci

ht,i · t = Ii.

It is often possible to find a surface Σc,i in ΩN cutting any closed loop turning around
ΩC,i. Removing those surfaces from ΩN ”cuts” the loops and removes the associated
(co)homology dimensions :

β1(ΩN \ ∪
i
Σc,i) = 0,

the Σi surfaces are therefore called cut surfaces or simply cuts [30, Section 2.3.3].

For FEM computation, it is not practical to modify the domain topology with the cuts
to suppress the (co)homology space H1(ΩN) and H1(ΩN), but the cuts can be used to
discretize the cohomology fields ht,i ∈ H1(ΩN) instead.

A first possibility is to create potential jumps at the cuts. Let (nij)j ∈ N (Σi) be the nodes
of Σi and 1i+ a function that is 1 on the elements in ΩN placed on the positive side of Σi

(the side to which the normal points out), and 0 on the other side. We can define the
potential cut basis function

φi
+(x) = ∑

j
φj(x)1i+(x) (1.75)

with φj the Lagrange basis function associated to the node nij.

Unlike the gradient of continuous potentials of H(grad; ΩN), this function has the
property that, for any cycle Ci defined above, the circulation of grad φi

+ along Ci is 1.
Moreover, there is ∫

Ci

grad φ
j
+ · t = δij (1.76)

and it can be proven [30, 40] that the functions (grad φi
+)i together with the usual

gradients of Lagrange basis functions can represent any curl free magnetic field of
Hh(curl; ΩN). This technique is well illustrated in [30, Section 4.1.2, Fig. 2].

There is a second way of defining the grad φi
+ functions, they are actually equal to the

sum of all the Nedelec basis functions associated with the edges having a node in Σs and
lying on the positive side of Σi, that is

φi
+(x) = grad φi

+(x) = ∑
j

φj(x)1i+(x) (1.77)

where φj are the aforementioned edge basis functions.

It is also possible to discretize ht,i without cuts by computing a field verifying Ampère’s

42



1.3. Weak formulations and numerical modeling

law in the volume. When the current distribution in the inductor is known, Biot-Savart
law (1.49) applies.

When the current distributions are unknown, it is possible to compute ht,i by solving a
vector Laplace equation with suitable boundary conditions on the conductors boundaries,
such procedure is described in [25, Section 3.8].

Those volume methods are expected to yield better conditioned discrete systems, but
require a pre computation of the basis for ht and adds more terms to assemble in the
system compared with using cuts [54].

1.3.6 Discrete B-conforming formulation

In this section, we describe the main ways to implement a discrete B-conforming formu-
lation. We review the four possibilities to leverage the gauge, and also the four ways to
implement the discrete current source js,h.

Current source discretization

Any MVP formulation based on a current source js requires that the discretized current
source js,h is in the range of the discrete curl operator to yield a compatible set of linear
equations [55]. In other words, we need

div js,h = 0. (1.78)

It is also a requirement for the validity of the mathematical proofs of convergence [42, 56,
57].

The naive discretization of js is to interpolate it at nodes or integration Gauss points
using the Lagrange operator Ih, but Ih js can be not divergence free even if js is.

This issue often requires to be treated. When js is an analytic continuous formula which
is divergence free in Ωs, it might be enough to interpolate it with the Raviart-Thomas
projection (with the flux integrals of js through the facets), or to precompute a projection
of js,h in H0,h(div; Ωs) [54] with

∫
Ωs

(Ih js − js,h) · j
′
s,h = 0, ∀j′s,h ∈ H0,h(div; Ωs),

but there is no numerical guarantee of (1.78), even in the weak sense.

With an analytic js, it is also possible to strongly enforce (1.78) by precomputing an
approximation of js as the curl of an electric vector potential with Biot-Savart law (1.49),
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or as the curl of a magnetic source field hs,h in H0,h(curl; Ωs), e.g. with∫
Ωs

(Ih js − curl hs,h) · curl hs,h
′ = 0, ∀h′s,h ∈ Hh(curl; Ωs).

But suitable BC and gauge conditions on hs,h have to be set [54], and this method might
not yield great approximation of js if the discretization of Ωs is not adapted [57].

Another possibility is to weakly ensure (1.78) by using the source js,h = Ih js + grad ξh

where ξh is precomputed with∫
Ωs

(Ih js + grad ξh) · grad ξh
′ = 0, ∀ξ ′h ∈ H0,Γb,h(grad; Ωs).

This method can increase the number of DoFs, but it is implicitly applied when the
MVP a is weakly gauged with the Coulomb gauge implemented with a scalar potential
Lagrange multiplier [57, eq (42)], which will be presented later (1.81).

Other techniques exist for more specific applications, such as those in [36, 58]. Also, the
methods from [59][28, chap. II, sec. 2] use a projection with a penalization method to
ensure (1.78).

Gauging during the linear system resolution

The discrete linear system resulting from the FEM discretization can either be solved
with a direct solver that inverses the system with some kind of Gauss elimination, or
with an iterative solver (using e.g. gradient descent methods or Krylov methods [60, 61])
which are less accurate but whose algorithmic complexity is lower for a same number of
unknowns.

If a MVP formulation is discretized without gauging, that is with a, a′ in H0,Γb,h(curl; (Ω)),
the linear system is not invertible and the solution a is not unique. It is also said that the
system has a rank deficiency. But any solution will yield correct fields b and e. If the linear
solver could deal with the rank deficiency to find a solution, everything would be fine.

In [62], the authors propose to leverage the modern direct solvers capabilities to deal with
the rank deficiency in order to find a solution. Indeed, the solvers MUMPS and PARDISO
can avoid using pivots too close to zero during the Gauss elimination, by replacing them
with a chosen less small value on the diagonal. This chosen diagonal value becomes the
smallest eigenvalue, which is now positive instead of zero. According to the authors, this
method works well but will require a fine-tuning of the solvers pivoting parameters for
difficult problems.

It is also possible to solve the ungauged problem with an iterative solver [55]. With such
solver, the divergence of each MVP increment of the iterative resolution (ak − ak−1) is
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weakly set to 0. Consequently, the divergence of ak is that of a0 (which is zero when
starting from null initialization a(t = 0) = 0), the solution is implicitly gauged by the
solver.

While the solver gauging strategies can be convenient, they have their drawbacks. It is
also possible to build a full rank system that is directly solvable by applying a gauge
before the resolution. Two such gauges are presented next.

Tree gauge

Tree-cotree gauging enables a strong gauging of the MVP by setting to 0 its DoFs
associated with the edges of a spanning tree τh ⊂ E(Ωh). Such a tree is a set of edges
that spans all the nodes of Ωh without forming any cycle, meaning there is no set of
edges C ⊂ τh such that ∂C = ∅. The function space of edge elements in Ωh gauged on a
tree τh is called H0τh,h(curl; Ω) and defined by:

H0τh,h(curl; Ω) :=
{

a ∈ Hh(curl; Ω)
∣∣∣ ∫

ei

a · t = 0 ∀ei ∈ τh

}
(1.79)

The idea is that the dimension of the null space of the system is that of the freedom
of choice of a field in the kernel of the discrete curl operator. In a simply connected
domain, such a field is a gradient field and is determined by Nn − 1 DoFs, the dimension
of Hh(grad; Ω)\R [55]. Nn − 1 is exactly the number of edges of τh, hence the choice of
DoFs to remove.

In non simply connected domains, H1
h(Ω) is not empty and its fields are also in the

kernel of curl (1.48), this adds β1 DoFs to fix. Indeed, β1 edges should be added to τh to
form one cycle through each tunnel of Ωh, the tree can then be called a belted tree [63,
31]. Also, if the domain is not connected - that is β0 > 1 - the tree has β0 connected
components and its number of edges, which is still the correct number of DoFs to remove,
is Nn − β0 + β1.

Coulomb gauge

Using the Coulomb gauge consists in adding to the system the equation div a = 0 (1.58)
in the domain where the gauge is needed. We will apply it to the a∗ formulation (1.55)
where the gauge is only needed in ΩN. It is natural to derive the weak formulation of
(1.58) with a scalar potential test function ξ ′ in order to use (1.59), leading to∫

ΩN

a∗ · grad ξ ′ +
∫

∂ΩN

a∗·n ξ ′ = 0.
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The boundary term can be split on the three sub-boundary of ΩN, namely Γb, Γh and
ΓC\N, and we show that it vanishes completely. Indeed, there are boundary conditions
for a on boundaries Γb and ΓC\N, which are respectively a× n = 0 and (σ∂ta∗) · n = 0,
so a is uniquely defined there. Therefore, the gauge is not needed on Γξ0 = Γb ∪ ΓC\N
and ξ ′ is set to 0 there.

On the other hand, it is possible to weakly impose the boundary condition a∗ · n = 0 on
Γh. It was proven that the solution still exists, and the condition actually makes it unique,
under different conditions on the material laws [42, 56]. The discrete Coulomb gauge
condition can thus be written∫

ΩN

a∗ · grad ξ ′ = 0, ∀ξ ′ ∈ H0,Γξ0,h(grad; ΩN). (1.80)

Finally, (1.80) should be coupled with the discretized weak form of (1.55), if possible
while maintaining the symmetry of the matrix of the system. The usual way to do this is
to introduce a Lagrange multiplier ξ, leading to the following discrete weak form.
Find a∗ in H0,Γb,h(curl; Ω) and ξ in H0,Γξ0,h(grad; ΩN) such that

∫
Ω

ν·curl a∗ · curl a∗′ +
∫

ΩN

λ1grad ξ · a∗′ +
∫

ΩC

σ∂ta∗ · a∗′ =
∫

Ωs

js · a
∗′,∫

ΩN

λ1a∗ · grad ξ ′ + λ2ξξ ′ = 0,
(1.81)

for all a∗′ in H0,Γb,h(curl; Ω) and all ξ ′ in H0,Γξ0, h(grad; ΩN), with λ1 > 0 and λ2 ≥ 0 two
parameters that can be tuned to improve the conditioning of the system. Their naive
values would be λ1 = 1 and λ2 = 0. If the resolution converges well, the solution for ξ

should be 0 [57].

When ΩN has a nonzero β1 number, the naive Coulomb gauge is not enough because
fields at ∈ H1

h(ΩN) respect both div at = 0 and curl at = 0, they are free to change in
(1.81). In this case, the grad ξ field in (1.81) should be replaced with a field living in
H0,Γξ0, h(grad; ΩN)

⊕H1
h(ΩN)

3 with techniques similar to Section 1.3.5, see [64].

1.4 Example and motivation for multiscale methods

To finish with this chapter on the electromagnetic fields computation, an example of
eddy current problem resolution with a B-conforming formulation featuring materials
with nonlinear magnetic laws is presented. We compute the eddy currents in a small
cube of periodic magnetic material made of conducting inclusions electrically insulated
from each other.

3⊕ stands for the direct sum of the two spaces.
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1.4. Example and motivation for multiscale methods

This example shows the state of the art of eddy currents computation in nonlinear
materials, as well as the limitations faced in the simulation of materials with such
heterogeneous geometry.

The periodic material is a cubic magnetic core made of 8× 8× 8 = 512 spheres, sur-
rounded by an insulator that we assume has the same physical properties as the air, that
is σ = 0 and µ = µ0. The cube is centered around the origin. Only one eighth of the
geometry is represented and meshed for the computation (see Figure 1.12), because it
has three planes of symmetry similarly to Figure 1.6.

Figure 1.12: Geometry and mesh of an heterogeneous periodic magnetic material surrounded by a coil.

The spheres have a diameter of 80 µm and are placed such that their centers are separated
by a distance of 100 µm. They have a conductivity of 5× 107S.m-1 and the permeability
follows the Fröhlich-Kennelly nonlinear law (1.82) with parameters µr,max = 100 and
Bs = 1.5 T.

The Fröhlich-Kennelly magnetic law [65] is an analytical law defined by

µ(h) = µ0 +
(µr,max − 1)Bs

(µr,max − 1)∥h∥+ Bs/µ0
(1.82)

with parameters Bs the saturation induction and µr,max the maximum relative permeabil-
ity. The law is equivalent to b(h) = µ0µr,maxh near ∥h∥ = 0, and to b(h) = µ0h when
µ0∥h∥ ≫ Bs. The Jacobian matrix of the law is given by

∂b
∂h

(h) = µ(h)I3 +
1
∥h∥

∂µ(h)
∂∥h∥ h⊗ h (1.83)

where
∂µ(h)
∂∥h∥ =

(µr,max − 1)2 Bs

((µr,max − 1)∥h∥+ Bs/µ0)
2 (1.84)

with I3 the identity second order tensor of size 3, and h⊗ h = hhT the dyadic product of
h and h, also a second order tensor of size 3. The h(b) analytic inverse law is given in
Appendix A.2.
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The magnetic core is excited by a coil with circular section of diameter 200 µm, the coil
respects a revolution symmetry around the origin, and has an outer radius (maximum
distance of a point of the torus from the origin) of 3 mm. The device is surrounded by a
wide spherical air box of diameter 6 cm.

The simulated domain Ω is thus constituted of the inductor Ωs, the air ΩA, the insulator in
between the balls ΩI and the conducting magnetic balls ΩC. The nonconducting domain
(more precisely the domain where no eddy currents is computed) is ΩN = ΩA ∪Ωs ∪ΩI .
The heterogeneous core domain is thus defined by ΩM = ΩC ∪ΩI . As we consider
one eighth of the geometry, all the domains have β1 = 0. But ΩC has β0 = 256/8 = 64
connected components.

The problem is solved with the a-v formulation (1.61) where a is discretized with edge
elements and gauged with the tree gauge in Ω, and v discretized with nodal elements in
ΩC and gauged in each sphere by fixing the potential to 0 at one node.

It is assumed that the coil has enough turns to consider the current source density
constant on the coil section. The coil is fed with the current

js(x, t) =
I(t)
AC

 − sin(θ(x))
cos(θ(x))

0

 (1.85)

with

• AC = π10−8 m2 the coil section area,

• I(t) = 1000 sin(2π f t) A the total imposed AC current (this value accumulates the
current of all the turns of the coil),

• f = 300 kHz the frequency,

• θ(x) = atan2(y, x).

The initial conditions are a(t = 0) = 0 and v(t = 0) = 0 everywhere. It is not necessary to
correct the discretization of the current source here, because the analytic source formula
has null divergence, and the inductor has a smooth and well meshed shape.

The problem is solved during 4.16 µs with a step size of 20.83 ns, that is during 1.25
periods at 160 TS per period. Theta scheme with θ = 1 is used. At this frequency, the
skin depth is δ ≃ 29 µm. This number δ =

(√
πµσ f

)−1
is an approximation of the

distance from the boundary of the conductor on which the current flows. In general, it
is necessary to adapt the mesh to refine the conductor near its boundary on a depth of
few times δ, which may be very expensive. But here, δ is just slightly shorter than the
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balls radii 40 µm, so the meshes of the balls don’t need to be extremely fine near their
boundaries.

The number of elements in the mesh and associated degrees of freedom in the system are
shown in Table 1.1, the system is small enough (≈ 600k DoFs) to use a direct solver. The
MUMPS linear solver [66] will be used for all linear system resolutions in this work. Both
absolute residual and relative residual stopping criteria are used for the Newton-Raphson
algorithm, with a tolerance of 10−8.

Figure 1.13: Example magnetic induction (left) and current (right) field maps. The eddy currents in the balls
turn in opposite direction compared with the source current in the inductor.

Some field maps are displayed Figure 1.13 and the Joule losses and magnetic energy
stored in the core are plotted over time on Figure 1.14, they are respectively computed
with

PJL =
∫

ΩC

σ(−∂ta− grad v) · (−∂ta− grad v),

Em =
∫

ΩM

ν·curl a · curl a,

where ΩM is the magnetic core. For this problem, the nonlinear loops always converged
in 2 or 3 iterations, and 55 hours were necessary to complete the 200 time steps. Each
iteration, that is one assembly and resolution of the linear system, took nearly 5 min in
average.

We can also pay attention to the cost of the different a formulations on this problem. The
degrees of freedom involved in the a− v and a∗ formulations using either the tree gauge,
the Coulomb gauge with Lagrange multiplier and a solver gauge are shown on Table 1.1.

Those possibilities are not equivalent. We could not make well work the a∗ formulation
with the tree gauge here, possibly because the tree is harder to generate due to the
spheres which it has to avoid. Our few attempts lead to an ill-conditioned system.
The a-v formulation with solver or Coulomb gauge requires much more DoFs. In our
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Figure 1.14: Joule losses (left) and magnetic energy stored in the core (right) during 2.25 periods. The nonlinear
magnetic law in the balls results in non-sinusoidal signals.

experiments, the formulations with the best tradeoffs between efficiency and convenience
to implement were the a-v formulation with the tree gauge and the a∗ formulation with
Coulomb gauge, the former has the minimum possible number of DoFs and the tree
used for gauging is straightforward to generate.

Ω ΩC ΩN
nodes/Nn 88.5k 64.7k 72.4k

tets./Nk 509k 231k 278k

Number of elements

Gauge Tree Solver Coulomb
a− v 574k 660k 749k

a∗ 574k 596k 619k

Degrees of freedom

Table 1.1: Number of elements in the mesh Figure 1.12 (left) and degrees of freedom with the two a formulations
(right). The numbers of DoFs are given for three gauges, the tree gauge, the ungauged system (meant to be
gauged via the solver) and the Coulomb gauge.

There are 48.6k nodes on the boundary of ΩC only, and out of the 278k tetrahedra in
ΩN, 239k (86%) are in the insulator ΩI . In total, more than 90% of the total DoFs are
associated with the simulation of the periodic magnetic core.

We did not use all the state-of-the-art techniques to solve this problem. For example,
using performant iterative solver and domain decomposition methods could enable
solving bigger linear system with drastically parallelized computations. Nonetheless,
those techniques do not help a lot with the eddy currents computation in the nonlinear
conducting domain, or cannot scale with the increase of DoFs with respect to the number
of periods of the material. In 3D, it grows as n3 if n is the number of material period
in one direction. For illustration, the number of tetrahedra meshing the spheres in the
previous example, with respect to the number of sphere in one direction, is given in the
following table, along with the associated computation time to solve one linear system
of this size (with the MUMPS solver). The value are extrapolated using a fitting with a
O(n3) polynomial.
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Summary

n 1 3 6 10 100 1000

ΩC tets. 3.6k 98k 778k 3.6M 3.6G 3.6T

One system solve 4 s 96 s 10 m 35 m >7 d ≫ 13 y

This large increase in computational burden with the number of material fine-scale
components makes it impossible to apply the usual methods to highly heterogeneous
materials.

Summary

This first chapter was dedicated to the review of the workflow commonly used to achieve
the computational modeling of the electromagnetic fields in the magnetoquasistatic
regime, which is used to model many devices in electrical engineering. The different
modeling steps were described, from the definition of Maxwell’s equations to their
numerical resolution using spatial and temporal discretization and the linearization of
nonlinear equations.

At the end, it was shown that the usual single scale methods are limited, the computa-
tional costs in time and memory are not affordable to study actual heterogeneous material
with thousands of fine scale features. Multiscale modeling techniques are studied in the
next chapter to circumvent this problem.

As mentioned in the introduction, a particular care will be given to the computation of
the macroscopic field strength from the fine scale solutions. Indeed, this research was
originally motivated by the lack of understanding of the scale transition of the electric
and magnetic fields strength pointed out by Meunier et al. in [4], hindering the use of
the B-conforming formulation for multiscale modeling. But this formulation converges
far better than the dual H-conforming one on the strongly nonlinear ferromagnetic cores,
hence the will to understand and fix potential issues.
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Chapter 2

Multiscale modeling

This chapter is dedicated to the multiscale modeling of electromagnetic fields. The first
section gives a short overview of the homogenization and multiscale methods used in
electrical engineering. In the next sections, an improved multiscale model using a scale
separation hypothesis is introduced and analyzed. In particular, the last section details
different methods that can be used to compute the homogenized electromagnetic fields
from the fine-scale fields and describes their advantages and disadvantages.

2.1 Usual heterogeneous media and multiscale methods

This section lists some examples of heterogeneous media commonly encountered in
electrical engineering for which multiscale modeling techniques can be useful. Then,
several relevant state-of-the-art multiscale methods that are applicable to most of the
heterogeneous media are summarized. Finally, the multiscale methods requiring a scale
separation hypothesis are introduced, including the heterogeneous multiscale method
which is used in this research work.

2.1.1 Heterogeneous materials

Periodic and stochastic heterogeneous materials

A heterogeneous material is a material having a complex structure featuring elements
significantly smaller than the overall material size. In general, those structures have
complex and random shapes, like a pile of sand made of many grains of variable size
and shapes. But these random shapes are not arbitrary, it is possible to model them
with probability distributions. Such material are thus called stochastic heterogeneous
materials.

Some manufactured material admit a regular periodic structure, they are called periodic
media. Although we will only work on the homogenization of periodic media in this
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work, the periodic homogenization methods can be extended to stochastic materials
by building a periodic cell - called the representative volume elements (RVE) - holding a
representative portion of the material.

Let us introduce some notations used in the periodic setting as illustrated in Figure 2.1.
The modeling domain is Ω, it contains a periodic domain Ωε. The exterior of the periodic
domain is called ΩM, such that Ω = ΩM ∪Ωε, and the interface between Ωε and ΩM is
called Γε\M. The periodicity of Ωε translates the invariance by a translation by a period
vector k, that we further call k-periodicity for shorteness, with ε = ∥k∥ the characteristic
size of the fine-scale features. The interior of the periodic domain can be generated by the
translation of the periodic cell by vectors zk = (zxkx, zyky, zzkz) where (zx, zy, zz) ∈ Z3.
If desired, it is always possible to choose Y as a rectangular hexahedron1 of diagonal k.

ΩM ∂Ω

Γε\M

jS
Ωε

Y

bε · n = 0
curl ν0bε = js
div bε = 0

curl νε ·bε = 0
div bε = 0

bε · n continuous
νε ·bε × n continuousk

on ∂Ω
in ΩM
in ΩM

in Ωε

in Ωε

on Γε\M
on Γε\M

(EM)

(Eε)

(Cε\M)

Figure 2.1: Left: sketch of an heterogeneous periodic material Ωε of period k with a zoom on the periodic cell
Y. Right: an example of problem with heterogeneous solutions in Ωε. It is a magnetostatic problem written in
the B-conforming formulation of unknown bε.

We are interested in solving a PDE in Ωε ∪ΩM that we call the fine-scale problem. The
set of equations defined in ΩM is called (EM), and that defined in Ωε is called (Eε), with
its fields noted with a •ε superscript - e.g. bε - to highlight that they have fine-scale
features. Finally, the interface conditions defined on Γε\M are denoted (Cε\M). The
fine-scale problem Pε\M is thus summed up by the following system of equations:

Pε\M :
{
(EM), (Eε), (Cε\M)

}
on Ω = ΩM ∪Ωε. (2.1)

It is also called the reference problem. An example of fine-scale magnetostatic problem
with a B-conforming formulation is given in Figure 2.1.

To make things more concrete, several examples of actual heterogeneous media for which
multiscale methods are used are presented next.

1A rectangular hexahedron has 6 rectangle faces with all having right angles
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2.1. Usual heterogeneous media and multiscale methods

Coils

Wire coils are made of a long wire wrapped several times around an axis. The wires are
insulated from each other to force the current to make the expected number of turns
around the axis. Coils are widely used for the conversion between electric energy and
magnetic energy. Indeed, they multiply the current imposed in the wire by the number
of turns of the coil, leading to the creation of a large magnetic flux thanks to Ampère’s
law [67].

Source: [68]

A coil is a site of Joule losses. These losses might be difficult to
predict in dynamic settings, because of the skin effect inside the
turns, and the proximity magnetic effects between the turns.
Depending on the manufacturing process, the wire turns might
be regularly aligned in space, or not, so both periodic and
stochastic homogenization techniques can be relevant.

Laminated magnetic cores

Many electrical engineering devices such as actuators, electrical
machines and electrical transformers contain so-called magnetic cores. Those are made
of ferromagnetic materials that have high magnetic permeability, which allows them to
canalize and better conduct the magnetic flux [69].

Source: [70]

The best ferromagnetic materials are based on specific
metals, mainly iron, which are also conducting materials.
As a result of the presence of these conducting materials,
eddy currents appear and create unwanted losses of en-
ergy in the material due to Joule effect. To reduce these
losses, magnetic cores are often made of ferromagnetic
sheets separated by thin insulating layers. Such cores
are thus periodic, the thickness of the sheets is generally

between 10−4 m and 10−3 m, and that of the core between 10−3 m and 2× 10−1 m. When
the flux traverses the core in the sheet plane, the eddy currents cannot loop around the
whole core, but only in the sheet thickness. In the end, the total losses in a laminated
core are divided by the number of sheet, compared with a massive one.

Other soft magnetic materials

The laminated cores have disadvantages. They are anisotropic and limited in the
frequency at which they operate because there can still be significant eddy currents
inside them. Also, they cannot admit a wide range of shapes. Many other mag-
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netic materials exist, including soft ferrites, sintered material and soft magnetic com-
posites (SMC) [71]. They are designed to have a high density in magnetic material

Source: [10, Figure 1.2]

(s.t. iron, nickel and cobalt) along with a minimal
conductivity to reduce the Joule losses. This is
achieved by splitting the metal in small grains and
reducing the conductivity at their interfaces. The
grain size can range from about 10−6 m to 10−4 m.
The SMCs have the best electric resistivity because
the grains are insulated with a coating made of
some resins. Examples of possible resins are listed
in [71].

Those materials are a motivation to develop multiscale modeling because a piece of SMC
contains a very large amount of grains, it is impossible to compute the electromagnetic
fields with a fine-scale model of the whole material. The main objective is to accurately
estimate quantities such as the Joule losses and magnetic flux through the core. As
mentioned in the general introduction, the four sources of difficulties are the handling of
complex material laws, the dynamic effects (skin effect, Joule losses, possible dynamic
hysteresis), and the multiscale and stochastic nature of the geometry. The first three
difficulties are addressed in this thesis with experiments on a basic periodic geometry.
As for the fourth issue, it is at least possible to find some RVE of stochastic geometry
[72], and multiscale methods should be adapted to it. But determining the fine scale
material laws to feed the model might be an issue in practice.

Large heterogeneous systems

The previously given examples of heterogeneous material feature scales of electrical
engineering devices and the smaller scales of their components, but the multiscale
modeling of Maxwell’s equations can be useful at many other scales.

In geophysics, multiscale methods are studied to help detect bodies of mineral deposits
and water or hydrocarbon reserves in the ground by measuring the conductivity of the
ground. This is done by solving inverse problems on domains of sizes ranging from 1 to
102 km. The ground is modeled considering its very heterogeneous nature, with features
decscribed at many different scales e.g. from 10−3 m to kilometers [73].

Similarly, the electric networks used to transport electric energy across countries are
multiscale in essence, they have the size of continents while being made of components
of many sizes.

These two examples close our listing of heterogeneous media of various scales which
are commonly encountered in electromagnetic. Next, a review of some of the general
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2.1. Usual heterogeneous media and multiscale methods

purpose homogenization and multiscale methods is presented.

2.1.2 Homogenization and multiscale methods

Homogenization and multiscale modeling are used to model complex heterogeneous
materials or structures as homogeneous medium, by defining equivalent homogenized
material properties in it. Homogenization can be viewed as a step of multiscale modeling,
consisting in defining or computing the homogeneous fields or equivalent properties of
the medium from a fine scale model. The multiscale modeling is the whole process of
determining the fine scale model, the homogenization technique and the way to use the
homogenized quantities into the macroscopic homogenized model.

There exist a wide range of homogenization and multiscale methods. We will divide
them into two categories:

• the framework of effective medium theory, including the mean field methods, in which
approximations are made on the fine scale geometry, the distribution of the fields
and the fine scale material laws in order to derive analytic or semi-analytic models,

• the computational multiscale methods, or full-field methods, that rely on solving PDEs to
compute the fine scale field maps and deduce the homogenized material properties
from them.

