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Abstract

Interruptions play a significant role in shaping human communication, occur-
ring frequently in everyday conversations. They serve to regulate conversation
flow, convey social cues, and promote shared understanding among speakers. Hu-
man communication involves a range of multimodal signals beyond just speech.
Verbal and non-verbal modes of communication are intricately intertwined, con-
veying semantic and pragmatic content while tailoring the communication pro-
cess. The vocal mode incorporates acoustic features, such as prosody, while the
visual mode encompasses facial expressions, hand gestures, and body language.

The rise of virtual and online communication has necessitated the development
of expressive communication for human-like embodied agents, including Embod-
ied Conversational Agents (ECA) and social robots. To foster seamless and natu-
ral interactions between humans and virtual agents, it is crucial to equip virtual
agents with the ability to handle interruptions during interactions.

This manuscript focuses on studying interruptions in human-human interac-
tions and enabling ECAs to interrupt human users during conversations. The pri-
mary objectives of this research are twofold: (1) in human-human interaction,
analysis of acoustic and visual signals to categorise interruption type and detect
when interruptions occur; (2) endow ECA with the capability to predict when to
interrupt and generate its multimodal behaviour. To achieve these goals, we pro-
pose an annotation schema for identifying and classifying smooth turn exchanges,
backchannels, and different interruption types. We manually annotate exchanges
in two corpora, a part of the AMI corpus and the French section of the NoXi corpus.
After analysing multimodal non-verbal signals, we introduce MIC, an approach to
classify the interruption type based on selected non-verbal signals (facial expres-
sion, prosody, head and hand motion) from both interlocutors (the interruptee and
the interrupter). We also introduce One-PredIT, which utilises a one-class classi-
fier to identify potential interruption points by monitoring the real-time non-verbal
behaviour of the current speaker (only interruptee). Additionally, we propose AI-
BGM, a generative model to compute the facial expressions and head rotations
of ECAs when it is interrupting. Given the limited amount of data at our dis-
posal, we employ transfer learning technology to train our interruption behaviour
generation model using the well-trained Augmented Self-Attention Pruning neural
network model. One-PredIT and AI-BGM are evaluated with subjective studies.

Keywords: Interruption, Turn-taking, Multimodality, Human Behavior Mod-
elling, Embodied Conversational Agents
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Résumé en Français

Ce qui distingue les humains des autres animaux, c’est notre capacité à créer et à
utiliser des outils pour simplifier le travail et améliorer la productivité, ainsi que
notre puissante capacité de pensée logique et de communication complexe mais
cohérente. Alors que certains animaux utilisent des outils, les humains ont poussé
l’utilisation des outils à un niveau sans précédent. L’histoire de la civilisation hu-
maine peut être vue comme une histoire du développement technologique, allant
de l’utilisation de simples outils en pierre à la métallurgie, puis à la puissance de
la vapeur, et enfin à l’ère actuelle des technologies numériques et en réseau (Bo-
gin and Varea [2020]). Les avancées rapides dans la technologie ont propulsé
l’humanité dans l’ère virtuelle, et le "humanisme numérique", comme pont entre
les humains et les humanoïdes, a émergé ces dernières années et gagné en pop-
ularité (Davies [2016], Wagner et al. [2020]). En raison de notre préférence in-
hérente pour la communication interpersonnelle, les Agents Conversationnels In-
carnés (ACI) ont émergé comme une interface émergente de l’Interaction Humain-
Ordinateur (IHO). En simulant des formes humaines, les ACI peuvent transmettre
des informations par la voix, les gestes, les expressions faciales et les mouvements
du corps, rendant la communication plus précise et plus humaine par rapport au
simple texte (Lugrin [2021]). Avec les avancées significatives dans la technologie
3D, la technologie XR et la disponibilité commerciale des appareils, les applica-
tions des ACI se sont diversifiées. Sans aucun doute, ils font leur chemin des
laboratoires dans la vie quotidienne des gens, offrant une assistance dans divers
aspects du travail.

0.1 Agents Conversationnels Incarnés

Les ACI sont conçus pour simuler une intelligence et un comportement social sem-
blables à ceux des humains, comblant efficacement le fossé entre les humains et
les machines (Ruttkay and Pelachaud [2004]). La Figure 1.1 fournit une représen-
tation visuelle de divers exemples d’ACI. La polyvalence des ACI est mise en avant
par leur déploiement dans une multitude de domaines. Dans le domaine du ser-
vice client, ils peuvent assumer le rôle de représentants virtuels sur les sites Web
et au sein des applications, aidant habilement les utilisateurs avec des questions,
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0.2. PRISE DE PAROLE ET INTERRUPTION DANS L’INTERACTION ENTRE AGENTS

HUMAINS

des problèmes de dépannage et la récupération d’informations. Dans les environ-
nements de soins de santé, les ACI se révèlent précieux en fournissant des infor-
mations médicales, en surveillant à distance les patients, en menant des séances
de thérapie et en promouvant des choix de mode de vie sain. Dans l’industrie
du jeu, les ACI endossent des rôles de personnages interactifs, de guides ou de
compagnons, rehaussant le gameplay en le rendant plus captivant et immersif. En
outre, à l’instar des assistants virtuels vocaux populaires tels que Siri ou Alexa,
les ACI offrent une interface conversationnelle pour effectuer des tâches telles que
la définition de rappels, la réponse à des requêtes et le contrôle d’appareils intel-
ligents. L’utilisation des ACI représente un effort concerté des chercheurs pour
établir des interactions plus naturelles et engageantes entre les humains et les
machines. Ces agents ne sont pas simplement des outils, mais des facilitateurs
dynamiques de la communication et de l’engagement, enrichissant divers aspects
de notre vie par leurs attributs et capacités semblables à ceux des humains.

Figure 1 Illustration de (a) Greta, un agent conversationnel incarné (Pelachaud
[2015]), (b) le robot social Furhat (Al Moubayed et al. [2013]), (c) un robot
humanoïde NAO (Shamsuddin et al. [2011]) et (d) le robot-personnage MIROKI
développé par la société Enchanted Tools.

0.2 Prise de parole et interruption dans l’interaction
entre agents humains

Afin de rendre l’interaction entre les ACI et les utilisateurs humains plus fluide
et plus conforme aux habitudes humaines ainsi qu’à la logique comportementale,
les chercheurs ont commencé à explorer diverses directions. Ces orientations com-
prennent la simulation d’apparences réalistes, la garantie de mouvements naturels
et fluides, l’amélioration de la reconnaissance et de l’expression émotionnelles,
ainsi que l’amélioration de la gestion du dialogue, entre autres. Notre objectif est
de rendre les ACI plus naturels, leur permettant de comprendre les besoins des
utilisateurs et de s’exprimer aussi richement que dans la communication humaine
à humaine. Cela nécessite que les ACI traitent les informations utilisateur en temps
réel et prennent des décisions et des réponses appropriées. Surtout pendant les
conversations, des décisions telles que quand prendre la parole, quand fournir des
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signaux de retour, quand interrompre un utilisateur, et des considérations simi-
laires sont d’une importance capitale.

Les chercheurs travaillent activement au développement d’ACI pouvant s’intégrer
harmonieusement dans les environnements humains et offrir une expérience con-
versationnelle plus engageante et semblable à celle des humains. Ces efforts en-
globent un large éventail de domaines, de l’intelligence artificielle et de l’apprentissage
automatique à l’interaction homme-machine et à la psychologie. L’objectif ultime
est de créer des ACI capables de comprendre, de s’adapter et d’améliorer la com-
munication humaine dans divers contextes.

Converser en temps réel, à la fois écouter et parler simultanément, est une
tâche complexe. Dans nos interactions humaines quotidiennes, nous avons développé
l’habitude de laisser une seule personne parler à la fois. Cette pratique implique
des changements de rôle fréquents et rapides entre le locuteur et l’auditeur. Juger
du moment opportun pour prendre la parole peut sembler simple pour les hu-
mains, mais cela reste un défi de taille pour les Agents Conversationnels Incarnés
(ACI).

Pour les ACI, le défi principal réside dans le discernement précis de savoir si un
utilisateur vient de conclure son énoncé ou non, afin de prendre des décisions sur
le moment où prendre la parole. Pour garantir une prise de parole précise, cer-
tains ACI utilisent ce qu’on appelle une configuration "Wizard-of-Oz". Dans cette
approche, un opérateur humain caché contrôle le système et prend les décisions
cruciales sur la prise de parole. Bien que cette méthode offre une expérience util-
isateur positive, elle n’est pas automatisée, exigeant une intervention humaine, et
est donc impraticable pour les applications à grande échelle.

Par la suite, certains systèmes de dialogue ont incorporé la Détection d’Activité
Vocale (DAV) pour détecter la conclusion du discours d’un utilisateur en fonction
de seuils de durée de silence. Cependant, fixer la longueur appropriée de ces
seuils représente un défi important. Si le seuil est fixé trop court, il risque de
mal évaluer les pauses à l’intérieur d’un tour de parole de l’utilisateur. À l’inverse,
s’il est trop long, cela peut avoir un impact néfaste sur l’expérience utilisateur,
donnant l’impression que la conversation est disjointe.

Les chercheurs et les développeurs travaillent activement sur des mécanismes
de prise de parole plus sophistiqués et automatisés pour les ACI. Ils s’appuient sur
des techniques issues de domaines tels que la reconnaissance vocale, le traitement
du langage naturel et l’apprentissage automatique. L’objectif ultime est de doter
les ACI de la capacité à reconnaître les indices subtils indiquant la conclusion d’un
tour de parole de l’utilisateur, améliorant ainsi la fluidité et la naturalité des inter-
actions humain-ACI. Cela implique de répondre à la fois aux aspects techniques et
à l’expérience utilisateur pour garantir que les ACI peuvent engager efficacement
les utilisateurs dans la conversation.

Pendant ce temps, la plupart des recherches concernant la prise de parole
dans les interactions humain-agent visent à minimiser les chevauchements, un
phénomène assez courant dans les interactions humain-humain. De même, les
interruptions dans les dialogues humain-agent sont souvent perçues comme des
erreurs système. Cependant, dans les conversations humaines quotidiennes, les
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interruptions sont assez courantes, et nous ne les catégorisons pas simplement
comme un comportement inapproprié. Au contraire, des interruptions bien syn-
chronisées peuvent ajuster le rythme d’une conversation et engager l’interaction.
Une interaction complètement ininterrompue pourrait sembler monotone, lais-
sant les utilisateurs avoir l’impression que l’attention de l’agent n’est pas centrée
sur eux. D’un autre côté, trop d’interruptions peuvent être très perturbantes. Per-
mettre des interruptions lorsque nécessaire dans les interactions humain-agent
pourrait potentiellement améliorer la qualité de l’interaction et, par conséquent,
améliorer l’expérience utilisateur.

Bien sûr, les interruptions discutées ici ne sont pas dues à des erreurs de
décision système conduisant à une mauvaise initiation de prise de parole. Au
lieu de cela, elles sont semblables au jugement indépendant d’un auditeur dans
les conversations humain-humain. Elles impliquent que les auditeurs s’insèrent
dans la conversation avant que le locuteur ait fini, essayant de prendre la pa-
role, que ce soit de manière coopérative ou compétitive, en fonction de l’intention
de l’interrupteur. Ces interruptions peuvent servir à diverses fins, telles que de-
mander des éclaircissements, exprimer de l’enthousiasme ou même remettre en
question les affirmations du locuteur. Bien que de telles interruptions puissent
dévier des normes conventionnelles de prise de parole, elles font partie de la riche
toile de fond de la communication humaine, contribuant à la nature dynamique
et engageante des conversations. Dans les interactions humain-agent, permettre
stratégiquement de telles interruptions, lorsque cela est approprié, pourrait poten-
tiellement conduire à des échanges plus dynamiques et naturels, améliorant ainsi
l’expérience utilisateur globale.

0.3 Comportement non verbal dans l’interaction en-
tre agents humains

La communication ne se limite jamais aux mots prononcés. Une communication
efficace est une interaction complexe entre le langage verbal et le comportement
non verbal multimodal. Alors que la communication verbale transmet le sens ex-
plicite des mots, le comportement non verbal joue un rôle crucial en complément,
enrichissant et renforçant le message global (Giles [2016]). Par conséquent, lors
de la prise de décisions éclairées, il est essentiel de considérer si les schémas de
comportement non verbal correspondent au message voulu. Cela devient partic-
ulièrement crucial dans le contexte des agents virtuels, où les indices non verbaux
réalistes sont essentiels pour créer une expérience de communication immersive
et semblable à celle des humains. Dans de telles interactions, l’harmonie entre
les décisions et les éléments non verbaux influence considérablement l’efficacité et
l’authenticité de l’échange.

Dans le contexte des Agents Conversationnels Incarnés (ACI), l’intégration
d’expressions faciales, de regards, de postures et de gestes corporels semblables
à ceux des humains a un impact significatif sur leur expressivité et leur niveau
d’engagement (Lugrin [2021]). Un agent virtuel capable d’afficher des indices
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non verbaux appropriés et pertinents peut établir un sentiment de rapport et de
familiarité, favorisant une conversation plus naturelle et interactive avec les util-
isateurs.

Les indices non verbaux chez les agents virtuels peuvent illustrer visuellement
divers aspects du message verbal, renforçant ou clarifiant le sens voulu. Par ex-
emple, un hochement de tête en signe d’accord peut renforcer la compréhension
de l’agent par rapport à la déclaration de l’utilisateur, tandis qu’une expression
perplexe peut indiquer la confusion de l’agent, encourageant ainsi l’utilisateur à
fournir des éclaircissements supplémentaires. De plus, les indices non verbaux
peuvent transmettre des émotions et des nuances difficiles à exprimer uniquement
à travers des mots, enrichissant la richesse émotionnelle de l’interaction.

En exploitant le pouvoir de la communication non verbale, les ACI ont le poten-
tiel de combler le fossé entre les interactions humain-humain et humain-machine,
rendant ainsi le processus de communication plus fluide et plus efficace.

0.4 Questions de recherche

Comme mentionné précédemment, les interruptions peuvent effectivement améliorer
l’expérience utilisateur lors des interactions entre humains et agents. Accorder aux
ACI la capacité de gérer les interruptions est crucial. En plus de pouvoir gérer les
interruptions des utilisateurs humains, les ACI doivent également avoir la capacité
d’interrompre les utilisateurs humains de manière appropriée, de manière com-
préhensible et acceptable pour les utilisateurs, évitant ainsi la perception d’erreurs
résultant de décisions système.

À ce jour, quelques études se sont concentrées sur le premier aspect, qui im-
plique de répondre à une interruption de l’utilisateur pendant l’interaction. Nous
approfondirons cet aspect dans le chapitre 3. Cependant, il existe actuellement
un manque de recherche sur les ACI initiants des interruptions avec les utilisa-
teurs humains, qui forme le thème central de cette thèse. L’objectif est de doter
les ACI de la capacité d’initier de manière appropriée des interruptions lors des
conversations.

Pour permettre aux ACI d’interrompre efficacement les utilisateurs humains,
plusieurs aspects clés doivent être abordés. Premièrement, les ACI doivent être
en mesure d’évaluer en temps réel les opportunités d’interruption appropriées,
leur permettant de s’interposer dans la conversation lorsque cela est motivé ou
nécessaire. Deuxièmement, les ACI devraient générer des comportements non
verbaux correspondants pour accompagner leurs décisions d’interruption.

Pour rendre les interruptions dans les interactions humain-agent plus naturelles,
notre recherche est fondée sur la compréhension des interruptions qui se pro-
duisent de manière organique dans les dialogues humain-humain. Ensuite, nous
présenterons une introduction détaillée à chacune des questions de recherche
abordées dans cette thèse.
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0.4.1 Identification et classification des interruptions à travers
l’interaction humain-humain

Un des objectifs principaux de cette recherche est d’identifier et d’étudier divers
types d’interruptions qui se produisent lors des conversations humain-humain.
Comprendre comment les humains identifient différentes situations d’interruption
est essentiel. Le défi réside dans la capacité des ACI à reconnaître automatique-
ment et à répondre à ces différents scénarios d’interruption, étant donné que les
conversations sont souvent fluides et dynamiques. Pour atteindre cet objectif, la
thèse cherche à caractériser les interruptions à travers des signaux multimodaux,
en considérant la combinaison de différentes modalités de communication telles
que les gestes de tête, les expressions faciales et le langage corporel.

Questions de recherche

Pour répondre à l’objectif ci-dessus, les questions de recherche suivantes sont ex-
plorées :

1. Comment les humains perçoivent-ils et catégorisent-ils différentes situations
d’interruption lors de leurs interactions ?

2. Pouvons-nous tirer parti du comportement multimodal humain pour caté-
goriser automatiquement les types d’interruption ? Quelles sont les modal-
ités clés qui aident dans cette classification, et comment ces modalités sont-
elles exprimées ?

3. Comment pouvons-nous concevoir des modèles informatiques capables d’identifier
différents types d’interruption grâce à l’analyse de diverses modalités ?

0.4.2 Prédiction du timing des interruptions

Comprendre pourquoi et quand les humains choisissent d’interrompre pendant
les conversations est un autre aspect significatif de cette recherche. Les humains
possèdent la capacité d’identifier les moments appropriés pour interrompre sans
perturber significativement le flux de la conversation. Ce processus de prise de dé-
cision est influencé par la volonté de l’auditeur de prendre la parole et la volonté
du locuteur de céder la parole lorsqu’il est interrompu, comme indiqué par divers
signaux non verbaux. La thèse vise à concevoir des modèles informatiques capa-
bles de prédire avec précision les moments propices à l’interruption sur la base
des données d’interruption existantes provenant des interactions humain-humain.
De plus, elle explore comment les interruptions initiées par les ACI sont perçues
par les humains et si elles sont considérées comme acceptables dans les contextes
conversationnels.
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Questions de recherche

Pour explorer les subtilités du timing des interruptions, les questions de recherche
suivantes sont abordées :

4. Comment les modèles informatiques peuvent-ils identifier les moments ap-
propriés pour les interruptions sur la base des données d’interruption exis-
tantes provenant des interactions humain-humain ?

5. Comment les humains perçoivent-ils les interruptions initiées par les ACI ?
Sont-elles considérées comme acceptables ou perturbatrices ?

6. Quels sont les principaux facteurs qui impactent la perception des interrup-
tions ? Comment les concepteurs d’ACI peuvent-ils améliorer l’acceptation
des ACI capables d’interruption ?

0.4.3 Génération du comportement d’interruption

En plus de comprendre quand interrompre, il pourrait exister des signaux spéci-
fiques qui précèdent une interruption. Les humains peuvent rapidement identi-
fier les interruptions et répondre ou ajuster leur comportement en conséquence.
Par conséquent, il est essentiel pour les ACI non seulement de savoir quand in-
terrompre, mais aussi de générer un comportement cohérent avec les décisions
d’interruption. Nous cherchons à identifier des signaux spécifiques indiquant les
interruptions imminentes juste avant leur début et visons à concevoir des modèles
informatiques capables de générer des signaux multimodaux appropriés pendant
les interruptions.

Questions de recherche

Pour aborder cet aspect, les questions de recherche suivantes sont étudiées :

7. Existe-t-il des signaux spécifiques qui anticipent les interruptions imminentes
juste avant leur début ?

8. Comment les modèles informatiques peuvent-ils générer des signaux multi-
modaux appropriés pendant les interruptions pour maintenir la cohérence
conversationnelle ?

9. Comment les humains perçoivent-ils les interruptions générées par les ACI,
et comment le comportement des ACI impacte-t-il la perception des utilisa-
teurs ?

0.5 Contributions

Le principal objectif de cette thèse est d’équiper les ACI de la capacité d’initier des
interruptions de manière appropriée pendant les conversations. Les objectifs de la
recherche sont les suivants :
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1. Identifier et étudier divers types d’interruption qui se produisent pendant
les conversations humain-humain. Cela implique de comprendre comment
les humains reconnaissent différentes situations d’interruption grâce à des
signaux multimodaux.

2. Concevoir des modèles informatiques capables de prédire avec précision les
moments propices aux interruptions sur la base de données d’interruption
existantes provenant des interactions humain-humain.

3. Développer des modèles informatiques capables de générer des signaux mul-
timodaux appropriés pendant les interruptions.

Pour atteindre ces objectifs et répondre aux diverses limitations et défis techniques,
la thèse propose différents modèles et ensembles de données, qui sont discutés en
détail ci-dessous.

0.5.1 Annotation des corpus NoXi et AMI & classification des
types d’interruption (Chapitre 4, 5 et 6)

La première contribution de la thèse implique de proposer un nouveau schéma
d’annotation pour l’annotation manuelle des interruptions. Ce schéma couvre di-
verses situations d’interruption rencontrées dans les conversations quotidiennes,
et il tient également compte d’autres cas tels que les rétroactions et les échanges
de tours fluides. En utilisant ce schéma, les corpus NoXi et AMI sont annotés,
permettant l’utilisation de ces ensembles de données dans diverses études liées à
l’analyse multimodale, la prédiction du timing des interruptions et la génération
du comportement des interruptions.

• Corpus NoXi : Ce corpus est fondamental pour analyser les interruptions dans
l’interaction humain-humain (questions de recherche Q1 et Q2), entraîner,
tester et valider des modèles qui classifient différents types d’interruptions
(question de recherche Q3), prédire le timing d’interruption possible (ques-
tion de recherche Q4), et générer des gestes faciaux pendant la période
d’interruption (questions de recherche Q7 et Q8).

• Corpus AMI : Initialement construit par Carletta [2007], pour développer une
technologie de navigation dans les réunions, ce corpus est étendu dans cette
thèse pour inclure des fonctionnalités multimodales supplémentaires liées
aux expressions faciales et aux caractéristiques acoustiques de bas niveau.
Il est utilisé pour entraîner, tester et valider le modèle de classification des
types d’interruption (question de recherche Q3).

0.5.2 Classification à une classe pour la prédiction du timing
des interruptions possibles (Chapitre 7)

La deuxième contribution implique de proposer une nouvelle approche pour prédire
le timing possible de l’initiation des interruptions dans les interactions dyadiques.
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0.5. CONTRIBUTIONS

Ce modèle est conçu pour être appliqué à un agent virtuel, en tenant compte des
différences de comportement potentielles par rapport aux humains réels. L’approche
est basée sur un modèle de classification à une classe entraîné sur le corpus NoXi.

• Prédiction du timing possible d’initiation des interruptions : Le modèle de
classification à une classe est entraîné pour détecter les interruptions sur la
base des échantillons positifs existants en utilisant des expressions faciales,
des mouvements de tête et des caractéristiques acoustiques de bas niveau
(question de recherche Q4).

• Étude de la perception des interruptions : Pour évaluer le modèle de pré-
diction du timing, une étude perceptuelle est menée, comparant les inter-
ruptions prédites par le modèle avec les données de référence et les inter-
ruptions aléatoires, en tenant compte de diverses variables indépendantes
comme le timing des interruptions, la parole de l’interrupteur, la voix audio
de l’interrupteur et le type d’interruption (questions de recherche Q5 et Q6).

0.5.3 Génération du comportement d’interruption (Chapitre 8)

La dernière contribution de la thèse est de générer un comportement non ver-
bal pendant les interruptions. En raison de la disponibilité limitée des données
d’interruption, un modèle génératif pré-entraîné est adapté à cette fin. Le modèle
génère des expressions faciales et des rotations de tête en temps réel.

• Génération du comportement d’interruption : Différentes technologies d’apprentissage
par transfert sont comparées pour enseigner au modèle à générer spécifique-
ment le comportement pendant les périodes d’interruption. Le modèle ap-
prend à partir des caractéristiques acoustiques, des expressions faciales et
des mouvements de tête des deux interlocuteurs pour générer le prochain
cadre pour l’interrupteur (question de recherche Q8).

• Évaluation du comportement d’interruption : Une étude perceptuelle est menée
pour évaluer le comportement d’interruption généré, le comparant à la vérité
de terrain et au comportement généré par le modèle général avant l’apprentissage
par transfert (questions de recherche Q9).
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1.1. EMBODIED CONVERSATIONAL AGENTS

Man with all his noble qualities, with sympathy which feels for
the most debased, with benevolence which extends not only to
other men but to the humblest living creature, with his God-like
intellect which has penetrated into the movements and
constitution of the solar system—with all these exalted
powers—Man still bears in his bodily frame the indelible stamp
of his lowly origin.

Charles Darwin (1871/1898)

What distinguishes humans from other animals is our ability to create and use
tools to simplify labour and enhance productivity, as well as our powerful capacity
for logical thinking and complex yet coherent communication skills. While some
animals use tools, humans have taken tool use to an unprecedented level. The
history of human civilization can be seen as a history of technological develop-
ment, ranging from the use of simple stone tools to metallurgy, then to steam
power, and finally to the current era of digital and network technologies (Bo-
gin and Varea [2020]). The rapid advancements in technology have propelled
humanity into the virtual age, and "digital humanism," as a bridge connecting hu-
mans and humanoids, has emerged in recent years and gained popularity (Davies
[2016], Wagner et al. [2020]).

Due to our inherent preference for interpersonal communication, Embodied
Conversational Agents (ECAs) have emerged as a burgeoning Human-Computer
Interaction (HCI) interface. By simulating human forms, ECAs can convey infor-
mation through voice, gestures, facial expressions, and body movements, mak-
ing communication more accurate and humane compared to plain text (Lugrin
[2021]). With the significant advancements in 3D technology, XR technology,
and the commercial availability of devices, the applications of ECAs have become
more diversified. Undoubtedly, they are making their way from the laboratories
into people’s daily lives, offering assistance in various aspects of work.

1.1 Embodied Conversational Agents

ECAs are designed to simulate human-like social intelligence and behaviour, ef-
fectively bridging the gap between humans and machines (Ruttkay and Pelachaud
[2004]). Figure 1.1 provides a visual representation of various ECA examples.

The versatility of ECAs is highlighted by their deployment across a multitude
of domains. In the realm of customer service, they can assume the role of vir-
tual representatives on websites and within applications, adeptly assisting users
with inquiries, troubleshooting issues, and retrieving information. In healthcare
settings, ECAs prove invaluable by providing medical insights, remotely monitor-
ing patients, conducting therapy sessions, and promoting healthy lifestyle choices.
Within the gaming industry, ECAs take on roles as interactive characters, guides, or
companions, elevating gameplay by making it more engaging and immersive. Fur-
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1.2. TURN-TAKING & INTERRUPTION IN HUMAN AGENT INTERACTION

thermore, akin to popular voice-activated virtual assistants like Siri or Alexa, ECAs
offer a conversational interface for performing tasks such as setting reminders,
answering queries, and controlling smart devices.

The utilization of ECAs represents a concerted effort by researchers to establish
more natural and engaging interactions between humans and machines. These
agents are not merely tools but dynamic facilitators of communication and en-
gagement, enriching various facets of our lives through their human-like attributes
and capabilities.

Figure 1.1 Illustration of (a) Greta, an embodied conversational agent (Pelachaud
[2015]), (b) Furhat social robot (Al Moubayed et al. [2013]), (c) a humanoid NAO
robot (Shamsuddin et al. [2011]) and (d) Robot-character MIROKI developed by
Enchanted Tools company.

1.2 Turn-taking & interruption in human agent in-
teraction

In order to make the interaction between ECAs and human users smoother and
more in line with human habits and behaviour logic, researchers have begun to
explore various directions. These directions include simulating realistic appear-
ances, ensuring natural and fluid movements, enhancing emotional recognition
and expression, and improving dialogue management, among others. Our goal is
to make ECAs appear more natural, enabling them to understand user needs and
express themselves as richly as human-to-human communication. This requires
ECAs to process user information in real time and make appropriate decisions and
responses. Especially during conversations, decisions such as when to take the
floor, when to provide backchannels, when to interrupt a user, and similar consid-
erations are of paramount importance.

Researchers are actively working to develop ECAs that can seamlessly integrate
into human environments and provide a more engaging and human-like conver-
sational experience. These efforts encompass a wide range of fields, from artificial
intelligence and machine learning to human-computer interaction and psychology.
The ultimate aim is to create ECAs that can understand, adapt to, and enhance hu-
man communication in various contexts.

3



1.2. TURN-TAKING & INTERRUPTION IN HUMAN AGENT INTERACTION

Conversing in real-time, both listening and speaking simultaneously, is an in-
tricate task. In our day-to-day human interactions, we’ve developed the habit
of having only one person speak at a time. This practice involves frequent and
swift role shifts between the speaker and the listener. Judging the opportune mo-
ment for turn-taking may appear straightforward for humans, but it remains a
formidable challenge for Embodied Conversational Agents (ECAs).

For ECAs, the key challenge lies in accurately discerning whether a user has
just concluded their statement or not, in order to make decisions about when to
assume the conversational floor. To ensure precise turn-taking, some ECAs employ
what’s known as a "Wizard-of-Oz setup." In this approach, a concealed human
operator controls the system and makes the critical turn-taking decisions. While
this method results in a positive user experience, it is not automated, demanding
human intervention, and is thus impractical for large-scale applications.

Subsequently, certain dialogue systems have incorporated Voice Activity Detec-
tion (VAD) to detect the conclusion of a user’s speech based on silence duration
thresholds. However, setting the appropriate length for these thresholds presents
a significant challenge. If the threshold is set too short, it risks misjudging pauses
within a user’s turn. Conversely, if it’s too long, it can have a detrimental impact
on the user experience, causing the conversation to feel disjointed.

Researchers and developers are actively working on more sophisticated and
automated turn-taking mechanisms for ECAs. They are drawing upon techniques
from fields such as speech recognition, natural language processing, and machine
learning. The ultimate aim is to equip ECAs with the capability to recognize subtle
cues indicating the conclusion of a user’s turn, thereby enhancing the fluidity and
naturalness of human-ECA interactions. This involves addressing both the techni-
cal and user experience aspects to ensure that ECAs can engage users effectively
in conversation.

Meanwhile, most research concerning turn-taking in human-agent interactions
aims to minimize overlap, a phenomenon quite common in human-human in-
teractions. Similarly, interruptions in human-agent dialogues are often seen as
system errors. However, in everyday human conversations, interruptions are fairly
common, and we don’t simply categorize them as inappropriate behaviour. In-
stead, well-timed interruptions can adjust the rhythm of a conversation and en-
gage the interaction. A completely uninterrupted interaction might come across
as monotonous, leaving users feeling like the agent’s attention isn’t focused on
them. On the other hand, too many interruptions can be highly disruptive. Allow-
ing interruptions when necessary in human-agent interactions could potentially
enhance the quality of the interaction and, consequently, improve the user experi-
ence.

