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est inspirant : Anette, Cristo, Fanny, Juliette et Matthieu.
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List of Figures

1 Example of adder graphs for target constants 7 and 23. . . . . . . . . . . . 2

1.1 Bit string for integer representation on w bits. . . . . . . . . . . . . . . . . 8

1.2 Bit string for two’s complement fixed-point representation on w bits. . . . 10

1.3 Compilation stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Additions with full adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Simplified representation of a full adder. . . . . . . . . . . . . . . . . . . . 15

1.6 Adder graphs computing 93x. . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Data sharing for MCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Example of specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Hardware implementation of FIR and IIR filters, direct form. . . . . . . . . 23

1.10 Hardware implementation of FIR and IIR filters, transposed form. . . . . . 23

2.1 Adder graph and a focus on one adder. . . . . . . . . . . . . . . . . . . . . 30

2.2 Comparison process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 FloPoCo simplified interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Adder graphs obtained for target constants {7, 19, 31}. . . . . . . . . . . . 47

4.2 Classic and proposed adder models. . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Branching order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Different adder graph topologies computing the same outputs: 49x and 51x 62

5.2 Counting one-bit adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Computing 49x and 51x via the fundamental 17 for a 3-bit input/output . 72

6.2 Model of an adder in presence of errors ε and truncations t. . . . . . . . . 73

6.3 Counting one-bit adders and propagating errors in presence of truncations. 74

6.4 Counting one-bit adders in case of truncations. . . . . . . . . . . . . . . . . 78

6.5 Comparing one-bit adder count w. r. t. precision. . . . . . . . . . . . . . . . 80

7.1 Pipelining a fixed adder graph. . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 (Pipelined) adder graphs which compute 5x, 69x, 553x and 2483x. . . . . . 85

7.3 Postprocessing replaces unnecessary adders with same-cost registers . . . . 92

v



vi List of Figures

8.1 Second-order IIR specification, transfer function and hardware implementa-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 High-level structure of the global ILP model IIRoptim. . . . . . . . . . . . 106
8.3 Interface of the proposed tool. . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 Proposed families of benchmarks. . . . . . . . . . . . . . . . . . . . . . . . 109
8.5 Frequency response of the compensator hp0 [CVKF03, SRZ12]. . . . . . . . 109
8.6 Implementations for lp14 benchmark. . . . . . . . . . . . . . . . . . . . . . 112
8.7 Comparison of the classic and proposed structures. . . . . . . . . . . . . . 113
8.8 The lp14 benchmark can be implemented with 7 adders. . . . . . . . . . . 114
8.9 Benchmark results of resources, power and critical path delay on FPGAs. . 115
8.10 Benchmark results of resources, power and critical path delay on ASICs. . 117



List of Tables

1.1 Error bounds according to rounding modes. . . . . . . . . . . . . . . . . . 12
1.2 Full adder truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Constants and variables used in the MILP formulation . . . . . . . . . . . 50
4.2 Number of adders obtained with each method for MCM-Adders. . . . . . . 52
4.3 Number of adders and adder depth obtained with each method. . . . . . . 56
4.4 Solving time to prove optimality for MCM-Adders with branching priority. 58

5.1 Number of adders and one-bit adders obtained with MCM-A. vs MCM-B. . 67
5.2 Hardware results for 8-bit inputs. . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Correlation between proxy variables and hardware metrics. . . . . . . . . . 69

6.1 Number of adders and one-bit adders obtained with MCM-Bits vs tMCM. 80
6.2 Hardware results for 8-bit inputs with MCM-Bits vs tMCM. . . . . . . . . 81

7.1 Comparison of optimization results with pipelining vs RPAG. . . . . . . . 90
7.2 A posteriori pipelining of MCM-Bits vs PMCM-Bits . . . . . . . . . . . . . 91
7.3 Critical path delay for each method. . . . . . . . . . . . . . . . . . . . . . 93
7.4 Comparison of hardware results for pipelined adder graphs. . . . . . . . . . 94

8.1 Sets of lowpass filters used for the IIR experiments. . . . . . . . . . . . . . 107
8.2 Results for our global optimization method vs applying optimal MCM upon

quantized coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



viii List of Tables



Introduction

“In the beginning there was nothing,
which exploded.”

Terry Pratchett (1948-2015),
Lords and Ladies (1992)

Modern world benefits from computer science in many ways. Although we probably
first think of personal computers and smartphones, electronic devices which do embedded
computations are everywhere. For instance, hearing-aids or smartwatches are computers
dedicated to a specific task. Embedded systems can also be used for less common tasks,
such as bird voice detection from audio recording. These devices either work on batteries
or on small solar panels and instantaneous results are usually needed. It is clear that we
need zero delay for the hearing-aids and that their battery has to be small.

This leads to a specific need for dedicated optimized circuits and hardware designers put
a lot of work and efforts in that direction. However, with more and more complex problems
and systems, it is not anymore realistic to optimize by hand the circuit design. High-level
tools have been developed to simplify the design, yet arithmetic cores implementation are
still left to the hardware designer. Hence, digital signal processing designers, for example,
still need to be integrated circuit experts. To alleviate embedded systems designers ardu-
ous hand-tuning task, automatic tools that also guide specific architectural decisions are
needed. Our work is on the automation of arithmetic kernels/operators implementation
which often involves solving combinatorial problems.

To solve these problems, we will use techniques from the operations research (OR)
domain. In particular, we will address hardware design problems using mathematical
modeling with the objective to model the hardware, specifically field-programmable gate
arrays (FPGAs). We will specifically use the mixed-integer linear programming (MILP)
approach to improve the state-of-the-art for the multiple constant multiplication and filter
design problems. This will lead to more efficient implementations reducing the delay, power
consumption and resources usage in FPGAs. Ideally, this thesis will facilitate the use of
OR techniques by hardware designers in order to solve their design problems. This way, in
addition to generating better hardware, our goal is to bring the OR and hardware design
communities closer.

1



2 Introduction

x

← 3

−

7x

← 1

3x

− ← 4

7x 23x

(a) Adder graph for target constants 7 and 23.

x

← 3

← 4

7x

−

23x 7x

(b) Optimal for target constants 7 and 23.

Figure 1: Example of adder graphs for target constants 7 and 23.

Context and problem

The floating-point (FP) number representation, which is inspired from scientific notation,
is agnostic to the application it is used for. This makes the FP arithmetic the first and
simpler choice for generic applications. However, for domain-specific applications fixed-
point (FxP) arithmetic is usually preferred. At the cost of some extra a priori work, it
is possible to implement algorithms with a better efficiency and a lower hardware cost.
FxP numbers can be represented with no more bits than strictly necessary. This way, each
computation/operator can be specifically designed to use exactly the required resources and
no more. With our work, we will take advantage of the FxP representation and accurately
build every circuit.

The standard way to build a circuit consists in describing it with an hardware descrip-
tion language (HDL). Although high-level synthesis (HLS) tools alleviate the hardware
designers from a significant part of the work, efficient arithmetic cores are still often de-
signed in HDL. However, the required expertise to do it efficiently can be blocking, thus
there is a need for automatic arithmetic cores generation. In particular, in this thesis, we
will address the automation of the multiple constant multiplication (MCM) operator.

Finding the most efficient implementation of the MCM operator is an arduous task.
A direct approach would simply consist in using generic multipliers. However, these are
costly as they are meant to be used with variables and not constants. In our case, building
dedicated circuits is preferable and we usually replace multiplications with bit-shifts, which
are power-of-two multiplications, and additions/subtractions. This is called the shift-and-
add approach. For example, we can compute the multiplication of a variable with the
constants 7 and 23 using the adder graph represented in Figure 1a.

In this thesis, we will address the MCM problem which can be simply defined as follows:
“given a set of target constants to multiply with, find the best shift-and-add implementa-
tion.” We will need to define “the best implementation”, as formal models for FPGAs are
not available and we want to avoid performing synthesis for each adder graph to evaluate
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its cost. Hence, we introduce proxy variables which will be easier to evaluate and which will
be used as an estimation of the hardware cost. The most common one is the adder count
within a shift-and-add solution, which includes both additions and subtractions. Using
this proxy variable, we can predict that the adder graph represented in Figure 1b, which
requires two adders, will be better than the one in Figure 1a, after synthesis.

Several papers address the MCM problem, some with heuristics [Ber86, DM94, ACFM12,
KZFC12] and others are optimal approaches [Gus08, AGF10, Kum16, Kum18]. Despite
the apparent simplicity of the problem, there still is room for improvement. Indeed, we
see two main limitations of current methods. First, optimal methods require a lot of com-
puting time and with OR tools and knowledge, this can certainly be reduced. Second,
these methods rely on the number of adders and we will show that proxy variables closer
to the final hardware can be defined. Moreover, in some cases, high throughput is nec-
essary and introducing registers into adder graphs, which is called pipelining, is common
[Par99, KZ11, KZFC12]. However, it increases the resource usage and we will also address
this problem to minimize the cost of pipelined adder graphs.

Since MCM is a basic building block of digital filters, some works combine finite im-
pulse response (FIR) filter design with MCM [KVF23]. However, tackling infinite impulse
response (IIR) filters, whose design is highly nonlinear, has not yet been done in MILP.

Objective

Our main objective is to provide a fine-grain model of the hardware and encompass it in
mathematical models. First, we will correct and enhance the state-of-the-art MILP-based
model [Kum18] which solves the MCM problem w. r. t. the number of adders. This high-
level metric, although useful in practice, can be refined and, in our work, we will address
a lower-level metric: the one-bit adders count. This way, we propose an automatic tool to
provide better adder graphs.

To further reduce the implementation cost, we will consider truncated adder graphs,
i. e., adder graphs in which we truncated bits in the data path to reduce the cost of the
adders, at the cost of some error, which we guarantee to bound by construction with a
user-given value. We will address this difficulty by proposing an error model to correctly
propagate errors in the adder graph. Finally, one of the objectives of this thesis is to show
the versatility of mathematical modeling. We will do so by searching for pipelined adder
graphs at a minimal cost by enhancing our MILP models with new constraints.

Finally, in our work we will address the combination of MCM with the second-order
IIR filter design. Our goal is to provide a hardware-aware search for filter coefficients. We
propose a method to do the co-design of filter coefficients and their implementation with
the MCM problem. This way, we will present a typical application of the MCM problem
and that it can be tackled using the model for MCM as part of a global model.

Overall our goal is to implement all our approaches within code generator tools. The
objective is to automatically provide HDL code for hardware designers to use in com-
plete circuits.
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Outline

This thesis is organized in the order of the problems presented above. Naturally, we start
with high-level metrics and, step by step, we go more details with lower-level metrics. We
then conclude our work with an application. The document is divided into three parts,
each subdivided into chapters.

Part I. In Chapter 1, we start with main notions of fixed-point arithmetic. Then, we
present our target, FPGA, and the problems we aim at solving, MCM and filter design.
In Chapter 2, we provide basic knowledge over mathematical modeling and the mixed-
integer linear programming approach. Then, in Chapter 3, we describe our overall goal of
providing efficient code generators in its context.

Part II. This second part is dedicated to our solutions for the MCM problem, based on
more and more fine-grained models of the hardware. First, in Chapter 4, we present our
work on MCM-Adders. Then, in Chapter 5 and Chapter 6, we tackle the one-bit adder
lower-level metric, including truncations. These chapters are more technical and include a
detailed error analysis. Finally, we solve the PMCM problem in Chapter 7.

Part III. In this last part, we present an application which involves the MCM problem.
With this last contribution, which chronologically came first, we present the co-design of
second-order IIR filters and MCM.

Publications

The work carried out during this thesis have been published in the following international
journals and peer-reviewed conferences:

[GV23a] Rémi Garcia and Anastasia Volkova. Multiple Constant Multiplication: From
Target Constants to Optimized Pipelined Adder Graphs. In 33rd Inter-
national Conference on Field-Programmable Logic and Applications (FPL),
Gothenburg, Sweden, September 2023. doi: 10.1109/FPL60245.2023.00027

[GV23b] Rémi Garcia and Anastasia Volkova. Toward the Multiple Con-
stant Multiplication at Minimal Hardware Cost. IEEE Transactions
on Circuits and Systems I: Regular Papers, 70(5):1976–1988, 2023.
doi: 10.1109/TCSI.2023.3241859

[GVK22a] Rémi Garcia, Anastasia Volkova, and Martin Kumm. Truncated Multiple
Constant Multiplication with Minimal Number of Full Adders. In 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), Austin, Texas,
United States, May 2022. doi: 10.1109/ISCAS48785.2022.9937441

[GVK+22b] Rémi Garcia, Anastasia Volkova, Martin Kumm, Alexandre Goldsztejn, and
Jonas Kühle. Hardware-aware Design of Multiplierless Second-Order IIR
Filters with Minimum Adders. IEEE Transactions on Signal Processing,
pages 70:1673–1686, 2022. doi: 10.1109/TSP.2022.3161158

https://doi.org/10.1109/FPL60245.2023.00027
https://doi.org/10.1109/TCSI.2023.3241859
https://doi.org/10.1109/ISCAS48785.2022.9937441
https://doi.org/10.1109/TSP.2022.3161158
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CHAPTER 1

Fixed-Point Operators
and Hardware Circuits

“My programming language was
solder.”

Terry Pratchett (1948-2015)

There is a wide range of number representations which can be used in electronic com-
puters. In particular, we will focus on finite-precision ones, i. e., representations which
use a finite number of digits to encode a number. Among these, the most common are
the Floating-Point (FP) and the Fixed-Point (FxP) number formats. With generic proces-
sors, FP arithmetic, inspired by normalized scientific representation, is the norm. However,
when implementing for dedicated hardware, such as Application-Specific Integrated Circuit
(ASIC) or Field-Programmable gate Array (FPGA), it is useful to put the extra work of
using FxP arithmetic. Indeed, the FxP number format permits to precisely describe a cir-
cuit for better energy-efficiency and smaller latency, than using FP and generic processors.
Note that, to get the most of FxP implementations in resource-constrained environments,
knowing the hardware on which the circuit will be implemented is essential to guide the
implementation choices. There is room for improvement in many operator implementa-
tion choices, even for operations like multiplication with several constraints, which are
computational bottlenecks for many applications, e. g., digital signal processing.

First, the FxP arithmetic will be the main topic of this chapter. Then, we will provide
some details on our hardware target, FPGA, and discuss the implementation of basic
operations on it, such as additions. Finally, we will present more complex operators: the
Multiple Constant Multiplication (MCM) and the Digital Filters.

7



8 Fixed-Point Operators and Hardware Circuits

Figure 1.1: Bit string for integer representation on w bits.

1.1 Fixed-point arithmetic

1.1.1 Basics

Integers

The binary representation of a positive integer X ∈ N consists of rewriting X as a linear
combination of powers of 2:

X =
w−1∑
i=0

2iXi, (1.1)

where w is the number of bits used to represent X and Xi ∈ {0, 1} are the bits of X. We
will call X0 the Least Significant Bit (LSB) and Xw−1 the Most Significant Bit (MSB).
This representation is summarized in Figure 1.1. Using the binary representation with w
bits permits to represent every positive integer between 0 and 2w − 1. Formally, we will
write the set [0, 2w − 1]∩Z as [[0; 2w−1]] where [[·; ·]] denotes an interval of integer numbers.

To extend this representation to signed numbers, X ∈ Z, one could simply consider an
additional bit to encode the sign:

X = (−1)Xw−1 ×
w−2∑
i=0

2iXi. (1.2)

An obvious drawback is that X = 0 has two representations, −0 and +0. This notation
permits to represent every integer in [[−2w−1 + 1; 2w−1 − 1]].

Remark. Note that the MSB of a signed integer corresponds to the sign bit and that this
signed notation does not lend itself to a simple hardware implementation as the sign needs
to be treated separately.

With the signed notation, basic operations such as additions will differ between adding
two number of the same sign or of opposite signs. However, using the two’s complement
notation permits to unify this [EL04, Lop14]. Using this representation, an integer X ∈ Z
is written as

X = −2w−1Xw−1 +
w−2∑
i=0

2iXi. (1.3)

Then, the set of integers that can be represented with w bits becomes [[−2w−1; 2w−1 − 1]].
It is also possible to derive from any integer the number of bits required to represent

it exactly. Let Z ∈ Z be an integer. We remark that the set of representable integers is
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not symmetrical, so we differentiate between positive and negative cases. If Z ≥ 0, the
number of bits w required to represent Z is:

w = ⌈log2 (Z + 1)⌉+ 1. (1.4)

If Z < 0, the number of bits required to represent Z in two’s complement is

w = ⌈log2 (−Z)⌉+ 1. (1.5)

Then, given two unknown integers, X and Y , for which we only know their respective word
lengths1 and an operator ⋄, we can infer the word length of Z = X ⋄ Y . For instance, if
we denote wX and wY the word lengths of X and Y respectively, then the word length of
Z = X × Y is wZ = wX +wY bits. In case of the addition, the word length of Z = X + Y
would be equal to wZ = max (wX + wY ) + 1 bits.

As illustrated with the “+” and “×” operators, given an operator ⋄, usually the word
length of the result of Z = X ⋄Y increases in comparison to the word length of the inputs.
In Example 1, we explicitly illustrate this for the multiplication. In addition to that, we
show the gap between the actual range of X × Y and the range of integers which could be
represented with the necessary word length.

Example 1. Let X and Y be two integers represented using 4 bits each. Hence, we
know that X, Y ∈ [[−8; 7]]. It follows that Z = X × Y ∈ [[−56; 64]]. Hence, the
number of bits required to represent the result of Z is

w = max (⌈log2 (64 + 1)⌉ , ⌈log2 (−56)⌉) + 1 = 8. (1.6)

Note that with 8 bits, every integer in the set [[−128; 127]] could have been repre-
sented.
Suppose we multiply the result Z by another 4-bit variables, Z ×W ∈ [[−512; 448]]
can fit with 10 bits. If we computed the resulting range from the bit widths of Z
and W , it would lead to 12 bits instead.

When possible, the range of the variables should be provided and range propagation
should be preferred over word length propagation as it is more precise. Word length prop-
agation gives a simple upper bound on the actual word length of the result. In particular,
in Section 1.3, we will discuss the multiplication by constant where the constant could be
seen as a variable whose range is equal to a single value. In that case, the growth of the
bit width can be evaluated more precisely than simply working with word lengths. We
illustrate this in Example 2 where two 6-bit signed integers are multiplied together. We
could expect the result to require up to 12 bits. However, thanks to knowledge on the
range, we can deduce that a smaller word length will be enough.

1sometime referred to as the bit width.
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Figure 1.2: Bit string for two’s complement fixed-point representation on w bits.

Example 2. Let X be an integer represented using 6 bits. Then, we know that
X ∈ [[−32; 31]]. We consider the multiplication 17 × X where 17 requires 6 bits
to be represented using the two’s complement notation. It follows that 17 × X ∈
[[−544; 527]], hence 11 bits are enough to represent the result of 17 × X, instead of
12.

If one tries to represent a number outside of the representable range, then an overflow
could arise. If not considered, the behavior of operators, and consequently of algorithms,
could become completely unforeseeable. Hence, we have two possibilities: either we deal
with the result – saturation to max value, wrap around, etc. – or we extend the bit width
as necessary. In this thesis, we guarantee, by construction, that no overflow occurs by
adjusting the word lengths as necessary.

Approximating real numbers

In fixed-point arithmetic, a real number is represented by the closest fixed-point number,
x, as a scaled integer:

x = X × 2l, (1.7)

where integer X is called the mantissa, l is the LSB position and 2l the implicit scaling
factor, not stored in memory.

In two’s complement FxP notation, (1.3) becomes

x =

(
−2w−1Xw−1 +

w−2∑
i=0

2iXi

)
× 2l, (1.8)

which can be simplified as

x = −2mXw−1 +
m−1∑
i=l

2iXi−l, (1.9)

where m is the MSB position. Note that we have the following relationship between the
word length and the MSB/LSB positions:

w = m− l + 1. (1.10)

In Figure 1.2, we summarize the format definition which just depends on the MSB, m,
and LSB, l, where we assumed that the LSB position is negative. In the following we will
refer to the format of a FxP number with the notation (m, l) [Lop14]. Beside the word
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length propagation, after each operation, we need to evaluate the MSB and LSB positions.
This differs for every algorithm and increasing the word length to do exact arithmetic
comes with a cost which we could mitigate by rounding intermediate results.

1.1.2 Finite-precision error analysis for FxP arithmetic

Due to the finiteness of the FxP representation, most numbers cannot be represented
exactly, regardless of the word length available. Hence, one solution is to fix a word length
w and to represent the number with the closest w-bit FxP number. This leads to an error
between the exact number and its representation. In practice, rounding is inevitable, as
we usually work with quantities that are not exactly representable. Moreover, even when
it is representable, we might want to save resources and round nevertheless. A software-
inspired approach could consist in fixing a format for intermediate quantities. However,
this is not efficient in hardware as this probably overestimates the format in comparison
to the one strictly necessary. What we will do instead, is fixing an accuracy for the output
and determine the intermediate word lengths.

Given an accuracy to meet, to approximate a real number, x, to the smallest FxP
representation, x̃, such that |x− x̃| ≤ ε, we fix the MSB position

m =


1 if x = 0,
⌈log2 (c+ 1)⌉ if x > 0,
⌈log2 (−c)⌉ if x < 0,

(1.11)

to ensure that the FxP number will not overflow. Then, starting from l = m − 1, we
decrease the LSB until x̃ is at distance at most ε to x. This way we find a rounded value
for x which fits the error bound.

Rounding and error modeling

Rounding can be done in various ways and round-to-nearest is not always the right choice
as it involves an addition [BdDI+13]. Faithful rounding is usually preferred as it still
enforces a tight bound on the error:

|ỹ − y| ≤ 2lỹ , (1.12)

where ỹ is the inexact quantity which approximates y and lỹ corresponds to the LSBposition
of ỹ [Lop14]. This error is smaller than the LSB of the result, thus this rounding mode is
also called last-bit accuracy [VIDDH19].

In this work, our goal will be to ensure faithful rounding of the operator output. This
way, the precision specification becomes the accuracy constraint. Hence, we will need
to consider rounding of basic operators and the propagation of errors we induced with
intermediate rounding. We could perform a static error analysis of the circuit [GP11].
However, in our case, we want to define the circuit, taking errors into account on-the-fly.
Hence, we need to model the errors a priori.
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Table 1.1: Error bounds according to rounding modes where ỹ is the approximation of y.

Rounding mode Error bounds

Round-to-nearest −2l−1 ≤ y − ỹ ≤ 2l−1

Faithful −2l ≤ y − ỹ ≤ 2l

Truncation 0 ≤ y − ỹ ≤ 2l

Classically, in computer arithmetic we consider the following model to link the exact
quantities and errors:

ỹ = y +∆, where |∆| ≤ ε, (1.13)

where ỹ is the actually computed quantity, y is the exact quantity, and ε is a bound on
the computational error it bears.

In Table 1.1, we note that round-to-nearest and faithful rounding mode induce symmet-
ric errors. However, truncations, which we will heavily use in Chapter 6, induce nonsym-
metric ones. To obtain a model that closely links the computed quantity with the exact
quantity, instead of the classical error model, we track errors using two positive bounds:

y − εinf ≤ ỹ ≤ y + εsup, (1.14)

where εinf ∈ N and εsup ∈ N correspond, respectively, to the negative deviation and the
positive deviation from the exact quantity.

Error propagation through operators

In the following, we will propagate errors through three unary operators: shift, which
corresponds to multiplying a number by a power of two, negation and truncation. Bit-
shifts can be right and left, however we will only consider left-shift as right-shift will only
be used to shift zeros. Given our error model, if we apply a shift s to the inexact quantity
ỹ, we obtain the following error bounds:

2sy − 2sεinf ≤ 2̃sy ≤ 2sy + 2sεsup. (1.15)

With the above equation, it is clear that the error of the shifted inexact quantity, 2̃sy is
equal to the shifted error increasing the error by 2s on both sides.

The negation applied on an inexact quantity ỹ does not increase the overall error but
swaps the deviations from the exact quantity y like so:

−y − εsup ≤ −ỹ ≤ −y + εinf . (1.16)

Finally, when applied to a quantity ỹ, truncation up to the t-th bit, ⋄t (·), removes
information. This can increase the negative deviation εinf but not the positive deviation
εsup, thus the error bounds increase asymmetrically:

y − εinf − εt ≤ ⋄t(ỹ) ≤ y + εsup, (1.17)
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where εt is bounded by the quantity it removes from ỹ:

εt ≤ 2t − 2LSB. (1.18)

The bound is reached when all truncated bits are 1’s.
Finally, we will need to propagate errors through additions which, for two inexact

inputs, ỹ1 and ỹ2, simply adds error bounds together:

y1 + y2 − εinfy2
− εinfy2

≤ ỹ1 + ỹ2 ≤ y1 + y2 + εsupy1
+ εsupy2

. (1.19)

These error propagation rules will be particularly useful for the evaluation of errors in
adder graphs, topic that we will discuss in Section 1.3.1.

1.2 Field-programmable gate arrays

Usually, algorithms are not aware of the hardware they run on. In this case, generic proces-
sors are often the right choice as they are meant to work fast and efficiently independently
of the algorithm. Dedicated circuit can be implemented as Application-Specific Integrated
Circuits (ASICs), however, in many cases, applications are not meant to last for years nor
be implemented on thousands of copies. Hence, reprogrammable integrated circuit, such as
Field-Programmable Gate Arrays (FPGAs), are often the preferred choice. There are no
formal models of FPGAs, thus the exact hardware cost will not be directly evaluated but
proxy variables will be used instead. These proxy variables will permit to efficiently guide
the design of hardware arithmetic operators and are chosen with hardware functioning
in mind.

FPGAs are in-between generic processors and are fully customizable re-programmable
boards. They come with an important flexibility, yet they still have a few constraints:
instead of programming a circuit, we configure their basic logic elements (BLEs) and the
routing between these elements. The FPGA configuration starts with the algorithm from
which we produce a computation graph. Then, the computation graph can be split into
pipeline stages, increasing the throughput. This leads to the register transfer level (RTL)
description of the computation graph. The next step is the synthesis which converts the
RTL description into FPGA primitives. Finally, the final stage is the place and route
which determines (i) the physical location of each primitive on the FPGA and (ii) the
routing between these locations. In Figure 1.3, we provide a simplified representation of
the different compilation stages. The synthesis and the routing and placement on the chip
are out of scope of our work and we let the synthesis tool2 optimize it.

Overall, our goal is to minimize the cost of the circuit which we consider through the
number of BLEs required to implement it. In hardware experiments, we will also discuss
the power consumption and the delay of the circuit.

2In our case we will use Vivado: https://www.xilinx.com/products/design-tools/vivado.html

https://www.xilinx.com/products/design-tools/vivado.html
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Multiply a variable
with 93

(a) Algorithm.

−→

(b) Computation graph.

−→

(c) Pipelining.

−→

(d) Synthesis.

−→

(e) Place and route.

Figure 1.3: Compilation stages.
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(a) Addition with same LSB and MSB. (b) Addition with different LSB and MSB.

Figure 1.4: Additions with full adders.

Table 1.2: Full adder truth table where i1
and i2 correspond to the input bits, sum is
the output. Columns cin and cout are the
carry in and carry out, respectively.

i1 i2 cin sum cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 1.5: Simplified representation of a
full adder. i1 and i2 correspond to the input
bits, sum is the output. cin and cout are the
carry in and carry out, respectively

Components of these BLEs are:

• lookup tables (LUTs) which are logic tables. They take a few inputs and generate an
output. Their size varies from manufacturer to model. Often, a same LUT can be
used to produce 1 output from 6 inputs or 2 outputs from 5 inputs.

• flip-flops (FFs) are data storage elements. At each clock cycle, each FF outputs the
value which is stored and then stores its input.

• the carry chain is actually a local routing which goes through multiple BLEs.

Note that this is a rough approximation of the programmable content of FPGA. Among
other things, we ignore here that BLEs are packed in slices, that wires are most of the
FPGAs, and that, in addition to BLEs, other elements such as Digital Signal Processing
(DSP) blocks are present on FPGAs. Roughly, we can consider that everything is connected
to everything and in the end, implementation is not programming but configuring a board.

Tables can be used to perform arithmetic operations, in particular, full adders can be
encoded with truth tables as illustrated in Table 1.2. Hence, by packing LUTs which
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are linked together with the carry chain, it is possible to perform additions over FxP
numbers [Ped19] as illustrated with full and half adders in Figure 1.4a. This way, it
seems that the more additions we perform in a circuit, the higher will be its cost and this
reasonable assumption motivates the content of the Chapter 4.

In Figure 1.4a, we performed an addition using 7 LUTs or FAs. Obviously, with larger
input word lengths, we need more FAs to perform the addition. Hence, the cost of additions
is directly impacted by the word lengths of its inputs. In Chapters 5 and 6, we will dissect
additions to determine the precise cost of the additions. In particular, in these chapters,
inputs with different LSB and MSB will be added together and some outputs bits will be
obtained without using any FA, as illustrated in Figure 1.4b where left output bits are just
passed through.

In some cases, high throughput is required and this can be obtained by pipelining the
hardware circuit. This means that we slice the circuit in multiple steps, each step being
performed in a clock cycle instead of having a unique clock cycle for the whole circuit.
This way, the frequency can be increased, hence the throughput. However, this requires
to store the output of each step in FFs partly increasing the number of BLEs required to
implement the circuit. In Chapter 7, we will consider the minimization of the hardware
cost while pipelining.

In FPGAs, each BLE embed at least one FF and one LUT [Ped19]. Hence, the extra
cost in BLEs usage does not fully follow the number of FFs in the circuit. Finally, note
that using FF, (i) decreases the power consumption by reducing glitches, but, (ii), increases
the power consumption because it allows for higher frequencies [RDJ99].

In this thesis, we will study operators and applications with the goal of an implemen-
tation on FPGAs. Hence, the above knowledge on BLEs will guide our choices for defining
good proxy variables.

1.3 Multiplication by constants

Multiplication algorithms, despite their simplicity, represent a real performance trade-off
opportunity, in particular when one side of the multiplication is a constant. Numeri-
cal kernels such as matrix multiplications or scalar-vector multiplications involve Multiple
Constant Multiplications (MCM). These kernels are essential building blocks of many al-
gorithms such as the digital filter evaluation. Although the approaches used for multiple
constants can also be used to solve the single-constant instances, there exist dedicated
methods for this specific case [Ber86, Lef01, TN10, TN11, KGGZ16]. In any case, this
problem is conjectured NP-hard for any number of constants.

Multiple Constant Multiplication problem
Input: A set of K target constants C ∈ FK and a variable x ∈ F, where F is

the set of FxP numbers.
Problem: Find an implementation of C × x at the minimal cost.
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In the following, without loss of generality, we will only consider C ∈ NK , as FxP
number are integers scaled by an implicit scaling factor which sign can be adjusted the
MCM part. The simplest way of performing several multiplications is to use a generic
multiplier for each product. We could also use a single generic multiplier multiple times
to reduce the cost in terms of resources, however, this will directly increase the delay of
the operator. Furthermore, the gain in terms of resources is not guaranteed as this latter
implementation would require many registers. This directly raises the question of the
“minimal cost” which needs to be defined for each case.

A commonly used approach is to exploit the knowledge on binary representation of
constants and rewrite the products by a sequence of additions and bit-shifts. In hardware,
bit-shifts can be hardwired and are basically free. Additions, however, have a cost which
we can provide an estimation for. On FPGAs, generic multiplications have a higher cost
than additions as they usually require compressor trees. Thus, in the following, we will
use the shift-and-add approach and we will focus on improving it.

1.3.1 The shift-and-add approach

Basic idea

The binary representation of a constant directly leads to a first possible way to replace a
multiplication by shifts and additions.

Example 3. The binary representation of 93 = 26 +24 +23 +22 +20 is 10111012 and
can be interpreted as the following shift-and-add chain:

5x = 22x+ 20x,

13x = 5x+ 23x,

29x = 13x+ 24x,

93x = 29x+ 26x.

Here, only 4 additions and 4 bit-shifts are necessary to compute the multiplication
by 93.

With this approach, the “length” of the shift-and-add chain is directly determined by
the binary representation of the constant, i. e., the cost of the multiplication in terms of the
number of additions is equal to the number of ones in the binary representation minus 1.
This corresponds to the Hamming weight [Ham50].

To reduce the Hamming weight of the representation, we can use signed digit (SD) repre-
sentation using the digits

{
1, 0, 1

}
, where 1 = −1. In particular, we consider the Canonical

Signed Digit (CSD) representation in which nonzero bits are not adjacent [Boo51, Ber86].
Here, we have subtractions, but their cost is not exceeding that of additions. From here on,
we will only talk about adders, but allow for addition of opposite-sign values. Then, rewrit-
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(a) Obtained with
exponentiation-like adder
chain.

(b) Obtained with CSD. (c) Optimal adder graph.

Figure 1.6: Adder graphs computing 93x.

ing in CSD, we can reduce the cost of the shift-and-add implementation. A polynomial-time
algorithm permits to rewrite a binary number into its CSD representation [Boo51].

Example 4. The CSD representation of 93 is 1010 0101CSD and leads to a shift-and-
add solution with 3 adders:

96x = 27x− 25x,

92x = 96x− 22x,

93x = 92x+ x.

Here, CSD reduced the constant multiplication cost to 3 adders compared to Exam-
ple 3. The CSD approach gives interesting results in polynomial time, however the CSD
representation does not lead to the minimal number of adders required to perform the
multiplication. For instance, an optimal solution for 93x would be 2 adders:

31x = 25x− 1, (1.20)

93x = 21 × 31x+ 31x. (1.21)

Finding such optimal shift-and-add solution with the minimal number of adders is conjec-
tured to be an NP-hard problem [TN11].

Adder graph representation

Every shift-and-add solution can be conveniently represented with a shift-and-add tree, or
as we will call it adder graph. In Figure 1.6, we provide the adder graphs obtained from
the binary representation, the CSD and the solution with the minimal number of adders
for the target constant 93. The left arrows correspond to the bit-shifts and adders have an
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x

← 3
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7x

(a) Optimal for target
constant 7.
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x

← 1
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(b) Optimal for target
constant 23.
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x

← 3

← 4

7x
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(c) Optimal for target
constants 7 and 23.

Figure 1.7: Combining adder graphs is better than one adder graph per output.

optional minus sign to indicate subtractions. The value below each adder corresponds to
the intermediate result at the current step and is called a fundamental [DM94]. We order
adders into stages and, for simplicity of notation, we consider that the input is the adder
0 and is at the stage 0. For example, in Figure 1.6b, the first adder’s fundamental is 96,
it is obtained by subtracting the right input, shifted by 5 bits, from the left input, which
has been shifted by 7 bits. This adder, which is computed at the first stage, has both its
input coming from the “adder 0”.

Definition 1 (Adder depth). Let a, b and c be three adders such that a and b are
the inputs of c. We denote ada and ad b the adder depths, or stage, of adders a and
b, respectively. Then, the adder depth of c is defined as

ad c = max (ada, ad b) + 1.

The adder depth of an adder is the stage at which its value is computed. By definition,
the adder depth of the input of the adder graph is equal to 0 and the adder depth
of the adder graph is the maximum of the adder depth of its adders. For example,
in Figure 1.6a, c could correspond to the adder computing 13x, its inputs a and b
are the adder graph input and the adder 5x, respectively. Then, we have ada = 0,
ad b = 1 which leads to ad c = 2.

Shift-and-add for MCM

It is not enough to decompose the set of target constants into multiple single constant
problems solved separately and to combine all solutions, we can do better. In Figure 1.7,
we see that we can share intermediate constants between multiple outputs. It permits to
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reduce the overall cost when we tackle multiple constants at once.
The CSD algorithm is not meant for multiple constants and a common way to improve

this approach is to search for common patterns in the CSD representation, so a same
pattern can be computed once then reused for multiple target constants. This approach is
called Common Subexpression Elimination (CSE) [Har96, PSC96] and is the idea behind
multiple heuristics [DM04, ACFM12].

The approaches presented above rely on number representation. However, it is possible
to directly build the adder graph, fundamental by fundamental. Starting from the input,
adder 0, the first question to answer is: “which adder/fundamental can be computed from
the input?” Then, once one adder has been added to the adder graph, and at every next
step, the question becomes “which fundamental can we add to the adder graph by adding
an adder to it?” This permits to build an adder graph, step by step, choosing in priority
fundamentals which are either target constants or have the best chance to lead to target
constants at the next steps.

Based on this idea, it is possible to perform exhaustive searches [Gus08, Kum16] where,
given a fixed number of adders, all the possible adder graph topologies and fundamentals
are considered [DM94, VP07]. However, the size of the search space quickly becomes far
too large even for small adder graphs and it needs to be reduced it by considering a few
theoretical results.

For instance, we can remove from the search space even-valued fundamentals [DM94,
Theorem 2] and construct adder graphs which only involve odd fundamentals, the so-called
odd adder graphs. Thus, in the following we will consider only odd adder graphs and that
all our target constants are positive and odd, if necessary the sign is adjusted later and
a shift can be applied to retrieve the original even-valued constant. To build a new odd
target constant set Codd from the original one C, we first take the absolute value of each
target constant and second use the odd function which evaluates to the odd part [SP95,
Sequence M2222] of its input:

odd(n) =
n

gcd (2n, n)
. (1.22)

Then, we define Codd as:

Codd = {odd(|Cj|) | Cj ∈ C} . (1.23)

For example, for the target constant 186 we simply search for the best adder graph for
the target constant odd (186) = 93, as in Figure 1.6c, and shift the output by one bit to
retrieve 186.

Dempster and Macleod also demonstrate that it is not necessary to consider very large
shifts [DM94, Theorem 4] and we can consider that the left and the right input cannot
be left-shifted simultaneously [DM94, Theorem 3]. This drastically reduce the search
space but the number of possible adder graphs still grows exponentially and a complete
enumeration is not realistically feasible in most cases. To overcome this issue, a possible
approach consists in adding more bounds on the problem to reduce the search space to
an acceptable size [Kum16]. Another common approach is to explore the search space
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progressively, instead of generating it upfront, either heuristically, i. e., only enumerate
fundamentals that seem promising [DM94, VP07, KZFC12], or with a dedicated branch
and bound [AGF10]. Although the branch and bound approach should provide optimal
results and proof of optimality, it is tedious to implement and to maintain and extend.

Remark. There exist a few constructive heuristics such as Hcub [VP07] or RPAG [KZFC12]
to solve the MCM problem. However, to our knowledge, no local search algorithms were
proposed to improve heuristic solutions. Local search are heuristics that aim at improving
a solution by making small modifications, called moves, to it. Proposing a dedicated local
search could be interesting to obtain better solutions in limited time.