This thesis will study a method of the computational category. We could include the
computational multiscale methods into the framework of effective medium theory as
they share the same core principle and objective. The difference is that computational
methods aims at providing solutions as accurate as a complete fine scale resolution of
Maxwell’s equations.

Computational methods are still the most expensive methods, most of the time, some
accuracy can be sacrificed to benefit from large reduction of cost. The method of the
effective medium theory provide a wide range of tradeoffs between accuracy and cost of
computation. The literature is well summarized in [74] and [10, Section 3.3], but we shall
give some example here.

The book [75] discusses how to perform homogenization using so called mixing rules.
The base building bloc of the macroscopic properties are the volume ratio of the different
phases of the fine scale description of the material.

The mean field homogenization methods enable to take hysteretic behaviors into account
[76], to model the material at a scale where it cannot be described as phases of different
matter [77], or to consider multi-physic couplings, such as magneto-elastic coupling [78].
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2. Multiscale modeling

These analytic and semi-analytic methods are generally designed for specific applications.
On the other hand, computational method are generally meant to be applicable on any
problem. But they have also been derived and specialized to the cases of coils and
laminated magnetic cores, which were described before. The multiscale modeling of lam-
inated cores have been continuously developed in the last decades, recent advancements
include [79, 15, 80, 81, 82]. About coils, some methods enable to compute equivalent
permeability and conductivity tensors that take into account both skin and proximity
dynamic effects, in harmonic [83, 4] and time stepping [84] regime.

We now focus on the general purpose computational multiscale methods that we present
next, starting from the more widely applicable ones to the more restricted ones. The latter
require more simplifying hypothesis on the solutions or equations, but are therefore more
efficient. We do not review the theories used to analyze mathematically the multiscale
methods accuracies, but refer to [10] for a review of them.

Multiscale finite element method

The Multiscale Finite Element Method (MsFEM) [85] employs coarse and fine-scale basis
functions in a single FEM resolution. The material to homogenize is coarsely meshed,
but a set of a few fine-scale basis functions is added in each coarse element. These basis
functions are pre-computed with solution of the fine-scale model and should permit an
accurate representation of the fine-scale features using only few DoFs per coarse element.
The basis functions might be computed individually on each coarse element when the
shape of the fine-scale features vary in the material. More details are given in [10, Sec.
4.2.1][86], usage of the method for electrical engineering was made in [5, 8].

This method is very general but has drawbacks. The fine-scale basis function must be
computed again for each new fine scale geometry. Also, storing them in memory is not
cheaper than storing the complete fine-scale mesh and solutions, the method is thus
limited when there is a large difference between the coarse and fine scale characteristic
lengths.

Variational multiscale method and localized orthogonal decomposition

The Variational Multiscale Method (VMS) [87, 86] and the associated similar Localized
Orthogonal Decomposition (LOD) method use a splitting of the unknown field into a
coarse and a fine component. The space of the solution is decomposed into spaces of fine
and coarse components and the governing formulations are derived for both components.
In the context of the FEM, the coarse and fine linear systems can be transformed into a
single linear system by using some kind of Schur complement.
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2.1. Usual heterogeneous media and multiscale methods

Similarly to MsFEM, one of the advantage of VMS and LOD is that they don’t rely on
any scale separation assumption. However, this comes at the expense of taking into
account as much fine scale variation of the field as in the original fine-scale problem, in
particular, the cost of storing the solution in memory is not much reduced.

The scale separation hypothesis in multiscale modeling

Before introducing the Heterogeneous Multiscale Method (HMM), which is the numerical
multiscale method used in this work, we introduce the scale separation hypothesis that it
requires. Indeed, the continuous set of equations that HMM discretizes and solves for
is based on it. In particular, the need for an averaging strategy used to define the scale
separation hypothesis and the continuous multiscale equations is discussed.

Our introduction of these notions follows an intuitive approach inspired by the com-
munity of computational electromagnetics [1, 2, 4]. This approach is different from the
standard derivations made in asymptotic homogenization theories [10, Chap. 3][88]. The
reason is mainly the difficulty to understand and study these mathematical frameworks.
The approach we adopt enables to be more general while being compatible with the
them, as both models lead to the very same discrete problems on the simpler setting
(magnetostatic).

There are several possible definitions for the scale separation assumption. In asymptotic
homogenization, it is possible to define it using comparison between the size of the
device L and some geometrical or physical characteristic sizes like the cell size ε, the
skin depth δ or the electromagnetic wavelength λ. This is studied in detail in [89] for
problems based on time-harmonic Maxwell’s equation including permittivity.

In this thesis, we adopt a definition that directly relates to the fields, that is on the
solutions of the equations on the given geometry, not the physical parameters or geometry
themselves. The general idea is the following. First, we define a macroscopic field by
applying a homogenization formula to the fine scale fields bε. Then, the scale separation
hypothesis is defined as assuming that all macroscopic fields are smooth at the fine scale
and slowly vary on distances larger than the geometric period ε.

The macroscopic field are denoted by capital letters like B(x). We call scale transition
relation (STR) the homogenization formula that defines the macroscopic fields from the
fine-scale fields. In periodic homogenization, any macroscopic field B is classically
defined using the cell volume average of the fine-scale field bε, that is

B(x) = ⟨ bε ⟩Y(x)
:=

1
|Y(x)|

∫
Y(x)

bε(y)dy, (2.2)

where |Y(x)| = kxkykz is the volume of Y(x), the cell centered at x. But it will be shown in
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Section 2.2 that this definition does not always work for electromagnetic fields, so we
temporarily let the scale transition relation undefined and call it ⟨ ⟩STR.

To define the set of continuous multiscale equations, the dependency in space of the
fine-scale field bε(x) has to be split into the slow macroscopic variation at scale L and in
a fast or fine-scale variation at the scale ε. The slow variation of the field is modeled by
the macroscopic field B(x). The fine scale variation is the rest, bε

fine(x) = bε(x)− B(x).

bε
fine(x)

B(x)

bε(x)

x
0

k

Figure 2.2: 1D sketch of the scale separation of a fine scale field bε into its macroscopic smooth variation B
and its nearly k-periodic variation bε

fine.

In a neighborood around x of few ε of radius, the small variation of bε
fine is due to the

k-periodic2 heterogeneities of the material and not to interaction with surrounding fields
(the macroscopic fields are smooth). So we can make the approximation that its fine scale
variation is k-periodic, that is:

bε
fine(x + k) ≈ bε

fine(x). (2.3)

In other word, the (assumed small) variation of the field bε between points that are
k-periodic is only attributed to the variation of the macroscopic field:

bε(x + k) ≈ bε(x) + B(x + k)− B(x). (2.4)

We can thus transform bε(x) into a two-scale field b(x, y) in all neighborhood of x, for
x ∈ ΩH and for y ∈ Y, where y→ bε(x, y) is k-periodic. So x is now the position in the
macroscopically homogenous domain ΩH which replaces Ωε.

The advantage is that the fine-scale distribution y → b(x, y) can be computed in the
domain Y independently of what happens further away at the macroscopic scale, i.e.
at distances large compared to ε. It only depends on the macroscopic fields at x. The
macroscopic and fine scales are separated. Now, the macroscopic field map is computed

2Periodic by translation by vectors zk = (zxkx, zyky, zzkz) where (zx, zy, zz) ∈ Z3.
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2.1. Usual heterogeneous media and multiscale methods

using the scale transition relation on the two scale field as follows:

B(x) = ⟨ b(x, y) ⟩STR ∀x ∈ ΩH,

where the integration variable of the STR is y.

Unlike other approaches, the definition of the scale separation hypothesis adopted here
doesn’t provide an a priori criterion (depending only on the geometrical and physical
parameters of the problem) indicating whether the assumption is valid or not. On the
other hand, our definition is more general because it relates to the essential property
required to use HMM, that is the possibility to define two scale fields. We believe that this
definition is valid whatever the skin depth and wavelength inside conducting inclusions
in the heterogeneous material. In general, a geometric scale difference between the
heterogeneous material components and the size of the material itself is required for the
scale separation hypothesis to hold, but it is not sufficient3. For periodic materials, it
means ε≪ L if L is the characteristic size of the material.

Derivation of the multiscale model

To build the multiscale model, all the physical fields (not necessarily the potentials)
are splitted in two scale fields. From there, the original heterogeneous equations (Eε)

are split in equations for the macroscopic fields (EH) and set of cell equations (EY(x))
defined for x in ΩH. The fields and unknowns of the (EH) PDE are macroscopic fields,
and the fields and unknowns of the (EY(x)) PDEs are fine-scale cell fields. An example
two-scale problem is given in Figure 2.3. Thanks to the scale separation hypothesis,
the cell problems (EY(x)) are implicitly coupled with each other by the macroscopic
equations via the STR, they are not explicitly coupled with each other like in the original
fine scale model.

In the macroscopic homogenized domain, equivalent material laws replace the original
ones. Material laws usually link dual fields, such as H and B in the case of the magnetic
law. In the proposed model, the macroscopic laws are implicitly defined by the scale
transient relation and the cell problem. For example, in B-conforming formulation, the
H(B) function can be computed by applying the STR to the fine scale h(x, y, B(x)),
which is the solution of the cell problem with imposed B(x). In summary:

H(B(x)) = ⟨ h(x, y, B(x)) ⟩STR.

3If there are electromagnetic wave propagation in the material with a wavelength of the same size
of the cell, the scale separation hypothesis cannot be made because it is not possible to define a smooth
macroscopic field. There are no wave propagation in MQS, but for a material with macroscopic conductivity,
the macroscopic skin depth should be greater than the cell size, otherwise the macroscopic current will vary
too fast compare to the cell size. We won’t study this case in this thesis, however.
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ΓH\M

ΩM

x
Yx

ΩH

∂Ω

jS

B · n = 0
curl ν0B = js

curl H(B) = 0

H(B)×n continuous

curly ν(y)·b(x, y) = 0
B(x) = ⟨ b(x, y) ⟩STR
H(x) = ⟨ ν(y)·b(x, y) ⟩STR

on ∂Ω
in ΩM

in ΩH

on ΓH\M

in ΩM ×Y
in ΩM ×Y
in ΩM ×Y

(EM)

(EH)

(CH\M)

(EY(x))

Figure 2.3: Diagram of the continuous two scale model of the fine scale magnetostatic problem introduced in
Figure 2.1. The cell problems (EY(x)) are strongly coupled with the macroscopic equation (EH) via the scale
transition relation ⟨ ⟩STR. In the example, the coupling is written in the form of a H(B) relation defined by
applying ⟨ ⟩STR to h and b. The equations div B = 0, div b = 0 and conservation of B · n on ΓH\M are omitted,
it is assumed that they will be enforced in the function space using the magnetic vector potential.

It should be highlighted that an interface condition (CH\M) should be defined at the
homogenized domain boundary in place of (Cε\M). Both interface conditions will
generally be a continuity condition like in the example Figure 2.3. But the consistency of
the homogenized interface condition (CH\M) with the original interface condition (Cε\M)

depends on the choice of scale transition relation ⟨ ⟩STR and macroscopic equations (EH),
because (CH\M) relates to the macroscopic fields and not to the fine scale ones.

The continuous two scale problem PH\M is summarized in the following system of
coupled problems:

PH\M :

{
(EM), (EH), (CH\M) on ΩM ∪ΩH,

(EY(x)) on Y, for x ∈ ΩH.
(2.5)

In general, this system contains an infinite number of cell problems (EY(x)). As will be
explained later, when the cell problems are linear4, they are independent of x and decou-
pled from (EM)− (EH)− (CH\M). So only solving one cell problem (EY) is necessary. In
this case, its solutions can be pre-computed once for all, and they are summarized in a
homogenized material law tensor to use in (EH), e.g. νM to replace H(B) by νM ·B, as
will be detailed later.

But if the cell problems feature a nonlinear material law5, then their solutions depend on
the macroscopic fields and thus depend on x. It means that the macroscopic problem is

4If using time stepping method, this is only true if the macroscopic fields are numerically independent
of previous time step solutions.

5Or if the cell problem time derivative terms affects the homogenized material law when using time
stepping (Footnote 4).
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2.1. Usual heterogeneous media and multiscale methods

nonlinear, and that an approximation of the cell problems solutions using a finite number
of resolutions is necessary. This is the issue that the heterogeneous multiscale method
solves.

Heterogeneous Multiscale Method

The heterogeneous multiscale method (HMM) [17, 16, 10] consists in doing two things. The
first is reducing the number of cell problems to solve from an infinite number to a finite
and reasonably small one, which allows to drastically reduce the amount of fine scale
meshing and resolution compared with the original problem. The second is solving the
two-scale problem iteratively using a weak coupling between the macroscopic problem
and the cell problems. This allows to parallelize the cell problem resolutions.

curly ν(y)·curly a(xB, y) = 0 in YxB,h

curl A(xB) =
〈

curly a(xB, y)
〉

STRΓH\M,h

ΩM,h

xB
YxB,h

ΩH,h
(EY(xB)) for xB ∈ B(ΩH,h):

Figure 2.4: Diagram of the discretized two scale domain (left) used to define the discrete problem of the
continuous model from Figure 2.3. The equations for the discrete cell problem are shown on the right.
A cell problem is associated to each macroscopic element, at their barycenters xB. The macroscopic and cell
problems are discretized using classic FEM. In general, the source of the problem is the downscaled field and
its macroscopic derivative, like B and div B. But in this example, only the former is used because the latter is
0. The upscaling scale transition is a source of the macroscopic equations (EH). Here, both the macroscopic
and cell magnetic induction fields are discretized using the magnetic vector potential (cf. Section 1.2.3), s.t.
B = curl A and b = curly (a).

When the FEM is used to spatially discretize (EH) and (EY), it is natural to associate
one cell problem to each Gauss point of the macroscopic mesh, because the macroscopic
material laws are needed at these points. However, only one cell problem per macro
element will be used in this work, associated with the barycenters of the element. We
call B(ΩH,h) the set of the barycenters xB of the elements in the macroscopic mesh ΩH,h.
The spatially discretized two-scale problem PH\M,h thus becomes:

PH\M,h :

{
(EM)− (EH)− (CH\M) on ΩM,h ∪ΩH,h,

(EY(xB)) on Yh, for xB ∈ B(ΩH,h).
(2.6)

But the system (2.6) has still a strong coupling between all the equations of the system.
To be able to parallelize the cell problem resolutions, their strong coupling with the
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macroscopic problem is transformed into a weak coupling. That is, the macro and
cell problems are solved asynchronously by freezing (assuming constant) the quantities
explicitly depending on the other scale during the resolution. The resolutions at each
scale alternate until the macroscopic problem converges.

The frozen fields should be updated between each resolution. The transmission of the
macroscopic field to the cell problems is denoted downscaling, while the computation
and transmission of the homogenized material law to the macroscale is called upscaling.
The pseudo algorithm for a HMM resolution of a nonlinear B-conforming magnetostatic
problem is summarized in Algorithm 1.

Algorithm 1 HMM algorithm for a B-conforming static problem

1: Initialization
2: do ▷ Macro NL Loop
3: for xB in B(ΩH) do ▷ Cell resolutions, can be fully parallelized
4: Downscale B(xB)

5: Solve Meso problem (EY(xB)) ▷ Involves cell NL loop
6: Upscale H(xB), ∂H

∂B (xB) ▷ Might involve FEM computations

7: Solve Macro problem (EM)− (EH)− (CH\M)

8: while Macro problem converged (or diverged)

Unlike the reference problem, the computational cost of the HMM resolution no longer
depend on the number of geometric periods of the heterogeneous material. Indeed, the
mesh size and computational cost of the FE-HMM is constant as ε decreases. Furthermore,
the smaller ε is, the smaller the approximation error due to the multiscale approximation
should be.

Time stepping Heterogeneous Multiscale Method

In this thesis, we will treat the time variation of the fields using the time stepping method.
It enables a relatively easy validation of nonlinear multiscale formulation in both steady
state and transient regime, in comparison with the methods presented later. Indeed, once
the time derivatives are discretized with a θ-scheme (1.67), a finite number of PDEs that
are solvable in a time loop is obtained.

HMM can be extended to time dependent problems by simply adding the time depen-
dency to the equations and including Algorithm 1 in a time loop, this is the time stepping
heterogeneous multiscale method (TS-HMM). Although TS-HMM can handle any time
regime, more efficient methods exist when the problem is linear and/or steady state.
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Asymptotic Homogenization Method

For problems featuring linear fine-scale material laws, the discrete equations yielded
by using HMM on the previously introduced multiscale framework can be simplified.
Indeed, the homogenized material law can be put in the form of a product by a second
order tensor, e.g. H(B) can be written H(B) = νM ·B. The material law tensor is constant
and can be computed using three cell problem resolutions, where the cell is excited with
three unitary sources in each spatial direction. It can be pre-computed and used in the
macroscopic problem (see Section 2.3.1).

The obtained multiscale discrete system is the same as that obtained using the asymptotic
homogenization method (AHM) [90]. But AHM is derived in a mathematically rigorous
way, using an asymptotic analysis of the multiscale problems where the size of the cell
tends to zero, see [10, Section 3.4][88].

For linear time dependent problems with harmonic sources, the solutions are also
harmonic and the time variation of fields can be represented using phasors. Asymptotic
homogenization also works in this case, one just has to consider a complex material law
tensor. We call it the harmonic asymptotic homogenization method (H-AHM). This method is
very efficient and widely used on electrical engineering problems [1, 2, 4, 5, 3, 89], but is
limited to steady-state harmonic problems.

Multi-harmonic Heterogeneous Multiscale Method

General time periodic solutions, also called multi-harmonic solutions, are encountered in
two situations. When the source of the linear problem is an arbitrary periodic signal, or
as a steady state solution of a nonlinear problem excited with a periodic source.

In this case, the asymptotic homogenization method is extended by using time Fourier
series basis function in place of phasors, leading to the multi-harmonic heterogeneous
multiscale method (MH-HMM). To the extent of our knowledge, the first 3D nonlinear
results in MQS with MH-HMM were obtained in parallel of this thesis work by [91].

In the steady state regime, multi-harmonic HMM is more efficient than time stepping
HMM because there are fewer harmonics than the number of time steps to compute.
Furthermore, the computational cost of MH-HMM does not depend on the time duration
of the simulation, it only depends on the frequency content of the fields.

To note, it could be possible to use other type of time basis function to find alternatives to
the time stepping method even on non steady-state problems, like polynomial functions
with finite support.
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Type of problem Method Macro. nonlinearity Cell resolutions

Static regime
Linear AHM No 1
Nonlinear HMM Yes NB Nmes NMac

Steady state regime
Linear, harmonic H - AHM No 1
Linear, MH MH - AHM No Nharm
Linear TS - HMM No NB NTS
Linear TS - HMM Yes NB NMac NTS
Nonlinear MH - HMM Yes NB Nmes NMac Nharm
Nonlinear TS - HMM Yes NB Nmes NMac NTS

Transient regime
Linear TS - HMM No NB NTS
Linear TS - HMM Yes NB NMac NTS
Nonlinear TS - HMM Yes NB Nmes NMac NTS

Table 2.1: Summary of available general purpose multiscale methods with scale separation hypothesis. The
”Type of problem” column relates to the time regime and the (non)-linearity of the fine-scale material laws.
The last column gives the complexity of the cell problems resolutions in function of the type of problem and
possible nonlinearity of the macroscopic problem. The macroscopic nonlinearity (third column) happen if the
fine scale laws are nonlinear, or if there is macroscopic dynamic hysteresis in time-stepping time dependent
problems (this depends on the problem), which is why two TS-HMM lines are duplicated. For non time-stepping
methods, there cannot be macroscopic hysteresis in linear thanks to the time periodicity of the fields, this is a
noteworthy advantage in practice.

Summary of the multiscale methods using the scale separation hypothesis

Several multiscale methods using the scale separation hypothesis have been presented,
each is valid in specific cases and has different numerical cost. The Table 2.1 gives a
summary of the methods and their main characteristics.

The computational cost can be well described in terms of the number of cell problem res-
olutions, which is representative of the difficulty to estimate the equivalent macroscopic
material law. This number of resolutions is counted in terms of:

• NB the number of macroscopic points to which a cell problem is associated (e.g. the
number of macro elements Gauss points or barycenters)

• Nmes the number of nonlinear iterations needed for the convergence of a cell problem

• NMac the number of nonlinear iterations needed for the convergence of the macro-
scopic problem

• NTS the number of time steps (in TS-HMM)

• Nharm the number of harmonics used to represent the time variation of the macro-
scopic unknown field (in MH-HMM)

The cost associated to each method is shown in Table 2.1.

Also, there are additional cell problem resolutions due to the computation of the Jacobian
of the macroscopic law, e.g. ∂H

∂B . It can be done using finite differences on the cell problem
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resolution. This multiplies the number of cell resolutions by a factor up to 1 + D where
D is the spatial dimension (2 or 3), but only when the macroscopic problem is nonlinear.
This cost is omitted in Table 2.1.

Steps for the derivation of a better two scale model

This section reviewed the main general purpose multiscale methods used in electrical
engineering and other domains. The next sections consist in a step by step derivation of
a two scale model for the magnetoquasistatic problems that belongs to the previously
introduced setting: it assumes the scale separation hypothesis and uses the HMM for the
numerical resolution.

A reference MQS fine-scale problem defined on ΩM ∪Ωε is split into a macroscopic
problem on ΩM ∪ΩH and several fine scale problems in Y. The equations governing
each scale are Maxwell’s equations in the matter in the MQS approximation (1.19). The
material laws and formulations in the cell problems are that of the reference problem.
The macroscopic formulation is deduced from the nature of the equivalent material laws,
which are determined from the cell topology. Concretely, we will make the assumption
that there are no macroscopic current by restricting ourselves to electrically insulated
cells, so the macroscopic conductivity will be zero and the magnetostatic equations will
be used in the homogenized material.

The two-scale model derivation is split in three steps, each of them featuring original
contributions. In a first step, in Section 2.2, a new scale transition relation that is more
general than the volume average is defined. It is contextualized and based on classical
and recent works. A particular focus is made on the notion of bound and free fields and
there impact on the macroscopic magnetization.

In a second time, a cell field splitting enabling the implementation of the cell problem
equations is given in Section 2.3. Although the derived formulas are already known,
their consistency with the new scale transition relation will be shown. The derivation of
the macroscopic problem is also conducted.

Finally, several methods that help to correctly upscale the macroscopic fields, in particular
the magnetic field strength H, are derived in Section 2.4.

2.2 Study of the scale transition relation

The objective of this section is to define the scale transition relation suitable for the
multiscale modeling of electromagnetic fields under the scale separation hypothesis.

We start with the review of electromagnetic fields scale transition relations in the literature,
especially the classical one from Maxwell’s equations in the free space to Maxwell’s
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equations in the matter (further called FM-STR for Free-space to Matter STR). A particular
focus is made on the notion of bound and free fields, magnetization and polarization.
It will be highlighted that several homogenized fields are defined differently from each
others, supporting the idea of not using the volume average for every scale transitions in
our multiscale framework.

In fact, we want to highlight the links between the classical FM-STR and the scale transi-
tion used in multiscale modeling. Indeed, they aim at modeling the same macroscopic
behaviors. Also, state-of-the-art works on the scale transition of electromagnetic fields
are studied in order to consolidate our understanding of the requirement for the sought
scale transition relation.

This lead us to propose a new scale transition relation that depends on the field-type and
is consistent with both the state-of-the-art in computational multiscale modeling and the
classical FM-STR, especially with the usual definition of the magnetic field strength and
electric displacement using magnetization and polarization.

2.2.1 Scale transition from free space to matter

The fundamental model for the electromagnetic fields are Maxwell’s equations in free
space (or in vacuum). They can be written at the scale of molecule when the elementary
charged particles can be approximated by pointwise charges, that is at a scale larger than
that of possible quantum effects to be considered [92]. Maxwell’s equations in the free
space read:

curl ev = ∂tbv, div bv = 0,

curl µ−1
0 bv = jv + ∂tε0ev, div ε0ev = ρv,

(2.7)

where free space fields are identified with the •v subscript. The source of these equations
are the charges ρv and currents jv, and their solution are the free space electric field ev

and magnetic induction bv
6.

But the resolution of these equations at the scale of molecule over a complete macroscopic
device is impossible and irrelevant, the fields in such problems can only be described
at larger scale than that of molecules. The standard way of modeling electromagnetic
fields at larger scales is to use Maxwell’s equations in matter. They are related to those in
free space according to several authors that have developed theories on how to transition
from Maxwell’s equations in free space to larger scales. We refer to [92] and to [94],
where comparison with other theories can be found. In the meantime, a summary of the
classical FM-STR is proposed hereafter.

6In matter, some magnetization is explained by quantum effect [93] at scales smaller than molecules, so
it might be required to add as a source of the equations (2.7). But this does not change the equations nor
their homogenization.
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Smoothing of the free space fields

Let L be the characteristic length of the targeted larger scale to which one wants to write
Maxwell’s equations in matter. One can think of L as the spatial resolution at the larger
scale, that is the minimal distance between two points for which it is possible to distin-
guish between them. L should be large compared to the scale of molecule, which is the
nanometer.
The fields at scale L, further called macroscopic fields (macro fields), are
defined using averages of free space fields. More precisely, the idea is to
define them as convolutions of free space fields with a smoothing kernel
gL. The smoothing kernel gL should be a function symmetric around
0 with a support of diameter ≈ L. It should slowly decay to 0 near the
support boundary to maximize the smoothing of higher spatial frequencies [92], like a
Gaussian curve for example. So a smooth macro field F can be obtained from the fine
scale field f with

F(x) = ⟨ f ⟩L(x) :=
∫
∥x−y∥<L

gL(y) f (x− y)dy (2.8)

where ⟨ • ⟩L denotes the spatial smoothing. The integration is restricted to the neigh-
borhood of diameter L of the point x because it is the support of the smoothing kernel
gL.

The smoothing is applied to Maxwell’s equations themselves, and as the spatial and time
derivative operators commute with the convolution (because it is a linear operation), it
yields the following equation set:

curl ⟨ ev ⟩L = ∂t⟨ bv ⟩L, div ⟨ bv ⟩L = 0,

curl
〈

µ−1
0 bv

〉
L
= ⟨ jv ⟩L + ∂t⟨ ε0ev ⟩L, div ⟨ ε0ev ⟩L = ⟨ ρv ⟩L.

(2.9)

These equations could be used as macroscopic Maxwell’s equations. However, the fields
contain inconvenient features that depend on the fine-scale matter physics, including
discontinuities at the macroscopic interface between matter and free space. In particular,
the current

〈
jv
〉

L contains so-called bound currents. Consequently, the fields
〈

µ−1
0 bv

〉
L

and
〈

ε0ev
〉

L contain discontinuities and bulk contributions associated with the bound
fields that are called magnetization and polarization, respectively. Let’s focus on these
bound fields.
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Bound charges and currents, polarization and magnetization

The literature considers the existence of bound charges ρb and bound currents jb. The
rest of the smoothed fields are called free charges ρ and free currents J, leading to the
macroscopic splitting

⟨ ρv ⟩L = ρ + ρb,

⟨ jv ⟩L = J + Jb.
(2.10)

At the fine scale, bound charges and currents are classically defined using specific physics
models. For example, nanometer scale bound charges are often defined as the charges
that cannot move outside their molecule. And molecular bound current are sometimes
defined as current loops created by the movement of electrons confined in a molecule.
On the other hand, the free charges and currents correspond to charges really flowing
from molecules to molecules, such that their movements can be followed at a larger
matter scale. Although the average of the bound charges and currents over a molecule
cancel out, they do not completely disappear from macroscopic equations after spatial
smoothing.