Of course, the interruptions discussed here are not due to system decision er-
rors leading to incorrect turn-taking initiation. Instead, they are akin to a lis-
tener’s independent judgment in human-human conversations. They involve lis-
teners inserting themselves into the conversation before the speaker has finished,
attempting to grab the conversational floor, whether cooperatively or competi-
tively, depending on the interrupter’s intention. These interruptions can serve

4



1.3. NONVERBAL BEHAVIOUR IN HUMAN AGENT INTERACTION

various purposes, such as seeking clarification, expressing enthusiasm, or even
challenging the speaker’s statements. While such interruptions may deviate from
the conventional norms of turn-taking, they are part of the rich tapestry of human
communication, contributing to the dynamic and engaging nature of conversa-
tions. In human-agent interactions, strategically allowing for such interruptions,
when appropriate, could potentially lead to more vibrant and natural exchanges,
thereby enhancing the overall user experience.

1.3 Nonverbal behaviour in human agent interac-
tion

Communication is never solely about the spoken words. Effective communication
is a multifaceted interplay between spoken language and multimodal nonverbal
behaviour. While verbal communication conveys the explicit meaning of words,
nonverbal behaviour serves as a crucial complement, enriching and reinforcing
the overall message (Giles [2016]). Therefore, when making informed decisions,
it’s essential to consider whether the patterns of nonverbal behaviour align with
the intended message. This becomes particularly pivotal in the context of virtual
agents, where lifelike nonverbal cues are instrumental in crafting an immersive
and human-like communication experience. In such interactions, the harmony be-
tween decisions and nonverbal elements significantly influences the effectiveness
and authenticity of the exchange.

In the context of Embodied Conversational Agents (ECAs), the incorporation
of human-like facial expressions, gaze, posture, and body gestures significantly
impacts their expressiveness and engagement level (Lugrin [2021]). A virtual
agent capable of displaying appropriate and relatable nonverbal cues can estab-
lish a sense of rapport and familiarity, fostering a more natural and interactive
conversation with users.

Nonverbal cues in virtual agents can visually illustrate various aspects of the
spoken message, reinforcing or clarifying the intended meaning. For instance,
a nod of agreement can reinforce the agent’s understanding of the user’s state-
ment, while a puzzled expression can indicate the agent’s confusion, encouraging
the user to provide further clarification. Additionally, nonverbal cues can convey
emotions and nuances that may be challenging to express purely through words,
enhancing the emotional richness of the interaction.

By harnessing the power of nonverbal communication, ECAs have the poten-
tial to bridge the gap between human-human and human-machine interactions,
making the communication process smoother and more effective.

1.4 Research Questions

As mentioned earlier, interruption may indeed enhance the user experience during
human-agent interactions. Granting ECAs the capability to manage interruptions
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1.4. RESEARCH QUESTIONS

is crucial. Besides being able to handle interruptions from human users, ECAs
also need the ability to interrupt human users appropriately, in a manner that is
understandable and acceptable to users, avoiding the perception of errors resulting
from system decisions.

To date, there have been some studies focusing on the first aspect, which in-
volves responding to a user’s interruption during interaction. We will delve into
this aspect in detail in Chapter 3. However, there is currently a lack of research
on ECAs initiating interruptions with human users, which forms the central theme
of this thesis. The goal is to empower ECAs with the capability to appropriately
initiate interruptions during conversations.

To enable ECAs to interrupt human users effectively, several key aspects need
to be addressed. Firstly, ECAs must be able to assess real-time opportunities for
appropriate interruptions, allowing them to interject into the conversation when
motivated or necessary. Secondly, ECAs should generate corresponding nonverbal
behaviours to accompany their interruption decisions.

To make interruptions in human-agent interactions appear more natural, our
research is grounded in understanding of interruptions that occur organically in
human-human dialogues. Next, we will provide a detailed introduction to each of
the research questions addressed in this thesis.

1.4.1 Identifying and classifying interruptions through human-
human interaction

One of the primary objectives of this research is to identify and study various
interruption types that occur during human-human conversations. Understanding
how humans identify different interruption situations is essential. The challenge
lies in enabling ECAs to automatically recognize and respond to these diverse
interruption scenarios, as conversations are often fluid and dynamic. To achieve
this objective, the thesis seeks to characterize interruptions through multimodal
signals, considering the combination of different communication modalities such
as head gestures, facial expressions, and body language.

Research Questions

To address the above objective, the following research questions are explored:

1. How do humans perceive and categorize different interruption situations
during their interactions?

2. Can we leverage human multimodal behaviour to automatically categorize
interruption types? What are the key modalities that aid in this classification,
and how are these modalities expressed?

3. How can we design computational models capable of identifying different
interruption types through analysis of various modalities?
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1.4.2 Interruption timing prediction

Understanding why and when humans choose to interrupt during conversations is
another significant aspect of this research. Humans possess the ability to identify
appropriate moments to interrupt without disrupting the conversation flow signif-
icantly. This decision-making process is influenced by the listener’s willingness to
take over the floor and the speaker’s willingness to yield to the floor when inter-
rupted, as signalled through various nonverbal cues. The thesis aims to design
computational models that can accurately predict suitable interruption moments
based on existing interruption data from human-human interactions. Additionally,
to explore how ECA-initiated interruptions are perceived by humans and whether
they are deemed acceptable in conversational settings.

Research Questions

To delve into the intricacies of interruption timing, the following research ques-
tions are addressed:

4. How can computational models identify appropriate moments for interrup-
tions based on existing interruption data from human-human interactions?

5. How do humans perceive interruptions initiated by ECAs? Are they consid-
ered acceptable or disruptive?

6. What are the key factors that impact the perception of interruptions? How
can ECA designers enhance the acceptance of interruption-capable ECAs?

1.4.3 Interruption behaviour generation

In addition to understanding when to interrupt, there might exist specific sig-
nals that may precede an interruption. Humans can quickly identify interruptions
and respond or adjust their behaviour accordingly. Therefore, it is essential for
ECAs to not only know when to interrupt but also to generate coherent behaviour
that aligns with interruption decisions. We seek to identify specific signals that
indicate upcoming interruptions just before their onset and aim to design com-
putational models capable of generating appropriate multimodal signals during
interruptions.

Research Questions

To address this aspect, the following research questions are investigated:

7. Are there specific signals that anticipate forthcoming interruptions right be-
fore their onset?

8. How can computational models generate appropriate multimodal signals
during interruptions to maintain conversational coherence?
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9. How do humans perceive interruptions generated by ECAs, and how does
the behaviour of ECAs impact user perception?

1.5 Contributions

The main focus of this thesis is to equip ECAs with the capability to appropriately
initiate interruptions during conversations. The objectives of the research are as
follows:

1. Identifying and studying various interruption types that occur during human-
human conversations. This involves understanding how humans recognize
different interruption situations through multimodal signals.

2. Designing computational models that can accurately predict suitable mo-
ments for interruptions based on existing interruption data from human-
human interactions.

3. Developing computational models capable of generating appropriate multi-
modal signals during interruptions.

To achieve these objectives and address the various limitations and technical chal-
lenges, the thesis proposes different models and datasets, which are discussed in
detail below.

1.5.1 Annotating NoXi and AMI corpora & interruption types
classification (Chapter 4, 5 and 6)

The first contribution of the thesis involves proposing a new annotation schema
for manual interruption annotation. This schema covers various interruption sit-
uations encountered in daily conversations, and it also considers other cases such
as backchannels and smooth turn exchanges. Using this schema, the NoXi and
AMI corpora are annotated, enabling the use of these datasets in various studies
related to multimodal analysis, interruption timing prediction, and interruption
behaviour generation.

• NoXi corpus: This corpus is foundational for analyzing interruptions in human-
human interaction (research questions Q1 and Q2), training, testing, and
validating models that classify different types of interruptions (research ques-
tions Q3), predicting possible interruption timing(research questions Q4),
and generating facial gestures during the interruption period(research ques-
tions Q7 and Q8).

• AMI corpus: Originally built by Carletta [2007], for developing meeting
browsing technology, this corpus is extended in this thesis to include addi-
tional multimodal features related to facial expressions and low-level acous-
tic features. It is used to train, test, and validate the interruption type classi-
fication model (research questions Q3).
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1.5.2 One-class classification for possible interruption timing
prediction (Chapter 7)

The second contribution involves proposing a novel approach to predict possible
interruption initiation timing in dyadic interactions. This model is designed to
be applied to a virtual agent, considering potential behavioural differences from
real humans. The approach is based on a one-class classification model trained on
NoXi corpus.

• Possible interruption initiation timing prediction: The one-class classification
model is trained to detect interruptions based on existing positive samples
using facial expressions, head motion, and low-level acoustic features (re-
search questions Q4).

• Interruption perception study: To evaluate the timing prediction model, a per-
ceptual study is conducted, comparing model-predicted interruptions with
ground truth data and random interruptions, considering various indepen-
dent variables like interruption timing, interrupter speech, interrupter audio
voice, and interruption type (research questions Q5 and Q6).

1.5.3 Interruption behaviour generation (Chapter 8)

The final contribution of the thesis is to generate nonverbal behaviour during in-
terruptions. Due to the limited availability of interruption data, a pretrained gen-
erative model is adapted for this purpose. The model generates facial expressions
and head rotations in real time.

• Interruption behaviour generation: Different transfer learning technologies
are compared to teach the model to specifically generate behaviour during
interruption periods. The model learns from acoustic features, facial expres-
sions, and head motion from both interlocutors to generate the next frame
for the interrupter (research questions Q8).

• Interruption behaviour evaluation: A perceptual study is conducted to eval-
uate the generated interruption behaviour, comparing it with ground truth
and behaviour generated by the general model before transfer learning(research
questions Q9).

1.6 Publications and Submissions

• Liu Yang, Catherine Achard, Catherine Pelachaud. What If I Interrupt You?
Proceedings of the 2021 International Conference on Multimodal Interac-
tion. 2021.

• Liu Yang, Catherine Achard, Catherine Pelachaud. Modeling of interruptions
in human-agent interaction. WACAI 2021.
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• Liu Yang, Catherine Achard, Catherine Pelachaud. Annotating Interruption
in Dyadic Human Interaction. Thirteenth Language Resources and Evalua-
tion Conference, LREC, 2022.

• Liu Yang, Catherine Achard, Catherine Pelachaud. Multimodal Analysis of
Interruptions. International Conference on Human-Computer Interaction.
HCII, 2022.

• Liu Yang, Catherine Achard, Catherine Pelachaud. Multimodal classification
of interruptions in humans’ interaction. Proceedings of the 2022 Interna-
tional Conference on Multimodal Interaction. ICMI, 2022.

• Jieyeon WOO, Liu Yang, Catherine Achard, Catherine Pelachaud. Are we
in sync during turn switch? 2023 IEEE 17th International Conference on
Automatic Face and Gesture Recognition (FG). IEEE (SIVA workshop), 2023.

• Jieyeon WOO, Liu Yang, Catherine Achard, Catherine Pelachaud. Is Turn-
Shift Distinguishable with Synchrony? International Conference on Human-
Computer Interaction. HCII, 2023.

• Liu Yang, Catherine Achard, Catherine Pelachaud. Now or When? Interrup-
tion timing prediction in dyadic interaction. Proceedings of the 23rd ACM
International Conference on Intelligent Virtual Agents. IVA, 2023.

1.7 Thesis Outline

This thesis is organized into 8 Chapters:

1. Chapter 2 establishes the necessary background knowledge for multimodal
nonverbal communication, human conversation,interruption and Chapter 3
which gives an overview of the existing works on human-agent communica-
tion system, turn-taking, interruption and backchannel management and anal-
ysis approaches, their underlying principles, and their limitations.

2. We present in Chapter 4 two corpora: (1) NoXi and (2) AMI Corpus which
we have used for our research.

3. Chapter 5, which is related to interruption annotation and multimodal anal-
ysis for different switch types.

4. In Chapter 6 we present our first model to classify different types of inter-
ruptions.

5. Chapter 7 explains our approach to predict interruption and evaluation re-
sults.

6. Finally the generation of virtual agents’ nonverbal interruption behaviour in
Chapter 8 and we finish with a conclusion (Chapter 9).
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The key points of this Chapter:

Goal of this thesis

• The central theme of this thesis revolves around modelling interrup-
tions during human-agent interaction to develop ECAs that can effec-
tively handle interruptions, both initiating and responding to them.

• The main focus is on empowering ECAs with the ability to appropri-
ately initiate interruptions during conversations. Additionally, the the-
sis aims to evaluate how human users perceive these interruptions and
identify the key factors impacting their perception.

Thesis Research Questions

• Identifying and classifying interruptions. How do humans perceive and
categorize different interruption situations during their interactions?
How can we design computational models capable of identifying dif-
ferent interruption types through analysis of various modalities?

• Interruption timing prediction. How can computational models identify
appropriate moments for interruptions based on existing interruption
data from human-human interactions? How do humans perceive in-
terruptions initiated by ECAs? What are the key factors that impact
the perception of interruptions?

• Interruption behaviour generation. How can computational models
generate appropriate multimodal signals during interruptions to main-
tain conversational coherence? How do humans perceive interruptions
generated by ECAs, and how does the behaviour of ECAs impact user
perception?
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Human communication is a multifaceted system that encompasses both spo-
ken and unspoken channels. Information is shared through various means, with
nonverbal cues such as vocal tones, hand and body movements, head motions,
or facial expressions complementing spoken words. These nonverbal elements are
tightly intertwined with a speaker’s verbal message, serving to emphasize and clar-
ify their intentions. Before delving into the central focus of this study, this chap-
ter serves as an introduction to the diverse communication methods employed
by humans. Its aim is to highlight the interplay between these modalities and
how individuals collaborate to achieve effective communication. We first discuss
the nonverbal communication modalities employed in human interaction. These
encompass prosodic information, facial expressions, gestures, gaze and body pos-
tures. Subsequently, we delve into a discussion on the "conversation mechanisms,"
including "turn-taking" and "interruption", wherein interlocutors alternate roles as
speakers and listeners. Additionally, we explore "backchannel," initiated by listen-
ers to indicate their focus of attention and provide feedback.
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2.1 Multimodal human communication

Human beings belong to the primate group, along with our relatives: the great
apes like chimpanzees, gorillas, orangutans, and monkeys. Human behaviour
has its origins rooted in our phylogenetic history (Knapp et al. [2013], Argyle
[2013]), displaying similarities to behaviours exhibited by our nonhuman primate
counterparts. Charles Darwin’s theory of evolution (Darwin [1998]) found sup-
port in the observation of shared expressive behaviours among different species.
The progression of evolution was exemplified by the increasing utilization of facial
expressions, vocalizations, and body movements for communication and the con-
veyance of emotions. Darwin (Darwin [1998]) regarded "expressivity" as a pivotal
component in the evolutionary discourse. He postulated that a diverse range of
expressive and signalling behaviours is intricately tied to the intricacy of a species’
social structure. The resemblances in behaviour between humans and non-human
primates can be attributed to shared biological and social challenges encountered
by both groups.

The resemblances in behaviour between humans and non-human primates
sparked the inception of research into nonverbal communication (Argyle [2013]).
Nonetheless, significant disparities set humans apart, with the foremost diver-
gence residing in the application of language. Language represents an intricate
expressive system founded on speech, and its presence or absence stands as the
fundamental distinction between animal and human communication frameworks
(Levinson and Holler [2014]).

While animal communication revolves primarily around internal intentions
and states, human conversations encompass a broader spectrum, involving indi-
viduals, events, and temporal dimensions like the past and future (Argyle [2013],
Knapp et al. [2013]). The advent of language introduced a fresh set of nonver-
bal cues and signals, intended to accompany, provide feedback for, and synchro-
nize with speech. Nonverbal communication in humans serves the purpose of
conveying emotions and regulating interpersonal dynamics. Remarkably, the use
of nonverbal communication has persisted throughout human evolution (Argyle
[2013]). Human distinctiveness is further underscored by their unparalleled com-
plexity and expressiveness (Levinson and Holler [2014]), as well as their strategic
orchestration of social behaviour through social acts - premeditated behaviours
often involving words and directed toward specific objectives (Argyle [2013]). A
hierarchical structure encompasses fundamental nonverbal cues within these so-
cial acts.

Nonverbal communication constitutes the initial mode of interaction in the
human lifecycle. Prior to the development of verbal language, humans relied
on visual body gestures as their primary means of communication (Knapp et al.
[2013]). Human-human interaction (HHI) encompasses a wide array of nonver-
bal cues, including body language, facial expressions, vocal tones, appearance,
touch, distancing, and other physical signals. These nonverbal behaviours carry a
wealth of information for those engaged in communication, serving to accentuate
or clarify the intended message. Among the various channels of communication
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in HHI, the human face holds particular significance. It serves as a canvas for a
diverse array of verbal, emotional, and conversational cues during interactions.
Through facial expressions, individuals can convey their desire to transition be-
tween speaking turns (Burgoon et al. [2021]).

Nonverbal communication comprises two primary dimensions: "perception"
and "production". On one hand, listeners employ nonverbal cues to "perceive" in-
formation about the speaker. Conversely, these cues serve as tools for the speaker
to "produce" and convey their intentions. These nonverbal signals encompass
prosodic elements (such as pitch, volume, and intonation), facial expressions and
body movements (hand gestures for example). Facial expressions are employed
either consciously or unconsciously to emphasize words or indicate speech pauses.
Many facial expressions and head movements align with the syntactic and prosodic
structure of speech.

2.1.1 Facial expression

The face stands as the quintessential nonverbal conduit for conveying emotions
and attitudes (Ekman [1992], Argyle [2013]). Throughout social interactions,
facial expressions undergo rapid transformations, allowing insights into various
personality traits. Individuals possess a repertoire of diverse facial expressions,
including a range of emotional manifestations like happiness, sadness, fear, and
surprise.

In an endeavour to articulate facial expressions, Birdwhistell (Birdwhistell [1974])
proposed a set of thirty-two "kinemes" - elemental building blocks of facial expres-
sion. Conversely, Ekman and Friesen (Ekman and Friesen [1982]) defined 44
"Action Units" (AUs), aligning with Birdwhistell’s work.

A more systematic exploration by Ekman, Friesen, and Tomkins (Ekman et al.
[1971]) paved the way for the development of the Facial Affect Scoring Technique
(FAST). This method entails the independent assessment of three distinct facial
regions, comparing them against reference photographs. Within these regions,
there are 8 positions covering the brows and forehead, 17 concerning the eyes
and eyelids, and 45 addressing the lower face. The efficacy of this scoring tech-
nique lies in its ability to detect nervous system actions and its capacity to facilitate
an analysis of the impacts of antagonistic muscle movements. Building upon this
foundation, Ekman and Friesen (Ekman and Friesen [1982]) introduced the more
intricate Facial Action Coding System (FACS). This system relies on a compre-
hensive scheme of minuscule facial movements termed "Action Units" (AUs), each
grounded in anatomical principles. These movements, observable to onlookers,
are distinct from one another and are driven by individual facial muscles. FACS
also incorporates a gradation of intensity, providing a measure of the strength of
facial muscle activation. Each AU captures a distinct observable movement of a
particular facial feature (e.g., eyebrows) orchestrated by facial muscles. Figure
2.1 presents an illustrative example of Action Units.
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Figure 2.1 Action Units of FACS system. Figures are from (Fac, HAGER [2002])

Diverse emotions are conveyed through the utilization of various combinations
of action units, yielding an array of facial expressions and intricate motions. For
instance, to convey surprise, the simultaneous activation of action units 1 and 2 is
observed (Fac). Examples of such expressions are showcased in Figure 2.2.

Figure 2.2 Combinations of action units. Figures are from (Brahnam et al. [2007],
HAGER [2002])
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Strong correlations are observed between facial expressions and speech, espe-
cially eyebrow movements. There are three action units for the eyebrow: (AU1)
inner brow raised, (2) outer brow raised, (3) brow lowered. Eyebrow movements
tend to occur during moments of thinking pauses (Cavé et al. [1996], Ekman
[2004, 1992]), as well as to accentuate specific words or sequences. During con-
templative phases, eyebrows might either rise or lower. These movements play a
pivotal role in conversations, representing the most prevalent and significant facial
gestures (Chovil [1991]). Variations in fundamental frequency (f0) and eyebrow
movements are closely intertwined during speech (Cavé et al. [1996]). However,
it’s important to note that these variations aren’t directly linked; instead, they stem
from linguistic and conversational choices. These movements also serve the pur-
pose of reaffirming the speaker’s engagement by ensuring the listener’s continued
attention. Furthermore, eyebrows serve as a reflection of the listener’s level of
comprehension, doubling as a nonverbal backchannel (Cavé et al. [1996]).

2.1.2 Prosodic information

Nonverbal behaviour extends beyond visible signals such as posture, gestures, and
facial expressions; it also encompasses auditory cues, specifically the intonation
and tone of our speech. In this context, we are referring to “prosody”, which goes
beyond the content of speech and carries its own set of meaningful information.

The term "prosody" encompasses all suprasegmental aspects of speech, as de-
fined by Xu (Xu [2019]). It extends beyond the mere lexical meaning of an utter-
ance and imparts important supplementary information. Prosody serves to imbue
spoken words with additional significance and to maintain the engagement of the
listeners. It entails various elements, including emphasizing specific words, em-
ploying variations in voice pitch, adjusting voice loudness, modulating intonation
patterns, and utilizing different voice timbres.

"Prosody" encompasses a range of sounds with varying frequencies and inten-
sities. Deciphering these sounds reveals that some carry meaningful speech, while
others convey emotions or interpersonal attitudes (Argyle [2013]). In the act of
speaking, we possess the capacity to modulate these aspects within our voice. We
can wield a voice that is "high" or "low" in pitch, "loud" or "soft" in volume, and
"fast" or "slow" in speech rate. This intricate interplay involves elements such as
rhythm, stress, and intonation, bestowing a musical quality upon speech. Speech
prosody is far from mere musicality; it bears a wealth of information, encompass-
ing the speaker’s emotional state and the emphasis they wish to convey. These
acoustic prosodic cues that emerge during speech are integral components of lan-
guage.

Beyond syntax and emphasis, prosodic signals effectively communicate emo-
tional nuances. These signals not only offer insights into the speaker but also
influence the message’s interpretation. The manner in which an individual speaks
can provide glimpses into their personality, age, social standing, and identity. This
multitude of cues can be systematically classified.
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Employing accents or distinctive "intonations" imparts supplementary layers
of meaning to transmitted messages, such as using question intonation for state-
ments. The evaluation of prosodic cues offers significant insight into the under-
lying implications of a speaker’s words. A single phrase can hold vastly different
meanings within varying contexts, and the employed prosodic features hold sub-
stantial sway over these meanings.

Moving forward, let’s delve into the definitions of several commonly used terms
when discussing prosody:

Pitch

Pitch, as explained by Titze (Titze [1994]), stands out as the most prominent
attribute of the voice, characterizing its "highness" or "lowness." The perception
of pitch is subject to the influence of several acoustic parameters, including am-
plitude and resonant (formant) frequencies. Nevertheless, the fundamental fre-
quency (f0) emerges as the primary determinant of pitch. f0 represents the rate
at which vocal folds vibrate during phonation(Titze [1994]). It’s noteworthy that
pitch and f0 are frequently treated as if they are almost interchangeable, although
pitch serves as a perceptual feature, whereas f0 pertains to the physical charac-
teristics of the sound waveform.

When it comes to variations in habitual speaking f0 among individuals, these
differences hinge on variations in vocal fold length and thickness. Furthermore,
individuals exhibit the capacity to modulate their pitch, whether consciously or
unconsciously, in diverse contexts. This modulation allows for the adaptation of
pitch to specific situations and communication needs.

Tone

In the realm of linguistics, "tone" refers to a modulation in the pitch of one’s voice
during speech. This term finds its primary application in languages known as
"tone languages," where pitch plays a vital role in distinguishing words and gram-
matical categories. In such languages, the nuances in pitch serve as a means to
differentiate words that are otherwise identical in terms of their consonant and
vowel sequences. For instance, in Mandarin Chinese, the word "man" can take on
the meaning of either "deceive" or "slow" based on its pitch (Laplante and Ambady
[2003]).

It’s important to note that in tone languages, the significance lies not in abso-
lute pitch values but in relative pitch distinctions. These languages typically utilize
a finite set of pitch contrasts, known as "tones," which operate at the syllabic level.
These tones play a crucial role in shaping the meaning of words and expressions
within these languages.

Stress

"Stress" denotes the heightened intensity or emphasis imparted to a particular
"syllable" or "word" within a spoken expression, resulting in an audibly louder pro-

17



2.2. HUMAN CONVERSATION

nunciation. The same phrase can assume diverse meanings contingent upon which
words are stressed, thereby guiding the listener’s focus (Pierrehumbert [1990]).

Loudness

Loudness is the perception of how intense sounds appear to be, what the audience
actually perceives and it correlates with the physical strength (amplitude). The
greater the amplitude of the vocal cord vibration, the louder the sound.

Speech tempo

Speech tempo serves as a quantifiable metric that assesses the quantity of specific
speech units produced within a specified timeframe. This parameter is recognized
for its propensity to fluctuate based on a range of factors, encompassing contextual
elements, emotional states, disparities between individual speakers, as well as
variances among various languages and dialects.

The precision of speech tempo measurements can be significantly influenced
by the presence of pauses and hesitations within spoken discourse. Consequently,
it is customary to distinguish between two distinct facets: speech tempo inclusive
of pauses and hesitations, termed "speaking rate," and speech tempo that excludes
these interruptions, referred to as "articulation rate."

2.2 Human Conversation

Conversation stands as one of the most prevalent applications of human language.
It serves as a means through which individuals socialize, foster relationships, and
sustain connections with each other. While verbal communication is integral to
conversations, the dynamics encompass much more than linguistic coding. Non-
verbal aspects like eye gaze, body posture, and the contextual backdrop within
which dialogue unfolds hold significant importance.

Conventional discourse has sometimes faced devaluation in scholarly pursuits,
with linguists like Chomsky (Chomsky [2014]) characterizing spontaneously oc-
curring instances of communication as flawed and impacted by nonverbal factors.
Such perspectives, however, detach the linguistic system from its primary role in
human communication. Considering the pivotal role conversation plays in human
social interactions, it’s essential to recognize it as a linguistic endeavour. Since
the 1960s, a growing emphasis has been placed on conversation analysis as an
academic domain (Maynard and Clayman [2003], Goodwin and Heritage [1990],
Heritage [1989]).

Harold Garfinkel (Garfinkel [1991, 2023, 1964]) introduced Conversation Anal-
ysis as a framework for investigating interactive discourse, stemming from the
ethnomethodological tradition within sociology. Goffman (Goffman [1964]) un-
derscored the importance of scrutinizing everyday speech instances, a facet he
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believed had been neglected. According to Goffman, speech operates within a so-
cially organized framework, representing a system of mutually ratified, ritualisti-
cally governed face-to-face interactions. He contended that the study of speech
wasn’t solely about narrowly focused linguistic descriptions, but about under-
standing interactions governed by their own set of rules and structures, which
aren’t intrinsically linguistic in nature. This implies that studying language purely
in linguistic terms doesn’t adequately capture its practical application.

The groundwork laid by Garfinkel and Goffman spurred the evolution of Con-
versation Analysis, fostering an interest in exploring the orderliness of daily life.
Harvey Sacks, building on these ideas in his lectures on conversation in the early
1960s (Sacks [1992]), devised an approach that investigated social order ema-
nating from everyday talk practices. With the contributions of Harvey Sacks, Em-
manuel A. Schegloff, and Gail Jefferson, Conversation Analysis evolved into an
independent area of inquiry, influencing multiple social science disciplines deal-
ing with human communication (Lerner [2004]). Rooted in ethnomethodology,
Conversation Analysis aimed to comprehend the mechanisms of achieving order
in social interactions, employing empirically based, micro-analytic methodologies
(Maynard and Clayman [2003]).

Sacks posited that conversation inherently bore an orderly nature, consistently
evident across all junctures (Sacks [1992]). This orderliness emerged from the
attainment of the same outcomes using analogous methods within comparable
contexts. Conversations were shaped through sets of practices, enabling speak-
ers to execute specific actions in distinct contexts, actions recognized as such by
fellow participants. Central to the exploration of Conversation Analysis was the
delineation and elucidation of the skills ordinary speakers wield and rely upon in
participating in coherent, socially structured interactions. In its most basic form,
this aspiration seeks to delineate the procedures through which conversationalists
navigate their behaviours and interpret those of others (Heritage [2013]).

To facilitate a better comprehension of the upcoming content, let’s take a mo-
ment to outline the definitions of several frequently used terms.

Turn, turn-taking, turn-yielding, turn-holding and interruption

A speaking turn refers to a continuous segment of speech during which a speaker
communicates without significant interruptions.

Turn-taking is an organizational pattern in conversations and discourse where
participants take their speaking roles one after the other, promoting a seamless
transfer of conversational initiative in interpersonal communication (Sacks et al.
[1978]).

Turn-yielding involves the use of audible or visible signals to indicate that the
current speaker is concluding, allowing the next person to begin speaking.

Turn-holding indicates that the speaker is not yet finished with their current
topic and intends to retain the speaking role for the ongoing turn.

An interruption is a speech action when one person breaks in to interject while
another person is talking (Bennett [1978]).

19



2.2. HUMAN CONVERSATION

Overlap

In instances of overlap, participants typically employ an "Overlap Resolution De-
vice" to swiftly address the situation: either one participant withdraws after a beat
or two (e.g., syllables), or they employ tactics to vie for the turn (e.g., speaking
faster or louder) (Jefferson and Schegloff [1975], Schegloff [2000, 2001]).

The turn-taking system also minimizes overlapping speech to uphold the norm
of "one-speaker-at-a-time" (Sacks et al. [1978]). However, this doesn’t negate
the occurrence of overlapping speech, which frequently happens. Some types of
overlap convey strong affiliative tendencies, such as recognition overlap, which
can signal profound agreement (Vatanen [2018]). Yet, participants often view
overlap as a deviation from the norm and actively address it through interactional
strategies (Drew [2009], Jefferson and Schegloff [1975], Schegloff [2000, 2001]).

Overlap can arise at various structural junctures in turn construction (Drew
[2009], Jefferson [1973, 1984, 1986], Jefferson and Schegloff [1975], Vatanen
[2018]): (i) when a subsequent speaker enters at a point where they anticipate the
ongoing speaker’s content (termed recognitional onset); (ii) when a subsequent
speaker initiates a turn simultaneously as the current speaker continues (transition
space onset); (iii) when a subsequent speaker begins a turn immediately after the
current speaker continues (post-transition onset); and (iv) when a subsequent
speaker begins a turn at a point where the current speaker is evidently not near
completion (interjacent onset).

Overlap occurring at these distinct points carries distinct implications. For in-
stance, in cases of recognitional onset, the completion of a turn offers a natural
opportunity for the ongoing speaker to step back, thus resolving overlap. How-
ever, when a participant launches a turn at an interjacent position, they actively
assert their claim to the turn when another already holds the right, potentially
necessitating more competitive approaches (Schegloff [2000]).

