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Titre : Apprentissage profond pour l’optimisation de dose en radiothérapie.
Mots clés : Deep Learning, Monte-Carlo, radiothérapie
Résumé : La radiothérapie est un pilier du trai-tement moderne du cancer. La simulation dela dose de radiation avant son administrationest une étape primordiale pour garantir la sé-curité et la qualité du plan proposé. La mé-thode Monte-Carlo (MC), reconnue pour simu-ler le transport des particules et les interactionsavec la matière, s’impose comme la référenceen termes de précision dans cette tâche. Ce-pendant, ses exigences en termes de calcul en-travent son intégration dans le flux de travailclinique.Le travail présenté dans cette thèse seconcentre sur l’exploitation du potentiel de l’ap-prentissage profond pour accélérer les simu-lations MC des distributions de dose en radio-thérapie. Notre nouvelle approche implique letraitement de séquences de simulations MC defaible précision à l’aide de modèles d’appren-tissage profond. Étant donné les importantesdonnées d’entraînement requises pour l’op-timisation des modèles d’apprentissage pro-fond, nous avons créé un jeu de données com-prenant des simulations MC de réels plans deradiothérapie du monde réel, à l’aide d’un su-percalculateur.Notre recherche explore des architecturesà la fois récurrentes et entièrement convolu-tives, que nous avons adaptées pour gérer desséquences de distributions de dose en 3D. Desétudes d’ablation ont mis en évidence les limi-tations inhérentes découlant de la petite taillede notre ensemble de données en 3D. Ce définous a conduit à explorer les capacités de nosmodèles récurrents dans le cadre d’entraîne-ment faiblement supervisé. L’évaluation quan-

titative et qualitative de nos modèles a montrédes performances compétitives comparés auxméthodes classiques et de pointe.
Néanmoins, le calcul de la séquence d’en-trée de simulation de dose MC à faible pré-cision requiert toujours des ressources infor-matiques conséquentes. Pour contourner cetteexigence entravante, nous avons élaboré desmodèles qui extraient des informations essen-tielles des simulations MC à faible précision enentrée, sans nécessiter la séquence complètelors de l’inférence. Notre modèle repose surdes représentations vectorielles du nombre dephotons simulés lors de la simulation MC desséquences de dose en entrée pour prédire lescartes de dose de haute précision. Cette ap-proche amontré des performances amélioréestout en réduisant la charge informatique.
Enfin, nous présentons une nouvelle classede fonctions de coût pour optimiser les mo-dèles d’apprentissage profond et compléter da-vantage notre stratégie d’accélération de lamé-thode MC. Notre nouveau critère d’optimisa-tion, basé sur le taux de passage de l’indicegamma, s’aligne sur les normes d’évaluationclinique des distributions de dose. Nous pro-posons une approximation efficace, tensorielleet différentiable de cette métrique pour per-mettre des entraînements rapides de modèlesd’apprentissage profond. De plus, nous four-nissons une recette d’entraînement surmesurequi renforce le potentiel de cette nouvelle fonc-tion de perte innovante. Nos expériences sou-lignent les avantages significatifs de l’optimisa-tion des modèles avec notre fonction de perte.



Title : Deep learning-based methods for radiotherapy dose optimization. Keywords : deep lear-ning, generation, Monte-Carlo, radiotherapy.
Abstract :Radiation therapy is a cornerstone of mo-dern cancer treatment. Simulating the radia-tion dose prior to delivery is a paramount stepto ensure the safety and quality of the propo-sed plan. The Monte-Carlo (MC) method, re-nown for simulating particle transport and in-teractions with matter, stands as the gold stan-dard for this task in terms of precision. Ho-wever, its computational demands hinder itsadoption into clinical radiotherapy workflow.The work presented in this thesis focuseson leveraging the potential of deep learning ap-proaches to accelerate Monte-Carlo computa-tions of radiatiotherapy dose distributions. Ournovel approach involves processing sequencesof low-precision MC simulations using deeplearning models. Given the extensive trainingdata required for optimizing deep learning mo-dels, we created a dedicated dataset consistingof MC simulations of real-world radiotherapyplans, executed using a supercomputer.Our research delves into recurrent andfully convolutional deep learning architectures,which we adapted to handle sequences of 3Ddose distributions. Ablation studies highligh-ted the inherent limitations stemming from thesmall size of our 3D dataset. This challengeled us to explore the capabilities of our recur-rent frameworkwithin aweakly-supervised set-ting. Quantitative and qualitative evaluation of

our proposed models demonstrated competi-tive performance when benchmarked againstclassical and state-of-the-art methods.Nonetheless, computing the input low-precision MC dose simulation sequence stillresults in an unwanted computational bottle-neck. To circumvent this impeding require-ment, we devised models that extract essentialinformation from the low-precision input MCdose simulations without requiring the full se-quence during inference. Our proposed modelrelies on positional embeddings of the num-ber of photons simulated during MC simula-tion of the input dose sequences to predict thehigh precision dose maps. This approach dis-played improved performances while reducingthe computational overhead.Finally, we introduce a new class of lossfunctions to optimize deep learning modelsand further complete our acceleration strategy.Our novel criterion, based on the gamma in-dex passing rate, aligns with clinical evaluationstandards for dose distributions. We proposean efficient, tensorized and differentiable ap-proximation of this metric to enable fast trai-nings of deep learning models. Additionally, weprovide a tailored training recipe that enhancesthe potential of this innovative loss function.Our experiments underline the significant be-nefits of optimizing deep learning models withour clinical-based loss function.
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1.1 Problem statement

Deep Learning, a subfield of Artificial Intelligence (AI), stands as a transformative force that has

revolutionized a multitude of industries through its remarkable capability to discern complex

data patterns and relationships. In this era of technological advancements, the integration of

Deep Learning techniques into the realm of medical physics and radiation oncology presents

a promising frontier. Its potential lies in simplifying and enhancing the intricate processes

associated with radiotherapy treatments.

In recent decades, radiotherapy has risen as one of the most effective cancer treatments,

offering a localized approach to deliver precise doses of ionizing radiation to malignant tissues,

while sparing surrounding healthy tissue. The linchpin of this precision lies in the accuracy of

radiotherapy treatment planning, which is critical for optimizing tumor control and minimizing

collateral damage. To this end, simulating the irradiation dose before actual delivery is a key

quality assurance step in treatment planning. The Monte-Carlo method (Kase et al. 1978;

Duderstadt et al. 1979), renowned for simulating particle transport, has become a cornerstone

of radiotherapy dose calculations, offering a comprehensive and detailed representation of radi-

ation transport and interactions. However, it comes with a significant computational intensity,

which hampers its potential for real-time or near-real-time dose calculations, thereby limiting

its immediate clinical applicability.

The focus of this doctoral thesis embarks on a journey to explore and harness the power

of Deep Learning to expedite Monte-Carlo simulations in the context of radiotherapy dose

calculation. In this introduction, we delve into the intricacies of the radiotherapy treatment

process, reiterate the fundamental mathematical framework of Monte-Carlo simulation within

the context of dose generation, and provide a comprehensive overview of the multifaceted

challenges addressed and the contributions made within this thesis. By leveraging the strengths

of Deep Learning in addressing these challenges, we aim to open up new horizons in the field

of radiation oncology.

1.2 Radiotherapy

1.2.1 Treatment Process

The radiotherapy treatment process (DeVita Jr et al. 2019) is a highly specialized procedure

designed to deliver precise doses of radiation to cancerous tumors while minimizing damage to

12



Figure 1.1: Radiation therapy treatment workflow. The image gives an overview of the work-
flow a patient undergoes in radiation therapy. The process starts by a consultation that determines
the course of treatment with radiotherapy, followed by a treatment planning step that involves the
acquisition of medical images and subsequent design of a treatment plan. As dose calculation step
is then required to simulate the plan and perform a quality assurance review pior to delivery. After
treatment, the patient is monitored and receives follow-up care.

surrounding healthy tissues. The process involves multidisciplinary collaboration among radi-

ation oncologists, medical physicists, radiation therapists, dosimetrists, and other healthcare

professionals. This thorough approach aims to deliver effective cancer treatment while priori-

tizing patient safety and quality of life. Depicted in Figure 1.1, we give a detailed description

of the radiotherapy treatment process:

Consultation and Assessment: The treatment process begins with an initial consultation

between the patient and the radiation oncologist. During this consultation, the oncologist

reviews the patient’s medical history, diagnostic imaging, biopsy results, and other relevant

information. The oncologist discusses the potential benefits, risks, and expected outcomes of

radiotherapy treatment. If radiotherapy is deemed appropriate, a personalized treatment plan

is formulated.

Simulation and Treatment Planning: In this stage, the patient undergoes a simulation

session. The patient is positioned on the treatment table in the same manner they will be

during actual treatment. Specialized imaging techniques are used to precisely define the tumor’s

location and shape. These techniques comprise Computed Tomography (CT) (Oldendorf 1978)

scans and Magnetic Resonance Imaging (MRI). CT scans are medical imaging tests that create

pictures inside selected areas of the body using ionizing radiation. MRI uses strong magnetic

fields and radio waves to yield detailed images of the insides of a body (Liang et al. 2000).

CT provides high spatial resolution, making it excellent for visualizing anatomical structures

13



and especially bones. It is particularly useful for quick imaging, making it suitable for patients

who may have difficulty remaining still for extended periods. CT is widely available, cost-

effective, and has techniques to reduce metal artifacts, which is beneficial for patients with

metal implants. However, CT has limitations in soft tissue contrast, making it challenging to

distinguish between certain soft tissues. On the other hand, MRI offers superior soft tissue

contrast, making it ideal for delineating tumors and identifying normal structures (Schmidt

et al. 2015). It provides multi-parametric imaging, including functional and metabolic data,

through various techniques. MRI does not use ionizing radiation, a significant advantage when

repeated imaging is necessary, and is preferred for imaging certain organs, such as the brain

and pelvic organs. Despite these advantages, MRI has drawbacks, including longer imaging

times, sensitivity to metal causing artifacts, and limited bone visualization. Additionally, MRI

machines may be less widely available and more expensive than CT scanners. Thus, the choice

between CT and MRI depends on the specific clinical requirements, the type of information

needed, and the characteristics of the tissues being imaged (V. Khoo et al. 1999; Vincent S

Khoo et al. 2000; Chandarana et al. 2018). Using these medical images, the oncology team also

identifies adjacent healthy organs and tissues to be spared from radiation. The information

obtained from CT or MRI scans is used to create a three-dimensional model of the patient’s

anatomy, which is then employed to design a detailed treatment plan that outlines the dose,

angles, and beams to be used during the treatment.

Dose Calculation: The density information provided by CT scans is crucial for accurately

calculating the radiation dose that will be delivered to the tumor and surrounding tissues.

Different tissues absorb and scatter radiation differently, so having accurate density information

is essential for precise dose calculations. With the information from the simulation of the

dose, advanced treatment planning software is used to calculate the optimal radiation dose

distribution. The goal is to ensure that the tumor receives the prescribed dose while minimizing

radiation exposure to healthy tissues. Computing the dose from the prescription allows to design

the best possible plan. Consequently, the quality of the plan depends on the accuracy of the

dose simulation (Nelms et al. 2013; Masi et al. 2013). Moreover, when a treatment plan has

been defined, meaning that all machine parameters have been set, dose simulation is paramount

to check that the plan is sound. Machine parameters encompass the position of beam shapers

in the linear accelerators, intensity of the beam, rate at which the dose is delivered, speed of

rotation of the machine around the patient, to name a few. Hence, the high complexity of

the treatment calls for precise dose simulation tools to ensure the safety and accuracy of the

14



parametrization.

Quality Assurance: Before treatment begins, the treatment plan undergoes a rigorous qual-

ity assurance process. These guidelines cover various aspects of radiotherapy, including equip-

ment commissioning, procedures, and safety (D. I. Thwaites et al. 2005; Merwe et al. 2017;

Kutcher et al. 1994). The plan is reviewed by medical physicists and radiation therapists to

verify its accuracy and safety. This step is essential to prevent errors and ensure that the

calculated dose is delivered precisely as intended.

Treatment Delivery: During the treatment sessions, the patient lies on the treatment table

in the exact position determined during simulation. Highly specialized equipment, such as

linear accelerators, delivers the prescribed radiation beams according to the treatment plan.