The last approach we think of consists in solving the describing the MCM problem
using mathematical modeling and relying on solvers to explore the search space as they
build it. In 2018, Kumm [Kum18] provided an MILP-based model to find an adder graph
which minimizes the number of adders. With his model, Kumm found and proved the
optimal solution for 10 instances out of the 11 instances from image processing he used for
comparison [Kum18]. In Chapter 2, we will present this model in details and in Chapter 4
we will identify a flaw which we will correct in this thesis. Based on the same idea of using
mathematical modeling, Lagoon and Metodi proposed an SMT-based approach [LM20] and
demonstrate for the first time an important result for single constant multiplications: the
smallest constant that cannot be computed with strictly less than 6 adders is 171 398 453.
These approaches, which use mathematical modeling, have proven their efficiency and we
will base our work on the same principle.

1.4 Linear digital filters as arithmetic operators

An example of application benefiting from MCM are linear time-invariant (LTI) digital
filters. These basic building blocks of DSP algorithms can be seen as arithmetic operators,
optimized and then seen as black boxes. The theory of LTI and filter design is a rich topic
but out of scope of this thesis. Our interest is in the improvement that optimized MCM
can bring to design of hardware filters, and how they can be co-designed. Hence, we keep
the definitions to minimum and refer the interested reader to [PV08, Ant18] and to [MB14]
for a textbook which specifically presents DSP for FPGA implementation.

A filter is a transformation of the input signal to the output which reduces or enhances
certain aspects of the original signal. For example, low pass filters can be used to reduce
high-frequencies in order to remove noise. Finite and infinite impulse response (FIR and
IIR) digital filters are fully defined by one or two vectors of coefficients, respectively. These
vectors of coefficients, hi ∈ R for FIR filters, and ai, bi ∈ R for IIR filters, intervene in their
transfer functions:

FIR: H(z) =
N∑
i=0

hiz
−i, (1.24) IIR: H(z) =

Nb∑
i=0

biz
−i

1 +
Na∑
i=1

aiz−i

, (1.25)
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Figure 1.8: Example of specifications.

where z ∈ C. Note that, in the following, we will limit the discussion to second-order IIR
filters, Nb = Na = 2, as it is common to decompose higher-order filters into a cascade of
second-order sections [JN86, OS89, DM95, Lei97, WLL10].

Obviously, the values of the coefficients of the filter define the effect of the filter. To
obtain a filter which fits a wanted set of characteristics, we usually constrain the filter’s
frequency response,

β(ω) ≤
∣∣H(ejω)∣∣ ≤ β(ω) , ∀ω ∈ [0; π] , (1.26)

with specifications β and β which are the lower and upper bounds. They typically encode
constant bounds valid inside frequency intervals, but our definition (1.26) allows to model
them as functions of ω. For example, in Figure 1.8, we see black lines which correspond
to the specifications. In the top left corner is the passband and in the bottom right corner
the stopband, these bands correspond to the frequencies which should be left unmodified
or attenuated, respectively.

In our case, in addition to specifications, we want stable IIR filters: necessary and
sufficient stability conditions for second-order filters are well-known [Ant18, Section 16.8]
to be

−2 < a1 < 2, (1.27)

|a1| − 1 < a2 < 1. (1.28)

Once the specifications are fixed, various methods [OS89, Ant18] permit to find a set
of coefficients which fits. This is a first step is called filter design (FD). Using the filter
design and analysis tool (FDATool) in Matlab, we generate double-precision coefficients
for a second-order IIR filter fitting the specifications in Figure 1.8. The second step comes
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Figure 1.9: Hardware implementation of FIR (left) and IIR (right) filters, direct form.
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Figure 1.10: Hardware implementation of FIR (left) and IIR (right) filters, transposed form.

precisely from a hardware constraint. We target hardware implementation which uses FxP
arithmetic. However, the coefficients we obtained, with the FD, are usually represented
with double precision, thus, the coefficients need to be quantized (Q) and still fit the
specifications and stability constraints, which is not always the case. For instance, as
illustrated in Figure 1.8, the coefficients obtained with Matlab and quantized to 5 bits,
lead to a filter which does not fit the specifications anymore, see the red dotted line.

Finally, we want to implement (I) filters and, to do so, we need to evaluate their output,
ym ∈ R, given the input signal xm ∈ R,∀m ∈ Z in the time-domain:

FIR: ym =
N∑
i=0

hixm−i, (1.29) IIR: ym =

Nb∑
i=0

bixm−i −
Na∑
i=1

aiym−i. (1.30)
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Basically, samples are passed through the filters, partly stored in an internal memory, and
then used to compute the outputs. In the case of IIR filters, we identify a recursive part
in which outputs are multiplied with coefficients ai to impact the next outputs.

The implementation can precisely follow the difference equations (1.29) and (1.30) as
illustrated in Figure 1.9. In Figure 1.9a, registers z−1 delay the signal, thus we indeed have
hN which is multiplied with the input signal delayed N times, xn−N , while xn is directly
multiplied with h0. This implementation is called the Direct Form and, at each step, we
see that N + 1 different inputs are multiplied with N + 1 different constants. Instead, we
can implement the Transposed Direct Form, which is represented in Figure 1.10, and, in
this case, a same variable is multiplied with multiple constants.

Due to the heterogeneous nature of the different steps, dedicated algorithms that tackle
the global problem, FD+Q+I, have specificities which are hard to merge together into a
single global algorithm. There exists many approaches [Ant18] to find coefficients which fits
given specifications, such as Butterworth, Chebyshev, etc. These algorithms are specific
and although the combination of FD and Q steps has been studied extensively [SV99,
VBVBT02, WLL10], it is not easy to adapt algorithms dedicated to the FD step to include
the Q step as well.

A large body of work exists for the I step [BT05, JGW07, GWD09], in particular for
FIR filters. Hardware filters involve multiplications with constants and could be done with
MCM based on shift-and-add Another constant multiplication method is based on pre-
computed tables and is called Ken Chapman multiplier (KCM), after its inventor [Cha94].
It has also been successfully applied to digital filtering [KFM+13, dDFKF19] and us-
ing this method, an approach for optimization of combined Q & I steps has been pro-
posed [VIDDH19].

Despite efficient methods for the I step and Q+I combined steps, the resource cost still
strongly depends on the coefficient values. However, the coefficients are typically fixed
in the first FD step with very little knowledge over their implementation cost. There are
exceptions and the filter design step, aware of the implementation cost, have been proposed
[LP83, ZT88]. But in this case the search space for the coefficient values is way more
constrained than strictly necessary as they usually limit the coefficients to power-of-two’s
only. In any case, the obtained implementations are optimized only for one filter instance,
or a small sub-set of the overall design space, not permitting overall optimal solution.

Merging all the steps has been done successfully for the design of FIR filters [KVF23]
using an MILP-based model. Our ambition is to solve the combined FD+Q+I steps for
the second-order IIR filters within one global optimization, and, in Chapter 8, we will see
that hardware-aware IIR filter design is a difficult nonlinear combinatorial problem.



CHAPTER 2

Mathematical Modeling

“Real stupidity beats artificial
intelligence every time.”

Terry Pratchett (1948-2015),
Hogfather (1996)

“We fail more often because we solve
the wrong problem than because we
get the wrong solution to the right
problem.”

Russell L. Ackoff (1919-2009)

Russell L. Ackoff said that “we fail more often because we solve the wrong problem than
because we get the wrong solution to the right problem.” Mathematical modeling permits
to solve the right problem by focusing on its description and not on the algorithm to solve
it. However, we are not yet close to be able to model exactly most real-life problems and we
usually need to find an abstraction which we consider good enough. In this thesis, we will
specifically use Mixed-Integer Linear Programming (MILP) which fits well for hardware
operator design. Choosing building blocks and basic operators is a combinatorial problem
and MILP solvers are perfectly suited for these kind of problems.

In this chapter we recall the concept of mathematical modeling, and MILP in particular,
and its applications to hardware operator design. The MILP approach benefits from the
advances in academic and commercial solvers year after year. Hence, even instances which
are currently out of reach with this approach might soon be solved without any effort,
simply with progress in generic solving [KBPV22].

Despite the importance and interest of the algorithms used to solve MILP models, we
will present the modeling aspects and not the algorithms themselves in the following. For
more details on the algorithms, we refer the reader to textbooks on the topic [BT97, Wol20].

25
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In this chapter however, we expose important modeling methods and tools, such as the
linearization of nonlinear expressions or the cutting planes approach, which permit to write
and improve models. Finally, we present the performance variability problem which is an
additional challenge when a choice between two different models rises.

2.1 Writing an MILP model

When we approach a problem with MILP, the goal is to express the problem to solve
using equations. It should be noted that the more constraints we put on our declarative
programming language, the more specialized, and hopefully efficient, algorithms can be
used. Hence, in this paradigm we only allow ourselves to use linear equations.

Definition 2. Linear programming problems can be formalized as follows:

min cTx

subject to Ax ≤ b,

where x ∈ Rn are continuous variables, and c ∈ Rn, A ∈ Rn×m and bm the parameters
of the model.

In Definition 2, linear programming (LP) problem is defined as the minimization of the
objective function cTx, while satisfying a set of constraints. One of the most widely used
algorithms to solve LP models is the simplex method. Although the worst-case complexity
of simplex method is exponential time, in practice this method is very efficient and is often
preferred over interior point methods which have a polynomial-time complexity [NN94].

It is important to note that, in most solvers, computations are performed in double-
precision floating-point format. This sometime leads to numerical instabilities, despite
dedicated methods in the simplex algorithm to mitigate this issue. There also exist rational
and arbitrary-precision simplex implementations such as QSopt or SoPlex. As we will see,
solving linear programs is often a subroutine which needs to be fast and the overhead
of computing exact solutions is usually not acceptable and we use FP ones. To prevent
numerical instabilities we avoid parameters which differ by too many orders of magnitude:
we should be fine if we model a needle in a haystack but modeling a drop in the ocean is
not an option. For the MCM problem, the word length of the target constants will have a
direct impact on the size of the parameters.

In MILP, the difference with LP is that we can impose integrality constraints on the
variables. This way, a subset of the variables x are integers. In particular, integer variables
inside [0, 1], i. e. xi ∈ {0, 1}, will be denoted binary variables. If all the variables x
are integers or binary, dedicated algorithms or subroutines can be activated during the
solving process.

Note that, in the general case, these integrality constraints cannot just be removed to
solve an LP model before rounding the solution, hoping that it stays optimal. However,
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removing integrality constraints, i. e. generating a linear relaxation of the problem is
still useful in the intermediate steps. By solving the relaxed problem, we obtain a lower
bound of the objective function as adding constraints can only worsen the solution. This
is particularly important to remember since good lower bounds will guide the algorithms
used to solve MILP problems. As stated above, we will not get into many details on the
solving methods but we will give a simple idea of how solvers work in Section 2.2.3.

Remark. The objective function of a linear programming problem can be rewritten as a
“max” problem just by taking the opposite of c and, similarly, constraints can also be
expressed as ≥ or = equations.

For our experiments throughout this thesis, we will use two main commercial MILP
solvers which are Gurobi [Gur20] and CPLEX [CPL20]. Note that there also are well-known
open-source MILP solvers such as GLPK and SCIP [BBC+21]. Models are usually stored in
files in the MPS or LP formats, for example, and passed to a solver, which eventually produces
a solution file in the SOL format. Yet, writing a model into a file and reading a solution file is
tedious. Hence, modeling languages which then call the solver APIs are usually preferred.
In C++, we can use ScaLP [SSKZ18] and Pyomo is the standard choice[BHH+21] in
Python. In our work, we have used JuMP [DHL17] which is a domain-specific modeling
language for mathematical optimization in Julia. This greatly facilitates modeling and
any common solver can be used as a back-end. Using such a modeling language also
permits to easily switch between paradigms, as JuMP also allows for nonlinear models or
constraint programming. Finally, multiple solver parameters, such as the time limit or the
verbosity level, are unified and do not necessitate to specifically know the parameter name
of each solver.

Remark. JuMP [DHL17] is an open-source modeling language in which it is easy to dive
and contribute.

2.1.1 Big-M and indicator constraints

It is common to need implications or optional constraints in mathematical modeling and
indicator constraints are a direct transcription of this which is usually well-supported by
MILP solvers. The general case of indicator constraints have the form

z = y if x = 1, (2.1)

where x is a binary variable and y and z two variables, continuous or not. These constraints
have several drawbacks, which will be discussed, and can be advantageously substituted
by the so-called big-M constraints.

Indeed, Equation (2.1) can be replaced with the following two constraints:

z ≤ y + (1− x)M1, (2.2)

z ≥ y − (1− x)M2, (2.3)
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for sufficiently large values of constant M . If x = 1, then we have z ≤ y and z ≥ y, hence
z = y. If x = 0, then we have z ≤ y +M1 and z ≥ y −M2, which, in practice, should be
equivalent the absence of constraints on z. This equivalence between Equation (2.1) and
Equations (2.2) and (2.3) can only be true if y and z are bounded. Otherwise, M ’s cannot
be large enough to ensure the absence of constraint on y and z if x = 0.

Assuming that y ∈
[
y, y
]
and z ∈ [z, z], we can deduce appropriate lower bounds for

M1 and M2:

M1 ≥ z − y, (2.4)

M2 ≥ y − z. (2.5)

Actually, M1 and M2 values should be exactly these bounds, since higher values would
only deteriorate the linear relaxation or even lead to numerical instabilities [KN13, Esp18].
When indicator constraints are used, the risk of numerical instability is completely avoided.
However, these constraints are usually dropped in the linear relaxation, or replaced by un-
necessarily large big-M constraints, leading to models really hard to solve [KN13, BBF+16].
Hence, indicator constraints are usually slower than fine-tuned big-M constraints.

Overall, when possible, we will prefer to use big-M . Yet, it requires to find the smallest
value that fits and to verify the robustness of the model with respect to numerical instabili-
ties. In particular, a common issue is that in solvers integrality constraints on variables are
not strict: a variable is considered to be an integer if it is close enough to an integer, 10−5

is the default tolerance for CPLEX and Gurobi1. For example, if x is a binary variable,
x = 10−6 would be within the tolerance to assume that x = 0. But the following constraint

z ≤ 1 + 106x, (2.6)

would actually permit z = 2.

Remark. As a rule of thumb, big-M values should not exceed 104 and should not be used
at all when working with continuous variables. In any case, every big-M constraint should
be scrutinized to ensure it constrains as expected.

2.1.2 Linearization

In MILP formulations, we can only use linear equations as constraints. However, it is
common to naturally describe a problem with nonlinear constraints. When this is the
case, different approaches are possible:

1. Use another mathematical modeling approach, instead of MILP;

2. Find a different, but equivalent, formulation of the problem which is linear ;

3. Rewrite nonlinear constraints as linear, usually adding new variables.

1this can be changed with the parameter is CPXPARAM MIP Tolerances Integrality or IntFeasTol

with CPLEX or Gurobi, respectively.
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As our goal is to benefit from MILP solvers, we need to rely on the second and third
solutions, and linearization is often the only solution.

Let us illustrate the process of linearization with an example. Suppose we need to
constrain an integer variable z ∈ N to be equal to the product of two other integer variables
x ∈ [[0; x]] and y ∈ [[0; y]]:

z = x× y. (2.7)

To be able to incorporate this constraint into the model, we need a linear reformulation.

Remark. Not every constraint can be linearized, in particular the linearization of the prod-
uct of continuous variables is currently out of reach.

The following linearization was proposed in 2008 [BEL08] and basically consists in
rewriting one of the positive integers into its binary representation:

x =

⌊log2 x⌋∑
i=0

2i tx,i, (2.8)

where tx,i are ⌊log2 x⌋+ 1 binary auxiliary variables. This constraint ensures that the bits
tx,i encode the value of x. This simplifies the product z = xy to a sum of products between
the binary variables tx,i and the positive integer y:

z =

⌊log2 x⌋∑
i=0

2izi, where zi = tx,i × y. (2.9)

The linearization of a binary-by-integer product is common and involves indicator or big-M
constraints [Glo75, OK92]. Basically, zi = tx,i × y, where tx,i ∈ {0, 1}, is equivalent to

zi = 0 if tx,i = 0, (2.10)

zi = y if tx,i = 1. (2.11)

This adds again ⌊log2 x⌋+1 variables to the model, along with twice as many constraints.

Example 5. The linearization of z = x×y where x, y ∈ [[0; 255]] are two 8-bit positive
integers requires to add to the model 16 variables, 17 constraints and as many places
to make a mistake.

Although the numbers in Example 5 are quite reasonable, one must acknowledge that
we do not usually simply have x×y but we would rather deal with xi×yi for i in a large set.
Thus, the number of additional variables and constraints is actually a multiplier factor.

Remark. We provided a way to linearize the product between two positive integer variables
assuming x and y are bounded by x and y, respectively. The bound on x is necessary to
rewrite x as its binary representation. Although we did not explicitly use the bound on y,
it is required to replace Equations (2.10) and (2.11) with big-M constraints.
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Figure 2.1: Adder graph and a focus on one adder.

2.1.3 Writing an MILP model: step-by-step example with MCM

In the following, we will demonstrate how MILP can be used for arithmetic operator design
and unfold the model for MCM proposed by Kumm in 2018 [Kum18]. The idea behind this
model is, given the target constants, to build an adder graph, as represented in Figure 2.1a,
adder per adder. The number of adders is fixed a priori to a value N and the objective
of the model is to answer the question: “could we find an adder graph which outputs the
target constants with N adders?”. In this case we can already determine that there is no
obvious objective function to optimize, we solve a satisfiability problem instead.

The first step to write an MILP model requires to define the variables of the problem
we solve. To do so, we formalize what a solutions looks like and build upon it. For the
MCM problem, a solution is characterized by its fundamentals, the shifts and signs of the
inputs, as well as the link between adders. Thus, the variables of the model could be:

• ca ∈ N for the fundamentals for each adder a ∈ [[0;N ]] where the input, c0 = 1, is
treated as an adder for simplicity;

• sa,i ∈ Z for the shifts of both inputs, i ∈ {l, r};

• σa,i ∈ {0, 1} for the sign of each input;

• ca,i ∈ Z for the input of the adder.

In Figure 2.1b, we have represented these variables on an adder to have a better idea of
their role. Then, we need to precise the exact domains of each variable. For instance, the
fundamentals ca range from 1 to the power of two directly after the largest target constant,
max (log2 (Ci)) where C is the set of target constants.

Finally, we add constraints to link the variables together. For the MCM problem such
constraints could be

ca = (−1)σa,l 2sa,l × ca,l + (−1)σa,r 2sa,r × ca,r, (2.12)
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which means that the fundamental ca is equal to the sum of the shifted and signed inputs.
We note that ca,l and ca,r could take any random value as there are currently no links
between adders. Ultimately, the process of writing a model consists in toing and froing
between defining variables and adding constraints, and in that respect, we need to add
binary variables, ca,i,k ∈ {0, 1}, to link the input of adder a with previous adders k. For
example, to link ca, ca,i and ca,i,k together, we need the following set of constraints:

ca,i = ck if ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]], (2.13)

which ensures that ca,i takes the value of the adder a if the binary variable ca,i,k is equal to
one. To ensure that at least one ca,i,k is equal to one, we add this last set of constraints:

a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} . (2.14)

Eventually, new variables could be necessary to rewrite constraints which might initially
be nonlinear, like (2.12). In particular, in [Kum18], this led to additional variables,

ca = (−1)σa,l 2sa,lca,l︸ ︷︷ ︸
csha,l︸ ︷︷ ︸

csh,sga,l

+(−1)σa,r 2sa,rca,r︸ ︷︷ ︸
csha,r︸ ︷︷ ︸

csh,sga,r

, (2.15)

which permit to store intermediate results:

csha,l = 2sa,lca,l, (2.16)

csh,sga,l = (−1)σa,l csha,l, (2.17)

csha,r = 2sa,rca,r, (2.18)

csh,sga,r = (−1)σa,r csha,r. (2.19)

Then, it is possible to linearize each constraint. For instance, knowing that the shifts sa,l
live in [[Smin;Smax]] [DM94], we can enumerate all the possible values they can take and
add binary variable, Φa,i,s ∈ {0, 1}, which is equal to 1 if the shift is equal to s. This way,
the set of constraints

csha,i = 2sca,i if Φa,i,s = 1 ∀a ∈ [[1;NA]], i ∈ {l, r} , s ∈ [[Smin;Smax]], (2.20)

is a linearization of (2.16). Kumm [Kum18] applied this process until (2.12) has been fully
linearized, obtaining a first model for the MCM problem. Note that, for the linearization
of (2.16) only, we need to introduce N × 2× (Smax − Smin) variables and constraints.

2.2 Improving an MILP model

2.2.1 Warm start

An initial solution is a key ingredient to solvers, as it usually permits to speed up the
solving process. Most solvers, if not all, rely on primal heuristics to find initial solutions.
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It is also possible to provide a first solution, called a warm start, to the solver. This
is harder than solely relying on the solver and, at first glance, this seems flawless. Yet,
if internal heuristics of the solver are able to obtain a better initial solution, and faster
than the time needed to obtain the warm start, then the solver is stronger than using a
warm start.

In the case of MCM, the internal primal heuristics work poorly and providing a warm
start obtained using a greedy algorithm or a dedicated heuristic is interesting. However,
it requires to translate a solution into variables values, including into all the intermediate
variables needed for linearization, while we usually do the other way around, reading
the variable values after the solving process to build a solution. It is also possible to
only provide a warm start for a subset of the variables and let the solver complete the
solution. However, it might give up and start from scratch if building the rest of the
solution consumes too much time. Note that, even in the MCM case where internal primal
heuristics are not efficient, providing a warm start changes the behavior of the solver which
can result in unexpectedly worse performance in the long run. This cannot be anticipated
and we expect warm starts to help, on average.

2.2.2 Valid inequalities and symmetry breaking

Valid inequalities. A valid inequality is a constraint that can be added to a model
without removing any valid solution. In other words, adding a valid inequality to a model
does not constrain the model more than before adding the constraint, which naturally
raises the question of their use case. Yet, valid inequalities can remove valid solutions
from the relaxed problem. These constraints, the so-called cutting planes, should help the
solving process and are the essence of useful valid inequalities.

Remark. There exist ILP solving approaches which solely rely on solving linear program-
ming problems and cutting planes such as the Gomory Cutting Plane Algorithm [Gom58].

Adding constraints has a cost and one has to find the right trade-off between a heavier
model and a finely-constrained one. In some cases, it is possible to drastically reduce the
search space by removing equivalent or symmetric valid solutions with new constraints.
These are not valid inequalities but permit to achieve a similar goal: speeding up the
solving process.

Symmetry breaking. Among the constraints which remove valid solutions, we have a
particular interest in symmetry breaking constraints [Wal06]. In many problems, one can
go from one solution to an equivalent one just by interchanging some variables values.
Additional constraints that remove some symmetric solutions but keep at least one of
them are called symmetry breaking constraints. Often enough, these constraints drastically
reduce the search space and looking for symmetries in a problem is usually not vain.

Remark. Given a solution obtained by the solver, symmetric solutions that were removed
from the search space can always be built afterwards, in post-processing.
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For example, shift-and-add solutions to the MCM problem have symmetries such as
the order of the adders at a given depth. In the MILP models proposed in this thesis, we
will add constraints to break these and other symmetries.

Equivalent solutions. Finally, we can also remove equivalent solutions which are not
symmetries. For example, for MCM, to obtain an optimal solution it is not necessary to
explore all the possible shifts.

Theorem 1: Shifts search space [DM94, Theorem 3]

In odd fundamental graphs, we can consider only the following shift values:

• either sa,l > 0 and sa,r = 0, i. e., if the left input shift is positive, there is no
right shift;

• or sa,l = sa,r < 0, i. e., if the left input shift is negative, the right input shift is
negative and equal to the left input shift.

Based on Theorem 1, Kumm [Kum18] added constraints on the variables encoding shifts:

Φa,r,s = 0, ∀a ∈ [[1;N ]], s ∈ [[1;Smax]], (2.21)

Φa,l,s = Φa,r,s, ∀a ∈ [[1;N ]], s ∈ [[Smin;−1]]. (2.22)

However, as we will detail in Chapter 4, adding these constraints within his model actually
removed optimal solutions.

2.2.3 Tweaking solver parameters

Solver parameters can be used to: (i) decrease the solving times and (ii) hopefully increase
the robustness of the model by decreasing the randomness. In the following, we will present
a few parameters that will be used in the different MILP models of this thesis. Fixing some
of these parameters to a sensible value requires basic knowledge of the solving process.

Essentially, the solver will use multiple primal heuristics to find an initial solution,
and a branch-and-bound-based approach with many subroutines. Roughly, the better the
solution is, the faster the branch-and-bound will finish. For its part, the branch-and-
bound algorithm will reduce the size of the problem by splitting it into multiple sub-nodes.
These nodes have some variables fixed and the solver tries to only explore nodes that
could improve the current solution. To determine the nodes to explore in priority, multiple
subroutines run in parallel. For instance, the linear relaxation of a node is computed to
obtain a first bound on the best solution which can be obtained, now that some variables
are fixed. If this lower bound is worse than the current best known solution, the node is
bounded and can be removed. When the node is kept, it means that it might still lead
to interesting solutions, if not to the optimal one. Then, heuristics on the subproblem
are used to find a valid solution which is used to guide the solver towards the best node
to split.
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Therefore, parameters that influence the primal heuristics, the branching options and
the subroutines are of interest, as they can speed up the solving process. Although default
parameter values are well-suited to most cases, knowledge of the problem that is being
solved permits to tweak them better.

Primal heuristics

We recall that primal heuristics are meant to obtain an initial solution. Ideally, we would
like the best initial solution possible. However, any solution is already interesting as it
allows for a local search along with the branch-and-bound. As we will usually use a warm
start for our models, we will already have a feasible solution so we mostly need to know
if primal heuristics work well on our problem in the sense that they permit to obtain
a better solution than the one we provide. If they do not, then we probably can even
deactivate them.

Specifically, the feasibility pump [FGL05, BLS18] heuristic which permits to find first
feasible solutions to hard problems can be activated or deactivated, using the parame-
ters PumpPasses on Gurobi and CPXPARAM MIP Strategy FPHeur on CPLEX. This primal
heuristic is not meant to obtain good solutions hence it could certainly be deactivated as
we already have a solution.

Branch-and-bound

One of the subroutines of branch-and-bound consists in using heuristics to find and improve
solutions at each node. The heuristic effort is determined using Heuristics with Gurobi
and CPXPARAM MIP Strategy HeuristicEffort with CPLEX. The harder the problem
is, the worse heuristics will perform close to the root node. In that case, we could be
tempted to reduce the heuristic effort. However, if the problem involves a very large
number of variables, branching might not be a good option either. Hence, to set this
parameter it seems difficult to avoid trying different values to the see solver behavior on
each specific problem.

Knowing the problem that we try to solve, we can have an intuition on which vari-
ables should be fixed first in the branch-and-bound, to quickly reduce the overall com-
plexity of the problem. This can be precisely defined with BranchPriority on Gurobi
or with CPXstrongbranch on CPLEX by assigning a branching priority to each vari-
able. A more general branching rule order can be selected using parameters such as
CPXPARAM MIP Strategy VariableSelect on CPLEX or VarBranch on Gurobi. However,
we believe that knowing which option is best between the available general branching rules
probably already requires an expertise which permits to precisely specify the branching
order anyway.

Several other options exist on branching strategy, such as the branching direction. Yet,
besides the knowledge that it requires on the model, in our understanding, it is necessary
to rewrite the whole model to correctly use this option. Indeed, all the variables need to
be rewritten so the branching direction is common between them. Otherwise, setting a
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branching direction would work for some variables but not all.

Finally, other options exist like specifying the presolving effort, the symmetry detection
effort or the integrality tolerance. Especially, as exposed in Section 2.1.1, big-M can induce
numerical instability and the integrality tolerance parameter might need to be adjusted.
Depending on the problem, most of these parameters should have an impact on run-time
and, when correctly set, we can use them to improve a model by reducing solving times,
on average.

Remark. In the following, we will consider the sets of parameters to be a part of the
models and, when not specifically mentioned, these parameters are supposed to be set to
their default values.

2.3 Choosing between MILP models

There usually exists multiple MILP models to solve the same problem and this must raise
the question of choosing the best one. On the one hand, the smallest model, in terms of the
number of variables and constraints, might seem preferable. On the other hand, the model
with the smallest search space might appear interesting too, though it usually involves
more variables and constraints than strictly necessary. In addition to that, theoretically
comparing solver parameters sets on a same model does not seem possible.

Overall, the theoretical “best” model probably does not exist as this seems to be a
multi-criteria problem with equivalent solutions. That is why, in addition to these theo-
retical criteria, we will rely on comparison of the model’s performance on the same set of
benchmarks. As we will see in the following, performance is very variable and identifying
a significant difference is an arduous task.

Performance variability. Benign changes in the model, such as different order in the
constraints have a significant impact on the solving times. This phenomenon is called the
performance variability [LT13, KBPV22] and needs to be acknowledged when comparing
models and sets of parameters. According to [KBPV22], “The term performance variabil-
ity, loosely speaking, comprises unexpected changes in performance that are triggered by
seemingly performance-neutral changes.”

From mathematical point of view, the order in which the constraints of an MILP
model are fed to a solver does not impact the model itself and no performance variation
is expected. By reordering the constraints, we did not modify the number of constraints
and variables of the model, nor its linear relaxation and optimal solutions. However, these
modifications naturally change the order in which the variables and constraints are passed
to solvers. Unless the solver takes the time to reorder all data, breaking every tie in a
deterministic way, a small difference in terms of solving times is expected.

In practice, it has been shown that this has a significant effect on the performance
[LT13]. To measure this phenomenon, we have developed a Julia package which permits
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Figure 2.2: Comparison process.

to shuffle the constraints of a model, ShuffleConstraints2. Then, we compared a model
for the MCM problem using multiple orders for the constraints and encounter a very
large variability: on a given instance, one constraints order led to the optimal solution
in less than a second, while, with a different constraints order, the solver timed out after
10 minutes. Note that we believe it is possible to mitigate this unexpected behavior by
specifying solving parameters of the solver. However, we will not specifically explore this
effect on performance variability in this thesis.

2.3.1 Statistical comparison

Solving times can range from unexpectedly small to unexpectedly large due to the perfor-
mance variability phenomenon. Ideally, we would like to tweak our models, add symmetry
breaking constraints and valid inequalities up to the point where the solver becomes com-
pletely deterministic without compromising solving time. Obviously, this is inaccessible
and we will still need to compare nondeterministic models one with another.

Naturally, we could rely on statistical tests such as the Student’s t-test [Stu08] to test
the null hypothesis of equal average solving time. However, this test requires a large
amount of data that we cannot obtain in a reasonable time: in our case, the time limit for
the models is set to 8 hours, thus for an instance which would time out every time it is
unrealistic to obtain enough data. To overcome this issue we could use the Welch’s t-test
[Wel47] which works on small samples.

However, Welch’s t-test expects input samples to be normally distributed and, although
it has been shown that Student’s t-test also works for distributions that are not normally
distributed [EN84], this has not been demonstrated for Welch’s t-test as well. We do not
know whether performance variability induces normally distributed solving times or not.
This can be verified with Spiegelhalter’s normality test [Spi80] or Shapiro-Wilk test [SW65]
but non-rejection would not be a clear guarantee for the former and sample size might be
too small for the latter. Nevertheless, we could still try to use Welch’s t-test and expect it

2https://github.com/remi-garcia/ShuffleConstraints

https://github.com/remi-garcia/ShuffleConstraints
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to be statistically significant but this seems far-fetched and an in-depth analysis is needed,
hence we prefer not to claim that our comparisons are statistically rigorous while there
actually are multiple gray areas.

In this thesis, we will use “eyeball statistics”, as referred to by Emery Berger3, and
compare our models on one run over 86 instances4 from digital signal processing. When
comparing two models, we start by running the optimization, on each instance, and then
we count the number of times the first model outperforms the second one in terms of
objective metrics and solving times, and vice-versa. This way, we can observe a trend and
we expect that it holds despite the performance variability phenomenon. In Figure 2.2, we
present the flow of our comparison process.

3https://www.thestrangeloop.com/2019/performance-matters.html – StrangeLoop 2019 talk,
“Performance Matters” by Emery Berger.

4Details on the instances are provided in Appendix B.

https://www.thestrangeloop.com/2019/performance-matters.html
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CHAPTER 3

Towards automatic optimization of
arithmetic operators

“The wizards’ automatic response to
any problem was to see if there was a
book about it.”

Terry Pratchett (1948-2015),
The Globe (2002)

Implementation on FPGAs

Any hardware implementation starts with an algorithm’s description, usually as a compu-
tational graph. This description is usually done using the Verilog [IEE05] or VHDL [IEE19]
syntax which are two well-known hardware description languages (HDL). Using HDL, hard-
ware designers must translate algorithms into hardware dataflows. This is not trivial and
requires a deep understanding of each involved operator which needs to be optimized in
order to obtain efficient implementations. Indeed, when implementing algorithms in re-
source constrained environments, such as FPGAs, even basic operations could be studied
to provide a substantial gain in comparison with the straightforward implementation.

To alleviate this effort from hardware designers, high level synthesis (HLS) tools, such
as Vitis HLS by AMD (formerly Xilinx), have been developed and are widely used. They
consist in writing the algorithm in a high-level language, in C++ for example, and rely on
the HLS tool to produce hardware code. This permits to write code closer to the algorithm
to benefit from a significant abstraction level. The tools can usually be parameterized
extensively to still have a good control over the synthesis process.

This higher level of abstraction provided by HLS, in comparison to HDL, comes with
a few setbacks. In particular, the FxP arithmetic support is still on a basic level and HLS
tools usually only efficiently optimize the implementation of basic arithmetic operations.
Meaning that more complex operators, such as MCM or mathematical functions, are left
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Figure 3.1: FloPoCo simplified interface.

to the designer and need to be implemented specifically for each application. All this is
nontrivial and time-consuming for hardware designers. However, it is possible to specif-
ically provide to the HLS tools the operators in HDL code. When doing so, in order to
keep the accessibility of HLS, this HDL code is usually obtained using libraries and code
generators such as Spiral [FLP+18] for fast-Fourier transforms or FloPoCo [dDP11] for
various arithmetic operators.

With a few inputs, these tools aim at producing optimized hardware code. Basically,
either we provide a hardware-agnostic representation of the operator, then the arithmetic
core generator simply translates it into HDL code, or we rely on the arithmetic core gener-
ator for finding an efficient hardware implementation. By designing adder graphs, our first
goal is to produce dedicated hardware instead of simply mimic generic processors, as in
FloPoCo, whose simplified interface is represented in Figure 3.1. Many hardware problems,
like MCM, have a combinatorial component and the pen and paper approach to optimize
them is usually not well-suited, thus we prefer automatic methods.

Finally, we will be interested in computing just right, as in FloPoCo. This means
that internal operator computations should drop unnecessary bits to save hardware and
computational resources, as long as the output fits a given accuracy. As much as possible,
we will also avoid wasting resources.

Overall, our idea is to (i) optimize automatically, based on a formal model of the
hardware and of the operator; (ii) guarantee an output error bound to ensure quality but
also performance as we do not compute unnecessary bits. Our approach relies on the
mathematical modeling of the operator architecture. Hardware design usually involves
combinatorial problems which fit well for MILP-based approaches.

To alleviate hardware designers from a tedious work, we will provide automatic HDL
code-generation for arithmetic operators we study. We will compare to approaches embed-
ded in FloPoCo and we include some solutions into this arithmetic core generator.

MCM operator ecosystem

FloPoCo, a the time of writing this thesis, embeds three operators which generate shift-
and-add VHDL code for the MCM arithmetic operator. First, IntConstMultShiftAdd
permits to convert an adder graph, formatted as a string, into VHDL code. The input
parameters are simply the word length of the input and the adder graph. Suppose we want
to produce the VHDL code for the adder graph represented in Figure 2.1a, which outputs
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7 and 23. We choose to have 8-bit input, and using FloPoCo, we generate the VHDL code
with the following command:

flopoco IntConstMultShiftAdd graph="{{’O’,[7],2,[7],1,0},{’O’,[23],2,[23],2,0},

{’A’,[7],1,[1],0,3,[-1],0,0},{’A’,[23],2,[1],0,4,[7],1,0}}" wIn=8

Using the IntConstMultShiftAdd operator already requires knowing the adder graph
we have decided to implement. FloPoCo provides two others operators, for the shift-
and-add MCM implementation, which produce the adder graph on-the-fly given the tar-
get constants. The first operator, IntConstMultShiftAddRPAG, uses the RPAG heuris-
tic [KZFC12] and the second operator, IntConstMultShiftAddOpt, relies on the existing
MILP models [Kum16, Kum18]. In both cases, the optimization is done w. r. t. the number
of adders. For the hardware implementation, it is necessary to provide the input data path.
This will determine the cost of each intermediate operator and, despite being an important
metric, the adder count does not benefit from this information.

So far, only exact MCM has been done “optimally” w. r. t. the number of adders. A
posteriori truncation approaches have been recently proposed [GDJ10, dDFKF19]. More-
over, the heuristic approach [GDJ10] does not work with a user-given error bound and
the output error need to be verified a posteriori. This is not completely fixed by the
MILP approach [dDFKF19] which underestimates the error propagation. In any case,
both methods consist in applying truncations over a fixed adder graph, which might not
be “truncation-friendly” and the results could be improved.

In comparison to previous approaches, the MILP one has often proven its efficiency. In
our work, we chose to optimize hardware operators using mathematical modeling as it as
been done several times for the MCM problem [Gus08, Kum16, Kum18, LM20].

The MCM operator could also be used for the implementation of digital filters. For
FIR filters, Kumm et al. [KVF23] demonstrated that it is possible and efficient to do the
co-design of the filter coefficients and their implementation with MCM. In the case of IIR
filter design, the state-of-the-art either relies on KCM [Cha94], or on coefficient design and
quantization steps, followed by MCM, which leaves room for improvement. With our work,
we aim at unifying this three-step filter implementation process into a single one, which
relies on mathematical modeling, as for FIR filters [KVF23].

Operations research for operator generation

Overall, with this thesis, we aim at paving the way towards automatic optimization of
hardware architectures for arithmetic operations from multiplication to digital filters. With
this work, we are going to address the following problems:

• MCM-Adders. Optimizing the MCM problem can be done according to differ-
ent metrics. First, we will consider shift-and-add implementations minimizing the
number of adders, #A, solving the MCM-Adders problem. This metric has been the
most widely used and we found an error in one of the MILP MCM-Adders approaches
[Kum18], also present in the SMT one [LM20]. Thus, in Chapter 4, we will present
the problem and our contribution to correcting it. We also note that these models
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usually only embed the concept of adders and other metrics such as the adder depth,
are evaluated outside. With our work, we want to provide less abstract models, closer
to real-life. Hence, our goal is to have more metrics computed within the model so
we can update the objective or the constraints on these metrics and not rely anymore
on outside computation. This is a greater burden for the solver that we will try to
alleviate using operations research techniques such as valid inequalities or parameter
fine-tuning.