Pauses, gaps, and lapses

Sacks et al. (Sacks et al. [1978]) distinguished between three kinds of acoustic
silences in conversations: pauses, gaps, and lapses based on what’s before and
after the silence and the length of the silence. Pauses referred to silences within
turns; gaps referred to shorter silences between turns, lapses referred to longer
silences between turns. The statistical study of turn-taking began early, prompted
by developments in telephony (Norwine and Murphy [1938]). It has become
standard to represent overlaps and gaps on a single time scale called ‘the Floor
Transfer Offset (FTO)’, in which positive values correspond to gaps, and negative
values represent overlaps. (See Figure 2.3)
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Figure 2.3 (1) t2− t1 < 0, negative FTO. (2) t2− t1 > 0, positive FTO.

Inter pausal unit (IPU)

Inter pausal units are defined as speech units from a single speaker without pauses.
IPUs are often defined as continuous speech delimitated by silence lasting more
than 200ms.

Transition Relevance Place (TRP) & Turn Construction Unit (TCU)

A Turn Construction Unit (TCU) stands as a foundational speech segment within
the realm of conversation analysis. This concept was initially introduced in the
work of Sacks, Schegloff, and Jefferson in 1974 (Sacks et al. [1978]) with the
aim of delineating the constituent portions of dialogue that could encompass a
full turn. The identification of a TCU hinges on the search for a potential point of
completion within an utterance. Three key criteria govern the delineation of what
constitutes a TCU:

• Intonationally Complete: An utterance exhibits potential completion when
accompanied by a falling intonation that serves as a signal of its conclusion.

• Pragmatically Complete: An utterance demonstrates possible fulfilment within
the contextual framework of the ongoing conversation.

• Grammatically Complete: An utterance achieves possible syntactic complete-
ness in terms of its grammatical structure.

The conclusion of a TCU is marked by what’s termed as a Transition Relevance
Place (TRP). This juncture serves as a pivotal point where the speaking turn can
transition either to another participant in the conversation or allow the current
speaker to continue with another TCU. The notion of TCU illuminates the intri-
cate way in which conversational turns are constructed, not only considering their
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structural attributes but also their alignment with the dynamics of intonation, syn-
tax, and pragmatic context. This analytical concept provides a finer understanding
of the building blocks that underlie the ebb and flow of dialogue.

2.2.1 Turn-taking

As mentioned previously, Conversation Analysis serves as a tool for deciphering
communication patterns in social settings. It centres on conversations involving
one or more speakers who alternate speaking roles. Turn-taking, a fundamental
aspect of communication, refers to the exchange of speaking turns among partici-
pants. This exchange encompasses the switch between a speaker and a listener or
the transition to a new speaker within a simultaneous conversation (Ghilzai and
Baloch [2015]).

In this context, a "turn" or "turn-at-talk" denotes an utterance issued by a
speaker with the right to speak. Investigating the dynamics of turn-taking in-
volves delving into the linguistic and other communicative tools employed in con-
structing these turns-at-talk. Additionally, it entails an examination of the social
mechanisms regulating the distribution and allocation of the privilege to speak.

A "turn" signifies the instance where one speaker commences speaking prior to
the next speaker. In this context, the initial speaker either initiates or retains the
turn for the subsequent speaker. The ensuing speaker needs to discern the expec-
tations of the first speaker. In essence, conversation analysis aims to comprehend
how participants discern and respond to fellow speakers within a discourse. As
cited in Sari, Adnyani and Paramarta (Sari et al. [2021]), observed that "taking
the turn can be tricky." This concept holds interest due to its influence on the
overall organization of conversations.

Sacks et al. (Sacks et al. [1978]) put forth the idea that conversations are a
fundamental component of social organization and are governed by social norms.
Their proposed model comprises turn units and rules that are applied to these
units. These turn units vary in TRP (size and can be indicated as full turns through
prosody. The conclusion of such a unit is labelled as a transition relevance place).
The rules they outlined are as follows:

1. If the current speaker C chooses the next speaker N, then C must cease speak-
ing, and N should start speaking. This selection process may involve address
terms, gaze, or, in the case of dyadic conversation, defaults to the other par-
ticipant.

2. If C does not select N, then any participant has the opportunity to self-select,
with the first person to do so gaining the right to the next unit.

3. If no other participant self-selects, C may continue speaking.

A seminal study by Emanuel A. Schegloff (Schegloff [2000]) delved into con-
versational analysis of turn-taking strategies, including aspects like overlapping,
interruption, and prosody. The findings underscored that interruptions in con-
versation serve as indicators for addressing other utterances. Another study by
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Young (Young et al. [2015]) delved into the conversational analysis of turn-taking
within an English discussion class, revealing that students employed turn-taking
strategies while acquiring a second language.

Turn-taking stands as a foundational organizational principle within human
social interactions (Levinson [2016], Sacks et al. [1978]). While the specifics of
turn-taking systems may differ across linguistic cultures, the fundamental rules
outlined by Sacks, Schegloff, and Jefferson bear wide cross-cultural applicability
(Dingemanse and Floyd [2014], Stivers et al. [2009]). Participants in conversa-
tions structure their dialogues through sequences of actions, following the norm
of one-speaker-at-a-time. The turn-taking system is arguably among the few true
universals in communication. Organizing discourse systematically and coherently
serves as a basic prerequisite for shared understanding to thrive (Moerman and
Sacks [1988], Sacks et al. [1978], Schegloff [1992]).

Complementing the turn-taking system, sequence of organization principles
(Schegloff [2007]) have implications for comprehending both speech and the ab-
sence of speech at junctures where it’s anticipated (i.e., non-talk) (Lerner [2019],
Sacks et al. [1978]). While certain silences are permissible (Stivers et al. [2009]),
the completion of a turn in which a participant designates another participant to
perform a specific action (e.g., posing a question necessitating an answer) often
interprets silence as the discernible omission of that action (Bolden et al. [2012],
Goodwin [1979], Lerner [2003], Pomerantz [1983], Schegloff [2007], Stivers and
Rossano [2010]). Such silences might be interpreted as a refusal to contribute fur-
ther or as a sign of a forthcoming less favourable or intricate response (Davidson
[1985], Kendrick and Torreira [2015], Robinson [2020]). Even in scenarios where
a next speaker hasn’t been designated, silences amid turns expected to be occu-
pied by speech are viewed as the noticeable absence of dialogue: participants are
expected to "self-select" and offer a turn (Hoey [2020]).

2.2.2 Backchannel

Backchannels, characterized as brief and soft vocalizations like "mm hm", "uh huh",
"yeah", or nonverbal signs like head nod, smile and eyebrow movements, serve as
communication cues from the listener, indicating ongoing attention and possibly
conveying attitudes and uncertainties (Ward [2004]). This phenomenon has been
labelled as "backchannels" (Yngve [1970]), "listener responses" (Dittmann and
Llewellyn [1967]), and "accompaniment signals" (Kendon [1967]). In face-to-face
interactions, backchannels can also manifest in the visual domain through actions
like nodding or facial expressions. Backchannels have a unique role in the realm of
turn-taking. They are relatively common, yet they don’t typically qualify as a full
"turn." Consequently, mechanisms need to be in place to accommodate backchan-
nels in these analyses. Similar to how turn transitions often follow specific cues,
the timing of backchannels is also connected to cues that invite backchannel re-
sponses. As indicated in (Hjalmarsson and Oertel [2012]), during face-to-face
interactions, gaze direction serves as a notable cue for inviting backchannels. In
these scenarios, a considerable portion of backchannel communication is nonver-
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bal. Gaze, in particular, plays a crucial role in conveying various communicative
functions, such as indicating objects, expressing intimacy, conveying dominance,
and revealing feelings of embarrassment. These cues arise when the speaker seeks
signs of comprehension from the listener (Clark [1996]). Because the listener’s
goal isn’t to seize the conversational turn when producing a backchannel (or other
forms of cooperative overlaps), it’s vital for the current speaker to be able to dis-
tinguish these instances from attempts to take over the speaking turn.

2.2.3 Interruption

Interruption, as a distinctive manifestation of turn-taking dynamics, represents a
natural occurrence in conversations and holds a significant place in the analysis of
conversational structures. It reflects the interrupter’s effort to seize the conversa-
tional floor before the ongoing speaker completes their utterance.

Numerous researchers have interpreted interruptions as indications of power
dynamics and dominance, given their contravention of the principle of "one person
speaks at a time" (Ferguson [1977], Tannen et al. [1991]). However, the interpre-
tation of interruptions can vary based on the context and the response of the inter-
rupted party. Some interruptions are not necessarily indicative of power dynamics
or discomfort; rather, they can serve as cooperative signs aimed at assisting the
speaker, such as providing cooperative completions or enhancing engagement and
rhythm in the conversation (Hutchby [1996]).

Schegloff (Schegloff [2001]) distinguished between problematic and unprob-
lematic interruptions in conversational dynamics. Problematic interruptions occur
when a listener disrupts the speaker’s speech with the intention of taking the floor,
preventing the speaker from completing their turn. Conversely, unproblematic
overlap involves a brief period of simultaneous speech where one speaker finishes
their turn while another starts prematurely.

Goldberg’s (Goldberg [1990]) taxonomy categorizes interruptions into two
overarching strategies: competitive and cooperative interruptions. These strate-
gies serve to shape the content and redirection of conversational exchanges. Al-
though both strategies share certain local discourse characteristics, they play dis-
tinct roles in the broader context of interlocutor interaction. In contrast to co-
operative interruptions, competitive interruptions manifest when the listener in-
terrupts with the intention of exerting control over the interaction (Goldberg
[1990]).

Distinguishing between overlaps and interruptions is a crucial distinction to
make. Bennett (Bennett [1978]) emphasizes that overlaps can be objectively de-
tected within a corpus, whereas the concept of interruptions demands a degree
of interpretation—specifically, recognizing when one participant is infringing on
the speaking rights of another. It’s important to note that interruptions and over-
laps are not interchangeable terms, despite the definitions provided earlier. In-
terruptions can also occur independently of overlap, for instance, when a speaker
momentarily pauses (completing an IPU without yielding the turn) and the other
participant begins to speak (Gravano and Hirschberg [2012]). This complexity
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complicates the task of automatically identifying interruptions solely based on
Voice Activity Detection (VAD) patterns. In fact, an interruption could occur with-
out any overlap involved—essentially, taking the conversational turn following an
IPU that isn’t a Transitional Relevance Place (TRP). Gravano and Hirschberg (Gra-
vano and Hirschberg [2012]), in their manual annotation of interruptions within
a task-oriented dialogue corpus, observed that non-overlapping IPUs labelled as
interruptions exhibited higher intensity, pitch levels, and speech rates at their on-
set.

The key points of this Chapter:

Multimodal human behaviour

• Nonverbal signals such as body language, facial expressions, vocal
tones, appearance, touch, personal space, and other physical indica-
tors convey a substantial amount of information to those involved in
communication, helping to emphasize the intended message.

• Speech prosody cues are integral components of language, they encom-
pass the speaker’s emotional state, attitude, certainty and the emphasis
they wish to convey.

• Facial expression is the quintessential nonverbal conduit for conveying
emotions and attitudes and can be encoded into Action Units through
facial muscle movements.

Human conversation

• Conversations are far from being confined to the realm of language
alone; they are dynamic tasks that emerge through the collaborative
interplay of multiple modalities.

• turn-taking stands as a foundational organizational principle within
human social interactions, it constitutes a central pillar in the realm of
conversational analysis.

• Backchannels are brief and soft vocalizations like "mm hm", serve as
communication cues from the listener, indicating ongoing attention
and possibly conveying attitudes and uncertainties.

• Interruption reflects the interrupter’s effort to seize the conversational
floor before the ongoing speaker completes their utterance.
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This thesis focuses on the management of interruptions in interactions between
human users and virtual agents. The overarching goal is to delve into the char-
acterization of interruptions and empower virtual agents to initiate interruptions
with appropriate behaviours and at suitable moments, ensuring effective commu-
nication. The preceding chapter introduced various terms pertinent to conversa-
tion analysis. In this chapter, we delve into the realm of existing interruption and
turn-taking management approaches, encompassing both rule-based and data-
driven methodologies. We explore the underlying principles of these approaches
and shed light on their respective limitations.
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3.1 Turn-taking cues

Despite the intricate integration of various modalities in contemporary human
communication, it is essential to view the entire system as a collection of intercon-
nected systems that have evolved over the course of approximately two and a half
million years, coinciding with the emergence of humans as cognitively advanced,
tool-using beings (Levinson and Holler [2014]).

The role of prosody in turn-taking has garnered significant interest and de-
bate. Prosody encompasses the nonverbal elements of speech, including intona-
tion, loudness, speaking rate, and timbre. It serves multiple crucial functions in
conversations, such as highlighting prominence, disambiguating syntax, convey-
ing attitude, uncertainty, and topic shifts (Ward [2019]). Ford and Thompson
(Ford and Thompson [1996]) integrated intonation into their definition. Across
various languages, research indicates that level intonation, occurring in the mid-
dle of the speaker’s fundamental frequency range, near the end of an Inter-Pausal
Unit (IPU), often acts as a turn-holding cue. This applies to languages such as
English (Duncan [1972], Local et al. [1986], Gravano and Hirschberg [2011]),
German (Selting [1996]), Japanese (Koiso et al. [1998]), and Swedish (Edlund
and Heldner [2005]). In addition, studies on English and Japanese suggest that
both rising and falling pitch can be found in turn-yielding contexts (Gravano and
Hirschberg [2011], Local et al. [1986], Koiso et al. [1998]). However, research
on Swedish reveals that while falling pitch serves as a turn-yielding cue, the rising
pitch is not distinctly associated with either turn-holds or turn-shifts (Edlund and
Heldner [2005], Hjalmarsson [2011]).

Exploring breathing in conversation, McFarland (McFarland [2001]) identified
increased expiratory duration before speech onset during turn-shifts, possibly re-
flecting respiratory system preparation for speech production. Rochet-Capellan
and Fuchs (Rochet-Capellan and Fuchs [2014]) also explored breathing as a coor-
dination cue, finding no broad correlation between breathing and turn-taking rates
or general breathing synchronization between participants. Torreira et al. (Tor-
reira et al. [2016]) focused on inbreathes right before answering a question and
noted their occurrence shortly after the question ended, suggesting a link between
breathing and response planning. This suggests that breathing could be seen as a
turn-initial cue, indicating that the next speaker has recognized the turn’s end and
is preparing a response. Ishii et al. (Ishii et al. [2014]) delved into breathing dur-
ing multi-party interactions, finding that when holding the turn, a speaker inhales
more rapidly and deeply than when yielding the turn. Additionally, speakers about
to take the turn tend to take deeper breaths compared to non-speaking listeners.

In face-to-face interaction, eye gaze serves numerous vital communicative func-
tions. Evolutionarily, humans have learned that others’ eye gaze (and their at-
tention) offers valuable information for coordinating activities (Tomasello et al.
[2007]). Kendon (Kendon [1967]) conducted one of the earliest comprehensive
analyses of eye gaze’s role in turn-taking, observing video recordings of dyadic in-
teractions. He noted a general pattern: the speaker initially averts gaze but shifts
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it towards the listener at the turn’s end. This observation aligns with findings from
other studies (Goodwin [1981], Oertel et al. [2012], Jokinen et al. [2010]).

In multi-party interactions, gaze plays a pivotal role in selecting addressees
and next speakers (Auer [2018], Jokinen et al. [2013], Ishii et al. [2016], Müller
et al. [2021]). Gaze toward a participant serves as both a turn-yielding cue and a
signal for selecting the next speaker. Hemamou et al. (Hemamou et al. [2019])
conducted research on significant non-verbal social cues in asynchronous job video
interviews, specifically examining the connection between the recruiter’s focus
and specific portions of the candidate’s responses. They found that increases in
attention are more probable during turn-taking (at the start of the response) and
turn-giving (at the conclusion of the response) which is similar to what is observed
in in-person face-to-face interactions, and somehow aligned with the findings on
gaze shifts.

Analyzing turn-taking cues, Duncan (Duncan [1972]) found specific gestures
exerted a strong turn-holding effect. When speakers gestured, particularly with
tense hand positions or movements away from the body, listeners rarely attempted
to take the turn. The notion that completing hand gestures acts as a turn-yielding
cue is supported by other studies (Zellers et al. [2016]). Holler et al. (Holler
et al. [2018]) explored how bodily signals impact language processing in inter-
action, discovering that gestures accompanying questions led to quicker response
times. This timing appeared to align with gesture terminations, suggesting that
gestures help listeners anticipate turn endings. Sikveland and Ogden (Sikveland
and Ogden [2012]) observed speakers temporarily pausing gestures during mid-
turn clarifications or feedback from others before resuming their turn and gesture.

In the context of multi-party conversations, researchers have observed that the
frequency of turn-taking is positively associated with cohesion among group mem-
bers. High-cohesion groups tend to have more active and engaged participants
who actively take turns in the conversation (Kantharaju et al. [2020]).

In the domain of communication, a sophisticated coordination of various artic-
ulators and modalities is required. Messages encompass both auditory and visual
elements, spanning speech, non-speech vocalizations, and involving movements
of the head, face, hands, arms, and torso, a multimodal combination of predictive
features can lead to a good accuracy level for feedback timing prediction (Boudin
et al. [2021]). Despite the complexity of this integration, it is noteworthy that mul-
timodal messages tend to be processed faster than unimodal messages (Holler and
Levinson [2019]). Across different modalities, turn-taking cues can be either re-
dundant or complementary. Combining multiple cues can enhance recognition or
prediction of partner intentions, potentially explaining the preference for face-to-
face interaction. For conversational systems, where identifying these subtle cues
poses challenges, employing various cues in combination could enhance system
robustness.
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3.2 Handling turn-taking

3.2.1 Turn-taking in human-agent interaction

One of the very first works in turn-taking models, as presented by Thórisson et
al. (Thórisson [1998]), delves into the concept of real-time decision-making in
human-computer interactions, particularly in face-to-face communication scenar-
ios. Thórisson emphasizes the importance of real-time decision-making by com-
puter agents involved in such interactions. In human communication, people
make constant decisions about when to speak, when to listen, when to use non-
verbal cues, and how to interpret the cues of others. To engage effectively in such
interactions, agents should exhibit similar real-time decision-making capabilities.
In addition to processing and understanding spoken language, computer agents
must interpret non-verbal cues and decide when and how to respond appropri-
ately. This involves a level of decision-making that goes beyond traditional natural
language processing. Achieving seamless coordination between these modalities
is crucial for effective human-agent interaction.

Cassell and colleagues (Cassell et al. [2007]) then introduced the concept of
conversational coordination, which encompasses the harmonization of both ver-
bal and non-verbal behaviours between conversational participants, extending
this concept to interactions involving users and embodied conversational agents
(ECAs).

In human-computer interaction (HCI), conversational coordination assumes a
pivotal role in the establishment of rapport, a fundamental element of effective
communication. Rapport-building with users significantly enhances the quality
of interactions and overall user satisfaction. The integration of non-verbal cues,
including gestures, facial expressions, and body language, holds considerable im-
portance in facilitating communication and fostering rapport in HCI scenarios,
particularly within the realm of embodied language processing. A comprehensive
understanding of these dynamics is imperative for the development of highly ef-
fective and engaging computer agents, especially those designed to engage users
through natural and intuitive interactions (Cassell et al. [2007]).

Cassell et al. mentioned turn-taking as an essential component of this coor-
dination. Effective conversational coordination entails the seamless exchange of
conversational turns between users and ECAs. Similar to Thórisson, Cassell et al.
emphasize that ECAs need to exhibit an understanding of turn-taking dynamics,
not just in terms of processing spoken language but also in interpreting non-verbal
cues and making real-time decisions about when and how to respond. By incorpo-
rating effective turn-taking strategies into ECAs, rapport-building and the overall
quality of human-computer interactions can be significantly improved.

In another line of research, turn-taking behaviour is influenced by the per-
sonalities and interaction objectives of those involved in the conversation. Maat
et al. (Ter Maat and Heylen [2009], Ter Maat et al. [2010]) explored how the
implementation of a simple communicative function, designed to manage interac-
tions, could impact users’ perceptions of an agent. They specifically investigated
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how different turn-taking strategies, applied in human face-to-face conversations,
could shape impressions of virtual agents in terms of personality (agreeableness),
emotion, and social attitudes (e.g., friendliness).

Janowski et al. (Janowski and André [2019]) introduced a turn-taking model
grounded in psychological theories that explore the interplay between an indi-
vidual’s personality, interpersonal stance, and diverse interaction goals. In this
model, the agent’s decision to speak or wait is determined by the expected util-
ity of these actions in conveying the intended personality traits. They argued that
variations in an agent’s speaking style, arising from different Extraversion settings,
can effectively convey the desired perceptions of its extraversion, agreeableness,
and status. Personality is communicated through multimodalities and should be
incorporated into embodied agents based on the specific context, adjusting their
behaviour to align with user preferences (Kiderle et al. [2021]).

Fischer et al. (Fischer et al. [2021]) proposed effective in initiating interac-
tions with people in public spaces by adapting the loudness of the robots’ voice
dynamically to the distance of the respective person approaching, thus indicating
who it is talking to. It furthermore tracks people based on information on body
orientation and adapts its gaze direction accordingly.

There are also several studies that explored the use of reinforcement learning
for turn-taking strategies. Selfridge and Heeman (Selfridge and Heeman [2010])
proposed an approach in which turn-taking was treated as a negotiation process
based on the perceived importance of the intended utterance. Jonsdottir et al.
(Jonsdottir et al. [2008]) demonstrated how two artificial agents could develop
turn-taking skills through interaction, learning to recognize each other’s prosodic
cues. Initially, they exhibited short pause durations and frequent overlaps, but
over time, interruptions decreased, and their turn-taking patterns became more
human-like. Khouzaimi et al. (Khouzaimi et al. [2015]) employed reinforcement
learning to create a turn-taking management model in a simulated environment.

3.2.2 End-of-turn detection and prediction

Riest et al. (Riest et al. [2015]) delved into the mechanisms that underlie the hu-
man capacity for anticipation in turn-taking and investigated the diverse sources
of information including prosody, syntax, context, and non-verbal cues, that con-
tribute to this anticipation process. Listeners are indeed able to anticipate a turn-
end and this strategy is predominantly used in turn-taking.

The examination of turn-taking in conversational systems primarily revolves
around determining when the end of the user’s turn is. This section delves into
the existing approaches for this aspect. These approaches can be categorized into
three types.

Silence-Based Models

Many systems employ an end silence duration threshold to identify the completion
of a speech segment using Voice Activity Detection (VAD). After the system yields
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the turn, it waits for user responses, allowing a certain duration of silence. If
this silence exceeds the no-input-timeout threshold, the system resumes speaking,
such as by reiterating the last question. When the user begins to speak, the end-
silence timeout demarcates the conclusion of the turn. However, finding an ideal
threshold to eliminate both issues entirely is often unattainable, leading to turn-
taking challenges in systems following this simplistic model (Ward et al. [2005],
Raux et al. [2006]).

IPU-Based Models.

Operating under the assumption that the system should not initiate speech while
the user is speaking, a common approach involves detecting the end of Inter-Pausal
Units (IPUs) in the user’s speech using VAD. This approach is somewhat similar to
the silence-based model mentioned earlier but employs shorter silence thresholds,
like 200ms. Once the end of an IPU is identified, the system uses turn-taking
cues extracted from the user’s speech to determine the presence of a Transition
Relevance Point (TRP). If these TRPs are accurately recognized, the system can
assume the turn with minimal gaps, while avoiding interrupting the user at non-
TRPs. Bell et al. (Bell et al. [2001]) presented an early IPU-based model, that
delves into the real-time management of fragmented utterances in dialogue sys-
tems. It tackles the challenge of handling spoken language that is often disfluent,
fragmented, or interrupted. whereas Sato et al. (Sato et al. [2002]) introduced a
more data-driven approach that also considered additional cues and employed a
decision tree to classify pauses exceeding 750 ms and took the spotlight as a tool
for determining turn-taking in spoken dialogue systems. Similar models were ex-
plored by Schlangen (Schlangen [2006]) to predict when a speaker will relinquish
the floor and when a listener will take their turn, and Meena et al. (Meena et al.
[2014]) for timing feedback responses in a map task dialogue system.

Continuous Models.

In continuous models, the user’s speech is processed continuously to identify suit-
able points to assume the turn or make projections. Incremental processing em-
powers the system to delve deeper into the user’s utterance and make ongoing
turn-taking decisions. Skantze and Schlangen (Schlangen and Skantze [2011])
introduced an early example of a fully incremental dialogue system. Skantze
(Skantze [2017]) proposed a general continuous turn-taking model, trained self-
supervisedly on human-human dialogue data. This model processed audio frame-
by-frame (20 frames per second), employing an LSTM to predict speech activity
for both speakers within a future 3-second window. Similar models were im-
plemented by Ward et al. (Ward et al. [2018]) and Roddy et al. (Roddy et al.
[2018a]), who delved into various speech features aiding predictions. Roddy et
al. (Roddy et al. [2018b]) expanded the architecture by processing acoustic and
linguistic features in separate LSTM subsystems with differing timescales. Recent
works, such as Ruede et al. (Ruede et al. [2019]) and Hussain et al. (Hussain et al.
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[2019]), have utilized LSTMs to predict backchannels and address backchannel-
generation challenges using various features and reinforcement learning in con-
texts ranging from corpus analysis to human-robot interaction.

3.2.3 Generating turn-taking cues

Up to this point, we have primarily discussed the interpretation of turn-taking
cues from the user. Nevertheless, it’s equally crucial to consider how to generate
turn-taking cues effectively, ensuring that the user knows when it’s their turn to
speak and when it’s not. If the system fails to manage this correctly, users may
inadvertently begin speaking at the same time as the system. Several studies have
explored methods for generating appropriate behaviours in animated agents to
facilitate turn-taking (Pelachaud et al. [1996], Thórisson [1999], Cassell et al.
[2000]).

In a study by Kunc et al. (Kunc et al. [2013]), researchers investigated the ef-
fectiveness of visual and vocal turn-yielding cues in a dialogue system that utilized
an animated agent. Their findings indicated that visual cues were more successful
in facilitating turn-taking than vocal cues.

Another study by Skantze et al. (Skantze et al. [2014]) delved into the im-
pact of gaze, syntax, and filled pauses as turn-holding cues during pauses in a
human-robot interaction scenario. In this context, the robot was guiding the user
in drawing a route on a map placed between them. When the robot directed
its gaze towards the map (rather than the user), used incomplete syntax, or in-
corporated filled pauses, the user was less likely to continue drawing or provide
feedback compared to situations where the robot maintained eye contact with the
user or used complete phrases.

Hjalmarsson and Oertel (Hjalmarsson and Oertel [2012]) examined the influ-
ence of gaze as a cue to invite backchannel responses. They conducted an exper-
iment where participants were asked to give feedback while listening to a virtual
agent tell a story. The agent typically looked away while speaking but made eye
contact with the user at specific points. The results revealed that listeners were
more inclined to provide backchannel responses when the agent established eye
contact, although there was notable variability in their behaviour, suggesting the
presence of additional significant factors.

3.3 Interruption cues

Numerous studies underscore the significance of prosodic features, particularly
fundamental-frequency (f0) and intensity, as pivotal cues in conversation analysis
(French and Local [1983], Kurtić et al. [2013], Truong [2013]). Further research
by (Shriberg et al. [2001b], Gravano and Hirschberg [2012]) demonstrates that
interrupters tend to amplify their energy and vocal tone when attempting to break
into the ongoing discourse. (Hammarberg et al. [1980]) also provides similar
evidence through observations of pitch and amplitude variations. The features of
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interrupters, including speech rate, truncations, and repetitions, have been subject
to analysis by conversational analysts. For instance, (Schegloff [2000]) identifies
the use of variations in prosodic profiles and repetitions to indicate competitive-
ness among interrupters. This study further reveals that interrupting sentences
often exhibit a faster speaking rate, shedding light on the role of speech rate in
resolving speaker conflicts.

In the domain of interruption, researchers have explored the interplay between
acoustic features and conversation dynamics. A study by (Gravano and Hirschberg
[2012]) delves into the acoustic characteristics of telephonic conversations. They
highlight significant differences in intensity, pitch level, speaking rate, and Inter-
Pausal Unit (IPU) duration for interruptions compared to other turn transition
instances. These findings underscore the intricate connection between prosody
and the interruption phenomenon.

Gaze does not consistently serve the function of floor apportionment. Diverse
studies have revealed varying outcomes regarding the gaze’s role in interruption.
(Cook and Lalljee [1972]) found more interruptions in the vision condition com-
pared to the no-vision condition. (Jaffe et al. [2001]), conversely, observed fewer
overlaps and shorter switching pauses in no-vision conditions. In contrast, (Ar-
gyle et al. [1968]) manipulated visibility levels and noted the highest interruption
frequency in scenarios with limited visibility. Collectively, these investigations sug-
gest that gaze might not play a central role in determining speaker turns during
conversations.

Despite the limited number of interruptions observed, Kendon (Kendon [1967])
noted that speakers tend to maintain eye contact during problematic interruptions
until one prevails. Brône et al. (Brône et al. [2017]) conducted investigations into
dyadic and triadic conversations and found that individuals wishing to interrupt
often averted their gaze before a problematic interruption and then typically initi-
ated the interruption by making direct eye contact with the interrupted speaker.

Harrigan (Harrigan [1985]) examined verbal and non-verbal behaviours re-
lated to turn-taking and found that looking away was a prevailing strategy in
problematic interruptions. Zima et al. (Zima et al. [2019]) discovered that dur-
ing simultaneous speech, in 54% of cases with mutual gaze, speakers who first
averted their gaze emerged as winners in the competition for a turn, and 80% of
these speakers successfully completed their turn, whether it involved turn-holding
(problematic interruption) or turn-yielding (unproblematic overlap). Further-
more, in 62% of interruption cases without mutual gaze, the speaker who gazed
at the other speaker lost the competition for the turn, whereas, in 75% of cases
where the speaker avoided another speaker’s gaze, they won the competition.

Interruption frequency has been found to be linked to the relationships be-
tween interlocutors. Tannen et al. (Tannen [1994]) suggest that interruptions can
serve as indicators of cohesion within a group. The occurrence of overlaps and
interruptions during interactions has also shown a positive correlation with group
cohesion. Additionally, instances of mutual gaze occurring during interruptions
have been found to be positively correlated with the overall cohesion of the group
(Kantharaju et al. [2020]).
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(Beattie [1982]) emphasizes that interruptions are influenced by the conver-
sation’s contextual settings. For instance, in political interviews, interruptions are
considerably prevalent as politicians interrupt almost twice as often as their inter-
viewers.

Moreover, interruptions can provide insights into speech patterns and distinct
speech styles linked to personality traits. For instance, (Rim [1977]) observed
that high neurotic individuals experience more interruptions, while extroverts are
more likely to interrupt and speak simultaneously compared to introverts.