Modern radiotherapy techniques, such as intensity-modulated radiation therapy and image-

guided radiation therapy, allow for precise targeting and adjustment of the radiation beams

based on daily imaging.

Monitoring and Follow-Up: Throughout the treatment course, the patient’s response to

treatment is carefully monitored. Radiation therapists, medical physicists, and radiation oncol-

ogists work together to ensure that the treatment parameters are accurately delivered. Periodic

imaging and clinical assessments are conducted to evaluate the tumor’s response and any po-

tential side effects.

Completion of Treatment: Once the prescribed number of treatment sessions is completed,

the patient finishes the radiotherapy course. The treatment team may provide recommenda-

tions for managing any lingering side effects and schedule follow-up appointments to assess the

treatment’s effectiveness.

Post-Treatment Follow-Up: After treatment completion, the patient continues to be mon-

itored during follow-up visits. Imaging and clinical evaluations help track the tumor’s response

and any potential recurrence. Long-term follow-up is essential to ensure the treatment’s success

and address any late-emerging side effects.
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1.2.2 Physics of Radiotherapy

In radiotherapy, ionizing radiation is used to treat cancer by delivering high doses of radiation

to tumor cells. In this section, we describe the fundamental mechanisms underpinning ionizing

radiation.

Ionizing Radiation: Ionizing radiation (Effects of Atomic Radiation et al. 1982; Mettler

1985) is a type of electromagnetic radiation such as X-rays and gamma rays, or particle radi-

ation. This radiation carries enough energy to dislodge tightly bound electrons from atoms or

molecules. This results in the formation of particles also called ions. These charged particles

can be electrons, protons, alpha particles or heavy ions. Particle ionizing radiation includes

alpha particles, beta particles, and neutrons. Alpha particles are made up of two protons and

two neutrons, beta particles are high-energy electrons or positrons, and neutrons are uncharged

particles found in atomic nuclei. On the other hand, electromagnetic ionizing radiation encom-

passes X-rays and gamma rays. X-rays are produced by accelerating electrons to collide with

a target material, while gamma rays originate from the radioactive decay of certain atomic

nuclei. Both X-rays and gamma rays are high-energy photons. Photons are neutral particles

therefore this type of radiation is referred to as indirectly ionizing radiation (Rosenberg 2008).

Ionizing radiation in the context of radiotherapy is quantified using units such as the Gray

(Gy), with the convention that 1Gy = 1 J/kg, and the Sievert (Sv). The gray measures the

absorbed dose of ionizing radiation, while the sievert takes into account the biological effect

of the radiation, incorporating factors such as the type of radiation and the tissue affected.

Outside of any medical context, ionizing radiation can damage biological tissues by causing

ionization and disruption of chemical bonds within cells. This can lead to various effects,

including DNA damage, cell death, and increased risk of cancer. The severity of these effects

depends on the type of radiation, the dose received, and the sensitivity of the exposed tissue.

Electron interations with matter: Ionizing electromagnetic and particle radiation occur

when an accelerated electron enters the neighbourhood of an atom nucleus. The electron

then undergoes Coulomb interactions with the atom, comprising of interactions with atomic

orbital electrons of the atom or directly with the atom nucleus. Through these interactions, the

electron may either lose its kinetic energy through collisions, resulting in radiation, or change

its direction which is called scattering. Collisions can occur with the orbital electrons of the

atom or with the nucleus and have various effects whether the collision is elastic or inelastic.

During an elastic collision, the electron is merely deflected from its original course but suffers
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(a) Characteristic X-ray generation. (b) Depiction of the Bremsstrahlung radiation.

Figure 1.2: Inelastic collisions of an electron with an atom. This figure provides schematics ex-
plaining the generation of characteristic photons caused by atomic de-excitation and of bremsstrahlung
photons caused by electron deceleration.

no energy loss. However, in an inelastic collision, the electron loses part of its kinetic energy

which corresponds to the emission of radiation. Figure 1.2 sum up the mechanism behind the

two types of inelastic collisions that an electron can encounter with an atom (Podgorsak 2005).

During an inelastic collision with orbital electrons of the atom, the incident electron can

know inner-shell electrons from the atom, and is deflected from its path and loses kinetic energy

as well. These Coulomb interactions result in either atomic ionization followed by atomic

excitation. As depicted in Figure 1.2a, the orbital electron is ejected, provided the energy of

the incident electron is greater than the binding energy of orbital electron. The empty space

left is then filled by another outer shell electron, emitting a single X-ray photon, also called

a characteristic photon, with an energy level equivalent to the energy level difference between

the outer and inner shell electron involved in the transition.

During inelastic collisions with the atom’s nucleus, the loss in kinetic energy is translated

in the form of bremsstrahlung radiation (Blumenthal et al. 1970). Bremsstrahlung, a German

term meaning ”braking radiation,” occurs when fast-moving electrons close to the speed of light

interact with the nuclei of atoms within a target material. As displayed in Figure 1.2b, when

high-energy electrons are decelerated by the electric field of atomic nuclei in a target material,

they lose part of their kinetic energy in the form of a bremsstrahlung photon, which includes

X-rays and gamma rays. The energy of the emitted gamma rays depends on the energy lost

by the electrons during this interaction. The process can be described and quantified, making

gamma rays a type of electromagnetic radiation with very high energy which falls at the highest
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energy end of the electromagnetic spectrum. The energy Eγ of the emitted photon, i.e. of the

gamma ray, can be calculated using the following formula:

Eγ = ℏf

Where:

• Eγ is the energy of the emitted photon (in joules).

• ℏ is Planck’s constant - ℏ = 6.626× 10−34 J.s.

• f is the frequency of the emitted photon in hertz.

The frequency f of the emitted photon depends on the energy lost by the electron during

the interaction with the target material. The higher the energy loss, the higher the frequency,

and therefore the energy of the emitted gamma ray. The energy lost by an electron ∆Eγ as it

is decelerated by the electric field of a nucleus can be calculated using the following formula:

∆Eγ =
e2

2r

Where:

• ∆Eγ is expressed in joules.

• e is the elementary charge of the electron and e = 1.602× 10−19 C.

• r is the distance of closest approach between the electron and the nucleus in meters.

The frequency of the emitted photon is related to the energy loss of the electron as follows:

f =
∆Eγ

ℏ

The result of these interactions is the emission of X-ray photons, both characteristic and

bremsstrahlung, from the target material. These X-rays emerge in all directions from the

target, forming a broad spectrum of X-ray energies, with some of them being very high-energy

X-rays. It’s important to note that the majority of the X-rays generated in radiation therapy

are produced through the bremsstrahlung process. Thus, the target material usually comprises

atoms with high atomic numbers, which have a lower electron density, to favor collisions between

the incident electron and the nuclei to emit bremsstrahlung radiation.
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Ionizing photon radiation: In the context of radiotherapy in this thesis, we focus on ra-

diation from photon beams. Ionizing photon beams are the preferred technique, as they allow

to target deep-seated tumors (Mayles et al. 2007). In penetrating an absorbing medium, pho-

tons can experience various stochastic interactions with the atoms of the medium which can

comprise whole atoms, molecules, atomic orbital electrons or nuclei. Photons can randomly

undergo several interactions. These interactions create new secondary ionizing particles which

can be charged particles like electrons or uncharged particles such as secondary photons. Sec-

ondary charged particles deposit their energies near the location of the interaction. Following

an interaction, the photon faces two outcomes. The photon can be absorbed completely by the

medium while the rest of its energy is transferred to secondary charged particles. Alternatively,

the photon is scattered, meaning that the secondary particles are necessarily another photon

which can be accompanied by a secondary charged particle. The principal interactions ob-

served at megavoltage energy range are pair production, the photoelectric effect and Compton

scattering and are displayed in Figure 1.3.

(a) Photoelectric effect. (b) Compton scattering. (c) Pair production.

Figure 1.3: Principal photon-matter interactions. This figures details key interactions between
photons and matter to better understand the mechanisms leading to radiation dose deposition. Each
of these three interactions yields secondary ionizing particles that will in turn also interact with matter
and deposit energy.

Photon-orbital electron interactions depend on the closeness of the electron to the nucleus.

When considering a tightly bound inner shell electron, the photon undergoes the photoelectric

interaction. As depicted in Figure 1.3a, the photon gets absorbed by the inner shell electron

and all of its energy is transferred to the electron. As a result, the photon disappears and part

of the photon’s energy that was transferred to the electron overcomes the binding energy, thus

ejecting the electron from the inner shell. The remaining of the energy becomes the kinetic
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energy of the scattered electron. The vacancy in the inner shell is then filled by an electron

from a higher energy shell which can create a characteristic x-ray photon. Let EK and EB be

the kinetic energy and the binding energy of the ejected orbital electron, then EK = Eγ −EB.

In general, the photoelectric effect dominates at low photon energy.

When interacting with a loosely bound outer shell electron with negligible binding energy,

a photon can undergo Compton scattering: the photon transfers some of its energy to the

electron and is deflected, while the electron is ejected. The amount of energy transferred to the

scattered outer shell electron depends on the scattering angle θ, as indicated in Figure 1.3b.

The more energetic the incident photon, the more forward, i.e. θ small, is the scatter. In

general, the Compton effect dominates at intermediate photon energies. Let Eγ and E ′
γ be the

energies of respectively the incident photon and the deflected photon, then the energy of the

deflected photon follows:

E ′
γ =

Eγ

1 + Eγ
511keV

× (1− cosθ)

When a photon interacts with nuclei by getting close to it as depicted in Figure 1.3c, it undergoes

either photodisintegration or interacts with the electrostatic field of the nucleus. In the latter

case, the pair production phenomenon occurs, which creates an electron-positron pair near the

nucleus. In general, pair production is most frequent a high photon energy (Rosenberg 2008).

In photon beam radiation therapy, the radiation dose is deposited in the patient’s body

following the principal photon interactions described above. These interactions attenuate the

photon beam following Lambert-Beer law (Beer et al. 1852):

I(x) = I0.e
−µx

Where I(x) is the intensity of the radiation beam at depth x, I0 is the initial intensity and µ is

the linear attenuation coefficient of the traversed medium. When penetrating a patient’s body,

the beam is thus attenuated depending on various factors, such as tissue density, radiation

beam characteristics and patient anatomy.

1.2.3 Linear Accelerator & Dose Delivery

Linear Accelerator (LINAC): LINACs (D. Thwaites et al. 2006) are used in various ra-

diation therapy techniques. They play a critical role in the treatment of cancer by delivering

high-energy radiation precisely to the tumor, either to shrink it before surgery, as a primary

treatment, or to relieve symptoms in palliative care. The goal is to maximize the therapeutic
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Figure 1.4: Schematics of the head of a LINAC (Fiak et al. 2021). The figure provides a
simplified view of the elements that compse a LINAC’s head, from which the radiation is generated.
The bremsstrahlung radiation and other ionizing particles are generated when electrons reach the
target composed of a heavy metal. Collimators, jaws and the multi-leaf collimator are element that
participate in shaping the radiation beam to the desired shape.

effect on the tumor while minimizing harm to normal tissues and organs.

A LINAC functions by producing high-energy electron beams for radiation therapy. We

distinguish treatment using electron beams for superficial tumors from photon beams that

better target deep tumors within the patient (Mayles et al. 2007). To generate a photon beam,

the electrons enter an accelerating waveguide, in which radio-frequency waves are used to

accelerate the electrons. A waveguide is typically a metallic structure that guides the electron

beam. Strong magnetic fields are used to steer and focus the electron beam as it travels

through the LINAC and ensure precise control of the beam’s position and direction. Using

the magnetic fields, the electrons are aimed at a heavy metal target like tungsten to generate

X-rays via bremsstrahlung radiation, which we developed in subsection 1.2.2. High energies

are necessary in order for the bremsstrahlung emission direction to follow the electron’s initial

course. Typical high energies start from 6 MeV. The emitted X-rays follow a spectrum of
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energy that presents high peaks as a result of characteristic x-rays emissions combined with

bremsstrahlung radiation. In order to compensate for the natural intensity variation of the

X-ray beam produced by the metal target, a flattening filter is placed in the LINAC’s head as

depicted in yellow in Figure 1.4 to ensure uniform dose distribution across the treatment field.