• MCM-Bits. For hardware implementation, the #A metric can be refined and it is
possible to count the number of one-bit adders, #Ab, instead. In Chapter 5, we will
focus on this lower-level metric by minimizing #Ab, solving the MCM-Bits problem.
It requires to decompose adders into one-bit adders and to thoroughly look for the
adder that are best-suited to minimize the total number of one-bit adders.

• tMCM. Following the “computing just right” principle, it is desirable to truncate
unnecessary bits to save computing resources. In [dDFKF19, GVK22a], truncations
have been included to the MCM problem to compute just right. However, the error
propagation is incorrect and the user-given error could be exceeded. In Chapter 6,
we will provide a correct, and tighter, error propagation rule. We propose an al-
ternative MILP-based model, which permits up to have much tighter, and actually
correct, error bounds. We model various cases that can occur and, for the first time,
incorporate truncations into the adder graph search. With our solution, the solver
automatically searches for the topologies well-suited for truncations. We refer to the
problem of finding the adder graph with the minimal cost, including truncations, in
a single global step, as the tMCM problem.

• PMCM. Pipelining adder graphs is a standard way to increase the throughput.
Given a fixed adder graph, it is possible to to pipeline it efficiently [KZ11]. There
also exist methods to heuristically find the best pipelined adder graph from the set
of target constants [KZFC12], solving the PMCM problem. In our work, we aim at
solving this problem within an MILP-based approach, in contrast to the state-of-
the-art [Kum16] which relies on complete enumeration. We present our work on this
topic in Chapter 7.

• IIR filter design. In Chapter 8, we demonstrate the usage of MCM as part of
a larger model which can be used to design second-order IIR filters. Overall, the
benchmarks we will use throughout this thesis come precisely from digital signal
processing (DSP) applications. Although with this application we put an additional
focus on DSP, multiple other domains, such as cryptography or neural networks,
involve the MCM problem or a close variation.

Overall, with this thesis, we will demonstrate that MILP-based models are extensible
and can include the computation of many hardware metrics internally. Each chapter
features a description of a new MILP model. These models are available in Appendix A,
as well as detailed benchmarks in Appendix B and complete tables of results in Appendix C.
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Multiple Constant Multiplication
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CHAPTER 4

Improving high-level MCM model

“It’s still magic even if you know how
it’s done.”

Terry Pratchett (1948-2015),
A Hat Full of Sky (2004)

4.1 Introduction

The objective of this chapter is to tackle the Multiple Constant Multiplication (MCM)
problem using the shift-and-add approach. As detailed in Section 1.3.1, this is a common
approach to efficiently solve MCM problems. In this chapter, our goal is to find optimal
solutions with respect to high-level metrics, such as the number of adders, solving the
MCM-Adders problem.

The MCM problem has been studied for decades and is conjectured to be NP-hard, even
if the instance involves only a single constant. We want to stress out that the difficulty of the
problem of finding a minimal cost algorithm depends, in particular, on the target constants.
For these reasons, instead of trying to find a specific algorithm for this problem, we prefer
to take advantage of efficient Mixed-Integer Linear Programming (MILP) generic solvers
and we present an ILP model to solve MCM instances. From a mathematical description
of the problem, we will show that we are able to obtain interesting results in a reasonable
time using MILP solvers.

Previous works [Gus08, Kum16, Kum18] already used MILP-based models to solve the
MCM-Adders problem. In [Gus08] and [Kum16], models were used to find the optimal
solution within a search space which is precomputed. Our goal is to avoid this costly
precomputation which is impossible when the word length of the target constants is high or
when the adder depth is unbounded. In [Kum18], Kumm proposed an MILP-based model
which directly solves MCM-Adders, i. e., without any precomputation. It is a satisfaction
problem, which requires an outside loop to minimize the number of adders, answering the
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following question: “Given a set of target constants C ∈ NNc , is there a way to build a
shift-and-add tree, with N adders, that outputs all the constants in C?” Many internal
subroutines of MILP solvers are specifically designed for minimization/maximization and
using an outside loop does not benefit from this. Moreover, outside loops on MILP models
are realistic if the number of iterations is limited, which is not the case for fine-grained
metrics. Finally, we demonstrate, using a counterexample, that this model misses optimal
solutions for some instances.

Overall, we will improve the high-level model for MCM by including secondary metrics
to minimize within the model and by using solvers’ parameters in order to improve their
performance. This work has been published in the IEEE Transactions on Circuits and
Systems I [GV23b].

4.2 Modeling the adder graph topology

4.2.1 A counter example to the state-of-the-art MILP model

To be able to express the adder graph topology as constraints, we need to declare the topol-
ogy as a mathematical equation. To do so, Equation (2.12) links fundamentals together,
but for convenience we recall it here:

ca = (−1)σa,l 2sa,l × ca,l + (−1)σa,r 2sa,r × ca,r. (4.1)

The adder graph topology is in direct relationship with these fundamentals, see Figure 4.2a.
Kumm [Kum18] linearized this equation to provide an MILP model which encodes the
topology. His model includes inconspicuous additional constraints which remove valid
solutions. This could have been harmless if no optimal solutions were removed too.

The issue comes from the fact that, first, Kumm based his model over (4.1), and, second,
applied theoretical results from Dempster and Macleod [DM94] to reduce the model size.
In particular, [DM94] demonstrated that it is possible to consider only odd fundamentals
in the adder graph, and still obtain optimal solutions. Due to the linearization, the initial
conditions of [DM94, Theorem 2] are not met anymore.

As we presented in Chapter 2, for its linearization Kumm introduced

csha,l = 2sa,lca,l, (4.2)

where csha,l ∈ N. Thus, if inputs, ca,l, are odd, negative shifts are out of question and, using
the result from [DM94, Theorem 2], Kumm [Kum18] forbade even-valued fundamentals
which removed completely the possibility to use negative shifts. However, these negative
shifts are necessary and could still be applied to even-valued fundamentals.

For example, 3 adders are enough to produce an adder graph for the set of target
constants C = {7, 19, 31}, as illustrated in Figure 4.1b while Kumm’s model [Kum18]
leads to 4 adders, in Figure 4.1a, where no negative shifts are used. In other words,
the additional constraints, which were supposed to only remove equivalent solutions, also
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(a) With the original model [Kum18]. (b) With our model, Chapter 4.

Figure 4.1: Adder graphs obtained for target constants {7, 19, 31}.
ca,l

←− sa,l

ca,r

←− sa,r
σa,rσa,l

ca

(a) Adder model in adder graph [Kum18].

ca,l

←− sa,l

ca,r

σa,rσa,l

cnsha

←− −sa
ca

(b) Adder in our MCM modeling.

Figure 4.2: Classic (left) and proposed (right) adder models.

removed important, and actually optimal, solutions. Due to using a two step process,
linearization first and using theoretical results second, a conflict between the integrality
constraints and the restriction to odd fundamentals only [DM94, Theorem 2] arose.

4.2.2 Our model

To avoid the issue presented above, we propose to rewrite Equation (4.1), which links
adders together, directly taking into account the different theorems proposed in [DM94].
Basically, these theorems have the following consequence: for each adder, either one (does
not matter which) of the inputs is left-shifted or the sum of the inputs is right-shifted.
Arbitrarily, we decide that the left input can be shifted and not the right one. This leads
to a new equation to link fundamentals:

ca = 2−sa ((−1)σa,l 2sa,lca,l + (−1)σa,r ca,r) , (4.3)

for which we give a representation in Figure 4.2b.

The shifts, sa and sa,l, are not specifically constrained with this equation and even-
valued fundamentals can still be computed. As these are not necessary, we can avoid this
by adding a constraint on ca,

ca = 2codda + 1, (4.4)
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where codda is an integer variable. With this additional constraint, we removed equivalent
valid solutions.

Now, Equation (4.3) must be adapted to MILP. First, we linearize it using intermediate
variables similarly to (2.15):

2saca︸ ︷︷ ︸
cnsha

= (−1)σa,l 2sa,lca,l︸ ︷︷ ︸
csha,l︸ ︷︷ ︸

csh,sga,l

+(−1)σa,r ca,r︸︷︷︸
csha,r︸ ︷︷ ︸

csh,sga,r

, (4.5)

to store intermediate results

cnsha = 2saca, (4.6)

csha,l = 2sa,lca,l, (4.7)

csh,sga,l = (−1)σa,l csha,l, (4.8)

csha,r = ca,r, (4.9)

csh,sga,r = (−1)σa,r csha,r. (4.10)

It can be noticed that, for uniformity, we add a symbolic link between csha,r and ca,r, though
right inputs to adders are never shifted. We linearize the product (4.6) using binary
variables Ψa,s ∈ {0, 1}, that basically select the shift s for the adder a, and the following
indicator constraints

cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]], (4.11)

where terms 2s, s ∈ [[0;w]], become precomputed parameters, selected by Ψa,s. This can
also be written as big M constraints.1 Similarly, we use binary variables Φa,s ∈ {0, 1}, to
linearize (4.7):

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]], (4.12)

where Φa,s encodes that the left input of the adder a is shifted by s bits. In both cases, 4.11
and 4.12, we also need to enforce that one and only one shift per adder, even if zero-valued,
is chosen,

w∑
s=0

Φa,s = 1, ∀a ∈ [[1;N ]], (4.13)

w∑
s=0

Ψa,s = 1, ∀a ∈ [[1;N ]]. (4.14)

1We recall that, for conciseness, in this thesis, we will present all the constraints that could also be
written with big M as indicator constraints instead.
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Without these constraints, none of the constraints on cnsha and csha,l, (4.11) and (4.12), would
actually apply.

Using binary variables to encode the sign of each input, σa,i ∈ {0, 1}, we linearize (4.8)
and (4.10) as follows:

csh,sga,i = −csha,i if σa,i = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , (4.15)

csh,sga,i = csha,i if σa,i = 0, ∀a ∈ [[1;N ]], i ∈ {l, r} . (4.16)

Finally, we have

cnsha = csh,sga,l + csh,sga,r , ∀a ∈ [[1;N ]], (4.17)

which achieves the linearization of (4.3).
Now that we encoded, in the MILP-based model, the fundamental computation from

its inputs, we need to link adders together. To do so, we use binary variables ca,i,k ∈ {0, 1}
which encode that input i of adder a comes from the adder k. This way, we link the inputs,
ca,i, with preceding adders,

ca,i = ck if ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]], (4.18)

and we make sure that each input of each adder is linked with one preceding adder:

a−1∑
k=0

ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} . (4.19)

Similarly, we link adders with target constants using binary variables oa,j ∈ {0, 1} which
encode that the adder a is the output for the j-th output. Given the set of target constants
C, we denote |C| its cardinality and Cj its j-th element. This way, we add the constraints

ca = Cj if oa,j = 1, ∀a ∈ [[0;N ]], j ∈ [[1; |C|]], (4.20)

N∑
a=0

oa,j = 1, ∀j ∈ [[1; |C|]], (4.21)

to ensure that each target constant is computed by one adder. We summed up the constants
and variables used, up to this point, in Table 4.1.

Now that the model is complete, we propose two valid inequalities to tighten the linear
relaxation. First, we can realize that a shift to the left input is possible if and only if
no right-shift occurs at the output of the adder. Formally, the left input is shifted if and
only if Φa,0 = 0. This literally means that the left shift is not equal to 0 bits but some
other value. Similarly, the absence of right-shift is denoted by Ψa,0 = 1. This leads to the
following set of valid inequalities:

Φa,0 +Ψa,0 = 1, ∀a ∈ [[1;N ]], (4.22)
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Table 4.1: Constants (top) and variables (bottom) used in the MILP formulation

Constants/Variables and their meaning

N ∈ N: number of adders;
C ∈ NNO : set of odd target constants;
w ∈ N: fundamentals’ word length;

ca ∈ [[0; 2w]], ∀a ∈ [[0;N ]]: fundamental, or constant, obtained in adder a with c0 fixed to
the value 1, corresponding to the input;
cnsha ∈ [[0; 2w+1]], ∀a ∈ [[1;N ]]: constant obtained in adder a before the negative shift;
codda ∈ N, ∀a ∈ [[1;N ]]: variable used to ensure that ca is odd;
ca,i ∈ [[0; 2w]], ∀a ∈ [[1;N ]], i ∈ {l, r}: constant of adder from input i before adder a;
csha,l ∈ [[0; 2w+1]], ∀a ∈ [[1;N ]]: constant of adder from left input before adder a and after

the left shift; for simplification csha,r is an alias of ca,r;

csh,sga,i ∈ [[−2w+1; 2w+1]], ∀a ∈ [[1;N ]], i ∈ {l, r}: signed constant of adder from input i
before adder a and after the shift;
σa,i ∈ {0, 1}, ∀a ∈ [[1;N ]], i ∈ {l, r}: sign of i input of adder a. 0 for + and 1 for −;
ca,i,k ∈ {0, 1}, ∀a ∈ [[1;N ]], i ∈ {l, r}, ∀k ∈ [[0; a− 1]]: 1 if input i of adder a is adder k;
Φa,s ∈ {0, 1}, ∀a ∈ [[1;N ]], s ∈ [[0;w]]: 1 if left shift before adder a is equal to s;
Ψa,s ∈ {0, 1}, ∀a ∈ [[1;N ]], s ∈ [[0;w]]: 1 if negative shift of adder a is equal to s;
oa,j ∈ {0, 1}, ∀a ∈ [[1;N ]], j ∈ [[1;NO]]: 1 if adder a is equal to the j-th target constant.

which denotes that either the left-shift or the right-shift has to be zero-valued, but not
both. Second, we can use the constraints already proposed by Kumm [Kum18],

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]], (4.23)

which state that at most one of the inputs can be negative. This is already verified due to
the lower bound on fundamentals, ca ≥ 0 which would not hold with two negative inputs.
However, these additional constraints on σ’s will efficiently tighten the linear relaxation
of our model. Finally, we have a complete model to solve the MCM-Adders satisfiability
problem for a given number of available adders N . All the constraints are gathered together
in a model available in Appendix A.1.1.

Minimization problem

In practice we want to minimize the number of adders to produce an adder graph which
computes a given set of target constants. As Kumm [Kum18] proposed, to find the minimal
number of adders required we use an outside loop to the model definition and optimization
which increments the number of available adders N . We start from a known lower bound
[Gus07]. In the previous section, we presented an MILP model that is either infeasible
or provides an adder graph that permits to compute a set of target constants. Proving
infeasibility can be overly difficult and hours could be spent without obtaining a proof.
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Hence, instead of starting from a known lower bound [Gus07], which could be infeasible,
we could be tempted to tackle the problem from the other end, i. e., starting from a number
of adders N big enough and decrementing this value until the model is infeasible. However,
in both cases, at each new optimization step, information from the previous ones is lost.
Hence, it would be preferable to start with a number of available adders N big enough to
obtain a solution, and then to “ask” the solver to minimize their usage.

We start by fixingN to a known upper bound, obtained using a heuristic solution [VP07,
KZFC12] or a greedy algorithm [Ber86]. Then we add to the original model one binary
variable per adder, ua ∈ {0, 1}, ∀a ∈ [[1;N ]] which is true if adder a is used. This permits
to deactivate unnecessary adders:

ca = 0 if ua = 0, ∀a ∈ [[0;N ]]. (4.24)

Finally, adding to the model the objective function

min
∑

ua, (4.25)

permits to solve the MCM-Adders problem as one minimization problem.
Thanks to the use of a heuristic, besides having a valid value for N to start with,

we obtain a complete solution which we use as a warm start. This speeds up solving.
Furthermore, we can use knowledge on the minimal number of adders [Gus07], N , to fix
ua = 1 for the N adders. This avoids that the solver searches for solutions which do not
involve enough adders anyway.

It is straightforward to see that it does not matter if the used adders are the first ones,
the last ones, or randomly spread among the available ones: these are symmetries in the
search space. Adding symmetry breaking constraints in order to avoid wasting solving
time finding symmetrical solutions over and over can be done with

ua−1 ≥ ua, ∀a ∈ [[1;N ]], (4.26)

which ensures that the first adders are used in priority.
We proposed a new MILP model which permits to solve to optimality the MCM-Adders

problem. This model, seemingly simple, is the first formalization of the minimization
problem for MCM-Adders. Building on top of it, we will be able to extend our model to
different metrics and to incorporate constraints on the problem, such as a bound on the
adder depth. Moreover, thanks to our extension to avoid the costly outside loop on the
number of adders, we claim that we can improve the quality of the solutions even when
solvers do not provide optimality proof.

4.2.3 Optimization results

We compare our models with the publicly available implementation2 of the RPAG heuris-
tic [KZFC12] and our implementation of a greedy algorithm based on CSD [Ber86]. For



52 Improving high-level MCM model

Table 4.2: Number of adders obtained with each method within the available solving time.
Results followed by a star (∗) are not proven optimal w. r. t. the number of adders. MILPI

and MILPM correspond to our model with indicator constraints and big-M constraints,
respectively.

Benchmark
Loop Min

CSD RPAG MILPI MILPM MILPI MILPM

Gaussian 3 5* 4* 4 4 4 4
Gaussian 5 10* 6* 5 5 5 5
Highpass 5 5* 4* 4 4 4 4
Highpass 9 7* 5* 5 5 5 5
Highpass 15 14* 12* 12 12 12 12
Laplacian 3 6* 4* 3 3 3 3
Lowpass 5 11* 7* 6 6 6 6
Lowpass 9 17* 13* 12 12 12 12
Lowpass 15 51* 27* - - 27* 26*
Unsharp 3-1 5* 4* 4 4 4 4
Unsharp 3-2 11* 6* 5 5 5 5

the sake of completeness, we present solving-time results for our models with an outside
loop and as a minimization problem using big M constraints and indicator constraints.

First, we need to report that within the 8-hour time limit, the model which directly
minimizes the number of adders permited to obtain the best known solution in most cases:
for 81 and 83 instances out of 86 instances using indicator and big M constraints, re-
spectively. Using the outside loop, the best known solution was obtained for 56 and 60
instances, using indicator and big-M constraints, respectively. This clearly demonstrates
advantage of minimization over satisfiability. In Table 4.2, we report the number of adders
obtained with each approach on a part of the benchmarks, we provide the rest of the results
in Appendix C.1.

Both MILP-based approaches show significantly better results than the greedy algo-
rithm (CSD) and the heuristic (RPAG) which found the best solution only for only 10 and
48 instances, respectively. It was expected that the minimization model would outperform
RPAG as the solution of RPAG is used as a warm start. However, the solution obtained
with RPAG has been improved for more than 30 instances and our results highlight that
there was room for improvement which we exploited. For instance, we note in Table 4.2 for
the benchmark Gaussian 5 that RPAG found a solution with 6 adders when our models
led to a solution with only 5 adders. It is also interesting to see that the MILP-based
model which relies on the outside loop is also more efficient than the heuristic.

Nevertheless, it should be noted that heuristics and greedy algorithms permit to obtain
solutions almost instantaneously while MILP-based methods reach the time limit for one-

2https://gitlab.com/kumm/pagsuite

https://gitlab.com/kumm/pagsuite
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third of the benchmarks, 30 instances for the outside loop model with indicator constraints.
Overall, it seems that the solver performs best with big-M constraints over indicator

ones. Hence, in the following, we will implement the models with big-M constraints, even
though we write indicator constraints for conciseness. Moreover, with the minimization
model, we obtain the best adder graph, w. r. t. the number of adders, more often and we
will carry on with this model.

4.3 Bounding and minimizing the adder depth

4.3.1 Adder depth

The adder depth of the adder graph corresponds to the total number of cascaded adders,
see Definition 1. We also refer to the depth of an adder as its adder depth. Bounding
the adder depth is often considered to reduce the adder graph delay [DDK00, SY11].
We also recall that a bound on the adder graph is a necessary condition to perform a
complete enumeration of the search space. Kumm proposed an optimal approach [Kum16,
Section 5.2] relying on this complete enumeration which can, de facto, solve MCM-Adders
with the additional constraint of a bounded adder depth. However, as shown in [Kum16,
Section 5.5], it is not reasonable to enumerate the whole search space for depths starting
from 4. Hence, it is desirable to have the possibility to bound the adder depth within an
MILP model to avoid precomputing the search space.

In order to track the adder depth, we introduce the variable admax ∈ N. We also add
two sets of integer variables to encode the adder depth of each adder:

• ada ∈ N, ∀a ∈ [[0; N]], corresponds to the adder depth of the adder a;

• ada,i ∈ N, ∀a ∈ [[1; N]], i ∈ {l, r} is the adder depth of the left and right inputs of
adder a.

Naturally, the adder depth of the input to the adder graph is set at zero, ad0 = 0. Ob-
viously, the adder depth of an adder or of the adder graph cannot exceed the number of
adders, thus we actually have admax ≤ N , ada ≤ N and ada,i ≤ N for every adder a.
These constraints may seem repetitive but we should explicit as much knowledge we have
on the variables as we can. This drastically helps the solver.

The adder depth propagation can then be handled with the equation provided in
Definition 1:

ada = max (ada,l + 1, ada,r + 1) , ∀a ∈ [[1; N]]. (4.27)

To fit in an MILP-based model, we need to linearize the “max” operator. First, we simply
ensure that the adder depth is at least as large as it should be:

ada ≥ ada,l + 1, ∀a ∈ [[1; N]], (4.28)

ada ≥ ada,r + 1, ∀a ∈ [[1; N]]. (4.29)
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Then, as it is commonly done, we introduce a binary variable ad b
a ∈ {0, 1}, for each adder,

to enforce that ada is smaller or equal than ada,l + 1 or ada,r + 1:

ada ≤ ada,l + 1 + Nad b
a, ∀a ∈ [[1; N]], (4.30)

ada ≤ ada,r + 1 + N×
(
1− ad b

a

)
, ∀a ∈ [[1; N]]. (4.31)

Hence, combined with (4.28)-(4.29), ada is exactly equal to one parameter of the max
operator. In the above constraints, we have used the fact that the adder depth is always
bounded by N .

Similarly to what has been done for the propagation of fundamentals, we reuse the
binary variables encoding the topology, ca,i,k. This way, we impose that the adder depth
of the inputs actually comes from the topology and this is done as follows:

ada,i = adk if ca,i,k = 1, ∀a ∈ [[1; N]], i ∈ {l, r} , k ∈ [[0; a− 1]]. (4.32)

Finally, we enforce that the adder depth of the adder graph is at least as large as the adder
depth of any adder:

admax ≥ ada, ∀a ∈ [[1; N]]. (4.33)

As our goal is to bound or minimize the adder depth, the solver will reduce the value
of admax as much as possible until it is exactly equal to one of the ada’s, thus to the
adder depth.

In case we have a user-given bound, ad , we simply impose

admax ≤ ad , (4.34)

to make sure that the solver will only produce adder graphs which conform to this bound.

Instead of a bound on the adder depth, it could be preferable to have the minimal
adder depth possible as a second objective, while simultaneously minimizing the number
of adders as the main objective. Hence, we do not use (4.34) and, instead, the variable
admax is used to modify the objective function to

min
N∑

a=1

(Nua) + admax. (4.35)

This new objective function is a weighted sum between two objectives, minimizing the
number of adders with weight N and the adder depth, with weight 1. Because N ≥ admax,
the weights ensure that it is unconditionally stronger to reduce the number of adders over
increasing the adder depth. Thus, it enforces a lexicographic optimization with the number
of adders as first objective and the adder depth as second.
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4.3.2 Tightening the search-space

With this section, our goal is to provide redundant constraints that should help to reduce
the search space or tighten the linear relaxation. We are able to a priori know a lower
bound on the adder depth which is necessary to compute a given product by a constant
or set of constants [Gus07]. We denote DLB (Cj) the function which defines a lower bound
on the adder depth of a constant Cj:

DLB (Cj) = ⌈log2 S (Cj)⌉ , (4.36)

where S (Cj) corresponds to the number of nonzero digits for Cj in its CSD representation.
For every constant Cj of the set of target constants C, there is no point in considering for
output an adder whose adder depth is not at least equal to DLB (Cj). This way, we can
add the set of constraints,

ada ≥ DLB (Cj)× oa,j, ∀a ∈ [[1;N ]], j ∈ [[1; |C|]], (4.37)

which fixes oa,j = 0 if the adder depth of a could not produce the output Cj at its depth
ada. This constraint is obviously verified in any case but we add this set of valid inequalities
to tighten the linear relaxation of the model.

Example 6. The constant 49 has a minimal adder depth DLB (49) = 2, hence Con-
straint 4.37 becomes,

ada ≥ 2oa,1, ∀a ∈ [[1; N]],

enforcing adders to have an adder depth of at least 2 before they can be even con-
sidered as potential output adders for the target constant 49.

Besides using valid inequalities, we can break symmetries by enforcing an order for the
used adders. In that respect, we ensure that adders are ordered by depth, which is done
with the following set of constraints:

ada−1 ≤ ada +N (1− ua) , ∀a ∈ [[1;N ]], (4.38)

where N (1− ua) is necessary to avoid a collision between the adder depth of unused adders
and the symmetry breaking constraint.

4.3.3 Optimization results

Choosing the right bound on the adder depth requires an expertise which is not compatible
with generic benchmarks. For this reason, we will only consider the minimization of the
adder depth as a second objective, with the objective function (4.35), and we will not use
a strict bound. With the following experiments, we aim to evaluate the cost-benefit of
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Table 4.3: Number of adders and adder depth obtained with each method within the
available solving time. MCM-Adders, BiObj. and Tighten correspond, respectively, to the
basis model with big-M constraints, the lexicographic bi-objective one and the model with
tightening constraints. Solving times are given in seconds and TO stands for timed out.

Benchmark
MCM-Adders BiObj. Tighten

#A AD time #A AD time #A AD time

Gaussian 3 4 2 1 4 2 1 4 2 1
Gaussian 5 5 4 5 5 4 210 5 4 154
Highpass 5 4 2 1 4 2 1 4 2 1
Highpass 9 5 2 1 5 2 1 5 2 1
Highpass 15 12 2 1 12 2 4 12 2 1
Laplacian 3 3 3 1 3 3 1 3 3 1
Lowpass 5 6 3 1 6 3 52 6 3 51
Lowpass 9 12 3 6 12 3 TO 13 3 TO
Lowpass 15 26 4 TO - - TO 27 3 TO
Unsharp 3-1 4 2 1 4 2 1 4 2 1
Unsharp 3-2 5 4 2 5 3 23 5 3 57

considering the adder depth within the model in terms of the solving time and the quality
of the solutions.

In Table 4.3, we compare results solving the MCM-Adders problem with/without the
adder depth as a second objective, and with/without tightening constraints (4.37) and
(4.38). Overall, including the adder depth as an objective induced larger solving times.
In particular, the solver was not able to obtain the best known solutions, in terms of
number of adders, for 27 instances, within the available time. However, the adder depth
successfully decreased for 6 instances without impacting the number of adders, see instance
Unsharp 3-2 for example, and for 12 instances at the cost of a few adders.

Note that we did not provide a warm start for all the additional variables and expected
that the solver would infer the adder depth from the starting value of shifts, signs and
fundamentals. Yet, for the largest instances the solver stopped trying to repair the warm
start before obtaining a valid solution. For instance, for Lowpass 15, no solution was
obtained after the 8-hour time limit while we could find one in just a few milliseconds using
a heuristic. To overcome this issue we could, for example, put more work on the warm
start to provide all the initial values or use some solver parameters, such as SubMIPNodes
or StartNodeLimit with Gurobi, which permit to increase the solving efforts using the
warm start.

With tightening constraints, for a consequent number of instances, we obtained solu-
tions with a larger number of adders than the best known solutions. For 20 instances out
of 86 it permitted to decrease the adder depth, sometimes at the cost of an extra adder, as
for instance Lowpass 15. Finally, we remark that the solver proved that, for benchmark
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Gaussian 5, the optimal solution, in terms of adder count first and adder depth second,
requires 5 adders and an adder depth equal to 4. Hence, bounding the adder depth to 3
would either lead to an infeasible problem or increase the number of adders in the solution:
there usually is a trade-off between adder depth and number of adders.

Overall, modeling the adder depth permits to obtain solutions with lower adder depth
in comparison with the original model. It comes with a cost in terms of solving time, which
is partly mitigated thanks to tightening constraints.

In this section we illustrated that it is possible to consider the adder depth within the
model at a reasonable cost. This is not limited to this metric and other metrics such as
the glitch path count [DDK02, Kum18] can be incorporated as well. In the following, we
will not use any specific second metric, as our main focus is on the hardware cost in terms
of resources utilization.

4.4 Fine-tuning the MILP solver

In Section 2.2.3, we presented basic information on the solving process and a few parameters
we can fine-tune. In this section, we will discuss specificities of the MCM problem in order
to find values for these parameters which should help the solving process.

First, it should be noted that the MCM problem is not commonly known in the opti-
mization and operations research community. Thus, default parameter values might not be
particularly well suited for this problem. Moreover, heuristics are not designed specifically
to work well on MCM. Yet, we believe that primal heuristics, such as feasibility pump, are
generic enough to be suitable. For that reason, we will not specifically tweak parameters
which influence heuristics but focus our efforts on the branch-and-bound parameters.

The branch-and-bound will build solutions step by step, one variable at a time. An
inadequate search space exploration of the MCM problem is unlikely to produce valid
solutions and let alone an interesting solution. Fixing the input shift of the first adder and
then the fundamental of the last adder before building anything in the middle is unlikely to
produce a valid solution. Guiding the order of the branching, using the BranchPriority

parameter on Gurobi, could permit to build solution in a way which is similar to building
an adder graph, adder by adder.

Hence, we will prioritize the first adder first, the second adder second, etc. This way
we ensure that the fundamental of every adder is coherent with the adders which have
already been fixed. Each adder is defined by multiple variables, the fundamental but also
the inputs, the shifts, the sign, and so on. We decide to branch on the fundamental first,
and then to branch on the variables which fix the topology. Finally, we branch on other
variables such as oa,j, since our goal is to fix all the variables which characterize an adder
before branching on the next adder. We sum up the order of the branching in Figure 4.3.
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Figure 4.3: Branching order.

Table 4.4: Solving time (in seconds) to prove optimality using the model in Appendix A.1.2
without and with branching priority (BP) parameter. TO means that the time limit of
28800 seconds has been reached without proving optimality.

Benchmark
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Without branch. priority 1 5 1 1 1 1 1 6 TO 1 2
With branch. priority 1 3 1 1 1 1 1 3 TO 1 2

4.4.1 Optimization results

In this section we compare solving times between the base model in Appendix A.1.2 and
the same model including branching priority as illustrated in Figure 4.3. In Table 4.4, we
present solving times for a few instances, the rest of the results is available in Appendix C.1.

Overall, out of 86 benchmarks, the branching priority parameter permitted to solve
the model faster for 25 instances while it worsens the solving time for only 2 instances,
but this could simply be due to performance variability. On average, in the whole set of
benchmarks, solving times were reduced by 16.9% using branching priority. Although the
number of instances which timed out is the same, 23 for both the basis model and when
setting solver parameters, the trend is that using our branching priority is efficient.

These results are encouraging and it seems promising that a deeper analysis would
permit to find the best branching priority parameter setting. In particular, the cost we
paid in terms of solving times to include the adder depth within the model could probably
be reduced by fine-tuning the branching priority. For the sake of simplicity and conciseness,
in the following the model parameters will not be tweaked in the experiments.

4.5 Conclusion

In this chapter, we have improved the state-of-the-art with an MILP-based approach for
MCM-Adders. We have demonstrated the limitations of existing models, and in partic-
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ular we have corrected the state-of-the-art model [Kum18]. We have proposed different
implementations, an outside loop for a satisfaction problem versus a minimization prob-
lem and using big-M or indicator constraints. We have compared these implementations
with a heuristic and a greedy algorithm. As expected, all the proposed implementations
outperformed the state-of-the-art in terms of the targeted metric, the number of adders.
Actually, in the minimization case, the RPAG heuristic was used as a warm start and our
approach built upon this initial solution.

Our experiments illustrated the superiority of solving a minimization problem instead of
relying on an outside loop around satisfaction problems solved with MILP, like in literature
[Kum18]. For the MCM-Adders problem, we also demonstrate that big-M constraints
were better-suited than indicator constraints. For the rest of this thesis, we will use the
minimization model with big-M constraints as a base model.

Then, we included the adder depth computation within the model. Moreover, we added
the simultaneous minimization of the number of adders and the adder depth, for the first
time. However, considering the adder depth within an MILP-based model comes with an
extra cost in terms of solving times for a limited gain. Still, the new feature opens horizons
for bounding the adder depth instead of minimizing it, or for including other metrics such
as the glitch path count which could provide a significant gain despite the extra solving
time cost it would induce.

Finally, by applying informed choices over solver parameters, we demonstrated that
tweaking the model is a very promising path in order to improve solver performance for
MCM and obtain better solutions faster. In the following models, we will not explore this
option anymore due to the engineering cost it comes with. However, once a model seems
here to stay, this step is essential to improve it again.
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CHAPTER 5

MCM with a low-level cost metric

“Insanity is catching.”

Terry Pratchett (1948-2015),
Making Money (2007)

5.1 Introduction

In Chapter 4, we presented our high-level MILP-based model to solve the MCM-Adders
problem and we are now able to model adder graph topology as sets of variables and
constraints. This permits to find optimal solutions, in terms of the number of adders.
However, there are many solutions which have the same optimal number of adders and
we want to find the best one among them. For that, we need a metric which would
permit to differentiate equivalent MCM-Adders solutions. To do so, in this chapter, we
will have a deeper look into adder graph implementation and we dissect adders into smaller
components: half-adders and full-adders that we simply call one-bit adders. Taking into
account this low-level metric, we will see significant differences between adder graphs which
were equivalent w. r. t. the number of adders. For example, in Figure 5.1 we represent two
adder graphs, which both compute the same outputs and both require 3 adders, but which
require a significantly different number of one-bit adders for 3-bit inputs.

In this chapter, we will solve the MCM problem taking into account this low-level met-
ric. In the following, we will refer to this specific problem as MCM-Bits. Naturally, we
may consider using our MILP-based model for MCM-Adders to produce all the optimal
solutions, in terms of adders, and search within them to solve the MCM-Bits problem.
However, this is unrealistic as the number of optimal solutions for MCM-Adders signifi-
cantly increases with the word length and the number of target constants.

It has also been demonstrated that the MCM-Bits problem can be solved heuristically
[DM94, KZFC12]. However, our goal is to find optimal solutions. To that end, we build
upon our MILP-based model to establish the adder graph topology and we incorporate
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(a) Adder graph with 24 one-bit adders for
3-bit input.

(b) Adder graph with 8 one-bit adders for
3-bit input.

Figure 5.1: Different adder graph topologies computing the same outputs: 49x and 51x

variables and constraints to count the number of one-bit adders of the adder graph. Unlike
MCM-Adders, solving MCM-Bits requires to a priori know the word length of the input
as it directly impacts the one-bit adder count.

Note that from a fixed adder graph, it is possible to precisely extract information on
the number of one-bit adders required for its implementation [JGW07]. We derive from
this information new sets of constraints in order to keep track of the number of one-bit
adders on-the-fly within the MILP-based model. It comes with many challenges such as
counting the number of one-bit adders for each adder within the model. This adds more
constraints to the MILP problem, however, it has the potential to pay off as illustrated in
Figure 5.1.

We compare hardware implementation results between adder graphs obtained using
high-level and low-level approaches and demonstrate this way the benefit of fined-grain
MILP models. The preliminary results on this work have been presented at the IEEE
International Symposium on Circuits and Systems (ISCAS) [GVK22a] in 2022 and the full
version is part of the publication [GV23b] in IEEE TCAS-I.

5.2 Modeling the one-bit adder count

We build upon the MILP-based model we presented in Chapter 4 to solve the MCM-Bits
problem. In addition to the constraints fixing the adder graph topology, we need to keep
track of the number of one-bit adders for each node of the adder graph. The precise
number of one-bit adders depends on the word length of the inputs, as well as on the shifts
or subtractions. There are many cases to be considered, as presented in [JGW07], if we
want to tighten the upper bound as necessary. We first study how we can propagate the
word length.

To do so, we decompose this into tracking the Most Significant Bit (MSB) and Least
Significant Bit (LSB) positions, which, for integers, is roughly the same as simply tracking
the word length. Indeed, the input x is a FxP number which is represented as an integer
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and its LSB position is implicit. Hence, without loss of generality we can consider that x is
an integer, thus its LSB is equal to zero. Then, each adder computes the product between
an integer fundamental and the integer x, thus, it produces an integer whose LSB is still
equal to zero. This permits to consider that the LSB is always equal to 0 and simply track
the MSB.

The MSB after each adder can be computed without specifically considering the topol-
ogy of the adder graph but simply from an upper bound on the input, x, and the funda-
mental associated with the adder:

msba = ⌈log2 (xca + 1)⌉ . (5.1)

This constraint is nonlinear but we can already remove the rounding operator by relaxing
the equality:

msba ≥ log2 (xca + 1) (5.2)

We need the MSB of the adder a to be greater than log2 (xca) and the integrality con-
straint ensures that msba rounds up. We dropped the equality, hence msba could become
arbitrarily large. However, it is not important if an MSB position larger than necessary
is stored in msba provided this does not lead to more one-bit adders in the cost func-
tion we will propose. When needed, the solver could reduce the msba value exactly down
to ⌈log2 (xca)⌉.

Still, the nonlinearity due to the presence of a log2 operator keeps us from using this
constraint as it is. Exponentiation of both sides leads to

2msba − 1 ≥ xca, (5.3)

which can be linearized similarly to shifts with the challenge of the wider range of possible
values for msba, hence more variables and constraints. Indeed, possible shifts only range
from 0 to the word length of the maximum input [DM94].

We are now able to compute the data word length, which is the MSB value plus one
but we also need to link it to topology and propagate it. We introduce integer variables,
msba,i ∈ N, corresponding to the MSB of the input i of adder a. Then we propagate the
MSB position using variables ca,i,k that handle topology:

msba,i = msbk if ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]. (5.4)

This will permit to correctly compute the number of one-bit adders within every adder.
Note that, in the worst case, each bit of the adder output could need a one-bit adder

to compute its value and, the LSB value might have been impacted by the carry of one-bit
adders which output 0’s, as in Figure 5.2a, in case of a right-shift after the adder. Hence
we have this first upper bound on the number of one-bit adders Ba corresponding to an
adder a:

Ba ≤ msba + 1− sa. (5.5)

However, this bound is not reached in the general case, since one-bit adders can be saved
due to data alignment as illustrated in 5.2.
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(a) In case of right-shift, the MSB of the output
decreases but not the one-bit adder cost.

(b) When shifts are large enough, no one
bit adders are required.

(c) For subtraction, shifts do not always
permit to save one-bit adders.

(d) Some output bits are computed with-
out one-bit adders thanks to shifts.

(e) In some cases, the MSB can be com-
puted by the carry of the last one-bit
adder.