Furthermore, Maxwell-Faraday equation imposes that bound charges are associated with
microscopic electric field, and Maxwell-Ampere equation imposes that bound currents
are associated with a microscopic magnetic field and/or bound charges movement in
time. The smoothing of these two microscopic fields yield macroscopic fields respectively
called polarization P and magnetization M , which verify the following equations:

ρb = −div P ,

Jb = curl M + ∂tP .
(2.11)

In (2.11), ρb and Jb are implicitly considered as generalized functions, respectively
admitting possible bound surface charges and bound surface currents, that are usually
called σb and Kb, respectively.

A more illustrated and detailed explaination of bound charges, bound currents, polariza-
tion and magnetization is given in [95] and [96].

Passing the smoothed bound fields in the material laws

As mentioned before, those fields are inconvenient to work with at macro scale. Indeed,
the bound fields nearly always contain a surface field at the interface between free space
and matter, which are cumbersome to add in the discrete function space. Furthermore,
all these fields cannot be computed at macroscopic scale only, either jb and ρb or M and
P need to be determined by a microscopic model.
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As bound fields are classically not considered in Maxwell-Faraday’s equation, the macro-
scopic fields B and E are defined by:

E = ⟨ e ⟩L, B = ⟨ b ⟩L. (2.12)

From there, combining (2.9)-(2.10)-(2.11)-(2.12) leads to Maxwell’s equations in the matter,
which were already introduced in the first chapter 1:

curl E = ∂tB, div B = 0,

curl H = J + ∂tD, div D = ρ,
(2.13)

where the magnetic field strength H and electric displacement D were introduced, such
that:

H =
1
µ0

B−M , D = ε0E +P . (2.14)

This way, the bound currents and charges are removed from the macroscopic fields and
equations.

But written like this, the equations cannot be solved at the macroscopic scale because
of the implicit dependency on the polarization and magnetization, which are defined
using the free-space fields. To avoid relying on the knowledge of the free-space fields,
the macroscopic relation between the macroscopic fields is approximated via constitutive
relations, also called the material laws. In absolute generality, the constitutive relation link
all the fields together, because the microscopic equations link them all. So for example, in
a B-conforming formulation of (2.13), the constitutive relation should define H, J and D
as function of the unknowns B and E at each instant in time [4], that is H(B, E), J(B, E)
and D(B, E), where these functions implicitly depend on the time t and the fine scale
field distributions.

But most of the time, it is enough to consider the B− H, D− E and J − E relations. In
this case, the macroscopic effects of the bound fields may be hidden in macroscopic
material laws such as

ε = ε0(1 + Xe) s.t. D = εE,

µ = µ0(1 + Xm) s.t. B = µH,
(2.15)

where Xe and Xm are the electric and magnetic susceptibility, respectively. Also, the
following conductivity relation is added:

σ s.t. J = σE. (2.16)

The conductivity expresses the ability of a material to conduct electric current, i.e. a
flow of free electric charges, which is driven in the medium by the electromagnetic force
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resulting from the application of an electric field.

But it is only possible to define the constitutive laws using only tensors if they are not
hysteretic. In any case, they are usually defined by models adapted to specific problems
and calibrated using experimental data.

To sum up the classical FM-STR, the scale transition of the fields e and b are defined
using a simple smoothing. On the other hand, the scale transition of 1

µ0
b, ε0e, µ and ε

is made using a smoothing of the free space fields followed by a filtering of the bound
fields. The magnetization and polarization are transferred to the material laws in order
to eliminate bound currents and charges.

2.2.2 On the scale transition between different matter scales

The goal of this subsection is to show that the classical FM-STR can be linked to the scale
transition needed for multiscale modeling, and to explain what is required to make both
transitions compatible and consistent.

It will be defended that the definition of what is a bound field should depend on the
considered scale, as contributions to the magnetization and polarization can arise from
scales larger than that of molecules. In particular, this might happen at the finer scale
of multiscale computational model. Consequently, these additional polarization and
magnetization should be identified and taken into account in the STR used in multiscale
modeling.

Some notations will be introduced to differentiate the different components of the
macroscopic magnetization depending on the scale of the current loop that creates it,
and an example of periodic material with bound currents will be used to illustrate how
macroscopic magnetization can be created at an intermediate matter scale.

Finally, the state of the art of the scale transition used in computational multiscale
modeling of electromagnetic fields will be reviewed.

Scale dependency of Maxwell’s equations in the matter

Maxwell’s equations in the matter are commonly used at many different scales, from the
micrometer scale for modeling SMC materials to scales of hundreds of kilometers for
geosciences applications or continental electrical networks, with numerous examples at
intermediate scales. Indeed, the radius of the smoothing kernel used to homogenize the
electromagnetic fields in the FM-STR is the spatial resolution at the scale for which they
are written.

In the multiscale modeling of electromagnetic fields, we are interested in computing the
fields at a given large scale L from their distribution at a finer scale l. We can apply the
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definition of the fields in matter from free-space fields at both scales, for example that of
the magnetic field strength in Figure 2.5, where •l or •L scale indices are added to M to
differentiate the scale at which it is defined. But the following question occurs: is the
magnetization at scale L the same as the smoothing of that of scale l, that is ⟨M l ⟩L ?
In other word, is it possible to assume that the magnetic strength field can be upscaled
using a simple smoothing, that is H = ⟨ h ⟩L?

To note, when the spatial smoothing of two separated scales l and L are chained, it
is possible to approximate that the result is the same as just only applying the larger
smoothing, because chaining averages is just doing a larger average7. That is

⟨ ⟨ f ⟩l ⟩L = ⟨ f ⟩L (2.17)

whenever l ≪ L.

Free space

1
µ0

bv

l

h =
〈

1
µ0

bv

〉
l
−M l

L

H =
〈

1
µ0

bv

〉
L
−M L

⇐
⇒

H = ⟨ h ⟩STR ̸= ⟨ h ⟩L?

?
L

Classical FM-STR

Classical FM-STR

Multiscale STR

Figure 2.5: Sketch of scale transition of the magnetic field strength between two different scales l and L. It will
be shown that to have ⟨ h ⟩STR equal to the L-scale H, the STR ⟨ ⟩STR needs to be different than the simple

smoothing
〈 〉

L, similarly to the fact that H is not only
〈 1

µ0
bv
〉

L. This is because the L-scale magnetization

M L is not the smoothing of the l-scale one (M L ̸=
〈
M l

〉
L). Indeed, the l-scale current loops may create

additional L-scale magnetization.

When there is a scale separation between l and L, it is reasonable to think that some
currents may loop in a conducting inclusion at scale l, and thus that they are bound at
scale l. But as such current flows freely through the conductive inclusion, it cannot be
considered a bound field on the free-space scale. The magnetic field it creates is therefore
ignored in the magnetization at the scale l. However, if magnetic field of this current
loop is not negligible in comparison to h, all the ingredients for additional macroscopic

7For example, the composition of two convolutions with Gaussian kernels of radii (standard deviation) l
and L is equal to a convolution with a Gaussian kernel of radius L + l. But as l ≪ L, the kernels of radii L
and L + l are approximately the same.
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magnetization are met.

This possibility of having magnetization sources at several scales was anticipated by
authors who worked on the definition of Maxwell’s equations in matter. For example,
Russakoff stated the following remark at the end of [94]: “ The motion of the conduction
electron may give rise to a magnetization (electron diamagnetism in metals, for example).
However, the orbit of such electrons will be quite large compared to atomic dimensions
and must therefore be analyzed in a manner different that than used here. [...] The
magnetization of the conduction electrons should be grouped together with the molecular
contribution to form the total magnetization ”.

However, no notations were introduced to describe this multiscale definition of the
magnetization. But having some will be useful to quantitatively define the l � L scale
transition of the magnetic field strength in multiscale modeling, so we introduce them
for the purpose of this thesis.

Let us call ls the scales at which we wish to write Maxwell’s equations in the matter,
including that at which some magnetization is created. ls is defined for 0 ≤ s ≤ N with
N ∈N, the first scale l0 is the atomic/molecular scale noted v and the last one lN is the
macroscopic scale L. Additionally, it is assumed that there is large difference between all
intermediate scales, that is:

v = l0 ≪ · · · ≪ ls ≪ · · · ≪ lN = L.

At a scale of index s, we denote M ls the total magnetization field at the scale ls. It is the
one from the classical definition of the magnetic fields strength that satisfies:

hls =

〈
1
µ0

bv

〉
ls
−M ls , (2.18)

where hls is the magnetic field at scale ls. Additionally, a notation for the fine scale
distribution of the magnetization field would be useful. Let us call mli the distribution of
the magnetization created at scale li by the currents jb,li which are bound at the scale li,
but that are free currents for all smaller scales. That is, it holds

curl mli = jb,li .

These two fields are a portion of the li-scale magnetic field hli and currents jli . For now,
their definition is only qualitative, but quantitative definitions will be detailed at the end
of this section.

The magnetization M ls at scale ls can be computed by summing and smoothing the
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fine-scale magnetization distributions at all smaller scales li where i < s, that is

M ls = ∑
i<s

〈
mli
〉

ls
. (2.19)

If ls is not the largest scale, there can be bound currents jb,ls at this scale and thus a local
magnetization distribution mls . So M ls and mls coexist at scale ls, but they are completely
different things. M ls is the magnetization created at smaller scales, it is included in the
magnetic material law governing at scale ls, and cannot be determined at the scale ls. On
the other hand, mls is created by the bound currents jb,ls that cancel in average at scales
larger than ls. The field mls is actually a part of the magnetic field hls . It is not taken into
account in M ls , because from the point of view of the scales smaller than ls, the currents
jb,ls are macroscopic currents.

It is a standard field distribution that can be visualized and computed at scale ls, but its
smoothing has to be removed from the magnetic field strength of higher scales because it
contributes to higher scales magnetization M>ls . Thus, we have

⟨M ls + mls ⟩ls+1
= M ls+1 . (2.20)

To make it easier to describe the scale transition of the magnetic field strength in
multiscale modeling, we introduce a notation for the macroscopic magnetization at scale
ls that is created by bound currents from a finer scale li, Mli�ls . It is defined by:

Mli�ls =
〈

mli
〉

ls
. (2.21)

This notation helps to express what is the macroscopic magnetization to add to the
smoothing of a lower scale magnetic field to obtain the macroscopic magnetic field. For
example, it allows to transform (2.20) into:

M ls+1 = ⟨M ls ⟩ls+1
+Mls�ls+1 . (2.22)

In the end, in the example from Figure 2.5 with scales v, l and L, the scale transition
l � L of the magnetic field strength is defined by:

H = ⟨ h ⟩STR = ⟨ h−ml ⟩L = ⟨ h ⟩L −Ml�L. (2.23)

This scale transition is consistent with the classical FM-STR, as shown in Figure 2.6.

A similar multiscale definition of the polarization could be used for the homogenization
problem that take the electric permitivity and electric displacement into account. P l ,
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Free space
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⇒

H = ⟨ h ⟩STR = ⟨ h ⟩L −Ml�L
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Classical FM-STR

Classical FM-STR

Multiscale STR

Figure 2.6: Illustration of the multiscale definition of the magnetization with three scales v, l and L. We
suppose that magnetization is only created at the free-space scale and from current loops from the l-scale, that
is M L = ⟨Mv�l ⟩L + Ml�L. By plugging this expression for the magnetization in the classical definition of

H (below right bubble), one gets: H =
〈 1

µ0
bv −Mv�l

〉
L −Ml�L. Finally, the smoothing kernel composition

property (2.17) allows to write
〈 1

µ0
bv
〉

L =
〈 〈 1

µ0
bv
〉

l

〉
L, the classical FM-STR (bottom right) is thus consistent

with the scale transition of multiscale modeling (middle right).

pl and Pl�L would be defined similarly to M l , ml and Ml�L but with div pl = −ρb,l at
scale l and D = ⟨ d ⟩l +Pl�L.

In multiscale modeling of periodic media, the intermediate l scale is the size of the
periodic cell ε and the macroscopic one is denoted H. A quantitative definition of mε (or
at least H or Mε�H) based on the cell fields distribution is required.

Example of scale transition with bound currents and magnetization

In the previous section, notations for a multiscale definition of the magnetization have
been introduced. In order to better visuallize how magnetization emerges during the
smoothing procedures, let us take an example of a smoothing of 1D magnetic field
strength h and electric current density j at a scale l. This example is inspired from the
explanations of bound currents an magnetization found in the books [95, 65], but adapted
in the context of periodic homogenization.

ez

ex

ey

1D approximationIs h

Figure 2.7: Example setup to illustrate bound currents and magnetization. It is a stack of 10 copper sheets
inside a long solenoid.
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Let us consider a stack of thin laminated copper sheets separated from another by thin
layers of insulator as shown in Figure 2.7. This stack is placed inside a very long solenoid
with a square section, aligned parallel to the ez axis. It has a rectangular section such
that the thickness of the solenoid and stack in the direction ey is negligible compared to
its width in direction ex. We assume that the insulator has the same property as the free
space, and that the copper has a permeability of µ0 and a nonzero constant conductivity.

If a constant current Is flows in the solenoid wire, h and b are constant and homogeneous
inside it because µ is equal to µ0 everywhere and there are no eddy currents, as if
the solenoid were enclosing only air. In case of time varying Is, h will vary inside the
copper sheets because eddy currents j appear in the x/y plane. Far from the ends of
the solenoid and the sides of the stack, we assume that the fields are constant in the ez

and ex directions, and that h and j are respectively aligned with ez and ex, as shown in
Figure 2.7. Then, typical profile of jx = ∥j∥ and hz = ∥h∥ can be plotted, taken on a line
in the ey direction (the gray dotted line in Figure 2.7) to analyze how a smoothing affects
them. They verify jx = ∂hz

∂y
, the 1D Ampère’s law.

Figure 2.8: Periodic magnetic field hz and current distribution jx = ∂hz
∂y

in copper sheets (hz is not an actual

solution but a fictive example), and their smoothing with the cell average kernel (shown on the right) which is
classically employed in computational multiscale modeling. The x-axis is the number geometric spatial periods.
A macroscopic bound current ⟨ jx ⟩ appears around the boundaries of the sheets stack. If we zoom out and
look at it a coarser resolution, this smoothed bound current is a surface field. The bound current is associated
with magnetization that affects the smoothed magnetic field level in the material. H and M correspond to the
standard definition of the macroscopic magnetic field strength, where H =

〈
µ−1b

〉
−M = ⟨ hz ⟩ −M .

The smoothing using the kernel corresponding to the volume average (2.2), which is
commonly used in computational multiscale modeling, is applied to the field maps.
This kernel is constant equal to 1/ε on a support of width ε, where ε is the width of
one sheet plus one insulation layer. The smoothed fields and the kernel are shown in
Figure 2.8. The rest of the discussion applies independently of the choice of smoothing
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kernel, because the obtained smoothed field are macroscopically equivalent8.

The smoothed current ⟨ jx ⟩ (violet curve in Figure 2.8) is null inside the material as
confined current loops cancel on average. But at the material boundaries, the kernel
spans vacuum and a half of a current loops, so a net current is measured . If we zoom
out at a resolution larger than the kernel support, this current must be modelled as a
surface bound current Jb. On the other hand, the smoothed magnetic field ⟨ hz ⟩ (in
orange) is discontinuous at the material boundary. Indeed, its value inside the material
drops compared to its value in vacuum.

These observations help to explain the two possible strategies used to define the macro-
scopic fields. The first is the use of the full smoothed fields H = ⟨ h ⟩ and J = ⟨ j ⟩, in
orange and violet on the plots. In this case, H is discontinuous at the material boundary
and the bound surface current Jb is into J. This choice respects the classic macroscopic
interface condition (1.15) relating to tangential discontinuities of H associated with the
surface current in Jb.

Figure 2.9: Figures taken from [95] that illustrate the emergence of macroscopic bound surface currents from
microscopic current loops of same intensity. The current I from the left figure is what is denoted the surface
Jb in our dissertation. The author also explains that volume bound currents emerge inside the material when
neighboring fine-scale current loops are of different intensities.

But this strategy has three flaws that are the reason for the introduction of the magne-
tization in the free-space to matter scale transition. Firstly, the surface current and h
discontinuity can only be determined via the microscopic model. Secondly, the discon-
tinuous / generalized fields (containing Diracs) are not convenient to work with both
on paper and numerically. And last but not least, the macroscopic current is not zero
everywhere, although the plates are insulated from each other. In particular, macro-
scopic bound currents flow in the direction ey on the right and left sides of the sheet
stack, although the material is macroscopically nonconducting in direction ey due to the
insulation between the sheets. This phenomenon is well described by Griffiths in [95,

8The Gaussian kernel is very robust, but has a quite wide support. On the other hand, the kernel
constant on the cell enables using a smaller support, but it can only smooth periodic fields with a period
equal to an exact fraction of the kernel support. Although the kernels have different characteristics, they
lead to equivalent macroscopic fields when they work. See the discussion in Appendix A.3.
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Figures 6.15 & 6.16], they are given in Figure 2.9. In conclusion, this first strategy leads
to consider bound current as part of the macroscopic current J, and it is inconsistent
with the usual Maxwell equations in matter.

The second possible macroscopic field definition is to remove the bound currents Jb

and the associated magnetization Mε�H respectively from ⟨ j ⟩ and ⟨ h ⟩, which leads
to J = ⟨ j ⟩ − Jb and H = ⟨ h ⟩ −Mε�H (2.23), that are similar to (2.10)-(2.14). In our
example, it means defining J = 0, and consequently H is constant equal to its value
outside the sheets (the y-axis value labelled H in Figure 2.8).

But in general, it is hard to define and compute Jb and M with only a sample of the fine-
scale field maps. Indeed, the macroscopic bound current Jb appears when the smoothing
average kernel contains an incomplete portion of a loop of confined current. Also, the
part of fine scale magnetic field h that becomes the macroscopic magnetization after
averaging is hard to define, especially in dimension two or three. In our understanding,
it requires the precise identification of the fine scale current. Defining quantitatively the
scale transition relation, which is necessary in multiscale modeling, is thus particularly
challenging.

Our proposition for STR will be defined in the next subsection, after reviewing the
literature in computational multiscale modeling related to the STR definition.

Scale transition relation in the electromagnetic multiscale modeling literature

Several authors from the community of the electromagnetic fields multiscale modeling
use the volume average of the cell fields to define the macroscopic fields [1, 2, 3, 6, 5,
10, 97], other authors from different areas of electrical engineering (mainly from the
high-frequency wave scattering community) worked on the necessity for other definitions,
mainly for the magnetic field strength.

There are four main points of interest:

1. The macroscopic fields should be computed outside the material constituents of
the cell

2. The cell fields should be averaged on domains of the correct dimension correspond-
ing to their field type, for example on paths for the magnetic field strength and
surfaces for the magnetic flux density

3. The macroscopic magnetic field strength is the so-called geometric average of the cell
magnetic field, that is, its value in one direction is the average of the path integral
of the magnetic field along a periodic path in the air.

4. The macroscopic electric field strength is not always the average of the local one
either
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In their article [18], Pendry et al. (1999) define the macroscopic magnetic field strength in
direction ei as the path integral average of the cell magnetic field along one of the edges
of the cell that is aligned with ei, and the macroscopic magnetic flux density as the flux
average of the cell induction through one of the faces of the cell. The authors precise
that the chosen edges and faces should not cross the material inclusion in the cell, and
that this choice of averaging domain is made for consistency with the theorems defining
the global Maxwell equations from the microscopic ones (the Stokes and divergence
theorems (1.29)-(1.30)-(1.32)).

Similarly, Kohn and Shipman (2007) explained in [20, Section 4.4] that the macroscopic
fields should be measured consistently with their differential form nature (called field
types in this thesis), which corresponds to the second item above. They also embraced
the idea that additional magnetization and polarization appear in cells with strong
conductivity contrast or with material inclusion with large capacitance, and that the
macroscopic magnetic field strength should be measured outside the conducting or
capacitive inclusion.

The series of articles [19, 98, 99, 100, 101, 21, 102, 38] is due to collaborations between other
authors from the applied mathematics community studying high-frequency electromag-
netic problems, mainly Bouchitté, Felbacq, Schweizer, and others. In [103, 104], Felbacq
and Bouchitté remarked that the cell current loops create a macroscopic bound current
that introduces a magnetic field discontinuity, but they kept them in the macroscopic
equations.

The geometric average was introduced later in [19] to define the macroscopic magnetic field
strength. This average is equal to the path integral averages of the cell magnetic field over
any periodic path in the nonconducting cell domain, which removes the macroscopic
boundary discontinuity. An alternative equivalent definition that uses test fields is
defined in [98]. The definition is extended to insulated nonconducting inclusions in [21],
this article also contains very interesting discussion about the link between the topology
of the conducting domain of the cell and the homogenization of the electromagnetic
fields.

In particular, the articles from Bouchitté and Schweizer et al. explain that their method is
consistent with a correct upscaling of the Poynting vector9, and show that it guarantees
the magnetic field tangential continuity at the homogenized domain boundary.

Among the low-frequency community, it seems that only Meunier et al. discussed the
strength fields upscaling issue. In [105, 7, 4], the authors defended that the macroscopic
value of the magnetic field strength and electric field strength are not equal to their

9When using the volume average to upscale the electric field strength, this is likely conditioned to the
fact that the electric field is curl free in the cell, which they have in their setting.
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volume average. In particular, the authors explain that in windings, the skin effect results
in magnetic induction loops associated with the decrease of the electric field in the center
of the wires (due to Maxwell-Faraday’s law). Consequently, using the volume average
would result in a macroscopic tangential discontinuity of the electric field and bound
surface magnetic induction.

Next, a scale transition relation that applies to all electromagnetic fields is derived
consistently with the findings previously mentioned in the bibliography above.

2.2.3 The scale transition relation selected for this work

In this subsection, we will define precisely what is the scope of application of the
multiscale formulations derived in the thesis. It appeared that it is too difficult to define in
general what is the local distribution of bound fields and of their macroscopic smoothing,
so some restrictive assumptions on the geometry and topology of the conducting domain
of the cell are made. Then, the scale transition relation used in this work is introduced.

Handling the additional magnetization in the scale transition relation

Let us describe the strategy we use to quantitatively define a STR consistent with the
usual Maxwell equations in matter. For that, the ability to quantitatively define and
compute the macroscopic magnetization is necessary10. We restrict our definition to
periodic media, for which the usual smoothing is the cell volume average ⟨ ⟩Y.

Our idea is to define the macroscopic fields using averages that avoid measuring mε, the
fine-scale distribution of the magnetization. Indeed, we want H to be the volume average
⟨ h−mε ⟩Y, but if it is possible to use another averaging ⟨ ⟩STR such that ⟨mε ⟩STR is zero,
the new definition verifies H = ⟨ h ⟩STR. For consistency, the new average has to give the
same result as the direct smoothing when there are no fine-scale current loops, that is
⟨ h ⟩STR = ⟨ h ⟩Y when jb = mε = 0.

10The handling of additional polarization is not discussed here, but it is likely done correctly in the
proposed STR.
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mεjb h h−mε
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Figure 2.10: Solutions of a 2D periodic cell problem exited by variable upward magnetic field, creating confined
currents in a round conducting inclusion YC surrounded by air YN. Due to the electric insulation of the cell, h
(and therefore h−mε) are periodic in Y. As a consequence, the path integrals of h (and h−mε) along the
violet paths drawn in the cell are all equal, and are ky times the macroscopic H · ey. This is essentialy the
definition of the geometric average introduced in [19].

In the literature of periodic homogenization with electrically insulated cell (originally
[18, 19]), the periodicity of h and existence of periodic paths traversing the cell without
going through any current loop make it easy to define H. Indeed, the path integral of h
along the aforementioned paths is equal and defines each component of H, as illustrated
in Figure 2.10.

But this definition has a flaw, it does not apply if the field has a nonzero macroscopic
exterior derivative, e.g. when J = ⟨ curl h ⟩STR ̸= 0, or B = ⟨ curl a ⟩STR ̸= 0, because h
and a cannot be periodic (this will be detailed in the next section). To handle this case and
define a STR general to all fields, we will define it using a periodic integration domain,
in order to remove the non-periodic contribution of the cell field from the average.

Strong restrictions on the geometry of the cell are necessary to guaranty that it is possible
to find periodic paths that do not measure mε. In particular, these restrictions will allow
us to quantitatively define mε as a strength field verifying curl mε = jb in the conducting
domain and mε = 0 ”outside” the confined currents. The condition mε = 0 outside
the current is motivated by the observation that the magnetization only exist in the
material, at all scales. It does not extend beyond the bound current that create it. At the
macroscopic scale, this bound current exist on the boundary of the material, but at the
scale where it is created, the bound currents only exist in the conducting domain. This
idea was studied and used in [106].

Applying this definition for mε requires precisely identifying currents loops jb, and
their inside and outside. To make this easier, we make the assumption that all the
currents in the cell are confined in it, hence, the homogenized domain is macroscopically
nonconducting. This way, there is j = jb at the fine scale, so all the magnetic field
”created” by the cell currents contribute to mε, and no current can get confined at a scale
larger than the cell scale. Having jb entirely contained in the cell also guarantees that
⟨ jb ⟩STR = 0 = J, there are no free currents at the macroscopic scale. The STR must also
filter the bound currents.
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2.2. Study of the scale transition relation

These assumptions on the cell geometry are mathematically formulated next.

Assumption on the cell geometry

The aforementioned assumptions should be translated in mathematic constraints on the
geometry of the periodic cell. The two goals are to avoid macroscopic currents and make
STR definition easier to understand.

To achieve this, a definition for a macroscopically conducting cell is needed. In addition,
we assume that the cell is chosen as a rectangular hexahedron with edges aligned with
the i = {x, y, z} axes (which is always possible with translational periodic domain).
Having right angles between the cell edges and faces will enable an easy definition of
the averaging procedures, because each component of the vectors are treated separately.

Also, we impose that the conducting domain does not intersect the sides of the cell, that
is YC ∩ ∂Y = ∅. We call such cell an insulated cell. This guarantees that the boundary
of the cell is also out/exterior of to any cell bound field distribution. However, this
hypothesis is more restrictive than just supposing that the material is macroscopically
nonconducting.

j
j

Figure 2.11: Examples of two macroscopically nonconducting periodic material with conducting inclusions,
having eddy current loops represented inside. It is possible to find an insulated rectangular hexahedral cell for
the left one, but not for the right one. However, the latter admits an insulated non-rectangular cell. It is always
possible to find an insulated periodic cell for macroscopically nonconducting materials (but its faces might not
be polygons, but curvy surfaces).

Indeed, there are macroscopically nonconducting heterogeneous materials for which
the conducting domain intersects the boundary of any rectangular cell, see Figure 2.11
on the right. It is always possible to know if a periodic heterogeneous material is
macroscopically conducting by studying one of its periodic cell. The criteria to identify a
macroscopically conducting cell is the following:
A cell is macroscopically conducting in a direction i (for i = {x, y, z}) if there is a closed
periodic path Ci in YC such that

∫
Ci

ei · t ̸= 0, where the path is still considered closed if
it has endpoints which are Y-periodic.

There are interesting discussions relating to the topology of cell conducting inclusions
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and the closed path in the periodic cell in [21, Section 1.2]11.

Two options to generalize the work presented in this thesis to any marcroscopically
nonconducting domain are available. The first and probably easier one would be
to generalize the scale transition relation definition and field boundary conditions to
periodic cells with arbitrary shapes, that is non-hexahedral ones, in order to choose
one such that ∂Y ∩ YC = ∅. It is always possible when the cell is not macroscopically
conducting.

A second possibility could be to adapt the non-periodic terms of the formulation to give
total freedom to the non-periodic traces components on ∂Y ∩YC.

Definition of the selected scale transition relation

The scale transition used in this work will be very similar to that defined in [18] and [21]12.
We define, in 3D, the macroscopic value of any cell field distribution as its averaged value
over the outermost closed geometric part of the cell on which the field can be evaluated.
These are:

• the cell corners for scalar potentials,

• the cell edges for strength fields,

• the cell faces for flux densities,

• and the whole volume of the cell for the scalar densities.

Let us introduce notations and mathematical definitions for these averages.