The radiation beam is precisely shaped with collimators and beam shapers to precisely target

the cancer cells, while minimizing exposure to healthy tissue. Upper and lower jaws, displayed

in Figure 1.4 as grey rectangles are mechanical devices positioned near the beam exit. They

allow adjustment of the radiation beam’s width and height. By moving the jaws, the beam’s

shape is tailored to match the tumor’s dimensions. The Multi-Leaf Collimator (MLC), in dark

red in Figure 1.4, is a critical part of the LINAC and is usually located close to the patient. It

consists of numerous individual ”leaves” that can move independently. The positions of these

leaves can be adjusted to create complex and customizable shapes for the radiation beam. By

dynamically repositioning the leaves during treatment, the MLC allows precise sculpting of the

radiation dose, conforming it to the tumor’s shape and minimizing exposure to surrounding

healthy tissues. This dynamic control ensures accuracy and safety in radiation therapy.

Dose delivery: Within the realm of treatment planning, two sophisticated strategies, Intensity-

Modulated Arc Therapy (IMRT) (Bortfeld 2006) and Volumetric Modulated Arc Therapy

(VMAT) (Otto 2008), have emerged as leading contenders. IMRT manipulates radiation in-

tensity across multiple static beams or arcs with intensity modulation, sculpting the radiation

dose to conform precisely to the tumor’s shape. Conversely, VMAT introduces an additional

dimension of flexibility by orchestrating continuous gantry motion coupled with continuous

modulation, optimizing both treatment efficiency and precision.

Figure 1.5 compares the dose deposited in the case of IMRT and VMAT delivery types.

Thanks to the continuous movement of the rotating beam, the VMAT approach brings addi-

tional flexibility in the shape of the beam allow to reduce drastically irradiation outside of the

tumor. VMAT tends to be faster and more efficient in terms of treatment delivery (Quan et al.

2012), making it the preferred choice for many clinical scenarios, especially when treatment

time is a critical factor.

These diverse approaches coupled with the progressive sophistication of LINACs, empower

clinicians to tailor radiotherapy treatments with an unprecedented level of customization, en-

suring maximal therapeutic benefit while minimizing potential side effects. As radiotherapy

techniques become increasingly sophisticated, the demand for personalized, adaptive treat-

ments has grown significantly. Real-time dose simulations empower clinicians to monitor and
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Figure 1.5: Comparison of dose delivery IMRT versus VMAT(Vanneste et al. 2016). This
figure provides a qualitative comparison of the radiation dose delivered in the case of IMRT and
VMAT. The figure highlights the homogeneity of the dose delivered by a VMAT plan in constrast
with IMRT where the beams deliver a less complex dose. The dose delivered by VMAT is more precise
and tailored to spare surrounding tissues.

respond to dynamic changes in a patient’s anatomy during treatment, ensuring that the radia-

tion precisely targets the tumor while sparing healthy tissues. This adaptive approach enhances

treatment efficacy and minimizes side effects.

1.3 Classical methods for dose computation

In subsections 1.2.2 and 1.2.3, we described the physical mechanisms underpinning radiation

dose deposition and presented the main means of delivery - LINAC, VMAT - of that dose in the

context of external photon beam radiation therapy. In this section, we present the basics of dose

computation and describe the principal dose computation methods that are not Monte-Carlo.

1.3.1 Basics of dose computation

Dose: Let us define the radiation dose. Let m be the mass of the penetrated medium and ϵ

is the net energy transferred to a unit volume when a particles enters and leaves it. Then the

dose is the energy deposited per unit mass, i.e.:

D =
dϵ

dm
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Fluence: Let N be the number of particles and x the unit area. Let ϕ(x, ϵ) = dN
dx
, expressed in

mm−2 be the number of particles crossing a unit area, also called fluence. We can write fluence

as differential in energy: ϕE = dϕ
dE

, in which case we derive the total fluence by integrating

over E. We define energy fluence which, with E the energy carried by the incident particle, is

defined by:

S(x,E) =
d(EN)

dx

Attenutation coefficient: We define µ the attenuation coefficient of the traversed medium

of density ρ. Let NA the Avogrado’s number, A the relative atomic mass of the target medium,

then µ = NA

A
ρ is the probability of interactions in a medium per unit area. The ratio µ

ρ
is called

the mass attenuation coefficient and does not depend on ρ.

TERMA: The total energy released per unit mass (TERMA) describes the total energy

imparted to the medium by electrons in a certain region of interest. It is a quantity used

to quantify the energy deposition by electrons in a given volume of tissue or other medium

irradiated with incident photons of energy spectrum E ∈ [0, Emax] and is written as:

T =

∫ Emax

0

TEdE with TE = S(x,E)
µ

ρ

Spread kernel: Spread kernels (Ahnesjö et al. 1987) are mathematical functions that de-

scribe how radiation beams spread and deposit energy in a medium. Spread kernels k(x,E)

are typically derived from extensive measurements and calculations, often using Monte Carlo

simulations, to accurately characterize and account for the behavior of radiation, including

scattering, photoelectric electrons, pair production particles and bremsstrahlung photons.

Total absorbed dose: Given the prior definitions, we can define the total absorbed dose in

a medium as a convolution at a given location x:

D(x) =
1

ρ(x)

∫
E

∫
V

TEρ(r)k(r, E)drdE

1.3.2 Non-MC dose computation engines

In this subsection, we provide a non-exhaustive review of the main dose computation engines

that are not Monte-Carlo based. In order to validate any treatment planning using these
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techniques, dose calculation is paramount to ensure the treatment plans effectively delivers

the correct dose. Because of the complexity of the treatment plans, both in terms of particle-

matter interactions and machine settings, computing the corresponding deposited dose can be

challenging. To that end, several dose calculation engines have been developed and have several

key components:

• Account for the attenuation of the radiation beam, characterized by the electron density

derived from the patient’s CT.

• Consider scattering and secondary radiation production.

• Model the radiation beam by considering the beam energy, shape and modifiers (collima-

tors and MLC).

Figure 1.6: Comparison of classical methods for dose simulation in photon beam radio-
therapy (De Martino et al. 2021). This figure provides a general comparison across time of the
classical methods used to simulate radiation dose distributions. The figure highlights the supremacy
of the MC method in terms of accuracy.

Correction-based methods: Introduced in the 1940’s up to the 1970’s, correction-based

methods for dose calculation use empirical data and algorithms to apply corrections to dose

calculations to account for various physical effects, such as tissue heterogeneities, scatter, and

beam modeling. They interpolate or extrapolate dose values derived from fundamental mea-

surements in water, such as the percentage depth dose, for various field sizes at a specific
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source-to-surface distance. This approach incorporates the use of essential concepts like tissue-

air ratio and tissue-phantom ratio, which make correction-based methods especially successful

in homogeneous media (Cunningham 1972; Khan et al. 1973; Clarkson 1941).

Pencil Beam (PB): A ”pencil beam” is a term used in the context of radiation therapy

and medical physics to describe a highly focused and narrow beam of radiation that is used to

deliver a precise dose of radiation to a specific target within a patient’s body. More precisely,

the PB kernel (Mohan et al. 1986) is computed by integrating the spread kernel along the

propagation axis of the incident beam or using MC simulations. The PB has the advantage of

increased calculation speed but suffers from uncertainty in the case of heterogeneous medium.

Several improvements of the PB kernel have been proposed, notably the anisotropic analytical

algorithm (AAA) (Tillikainen et al. 2008).

Collapse Cone Convolution (CCC): The CCC algorithm (Anders Ahnesjö 1989) com-

putes the total absorbed dose, i.e. the convolution by considering that energy released by

particles propagates and is attenuated in a conical volume. CCC takes into account variations

in tissue density, composition, and electron density. It also applies correction factors to the con-

volution result to account for inaccuracies in regions with tissue density variations, such as in

the presence of lung or bone. These correction factors help enhance accuracy in heterogeneous

environments.

Linear Boltzmann Transport Equation (LBTE): The LBTE (Failla et al. 2010; Vas-

siliev et al. 2010) is a mathematical equation used in the field of radiative transfer and particle

transport. In contrast with MC simulations which are stochastic methods, LBTEs are de-

terministic equations that provide a mathematical framework for modeling the transport of

radiation particles. They describe the behavior of particles in terms of distribution functions

and and are based on solving partial differential equations that can be solved using numerical

methods. In the context of radiation physics and radiation therapy, LBTE-based methods are

computational techniques that use the Linear Boltzmann Transport Equation to model and

simulate the behavior of radiation particles as they interact with matter, including human tis-

sue. These methods are used to predict the transport and deposition of radiation in various

applications, including radiation therapy, radiology, and nuclear engineering.

In summary, several methods exist and are used in treatment planning to simulate the radia-
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tion dose deposited in the patient. Many works compared dose calculation methods (Richmond

et al. 2021; Vangvichith et al. 2019; Bosse et al. 2020; Hasenbalg et al. 2007; Gray et al. 2009;

Han et al. 2011; Çatlı et al. 2013), both in terms of accuracy and of computational speed.

Nevertheless, in all these works and as depicted in Figure 1.6, one method remains unrivaled

and the gold standard in terms of precision: the MC method.

1.4 Monte-Carlo method

In this section, we first recall the general mathematical framework of the Monte-Carlo method

and then develop its use in dose simulation and highlight the main challenges this thesis tries

to address.

1.4.1 Mathematical Framework

The Monte-Carlo (MC) (Metropolis 1987; Raeside 1976) method is a powerful computational

technique widely used for simulating complex systems and solving mathematical problems that

may be challenging to solve analytically. Its name is inspired by the famous Monte-Carlo

Casino in Monaco, known for its element of chance, which reflects the probabilistic nature of

the method. The MC method is particularly valuable in situations where deterministic solutions

are either impractical or unavailable due to the complexity of the system being studied. One

of the key applications of the MC method is in simulating radiation transport for radiotherapy

dose calculations.

The problem is formulated in terms of mathematical equations and rules governing the

behavior of the system. In the context of radiation transport and radiotherapy dose calculation,

this involves modeling the interactions of particles (e.g., photons or electrons) with matter. Let

us consider a general problem expressed as an integral, where f(x) is a function that we want

to integrate over the interval [a, b] to find the value of I:

I =

∫ b

a

f(x) dx

Random Sampling: Random numbers are generated to simulate the behavior of the system.

These random numbers guide the trajectory and interactions of particles as they travel through

the medium. The random sampling captures the inherent uncertainty and stochastic nature

of particle interactions. In the MC method, random numbers are generated to simulate the
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behavior of the system. Let’s assume that Xi are independent random variables uniformly

distributed over the interval [a, b]. Then, the MC estimate of the integral I is given by:

I ≈ b− a

N

N∑
i=1

f(Xi)

where N is the number of random samples.

1.4.2 Monte-Carlo for Radiotherapy

In the field of radiotherapy, the MC method plays a pivotal role in accurately calculating

the distribution of radiation dose deposited in a patient’s body. This is crucial for treatment

planning, where precision is paramount to ensure effective tumor control while minimizing

damage to healthy tissues. When ionizing radiation is delivered to a patient, it interacts

with the biological tissues along its path. These interactions result in energy deposition, which

contributes to the absorbed dose and ultimately impacts the biological response. In the context

of radiotherapy dose simulation, the MC method is applied to simulate the behavior of ionizing

radiation as it interacts with biological tissues.

Problem formulation: Computing the total dose deposited during treatment involves mod-

eling the interactions of individual particles (such as photons or electrons) as they traverse the

patient’s body. To simulate particle interactions, random numbers are generated to determine

the particle’s trajectory. For instance, the probability distribution for scattering angles can be

sampled to determine the deflection of a particle’s path due to scattering interactions. Thus,

the dose effectively deposited at a certain point can be represented as the integral:

D(x,E) =

∫ ∞

0

S(x,E ′) · P (E ′ → E) dE ′

Here, D(x,E) is the dose deposited at a specific point x and energy E, S(x,E ′) is the energy

fluence at point x and energy E ′, and P (E ′ → E) is the probability that an incident particle with

energy E ′ deposits energy E in the medium. However, accurately predicting the radiation dose

distribution is a complex task due to the varying densities and compositions of tissues, as well as

the intricate patterns of particle interactions. MC simulations offer a comprehensive approach to

modeling these interactions. By simulating the trajectories of individual particles (e.g., photons

or electrons) and tracking their interactions with matter, the MC method provides a detailed

representation of how radiation is deposited in the patient’s body. This approach considers
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factors such as scattering, absorption, and secondary particle production, which contribute to

the overall dose distribution. Through the statistical analysis of a large number of simulated

particles, the MC method produces an estimation of the dose distribution. This distribution

informs radiation oncologists about the expected radiation dose received by different tissues,

aiding in the precise design of treatment plans that optimize the therapeutic outcome while

minimizing side effects. By simulating the trajectories of many particles and tracking their

interactions, the MC method provides an estimate of the dose distribution. This is obtained

by summing the energy deposited by each simulated particle at various points in the patient’s

body.