Deliberately disregarding or being excessively attentive to these intentions can
convey additional information about the context of the interaction, a participant’s
personality, or their attitude toward the other person. How virtual agents manage
interruptions can also lead human observers to attribute similar characteristics
which are linked to specific human personality traits and attitudes (Schiller et al.
[2019]).

In the study conducted by Ravenet et al. (Ravenet et al. [2015]), the inter-
ruption behaviour of their agents was shaped by the interpersonal stance they
held toward the speakers at that moment. The observers accurately identified the
attitudes of these agents. Each agent had the capability to convey its attitude in-
dependently, regardless of the attitude of others, the arrangement of the group, or
the gender of the user.

3.4 Handling interruption in human-agent interac-
tion

ECAs should be aware of the ongoing dialogue, including the current speaker,
the topic, and the user’s intent. They should follow social rules of conversation,
such as yielding the floor when appropriate, respecting turn-taking norms and
adapting their behaviour based on the user’s conversational style and preferences,
including their tolerance for interruptions. Instead of waiting for a user’s entire
input to be completed before responding, ECAs should process and respond to
input incrementally. This helps in handling interruptions more naturally (Cassell
et al. [2000]).

3.4.1 User barge-in & overlap management

In the realm of human-agent interaction, dialogue systems can be implemented
using either a simplex channel, where only one participant can speak at a time,
or a duplex channel, allowing the system to listen to the user while it is speak-
ing—that could result in overlapping speech. Enabling a duplex channel requires
the system to incorporate echo cancellation, which eliminates its own voice from
the audio picked up by the microphone. This configuration allows users to "barge
in" during the system’s speech, effectively interrupting the system. However, sev-
eral complexities are associated with barge-in functionality.
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One of the earliest studies on users’ barge-in behaviour was conducted by Heins
et al. (Heins et al. [1997]). Their research revealed that users often attempted to
barge in without explicit notification about the possibility and did so frequently.
These barge-in attempts were often observed to occur at specific points in the
system’s prompt, particularly at syntactic boundaries.

The concept of false barge-ins presents a common challenge when allowing
barge-in functionality. False barge-ins are the detection errors possibly triggered by
non-speech audio like external noise or coughing, or by users providing backchan-
nels without intending to assume the speaking turn. If not effectively addressed,
this can lead to confusion. Heins et al. (Heins et al. [1997]) proposed a potential
solution: adjusting the threshold for detecting user speech based on the likelihood
of interruptions. For instance, the threshold might be raised in scenarios where
user interruptions are less likely and lowered when they are more probable, such
as at syntactic boundaries. Furthermore, users might produce brief backchannels
without an intention to take the speaking turn. Therefore, early prediction of
whether incoming audio constitutes a complete utterance or not, preferably at the
onset of Inter-Pausal Units (IPUs), is crucial. Neiberg and Truong (Neiberg and
Truong [2011]) and Skantze (Skantze [2017]) demonstrated models trained on
human-human data that make such predictions based on acoustic features.

When a user’s utterance is verified as a genuine barge-in, it should be con-
firmed at the end of the IPU. If it turns out not to be a true barge-in, the system
should ideally resume its speech. Strategies for handling such scenarios include
utilizing a filled pause and then restarting from the last phrase boundary, as sug-
gested by Ström and Seneff (Ström and Seneff [2000]). A comprehensive inte-
gration of these aspects is exemplified in Selfridge et al. (Selfridge et al. [2013]),
where incremental speech recognition was employed to continuously determine
whether to pause, continue, or resume the system’s utterance. This model demon-
strated improved task success and efficiency compared to more rudimentary ap-
proaches in a publicly available spoken dialogue system.

Furthermore, Heins et al. (Heins et al. [1997]) noted that users sometimes
barge in before hearing crucial information they need. Hence, there may be sce-
narios where the system should not always permit barge-in, especially if it has im-
portant content to convey. Ström and Seneff (Ström and Seneff [2000]) explored
how the system could communicate this to users when a barge-in attempt is de-
tected. Adjusting the volume of the system’s voice can indicate whether barge-in
is allowed (lowering the volume) or not (raising the volume).

The REA agent represents one of the earliest virtual agent systems capable of
handling interruptions from users (Cassell et al. [2001]). In the REA system, the
agent yields the floor to the user as soon as they commence speaking or signal their
intent to take a turn through gestures. In this system, users consistently succeed
in interrupting the agent, regardless of the duration of speech overlap. A more
sophisticated approach to managing verbal interruptions by users has been intro-
duced in the virtual HWYD? ("How Was Your Day?") agent (Crook et al. [2012]).
This system incorporates an intensity model designed to distinguish genuine in-
terruptions from mere backchannel signals.
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Furthermore, Gebhard et al. (Gebhard et al. [2019]) conducted a pioneering
study using a real-time interactive agent system to investigate how various inter-
ruption handling times impact users’ perceptions of the ECA. The findings from
this study revealed that users evaluate the agent as less dominant, more friendly,
and emotionally closer when the agent responds promptly to interruptions.

Cultural diversity also plays a significant role in shaping the dynamics of com-
munication, Bennett et al. (Bennett et al. [2023]) developed a bilingual virtual
avatar capable of autonomous speech during cooperative gameplay with a hu-
man participant in a social survival video game. The results showed significant
differences between English and Korean speakers during the experiment. Korean
speakers spoke less on average and had more negative speech sentiment, while
the English speakers spoke more frequently and had more positive speech senti-
ment. The avatar was also more likely to interrupt the human’s speech in English
than in Korean, despite having the same design, the human user was more likely
to interrupt the agent when it was less “chatty”.

Several previous studies have delved into the intricate management of over-
lapping speech during interactions. One notably adopted strategy employed by
certain commercial dialogue systems, as highlighted in Raux et al.’s work (Raux
et al. [2006]), involves the agent responding to overlaps by simply disengaging
temporarily. Later, more advanced attempts have been undertaken to model and
handle overlapping speech behaviours, as evidenced by research conducted by
Devault et al. (DeVault et al. [2009]), Selfridge et al. (Selfridge and Heeman
[2010]), and Zhao et al. (Zhao et al. [2015]).

These advanced approaches often incorporate incremental parsing techniques
to gradually construct a partial understanding of the ongoing utterance. This in-
cremental comprehension allows these models to identify opportune moments to
assume control of the conversation (Skantze and Hjalmarsson [2010]). Incre-
mental models have proven useful not only for managing overlapping speech but
also for generating collaborative completions (Baumann and Schlangen [2011],
DeVault et al. [2009]) and providing timely feedback (Skantze and Schlangen
[2009]) during a human speaker’s turn.

3.4.2 Interruption prediction

Cyra et al. (Cyra and Pitsch [2017]) conducted a study examining the practices of
managing extended user utterances during human-agent interaction, particularly
focusing on turn increments in the context of a speech-based assistive system.
This investigation involved contrasting case analyses that explored the strategies
employed by a human wizard to address long utterances. The findings highlighted
the intricacies of human-human interaction, such as precise timing, which can be
challenging to implement in technical systems.

The preliminary analysis identified two fundamental strategies for handling
long utterances: interruption and wait-and-see. However, a more detailed exami-
nation from the participants’ perspective revealed an additional dimension. It was
observed that user acceptance of these strategies depended on whether their in-
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put was acknowledged and the ongoing action was continued. Surprisingly, even
interruptions, when strategically timed, were socially accepted by users, while the
seemingly safer wait-and-see approach could lead to issues if the collaborative task
was not continued by the system.

Several studies have focused on predicting interruption occurrences. Lee and
Narayanan (Lee and Narayanan [2010]) utilized a hidden conditional random
field (HCRF model) to forecast interruption instances in dyadic conversations.
They identified cues for interruption prediction:

• For the Interrupter: mouth opening distance, eyebrow and head movement

• For the Interruptee: energy and pitch values of audio

These authors classified turn transitions into smooth transitions and interrup-
tions. Their model anticipated upcoming turn exchange types based on interrupter
and interrupted behaviour one second prior to the transition.

Chýlek et al. (Chỳlek et al. [2018]) aimed to predict speaking turn switch
timing. They categorized overlaps into three types: internal overlap (INT), over-
lap resulting in turn switches (OSW), and clean turn switches (CSW). INT cor-
responds to when speaker B starts speaking during speaker A’s utterance but A
continues. OSW occurs when A ends during overlap, and CSW involves no over-
lap. They evaluated various ML models and found that deep residual learning
networks (ResNet-152) with acoustic features performed best.

3.4.3 Interruption types

Research has also delved into distinguishing types of interruptions, particularly
cooperative and competitive ones. The competitive interruption strategy becomes
evident when the listener interrupts to assert dominance or control over the ongo-
ing interaction. Conversely, a cooperative interruption typically contributes to the
maintenance of the conversation (Goldberg [1990]).

According to (Yang [2001]), competitive interruptions are characterized by
higher pitch and intensity levels, while collaborative interruptions tend to exhibit
a relatively lower pitch level. (Lee et al. [2008]) propose a multimodal analysis
technique for classifying interruption types, revealing that the absence of hand
motions often indicates the occurrence of cooperative interruptions. Furthermore,
the frequency of disfluencies in speech is notably higher in cases of competitive
interruptions. Their classification approach combines hand motion with speech
intensity to yield optimal results. Additionally, scholars such as Mondada (Mon-
dada and Oloff [2011]) have explored the relationship between overlap types and
accompanying gestures of continuity or abandonment.

Some studies focused on classifying interruption types, particularly cooperative
and competitive interruptions. Khiet and colleagues (Truong [2013]) used SVM to
classify interruptions with acoustic features, gaze behaviour, and head movement
annotations. Chowdhury et al. (Chowdhury et al. [2015]) classified competition
and cooperative interruptions using a Sequential Minimal Optimization (SMO)
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model with prosody, voice quality, MFCC, energy, and spectral features. Egorow
et al. (Egorow and Wendemuth [2019]) incorporated emotion dimensions with
acoustic features for SVM-based interruption classification.

Cafaro et al. (Cafaro et al. [2016]) conducted a study to investigate the impact
of different interruption types on the perception of engagement. Interruptions
can take on a cooperative nature when the interrupter actively participates in
the ongoing conversation by seeking clarification or expressing agreement. Con-
versely, interruptions can be considered disruptive when the interrupter exhibits
behaviours like disagreement or changing the topic of conversation.

The findings of Cafaro et al. (Cafaro et al. [2016]) revealed that employing
a cooperative interruption strategy, such as completing the speaker’s sentence or
asking a clarification question, was associated with a perception of increased en-
gagement and greater involvement in the interaction. This suggests that cooper-
ative interruptions, aimed at enhancing affiliation and fostering liking or friendli-
ness, tend to contribute positively to the perception of engagement in a conversa-
tion.

3.5 Positioning

Previously, numerous studies have focused on making human-agent interactions
more natural and seamless. Many of these studies delved into the realm of turn
transitions, aiming to develop models that allow Embodied Conversational Agents
(ECAs) to predict when a human user is about to finish their current turn and then
take the conversational floor once the user has completed their turn.

To equip ECAs to handle interruptions initiated by human users, research has
been conducted on detecting true interruptions, predicting human user interrup-
tions, classifying interruption types, and studying interruption response times.
These studies aimed to understand how various factors influence the user experi-
ence.

All of these research efforts started by observing and analyzing human con-
versational behaviours. They sought to simulate the natural patterns of human
dialogue and apply them in ECA user experiments. The focus has largely been on
ensuring that ECAs respond correctly to human behaviour to facilitate smooth in-
teractions. However, these studies often overlooked the idea that ECAs could also
initiate actions to guide and correct the interaction actively, engaging the user by,
for instance, interrupting when necessary to take conversational turns.

Interruptions are common in human conversations; they can adjust the rhythm
of dialogue. However, in current human-agent interactions, when agents interrupt
human users, it is typically perceived as a system error that disrupts the interaction
process. Thus, we asked, what if an agent could choose the right moment and
method to interrupt? Would the interaction experience be different? Would such
interruptions be acceptable to human users?

To our knowledge, there is currently no research addressing this specific ques-
tion. Therefore, drawing on methods from previous studies on turn transitions and
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responses to interruptions, we began by analyzing human interactions. Building
upon the previously mentioned turn-taking cues and interruption cues, we have
opted to focus on nonverbal behaviour to dissect the actions of interlocutors. We
categorized interruptions, analyzed behavioural patterns during interruptions in
human interactions, and used real human interaction data to develop computa-
tional models that empower agents to initiate appropriate interruptions.
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In this Chapter, we present two corpora we have chosen to use.
The first one, the NoXi corpus Cafaro et al. (Cafaro et al. [2017]) is the foun-

dation of our human interaction study. It is employed to train, test, and validate
our models predicting interruption timing and generating facial gestures during
the interruption period.

The second corpus built by Carletta et al. (Carletta [2007]), is used to train,
test, and validate the model classifying interruption types. AMI corpus was ini-
tially created to develop meeting browsing technology. We extend it to include
additional multimodal features related to facial expression and low-level acoustic
features.
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4.1 Corpora: NoXi / AMI

4.1.1 Description of Noxi Corpus

NoXi Corpus is a comprehensive collection of multimodal data, consisting of video
and audio recordings capturing free dyadic interactions. Each interaction involves
two participants who have been recorded separately, allowing easy separation of
the audio sources. The setup of screen-mediated interactions facilitates clear sepa-
ration of both audio and video flow that have been synchronized and transcribed.
The video recordings capture almost the entire body of each participant, except
for their feet, as depicted in Figure 4.1.

Figure 4.1 An example of NoXi dyadic conversation. Figure from (Cafaro et al.
[2017])

Within the NoXi database, participants assume either the role of an "expert" or
a "novice." The expert shares the knowledge with a novice on a specific subject, se-
lected from over 45 given topics. Each interaction lasts approximately 20 minutes,
resulting in a rich dataset of diverse and informative interactions.

The NoXi corpus encompasses data recorded in seven different languages. For
our study, we specifically selected the French portion of the NoXi corpus, which
includes 21 dyadic conversations, totalling approximately 7 hours of recorded in-
teractions (21 * 20 minutes). The videos are recorded with a frequency of 25
fps.

The NoXi corpus encompasses a wide range of modalities, including video, au-
dio, and transcriptions. Through the meticulous examination of these modalities
and their interplay, we can uncover patterns, subtleties, and multimodal cues that
contribute to understanding how interruptions are perceived and managed within
dyadic interactions.

4.1.2 Description of AMI corpus

The AMI Corpus (Carletta [2007]) is a multimodal database that presents a rich
collection of 100 hours of free-flowing multi-party English meetings (as in Figure
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4.2). Within the AMI Corpus, each meeting involves four participants who are
engaged in discussions centred around specific topics. These interactions are care-
fully structured, lasting approximately 25 minutes each, recorded with a frequency
of 15 fps.

The video recordings of the participants capture their upper body movements
and expressions, facilitating the analysis of nonverbal communication cues. In this
thesis, this corpus is only used to develop and evaluate the interruption classifica-
tion model presented in Chapter 6.

Figure 4.2 AMI corpus: four-party English conversation

For our specific work, we focus on nine carefully selected meetings from the
AMI Corpus, which amount to approximately four hours of conversation data.
These particular meetings have been extensively annotated for essential aspects
such as head function and focus of attention, the annotations are provided with
original video and audio data.

4.2 Features

NoXi is designed to provide spontaneous and natural interactions. A lot of anno-
tations and information are provided with the database through a web interface.
Descriptors include low-level social signals (e.g. gestures, smiles), functional de-
scriptors (e.g. turn-taking, dialogue acts) and interaction descriptors (e.g. engage-
ment, interest, and fluidity).

AMI Meeting Corpus is created for the uses of a consortium to develop meet-
ing browsing technology, it is useful for a wide range of research areas. Various
annotations are provided with the meeting data, such as dialogue acts, disfluency,
focus of attention, head and hand movement.
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Features Collection Tool Available Representations

Audio OpenSmile

Fundamental Frequency - f0
Loudness

Voice probability

Mel-frequency cepstral coefficients - MFCC 0-12

Logarithmic harmonics-to-noise ratio - logHNR

Jitter

Logarithmic signal energy from pcm frames

Energy in spectral bands

Shimmer

Action Units (AUs) OpenFace

AU1 - Inner Brow Raiser

AU2 - Outer Brow Raiser

AU4- Brow Lowerer

AU5 - Upper lid raiser

AU6 - Cheek Raiser

AU7 - Lid Tightener

AU12 - Lip corner puller

AU15 - Lip corner depressor

Head Motion OpenFace

Roll Euler angle - Rx

Pitch Euler angle - Ry

Yaw Euler angle - Rz

Head position - Px,y,z

Gaze direction - Rx,y

Upper body Motion AlphaPose 7 key points position of upper body

Table 4.1 Features utilized in our research.

While these annotations may enhance the accuracy of interruption classifi-
cation models and decision models for timing, our ultimate goal is to enable
real-time detection and generation of interruptions in human-agent conversations.
Considering the challenges of real-time annotation, we have decided to forego the
use of these annotations. Instead, we opt for the utilization of low-level features
that can be readily extracted in real-time.

In this thesis, we focus on nonverbal signals such as facial action units, speech
prosody and turn exchanges, to develop models capturing multimodal patterns
exchanged during interaction and synthesizing human-like and expressive facial
gestures.

As mentioned in Chapter 3, numerous studies have emphasized the significance
of acoustic features in analyzing interruptions. Hence, we employed Opensmile to
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extract pertinent acoustic features. Simultaneously, we also paid attention to other
modalities during interruptions. Therefore, we utilized OpenFace to capture facial
expressions and head movements of the conversational participants. Additionally,
we used AlphaPose (Fang et al. [2022]) to extract body movements of the partici-
pants.

It’s worth noting that certain facial action units are significantly influenced
by speech content, which falls outside the scope of our study. Consequently, we
excluded these particular action units from our analysis. In this section, we will
exclusively enumerate the features utilized in our research, which are presented
in Table 4.1 and further discussed in the following sections.

Audio Features

The audio features we are considering in this corpus are prosodic and voice quality
features.

More specifically, we consider at each time-step the fundamental frequency f0, the
loudness and the 13 Mel-frequency cepstral coefficients (MFCC 0-12). f0 vari-
ations capture pitch changes, which are essential for conveying intonation and
melodic contour. The mel frequency cepstral coefficients (MFCCs) of a signal con-
cisely describe the overall shape of a spectral envelope, they are often used to
describe timbre.

The above acoustic features were extracted with OpenSmile (Eyben et al. [2013])
with a frequency of 100fps. In this corpus, f0 values were restricted to the range
of 50 to 550Hz, which is enough to enclose the vocal ranges of both male and
female speakers. In fact, the vocal speech of a typical adult male has a f0 ranging
from 85 to 180 Hz. That of a typical adult female ranges from 165 to 255 Hz
(Baken and Orlikoff [2000], Titze [1994]).

Action Units Features

Facial expressions are represented by "Action Units"(AUs), as defined in the Facial
Action Coding Systems (FACS) manual that was developed by Ekman et al. [1971].
The AUs we study in the scope and context of this thesis are the ones related to
eyebrows and lip corners movements. We do not consider the other facial muscles
involved in articulatory movements, since we do not model them in the scope of
this thesis. Eyebrows and lip corners motion are represented by the seven action
units AU1, AU2, AU4, AU5, AU6, AU7, AU12 and AU15, listed and described in
Table 4.1.

We extracted facial expression action units, head motion and gaze direction
using the tool OpenFace (Figure 4.3, Baltrušaitis et al. [2016b]) with a frequency
of 25fps for NoXi corpus and 15fps for AMI corpus.
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Action Units are represented by values of intensity, which is a measure of how
strong the activation of facial muscles is. In OpenFace, AU intensities are con-
tinuous values ranging from 0 - lowest intensity - to 5 - highest intensity. At each
AU intensity is associated a “Success” score and a “Confidence” value. The “Suc-
cess” score equals to 1 if OpenFace has detected the speaker’s face, 0 otherwise
while the “Confidence” value, between 0 and 1, represents the confidence level of
OpenFace.

Figure 4.3 Open Face AU detection

Head motion features & gaze direction

Head motion is represented by 3D head angles and 3D positions relative to the
camera.

Head rotations have three degrees of freedom, represented by the Euler angles:
roll, pitch and yaw. The angles are represented by Rx, Ry and Rz, which are the
rotations of the head with respect to x, y, and z axes. Head rotation and position
were also extracted using the tool OpenFace. Each frame of the video has a success
score and confidence level.

Head positions are represented by Px, Py and Pz, which are the positions of
the head with respect to x, y, and z axes (The origin is situated at the position of
the camera.). To avoid the bias caused by the interactant’s initial position, we do
not use absolute position but the head motion activity, defined at each time-step i
using the following equation:

vHead(i) =
√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2 (4.1)

Gaze direction is represented by RX and RY , which are the relative horizontal
and vertical angles regarding the camera.

Hand motion features

To be invariant to the body position in the image, instead of using the absolute
right and left-hand positions provided by Alphapose Fang et al. [2022] with the
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frequency of videos, we centre the position by taking the middle of the two shoul-
ders as the origin of the coordinate system (0,0). Moreover, for each video, we
pick one frame when the interactant is facing the camera and note the distance
between the two shoulders (scale). Then, the coordinate system is changed using
a normalisation of x and y such as scale = 1. This is used to calculate the scaled
joint position.

After scaling the joint position, the right and left-hand activity are computed.
They can be interpreted as the amount of motion of each hand and are estimated
using:

vHand(i) =
√

(xi − xi−1)2 + (yi − yi−1)2 (4.2)

where xi and yi are the coordinates of the hand (right or left) at time-step i.
Due to the arrangement of participants in the AMI corpus, where they sit

around a table and lack frontal camera angles to provide reliable hand motion
data, we opted not to extract hand movements of the participants in the AMI cor-
pus.

4.3 Data Cleaning

The main purpose is to provide clean, structured, and aligned multimodal fea-
tures of NoXi and AMI corpus for the following studies. As we started extracting
the multimodal features from the raw videos and audios, we identified several sit-
uations where the extracted features were either missing or very noisy. We list the
major undesired situations:

• During the recording, interlocutors may turn their heads to the side so that
OpenFace cannot detect the entire face.

• The interlocutors in the conversations are recorded separately but sometimes
the voice of other interlocutors or background noises are also recorded in the
audio, which have to be filtered out.

We worked out a series of solutions to overcome these issues, which are ex-
plained in the following sections.

4.3.1 Video Processing

After extracting the facial expressions and head motions, the intensity values ex-
tracted by OpenFace are noisy and may be missing for some frames. We applied
additional data smoothing and fitting techniques to further eliminate noise and fill
in the gaps by determining the missing values.

Linear interpolation. We identified some cases where OpenFace did not detect
well the speaker’s face, and for these cases, Success score was equal to 0
and no intensity values were extracted. For this reason, we further applied
linear interpolation, to fill in the gaps where OpenFace failed to detect the
interlocuters’ faces, as shown in Figure 4.5.
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Median Filtering. Median filtering is a smoothing technique that is frequently
used to remove noise from an image or a signal. For each extracted AU in-
tensity, body and head motion feature, we applied a median filter to remove
noises. Figure 4.4 depicts the effect of applying a median filter with win-
dow sizes equal to 3, 5 and 7 to poseRx (head rotation on the x-axis) for
the purpose of filtering out noises while preserving and highlighting edges.
After testing with different window sizes, we applied the median filter with
a window size equals to 7, since it eliminates noise and maintains the edges.

Z-score normalization. Z-score normalization scales the values of a feature to
have a mean of 0 and a standard deviation of 1 by subtracting the mean of
the feature from each value and then dividing it by the standard deviation.
To eliminate redundant data and minimize personal biases, we apply a z-
score normalization for head and body motion.

Figure 4.4 This figure is a plot of different median filtering window sizes applied
to AU1 signal.
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Figure 4.5 Linear Interpolation is applied on the frames where OpenFace’s success
score is equal to 0.

4.3.2 Audio Processing

To avoid the impact of noises, we first filtered out these noises with Audacity, given
a sample of the noise from other interlocutors, Audacity captures automatically the
characteristics of the noise and reduces it over the full audio episode. This solves
most of the problem, especially when two or more interlocutors speak at the same
time. Acoustic features from OpenSmile are also z-score normalized.

At the same time, facial expressions, head motions, and hand motions are ex-
tracted at a frame rate of the videos (25 frames per second for NoXi, 15 frames
per second for AMI), while acoustic features are extracted at a higher frame rate
of 100 frames per second. In order to ensure compatibility and synchronization
among all these features, we performed undersampling on the acoustic features.
This involved averaging the acoustic feature values every 4 frames, aligning them
with the slower frame rate of facial expressions and motions. By harmonizing the
frame rates through undersampling, we create a consistent temporal framework
that enables a unified analysis of these diverse features in relation to one another.
This adjustment allows us to effectively examine the interplay between visual and
acoustic cues, facilitating a comprehensive understanding of the interaction dy-
namics.

4.4 Conclusion

In this Chapter, we presented NoXi Corpus and AMI Corpus. NoXi Corpus presents
a large amount of data that includes speech audio features, facial expressions, and
head motions. AMI Corpus includes multimodal features and high-level annota-
tions regarding head movements. We also presented the process of data cleaning
on extracted features.
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The key points of this Chapter:

Corpus

• NoXi Corpus is designed to provide spontaneous interactions with em-
phasis on adaptive behaviours and unexpected situations. We choose
to utilize the French part of NoXi Corpus as the foundation of our study.

• AMI Corpus is a multimodal database that presents a rich collection of
100 hours of free-flowing multi-party English meetings, we focus on
nine conversations that have been extensively annotated for essential
aspects such as head function and focus of attention.

• NoXi Corpus and AMI Corpus consists of a large amount of multimodal
features, which are: facial Action Units, Head Positions and Rotations,
Gaze Direction, Voice Prosody and Body motions.

Data cleaning

• We filter the noises of the interlocutors’ audios and extract low-level
acoustic features with OpenSmile.

• We extract visual features with Openface and Alphapose, then apply a
data preprocessing to clean the data and prepare it for the following
studies.

• We applied undersampling to the acoustic features in order to ensure
synchronization with visual features.
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Chapter 5
Annotation schema & multimodal
analysis
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This thesis delves into the realm of interruptions within the context of human-
agent interaction. With the intention of generating authentic exchanges between
humans and Embodied Conversational Agents (ECAs), a critical aspect involves
equipping these virtual agents with the capability to manage interruptions effec-
tively, which is to initiate interruptions as necessary. To achieve this, we start with
a study on human-human interaction that involves annotating, analyzing, and de-
lineating the characteristics of interruptions to distinguish them from other forms
of exchanges.

When an ECA interacts with a human, it must adapt to the dynamics of the
conversation, especially in terms of interruptions. The ECA should be capable of
measuring its human interlocutor’s intentions and reactions through multimodal
signals. This includes recognizing when the human is actively listening, possibly
indicated by backchannel signals, or when the human is attempting to seize the
speaking turn, potentially involving interruption.
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We delve into the study of natural speaking turn exchanges with the dyadic
corpus known as NoXi (Cafaro et al. [2017]) as presented in 4. Our approach
involves formulating an annotation schema that encompasses various types of in-
terruptions. Furthermore, we conduct a comprehensive analysis of multimodal
features, placing particular emphasis on prosodic attributes such as fundamental
frequency (f0) and loudness. Additionally, we delve into facial expressions uti-
lizing Action Units (AUs), as well as body movements encompassing head and
hand gestures. Our objective is to unravel the intricate patterns of nonverbal be-
haviours that emerge during different types of turn switches thereby clarifying the
distinctive characteristics that the ECA should be trained to identify and respond
to, which correspond to the research question Q1.

5.1 Related Works

Interruption is a special phenomenon within the framework of turn-taking prin-
ciples, which serves as both a natural occurrence and a compelling topic within
the realm of conversational structure analysis. The work of Allwood and col-
leagues has contributed significantly to this discourse by incorporating interrup-
tion into their coding schema, categorizing it based on its functional role (Allwood
[2001]). However, their categorization of interruption solely covers instances of
speech overlap, thus excluding interruptions initiated within a pause.

Previous studies have engaged diverse conversation coding structures in their
investigations (Nakazato [2000], Truan and Romary [2021], Ten Bosch et al.
[2004], Christodoulides and Avanzi [2015], Jokinen et al. [2013], Enomoto et al.
[2020], Heeman et al. [2006]). However, these studies have not delved into the
finer distinctions among various interruption types, leaving a significant gap in
understanding the nuances of this complex conversational phenomenon.

Schegloff and Sacks (Schegloff and Sacks [1973]) have laid out a comprehen-
sive framework for categorizing simultaneous speech occurrences within conversa-
tions, encompassing three distinct types: interruption, overlap, and parenthetical
comments, often exemplified by backchannels. Backchannels, while representing
feedback messages, are not intended to seize the speaking turn from the current
speaker.

Overlaps transpire when the listener accurately anticipates the imminent con-
clusion of the ongoing speaker’s utterance. Here, there exists a willingness on
the part of the speaker to renounce the speaking turn, fostering a harmonious
transition. In sharp contrast, interruptions involve a more abrupt transfer of the
speaking floor. In these instances, the listener forcefully takes control of the con-
versation, often against the wishes of the current speaker (Schegloff and Sacks
[1973]).

To prevent any ambiguity between the concepts of overlap and interruption,
Sacks and his colleagues (Sacks et al. [1978]) delineate overlap as the listener
preemptively predicting the culmination of the ongoing speaker’s dialogue, result-
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ing in an overlap between the last word or syllable of the current speaker and the
first word of the listener’s subsequent speech segment.

In contrast, interruption is characterized as a disruption to the current speaker’s
turn, a departure from the anticipatory but generally harmonious nature of overlap
(Moerman and Sacks [2010]).

Presented here are two prominent methods for classifying interruptions. The
first method, proposed by Beattie (Beattie [1981]), hinges on the assessment of
simultaneous speech and the willingness to cede the conversational floor. This
classification method is illustrated in Figure 5.1.

Figure 5.1 Classification of interruption and smooth speaker exchange (Beattie
[1981]).

In this taxonomy, there are three types of interruptions.

• Butting-in interruption, in which there is overlap but the listener fails to grab
the turn and the speaker continues to speak.

• Simple interruption, in which there is also overlap, but the listener succeeds
in getting turns against the speaker’s wishes.

• Silent interruption, without overlap, the listener takes turns, opposing the
speaker’s wishes, during a short pause.

In the alternate taxonomy presented by Li and Campbell (Li [2001]), inter-
ruptions are categorized into two overarching strategies based on their alignment
with speech content: competitive and cooperative interruptions.

The competitive interruption strategy manifests when the listener interjects to
seize control of the ongoing interaction. This type of interruption is often disrup-
tive to the natural flow of the conversation between the interlocutors and may
introduce an element of conflict into the discourse:
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• Disagreement: The listener disagrees with what the current speaker is saying
and expresses his or her own opinion.