The macroscopic value V of a cell scalar potential field v is its corner average ⟨ v ⟩PY
defined

by:

V = ⟨ v ⟩PY
:=

1
8 ∑

p∈PY

v(p), (2.24)

where PY = { (± 1
2 kx,± 1

2 ky,± 1
2 kz) } are the eight corners of Y, with ki for i = {x, y, z}

the components of the geometric period vector k.

The macroscopic value H of a cell strength field h is its edge tangential average ⟨ h ⟩γY
(or

11With their notations, YC becomes U and the closed path Ci is called a i-loop in U.
12They are actually equivalent in the insulated cell setting. But the definition from [18] and [21] surely

fails when the cell fields are not periodic, so they are less likely to be easily generalized to macroscopically
conducting domains. Curiously, in [21], the definition for macroscopic H is extended to insulated noncon-
ducting domains in a conducting heterogeneous grid, e.g. a metal with holes containing air regularly dug in
it, but they later conclude that the upscaled H is always zero for this material. The reason to consider this
definition and result might be specific to the scattering setting.
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simply edge average) defined by:

H = ⟨ h ⟩γY
:=


1

4kx
0 0

0 1
4ky

0

0 0 1
4kz

 · ∫
γY

(h · t)t, (2.25)

where γY is the set of the twelves edges of Y. With this definition, the ith component of
⟨ h ⟩γY

, that is ei · ⟨ h ⟩γY
, is the average of the path integral of h over the four edges that

are parallel to ei, which are of length ki. This explains the normalization by 1 over 4ki

made via the matrix product in (2.25).

The macroscopic value B of a cell flux density field b is its face normal average ⟨ b ⟩∂Y⊥ (or
simply face average) defined by:

B = ⟨ b ⟩∂Y⊥ :=


1

2kykz
0 0

0 1
2kzkx

0
0 0 1

2kxky

 · ∫
∂Y
(b · n)n, (2.26)

where ∂Y is the set of the eight faces of Y. Similarly to the edge average, the ith component
of a face normal average is the average flux of b through the two faces normal to ei.
Hence, the integral in (2.26) is normalized componentwise by 1 over the two time the
correct surface area.

Finally, the macroscopic density ρM of a cell scalar density ρ is its volume average ⟨ ρ ⟩Y:

ρM = ⟨ ρ ⟩Y, (2.27)

which was defined by (2.2).

A general name for these definitions could be outer average, because they measure the
value of the fields outside the material constituent. We insist that this definition only
makes sense if it is certain that the loops of bound currents are contained in the interior
of the cell. This hypothesis is guaranteed when the cell is insulated.

The reason for averaging over all the cell edges or faces and not only along one of the
edge or face like in the definitions from [18] and [21] is that our average is not impacted
if a center anti-periodic13 field is added to the periodic cell field. This property will be
used to define the discretization of the cell fields in the next section. Also, this definition
might still be correct in a general setting featuring macroscopic conductivity of the
heterogeneous material.

13The center (anti-)periodicity relates to points symmetric with respect to the center of the cell, the
symmetric of the point y ∈ Y is −y. This notion is well-defined for rectangular hexahedric cells.
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Summary of the material presented in this section

Maxwell’s equations in matter and associated material laws depend on the scale at which
they are written. They are classically obtained by smoothing the fields and equations
from the free space scale. In this process, part of the fields create bound charges, bound
currents, magnetization and polarization, that are inconvenient to work with at the
macroscopic scale because they can only be determined with a fine-scale model and have
surface components at the material boundary. The classical solution to this issue is to
remove the bound fields, polarization and magnetization from the macroscopic fields.

Due to the multiscale nature of the matter, magnetization and polarization may have
sources at different scales. Consequently, it might be required to consider the emergence
of additional magnetization and polarization when performing homogenization from
an intermediate matter scale. Some notation have been proposed to qualitatively and
quantitatively describe the multiscale nature of these fields. But the identification of
the magnetization and polarization from a sample of fine-scale fields remains difficult,
including from the periodic cell fields used in computational multiscale modeling. It is
thus hard to quantitatively define a general scale transition relation.

For this reason, the work of this thesis is restricted to macroscopically nonconducting
periodic matter admitting an insulated rectangular periodic cell. In this context, the local
distribution of bound fields are contained in the interior of the cell, and macroscopic
fields can be defined as the outer average of the cell fields. This way, the effect of bound
cell fields and associated magnetization and polarization are automatically removed from
the macroscopic field. This principle is consistent with the macroscopic fields definition
adopted in works from Pendry, Bouchitté, Felbacq, Kohn, Meunier, Schweizer et al.

2.3 Derivation of the two scale magnetoquasistatic equations

In this section, we present a general methodology used to derive two-scale formulations
for magnetoquasistatic problems, in the particular setting of macroscopically nonconduct-
ing heterogeneous materials. At first, different methods to implement the homogenized
law in the macroscopic problem are reviewed. In a second time, the focus is put on the
modeling of the cell fields with a precise analysis on how the downscaled fields can be
prescribed. Finally, the complete two-scale B and H-conforming MQS formulation are
derived and discretized with time stepping HMM.

2.3.1 Macroscopic homogenized law

At the macroscopic scale, there are two components to specify to define the two-scale
model, the interface condition (CH\M) and the homogenized domain equations (EH).
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2.3. Derivation of the two scale magnetoquasistatic equations

The interface conditions are the usual ones (1.15)-(1.18). As the setting is restricted to
macroscopically nonconducting homogenized domains, there are no macroscopic surface
currents on ΓH\M, so all fields are continuous on ΓH\M.

The macroscopic equation (EH) in ΩH does not take electric permittivity nor conductivity
into account because it is a magnetoquasistatic problems solved on a nonconducting
domain. As a consequence, the magnetostatic formulations (1.47) and (1.56) are used
inside ΩH. So only the implementation of the magnetic law is detailed, but the method
presented below could be applied to the other laws.

The cell problem naturally output the material law under the form of B → H(B) or
H → B(H) functions, which implicitly depend on time t and the fine scale state of the
fields b and h respectively, for B-conforming and H-conforming formulations respectively,
where the function consist in solving the cell problem with the downscaled field as
source and computing the upscaled field from the cell solutions. Using the standard
magnetic vector potential and magnetic scalar potential formulations, the macroscopic
B-conforming equation (cf. Eq. (1.56)) is:

curl H(curl A) = 0 in ΩH,

and the H-conforming (cf. Eq. (1.47)) one is:

div B(Hs − grad φH) = 0 in ΩH.

Several aspects of the magnetic material law implementation are given next for the case
of the B-conforming formulation. The first is the computation of the Jacobian of the
macroscopic law necessary for the Newton-Raphson method, as the law is in general
nonlinear. A second point of interest is the computation of a νM or µM macroscopic law
tensor.

Macroscopic law Jacobian

The Newton-Raphson scheme (1.82) applied to the macroscopic B-conforming formula-
tion writes:

curl Hk + curl

(
∂H
∂B

k
·
(

curl A− curl Ak
))

= 0, (2.28)

Ak+1 = ωA + (1−ω)Ak,

where Hk = H(Bk) = H(curl Ak) and ∂H
∂B

k
= ∂H

∂B (Bk) is the Jacobian of the B → H(B)
macroscopic material law. The simplest way to compute this Jacobian is to use the
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finite difference method on the B→ H(B) function (which, again, involves solving the
cell problem and upscaling H from the cell solutions). Indeed, the first order Taylor
expansion in the direction ei of this function is:

H(B + ηei) = H(B) +
∂H
∂B

(B) · ηei + O(η), i = {x, y, z}

with η ≥ 0. But the term ∂H
∂B (B) · ηei is η times the ith column of ∂H

∂B . By neglecting the
O(η) term and passing the term H(B) to the LHS, we obtain the following formula for
∂H
∂B :

∂H
∂B

(B) = η−1
[

H(Bpx)−H(B) H(Bpy)−H(B) H(Bpz)−H(B)
]
, (2.29)

where [• • •] is a column by column tensor definition, and Bpi is a shortcut for B + ηei.
This requires four evaluations of the cell problem (D + 1 in dimension D), which is
quite expensive, but the resolutions are independent and can be solved in parallel. It is
also possible to use variants of the classic Newton-Raphson method, such as the quasi
Newton method, to reduce the computational costs. Possible algorithm and there rate of
convergence are detailed in [107, Section 7.1].

The η parameter should be chosen relatively to the order of magnitude of B. It should
not be too big in order to reduce the error related to neglecting O(η), and not too small
to keep accuracy of H(B) computation. It should ideally depend on ∥B∥[107].

Macroscopic tensor for linear cell problems

Having the macroscopic material tensor is handy for several reasons. In general, the
tensor contains more information than the upscaled field because it describes the material
law for any direction of the unknown/downscaled field, not only for its particular
direction during the cell problem resolution.

When the macroscopic law H(B) is linear14, it can be summarized in a constant second
order tensor νM such that H = νM ·B, that can be computed once for all. Indeed, the
linearity of B→ H(B) implies that

H(B) = H(Bxex + Byey + Bzez) = Bx H(ex) + ByH(ey) + BzH(ez)

=
[

H(ex) H(ey) H(ez)
]
· B,

14As explained in Table 2.1, in time stepping HMM, this the case when the cell magnetic law is linear and
when the eddy currents do not affect the upscaled H. Mathematically, this assumption is that the sensitivity
of H to the downscaled ∂tB and the previous time step solution an is negligible.
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for any B15. So the definition

νM =
[

H(ex) H(ey) H(ez)
]

(2.30)

is such that H(B) = νM · B. And the macroscopic equation (2.28) becomes

curl νM · curl A = 0, (2.31)

there is no macroscopic iterations.

2.3.2 Modeling of the cell fields

The definition of the cell fields has to be compatible with the scale transition relation in
the sense that it should allow prescribing all downscaled macro fields values to the cell
fields. Let us take the example of a B-conforming multiscale formulation. The fields b
and e (and by extension a and v) are the unknowns of the formulation, and the fields h
and j are their dual fields, linked to the former via the material laws. The fields B and E
are downscaled (although E will be arbitrarily set to 0 because it is undefined in (EH)).
If the cell unknown is a modified magnetic vector potential a, the following constraints
should be imposed on it:

• B = ⟨ b ⟩∂Y⊥ = ⟨ curl a ⟩∂Y⊥ (face normal average),

• E = ⟨ e ⟩γY
= ⟨ −∂ta ⟩γY

(edge tangential average).

So the downscaling is not obvious to implement, it involves putting constraints on the
average of the spatial/exterior and time derivatives of the cell fields. This is usually done
via a splitting of these fields, using periodic and Dirichlet boundary conditions and the
properties of periodic, anti-periodic and center anti-periodic fields.

To derive the splitting of the cell fields, it is useful to first state some of these properties.
In particular, the need for non-periodic components in the cell fields will be shown,
which is a difference with multiscale modeling in other fields like mechanics where fully
periodic cell fields are often used.

Periodic and anti-periodic cell fields properties

The periodic and anti-periodic boundary conditions were defined by (1.43) and (1.44),
they can be used in the three axes of the cell between the opposite faces of the cell
boundaries. They enable to avoid using other boundary conditions that would assume
a certain behavior outside the cell, the cell is its own neighbor. Indeed, we want the
cell solutions to be similar to the original ones and independent of the other cells. Cell

15The sources of the problems ei for i = {x, y, z} are dimensionless, so H(ei) are in m.H-1.
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periodic and anti-periodic fields are respectively written with p and a subscripts, and the
function spaces containing them are respectively written with H# and H× superscripts,
like vp ∈ H#(grad; Y) and ba ∈ H×(div; Y) . To avoid duplicating the following equations
for all types of fields, spaces for scalar and vector Y-periodic fields can respectively be
written H#(Y) and H#(Y), and that for anti-periodic fields can respectively be written
H×(Y) and H×(Y)16.

Constant cell fields F ∈ R and F ∈ R3 are periodic:

f (y) = F ∈ H#(Y),

f (y) = F ∈ H#(Y).
(2.32)

The sum of two periodic fields is periodic: let fp, gp ∈ H#(Y) and f p, gp ∈ H#(Y), then

fp + gp ∈ H#(Y),

f p + gp ∈ H#(Y).
(2.33)

And the product of two periodic fields is also periodic:

fpgp, f p · gp ∈ H#(Y),

fpgp, f p × gp ∈ H#(Y).
(2.34)

The sum of two anti-periodic fields is anti-periodic: if fa, ga ∈ H×(Y) and f a, ga ∈ H×(Y)
then

fa + ga ∈ H×(Y),

f a + ga ∈ H×(Y).
(2.35)

But the product of two anti-periodic fields is periodic:

faga, f a · ga ∈ H#(Y),

faga, f a × ga ∈ H#(Y).
(2.36)

And the product of a periodic and an anti-periodic field is anti-periodic:

fpga, f p · ga ∈ H×(Y),

fpga, fagp, f p × ga ∈ H×(Y).
(2.37)

It is now possible to study some properties of the cell fields traces. To start with, the unit

16For vector fields, the periodicity relates to the tangential component on ∂Y for (anti-)periodic H(curl; Y)
and to the normal component for (anti-)periodic H(div; Y). Therefore, in the equations (2.32)-(2.39), H#(Y)
and H×(Y) can be replaced by either curl or div-conforming fields, but not a mix of them.
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normal vector n
∣∣
∂Y

is an anti-periodic field on ∂Y:

n
∣∣
∂Y
∈ H×(∂Y). (2.38)

As consequence of (2.37) and (2.38), the traces of periodic cell fields are anti-periodic on
∂Y, that is if vp ∈ H#(grad; Y), hp ∈ H#(curl; Y) and bp ∈ H#(div; Y) then

vpn ∈ H×(∂Y),

hp × n ∈ H×(∂Y),

bp · n ∈ H×(∂Y).

(2.39)

This is interesting because the integrals on ∂Y of anti-periodic surface fields vanish. As a
consequence, the integral of traces of periodic cell fields on ∂Y are zero, that is:∫

∂Y
vpn = 0 for vp ∈ H#(grad; Y),∫

∂Y
hp × n = 0 for hp ∈ H#(curl; Y),∫

∂Y
bp · n = 0 for bp ∈ H#(div; Y).

(2.40)

To prove it, the integrals should be split onto two halves of ∂Y, each half containing
one of each opposite face of all three face couples. Due to the anti-periodicity, the two
integrals are opposite and therefore the sum is zero.

This last equation is a key point to understand the following important property. The
macroscopic value (outer average) of the exterior derivative of a periodic cell field is zero,
that is: 〈

grad vp
〉

γY
=
〈

grad vp
〉

Y = 0 for vp ∈ H#(grad; Y),〈
curl hp

〉
∂Y⊥

=
〈

curl hp
〉

Y = 0 for hp ∈ H#(curl; Y),〈
div bp

〉
Y = 0 for bp ∈ H#(div; Y).

(2.41)

This is also true for the volume averages of periodic fields, it is not specific to the average
used in our definition of the macroscopic fields. It means that periodic fields alone are
not sufficient to model the electromagnetic cell problems, non-periodic ones will be used
in addition. However, the edge average of a periodic curl field has no reason to be zero,
as well as the normal average of a periodic gradient field17.

For the volume average, (2.41) can be proven using the Stokes theorem on the volume

17The actual reason why edge and face averages differ from the volume average, and why they respectively
enable to take into account how the macroscopic magnetization and polarization depend on the curl and
divergence of the magnetic field and electric displacement. This can be understood by studying the
Helmoltz-Hodge Decomposition (2.86).
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integral involved in the average. It results in boundary integrals on ∂Y of traces of
periodic fields, which are zero (2.40). For the average of the divergence of a periodic flux
fields bp, the proof is

〈
div bp

〉
Y

def.
=

1
|Y|

∫
Y

div bp
Stokes
=

1
|Y|

∫
∂Y

bp · n
(2.40)
= 0.

The other proofs of (2.41) are similar but necessitate to decompose the integrals over the
cell edges and faces specifically for each case. They are given in Appendix A.4.2.

Definition of the splitting of the cell field

We can now derive the definition of the downscaled cell fields. Any cell vector field f
that is downscaled should verify the following equations:

F(x) = ⟨ f (y, x) ⟩STR,

dxF(x) =
〈

dy f (x, y)
〉

STR
,

where dxF is the macroscopic exterior derivative of F (grad , curl or div ), which also
happens to be the macroscopic value of f ’s cell derivative dy f (where d is the gradient,
curl or divergence), and ⟨ ⟩STR is the appropriate scale transition formula depending on
the field type.

In order to define f using (non-)periodic boundary conditions, it is possible to use a
splitting of f into three terms as follows:

f (x, y) = F(x) + f c(x, y) + f a(x, y), (2.42)

where F(x) ∈ R3 is the macroscopic value of f , f c ∈ H#(Y) is a periodic correction
field that can contain the fine scale variations of f , and f a is a prescribed non-periodic
field that fixes the macroscopic value of dy f . With this splitting, the cell unknown is f c

because f a is prescribed. Otherwise, the bulk unknown would be duplicated and the
splitting of f would surely not be unique.

The same splitting is done for the scalar fields, but considering scalars in place of vectors,
and with the exception that the non-periodic term in the splitting of density fields is
removed.

The consistency of the splitting (2.42) requires the following properties on the different
terms of the decomposition:
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2.3. Derivation of the two scale magnetoquasistatic equations

⟨ F ⟩STR = F, (2.43) ⟨ f c ⟩STR = 0, (2.44) ⟨ f a ⟩STR = 0, (2.45)〈
dyF

〉
STR

= 0, (2.46)
〈

dy f c

〉
STR

= 0, (2.47)
〈

dy f a

〉
STR

= dxF. (2.48)

Equation (2.43) is a fundamental property of averages, and (2.46) is true because F(x) is
constant in Y. Equation (2.47), the nullity outer average of the exterior derivative of the
periodic part ⟨ dx f c ⟩STR, was explained before in (2.41).

But (2.44), the nullity of ⟨ f c ⟩STR is not naturally guaranteed. It can be added to the
cell problem equations and later be numerically implemented using integral constraints.
Alternatively, a stronger sufficient condition can be used, like prescribing the Dirichlet
boundary conditions

vc
∣∣
PY

= 0, hc · t
∣∣
γY

= 0 and bc · n
∣∣
∂Y

= 0

respectively on periodic scalar potentials fields, strength fields and flux fields. We define
three new function spaces for these fields:

H#
0PY

(grad; Y) :=
{

vc ∈ H#(grad; Y)
∣∣∣ vc

∣∣
PY

= 0
}

, (2.49)

H#
0γY

(curl; Y) :=
{

hc ∈ H#(curl; Y)
∣∣∣ hc · t

∣∣
γY

= 0
}

, (2.50)

H#
0∂Y⊥(div; Y) :=

{
bc ∈ H#(div; Y)

∣∣∣ bc · n
∣∣
∂Y

= 0
}

. (2.51)

These function spaces are easy to implement with Whitney elements, they consist in
explicit periodic and Dirichlet boundary conditions applied on the appropriate DoFs of
∂Yh.

Finally, the splitting definition should be completed with the choice of a non-periodic
field f a such that (2.45) and (2.48) are respected. It is possible to define one using only
the macroscopic derivative and the cell vector coordinate y18. The non-periodic scalar
potential va, strength field ha and flux field da of respective macroscopic derivatives

18It is assumed that the origin of y coordinates is at the center of Y, which always exists for rectangular
periodic cells.
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gradx V = E, curlx H = J and divx D = ρ are:

va := E · y ∈ H×(grad; Y), (2.52)

ha :=
J × y
D− 1

∈ H(curl; Y), (2.53)

da :=
ρy
D

∈ H×(div; Y), (2.54)

where D is the dimension (2 or 3). These fields are actually center anti-periodic, but not
anti-periodic in Y. It can be easily verified that

grad (E · y) = E,

curl
(

J × y
D− 1

)
= J,

div
(ρy

D

)
= ρ,

anywhere in Y, which explains why the property of macroscopic derivative downscal-
ing (2.48) is fulfilled. It can rapidly be understood that (2.52)-(2.53)-(2.54) have null
macroscopic value (property (2.45)) by noticing that the integration domains of the
scale transition formulas are center symmetric, so the contributions of center symmetric
subdomains of integration cancel.

To note, the definitions (2.52)-(2.53)-(2.54) are not perfect because they are stronger than
(2.48). Indeed, they prescribe the anti-periodic part of the traces of the split cell fields19,
which is not necessary and may cause issues. In addition, it seems that having Y-constant
non-periodic field derivative prevents the formulation from working in macroscopically
conducting cells20.

To finish with the derivation of the cell fields model, a summary of the four splittings for
each field type is given. A cell scalar potential field is split into

v(x, y) = V(x) + vc(y) + gradx(V(x)) · y for y ∈ Y, (2.55)

19The bulk variation of a cell field f split using (2.42) is not really prescribed by f a because the f p term
is completely free in the bulk, because the periodicity constraint only applies at the boundary.

20If a non-periodic field derivative is constant in the cell, it is periodic. For this reason, the dual
of the derivative field is periodic (because the material laws are all periodic), and the derivative of the
latter is zero. For example, if a = A + ac + B× y, then h = ν · curl a = ν · (B + curl ac) is periodic, so
J = ⟨ curl h ⟩∂Y⊥ = 0, the magnetic field cannot create macroscopic currents, the discretization of a prevents
it. In H-conforming formulation were all the cell is conducting, if h is discretized as H + hc + J × y, then
e = ρcurl h = ρ(J + curl hc) is periodic, so ∂tB = ⟨ curl e ⟩∂Y⊥ = 0. However, when the cell is insulated,
YC ∩ ∂Y = ∅ so hc is replaced with hC defined in YC, its curl is not periodic and the previous problem
disappears.
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2.3. Derivation of the two scale magnetoquasistatic equations

with vc ∈ H#
0PY

(grad; Y). Its gradient in the cell is

grady v = grady vc + gradx(V(x)). (2.56)

A cell strength field is split into

h(x, y) = H(x) + hc(y) +
1

D− 1
curlx(H(x))× y for y ∈ Y, (2.57)

with hc ∈ H#
0γY

(curl; Y). Its curl is

curly h = curly hc + curlx(H(x)). (2.58)

A cell flux field is split into

b(x, y) = B(x) + bc(y) +
1
D

divx(B(x)) y for y ∈ Y, (2.59)

with bc ∈ H#
0∂Y⊥(div; Y). Its divergence is

divy b = divy bc + divx(B(x)). (2.60)

And finally, a cell scalar density field is split into

ρ(x, y) = P(x) + ρc(y) for y ∈ Y, (2.61)

with ⟨ ρc ⟩Y = 0. Adding an integral condition in the system is necessary to guarantee
the null average condition on ρc.

It is then possible to obtain the cell problem equations by using the split cell field for the
unknown of the desired formulation. In particular, the fields that are not downscaled are
defined by the usual material law relation. For example, in a H-conforming formulation,
the cell magnetic induction is defined by b = µh where h is decomposed using the
splitting (2.57). As a consequence, the model for the cell field may not be exactly the
same depending on the considered formulation21.

21 For example, in an H-conforming formulation with macroscopic currents J = curlx H, the field h is H +
hc +

1
D−1 J× y, but in a B-conforming formulation it would be ν (B + bc). In the former, the anti-periodic part

of h× n
∣∣
∂Y is prescribed by the cross product term, while in the latter it is not constrained at all. Also, if bc ∈

H#
0∂Y⊥ (div; Y) then b · n = B · n

∣∣
∂Y is constant on the faces of the cell, while µ

(
H + hc +

1
D−1 J × y

)
· n
∣∣∣
∂Y

is not.
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Downscaling and upscaling of the time derivatives of the fields

The homogenization described in this work only relates to space, not to time. As a
consequence, in time dependent problems, the upscaling and downscaling of a field’s
time derivatives is equivalent to that of the field itself. It is easy to understand in the
(multi-)harmonic settings: the time variations are prescribed by a time basis with known
time derivatives. For example, the knowledge of f or F directly implies that of their
harmonic time derivatives jω f and jωF. When using the time stepping method, a
time derivative is discretized using samplings at different time instants, for example as
∂t f = 1

∆t ( f − f n), but as the solution at the previous time steps f n is known and fixed,
the knowledge of f and ∂t f is numerically equivalent.

This has implications on the downscaling of the magnetoquasistatic fields: downscal-
ing one field forces to downscale its time derivative, and possibly other fields due to
Maxwell’s equations. In B-conforming formulations, the downscaling of B implies that
of ∂tB, which also implies the downscaling of curlx E due to Maxwell-Faraday’s law.
Similarly, downscaling A is equivalent to downscaling ∂t A and E. Downscaling D in
electrodynamics would imply downscaling ∂tD, and thus also divx ρ to respect the
charge conservation law.

2.3.3 Derivation of the B-conforming discretized formulation

All the components of our multiscale model have been described for the electromag-
netic fields in general. The goal of the next paragraphs is to derive the B-conforming
formulation of the two-scale model of a heterogeneous medium. The formulation is
derived using the modified vector potential. The strong and discrete weak forms of the
cell problem equations are given first, and then that of the macroscopic problem.

Cell equations of unknown A with downscaled magnetic field B

The standard way to derive the two-scale MVP formulation is to downscale B and upscale
H(B) and ∂H

∂B [6, 108, 9, 11], which in practice means downscaling curl A because the
unknown of the formulation is A, not B. Alternatively, the model proposed in the last
section should be able to deal with the downscaling of A and the upscaling of H(A) and
∂H
∂A instead. But it was chosen to stick with the usual method in this thesis’ experiments,
mostly because of habits, but also because it enables to choose different MVP gauges at
each scale.

Let’s derive the cell formulation with downscaled B. We use the cell splitting (2.59)
of b, but without the Dirichlet condition bc · n

∣∣
∂Y = 0 because it will not be needed to
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guarantee ⟨ bc ⟩∂Y⊥ = 0, so there is:

b(y) = B + bc(y),

where the anti-periodic term disappear because div B = 0. Also, the cell splitting (2.57)
applied to e yields:

e(y) = E + ec(y)−
1

D− 1
∂tB× y,

where −∂tB replaced curl E, and that of a is

a(y) = A + ac(y) +
1

D− 1
B× y, (2.62)

where curl A is replaced with B.

From there, the standard equations b(y) = curl a(y) and e(y) = −∂ta(y) imply

bc(y) = curl ac(y), (2.63)

E = −∂t A, ec(y) = −∂tac(y). (2.64)

In other word, the cell splittings are perfectly compatible with the usual potential
equations22.

The field A is not downscaled, but it is determined from the downscaling of E = 0 = ∂t A
(the cell is insulated) and the initial condition A(t = 0). E = 0 is arbitrarily chosen
because the cell is insulated23. As a result, there is A = 0. At this point, the fields b(y)
and e(y) are completely determined once ac(y) is known. The usual B-conforming cell
formulation is derived by plugging the splitting (2.62) of a(y) in the standard modified
MVP formulation (1.55) (with js = 0). The formulation is:
find ac ∈ H#

0γY
(curl; Y) such that

curl
(
ν·(B + curl ac(y))

)
+ σ

(
∂tac(y) +

1
D− 1

∂tB× y
)
= 0 ∀y ∈ Y, (2.65)

where the dependency of ν in B + curl ac has been omitted for conciseness, and the
tangential continuity of ac at the ∂YC interface is implicitly specified by the choice of
function space.

But a gauge must be added in YN. The simpler one here would be the tree-cotree gauge
introduced in Section 1.3.6. But in order to be consistent with the periodic boundary

22This is true when dealing with fields on one side of the Tonti diagram Figure 1.5, that is without
considering dual fields linked via a material laws. Some counter examples were given in Footnote 21.