In conclusion, the MC method’s probabilistic approach to simulating complex systems finds

a valuable application in the field of radiotherapy dose calculation. By accurately modeling ra-

diation transport and interactions, MC simulations contribute to the enhancement of treatment

planning and the overall quality of care for cancer patients undergoing radiation therapy.

Uncertainty: The uncertainty of the deposited dose in a MC simulation is influenced by

various factors, including the statistical properties of the simulation, the complexity of the

geometry and interactions, and the quality of the simulation setup. The uncertainty is typically

expressed as the standard deviation or the standard error of the mean of the calculated dose

values from multiple simulated particles. This uncertainty is related to the number of simulated

particles N and the inherent randomness of particle interactions that we described in section

1.2.2.

Let Di be the dose value deposited by the i − th simulated particle in a considered voxel.

We define the mean dose µD deposited by all simulated particles in that voxel:

µD =
1

N

N∑
i=0

Di

Then the standard deviation σD of the dose values obtained from a Monte Carlo simulation

can be calculated using the formula for the sample standard deviation:

σD =

√√√√ 1

N − 1

N∑
i=1

(Di − µD)2 =

√√√√ 1

N − 1

N∑
i=1

(D2
i − µ2

D) (1.1)

Formula 1.1 considers the differences between each individual dose value Di of the ith par-

ticle and the mean dose µD of all the simulated dose values, and then averages the squared
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differences. Please note that N in the denominator is subtracted by 1 (N − 1) due to using the

sample standard deviation formula. When we have the entire population of dose values, you

would use N instead of N − 1 for the denominator. This formula helps quantify the spread

or dispersion of the dose values around the mean dose, giving an idea of the variability in the

simulation results. Keep in mind that the larger the number of simulated particles N , the more

accurate the standard deviation estimation is likely to be. Indeed, as it appears in formula 1.1,

increasing the number of simulated particles N reduces the uncertainty, but at a diminishing

rate. Additionally, other sources of uncertainty, such as modeling approximations and data

uncertainties, may contribute to the overall uncertainty (Paganetti 2012; Landry et al. 2010)

and have a negative impact on subsequent treatment planning (Ma et al. 2005).

Computational Challenge: Recent advancements underscore the pressing necessity to seam-

lessly integrate two essential aspects of treatment planning and delivery: real-time dose sim-

ulations for adaptation and the unparalleled precision offered by MC computations. Within

this domain, MC methods remain unrivaled, eclipsing conventional algorithms like pencil beam

and collapsed cone convolution engines in terms of precision. The MC method is grounded in

the probabilistic simulation of the interactions of myriad particles with matter. Therefore, it

provides an exceptionally faithful representation of dose distribution. This level of precision is

particularly critical when treating tumors located near critical structures or in situations where

the patient’s anatomy may change significantly over the course of treatment.

However, the formidable computational demands associated with simulating sufficient par-

ticles to yield high-precision dose maps, devoid of inherent MC noise, prevents integration into

clinical workflows. Moreover, the exigencies of contemporary treatment techniques amplify the

computational complexity of radiation dose calculations. For instance, IMRT restricts the use

of only a few discrete gantry angles, whereas VMAT employs continuous gantry movement

around the tumor center, optimizing patient care. However, VMAT’s benefits are counterbal-

anced by the need for increased simulated particles to counteract the inherent noise in MC

simulations. As the number of simulated particles escalates, the noise affecting the true dose

diminishes. Nevertheless, the full-scope particle transport modeling inherent to MC methods

exacts an exorbitant computational toll, constraining their widespread clinical adoption, even

though several works have tried to improve the computational requirements by offering sim-

plifications of the method (Udagedara et al. 2015; Nowak 2018; Raffuzzi et al. 2022). Recent

research has made strides in mitigating this issue, capitalizing on hardware acceleration and

leveraging efficient Graphical Processing Unit (GPU) implementations (Hissoiny et al. 2011;
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Neph et al. 2019b; Badal et al. 2009; Martinsen et al. 2009).

Nonetheless, the practical implementation of MC methodologies within clinical settings has

been persistently hindered by its computational intensity. This temporal constraint poses a

significant challenge in real-world applications where prompt and efficient decision-making is

of paramount importance.

1.5 Radiotherapy in the era of Artificial Intelligence

1.5.1 AI and Radiotherapy

Figure 1.7: Applications of AI in the radiation therapy workflow (Huynh et al. 2020).
This figure gives a broad overview of the different roles AI can play at each step of the radiotherapy
treatment workflow. AI could facilitate activities such as decision-making, acquisition of medical
images, delineation of organs, dose computations and quality assessment.

The emergence of artificial intelligence and deep learning as a powerful computational

paradigm has engendered shifts across a multitude of domains, providing avenues for inno-

vative strategies to circumvent these limitations. AI has the potential to significantly enhance

the radiotherapy treatment workflow in several ways.

Consultation and Prescription: The clinical workflow in radiation therapy commences

with patient evaluation, where the radiation oncologist conducts a comprehensive review, en-

compassing the patient’s symptoms, medical history, physical examination, pathological and
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genomic data, diagnostic studies, prognostic indicators, comorbidities, and radiation-related

toxicity risks. Based on the synthesis of these diverse data sources, the radiation oncologist

formulates a treatment plan. An emerging challenge in this process is the overwhelming accu-

mulation of data, far beyond what humans can swiftly process. AI-based methods, capable of

automatically extracting pertinent clinical insights, are becoming pivotal in creating decision

support tools for clinicians at the initial point of patient care. AI techniques, from medical

image assessment and extraction meaningful information from biology reports (Savova et al.

2017), have demonstrated early potential in guiding treatment choices and patient manage-

ment (Jochems et al. 2017; Oberije et al. 2015). AI models have shown promise in enhancing

prognosis and forecasting treatment outcomes (Oberije et al. 2015), although they have yet to

be integrated into routine clinical practice.

Before the treatment planning stage, the radiation oncologist establishes the prescribed

radiation dose for the tumor and defines dose constraints for adjacent organs. These decisions

rely on national standards and clinical trial evidence. However, variations in tumor biology

can lead to significant differences in radiation sensitivity, even among the same cancer type.

Additionally, due to the tumor’s geometrical relationship with surrounding organs, achieving

the desired dose can be challenging, often realized late in the planning process. AI platforms

have the potential to introduce a new level of personalization to radiotherapy by predicting

the tumor’s radiation sensitivity and determining the optimal achievable dose for a specific

treatment plan based on tumor and organ contours (Lou et al. 2019).

Organ delineation and segmentation: In radiation therapy, one of the most time-consuming

yet crucial task is the manual segmentation of the primary tumor and affected lymph nodes.

Accurate tumor delineation is vital as it directly impacts treatment outcomes. Figure 1.8

displays a patient’s CT with key organs, Organ-at-Risk (OAR) and Planning Target Volume

(PTV) clearly delineated. Errors in delineation can lead to underdosing or overdosing, affecting

tumor control and toxicity risks (Cui et al. 2015). Tumor segmentation often exhibits interob-

server variation, even among expert radiation oncologists, influencing treatment plan quality

and patient survival likelihood (Wuthrick et al. 2015). Current segmentation tools that rely on

reference images, such as segmentation atlases. Segmentation atlases are libraries of already

segmented medical images that are registered onto each new image with deformable registra-

tion (Walker et al. 2014). Yet, atlases can be unreliable, expensive, and still depend on user

input (Y. Kim et al. 2016; Delpon et al. 2016; Johnstone et al. 2018).

AI offers a promising solution to enhance the efficiency, quality and standardization of
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Figure 1.8: CT scan with overlapped delineation of organs involved in radiation ther-
apy (Martini et al. 2020). This figure displays segmentation of key organs prior to treatment
planning. The precision of the delineation is crucial for the next steps of the treatment workflow to
ensure precise and safe dose delivery.

radiation treatment planning by enabling almost fully automated segmentation, demonstrating

high accuracy compared to human experts. However, further prospective studies are needed to

assess AI’s efficiency, accuracy, and reproducibility within the clinical workflow. Adjacent to

tumor segmentation, organs need to be delineated to calculate radiation doses and ensure they

stay within safe limits. AI tools have shown potential in segmenting various organs in the body:

head and neck (Ibragimov et al. 2017; Nikolov et al. 2021; Zhu et al. 2019), thorax (Lustberg

et al. 2018; T. Wang et al. 2020; Ullah et al. 2023; Zhong et al. 2019; Khalil et al. 2022),

abdominal organs (Bongratz et al. 2023; Ding et al. 2022; Yu et al. 2022; Aparna et al. 2023)

and brain (Pflüger et al. 2022; R. Li et al. 2023). Yet, they are limited by the small number of

samples available to integrate in the deep learning model’s training set.

Treatment planning: Once provided with medical images, tumor and organ segmentations,

and the dose prescription, medical dosimetrists aim to create the optimal treatment plan.

The process of radiotherapy plan optimization involves finding the most effective solution to

meet conflicting objectives: delivering a high radiation dose to the target while minimizing

radiation exposure to nearby critical OARs. Achieving this balance requires a series of iterative

adjustments of parameters that dictate radiation dose deposition, through an agreed upon set of

rules or optimization using statistical methods. This iterative process can be time-consuming,

and there’s no guarantee that the clinically acceptable plan is the most optimal one. Moreover,
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these methods are often limited in accounting for variations in plan complexity and patient-

specific trade-offs, and the quality of radiation treatment plans is heavily influenced by human

factors, such as decisions regarding the angles of radiation beams and optimization parameters.

These decisions can result in substantial variations in the quality of treatment plans, both

within and between different medical institutions (Berry et al. 2016).

To achieve high-quality automated treatment plans, these AI-based algorithms must incor-

porate complex decision-making processes, alike the strategies used in AI applications such

as playing games. With the rise of Reinforcement Learning (RL) (Mnih et al. 2015) to per-

form human-level decisions in complex games such as Atari or Go (Schrittwieser et al. 2020;

J. X. Chen 2016), retrospective studies have adopted a paradigm shift towards gamification

of the optimization of LINAC’s parameters. In W. Hrinivich et al. 2023 and William Thomas

Hrinivich et al. 2020, , the authors adopted RL to automatically define the parameters of the

LINAC, such that the positions of the leaves of the MLC or movement of the upper jaws. In the

same idea, this game strategy also enabled to build on more classical methods (Boutilier et al.

2015) as seen in Shen et al. 2019, where the authors use reinforcement learning to optimize the

weights required to establish an optimal objective function for treatment planning.

Dose Prediction: Dose simulation is a crucial step of treatment planning. Several works

investigate the feasibility of calculating the dose distribution from the patient’s imaging (CT

or MRI scans) (Campbell et al. 2017). Computing the dose distribution from the LINAC’s

parameters, such as beam angles, number of gantry arcs, or MLC positions, can be a tedious

task. Several classical methods like collapse cone convolution and pencil beam, exist to solve

this task and are commercialized in treatment planning systems (TPS). Nevertheless, these

methods suffer from uncertainty on the effective dose deposited in the target organs and OARs.

Moreover, computing the dose requires intensive calculations and computational power that

are mitigated with approximations on the physics underpinning dose deposition.

To overcome these limitations, deep learning offers promising avenues towards precise and

fast dose prediction (Xing et al. 2020). As exemplified by Figure 1.9, research focus on har-

nessing convolutional neural networks to directly predict the dose from information regarding

the patient’s anatomy and contours delineating the OARs and PTVs (Kearney et al. 2018; Fan

et al. 2019). To further enhance the capabilities of deep learning some works investigate intro-

ducing priors related to the LINAC’s beam specificities to add contextual information to the

models (Vandewinckele et al. 2022). The use of generative adversarial networks (Goodfellow

et al. 2014) (GANs), self-supervised learning and adding constraints in the loss functions, is
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Figure 1.9: Example of a DL-based dose prediction pipeline (X. Chen et al. 2023). In this
example, the UNet-like model takes as input a patient’s CT, delineation of the involved organs and a
map indicating the distance of each organs to the planning target volume. The model is then trained
to output a corresponding optimal dose distribution map.

also investigated to better extract and exploit multi-scale features (Zhan et al. 2022).