Figure 5.2: Counting one-bit adders.
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Counting the number of one-bit adders, Ba, can be seen as computing the word length
of the adder, msba+1− sa, and deducting the gains ga ∈ N and ψa ∈ {0, 1} we can obtain
with shifts and carry, respectively:

Ba = msba + 1− sa − ga − ψa. (5.6)

In particular, the MSB computation is either done by a dedicated one-bit adder, as repre-
sented in Figure 5.2d, or obtained from the carry of the last one-bit adder, as in Figure 5.2e.
We encode this information in the binary variable ψa, for each adder, so ψa = 1 if and only
if the MSB value is computed with a carry. We enforce this by adding indicator constraints
which ensure that, if the MSB value is computed with a carry, then the input MSB, which
is shifted, is strictly smaller than the MSB of the adder:

msba,l + sa,l + sa ≤ msba − 1 if ψa = 1, ∀a ∈ [[1;N ]], (5.7)

msba,r + sa ≤ msba − 1 if ψa = 1, ∀a ∈ [[1;N ]]. (5.8)

These constraints do not ensure that ψa will be equal to 1 if a carry is used to compute
the MSB but that a carry needs to be used if ψa = 1. As the objective is to minimize
the number of one-bit adders, the solver will maximize carry usage, thus it will fix ψa = 1
if possible.

Example 7. In Figure 5.1b, the MSB of 3x is done by the carry while the MSB of
51x requires a dedicated one-bit adder.

Together with the MSB carry, one-bit adders can be saved thanks to shifts. In the best
case, shifts can lead to output bits computed without any one-bit adder, we illustrate this
in Figure 5.2b where the shift of one side of the addition exceeds the MSB of the other
side. However, in case of subtractions, these large shifts are not beneficial, as illustrated
in Figure 5.2c. Formally, the following constraint sums up both figures:

ga = msba if sa,l > msba,r ∧ σa,r = 0, ∀a ∈ [[1;N ]]. (5.9)

In any case, shifts are usually smaller than the data word length and permit to save trailing
one-bit adders for additions or subtractions, see Figure 5.2d. In our case, where the left
input can be shifted but not the right one, this leads to the constraint

ga = sa,l if sa,l ≤ msba,r ∧ σa,r = 0, ∀a ∈ [[1;N ]]. (5.10)

The same constraint ga = sa,l holds if the left input is subtracted to the right one. Lastly,
if the right input is subtracted to the left one, all the one-bit adders are necessary and
we have

ga = 0 if σa,r = 1, ∀a ∈ [[1;N ]]. (5.11)
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Finally, we simplify the conditions in (5.9) and (5.10) in order to compute ga within
the model. The solver will maximize the value of ga, hence we only need to prevent ga
from exceeding certain values. First,

ga ≤ msba, ∀a ∈ [[1;N ]], (5.12)

ga ≤ sa,l if sa,l ≤ msba,r, ∀a ∈ [[1;N ]], (5.13)

ensures that (5.9) is always verified and (5.12) will prevail if sa,l > msba and the left input
is not subtracted.

Naturally, the objective function changes from minimizing the number of adders to
minimizing the number of one-bit adders,

min
N∑

a=1

Ba, (5.14)

and can also be adjusted to solve the lexicographic bi-objective problem minimizing the
number of one-bit adders first and the adder depth second:

min
N∑

a=1

NBa + admax. (5.15)

Conjecture 1. Let C be a set of target constants, ∀N ∈ N such that there exists an adder
graph with N adders that outputs C, the optimal adder graph w. r. t. the number of one-bit
adders which outputs C requires at most K adders, where K ≤ N .

We make the conjecture that an optimal solution for MCM-Adders, whilst not necessar-
ily optimal for MCM-Bits, provides a valid upper bound on the number of adders required
for the optimal solution of MCM-Bits. As a consequence, we will use a bound on the
number of adders and assume we do not exclude optimal solutions w. r. t. one-bit adders.

5.3 Experiments

We have implemented the MILP model-generation as an open-source tool called jMCM1.
As we did in the previous chapter, we used the RPAG heuristic [KZFC12] to obtain a
warm start. We solved our model using Gurobi 10.0.1 [Gur20] executed with 4 threads
on an Intel® Xeon™ E7-8870 CPU at 2.10GHz. For each instance, the time limit is
of 8 hours. Then, we generated VHDL from adder graphs, with our open-source Julia
package AdderGraphs2, which we then synthesized for FPGA using Vivado v2022.2 for the
xc7k70tfbv484-3 Kintex 7 device.

We will compare the impact of our models on different metrics, especially hardware
metrics that are targeted only indirectly. With these experiments, we want to confirm

1Available on git: https://github.com/remi-garcia/jMCM
2https://github.com/remi-garcia/AdderGraphs

https://github.com/remi-garcia/jMCM
https://github.com/remi-garcia/AdderGraphs
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Table 5.1: Number of adders, #A, and one-bit adders, #Ab, obtained with MCM-Adders
vs MCM-Bits within the available solving time. Best results are in bold.

Benchmark
8-bit input 16-bit input 32-bit input

MCM-A. MCM-B. MCM-A. MCM-B. MCM-A. MCM-B.

#A #Ab #A #Ab #A #Ab #A #Ab #A #Ab #A #Ab

Gaussian 3 4 43 4 40 4 75 4 72 4 139 4 136
Gaussian 5 5 57 5 57 5 97 5 97 5 177 5 177
Highpass 5 4 42 4 39 4 74 4 71 4 138 4 135
Highpass 9 5 50 5 47 5 90 5 87 5 170 5 167
Highpass 15 12 122 12 105 12 218 12 201 12 410 12 393
Laplacian 3 3 34 3 31 3 58 3 55 3 106 3 103
Lowpass 5 6 67 6 60 6 115 6 108 6 211 6 204
Lowpass 9 12 130 13 128 12 226 13 232 12 418 13 440
Lowpass 15 26 316 27 250 26 524 27 466 26 940 27 898
Unsharp 3-1 4 32 4 32 4 64 4 64 4 128 4 128
Unsharp 3-2 5 57 5 49 5 97 5 89 5 177 5 171

that minimizing the one-bit adder count directly permits to obtain better adder graphs,
w. r. t. to the number of one-bit adders, in comparison to simply solving MCM-Adders.
The additional variables and constraints we included in the model could have made it
too difficult for the solver to obtain interesting solutions. We also want to confirm that
minimizing the number of one-bit adders effectively translates into a reduced hardware cost.
The research questions we answer in this section are summarized into two main questions:

(RQ1) Does minimizing the one-bit adder count within an MILP-based model permit to
obtain better adder graphs?

(RQ2) Do adder graphs with less one-bit adders permit cost reduction in the final hardware?

For conciseness, detailed results in tables are shown only for a subset of the benchmarks,
while the statistics are discussed over the full set of 86 benchmarks.

5.3.1 Optimization results

In the following we will compare the number of one-bit adders across adder graphs which
have been obtained by solving MCM-Adders and MCM-Bits, respectively. For the former
adder graphs, we will compute the number of one-bit adders for 3 different input word
lengths: 8-bit, 16-bit and 32-bit. Then, we will solve our model for MCM-Bits for these
3 word lengths. Note these usually are common choices but we could have work with any
word length.
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RQ1: Solving MCM-Bits leads to better adder graphs

In Table 5.1 we present our results in terms of adder count, #A, and one-bit adder count,
#Ab. In grand majority of overall 86 instances, solving MCM-Bits led to better adder
graphs, w. r. t. the number of one-bit adders, than solving MCM-Adders. For example,
for 8-bit inputs with the instance Gaussian 3, optimizing directly for MCM-Bits led to a
different topology than solving the MCM-Adders problem, which reduced the number of
one-bit adders from 43 to 40. Over the 86 instances, better results have been obtained
for 69 instances for 8-bit inputs, 66 instances for 16-bit inputs and 62 instances for 32-bit
inputs. On average, we reduced the number of one-bit adders by 11.3% for 8-bit inputs.
This average reduction is the most significant for smaller word length but, for the 32-bit
inputs, we still have a gain of 3.4% one-bit adders, on average.

In a few cases, the adder graph obtained solving MCM-Bits within the available time
was worse than the one obtained solving MCM-Adders, in terms of one-bit adder count.
This is the case for Lowpass 9, and interestingly only for 16-bit and 32-bit inputs. In
this case, we note that the number of adders is also larger. Although the number of
possible adder graphs is the same for both MCM-Adders and MCM-Bits, the search space
is actually more difficult to explore, as equivalent adder graphs for MCM-Adders may not
be equivalent for MCM-Bits. Moreover, the cost of adder graphs is harder to compute in
the MCM-Bits case, thus a deeper exploration of the branch-and-bound is necessary to
find that a solution is in fact worse than the current best known.

Due to this additional difficulty, the solver timed out for 47 instances, for MCM-Bits, in
the 8-bit input case, while it only timed out for 23 instance when solving the MCM-Adders
problem. Optimality is harder to prove but, despite a more complex model, we still obtain
good quality solutions as stated above. In most cases, it is a matter of minutes, or even
seconds, until the best known solution is obtained and the main difficulty lies in the proof
of optimality.

5.3.2 Hardware results

Optimization approaches for MCM-Adders have been studied for decades and we believe
that it is a good marker of the robustness of this metric for the hardware implementation.
Solving MCM-Bits is still novel and we believe it is needed to assert its interest to produce
efficient hardware implementations. We present hardware results on the adder graphs
obtained for 8-bit inputs, after out-of-context place and route.

RQ2: The one-bit adder metric is correlated with the number of LUTs

The synthesis results, over all 86 benchmarks, demonstrate that our approach MCM-Bits,
based on counting the one-bit adders, reduces the number of LUTs by 7.8% on average,
and by 25.9% in the best case, compared to our model for MCM-Adders. However, some
outliers exist and, for 7 instances, the number of LUTs actually increased. Our method
significantly increases the delay, by 28.3% on average.
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Table 5.2: Hardware results for 8-bit inputs. Best results are in bold.

Benchmark
MCM-Adders MCM-Bits

LUTs Delay (ns) Power (mW) LUTs Delay (ns) Power (mW)

Gaussian 3 44 1.833 5 41 1.936 4
Gaussian 5 58 3.166 6 58 3.039 6
Highpass 5 42 1.922 5 41 2.501 5
Highpass 9 51 1.93 6 48 1.848 6
Highpass 15 122 1.933 11 108 2.4 11
Laplacian 3 35 2.429 4 33 2.378 4
Lowpass 5 68 2.449 8 64 2.468 7
Lowpass 9 135 2.6 14 134 4.57 16
Lowpass 15 310 3.263 33 259 3.871 29
Unsharp 3-1 33 2.066 4 33 2.066 4
Unsharp 3-2 58 3.205 6 51 3.162 6

Table 5.3: Correlation between different metrics, #A the number of adders and #Ab the
number of one-bit adders, and actual hardware cost

LUTs Delay Power

#A 0.9586 0.443 0.9617
#Ab 0.973 0.4156 0.9606

Table 5.2 demonstrates detailed hardware results for the 11 image-processing instances.
In here, MCM-Bits always reduces the number of LUTs, though in rare cases the results
coincide with the MCM-Adders solution, e. g., for Unsharp 3-1. We observed in Table 5.1
that minimizing the one-bit adders can sometimes lead to a larger adder count, as for
instance Lowpass 15, however, it significantly reduced the number of LUTs cost.

To compare the impact of the one-bit adder metric vs. the adder count, we analyzed
the correlation between each of them and the actual hardware cost. Table 5.3 clearly
demonstrates that the one-bit adders are most certainly in a linear relationship with the
LUT count, with a correlation factor r = 0.973, which is stronger than r = 0.9586 for the
number of adders. This does not mean that minimizing the number of one-bit adders will
surely minimize the number of LUTs, yet it is reasonable to expect it.

The one-bit adder correlation factors for the delay and power are 0.4156 and 0.9606,
respectively. This indicates a less strong relationship with delay, which is also worse than
for the number of adders. This analysis also confirms the detailed results in Table 5.2,
where sporadic increase in delay and power for seemingly better MCM-Bits solutions can
be observed. In general, the increase in power consumption is small and could be neglected
but is probably due to a different glitch path count, which can also be modeled and used
to guide the adder topology [Kum18].
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5.4 Conclusion

With the above, we can conclude that using the one-bit adder metric is more beneficial for
the LUT count, regardless of occasional increase in the number of adders in comparison
to MCM-Adders solutions. The warm start comes from RPAG whose solution has been
improved by MCM-Adders and, sometimes we did not reach the same number of adders
with MCM-Bits within the available solving time. This can be dealt with by solving MCM-
Adders first and using the optimal solution w. r. t. the number of adders as a bound for
MCM-Bits. In this chapter, we have proposed for the first time an MILP-based approach
for MCM-Bits. As expected, our model outperforms the higher-level model which solves
MCM-Adders w. r. t. the one-bit adder count.

The proposed model is larger and harder to solve than our original model for MCM-
Adders. We believe that our approach can be fine-tuned using techniques we presented in
the previous chapter, in order to speed up the solving process and eventually to improve
further the solutions we obtained. With extensive experiments we demonstrated significant
gains in terms of cost estimation through the number of one-bit adders and in terms of
hardware cost. Moreover, including other metrics as a second objective, we are confident
that the increase of the delay can be mitigated. In any case, as we will see in Chapter 7,
it is possible to reduce the delay by pipelining the adder graph.

Finally, we confirmed the interest of the one-bit adders low-level metric, which we used
to define the MCM-Bits problem. This metric is well correlated with the LUT count and
the power consumption. In future work it would be interesting to find a metric which
is better correlated with the delay. However, these hardware results have been obtained
out-of-context and delay and power consumption data needs to be confirmed with actual
hardware experiments.



CHAPTER 6

Truncations

“If failure had no penalty success
would not be a prize.”

Terry Pratchett (1948-2015),
Sourcery (1988)

6.1 Introduction

Arithmetic operations usually increase the size of the data paths and this can rapidly
overgrow the available resources. Giving up on the full-precision output is considered ac-
ceptable and, the output of different arithmetic operators is often rounded before being
used as the input of the next operator. But this means that computing resources were
used to compute information that would be discarded anyway. To avoid computing unnec-
essary bits, we can introduce intermediate truncations to save resources. Yet, because of
truncations, errors crop up and need to be tamed below a user-given admissible bound.

An important aspect here is automation of the design choices, such as these inter-
mediate truncations, since they are nontrivial and should be discharged to tools. This
is the philosophy that we share with FloPoCo code generator [dDP11], which generates
arithmetic operators computing just right [dDIM14, VIDDH19].

Incorporating truncations in adder graphs has been considered with heuristics and on
a fixed topology [GDJ10, dDFKF19]. The first method [GDJ10] heuristically propagates
truncations in the adder graph and experimentally verifies that the induced errors are
acceptable. This does not permit to a priori ensure that a user-given error bound is met.
To overcome this issue, an MILP-based model [dDFKF19], has been designed to truncate as
much as possible and to verify an error bound on the outputs. The first obvious drawback of
this approach is fixed adder graph. Moreover, we found a mistake in the error propagation
model which can underestimate the effect of truncation-induced errors.

In contrast to previous works [GDJ10, dDFKF19], which focus on truncations of a fixed

71
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Figure 6.1: Computing 49x and 51x via the fundamental 17 leads to only 4 one-bit adders
for a 3-bit input/output.

adder graph, we present an MILP which permits to solve the Truncated MCM (tMCM)
problem in one step. This should permit to guide the topology, potentially leading to
different adder graphs than the ones obtained solving the MCM-Adders or MCM-Bits
problems as illustrated in the following example.

Example 8. Multiplication by 49 and 51 can be done as illustrated by the adder graph
in Figure 5.1a with #A = 3, and then the adder graph can be truncated to ensure
3 output bits leading to a total of 6 one-bit adders. With the same requirements, a
different topology requiring only 4 one-bit adders exists, see in Figure 6.1.

In Figure 6.1, we represent truncations with red bars with a number which indicates
the number of truncated bits and not the remaining word length.

In this chapter, we complete our model which solves the MCM-Bits problem adding
truncations to further reduce the hardware cost. From user-given error bounds on the
outputs, which must be guaranteed by construction, our goal is to find an adder graph
with internal truncations at the minimal cost in terms of the number of one-bit adders.
For example, we want to find the adder graph presented in Figure 6.1 instead of relying
on a two-step process which might miss optimal truncated adder graphs. We presented
our first contribution to truncated adder graphs at the IEEE International Symposium on
Circuits and Systems (ISCAS) [GVK22a] in 2022 and we published our completed work
on tMCM in the IEEE Transactions on Circuits and Systems journal in 2023 [GV23b].

6.2 Modeling truncations and error propagation

The classic approach consists in finding a formal relation between output error and inter-
mediate truncations, then, given an error budget, error requirements are back-propagated



Modeling truncations and error propagation 73(
εinfa,l , ε

sup
a,l

)
←− sa,l

(
εinfa,r, ε

sup
a,r

)
ta,rta,l
// (
εinf,nsha , εsup,nsha

)
←− −sa(

εinfa , εsupa

)
Figure 6.2: Model of an adder in presence of errors ε and truncations t.

to find sufficient parameters. In this thesis, we discharge this job to MILP. So, first we
define error propagation rules, then we precisely define the effect of truncations over the
errors. Finally, we model the gain of each truncation and maximize it by minimizing the
hardware cost. This is done while respecting the output error constraints.

Error propagation in the state-of-the-art

In the state-of-the-art model [dDFKF19], the error at each input of every adder is computed
as the maximum between: (i) the truncation induced error and (ii) the error propagation.
In our conference paper [GVK22a], we used this same error propagation rule. However,
if we truncate a signal which is already tainted by an error, the errors accumulate and
taking the maximum between both errors underestimates the actual error. In [dDFKF19,
GVK22a], this can result in an output with an error that exceeds the user-given error
bound. This error was difficult to detect since the error model that was used in both
papers was based on absolute error which was a slight overestimation with respect to
the nonsymmetric truncation error. This mitigated the underestimation presented above,
partly hiding the problem.

In the following, we will not only correct the mistake but also consider tighter yet
reliable bounds on the error. To do so, we will not consider absolute error bounds but
asymmetric ones.

Error modeling

In Section 1.1.2, we presented the error propagation rule of different basic operators such
as addition, negation or truncation. Our goal is to bring them all and to bind them in
a single error propagation rule. Hence, for each adder, a, we start by defining integer
variables for error bounds, εinfa ∈ N and εsupa ∈ N. As illustrated in Figure 6.2, these errors
come from the inputs of the adder and from the truncations. We denote εinfa,i ∈ N and
εsupa,i ∈ N, for each input i ∈ {l, r}, the errors of the inputs, and εinf,nsha ∈ N and εsup,nsha ∈ N
the errors before the adder right-shift. The truncation-induced errors are encoded by the
integer variables εta,i ∈ N.

We combine the error propagation of each operator, as presented in Section 1.1.2, to
propagate adder errors. In particular we take the sum of (i) the error induced by truncations
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(a) Truncations might induce zeros in the
output.

(b) Zeros can be truncated without in-
creasing the error.

Figure 6.3: Counting one-bit adders and propagating errors in presence of truncations.

and (ii) the propagated error instead of the maximum as done in the state-of-the-art. This
leads to the following propagation rule:

2saεinfa = εinf,nsha =


(
2sa,lεinfa,l + εta,l

)
+
(
εinfa,r + εta,r

)
, if σa,l = σa,r,(

2sa,lεinfa,l + εta,l
)
+
(
εsupa,r + εta,r

)
, if σa,r = 1,(

2sa,lεsupa,l + εta,l
)
+
(
εinfa,r + εta,r

)
, if σa,l = 1,

(6.1)

2saεsupa = εsup,nsha =


2sa,lεsupa,l + εsupa,r , if σa,l = σa,r,

2sa,lεsupa,l + εinfa,r, if σa,r = 1,

2sa,lεinfa,l + εsupa,r , if σa,l = 1.
(6.2)

To include the above error propagation rule into an MILP-based model, we have to lin-
earize the shifted input error as we linearized shifts over input fundamentals: using inter-
mediate variables, εinf,sha,l , εsup,sha,l ∈ N, and the binary variables Φa,s to obtain the constraints

εinf,sha,l = 2sεinfa,l if Φa,s = 1, ∀a ∈ [[1;N ]], s ∈ [[0;w]], (6.3)

εsup,sha,l = 2sεsupa,l if Φa,s = 1, ∀a ∈ [[1;N ]], s ∈ [[0;w]]. (6.4)

For uniform notations we also add the variables for the right input, εinf,sha,r ∈ N and εsup,sha,r ∈
N, which are simply equal to εinfa,r and ε

sup
a,r , respectively

We also need to linearize the adder shift sa with the variables Ψa,s and to link the input
errors with previous adders, using the binary variables ca,i,k:

εinf,nsha = 2sεinfa if Ψa,s = 1, ∀a ∈ [[1;N ]], s ∈ [[0;w]], (6.5)

εsup,nsha = 2sεsupa if Ψa,s = 1, ∀a ∈ [[1;N ]], s ∈ [[0;w]], (6.6)

εinfa,i = εinfk if ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]], (6.7)

εsupa,i = εsupk if ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]. (6.8)

This is similar as we did in previous chapters.
Finally, we need to compute the truncation errors εta,i . We recall that truncations to

the t-th bit, ⋄t(·), induce error, εt ≥ 0, which is bounded by the quantity it removes:

εt ≤ 2t − 1. (6.9)
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This bound is reached when all truncated bits are 1’s.
However, truncations could induce bits equal to 0 in the data path, as illustrated in

Figure 6.3a, and keeping track of these trailing 0’s, denoted z, allows for a tighter bound
on the truncation errors:

εt ≤ max
(
2t − 2z, 0

)
. (6.10)

To be able to use this bound, we first need to introduce variables to encode the number of
trailing zeros:

• za ∈ N, for each adder, is the number of trailing zeros after the adder.

• za,i ∈ N, for each adder, corresponds to the number of trailing zeros in each input
and is linked with za’s with the topology variables:

za,i = zk if ca,i,k = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]. (6.11)

• zsha,i ∈ N, for each adder, encodes to the number of trailing zeros in each input after
the shift:

zsha,l = za,l + sa,l, ∀a ∈ [[1;N ]], (6.12)

zsha,r = za,r, ∀a ∈ [[1;N ]]. (6.13)

• znsha ∈ N, for each adder, is the number of trailing zeros before the right-shift. This
variable is equal to the minimum number of trailing zeros of both addition inputs:

znsha = min
(
max

(
zsha,l, ta,l

)
,max

(
zsha,r, ta,r

))
, ∀a ∈ [[1;N ]]. (6.14)

This constraints involve max operators which we know how to linearize using an
additional binary variable. Then, znsha is linked with za using right-shifts:

znsha = za + sa, ∀a ∈ [[1;N ]], s ∈ [[0;w]]. (6.15)

Now that we are able to propagate trailing 0’s, we linearize both powers of two of (6.10).
To do so, we add binary variables ta,i,b ∈ {0, 1} and za,i,b ∈ {0, 1}, in a similar manner as
we added Φa,s in Chapter 4. These variables correspond, for each adder a and each bit b,
to the position of the truncations and of trailing 0’s and we enforce that one position is
chosen, even if zero-valued:

w+win∑
b=0

ta,i,b = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , (6.16)

w+win∑
b=0

za,i,b = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} . (6.17)
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We link these variables with the truncations and trailing zeros:

w+win∑
b=0

b× ta,i,b = ta,i, ∀a ∈ [[1;N ]], i ∈ {l, r} , (6.18)

w+win∑
b=0

b× za,i,b = zsha,i, ∀a ∈ [[1;N ]], i ∈ {l, r} . (6.19)

Then, use intermediate variables, εTa,i ∈ N and εZa,i ∈ N, for each adder and input, to encode
the truncation error and the part which is error-free due to trailing zeros:

εTa,i = 2b−1, if ta,i,b = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , b ∈ [[1;w + win]], (6.20)

εTa,i = 0, if ta,i,0 = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , (6.21)

εZa,i = 2b−1, if za,i,b = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} , b ∈ [[1;w + win]], (6.22)

εZa,i = 0, if za,i,0 = 1, ∀a ∈ [[1;N ]], i ∈ {l, r} . (6.23)

And we finally have

εta,i ≥ εTa,i − εZa,i, ∀a ∈ [[1;N ]], i ∈ {l, r} . (6.24)

In some cases where truncated bits are all zeros, as in Figure 6.3b, we can even have error-
free truncations. The last step is to bound errors with the user-given acceptable output
error ε:

εinfa ≤ ε and εsupa ≤ ε. (6.25)

Finally, an overflow could occur because of the propagated errors which can force the
result of the adder to the next binade w. r. t. the one deduced by (5.3). To prevent this
risk, we adjust the MSB taking the error into account:

2msba − 1 ≥ xca + εsupa , (6.26)

where x is an upper bound on the maximum of the absolute values of lower and upper
bounds of x. The solver will chose itself if it is more interesting to increase the MSB in
order to gain more from truncations or not. This ends the error propagation analysis.
However, we did not model the gain which can be obtained with truncations yet. Thus,
there is no incentive for the solver to use truncations at all.

Reducing adder graph cost with truncations

When computing the one-bit adders, we used to motivate certain topologies by the gains
due to shifts, see the constraints on ga which intervenes in the one-bit adder count, (5.6),
which we recall here:

Ba = msba + 1− sa − ga − ψa. (6.27)

However, we can also interpret the gain of certain number of one-bit adders induced by
shifts, as truncations of s bits with a zero error. Indeed, shifting the input, induce implicit
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trailing zeros which can be truncated at no cost. Hence, we can simply add a constraint
enforcing the truncations to be at least as large as shifts:

ta,l ≥ sa,l, ∀a ∈ [[1;N ]]. (6.28)

This way, it is clearly not necessary to consider shifts anymore for the one-bit adder savings.
Actually, we can even constrain truncations, on both inputs, to be larger than the number
of shifted trailing 0’s without any effect on the actual error propagation:

ta,i ≥ zsha,i, ∀a ∈ [[1;N ]], i ∈ {l, r} . (6.29)

Then, while shifts were asymmetric, we need to take into account truncations of both
inputs as truncation of the right input could also reduce the computation cost. For example,
in addition to large shifts (or truncations) on the left input, which we represented in
Figure 5.2b, we can also have large truncations on the right input such that output bits
are computed without any one-bit adder. We illustrate this in Figure 6.4a and formalize
it as follows:

ga = msba if ta,r > msba,l ∧ σa,l = 0, ∀a ∈ [[1;N ]]. (6.30)

In case of addition, the possible gain, which initially came only from the left shift, is
induced by the maximum truncation between the left and right inputs:

ga ≤ max (ta,l, ta,r) if ta,r ≤ msba,l ∧ ta,l ≤ msba,r, ∀a ∈ [[1;N ]]. (6.31)

This max operator can be linearized, and we do so in order to include (6.31) within our
MILP-based model. For this purpose, we introduce binary variables tBa ∈ {0, 1}, for each
adder, and integer variables, tmax

a ∈ N, to store the maximum value between ta,l and ta,r.
This is formalized as follows:

tmax
a = ta,l if tBa = 1, ∀a ∈ [[1;N ]], (6.32)

tmax
a = ta,r if tBa = 0, ∀a ∈ [[1;N ]], (6.33)

ga ≤ tmax
a if ta,r ≤ msba,l ∧ ta,l ≤ msba,r, ∀a ∈ [[1;N ]]. (6.34)

Finally, in the case of a subtraction, the gain can only come from the input which is
subtracted to the other, the so-called subtrahend. We illustrate in Figure 6.4b, a trun-
cation on the positive input which has no impact over the computation cost. However,
as illustrated in Figure 6.4c, truncation of the subtrahend permits to save one-bit adders.
To benefit from this possible gain, we introduce additional constraints which bound the
number of one-bit adders that can be saved in case of subtractions:

ga ≤ ta,l if σa,l = 1 ∧ σa,r = 0, ∀a ∈ [[1;N ]], (6.35)

ga ≤ ta,r if σa,l = 0 ∧ σa,r = 1, ∀a ∈ [[1;N ]]. (6.36)

If we consider truncations of both inputs simultaneously, it is direct to see that the
gain will only come from truncating the subtrahend and it was not necessary to truncate
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(a) Truncation of the nonshifted input
exceed the MSB of the shifted input.

(b) Truncation on the positive input in
case of subtraction.

(c) Truncation on the negative input in
case of subtraction.

Figure 6.4: Counting one-bit adders in case of truncations.

the other input. Hence, we can speed up the solving process by removing solutions with
an equivalent cost. To do so, we add two sets of constraints which prevent unnecessary
truncations in subtractions:

ta,l = zsha,l if σa,r = 1, ∀a ∈ [[1;N ]], (6.37)

ta,r = zsha,r if σa,l = 1, ∀a ∈ [[1;N ]]. (6.38)

In any case, the solver would not have increased the error for 0 gain but adding these
constraints reduces the search space.

Remark. Our analysis on subtractions holds for the FPGA implementation. However, in
Figure 6.4b, we see that multiple one-bit adders are actually half-adders. Hence, on ASICs,
truncation on both side will modify the hardware cost.

Our analysis permits to precisely track the truncations-induced gain in terms of one-bit
adders count. The complete linearization is available in Appendix A.3. Overall, this adds
a significant number of variables and constraints to the model. They are very closely linked
with the variables handling the topology and we believe that it should help the solver to
quickly find interesting adder graph topologies for truncations.
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6.3 Optimization and hardware results

The proposed MILP-based model including truncations is available within our open-source
tool jMCM1. We solved our model using Gurobi 10.0.1 [Gur20] executed with 4 threads
on an Intel® Xeon™ E7-8870 CPU at 2.10GHz. For each instance, the time limit is of
8 hours. Then, we generated VHDL from truncated adder graphs, with our open-source
Julia package AdderGraphs2, which we synthesized for FPGA using Vivado v2022.2 for the
xc7k70tfbv484-3 Kintex 7 device.

With the following experiments we aim to study the impact of truncations on adder
graphs. We will compare results obtained from the resolution of the MCM-Bits problem
and the tMCM problem. For conciseness, we limit our experiments to 8-bit inputs but
discuss truncations for multiple error bounds. We remind that full-precision is strictly the
same as simply solving MCM-Bits. For each instance, we will perform two experiments:
first setting an appropriate error-bound ensuring that we keep at least 50% of the full-
precision, and a second ensuring at least 75% of the full-precision. Then, we can compare
results with decreasing precision and we expect to observe a decrease of the necessary
hardware usage with the reduction of the precision. The research questions we answer in
this section are summarized as:

(RQ3) What is the impact of intermediate truncations on optimization results in terms
of #Ab?

(RQ4) How does this impact passes through to synthesized hardware?

We only provide detailed results for subset of the benchmarks, however we discuss statis-
tics over all the 86 instances and complete results will be provided in appendices for the
final version.

RQ3: Truncations permit to drastically reduce the one-bit adder count

In Figure 6.5, we illustrate the adder count reduction between full-precision, three quarter
of the precision and half-precision for multiple instances. As expected, the one-bit adder
count drops with the lower precision w. r. t. full-precision. On average, truncations to
half-precision induce a one-bit adder count reduction of 36.7%. For example, we observe
a 43% reduction of the number of one-bit adders for the instance Unsharp 3-1. However,
we note a few cases where smaller precision did not lead to less one-bit adders. The model
including truncations is larger than the full-precision one and we believe that with more
available time the solver would have at least obtained the same solution.

Similarly to the case of MCM-Bits, truncated adder graphs, in some cases, require more
adders. This is natural, since there are many different corner cases that permit to reduce
the one-bit adder count with a drawback of larger number of fundamentals. In Table 6.1, we
provide detailed values and we remark that the different precision do not induce significant

1https://github.com/remi-garcia/jMCM
2https://github.com/remi-garcia/AdderGraphs

https://github.com/remi-garcia/jMCM
https://github.com/remi-garcia/AdderGraphs
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Figure 6.5: Comparing one-bit adder count w. r. t. precision. The lines correspond to the
normalized number of one-bit adders for three precision: full-precision, 75% of the full-
precision and half-precision.

Table 6.1: Number of adders, #A, and one-bit adders, #Ab, obtained with MCM-Bits
(exact outputs) vs tMCM keeping 50% and 75% of output precision.

Benchmark
MCM-Bits tMCM75% tMCM50%

#A #Ab #A #Ab #A #Ab

Gaussian 3 4 40 4 40 4 38
Gaussian 5 5 57 6 62 6 35
Highpass 5 4 39 4 39 4 31
Highpass 9 5 47 5 39 5 39
Highpass 15 12 105 12 83 12 67
Laplacian 3 3 31 3 25 3 25
Lowpass 5 6 60 6 52 7 49
Lowpass 9 13 128 13 81 13 81
Lowpass 15 27 250 27 127 27 137
Unsharp 3-1 4 32 4 20 4 18
Unsharp 3-2 5 49 5 26 6 23
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Table 6.2: Hardware results for 8-bit inputs. The delay is given in ns and the power in mW.

Benchmark
MCM-Bits tMCM75% tMCM50%

LUTs Delay Power LUTs Delay Power LUTs Delay Power

Gaussian 3 41 7.305 105 33 7.142 94 26 7.578 76
Gaussian 5 58 8.937 169 52 9.024 157 37 8.136 113
Highpass 5 41 8.574 130 34 7.65 104 21 7.305 71
Highpass 9 48 7.675 161 44 7.606 150 33 8.036 132
Highpass 15 108 10.377 408 100 10.477 360 62 9.842 263
Laplacian 3 33 8.377 109 30 8.533 99 29 7.925 98
Lowpass 5 65 9.142 202 58 8.895 187 45 8.315 148
Lowpass 9 138 12.439 493 118 11.367 441 95 11.379 345
Lowpass 15 258 15.617 1153 253 14.776 1091 218 14.291 930
Unsharp 3-1 33 7.372 100 27 7.1 82 13 6.456 55
Unsharp 3-2 49 9.625 162 46 9.239 144 35 9.474 118

differences in adder graphs in terms of adder count: compared with MCM-Bits, keeping
only half of the output bits led to solutions with more adders in 13 cases.

Although the additional variables and constraints we incorporated to the model have
an impact on solving times, the solver could not prove optimality for only 56 instances. As
a reminder, when solving the simpler model for MCM-Bits, the solver already timed out
for 47 instances.

RQ4: Reducing synthesized hardware cost with truncations

In Chapter 5, we observed a strong correlation between the number of one-bit adders and
both the number of LUTs and the power consumption. Table 6.2 confirms that tMCM
provides major hardware cost reductions w. r. t. full precision: for 8-bit inputs and half-
precision outputs, the number of LUTs is decreased by 25.5%, the delay by 5.0% and the
power by 22.0%. Compared to base model for the MCM-Adders problem, the gains are
even greater: in [GV23b], we reported up to 61% reduction in LUTs. However, in one case
the truncations led to a delay increased by 76%. These results are also expected due to
the strong correlation factor between the LUT count and the number of one-bit adders,
which are minimized in tMCM.

Of course, this significant performance improvement requires the embedded system de-
signers to be able to provide an a priori error bound for the outputs. However, we do not
find it unreasonable, since analyzing the finite-precision behavior of the implemented sys-
tem is expected for resource-constrained applications. Furthermore, generic static analysis
tools can be used to compute such bounds for numerical programs, such as [GP11, DIN+18],
or they can be tightened using domain specific properties, such as has been done for digital
filters [VIDDH19].
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6.4 Conclusion

We solve, for the first time, the MCM problem taking truncations and output error bound
into account. In this chapter, we formalized the problem of searching for truncated adder
graphs as the tMCM problem, and we proposed an analysis of the error propagation within
adder graphs. This way, by construction, we ensure that the error budget is automatically
shared among the adders to maximize the gain.

We propagate rounding errors in a tight manner, using a nonsymmetric error model
for truncations. Then, by presenting the similarities between truncations and shifts when
counting one-bit adders, we simplified the model. With our experiments, including syn-
thesis results, we demonstrate that it is efficient to automate the tMCM design-space
exploration liberating the designers to study high-level questions. As expected, we confirm
that, the less output bits are necessary, the more internal truncations can be used to obtain
a significant hardware cost reduction.

This chapter is the result of the balanced combination of computer arithmetic with
hardware design and operations research, where we demonstrated the versatility of the
MILP approach for diving into arithmetic low-level metric.



CHAPTER 7

Pipelined adder graphs

“Everything makes sense a bit at a
time. But when you try to think of it
all at once, it comes out wrong.”

Terry Pratchett (1948-2015),
Only You Can Save Mankind (1992)

7.1 Introduction

In the previous chapters we have focused on resource consumption. However the hardware
cost is actually manifold and it includes delay, throughput or power consumption. Using
registers is a common practice for increasing the throughput and even for decreasing the
power consumption, as it splits the glitch path. In this chapter, we will consider pipelined
adder graphs in order to prioritize the throughput [MBCCD06, KZ11, KZFC12, Kum16]
and, with the constraint of pipelining, we will minimize resource usage.

We assume that all outputs should be available at the same clock cycle and this property
is guaranteed in adder graphs with registers before each stage. Pipelining of a fixed adder
graph can be obtained by performing cut-set retiming (CSR) [Par99, KZ11]. For example,
to pipeline the stages of the adder graph represented in Figure 7.1a, one must put a register
at the input, one register after each adder, see Figure 7.1b, and finally a few additional
registers to ensure the synchronization of the signals, as shown in Figure 7.1c.

The fixed adder graph might not be “pipeline friendly” and it has been shown [KZFC12]
that a better solution consists in searching directly for pipelined adder graphs. The idea
is to search for the best multiplierless topologies minimizing the resources as a whole. To
address this issue, there exists a heuristic [KZFC12]. An optimal method, in which the
whole design space is enumerated, was proposed by Kumm [Kum16]. The main disadvan-
tage of this approach is its lack of scalability since for larger and interesting adder graphs
the method cannot be applied.

83
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(a) Adder graph to compute
49x and 51x.

(b) Adding registers. (c) Synchronizing the signals.

Figure 7.1: Pipelining a fixed adder graph.

Our goal is to avoid a heavy precomputation and similarly to other models the register
cost directly within the model and let the solver do its job. Our second objective is to also
optimize w. r. t. lower-level metrics which are closer to LUTs and flip-flops, namely the
one-bit adders and one-bit registers, respectively.

In the following, we will refer to the problem of searching for an optimal pipelined
adder graph w. r. t. the number of high-level elements (adders and registers) as PMCM-
Adders. Despite the presence of registers, which we want to minimize, we keep “-Adders”
for simplicity and uniformity with MCM. Naturally, when we will discuss the optimization
of pipelined adder graph with respect to one-bit adders and registers, we will refer to this
problem as PMCM-Bits.

In this chapter, we will illustrate our examples with large adder graphs and our orig-
inal representation becomes confusing. Hence, we adopt the graphical representation of
Figure 7.2. The rectangle nodes correspond to adders if there are two incoming arrows,
or to registers if there is only one input. Labels within the nodes are the fundamentals.
Numbers alongside the edges correspond to shifts and a minus indicates the negation of
the input. For example, in Figure 7.2b, the node with the fundamental 275 corresponds to
an addition of the input 69x shifted by 2 bits and from which the register, containing the
value 1x, is subtracted.