• Floor taking: The switch does not change the current topic and usually ex-
pands on the current speaker’s topic.

• Topic change: The listener changes the current topic of conversation.

• Tangentialization: The listener sums up the message from the current speaker
to prevent listening to more unwanted information.

On the opposite, a cooperative interruption usually helps to maintain the con-
versation and can be:

• Agreement: The listener shows agreement, compliance, understanding or
support to the speaker.

• Assistance: The listener interrupts to provide the current speaker with a
word, a phrase or an idea to complete the utterance.

• Clarification: The listener asks the current speaker to clarify or explain the
information about which the listener is not clear.

These two classification methodologies encompass a wide range of interruption
scenarios commonly encountered in conversations. However, it’s important to ac-
knowledge that there are exceptions that fall outside their scope. For instance,
the first taxonomy doesn’t account for backchannels, which are brief feedback
messages. Additionally, there are instances of interruptions that are abandoned
swiftly, making it challenging to definitively categorize them using the second tax-
onomy. To address these limitations and create a more comprehensive framework,
we introduce a novel structure that integrates and refines elements from both of
these existing methods. This merged approach aims to provide a more nuanced
and adaptable system for classifying interruptions across various conversational
contexts.

5.2 Annotation Schema

In this section, we propose a new annotation schema and explain how we made
the annotation. Then, we present annotation accuracy and some statistical results
on annotated data.

5.2.1 Schema

The annotation schema we propose in Figure 5.2 includes all turn changes and
comprises three classification levels.
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Figure 5.2 Interruption annotation schema

To begin with, our classification process involves categorizing each change in
voice activity into three distinct types: interruption, backchannel, or smooth turn-
exchange. Interruptions pertain to instances where the listener initiates a turn,
either during a moment of silence or with an overlap, while the current speaker
is still in the middle of their turn. On the other hand, a smooth turn-exchange
occurs when the listener takes their turn as the current speaker concludes or is
in the process of yielding their turn. Backchannels, which are concise messages
indicating the listener’s attention or expressing agreement or disagreement with
the speaker’s content (Allwood et al. [1992]), can also occur during a turn.

Importantly, it’s worth noting that differentiating between smooth turn ex-
changes and interruptions solely based on gaps and overlaps can be misleading.
For instance, a smooth turn-exchange might involve an overlap if the listener starts
speaking with overlapping words or syllables while the current speaker begins to
yield the floor but has not yet completed their utterance. Conversely, an interrup-
tion might involve a gap in speech, such as when the speaker is momentarily stuck
and searching for a word, and the listener offers a suggestion. Therefore, identi-
fying interruptions requires a thorough consideration of the interaction between
the participants’ speech patterns.

Backchannels serve as brief messages aimed at conveying the listener’s atten-
tion or expressing agreement or disagreement with the ongoing discourse (All-
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wood et al. [1992]). These messages can vary in length, extending beyond a
single word to encompass complete sentences. What sets backchannels apart from
interruptions is their intent: they are not intended to seize the speaking turn or
elicit a response from the speaker. Moreover, they do not disrupt the flow of speech
in the same manner as interruptions.

Subsequently, we proceed to annotate the successful completion of turn ex-
changes. In this context, a smooth turn exchange denotes a seamless and suc-
cessful transition of speaking turns (success). Interruptions, on the other hand,
can manifest as either successful (success) or unsuccessful (failure) instances, de-
pending on whether they effectively acquire the speaking turn. It’s important to
acknowledge that backchannels, while not aimed at seizing the speaking turn, are
also included in this process. However, since they do not lead to turn exchange,
their annotation falls under the category of Other in terms of accomplishment.

A successful interruption corresponds to the situation described below (’[’ and
’]’ represent the start and the end of a simultaneous speech):

• The interrupter succeeds in grabbing the turn and the current speaker stops
talking even though s/he has not finished his/her utterance.

Example: Novice:...basically not phy- [ sical but I ... Expert: [
I agree with you for...

• The interrupter talks over the speaker (e.g. to ask a clarification question).
The speaker keeps the speaking turn but considers what the interrupter has
said (e.g. by answering the interrupter’s question).

Example: Expert: ...mushrooms and you [ have to be care- ] ful. yeah, espe-
cially the optics... Novice: [ Mushrooms?]

A failed interruption occurs when:

• The interrupter terminates the interruption before completing the utterance
and let the current speaker continue his/her turn.

Example: Expert: ...your point of view, I unders- [ tand but finally ] maybe
it’s easy ... Novice: [ Ah no no you...]

• The interrupter begins to speak and tries to get the current speaker’s at-
tention, but the current speaker does not respond to the interruption after
the interrupter has completed his/her utterance and continues speaking as
planned.

Example: Novice: ...I didn’t pay even one euro for Hearthstone, and I uh I
still [ have my meta decks up to ] now, I can... Expert: [ Ah me
neither I didn’t pay for it. ]

In the last phase of our annotation process, we proceed to categorize each in-
terruption based on its underlying speech content. This categorization extends to
both successful and unsuccessful interruptions, aiming to capture the diversity of
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interruption types. The distinct interruption types we have considered are eluci-
dated in Figure 5.2.

In the case of failed interruptions, their type is determined when the speech
duration is sufficiently long to discern the content and ascertain the intended in-
terruption category. Conversely, when the speech duration is insufficient to grasp
the intended interruption type, it is annotated as Not identified.

5.2.2 Process

The annotation process relies on the automated detection of voice activity. As
previously discussed, the NoXi corpus encompasses a total of 21 dyadic conversa-
tions, with individual recordings of each participant. To facilitate the simultaneous
display of video footage from both participants within each conversation, and to
ensure a coherent synchronization between the visual elements and the corre-
sponding voice activities, we employ the Nova tool (Baur et al. [2020]), depicted
in Figure 5.3.

Figure 5.3 Nova annotation interface

We implement voice activity detection throughout the entire video duration.
With each instance of voice activity detected from the current listener, we meticu-
lously capture the onset time and subsequently annotate the transition of speaking
turns based on the schema outlined in Figure 5.2.

Subsequently, we employ a script to automatically identify the termination
point of the initial Inter-Pausal Unit (IPU) that emerges after this onset time. Inter-
Pausal Units, which find extensive application in conversation analysis, refer to
speech units from an individual speaker that lack pauses (Levitan and Hirschberg
[2011]). As clarified by (Demol et al. [2007]), we define a pause as a period of
silence surpassing 200 milliseconds, and we employ these pauses to segment voice
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Type Agreement Assistance Clarification Disagreement Floor taking Topic change Tangentialization Not identified
Count 348 68 89 44 230 68 6 76
Percentage 37.46% 7.32% 9.58% 4.74% 24.75% 7.32% 0.65% 8.18%

Table 5.1 Probability distribution according to the 8 types of interruption.

Type Agreement Assistance Clarification Disagreement Floor taking Topic change Tangentialization
Count 310 64 84 42 188 66 5
Percentage 40.84% 8.43% 11.07% 5.53% 24.77% 8.7% 0.66%

Table 5.2 Probability distribution of different interruption types for successful in-
terruption.

activity into distinct IPUs. This segmentation strategy facilitates the organization
and analysis of spoken content, enhancing the accuracy of our annotation process.

5.2.3 Annotation accuracy

To ensure the precision of the annotation process, all videos underwent dual an-
notation sessions conducted by the same annotator. Following the methodology
advocated by Chollet et al. (Chollet et al. [2019]), a span of one month was
maintained between the two rounds of annotation. This temporal gap was strate-
gically implemented to ensure that the annotator’s memory of the video content
waned during the second annotation session. Subsequently, all annotations that
exhibited disparities in terms of start points or annotation labels between the two
rounds were extracted. These segments were then subjected to a third round of
blind annotation, without any reference to the previous two annotations.

Upon completion of the first two annotation rounds, the concordance rate be-
tween them was computed. Remarkably, the overall self-agreement of the annota-
tor reached an impressive 89.5% across all voice activity transitions characterized
by the same onset point in the first two rounds. This self-consistency was main-
tained in terms of switch type, accomplishment, and interruption type in both
annotation rounds. Specifically, the self-agreement rate for backchannel annota-
tions was recorded at 93.5% for voice activity transitions marked as backchannels
at least once in the first two rounds. A comparable self-agreement rate of 72.4%
was observed for interruptions, while a substantially higher 95.3% self-agreement
was achieved for smooth turn exchanges.

Following the third round of annotation, the global self-agreement rate of the
annotator further elevated to 92.6%. A self-consistency rate of 84.07% emerged
for interruption annotations, while smooth turn exchanges exhibited a self-agreement
rate of 92%. Impressively, a remarkably high self-agreement rate of 98.8% was
achieved for backchannel annotations, highlighting the reliability of the annota-
tion process.
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Type Agreement Assistance Clarification Disagreement Floor taking Topic change Tangentialization Not identified
Count 38 4 5 2 42 2 1 76
Percentage 22.35% 2.35% 2.94% 1.18% 24.7% 1.18% 0.59% 44.71%

Table 5.3 Probability distribution of different interruption types for Failed inter-
ruption.

5.3 Statistical results

Eventually, a total of 3983 annotated records were amassed, representing voice
activity changes in the French portion of the NoXi dataset. Among these records,
1403 instances corresponded to smooth turn exchanges, 1651 were classified as
backchannels, and 929 were categorized as interruptions. This distribution indi-
cates that voice activity changes were attributed to smooth turn exchanges 35% of
the time, backchannels constituted 42%, and interruptions accounted for 23%.

Among the aggregate interruptions, there were 759 instances (81.7%) of suc-
cessful interruptions and 170 instances (18.3%) of failed interruptions.

The distribution across the eight interruption types is outlined in Table 5.1.
Within this spectrum, cooperative interruptions held the majority, totalling 505
occurrences (54.36% of all interruptions), while competitive interruptions num-
bered 348 (37.46% of all interruptions).

Upon further subdivision into eight sub-categories, interruptions of the agree-
ment type emerged as the most frequent, predominantly within the cooperative
interruption subset. Conversely, floor taking interruptions were the most preva-
lent in the category of competitive interruptions.

In combination with the accomplishment category (as demonstrated in Tables
5.2 and 5.3), agreement and floor taking remained the two dominant types in
successful interruptions. However, for failed interruptions, a significant portion
couldn’t be classified, leading to the dominance of the Not identified category,
which constituted 44.71% of failed interruptions.

An investigation into the duration of the first Inter-Pausal Unit (IPU) follow-
ing a voice activity exchange revealed intriguing insights. Smooth turn exchanges
exhibited the lengthiest first IPU, with an average duration of 4.31 seconds. In con-
trast, interruptions were accompanied by a shorter initial IPU, averaging at 2.91
seconds. Further dissection based on success revealed that successful interrup-
tions boasted longer first IPUs (mean = 3.33 seconds) than failed ones (mean =
1.04 seconds). The classification of the interruption type also exerted an influence
on the length of the first IPU. Notably, competitive interruptions yielded a length-
ier first IPU (mean = 4.01 seconds) compared to cooperative interruptions (mean
= 2.46 seconds). This discrepancy was particularly pronounced in the realm of
successful competitive interruptions, where the mean first IPU duration was 1.89
seconds greater than that of successful cooperative interruptions (mean = 2.58
seconds).

We observe that overlaps occur frequently in interruptions (88%) and backchan-
nels (71%), but rarely in smooth turn exchanges (29%), where the turn-taker tends
to wait until the speaker completes the turn. Figure 5.4 illustrates the variation
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Figure 5.4 Overlap length in second for different types of exchanges. Labels: In-
terruption (interrupt), backchannel (BC), smooth turn exchange (s_turn), cooper-
ative interruption (coop), competitive interruption (comp).

in overlap duration across exchange types. Interruptions have the longest over-
laps, with a mean of 1.15s, indicating a high degree of competition for the floor.
Smooth turn exchanges have much shorter overlaps than interruptions, with a
mean of 0.62s, suggesting a low level of conflict and a high level of coordination.
Backchannels have the shortest overlap duration, as they are mostly single words
or syllables that signal agreement or attention.

We also conduct an in-depth analysis of the temporal aspects of exchange initi-
ation relative to the commencement of the speaker’s last Inter-Pausal Unit (IPU), as
depicted in Figure 5.5. Our findings reveal that smooth turn exchanges tend to oc-
cur earlier after the initiation of the IPU, with an average delay of 2.95 seconds, in
contrast to interruptions and backchannels. This observation suggests that speak-
ers provide cues for the conclusion of their turn. Interruptions and backchannels,
on the other hand, exhibit a later timing, with average delays of 4.38 seconds and
4.93 seconds, respectively. This trend implies that either the speaker has no inten-
tion to relinquish the floor or the turn-taker requires more time to make a decision.
Cooperative interruptions exhibit a slightly lengthier delay than backchannels, av-
eraging at 4.99 seconds. This is noteworthy since cooperative interruptions are
often utilized to express sustained interest or comprehension.

Furthermore, we delve into the impact of conversational roles (expert and
novice) on interaction dynamics. Our analysis uncovers that novices contribute
to approximately 29.4% of the conversation duration on average, while experts
occupy approximately 69.8% of the conversation duration on average. This dis-
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Figure 5.5 Relative distance in seconds between the exchange onset point and the
start of the speaker’s last IPU for different types of exchanges. Labels: Interruption
(interrupt), backchannel (BC), smooth turn exchange (s_turn), cooperative inter-
ruption (coop), competitive interruption (comp)

crepancy mirrors the inherent asymmetry in knowledge and authority between
these roles. Intriguingly, we also observe that a significant majority of interrup-
tions (60.6%) and backchannels (76.5%) are initiated by novices. This insight
might suggest that novices are more actively engaged in the discourse, potentially
driven by the motivation to challenge assumptions or seek clarification from the
expert.

In addition, we gauge the length of the first IPU following the exchange. No-
tably, the expert’s initial IPU is notably longer than that of the novice for both
interruptions (3.98s vs 2.86s) and smooth turn exchanges (5.49s vs 3.65s). This
discrepancy could signify that the expert possesses more substantial information to
convey or exhibits greater confidence in holding the floor compared to the novice.

5.4 Multimodal Analysis

Conducting multimodal analysis, we want to see the difference between the three
principal exchange types, and if there exists a pattern of nonverbal behaviour
during the exchanges.

We observed extracted features from the French part of NoXi corpus, here we
selected several major features for the analysis: pitch (f0) and loudness from the
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speech signals, AU01(inner brow raiser), AU02(outer brow raiser), AU04(brow
lower), AU06(cheek raiser) and AU12(lip corner puller) for facial expressions.

From the extracted AU features (notably AU01, AU02, AU04, and AU12) and
other low-level signal (acoustic and visual) features.

Let us define the time steps illustrated in Figure 5.6:

• t1: start of the last speaker’s IPU

• t2: end of the last speaker’s IPU

• t3: start of the first exchange initiator’s IPU

• t4: end of the first exchange initiator’s IPU

We analyzed the features on the intervals [t1,t2], [t3,t2], [t3,t4] and [t1,t4].

Figure 5.6 Explanation of data segmentation structure (taken: the last IPU of the
speaker before the exchange, taker: the first IPU of the exchange initiator after the
exchange onset point).

To facilitate a comparative analysis of the acoustic and visual characteristics
between the speaker and the exchange initiator across different types of conver-
sational exchanges, we initially calculate the average value of each feature within
the designated time intervals. For the speaker, the time interval from t1 to t2 is
utilized, encompassing their speech duration. For the exchange initiator, the time
interval from t3 to t4 is employed, signifying the point of transition into taking
over the turn. This approach allows us to scrutinize the disparities in prosody and
facial expressions between the two roles and the potential variations based on the
exchange type.

The distribution of average values for each feature is visually represented in
Figure 5.7. To assess significant differences between the speaker and the exchange
initiator, as well as across various exchange types, we employ a t-test (p < 0.05).
Our analysis reveals several noteworthy observations:

When initiating an interruption, the exchange initiator employs a higher pitch
compared to the speaker, yet utilizes a lower loudness. This pattern suggests that
they elevate their voice frequency as a signal of intent to interrupt, while deliber-
ately moderating their vocal intensity to avoid coming across as overly aggressive.
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Figure 5.7 Average value of selected features during the corresponding intervals
(taken: [t1, t2], taker: [t3,t4]).

Conversely, when initiating a smooth turn exchange or a backchannel, the ex-
change initiator employs a lower pitch and decreased loudness compared to the
speaker. This shift in acoustic features indicates an intentional reduction in voice
frequency and intensity, signalling agreement, acknowledgement, and a smooth
transition to their speaking turn.

Additionally, the exchange initiator employs a higher pitch when initiating an
interruption as opposed to initiating a smooth turn exchange or a backchannel.
This implies a modulation of voice frequency in alignment with exchange type,
using a higher pitch for more assertive exchanges and a lower pitch for supportive
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ones. Similarly, the exchange initiator employs lower loudness when initiating a
backchannel compared to initiating a smooth turn exchange or an interruption.

Turning to visual features, we analyze the facial action units (AUs) of both the
speaker and the exchange initiator, reflecting movements of different facial mus-
cles. We observe that the exchange initiator’s AU01 (inner brow raiser) and AU02
(outer brow raiser) exhibit lower values than those of the speaker. Conversely,
the exchange initiator’s AU04 (brow lower), AU06 (cheek raiser), and AU12 (lip
corner puller) exhibit higher values. Particularly, during interruption initiation,
their AU06 and AU12 tend to be more active than during smooth turn exchanges
or backchannels, indicating more frequent smiling when interrupting compared to
smooth turn exchange or backchannel instances. We also note that the speakers’
AU06 and AU12 exhibit reduced activity during the backchannel segment com-
pared to the other two types.

5.5 Conclusion

In this chapter, we introduced a new interruption annotation schema we used to
annotate the NoXi corpus. We conducted statistical analysis on the occurrence of
the different interruption types. We also studied the length of the first IPU after
the interruption and found some significant differences.

From our analysis, in the French part of the NoXi database, interruptions occur
frequently in conversations. Most interruptions are successfully completed and are
cooperative interruptions. Failed interruptions are often very short, which does not
allow us to determine their type and justifies the introduction of the type Not iden-
tified. Agreement interruptions take up the most part of cooperative interruptions
while floor taking are predominant for competitive ones.

NoXi gathers interaction of an expert giving information to a novice on a topic
that interests both of them. This particular context of interaction explains why
there are more cooperative interruptions than competitive ones.

We analyzed the multimodal signals that humans use to initiate and respond
to exchanges such as smooth turn exchanges, interruptions, and backchannels.

Interruptions have longer overlaps than smooth turns and backchannels. We
also noticed that the exchange initiator adjusts the voice pitch depending on the
type of exchange, using a higher pitch for interruptions and a lower pitch for
smooth turn exchanges and backchannels.

Examining the facial expressions that humans use during and after the ex-
changes we found that some of them are more active than others, depending on
the types of exchanges. These patterns indicate that the visual features of the
interlocutors are influenced by the type of the exchange.
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The key points of this Chapter:

This Chapter addresses research question Q1.

• How do humans perceive and categorize different interruption situa-
tions during their interactions?

Annotation

• We propose a new annotation schema for manual exchange/switch
annotation in the conversation.

• The annotation results of NoXi Corpus indicate that interruptions are
quite common during interaction and most of the interruptions suc-
cessfully took the speaking floor.

Analysis

• Interruptions have longer overlaps than smooth turns and backchan-
nels.

• Smooth turn exchanges are relatively closer to the beginning of the
last speaker IPU than interruptions and backchannels.

• We analyzed the multimodal signals that humans use to initiate
and respond to exchanges, such as smooth turns, interruptions, and
backchannels.

• Different types of exchanges do show different patterns, but there are
also common points in strategies.
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Annotating and analysing the interruption during human-human interaction,
we found different types of interruption, mainly divided into two categories: coop-
erative and competitive. Human uses different kinds of interruption to complete
different goals, either to be supportive or to grab attention. For a Socially Inter-
active Agent to be capable of handling user interruptions in dyadic interaction,
it should be able to detect interruption, recognize its type (cooperative/competi-
tive), and then plan its behaviour to respond appropriately. This Chapter corre-
sponds to the research questions of Q2 and Q3.

As a first step towards this goal, we developed a multimodal classification
model using acoustic features, facial expression, head movement, and gaze direc-
tion from both, the interrupter and the interruptee. The classification model learns
from the sequential information to automatically identify interruption types. We
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also present studies we conducted to measure the shortest delay needed for our
classification model to identify interruption types with high classification accuracy.

6.1 Related works

Previously, Goldberg and colleagues (Goldberg [1990]) discovered that the loca-
tion of an interruption could offer insights into differentiating interruption types.
In addition to the starting point, the duration of overlaps assumes a crucial role in
distinguishing between cooperative and competitive interruptions. The findings
in (Kurtic et al. [2010], Jefferson [2004]), as well as the analysis presented in
Chapter 5, suggest that competitive overlaps tend to be longer than cooperative
ones.

Moreover, a growing body of research has accumulated evidence indicating
that prosodic features exhibit variations between cooperative and competitive in-
terruptions. Yang et al. (Yang [2001]) argued that competitive interruptions
manifest higher pitch and intensity compared to their cooperative counterparts.
Shriberg (Shriberg et al. [2001a]) and Hammarberg et al. (Hammarberg et al.
[1980]) discovered that individuals elevate their voice energy and pitch when at-
tempting to interrupt the ongoing speaker. Schegloff et al. (Schegloff [2000])
contended that speakers employ prosodic variations and repetition to signify a
strong desire to claim the conversational turn.

Numerous studies have proposed models for the automatic classification of in-
terruption types using multimodal features. Lee et al. (Lee et al. [2008]) analyzed
hand motion activity, speech intensity, and disfluency for classifying competitive/-
cooperative interruptions in spoken dyadic conversations. Hand motion activity
and speech intensity were identified as reliable features for distinguishing inter-
ruption types. However, using a single modality resulted in significantly lower
classification performance, with an accuracy of 71.2%.

Truong et al. (Truong [2013]) developed an SVM model to classify overlaps.
They used low-level signals such as acoustic features (f0, intensity, and voice
quality), alongside high-level annotations like gaze direction and head movement
communicative functions. With a sequence length of 0.6 seconds after the over-
lap onset point, the SVM model achieved good performance with an Equal Error
Rate (EER) of 32.1%. They also noted that incorporating gaze information slightly
improved accuracy, whereas adding acoustic information from the interruptee did
not.

Chowdhury et al. (Chowdhury et al. [2015]) introduced a Sequential Mini-
mal Optimization model for competitive/cooperative overlap classification, using
features like prosody, voice quality, MFCC, energy, and spectral features. With an
optimal subset of selected features, the model achieved an F1-score of 0.69. Sub-
sequently, Chowdhury et al.(Chowdhury et al. [2019], Chowdhury and Riccardi
[2017]) employed both acoustic (prosodic, spectral, voice quality, MFCC, and en-
ergy) and lexical features to classify cooperative/competitive overlaps. Among
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various models tested, the best performance (F1-score of 0.70) was attained with
a feed-forward neural network (FFNN) using both acoustic and lexical features.

Incorporating emotional dimensions (control and valence), Egorow et al. (Egorow
and Wendemuth [2019]) employed acoustic features to classify overlaps in a telephone-
based human conversation corpus. The SVM model achieved the best performance
with an F1-score of 0.74.

While prior research has demonstrated that features such as hand activity, body
motion, gaze, and head gestures enhance classification accuracy, acoustic fea-
tures have emerged as critical elements for classifying interruptions and overlaps.
Nonetheless, facial expressions have been overlooked in previous studies. Based
on the experimental results from (Motley [1993]), conversational facial expres-
sions are linked with the dialogue context and operate as nonverbal interjections,
potentially offering supplementary information for interruption classification mod-
els.

Furthermore, the significance of sequential information during interruptions
and overlaps has been neglected in prior works, which mainly rely on statisti-
cal projections as input for classification models. Yet, the analysis findings from
(Truong [2013]) illustrate the temporal curve differences in acoustic features,
which were utilized to classify overlap types.

Hence, we propose a novel method to classify interruptions by encompass-
ing acoustic profiles, head activity, gaze behaviour, and facial expressions. Our
approach also accounts for sequential information. Given our objective of imple-
menting an online model that swiftly classifies interruption types during human-
agent interaction, we investigate how classification performance varies with the
length of the time window after the interruption point.

6.2 Features

In this study, we utilize two distinct corpora: the AMI corpus (Carletta [2007])
and the NoXi corpus (Cafaro et al. [2017]). Following the annotation schema
expounded in (YANG et al. [2022]), as elucidated in Chapter 4, a total of 508
interruptions were annotated in the AMI corpus, comprising 230 cooperative in-
terruptions and 278 competitive interruptions.

Our novel approach for classifying interruptions harnesses multimodal signals.
To gauge the minimum delay requisite for accurate classification, we initially de-
fine a time window centred around the onset point of each interruption, subse-
quently extracting multimodal features within this delineated timeframe.

Our feature set encompasses acoustic attributes as well as visual cues such as
facial expressions (eyebrow movement), head motion activity, and gaze direction.
Each modality encompasses two distinct types of features: local features denote
values extracted from each frame within the chosen time window, while global
features represent statistical summaries of each local feature over the predefined
time span.
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Additionally, for the AMI corpus, we incorporate two supplementary features
which are provided with the database: the annotated communicative functions of
head movements (concord, discord, deixis, emphasis, negative, turn, and other)
and the presence of mutual gaze (when the interlocutors look at each other).
These two annotations are not provided in the NoXi corpus.

In order to establish the optimal interruption window, we meticulously ana-
lyze the duration of interruption overlaps within the annotated interruptions from
both corpora. The outcome of our statistical analysis is depicted in Figure 6.1. No-
tably, the average duration of cooperative interruptions amounts to 1.11 seconds,
whereas competitive interruptions exhibit an average duration of 1.49 seconds.

Figure 6.1 Interruption overlap duration in second (AMI corpus).

For each instance of interruption, as illustrated in Figure 6.1, it’s noticeable
that the majority of interruption overlaps tend to last longer than 0.6 seconds.
We designate the initiation point of the overlap as t0. Given the objective of clas-
sifying the interruption promptly and responding accordingly before the overlap
concludes, it’s imperative to select a window size that’s less than 0.6 seconds. In
this context, Truong and colleagues (Truong [2013]) recommend an interruption
window length of 0.6 seconds after the interruption onset point. We opt to adopt
this same window size for our study and focus on the temporal segment span-
ning from t0 − 0.6 seconds to t0 + 0.6 seconds, which we refer to as "interruption
windows" hereafter. This choice aligns with our primary goal, which is to equip
a virtual agent with the capability to promptly manage interruptions and react to
them in a timely manner, preferably before the overlap concludes. Notably, during
the initial phase leading up to the interruption at t0, spanning from t0−0.6 seconds
to t0, only the individual being interrupted (interruptee) is speaking. In contrast,
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the subsequent phase encompasses both interlocutors speaking, at least to some
extent.

The classification of interruptions hinges on the multimodal features extracted
from both the interrupter and the interruptee across the interruption window. De-
pending on the specific methodology employed for the classification model (as
detailed in Section 6.4.2), we either compute global features across the entirety
of the interruption window or extract local features at each time step within the
window (25fps for NoXi, 15fps for AMI as presented in Chapter4).

Since the NoXi corpus and the AMI corpus have different frame rates, for ease
of comprehension, we will use the AMI corpus as an example to explain the fea-
tures used. We applied the same processing to the NoXi corpus, with the only
difference being that the features for the NoXi corpus correspond to a frame rate
of 25fps instead of 15fps.

Figure 6.2 Segmentation of features.

Local acoustic features: The set of 33 acoustic features we have taken into
consideration comprises various parameters such as pitch (Fundamental frequency
f0, f0-envelope), loudness, voice-probability, jitter, shimmer, logarithmic harmonics-
to-noise ratio (logHNR), Mel-frequency cepstral coefficients (MFCC 0-12), Loga-
rithmic signal energy from pcm frames, Energy in spectral bands (0-250Hz, 0-
650Hz, 250-650Hz, 1-4kHz), roll-off points (25%, 50%, 70%, 90%), centroid,
flux, max-position, and min-position, as proposed by (Chowdhury et al. [2019]).

These acoustic features are extracted at a frequency of 100 frames per second
and then resampled to 15 fps to match the frequency of the visual features (eye-
brow movement, head motion activity, and gaze direction). This resampling is
carried out to ensure synchronization between the acoustic and visual features.
Consequently, we generate a series of temporal values for each acoustic feature
for both the interrupter and the overlappee, subsequently storing these values in
a vector. This vector is referred to as the "local acoustic features vector" pertain-
ing to a given time window around an interruption event. The dimensions of the
local acoustic features vector denoted as Al, are determined by the product of 33
features per interlocutor, multiplied by 18 frames, resulting in a size of (33∗2)∗18.
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Global acoustic features: For each feature mentioned previously, we extract
their statistical projection over the interruption windows as proposed by (Chowd-
hury et al. [2019]). They are composed of values such as min and max position,
range, linear and quadratic regression coefficients and approximation errors, vari-
ance, standard deviation, skewness, peaks, mean peak distance and mean peak.

These statistical projections are normalized by z-scores, using the mean and
standard deviation of all windows. They composed the global acoustic features
vector Ag of size 792 (33*2*12, the value of the above 12 statistical projections
for the 33 features for each interlocutor).

Local eyebrow features: In this research, we focus on the three action units
AU01, AU02 and AU04 representing eyebrow movements. Eyebrow features are
extracted with a frequency of 15 frames per second, composing a feature vector
El of size (3 ∗ 2) ∗ 18 (3 AUs for both interlocutors over 1.2 sec (18 frames)).

Global eyebrow features: Statistical projections of each eyebrow feature are
estimated as done for the acoustic features. They composed a vector Eg of size 48
(The value of the 8 statistical projections: min and max position, range, linear and
quadratic regression coefficients and approximation errors, variance and standard
deviation, for the 3 features for each interlocutor).

Local head activity features: For head movement features, we use the head
position (in x-y-z axis) at the frequency of 15 frames per second for both corpora.
For the AMI corpus, we also use the head functions annotations: concord, discord,
deixis, emphasis, negative, turn, and all other communicative head gestures. The
final vector Hl is of size (10∗2)∗18 (head activity + head function one-hot encoding
for both interlocutors over 1.2 sec (18 frames)).

Global head movement features: The statistical projections of head activity
are calculated on the interruption window. For the head function annotation of
AMI corpus mentioned above, we use a one-hot encoding by setting the value 1 if
the event is present at least at the one-time step of the interruption window. The
Global head movement vector is of size 34 (the value of the 8 statistical projec-
tions: min and max position, range, linear and quadratic regression coefficients
and approximation errors, variance, standard deviation, for 1 feature + the vec-
tor’s one-hot encoding for each interlocutor).