One of the main challenges faced by deep learning solutions for dose prediction from patient’s

scans and segmentation masks resides in the lack of available training data. Discussed research

systematically displays a limited number of training samples, rarely above hundred. This lack

of data jeopardizes the coveted generalization power (Qilin et al. 2022) of neural networks. To

circumvent the data scarcity issue, recent work tries to leverage transfer learning (Kandalan

et al. 2020; L. Wen et al. 2023).

1.5.2 Deep Learning and Monte-Carlo dose computation

As pointed out in section 1.3.2, the MC method remains the most precise simulation tool for

dose computation, but its clinical adoption is hindered by its heavy computational requirements.

Our objective centers upon harnessing the potential of deep learning as a strategic accelerator

for MC simulations. This entails leveraging the innate computational efficiency of MC simula-

tions conducted with a constrained number of samples. Such simulations, while less accurate,

can serve as computationally affordable building blocks that a well-structured deep learning

model can assimilate and synthesize to generate dose distributions alike high precision MC

computations. The driving force behind this approach is predicated on the symbiotic relation-

ship between the computational efficiency of low precision MC simulations and the remarkable

capacity of deep learning models to discern intricate patterns within datasets. By orchestrating
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this synergy, our intention is to effectively emulate the outcomes of MC simulations that would

otherwise be infeasible within the time constraints of clinical decision-making.

Thus, the current overarching question that needs to be answered is: How and to what

extent can neural networks yield an accelerated approximation of MC simulations?

Several works have been proposing the use of deep learning models to generate dose maps

approximating MC precision from the patient’s CT scans (Götz et al. 2020; Lee et al. 2019;

Voss et al. 2023). For example, Pastor-Serrano et al. 2022 train their models on patches of CT

scans from 30 patients and leverage the ability of Transformers (Vaswani et al. 2017) to process

sequences to achieve milliseconds dose predictions meant approximate MC simulations. Yet,

data scarcity still prevents from generalizing to other patient geometries and anatomies, like

the presence of metal implants. Additionally, this technique still relies on the type of machine

that performed the CT, thus necessitating a substantial amount supplementary data from other

machines to ascertain generalization.

Another approach consists in directly accelerating the computation of MC dose simulations

by denoising low precision and cheap to compute MC simulations (Bai et al. 2020). Moreover,

Deep Learning engines for denoising anatomy specific MC simulations have been proposed in

the literature. In Peng et al. 2019 the authors proposed an encoder-decoder architecture to

predict high precision simulations from low precision ones in rectal cancer patients treated

with IMRT. Neph et al. 2019a used combined UNets (Ronneberger et al. 2015a) coupled with

additional CT scans as input to solve the same problem in MR-guided beamlet dose for head

and neck patients. Vasudevan et al. 2020 investigated GANs to denoise dose simulations in

water phantoms reporting promising results. More recently, Dijk et al. 2022 proposed a deep

learning-based denoising approach and alleviated the need for an extensive training set by

training the model using synthetic data.

1.6 Thesis overview

Our envisioned strategy entails a paradigm shift, where deep learning models are harnessed

to emulate and approximate precise MC simulations by exploiting the foundational insights

gleaned from less computationally intensive iterations. This integration holds the promise of

not only expediting the adoption of MCmethodologies within clinical contexts but also elevating

the precision and scope of their applications, thereby ushering in a new era of computational

efficiency and accuracy in medical decision-making processes. Unlocking the power of fast MC

simulation would mean more precise treatments and safer delivery. It will also lead the way
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Figure 1.10: Patients’ CT and corresponding normalized dose distributions computed
with Monte-Carlo at various numbers of simulated particles. The figures highlight that the
MC method converges and the simulated dose becomes cleaner as the number of simulated particles
increases.

towards real-time adaptation methods during delivery of the treatment.

The central objective of this thesis is to develop novel methodologies that seamlessly inte-

grate Deep Learning architectures with MC simulations, thereby enhancing the efficiency and

expediency of radiotherapy dose calculations. By capitalizing on the computational strengths

of Deep Learning, this research aims to address the challenges posed by the time-consuming

nature of MC simulations, making strides towards achieving clinically practical dose calculation

times. In the following sections we detail our contributions.

To sum up, we propose to utilize sequences of low precision MC simulations to infer high

precision dose distributions with AI. In order to conduct our experiments and optimize the

chosen AI models, we generated a unique in the world dataset comprising dose distribution

simulated with MC from real-world radiotherapy patients. With this dataset, we investigate

several deep learning frameworks to evaluate our hypothesis. Finally, we present a new family

of loss functions that integrate a clinical criterium directly into the optimization pipeline to

enhance further our training recipe.
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1.6.1 New perspective on Monte-Carlo simulations

Unlike typical methods explored for speeding up MC simulations using Deep Learning, we

took a different approach. Instead of directly using complex mathematical computations, we

presented the deep learning model with a series of simulations that became progressively clearer

over time. This unique strategy allowed us to provide the model with valuable insights into how

the radiation dose accumulates inside the patient’s body. In simple terms, a MC simulation

for radiotherapy dose is like trying to estimate how radiation interacts with the patient’s body.

It involves simulating the behavior of billions of tiny particles (like photons) as they travel

through the body and deposit energy. These simulations generate a lot of data, and we can

think of them as a sequence, like frames in a movie, where each frame provides a more detailed

picture of the radiation dose.

Our challenge was to teach the model to predict the next frame in this ’movie’ based on

what it had seen so far. This predictive ability is crucial for accurately estimating the final

radiation dose. To do this, we needed to consider not just the current frame but also the ones

that came before it. This allowed us to capture how radiation accumulates over time and how

it spreads out within the patient’s body. We believe that by training the model in this way, it

can learn to recognize patterns in how radiation spreads, even when there is some uncertainty

due to the limited number of particles used in the simulation. This innovative approach aims

to improve the accuracy of radiotherapy treatments by helping us predict radiation doses more

effectively. We adopt this perspective to train networks to derive correlation and causation

between the levels of noisiness induced by the different numbers of simulated particles. Indeed,

from a human eye and as displayed by Figure 1.10, some spatial correlation prevails and might

be an indicator of how the energy is deposited in patient tissue depending on the number of

generated particles. It is our hypothesis that a model could learn from observing this relation-

ship between uncertainty and spatial distribution of the dose conditioned by the number of

simulated particles.

1.6.2 Monte-Carlo dataset of dose distributions

To conduct our deep learning experiments to investigate our approach developed in subsection

1.6.1, we generated our own, first and unique in the world dataset. This dataset comprises

dose distributions simulated with MC and delivered using the VMAT strategy. To simulate

these dose distributions, we had to model the lower part of a LINAC’s head using a software

specialized for modelling particle transport and carried out the MC simulations using this model
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and the CT scans of 50 patients.

The unique nature of our dataset and still limited resources constricted the simulations to 50

patients. Open-source datasets for our specific application are inexistent. Thus, this first and

unique dataset, while quite small, remains our only reference for all subsequent experiments,

de facto introducing an inherent limitation to the work presented in this thesis.

1.6.3 Designing a learning loss function for Monte-Carlo

Based on our research and experimental observations, we present a novel loss function to train

neural networks on the specific task of dose denoising. This loss function approximates the

clinical evaluation metric used for dose quality assessment in a differentiable manner. Thus our

work integrates a clinical criterion directly into the optimization of the model’s weights.

The primary objective behind these advancements is to circumvent the pitfalls associated

with proxy problems induced by training models on ill-suited optimization targets. By tailor-

ing the training process to align closely with the intricacies of radiotherapy dose distribution

modeling, we seek to attain a higher level of precision and reliability in our simulations. These

developments represent a significant step forward in our ongoing efforts to accelerate MC sim-

ulations for the field of radiotherapy and to yield clinically trustworthy and explainable dose

predicting models. Therefore, this loss function opens a plethora of possibilities for devis-

ing more nuanced and effective training strategies for the task of modeling radiotherapy dose

distributions and dose generation.

1.6.4 Overview of the contributions

To summarize, the contributions presented in this manuscript are threefold:

1. The first, unique and open-access dataset of MC dose simulations in the case of VMAT

patients, generated using a supercomputer.

2. 3D fully convolutional recurrent framework to learn denoising of MC simulations from

sequences. We benchmarked our method against several other models. Implementation

and trained models are open-source.

3. A new family of loss function based on a gold standard clinical metric used to compare

and evaluate dose distributions. This work yielded a pending patent.
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Our open source code is available at https://git.io/JcbxD and https://tinyurl.com/

ycytz9z2.

These contributions led to various scientific publications and awards.

Conference Papers

• ”High-particle simulation of Monte-Carlo dose distribution with 3D ConvLSTMs”, Sonia

Martinot, Norbert Bus, Maria Vakalopoulou, Charlotte Robert, Eric Deutsch and Nikos

Paragios, Medical Image Computing and Computer Assisted Intervention (MICCAI) -

Paper and Oral, 2021.

• ”Differentiable Gamma Index-Based Loss Functions: Accelerating Monte-Carlo Radio-

therapy Dose Simulation”, Sonia Martinot, Nikos Komodakis, Maria Vakalopoulou, Nor-

bert Bus, Charlotte Robert, Eric Deutsch and Nikos Paragios, Image Processing in Med-

ical Imaging (IPMI) - Paper and Best Poster Award, Bariloche, Argentina, 2023.

Conference Abstracts

• ”Weakly supervised 3D ConvLSTMs for Monte-Carlo radiotherapy dose simulations”,

Sonia Martinot, Norbert Bus, Maria Vakalopoulou, Charlotte Robert, Eric Deutsch and

Nikos Paragios, Medical Imaging for Deep Learning (MIDL) - Abstract and Oral, 2021.

• ”Fast Monte-Carlo dose simulation with recurrent deep learning”, Sonia Martinot, Nor-

bert Bus, Maria Vakalopoulou, Charlotte Robert, Eric Deutsch and Nikos Paragios, Eu-

ropean Society for Therapeutic Radiology and Oncology (ESTRO) - Abstract and Oral,

Madrid, Spain, 2021.

• ”Deep Particles Embedding for Monte-Carlo simulations”, Sonia Martinot, Nikos Ko-

modakis, Maria Vakalopoulou, Norbert Bus, Charlotte Robert, Eric Deutsch and Nikos

Paragios, European Society for Therapeutic Radiology and Oncology (ESTRO) - Abstract

and Poster, Vienna, Austria, 2023.

Awards and other activities

• Best Poster Award of IPMI conference, 2023.

• Winner of the challenge Ma thèse en 6 minutes of Université Paris Saclay.
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• Teaching assistant for Deep Learning in Medical Imaging course of the MVA Maters at

ENS.

• External lecturer for the Python course at ESSEC.
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Monte-Carlo Dataset

Contents

2.1 Patient cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Simulation of dose distributions . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Geant4 and OpenGate . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Modelization of the LINAC . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 Organization of the MC simulations . . . . . . . . . . . . . . . . . . . 50

2.2.4 Uncertainty on the dose of the simulations . . . . . . . . . . . . . . . . 51

2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Training data generation pipeline . . . . . . . . . . . . . . . . . . . . . 53

2.3.2 Quantitative Image Quality Assessment . . . . . . . . . . . . . . . . . 55

2.3.3 Quantitative Clinical Dose Evaluation . . . . . . . . . . . . . . . . . . 56

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

To conduct our research into the potential of deep learning for expediting MC simulations,

our initial focus was on creating a comprehensive MC dataset encompassing radiotherapy dose

distributions. In this chapter, we outline the methodology employed for dataset generation,

justify the tools chosen to achieve our goal, detail the patient data utilized in this process, and

provide essential dataset statistics that serve as quality assurance measures for the simulations.
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2.1 Patient cohort

In the context of the collaboration contract framed by the Framework Agreement Noesia

(l’intelligence artificielle au service de la radiothérapie et oncologie), the Gustave Roussy Insti-

tute provided the clinical data of 50 radiotherapy patients undergoing VMAT treatment. Each

patient in the dataset received treatment following a VMAT plan comprising two gantry rota-

tions around the patient. Each plan was designed for a Varian LINAC TrueBeam (Glide-Hurst

et al. 2013) and a photon beam of energy 6 MeV.