This work is published at the International Conference on Field-Programmable Logic
and Applications (FPL) in September 2023 [GV23a].
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Figure 7.2: (Pipelined) adder graphs which compute 5x, 69x, 553x and 2483x.

7.2 Pipelining in a high-level model

The solution of the MCM-Adders problem is guided by the number of adders, and naturally,
each fundamental should be unique in the adder graph. However, when incorporating the
pipelining, it is the length of the connection between an adder and the maximum stage
it interacts with, which is guiding the topology. Hence, it might sometimes be beneficial
to compute the same fundamental twice, as it could save multiple stages of registers. For
example, consider the adder graph in Figure 7.2a, computing 5x, 69x, 553x and 2483x. To
pipeline this adder graph without refactoring the topology, we need 8 registers in addition
to the 5 adders, as illustrated in Figure 7.2b, thus, the total cost is 13. However, there exists
an adder graph, represented in Figure 7.2c, whose total cost is only 12, with 6 registers and
6 adders. Its particularity is that it computes the same fundamental (5) twice: on Stage
1, and then on Stage 4. This permits to avoid propagating the fundamental 5 through all
the stages and to recompute it when needed, which reduced the overall cost.

Now that we have presented a few specifics of pipelined adder graphs, we can dive in
the modeling of registers. Actually, our idea is to avoid an explicit model for registers, as
entities similar to adders, in contrast to Kumm [Kum16]. Instead, we assume that registers
are always associated with adders, which is often the case, and we build upon the existing
topology part of our models. Hence, we model the pipelining stages and we will deduce
the number of registers afterwards. To do so, we consider integer variables for each adder,
which store the stage when the adder is computed, pa ∈ N, and the maximum stage the
adder interacts with as a direct input, pa ∈ N.
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Example 9. In Figure 7.2c, the initial input stage is p0 = 0, by definition, and the
maximum stage it interacts with is s0 = 4 (to compute the fundamental 553). Then,
its register cost is r0 = 4− 0, including the register at the adder stage.

We have defined variables pa and pa but we still need to add constraints in order to
assign them the right value. To do so, we remark that the adder depth and pipeline stage
are actually synonyms. Hence, we first compute pa by introducing variables pa,i ∈ N and
pba ∈ {0, 1}, exactly as we did for the adder depth in Chapter 4:

pa ≥ pa,l + 1, ∀a ∈ [[1; N]], (7.1)

pa ≥ pa,r + 1, ∀a ∈ [[1; N]], (7.2)

pa ≤ pa,l + 1 + Npba, ∀a ∈ [[1; N]], (7.3)

pa ≤ pa,r + 1 + N×
(
1− pba

)
, ∀a ∈ [[1; N]]. (7.4)

Then, we simply link the pipeline stage of each input with the pipeline stage of the origi-
nal adder:

pa,i = pk if ca,i,k = 1, ∀a ∈ [[1; N]], i ∈ {l, r} , k ∈ [[0; a− 1]]. (7.5)

Finally, we also encode the output pipeline stage, pmax ∈ N, as the maximum of the pipeline
stages plus one:

pmax ≥ pa + 1, ∀a ∈ [[1; N]]. (7.6)

We are now able to deduce the pipeline stage of each adder as we did for the adder
depth. Then, we also need to extract the information of the maximum stage the adder
interact with as a direct input, which we encode in pa. To do so, we add binary variables
pa,s {0, 1} which, for each adder a and stage p, encodes that the adder a intervenes as an
input for the stage p. Then, we enforce that pa,p = 1 if adder a is used as an input for an
adder at stage p:

pk ≤ N × pa,p + p− 1 if ck,i,a = 1, ∀p ∈ [[1;N ]], a ∈ [[0;N − 1]],

∀k ∈ [[a+ 1;N ]], i ∈ {l, r} . (7.7)

We can notice that we have voluntarily ordered indices of ca,i,k as ck,i,a instead. Originally,
we use the variable ca,i,k to link adders with their inputs, here we alternatively use it to
link adders with their outputs.

Actually, we also need to consider adders which are used for outputs of the pipelined
adder graph:

pmax ≤ (N + 1)× pa,p + p− 1 if oa,j = 1, ∀s ∈ [[1;N + 1]], a ∈ [[0;N ]], j ∈ [[1; |C|]],
(7.8)
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as they intervene at the stage pmax. Finally, we add the constraints

pa ≥ p× pa,p, ∀p ∈ [[1;N + 1]], a ∈ [[0;N − 1]], (7.9)

in order to compute the maximum stage with which the adder a interacts with. Using the
constraints above, we are able to integrate into the MILP model additional information
which we use to infer the register cost, ra ∈ N, for each adder:

ra = pa − pa, ∀a ∈ [[0;N ]]. (7.10)

When implementing on FPGAs, we will consider that registers that follow adders ba-
sically come for free as they actually are on the same basic logic element (BLE). To look
at it in another way, adding registers is necessary to have a pipelined adder graph, hence
their cost is mandatory and it is the adders that basically come for free. This naturally
leads to the following objective function which minimizes the number of registers of the
pipelined adder graph:

min
N∑

a=0

ra. (7.11)

With this objective function we directly search for the best pipelined adder graphs w. r. t.
the number of registers. Ultimately, we expect that this high-level cost will positively
impact to hardware resource and power consumption. Naturally, it would be desirable to
directly optimize w. r. t. lower-level metrics.

7.2.1 Pipelining in a low-level model

In Chapter 5, we were able to model one-bit adders in adder graphs and we obtained
substantial gain optimizing w. r. t. this metric in comparison to the number of adders.
Intuitively, it seems to be reasonable to split registers into one-bit registers in pipelined
adder graphs.

If we zoom into registers, we find that they simply consist of a number of one-bit
registers equal to the data path length, storing each bit into a single one-bit registers.
Hence, the number of one-bit registers, Br

a, following an adder a is exactly

Br
a = msba + 1. (7.12)

Thus, the cost in terms of one-bit registers associated to each adder a, which we denote
Cr

a, is
Cr

a = Br
a × ra. (7.13)

We note that the number of one-bit registers per adder, Br
a, is at least as large as the

number of one-bit adders, Ba, defined in (5.6). Indeed, the number of one-bit adders is
bounded by the data path, which corresponds to the number of one-bit registers.

Similarly to the pair adder/register, we will consider that one-bit adders come for free
with the one-bit registers. This greatly simplifies the problem we solve, as the parts of the
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model used to compute ga or ψa are not necessary anymore. We only need to keep the set
of variables and constraints used to determine the MSB of each adder. However, due to the
product in (7.13) which we have to linearize, the model still remains somewhat complex.

The number of registers per adder, ra, is bounded by the maximum number of addersN .
This bound on ra is small enough to include in the model N2 binary variables rBa,b ∈ {0, 1}
such that rBa,b = 1 if ra = b. This can be encoded with the following constraints:

N∑
b=1

b× rBa,b = ra, ∀a ∈ [[0;N ]], (7.14)

N∑
b=1

rBa,b = 1, ∀a ∈ [[0;N ]]. (7.15)

Then, the product can be linearized with

Cr
a = b×Br

a if rBa,b = 1, ∀a ∈ [[0;N ]], b ∈ [[1;N ]], (7.16)

and we can replace the objective function by

min
N∑

a=0

Cr
a, (7.17)

ensuring the minimization of the number of one-bit registers.
Overall, it is interesting to remark that this new model combines concepts from the

models for MCM-Bits and PMCM-Adders, but parts of the MCM-Bits model are not
necessary anymore, resulting in an alleviated model.

7.2.2 Critical path

In Chapter 4, we presented a way to incorporate the adder depth in the MCM model.
The goal was to minimize it in order to reduce the adder graph delay. In the case of
pipelined adder graphs, the delay is not the main priority and we are more interested in
the throughput. To maximize it, we need to minimize the critical path, which corresponds
to the longest path between pairs of registers.

Apart from the routing, we suppose at most one adder between each pair of registers.
Hence, the critical path is not relevant if we do not explore lower-level metrics. Actually,
the critical path of the pipelined adder graph is determined by the adder with the largest
number of one-bit adders. Using MILP, it is straightforward to store this value into an
integer variable, Bmax ∈ N, as follows:

Bmax ≥ Ba, ∀a ∈ [[1;NA]]. (7.18)

Then, the objective function can be modified as follows to minimize the critical path as a
second objective,

minM ×
NA∑
a=1

Cr
a +Bmax, (7.19)
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where the integer parameter M is fixed to a known upper bound of Bmax such as the
maximum data word length in the adder graph, in order to ensure that the number of
one-bit registers is minimized first, and Bmax second.

The incorporation of the critical path within the MILP model requires computing the
number of one-bit adders again. Because of this extra cost, minimizing the critical path as
we did might not pay off. We will investigate a cost/benefit analysis with our experiments.

7.3 Experiment results

The proposed MILP-based models are available within our open-source tool jMCM1. In our
experiments, we fix the input word length at 8 bits as it is a logical choice for the image-
processing benchmarks. We solved our model using Gurobi 10.0.1 [Gur20] executed with 4
threads on an Intel® Xeon™ E7-8870 CPU at 2.10GHz. For each of the 86 instances, the
time limit is of 30 minutes. Then, we generated VHDL from pipelined adder graphs, with
our open-source Julia package AdderGraphs2, which we then synthesized for FPGA using
Vivado v2018.2 for the xc7v585tffg1761-3 Kintex 7 device. We provide detailed results
only for a subset of the benchmarks while statistics integrate all 86 benchmarks.

7.3.1 Optimization results

PMCM-Adders

There is a trade-off between the number of adders and the number of registers. Conse-
quently, for PMCM we discourage using tight bounds on the initial bound on the maximum
number of adders, which is otherwise advised for MCM-Adders. For instance, in our ex-
periments we arbitrarily increased by two every (initially tight) bound on the number of
adders for each benchmark. This looser upper bound permitted to obtain lower cost adder
graphs for 11 instances out of 86.

In Table 7.1, we compare the state-of-the-art RPAG results with our optimal approach
for the PMCM-Adders. With our tool, we can observe a 17.57% reduction of the number
of adders plus registers, on average and across all 86 benchmarks, compared to RPAG. In
details, for the 11 instances that require more adders than RPAG, it permitted to reduce
the number of registers by 49.26%. For example, we see that, for Lowpass 9, RPAG found
a solution with 12 adders and 7 registers leading to a total cost of 19, while our model for
PMCM-Adders led to a solution with an additional adder but two less registers for a total
cost of 18.

1https://github.com/remi-garcia/jMCM
2https://github.com/remi-garcia/AdderGraphs

https://github.com/remi-garcia/jMCM
https://github.com/remi-garcia/AdderGraphs
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Table 7.2: A posteriori pipelining of MCM-Bits solution vs one-step optimization with
PMCM-Bits. Cb = #Ab +#Rb. Best results are in bold.

Benchmark
MCM-B.+Pipelining PMCM-Bits

#Ab #Rb Cb #Ab #Rb Cb

Gaussian 3 40 28 68 43 15 58
Gaussian 5 57 55 112 84 32 116
Highpass 5 39 77 116 42 24 66
Highpass 9 47 41 88 50 27 77
Highpass 15 105 230 335 122 56 178
Laplacian 3 31 59 90 58 3 61
Lowpass 5 60 89 149 85 25 110
Lowpass 9 137 218 355 145 81 226
Lowpass 15 250 688 938 306 201 507
Unsharp 3-1 32 34 66 35 21 56
Unsharp 3-2 49 85 134 59 32 91

Total: 847 1604 2451 1029 517 1546

PMCM-Bits

The state-of-the-art RPAG heuristic demonstrated [KZFC12] that solving the PMCM-
Adders as one step is better than a posteriori pipelining an optimal adder graph. With our
work, we confirm that this holds for the finer-grained metric of counting one-bit adders and
one-bit registers, as illustrated in Table 7.2. By solving the PMCM-Bits problem, instead
of pipelining a posteriori the MCM-Bits solution, we achieve a 33.15% cost reduction in
terms of number of one-bit registers, on average. For example, the solution with a posteriori
pipelining of Lowpass 15 required more than 600 one-bit registers while the pipelined adder
graph obtained in one step only requires 201 one-bit registers. The original adder graph
was not pipelining-friendly and the total cost was drastically reduced.

However, the PMCM-Bits solutions demonstrate no improvement over the PMCM-
Adders ones. Actually, on average, the cost of the adder graphs we obtained increased by
1.35%. We observed that solving PMCM-Bits is more challenging for the solver, which
translates into obtaining, in rare cases, worse solutions than PMCM-Adders as illustrated
in Table 7.1. Our hypothesis is that, for hard instances, solving the PMCM-Adders problem
leads to an adder and register reduction that is not reached by solving the PMCM-Bits
within the available time. This might be explained in the following way: the interest of
MCM-Bits is to count the number of one-bit adders and look for corner cases that permit
to avoid using them, but it is somewhat leveled by the register bit count, which always
depends on the word length of the adder output. Though, in Table 7.1, we did observe one
case, the benchmark Unsharp 3-2, where PMCM-Bits found a better, w. r. t. to high-level
metric, adder graph than PMCM-Adders.
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Figure 7.3: Postprocessing replaces unnecessary adders with same-cost registers

Post-processing

We observed that sometimes the solver provides solutions in which adders could have been
replaced by registers such as in Figure 7.3a. For our model this has the same cost as the
register used in Figure 7.3b, since we considered that the adders come for free. Hence,
the solver will not differentiate between these solutions. Hardware costs, such as power
consumption, would however differ. These unnecessary adders can be replaced by registers
with a trivial post-processing.

7.3.2 Hardware results

In Table 7.3, we compare the critical path delay of five different approaches: RPAG, MCM-
Adders (no pipelining), PMCM-Adders, PMCM-Bits and PMCM-BitsCP. As expected,
pipelining leads to smaller critical path which permits to increase the frequency and the
throughput of the final hardware. Interestingly, minimizing the critical path as a second
objective was not as efficient as we expected: on average, the critical path delay was reduced
by just 0.37% and simply solving PMCM-Bits was even better on multiple instances, in
the allocated solving time. For example, the critical path obtained with PMCM-Bits for
the instance Lowpass5 was smaller than the one obtained with PMCM-BCP. The main
objective of PMCM-BCP was to minimize resources, and the critical path was secondary. If
throughput needs to be pushed further, we think that modifying the cost function to allow
for a small increase in resource usage, in favor of a smaller critical path, could improve the
delay. This change would be straightforward to apply as we provided models and not a
dedicated algorithm.

The Table 7.1 and 7.2 demonstrated the advantages of the proposed approach over the
state-of-the-art heuristic RPAG on the proxy variables (one-bit) adders and registers. In
previous chapters, we demonstrated the interest of counting adders and one-bit adders.
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Table 7.3: Critical path delay (ns) for each method. Best results are in bold.

Benchmark MCM-A. RPAG PMCM-A. PMCM-B. PMCM-BCP

Gaussian 3 2.643 1.452 1.494 1.494 1.494
Gaussian 5 4.608 1.792 1.772 1.772 1.772
Highpass 5 2.629 1.887 1.566 1.566 1.566
Highpass 9 2.731 1.698 1.712 1.712 1.712
Highpass 15 5.142 2.791 3.423 3.423 3.423
Laplacian 3 3.926 1.497 1.502 1.502 1.502
Lowpass 5 3.687 1.931 1.705 1.662 1.824
Lowpass 9 7.458 3.079 2.875 3.304 3.099
Lowpass 15 13.147 5.897 7.586 5.178 5.415
Unsharp 3-1 2.535 1.641 1.630 1.630 1.547
Unsharp 3-2 4.020 1.547 1.623 1.409 1.409

We are optimistic that registers and one-bit registers are useful proxy variables too.
In Table 7.4, we recap the synthesis results for the RPAG, the two-step process con-

sisting in solving MCM-Adders (respectively, MCM-Bits) first and pipelining second, and
our optimal approach. Interestingly, the RPAG heuristic is not better than the two-step
approaches, but this can be explained by significant improvements of the first step (MCM-
Adders and MCM-Bits) in comparison to previous solutions. We see the clear advantage
of our optimal solutions with respect to the number of FFs, which are almost everywhere
significantly reduced by both PMCM-Adders and PMCM-Bits. For example, for the in-
stance Highpass 5, there are only 73 FFs in the solutions obtained with PMCM-Adders
and PMCM-Bits while other methods led to more than 92 FFs and up to 118. However,
synthesis results confirm our observation that PMCM-Bits in general has shown no advan-
tage to PMCM-Adders in the allocated time. Finally, the gains in results of number of
LUTs and power are more erratic and the one-step process does not lead to a clear cost
reduction compared to a posteriori pipelining. This inconclusiveness is nevertheless not
discouraging since all these values are close.

7.4 Conclusion

With this work, we solve the PMCM problem optimally using the MILP approach. Our
results, evaluated on a large set of benchmarks, demonstrate the superiority of optimal
approach compared to the state-of-the-art heuristic RPAG. We also compared our new
model with a posteriori pipelined solutions obtained solving our model for MCM-Adders.
This way, we demonstrated that our one-step process permits to find better solutions than
the ones obtained with the two-step process.

In contrast to previous approaches, we also incorporate the pipelining into a model that
targets a low-level metric, based on counting one-bit adders and registers. Our experiments
confirm that optimizing in one step, i. e. PMCM-Bits, is better than a posteriori pipelining
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of MCM-Bits solutions, following the same trend as with high-level metrics. However, in
the allocated time, PMCM-Bits design exploration is rarely revealing better results than
the high-level metric-based PMCM-Adders. Nevertheless, this low-level metric permitted
to include the critical path minimization within the MILP-based approach.

With this chapter, we demonstrate the versatility and power of the MILP-based ap-
proach: it is possible to directly optimize for pipelined adder graph using similar methods
as for adder graph and truncated adder graphs. This new design automation method, dedi-
cated to pipelined circuits, permits to alleviate time and efforts embedded system designers
put into pipelining.
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CHAPTER 8

IIR Filters

“Vimes found it better to look to
Authority for orders and then filter
those orders through a fine mesh of
common sense, adding a generous
scoop of creative misunderstanding.”

Terry Pratchett (1948-2015),
Night Watch (2002)

8.1 Introduction

Digital filters are essential components of modern technology, from medical equipment to
scientific instruments. Finite impulse response (FIR) and infinite impulse response (IIR)
filters can be relatively easily designed in software, but hardware implementation presents
a new layer of difficulties to overcome. The filter implementation, from the specifications,
follows three separate steps:

(FD) the Filter Design consists in finding real filter coefficients, usually in double precision,
such that the resulting filter fits the given frequency specification.

(Q) the Quantization converts the coefficients to the FxP format. This does not simply
consist in rounding the real coefficients as resulting filter could not fit the specification
anymore.

(I) the Implementation consists in generating a valid hardware description which depends
on the hardware components available.

In the previous chapters, we have presented our contribution to the MCM problem which
can be used to optimize the implementation step. In the current chapter, our goal will

99
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Figure 8.1: Second-order IIR specification, transfer function and hardware implementation.

be to demonstrate that mathematical modeling is particularly interesting for multi-layer
problems, since models can be merged together to tackle the complete problem.

In Chapter 1, we presented each step and different approaches to merge multiple steps
together, such as KCM [Cha94] for Q+I. In case of FIR filters, [KVF23] successfully com-
bined all the steps into one global MILP-based model. The idea was to linearize the
frequency response so the filter coefficients search, as scaled integers thus FxP, can be
merged with the MCM minimization. Despite the additional difficulties inherent to IIR
filters, such as the recursive part and the stability constraints, our ambition is to solve the
combined FD+Q+I steps for second-order IIR sections within one global optimization.

In this chapter we present our approach which permits the hardware-aware design of
second-order IIR filters. Our work on this topic has been published in IEEE Transactions
on Signal Processing [GVK+22b] before we explored the MCM problem, thus we do not
use low-level metrics in the following but optimize w. r. t. the number of adders.

8.2 The filter design and quantization steps

We recall the transposed direct form II structure of second-order digital filters in Figure 8.1b
and its output is computed as

yn =
2∑

i=0

bixn−i −
2∑

i=1

aiyn−i, (8.1)
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where ai, bi ∈ R are the filter coefficients. The corresponding transfer function is

H(z) =
B(z)

A(z)
=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
, (8.2)

with z ∈ C.
Given some frequency specifications, there exists a large number of real-valued coeffi-

cient sets which fit, but only a subset of those is representable in FxP arithmetic with a
given word length. We propose to directly search for ai and bi in a FxP representation
and introduce their integer counterparts, a′i, b

′
i ∈ Z, that are linked with the real-valued

coefficients via

ai = 2−w+1 2ga a′i, a′i ∈ [[−2w−1; 2w−1 − 1]], (8.3)

bi = 2−w+1 2gb b′i, b′i ∈ [[−2w−1; 2w−1 − 1]], (8.4)

where w is the word length, ga and gb are the largest MSB positions of the FxP repre-
sentations of ai and bi, respectively. It is typical to use the same word length for ai and
bi but we allow different FxP formats in the numerator and denominator of the transfer
function. While the word length w is a user-given parameter in our setting and is typically
desired to be as small as possible in order to save resources, the values of the MSB posi-
tions gb and ga are not known. Hence, our first goal is to predict the MSB positions that,
on the one hand, encompass all representable coefficients, i. e., do not lose solutions, and
that do not overestimate the MSB on the other hand. To do so, we first need to consider
the specifications.

8.2.1 Linearizing specifications and stability constraints

One of the key elements of merging all the steps is to be able to model the specifications,
required for FD, into an MILP model. Yet, we recall that the frequency constraints

β(ω) ≤
∣∣H(ejω)∣∣ ≤ β(ω) , ∀ω ∈ [0; π] , (8.5)

are highly nonlinear. First of all, (8.5) actually enforces one constraint for each ω ∈ [0; π]
and there are infinitely many such constraints to be satisfied. Actually, this constraint is
called semi-infinite [HK93]. The standard discretization approach to handling semi-infinite
constraints consists in discretizing [0;π] into a finite set of frequencies Ωd, leading to a finite
number of constraints. This discretization can be dynamically updated, but we consider
here a fixed discretization and an a posteriori verification of the semi-infinite frequency
constraint [VLH17].

Second, for a fixed ω ∈ Ωd, the constraint (8.5) includes a complex absolute value,
which involves a square-root of the sum of squared terms, and a fraction. By incorporating
(8.2) into (8.5), then multiplying with the denominator |A(ejω)|, and finally squaring the
result we obtain a constraint equivalent to (8.5)∣∣A(ejω)∣∣2 β(ω)2 ≤ ∣∣B(ejω)∣∣2 ≤ ∣∣A(ejω)∣∣2 β(ω)2 , (8.6)



102 IIR Filters

where,

∣∣B(ejω)∣∣2 = 2∑
k=0

2∑
l=0

bkbl cos((k − l)ω), (8.7)

∣∣A(ejω)∣∣2 = 2∑
k=0

2∑
l=0

akal cos((k − l)ω), with a0 = 1. (8.8)

Yet, in (8.7) and (8.8), the filter coefficients are still involved in bilinear terms bkbl
and akal. In Section 2.1.2, we presented of products of positive integers linearization
proposed by Billionnet et al. [BEL08]. Here however, bk, bl and ak, al correspond to filter
coefficients that have no sign restriction. We extend the linearization exposed before to
signed integers by adding auxiliary variables x+, y+ ∈ N and xsg, ysg ∈ {0, 1}, and link
them by following constraints

x+ = |x| , y+ = |y| , (8.9)

xsg = sign(x) , ysg = sign(y) , (8.10)

z+ = x+y+, (8.11)

where the linearization of the absolute values (8.9) and the sign constraints (8.10) are well-
known and involve indicator or big-M constraints [BT97, Man06], and where z+ = x+y+

is the positive case we already presented. Finally, z = ±z+ and the sign is determined by
the values of xsg and ysg directly in the model. This whole linearization relies on the fact
that bounds on x and y are known which will be verified in our case once we will have
upper bounds on ga and gb.

Finally, we recall necessary and sufficient stability conditions for second-order filters,

−2 < a1 < 2, (8.12)

|a1| − 1 < a2 < 1, (8.13)

which we can use in an MILP model, almost as is. As explained before, the absolute value
is standardly linearized using indicator or big-M constraints.

8.2.2 Bounds on filter coefficients

Now that we have included in an MILP-based model the specifications and the stability,
we can deduce the values of ga and gb. From stability constraints (8.12) and (8.13) it is
straightforward to derive bounds on ai: a1 ∈ ]−2; 2[ and a2 ∈ ]−1; 1[. These bounds are
independent of the frequency specification of the filter and yield an upper bound, ga = 1,
for the MSB of the coefficients ai.

Bounds on bi, however, cannot be obtained independently of the filter specifications.
Using the bounds on coefficients ai and the fact that the cosine in (8.8) belongs to [−1; 1],
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we deduce that

a0a1 cos((0− 1)ω) ≤ 2, (8.14)

a0a2 cos((0− 2)ω) ≤ 1, (8.15)

a1a2 cos((1− 2)ω) ≤ 2, (8.16)

a0a0 cos((0− 0)ω) ≤ 1, (8.17)

a1a1 cos((1− 1)ω) ≤ 4, (8.18)

a2a2 cos((2− 2)ω) ≤ 1. (8.19)

Hence,

∣∣A(ejω)∣∣2 = 2∑
k=0

2∑
l=0

akal cos((k − l)ω) ≤ 1 + 2 + 1 + 2 + 4 + 2 + 1 + 2 + 1 (8.20)

≤ 16. (8.21)

This bound, together with the frequency specification constraints in Equation (8.6),
leads to the constraint∣∣B(ejω)∣∣2 ≤ 16β(ω)

2
, ∀ω ∈ Ω, (8.22)

that needs to be satisfied by the coefficients bi.
As can be seen from (8.7), |B(ejω)|2 is a quadratic form bTQb with respect to the

variables bi. Its characteristic matrix Q, whose entries are

Qkl = cos((k − l)ω), ∀k, l ∈ [[1; 3]], (8.23)

is symmetric and its spectrum is {0, 1− cos(2ω), 2 + cos(2ω)}. Its eigenvalues being non-
negative, the inequality constraint (8.22) is convex. As a consequence, solving the con-
vex quadratic problems consisting in minimizing or maximizing bi subject to the convex
quadratic constraints (8.22) can be easily done by local solvers at a linear cost. Actu-
ally, common mixed MILP solvers can solve this kind of nonlinear problem. Solving these
quadratic models permits to deduce an upper bound for gb.

Note that the bounds we obtain on bi do not fully take into account the specificity of the
filter we are designing and use the worst case bounds in (8.22). It is possible to compute
tighter bounds on the coefficients in order to reduce the search space. Currently, we have
modeled the frequency and stability constraints using integer variables to represent FxP
coefficients. Hence, we have a model which can be used to solve steps FD+Q. We are
not interesting in the solutions of this model as their actual cost in terms of the I step
is not defined. However, by minimizing each ai and bi subject to the constraints we have
already defined, we quickly obtain lower bounds for each coefficient which can drastically
reduce the search space when solving the complete model including the I step. Similarly,
we obtain upper bounds by maximizing each ai and bi. As it has been shown in [KVF23]
in the context of the design of FIR filters, solving these simpler MILPs to obtain tighter
bounds for the solving of the final MILP is worthwhile.
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8.3 Incorporating the implementation step

The FxP coefficients satisfying the above frequency and stability constraints are also sub-
ject to hardware constraints. To optimize according to these constraints, we use the min-
imization ILP-based hardware model for MCM-Adders we presented in Chapter 4. With
this model, given a set of constant coefficients, we are able to find an adder graph with
a minimal number of adders. For the global IIR filter design problem, the coefficients
are, however, the unknowns. Similarly to [KVF23], we first design a number of linking
constraints that bind the coefficient variables for filter design with the inputs of an MCM
problem. We refer to them as glue constraints in Figure 8.2.

The challenge is that for the IIR filters two multiplier blocks should be optimized
simultaneously, one for coefficients ai and one for bi, with the goal of minimization of the
total number of adders, i. e., in both multiplier blocks and in the filter structure. This can
be achieved by incorporating twice the MCM constraints, one for each multiplier block,
and combining the objective functions. However, the original model is already costly so
we propose a more efficient solution, where the idea is to produce one adder graph, which
can be a posteriori separated into two independent multiplier blocks, one for ai and one
for bi. In other words, we propose an MCM model that, given a certain number of input
coefficient variables, adds the constraint that one part of those is separable from the others.

This is achieved in the following way. In the original model, a variable ca is associated
to every adder a and these variables are linked together with binary variables ca,i,k where
ca,i,k = 1 if, and only if, the adder k is the i-th input of adder a. In the new model, we
need to ensure that the adders related to the coefficients ai are not computed using the
adders related to the coefficients bi, and vice versa.

We propose to add binary variables mcma
a and mcmb

a, for each adder a, in order to
ensure that the adder can be used for one adder graph or the other, but not both. We
add a set of binary variables, sa,k, which encodes the information about two adders a and
k being used in the same adder graph, and a set of the following constraints

ca,i,k ≤ sa,k ∀a, k, i. (8.24)

They ensure that an adder cannot be used as the input of another if they are not in the same
adder graph. In a similar way, using mcma

a and mcmb
a, we ensure that the glue between

the filter coefficients and the adders is only possible for adders in the corresponding adder
graph. Note that the solver might even find FIR filters, as ai can be equal to 0.

8.4 Enhancing the model and wrapping up the solving

process

The explicit expression of (8.6) involved in the constraint (8.22) is as follows

b20 + b21 + b22 + 2b0b1 cos(ω) + 2b1b2 cos(ω) + 2b0b2 cos(2ω). (8.25)
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We remark that the above equation is insensitive to changing all coefficients sign simultane-
ously and to exchanging variables b0 and b2. This corresponds to symmetries in our model
which we will break in order to reduce the size of the search space. In details, the first
symmetry consists in simultaneously changing the sign of the values taken by b0, b1 and b2
and the second in exchanging the values taken by b0 and b2. Note that both symmetries
have no incidence on the MCM problem defined in Chapter 4, the existence of symmetric
adder graphs being obvious for opposed or exchanged coefficients.

As a consequence, from an arbitrary solution with

b0 = b∗0, b1 = b∗1 and b2 = b∗2, (8.26)

we can build three new solutions by simply applying these symmetries to obtain

b0 = −b∗0, b1 = −b∗1 and b2 = −b∗2, (8.27)

b0 = b∗2, b1 = b∗1 and b2 = b∗0, (8.28)

b0 = −b∗2, b1 = −b∗1 and b2 = −b∗0. (8.29)

The fourth solution (8.29) is obtained by applying the two symmetries consecutively, in
any order. Note that some of these four symmetric solutions (8.26)-(8.29) may be equal in
some special cases, e. g., when b0 = b1 = b2 = 0.

In order to derive symmetry breaking constraints, we divide the search space for b0, b1
and b2, which is R3, into four areas:

Σ1 =
{
(b0, b1, b2) ∈ R3 | b0 ≥ |b2|

}
, (8.30)

Σ2 =
{
(b0, b1, b2) ∈ R3 | − b0 ≥ |b2|

}
, (8.31)

Σ3 =
{
(b0, b1, b2) ∈ R3 | b2 ≥ |b0|

}
, (8.32)

Σ4 =
{
(b0, b1, b2) ∈ R3 | − b2 ≥ |b0|

}
. (8.33)

Then, one can verify that: a solution lying inside Σ2 moves to Σ1 applying the sign sym-
metry; a solution lying inside Σ3 moves to Σ1 applying the exchange symmetry; a solution
lying inside Σ4 moves to Σ1 applying both symmetries consecutively. As a consequence,
one can restrict the search to Σ1 and reconstruct all solutions using symmetries. This
restriction to Σ1 is achieved by adding the symmetry breaking constraint

b0 ≥ |b2| , (8.34)

to the model. The absolute value can be linearize as presented previously. Restricting to
another Σi would be lead to another symmetry breaking constraint, with an equivalent
improvement of the resolution process.

For completeness, it should be noted that two equivalent solutions might still be kept
on the frontier Σk∩Σl between areas despite our additional constraint. However, resolving
this issue is counterproductive, because the great majority of the search space lies in the
interior of the sets Σi, and removing the symmetries on the boundaries would introduce
too many additional constraints.
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Glue constraints

Preprocessing: coefficients bounds for bi

Filter specification constraints Stability constraints

MCM constraints for ai MCM constraints for bi

Symmetry breaking constraints (optional)

Minimize #adders in MCM subject to

Figure 8.2: High-level structure of the global ILP model IIRoptim.

Bird-view of the model

We provide a complete model, which is preceded by a simpler quadratic convex problem
we solve with the same tools. As Figure 8.2 shows, the high-level IIR model consists of
the following constraints:

• linearized frequency-specification constraints (8.6)-(8.8);

• stability constraints (1.27)-(1.28);

• (optional) symmetry breaking constraints (8.34) enabling a significant reduction of
the design space;

• constraints responsible for the design of optimal constant-multiplication blocks for ai
and bi;

• so-called glue constraints, connecting the unknown filter coefficients with multi-
plier blocks.

Thanks to the great modularity of mathematical modeling, we should be able to merge our
MCM-Bits or tMCM models with the FD+Q as easily as it was for MCM-Adders. With
MCM-Bits or tMCM, the model might become too large for current solvers but they will
evolve and we believe they will soon be able to tackle problems which our currently out
of reach.

8.5 Experimental results and discussion

8.5.1 Implemented toolflow

We implemented our approach into a tool, whose minimalist interface is shown in Fig-
ure 8.3. The input specification includes the frequency-domain specification of the filter,
and also the information for hardware implementation, i. e., the coefficient word length,
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Optimal order-2 IIR hardware
generator

IIRoptim FloPoCo
coeffs

adder graphs

.vhdl

Frequency
specifications

filter spec.

input format output format (target freq.)

hardware spec.

Figure 8.3: Interface of the proposed tool.

Table 8.1: Sets of lowpass filters used for the IIR experiments. First the set with decreasing
δ, next the sets with increasing passband and stopband. Finally, a lowpass filter.

Benchmark lp1k lp2k lp3k lp4

k {0, 1, . . . , 6} {0, 1, . . . , 4} {0, 1, . . . , 4} −
passband/π [0; 0.3] [0; 0.3 + 0.05k] [0; 0.3] [0; 0.5]
stopband/π [0.7; 1] [0.7; 1] [0.7− 0.05k; 1] 0.91

δ 0.1− 0.01k 0.1 0.1 0.1

the input/output formats and performance parameters, such as the required target fre-
quency. All the other parameters (filter coefficients and their FxP format, the multiplier-
less operator architecture, the representation of intermediate data, etc.) are determined
automatically as a part of a global optimization process.

Given the user input, we first construct an MILP model and solve it, with a few
possible intermediate steps we presented above. The result of the global optimization
problem, i. e., the list of filter coefficients and the adder graphs defining the optimal shift-
and-add architectures, is then passed on to FloPoCo [dDP11], which was extended for
that. In collaboration with Jonas Kühle, Fulda University, we implemented a new operator
FixIIRShiftAdd within FloPoCo, generating faithfully-rounded multiplierless IIR filters,
i. e., only the last output bit might be erroneous and all other bits are guaranteed to
be correct. The new operator alleviates the filter designer from all internal architectural
decisions and presents a final VHDL code.

8.5.2 Set of benchmarks and comparison approaches

Benchmarks

Although the design of second-order IIR filters is an important part of the design of larger
order filters, benchmarks are rarely targeting frequency specifications of individual second-
order sections. Hence, we propose three sets of filter specifications with increasing filter
design difficulty that could without doubt be used in real-life applications. In addition to
that, we add another artificial low-pass filter, and a real-life example from [VIDDH19].
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The normalized low-pass filter specifications are here defined as

1− δ ≤
∣∣H(eiω)

∣∣ ≤ 1 + δ, ∀ω ∈ [0;ωp] , (passband)

0 ≤
∣∣H(eiω)

∣∣ ≤ δ, ∀ω ∈ [ωs; 1] . (stopband)

We fix the initial passband to [0; 0.3], stopband to [0.7; 1] and δ = 0.1. Then, for each of the
families of filter specifications, we vary one of the parameters in dependence of a variable k
to increase the filter design difficulty. The detailed frequency specifications are given in Ta-
ble 8.1, and their graphical representation is sketched in Figure 8.4. For example, in family
lp1, the δ varies from 0.1 to 0.04 with step 0.01k where k = [[0; 6]]. However, the designs
were possible only up to k = 5, reaching the maximum design possibilities for second-order
IIR filters. Analogously, the families lp2 and lp3 increase/reduce the passband/stopband,
respectively. The filter specification lp4 is a lowpass with a short stopband.

Finally, our last benchmark hp0 is a real-life application, it is a high-pass filter, repre-
sented in Figure 8.5, which is a compensator used in a magnetic-bearing control system.
It was initially derived by discretizing the analog controller [KFCV03] and further used as
an example in word length optimization literature [SRZ12, VIDDH19]. It is most recently
used in [VIDDH19] to demonstrate a KCM-based faithfully-rounded implementation of IIR
filters. This filter is not defined in terms of frequency specifications but by its frequency
response, hence to implement the three-step approaches we approximate the frequency
specification in Matlab using the coefficients given in [SRZ12, VIDDH19]. For our im-
plementation, the versatility of an MILP modeling permits to easily integrate frequency
response bounds as functions of ω and similarly approximate the filter hp0.

Comparison approaches

We compare our approach with the classical and state-of-the-art three step approach for
the IIR design. We will compare optimization results in terms of high level metrics such
as the number of adders, and implementation results. For the three step approach, we
will first obtain filter coefficients using Matlab’s elliptic method. Then, as in Matlab’s
Fixed-Point design Toolbox, we convert the double-precision coefficients to FxP. However,
quantization often leads to errors in frequency response or instabilities, hence we start with
a relatively small word length and increase it until the frequency-domain error is above a
threshold (> 10−7) or the filter is unstable. Finally, we perform different implementation:

• 3-step Generic: using generic multipliers (using the VHDL ‘*’ operator, potentially
using DSP blocks on FPGA);

• 3-step Generic NoDSP: same as above with disabled DSP blocks for synthesis and
implementation;

• 3-step MCM: we apply the optimal shift-and-add implementation on the quantized
coefficients;

• 2-step KCM: we skip the quantization step and use the approach from [VIDDH19],
which directly obtains a KCM-based implementation for real coefficients.
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Figure 8.5: Frequency response of the compensator hp0 [CVKF03, SRZ12].
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Table 8.2: Results for our global optimization method vs applying optimal MCM upon
quantized coefficients. The total number of adders #A=#AM+#AS consists of the mul-
tiplier block #AM , and structural #AS adders. Results are reported for the smallest
coefficient word length W yielding stable filters for 3-step MCM. Best results are in bold.