Local gaze features: We also consider the gaze direction (in x-y axes). For AMI
corpus, we also use the focus of attention annotations of which the binary value
is computed to indicate the presence of mutual attention (when the interrupter
and interruptee are looking at each other) or its absence (when the interrupter or
interruptee is looking somewhere else). The final vector Gl is of size (4 ∗ 2) ∗ 18 (4
gaze features for both interlocutors over 1.2 sec (18 frames)).

Global gaze features: Statistical projections of gaze direction are estimated
as done for acoustic features. For the focus of attention annotation we use a binary
value for mutual attention as presented in the local gaze features. The Global
gaze vector is of size 34 (the value of the 8 statistical projections: min and max
position, range, linear and quadratic regression coefficients and approximation
errors, variance, standard deviation, for 2 gaze direction features + the vector
one-hot encoding for each interlocutor).
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6.3 The proposed model

In contrast to prior methodologies (Chowdhury et al. [2019], Chowdhury and Ric-
cardi [2017], Truong [2013]), our approach deviates by refraining from manually
extracting global features. Instead, we delegate this task to a neural network, this
shift not only enhances the model’s adaptability but also aligns seamlessly with
our primary objective of real-time application, as demonstrated in the subsequent
evaluation section.

Diverging from conventional feed-forward neural networks, the long short-
term memory (LSTM) architecture boasts connections that facilitate the processing
of not only singular data points but also entire sequences of data. Each LSTM unit
comprises pivotal elements, including a memory cell, an input gate, an output
gate, and a forget gate. Collectively, these gates regulate the inflow and outflow
of information within the memory cell.

The LSTM architecture we have adopted is visually illustrated in Figure 6.3. At
each time step t, the input xt is formed through the amalgamation of all local fea-
tures. We extract the hidden state from the final time step, which is subsequently
channelled into a dense layer responsible for generating the ultimate classifica-
tion. Despite its apparent simplicity, this model has yielded the most promising
outcomes. Interestingly, introducing more intricate architectures (such as stacked
LSTM) has demonstrated a propensity for significant overfitting, thus undermining
overall performance.

Figure 6.3 The long-short-term memory (LSTM) architecture.

6.4 Result & discussion

In this section, we present the experimental classification results we obtained us-
ing different modalities and compare them to the state of the art. Then we also
introduce the study we conducted on the time window length to be considered.
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Audio Facial, head, gaze All modalities
Accuracy F1-score Accuracy F1-score Accuracy F1-score

FFNN with modalities of Chowdhury et al. [2019] 0.74 0.73 - - - -
FFNN with our modalities 0.74 0.73 0.69 0.67 0.79 0.78

SVM with modalities of Truong [2013] 0.69 0.66 0.65 0.61 0.72 0.72
SVM with our modalities 0.72 0.72 0.68 0.67 0.77 0.76
LSTM with our modalities 0.75 0.73 0.69 0.68 0.81 0.80

Table 6.1 Accuracy and F1 measure for FFNN, SVM and LSTM model with different
combinations of modalities for the AMI corpus.

All modalities Audio, Facial, Head Audio, Facial, Gaze Audio, Head, Gaze
Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

FFNN 0.79 0.78 0.75 0.75 0.77 0.77 0.77 0.76
SVM 0.77 0.76 0.74 0.73 0.75 0.74 0.75 0.75
LSTM 0.81 0.80 0.76 0.76 0.79 0.78 0.79 0.79

Table 6.2 Ablation study of FFNN, SVM and LSTM model for the AMI corpus with
our modalities.

6.4.1 Results

Training Procedure: The methodology was implemented and evaluated using Ten-
sorFlow. The dataset was divided into training (70%), validation (10%), and
test (20%) subsets. The input to the LSTM layer, with a dropout rate of 0.2, is
constructed by concatenating all the aforementioned local features over the 1.2-
second interruption window (18 frames), resulting in a vector of size 100*18. The
latent vector, with a dimension of 10, is then passed through a dense layer with a
dimension of 8. The final output layer, with a dimension of 1, employs a sigmoid
activation function.

Throughout our experiments, the model was trained using mini-batches con-
sisting of 64 interruption instances. An Adam optimizer with a fixed learning rate
of 1e-5 was employed for the training process.

The results are presented in Table 6.1 for the AMI corpus. Analogous to pre-
vious studies, acoustic features alone demonstrate commendable performance.
However, the inclusion of facial expressions, head movement, and gaze substan-
tially enhances performance, achieving an accuracy of 81% and an F1-score of
0.80.

A comparison among facial expressions, gaze, and head activity reveals the
predominant role of acoustic features in classification. Further insights are gleaned
from ablation studies as showcased in Table 6.2. These experiments focus on
evaluating the impact of each modality on classification accuracy by systematically
excluding features from individual modalities.

While ablation experiments were also conducted for each specific feature, the
isolated influence of a single feature was found to be relatively minor, and there-
fore, those results are not detailed here. Interestingly, among the three mod-
els, the accuracy experiences a significant decline when gaze-related features are
removed, surpassing the reduction observed when the other two modalities are
omitted.
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We compare our result with random accuracy, which is calculated with the
equation (Tharwat [2020]):

accuracy = P (class = 0) ∗ P (prediction = 0) + P (class = 1) ∗ P (prediction = 1)

= (348/(505 + 348))2 + (505/(505 + 348))2

= 0.5162 ≈ 0.52

Where, in our case, class 0 represents competitive interruption and 1 represents
cooperative, therefore P (class = 0) = P (prediction = 0) = 348/(505+348) = 0.41,
and P (class = 1) = P (prediction = 1) = 505/(505 + 348) = 0.59.

The outcomes of our models are displayed in Table 6.3 for the NoXi Corpus.
The most favourable results (accuracy = 0.69) are also achieved through the uti-
lization of multimodal features, although they only exhibit a marginal improve-
ment over random accuracy (0.52). Upon a comparison between facial expres-
sion, gaze, head activity, and acoustic features, it becomes evident that acoustic
characteristics play a pivotal role in the classification process. In a manner similar
to our AMI corpus study, we conducted ablation studies detailed in Table 6.4. In
these experiments, each modality was isolated, and its related features were sys-
tematically omitted. However, unlike the AMI corpus, no significant differences
were observed among the three modalities.

An important consideration in interpreting these results lies in the differences
between the AMI and NoXi databases. Apart from the language variation (French
for NoXi and English for AMI), the conversational contexts differ significantly.
The NoXi corpus comprises dyadic screen-mediated conversations, while the AMI
corpus consists of four-party face-to-face interactions. Even without considering
multi-party interruptions, dyadic interruptions are more prevalent in AMI com-
pared to NoXi. The AMI context involves four interlocutors engaged in brain-
storming for product design, which could lead to more competitive interruptions
arising from attempts to assert individual ideas. The higher number of partici-
pants in the AMI conversations could also contribute to the increased occurrence
and frequency of interruptions.

On the other hand, the NoXi database involves participants adopting roles as
experts or novices discussing various topics. Experts tend to dominate the conver-
sation, and most interruptions arise from novices seeking information or express-
ing opinions, typically less competitive in nature. These differing scenarios give
rise to interactions with varying degrees of dynamism and interruptions charac-
terized by varying levels of competitiveness.

It is plausible that the discrepancies in settings and scenarios contribute to the
divergent results between the two corpora. Furthermore, the absence of certain
high-level annotation features in the NoXi corpus might also contribute to these
variations.

6.4.2 Comparative study

We conducted a comprehensive comparison of our method with previous ap-
proaches that have been developed for classifying interruptions in conversations.
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Audio Facial, head, gaze All modalities
Accuracy F1-score Accuracy F1-score Accuracy F1-score

FFNN with modalities of Chowdhury et al. [2019] 0.63 0.61 - - - -
FFNN with our modalities 0.63 0.61 0.61 0.60 0.66 0.64

SVM with modalities of Truong [2013] 0.57 0.52 - - - -
SVM with our modalities 0.61 0.57 0.59 0.57 0.62 0.60
LSTM with our modalities 0.65 0.62 0.62 0.60 0.69 0.65

Table 6.3 Accuracy and F1 measure for FFNN, SVM and LSTM model with different
combinations of modalities for the NoXi corpus.

All modalities Audio, Facial, Head Audio, Facial, Gaze Audio, Head, Gaze
Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

FFNN 0.66 0.64 0.65 0,65 0.65 0.64 0.64 0.63
SVM 0.62 0.60 0.61 0.60 0.60 0.58 0.61 0.61
LSTM 0.69 0.65 0.68 0,66 0.66 0.65 0.68 0.67

Table 6.4 Ablation study of FFNN, SVM and LSTM model for the NoXi corpus with
our modalities.

Specifically, we evaluated our approach against Truong’s SVM model and Chowd-
hury’s FFNN model, which were designed to classify interruptions using different
sets of features. Here’s an in-depth exploration of our comparison:

Truong’s SVM model was trained using both the original features presented in
(Truong [2013]) and the features extracted by our method. Chowdhury’s FFNN
model, on the other hand, was trained using the acoustic features described in
(Chowdhury et al. [2019]), whereas we employed our global multimodal features,
which were automatically generated from the local features, as detailed in Section
6.2. It’s worth noting that both Truong’s and Chowdhury’s methods rely on global
feature vectors that are manually crafted, whereas our approach leverages a neural
network to learn and extract the most pertinent features.

Our comparative analysis, presented in Table 6.1 for the AMI database and
Table 6.3 for the NoXi database, demonstrates that, across all models, acoustic
features are more informative for the classification task when compared to facial
expressions, head activities, and gaze direction. In fact, the achieved accuracy
using only facial expression, head activity, and gaze direction is relatively modest
for all models.

Interestingly, the multimodal features we introduced have the potential to en-
hance classification performance for all models. The improvements are notable,
with a 5% boost for the FFNN model, a 6% enhancement for the LSTM model, and
a 3% increase for the SVM model. This indicates that facial expressions and head
activities indeed convey valuable information for interruption classification.

Ultimately, our proposed multimodal LSTM classification model outperforms
the other models, underlining the significance of sequential information gleaned
from time series data. The model’s ability to extract relevant features from this
temporal information enables real-time recognition of interruptions, as highlighted
in Section 6.4.4. An important aspect is that our model doesn’t require information
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about the interruption’s endpoint, making it well-suited for real-time application
scenarios.

6.4.3 Interruption Window length

To thoroughly examine the impact of interruption window length on classification
accuracy, we adopt a systematic approach. Our aim is to rapidly identify the inter-
ruption type in order to apply it in real-time scenarios. To achieve this, we keep
the window length fixed prior to the interruption’s onset point at 0.6 seconds, and
then systematically vary the window length after the onset point in intervals of 0.2
seconds, ranging from 0 to 1 second.

The motivation behind this study is to strike a balance between accuracy and
response time, considering that an ideal virtual agent should determine the in-
terruption type as accurately as possible while responding promptly. The results,
depicted in Figure 6.4, indicate that the accuracy increases as the interruption
window length expands when employing our LSTM model. However, it’s worth
noting that certain cooperative interruptions have shorter overlap durations, as
illustrated in Figure 6.1. Opting for a longer interruption window could delay the
virtual agent’s response.

To address this trade-off between classification accuracy and response time, a
prudent choice seems to be a fixed interruption window length of 0.6 seconds fol-
lowing the onset point of interruption. This choice optimally balances the accuracy
of classification and the agent’s prompt response time.

Another idea, possibly using temporal series as proposed with the LSTM model,
is to adapt this temporal length during real-time application as proposed just be-
low.

Figure 6.4 Accuracy & Macro F1-score with different interruption window lengths.
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6.4.4 Adaptation of the temporal length during real-time appli-
cation

In the context of real-time human-agent interaction, the swift classification of in-
terruptions is crucial. As soon as an interruption is detected, marked by the onset
of overlap, we initiate the inference process using multimodal signals within the
temporal window t0 − 0.6s, t0s. By applying the LSTM model to this interval, we
can initialize the latent vector within the architecture, as illustrated in Figure 6.3.
A significant advantage of LSTM is its ability to update this latent vector frame by
frame, starting from t0, and predict cooperative or competitive interruption proba-
bilities at each time step. Although the result from the sigmoid layer is considered
as probabilities, this part of the model allows us to set a threshold for classification,
determining whether to execute the classification at each frame.

To experimentally validate this concept, we systematically study the feasibility
of classifying interruptions with AMI corpus. We begin classification at t0 and
incrementally add incoming data, frame by frame until reaching 1.2 seconds (18
frames) post t0. Denoting y as the output of the sigmoid at the studied frame,
we perform classification at the frame if max(y, 1− y) surpasses the set threshold.
However, if this condition is not met, we proceed to the next frame. Naturally,
classification is executed regardless of the threshold if the overlap concludes or
when the maximum interruption window length of 1.2 seconds post t0 is attained.
Utilizing a lower threshold results in a shorter reaction time, yet possibly at the
expense of accuracy.

Figure 6.5 illustrates the percentage of interruptions classified against the num-
ber of frames after t0 for various threshold values. As anticipated, a threshold of
0.5 classifies all interruptions at t0. Elevating the threshold extends the classifi-
cation time, leading to a longer reaction time. Notably, overly high thresholds
might hinder classification, as achieving such a classification score becomes chal-
lenging. For instance, only around 50% of interruptions are classified after t0+14
frames (roughly 1 second) when the threshold is set to 0.9. Conversely, with a
threshold of 0.6, over 95% of interruptions are classified within 0.4 seconds (6
frames), while the remaining 5% necessitate additional time. Irrespective of the
chosen threshold, the LSTM framework empowers us to adapt the reaction time
according to the complexity of classification. This flexibility ensures the virtual
agent’s responsiveness while maintaining accuracy. However, proceeding quickly
with poor classification results is not acceptable as well. We thus present in Table
6.5 the mean accuracy and the mean reaction time according to the threshold val-
ues. As expected, the higher the threshold, the better the accuracy and the longer
the response time. The model is requested to classify the interruption as soon as
possible with acceptable accuracy. We find from Figure 6.5 and Table6.5 that a
threshold of 0.8 seems to be a good choice.
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Figure 6.5 Percentage of classified interruptions according to the number of frames
after the beginning of the overlap, for different thresholds.

Threshold Mean accuracy Mean reaction time length (frame and second)
0.5 0.66 0 frame (0s)
0.6 0.72 1 frame (0.07s)
0.7 0.76 4 frames (0.27s)
0.8 0.83 8 frames (0.53s)
0.9 0.87 12 frames (0.8s)

Table 6.5 Mean accuracy & mean reaction time with different thresholds

6.5 Conclusion

In this chapter, we proposed to classify cooperative and competitive interruptions
in conversation with an LSTM model and evaluated different existing models. We
experimented with different combinations of modalities and achieved our best
performance using the acoustic profiles, facial expression, head movement and
gaze features from both interrupter and interruptee. The experiments indicate that
our LSTM model is able to learn accurate information from sequential series and
improves classification performance. Tested with different interruption window
lengths, the designed LSTM model is able to classify the interruption 0.6s after its
start point with an accuracy of 81%.

Another advantage of LSTM is to make the classification more or less faster,
according to the difficulty of the interruption. Using a classification threshold fixed
to 0.8 allows us to classify interruption within 0.53s on average, with an accuracy
of 83%. 40% of interruptions will be classified in less than 0.26s while the 30% of
the most difficult examples will take more than 0.8s to be classified.
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The key points of this Chapter:

This Chapter addresses research question Q2 and Q3.

• How can we identify different types of interruption during the interac-
tion? What’s the most effective modality combination?

• How long would it take to get enough usable information for the in-
terruption classification? Is it possible for ECAs to identify the inter-
ruption types in real time?

MIC: Multimodal interruption classification.

• Different from previous studies, we take the sequential information of
multimodal features into account using an LSTM model.

• We train and evaluate the proposed model on AMI and NoXi corpus,
proposing different features and annotations.

• In order to adapt our model in the real-time application, we manually
settle a threshold on the classification score.

• Using a classification threshold fixed to 0.8 allows us to classify inter-
ruption within 0.53s on average, with an accuracy of 83%.

Publications related to Chapter:

• Liu Yang, Catherine Achard, Catherine Pelachaud. Multimodal classifi-
cation of interruptions in human interaction. Proceedings of the 2022
International Conference on Multimodal Interaction. ICMI, 2022.
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Chapter 7
One-PredIT: Prediction of Interruption
Timing in dyadic interaction using
one-class classification model
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We aim for Embodied Conversational Agents (ECAs) to possess the capability
to interrupt human users when necessary during human-agent interactions. To
ensure that the interruptions made by ECAs are reasonable and not perceived as
system errors, we need to consider two significant aspects: when to interrupt and
how to interrupt. In this chapter, we will first address the first question, "when to
interrupt." Choosing an appropriate point in time for interruptions is of paramount
importance. This chapter corresponds to the research questions posed in Q4, Q5,
and Q6.

We propose a novel approach to find possible interruption initiation timing in
dyadic interactions using multi-modal features only from the speaker since this
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model is to be applied to a virtual agent, of which the behaviour may be different
from the real human. Our approach is based on a one-class classification model
that has been trained on a corpus of dyadic interactions. We evaluate the model’s
accuracy through a perceptual study that compares model-predicted interruptions
with ground truth data and random interruption timings.

We also evaluate the influence of interruption types (cooperative and compet-
itive) on the perception of interruptions. Interesting results arise from this study,
specifically on the timing where an interruption can be produced by the virtual
agent. This important result may help future researchers equip agents with the
ability to interrupt their human interlocutor.

7.1 Related works

Interruptions are common, but in most cases speaking turn exchanges smoothly
during a conversation, smooth turn exchange is found predictable due to various
cues that indicate the end of a turn: Ruth E. Corps et al. (Corps et al. [2019])
proposed a model that predicts turn-ends by using the semantic content and tim-
ing of the preceding speech. Sacks et al. (Sacks et al. [1978]) and Levinson et al.
(Levinson and Torreira [2015]) provided insights into the systematic organization
of turn-taking and its implications for processing models of language. Additionally,
Garrod and Pickering (Garrod and Pickering [2015]) have investigated the use of
content and timing to predict turn transitions. Raux and Eskenazi (Raux and
Eskenazi [2009]) proposed a finite-state turn-taking model for spoken dialogue
systems, which takes into account factors such as speech rate and gaze behaviour
to predict when a speaker will finish their turn. Skantze (Skantze [2021]) pro-
posed a continuous model of turn-taking using LSTM recurrent neural networks,
which takes into account contextual information.

To manage turn-taking during human-agent interaction, there are also researches
focusing on interaction strategies for affective conversational agents, which can
respond appropriately to user interruptions and manage the flow of conversation.
Crook et al. (Crook et al. [2010], Smith et al. [2011]) developed a model for han-
dling user’s interruptions in an embodied conversational agent, which takes into
account the user’s intent and the system goals. They proposed a set of interaction
strategies for an affective conversational agent, including strategies for handling
user interruptions and recovering from communication breakdowns. Chỳlek et al.
(Chỳlek et al. [2018]) proposed to use low-level acoustic features to predict inter-
ruptions and overlaps with a deep residual learning network. Their method allows
for predicting interruption timings using the speaker’s acoustic features.

Current studies highlight the importance of effective turn-taking and interrup-
tion management in human-agent interactions and focus more on handling the
interruptions initiated by the human user, while it’s also important that the agent
should take the initiative to interrupt the human user’s floor and adjust the con-
versation flow. To improve the prediction performance, we propose a one-class
classification method using multimodal features such as acoustic features, head
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movement and facial expression. We also conducted a perceptual study to evalu-
ate the acceptability of generated interruptions, including their timing and type.

7.2 Approach

We use NoXi corpus for this study. During a conversation, interruptions can occur
at various timings. The first step in building an interruption prediction model is
to create a database. We use the interruption annotation described in Chapter
5. However, even if an interruption did not occur at a given moment during a
real interaction, this does not mean that it could not have happened. Neverthe-
less, interruptions may occur at any moment. Some moments are perhaps less
appropriate. We refer to these moments as negative samples.

Obtaining the ground truth of positive samples (occurrence of interruptions)
is thus possible but obtaining negative samples (where interruptions should not
occur) is more challenging: how to know that at a given moment it is impossible
to interrupt?

To avoid this issue, Chỳlek et al. (Chỳlek et al. [2018]) assumed that the
current speaker was purposefully not interrupted before a real interruption (t −
0.7s), making the same number of negative examples as the positive ones. Having
both positive and negative samples allows the use of discriminative methods such
as SVM or neural networks.

Another approach we proposed in this article, to overcome the limitation of
missing negative samples is to use a one-class classification model that does not
need negative samples and can learn to detect interruptions based on existing pos-
itive samples alone. In this Chapter, we compared our approach with the method
proposed by Chỳlek et al. (Chỳlek et al. [2018]) using multi-modal features ex-
tracted on 1s length temporal window.

We leveraged acoustic features extracted from openSmile (Eyben et al. [2010]):
fundamental frequency, loudness, and 12 mel-frequency cepstral coefficients (MFCC).
We also use facial expressions, gaze and head movements extracted by OpenFace
(Baltrušaitis et al. [2016a]), including Action Units (AU) 01, 02, 04, 05, 12, and
15, gaze direction, as well as head activity and rotation as described in Chapter 4.

For all multimodal features, we calculated their average values on the corre-
sponding temporal window length (0.7s for the approach of Chỳlek et al. (Chỳlek
et al. [2018]), 1s for our approach ) and used this feature vector as input to both
models. First, we followed the works of Chỳlek et al. (Chỳlek et al. [2018]) and
used a deep residual learning network (ResNet-152) to classify samples. Positive
samples correspond to the moment of real interruptions manually annotated and
negative samples correspond to the timing of positive ones minus 0.7s. Moreover,
as in (Chỳlek et al. [2018]), data are augmented by offsetting each moment by
1 to 3 samples. We use the presented multimodal features as we obtain better
results than using only audio features as done in (Chỳlek et al. [2018]).

The second method we proposed, which does not need to create negative sam-
ples, is a one-class SVM with specific hyperparameters gamma=0.1 and nu=0.3.
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The output of the one-class SVM is a score representing the similarity of the input
feature vector to the targeted class, which in our case is interruptions. The higher
the output score, the higher the probability that an interruption will occur. By
manually setting a threshold on the output, based on the frequency of interrup-
tions on the validation data, the model outputs whether an interruption would
happen.

To compare our one-class SVM model with the method presented by Chỳlek
et al.(Chỳlek et al. [2018]), we followed a similar approach to use the annotated
interruption onset moments as positive samples, and defined the moment −0.7s
as negative samples, with an offset of 3 frames. For both methods, the model is
trained on 19 conversations (validation set: 2 half videos from the 19 ones) and
tested on the 2 remaining ones.

7.3 Comparative study

To evaluate the efficacy of the proposed approach, we conducted a comparative
study with the method proposed by (Chỳlek et al. [2018]). The results are pre-
sented in Table 7.1. It is important to note that we do not exactly obtain the results
presented in (Chỳlek et al. [2018]) as we use another database where participants
spoke another language and discussed other topics in a different interaction set-
ting.

The comparison showed that the inclusion of facial expressions and head mo-
tions enhances the prediction accuracy of interruptions compared to the use of
only acoustic features. Our proposed one-class SVM model performs slightly bet-
ter than the neural network model, even so, the accuracy is still low.

To further evaluate our proposed model, we conducted a perceptual study,
which is presented in the next section.

Accuracy F1-score
Deep residual learning network (Chỳlek
et al. [2018] acoustic only)

0.56 0.56

Deep residual learning network (Chỳlek
et al. [2018] all modalities)

0.59 0.58

One-class SVM (ours) 0.61 0.61

Table 7.1 Accuracy & F1-score for Deep residual learning network and One-class
SVM models with different modality combinations.

7.4 Subjective Evaluation

In this study, we want to evaluate the timing prediction model using perceptual
study, by comparing ground truth, predicted interruptions and randomly selected
ones. We consider 4 independent variables: interruption timing (ground truth,
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predicted model, randomly chosen), interrupter speech (ground truth, scripted),
interrupter audio voice (natural human audio or synthesised voice), interruption
type (agreement, clarification, disagreement) and we added one more variable to
be tested: interruption turn (ground truth turn or false-positive turn). The value
of these variables is explained below. Thus we obtained 8 conditions we referred
to as group 1...8:

• group1: ground truth timing – ground truth interrupter speech - natural
human voice.

• group2: ground truth timing – scripted interrupter speech - natural human
voice.

• group3: predicted timing - scripted interrupter speech - natural human voice.

• group4: ground truth timing - scripted interrupter speech - synthesised voice

• group5: predicted timing - scripted interrupter speech - synthesised voice

• group6: random timing - scripted interrupter speech - synthesised voice.

• group7: predicted timing - scripted interrupter speech - synthesised voice -
ground truth interruption turn.

• group8: predicted timing - scripted interrupter speech - synthesised voice -
false-positive turn.

Each group was evaluated by 30 participants using a questionnaire composed of
11 questions. In total, we had 270 participants with an acceptance rate >95%,
including 115 males and 142 females, with 13 participants not specifying their
gender. The majority of participants were between 18 and 30 years old (149 par-
ticipants) or between 31 and 50 years old (105 participants), with 13 participants
being between 51 and 70 years old. All the participants were fluent in speaking
French.

7.4.1 Stimuli

To assess the predicted interruption timings, we compared them to the ground
truth and randomly selected interruption timings. To accomplish this, we created
stimuli (https://youtu.be/WXvoUBEfADc) for the different conditions described
in the following sections.
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Figure 7.1 Screenshot of generated video for an interruption. Interrupter on the
left side ("Yep, yep."), and interruptee on the right side ("So after coming back
from school he has some time to play and ...").

Visual

We utilized a static image featuring two stylized young individuals to accompany
the interrupter and interruptee audios. As shown in Figure 7.1, the person on
the left represents the interrupter role, and the person on the right represents the
interruptee. Subtitles were displayed concurrently with the audio for both the
interrupter and interruptee beneath their corresponding roles.

Interruption sentences

For the ground truth interruptions, we had access to the audio and the speech of
the interrupters. However, this was not the case when the timing of interruption
was chosen randomly or predicted by our model. Thus, from the database, we
chose five interruptions where the interrupter used rather common sentences that
are possible to be used in general cases. These five interruptions were categorized
into three types: agreement, disagreement, and clarification, as shown in Table
7.2.
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Agreement
1. ‘Oui, oui oui’ (‘yep yep’).
2. ‘Ouais c’est ça ouais’ (‘Yeah
that’s it’).

Disagreement
3. ‘Oh non, pas du tout’ (‘Oh no,
not at all’).
4. ‘Ah je suis pas d’accord du
tout’ (‘Oh I don’t agree at all ’).

Clarification 5. ‘C’est à dire?’ (‘What’s that?’).

Table 7.2 Scripted interrupter speech sentences, selected from interruptions in our
corpus.

Audio voice settings

To examine the impact of the interrupter’s voice, we used either natural human
voice interrupter audios which were cut from the videos of NoXi database or syn-
thesised voice interrupter audios with the selected sentences for different groups:

• groups 1, 2, 3: natural human voice

• groups 4, 5, 6, 7, 8: synthesised voice

In all conditions, we used the original audios from the database for inter-
ruptees, once interrupted, the interruptee audios were cut off right after com-
pleting the current word, as in Figure 7.2.

Figure 7.2 Interruption simulation: for the same speaking turn of interruptee,
predicted interruption and random interruption may occur at different timing as
ground truth. Once interrupted, the interruptee audio was cut off after finishing
the current word.
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7.4.2 Comparison variables

We present the independent variables that we considered for the evaluation.

Interrupter speech

We compared the predicted interruption timing with the ground truth timing
(groups 2 and 3). Group 1 was added to measure the effect of generic sentences
on the perception of interruption. Groups 1, 2 and 3 all used natural human voice
to avoid extra impact from the synthesised voice. We selected 20 turns from the
conversations of the test data set where there is an interruption (ground truth
interruption) and where our model predicted one (predicted interruption) in the
same turn. All the selected interruption samples were of the three interruption
types: agreement, clarification and disagreement. Groups 2 and 3 used scripted
interrupter speech sentences. For each interruption sample of groups 2 and 3, we
randomly chose one sentence from the selected scripted speech that was of the
same interruption type as the ground truth.

Interruption timing

We compared the predicted interruption timing with ground truth timing and ran-
dom timing (groups 4, 5 and 6). We used scripted interrupter speech and syn-
thesised voice for the three groups. We used the same interruption samples as
selected above for groups 1, 2 and 3. The interrupter speeches were also the same
as for groups 1, 2 and 3, but all with synthesised voices.

Interrupter audio voice

We compared the impact of the synthesised voice and the natural human voice
on interruption perception, we conducted two comparisons to measure for both
ground truth interruption timings (group 2 vs. group 4) and predicted interruption
timing (group 3 vs. group 5), this can give the insight on how the interrupter audio
voice would impact the perception of interruption timing.

Interruption turn & interruption type

As previously mentioned, the absence of an interruption at a specific moment
does not imply that an interruption could not have occurred. In other words,
interruptions may occur during speaking turns other than those with annotated
ground truth interruptions. We thus compared the predicted interruptions for
speaking turns that contained a ground truth interruption (i.e., ground truth turns,
group 7) and those that did not but were predicted to have one (i.e., false positives
turns, group 8). For Group 7, we selected 10 turns from the 20 which were used
for groups 1 to 6, while for false positive interruptions in group 8, we selected 10
turns from the conversations where we could only find the predicted interruption
and no ground truth interruption.
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To further investigate how different types of interruptions are perceived, we
generated videos for all three interruption types using selected interrupter speech
sentences. For each interruption sample in groups 7 and 8, we made one video
for each interruption type, thus, for each interruption sample, there were 3 videos
with different types of interrupter speech. A total of 30 videos (10 turns * 3 types)
were created for each group.

7.4.3 Questions

For each video, participants answered 11 questions (see Table 7.3) related to the
timing of the interruption, the type of interruption, and their perception of the in-
terrupter, using a 5-point Likert scale ranging from "strongly disagree" to "strongly
agree". Participants were instructed to select the option that best reflected their
opinion based on their first impression.

Do you think the
interruption is

1. well placed?
2. acceptable?
3. coherent?

Do you think the
interrupter is

4. competitive?
5. cooperative?
6. dominant?
7. friendly?

Do you think the
interrupter

8. is trying to control the conversation?
9. intend to take the floor?
10. should let his interlocuter finish
what he was about to say?
11. shouldn’t have interrupted?

Table 7.3 Evaluation questions. Separated into three question sets. The 11 ques-
tions were asked for all the evaluated interruptions, randomly ordered.