Figure 2.1: Available data for each patient in the cohort. The data for each patient comprise
the CT scan, the Radiation Therapy Plan (RT Plan) defining all the machine parameters and delivery
type, the Radiation Therapy Structure Set (RT Struct) indicating the segmentation masks of the
organs involved, and the Radiation Therapy Dose (RT Dose) which is the corresponding delivered
dose distribution.

Depicted in Figure 2.1, the dataset comprises the patients’ CT scans and files characterizing

the radiotherapy plans. Each radiotherapy plan includes several files:

• the CT scan of the patient around the area comprising the target cancerous cells. Each

CT has a spatial resolution of 1mm3.

• the Radiation Therapy Structure Set (RT Struct) which refers to a structure set. It is a

type of DICOM object that defines the contours or regions of interest withing a patient’s

anatomy. These contours represent various strutures such as the target volumes (tumors),

critical structures (OARs) and normal tissues within the patient’s body.It specifies the

shape, size, and location of these structures, aiding in treatment planning and delivery.

• the Radiation Therapy Dose (RT Dose). This file describes the radiation dose distribution

within the patient’s body. It provides a 3D map of the delivered radiation dose, allowing

for visualization of how radiation is distributed within the target and surrounding tissues.

• the Radiation Therapy Plan (RT Plan), which outlines the details of the treatment

plan, including beam configurations, treatment techniques, prescribed dose, and dose
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constraints. This file provides information about the individual treatment beams, their

parameters, energy levels, angles of delivery, placements of the LINAC’s source, jaws and

MLC leaves. It defines how the treatment will be administered and serves as a blueprint

for the LINAC.

The patients in the dataset underwent radiotherapy to target cancerous cells present either

in the brain, Oto-Rhino-Laryngology (ORL) region, pelvis or thorax regions.

2.2 Simulation of dose distributions

Deep learning methods are data hungry, requiring usually an extensive amount of data to train

the models. One of our major contributions is a dataset comprising the MC simulations of the

dose distributions corresponding to the real-world radiotherapy patients introduced in previous

section 2.1. To that end, we modeled the head of a LINAC to simulate the whole VMAT

treatment plan and the interactions of the simulated radiative particles within the patients’

body.

2.2.1 Geant4 and OpenGate

Geant4: Geant4 (Agostinelli et al. 2003), or Geometry and Tracking, version 4, is a versa-

tile particle tracking toolkit used in high-energy physics, medical physics, astrophysics, space

science, and radiation protection. It allows precise modeling of complex geometries, simulates

particle trajectories, offers a wide range of physics models, supports scoring and visualization,

and provides user-friendly C++ and Python interfaces. Developed and maintained by the

CERN (European Organization for Nuclear Research), Geant4 has an active user community

that offers support, documentation, and continuous development. It is used for simulating

particle behavior in various applications (Archambault et al. 2003):

• High-energy physics experiments: Geant4 is used in the design and optimization of par-

ticle detectors for experiments at accelerators like the Large Hadron Collider.

• In Medical Physics: Geant4 plays a crucial role in simulating the behavior of radiation

in human tissues, aiding in treatment planning for radiation therapy and studying the

effects of radiation on biological tissues.

• In Space Science: Geant4 helps understand how cosmic rays interact with spacecraft and

astronauts in space missions.
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• In Radiological and Nuclear Physics: It is used for simulating radiation interactions and

evaluating the impact of radiation exposure.

Several works already used Geant4 to model and study LINACs (Sardari et al. 2010; Didi et

al. 2022) and simulate the radiation dose of radiotherapy plans (Gasteuil et al. 2019; Aitkenhead

et al. 2020). However these works are not all open-source and do not match our specific

requirements of simulating VMAT plans and computational ressources.

OpenGATE: In order to systematically explore the influence of the number of simulated par-

ticles, which directly relates to the uncertainty within the MC simulations, we opted to utilize

the OpenGATE software. This choice afforded us the flexibility to terminate the simulations

at distinct particle counts, enabling a meticulous examination of the simulation’s progressive

refinement. OpenGATE (Sarrut et al. 2022) is a project that builds on Geant4, extending its

capabilities and providing a more user-friendly framework for specific applications in medical

physics and radiation therapy.

OpenGATE is a versatile and open-source software platform primarily used for simulating

the transport of particles in matter. It’s particularly well-known and widely used in the field

of medical physics and nuclear medicine (Grevillot et al. 2011; Teixeira et al. 2019; Krim et

al. 2020). It incorporates advanced models for simulating the interactions of radiation with

biological tissues. This is crucial for applications in radiation therapy and nuclear medicine.

Users can integrate medical imaging data (e.g., CT, MRI) into simulations, making it valuable

for treatment planning and research in medical physics. OpenGATE allows researchers and

professionals to simulate the behavior of various types of radiation, including gamma rays,

X-rays, and positrons, as they interact with different materials such as tissues or detectors.

2.2.2 Modelization of the LINAC

To match the specificities of the patient cohort described in section 2.1, we modeled a Varian

Truebeam LINAC with 6 MeV photon beam. Modeling a LINAC can require to model the

source of the radiation and all the beam-shaping objects (jaws, MLC, flattering filter). In

our case, we used OpenGATE to model only the lower part of the head of a LINAC, i.e. we

restricted the modelization to the upper jaws and the MLC. Figure 2.2a displays a transversal

view of our modelization.

Beam shapers: We modeled the jaws and MLC with rectangular volumes without simulating

wedge parts. We set the dimensions of the upper jaws, also called the X, Y jaws, and MLC to
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(a) Transversal view of the modeled LINAC and per-
spective with a patient’s CT.

(b) View from below the modeled LINAC head. Green
lines are the trajectories of the simulated photons.

Figure 2.2: Visualizations of the OpenGATE modelization of the lower part of a LINAC’s
head. The MLC is depicted in yellow, the upper jaws in blue and cyan, and the location of the source
is indicated by the red disk. The CT of the patient is introduced below the LINAC’s head, awaiting
radiation. Green lines indicate the trajectories of simulated ionizing particles.

match the schematics of a 6 MeV photon beam of a Varian Truebeam LINAC. We extracted

the gantry angles and corresponding dose rates as well as positions of the source, X/Y jaws and

MLC from the original clinical RT plans and incorporated them in OpenGATE to simulate the

VMAT plans. For clarity, we present a visual representation of this modelization in Figure 2.2a.

We introduced a simplification in the modeling process to reduce computational time.

Specifically, we employed a technique referred to as ”KillActors” in the treatment of the MLC

jaws and leaves. KillActors effectively eliminate any incident particle upon collision with the

MLC components. Each MLC leaf/jaw was modeled by a rectangular volume respecting di-

mensions from schematics of the LINAC. In Figure 2.2b, green lines represent the trajectories

of simulated photons generated from the phase plane. The phase plan is located just above

the X-Y jaws. Most photons are stopped by the X-Y jaws and MLC KillActors. Consequently,

the modeling framework does not account for the penumbra effect. The rationale underlying

this choice pertains to the significant computational overhead associated with modeling the

intricate interactions between particles and the individual metal leaves and jaws, which would
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impose a substantial increase in computational time.

Source and Phase space: We represented the location of the radiation source as a cylindrical

volume, visible in red in Figure 2.2a. The source was located 1 m from the patient’s isocenter.

An isocenter, short for ”isocenter of rotation”, is a crucial point in radiation therapy and

medical imaging, particularly in treatments that involve radiation or focused beams of energy.

It is a specific location within the patient’s body where multiple radiation beams or imaging

lines converge or intersect. More precisely, LINACs or diagnostic imaging equipment like CT

scanners, are designed to rotate around the patient. The isocenter is the point around which

the machine or imaging system revolves.

Rather than simulating the entire trajectory from source to the target isocenter, we leveraged

a publicly accessible phase space dataset made available by the International Atomic Energy

Agency (IAEA). The phase space of a LINAC is a multidimensional space that characterizes the

distribution of particles such as electrons or photons, both in terms of position and momentum.

It plays a crucial role in understanding the behavior of the particles beam generated by the

LINAC. The phase space of a LINAC includes the following key parameters:

• Position in Space: This component of the phase space describes the spatial coordinates

(x, y, z) of the particles or photons within the beam. It defines where each particle or

photon is located within the beam at a specific point in time.

• Momentum: Momentum refers to the velocity of the particles or photons multiplied by

their mass. In LINAC physics, momentum is a crucial parameter, and it characterizes

the kinetic energy and direction of each particle or photon in the beam.

• Energy: Energy is closely related to momentum and describes the total kinetic energy of

each particle or photon in the beam. It is particularly important in radiation therapy,

where the LINAC beam must deliver a precise dose of energy to the treatment target.

• Direction: The direction component of the phase space specifies the trajectory or path

that each particle or photon follows as it moves through the LINAC. This direction can

be defined in terms of angles (e.g., polar and azimuthal angles) or unit vectors.

• Phase Space Volume: The entire phase space volume encompasses all possible combina-

tions of position and momentum for the particles or photons within the LINAC beam.

Our chosen phase space (Constantin et al. 2010), comprises the information of 52477334

particles, including 51865724 photons, 591763 electrons and 19847 positrons. Each of these
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(a) Energy distribution of particles generated by the phase space.

(b) 2D histograms showing the spatial distribution of the amount of each type of particles.

(c) Normalized 2D histograms showing the spatial distribution of the energy of the particles.

Figure 2.3: Spatial and energy distributions of the particles comprised in the phase space.
Several ionizing particles are included in the chosen phase space: electrons, photons (gamma rays)
and positrons. The phase space comprises a majority of photons of high energy.

particles has associated momentum, initial position and energy. Figure 2.3a displays the dis-

tributions of each type of particles accounted for in the phase space, depending on their kinetic

energy. Gamma rays, i.e. photons, have much higher energy than the electron and positrons.

Figure 2.3b shows how the particles are distributed spatially, while Figure 2.3c displays the
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normalized distribution of energy depending on the considered type of particles. During MC

simulations, these particles are randomly selected to simulate their trajectories. In MC simula-

tions requiring the simulation of a greater number of particles, particles are reused for simulation

with a different random starting point to allow for a different stochastic behavior of the particles

and therefore of their interactions with various mediums.

Once the modelization created, we place the CT scan of the patient such that the distance

between the isocenter and the source equals 1 m. The initial setting of the simulations can

look like Figure 2.2a. The CT provides the electron density information that characterizes the

tissues of the organs within the patient’s body. Also, the resolution of the provided CT defines

the resolution of the output dose distribution. During the simulation, a user-defined number

of particles, mixing electrons and photons, is sampled from the provided phase space. The

behavior and interactions of these particles with the patient’s tissues are computed using the

MC method to yield the deposited energy.

2.2.3 Organization of the MC simulations

Figure 2.4: Supercomputer computation strategy of MC simulations. Once the treatment
plan modelled in OpenGATE, the high-precision simulation is split into many sub-simulations that
require fewer particles and therefore a reduced computation time. These sub-simulations are heavily
parallelized on the supercomputer. Each complete simulation necessitated 8000 CPUs.

We conducted experimental tests to determine the required amount of simulated particles to

achieve acceptable dose simulations. We decided to simulate the behavior of 1011 particles for

each patient in the dataset. For this number of particles, the computed maximum uncertainty

defined by equation 1.1 in section 1.4.2, remains under 3% in regions where dose values are

within 20% of the maximum dose.

To simulate the behavior of 1011 particles for each patient case in a reasonable amount of
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time, we parallelized each simulation of 1011 particles into a thousand sub-simulations with

random initializations. One sub-simulation required computing the behaviour of 108 particles.

Each plan comprises 2 gantry rotations, i.e. 2 arcs. To further parallelize computations,

we separated the simulations of each arc. Thus, the dose simulation involving 1011 particles

was parallelized into 2000 sub-simulations - 1000 sub-simulations per arc, each requiring the

simulation of the behavior of 5×107 particles. To further reduce the computational overhead and

as depicted in Figure 2.4, we halved the resolution of the provided CT to 2mm3. Finally, thanks

to the unbiased property of the MC estimator, complete sub-simulations (2 arcs) were obtained

by summing one sub-simulation of each arc, yielding a complete sub-simulation involving 108

particles. Subsequently, the high precision simulation with 1011 particles was simply obtained

by summing the thousand corresponding sub-simulations with 108 particles.