Benchmark
Our method 3-step MCM

W #AM #AS #A W #AM #AS #A

lp10 4 1 4 5 10 8 4 12
lp11 4 1 4 5 16 11 4 15∗

lp12 4 2 4 6 6 5 4 9
lp13 4 3 4 7 10 7 4 11
lp14 5 4 4 8 9 7 4 11
lp15 5 4 4 8 − − − −
lp20 4 1 4 5 10 8 4 12
lp21 4 1 4 5 10 8 4 12
lp22 5 3 4 7 10 8 4 12
lp23 6 4 4 8 − − − −
lp30 4 1 4 5 10 8 4 12
lp31 4 2 4 6 4 2 4 6
lp32 4 3 4 7 23 18 4 22∗

lp33 5 3 4 7 − − − −
lp4 4 1 4 5 4 3 4 7
hp0 6 1 2 3 11 6 4 10

∗ heuristic solution using [KZFC12]

Basically, 3-step MCM and 2-step KCM is the state-of-the-art but we also compare against
3-step Generic (NoDSP) which is typically used by engineers in Matlab.

The coefficient word length is an input parameter for our tool, hence, for each specifi-
cation we will explore a range of different coefficient word lengths. For the input/output
data in hardware implementation, we used 16-bit.

8.5.3 Evaluation of the MILP model and design results

In this section, we evaluate the performance of our MILP model and compare with the
3-step MCM-based approach to see the benefits w. r. t. number of adders in a shift-and-add
implementation.

First, note that the solving times are reasonable, ranging from a few seconds for small
word lengths (4-5 bits) and going up to a few minutes in the worst case if we push the
word length to unnecessarily large values. We observe similar solving times for the 3-step
MCM approach. Symmetry breaking constraints permitted to drastically reduce solving
times. Depending on the problem complexity, solving times were at least divided by two.
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Although increasing the word length doubles the ranges of integer variables with each new
coefficient bit, the main bottleneck in pushing the coefficient word lengths further than
10-11 bits is due to numerical instabilities in the MILP solvers.

In Table 8.2, we present the optimization results for our method and for the 3-step MCM
method. We report results for the smallest word lengths possible, in which our method has
a feasible result (and, by construction, no frequency domain error), and where the Q step in
3-step MCM yields stable filters with frequency-domain error smaller than 10−7. It can be
noticed that our method finds solutions for smaller coefficient word lengths than the 3-step
MCM, and with significantly smaller total number of adders for most of the cases (46% on
average in Table 8.2). In some cases, marked with asterisk, target word lengths for 3-step
MCM were too big s. t. the optimal MCM timed-out and the RPAG heuristic [KZFC12]
was used to obtain adder graphs instead. For the specification lp4 both approaches find
designs with 4-bit coefficients, but thanks to efficiently covering the whole design space of
all possible FxP coefficients, our method determines coefficients that require fewer adders
in the multiplier block and the total of 5 adders, instead of 7. Finally, the benchmark lp31
is the only case when the coefficients in 3-step MCM coincide with the ones found by our
tool.

Another advantage of the proposed MILP formulation is privileging sparse imple-
mentations, which even for second-order filters largely improves performance. For in-
stance, while the benchmark hp0 was traditionally implemented with all nonzero coeffi-
cients [VIDDH19, SRZ12], we found a sparse implementation with 6-bit coefficients, having
as coefficients b0 = 1, b1 = −1, b2 = 0, a1 = −31/32, a2 = 0 and leading to the total of 3
adders for the whole filter. To compare, the 3-step MCM can provide at minimum 11-bit
coefficients implemented with 10 adders.

Note that for benchmarks lp15, lp23 and lp33 Matlab failed to find any IIR filter with
double-precision coefficients which fits the specifications. Our method, however, success-
fully completes the task with a small coefficient word length. It is important to note that
our tool provides optimal implementations w. r. t. the total number of adders for a given
coefficient word length. While we stop at the smallest possible coefficient word length, as
in Table 8.2, it does not necessarily lead to the optimal implementation w. r. t. all possible
word lengths, and increasing the coefficient word length could actually lead to fewer adders.

To illustrate this, Figure 8.6 shows synthesis results for the lp14 benchmark with co-
efficient word lengths varying from 4 to 10 bits. First, one can note that our results start
at 5-bit coefficients. Indeed, our tool proved that no stable solution satisfying the given
frequency specifications is possible for coefficients with word length 4. It can be seen
that increasing the word length from 6 bits to 7 bits actually reduces the total number of
adders from 8 to 7 and improves the number of used LUTs. Then, increasing coefficient
word length does not worsen the solution as we can simply multiply values by 2 for each
additional bit to obtain an equivalent solution. In other words, even if the user specifies
a larger word length than required, our tool finds the best coefficients that might fit in a
smaller format and guarantees that trying smaller word length will not give smaller number
of adders. However, the larger the word length the harder is the problem for the solver
which, at some point, might not find the optimal solution within its available time.
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Figure 8.6: Implementations for lp14 benchmark with coefficient word lengths varying
from 4 to 10 bits. The bars correspond to the number of LUTs (left axis) and labels on
bars denote number of adders. The frequency-domain error of 3-step methods is the red
line (right axis).

For the classical 3-step approaches, design-space exploration is more difficult and ir-
regular. For these methods, coefficient quantization introduces a frequency-domain error
meaning that the quantized filter does not satisfy the frequency specifications any more
(see the red line in Figure 8.6). This error is highly nonlinear, and a typical intuition that
increasing coefficient word length improves the quality of filter is simply not true (see the
frequency-domain error for 7- and 8-bit coefficients in Figure 8.6). Hence, the search for
the best coefficient size must be exhaustive for 3-step methods.

8.5.4 Hardware implementation and discussion

In the following, we first describe in details the faithfully-rounded architectures that we
implement in FloPoCo and then discuss the synthesis results obtained for our benchmarks
and each approach.

Implemented architecture

The addition in the center of the high-level description of the transposed direct form II filter,
in Figure 8.1b, requires the addition of three inputs, hence it must be first separated into
two consecutive two-input add operators. The critical path then contains one multiplication
and two additions as illustrated in Figure 8.7a. To cut the critical path, pipeline registers
are usually added, leading to three additional registers as indicated by the red registers in
Figure 8.7a.

We propose to slightly modify the classic structure and separate the recursion into its
own branch as in Figure 8.7b. The number of two-input adders stays the same, and the two
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<latexit sha1_base64="Y7DTYAcuncLN2qgOgbpjI6SsmtA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPTdfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u6vKvXzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDhe41x</latexit>

b1
<latexit sha1_base64="rECunPrWrQVCybErB67diJvl+UI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u6vKvXzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDi/41y</latexit>

b2
<latexit sha1_base64="HiaYvxuYSfC7aHDPIkhLY8W+O9k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndZrd1fVerneRxFOIFTuAAPrqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHkg41z</latexit>

�a1
<latexit sha1_base64="n48QSbC5VfeN05c9aVVpWcX34SQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbFiyWpgh4LXjxWMG2hDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa5dIkH3qBac+vuHGiVeAWpQYHWoPrVH8YkFVQawrHWPc9NTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6DjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7EheMsvr5J2o+5d1RsP17XmeRFHGU7gFC7Agxtowj20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9LK42o</latexit>

�a2
<latexit sha1_base64="x0UDPUt6U+NMDNQNEmbPG9eIkd8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbFiyWJgh4LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxy6RIP/EG15tbdOdAq8QpSgwLNQfWrP4xJKqg0hGOte56bmCDDyjDC6azSTzVNMJngEe1ZKrGgOsjmt87QmVWGKIqVLWnQXP09kWGh9VSEtlNgM9bLXi7+5/VSE90GGZNJaqgki0VRypGJUf44GjJFieFTSzBRzN6KyBgrTIyNp2JD8JZfXiVtv+5d1f2H61rjvIijDCdwChfgwQ004B6a0AICY3iGV3hzhPPivDsfi9aSU8wcwx84nz9Mr42p</latexit>

z�1
<latexit sha1_base64="pCBpAEu/G+0ShnixbJ8crZD4HdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosePFYwX5Au5Zsmm1js8mSZIW67H/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp767UeqNJPizkxi6kd4KFjICDZWaj3dp2de1i9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4zUq9RNMYkzEe0q6lAkdU++ns2gydWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSiNxX/87qJCa/8lIk4MVSQ+aIw4chINH0dDZiixPCJJZgoZm9FZIQVJsYGVLIheIsvL5NWreqdV2u3F5U6yuMowhEcwyl4cAl1uIEGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx8zv47G</latexit>

z�1
<latexit sha1_base64="pCBpAEu/G+0ShnixbJ8crZD4HdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosePFYwX5Au5Zsmm1js8mSZIW67H/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp767UeqNJPizkxi6kd4KFjICDZWaj3dp2de1i9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4zUq9RNMYkzEe0q6lAkdU++ns2gydWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSiNxX/87qJCa/8lIk4MVSQ+aIw4chINH0dDZiixPCJJZgoZm9FZIQVJsYGVLIheIsvL5NWreqdV2u3F5U6yuMowhEcwyl4cAl1uIEGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx8zv47G</latexit>

(a) Transposed Direct Form 2

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

y
<latexit sha1_base64="ChChKkFbE6oMN+GPiIg0E02AztA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15lWlfp7HUYQTOIUL8OAa6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f4J+M5Q==</latexit>

x
<latexit sha1_base64="N5aUhsRteo9PQj6sQrm/p3x5vME=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrtookcSLx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1fMsjjycwClcgAfXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN8bjOQ=</latexit>

b0
<latexit sha1_base64="Y7DTYAcuncLN2qgOgbpjI6SsmtA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPTdfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u6vKvXzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDhe41x</latexit>

b1
<latexit sha1_base64="rECunPrWrQVCybErB67diJvl+UI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u6vKvXzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDi/41y</latexit>

b2
<latexit sha1_base64="HiaYvxuYSfC7aHDPIkhLY8W+O9k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndZrd1fVerneRxFOIFTuAAPrqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHkg41z</latexit>

�a1
<latexit sha1_base64="n48QSbC5VfeN05c9aVVpWcX34SQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbFiyWpgh4LXjxWMG2hDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa5dIkH3qBac+vuHGiVeAWpQYHWoPrVH8YkFVQawrHWPc9NTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6DjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7EheMsvr5J2o+5d1RsP17XmeRFHGU7gFC7Agxtowj20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9LK42o</latexit>

�a2
<latexit sha1_base64="x0UDPUt6U+NMDNQNEmbPG9eIkd8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbFiyWJgh4LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxy6RIP/EG15tbdOdAq8QpSgwLNQfWrP4xJKqg0hGOte56bmCDDyjDC6azSTzVNMJngEe1ZKrGgOsjmt87QmVWGKIqVLWnQXP09kWGh9VSEtlNgM9bLXi7+5/VSE90GGZNJaqgki0VRypGJUf44GjJFieFTSzBRzN6KyBgrTIyNp2JD8JZfXiVtv+5d1f2H61rjvIijDCdwChfgwQ004B6a0AICY3iGV3hzhPPivDsfi9aSU8wcwx84nz9Mr42p</latexit>

z�1
<latexit sha1_base64="pCBpAEu/G+0ShnixbJ8crZD4HdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosePFYwX5Au5Zsmm1js8mSZIW67H/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp767UeqNJPizkxi6kd4KFjICDZWaj3dp2de1i9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4zUq9RNMYkzEe0q6lAkdU++ns2gydWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSiNxX/87qJCa/8lIk4MVSQ+aIw4chINH0dDZiixPCJJZgoZm9FZIQVJsYGVLIheIsvL5NWreqdV2u3F5U6yuMowhEcwyl4cAl1uIEGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx8zv47G</latexit>

z�1
<latexit sha1_base64="pCBpAEu/G+0ShnixbJ8crZD4HdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosePFYwX5Au5Zsmm1js8mSZIW67H/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp767UeqNJPizkxi6kd4KFjICDZWaj3dp2de1i9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4zUq9RNMYkzEe0q6lAkdU++ns2gydWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSiNxX/87qJCa/8lIk4MVSQ+aIw4chINH0dDZiixPCJJZgoZm9FZIQVJsYGVLIheIsvL5NWreqdV2u3F5U6yuMowhEcwyl4cAl1uIEGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx8zv47G</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

z�1
<latexit sha1_base64="pCBpAEu/G+0ShnixbJ8crZD4HdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosePFYwX5Au5Zsmm1js8mSZIW67H/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp767UeqNJPizkxi6kd4KFjICDZWaj3dp2de1i9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4zUq9RNMYkzEe0q6lAkdU++ns2gydWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSiNxX/87qJCa/8lIk4MVSQ+aIw4chINH0dDZiixPCJJZgoZm9FZIQVJsYGVLIheIsvL5NWreqdV2u3F5U6yuMowhEcwyl4cAl1uIEGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx8zv47G</latexit>

z�1
<latexit sha1_base64="pCBpAEu/G+0ShnixbJ8crZD4HdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosePFYwX5Au5Zsmm1js8mSZIW67H/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp767UeqNJPizkxi6kd4KFjICDZWaj3dp2de1i9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4zUq9RNMYkzEe0q6lAkdU++ns2gydWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSiNxX/87qJCa/8lIk4MVSQ+aIw4chINH0dDZiixPCJJZgoZm9FZIQVJsYGVLIheIsvL5NWreqdV2u3F5U6yuMowhEcwyl4cAl1uIEGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx8zv47G</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

(b) Proposed structure

Figure 8.7: Comparison of the classic and proposed structures. The red line corresponds
to the critical path.

additional registers are compensated by the fact that only one pipeline register is required
to cut the critical path, instead of three for the original structure. Hence, at the same
hardware cost we get a better modularity of the feedforward/feedback loops.

Faithfully-rounded output

We aim at providing faithfully-rounded implementations, i. e., the precision of the output y
serves as the accuracy constraint. The goal is to compute just right to avoid assigning larger
data sizes than strictly required as this would waste resources to compute unnecessary
bits. Hence, we provide a code generator that, given the input/output format and filter
coefficients, automatically computes the word sizes of all internal data paths to guarantee
the time-domain error smaller than 2ℓout but not more.

Figure 8.8 presents our approach for multiplierless hardware IIR on the example of lp14
benchmark, fulfilling frequency specifications in Figure 8.1a with 7 adders. Its transfer
function was obtained as

Hlp14(z) =
25× 2−7 + 40× 2−7 z−1 + 25× 2−7 z−2

1− 40× 2−6 z−1 + 20× 2−6 z−2
. (8.35)

The inputs to the architecture generator are the MSB and LSB positions of the input x
and output y, the adder graphs for multiplier blocks ak and bk, and their corresponding
LSBs. For instance, here ℓb = −7, ℓa = −6.

Obviously, one cannot compute exactly (or with some fixed precision) on each iteration,
truncate to ℓout and simply feed truncated values back into the loop, as this will degrade
tremendously numerical quality and accumulated errors will explode. TheWorst-Case Peak
Gain (WCPG) measure for IIR filters [VHL15], which has been applied for hardware IIR
filters implemented with KCM multipliers [VIDDH19], permits to determine the necessary
extended internal precision ℓext s. t. the propagated error never reaches the LSB of the



114 IIR Filters

x
(min,ℓin) << ℓb << ℓa

ℓext
y

(mout,ℓout)

ℓout

← 2

5x
z−1 z−1

← 2

← 3 5y

← 2 ← 3

25x
z−1 z−1

← 2

Figure 8.8: The lp14 benchmark can be implemented with mere 7 adders for 7-bit coeffi-
cients. All additions are exact, the truncation to internal extended format ℓext is determined
s.t. the output is faithfully rounded to ℓout.

output. For example, in Figure 8.8 ℓext = ℓout +G, where the number of guard bits G for
the filter lp14 determined with its WCPG is G = 3. Then, the output of the multiplier
blocks needs to guarantee its result with accuracy ℓext. We perform all additions and shifts
exactly, increasing the size of data paths until their truncation to ℓext.

For the generic approach, based on plain VHDL multipliers (using the * operator), we
adopt a similar approach.

Synthesis results

For the hardware experiments, the FPGA synthesis was performed using Vivado v2020.2 for
a Kintex 7 device (xc7k70tfbv484-3). The delay and power results are obtained after place
and route. The power was evaluated for a 100MHz clock for all dynamic parts including
clocks, logic, signals and DSPs but no static or I/O power to ease the comparison of the
cores. We compare the designs with the smallest coefficient word lengths, i. e., for which
our MILP has a feasible solution and the 3-step approach has a frequency-domain error
smaller than 10−7.

Figure 8.9 summarizes the number of LUTs, the critical path delay and the power. For
each benchmark, below the x-axis, we see the coefficient word length for our result (left)
and for the 3-step quantization (right). For instance, we recognize the values 5 and 9 for
the lp14. First, we observe that our method is always superior to any of the 3-step or KCM-
based methods w. r. t. all metrics. We also observe an average LUT improvement of 48%
compared to the best results of other methods, excluding the one using DSPs. In addition
to that, the proposed approach offers the lowest delay with an improvement of 27%, which
is not as drastic as LUT improvement. Finally, the resource reduction translates to the
significant power reduction of 57%, on average, and up to 95% in the best case.
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Of course, our method is more efficient partly due to the smallest possible coefficient
word lengths, but even when using the same word sizes (see benchmark lp4) we obtain
solutions with less adders which leads less LUTs, a smaller delay and power consumption.
The KCM-based approach, representing the state-of-the-art for faithfully-rounded IIR fil-
ters, had worse general performance than our method in all benchmarks and requires, on
average, more LUTs than other approaches. However, KCM-based multipliers have simi-
lar, or smaller, delays than 3-step methods. Moreover, KCM would have no issue dealing
with large word length coefficients while optimal shift-and-add based method, including
ours, are currently limited in this regard. Yet, we proved that for second-order IIR filters,
it is unnecessary to deal with large word lengths.

One of the best performance improvements was achieved for the hp0 compensator. This
is due to the much smaller coefficient word length than in all the previous literature, the
sparsity and the fact that we succeeded in finding a filter which is not on the edge of
stability. This results in only 105 LUTs compared to 286 in the 3-step MCM and 760 in
the KCM-based implementation.

Thanks to the help of Efstratios Zacharelos from the University of Naples Federico II,
we have been able to also run the hardware experiments on ASIC. The synthesis was per-
formed using Cadence Genus v18.13 targeting a commercial standard-cell library in 14 nm
FinFET technology from Global Foundry with 0.8V supply voltage and regular VTH.
Power dissipation is estimated by simulating the final netlist with 1000 random input vec-
tors using Cadence NCSIM to obtain the switching activity. The timing constraints were
set to 10 ns to obtain rather compact circuits. ASICs comparison with implementations
using DSPs or the KCM table-based method is not representative due to technology dif-
ferences, thus we just report implementation results for the our approach and the 3-step
Generic NoDSP and 3-step MCM approaches.

We reported our hardware results, in terms of area, power and delay, in Figure 8.10.
On ASICs benchmarks, our designs yield similar results, reducing the area by 48% and
the delay by 27% on average, with the peak reduction by 76% and 51%, respectively. Our
new designs also demonstrate an impressive average power improvement of 65%, and in
the best cases of 90%. This means that our designs divide the power consumption by 4 on
average, and by almost 10 in the best observed cases.

Although ASICs were not our primary target, we still obtain a substantial gain with
our approach. It is very encouraging as we might expect that approaches designed for
FPGAs also work well on ASICs. Hence, it would mean that the different methods we
proposed for MCM and for which we confirmed significant gain in comparison with the
state-of-the-art over FPGAs are also interesting for ASIC design.

8.6 Conclusion

In this chapter, we demonstrated optimal design of multiplierless second-order IIR filters
w. r. t. the number of adders. We combined the classical steps, which consist in finding FxP
filter coefficients and then their most efficient implementation according to a given metric,
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into a global optimization problem. We are able to guide the search for FxP coefficients
which fit a set of specifications using directly the multiplierless implementation cost.

This work required to overcome multiples difficulties such as the nonlinear specifica-
tions or the bound requirement on coefficients. Ultimately, we proposed a linear model of
the combined filter design, quantization and implementation step providing a convenient
way for adjustments and extensions. We improved this model with several design space
reduction techniques, including a novel symmetry breaking constraint, which we formally
proved. Our approach permits to find in mere seconds filter coefficients which fully satisfy
filter specifications without a back and forth process between filter design and quantization
in addition to ensuring these coefficients have a low multiplierless implementation cost.

Combined with FloPoCo, we provide an automated tool which takes simple parameters
as an input and outputs VHDL code for FPGAs. The synthesis results confirmed that a
global optimization approach is superior to the multi-step FD + Q + I classical methods.
After testing the tool on numerous benchmarks, we observed a significant hardware cost
reduction obtained with our approach, on both FPGAs and ASICs.

Some efforts are still required to extend our method to higher order filters and we are
confident that using mathematical modeling it should be possible to automatically find
efficient design of cascaded second-order IIR filters. Every advance in structural methods,
such as using direct form vs transposed direct form or using different metrics for multipli-
erless implementation, can be used to adjust the current set of variables and constraints.
Indeed, although the number of adders is a reliable high level metric, optimizing the num-
ber full adders instead would be better and we are fairly optimistic on the fact that our
method can be refined to minimize that criteria. In any case, this work shows that MCM,
and MILP in general, is useful and efficient for practical applications.
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End-of-the-World Switch. PLEASE
DO NOT TOUCH

Terry Pratchett (1948-2015),
Thief of Time (2001)

With this thesis, we contributed to intensify the scientific exchanges between operations
research methods, computer arithmetic analysis and hardware design applications. Among
the large variety of topics in hardware design, we have taken up the MCM problem which
is an essential building block of many classical applications. At first we have redefined the
terminology around the MCM problem to be able to easily differentiate MCM as a concept
from the more specific MCM-Adders, MCM-Bits, tMCM or PMCM problems. Then, in
this work we demonstrated that operations research, via mathematical modeling, brings
to hardware applications valuable tools. In Chapter 4, we have presented the efficiency
of mathematical modeling to solve a pertinent problem well-known for decades. First, we
have presented our minimization model for the MCM-Adders problem and incorporated
secondary metrics such as the adder depth. Then, we demonstrated the interest of tweaking
solver parameters as, with our set of parameters compared to default values, it permitted
to reduce solving times by 16.9%, on average.

Furthermore, we dived into hardware model counting the number of one-bit adders in
Chapter 5. This lower-level metric actually reflects better the hardware cost and solving
MCM-Bits instead of MCM-Adders permitted to reduce the LUT utilization by 7.8%, on
average. To make these comparison, we included a VHDL code generation component to
our toolbox.

We believe that Chapter 6 is really where the mixture takes. Although we are designing
arithmetic operators, in a way we got around error analysis up to this point. In this chapter,
an error analysis has been necessary to dive deeper in the hardware design possibilities.
This error analysis is important for safety-critical applications in which hardware designers
need to be able to trust that errors in the circuit are small enough. Furthermore, it
facilitates the design of frugal hardware operators: using intermediate truncations, we
reduce the power consumption by 22% in comparison to full-precision circuits, on average.

Finally, in Chapter 7, we demonstrated that mathematical modeling is not limited to
modeling adders (block of LUTs), shifts (wires) and one-bit adders (LUTs) but can also be
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used to model registers (FF) which are an essential component of hardware circuit. This
permitted to drastically reduced the critical path delay, dividing it by 3 in some cases.
Solving PMCM, instead of a posteriori pipelining a fixed adder graph, also reduced the
one-bit adder and register cost by 33%, on average.

Throughout this thesis, we presented multiple models which have been implemented
in our open-source Julia package jMCM1. Solving our models, we obtain adder graphs for
which we can generate VHDL using our package AdderGraphs2. To provide an ultimate
practicability, we believe that it would be extremely useful to embed these models in
tools that hardware designers could trust. Currently, we are doing some work in that
direction as all of our implementations are open-source and we have started the integration
into FloPoCo.

Finally, as a breath of fresh air, we took a step back and demonstrated that MCM,
solved with MILP, combines well with the design of bigger arithmetic operators such as
digital filters. Digital filter algorithms usually involve multiple constant multiplications
and with the design of second-order IIR filters we illustrated that MCM can be used
at the core of a larger problem. This way, we performed the co-design of digital filter
coefficients with their implementation using MCM. This permitted to obtain filters which
power consumption has been divided by up to 10 in comparison to the state-of-the-art
KCM. On average, we reduced the number of LUTs by 48% compared to the best results of
other methods, excluding the one using DSPs. With these experiments, we have exhibited
the efficiency of mathematical modeling to solve practical hardware design problems. This
is very promising as it encourage us to pursue our work on other hardware problems.

Perspectives

The work presented in this thesis is a step towards using more operations research tech-
niques in hardware design. Although we solved multiple flavors of the MCM problem, it
still has many corners to explore.

Overall, we plan to improve our toolbox on the MCM problem and remove as
many gray areas as possible:

• Using DSPs. We focused on FPGAs but left aside DSP blocks, these resources
are valuable and could be used together with LUTs in order to dispatch the cost
of multiple constant multiplications over various FPGAs elements. In short term,
we plan to incorporate their usage within MILP models to replace costly constants
with DSPs. In particular, it makes no doubt that combining DSPs and LUTs, as in
[LPBG19], to make the most of both resources is a direction we need to go towards.

• New modeling approaches. We had an hammer, MILP, and we showed that
MCM is close enough to a nail. However, we need to look at our own practice with
critical thinking and maybe consider other mathematical modeling approaches or

1https://github.com/remi-garcia/jMCM
2https://github.com/remi-garcia/AdderGraphs

https://github.com/remi-garcia/jMCM
https://github.com/remi-garcia/AdderGraphs
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heuristics. In particular, in the mid-term future, we would like to experiment the
constraint programming paradigm over the MCM-Adders problem to compare with
MILP. Indeed, depending on the problem, MILP solvers or constraint programming
solvers are better suited and, on the MCM-Adders problem, some limitations, such
as the numerical instabilities issues, would be avoided with constraint programming.
In any case, both methods require heavy computations and we believe that more
heuristics can be developed for this problem. Currently, to our knowledge, available
heuristics are primal heuristics which produce an initial solution but do not build on
it. In the future, we would like to explore alternatives and propose heuristics that
could improve solutions with a dedicated local search.

• Finer-grained versatile hardware component modeling. Overall, on the MCM
topic, we went from a high-level metric, the number of adders, towards a lower-level
metric, counting one-bit adders, including truncations. Ultimately, directly model-
ing LUTs, DSPs, FFs and wires would be a substantial realization. This would open
many doors as this capability could then be applied to any function producing hard-
ware arithmetic operators which are specifically and precisely designed for FPGAs.
This is a long term goal that we keep in mind and that we wish to achieve in collab-
oration with hardware designers to have a better understanding of the hardware. As
any problem we tackle with operations research tools, the domain-specific expertise
is absolutely necessary. By misunderstanding the problem, we will surely trigger the
wrong switch and, at best, lose valuable time.

This work on the MCM problem using MILP-based models also opens more theoretical
doors which we want to explore in the future:

• Complexity analysis. We are interested whether the MCM problem is NP-hard, as
it is conjectured in many previous papers [BH91, DM94, Gus08, AFM15, Kum18]?
Thong and Nicolici [TN11] established that while many similar problems are NP-
hard, this has not been proven for the MCM problem. Thong and Nicolici also noted
the existing proofs on related problems do not hold for MCM. This represents an issue,
as most of the techniques we imagine for solving MCM are built thinking that this
problem is NP-hard. Proving it in a near future would comfort us that we are indeed
going in the right direction. It would be a chance to raise the interest of researchers
from computational complexity theory towards hardware design problems.

• Statistical comparison. In Chapter 2, we recalled that solvers are not determinis-
tic. To our knowledge, the performance variability phenomenon has never been rigor-
ously taken into account when comparing models together or with other approaches.
However, to assert significant difference between approaches involving MILP-based
model, we need statistical hypothesis testing. As we established, this is not trivial
and we need to confront our practice with statisticians. In the future, providing a
toolbox to ease this comparison process is one of our mid term goals.
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Finally, we studied the MCM problem and one application through the IIR filter design.
We believe that our approach to these hardware problems can be also used for other
complete applications or larger hardware operators:

• Generic multiplications. Generic multiplications, for instance, have already ben-
efited from MILP modeling [KKIZ17, BKdD21] and we believe that these models
could be improved or extended to take into account more parameters such as vari-
able precision, which can help to reduce the power consumption when the application
does not need the highest precision all the time. We already have started to work
on transprecision multipliers with Andreas Böttcher and Martin Kumm from Fulda
University of Applied Sciences, which we plan to finalize in short term.

• Floating-point function approximation. Our work on the tMCM problem in-
volved an interesting error analysis and we would like to keep working on problems
which require optimized hardware with a guaranteed error bound. In particular,
function approximation for their implementation on FPGA is a topic which interest-
ingly aggregates computer arithmetic, hardware knowledge and optimization. Our
goal is to investigate this topic in the mid-term future. An interesting theoretical
component to this work would be to model FP numbers within MILP models. Indeed,
we believe it might be feasible to model the mantissa and the exponent separately,
as two integers, and, this way, to perform nonlinear operations in MILP. This could
permit to embed in MILP models real×real multiplication for the first time.

• Towards new applications. Over the long run, we are interested in a wider knowl-
edge of possible applications. For instance, we are already working with Vincent
Lostanlen on new digital filter operators for environmental acoustics and plan to
finalize this work in near future. Our goal is to reduce the power consumption of
hardware circuits that we intend to use to detect birds’ presence [LSF+18]. Other
examples of possible applications are neural networks and cryptography which in-
volve a large number of multiplications by constants similarly to the MCM problem.
However, usually, they involve matrix or very large constant multiplications. This
addresses similar, but new, problems which could probably benefit from our expertise
and we plan to investigate these interesting applications.

Overall, we plan to continue paving the way towards optimized hardware operators.
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APPENDIX A

MILP Models

A.1 High-level models – Chapter 4

A.1.1 Satisfiability

c0 = 1 (C1.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C1.2)

cnsha = 2saca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C1.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C1.4)

Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C1.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C1.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C1.7)
a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C1.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C1.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C1.10)

csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C1.11)

csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C1.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C1.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C1.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C1.15)
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Variables:

ca ∈ [[1; 2w]] ∀a ∈ [[0;N ]] (C1.16)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C1.17)

codda ∈ N ∀a ∈ [[1;N ]] (C1.18)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C1.19)

csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C1.20)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C1.21)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C1.22)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]] (C1.23)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C1.24)

Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C1.25)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C1.26)

A.1.2 Minimization

min
N∑
a=1

ua (O2)

c0 = 1 (C2.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C2.2)

cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C2.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C2.4)

Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C2.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C2.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C2.7)
a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C2.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C2.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C2.10)

csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C2.11)
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csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C2.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C2.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C2.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C2.15)

ua−1 ≥ ua ∀a ∈ [[1;N ]] (C2.16)

ca = 0 if ua = 0 ∀a ∈ [[1;N ]] (C2.17)

ca,i,k = 0 if ua = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C2.18)

Variables:

ca ∈ [[0; 2w]] ∀a ∈ [[0;N ]] (C2.19)

ua ∈ {0, 1} ∀a ∈ [[0;N ]] (C2.20)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C2.21)

codda ∈ N ∀a ∈ [[1;N ]] (C2.22)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C2.23)

csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C2.24)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C2.25)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C2.26)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]] (C2.27)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C2.28)

Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C2.29)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C2.30)

A.1.3 MILP model with adder depth

min
N∑
a=1

ua (O3)

c0 = 1 (C3.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C3.2)

cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C3.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C3.4)
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Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C3.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C3.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C3.7)
a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C3.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C3.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C3.10)

csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C3.11)

csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C3.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C3.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C3.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C3.15)

ua−1 ≥ ua ∀a ∈ [[1;N ]] (C3.16)

ad0 = 0 (C3.17)

ada ≥ ada,l + 1 ∀a ∈ [[1; N]] (C3.18)

ada ≥ ada,r + 1 ∀a ∈ [[1; N]] (C3.19)

ada ≤ ada,l + 1 +Nad b
a ∀a ∈ [[1; N]] (C3.20)

ada ≤ ada,r + 1 +N ×
(
1− ad b

a

)
∀a ∈ [[1; N]] (C3.21)

ada,i = adk if ca,i,k = 1, ∀a ∈ [[1; N]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C3.22)

admax ≥ ada ∀a ∈ [[1; N]] (C3.23)

ca = 0 if ua = 0 ∀a ∈ [[1;N ]] (C3.24)

ca,i,k = 0 if ua = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C3.25)

Variables:

ca ∈ [[0; 2w]] ∀a ∈ [[0;N ]] (C3.26)

ada ∈ [[0;N ]] ∀a ∈ [[0;N ]] (C3.27)

admax ∈ [[0;N ]] (C3.28)

ad b
a ∈ {0, 1} ∀a ∈ [[1;N ]] (C3.29)

ua ∈ {0, 1} ∀a ∈ [[0;N ]] (C3.30)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C3.31)

codda ∈ N ∀a ∈ [[1;N ]] (C3.32)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C3.33)
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ada,i ∈ [[0;N ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C3.34)

csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C3.35)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C3.36)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C3.37)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]] (C3.38)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C3.39)

Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C3.40)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C3.41)

+ Tightening constraints:

DLB (Cj)× oa,j ≤ ada ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C3.42)

ada−1 ≤ ada +N (1− ua) ∀a ∈ [[1;N ]] (C3.43)

+ User-given bound:

admax ≤ ad (C3.44)

+ Minimize adder depth:

min
N∑

a=1

(Nua) + admax. (O3)

A.2 Low-level models – Chapter 5

min
N∑
a=1

Bu
a (O4)

c0 = 1 (C4.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C4.2)

cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C4.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C4.4)

Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C4.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C4.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C4.7)
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a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C4.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C4.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C4.10)

csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C4.11)

csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C4.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C4.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C4.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C4.15)

ua−1 ≥ ua ∀a ∈ [[1;N ]] (C4.16)

ca = 0 if ua = 0 ∀a ∈ [[1;N ]] (C4.17)

ca,i,k = 0 if ua = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C4.18)

Ba = msba + 1− sa − ψa − ga ∀a ∈ [[1;N ]] (C4.19)

Bu
a = Ba if ua = 1 ∀a ∈ [[1;N ]] (C4.20)

Bu
a = 0 if ua = 0 ∀a ∈ [[1;N ]] (C4.21)

msb0 = win − 1 (C4.22)

msba,i = msbk if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C4.23)

ga ≤ msba ∀a ∈ [[1;N ]] (C4.24)

ga ≤ 0 if σa,r = 1 ∀a ∈ [[1;N ]] (C4.25)

ga ≤ sa,l if sa,l ≤ msba,r ∀a ∈ [[1;N ]] (C4.26)

ga ≤ sa,l if σa,l = 1 ∀a ∈ [[1;N ]] (C4.27)

sa,l =
w∑

s=1

sΦa,s ∀a ∈ [[1;N ]] (C4.28)

sa =
−1∑

s=−w

sΨa,s ∀a ∈ [[1;N ]] (C4.29)

msba,l + sa,l + sa + 1 ≤ msba if ψa = 1 ∀a ∈ [[1;N ]] (C4.30)

msba,r + sa + 1 ≤ msba if ψa = 1 ∀a ∈ [[1;N ]] (C4.31)

2b+1 − 1 ≥ (2win − 1) ca if msbB
a,b = 1 ∀a ∈ [[1;N ]], b ∈ [[1;w + win − 1]] (C4.32)

w+win−1∑
b=1

msbB
a,b = 1 ∀a ∈ [[1;N ]] (C4.33)
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w+win−1∑
b=1

b×msbB
a,b = msba ∀a ∈ [[1;N ]] (C4.34)

Variables:

ca ∈ [[0; 2w]] ∀a ∈ [[0;N ]] (C4.35)

ua ∈ {0, 1} ∀a ∈ [[0;N ]] (C4.36)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C4.37)

codda ∈ N ∀a ∈ [[1;N ]] (C4.38)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C4.39)

csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C4.40)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C4.41)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C4.42)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]] (C4.43)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C4.44)

Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C4.45)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C4.46)

msba ∈ [[0;w + win − 1]] ∀a ∈ [[0;N ]] (C4.47)

msba,i ∈ [[0;w + win − 1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C4.48)

msbB
a,t ∈ {0, 1} ∀a ∈ [[1;N ]], t ∈ [[1;w + win − 1]] (C4.49)

Ba ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C4.50)

Bu
a ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C4.51)

ga ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C4.52)

ψa ∈ {0, 1} ∀a ∈ [[1;N ]] (C4.53)

sa,l ∈ [[0;w]] ∀a ∈ [[1;N ]] (C4.54)

sa ∈ [[−w; 0]] ∀a ∈ [[1;N ]] (C4.55)

A.3 Model with truncations – Chapter 6

min
N∑
a=1

Bu
a (O5)

c0 = 1 (C5.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C5.2)
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cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C5.4)

Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C5.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C5.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]
(C5.7)

a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C5.10)

csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.11)

csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C5.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C5.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C5.15)

ua−1 ≥ ua ∀a ∈ [[1;N ]] (C5.16)

ca = 0 if ua = 0 ∀a ∈ [[1;N ]] (C5.17)

ca,i,k = 0 if ua = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]
(C5.18)

Ba = msba + 1− sa − ψa − ga ∀a ∈ [[1;N ]] (C5.19)

Bu
a = Ba if ua = 1 ∀a ∈ [[1;N ]] (C5.20)

Bu
a = 0 if ua = 0 ∀a ∈ [[1;N ]] (C5.21)

msb0 = win − 1 (C5.22)

msba,i = msbk if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]
(C5.23)

ga ≤ msba ∀a ∈ [[1;N ]] (C5.24)

ga ≤ tmax
a if ta,l ≤ msba,r ∧ ta,r ≤ msba,l ∀a ∈ [[1;N ]] (C5.25)

ga ≤ ta,l if σa,l = 1 ∧ σa,r = 0 ∀a ∈ [[1;N ]], (C5.26)

ga ≤ ta,r if σa,l = 0 ∧ σa,r = 1 ∀a ∈ [[1;N ]] (C5.27)

sa,l =
w∑

s=1

sΦa,s ∀a ∈ [[1;N ]] (C5.28)
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sa =
−1∑

s=−w

sΨa,s ∀a ∈ [[1;N ]] (C5.29)

msba,l + sa,l + sa + 1 ≤ msba if ψa = 1 ∀a ∈ [[1;N ]] (C5.30)

msba,r + sa + 1 ≤ msba if ψa = 1 ∀a ∈ [[1;N ]] (C5.31)

2b+1 − 1 ≥ (2win − 1) ca + εsupa if msbB
a,b = 1 ∀a ∈ [[1;N ]], b ∈ [[1;w + win − 1]]

(C5.32)
w+win−1∑

b=1

msbB
a,b = 1 ∀a ∈ [[1;N ]] (C5.33)

w+win−1∑
b=1

b×msbB
a,b = msba ∀a ∈ [[1;N ]] (C5.34)

εinf,nsha = εinf,sha,l + εta,l + εinf,sha,r + εta,r if σa,l = σa,r ∀a ∈ [[1;N ]] (C5.35)