23In reality, the macroscopic electric field is unknown (not computed) rather than zero, but its curl is
known via Maxwell-Faraday’s law. It is possible to assume E = 0 in the cell while imposing a nonzero
∂tB = curlx E.
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condition, it is necessary that the tree be periodic. It would require the mesh to be
periodic, and that any edge of ∂Yh ⊂ YN is in the tree if and only if the corresponding
periodic edge is also in the tree. Alternatively, if the algorithm to find the periodic tree is
not implemented, the Coulomb gauge with Lagrange multiplier can be used (similarly
to (1.81)). It is done by using a periodic scalar potential ξp ∈ H#

0∂YC
(grad; YN). ξp is zero

at the conductor boundary because the gauge is not needed there24.

So finally, the discrete weak form of equation (2.65) using the Coulomb gauge yields the
following cell problem (EY):
find ac ∈ H#

0γY , h(curl; Y), ξp ∈ H#
0∂YC,h(grad; YN) s.t.

∫
Yh

ν · (B + curl ac) · curl ac
′ +

∫
YC,h

σ
( 1

∆t
(ac − ac

n) +
1

D− 1
∂tB× y

)
· ac
′

+
∫

YN,h

λ1grad ξp · ac
′ = 0,

(2.66)

∫
YN,h

λ1ac · grad ξp
′ + λ2ξpξp

′ = 0

for all ac
′ ∈ H#

0γY , h(curl; Y), ξp
′ ∈ H#

0∂YC,h(grad; YN), where ac
n is the solution at the

previous time step, ∂tB = 1
∆t (B− Bn) and λ1 > 0 and λ2 ≥ 0 are the Lagrange multiplier

parameters. The Jacobian term for the nonlinear resolution is omitted.

Also, it should be highlighted that the boundary term
∫

∂Yh
ν · (B + curl ac) · (n× curl ac

′)

is absent from (2.66) because it is zero by definition of the periodic boundary conditions.

Indeed, two boundary periodic faces act like the common interfaces of their two adjacent
elements (on the opposite sides of the cell), it is not a domain boundary. It means that the
dual field h = ν (B + curl ac) is weakly tangentially periodic, like it is at the interfaces
between the elements in the bulk of the domain.

Macroscopic B-conforming equations with upscaled H

The strong form of the macroscopic formulation has already been given in (2.28). The
discrete weak forms of (EH) and (CH\M) are given below. They are meant to be completed
with the equations in the non homogenized domain (EM), determined via usual FEM
modeling of the device.

The discrete weak form of (EH) using the tree gauge is as follows:
find A ∈ H0τh,h(curl; ΩH) s.t.

∫
ΩH,h

Hk · curl A′ +
∂H
∂B

k
· curl

(
A− Ak

)
· curl A′ = 0, (2.67)

24It would probably be necessary to set ξp to 0 at PY if ∂YC is empty and if λ2 = 0, in order to gauge it.

98



2.3. Derivation of the two scale magnetoquasistatic equations

for all A′ ∈ H0τh,h(curl; ΩH). In our implementation, Hk and ∂H
∂B

k
are constant by element

of ΩH,h and approximated at the barycenter of the elements using the cell problems.
The solution at the next iteration is given by Ak+1 = ωA + (1− ω)Ak where ω is the
relaxation factor.

The continuity condition at the homogenized domain interface is the classic tangential
continuity of the magnetic vector potential, the weak form of (CH\M) writes:

∫
ΓH\M,h

(A
∣∣
ΩM,h
− A

∣∣
ΩH,h

) · A′ = 0, (2.68)

for all A′ ∈ Hh(curl; ΓH\M). But this equation is usually removed by enforcing it strongly
in the function space.

2.3.4 Derivation of the H-conforming discretized formulation

In this section, a H-conforming two-scale formulation is stated. Its derivation is similar
to that of the B-conforming ones, so we do not give as much detail, finer explanations
can be found in [10].

Cell equations of unknowns h and φ with downscaled H

The h-φ formulation uses an unknown magnetic scalar potential φ in YN and the unknown
magnetic field strength h in YC. The formulation is derived by taking the general cell
splitting of φ and h, and then applying h = grad φ in YN

25 and φ = 0 in the interior of
YC. The macroscopic value of φ is arbitrarily fixed to 0, and its downscaled macroscopic
derivative is gradx φ = H, so its cell splitting is

φ(y) = φc(y) + H · y, (2.69)

with φc ∈ H#
0PY

(grad; Y). The magnetic field is split in

h(y) = H + hc(y), (2.70)

with hc ∈ H#(curl;) and curlx H = J = 0. Then, the equation h(y) = grad φ(y) yields:

hp(y) = grad φc(y) in YN. (2.71)

So the unknowns of the problem are φc ∈ H#
0PY

(grad; YN) only defined in YN, and the
magnetic field conductor correction hC := hc

∣∣
YC
∈ H(curl; YC) only defined in YC. The

latter has no periodicity constraint because the cell is insulated.
25If YC is not simply connected, an additional term is needed because h is not only grad φ in YN, as usual

when using the h-φ formulation.
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The h-φ strong form of the cell problem equations (EY) is:
find φc ∈ H#

0PY
(grad; YN) and hC ∈ H(curl; YC) s.t.

div (∂t µ · (H + grad φc)) = 0 in YN,

curl (ρ curl hC) + ∂t µ · (H + hC) = 0 in YC,

(grad φc − hC)× n = 0 on ∂YC,

(2.72)

where the boundary term comes from the tangential continuity of h at the conducting
domain interface.
Finally, the h-φ discrete weak equations for (EY) becomes:
find φc ∈ H#

0PY , h(grad; YN), hC ∈ Hh(curl; YC) s.t.

∫
YN,h

1
∆t

(µ · (H + grad φc)− bn) · grad φ′c = 0,∫
YC,h

ρ curl hC · curl h′ +
1

∆t
(µ · (H + hC)− bn) · h′ = 0,∫

∂YC,h

(grad φc − hC)× n · h′ = 0,

(2.73)

for all φ′c ∈ H#
0PY , h(grad; YN), h′ ∈ Hh(curl; YC), with bn = µn · (Hn + grad φn

c ) the
previous time step solution. The dependency of µ in h and the Jacobian for the nonlinear
iterations are omitted.

Similarly to the B-conforming cell formulation (2.66), there is no boundary term on ∂Yh

and the normal periodicity of the dual field ∂tb = ∂tµh is weakly enforced by the bulk
term adjacent to the periodic interface.

Macroscopic H-conforming equations with upscaled B

The H-conforming macroscopic homogenized equation (EH) is the magnetostatic26 H-
conforming formulation with upscaled B(H) law. Its weak discrete form reads:
find φH ∈ Hh(grad; ΩH) s.t.

∫
ΩH,h

Bk · grad φ′H −
∂B
∂H

k
· grad

(
φH − φk

H

)
· grad φ′H = 0, (2.74)

for all φ′H ∈ Hh(grad; ΩH), with Bk = B(Hk), ∂B
∂H

k
= ∂B

∂H (Hk) and Hk = Hs − grad φk
H.

Assuming that the material is surrounded by a nonconducting domain where a scalar
magnetic potential φH

∣∣
ΩM,h

is used, the discrete continuity condition (CH\M) simply

26Technically, the weak equation of ∂tB = 0 should be used in time dependent setting, that is∫
∂tB · grad φ′H = 0. But it breaks down to

∫ 1
∆t (B− Bn) · grad φ′H, and as we can strongly impose

div Bn = 0 in this equation, the magnetostatic weak equation
∫

B · grad φ′H = 0 appears.
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writes: ∫
ΓH\M,h

(
φH
∣∣
ΩM,h
− φH

∣∣
ΩH,h

)
φ′H = 0, (2.75)

for all φ′H ∈ Hh(grad; ΓH\M). But (2.75) is usually removed from the macroscopic system
by enforcing it strongly in the function space.

2.4 Upscaling the electromagnetic fields

A two-scale implementation of the usual B and H-conforming formulation was introduced
in the previous section. A particular care was taken to guaranty the correct downscaling
of the macroscopic fields in the cell. In this section, we focus on the implementation of the
upscaling of the macroscopic fields from the solutions of the cell problems, consistently
with the outer averages (2.24)-(2.27) defining the scale transition relation.

The upscaling of scalar density fields must be made with the volume average over all the
cell. But for the upscaling of flux densities and strength fields, it is possible to perform
the average over larger part of the cell than its edges and faces, in order to increase the
accuracy of the numerical integration. This section reviews several techniques usable to
upscale those two types of fields.

In particular, a formulation that enables computing the local distribution of the magneti-
zation due to the cell eddy currents will be introduced in order to upscale the magnetic
field strength. It will be used to validate the model describing the multiscale definition
of the magnetization proposed in Section 2.2.2, for the specific case of insulated cells.

2.4.1 Strength fields upscaling

This section will be focused on the upscaling of the magnetic field strength h because
there is no reason to upscale the other strength fields in our setting. Indeed, E is not
computed in a macroscopically nonconducting domain in MQS, and A could possibly be
downscaled but not upscaled because it is always unknown in the formulation in which
it appears.

Volume average

The volume average has been widely used in the literature to upscale every field,
including the magnetic field strength. On the solutions of the B-conforming formulation,
it is:

H = ⟨ ν·(B + curl ac) ⟩Y. (2.76)

When solving for a magnetostatic problem with no current, the volume average always
works to upscale the magnetic field strength. Indeed, one can prove that if a strength
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field is periodic with vanishing curl in the whole cell, that is if hp ∈ H#(curl; Y) and
curl hp = 0 in Y, then 〈

hp
〉

Y =
〈

hp
〉

γY
. (2.77)

Y

ex

ez
ey

γza

γzb

xa xb

γ
z+
ab

γ
z−
ab

S ∂S = γza + γ+
ab − γzb − γ−ab

Figure 2.12: Sketch of the proof that the magnetic field strength h has identical path integrals on parallel paths
crossing the cell, given that curl h · n = 0 in the cell. Indeed, Ampère’s law applies to the surface S enclosed by
the paths (here γza and γzb) and their junction on the oposite faces of the cell (here γ z+

ab and γ z−
ab ), but the

paths integrals on the latter cancel due to tangential periodicity of h. Hence, 0 =
∫

∂S h · t =
∫

γza
h · t−

∫
γzb

h · t,
the latter path integrals are equal.

The main property necessary to understand (2.77) should be detailed. It holds that the
path integrals of a periodic strength field h over any periodic path γi (path having its
ends ∂YC-periodic) are all equal. This is due to the periodicity and Ampère’s law, as
illustrated in Figure 2.12. In particular, the path integrals along the four edges are equal,
so averaging over these edges or over all the parallels in the boundary is mathematically
equivalent for periodic h.

But the volume average does not always work in dynamic setting at high-frequencies,
as will be shown in the numerical examples in Section 3.1.4. This happens when the
magnetic field created by the confined current loops become a significant part of h (in
average). Indeed, the path integrals of h on paths crossing Y inside the eddy current
loops become too different compared to that on paths outside them.

When the cell permeability is linear, we observed (see Section 3.1.4) that the following
criterion comparing the power of the eddy currents (the Joule losses) and the magnetic
power seems to predict if the volume average works:
we observed that H = ⟨ h ⟩Y whenever∣∣∣∣∫Y

j · e
∣∣∣∣ ≪ ∣∣∣∣∫Y

h · ∂tb
∣∣∣∣ . (2.78)

However, this indicator is less accurate in the nonlinear case.
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Edges average

To circumvent the limitations of the volume average, we introduce four others computa-
tion methods, including two original ones which will allow using volume averages.

The first method is applying the definition proposed in this work, the edge average,
theoretically equivalent to the method from [18] (in each direction, the integration is
done on four edges instead of one). In practice, applying it to the h field obtained by
solving for the B-conforming cell problem (2.66) leads to

H = ⟨ ν · (B + curl ac) ⟩γY
. (2.79)

To implement this formula, it is necessary to compute curl ac using the information in
the volume of the elements adjacent to the edges of the cell, before taking its tangential
trace on the edges. Indeed, the tangential trace of curl ac on a path depends on the
variation of ac orthogonally to the path. If the FEM software used doesn’t automatically
support such computation, it is possible to use a FEM projection to compute (2.79) which
consists in projecting the solution on edge elements associated to the mesh edges of the
cell edges γY, that is E(γYh), as follows:
find hγ ∈ Hh(curl; γY) s.t.∫

K(γY h)
(hγ − ν · (B + curl ac)) · h′ = 0,

for all h′ ∈ Hh(curl; γY), where K(γYh) is the set of all the elements of Yh that are
adjacent to edges of E(γY). H can then easily be computed by averaging correctly
(direction by direction) the DoFs of hγ, which are the path integrals of hγ on edges of
E(γYh), by definition of Nedelec elements.

In 2D, the edge average of a ”perpendicular to the plane” h becomes an average of the
normal value at the four corners of Y. The edge average of the in-plane h is that on the
four edges of the rectangular Y.

Boundary tangential average

In practice, the edge average formula might not be optimally precise and numerically
stable because it uses only a fraction of the solutions (the fields near the edges). Alterna-
tively, it is possible to compute H with the boundary tangential average ⟨ ⟩∂Y∥

, this method
was used in high-frequency problems in [109] to increase the accuracy compared to the
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edge average. The boundary tangential average is defined by:

⟨ h ⟩∂Y∥
:=


1

2(kxky+kxkz)
0 0

0 1
2(kykx+kykz)

0

0 0 1
2(kzkx+kzky)

 · ∫
∂Y

ht , (2.80)

where ht = (n × h) × n is the tangential component of h (see Figure 1.1) and each
component of the result Hi = ei · ⟨ h ⟩∂Y∥

is an average over the four faces of ∂Y which
are not normal to ei, hence the normalization factor.

The boundary tangential average respects the following property:
if hp is a periodic strength field with null curl trace on ∂Y, that is hp ∈ H#(curl; Y) and
curl hp · n

∣∣
∂Y = 0, then 〈

hp
〉

∂Y∥
=
〈

hp
〉

γY
. (2.81)

The reason for this is the same as that for (2.77), but instead of considering the path
integrals of h on any path crossing the cell, only those crossing the faces of the cell are
considered.

In an insulated cell, there is curl h·n = j · n = 0 on ∂Y. Also, ν · (B + curl ac) is weakly
tangentially periodic on ∂Y. Although the periodicity is only weakly ensured due to the
discretization, upscaling H using

H = ⟨ ν·(B + curl ac) ⟩∂Y∥
(2.82)

worked in our experiments.

Similarly to the edge average, we first have to use an intermediate FEM projection to
compute the tangential trace of the curl ac term. The weak form of this projection reads:
find h∂Y ∈ Hh(curl; ∂Y) s.t.∫

K(∂Yh)
(h∂Y − ν·(B + curl ac)) · h′ = 0,

for all h′ ∈ Hh(curl; ∂Y), where K(∂Yh) is the set of all the elements of Yh that are
adjacent to edges of E(∂Yh).

The tangential average is not very relevant in 2D, because the solution is only available
on cell edges for in-plane magnetic field. And in case of normal magnetic field it is
constant in YN (including ∂Y). Indeed, in 1D, a varying h is necessarily associated with
currents, because it is not curl free. So normal h is constant in YN.

104



2.4. Upscaling the electromagnetic fields

Computation of the magnetization using FEM projections and volume averages

The two previously presented methods have already been used in high-frequency electro-
magnetics, they are interesting but they do not allow using volume averages. In the next
paragraphs, we show that it is possible to compute Mε�H, the part of the macroscopic
magnetization created by the cell currents jb = j = curl h27, using some FEM projection
filtering the magnetic field that j ”creates”. It allows to upscale H using the volume
average H = ⟨ h ⟩Y −Mε�H.

Assuming that the B and H-conforming formulations (2.65) and (2.72) of the cell prob-
lem are equivalent, the cell magnetic field is periodic and can be decomposed in
h = ⟨ h ⟩γY

+
(

h− ⟨ h ⟩γY

)
= H + hc, so

⟨ hc ⟩Y = ⟨ h− H ⟩Y = ⟨ h ⟩Y − H = Mε�H

holds. The idea is to compute Mε�H from j using the fact that j = curl h = curl hc and
that hc has by definition a null edge average (see the splitting property (2.44)). It turns
out that this information is sufficient to compute Mε�H. Indeed, the following theorem
holds:

Theorem 2.1 Let h ∈ H#(curl; Y). Let H := ⟨ h ⟩γY
be the macroscopic value of h and

Mε�H := ⟨ h− H ⟩Y the macroscopic magnetization due to the eddy currents in Y.
If h̃c ∈ H#(curl; Y) verifies curl h̃c = curl h in Y, (2.83)〈

h̃c

〉
γY

= 0, (2.84)

then
〈

h̃c

〉
Y
= Mε�H.

Any solution h̃c to the problem (2.83)-(2.84) is not pointwise equal to hc because the
formulation is not gauged. The choice of the gauge, an equation specifying div h̃c, is free
here. Alternatively, it is possible to compute the exact hc using the formulation in the
following result:

Theorem 2.2 Let h ∈ H#(curl; Y). Let hc := h− ⟨ h ⟩γY
be the periodic correction field of h.

A strength field h̃c ∈ H#(curl; Y) is equal to hc if and only if
curl h̃c = curl h in Y,

div h̃c = div h in Y, (2.85)〈
h̃c

〉
γY

= 0.

27In the setting using insulated cells, there are no macroscopic currents, so all the cell current are confined
at the cell scale: jb = j.
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2. Multiscale modeling

The detailed proof of these theorems (and the next one) are given in Appendix A.4.3.
But it is interesting to detail the two main properties on which the proofs rely.

The first is that the periodic strength fields h and hc can be orthogonally decomposed in
their volume averages plus a gradient field plus a curl fields using a Helmoltz-Hodge
Decomposition (HHD). That is, if hp ∈ H#(curl; Y) then there exist θp ∈ H#(curl; Y) and
φp ∈ H#(grad; Y) such that:

hp = grad φp + curl θp +
〈

hp
〉

Y, (2.86)

where grad φp is curl free, curl θp is divergence free and
〈

hp
〉

Y ∈ RD is a constant vector,
both divergence and curl free. The decomposition is unique28, deeper explanations can
be found around (A.4) in Appendix A.4.1.

The orthogonality of the decomposition means that the L2(Y) scalar product of any couple
of terms from the decomposition - that is the integral of their dot product - is zero. It
enables to prove that fixing the curl of h is equivalent to fixing its curl θp component, and
that fixing the divergence of h is equivalent to fixing its grad φp component. Moreover,
the edge average and volume average of any periodic gradient is zero (2.41). So the choice
of gauge (or of divergence) for h̃c only affect its gradient part, which is independent of
its edge average. In conclusion, the gauge choice does not affect its edge average, so〈

h̃c

〉
γY

= ⟨ hc ⟩γY
= Mε�H.

In practice, we decided to compute Mε�H using Theorem 2.1 because it is more conve-
nient to be able to choose the gauge. But we could not directly solve for h̃c using a weak
form of (2.83) with first order Nedelec elements, the resolution does not work, probably
due to the discrete operators used in the formulation, or their orders. Instead, what
worked is solving for

curl curl h̃c = curl curl h in Y. (2.87)

The discrete weak form of (2.87) writes as follows:
find h̃c ∈ H#

0γY , h(curl; Y) and ξp ∈ H#
0PY , h(grad; Y) such that

∫
Yh

(
curl h̃c − σ∂t

(
ac +

1
D− 1

B× y
))
· curl hp

′ +
∫

Yh

grad ξp · hp
′ = 0,∫

Yh

h̃c · grad ξp
′ + ξpξp

′ = 0,
(2.88)

for all hp
′ ∈ H#

0γY , h(curl; Y) and ξp
′ ∈ H#

0PY , h(grad; Y).

28curl θp and div φp are unique, but not the potentials θp and φp (without additional gauging constraint).
Fortunately, the value of these potentials is not interesting for our purpose.
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2.4. Upscaling the electromagnetic fields

The LHS of (2.66) σ∂t

(
ac +

1
D−1 B× y

)
is used as the expression for the current curl h,

and h̃c is gauged using the Coulomb gauge. In (2.88), the constraint
〈

h̃c

〉
γY

= 0 is

strongly enforced in the functional space instead of weakly enforced via an integral
constraint on γY. It is worth mentioning because, otherwise, the precision of the final
computation of Mε�H would possibly not have better accuracy than a direct average of h
on γY.

The formulation (2.87) is similar to a rotational component extraction used to compute the
curl term of Helmoltz-Hodge decompositions, studying works on the discrete HHD
computation like [110] and [111] might help understanding why this formulation works.

In preliminary experiments on conducting cells with macroscopic current crossing the
cell, we observed that the projection (2.88) can still extract hp from h even if the anti-
periodic term ha is not zero. In this case, curl h = curl hp + curl ha. It seems that the
formulation ignores the additional unwanted curl ha source, but a mathematical analysis
of the formulation would be better to validate it.

A definition for the cell magnetization field

In Section 2.2, we made the hypothesis that mε, the magnetization created by the cell
eddy currents, could likely be defined as a potential for the eddy currents that is null
outside the current loop. In our setting, it translates as follows: mε is a field such that
mε = 0 in YN and curl mε = j in YC

29. But unlike hc, mε is to be computed in the
conducting domain of the cell YC only, this can be cheaper if the latter is significantly
smaller than the full cell.

The next result proves the consistency of this definition with the macroscopic magnetic
field definition used in this work, and leads to another formulation usable to upscale H.

Theorem 2.3 Let h and Mε�H be defined as in Theorem 2.1, and suppose that curl h = 0 in
YN.
If there exist m̃ε ∈ H0(curl; YC) verifying

curl m̃ε = curl h in YC, (2.89)

then ⟨ m̃ε ⟩Y = Mε�H (where m̃ε is extended by 0 in YN).

For the same reasons used for the computation of h̃c, we use a curl-curl equation to solve
for (2.89):

curl curl m̃ε = curl curl h in YC. (2.90)

29Such mε do not exist if the conducting domain is not simlply connected (if β1(YC) ̸= 0). In this case,
mε can be computed in a simply connected domain enclosing YC, e.g. inside the convex hull of YC.
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2. Multiscale modeling

The discrete weak form of (2.90) using the coulomb gauge for m̃ε is:
find m̃ε ∈ H0,h(curl; YC) and ξ ∈ H0,h(grad; YC) such that∫

YC,h

(
curl m̃ε − σ∂t(ac + B× y)

)
· curl m′ +

∫
YC,h

grad ξ ·m′ = 0∫
YC,h

m̃ε · grad ξ ′ + ξξ ′ = 0
(2.91)

where m′ ∈ H0,h(curl; YC) and ξ ′ ∈ H0,h(grad; YC). Again, the RHS of the B-conforming
formulation is used for the expression for the current in place of curl h.

Additionally, Theorem 2.3 can likely be extended on cells of macroscopically conducting
domains as long as there is still a nonconducting outer domain in Y, that is if the corners
of Y are not in YC (PY ∩YC = ∅). This is because the boundary condition mε × n

∣∣
∂YC

= 0
is needed to fix the average of mε (it is necessary to have the information of where is the
outside of the eddy current loops and put mε = 0 there). An analysis of this case is made
in [112], the new formulation is obtained by adding periodic boundary conditions on
∂Y ∩YC for all the field of the formulation (2.90). However, the formulation has not been
validated in a multiscale HMM resolution.

Summary

To finish with this section on the magnetic field strength upscaling, a table is given to
summarize the different methods with their advantages and drawbacks. The Symbol
column contains the short name for the method, and the Eq. column contains the number
of the equation of the discrete implementation of the method for the B-conforming
formulation which is used in the numerical tests of Chapter 3.

Method name Symbol Eq. Advantages Drawbacks

Volume average ⟨ h ⟩Y (2.76) Simple implementation
Limited to magnetostatic

or when Mε�H is negligible

Edge average ⟨ h ⟩γY
(2.79) General

Numerical accuracy
might be limited [109]

Tangential
boundary average ⟨ h ⟩∂Y∥ (2.82)

Surface integration
(more accurate than path)

Limited to macroscopically
nonconducting domains

with YC ∩ ∂Y = ∅
Periodic correction
volume average ⟨ h− hc ⟩Y (2.88)

Volume integration, may be
generalized to any cell30

Cost of the FEM
resolution for hc

Magnetization
volume average ⟨ h−mε⟩Y (2.91)

Like ⟨ h− hc ⟩Y , but cheaper
if YC is smaller than Y

Cost of the FEM
resolution for mε

Table 2.2: Summary for the different upscaling methods for the magnetic field strength H and their theoretical
advantages and drawbacks.

30Preliminary experiments showed that the rotational component extraction (2.87) works even if the
strength field is not periodic, that is if its curl is macroscopically nonzero (e.g. ⟨ curl h ⟩∂Y⊥ = J ̸= 0). So a
variation of (2.88) may also be used to upscale the electric field E, that almost always has a non-periodic
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2.4. Upscaling the electromagnetic fields

2.4.2 Flux fields upscaling

The usual electromagnetic flux fields are b, j, d and the Poynting vector s. Only B and S
are relevant to upscale in magnetoquasistatic with no macroscopic conductivity. We did
not work on S, so the upscaling formula are illustrated on the upscaling of B from the
solutions of the H-conforming cell formulation (2.73). But the other fields cases are also
briefly discuss.

Faces normal average

Following the definition of the macroscopic value of flux fields, the magnetic flux field
can be upscaled using the faces normal average

B =
〈

µ ·
(

H + grad φp
∣∣
YN

+ hC
∣∣
YC

) 〉
∂Y⊥

. (2.92)

Volume average

The divergence free fields b and j can also always be upscaled using the volume average,
e.g.

B =
〈

µ ·
(

H + grad φp
∣∣
YN

+ hC
∣∣
YC

) 〉
Y

. (2.93)

Indeed, it can be shown that if a periodic flux field is divergence free, that is bp ∈ H#(div; Y)
and div bp = 0 in Y, then 〈

bp
〉

Y =
〈

bp
〉

∂Y⊥
. (2.94)

This is due to the fact that the flux through any surface cutting the cell parallel to its
faces of such bp field is constant, due to the Gauss’s law applied to the volume enclosed
between the two surfaces and the flux periodicity of the sides. This is the very similar
to the property on the circulations of periodic strength fields illustrated on Figure 2.12.
The volume average shouldn’t apply in general to d and s, as they in can have nonzero
macroscopic divergence.

Polarization computation using FEM projections and volume averages

Although the upscaling of the electric displacement is out of scope of our hypothesis
and experiments, we would like to mention that the approach used to compute the
magnetization mε in insulated cell can probably be transposed to the computation of the
polarization pε when YC has an equal amount of positive and negative charges, that is
when ⟨div d ⟩Y = 0.

component to account for the macroscopic ∂tB.
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The analog of Theorems 2.1, 2.2 and 2.3 for the electric displacement and polarization
are given in Section A.4.3. They could be used to upscale the electric displacement
D = ⟨ d ⟩Y +Pε�H in electrostatic formulations (or rather the dielectric permittivity of
the homogenized domain εH using D = εHE) where the cell is insulated and YC has zero
net charges, but is strongly polarized by charges bound in YC.

Summary

This chapter was dedicated to the derivation of our multiscale model and was divided
into four sections. In the first one, we introduced different materials and contexts for
which multiscale modeling is useful in electrical engineering, followed by the different
general purpose numerical methods used to compute the electromagnetic fields in
multiscale problems. Intuitive introduction of the scale separation hypothesis and HMM
were proposed.

In a second part, the scale transition relation (STR) defining the macroscopic fields
was studied using different perspectives, in order to understand how to define it for
problems where dynamic hysteresis appears in the macroscopic magnetic law. A new
STR applicable to periodic homogenization of media admitting an electrically insulated
periodic cell was proposed. We detailed why our STR is consistent with the classical
definition of Maxwell’s equations in matter as well as the state of the art in the multiscale
modeling of medium and high-frequency electromagnetic fields. We believe that this
unified explanation of the different points of view is rather original, and quite useful for
understanding the multiscale modeling of electromagnetic fields.

The third section built the B and H-conforming multiscale equations using the scale
separation hypothesis, the new scale transition relation and the splitting of the cell fields
that is commonly used in the literature. The reasons why this splitting implements the
downscaling of macroscopic fields, that are rarely clearly explained, were also detailed.