To compute the thousands of sub-simulations for our dataset, we used a supercomputer on

which we had one million hours of dedicated computation time. The Très Gros Centre de Calcul

(TGCC) is one of the biggest computers in the world, with a computational power of petaflops

per second and around 30 petabytes available for storage. On this supercomputer, we carried

out the simulations by using heavy multiprocessing and thousands of Central Processing Unit

(CPU). More precisely, each per-arc sub-simulation required around 2 hours of computation on

4 cores. The duration of the simulation could vary up to 3 hours depending on the complexity of

the patient’s anatomy. The storage space required for the ouptut volumes of a single patient’s

simulation amounted to 1TB. Therefore, the high precision simulation for one patient treated

with a VMAT plan comprising 2 arcs necessitated a total accumulated computation time of

approximately 16k hours - almost 2 years - spanned across 8000 CPU cores. Generating the

dataset astoundingly showcased the overwhelming temporal limitations of the MC simulation

engine.

2.2.4 Uncertainty on the dose of the simulations

Figure 2.5 shows the MC simulation of a selected patient from the cohort described in section

2.1. The uncertainty maps highlight the relationship revealed by formula 1.1 in section 1.4.2.

As the number of simulated particles increases, the MC uncertainty decreases. Uncertainty dose

maps show that there are some discrepancies regarding the areas that are less targeted by the

radiation beam. Indeed, when comparing the uncertainty maps with the dose distributions, we

note that the noise level remains higher in areas that have not been irradiated. Nevertheless, the

outcomes of the MC simulations that modelled the behaviour of 1011 particles yield uncertainty

values that remain under 10%, as further confirmed by the violin plots of Figure 2.6. As we did
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Figure 2.5: Example of a patient’s CT, corresponding MC simulations at various noise
levels and associated uncertainty maps. This figure highlights that, as the number of simulated
particles increases during MC computations, the uncertainty surrounding the deposited dose decreases
at a diminishing rate. The uncertainty maps corresponds to the dose maps in the sense that areas at
which many particles are targetted display a reduced uncertainty when compared to other areas.

Figure 2.6: Uncertainty values accross dataset vs number of simulated particles. The
figure shows violin plots of the mean and maximum uncertainty values across the complete dataset,
depending on the number of simulated particles. Values stem from voxels in areas with dose values
superior to 20% of the maximum dose in the dose distribution. The figure confirms that we reach an
acceptable uncertainty level in the high-precision simulations computed with 1011 particles.

not have enough computational ressources to improve these statistics and since the qualitative

evaluation of the obtained dose distributions was satisfactory, we stopped the simulations after
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1011 particles.

Figure 2.6 displays violin plots of mean and maximum uncertainty values of the MC sim-

ulations relative to the number of simulated particles and computed over the entire patient

cohort. Uncertainty values were computed in areas within 20% - 100% of the dose maximum.

The plots reveal that while all plans were simulated with the same number of particles, there

is some variability in the uncertainty values. In other words, the uncertainty on the energy

deposited in the patient varies because discrepancies in anatomy complexity.

2.3 Experimental setup

In this section, we first develop our strategy to generate training samples quickly from the

dataset presented in section 2.2. Subsequently, we present several similarity measures that we

used in all experiments to evaluate the quality of the dose distributions generated by our deep

learning models, compared to the reference dose distributions.

2.3.1 Training data generation pipeline

As detailled in section 2.2, we computed 1000 sub-simulations with 108 simulated particles each,

for each patient comprised in the cohort. Since the MC method provides unbiased estimators,

summing all the sub-simulations yields a simulation with a precision corresponding to simulating

1011 particles, and we consider the latter simulations as our ground-truth reference data in all

presented experiments.

However, as part of our experiments with sequential MC simulations, we need to generate

intermediate simulations with fewer particles (for example 109 or 1010 simulated particles) to

create the input sequences that are to be processed by the deep learning models during training.

To create such simulations, we need to sum the corresponding number of sub-simulations.

However, creating and storing these intermediate dose simulations would require an extensive

amount of storage space. To circumvent this potential bottleneck, we create these intermediate

dose simulations on-the-fly i.e., directly during training of deep learning models.

During training, we create batches of simulations of varying noise levels on-the-fly using

the sub-simulations as shown in Figure 2.7. We sum subsets of the sub-simulations in order to

generate noisy simulations corresponding to previously decided numbers of simulated particles.

As we only have 50 patients represented in the dataset, we add some variability at least in

the MC noise by aggregating sub-simulations randomly to the desired number of simulated
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Figure 2.7: Creation of intermediate noisy simulations from the computed sub-simulations.
1000 sub-simulations per patient were created on the supercomputer. As they are independent, simply
adding them yields intermediate simulations with various numbers of simulated particles, i.e. noise
levels, that depend on the number of summed sub-simulations.

particles.

Moreover, let Nparticles be the decided number of particles corresponding to the desired level

of noise in a simulation. Then, under the satisfied condition that Nparticles ≥ 108, the required

number of sub-simulations to sum in order to create the desired simulations is found by:

Nsub =
Nparticles

108

As there are 1000 sub-simulations available, all indepently and identically distributed, then

the number of available dose volumes Ncomb per patient with that number of simulated particles

corresponds to the combinations of the sub-simulations defined as:

Ncomb =

(
1000

Nsub

)

It is important to note that as Nsub increases, the resulting combinations share more in-

formation in terms of dose deposition and noise, and are decreasingly independent from each

other. We also note Nind the number of independent dose volumes created to match Nparticles
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simulated particles defined by:

Nind =
1000

Nsub

We define N tot
ind the total number of independent dose volumes across the whole MC dataset.

As the dataset comprises 50 patients:

N tot
ind = 50×Nind

Nparticles Nsub Nind Ncomb N tot
ind

5e8 5 200 > 8e12 10000
1e9 10 100 > 2e23 5000
5e9 50 50 > 9e84 2500
1e10 100 10 > 6e139 500
1e11 1000 1 1 50

Table 2.1: Number of available dose volumes per patient in the dataset, depending on the
number of simulated particles.

Table 2.1 displays in order of magnitude the number of combinations of sub-simulations

that are possible to create less noisy simulations from them. As the input of the model will be

a sequence of decreasingly noisy simulations, we ensure that the least noisy ones comprise the

same sub-simulations as the noisiest ones belonging to the same input sequence. This ensures

that the simulations correlate at least in terms of deposited energy.

For each of the presented experiments, the processing pipeline of the dataset varies prior to

training. Specifically, variations encompass patch-based or whole image trainings, the explo-

ration of various normalization techniques, and the integration of data augmentation strategies.

These variations are further presented and discussed in the next chapters.

2.3.2 Quantitative Image Quality Assessment

In order to assess the fidelity of the generated dose images, we employed well-established metrics

that have been widely adopted in image quality evaluation. These metrics include the Structural

Similarity Index Measure, the Mean Squared Error, and the Mean Absolute Error. These

metrics collectively serve as robust quantitative measures to gauge the likeness and precision

of the generated dose images in comparison to the ground truth, facilitating a comprehensive

evaluation of the model’s performance. In the following presentations of said metrics, we use

the given notations:
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• x and y are the compared images.

• N and M represent the dimensions of the images.

Structural Similarity Index Measure (SSIM): The SSIM (Zhou Wang et al. 2004) quan-

tifies the structural similarity between the generated dose image and the ground truth. It takes

into account luminance, contrast, and structure, offering a comprehensive assessment of image

similarity. With the conventions that µx and µy represent the means of x and y, σ2
x and σ2

y

are the variances of x and y, σxy is the covariance between x and y, c1 and c2 are constants to

stabilize the division, the SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.1)

Mean Squared Error (MSE): The MSE (Chai et al. 2014) calculates the average squared

differences between pixel values in the generated image and the ground truth. It provides a

measure of the overall discrepancy between the two images. Mathematically, the MSE is defined

as:

MSE(x, y) =

∑
(x− y)2

N ·M
(2.2)

Mean Absolute Error (MAE): The MAE (Chai et al. 2014) computes the mean of the

absolute pixel-wise differences between the generated and ground truth images. It offers insights

into the average magnitude of the errors between the two images. Mathematically, the MAE

is defined as:

MAE(x, y) =

∑
|x− y|

N ·M
(2.3)

2.3.3 Quantitative Clinical Dose Evaluation

The presented metrics are useful to compare two dose distributions from a clinical standpoint

and widely used in practice.

Gamma index Passing Rate (GPR): The GPR (Low et al. 1998) is a widely used metric

in the field of medical dosimetry and radiation therapy to assess the quality of dose distri-

butions in radiotherapy treatment planning. It quantifies the agreement between a reference
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dose distribution (typically the desired or planned dose) and the delivered or calculated dose

distribution, taking into account both dose differences and distance-to-agreement criteria. Let

us define the relevant terms and parameters:

Dref(x, y, z): Dose at a specific point (x, y, z) in the reference or planned dose distribution.

Dcalc(x, y, z): Dose at the same point (x, y, z) in the calculated or delivered dose distri-

bution.

Dmax: Predefined dose threshold, often expressed as a percentage of the maximum dose

in the reference distribution (e.g., 3% of the maximum dose).

∆d: The distance-to-agreement (DTA) measures how close the two points (x, y, z) are in

space between the reference and calculated distribution.

δ: A predefined DTA criterion, often expressed in millimeter.

The GPR is computed based on the values of the gamma index matrix γ. The gamma

index matrix has the same dimensions as the evaluated dose distribution. Let ∆D = Dref−Dcalc

be the dose difference between the reference and calculated doses at a specific point, then the

gamma index value γ(x,y,z) for a specific point (x, y, z) is calculated as follows:

γ(x,y,z) =

√(
∆D

Dmax

)2

+

(
∆d

δ

)2

The GPR is calculated by assessing how many points in the dose distribution meet predefined

criteria. Typically, a passing point is defined as:

γ(x,y,z) ≤ 1

In other words, a point (x, y, z) is considered as satisfying the gamma index test if γ(x,y,z)

is less than or equal to 1. The GPR is then expressed as a percentage of the total number of

points evaluated:

GPR (%) =
Number of Passing Points

Total Number of Points
× 100%

A higher GPR indicates better agreement between the reference and calculated dose distri-

butions and is often used as a measure of plan quality in radiotherapy. Typically, a GPR of

95% or higher is considered acceptable for clinical treatment plans, but the specific criteria can

vary depending on clinical protocols and guidelines.

57



Dose Volume Histrograms (DVH): A DVH (Drzymala et al. 1991) is a graphical repre-

sentation and quantitative analysis tool employed in radiotherapy to characterize and visualize

the distribution of radiation doses within a patient’s anatomical structure. It provides valuable

insights into how radiation is delivered to specific regions of interest, including tumors and

nearby healthy organs. Key components of a DVH include:

• X-Axis (Dose): The horizontal axis of a DVH represents the range of radiation doses

delivered to the tissues or structures within the patient. It is typically measured in units

of Gray (Gy), which quantifies the amount of radiation energy absorbed by the tissue.

• Y-Axis (Volume): The vertical axis represents the volume of the tissue or structure receiv-

ing a particular radiation dose. It is often expressed as a percentage of the total volume.

For instance, 50% on the Y-axis indicates that half of the volume of the structure received

the corresponding dose on the X-axis.

A DVH is constructed based on data from the radiotherapy treatment plan, which includes

information about the prescribed dose, the distribution of radiation beams, and the geometry

of the patient’s anatomy. The DVH curve represents the cumulative percentage volume of the

anatomical structure receiving equal to or less than a specific dose. A steeper slope on the DVH

curve indicates that a larger volume of the structure receives higher doses of radiation, which

can be indicative of effective tumor targeting. Conversely, a shallower slope implies better

sparing of healthy surrounding tissues. DVHs serve several critical purposes in radiotherapy:

• Treatment Planning: DVHs help radiation oncologists and medical physicists design

treatment plans that optimize the balance between delivering a sufficient radiation dose

to the tumor while minimizing exposure to adjacent healthy organs.