7.4.4 Comparison Results

In this section, we present the comparison of different groups regarding the inde-
pendent variables as mentioned above, an overview of the 11 questions for the 8
groups is presented in Figure 7.3. We conducted a post-hoc pairwise comparison
using Tukey’s honestly significant difference (HSD) test, the specific results are
displayed in Table 7.4. In the case of mean differences, a negative value indicates
that the first group is rated lower than the second group for the corresponding
question, reversely for a positive value, and the farther the mean difference value
from 0, the stronger the evidence.
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Figure 7.3 Error bar plot of 8 groups by question.
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Groups Comparison Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
G1-G2 0.29 0.17 0.32 0.15 0.27 0.06 0.21 -0.01 0.69 -0.19 -0.05
G1-G3 0.33 0.27 0.44 0.20 0.32 0.09 0.11 0.17 0.77 -0.11 -0.02
G2-G3

Original sentence vs.
scripted interrupter speech

0.04 0.09 0.12 0.05 0.05 0.03 -0.11 0.17 0.08 0.08 0.02
G4-G5 0.27 0.44 0.18 -0.13 0.22 -0.37 0.34 -0.52 0.10 -0.10 -0.43
G4-G6 0.28 0.47 0.25 -0.27 0.27 -0.46 0.26 -0.56 -0.29 -0.40 -0.68
G5-G6

Ground truth timing
vs. predicted timing
vs. random timing 0.01 0.03 0.07 -0.15 0.05 -0.09 -0.07 -0.04 -0.39 -0.30 -0.24

G2-G4 0.10 0.06 0.01 -0.15 -0.02 -0.06 0.01 -0.04 -0.24 -0.19 -0.09
G3-G5

Natural human voice vs.
synthesised voice 0.33 0.40 0.08 -0.32 0.15 -0.46 0.46 -0.74 -0.21 -0.37 -0.55

G7-G8
Ground truth vs.

false positive 0.24 0.22 0.22 -0.13 0.13 -0.18 0.22 -0.19 -0.21 -0.13 -0.21

Table 7.4 Comparison of different groups for 11 questions are presented in the
table. Mean differences are reported, with a positive value indicating that the first
group scored higher than the second group. Significant differences (p < 0.05)
between the first and second groups are highlighted in green colour.

First groups Second groups Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Agreement Clarification 0.24 0.09 0.18 -0.16 0.10 0.00 0.15 -0.13 0.01 -0.10 -0.03
Agreement Disagreement 0.38 0.35 0.28 -0.50 0.45 -0.39 0.45 -0.58 -0.72 -0.13 -0.16
Clarification Disagreement 0.14 0.26 0.10 -0.34 0.34 -0.39 0.30 -0.44 -0.72 -0.02 -0.13

Table 7.5 Comparison of different interruption types for 11 questions are presented
in the table (groups 7 and 8). Mean differences are reported, with a positive value
indicating that the first group scored higher than the second group. Significant
differences between the first and second groups are highlighted in green colour.

Interrupter speech

We conducted the comparison of the stimuli of groups 1, 2, and 3 to see how inter-
rupter speech impacts the perception of the interruption, which corresponds to the
first three comparison results in Table 7.4. The stimuli of group 1 used the origi-
nal interrupter speech and audio, that of group 2 used scripted interrupter speech
with a natural human voice but maintained the ground truth interruption timing,
and the stimuli of group 3 used predicted interruption timing with scripted inter-
rupter speech and a natural human voice. The interruptions of all three groups
were perceived as acceptable (Q2), with an average score higher than the neutral
level of 3 (see Figure 7.3). However, the interruptions of group 1 were evaluated
as significantly more coherent (Q3) than those of groups 2 and 3, which used
scripted interrupter speech even though the interruption timings were the same
for groups 1 and 2.

Regarding the perception of interrupters, Q4 ∼ Q7 in Table 7.4 revealed that
interrupters in group 1 were perceived as more cooperative (Q5) than those in
groups 2 and 3 which received similar scores. There were no remarkable differ-
ences in competitiveness (Q4), dominance (Q6), and friendliness (Q7) between
the three groups. All three groups were perceived as friendly and not particularly
competitive/dominant. Furthermore, the interrupters in group 1 were perceived
as more likely to grab the turn (Q9) than the interrupters in groups 2 and 3 with
an average score of above 3, and the other two groups below the neutral level.
All three groups were rated as the interrupter should let the speaker finish talking
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(Q10), but none of them tried to control the conversation (Q8), aligning with the
result for the perception of the interrupter’s dominance.

In summary, the difference between the stimuli of group 1 and of groups 2
and 3 lies in the interrupter speech content. Group 1’s stimuli used the original
ground truth interrupter speech and audio, which was coherent with the conver-
sation, while those of groups 2 and 3 used scripted interrupter speech which were
"common" sentences (e.g., ’yep yep’) but which were not related to the current
conversation’s content. This highlights the importance of the interruption speech
content, and that may explain why stimuli in groups 2 and 1, which did not differ
in interruption timing, were perceived with significant differences.

Interruption timing

We compared the stimuli of groups 4, 5, and 6, which all used synthesised voice
with scripted interrupter speech to study how the different interruption timings
are perceived. Group 4 used the ground truth interruption timing, group 5 used
predicted interruption timing, and group 6 used randomly chosen interruption
timing. These results correspond to the 4th to 6th comparisons in Table 7.4.

From Table 7.4, group 4’s interruptions were perceived as more acceptable
(Q2) than groups 5 and 6, while groups 5 and 6 were rated similarly. Group 4’s
interruptions were also found to be better placed (Q1) than those of group 6,
but no significant difference was found between the comparisons of group 4 vs.
group 5, and group 5 vs. group 6. All three groups’ interruptions were perceived
as coherent (Q3), with no significant difference in score and all rated above the
neutral level.

In terms of perception of the interrupters (Q4 to Q7 in Table 7.4), the inter-
rupters of group 4 were perceived as more cooperative (Q5) and less competitive
(Q4) than those of group 6, but no significant difference was found between the
comparisons of group 4 vs. group 5, and group 5 vs. group 6. Group 4’s inter-
rupters were also perceived as more friendly (Q7) and less dominant (Q6) than
the other two groups, while the stimuli of groups 5 and 6 showed no remarkable
difference.

Table 7.4 also shows that the interrupters of groups 5 and 6 were perceived
as more likely to control the conversation (Q8) compared to those of group 4,
with no significant difference between those of groups 5 and 6. The interrupters
also received a higher score for the term "should not have interrupted" (Q11)
than those of group 4, although all three groups were rated above the neutral
level. Compared to the interrupters of groups 4 and 5, those of group 6 were
perceived as more likely to grab the floor (Q9) and should let the speaker finish the
turn (Q10), where no significant difference was found between the interrupters of
groups 4 and 5.

In summary, the distinguishing factor among groups 4, 5, and 6 lies in the
timing of the interruptions. All three groups utilized the same interrupter speech
and audio. Under these conditions, Group 4 (ground truth) was perceived as more
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acceptable and friendly compared to Groups 5 (predicted) and 6 (random). This
highlights the importance of selecting the appropriate interruption timing.

Interruption turn & interruption type

We examined the results obtained from the stimuli of groups 7 and 8, which all
utilized synthesised voice with scripted interrupter speech. The stimuli of group 7
were based on predicted interruptions on speaking turns that are also interrupted
in the ground truth (but with different timing of occurrence), while those of group
8 were based on false positive predicted interruptions. The purpose of this test was
to investigate how false-positive turn interruptions were perceived and whether
they differed from ground-truth turn interruptions.

The results presented in Table 7.4 show that the only significant difference
between the stimuli of groups 7 and 8 is that the interrupters of group 7 were
perceived as more friendly (Q7) than those of group 8.

We further analyzed the differences between different interruption types in
groups 7 and 8: agreement, clarification, and disagreement. The results are shown
in Table 7.5. Cooperative types of interruptions (agreement vs. clarification) were
perceived similarly in all aspects. Agreement and disagreement interruptions were
significantly different in all aspects. Compared to disagreement interruptions, the
agreement type was perceived as better placed (Q1), more acceptable (Q2) and
coherent (Q3), with interrupters perceived as more cooperative (Q5) and friendly
(Q7), and less competitive (Q4) and dominant (Q6). Clarification and disagree-
ment interruptions had no significant differences in terms of placement (Q1) and
coherence (Q3).

Regarding the perception of the interrupter, interrupters of agreement and clar-
ification interruptions were more likely to control the conversation (Q8) and grab
the turn (Q9) compared to those of disagreement interruptions, but all three types
were rated similarly in terms of ’should not have interrupted’ (Q11) and ’should
let the speaker finish the turn’ (Q10).

Interrupter audio voice

To figure out the influence in perception when natural human voice or synthesised
voice was used for different interruption timing, we compared the results between
group 2 and group 4, where both groups are of ground truth interruption timing,
group 2 used a natural human voice and group 4 a synthesised one. We also com-
pared group 3 and group 5, both are of predicted timing, group 3 with natural
human voice and group 5 with synthesised one. The stimuli of groups 7 and 8
that have ground truth interruption timing were evaluated with almost no signifi-
cant difference while those with predicted timings were perceived with statistical
differences.

Comparing the two groups of predicted interruptions, the natural human voice
group interruptions were perceived as more acceptable (Q2) than the synthesised
voice group, and the interrupters of the natural human voice group were per-
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ceived as less competitive (Q4) or dominant (Q6) than the synthesised voice ones,
who were perceived as more like interrupting unnecessarily (Q10, Q11). Partici-
pants might become more sensitive to interruption timing when there is no longer
natural intonation.

7.5 Discussion

Overall, our experiments provide insights regarding how different factors, includ-
ing speech content, interruption timing and its type, affect the perception of inter-
ruptions and interrupters. These findings have implications for how interruptions
are perceived in various contexts.

The interruptions of group 1 (ground truth stimuli) compared to those of group
2 (similar to group 1 stimuli but with scripted common sentences such as "yep
yep") were evaluated as better placed and more coherent. The interrupters in
group 1 stimuli were considered more cooperative, indicating that the content of
an interruption is an important factor in how it is received by the listener. Thus,
the ground truth interruptions with coherent speech content were perceived as the
most effective.

The difference between the perception of stimuli of groups 4, 5, and 6 lies
in the interruption timing, all using scripted interrupter speech with a synthe-
sised voice. Ground truth timings were perceived as more acceptable, friendly,
and cooperative. In contrast, predicted interruption timings and randomly chosen
timings were perceived as more dominant, interrupting unnecessarily, and trying
to control the conversation. Predicted timings showed differences with randomly
chosen timings in that the interrupters of the random group were perceived as
more likely to grab the floor and should let the speaker finish. The placement of
an interruption (be ground truth timing (group 4), predicted timing (group 5) or
random timing (group 6)) has an influence on participants’ perception. But this
influence was not major.

The predicted interruptions were found to be rated with scores similar to the
group with ground truth timing when using scripted interrupter speech with the
natural human voice (group 3 vs group 2). The only variable that differs between
these comparisons is the interrupter’s audio voice. Previous studies on conversa-
tion interruption indicated that interrupters may use a special pattern to gain at-
tention and grab the floor, such as, for example, higher pitch and loudness (French
and Local [2018], Hilton [2018]). However, the synthesised voice is rather flat,
and our stimuli did not model the intonation contours as in a natural human
voice. The lack of natural-sound interrupter’s intonation seems to have an impact
on the perception of the interruption and the interrupter. For stimuli with scripted
sentences and synthesised voice, there is a decrease in coherence between both
interlocutors’ speech. This is reflected in the results of group 2 vs. group 4 and of
group 3 vs. group 5.

Moreover, we can see that randomly chosen interruptions were rated rather
similar to the ground truth interruption timings in several aspects and did not
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show many differences compared to predicted ones. Moreover, when using syn-
thesised voice and scripted sentences, interrupting as in the ground truth (group
7) or at other moments (group 8, false positive computed by our model) did not
make a significant difference in perception. One possible reason is that interrup-
tions may not have to occur at specific timings during a conversation. There seems
to be quite a lot of flexibility in the occurrence timing of the interruption. How-
ever, this result is modulated by other factors (coherence of the interrupter speech
sentences and voice quality).

When an interruption occurs, the interruption type would play a rather im-
portant role. In our study, interruption type affects significantly how interruption
and interrupter are perceived. Interruption type was recognized by participants as
playing a critical role and was perceived differently even with the same interrup-
tion timings. The perception of the three types of interruptions (agreement, clari-
fication, disagreement) showed remarkable differences in the evaluation score.

7.6 Conclusion

In this Chapter, we presented a novel approach to predict interruptions during
conversations through the use of a one-class classification model with multimodal
features from the speaker. To evaluate the effectiveness of our model, we con-
ducted an objective study and a perceptual experiment to gain insights into how
interruptions are perceived under different conditions. Our model achieved an
overall accuracy of approximately 0.61. This result, even though better than those
obtained in the state of the art, suggests that there is still room for improvement.
However, our perceptual experiment highlights that interruption timing may not
be the prime factor; rather it is the quality of the voice (i.e. the use of natural
voice) that seems more important.
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The key points of this Chapter:

This Chapter addresses research question Q4, Q5 and Q6?

• How should ECAs decide when to interrupt during real-time interac-
tion?

• What are the most effective modalities to find possible interruption
timing?

• How are the predicted ECA interruptions perceived? What are the
major factors that impact the perception of interruptions?

One-PredIT: One-class Prediction of Interruption Timing.

• We use a one-class SVM model to avoid the problem of the negative
samples definition.

• We trained the proposed model on the NoXi corpus and conducted a
perceptual study to evaluate the predicted interruptions.

• In order to adapt our model in the real-time application, only the
speaker’s nonverbal behaviour before each annotated interruption
point was used to predict the possibility of the very next moment.

• Using a one-class classification model, we manually settled a threshold
based on the distribution of the interruption.

• Multiple variables concerning interruption were considered and evalu-
ated (Interrupter speech, Interruption timing, Interrupter audio voice,
Interruption turn and Interruption type), Interruption timing was
found not the major factor impacting the interruption perception but
the Interrupter audio voice and Interruption type.
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Chapter 8
AI-BGM: Agent Interruption Behaviour
Generation Model.
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Building upon the findings from the previous chapter’s experiments, it was re-
vealed that in the context of human-agent interaction, the timing of when a virtual
agent interrupts a human is not the most crucial factor. Surprisingly, the quality
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of the sound and the content of the interruption have a more significant impact
on the perception of interruption. Given that our previous experiments only em-
ployed audio data, we are particularly intrigued by the influence of the agent’s
nonverbal behaviour on the overall perception. Hence, we introduce a genera-
tive model designed to generate nonverbal behaviours, encompassing facial ex-
pressions and head rotations, exhibited by the interrupter during the interruption
phase, enhancing the authenticity and naturalness of interruptions within human-
agent interactions. It ensures that the interruptions are imbued with nonverbal
cues to align with effective communication. This chapter corresponds to the re-
search questions posed in Q7, Q8 and Q9.

In order to delve deeper into this aspect, we aim to investigate the effects of
nonverbal behaviour generated by the agent during interruptions. To accomplish
this, we will maintain control over sound quality, interruption content, and tim-
ing—utilizing the original dataset as a foundation. Employing the technique of
transfer learning, we extend the capabilities of an already proficient model de-
signed for generating general virtual agent interaction nonverbal behaviour. This
model is fine-tuned using data coming specifically from the interruption periods,
enabling it to generate nonverbal behaviour (facial expressions and head move-
ments) tailored to instances when the agent acts as an interrupter.

Through a series of experiments, our objective is to closely observe the virtual
agent’s actions during human interruption scenarios and evaluate whether these
generated nonverbal behaviours are perceived as acceptable by human partici-
pants. Furthermore, we compare the quality and appropriateness of the generated
nonverbal behaviour with the nonverbal behaviour exhibited by actual human in-
terrupters in the original corpus.

By conducting this research, we address the gap in the understanding of virtual
agent nonverbal behaviour generation during interruption scenarios. We seek to
gain deeper insights into the impact of such behaviour on human users and provide
substantial guidance for enhancing the social interaction capabilities of virtual
agents.

8.1 Related works

8.1.1 Nonverbal turn-taking behaviour for virtual agents

When exploring the existing landscape of virtual agent systems in terms of in-
terruption management, the majority of research has predominantly focused on
treating the virtual agent as the party being interrupted. Within this context, stud-
ies delve into how virtual agents should respond and handle interruptions from
human users, such as determining when to cease speaking and yield the conversa-
tional floor. Our focus then shifts towards a closely related aspect—virtual agent
turn-taking management.

In theory, nonverbal behaviour plays a crucial role in turn-taking, encompass-
ing elements like gestures and eye gaze. Zhou et al. (Zhou et al. [2018]) demon-
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strated the use of gaze shifts to signal turn-taking and body posture shifts to indi-
cate changes in topic. Similarly, Kontogiorgos et al. (Kontogiorgos et al. [2019])
utilized gaze cues to coordinate turn-taking. In their work, prior to an utterance,
the agent employed a gaze shift to the subject to establish attention. During the
utterance, the deictic gaze was directed towards a referent object, indicating the
agent’s retention of the conversational floor. At the conclusion of the utterance, a
gaze shifts back to the participant established at the end of the turn. Andrist, Leite
et al. (Andrist et al. [2013]) conducted a study where an agent managed a group
of children. This agent employed multimodal cues, including gaze, gesture, and
proxemics, to facilitate the exchange of speaking turns. The study demonstrated
that an agent incorporating all three cues resulted in a more equitable distribu-
tion of speaking turns within the group, reducing variance. When compared to an
agent utilizing only vocal cues or a subset of nonverbal cues, the comprehensive
use of all three cues proved most effective in managing the conversation without
diminishing enjoyment.

However, the aforementioned turn-taking nonverbal behaviours are typically
rule-based, and designed according to predefined protocols. In real conversa-
tions, turn-taking and interruptions are flexible and variable, demanding that vir-
tual agents adapt to diverse situations. Anticipating every possible scenario and
designing pre-established responses is often unfeasible. Consequently, we have
developed a model capable of generating interruption-specific behaviours in real-
time. This dynamic approach aims to equip virtual agents with the adaptability
required to handle a range of unforeseen circumstances in both turn-taking and
interruption scenarios.

8.1.2 Nonverbal behaviour generation

The task of generating nonverbal behaviours can be likened to predicting forth-
coming sequences of non-linguistic actions, suggesting an intriguing avenue to
explore existing sequence prediction techniques for potential applicability to non-
verbal behaviours. The generation of multimodal behaviours in Socially Interac-
tive Agents (SIAs) necessitates the accurate modelling of the temporal dynamics
underlying exchanged social cues such as facial expression and head motion to en-
hance the authenticity and naturalness of the interaction. Facial gestures are con-
sciously or unconsciously used to accentuate words or mark speech pauses. Many
facial expressions and head nods are tied to the speech’s syntactic and prosodic
structure.

Past research endeavours that delve into intrapersonal temporality have put
forth models capable of generating facial expressions and communicative ges-
tures in coordination with speech. These studies harness the power of Deep
Learning (DL) techniques, including Feed-Forward Neural Networks (FFNs), Bi-
directional Long Short-Term Memory (BLSTM) networks, Conditional Variational
Autoencoders (CVAEs), Generative Adversarial Networks (GANs), and Transform-
ers (Alexanderson et al. [2020], Bhattacharya et al. [2021], Ding et al. [2015],
Fares et al. [2022], Ferstl et al. [2019], Greenwood et al. [2017], Hasegawa
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et al. [2018], Karras et al. [2017], Sadoughi and Busso [2018], Yuan and Kitani
[2020]).

Feng et al. (Feng et al. [2017]) mentioned that attention is directed towards
the relationship between a human user and an SIA. They employ a Feed-Forward
Neural Network (FFN) model to generate the agent’s facial gestures based on pre-
viously predicted facial gestures from both the agent and the human. This ap-
proach solely employs visual features like facial landmarks and doesn’t leverage
the multimodal information available in the interaction. Grafsgaard et al. (Graf-
sgaard et al. [2018]) adopt a Long Short-Term Memory (LSTM) model to encode
multimodal signals (facial expression, body motion, and speech). Their model
is used to predict the facial expression and motion of a partner by incorporating
speech from both partners and their respective facial expressions and motion fea-
tures. Dermouche et al. (Dermouche and Pelachaud [2019]) also delve into the
interpersonal relationship, framing it as an interactive loop for agent behaviour
generation. They introduce the Interactive Loop LSTM (IL-LSTM), which consid-
ers the upper-face behaviours of both the agent and the user to model the agent’s
nonverbal behaviours. Similar to (Feng et al. [2017]), IL-LSTM’s limitation lies in
taking only unimodal input features (facial gestures), leading to jerky movements
due to its sliding window prediction.

Motion generation entails the use of generative models like Generative Adver-
sarial Networks (GANs) (Goodfellow et al. [2014]) and normalizing flow-based
models to produce more diverse and realistic motions. An extended version of
the MoGlow system (Henter et al. [2020]) is employed by Jonell et al. (Jonell
et al. [2020]) to predict the agent’s facial expression based on audio input from
both partners and the human’s facial expression. Tuyen et al. (Tuyen and Ce-
liktutan [2022])] forecast upper body motions (face, body, and hand landmarks)
through a context-aware model comprising three components: a context encoder,
a generator, and a discriminator.

Focusing on modelling reciprocal adaptation for SIA behaviour generation,
Woo et al. (Woo et al. [2023]) present the Augmented Self-Attention Pruning
(ASAP) neural network model. ASAP seamlessly integrates a recurrent neural
network, the attention mechanism from transformers, and a pruning technique
to facilitate learning of reciprocal adaptation through multimodal social signals.
This novel approach encapsulates the dynamic interaction between SIAs and hu-
mans, paving the way for more sophisticated and contextually aware nonverbal
behaviour generation.

8.1.3 Transfer learning

Despite interruptions being a common occurrence in everyday conversations, their
overall frequency remains relatively limited. Consequently, we face a challenge in
obtaining a sufficient amount of data to train an entirely new action generation
model from scratch. To address this issue, we have opted to leverage a pre-trained
and validated model that has demonstrated its capability to generate general vir-
tual agent interaction nonverbal behaviour. Building upon this foundation, we
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intend to utilize existing interruption data to retrain this model, thereby adapt-
ing it specifically for interruption behaviour generation. Given the scarcity of
interruption-specific data, this approach capitalizes on the knowledge and gen-
eral behaviour-generation abilities already embedded in the pre-trained model.
By incorporating interruption data into the training process, we aim to fine-tune
the model’s responses to align with the dynamics of interruption scenarios. This
strategy not only maximizes the use of available resources but also allows us to
harness the nuanced knowledge captured by the initial general behaviour model.

In the realm of artificial intelligence and machine learning, the concept of
transfer learning has emerged as a powerful strategy that enables models to lever-
age knowledge gained from one task to enhance performance on another (Weiss
et al. [2016]). Instead of building isolated models for each specific task, trans-
fer learning facilitates the sharing of insights across related domains, paving the
way for more efficient and effective learning processes. By enabling models to
transfer and adapt knowledge, transfer learning not only accelerates the training
process but also enhances the generalization capabilities of AI systems, leading to
improved performance and resource utilization(Weiss et al. [2016]).

At its core, transfer learning involves training a model on a source task with the
objective of transferring the acquired knowledge to a related target task. The intu-
ition behind transfer learning is grounded in the observation that real-world tasks
often share common underlying patterns and structures. By leveraging the infor-
mation extracted from one task, the model can gain a head start when confronted
with a new, yet related, problem. This is particularly valuable when labelled data
for the target task is limited or expensive to obtain.

Transfer learning encompasses various methods, each catering to different sce-
narios and learning objectives.

Homogeneous Transfer Learning

Homogeneous Transfer learning approaches are developed and proposed to han-
dle situations where the domains are of the same feature space. In Homogeneous
Transfer learning, domains have only a slight difference in marginal distributions.
These approaches adapt the domains by correcting the sample selection bias or
covariate shift.

Instance-based. It covers a simple scenario in which there is a large amount
of labelled data in the source domain and a limited number in the target domain,
domains differ only in marginal distributions (Chattopadhyay et al. [2012]).

Instance-based transfer learning involves reassigning different weights to in-
stances from the source domain in the loss function of the target domain. This
approach allows the model to prioritize learning from instances that are more
relevant to the target task.

Parameter-based. The parameter-based transfer learning approaches transfer
the knowledge at the model/parameter level. Parameter-based transfer learning
focuses on adapting the model’s parameters from the source task or domain to
the target task or domain. Fine-tuning and freezing certain layers of a pre-trained
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model are common techniques used in parameter-based transfer learning (Torrey
and Shavlik [2010]).

• Soft weight sharing: In this approach, model parameters are adapted gradu-
ally, allowing the model to adjust to the nuances of the target domain while
retaining some learned knowledge from the source domain.

• Hard weight sharing: Here, certain layers of the pre-trained model are shared
entirely, ensuring that the model capitalizes on the shared knowledge and
structure present in the source domain.

Feature-based transfer. Feature-based transfer learning centres on extracting
valuable features from the source domain and adapting them to the target domain
(Zhuang et al. [2020]). Through this approach, domain-specific discrepancies are
minimized, allowing the model to capitalize on shared patterns and information.
This approach can further be divided into two subcategories, i.e., asymmetric and
symmetric Feature-based Transfer Learning.

Asymmetric approaches transform the source features to match the target ones.
In other words, we take the features from the source domain and fit them into the
target feature space. There can be some information loss in this process due to
the marginal difference in the feature distribution. Symmetric approaches find a
common latent feature space and then transform both the source and the target
features into this new feature representation.

Relational-based transfer. Relational-based transfer learning approaches mainly
focus on learning the relations between the source and a target domain and using
this knowledge to derive past knowledge and use it in the current context (Weiss
et al. [2016]). Such approaches transfer the logical relationship or rules learned
in the source domain to the target domain.

Heterogeneous Transfer Learning

Homogeneous transfer learning involves deriving representations from a previ-
ous network to extract meaningful features from new samples for an inter-related
task. However, these approaches forget to account for the difference in the feature
spaces between the source and target domains. Heterogeneous transfer learning
is pertinent when the source and target domains differ significantly in terms of
data distributions and feature spaces. This category addresses the challenge of
adapting knowledge from one domain to another that may have disparate charac-
teristics (Weiss et al. [2016]).

In summary, transfer learning is a versatile methodology that encompasses a
spectrum of techniques catering to different data scenarios. By enabling models to
learn from prior experiences in related contexts, transfer learning accelerates the
learning process, enhances predictive accuracy, and enables models to tackle real-
world challenges effectively. We have explored several approaches in this work,
discussed in the subsequent sections.
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8.2 Corpus & Features

For the purpose of our study, we opted to utilize the French segment of the NoXi
database. Within this methodology, visual features were extracted for each time-
step, encompassing gaze direction data (around both the x and y axes), head
rotation data (around the x, y, and z axes), and the activations of 6 upper face
Action Units (AUs) – specifically, AU1, AU2, AU4, AU5, AU6, and AU7 – along
with the smile expression (AU12).

Concurrently, we captured a range of acoustic features, encompassing the fun-
damental frequency, loudness, voicing probability, and a set of 13 Mel-frequency
cepstral coefficients (MFCCs) (Logan et al. [2000]).

The extraction and cleaning of both audio and visual features have been de-
tailed in Chapter 4.

8.3 Interruption preparation duration

Watching the original video data of interrupters and interruptees during inter-
ruption instances, a noticeable pattern emerged wherein the interrupter exhibited
brief and distinct actions shortly before commencing speech. These actions en-
compassed changes in facial expressions, as well as subtle movements in head
and body posture. These actions seemed to clearly convey the intent of the in-
terrupter to speak. Notably, psycholinguistic research has demonstrated that pro-
ducing even a single-word utterance takes at least 600 milliseconds, a time during
which preparatory actions are typically observed (Indefrey and Levelt [2004]). In
our pursuit of enhancing the human-agent interaction experience to align more
closely with natural conversation habits, we incorporated the generation of these
preparatory actions into consideration.

Figure 8.1 Classification model architecture.

Given the exceedingly brief nature of preparatory actions, an exact tempo-
ral duration is hard to be determined by analyzing data from various modalities.
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Thus, we resorted to training a classification model. This model used facial ex-
pressions (AU1, AU2, AU4, AU5, AU6, AU7, and AU12), gaze direction (around
both the x and y axes) and head rotations (around the x, y, and z axes) of the
interrupter as inputs to classify time segments prior to an interruption and those
further away, serving as periods of attentive listening. The model’s accuracy and
classification capabilities served as indicators. When the model struggled to con-
sistently differentiate between pre-interruption and listening periods, we could
infer a rough estimate of the preparatory action duration.

Initiating the process, we extracted input data from the listening periods and
excluded instances where the listener interjected backchannels. From these seg-
ments, we took the middle second, ensuring that it was far from the listener en-
tering a listening state or preparing to speak at the end of a turn. After gathering
all listening period data, we chose an equal number of segments (train, validation,
and test) as in the interruption periods, totalling 929 segments.

For the periods before interruptions, we selected one-second segments at var-
ious distances from the interruption onset point (when the interrupter begins
speaking), with offset duration ranging from 0s to 1.2s in increments of 0.2s (See
Figure 8.2). This resulted in 929 segments for each time offset.

Figure 8.2 One-second segments with offset distance (each 0.2s from 0.2s to 1.2s).

Out of the 21 conversations, we reserved three conversations as separate test
data, while the remaining 18 were divided into train and validation data in an
80% to 20% ratio. Subsequently, we trained the model to distinguish between
listening periods and the different time offsets before interruptions (0s, 0.2s, 0.4s,
0.6s, 0.8s, 1.0s, and 1.2s). We then evaluated the model’s accuracy on the test
data.

We employed a multi-layer bi-directional LSTM model, as illustrated in Fig-
ure 8.1. This model structure was identified through training for classification
between listening periods and interruption periods 0.2s before the interruption,
as it demonstrated favourable classification performance. Given the consistent
input-output requirements, we maintained the same model structure for training
all seven models.
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Figure 8.3 Classification model accuracy with different offset duration (0s, 0.2s,
0.4s, 0.6s, 0.8s, 1.0s, and 1.2s)

Figure 8.3 presents the test accuracy of the seven models corresponding to the
different time offsets (0s, 0.2s, 0.4s, 0.6s, 0.8s, 1.0s, and 1.2s) before interruption.
Up to 0.6s, four models sustained an accuracy of over 50%. Importantly, the 0.6s
duration aligns with the language preparation duration mentioned in Indefrey and
Levelt [2004]. As a result, we selected the period of 0.6s prior to the interruption
onset point as the baseline for generating interruption behaviour.