Finally, four numerical implementations of the upscaling of the magnetic field strength
were derived in the last section. The two last, that are based on FEM projections to
compute the cell magnetization using volume averages, are original. Their consistency
with the STR was justified mathematically.

In the next chapter, numerical experiments are conducted to validate the proposed
formulation and uspcaling methods.
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Chapter 3

Numerical validation

This chapter presents the main numerical experiments that were conducted to validate
the formulation and theories presented in the previous chapter. The experiments are
mostly performed on the geometry used in the example at the end of the first chapter, in
Section 1.4, where the heterogeneous material is made of conducting and magnetic balls,
periodically spaced in an insulating matrix. The balls have a diameter of 80µm, similar
to the size of the iron inclusions in some soft magnetic materials.

The chapter is divided in two section. The first is dedicated to the study of the cell
problem alone, independently of the multiscale resolution. In the second section, actual
3D magnetoquasistatic multiscale resolutions are implemented, with linear and nonlinear
magnetic laws in the inclusions. Several properties of the method, such as accuracy and
convergence with the decrease of the material spatial period are studied.

Metrics used to compare the numerical solutions

Different elements of comparison will be used to analyze the results. To qualitatively
measure the results, integral quantities like the Joule losses power have to be compared.

They are scalar time signals that can be visualized by plotting their value over time. Let
us consider s1(t) and s2(t). When the signals are visually identical, their difference s1 − s2

or their absolute difference |s1 − s2| are plotted to enable finer comparison. Furthermore,
the instantaneous (absolute) percentage of error of s2 with respect to s1 can be used
to indicate the relative error, this is useful to understand the scale of the error when
the actual value of the signal is not plotted. It is computed by 100

∣∣∣ s1(t)−s2(t)
s1(t)

∣∣∣ where a
minimum threshold is applied to the denominator at time instant where it is too close
to zero, to avoid potential division by zero. This quantity grows to infinity where the
signals are nearly equal, but is meaningful at all times when the signals are the most
different.
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3. Numerical validation

Additionally, two metrics will be used to quantitatively compare time dependent func-
tions over a period of time.

If the time integral of the signals (e.g.
∫
[0,T] s1(t)dt) is of interest and if they are positive

(s1, s2 ≥ 0, the Joule losses power for example), the absolute percentage of difference of
the time integral of s2 with respect to that of s1 can be computed. That is:

IPE(s1, s2) = 100

∣∣∣∫[0,T](s2 − s1)dt
∣∣∣∫

[0,T] s1dt
, (3.1)

where [0, T] is the time interval over which the error is computed, usually one period of
the source of the problem. This metric can only be used for quantities with constant sign,
e.g. the Joule losses power, that is always positive.

We also use a metric that takes the instantaneous accuracy into account, the percentage
of the L2([0, T]) norm of s2 − s1 into that of s1. It is defined by:

L2PE(s1, s2) = 100

√√√√∫[0,T](s2 − s1)2dt∫
[0,T] s2

1 dt
. (3.2)

This metric is sensible to the pointwise difference between the signals. All such errors
are added thanks to the absolute value, unlike when comparing the time integrals where
errors of opposite sign cancel out.

Software and computational resources

All the FEM and HMM implementation were made using the GetDP Software [22], and
the meshes and visualizations were done using Gmsh [23].

Two HPC clusters were used to run the HMM resolutions in parallel. The first is the
GRICAD cluster [113] from the Grenoble-Alpes University, to which we had access
thanks to the PhD funding. The second is Nic5 [114], the cluster of Liège, to which we
had access thanks to Christophe Geuzaine.

Finally, all the curve plots of the thesis were produced using the Julia library Makie.jl
[115].

3.1 Cell problem validation

In this section, the numerical resolutions of the cell problem using H and B-conforming
formulations is studied in detail. There are several objectives for doing this.
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3.1. Cell problem validation

The first is to validate the cell problem independently of the multiscale machinery. In
particular, it will be verified to which extent the H(B) law provided by the B-conforming
cell problem is the inverse of the B(H) law provided by the H-conforming cell problem,
and if the cell field maps obtained using each formulation correspond.

Also, studying the cell problem enables understanding better the physics of the cell
solutions, and observe the sensitivity of the upscaled quantities with respect to the
resolution parameters.

Finally, the cell solutions inform on consistence or difference between H and ⟨ h ⟩Y. So
the validity and need for the proposed H upscaling formulas will be studied for different
physical parameters.

These objectives are necessary steps in the validation of the multiscale model proposed
in this thesis, but they would also be useful to validate the implementation of the cell
problem when using the method on a new problem. There are numerous hyperparame-
ters and sources of error in the implementation of HMM, so being able to validate the
cell problem independently is very useful in practice.

Considered cell problem

One periodic cell is considered for all our tests. It is that of the problem introduced
in Section 1.4, a conducting and magnetic ball surrounded by a nonmagnetic electric
insulator. This cell respects the electric insulation hypothesis introduced on page 83, so
all the previously introduced formulations apply.

Figure 3.1: Geometry of the cell problem (left) and three meshes of the cell with respectively 4k, 37k and 140k
tetrahedra (right).

In all the tests of Section 3.1, the sphere has a conductivity of σ = 10× 106 S.m-1 (close
to that of Iron) and the insulator has the electromagnetic properties of the air, that is no
conductivity and a relative permeability of µr = 1. A linear magnetic law with µr = 10
and a nonlinear magnetic law will be used in the sphere. The nonlinear law follows the
Fröhlich-Kennelly law (1.82) with maximum relative permeability of µr,max = 100. The
sphere has a diameter of 80 µm and the cell width is ε = 100 µm, so the volume fraction
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of magnetic material is approximately 27%.

3.1.1 Chained cell problems methodology

The validation of the solution of the cell problems is not easy because our multiscale
model was not derived in a mathematically rigorous way, so there is no analytic formula
to compute the macroscopic magnetic law and cell fields associated to a specific multiscale
problem. It is thus necessary to use a numerical validation.

The only way that we found to solve the cell problems in the same physical state
is to use the output of one formulation as the input of the other one. For example,
a source magnetic flux density Bsrc(t) is chosen, then H(Bsrc(t)) is computed over
the entire simulation period using the B-conforming formulation of the cell problem.
Finally, B(H(Bsrc(t))) is computed using the H-conforming cell problem. The obtained
B(t) can then be compared with the initial Bsrc(t) which serves as a reference. For

shortness, this sequence of computations is called Bsrc
B-conf.−−→ H

H-conf.−−→ B. The converse

one, Hsrc
H-conf.−−→ B

B-conf.−−→ H, is also studied. The steps of the method are summarized in
Figure 3.2.

H-conf. FEM resolution

B-conf. FEM resolution

B

H

Bsrc Hsrc

H-conf. upscaling

B-conf. upscaling

B-conf.
downscaling

H-conf.
downscaling

h(B)

⟨ h(B) ⟩γY

b(H)

⟨ b(H) ⟩Y
compare

compare

Figure 3.2: Diagram of the steps taken to chain the resolutions of the cell problems implemented with the two
dual H and B conforming formulations. The method starts with a prescribed source Bsrc or Hsrc, which serves
as expected value to compare the results with after completing all the steps once.

We call this method the chained cell problem method. The idea originally comes from
Janne Ruuskanen and was used in [39]. This method enables to validate that the cell
problems are dual from each other, in terms of both the upscaled laws and the cell fields.
If we assume that the H-conforming formulation is correct and reliable, which is the case
according to [4], the methodology also enables to validate the B-conforming formulation
of the cell problem. It is applicable on any cell geometry and with arbitrary direction
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and time variations of the sources.

One point worth highlighting is that the upscaled H(t) or B(t) fields are interpolated in
time by smooth polynomials (over the entire simulation period) before downscaling it to
the second cell problem. This is important to avoid additional error in the solution of the
cell problems due to the non smoothness in time of the source. The Akima interpolation
method [116] implemented in GetDP [22] (the InterpolationAkima function) is used for
that. This method uses order three spline polynomials.

In the following, the actual validation of the aforementioned points is made on linear
and nonlinear transient 3D cell problems.

3.1.2 Accuracy of the solutions of the cell problem

For the first experiment, the objective is to show the agreement between the H and
B-conforming formulations, in terms of the upscaled magnetic field H or B and of the
Joule losses density PJL. The focus is made on these quantities because the first drives
the convergence of the multiscale resolution, and the second is one of the main quantities
interest in the simulation of magnetic materials and is usually difficult to accurately
compute.

Reaching excellent accuracy with the chained cell problem test is not easy because the
error committed in each resolution accumulate, so very fine discretization will be used.
The cell mesh has around 160k tetrahedra, and 160 Time Steps per period (TSpp) are
used for the time discretization.

100 µm

40 µm

µ0

µr = 10
σ = 10× 106 S.m-1

Bsrc, Hsrc

f = 5 MHz, Bz = 1 T, Hz = 1 MA.m-1

Linear

µ0

µr,max = 100
σ = 10× 106 S.m-1

f = 500 kHz, Bz = 0.6 T, Hz = 250 kA.m-1

Nonlinear

Figure 3.3: Parameters used for the validation of the accuracy of the cell formulations. The Bsrc of magnitudes

Bz are the sources for the B-conforming cell formulation in the sequence Bsrc
B-conf.−−−→ H

H-conf.−−−→ B, and the Hsrc

of magnitudes Hz are the sources of the H-conforming formulation in the sequence Hsrc
H-conf.−−−→ B

B-conf.−−−→ H.
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The accuracy is measured with linear and nonlinear magnetic law in the ball, and
with the cell problems chained with the H-conforming formulation first and then the
B-conforming one first. Sine Bsrc and Hsrc sources oriented along ez are used, that is

Bsrc(t) = Bz sin(2π f t)ez and Hsrc(t) = Hz sin(2π f t)ez. (3.3)

The physical parameters used are given in the sketches in Figure 3.3. For linear magnetic
law, the frequency is f = 5 MHz, the relative permeability of the sphere is µr = 10 and
the magnitudes of the sources are Bz = 1 T and Hz = 1 MA.m-1. For the nonlinear law,
we used f = 500 kHz, a maximum relative permeability of µr,max = 100 (used in the
Fröhlich-Kennelly law) and the sources magnitudes are Bz = 0.6 T and Hz = 250 kA.m-1.
In both cases, the skin depth in the ball is approximately δ = 40 µm, the radius of the
ball, so there is no significant skin effect.

We will focus on the accuracy of the computation of the macroscopic magnetic field H or
B, and of the Joule losses power in the cell PJL, that is computed by:

PJL =
∫

YC

j · e, (3.4)

where the expression for j and e depend on the formulation.

For the order Hsrc
H-conf.−−→ B

B-conf.−−→ H, the magnetic field and Joule losses are plotted over
time in Figure 3.4, and the Table 3.1 contains the integrated percentage of errors of the
upscaled magnetic field against the source, and the percentage of differences of the
Joule losses computed by each formulation. The five possible H upscaling methods
are tested, namely the volume average ⟨ h ⟩Y, the tangential boundary average ⟨ h ⟩∂Y∥

,
the tangential edge average ⟨ h ⟩γY

, the volume average using the computation of the
cell magnetization ⟨ h−mε ⟩Y and the volume average using the computation of the
magnetic field correction ⟨ h− hc ⟩Y. Some typical field maps of the solutions of the H
and B-conforming problems are shown in Figure 3.6.

The curves show that there is an excellent accuracy and agreement between the two
formulations. The L2 percentages of error for the four methods proposed to upscale H
are almost identical, 0.43% (linear) and 0.73% (nonlinear), and respectively better than
the volume average ⟨ h ⟩Y, 4.62% (linear) and 0.91% (nonlinear). As expected, the volume
average is not a correct upscaling method for H.

The formulations also agree well on the estimation of the integrated Joule losses over the
period, with differences of 0.93% (linear) and 1.41% (nonlinear).

The experiment was also conducted for the other sequence Bsrc
B-conf.−−→ H

H-conf.−−→ B. The
plots are given in Figure 3.5 and the integrated percentage of error in Table 3.2. The
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Figure 3.4: Upscaled magnetic field strength and total Joule losses power PJL (3.4) for a finely discretized

cell problem, using the sequence Hsrc
H-conf.−−−→ B

B-conf.−−−→ H with a source of magnitude Hz = 1 MA.m-1 and a

frequency of 5 MHz for the linear case. For the nonlinear one, a magnitude of Hz = 250 kA.m-1 and a frequency
of 500 kHz are set. The magnetic field curves qualitatively match perfectly, except the volume average in the
linear case, but a difference is visible for the Joule losses. The larger error on PJL is likely due to a too coarse
time discretization.

Linear
⟨ h ⟩Y ⟨ h ⟩∂Y∥

⟨ h ⟩γY
⟨ h−mε ⟩Y ⟨ h− hc ⟩Y PJL

L2PE (%) 4.62 0.42 0.42 0.43 0.43 2.08
PJL

IPE (%) 0.93

Nonlinear
⟨ h ⟩Y ⟨ h ⟩∂Y∥

⟨ h ⟩γY
⟨ h−mε ⟩Y ⟨ h− hc ⟩Y PJL

L2PE (%) 0.91 0.72 0.72 0.73 0.73 2.42
PJL

IPE (%) 1.41

Table 3.1: L2 percentages of error (see (3.2)) of the upscaled magnetic field with respect to Hsrc, computed
from solution presented in Figure 3.4, and the integral percentage of difference (3.1) between the total joule
losses over the period given by H and B-conforming solution (rightmost column).

results are similar to the previous, the L2 percentage of error of the upscaled B with the
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Figure 3.5: Upscaled magnetic flux density and total Joule losses power PJL (3.4) for a finely discretized cell

problem, using the sequence Bsrc
B-conf.−−−→ H

H-conf.−−−→ B with a source of magnitude Bz = 1 T and of frequency

5 MHz for the linear case, and with a source of magnitude Bz = 0.6 T and of frequency 500 kHz for the nonlinear
case. The error on the Joule losses is slightly greater than when the problems are solved in the other sequence
(H-conf. then B-conf.).

reference of 0.42% (linear) and 0.67% (nonlinear).

Linear
⟨ b ⟩Y PJL

L2PE (%) 0.42 2.71
PJL

IPE (%) 1.90

Nonlinear
⟨ b ⟩Y PJL

L2PE (%) 0.67 3.84
PJL

IPE (%) 2.80

Table 3.2: L2 percentages of error (see (3.2)) of the upscaled magnetic field with respect to Bsrc, computed
from solution presented in Figure 3.5, and the percentage of difference between the total joule losses over the
period given by H and B conforming solution (rightmost column).
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3.1. Cell problem validation

There is a lower agreement on the error of the Joule losses integrated over the period,
while the L2 error is similar. This likely means that in the previous experiment, the
relative difference between both PJL curves changes sign such that the error compensate,
and that it does not change sign and cumulate in the latter experiment.

From these results, we can safely conclude that the proposed formulation are inverse
of each other. This ensures that the upscaling of B from the H-conforming solution is
consistent with its downscaling in the B-conforming formulation. And vice versa for H,
as long as one of the correct methods is used (all except the volume average). It seems
that the four proposed H upscaling methods have the same accuracy on fine meshes.
These results also confirm that the formulation accurately model the transient regime
happening in the beginning of the period.

We can also visualize the macroscopic material law that the cell problems implement.
For that, the B-H curve of the upscaled law for linear and nonlinear problems are plotted
in Figure 3.7, for the ⟨ h ⟩∂Y∥

proposed upscaling methods for H, and also for the volume
average ⟨ h ⟩Y.

We see that the macroscopic magnetic laws are hysteretic, and we observe greater
difference between ⟨ h ⟩Y and H for the linear case than in the nonlinear one, which is
consistent with the percentages of error of Tables 3.1 and 3.2. The hysteresis effect is not
very strong because it is only due to the microscale eddy currents, the ferromagnetic
hysteresis is not considered here with the choice of magnetic material law in the inclusion.
But it is strong enough for the macroscopic problem to require a nonlinear resolution
even if the material law in the cell is linear.
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3. Numerical validation

Figure 3.6: Field maps obtained from the solutions of the cell problem discretized with 21k tetrahedra, using
the H-conforming formulation (left) and the B-conforming formulation (right). The plotted fields are, from top
to bottom: b, h, j, and hc-mε on the last row. For better visibility, the arrows are only plotted in 1/12th of the
elements, the chosen time step is TS = 60 over the 160 of the total period.
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Figure 3.7: The upscaled Bz-Hz curve of the macroscopic field provided by the cell problem for linear (left) and
nonlinear (right) magnetic laws. The curves are plotted for two magnetic field upscaling methods, the boundary
tangential average ⟨ h ⟩∂Y∥ and the volume average ⟨ h ⟩Y. The linear curve is an ellipse, with a quite large

width because there are strong Joule losses due to the high frequency. A small saturation effect is visible on the
nonlinear curve ends, it is not very visible due to the small volume fraction of iron in the cell (≈ 27%) even if
the nonlinear magnetic law is locally saturated in the ball.

Although all the tests from this section are performed using a source with constant
direction, the z axis, additional tests not presented and the latter experiment of the HMM
confirm that the formulation works with sources in any direction.

3.1.3 Sensitivity to the discretization and the choice of upscaling method

The next experiments aim at helping to understand what resolution parameters influence
the quality of the upscaled quantities for the B-conforming formulation. We would like to
study the influence of the spatial and temporal discretization on the upscaled magnetic
field and Joule losses, and compare the values given by the different upscaling methods.

Once again, we have no access to the analytic solutions for either the B or H-conforming
formulations of the cell problem, but we want reference solution for the B-conforming

one, so the Hsrc
H-conf.−−→ B

B-conf.−−→H chained cell problem method is used.

But in order to only measure the error due to the B-conforming formulation, fine
discretizations are used for the H-conforming resolution (160k elements and 160 TSpp
like last experiments), and very coarse discretizations are used for the B-conforming
resolution with 4k or 1.5k elements and 40 or 20 TSpp. This way, the error at the end of
the pipeline should be mainly due to the B-conforming problem.
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3. Numerical validation

Comparison of the different upscaling methods for H

First, the upscaled H using the five studied methods are compared with Hsrc for the
discretization with 4k elements and 40 TSpp, in Figure 3.8 for the linear magnetic law
and in Figure 3.9 for the nonlinear one.

Time (𝜇s)
0.00 0.05 0.10 0.15 0.20

a
b
s.

 e
rr

. 
p
er

c.
 (

%
)

0.0000

0.0025

0.0050

<h>Y <h>𝜕Y ∥ <h>𝛾Y <h − m𝜖>Y <h − hc>Y

Figure 3.8: Absolute error in percentage of the maximum reference value Hsrc ·ez = 1 MA.m-1, between
the z components of the source Hsrc ·ez and the five possible upscaling formulas for H using the sequence

Hsrc
H-conf.−−−→ B

B-conf.−−−→ H with linear magnetic law, and a coarse discretization of the B-conforming problem (4k

elements and 40 TSpp).

For the linear case, there are significant differences between the volume average ⟨ h ⟩Y
and the other methods. The error with the reference is larger, and it has a phase offset,
unlike the other methods. This phase offset is consistent with our theory that the error is
due to the magnetization field generated by the eddy currents, because the latter are in
quadrature with the source magnetic field.

Also, this experiment suggests that the four proposed H upscaling methods are equivalent
in terms of accuracy, the discretization parameters influence more the accuracy than the
choice of the upscaling method.
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Figure 3.9: Absolute error in percentage of the maximum reference value Hsrc ·ez = 250 kA.m-1, between
the z components of the source Hsrc ·ez and the five possible upscaling formulas for H using the sequence

Hsrc
H-conf.−−−→ B

B-conf.−−−→ H with nonlinear magnetic law, and a coarse discretization of the B-conforming problem

(4k elements and 40 TSpp).

For the nonlinear case, shown in Figure 3.9, the eddy currents are sufficiently negligible
that there is no significant difference between all the methods.

Error on H and PJL with the coarsening of the discretization in space and time

In a second time, the degradation of the accuracy with the coarsening of either the mesh
or the time step is studied, in order to give recommendations on how to refine the cell
problem in case the solutions are not accurate enough. This experiment is made on the
upscaled magnetic field and Joule losses, using only the tangential average upscaling
method ⟨ h ⟩∂Y∥

because all methods follow the same trend.

The errors measured using the linear law are plotted in Figure 3.10 for three discretiza-
tions: 4k elements and 40 TSpp, 4k elements and 20 TSpp, and 1.5k elements and 40 TSpp.
The error using the nonlinear law and the same discretization is plotted in Figure 3.11.

The main take-away of this experiment is that the error on the magnetic field is influenced
by the spatial discretization, but not really by the time one. Conversely, the error on Joule
losses is strongly affected by the time discretization, but less by the spatial one. In our
experience, this effect is amplified once the mesh is decently refined (10-20k elements),
then, only the time refinement improves the accuracy of PJL.
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Figure 3.10: Absolute difference between H and PJL computed with a finely discretized cell problem (160k tets.
and 160 TSpp) and a coarsely discretized cell problems (4/1.5k tets. and 40/20 TSpp). The reference are the
upscale quantities from Figure 3.4 with linear laws. The jumps effects are due to the comparison of the linear
interpolation between the points with different sampling rates (different TSpp). The accuracy for H is strongly
affected by the spatial discretization but not really by the time one. Conversely, the accuracy for PJL is very
impacted by the time discretization. Once the spatial discretization is decent (10-15k elements), it does not
affect the Joule losses accuracy anymore.
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Figure 3.11: Same comparison as in Figure 3.10, but for the nonlinear cell problem with solution of Figure 3.4
as reference. The behavior is the same as in the linear case, except that the error on PJL happen when the
magnetic field is growing fast (first quarter of the half-periods), probably before the magnetic material saturates.
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3.1. Cell problem validation

3.1.4 Parametric study of the validity of the magnetic field strength upscaling

The results presented previously show that there might be a significant difference between
H and the volume average ⟨ h ⟩Y in the presence of strong eddy currents, but not always.

In order to have a clearer vision of which scenarios lead to a wrong upscaling of H using
the volume average, we conducted a parametric study to show when ⟨ h ⟩Y diverges from
H. The cell problem was solved for different frequencies and relative permeabilities in the
magnetic balls. For each, two quantities are computed, the discrepancy between H and
⟨ h ⟩Y denoted Herr and the ratio of the Joule losses in the total absolute electromagnetic
power Prat.

The error Herr between H and ⟨ h ⟩Y is computed as follows:

Herr = 100

∫
[0,T]∥H(t)− ⟨ h(t) ⟩Y∥2dt∫

[0,T]∥H(t)∥2dt
, (3.5)

it is the percentage of difference between the L2([0, T]) norm of ∥H − ⟨ h ⟩Y∥(t) and that
of ∥H∥(t).

The power ratio Prat is computed with:

Prat = 100

∫
[0,T] P

2
JLdt∫

[0,T] P2
emdt

, (3.6)

that is the percentage of the L2([0, T]) norm of PJL into the L2([0, T]) norm of Pem. The
latter is the electromagnetic power in the cell, computed using:

Pem =
∫

Yh

h · ∂tb + j · e.

The reason to monitor this quantity is that it might inform on how much H differs from
⟨ h ⟩Y. Indeed, as the eddy currents cannot flow at the macroscopic scale, their power is
transferred to the macroscopic magnetic law. As explained before, we believe that this
comes with additional magnetization that is created by the eddy current loop, and that
is responsible for the difference between ⟨ h ⟩Y and H. This magnetization has a phase
offset of π/2 with the magnetic field (it is in phase with ∂tB and the eddy currents),
which explains why the error of ⟨ h ⟩Y has a phase offset (e.g. in Figure 3.8).

Also, the magnetization created by induced current loops goes ”against” (decreases) the
magnetic field that creates it. So we believe that removing such additional magnetization
from ⟨ h ⟩Y to obtain H increases the latter, which explains why the macroscopic B/H-
loop is wider than the B/⟨ h ⟩Y-loop (e.g. in Figure 3.7).
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Figure 3.12: Log-log error maps at different frequencies and at different sphere relative permeabilities, ranging
from 46kHz to 10MHz, and from µr = 1 to µr = 100, for the magnetically linear cell problem. Left : Herr, the
percentage of discrepancy between H and ⟨ h ⟩Y computed using (3.5). Right :

√
Prat, square root of the ratio

of the eddy currents power into the total electromagnetic power, computed using (3.6). We chose to plot the
square root of the power error because the Joule losses typically grow with the square of the fields, and it shows
better the correlation between the two quantities.

The contour maps for (3.5) and (3.6) were computed using a linear magnetic law
(Figure 3.12) and using a nonlinear one (Figure 3.13). The H-conforming formulation of
the cell problem with sources Hsrc from (3.3) was used, on a cell mesh of 37k elements
and with 160TSpp.
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Figure 3.13: Log-log error maps of the same quantities as Figure 3.12, but with nonlinear magnetic law in
the balls. Here, µr is the nonlinear law parameter of the maximum/unsaturated permeability, so the effective
permeability is actually inferior to the y-axis value. There is still a correlation between the two maps, but the
values match less than in the linear case, the share of Joule losses in the electromagnetic power is lower than
the upscaling error.
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3.2. Multiscale validation on magnetoquasistatic 3D problems

In both linear and nonlinear cases, both quantities strictly increase with the frequency,
but not with the permeability. This means that although the error is correlated with the
skin depth, the latter is not always a good predictor of the discrepancy between H and
⟨ h ⟩Y.

Also, the ratio of the Joule losses into the total electromagnetic power in the cell seems
to be a great indicator of the discrepancy between H and ⟨ h ⟩Y for magnetically linear
problems, but not for nonlinear ones.

The most important take-away of this experiment is that the necessity to avoid using
⟨ h ⟩Y seems quite limited in the simulation of magnetic cores, except maybe at very high
frequencies. However, implementing one of the proposed H upscaling methods is a
good idea when working with B-conforming formulation at high frequencies, at least to
compare it to ⟨ h ⟩Y, as it is currently the only reliable way to guaranty that H is correctly
upscaled.

3.2 Multiscale validation on magnetoquasistatic 3D problems

This section is devoted to the validation of the accuracy and properties of the proposed
multiscale method. Although the development of our implementation went through
many intermediate steps, including static and low-frequency resolutions of 2D and 3D
problems, we present the results corresponding to two of the more challenging settings
that we could successfully solve for. The emphasis is made on the precise description of
the results and the in-depth study of the behavior of the multiscale method in order to
show its capabilities and limits, rather than the multiplication of the settings examples.

The settings used are 3D magnetoquasistatic problems in time transient regime, using
linear and nonlinear magnetic material laws in the heterogeneous material. The geometry
used is that from the example in the first chapter (see Section 1.4), the geometry of the
reference problem and an example of mesh for the macroscopic problem are shown in
Figure 3.14. The tests are preformed with the B-conforming formulation at relatively
high frequencies, between 100 kHz and 10 MHz, in order to validate our theory related
to the upscaling of the magnetic field strength.

The section is organized as follows. First, the accuracy of HMM is validated for the two
aforementioned settings. Then, the convergence properties of the multiscale method with
the macroscopic field discretization and the decrease of the cell size are studied. Finally,
the power of the method is illustrated on two problems impossible to solve with single
scale FEM and some conclusions are drawn.
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3. Numerical validation

Figure 3.14: One eighth of the geometry used for the multiscale accuracy validation (left), and the mesh for
the macroscopic problem (left). The problem is the same as the example resolution in Section 1.4, the magnetic
core is made of 512 magnetic and conducting balls, but 64 are meshed thanks to the symmetries of the geometry.
The heterogeneous domain has a real width of 800 µm, the cell size is 100 µm and torus stranded coil with
circular section of radius 100 µm is fed with an imposed sinusoidal current source. The big radius of the inductor
is 1.5 mm. The homogenized core is generally meshed with 64 hexahedric elements (like in the figure), although
any type and size of element could be used.