εinf,nsha = εinf,sha,l + εta,l + εsup,sha,r + εta,r if σa,r = 1 ∀a ∈ [[1;N ]] (C5.36)

εinf,nsha = εsup,sha,l + εta,l + εinf,sha,r + εta,r if σa,l = 1 ∀a ∈ [[1;N ]] (C5.37)

εsup,nsha = εsup,sha,l + εsup,sha,r if σa,l = σa,r ∀a ∈ [[1;N ]] (C5.38)

εsup,nsha = εsup,sha,l + εinf,sha,r if σa,r = 1 ∀a ∈ [[1;N ]] (C5.39)

εsup,nsha = εinf,sha,l + εsup,sha,r if σa,l = 1 ∀a ∈ [[1;N ]] (C5.40)

εinf,nsha = 2sεinfa if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.41)

εsup,nsha = 2sεsupa if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.42)

εinf,sha,l = 2sεinfa,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.43)

εsup,sha,l = 2sεsupa,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.44)

εinf,sha,r = εinfa,r ∀a ∈ [[1;N ]] (C5.45)

εsup,sha,r = εsupa,r ∀a ∈ [[1;N ]] (C5.46)

εinfa,i = εinfk if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]

(C5.47)

εsupa,i = εsupk if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]

(C5.48)

za,i = zk if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]]
(C5.49)

zsha,l = za,l + sa,l ∀a ∈ [[1;N ]] (C5.50)

zsha,r = za,r ∀a ∈ [[1;N ]] (C5.51)

znsha,l = zsha,l if znsh,Ba,l = 1 ∀a ∈ [[1;N ]] (C5.52)

znsha,l = ta,l if znsh,Ba,l = 0 ∀a ∈ [[1;N ]] (C5.53)
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znsha,r = zsha,r if znsh,Ba,r = 1 ∀a ∈ [[1;N ]] (C5.54)

znsha,r = ta,r if znsh,Ba,r = 0 ∀a ∈ [[1;N ]] (C5.55)

znsha ≤ znsha,l ∀a ∈ [[1;N ]] (C5.56)

znsha ≤ znsha,r ∀a ∈ [[1;N ]] (C5.57)

znsha = za + sa ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.58)

z0 = 0 (C5.59)
w+win∑
b=0

ta,i,b = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.60)

w+win∑
b=0

za,i,b = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.61)

w+win∑
b=0

b× ta,i,b = ta,i ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.62)

w+win∑
b=0

b× za,i,b = zsha,i ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.63)

εTa,i = 2b−1, if ta,i,b = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , b ∈ [[1;w + win]]

(C5.64)

εTa,i = 0, if ta,i,0 = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.65)

εZa,i = 2b−1, if za,i,b = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , b ∈ [[1;w + win]]

(C5.66)

εZa,i = 0, if za,i,0 = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.67)

εta,i ≥ εTa,i − εZa,i ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.68)

εinfa ≤ ε ∀a ∈ [[1;N ]] (C5.69)

εsupa ≤ ε ∀a ∈ [[1;N ]] (C5.70)

εinf0 = 0 (C5.71)

εsup0 = 0 (C5.72)

ta,i ≥ zsha,i ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.73)

tmax
a = ta,l if tBa = 1 ∀a ∈ [[1;N ]] (C5.74)

tmax
a = ta,r if tBa = 0 ∀a ∈ [[1;N ]] (C5.75)

ta,l = zsha,l if σa,r = 1 ∀a ∈ [[1;N ]] (C5.76)

ta,r = zsha,r if σa,l = 1 ∀a ∈ [[1;N ]] (C5.77)

Variables:

ca ∈ [[0; 2w]] ∀a ∈ [[0;N ]] (C5.78)
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ua ∈ {0, 1} ∀a ∈ [[0;N ]] (C5.79)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C5.80)

codda ∈ N ∀a ∈ [[1;N ]] (C5.81)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.82)

csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C5.83)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.84)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C5.85)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]]
(C5.86)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.87)

Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C5.88)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C5.89)

msba ∈ [[0;w + win − 1]] ∀a ∈ [[0;N ]] (C5.90)

msba,i ∈ [[0;w + win − 1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.91)

msbB
a,t ∈ {0, 1} ∀a ∈ [[1;N ]], t ∈ [[1;w + win − 1]]

(C5.92)

Ba ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C5.93)

Bu
a ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C5.94)

ga ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C5.95)

ψa ∈ {0, 1} ∀a ∈ [[1;N ]] (C5.96)

sa,l ∈ [[0;w]] ∀a ∈ [[1;N ]] (C5.97)

sa ∈ [[−w; 0]] ∀a ∈ [[1;N ]] (C5.98)

εinf,nsha ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]] (C5.99)

εinf,sha,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.100)

εinfa ∈ [[0; 2w+win ]] ∀a ∈ [[0;N ]] (C5.101)

εinfa,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.102)

εsup,nsha ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]] (C5.103)

εsup,sha,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.104)

εsupa ∈ [[0; 2w+win ]] ∀a ∈ [[0;N ]] (C5.105)

εsupa,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.106)

εta,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.107)

zsha,i ∈ [[0;w + win]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.108)

znsha,i ∈ [[0;w + win]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.109)

znsha ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C5.110)
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za,i ∈ [[0;w + win]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.111)

za ∈ [[0;w + win]] ∀a ∈ [[0;N ]] (C5.112)

znsh,Ba,i ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.113)

za,i,b ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} , b ∈ [[0;w + win]]
(C5.114)

ta,i,b ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} , b ∈ [[0;w + win]]
(C5.115)

εZa,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.116)

εTa,i ∈ [[0; 2w+win ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.117)

ta,i ∈ [[0;w + win]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C5.118)

tmax
a ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C5.119)

tBa ∈ {0, 1} ∀a ∈ [[1;N ]] (C5.120)

A.4 Pipelined adder graph – Chapter 7

A.4.1 High-level model – PMCM-Adders

min
N∑

a=0

ra (O6)

c0 = 1 (C6.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C6.2)

cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C6.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C6.4)

Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C6.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C6.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C6.7)
a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C6.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C6.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C6.10)
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csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C6.11)

csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C6.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C6.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C6.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C6.15)

ua−1 ≥ ua ∀a ∈ [[1;N ]] (C6.16)

ca = 0 if ua = 0 ∀a ∈ [[1;N ]] (C6.17)

ca,i,k = 0 if ua = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C6.18)

pa ≥ pa,l + 1 ∀a ∈ [[1; N]] (C6.19)

pa ≥ pa,r + 1 ∀a ∈ [[1; N]] (C6.20)

pa ≤ pa,l + 1 + Npba ∀a ∈ [[1; N]] (C6.21)

pa ≤ pa,r + 1 + N×
(
1− pba

)
∀a ∈ [[1; N]] (C6.22)

pa,i = pk if ca,i,k = 1 ∀a ∈ [[1; N]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C6.23)

pmax ≥ pa + 1 ∀a ∈ [[1; N]] (C6.24)

pk ≤ N × pa,p + p− 1 if ck,i,a = 1 ∀p ∈ [[1;N + 1]], a ∈ [[0;N − 1]],

∀k ∈ [[a+ 1;N ]], i ∈ {l, r} (C6.25)

pmax ≤ (N + 1)× pa,p + p− 1 if oa,j = 1 ∀s ∈ [[1;N + 1]], a ∈ [[0;N ]], j ∈ [[1; |C|]]
(C6.26)

pa ≥ p× pa,p ∀p ∈ [[1;N + 1]], a ∈ [[0;N − 1]] (C6.27)

ra = pa − pa ∀a ∈ [[0;N ]] (C6.28)

Variables:

ca ∈ [[0; 2w]] ∀a ∈ [[0;N ]] (C6.29)

ua ∈ {0, 1} ∀a ∈ [[0;N ]] (C6.30)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C6.31)

codda ∈ N ∀a ∈ [[1;N ]] (C6.32)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C6.33)

csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C6.34)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C6.35)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C6.36)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]]
(C6.37)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C6.38)
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Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C6.39)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C6.40)

pa ∈ [[0;N ]] ∀a ∈ [[0;N ]] (C6.41)

pa,i ∈ [[0;N ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C6.42)

pmax ∈ [[0;N + 1]] (C6.43)

pa,p ∈ {0, 1} ∀a ∈ [[0;N ]], p ∈ [[1;N + 1]] (C6.44)

pa ∈ [[0;N + 1]] ∀a ∈ [[0;N ]] (C6.45)

ra ∈ [[0;N + 1]] ∀a ∈ [[0;N ]] (C6.46)

A.4.2 Low-level model – PMCM-Bits

min
N∑

a=0

Cr
a (O7)

c0 = 1 (C7.1)

cnsha = csh,sga,l + csh,sga,r ∀a ∈ [[1;N ]] (C7.2)

cnsha = 2sca if Ψa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C7.3)
w∑

s=0

Ψa,s = 1 ∀a ∈ [[1;N ]] (C7.4)

Φa,0 +Ψa,s = 1 ∀a ∈ [[1;N ]] (C7.5)

ca = 2codda + 1 ∀a ∈ [[1;N ]] (C7.6)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C7.7)
a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.8)

csha,l = 2sca,l if Φa,s = 1 ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C7.9)
w∑

s=0

Φa,s = 1 ∀a ∈ [[1;N ]] (C7.10)

csh,sga,i = −csha,i if σa,i = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.11)

csh,sga,i = csha,i if σa,i = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.12)

σa,l + σa,r ≤ 1 ∀a ∈ [[1;N ]] (C7.13)

ca = Cj if oa,j = 1 ∀a ∈ [[0;N ]], j ∈ [[1; |C|]] (C7.14)

N∑
a=0

oa,j = 1 ∀j ∈ [[1; |C|]] (C7.15)



Pipelined adder graph – Chapter 7 139

ua−1 ≥ ua ∀a ∈ [[1;N ]] (C7.16)

ca = 0 if ua = 0 ∀a ∈ [[1;N ]] (C7.17)

ca,i,k = 0 if ua = 0 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C7.18)

pa ≥ pa,l + 1 ∀a ∈ [[1; N]] (C7.19)

pa ≥ pa,r + 1 ∀a ∈ [[1; N]] (C7.20)

pa ≤ pa,l + 1 + Npba ∀a ∈ [[1; N]] (C7.21)

pa ≤ pa,r + 1 + N×
(
1− pba

)
∀a ∈ [[1; N]] (C7.22)

pa,i = pk if ca,i,k = 1 ∀a ∈ [[1; N]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C7.23)

pmax ≥ pa + 1 ∀a ∈ [[1; N]] (C7.24)

pk ≤ N × pa,p + p− 1 if ck,i,a = 1 ∀p ∈ [[1;N + 1]], a ∈ [[0;N − 1]],

∀k ∈ [[a+ 1;N ]], i ∈ {l, r} (C7.25)

pmax ≤ (N + 1)× pa,p + p− 1 if oa,j = 1 ∀s ∈ [[1;N + 1]], a ∈ [[0;N ]], j ∈ [[1; |C|]]
(C7.26)

pa ≥ p× pa,p ∀p ∈ [[1;N + 1]], a ∈ [[0;N − 1]] (C7.27)

ra = pa − pa ∀a ∈ [[0;N ]] (C7.28)

Br
a = msba + 1 ∀a ∈ [[0;N ]] (C7.29)

msb0 = win − 1 (C7.30)

2b+1 − 1 ≥ (2win − 1) ca if msbB
a,b = 1 ∀a ∈ [[1;N ]], b ∈ [[1;w + win − 1]] (C7.31)

w+win−1∑
b=1

msbB
a,b = 1 ∀a ∈ [[1;N ]] (C7.32)

w+win−1∑
b=1

b×msbB
a,b = msba ∀a ∈ [[1;N ]] (C7.33)

N∑
b=1

b× rBa,b = ra ∀a ∈ [[0;N ]] (C7.34)

N∑
b=1

rBa,b = 1 ∀a ∈ [[0;N ]] (C7.35)

Cr
a = b×Br

a if rBa,b = 1 ∀a ∈ [[0;N ]], b ∈ [[1;N ]] (C7.36)

Variables:

ca ∈ [[0; 2w]] ∀a ∈ [[0;N ]] (C7.37)

ua ∈ {0, 1} ∀a ∈ [[0;N ]] (C7.38)

cnsha ∈ [[1; 2w+1]] ∀a ∈ [[1;N ]] (C7.39)

codda ∈ N ∀a ∈ [[1;N ]] (C7.40)

ca,i ∈ [[0; 2w]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.41)
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csha,l ∈ [[0; 2w+1]] ∀a ∈ [[1;N ]] (C7.42)

csh,sga,i ∈ [[−2w+1; 2w+1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.43)

σa,i ∈ {0, 1} ∀a ∈ [[1;N ]] (C7.44)

ca,i,k ∈ {0, 1} ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[0; a− 1]]
(C7.45)

Φa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C7.46)

Ψa,s ∈ {0, 1} ∀a ∈ [[1;N ]], s ∈ [[0;w]] (C7.47)

oa,j ∈ {0, 1} ∀a ∈ [[1;N ]], j ∈ [[1; |C|]] (C7.48)

pa ∈ [[0;N ]] ∀a ∈ [[0;N ]] (C7.49)

pa,i ∈ [[0;N ]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.50)

pmax ∈ [[0;N + 1]] (C7.51)

pa,p ∈ {0, 1} ∀a ∈ [[0;N ]], p ∈ [[1;N + 1]] (C7.52)

pa ∈ [[0;N + 1]] ∀a ∈ [[0;N ]] (C7.53)

ra ∈ [[0;N + 1]] ∀a ∈ [[0;N ]] (C7.54)

Br
a ∈ [[0;w + win]] ∀a ∈ [[0;N ]] (C7.55)

Cr
a ∈ [[0;N × (w + win)]] ∀a ∈ [[0;N ]] (C7.56)

msba ∈ [[0;w + win − 1]] ∀a ∈ [[0;N ]] (C7.57)

msbB
a,t ∈ {0, 1} ∀a ∈ [[1;N ]], t ∈ [[1;w + win − 1]] (C7.58)

rBa,b ∈ {0, 1} ∀a ∈ [[0;N ]], b ∈ [[1;N ]] (C7.59)

+ Critical path:

Ba = msba + 1− sa − ψa − ga ∀a ∈ [[1;N ]] (C7.60)

Bu
a = Ba if ua = 1 ∀a ∈ [[1;N ]] (C7.61)

Bu
a = 0 if ua = 0 ∀a ∈ [[1;N ]] (C7.62)

Bmax ≥ Bu
a ∀a ∈ [[1;N ]] (C7.63)

msba,i = msbk if ca,i,k = 1 ∀a ∈ [[1;N ]], i ∈ {l, r} , k ∈ [[0; a− 1]] (C7.64)

ga ≤ msba ∀a ∈ [[1;N ]] (C7.65)

ga ≤ 0 if σa,r = 1 ∀a ∈ [[1;N ]] (C7.66)

ga ≤ sa,l ∀a ∈ [[1;N ]] (C7.67)

sa,l =
w∑

s=1

sΦa,s ∀a ∈ [[1;N ]] (C7.68)

sa =
−1∑

s=−w

sΨa,s ∀a ∈ [[1;N ]] (C7.69)

msba,l + sa,l + sa + 1 ≤ msba if ψa = 1 ∀a ∈ [[1;N ]] (C7.70)

msba,r + sa + 1 ≤ msba if ψa = 1 ∀a ∈ [[1;N ]] (C7.71)
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Variables (Critical path):

msba,i ∈ [[0;w + win − 1]] ∀a ∈ [[1;N ]], i ∈ {l, r} (C7.72)

Ba ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C7.73)

Bu
a ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C7.74)

Bmax ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C7.75)

ga ∈ [[0;w + win]] ∀a ∈ [[1;N ]] (C7.76)

ψa ∈ {0, 1} ∀a ∈ [[1;N ]] (C7.77)

sa,l ∈ [[0;w]] ∀a ∈ [[1;N ]] (C7.78)

sa ∈ [[−w; 0]] ∀a ∈ [[1;N ]] (C7.79)

New objective function (Critical path):

min
N∑

a=1

(Nua) + admax. (O7)
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APPENDIX B

Benchmark description

Throughout this thesis, we solve all our models on benchmarks from image process-
ing (11 instances), that have already been used to compare MCM algorithms [KZFC12,
KFM+13, Kum16, Kum18], and on the whole FIRsuite project “From Publication” (75 in-
stances) [FIR23], which is a collection of digital filter designs and is a direct application
of the MCM problem. For all these instances, we report their positive odd coefficients,
removing zeros and ones which are not interesting for the MCM problem.

B.1 Image processing benchmark

Benchmark Word length Target constants

Gaussian 3 8 3 21 159
Gaussian 5 11 23 343 1267
Highpass 5 7 3 5 7 121
Highpass 9 7 3 5 7 11 125
Highpass 15 9 3 5 7 9 11 13 15 17 19 21 23 507
Laplacian 3 7 5 21 107
Lowpass 5 7 11 33 35 53 103
Lowpass 9 9 5 7 25 31 63 65 67 73 97 117 165 303
Lowpass 15 11 5 7 13 17 19 21 27 41 43 45 53 61 79 93 101 103 113 133

137 199 331 333 613 1097 1197
Unsharp 3-1 7 3 11 69
Unsharp 3-2 11 43 171 1109
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B.2 FIRsuite

Benchmark Word length Target constants

Bull91 32 7 3 5 7 9 15 35 45 49 107 127
Chang06 3 10 139 283 815
Chen99 15 11 13 223 897 2017
Chen99 28a 9 3 7 9 21 27 43 69 97 261
Chen99 28b 11 5 9 13 19 23 27 97 119 1151
Chenyao01 28a 8 3 5 11 15 25 33 121 177
Chenyao01 28b 10 3 5 11 15 25 39 121 133 1023
Dempster02 25 12 35 133 199 291 327 331 355 499 505 699 1943 2987

3395
Dempster04 a3 8 5 117 195
Dempster04 b3 8 13 43 215
Dempster04 c3 11 947 973 1243
Dempster04 d3 10 105 479 939
Dempster04 e3 14 3787 9943 15567
Dempster04 f3 14 3981 6243 14603
Dempster04 g4 13 303 3643 6729 7479
Dempster04 h4 14 10083 12095 12975 15103
Dempster04 i5 12 63 407 1823 3059 3817
Dempster04 j5 11 19 841 911 935 1561
Dempster04 k5 12 407 569 831 1115 2473
Dempster04 l5 12 947 973 1243 1991 3651
Goodman77 a3 0
Goodman77 b3 0
Goodman77 c7 4 9
Goodman77 d7 5 3 19
Goodman77 e11 7 3 25 75
Goodman77 f11 8 9 11 13 173
Goodman77 g11 8 7 53 151
Goodman77 h15 9 3 29 33 245 401
Goodman77 i19 12 9 29 429 1277 2521
Jain91 11 5 3 5 17
Jang02 11 3 3 5 7
Jheng04 29a 9 5 7 11 17 25 31 71 73 389
Jheng04 29b 6 5 9 13 15 17 19 33 39 47
Jheng04 30 7 3 5 7 11 29 39 43 123
Johansson08 28 10 3 9 33 45 57 73 139 143 167 273 363 571
Johansson08 30 10 37 47 53 57 67 81 93 133 165 179 185 211 223 253 261

283 367 375 409 441 447 495 497 647 915 961 963 975
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Johansson08 a5 10 9 387 745 805
Johansson08 b5 10 57 155 189 431 611
Kwentus97 11 7 3 25 75
Kwentus97 15 10 5 277 621
Kwentus97 47 14 21 27 29 55 187 207 381 623 913 977 1147 1295 16359
Lim83a 36 5 3 5 7 9 31
Lim83 121 14 3 7 9 17 19 21 23 35 37 39 41 45 51 55 59 61 65 69

71 75 77 89 109 125 131 141 143 151 165 167 193 195
267 273 277 323 375 399 541 545 585 761 1071 1515
1653 1739 2823 5927 6747 7343 10267

Lim83 36 4 3 5 7 9 15
Lim83 37 7 3 5 7 9 127
Lim83 63 9 3 5 7 9 15 19 21 23 29 31 33 37 41 59 61 71 99 119

195 321 351 431
Limakt08 121 14 3 5 7 9 11 17 19 21 23 25 31 33 35 37 41 49 61 65

69 73 79 89 119 131 151 161 167 189 197 271 281 379
413 533 537 541 641 869 1685 2993 5921 14671

Limpasko99 121 14 3 7 9 17 19 21 23 35 37 39 41 45 51 55 59 61 65 69
71 75 77 89 109 125 131 141 143 151 165 167 193 195
267 273 277 323 375 399 435 541 545 585 741 761 827
1071 1515 1687 2567 2823 14687

Limyu07 121 14 3 5 7 9 11 13 15 19 29 31 53 57 59 89 113 125 129 131
133 139 145 183 241 263 271 339 355 375 475 491 493
553 595 713 789 1215 1275 1343 1369 1371 6115 6655
9305

Martinez02 4 10 105 621 815 831
Nielsen89 67a 15 3 9 11 13 27 39 45 51 95 113 153 217 263 323 379 411

431 471 987 993 1523 2347 3413 3753 10693 32765
Nielsen89 67b 15 3 5 11 13 19 25 27 39 51 95 113 145 161 215 247 307

379 411 431 469 527 761 943 993 1173 6827 16383
21387

Potkonjak96 4 10 815 621 831 105
Rosa04 49 9 3 5 7 11 17 33 35 37 87 167 207
Samueli89 60 13 7 11 17 21 23 27 29 31 47 49 57 59 67 79 125 129 133

161 241 251 263 529 1217 2055 2239 4737
Shahein11 b 9 3 5 7 9 13 15 23 25 45 95
Shahein11 s2 11 3 5 11 17 19 23 27 31 33 35 53 63 91 109 145 165 281

305 321
Shi11 a 10 3 7 21 23 25 45 67 75 79 171 201 509 833 969
Shi11 g1 7 3 19
Shi11 l2 10 3 5 9 13 15 19 31 35 49 51 79 85 203 339 371 499 911
Shi11 s1 a 7 3 5 13 17
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Shi11 s1 b 7 3 5 7 15 65
Shi11 s2 10 3 5 13 21 23 39 49 59 65 87 93 267 413 437 449 575

757
Shi11 x1 10 7 105 113 509
Shi11 y1 10 17 21 23 205 497 527
Shi11 y2 11 3 9 11 15 43 91 101 137 171 255
Vinod03 15 11 97 101 391 1289
Vinod03 26a 6 3 7 9 11 19 31 47
Vinod03 26b 14 89 223 611 621 1027 2201 2503 3067 3645 4999 6053

8139 14433
Xu07 15 12 5 69 553 2483
Xu07 28 11 3 11 23 25 35 53 79 407
Yeung04 40 19 5 13 15 63 115 157 177 283 453 579 961 2113 3215

3401 3549 6981 31381 58565 116589 251821
Yli01 30 10 3 7 9 23 25 37 543
Yoshino90 64 13 5 9 11 15 17 19 23 39 41 51 53 61 63 65 67 85 93 107

133 141 167 215 243 391 623
Zahosam89 25 8 3 5 7 17 23 123



APPENDIX C

Full results

C.1 Optimization results – Chapter 4

In the following tables, we provide full results for the different approaches we used to solve
MCM-Adders. First, we compare the quality of the results in terms of number of adders.
Second, we compare the adder count, the adder depth and solving times of our methods to
solve the MCM-Adders problem taking the adder depth into account. Finally, we compare
solving times between our model with/without branching priority.

Table C.1: Number of adders obtained with each method within the available solving time.
Results followed by a star (∗) are not proven optimal w. r. t. the number of adders. MILPI

and MILPM correspond to our model with indicator and big-M constraints, respectively.

Bench
Loop Min

CSD RPAG MILPI MILPM MILPI MILPM

Bull91 32 14* 10* 10 10 10 10
Chang06 3 10* 6* 6 6 6 6
Chen99 15 8* 6* 5 5 5 5
Chen99 28a 16* 10* 9 9 9 9
Chen99 28b 15* 10* 9 9 9 9
Chenyao01 28a 11* 8* 8 8 8 8
Chenyao01 28b 12* 9* 9 9 9 9
Dempster02 25 37* 20* - - 18* 18*
Dempster04 a3 7* 5* 4 4 4 4
Dempster04 b3 8* 5* 4 4 4 4
Dempster04 c3 11* 7* 6 6 6 6
Dempster04 d3 9* 5* 5 5 5 5
Dempster04 e3 15* 9* - - 9* 9*
Dempster04 f3 14* 9* - - 8 8*
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Dempster04 g4 17* 10* - - 10* 8*
Dempster04 h4 16* 10* - - 8 10*
Dempster04 i5 16* 10* - - 9* 9*
Dempster04 j5 16* 9* - - 8 8*
Dempster04 k5 18* 10* - - 10* 10*
Dempster04 l5 18* 11* - - 11* 11*
Gaussian 3 5* 4* 4 4 4 4
Gaussian 5 10* 6* 5 5 5 5
Goodman77 a3 - - - - - -
Goodman77 b3 - - - - - -
Goodman77 c7 1* 1* 1 1 1 1
Goodman77 d7 3* 2* 2 2 2 2
Goodman77 e11 6* 4* 3 3 3 3
Goodman77 f11 9* 5* 5 5 5 5
Goodman77 g11 7* 5* 4 4 4 4
Goodman77 h15 9* 7* - 7 7 7
Goodman77 i19 14* 9* - - 7* 7*
Highpass 15 14* 12* 12 12 12 12
Highpass 5 5* 4* 4 4 4 4
Highpass 9 7* 5* 5 5 5 5
Jain91 11 3* 3* 3 3 3 3
Jang02 11 3* 3* 3 3 3 3
Jheng04 29a 15* 10* 9 9 9 9
Jheng04 29b 11* 9* 9 9 9 9
Jheng04 30 14* 8* 8 8 8 8
Johansson08 28 21* 14* - 12 12 12
Johansson08 30 52* 33* - - 33* 33*
Johansson08 a5 11* 7* 6 6 6 6
Johansson08 b5 14* 7* 7 7 7 7
Kwentus97 11 6* 4* 3 3 3 3
Kwentus97 15 8* 5* 4 4 4 4
Kwentus97 47 31* 20* - - 20* 19*
Laplacian 3 6* 4* 3 3 3 3
Lim83a 36 5* 5* 5 5 5 5
Lim83 121 101* 54* - - 54* 54*
Lim83 36 5* 5* 5 5 5 5
Lim83 37 5* 5* 5 5 5 5
Lim83 63 33* 23* 22 - 22 22
Limakt08 121 76* 43* - - 43* 43*
Limpasko99 121 97* 54* - - 54* 54*
Limyu07 121 90* 45* - - 45* 45*
Lowpass 15 51* 27* - - 27* 26*
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Lowpass 5 11* 7* 6 6 6 6
Lowpass 9 17* 13* 12 12 12 12
Martinez02 4 13* 6* 6 6 6 6
Nielsen89 67a 67* 32* - - 32* 32*
Nielsen89 67b 61* 35* - - 35* 35*
Potkonjak96 4 13* 6* 6 6 6 6
Rosa04 49 18* 11* 11 11 11 11
Samueli89 60 39* 28* - - 27 26
Shahein11 b 16* 10* 10 10 10 10
Shahein11 s2 30* 19* - 19 19 19
Shi11 a 30* 16* - - 14 14
Shi11 g1 3* 2* 2 2 2 2
Shi11 l2 31* 18* - 17 17 17
Shi11 s1 a 4* 4* 4 4 4 4
Shi11 s1 b 5* 5* 5 5 5 5
Shi11 s2 35* 18* - - 18* 17
Shi11 x1 7* 5* 5 5 5* 5
Shi11 y1 12* 7* 6 6 6 6
Shi11 y2 18* 11* 10 10 10 10
Unsharp 3-1 5* 4* 4 4 4 4
Unsharp 3-2 11* 6* 5 5 5 5
Vinod03 15 10* 8* 6 6 6 6
Vinod03 26a 9* 7* 7 7 7 7
Vinod03 26b 46* 20* - - 20* 20*
Xu07 15 11* 6* 5 5 5 6*
Xu07 28 17* 9* 8 8 8 8
Yeung04 40 68* 28* - - 28* 28*
Yli01 30 10* 8* - 8 8* 8
Yoshino90 64 39* 27* - - 26* 27*
Zahosam89 25 8* 6* 6 6 6 6

Table C.2: Number of adders and adder depth obtained with each method within the
available solving time. MCM-Adders, BiObj. and Tighten correspond, respectively, to the
basis model with big-M constraints, the lexicographic bi-objective one and the model with
tightening constraints. Solving times are given in seconds and TO stands for timed out.

Benchmark
MCM-Adders BiObj. Tighten

#A AD time #A AD time #A AD time

Bull91 32 10 2 1 10 2 102 10 2 92
Chang06 3 6 3 233 6 3 606 6 3 780
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Chen99 15 5 3 1 5 3 24 5 3 9
Chen99 28a 9 5 3 9 3 TO 9 3 TO
Chen99 28b 9 5 13 9 3 TO 9 3 TO
Chenyao01 28a 8 2 1 8 2 6 8 2 7
Chenyao01 28b 9 2 1 9 2 1 9 2 15
Dempster02 25 18 7 TO - - TO 20 3 TO
Dempster04 a3 4 3 1 4 3 2 4 3 1
Dempster04 b3 4 4 1 4 3 1 4 3 2
Dempster04 c3 6 4 62 6 4 3550 6 4 9580
Dempster04 d3 5 3 2 5 3 18 5 3 44
Dempster04 e3 9 3 TO - 0 TO - 0 TO
Dempster04 f3 8 5 TO - 0 TO 9 4 TO
Dempster04 g4 8 4 TO - 0 TO - 0 TO
Dempster04 h4 10 3 TO - 0 TO - 0 TO
Dempster04 i5 9 3 TO 10 3 TO 10 4 TO
Dempster04 j5 8 4 TO 8 4 TO 9 3 TO
Dempster04 k5 10 3 TO - - TO - - TO
Dempster04 l5 11 3 TO 11 4 TO - - TO
Gaussian 3 4 2 1 4 2 1 4 2 1
Gaussian 5 5 4 5 5 4 210 5 4 154
Goodman77 a3 - - TO - - TO - - TO
Goodman77 b3 - - TO - - TO - - TO
Goodman77 c7 1 1 1 - - TO - - TO
Goodman77 d7 2 2 1 - - TO - - TO
Goodman77 e11 3 3 1 3 3 1 3 3 1
Goodman77 f11 5 3 1 5 3 5 5 3 15
Goodman77 g11 4 3 1 4 3 2 4 3 3
Goodman77 h15 7 2 614 7 2 3002 7 2 738
Goodman77 i19 7 4 TO 8 5 TO 8 3 TO
Highpass 15 12 2 1 12 2 4 12 2 1
Highpass 5 4 2 1 4 2 1 4 2 1
Highpass 9 5 2 1 5 2 1 5 2 1
Jain91 11 3 1 1 3 1 1 3 1 1
Jang02 11 3 1 1 3 1 1 3 1 1
Jheng04 29a 9 3 5 9 3 TO 9 3 TO
Jheng04 29b 9 2 1 9 2 2 9 2 1
Jheng04 30 8 2 1 8 2 2 8 2 1
Johansson08 28 12 4 2414 13 3 TO 14 3 TO
Johansson08 30 33 3 TO - - TO 33 3 TO
Johansson08 a5 6 3 23 6 3 257 6 3 851
Johansson08 b5 7 3 83 7 3 1044 7 3 4449
Kwentus97 11 3 3 1 3 3 1 3 3 1
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Kwentus97 15 4 3 1 4 3 8 4 3 6
Kwentus97 47 19 3 TO 20 4 TO 20 2 TO
Laplacian 3 3 3 1 3 3 1 3 3 1
Lim83a 36 5 1 1 5 1 1 5 1 1
Lim83 121 54 3 TO - - TO 54 3 TO
Lim83 36 5 1 1 5 1 1 5 1 1
Lim83 37 5 1 1 5 1 1 5 1 1
Lim83 63 22 4 73 22 3 TO 22 3 TO
Limakt08 121 43 3 TO - - TO 43 3 TO
Limpasko99 121 54 3 TO - - TO 54 3 TO
Limyu07 121 45 3 TO - - TO 45 3 TO
Lowpass 15 26 4 TO - - TO 27 3 TO
Lowpass 5 6 3 1 6 3 52 6 3 51
Lowpass 9 12 3 6 12 3 TO 13 3 TO
Martinez02 4 6 3 3 6 3 56 6 3 108
Nielsen89 67a 32 3 TO - - TO - - TO
Nielsen89 67b 35 3 TO - - TO - - TO
Potkonjak96 4 6 3 13 6 3 65 6 3 43
Rosa04 49 11 2 1 11 2 30 11 2 89
Samueli89 60 26 5 4108 - - TO - - TO
Shahein11 b 10 2 1 10 2 1 10 2 5
Shahein11 s2 19 2 1 19 3 TO 19 2 1
Shi11 a 14 7 3634 15 4 TO 16 4 TO
Shi11 g1 2 2 1 - - TO - - TO
Shi11 l2 17 4 37 18 4 TO 18 3 TO
Shi11 s1 a 4 2 1 4 2 1 4 2 1
Shi11 s1 b 5 1 1 5 1 1 5 1 1
Shi11 s2 17 4 25299 - - TO 18 3 TO
Shi11 x1 5 2 1 5 2 1 5 2 1
Shi11 y1 6 4 3 6 4 881 6 4 326
Shi11 y2 10 4 40 10 4 TO 11 3 TO
Unsharp 3-1 4 2 1 4 2 1 4 2 1
Unsharp 3-2 5 4 2 5 3 23 5 3 57
Vinod03 15 6 3 73 6 3 1493 6 3 328
Vinod03 26a 7 2 1 7 2 1 7 2 1
Vinod03 26b 20 3 TO - - TO - - TO
Xu07 15 6 3 TO 5 3 27 5 4 TO
Xu07 28 8 5 3 8 3 72 8 3 8
Yeung04 40 28 3 TO - - TO 28 3 TO
Yli01 30 8 2 8782 8 2 TO 8 2 23858
Yoshino90 64 27 2 TO 27 3 TO - - TO
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Zahosam89 25 6 2 1 6 2 1 6 2 1
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Table C.3: Solving time (in seconds) to prove optimality using the model in Appendix A.1.2
without and with branching priority (BP) parameter. TO means that the time limit of
28800 seconds has been reached without proving optimality.

Benchmark No BP BP

Bull91 32 1 1
Chang06 3 233 9
Chen99 15 1 1
Chen99 28a 3 2
Chen99 28b 13 3
Chenyao01 28a 1 1
Chenyao01 28b 1 1
Dempster02 25 TO TO
Dempster04 a3 1 1
Dempster04 b3 1 1
Dempster04 c3 62 22
Dempster04 d3 2 1
Dempster04 e3 TO TO
Dempster04 f3 TO TO
Dempster04 g4 TO TO
Dempster04 h4 TO TO
Dempster04 i5 TO 3943
Dempster04 j5 TO TO
Dempster04 k5 TO TO
Dempster04 l5 TO TO
Gaussian 3 1 1
Gaussian 5 5 3
Goodman77 a3 TO TO
Goodman77 b3 TO TO
Goodman77 c7 1 1
Goodman77 d7 1 1
Goodman77 e11 1 1
Goodman77 f11 1 1
Goodman77 g11 1 1
Goodman77 h15 614 66
Goodman77 i19 TO 147
Highpass 15 1 1
Highpass 5 1 1
Highpass 9 1 1
Jain91 11 1 1
Jang02 11 1 1
Jheng04 29a 5 2
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Jheng04 29b 1 1
Jheng04 30 1 1
Johansson08 28 2414 2239
Johansson08 30 TO TO
Johansson08 a5 23 9
Johansson08 b5 83 2
Kwentus97 11 1 1
Kwentus97 15 1 1
Kwentus97 47 TO TO
Laplacian 3 1 1
Lim83a 36 1 1
Lim83 121 TO TO
Lim83 36 1 1
Lim83 37 1 1
Lim83 63 73 68
Limakt08 121 TO 12113
Limpasko99 121 TO TO
Limyu07 121 TO TO
Lowpass 15 TO TO
Lowpass 5 1 1
Lowpass 9 6 3
Martinez02 4 3 1
Nielsen89 67a TO TO
Nielsen89 67b TO TO
Potkonjak96 4 13 1
Rosa04 49 1 1
Samueli89 60 4108 TO
Shahein11 b 1 1
Shahein11 s2 1 1
Shi11 a 3634 3318
Shi11 g1 1 1
Shi11 l2 37 921
Shi11 s1 a 1 1
Shi11 s1 b 1 1
Shi11 s2 25299 9335
Shi11 x1 1 1
Shi11 y1 3 1
Shi11 y2 40 2
Unsharp 3-1 1 1
Unsharp 3-2 2 2
Vinod03 15 73 7
Vinod03 26a 1 1
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Vinod03 26b TO TO
Xu07 15 TO TO
Xu07 28 3 2
Yeung04 40 TO TO
Yli01 30 8782 1943
Yoshino90 64 TO TO
Zahosam89 25 1 1

C.2 Optimization results – Chapter 5

In the following table, we provide full optimization results comparing our models for the
MCM-Adders and MCM-Bits problems with various input word lengths.

Table C.4: Number of adders, #A, and one-bit adders, #Ab, obtained with MCM-Adders
vs MCM-Bits within the available solving time.

Benchmark
8-bit input 16-bit input 32-bit input

MCM-A. MCM-B. MCM-A. MCM-B. MCM-A. MCM-B.