8.4 Smooth turn exchange vs. interruption

Recognizing the challenge posed by the limited data available for training the
interruption behaviour generation model, our aim was to access a larger dataset.
To address this issue, we turned our attention to examining data related to smooth
turn exchanges. Drawing from insights in psycholinguistic research, as highlighted
in Indefrey and Cutler’s work (Indefrey and Levelt [2004]), it is apparent that turn-
taking in conversations often involves preparatory actions preceding the initiation
of speech. This observation raises an intriguing possibility: could the preparatory
actions associated with turn-taking be similar to those preceding interruptions?
We sought to test whether the preparatory behaviours for smooth turn exchanges
and interruptions exhibited similarity. If such similarity was established, it would
open the possibility of using the preparatory behaviour data from smooth turn
exchanges to train the interruption behaviour generation model.

Given the constraints of our data analysis methods and the challenge of effec-
tively observing the interplay of various modalities, which might introduce biases
in the results, we opted for a method analogous to our preparatory behaviour
duration determination. We employed classification models to train and evaluate
their accuracy and classification capabilities in assessing the similarity between
the preparatory behaviours of smooth turn exchanges and interruptions.
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For this investigation, we selected the data precisely one second before the on-
set point of both smooth turn exchanges and interruptions. We employed facial
expressions (AU1, AU2, AU4, AU5, AU6, AU7, and AU12), gaze direction (around
both the x and y axes) and head rotations (around the x, y, and z axes) as inputs.
Similarly, we designated three conversations as test data and used the remaining
18 conversations for training and validation data, in an 80% to 20% distribution.
Utilizing a model identical to that used for determining preparatory behaviour
duration, the results demonstrated an accuracy of 83% in classifying the prepara-
tory behaviours of both smooth turn exchanges and interruptions. This finding
indicates the distinctiveness between the two, suggesting that the preparatory
behaviours of smooth turn exchanges cannot be employed as training data for
the interruption behaviour generation model. Consequently, in subsequent model
training endeavours, we only utilized interruption data.

8.5 ASAP introduction

As previously mentioned, due to the limited dataset, we opted to utilize a pre-
trained model that had been verified for its capability to generate general interac-
tion behaviour. In this regard, we selected the Augmented Self-Attention Pruning
(ASAP) model proposed by Woo et al (Woo et al. [2023]). Their objective was to
model reciprocal adaptation by considering both intrapersonal and interpersonal
temporality, as well as multimodality, along with the aspect of continuity, for the
generation of an agent’s nonverbal behaviour.

The architecture of the ASAP model, depicted in Figure 8.4, presents a novel
approach to model reciprocal adaptation. ASAP calculates the behaviour of the
agent in real-time based on the behaviour of the human and its own behaviour.
For each time frame (t+1), the model takes into account the previous 100 frames
(t − 99 : t) for both the human and the agent. ASAP incorporates three funda-
mental techniques: data augmentation, self-attention pruning, and autoregressive
adaptive online prediction.

Data Augmentation: To effectively learn reciprocal adaptation, Woo et al.
introduced a data augmentation technique that equally learns from both inter-
locutors. This method enables the model to capture the characteristics of both
interacting partners. During each batch of the training phase, the model ran-
domly assigns the interlocutor identity to be portrayed by the agent, allowing it to
learn and predict behaviours for that particular interlocutor. This process is then
alternated, with the agent assuming the identity of the other interlocutor, thereby
fostering comprehensive learning.

Self-Attention Pruning: In order to better capture reciprocal adaptation and
encapsulate the coherence, synchrony, and multimodality of interpersonal be-
haviours, a selection of relevant features is implemented through an attention
mechanism. The self-attention process utilizes multi-head attention from Trans-
formers (Vaswani et al. [2017])), involving all features (including eye movements,
head rotations, smile (AU12), and 6 upper face AUs) across all interlocutors and
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Figure 8.4 ASAP model architecture. Image from Woo et al. [2023].
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modalities (visual and acoustic). This mechanism strategically captures pivotal
information essential for modelling the occurrence of behaviours, mimicry, and
synchronization in a comprehensive manner. However, within the multi-head at-
tention (MHA), several heads often contain redundant information, leading to
potential overfitting. To address this, they employed a pruning technique that
eliminates redundant heads, allowing the model to focus solely on the unique and
informative heads. This not only curbs overfitting but also enhances inference
speed by discarding repetitive computations. The model acquires the ability to
determine which heads are pertinent for each specific frame through a pruning
mask.

Autoregressive Adaptive Online Prediction: Throughout the entire interac-
tion, the ASAP model continuously updates its memory, akin to the approach in
Yang et al. [2017]. Past information is retained within memory cells and utilized
for making new predictions. Moreover, the model operates in an autoregressive
manner, where the predicted values of previous time steps are fed back as input
for predicting subsequent time steps. This approach allows the model to adapt
and refine its predictions as the interaction unfolds, capturing the dynamic nature
of human-agent exchanges.

8.6 Proposed model

Our primary focus lies in the nonverbal behaviour of the virtual agent around
an interruption - how the interruption is initiated. Consequently, we concentrated
our data selection solely on the time span from 0.6 seconds before the interruption
onset point to the end of the first Inter-Personal Unit (IPU) of the interruption. We
employed a training dataset consisting of 17 conversations to train the model,
while an additional set of four conversations was reserved for testing purposes.
This test dataset was utilized for both objective and subjective evaluations of the
model’s performance.

This selective data range was chosen deliberately to capture the critical mo-
ments leading up to and immediately following the interruption. By isolating
this specific temporal window, we aim to examine the virtual agent’s nonverbal
behaviours during the preparatory phase and their subsequent adaptation as the
interaction dynamics shift due to the interruption. This approach enables us to
closely analyze the agent’s nonverbal cues during an interruption.

To refine the generation of interruption behaviour more effectively, we tested
several modifications to the training approach of the ASAP model, while maintain-
ing the same input-output structure as the original model:

• Fine-Tuning: In this approach, we initiated the process by freezing all layers
of the ASAP model except the final fully connected layer. We then trained
the model with interruption data until the loss converged. Subsequently, we
unfroze the previously frozen layers and continued training with interruption
data for an additional 20 epochs. By adopting this strategy, we aimed to fine-
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tune the model’s learned representations and adapt them specifically to the
nuances of interruption behaviour.

• Weighted Training: We decided to fully retrain the ASAP model from its orig-
inal architecture. For this, we employed data from all moments within the 17
conversations. However, unlike the previous approach, we introduced man-
ually assigned weights to the data based on the proportions of interruption
data within the entire dataset. This weighting allowed the model to focus
more on learning interruption-related behaviours, aligning its attention with
the specific context of interest.

• Input Modification: Similar to the weighted training method, we performed
a complete retraining of the ASAP model using its original architecture.
However, we introduced a binary signal to the input to represent whether
an interruption was ongoing or not. Given this alteration in input data, we
also made necessary adjustments to the ASAP model’s parameters to opti-
mize its training performance while considering the new input structure.

• Combined Input and Weighted Training: This approach merges the concepts
of the weighted training and input modification methods. While introduc-
ing the binary signal to indicate interruption status, we also applied the
weighted training principle. By integrating both modifications, we aimed
to capture the contextual significance of interruptions while ensuring the
model’s attention remained aligned with the interruption-related behaviours.

• Interrupt-Specific Training: In this approach, we focused solely on retraining
the ASAP model using interruption data exclusively. By isolating and em-
phasizing the interruption instances, the model learned to generate actions
tailored specifically for interruption contexts. This training strategy aimed
to enhance the model’s ability to generate interruption behaviours with a
heightened degree of specificity.

Each of these modified training methods was designed to enhance the model’s
capability to generate interruption behaviours. Through these adaptations, we
sought to tailor the model’s learned behaviours to the unique dynamics and cues
associated with interruptions, thereby fostering the generation of contextually rel-
evant and adaptive nonverbal behaviours.

8.7 Objective evaluation

Evaluating the sequences of SIA’s nonverbal behaviours presents a complex and
ambiguous challenge. Our responses to our interlocutors vary depending on fac-
tors such as personal traits, time of day, and mood. Nonverbal behaviours, includ-
ing head and body motions or facial muscle movements captured by Action Units
(AUs), are naturally expressed as temporal sequences with changing values over
time.
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A common approach to assessing the accuracy of generated behaviour se-
quences involves comparing their values against the ground truth sequence at
each time step, provided they share the same length. This measure is frequently
utilized as a loss function in the training of neural networks. Among the measures
employed are Mean Squared Error (MSE) (Ding et al. [2015], Sadoughi and Busso
[2018]), Root Mean Squared Error (RMSE) (Dermouche and Pelachaud [2019]),
and Average Position Error (APE) (Ahuja et al. [2019], Ahuja and Morency [2019]).
Furthermore, correlation analysis has been explored by various researchers (Ding
et al. [2015], Grafsgaard et al. [2018], Sadoughi and Busso [2018]). Such met-
rics enable the establishment of loss functions for training neural networks. For
point-to-point assessment, we adopt the Root Mean Square Error (RMSE).

The quality of nonverbal behaviours can also be evaluated through the verifica-
tion of their probability distribution. Methods involving log-likelihood and density
comparison (Aliakbarian et al. [2021], Jonell et al. [2020], Mao et al. [2021],
Sadoughi and Busso [2018]) assess the disparities between predicted and actual
sequences. Woo et al. (Woo et al. [2023]) introduced the Kolmogorov-Smirnov
(KS) two-sample test (Massey Jr [1951]), which quantifies quality by gauging the
density probability distinction between the generated and ground truth sequences
for each output dimension. The KS test calculates the difference between the dis-
tributions of generated (g(x)) and real (r(x)) data. Applied across all features, the
KS test yields an average score.

In evaluating these six models, including the ASAP model, we employed all
interruptions from the four test conversations. To ensure the cohesiveness of the
generated actions during interruptions with the preceding interaction, we utilized
a frame-by-frame ground truth input, spanning from the beginning of the dia-
logue, to predict and generate the subsequent behaviours during interruptions.
However, the generated output did not feed back into subsequent predictions until
an interruption occurred. Starting from 0.6 seconds before the interruption onset
point, the model entered an autoregressive mode, using each generated behaviour
as input for the next prediction. This continued until the first Inter-Personal Unit
(IPU) of the interruption concluded, at which point the model reverted to using
ground truth inputs. Evaluation specifically focused on the autoregressively gen-
erated interruption behaviour (-0.6s to the end of the first IPU) and compared it
against the ground truth interruption behaviour.

Tables 8.2 and 8.3 respectively display the evaluation results for RMSE and the
KS test across the six models. Both individual output and average performance
are presented. Among these models, the fine-tuning approach yielded the most
favourable overall results, with the lowest average RMSE and KS test scores. Con-
sidering the outcomes of both evaluations, the "Combined Input and Weighted
Training" model exhibited the weakest performance among the six models.
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8.8 Subjective evaluation

We initially aimed to design a real-time human-agent interaction system to subjec-
tively evaluate the performance of our generation model. However, due to the in-
herent unpredictability and open-ended nature of dialogues, generating real-time
speech content for interruptions proved to be a significant challenge. As demon-
strated in the previous chapter’s experimental results, the content during interrup-
tions can have a substantial impact on perception. Additionally, with the applica-
tion of the PredIT model, we lacked control over whether participants would be
interrupted during the dialogues and the frequency of interruptions, introducing
uncontrollable variables when assessing action generation models.

Taking these considerations into account, we opted for a different approach.
We decided to conduct a third-party evaluation study where completed interrup-
tions were presented through video recordings. In this study, participants were
asked to assess only the generated nonverbal behaviours of the interrupters. This
approach allowed us to maintain control over the stimuli and ensured a more
controlled and consistent evaluation process.

Building upon the results of the objective evaluation, we have made the de-
cision to proceed with a subjective evaluation using the fine-tuning model. This
model achieved the best performance outcomes in the objective assessment. While
the objective evaluation provided us with quantifiable metrics and insights into the
various models’ performance, it is equally crucial to gain an understanding of how
human observers perceive the generated nonverbal behaviours during interrup-
tion scenarios. This subjective evaluation allows us to delve into the qualitative
aspects of the behaviours, taking into account factors that objective metrics might
not fully capture, such as naturalness, appropriateness, and human-like responses.

8.8.1 Video preparation

For the subjective evaluation, we selected 15 samples from the interruptions within
the four test conversations. Each of these chosen interruptions contained a first
Inter-Personal Unit (IPU) that exceeded 4 seconds. The video segments were care-
fully selected to encompass a period preceding the interruption’s initiation, offer-
ing participants a contextual understanding and a relatively complete semantic
overview. The videos concluded at the end of the first IPU of the interruption. To
maintain visual continuity, we employed ground truth data before transitioning
to the model-generated interruption behaviour at the 0.6-second mark before the
interruption, Figure 8.5 explains the timeline of the videos.
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Figure 8.5 Video timeline.

To control the impact of interruption timing, audio quality, and speech content,
we employed the original conversation’s interruption audio and timing. Further-
more, we utilized two virtual agent characters, one male and one female, to match
the gender of the interrupter based on the conversation.

Figure 8.6 User perception test video clip examples of interactions between a
male/female SIA and a human participant from NoXi database.

The Socially Interactive Agent (SIA) was animated using the open-source Greta
SIA platform (Niewiadomski et al. [2009]). This was achieved by conveying visual
features (predictions from computational models or ground truth) along with the
audio from the ground truth. A video screenshot illustrating the setup is shown in
Figure 8.6, where the SIA is displayed on the left side of the screen, and a human
participant is shown on the right side.

Our model does not generate mouth movements for the agent. Since these
movements are highly influenced by speech content, we opted to generate mouth
animations based on the action units of the actual interrupter. However, the ani-
mations produced through action units simulation did not achieve a realistic effect.
To prevent any potential visual distraction or interference caused by lip move-
ments that might not align with the speech, we applied blurring to the mouth
region during the study. This ensured that participants’ focus remained on the
nonverbal behaviours being assessed without being influenced by unrealistic lip
movements.

110



8.8. SUBJECTIVE EVALUATION

Throughout the video playback, real-time subtitles were displayed to accom-
pany the visual content. Additionally, in order to alert participants to the initiation
of interruption behaviour generation, a red border was shown on the side of the
agent’s screen when the video reached 0.6 seconds before the interruption. This
red border remained visible until the generated behaviour finished playing (end of
the video). Participants were instructed to evaluate only the agent’s nonverbal be-
haviour when the red border was present. This visual cue ensured that participants
focused their evaluation specifically on the interruption behaviour generation pe-
riod.

8.8.2 Questionnaire

We generated 15 interruption videos each for the fine-tuning (best of the objective
evaluation), original ASAP (as baseline), and ground truth interruption behaviour
scenarios. After each video, we requested participants to evaluate the observed
interruption behaviour based on their initial impressions and respond to the fol-
lowing questions, each rated on a 7-point Likert scale:

• Do you think the animation of the virtual character is natural?

• Do you think the animation of the virtual character is expressive?

• Do you think the interruption is competitive/cooperative?

• Do you think the virtual character is friendly?

• Do you think the virtual character is dominant?

• Do you think the virtual character is trying to energize the interaction?

• Do you think the behaviours of the virtual character and the human are in
sync?

To conduct the evaluation, we divided it into three separate questionnaires,
each containing 15 interruption videos representing one of the three scenarios
(fine-tuning, original ASAP, and ground truth). The duration of the videos ranged
from 6 to 21 seconds, and participants took an average of 15 minutes to complete
each questionnaire. The evaluation was conducted using the Prolific platform,
with each questionnaire being completed by 30 participants.

Comparison natural expressive friendly dominant dynamize in line comp-coop
Fine tuning - ASAP 0.233 0.336 -0.047 0.011 0.111 0.031 0.067
Fine tuning - ground truth 1.107 1.102 0.340 -0.551 0.233 0.131 0.356
ASAP - ground truth 0.873 0.767 0.387 -0.562 0.122 0.1 0.289

Table 8.1 Comparison of different comparison groups for 7 questions are presented
in the table. Mean differences are reported, with a positive value indicating that
the first group scored higher than the second group. Significant differences be-
tween the first and second groups are highlighted in green colour (p < 0.05).
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RotX RotY RotZ AU1 AU2 AU4 AU5 AU6 AU7 AU12 GazeX GazeY Average
ASAP 1.84 1.74 1.57 0.12 0.07 0.25 0.05 0.33 0.25 0.32 1.48 2.22 0.85
Fine tuning 1.02 0.96 1.00 0.13 0.09 0.20 0.08 0.21 0.21 0.24 0.97 1.07 0.52
Weight 1.11 0.98 1.21 0.14 0.07 0.24 0.10 0.22 0.29 0.26 0.99 1.10 0.56
Input 1.34 1.32 1.19 0.22 0.17 0.26 0.05 0.22 0.21 0.25 1.32 1.40 0.66
Input & weight 1.35 1.44 1.17 0.22 0.26 0.25 0.05 0.21 0.20 0.26 1.43 1.39 0.69
Interrupt 1.09 0.95 0.98 0.11 0.07 0.22 0.05 0.21 0.20 0.26 0.98 1.19 0.52

Table 8.2 RMSE values of generated features for the six models.

RotX RotY RotZ AU1 AU2 AU4 AU5 AU6 AU7 AU12 GazeX GazeY Average
ASAP 0.20 0.21 0.14 0.46 0.63 0.19 0.54 0.19 0.10 0.09 0.11 0.25 0.26
Fine tuning 0.28 0.15 0.05 0.15 0.10 0.01 0.11 0.04 0.09 0.15 0.16 0.26 0.13
Weight 0.23 0.10 0.17 0.10 0.66 0.11 0.11 0.03 0.14 0.18 0.08 0.15 0.17
Input 0.20 0.10 0.10 0.20 0.24 0.11 0.63 0.06 0.02 0.23 0.12 0.13 0.18
Input & weight 0.30 0.27 0.14 0.20 0.38 0.07 0.66 0.02 0.05 0.09 0.22 0.22 0.22
Interrupt 0.26 0.15 0.09 0.74 0.66 0.03 0.66 0.05 0.09 0.16 0.15 0.24 0.27

Table 8.3 KS test values of generated features for the six models.

8.8.3 Subjective evaluation results

A one-way ANOVA analysis revealed significant differences among all animation
conditions for all constructs: behaviour naturalness (F = 55, p < 0.001), be-
haviour expressivity (F = 53.1, p < 0.001), cooperative/competitive (F = 12.6, p
< 0.001), friendliness (F = 10.4, p < 0.001), dominance (F = 46.5, p < 0.001),
dynamization (F = 2.8, p > 0.05), and behaviour in-line (F = 0.9, p > 0.05).

To further analyze the differences, we conducted a post-hoc pairwise compar-
ison using Tukey’s honestly significant difference (HSD) test. The specific results
are displayed in Table 8.1 and Figure 8.7, which shows the differences between
each pair of conditions for each question. According to the research findings,
the fine-tuning model generated interruption behaviour with significantly higher
scores in naturalness and expressivity compared to the original ASAP model and
ground truth interruption behaviour. Moreover, the original ASAP model’s inter-
ruption behaviour also scored significantly higher than ground truth interruption
behaviour.

In terms of friendliness, dominance, and cooperative/competitive interrup-
tions, there were no significant differences between the fine-tuning and original
ASAP models. However, compared to the ground truth, both models generated in-
terruption behaviours that were perceived as more friendly, cooperative, and less
dominant.

Regarding dynamization and behaviour in-line, the three conditions were rated
with no significant difference.
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Figure 8.7 Error bar plot for seven questions rating results.

8.9 Discussion

Based on the evaluation results, we observe that the fine-tuned model performs
better than the original ASAP model and ground truth. Compared to the model
using a general interaction behaviour generation approach, the fine-tuned model
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adjusted based on interruption characteristics demonstrates higher levels of natu-
ralness and expressivity, aligning more with expectations. This finding also under-
scores the unique nature of interruption behaviour.

The original ASAP model, fine-tuned model, and ground truth all scored sim-
ilarly in terms of dynamization and in-line behaviour, highlighting both models’
capacity to adapt generation according to the partner’s behaviour.

Unexpectedly, the ground truth’s rating turned out to be the lowest among the
three conditions, in contrast to the two generative models. Upon reviewing and
comparing the videos from the three conditions, we noticed that the interruption
behaviours generated by the two models exhibit greater head movements and fa-
cial expressions than those in the ground truth actions. Because the video content
only includes the head of the agent and human partner, the conveyed information
is limited to facial expressions and head turns, excluding gestures and body pos-
ture. Due to these limitations and the short duration of the videos, participants
strive to extract information from the visible aspects to understand the events. In
this context, participants might tend to assign higher scores to videos with more
expressive and frequent facial expressions and actions, which is the case for the
fine-tuned model.

Regarding the instances where the model results surpassed human-generated
ground truth, this experiment’s outcomes offer an intriguing insight. We should
question whether a virtual agent must closely mimic human behaviour patterns.
Our perception of humans and virtual agents differs; virtual agents lean more
towards being tools. Expectations towards them vary depending on usage scenar-
ios. Perhaps, instead of solely pursuing anthropomorphism, designing behaviour
patterns that are better aligned with the virtual agent’s unique traits and applica-
tion contexts could yield better results. Kontogiorgos et al. (Kontogiorgos et al.
[2019]) also suggest that complete anthropomorphism of virtual agents isn’t al-
ways advantageous in communication.

8.10 Conclusion

In this chapter, we have undertaken the task of fine-tuning a pre-trained genera-
tive model using interruption data to specifically generate interruption behaviour.
Through the implementation of a classification model, we effectively distinguished
between the states of listening and preparing for an interruption. Our findings re-
vealed that interrupters have an approximate preparation time of 0.6 seconds be-
fore initiating speech, during which their preparation behaviours differ from those
associated with a smooth turn exchange.

We proceeded to subjectively evaluate the quality of interruption actions gener-
ated by our fine-tuned model. Our fine-tuned model achieved the highest scores,
further reinforcing the unique nature of interruption behaviour. This outcome
serves as a validation of our approach to fine-tune the model using interruption
data, indicating its effectiveness in capturing the intricacies of interruption be-
haviour and generating high-quality outcomes.
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This research contributes valuable insights into generating interruption be-
haviour and offers a promising avenue for improving the naturalness and au-
thenticity of virtual agents’ interactions, especially in scenarios involving dynamic
turn-taking and interruption dynamics.

The key points of this Chapter:

This Chapter addresses research question Q7, Q8 and Q9

Interruption preparation behaviour

• We generate the nonverbal behaviour of the interrupter with a prepa-
ration period of 0.6s.

AI-BGM: Agent Interruption Behaviour Generation Model.

• We fine-tuned a pre-trained model ASAP, which has been evaluated as
capable of generating adaptive interaction behaviour.

• Compared to the interruption nonverbal behaviour generated by the
original ASAP model and of ground truth, the behaviour generated by
our model was evaluated as the most natural and expressive.
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This chapter serves as the conclusion of this dissertation, encapsulating the
key findings and contributions presented throughout the previous chapters. The
conclusion is structured into three main sections: a summarized overview of the
chapters, a discussion of the research’s contributions and implications, and a re-
flection on open issues and potential future research directions.

9.1 Summary

The primary objective of this dissertation was to bridge the gap between hu-
man conversation and human-agent interaction by comprehending interruption
dynamics in human dialogues. Interruptions, commonly encountered in everyday
conversations, play a pivotal role in shaping the flow of discourse. While virtual
agents strive to avoid interrupting human users, a complete absence of interrup-
tions in human-agent interactions might lead to interactions feeling rigid. On the
other hand, poorly executed interruptions can result in user frustration and per-
ceptions of system errors.

The overarching goal was to equip virtual agents with the capability to manage
interruptions within interactions, especially in terms of appropriately interrupting
human users without being perceived as committing a mistake, encompassing both
the timing and nonverbal aspects of interruptions.

In Chapter 5, we laid the foundation by introducing an annotation schema
specifically designed for manual interruption annotation. Analyzing various modes
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of switching within this schema, we identified nonverbal features that can effec-
tively characterize interruptions. This groundwork set the stage for subsequent
research.

Building upon the analytical insights from Chapter 5, Chapter 6 delved into the
development of a simple LSTM-based model. This model leveraged acoustic infor-
mation, facial expressions, head motions, and hand movements of interrupters and
interruptees to rapidly categorize interruptions into competitive and cooperative
types.

In Chapter 7, a novel approach was unveiled, focusing on identifying suitable
points for initiating interruptions based on the nonverbal behaviours of the cur-
rent speaker. The acceptability of virtual agents interrupting human users was
confirmed through subjective evaluations. However, it was noted that the perti-
nence of interruption content to the conversation context and the naturalness of
the agent’s voice is of greater significance than the precise timing of the interrup-
tion.

Chapter 8 further highlighted the characteristics of interrupter’s nonverbal be-
haviour during the initiation of interruptions. It was revealed that interrupters
exhibit distinct preparatory actions just before initiating interruptions. Due to the
limited availability of interruption data, we employed fine-tuning techniques to
specialize a pre-trained generative model, originally designed for general inter-
action nonverbal behaviours, to specifically generate interruption-related actions.
Subsequent subjective evaluations demonstrated that the fine-tuned model gener-
ated more natural and expressive interruption behaviours compared to the original
generative model.

9.2 Contributions

In essence, this thesis is dedicated to enhancing the interaction between Embodied
Conversational Agents (ECAs) and humans by imbuing them with the capability to
interrupt in an appropriate manner, thereby rendering interactions more seamless
and natural. We introduced novel methodologies that empower ECAs to initiate
interruptions more reasonably, while actively investigating additional factors that
could render interruptions more natural and acceptable. We will now delve into a
more detailed discussion of the contributions brought forth by this thesis.

Annotation Schema

We proposed an annotation schema encompassing various conversation switches,
including smooth turn exchanges, backchannels, and interruptions. This com-
prehensive schema facilitates the meticulous labelling of diverse switches that
occur within conversations and further categorizes interruptions based on their
completion and underlying motivations. Through this schema, we annotated two
datasets: NoXi, representative of dyadic interactions, and a part of AMI, represen-
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tative of multiparty interactions. This underscores the versatility of the schema,
unhampered by the number of participants or interaction modes.

Multimodal Analysis of Interruption

In interactions, human communication is orchestrated through multiple modal-
ities. By analyzing nonverbal behaviour features such as head movements, fa-
cial expressions, and intonation exhibited by both speakers and listeners, we dis-
cerned distinct factors distinguishing interruptions, smooth turn exchanges, and
backchannels in human conversations. These identified factors not only prepared
the ground for subsequent interruption generation but also illuminated pivotal
considerations for designing virtual agent interruptions.

Interruption Generation: Timing & Nonverbal behaviour

Given the dynamic nature of dialogues, it’s nearly impossible to determine all op-
portune and inopportune moments for initiating interruptions. To address this,
we proposed employing a one-class Support Vector Machine (SVM) to overcome
the challenge of limited negative samples. With real-time interactive applications
in mind, our model relied solely on the speaker’s nonverbal behaviour to deter-
mine whether an interruption could be initiated in the next instance. Subjective
evaluations confirmed the acceptability of virtual agents interrupting human users.
However, besides the timing of interruptions, factors such as the interrupter’s voice
quality, the content of the conversation, and the type of interruption exert notable
influences.

During interruptions, we employed a fine-tuned nonverbal behaviour genera-
tion model to create virtual agent facial expressions and head rotations. Remark-
ably, our model’s generated nonverbal behaviours received superior evaluations
compared to those exhibited by actual interrupters.

9.3 Limitations and Future Work

This thesis presents a multifaceted exploration aimed at refining the interaction
dynamics between ECAs and humans. By introducing innovative strategies, we
aim to enable ECAs to participate in interruptions naturally and appropriately, a
feat that not only enriches interactions but also contributes to the distinctiveness of
interruption behaviour. While we have made some strides in these core challenges,
there are still some limitations that we will highlight in this section.

Presently, our research is rooted in nonverbal behaviour analysis. While non-
verbal behaviour indeed plays a significant role in interactions, contextual analysis
of dialogues is equally indispensable. For instance, when determining the timing
of interruptions, incorporating an understanding of the dialogue’s content could
enhance accuracy. Moreover, our current capabilities are focused on predicting in-
terruption timings and generating corresponding nonverbal behaviours. However,
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as previously mentioned, the content of interruptions significantly influences their
perception. While nonverbal behaviours aid in identifying suitable moments for
initiating interruptions, the timing is closely tied to the content.

Furthermore, the process of annotating interruptions in conversations requires
manual intervention, and even with a substantial amount of dialogue data, there
is no guarantee of obtaining a sufficient quantity of interruptive instances to train
a robust model. This significantly escalates the cost of research and imposes limi-
tations based on the conversational scenario. To mitigate the issue of limited data
and the risk of overfitting, we are constrained to employ relatively simplistic mod-
els, but this comes at the cost of achieving optimal performance. Also, since the
notion of virtual agents interrupting human users is a relatively novel research di-
rection, there is a scarcity of studies in this area. We employed simple models and
a limited range of modalities, neglecting aspects like body posture that can convey
valuable information. We firmly believe that incorporating more comprehensive
and diverse information could optimize research outcomes.

During the process of subjective evaluation, we opted for presenting anima-
tions of ECA interruptions through videos, rather than engaging in real-time inter-
actions with the ECA. There were two primary reasons for this approach. Firstly,
the constraints of time prevented us from conducting real-time interaction exper-
iments within the thesis timeline. Secondly, in real-time interactions, ensuring
consistent and extended participation of human users in the role of the speaker is
challenging, leading to increased variability that could affect experimental results.
This complexity poses a significant challenge to the overall experiment design.
Furthermore, the experience of observing interactions may differ from engaging
in real interactions, potentially yielding distinct experimental outcomes. To obtain
more precise experimental results, it is still necessary to design a real-time human-
agent interaction system for testing interruptions. This system would allow us to
evaluate interruptions in a controlled and real-world scenario, providing a more
accurate assessment of their impact and effectiveness.

In the future, with a sufficient amount of data, it will be possible to train in-
terruption models based on the personalities and roles of the characters involved.
This approach could imbue Embodied Conversational Agents (ECAs) with distinct
personality traits, making their interruptions more contextually appropriate in var-
ious conversation scenarios. Furthermore, beyond knowing when and how to in-
terrupt, ECAs should also be equipped to make decisions about whether to aban-
don an interruption midway, how to do so gracefully, and when to initiate this
abandonment. These additional layers of decision-making will contribute to more
nuanced and effective interactions in the realm of human-agent communication.

At the same time, it’s important to note that our research primarily focuses on
predicting potential interruption points based on the current or a few preceding
turns. However, real-life human conversations largely rely on the entire context
of the conversation rather than just the immediate past. Interruptions should also
consider alignment with the overall conversation context and their necessity. Not
every potential interruption point warrants an interruption; conversely, when in-
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terruptions are necessary, it makes more sense to identify appropriate interruption
timing and employ suitable interruption methods based on multimodal behaviour.

In practical terms, this means that effective interruptions should take into ac-
count the broader conversation flow and relevance, ensuring that they enhance,
rather than disrupt, the overall discourse. It’s not merely about identifying op-
portunities to interrupt but also about understanding when interruptions are war-
ranted and how they can be seamlessly integrated into the ongoing dialogue.
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