Integral quantities of interest

Mainly two quantities will be used to monitor the behavior of the solution. The first is
the Joule losses power in the magnetic core. On the reference problem, it is computed as:

PJL,ref =
∫

Ωε,h

j · e. (3.7)

On the multiscale problem, it is computed using the upscaled Joule losses density as:

PJL,HMM =
∫

ΩH,h

⟨ j · e ⟩Y, (3.8)

where ⟨ j · e ⟩Y is the Joule losses density in the cell.

The second is the total electromagnetic power in the magnetic core Pem, with expressions
slightly different in the reference and multiscale problem. For the reference problem, it is
written

Pem,ref =
∫

Ωε,h

h · ∂tb + j · e. (3.9)

But in the homogenized domain, there are no currents, so the electric term disappears,
and the expression is

Pem,HMM =
∫

ΩH,h

H · ∂tB. (3.10)

The Joule losses are naturally taken into account in the homogenized magnetic law
via some dynamic hysteresis. But this can only be noticed when it is not negligible in
comparison to the magnetic term.

To note, the accuracies numbers given in the next sections are computed using a reference
with the same type of formulation as the multiscale one, the B-conforming formulation1.

1There is actually a large difference (≈ 30%) between the Joule losses predicted by our implementatio of
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3.2. Multiscale validation on magnetoquasistatic 3D problems

The results will show the accuracy of the multiscale method compared to using the
state-of-the-art single scale formulation.

3.2.1 Transient linear results

The goal of the first test is to prove numerically that the 3D multiscale formulation
requires using the proposed H upscaling methods when there are strong eddy currents
loops in the conducting inclusions, as described in Chapter 2. This hypothesis has
already been validated in 2D in the course of this thesis, the results are available in [112].

We observed that the responsible phenomenon increases with the frequency, with the
diameter and volume fraction of the inclusion in the cell, and with the conductivity. So in
order to demonstrate a large difference between using the volume average and the other
upscaling methods, the following test is conducted on copper inclusions of conductivity
59.7× 106 S.m-1 and of linear magnetic permeability µ = µ0. Additionally, the radius of
the sphere is set to 45 µm, making the volume fraction of the inclusion increase from
≃ 27% to ≃ 38% compared to the other tests.

Finally, the source is an imposed current in the stranded inductor following the defi-
nition (1.85), with the frequency set to f = 10 MHz and a total current set to I(t) =

1000 sin(2π f t) A. The skin depth δ is approximately 21 µm, so the skin effect is significant
(the ball radius is 45 µm). The macroscopic mesh has 29k elements, the cell meshes have
19k elements, and the simulation is run during 225 ns (2.25 periods) with 160 TS per
period.

Linear, PJL

Upscale method ⟨ h ⟩Y ⟨ h ⟩∂Y∥
⟨ h ⟩γY

⟨ h−mε ⟩Y ⟨ h− hc ⟩Y
L2PE (%) 31.1 0.67 0.97 1.13 0.48
IPE (%) 26.1 0.68 0.98 1.11 0.45

Linear, Pem

Upscale method ⟨ h ⟩Y ⟨ h ⟩∂Y∥
⟨ h ⟩γY

⟨ h−mε ⟩Y ⟨ h− hc ⟩Y
L2PE (%) 28.0 0.66 1.08 1.90 1.29

Table 3.3: Integrated percentages of error (L2([0, T]) (3.2) and integral (3.1)) on Joule losses and total
electromagnetic power of the homogenized domain, computed from the solutions presented in Figures 3.15 and
3.16.

The computation of the reference solution took 15h on a personal computer2. The HMM
resolutions were made using 48 cores on the GRICAD cluster, it took around 20h for

the B-conforming and H-conforming references on this problem. But this does not impact our validation,
because this error is presumably not associated with the homogenization process.

2The PC had 16 Go of RAM and the CPU model is Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz.
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Figure 3.15: Comparison of the Joule losses power in the homogenized domain predicted by the HMM resolution,
using different upscaling methods for H and using magnetically linear copper inclusions. The difference with
respect to the reference is given for the correct upscaling methods in the bottom plot. All methods have an
excellent accuracy, except the volume average ⟨ h ⟩Y, which has significant phase and magnitude offsets with the
reference (it is thus not plotted in the bottom axis). The upscaling methods using FEM projections (⟨ h−mε ⟩Y
and ⟨ h− hc ⟩Y) result in poorer convergence of the multiscale problem.

the upscaling techniques without FEM projections, 30h using ⟨ h−mε ⟩Y and 44h using
⟨ h− hc ⟩Y. The multiscale resolution were slower than the reference on this problem
due to the fairly small amount of balls. HMM is not necessary here, but using such
reference problem is necessary for validation purpose. The upscaling methods using
FEM projections are significantly slower than the others here, respectively 50% slower for
⟨ h−mε ⟩Y and 120% slower for ⟨ h− hc ⟩Y.

Several field maps of the solutions are shown in Figure 3.19. The Joule losses dissipated
in the homogenized domain and its total electromagnetic power are respectively plotted
in Figures 3.15 and 3.16, and the associated integrated percentages of error are given in
Table 3.3.

The results demonstrate an excellent accuracy of HMM when one of the four proposed
upscaling method is used. Indeed, the error on Joule losses over the two first periods
reaches 26.1% using the volume average, while it is between 0.45% and 1.11% for the
others methods. These results are similar to that given in [112] in 2D. In our experience,
the differences between the correct methods are not representative of a general behavior:
the volume average with correction projection ⟨ h− hc ⟩Y is the most accurate here, but
this is not true in general.

Six B-H curves of the upscaled law are displayed in Figure 3.17, three with a correct
upscaling method and three with the volume average method. When using the latter,
the upscaled law is actually H(B) = ν0B. Indeed, there is ν = ν0 everywhere in Y,
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Figure 3.16: Comparison of the electromagnetic power in the homogenized domain predicted by the HMM
resolution, using different upscaling methods for H, with linear magnetic law in the balls. The observations are
similar to that on Joule losses in Figure 3.15. The difference of the volume average is too large compared with
the others, so it is not plotted in the bottom axis.
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Figure 3.17: B-H curves of two cell problems in HMM with linear magnetic law in the cell. There are two
∥B∥-∥H∥ on the left, and one Hz-Bz curve on the right. The curves with the norms are multiplied by the sign of
the z component (because the homogenized domain is exited by a field of direction close to ez, as the inductor
is in the z = 0 plane). The ”Inner” cell problem is that of the element the closer to the center of ΩH, and the
”Outer” one is the corner of ΩH. The curve in the middle is not smooth, due to a slight rotation of the field
when changing direction and to the phase offset between B and H. But each field component evolves smoothly
in time, e.g. the Hz and Bz components plotted in the right curve.

so ⟨ h ⟩Y = ⟨ ν0b ⟩Y = ν0⟨ b ⟩Y = ν0B. When using the correct definition for H, the
curve becomes ellipse, meaning that strong dynamic hysteresis appears. In average, the
magnetic reluctivity is increases due to high self-inductance of the inclusions which
creates a magnetization opposed to the imposed magnetic field.

Finally, the convergence criteria for the multiscale resolutions are shown in Figure 3.18.
As already mentioned, the macroscopic problem must be iteratively solved even if the

131



3. Numerical validation

2 4 6

V
al

u
e

10-6

10-5

10-4

10-3

10-2

10-1

100

Rel. residual

Iterations
2 4 6

Rel. sol. increment

2 4 6

Rel. 𝓟JL

N° TS

1

80

160

240

320

360

Figure 3.18: Convergence of the macroscopic problem of HMM with linear cell magnetic law. The macroscopic
relative residual, the relative increment of the macroscopic solution and the relative increment of the Joule
losses are plotted over the iteration index, for one tenth of the time steps (one every ten). The stopping
criteria effectively used is RelPJL < 2.5× 10−5 during the first 5 time steps (fast convergence stop), and
RelPJL < 5.0× 10−4 from the sixth time step (slow convergence stop). The graph shows that it is impossible
to find a stopping threshold valid far all the time steps on the relative macroscopic residual or relative increment
of the macroscopic solution. The stopping criteria using PJL relates to the convergence of the losses in the cell
problems averaged over all the homogenized domain, it is a multiscale stopping criterium.

cell constitutive laws are linear, because the macroscopic law depends on the eddy
currents, which depend on the downscaled ∂tB and previous time step cell solution an.
From our observations, the relative variation of the Joule losses power PJL is the best
convergence criterion for the multiscale problem. Indeed, the macroscopic residual and
relative solution increment converge to different values depending on the time step and
difficulty of convergence, so it is hard or even impossible to find a threshold indicating
convergence based on these quantities. On the other hand, the relative variation of PJL is
a sensitive indicator, which usually steadily decreases when the iterations converge. It
can be set depending on the desired accuracy on PJL. Indeed, choosing the threshold
on the relative increment of PJL between 1e−4 to 1e−5 will likely lead to commit an error
smaller than ≈ 1e−3 on PJL if the convergence is not too slow.
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Figure 3.19: Fields maps at time step TS= 81, just after the source magnetic field changed direction, ∂tB is
directed upward. There are the macroscopic H (top left) and B (bottom left) plotted in Ω (all the outer air is
not displayed, but ΩH and Ωs are visible). On the right, there are the maps of h (top) and j (bottom). The
map of b is the same as h, they only differ by µ0. Macroscopically, the phase delay of B with respect to H
make them point in opposite direction in ΩH. In the cell, h points upward out of the ball, even if in volume
average, b = 1

µ0
h points downwards due to the remaining field in the ball, resulting from the confined currents

created by the strong ∂tB.

133



3. Numerical validation

3.2.2 Transient nonlinear results

The goal of the next test is to prove numerically the capability of HMM to solve a hard
magnetoquasistatic problem which cumulates most of the difficulties encountered in the
simulation of magnetic cores. We solve a transient 3D problem on a heterogeneous mate-
rial featuring nonlinear magnetic laws in the inclusions with the objective to accurately
predict the Joule losses in the core. The simulation parameters are chosen to see some
skin effect and magnetic saturation in the inclusions. This will also push our numerical
implementation to the limits in terms of difficulty of multiscale nonlinear convergence.

The magnetic core is made of conducting metal balls with a conductivity of 10× 106 S.m-1.
The magnetic law in the ball follows the Fröhlich-Kennelly law (1.82) (the h(b) law is
given in equation (A.1)) with maximum permeability of µr,max = 100 and saturation
induction of Bs = 1.5 T. The radius of the sphere is set to 40 µm, so the volume fraction
of the inclusion is ≃ 27%. The source frequency is set to f = 10 MHz and its total
intensity to I(t) = 1000 sin(2π f t) A. The skin depth δ varies between 29.1 µm and
291 µm depending on the saturation of the magnetic law, so the skin effect is noticeable
but not always significant. The macroscopic mesh has 29k elements, the cell meshes have
18k elements, and the simulation is run during 4.16 µs (1.25 periods) at minimum 160 TS
per period, the time step can be refined via adaptive time stepping.

Adaptive time stepping and relaxation factor research are implemented on the macro-
scopic problem, as follows. If the nonlinear loop diverges at a TS, it is reset (the simulation
restarts at the previous TS) and the time delta ∆t is refined (divided by two), but not
below one fourth of the initial ∆t. If a NL loop converged easily, in the minimum number
of iterations, ∆t is multiplied by 1.1 to coarsen the time discretization at the next time
step, but ∆t cannot get bigger than the initially prescribed value.

The relaxation of the NL loop is activated if the macroscopic residual increases at an
iteration, for all iteration of the current time instant, but not the next ones. Up to five
relaxation factors are tested, ω = 1, 0.75, 0.5, 0.25 and 0.005, in this order. If a relaxation
factor increases the macroscopic residual, the relaxation research is stopped, as smaller
ω won’t yield smaller residual in our experience. To note, this method is quite costly.
Indeed, it is necessary to downscale B and upscale H for each relaxation factor to test,
because the macroscopic residual is computed using H, that can only be updated using
the cell problems.

The following results were obtained. The computation of the reference solution took
55h on a personal computer. The information of the resolutions with the Different H
upscaling methods are given in the following table:
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Method Cluster Tf (µs) TSs WallTime (hours)
⟨ h ⟩∂Y∥

GRICAD 4.17 200 40

⟨ h ⟩Y GRICAD 1.15 99 48
⟨ h ⟩γY

GRICAD 0.19 31 8
⟨ h−mε ⟩Y Nic5 4.17 200 21
⟨ h− hc ⟩Y Nic5 2.47 212 48

The expected number of time steps (without adaptive time stepping) is 200, and the
final time was Tf = 4.16 µs. The resolutions were made using 48 cores on the GRICAD
cluster and 32 cores on Nic5, the maximum WallTime (maximum human time over which
the program can run) was 48h for both, but these are not comparable between the two
clusters because the hardwares are different.

We present these results as is, even if all the methods did not converge properly, because
we had not enough time to investigate and fix the issues. The resolution using ⟨ h ⟩γY

crashed after only few time steps, the macroscopic nonlinear loop diverges in few
iterations, and ends with NaN in the macroscopic solution. The resolutions using ⟨ h ⟩Y
and ⟨ h− hc ⟩Y did not finish due to the bad convergence, the use of adaptive relaxation
and adaptive time stepping slowed them too much. But the simulations using the ⟨ h ⟩∂Y∥
and ⟨ h−mε ⟩Y methods worked fine and gave usable results.

Nonlinear, PJL

Upscale method ⟨ h ⟩∂Y∥
⟨ h−mε ⟩Y

L2PE (%) 0.23 0.88
IPE (%) 0.19 0.81

Nonlinear, Pem

Upscale method ⟨ h ⟩∂Y∥
⟨ h−mε ⟩Y

L2PE (%) 0.44 0.60

Table 3.4: Integrated percentage of error on Joule losses power and electromagnetic power of the homogenized
domain, computed from solution presented in Figures 3.20 and 3.21. The methods that converged, the boundary
tangential average ⟨ h ⟩∂Y∥ and volume average with computation of the magnetization ⟨ h−mε ⟩Y, result in
excellent accuracy.

Several field maps of the solutions are shown in Figure 3.24. The Joule losses dissipated
in the homogenized domain and its total electromagnetic power are respectively plotted
in Figures 3.20 and 3.21, and the associated integrated percentages of error are given in
Table 3.4.

The results demonstrate an excellent accuracy of HMM when it converges, the error
on PJL and Pem is below 1% then. But the multiscale nonlinear convergence is very
challenging here, three methods did not work. To note, our algorithm focuses on not
crashing: adaptive time stepping and possible strong relaxation are used to maximize
the chances of convergence, but they may slow the resolution a lot.
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Figure 3.20: Comparison of the Joule losses power in the magnetic core predicted by the HMM resolution, using
different upscaling methods for H, using nonlinear magnetic law in the balls. The ⟨ h ⟩γY

method crashed after

few time steps, and the ⟨ h ⟩Y and ⟨ h− hc ⟩Y were slow due to bad multiscale nonlinear convergence and did
not complete the simulation. The two working methods provide smooth and small errors.

The adaptive relaxation of the macroscopic problem is activated when the convergence is
bad, and we notice than the lower possible relaxation factor, ω = 0.005, was nearly always
chosen. It means that the better residual is obtained by not updating the macroscopic
solution to a new value. For this reason, we suspect that the bad convergence is due to
errors in the macroscopic problem, probably the accuracy of the numerical computation
of the upscaled Jacobian using finite differences on the cell problem.

Four B-H curves of the upscaled law are displayed in Figure 3.22, with the boundary
average upscaling method and the volume average method. We notice that the volume
average gives relatively correct values, the cell magnetization is not a problem here.
There is a saturation of the macroscopic magnetic law due to that of the inclusion one,
but it is not very strong because the volume fraction of the inclusion is only ≈ 27%.

Finally, the possible convergence indicator for the simulation using the tangential bound-
ary average for the multiscale resolutions are shown in Figure 3.23. Again, the relative
variation of the Joule losses power PJL is the best convergence criterion for the multiscale
problem. Indeed, it is the only one that steadily and monotonously decreases when the
iterations converge.

Also, few validation tests were conducted on 2D nonlinear multiscale problems cor-
responding to the 3D setting above. Only the boundary tangential average was used.
Although no clean results are presented here due to time limitations, we can mention that
preliminary results indicated good accuracy and similar or better multiscale convergence
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Figure 3.21: Comparison of the electromagnetic power in the magnetic core predicted by the HMM resolution,
using different upscaling methods for H, with nonlinear magnetic law in the balls. The analysis is the same as
that in Figure 3.20.

behavior than in 3D.
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Figure 3.22: B-H curve of two cell problems in HMM with nonlinear cell magnetic law. The ”Inner” cell problem
is that of the element the closer to the center of ΩH, and the ”Outer” one is the corner of ΩH. The curve is
plotted between the norms of B and H, multiplied by the sign of the z component (because the homogenized
domain is exited by a field of direction close to ez, as the inductor is in the z = 0 plane). The curve for ⟨ h ⟩Y is
only plotted on the few time steps were it was stable enough.
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Figure 3.23: Macroscopic Newton-Raphson convergence of HMM with a nonlinear magnetic law in the cell.
The relative residual, the relative increment of the solution and the relative increment of the Joule losses power
are plotted against the iteration index, for every one time step over ten. The relative increment of the solution
goes up between the 5th and the 6th iteration because the Jacobian is computed at iterations 1, 2 and 5, but we
observed that it is not a problem. And the residual would decrease again at the iterations 7 and 8 (if the loop
was continued, according to other experiments).
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Figure 3.24: Fields maps at time step TS= 40, when the saturation is maximal, in ΩH and in the outer cell.
There are the macroscopic B (top left), h (top right), b (bottom left) and j (bottom right).
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3.2.3 Accuracy convergence of the multiscale method

In the previous section, several HMM resolutions showing the good accuracy of the
method were presented. But it is also interesting to validate that the multiscale method
has the expected good property of convergence, in order to validate the reliability of the
method for latter use on problems without possibility of secondary validation. Only the
boundary tangential average ⟨ h ⟩∂Y∥

upscaling method is used in this section.

There are several sources of error in the multiscale numerical modeling, they include:

• the time discretization approximation (theta schema)

• the scale separation approximation

• the spatial discretization of the macroscopic fields (FEM)

• the discretization of the macroscopic material law, which depends on the definition
of the cell problem, its temporal and spatial discretization and the upscaling
method.

In comparison with the reference FEM model, the multiscale model with HMM adds
the scale separation approximation, the space discretization of the points at which the
macroscopic material law is estimated (with cell problems), and the accuracy of cell
problems.

As explained in Section 3.1, the cell problem accuracy can be validated independently of
the multiscale resolution (once the formulation are validated, which we did). But the
two other sources of error should be studied to validate the method. This is the goal of
this section.

The first source of error is the meshing of the homogenized domain. With our imple-
mentation, it is also the number of cell problems, i.e. of computation points of the
macroscopic law. It is a parameter of the HMM method, and should be fine-tuned for
each problem.

The second, the scale separation approximation, is not really a parameter. Indeed, it is
closely related to the smoothness of the macroscopic field relatively to the cell size, so it
is fixed for a studied problem. However, it will be treated as a parameter to have an idea
of the sensitivity of HMM’s accuracy to this source of error.

In order to study the effect of these parameters independently of the others, the previously
used problems and parameters will be re-used, such that only the studied parameter
varies and the others source of error can be assumed negligible.
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Convergence with the refinement of the macroscopic mesh

In theory, the mesh of the homogenized domain should be just fine enough to accurately
represent the discretized macroscopic field. Adding unnecessary elements implies
solving for more cell problems than needed, which is quite costly.

Figure 3.25: Core geometry (leftmost) and homogenized core meshes (right) used to validate the convergence
of HMM with the refinement of the macrosocpic mesh. This also illustrate that the number of macroscopic
elements is independent of the number of periods of the real geometry.

The impact of the macroscopic mesh density is tested using the geometry and parameters
of the nonlinear problem from Section 3.2.2, except that the frequency is decreased to
f = 100 kHz and the amplitude of the current source to I = 800 A (instead of 1000 A
before) in order to have better convergence of the multiscale resolution. The macroscopic
problem is solved on the meshes shown in Figure 3.25, that contain NMac = 1, 8, 27, 64
and 125 elements in the homogenized domain.

The different Joule losses curves are plotted in Figure 3.26, those of the electromagnetic
power in the core are plotted in Figure 3.27, and the integrated percentages of error are
given in Table 3.5.

Nonlinear PJL

NMac 1 8 27 64 125
L2PE (%) 6.09 1.79 0.32 0.26 2.26
IPE (%) 5.74 1.57 0.29 0.17 1.87

Nonlinear Pem

NMac 1 8 27 64 125
L2PE (%) 5.58 0.74 0.04 0.40 1.38

Table 3.5: Integrated percentages of error on Joule losses and the total electromagnetic power in the homogenized
core, for different number of elements of its macroscopic mesh NMac . They are computed using the solutions
displayed in Figures 3.26 and 3.27. The errors for NMac = 125 are significantly amplified due to the poor
multiscale convergence, but they could be greater than for NMac = 64 even with good convergence.

The results demonstrate a pretty good convergence of the multiscale method with the
refinement of the macroscopic mesh. Generally, the errors on PJL and Pem are in phase
with the estimated signal, and they stay relatively close to zero (< 2%) when the mesh is
refined.

141



3. Numerical validation

d
if
f.
 (

m
W

)

0.0

0.5

1.0

Time (𝜇s)
0.0 2.5 5.0 7.5 10.0 12.5

er
ro

r 
(%

)

-6
-4
-2
0
2
4
6
8

1 8 27 64 125

Figure 3.26: Comparison of the Joule losses in the magnetic core predicted by HMM for the different meshes
of the homogenized domain displayed in Figure 3.25. The tangential boundary average is used to upscale H
and a nonlinear magnetic law is considered in the balls. The relative difference decreases with the number
of macroscopic elements. It crosses zero between 27 and 64 elements. Although the multiscale nonlinear
convergence of the resolution with 125 elements is not as good as the others, the losses values seem to continue
to decrease beyond NMac = 64, we cannot affirm that the convergence with the mesh refinement is reached.
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Figure 3.27: Comparison of the core electromagnetic power predicted by the HMM resolution for the different
meshes of the homogenized domain presented in Figure 3.25, and the relative differences with the reference
solutions. The analysis of the plot is the same as for the Joule losses in Figure 3.26.

Also, we noticed that the convergence of the multiscale problem gets harder when
the number of macroscopic elements increases. We think that this is inherent to the
resolution algorithm of HMM with the alternated resolution at each scale. As there is a
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weak coupling of the equations of each scale, it gets harder for all problems to converge
together to the multiscale solution, especially when the number of cell problems increases,
as they are solved independently. We also noticed that the convergence is sensible to the
quality of the upscaled Jacobians.

Convergence with respect to the size of the cell

The accuracy of homogenization methods should increase with the redundancy in the
solution. For HMM, it means with better compliance with the scale separation hypothesis,
which is the augmentation of the number of spatial period of the solution for a fixed
macroscopic variation. Indeed, the slower the macroscopic field varies from cell to cell,
the better the scale separation is. In practice, the hypothesis is better satisfied if a larger
number of periodic cells fit in a macroscopic element.

Figure 3.28: One eighth of the homogenized core mesh (leftmost) and core geometries (right) used to validate
the convergence of HMM with ε, the size of the spatial period of the material. All cores have a total width of
800 µm. The cell sizes are 400, 200, 133, 100 and 80 µm, so there are respectively 8, 64, 216, 512 and 1000
balls in total in the core (only one eighth are meshed). This also illustrates that the size of the macroscopic
elements is independent of the cell size ε, it can be bigger or smaller (HMM is only useful and likely to be
accurate if ε is smaller than the macroscopic elements size).

So, what one has to do to validate this convergence is decreasing the cell size ε for a
fixed macroscopic domain. Indeed, in our problem, if the size and shape of the magnetic
core do not change, the amount of magnetic material do not either because the volume
fraction of the inclusion does not change with the cell size. So the macroscopic field map
should not vary much. Only the cell solutions and Joule losses will.

We conducted an experiment of convergence of the HMM method with the cell size
using a linear magnetic law in the inclusions with a relative permeability of µr = 100.
The frequency is f = 500 kHz and the conductivity is σ = 10× 106 S.m-1. The size of
the magnetic core is fixed to 800 µm and its macroscopic mesh is fixed with 64 elements.
The reference and HMM problems were solved for the five magnetic cores shown in
Figure 3.28, with the cell sizes ε = 400, 200, 133, 100 and 80 µm respectively.
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Figure 3.29: Comparison of the Joule losses in the magnetic core predicted by HMM for different cell sizes ε.
The boundary tangential average is used to upscale H, and the linear magnetic law is used in the balls. The
convergence with ε is excellent with an error which is below 0.3% for ten periods of the periodic material (in
each direction), that is ε = 80µm. Some instability in the multiscale problem convergence is visible on two
curves, it would probably be possible to fix it by changing the NR parameters, but it would not significantly
change the result because the problem is driven by the magnetic field, which is correctly computed.

The error and the instantaneous percentage of error on Joule losses in the magnetic
core are shown in Figure 3.29, those on the total electromagnetic power are shown in
Figure 3.30, and associated the integral percentages of error are given in Table 3.6.

Linear PJL

ε (µm) 400 200 133 100 80
L2PE (%) 6.14 1.18 0.40 0.71 0.33

IPE (%) 6.08 1.18 0.40 0.71 0.33

Linear Pem

ε (µm) 400 200 133 100 80
L2PE (%) 3.22 0.27 0.07 0.50 0.56

Table 3.6: Integrated percentage of error on Joule losses and total electromagnetic power in the homogenized
domain, computed from solution presented in Figures 3.29 and 3.30. The errors do not monotonously converge
to zero when ε goes to 0, but it stays small for smaller ε and the variation decreases with ε. PJL seems to
converge to zero, and Pem close to zero (≈ 0.6% of L2 percentage error).

The results demonstrate the good convergence of the multiscale method with ε, the size
of the cell. Overall, the errors on PJL and Pem are in phase with the estimated signal, and
they converge close to zero when ε decreases.

144



3.2. Multiscale validation on magnetoquasistatic 3D problems

d
if
f.
 (

W
)

-0.4

-0.2

0.0

0.2

0.4

Time (𝜇s)
0.0 0.5 1.0 1.5 2.0 2.5

er
ro

r 
(%

)

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

𝜖 (𝜇m) 400 200 133 100 80

Figure 3.30: Comparison of the electromagnetic power in the magnetic core predicted by the HMM resolution
for different cell sizes. The relative difference increases with the decrease of ε. It crosses zero between ε = 200
and 133 µm, and is stabilized close to zero from ε = 100 to 80 µm.

3.2.4 Extrapolation of the results beyond FEM capabilities

In all the previously presented experiments, the accuracy of HMM has been validated
using FEM on the complete fine scale geometry as a reference. It thus seems reasonable to
use the method on problems for which no FEM reference can be solved, and be confident
that the results are still correct.

To illustrate the power of the method to simulate nonlinear heterogeneous periodic
domains with numerous periods without convergence problems, simulations were
performed with the parameters used in the nonlinear experiments in Section 3.2.3. That
is, the frequency is set to f = 100 kHz and the amplitude of the current source is set
to I = 800 A. The cell sizes used are 100 µm, 10 µm and 6.66 µm. They correspond
to respectively 512, 512.000 and 1.728.000 balls in the magnetic core, and full fine scale
meshes of approximately 1.8M, 1.8G and 6.2G elements, respectively. The two last
problems are thus impossible to solve using FEM.

All three HMM resolutions converged well. The Joule losses power dissipated in the
homogenized domain are plotted in Figure 3.31. The losses decrease with the square
of the size of the cell, this is expected because the area of the eddy current loops (the
section of the inclusions) is divided by the square of the number of inclusions in the
plane orthogonal to the magnetic field.
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3. Numerical validation
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Figure 3.31: Joule losses power in the magnetic core predicted by HMM for cores of total width of 800 µm and
cell size of 100, 10 and 6.66 µm. The first case was validated against single scale FEM in Table 3.5 (column 64
elements), but the two others are impossible to solve without a multiscale method. It seems that the steady
state regime is reached in few time steps and the losses curve is closer to a pure sinus for ε = 10 and 6.66 µm,
this is due to lower self-inductance of the inclusions.