#A #Ab #A #Ab #A #Ab #A #Ab #A #Ab #A #Ab

Bull91 32 10 109 10 92 10 189 10 172 10 349 10 332
Chang06 3 6 73 6 62 6 121 6 110 6 217 6 206
Chen99 15 5 68 5 68 5 108 5 108 5 188 5 188
Chen99 28a 9 106 10 85 9 178 9 155 9 322 9 299
Chen99 28b 9 115 10 100 9 187 9 173 9 331 9 317
Chenyao01 28a 8 82 8 74 8 146 8 138 8 274 8 266
Chenyao01 28b 9 98 9 90 9 170 9 162 9 314 9 306
Dempster02 25 18 254 20 214 18 398 20 385 18 686 20 703
Dempster04 a3 4 51 5 44 4 83 4 76 4 147 4 140
Dempster04 b3 4 51 4 44 4 83 4 76 4 147 4 140
Dempster04 c3 6 87 7 76 6 135 6 122 6 231 6 218
Dempster04 d3 5 72 5 72 5 112 5 112 5 192 5 192
Dempster04 e3 9 129 9 117 9 202 9 190 9 346 9 334
Dempster04 f3 8 119 9 122 8 183 0 0 8 311 9 324
Dempster04 g4 8 108 10 124 8 172 10 207 8 300 10 365
Dempster04 h4 10 149 10 149 10 229 10 229 10 389 10 373
Dempster04 i5 9 136 10 130 9 208 10 213 9 352 10 373
Dempster04 j5 8 102 9 105 8 166 8 166 8 294 9 312
Dempster04 k5 10 141 10 140 10 221 10 210 10 381 10 377
Dempster04 l5 11 154 11 139 11 242 10 204 11 418 11 402
Gaussian 3 4 43 4 40 4 75 4 72 4 139 4 136
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Gaussian 5 5 57 5 57 5 97 5 97 5 177 5 177
Goodman77 c7 1 8 1 8 1 16 1 16 1 32 1 32
Goodman77 d7 2 16 2 16 2 32 2 32 2 64 2 64
Goodman77 e11 3 33 3 31 3 57 3 55 3 105 3 103
Goodman77 f11 5 53 5 45 5 93 5 87 5 173 5 165
Goodman77 g11 4 58 4 40 4 90 4 72 4 154 4 136
Goodman77 h15 7 76 7 65 7 132 7 121 7 244 7 233
Goodman77 i19 7 82 9 92 7 138 8 150 7 250 8 275
Highpass 15 12 122 12 105 12 218 12 201 12 410 12 393
Highpass 5 4 42 4 39 4 74 4 71 4 138 4 135
Highpass 9 5 50 5 47 5 90 5 87 5 170 5 167
Jain91 11 3 24 3 24 3 48 3 48 3 96 3 96
Jang02 11 3 27 3 24 3 51 3 48 3 99 3 96
Jheng04 29a 9 102 10 88 9 174 9 163 9 318 9 307
Jheng04 29b 9 87 9 80 9 159 9 152 9 303 9 296
Jheng04 30 8 88 8 69 8 152 8 133 8 280 8 261
Johansson08 28 12 148 14 150 12 244 14 262 12 436 14 486
Johansson08 30 33 413 33 338 33 677 33 602 33 1205 33 1130
Johansson08 a5 6 69 6 67 6 117 6 115 6 213 6 211
Johansson08 b5 7 89 7 89 7 145 7 145 7 257 7 257
Kwentus97 11 3 35 3 31 3 59 3 55 3 107 3 103
Kwentus97 15 4 46 5 44 4 78 4 78 4 142 4 142
Kwentus97 47 19 241 20 213 19 393 20 379 19 697 0 0
Laplacian 3 3 34 3 31 3 58 3 55 3 106 3 103
Lim83a 36 5 48 5 42 5 88 5 82 5 168 5 162
Lim83 121 54 699 54 551 54 1131 54 996 54 1995 54 1844
Lim83 36 5 47 5 40 5 87 5 80 5 167 5 160
Lim83 37 5 50 5 47 5 90 5 87 5 170 5 167
Lim83 63 22 261 22 198 22 437 23 387 22 789 23 755
Limakt08 121 43 512 43 401 43 856 43 749 43 1544 43 1439
Limpasko99 121 54 682 54 509 54 1114 54 945 54 1978 54 1827
Limyu07 121 45 580 45 490 45 941 45 889 45 1661 45 1599
Lowpass 15 26 316 27 250 26 524 27 466 26 940 27 898
Lowpass 5 6 67 6 60 6 115 6 108 6 211 6 204
Lowpass 9 12 130 13 128 12 226 13 232 12 418 13 440
Martinez02 4 6 83 6 73 6 131 6 121 6 227 6 217
Nielsen89 67a 32 440 32 381 32 696 32 651 32 1208 32 1163
Nielsen89 67b 35 441 35 384 35 721 35 676 35 1281 35 1248
Potkonjak96 4 6 83 6 73 6 131 6 121 6 227 6 217
Rosa04 49 11 105 11 99 11 193 11 187 11 369 11 363
Samueli89 60 26 309 28 273 26 518 28 500 26 934 28 947
Shahein11 b 10 109 10 83 10 189 10 163 10 349 10 323
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Shahein11 s2 19 206 19 178 19 358 19 330 19 662 19 634
Shi11 a 14 178 16 156 14 290 16 284 14 514 16 540
Shi11 g1 2 16 2 16 2 32 2 32 2 64 2 64
Shi11 l2 17 187 18 165 17 323 18 309 17 595 18 597
Shi11 s1 a 4 34 4 32 4 66 4 64 4 130 4 128
Shi11 s1 b 5 47 5 40 5 87 5 80 5 167 5 160
Shi11 s2 17 210 18 178 17 346 18 322 17 618 18 610
Shi11 x1 5 62 5 56 5 102 5 96 5 182 5 176
Shi11 y1 6 79 7 72 6 127 6 127 6 223 6 223
Shi11 y2 10 117 10 93 10 197 10 173 10 357 10 333
Unsharp 3-1 4 32 4 32 4 64 4 64 4 128 4 128
Unsharp 3-2 5 57 5 49 5 97 5 89 5 177 5 171
Vinod03 15 6 75 6 69 6 123 6 117 6 219 6 213
Vinod03 26a 7 70 7 59 7 126 7 115 7 238 7 227
Vinod03 26b 20 293 20 286 20 453 20 445 20 773 20 764
Xu07 15 6 75 5 63 6 124 5 103 6 220 5 183
Xu07 28 8 93 8 79 8 157 8 143 8 285 8 271
Yeung04 40 28 428 0 0 28 652 28 614 28 1100 28 1083
Yli01 30 8 88 8 69 8 152 8 133 8 280 8 261
Yoshino90 64 27 305 27 241 27 521 27 457 27 953 27 889
Zahosam89 25 6 63 6 55 6 111 6 103 6 207 6 199

C.3 Hardware results – Chapter 5

In the following table, we provide full optimization results comparing our models for the
MCM-Adders and MCM-Bits problems with 8-bit inputs.

Table C.5: Hardware results for 8-bit inputs.

Benchmark
MCM-Adders MCM-Bits

LUTs Delay (ns) Power (mW) LUTs Delay (ns) Power (mW)

Bull91 32 109 1.972 10 98 3.239 11
Chang06 3 73 2.619 8 64 3.208 7
Chen99 15 66 2.591 8 66 2.591 8
Chen99 28a 105 4.054 12 86 2.38 9
Chen99 28b 117 3.819 13 104 2.56 11
Chenyao01 28a 82 1.971 8 76 2.484 10
Chenyao01 28b 97 1.938 9 90 2.53 10
Dempster02 25 253 5.427 27 224 4.584 24
Dempster04 a3 52 2.434 6 46 2.434 5
Dempster04 b3 49 3.191 6 44 3.168 6
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Dempster04 c3 85 3.334 9 77 4.548 10
Dempster04 d3 70 2.56 7 70 2.56 7
Dempster04 e3 129 2.682 11 118 4.051 12
Dempster04 f3 120 3.743 11 122 3.187 11
Dempster04 g4 107 3.312 12 124 3.275 13
Dempster04 h4 142 2.96 14 142 2.96 14
Dempster04 i5 131 2.856 12 128 3.953 14
Dempster04 j5 102 3.179 12 105 3.837 13
Dempster04 k5 138 2.668 11 139 3.93 14
Dempster04 l5 150 2.763 14 141 4.767 17
Gaussian 3 44 1.833 5 41 1.936 4
Gaussian 5 58 3.166 6 58 3.039 6
Goodman77 c7 8 1.025 2 8 1.025 2
Goodman77 d7 17 1.846 3 17 1.846 3
Goodman77 e11 34 2.469 5 33 2.4 5
Goodman77 f11 55 2.301 6 46 3.023 6
Goodman77 g11 54 2.682 6 40 2.457 5
Goodman77 h15 77 2.083 7 67 2.915 8
Goodman77 i19 83 3.202 10 95 3.823 10
Highpass 15 122 1.933 11 108 2.4 11
Highpass 5 42 1.922 5 41 2.501 5
Highpass 9 51 1.93 6 48 1.848 6
Jain91 11 25 1.267 4 25 1.267 4
Jang02 11 28 1.205 3 25 1.934 4
Jheng04 29a 101 2.461 10 91 2.464 10
Jheng04 29b 87 2.021 8 82 3.199 9
Jheng04 30 89 1.974 10 74 3.115 10
Johansson08 28 148 3.053 16 155 3.287 17
Johansson08 30 408 2.66 44 346 4.452 42
Johansson08 a5 71 2.531 9 69 2.343 8
Johansson08 b5 91 2.552 10 88 4.482 11
Kwentus97 11 35 2.51 5 33 2.4 5
Kwentus97 15 47 2.613 6 48 4.029 7
Kwentus97 47 237 2.722 20 213 3.81 21
Laplacian 3 35 2.429 4 33 2.378 4
Lim83a 36 49 1.239 5 44 2.374 6
Lim83 121 685 2.788 80 578 5.011 74
Lim83 36 48 1.405 5 42 2.38 6
Lim83 37 51 1.428 5 48 2.052 6
Lim83 63 258 3.191 27 208 4.426 23
Limakt08 121 508 2.909 57 422 4.55 52
Limpasko99 121 668 2.684 75 532 5.224 69
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Limyu07 121 568 2.858 63 500 5.776 64
Lowpass 15 310 3.263 33 259 3.871 29
Lowpass 5 68 2.449 8 64 2.468 7
Lowpass 9 135 2.6 14 134 4.57 16
Martinez02 4 81 2.693 9 74 3.741 10
Nielsen89 67a 428 3.231 41 386 4.507 42
Nielsen89 67b 427 2.825 41 386 3.882 41
Potkonjak96 4 81 2.722 9 74 3.741 10
Rosa04 49 108 2.029 11 102 3.144 11
Samueli89 60 312 3.826 35 283 4.064 31
Shahein11 b 108 1.996 10 89 3.046 10
Shahein11 s2 207 2.114 20 187 3.152 20
Shi11 a 179 5.257 21 160 3.256 17
Shi11 g1 17 1.846 3 17 1.846 3
Shi11 l2 189 3.156 21 172 3.798 19
Shi11 s1 a 35 1.852 5 34 2.014 4
Shi11 s1 b 48 1.381 5 42 2.448 6
Shi11 s2 210 3.24 23 184 3.396 21
Shi11 x1 62 1.977 6 58 3.045 7
Shi11 y1 80 2.9 10 75 3.069 10
Shi11 y2 119 3.203 12 99 3.13 12
Unsharp 3-1 33 2.066 4 33 2.066 4
Unsharp 3-2 58 3.205 6 51 3.162 6
Vinod03 15 75 2.516 8 70 2.416 8
Vinod03 26a 70 2.008 8 61 3.245 8
Vinod03 26b 289 2.726 28 285 3.985 29
Xu07 15 76 2.527 8 65 3.357 7
Xu07 28 92 3.758 11 83 3.174 10
Yeung04 40 422 2.974 41 395 6.694 44
Yli01 30 89 1.881 9 73 2.986 9
Yoshino90 64 302 2.169 28 251 3.765 28
Zahosam89 25 64 1.862 7 58 2.542 7
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APPENDIX D

Résumé long en français

Introduction

Le monde moderne bénéficie de l’informatique à bien des égards. Même si nous pen-
sons d’abord aux ordinateurs personnels et aux smartphones, les appareils électroniques
qui effectuent des calculs intégrés sont omniprésents. Par exemple, les prothèses audi-
tives ou les montres connectées sont des ordinateurs dédiés à une tâche spécifique. Les
systèmes intégrés peuvent également être utilisés pour des tâches moins courantes, comme
la détection de chants d’oiseaux à partir d’enregistrements audio. Ces dispositifs, qui peu-
vent fonctionner sur batteries ou avec de petits panneaux solaires, doivent généralement
produire des résultats instantanés. Par exemple, les aides auditives fonctionnent sur de
très petites batteries et son fonctionnement ne doit produire aucun délai.

Il en résulte un besoin spécifique de circuits optimisés dédiés et les concepteurs de
matériel consacrent beaucoup de travail et d’efforts dans cette direction. Cependant, face
à des problèmes et des systèmes de plus en plus complexes, il n’est plus réaliste d’optimiser
manuellement la conception des circuits. Des outils de haut niveau ont été développés pour
simplifier la conception, mais la mise en œuvre des noyaux arithmétiques est toujours laissée
aux ingénieurs hardware. Par conséquent, les ingénieurs travaillant dans le domaine du
traitement du signal, par exemple, doivent également être des experts en circuits intégrés.
Pour simplifier leur travail, des outils automatiques qui guident également les décisions
architecturales spécifiques sont nécessaires. Notre travail porte sur l’automatisation de la
mise en œuvre des noyaux arithmétiques et des opérateurs, ce qui implique souvent la
résolution de problèmes combinatoires.

Pour résoudre ces problèmes, nous utiliserons des techniques issues du domaine de la
recherche opérationnelle (RO). En particulier, nous aborderons les problèmes de concep-
tion de matériel en utilisant la modélisation mathématique avec l’objectif de modéliser le
matériel, en particulier les Field-Programmable Gate Arrays (FPGAs). Nous utiliserons
spécifiquement l’approche de programmation linéaire en variables mixtes (MILP) pour
améliorer l’état de l’art en ce qui concerne les problèmes de conception de filtres et de mul-
tiplications par plusieurs constantes. Cela conduira à des implémentations plus efficaces
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x

← 3

−

7x

← 1

3x

− ← 4

7x 23x

(a) Adder graph for target constants 7 and 23.

x

← 3

← 4

7x

−

23x 7x

(b) Optimal for target constants 7 and 23.

Figure D.1: Example of adder graphs for target constants 7 and 23.

réduisant le délai, la consommation d’énergie et l’utilisation des ressources sur FPGA.
Idéalement, cette thèse facilitera l’utilisation des techniques de RO par les ingénieurs hard-
ware pour la résolution de problèmes de conception. En plus de générer un matériel moins
couteux, notre objectif est de rapprocher les communautés de conception de matériel et
de RO.

Contexte et problème

La représentation des nombres en virgule flottante (FP), qui s’inspire de la notation
scientifique, ne dépend pas de l’application pour laquelle elle est utilisée. Cela fait de
l’arithmétique FP le choix le plus classique pour les applications génériques. Cependant,
pour des applications spécifiques, l’arithmétique à virgule fixe (FxP) est souvent préférée.
Au prix d’un travail supplémentaire pour représenter les nombres FxP avec le nombre de
bits strictement nécessaire, il est possible d’implémenter des algorithmes plus efficaces et
moins coûteux sur le plan matériel. Ainsi, chaque calcul/opérateur peut être spécifiquement
conçu pour utiliser exactement les ressources nécessaires et pas plus. Dans le cadre de
notre travail, nous tirerons parti de la représentation FxP et construirons chaque circuit
avec précision.

La méthode standard pour construire un circuit consiste à le décrire à l’aide d’un langage
de description de matériel (HDL). Bien que les outils de synthèse de haut niveau (HLS)
soulagent les concepteurs de matériel d’une partie fastidieuse du travail de conception,
les opérateurs arithmétiques efficaces sont encore souvent conçus en HDL. Cependant,
l’expertise requise pour le faire efficacement peut être bloquante, révélant le besoin d’une
automatisation pour la génération de noyaux arithmétiques. En particulier, dans cette
thèse, nous aborderons la question de la génération automatique de l’opérateur de multi-
plication par plusieurs constantes (MCM pour Multiple Constant Multiplication).

Trouver l’implémentation la plus efficace de l’opérateur MCM est une tâche difficile.
Une approche simple consisterait à utiliser des multiplicateurs génériques. Cependant,
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ceux-ci sont coûteux car ils ne tirent pas profit de la valeur des constantes, étant conçus
pour des variables. Dans notre cas, il est préférable de construire des circuits dédiés et
nous remplaçons généralement les multiplications par des décalages de la châıne de bits,
qui sont des multiplications par des puissances de deux, et des additions/soustractions.
C’est ce que l’on appelle l’approche shift-and-add. Par exemple, il est possible de calculer la
multiplication d’une variable avec les constantes 7 et 23 en utilisant l’adder graph représenté
dans la figure D.1a.

Dans cette thèse, nous aborderons donc le problème MCM qui peut être simplement
défini comme suit : “étant donné un ensemble de constantes cibles avec lesquelles opérer
des multiplications, trouver la meilleure implémentation en utilisant des décalages et des
additions”. Nous devrons définir le concept de “meilleure implémentation” par le bi-
ais de variables proxy car il n’existe généralement pas de modèles formels pour les FP-
GAs. Afin d’éviter d’effectuer une synthèse pour chaque graphe d’additionneurs pour en
évaluer le coût, nous introduisons des variables de substitution qui serviront à estimer ce
coût plus simplement. La méthode la plus classique consiste donc à compter le nombre
d’additionneurs dans les adder graphs. En utilisant cette variable de substitution, nous
pouvons prédire que l’adder graph représenté dans la figure D.1b, qui nécessite deux addi-
tionneurs, sera meilleur que celui de la figure D.1a, après la synthèse.

Plusieurs articles traitent du problème MCM, certains avec des heuristiques [Ber86,
DM94, ACFM12, KZFC12] et d’autres avec des approches optimales [Gus08, AGF10,
Kum16, Kum18]. Malgré la simplicité apparente du problème, des améliorations sont
encore possibles. En effet, nous constatons deux limitations principales des méthodes
actuelles. Premièrement, les méthodes optimales nécessitent beaucoup de temps de calcul
et, avec des outils et des connaissances en RO, ce temps peut certainement être réduit.
Deuxièmement, ces méthodes reposent sur le nombre d’additionneurs et nous montrerons
qu’il est possible de définir des variables de substitution plus proches du matériel final.
En outre, dans certains cas, un débit élevé est nécessaire et l’introduction de registres
dans les adder graph, le pipelining, est une méthode courante [Par99, KZ11, KZFC12]
pour augmenter le débit. Cela induit une augmentation de l’utilisation des ressources
et nous aborderons également le problème de la minimisation du coût des adder graphs
dits “pipelinés”.

Étant donné que l’opérateur MCM est un élément de base des filtres numériques, cer-
tains travaux combinent la conception de filtres à réponse impulsionnelle finie (FIR) avec
MCM [KVF23]. Le design de filtres à réponse impulsionnelle infinie (IIR), dont la concep-
tion est non linéaire, n’a pas encore été réalisé en MILP.

Objectif

Notre objectif principal est de fournir un modèle à grain fin du matériel et de l’englober dans
des modèles mathématiques. Tout d’abord, nous corrigerons et améliorerons le modèle de
l’état de l’art basé sur l’approche MILP [Kum18] qui résout le problème MCM en prenant
en compte le nombre d’additionneurs. Cette métrique de haut niveau, bien qu’utile en
pratique, peut être affinée et, dans notre travail, nous nous intéresserons à une métrique de
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plus bas niveau : le nombre d’“additionneurs un bit”. De cette manière, nous proposons
un outil pour fournir automatiquement de meilleurs adder graphs.

Pour réduire davantage le coût d’implémentation, nous nous intéresseront également
aux graphes d’additions tronquées, c’est-à-dire les adder graphs dans lesquels nous avons
tronqué des bits dans le chemin de données pour réduire le coût des additionneurs. Cela
induit une certaine erreur mais nous garantissons que celle-ci sera limitée, par construction,
en deçà d’une valeur donnée a priori par l’utilisateur. Nous nous attaquerons à cette
difficulté en proposant un modèle d’erreur permettant de propager correctement les erreurs
dans les adder graphs. Enfin, l’un des objectifs de cette thèse est de montrer la polyvalence
de la modélisation mathématique. Nous le ferons en recherchant des adder graphs pipelinés
à un coût minimal en ajoutant à nos modèles MILP de nouvelles contraintes.

Enfin, nos travaux porteront sur la combinaison de l’opérateur MCM avec la conception
de filtres IIR de second ordre. Notre objectif est de chercher les coefficients du filtre en
prenant en compte leur implémentation matériel. Nous proposons donc une méthode de co-
conception des coefficients du filtre avec l’implémentation via le problème MCM. De cette
façon, nous présenterons une application typique du problème MCM et nous montrerons
qu’il peut être abordé globalement en utilisant le modèle pour MCM comme une sous-partie
d’un modèle plus général.

Nous chercherons à mettre à disposition toutes nos approches au sein d’outils de
génération de code. L’objectif est de fournir automatiquement un code HDL aux con-
cepteurs de matériel pour qu’ils l’utilisent dans des circuits complets.

Plan de la thèse

Cette thèse est organisée dans l’ordre des problèmes présentés ci-dessus. Naturellement,
nous commençons par des métriques de haut niveau et, étape par étape, nous approfondis-
sons vers les métriques plus proches du matériel. Nous concluons ensuite notre travail par
une application. Le document est divisé en trois parties, chacune subdivisée en chapitres.

Partie I. Dans le chapitre 1, nous commençons par fournir les notions principales de
l’arithmétique en virgule fixe. Ensuite, nous présentons notre cible, le FPGA, et les
problèmes que nous cherchons à résoudre, MCM et la conception de filtres. Dans le
chapitre 2, nous fournissons des connaissances de base sur la modélisation mathématique
et l’approche de programmation linéaire en variables mixtes. Ensuite, dans le chapitre 3,
nous décrivons l’objectif global cette thèse : fournir des générateurs de code efficaces.

Partie II. Cette deuxième partie est consacrée à nos solutions au problème MCM, celles-
ci sont basées sur des modèles de plus en plus proche du matériel. Tout d’abord, dans le
chapitre 4, nous présentons notre travail sur MCM-Adders. Ensuite, dans les chapitres 5 et
6, nous abordons la métrique de bas niveau de l’additionneur à un bit, puis les troncatures.
Ces chapitres sont plus techniques et contiennent les détails de notre analyse d’erreur.
Enfin, nous proposons une solution pour le problème PMCM dans le chapitre 7.
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Partie III. Dans cette dernière partie, nous présentons une application qui implique le
problème MCM. Avec cette dernière contribution, qui est chronologiquement la première,
nous présentons la co-conception de filtres IIR de second ordre et de MCM.

Publications

Les travaux réalisés dans le cadre de cette thèse ont été publiés dans les revues interna-
tionales et les conférences évaluées par les pairs suivantes :

[GV23a] Rémi Garcia and Anastasia Volkova. Multiple Constant Multiplication: From
Target Constants to Optimized Pipelined Adder Graphs. In 33rd Inter-
national Conference on Field-Programmable Logic and Applications (FPL),
Gothenburg, Sweden, September 2023. doi: 10.1109/FPL60245.2023.00027

[GV23b] Rémi Garcia and Anastasia Volkova. Toward the Multiple Con-
stant Multiplication at Minimal Hardware Cost. IEEE Transactions
on Circuits and Systems I: Regular Papers, 70(5):1976–1988, 2023.
doi: 10.1109/TCSI.2023.3241859

[GVK22a] Rémi Garcia, Anastasia Volkova, and Martin Kumm. Truncated Multiple
Constant Multiplication with Minimal Number of Full Adders. In 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), Austin, Texas,
United States, May 2022. doi: 10.1109/ISCAS48785.2022.9937441

[GVK+22b] Rémi Garcia, Anastasia Volkova, Martin Kumm, Alexandre Goldsztejn, and
Jonas Kühle. Hardware-aware Design of Multiplierless Second-Order IIR
Filters with Minimum Adders. IEEE Transactions on Signal Processing,
pages 70:1673–1686, 2022. doi: 10.1109/TSP.2022.3161158

Conclusion

Avec cette thèse, nous avons contribué à intensifier les échanges scientifiques entre les
méthodes de recherche opérationnelle, l’analyse arithmétique des ordinateurs et les ap-
plications de conception de matériel. Parmi la grande variété de sujets relatifs à la con-
ception de matériel, nous avons abordé le problème MCM qui est un élément essentiel
de nombreuses applications classiques. Dans un premier temps, nous avons redéfini la
terminologie relative au problème MCM afin de pouvoir facilement différencier MCM, en
tant que concept, des problèmes plus spécifiques MCM-Adders, MCM-Bits, tMCM ou
PMCM. Ensuite, dans ce travail, nous avons démontré que la recherche opérationnelle, via
la modélisation mathématique, apporte aux applications matérielles des outils précieux.
Dans le chapitre 4, nous avons présenté l’efficacité de la modélisation mathématique pour
résoudre un problème pertinent bien connu depuis des décennies. Tout d’abord, nous
avons présenté notre modèle de minimisation pour le problème MCM-Adders et incorporé
des métriques secondaires telles que la profondeur de l’adder graph. Ensuite, nous avons

https://doi.org/10.1109/FPL60245.2023.00027
https://doi.org/10.1109/TCSI.2023.3241859
https://doi.org/10.1109/ISCAS48785.2022.9937441
https://doi.org/10.1109/TSP.2022.3161158
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démontré l’intérêt d’ajuster les paramètres du solveur car, avec des paramètres correcte-
ment choisis, comparé aux valeurs par défaut, nous avons pu réduire les temps de résolution
de 16.9%, en moyenne.

Dans un second temps, nous nous sommes plongés dans le modèle matériel en comptant
le nombre d’additionneurs à un bit dans le chapitre 5. Cette métrique de bas niveau reflète
mieux le coût du matériel et la résolution de MCM-Bits au lieu de MCM-Adders a permis
de réduire l’utilisation de la LUT de 7.8%, en moyenne. Pour effectuer ces comparaisons,
nous avons inclus un composant de génération de code VHDL dans notre toolbox.

Nous pensons que le chapitre 6 est vraiment là où le mélange prend. Bien que nous
concevions des opérateurs arithmétiques, nous avons d’une certaine manière contourné
l’analyse d’erreur jusqu’ici. Dans ce chapitre, une analyse des erreurs a été nécessaire pour
approfondir les possibilités de conception matérielle. Cette analyse d’erreur est importante
pour les applications critiques, d’un point de vue sécurité, dans lesquelles les concepteurs
de matériel doivent pouvoir être sûrs que les erreurs dans le circuit sont suffisamment
faibles. En outre, cette analyse facilite la conception d’opérateurs matériels frugaux : en
utilisant des troncatures intermédiaires, nous réduisons la consommation d’énergie de 22%
par rapport aux circuits en full -précision, en moyenne.

Enfin, dans le chapitre 7, nous avons démontré que la modélisation mathématique ne
se limite pas à la modélisation des additionneurs (blocs de LUTs), des décalages (bit-
shifts) et des additionneurs à un bit (LUT), mais qu’elle peut également être utilisée pour
modéliser les registres (FF) qui sont un composant essentiel du circuit matériel. Cela a
permis de réduire considérablement le chemin critique, le divisant par 3 dans certains cas.
La résolution de PMCM, au lieu de pipeliner a posteriori un adder graph fixé, a également
réduit le coût de l’adder graph de 33%, en moyenne.

Tout au long de cette thèse, nous avons présenté plusieurs modèles qui ont été implémen-
tés en open-source dans notre package Julia jMCM1. En résolvant nos modèles, nous obtenons
des adder graphs pour lesquels nous pouvons générer du VHDL à l’aide de notre package
AdderGraphs2. Nous pensons qu’il serait extrêmement utile d’intégrer ces modèles dans
des outils auxquels les concepteurs de matériel pourraient faire confiance et nous travaillons
actuellement dans ce sens en rendant tous nos outils open-source.

Enfin, nous avons pris du recul et démontré que MCM, résolu avec l’approche MILP, se
combine bien avec la conception d’opérateurs arithmétiques plus larges tels que les filtres
numériques. Les algorithmes utilisés dans les filtres numériques impliquent généralement
plusieurs multiplications par des constantes et, avec la conception de filtres IIR du second
ordre, nous avons montré que MCM peut être utilisé au cœur d’un problème plus vaste.
De cette manière, nous avons réalisé la co-conception des coefficients de filtres numériques
avec leur implémentation à l’aide de MCM. Cela a permis d’obtenir des filtres dont la
consommation d’énergie a été divisé par 10 dans un certains cas par rapport à l’état de
l’art KCM. En moyenne, nous avons réduit le nombre de LUTs de 48% par rapport aux
meilleurs résultats des autres méthodes, à l’exception de celle utilisant les DSPs. Grâce

1https://github.com/remi-garcia/jMCM
2https://github.com/remi-garcia/AdderGraphs

https://github.com/remi-garcia/jMCM
https://github.com/remi-garcia/AdderGraphs
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à ces expériences, nous avons démontré l’efficacité de la modélisation mathématique pour
résoudre des problèmes pratiques de conception de matériel. Ces résultats sont donc très
prometteurs et nous encouragent à poursuivre nos travaux sur d’autres problèmes de con-
ception de matériel.

Perspectives

Le travail présenté dans cette thèse est un nouveau pas vers l’utilisation de plus de tech-
niques de recherche opérationnelle dans la conception de matériel. Bien que nous ayons
résolu plusieurs variantes du problème MCM, il reste encore de nombreux aspects à ex-
plorer. Dans l’ensemble, nous prévoyons d’améliorer notre bôıte à outils sur le
problème MCM et d’éliminer autant de zones d’ombre que possible :

• Utiliser les DSP. Nous nous sommes concentrés sur les FPGAs tout en laissant de
côté les blocs DSP, ces ressources sont précieuses et pourraient être utilisées à côté des
LUTs afin de répartir le coût des multiplications par constantes sur divers éléments.
À court terme, nous prévoyons d’incorporer leur utilisation dans les modèles MILP
pour remplacer les constantes coûteuses en LUTs par des DSPs. En particulier, il ne
fait aucun doute que la combinaison des DSPs et des LUTs, comme dans [LPBG19],
pour tirer le meilleur parti des deux ressources est une direction vers laquelle nous
devons nous diriger.

• Nouvelles approches de modélisation. Nous avions un marteau, le MILP, et
nous avons montré que MCM est suffisamment proche d’un clou. Cependant, nous
devons examiner notre propre pratique avec un esprit critique et peut-être envisager
d’autres approches de modélisation mathématique ou l’utilisation d’heuristiques. En
particulier, à moyen terme, nous aimerions expérimenter la programmation par con-
traintes sur le problème MCM-Adders pour le comparer au MILP. En effet, selon le
problème, les solveurs MILP ou les solveurs de programmation par contraintes sont
plus ou moins adaptés et, sur le problème MCM-Adders, certaines limitations, telles
que les problèmes d’instabilité numérique, seraient évitées avec la programmation
par contraintes. Quoi qu’il en soit, les deux méthodes nécessitent des calculs lourds
et nous pensons que des heuristiques peuvent être développées pour ce problème.
Actuellement, à notre connaissance, les heuristiques disponibles sont des heuristiques
primales qui produisent une solution initiale mais ne la développent pas. À l’avenir,
nous aimerions explorer des alternatives et proposer des heuristiques qui pourraient
améliorer les solutions à l’aide d’une recherche locale dédiée.

• Modélisation de composants matériels polyvalents à grain fin Globalement,
sur le sujet MCM, nous sommes passés d’une métrique de haut niveau, le nombre
d’additionneurs, à une métrique de plus bas niveau, comptant les additionneurs d’un
bit, y compris les troncatures. En fin de compte, la modélisation directe des LUT,
des DSP, des FF et des fils constituerait une réalisation substantielle. Cela ouvrirait
de nombreuses portes, car cette capacité pourrait alors être appliquée à n’importe
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quelle fonction produisant des opérateurs arithmétiques matériels spécifiquement et
précisément conçus pour les FPGA. C’est un objectif à long terme que nous gardons
à l’esprit et que nous souhaitons atteindre en collaboration avec les concepteurs de
matériel afin de mieux comprendre le matériel. Comme pour tout problème abordé à
l’aide d’outils de recherche opérationnelle, l’expertise spécifique au domaine est absol-
ument nécessaire. En comprenant mal le problème, nous déclencherons certainement
le mauvais interrupteur et, au mieux, nous perdrons un temps précieux.

Ce travail sur le problème MCM, à l’aide de modèles basés sur le MILP, pose également
d’autres des questions théoriques que nous souhaitons explorer à l’avenir :

• Analyse de la complexité. Nous souhaitons savoir si le problème MCM est NP-
hard, comme cela a été conjecturé dans de nombreux articles [BH91, DM94, Gus08,
AFM15, Kum18] ? Thong et Nicolici [TN11] ont établi que si plusieurs problèmes
similaires sont NP-hard, cela n’a pas été prouvé pour le problème MCM. Thong et
Nicolici ont également noté que les preuves existantes pour des problèmes similaires
ne sont pas valables pour MCM. Cela représente un problème car la plupart des
techniques que nous utilisons pour résoudre MCM sont construites en supposant
que ce problème est NP-hard. Le prouver dans un futur proche nous conforterait
dans l’idée que nous allons dans la bonne direction. Ce serait l’occasion d’éveiller
l’intérêt pour les problèmes de conception de matériel des chercheurs travaillant sur
des problématique de complexité.

• Comparaison statistique. Dans le chapitre 2, nous avons rappelé que les solveurs
ne sont pas déterministes. À notre connaissance, le phénomène de performance vari-
ability n’a jamais été rigoureusement pris en compte dans la comparaison de modèles
entre eux, ni avec d’autres approches. Cependant, pour affirmer une différence signi-
ficative entre les approches impliquant un modèle basé sur le MILP, nous avons besoin
de tests statistiques. Comme nous l’avons établi, ce n’est pas trivial et nous devons
confronter notre pratique à des expérimentations rigoureuses. À l’avenir, l’un de nos
objectifs est de fournir une bôıte à outils pour faciliter ce processus de comparaison.

Enfin, nous avons étudié le problème MCM et une application à travers la concep-
tion du filtre IIR. Nous pensons que notre approche de ces problèmes matériels peut
également être utilisée pour d’autres applications complètes ou pour des opérateurs
matériels différents :

• Multiplications génériques. Les multiplications génériques, par exemple, ont
déjà bénéficié d’une modélisation MILP [KKIZ17, BKdD21] et nous pensons que
ces modèles pourraient être améliorés ou étendus pour prendre en compte davantage
de paramètres tels que la précision variable, qui peut aider à réduire la consommation
d’énergie lorsque l’application n’a pas besoin de la précision la plus élevée en per-
manence. Nous avons déjà commencé à travailler sur les multiplicateurs à précision
variable avec Andreas Böttcher et Martin Kumm de Fulda University of Applied
Sciences, et nous prévoyons de finaliser ces travaux à court terme.
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• Approximation des fonctions en virgule flottante. Notre travail sur le problème
tMCM a impliqué une analyse d’erreur intéressante et nous aimerions continuer à tra-
vailler sur des problèmes qui nécessitent un matériel optimisé avec une borne d’erreur
garantie. En particulier, l’approximation de fonctions pour leur implémentation sur
FPGA est un sujet qui regroupe de manière intéressante l’arithmétique informatique,
la connaissance du matériel et l’optimisation. Une composante théorique intéressante
de ce travail serait de modéliser les nombres FP dans les modèles MILP. En effet,
nous pensons qu’il serait possible de modéliser la mantisse et l’exposant séparément,
comme deux entiers, et, de cette façon, d’effectuer des opérations non linéaires dans
le MILP. Cela pourrait permettre d’intégrer pour la première fois dans des modèles
MILP la multiplication réelle.

• Vers de nouvelles applications. À long terme, nous souhaitons élargir notre
connaissance des applications possibles. Par exemple, nous travaillons déjà avec Vin-
cent Lostanlen sur de nouveaux opérateurs de filtres numériques pour l’acoustique
environnementale et nous prévoyons de finaliser ce travail dans un avenir proche.
Notre objectif est de réduire la consommation d’énergie des circuits matériels que
nous pourrions utiliser pour détecter la présence d’oiseaux [LSF+18]. D’autres ex-
emples d’applications possibles sont les réseaux de neurones et la cryptographie, qui
impliquent un grand nombre de multiplications par des constantes, de manière sim-
ilaire au problème MCM. Contrairement à MCM, ils impliquent généralement des
multiplications de matrices ou de très grandes constantes.

Dans l’ensemble, nous prévoyons de continuer à travailler pour l’optimisation des opéra-
teurs matériels et l’amélioration des méthodes de recherche opérationnelle.
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Bibliography

[ACFM12] Levent Aksoy, Eduardo Costa, Paulo Flores, and José Monteiro. Optimiza-
tion Algorithms for the Multiplierless Realization of Linear Transforms. ACM
Transactions on Design Automation of Electronic Systems, 17(1):1–27, Jan-
uary 2012.

[AFM15] Levent Aksoy, Paulo Flores, and José Monteiro. Exact and Approximate
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Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik
Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan
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[SSKZ18] Patrick Sittel, Thomas Schönwälder, Martin Kumm, and Peter Zipf. ScaLP:
A Light-Weighted (MI)LP Library. In Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV),
pages 1–10, 2018.

[Stu08] Student. The Probable Error of a Mean. Biometrika, 6(1):1, March 1908.
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Titre : Optimisation pour l’implémentation de circuits arithmétiques sans multiplication

Mot clés : multiplication par constantes, recherche opérationnelle, programmation linéaire en

nombres entiers, filtre numérique

Résumé : Les calculs embarqués sont omni-
présents et ont besoin d’implémentations ef-
ficaces avec des contraintes fortes sur les
ressources disponibles. De telles implémenta-
tions sont chronophages et requièrent une ex-
pertise combinée entre circuits électroniques
et arithmétique des ordinateurs.

Cette thèse étudie la conception auto-
matique d’opérateurs de multiplication par
plusieurs constantes (MCM), indispensables
pour les calculs numériques sur Field-
Programmable Gate Array. Derrière une inter-
face simple à utiliser, l’outil proposé dans cette
thèse se base sur la modélisation mathéma-
tique permettant une exploration automatique
d’un grand espace de conception. Une des

contributions majeures de cette thèse est l’es-
timation plus fine du coût matériel pour des
opérateurs arithmétiques de base et une for-
mulation sous forme d’un problème d’optimi-
sation. Différentes techniques de recherche
opérationnelle ont été explorées, incluant l’uti-
lisation de plans coupants ou de contraintes
de cassage de symétries.

Ce travail propose différentes variantes
de MCM : de l’utilisation de troncatures in-
ternes vérifiant une borne d’erreur de sortie
du circuit, à l’intégration de couches de pipe-
lines. Finalement, l’évaluation des méthodes
proposée démontre des gains significatifs en
consommation de ressources, notamment uti-
lisé pour la conception de filtres numériques.

Title: Towards optimized multiplierless arithmetic circuits

Keywords: multiplierless, multiple constant multiplication, digital filter, operations research,

mixed-integer linear programming

Abstract: Embedded computing is ubiquitous
and requires efficient implementations with
tight constraints on available resources. Such
implementations are time-consuming and re-
quire combined expertise between electronic
circuits and computer arithmetic.

This thesis studies the automatic design
of multiple constant multiplication (MCM) op-
erators, essential for implementation on Field-
Programmable Gate Arrays. Behind an easy-
to-use interface, the tool proposed in this the-
sis is based on mathematical modeling, en-
abling automatic exploration of a large design
space. One of the major contributions of this

thesis is the finer estimation of the hardware
cost for basic arithmetic operators and a for-
mulation in the form of an optimization prob-
lem. Various operations research techniques
have been explored, including the use of cut-
ting planes or symmetry breaking constraints.

This work proposes different variants of
MCM: from the use of internal truncations ver-
ifying a circuit output error bound, to the inte-
gration of pipeline layers. Finally, evaluation of
the proposed methods shows significant gains
in resource consumption, particularly when
used for digital filter design.
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