Summary

In this chapter, several numerical experiments were conducted to validate the formula-
tions and upscaling techniques introduced in the previous chapter.

In the first part, the accuracy of both the H and B-conforming formulations of the
cell problem were validated using the chained cell problems method. Additionally, the
comparisons of the different methods to upscale the magnetic field strength demonstrated
the possible discrepancy between the volume average and the other four proposed
methods, which take into account the macroscopic magnetization created by the eddy
current in the cell. A parametric study of the discrepancy between the macroscopic
magnetic field and the volume average of the cell one was made, helping to understand
when the volume average should be avoided. To note, the computed error maps would
highly depend on the geometry of the cell problem, especially the size of the inclusions.

In the second part, the behavior of the multiscale modeling using HMM implemented
with the proposed B-conforming formulation has been studied. The accuracy of the
method, as well as other key properties of HMM, were demonstrated on 3D transient
problems with linear and nonlinear magnetic laws. It was observed that avoiding
using the volume average upscaling method is not always necessary, especially in the
simulation of magnetic cores with small Joule losses. The tests shown a difficult multiscale
convergence of HMM when there is a nonlinear magnetic law in the inclusions. It was
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Summary

observed that the different upscaling methods provide different convergence behaviors,
but this could change if the instabilities are due to an unstable computation of the
Jacobian of the upscaled law with finite differences. In this case, formal derivation
techniques, implemented using the adjoint state method on the cell problem resolution,
could lead to other convergence behavior for the different upscaling methods. But in
the meantime, the results of this thesis suggest that the tangential boundary average
offers the best compromise between correctness, cost of computations and stability of the
multiscale convergence.
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General conclusions

This thesis is dedicated to the improvement of multiscale modeling techniques for
magnetoquasistatic problems. These techniques are often used to simulate electrical
engineering devices involving heterogeneous materials such as coils and magnetic
cores. Our two main objectives were to demonstrate the capabilities of the existing
HMM method to handle 3D nonlinear transient problems, and to find a reliable way of
upscaling the magnetic field strength to enable the use of B-conforming formulations.

In the first chapter, we recalled the standard model of electromagnetism in the mag-
netoquasistatic regime, which is used to model devices up to medium frequencies in
electrical engineering. We detailed how the different formulations of the equations can
be implemented numerically using the finite element method. The method was applied
for the simulation of a periodic magnetic core to show its capabilities, and its limitations
on geometries featuring heterogeneous materials.

In the second chapter, a magnetoquasistatic multiscale framework is derived step by
step assuming the scale separation between the macroscopic and fine scale variations
of the electromagnetic fields, and assuming that the heterogeneous domain is periodic
and admits an electrically insulated periodic cell. There are three original contributions
improving the model. The first is a new definition for the scale transition relation which
is consistent with the classic definition of Maxwell’s equations in matter, and with the
literature in computational electromagnetics. The second is a detailed derivation of
the cell formulations to explain why they correctly implement the downscaling of the
macroscopic fields. The third and last is the presentation of four different numerical
implementations of the upscaling of the magnetic field strength, including two original
ones using FEM projections to compute the magnetization created by the eddy current at
the fine scale. These developments extend the use of B-conforming multiscale formu-
lation to problems where fine scale eddy currents result in dynamic hysteresis in the
macroscopic magnetic material law.
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General conclusions

In the last chapter, we performed numerical experiments to validate the components
and expected behaviors of the multiscale formulation. We validated the B-conforming
formulation on 3D multiscale transient linear and nonlinear magnetoquasistatic problems.
We showed that the accuracy of the method is robust to strong skin effects in the cell and
to dynamic hysteresis in the macroscopic magnetic law.

There are numerous open question left for future research. Several perspectives of the
second and third chapters followed by general perspectives are given next.

Perspectives on the theoretical multiscale model

The scale transition relation should be extended to non hexahedric and non electrically
insulated cells. The further extension to fully conducting periodic media featuring a
high conductivity contrast between the interior and exterior of the cell is challenging, it
would likely require a new definition for the splitting of the field in the cell giving more
freedom to its non-periodic term.

Also, it should be studied how and under which hypothesis the proposed scale transition
relation can be reconciled with the existing asymptotic multiscale models. The work
of Bouchitté et al. on high-frequency problems should be a good starting point. Such
study would also likely involve a dimensionless transformation of the cell problem as in
Amirat et al., in order to prevent the Joule losses to go to zero when the scale separation
parameter ε goes to zero, because the magnetoquasistatic solutions of the cell problem
depend on the size of the cell.

Perspectives for the numerical model

The numerical convergence of the multiscale model needs to be improved. It is necessary
to study deeper what is the best method to compute the Jacobian of the upscaled laws.
Possible fix for this issue include computing the upscaled Jacobians with formal deriva-
tion instead of numerical one, possibly implemented with an adjoint state method to
differentiate the FEM resolution of the cell problem. It is also possible to use alternatives
to the Newton-Raphson method featuring approximation of the Jacobians to stabilize the
convergence.

General perspectives

There are other general perspectives which have not been studied at all in this work.
Firstly, model order reduction methods should be developed to reduce the computational
burden of repeatedly solving all the cell problems, most of which have very similar
solutions. Once the method is accelerated enough to scale on macroscopic meshes
containing thousands of macroscopic elements, the method can be tested on real world
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General conclusions

applications. It could be used to model problems with 3D printed materials that have
heterogeneous but relatively predictable geometry.
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Appendix A

Appendix

A.1 Electromagnetism quantities and their SI unit.

The following table summarizes up the main quantities used in electromagnetism along
with their symbols, SI units and names.

Name Symbol SI unit SI name SI base unit Other SI unit

Physical quantities
Current I A Ampere A -
Charge q C Coulomb s.A -
Voltage U V Volt kg.m2.s−3.A−1 W.A−1 or J.C−1

Magnitec flux Φ Wb Weber kg.m2.s−2.A−1 V.S−1

Resistance R Ω Ohm kg1.m2.s−3.A−2 V.A−1 or J.S.C−2

Conductance G S Siemens kg−1.m−2.s3.A2 Ω−1

Inductance L H Henry kg.m2.s−2.A−2 Wb.A−1

Capacitance C F Farad kg−1.m−2.s4.A2 C.V−1 or C2.J−1

Local fields
Magnetic flux density b T Tesla kg.s−2.A−1 Wb.m−2

Magnetic field strength h A.m−1 - m−1.A -
Electric field strength e V.m−1 - kg.m.s−3.A−1 -
Electric displacement d C.m−2 - m−2.s.A -
Free current density j A.m−2 - m−2.A -
Electric charge density ρ C.m−3 - m−3.s.A -
Magnetization m A.m−1 - m−1.A -
Polarization p C.m−2 - m−2.s.A -
Electric vector potential t V.m−1 - kg.m.s−3.A−1 -
Magnetic vector potential a T.m - kg.m.s−2.A−1 Wb.m−1

Electric scalar potential v V - kg.m2.s−3.A−1 -
Magnetic scalar potential φ A - A -
Poynting vector s w.m−2 - kg.s−3 -

Material law tensors
(Vacuum) Permeability µ0, µ H.m−1 - kg.m.s−2.A−2 N.A−2

(Vacuum) Reluctivity ν0, ν m.H−1 - kg−1.m−1.s2.A2 A2.N−1

(Vacuum) Permittivity ε0, ε F.m−1 - kg−1.m−3.s4.A2 C.V−1.m−1

Conductivity σ S.m−1 - kg−1.m−3.s3.A2 Ω−1.m−1

Resistivity ρ Ω.m - kg.m3.s−3.A−2 m.S−1

Table A.1: Summary table of electromagnetism quantities and their SI unit.
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A.2 Inverse Fröhlich-Kennelly nonlinear magnetic law

The analytic Fröhlich-Kennelly nonlinear magnetic b(h) law was introduced in 1.3.4. The
analytic inverse law, that is the associated h(b) law, is defined by the reluctivity

ν(b) =
2Bs

c1(∥b∥) + c2(∥b∥)
(A.1)

with

c1(∥b∥) = µ0µr,maxBs − µ0(µr,max − 1)∥b∥,

c2(∥b∥) =
√

c1(∥b∥)2 + c3∥b∥,

c3 = 4Bsµ
2
0(µr,max − 1).

The Jacobian matrix of the law is given by

∂h
∂b

(b) = ν(b)I3 +
1
∥b∥

∂ν(b)
∂∥b∥ b⊗ b (A.2)

where
∂ν(b)
∂∥b∥ =

µ0

2
(µr,max − 1)ν(b)2 +

1
Bs

(
1 +

c1(∥b∥)− 4Bsµ0

c2(∥b∥)

)
. (A.3)

It can be verified that h(b) is equivalent to 1
µ0µr,max

b near ∥b∥ = 0 and to 1
µ0

b for ∥b∥ ≫ Bs.

A.3 On the choice of smoothing kernel for spatial homogenization

The macroscopic homogenized fields are classically defined as the spatial average of the
fine scale fields by a convolution with a smoothing kernel [94, 92, 1]. The choice of kernel
is not necessarily obvious. To be considered a smoothing or averaging kernel, it should
be a function that is:

• positive,

• symmetric around zero (to be anisotropic),

• of integral 1 (to just average without ”increasing the amount of field”).

Still, there is a lot of choice of smoothing kernels. Two examples of smoothing kernels
are the constant kernel (shown in Figure A.1) and the Gaussian kernel (Figure A.3. In 1D,
the constant kernel is a rectangle of width L, its support, and height 1

L (so its area is 1).
This corresponds to the cell volume average classically used in periodic homogenization.

The point of this section is to show the difference between possible kernels, and to show
that when there is enough scale separation between the fine and macroscopic scales, all
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Figure A.1: Fine-scale periodic fields (left) smoothed using a kernel gL constant on its support (on the right),
the physical meaning of this example is described in Section 2.2.2. This kernel corresponds to the cell average
used in periodic homogenization, it is efficient on perfectly periodic functions.

averaging kernels lead to equivalent macroscopic fields, as long as they produce smooth
fields. Indeed, a smoothing can only define a macroscopic field if the result has very
slow and smooth variation at the fine scale. Otherwise, the macroscopic value of the field
is ambiguous or noisy, as the field should be studied at the fine scale to define its value.

Figure A.2: Fine-scale periodic fields (left) smoothed using a constant kernel gL of support width different from
that of the period of the signal (on the right). The result is not smooth because this kernel does not filter the
variations of spatial period different from its support (or higher harmonics). For this reason, this kernel cannot
be used on arbitrary fine-scale fields, except if they are arbitrarily periodized in a RVE containing a representative
portion of material.

For example, usage of the constant kernel of support different from the spatial period of
the field is shown in Figure A.2. This behavior would also happen if the material has a
stochastic fine scale structure. A solution to this is using a smoothing kernel that filters
more spatial frequencies, like the Gaussian kernel used in Figure A.3.

It is important to note that the constant kernel of correct support and the Gaussian kernel
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lead to the same macroscopic fields. Indeed, the only difference between the smoothed
fields in Figures A.2 and A.3 is how ”diluted” the variations of the fields are. But when
zooming out at the macroscopic scale, those variations are not possible to distinguish (the
dilution spread the result on a distance not larger than the kernel support, which should
be chosen smaller than the macroscopic resolution). Also, the field hz in the material and
the surface field ⟨ jx ⟩ at the material boundary have the same value independently of
the choice of kernel.

Figure A.3: Fine-scale periodic fields (left) smoothed using a Gaussian kernel gL (on the right). This kernel
efficiently smoothes all spatial frequencies, field Looked at the fine scale, the smoothed fields are less precisely
defined than when using the cell average because the Gaussian has a wider support. But it leads to the same
macroscopic fields, because the strength of the magnetization, that is the magnetic field discontinuity at the
material boundary, is the same.

The smoother the smoothing kernel is near its support boundary, the better it is at
handling various frequencies of the fine scale variation of the field. The ultimate kernel
for that is the Gaussian kernel, because its smoothing ability is equivalent for on all
frequencies, this is because its Fourier transform is very smooth (it is itself). This point is
detailed in [92], but this is standard signal processing theory.

Also, the Gaussian kernel has the following remarkable property: repeatedly smoothing
a function with any kernel tends to be equivalent to doing a smoothing by a Gaussian
kernel, when the number of smoothing tends to infinity1. So even if it is tempting to
repeat the smoothing operation if a first smoothing was not effective enough, like in
Figure A.2, it might just be better to use an adapted smoothing kernel from the start, the
default choice being the Gaussian kernel.

In general, choosing another kernel than the Gaussian one requires having knowledge
on the frequency content of the fine scale variation of the field, e.g. periodicity.

1This is the central limit theorem from statistics, considering that the composition of the convolutions is
the characteristic function of the sum of random variables following the same probabilistic law, and one of
the kernels is the characteristics function of the aforementioned law.

170



A.4. Mathematic tools for the study of the cell fields

A.4 Mathematic tools for the study of the cell fields

A.4.1 Helmoltz-Hodge decomposition of periodic cell fields

A periodic field hp ∈ L2,#(Y) can be uniquely decomposed2 in

hp = grad φp + curl θp +
〈

hp
〉

Y (A.4)

where φp ∈ H#(grad; Y), θp ∈ H#(curl; Y) and
〈

hp
〉

Y ∈ R3. Morover, the decomposition
is orthogonal for the L2,#(Y)-norm, that is:∫

Y
grad φp · curl θp

′ = 0,
∫

Y
grad φp · C = 0,∫

Y
curl θp · grad φp

′ = 0,
∫

Y
curl θp · C = 0,∫

Y

〈
hp
〉

Y · curl θp
′ = 0,

∫
Y

〈
hp
〉

Y · grad φp
′ = 0,

(A.5)

for all θp
′ ∈ H#(curl; Y), φp

′ ∈ H#(grad; Y) and C ∈ R3 (including θp, φp and
〈

hp
〉

Y
respectively).

The decomposition can be applied to fields hp ∈ H#(curl; Y) or bp ∈ H#(div; Y) because
these two spaces are subspaces of L2,#(Y), so such hp and bp are in L2,#(Y).

This decomposition is obtained using to the one to one pairing between the periodic
fields in Y and the fields in the periodized cell Y , which has the topology of the torus T3.
Indeed, Y is defined by setting identical the opposite faces of ∂Y, as described in [117,
Section 3]. As a result, Y has no boundary and any field defined on Y can be identified
with a periodic field in Y, as described in [21, Section 2.1]. The decomposition (A.4)
results from taking in L2,#(Y) the usual three term HHD of vector fields [118, Corolary
3.5.2]3 written for fields in L2(Y).

Furthermore, we should detail why the third term of (A.4) is a constant field in Y, and
why it is the volume average of the decomposed field hp. This third term is the harmonic
part of the decomposition, meaning it has a null curl and divergence. In general, there
are two kinds of harmonic field: the cohomology harmonic fields that exist due to the
topology of the domain, and those that are due to field entering the domain via its
boundary [25].

The latter can always be expressed both as the gradient of a scalar potential φH and as
the curl of a vector potential θH that are respectively solution of scalar and vector Laplace
problems ∆φH = 0 and ∆θH = 0 in Y [25]. But these fields cannot exist if the domain

2The decomposition is unique, but the potentials φp and θp are not unique unless appropriate gauge
conditions are applied.

3As the author mentions, the regularity can be chosen as L2(Y) like in [118, Theorem 2.4.2].
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has no boundary. For example, there is:

0 =
∫
Y

∆φH φ′ =
∫
Y

grad φH · grad φ′ +
∫

∂Y
grad φH · nφ′

for all φ′ ∈ H(grad;Y). But as ∂Y = ∅, the boundary integral vanishes and there is∫
Y grad φH · grad φ′ = 0, which implies ∥grad φH∥L2(Y) = 0 if choosing φ′ = φH. As a

consequence, any such harmonic field grad φH is zero. The same computation can be
made if the harmonic field is written curl θH.

In summary, the space in which lives the third term in (A.4) is the unique space such
that:

• its fields are harmonic (null curl and divergence),

• its fields are L2(Y) orthogonal to the curls and gradients,

• is of dimension 3 = β1(Y) = β2(Y), the Betti numbers of T3 (see [119, Section 2.6]).

But as the space of constant fields in Y (i.e. {C(y) = C ∈ R3 | y ∈ Y}) fulfills all the
properties, it is the correct harmonic space of (A.4). Finally, using the Y volume average
on both sides of

hp = grad φp + curl θp + C

yields
〈

hp
〉

Y = C, explaining why the harmonic term in (A.4) is written
〈

hp
〉

Y.

A.4.2 Proofs of properties of the cell fields

Proof of equation (2.41)

The edge average (2.25) uses path integrals over the twelve edges of Y. But via the
gradient theorem for path integrals (1.29), the path integrals of gradients of potential
fields can be computed using the difference of the value of the potential field at the
boundary of the path. For cell edges, those are the corners of the cell. But due to the
periodicity, this difference vanishes for periodic potentials, hence

〈
grad φp

〉
γY

= 0 in
(2.41).

Similarly, the face normal average (2.26) uses flux integral through the six faces of Y.
Using the Stokes theorem (1.30), the flux integrals through a surface of the curls of
strength fields can be computed using the path integral of the field itself on the boundary
of the surface. For the faces of the cell, the boundary is the set of four bounding edges.
But due to the periodicity, the path integral over these edges cancel for periodic strength
fields, hence

〈
curl hp

〉
∂Y⊥

= 0 in (2.41).
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A.4.3 Theorems on the cell distribution of magnetization and polarization

Theorems 2.1, 2.2 and 2.3 on the distribution of Mε�H in the cell

In the following proofs, h ∈ H#(curl; Y) is a periodic strength field split in h = H + hc,
where H := ⟨ h ⟩γY

and ⟨ hc ⟩γY
= 0. We are interested in proving some formulation that

help computing the macroscopic magnetization Mε�H := ⟨ hc ⟩Y using the local currents
curl h, in order to compute H = ⟨ h ⟩Y −Mε�H. The following proofs show why Mε�H

depends on curl h but not on div h. This is due to the fact that a change of the divergence
of a periodic strength field hc is equivalent to a change of its gradient component in its
HHD (A.4), but as the edge average of a periodic gradient is zero (2.41), such a change
does not affect the edge average of hc.

Proof of Theorem 2.1
Let h̃c ∈ H#(curl; Y) be a solution ofcurl h̃c = curl h in Y, (A.6)〈

h̃c

〉
γY

= 0. (A.7)

The HHD (A.4) applied to h and h̃c yields

h = grad φp + curl θp + ⟨ h ⟩Y , (A.8)

h̃c = grad φ̃p + curl θ̃p +
〈

h̃c

〉
Y

, (A.9)

where θp, θ̃p ∈ H#(curl; Y) and φp, φ̃p ∈ H#(grad; Y).

Let us show that curl θp = curl θ̃p. Plugging the decompositions (A.8)-(A.9) into (A.6)
gives

curl curl θp = curl curl θ̃p in Y

because the other HHD terms are curl free. If we multiply this equation by test functions
θp
′ ∈ H#(curl; Y) and integrate it over Y, there is∫

Y
curl

(
curl θp

)
· θp
′ =

∫
Y

curl
(

curl θ̃p

)
· θp
′.

Then, performing an integration by part and regrouping the terms give∫
Y

curl
(

θp − θ̃p

)
· curl θ̃p

′
= 0 (A.10)

where the boundary terms disappear due to the periodic boundary conditions. Indeed,∫
∂Y(curl θp × n)·θp

′ =
∫

∂Y(θp
′ × curl θp)·n = 0, because θp

′ × curl θp is ∂Y-periodic, so
its normal trace is zero. Both curls are in the Hilbert space V = curl H#(curl; Y) and
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the equation (A.10) holds for all curl θp
′ ∈ V . So by choosing θ̃p

′
= (θp − θ̃p) we get

curl
(

θp − θ̃p

)
= 0

∣∣
V , that is

curl θp = curl θ̃p. (A.11)

We can now compute
〈

h̃c

〉
γY

and ⟨ h ⟩γY
to conclude, the former is:

0
(A.7)
=
〈

h̃c

〉
γY

(A.9)
=
〈

curl θ̃p + grad φ̃p +
〈

h̃c

〉
Y

〉
γY

(2.41)
=
〈

curl θ̃p

〉
γY

+
〈

h̃c

〉
Y

0
(A.11)
=

〈
curl θp

〉
γY

+
〈

h̃c

〉
Y

(A.12)

and the latter is:

H def.
= ⟨ h ⟩γY

(A.8)
=
〈

curl θp + grad φp + ⟨ h ⟩Y
〉

γY

H
(2.41)
=
〈

curl θp
〉

γY
+ ⟨ h ⟩Y. (A.13)

Finally, plugging (A.13) into (A.12) to eliminate curl θp yields〈
h̃c

〉
Y
= ⟨ h− H ⟩Y = ⟨ h ⟩Y − H = ⟨ hc ⟩Y = Mε�H. (A.14)

□

Proof of Theorem 2.2
Direct implication⇒ :
If h̃c = hc, their curl, divergence and edge averages are equal, so

curl h̃c = curl hc = curl (hc + H) = curl h in Y,

div h̃c = div hc = div (hc + H) = div h in Y,〈
h̃c

〉
γY

= ⟨ hc ⟩γY
= 0.

so h̃c is solution of (2.85).

Converse⇐ :
Let h̃c ∈ H#(curl; Y) be solution of (2.85). As h̃c respects the hypothesis of Theorem 2.1,
we can follow the proof of Theorem 2.1 and take the same HHDs (A.8)-(A.9) of h̃c and h.
We already know that

curl θp = curl θ̃p in Y, from (A.11)〈
h̃c

〉
Y
= ⟨ hc ⟩Y in Y. from (A.14)
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Additionally, the steps taken to prove (A.11) can be used to prove

grad φp = grad φ̃p in Y, (A.15)

using the divergence equality from (2.85) and test functions φp
′ ∈ H#(grad; Y).

Finally, there is:

h̃c = grad θ̃p + curl φ̃p +
〈

h̃c

〉
Y

from (A.9)

= grad θp + curl φp + ⟨ hc ⟩Y from (A.11)-(A.15)-(A.14)

= h− ⟨ h ⟩Y + ⟨ hc ⟩Y from (A.8)

= h− H

h̃c = hc. □

Proof of Theorem 2.3
Let m̃ε ∈ H0(curl; YC) such that

curl m̃ε = curl h in YC.

m̃ε is extended to the whole cell by setting m̃ε = 0 in YN, the result is in H#(curl; Y)
because 0

∣∣
∂Y is periodic. Furthermore,

curl m̃ε = curl h

holds in Y because the null trace boundary condition of m̃ε on ∂YC, that is m̃ε× n
∣∣
∂YC

= 0,
guarantees its tangential continuity with 0

∣∣
YN

at the interface. So there are no surface
currents in addition to j in curl m̃ε on ∂YC.

Finally, the edge average of m̃ε is zero because m̃ε is null on γY. So m̃ε fulfills all the
hypothesis of Theorem 2.1, which means that

⟨ m̃ε ⟩Y = Mε�H. □

To note, such m̃ε may not exist if YC is not simply connected (if β1(YC) ̸= 0). In this case,
a simply connected domain enclosing YC should be used instead of YC, e.g. the inside of
the convex hull of YC.

Analog of the theorems on the cell distribution of Mε�H relating to that of Pε�H

The three following theorems are analog to the theorems 2.1, 2.2 and 2.3 used to compute
the magnetization due to the cell bound current, but they relate to the computation of
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the polarization due to the cell bound charges. These theorems and their proof are nearly
the same as the aforementioned one, but where the role of the curl and edge average is
exchanged with the divergence and the boundary normal average.

These results could be useful to upscale the electric displacement d in electrostatic
problems, where there are free charges ρ that can only move in YC but with a null total
charge. In other word, when the cell electric displacement d is periodic, div d = 0 in YN

and ⟨div d ⟩Y = 0.

Theorem A.1 Let d ∈ H#(div; Y). We define D := ⟨ d ⟩∂Y⊥ the macroscopic value of d and
Pε�H := ⟨D− d ⟩Y the polarization created by the displaced charges in YC.
If d̃c ∈ H#(div; Y) verifies div d̃c = div d in Y, (A.16)〈

d̃c

〉
∂Y⊥

= 0, (A.17)

then
〈

d̃c

〉
Y
= −Pε�H.

Theorem A.2 Let d ∈ H#(div; Y). Let dc := d− ⟨ d ⟩∂Y⊥ be the periodic correction of d.
A periodic flux field d̃c ∈ H#(div; Y) is equal to dc if and only if

curl d̃c = curl d in Y,

div d̃c = div d in Y, (A.18)〈
d̃c

〉
∂Y⊥

= 0.

Theorem A.3 Let d and Pε�H be defined as in Theorem A.1, and suppose that div d = 0 in YN.
If there exist p̃ε ∈ H0(div; YC) verifying

− div p̃ε = div d in YC, (A.19)

then ⟨ p̃ε ⟩Y = Pε�H (where p̃ε is extended by 0 in YN).

Such p̃ε may not exist if YC is not connected (if its connected components have net
charges). In this case, a connected domain enclosing YC should be used instead of YC,
e.g. the inside the convex hull of YC.
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Résumé

Les matériaux et structures hétérogènes, tels que les bobines, tôles laminées et
composites magnétiques doux (SMC), sont répandus en génie électrique. Ils ont la
caractéristique d’être constitués de nombreux éléments plus petits que la taille de
l’ensemble, rendant leur simulation numérique difficile.

Cette thèse étudie les méthodes multi-échelles de calcul des champs électromagné-
tiques permettant la résolution numérique de problèmes 3D non-linéaires transitoires
avec forts couplages électromagnétiques, sur des structures ou matériaux hétérogènes
de géométrie périodiques. La méthode numérique utilisée est la méthode multi-
échelle hétérogène (HMM). Elle est basée sur une hypothèse de séparation d’échelle
permettant une homogénéisation du matériau. La loi constitutive équivalente est
calculée sur de petits volumes représentatifs aux comportements indépendants,
résolus en parallèle aux points macroscopiques où cela est nécessaire.

L’apport principal de ce travail est d’introduire une nouvelle formule d’homogénéi-
sation du champs H, avec plusieurs implémentations numériques. La méthode est
robuste à la présence de fort courants localement confinés. Ces développements
sont nécessaires à l’utilisation de la formulation B-conforme à haute fréquence. En
effet, ces courants créent une aimantation additionnelle responsable d’hystérésis
dynamique dans la loi de comportement magnétique macroscopique. Le modèle est
validé sur des problèmes 3D linéaires et non-linéaires.

Abstract

Heterogeneous materials and structures, such as coils, laminations and soft magnetic
composites (SMCs), are widespread in electrical engineering. They have the char-
acteristic of being made up of many elements smaller than their own size, making
their numerical simulation difficult.

This thesis investigates multiscale modeling techniques of electromagnetic field
used for the numerical resolution of transient 3D nonlinear problems with strong
electromagnetic couplings, on heterogeneous structures or materials with periodic
geometries. The numerical method used is the Heterogeneous Multiscale Method
(HMM). It is based on a scale separation hypothesis, enabling the homogenization of
the material. The equivalent constitutive law is calculated on representative volumes
elements with independent behaviors, solved in parallel at the macroscopic points
where it is necessary.

The main contribution of this work is to introduce a new homogenization formula
for the field H, with several numerical implementations. The method is robust to
the presence of strong locally confined currents. These developments are necessary
for the use of the B-conform formulation at high frequencies. Indeed, these currents
create additional magnetization which is responsible for dynamic hysteresis in
the macroscopic magnetic constitutive law. The model is validated on linear and
non-linear 3D problems.
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