• Plan Evaluation: DVHs aid in the evaluation of treatment plans by quantifying how

well the intended dose distribution aligns with clinical goals and constraints.

• Patient-Specific Assessment: DVHs allow for patient-specific assessment of radiation

dose distributions, enabling adjustments to treatment plans as needed.

In summary, a Dose-Volume Histogram (DVH) is a fundamental tool in radiotherapy that

offers a comprehensive and quantitative assessment of how radiation doses are distributed within

a patient’s anatomy. It plays a pivotal role in optimizing treatment plans, evaluating their

effectiveness, and ensuring the safe and targeted delivery of radiation therapy.
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2.4 Conclusion

In this chapter, we presented the cohort of VMAT patients we utilized to simulate MC sim-

mulations of dose distributions. In the OpenGATE software, we modeled the lower part of

the head of a LINAC in order to better reproduce the patient’s original radiation treatment

plan. We give a detailled and justified description of the various modelization and simplifica-

tion choices we made. MC computations were made using a supercomputer. The dataset is

publically available at https://hosting.therapanacea.eu/data/miccai2021/. Because of

the amount of MC simulations generated for this dataset, we described our on-the-fly data

generation strategy to yield training data when optimizing deep learning models. Finally, we

presented the computer vision metrics and clinical criteria we selected in order to evaluate the

quality of the dose distributions predicted by deep learning models in comparison with the

reference MC dose distributions computed with 1011 simulated particles.

In the Annexe 6.2.3, we provide visualizations of several patients’ MC dose simulations and

the corresponding uncertainty maps.
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3.1 Introduction

3.1.1 New perspective on Monte-Carlo

Modelization: In contrast with usual approaches studied to accelerate Monte-Carlo simula-

tions using Deep Learning, we choose to give a sequence of increasingly clean simulations as

input to the model. This has the advantage of giving additional information to the model about

how the dose increases within the patient depending on the number of particles generated.

A MC simulation of radiotherapy dose requires inferring the dose deposited by billions of

photons in the human body. The method consists in drawing independent random samples from

an unknown distribution by means of sequentially sampling empirical measures that describe

the dose deposition of individual photons. Let us denote by MNi
∈ Rd1×d2×d3

+ the 3D dose

volume result of a simulation performed with Ni photons. Since several MC dose simulations

for the same patient are independent from each other, the following equation holds:

MNi
+MNj

= MNi+Nj

Repeating this addition multiple times allows us to achieve simulations with a high number

of samples. We can then assess this cumulative process as a temporal one, where the indices

Ni correspond to consecutive time steps. In that case, a dose simulation can be represented

by a stochastic variable XNi
that we observe over time, as the number of simulated photons

grows. Then, considering a sequence (XN1 , . . . , XNT
) with T observations of that variable, our

denoising problem amounts to predicting the most likely observation XNT+1
based on the given

sequence:
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Figure 3.1: Aggregation procedure of the sub-simulations to create input dose sequence.
To create the input sequence of MC dose simulations, a subset of sub-simulations is selected depending
on the highest number of simulated particles in the sequence. These sub-simulations are then summed
to yield the corresponding simulations. To create the noisier MC simulations of the sequence, subsets
of the original subset are selected for aggregation. As a result, each noisy simulation is included in
the simulation that has a higher level of precision.

XNT+1
= argmax

XNT+1

p(XNT+1
|XN1 , ..., XNT

)

where p denotes an unknown probability. For our denoising task, an observation of XNi

is the radiotherapy dose delivered to a patient at each time step, i.e. MNi
. Hence, there is a

need to exploit both spatial and temporal information of the given sequence before inferring the

highly sampled dose. This formulation allows us to exploit the temporal and spatial coherence

63



in the process of simulation.

Dataset training aggregation pipeline: During training, we compute the noisy sequence

for each batch by aggregating sub-simulations on-the-fly to match the required noise levels,

according to the pipeline presented in Figure 3.1. Let us consider an input sequence of length

T . Each distributionXk|k=1..T
of the input sequence of dose distributions corresponds to Nk|k=1..T

simulated particles for a given patient case. The aggregation of the sub-simulations takes place

such that:

XN1 ⊂ ... ⊂ XNk
⊂ ... ⊂ XNT

Therefore, the sub-simulations summed to yield XNk
are also used to create all subsequent

dose distributions of reduced noise levels XNt>k
. This strategy ensures the continuous aggrega-

tion of sub-simulations and preserves information across noise levels.

3.1.2 Problem statement

Figure 3.2: Global studied learning pipeline. The model learns to generate a precise dose distri-
bution from a sequence of noisy MC simulations.

Provided with the new paradigm of section 3.1.1, the underlying question guiding the pre-

sented experiments in this chapter is: Does training deep learning models on sequences

of Monte-Carlo dose simulations lead to better and more accurate dose distribu-

tions?

The global framework of study is displayed in Figure 3.2. Under the prism of the afore-
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mentioned approach, we study several deep learning architectures in hope to find a model that

yields optimal denoising performances under the studied hypothesis. In particular, we study a

recurrent architecture called Convolutional Long-Short Term Memory (Shi et al. 2015) in both

two dimensional and three-dimensional settings. We analyse performances of trained models

in contrast to benchmarked models and discuss the limitations of the proposed frameworks

through extensive ablation studies. Finally, we propose and investigate another architecture to

disentangle noisy representations using feature embeddings that overcomes previous limitations.

3.2 ConvLSTMs for 2D denoising

3.2.1 Definitions

Long Short-Term Memory (LSTM) (Memory 2010) networks are a class of recurrent neural

networks (RNN) (Schuster et al. 1997) designed to mitigate the vanishing gradient problem

encountered by traditional RNNs. LSTMs excel in modeling sequential data with long-range

dependencies.

Figure 3.3: Architecture of an LSTM cell. An LSTM cell comprises several gates that fulfill a
specific function each like forgetting information or keeping in memory meaningful features.

Let ht signify the hidden state (output), Wf , Wi, Wc, and Wo weight matrices, while bf , bi,

bc, and bo are bias terms. σ represents the sigmoid activation function, and tanh corresponds

to the hyperbolic tangent activation function. Then LSTM cells are characterized by a cell

structure displayed in Figure 3.3, that comprises three pivotal gates:
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1. Forget Gate: The input of the forget gate ft is a concatenation of the previous hidden

state ht−1 and the current input Xt. This combination allows the forget gate to consider

both the historical context from ht−1 and the new information from Xt, when deciding

what to forget.

The forget gate is responsible for determining what information from the previous cell

state Ct−1 should be retained or discarded. The cell state serves as a dynamic storage unit

that can hold information relevant for the current time step while letting go of outdated

or irrelevant information. The forget gate computes a value between 0 (forgetting) and 1

(retaining) for each element in the cell state.

ft = σ(Wf · [Ht−1, Xt] + bf )

2. Input Gate: The activation of the input gate it governs the integration of new infor-

mation into the cell state. It generates a candidate cell state C̃t by blending the current

input xt and the previous cell state Ct−1, governed by the following equations:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)

3. Output Gate: It operates on the current input xt, the previous cell state (Ct−1), and the

candidate cell state C̃t, ultimately yielding the new cell state Ct and the current output

ht. Noted as ot, the output gate controls the selection of information to be exposed as

the output:

ot = σ(Wo · [ht−1, xt] + bo)

Ct = ft · Ct−1 + it · C̃t

ht = ot · tanh(Ct)

Convolutional Long Short-Term Memory (ConvLSTM) extends the LSTM archi-

tecture by integrating convolutional layers within the LSTM cells. In a ConvLSTM cell, the

forget, input, and output gates operate akin to those in standard LSTM. However, the incorpo-

ration of spatial information is achieved through convolutional operations. The mathematical

expressions remain similar, with convolutional operations denoted by ∗ in the gate calculations.

This augmentation is particularly valuable in scenarios involving spatiotemporal data anal-
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ysis, such as video processing, where both spatial and temporal dependencies play crucial roles.

Applications using this architecture range from next frame prediction in videos to weather fore-

casting. For the first time, we conduct preliminary experiments with this architecture on the

radiotherapy dose Monte-Carlo simulation denoising task.

3.2.2 Methods

Figure 3.4: Training and inference pipelines of the 2D ConvLSTM-based model. The
input sequence of MC simulations is first normalized prior to patch extraction for training. As the
architecture is fully convolutional, whole images can directly be processed at inference time.

Model: Our model comprises 5 ConvLSTM cells stacked on top of each other. Nonetheless,

the spectral dimensions has a varying number of channels across the architecture. No spatial

downsampling is introduced and thus remain equal to that of the input through all propagation.

All convolutional layers have 3 × 3 filters. Each convolutional layer is followed by a Swish

activation function (Ramachandran et al. 2017).

Dataset preprocessing: The input sequence of the model consists of 4 slices of a patient’s

dose volume simulated with respectively 5e8, 1e9, 5e9 and 1e10 particles using MC. The de-

noised slice comes from the corresponding dose simulated with 1e11 particles. This slice consti-

tute the optimal ground-truth of the input sample. Thus, the model is trained to infer highly

sampled dose simulations from lower precision simulations. The training set comprises axial

slices from 40 patients while the validation and test sets each draw slices from 5 patients. We se-

lect the slices in areas within 30%-100% of the maximum dose in the denoised simulations. The
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normalization applied consists in dividing each input simulation by the maximum dose value

computed over all ground-truth simulations from the training set. The same normalization is

applied to samples from the validation and test sets. This normalization has the advantage

that it keeps the physical fact that more simulated particles generate more deposited energy.

Training scheme: The training strategy is patch-based to encourage robustness of the

model’s generalization power. We set the patch size to 64 × 64 pixels i.e. 12.8 × 12.8 cm2

for each slice. We use random horizontal and vertical flipping as sole augmentation techniques.

We use AdamW (Loshchilov et al. 2017a) as optimizer and the linear combination of the MSE

and the SSIM as loss function. The initial learning rate was set to 10−3 and reduced by a factor

of 10% each time the validation loss plateaued for more than 100 iterations. Early stopping

was performed to stop the training.

3.2.3 Results

We compare the model’s performance to the Non Local Means (NLM) algorithm. To ensure

a fair comparison, we set NLM to denoise simulations with 1e10 particles, i.e. the last slice of

the input sequence of our model. Nonetheless, we additionally normalize the input simulation

to further help NLM. We stress that without this normalization step, NLM fails to denoise the

simulation in the sense that NLM does not account for the increase of deposited dose caused

by the additional simulated particles.

Method MSE SSIM(%)
GPR 3%/3mm

(%)
GPR 2%/2mm

(%)
Raw 1e10 particles

simulation
3.13e-4 87.5 81.6±7.04 31.3±8.73

NLM on 1e10 particles
simulation

2.04e-4 94.4 80.5±11.2 35.9±13.2

Stacked ConvLSTM 9.73e-5 97.3 83.2±12.9 42.7±15.2

Table 3.1: Quantitative evaluation of the dose generated by our model and the NLM method.

We evaluate the model on the test set according to the GPR, MSE and SSIM which were

presented in the previous chapter. The GPR is computed using a dose threshold of 10% and

a dose-to-agreement / dose tolerance ratio of 3mm/3%. Table 3.1 displays the quantitative

comparison.

Figure 3.5 displays the distributions for one sample case. The NLM denoised dose distri-

bution still comprises noise. Figure 3.6 shows the gamma index matrices of the simulation
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Figure 3.5: Dose distributions generated by the model and NLM. This figure displays slices of
the less noisy dose simulation in the input sequence, NLM denoised distribution, model’s prediction
and reference dose. This visualization confirms the enhanced prediction of the ConvLSTM-based
model compared to the classical NLM method, which distribution remains noisy.

Figure 3.6: Visualization of gamma index matrix for the NLM and our model’s denoised
dose distributions. The prediction of the ConvLSTM model scores a better GPR than NLM. Blue
voxels correspond to an accurately predicted dose while red voxels fail to satisfy the passing criterion
of the GPR.

denoised by NLM compared with our model’s. These matrices showcase the discrepancies in

terms of GPR and highlights that our model outperforms NLM. Moreover, our model further

decreases the inherent noise further in high dose regions.
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3.2.4 Discussion

The results of this preliminary experiment showcase that our approach outperforms the tra-

ditional non local means algorithm. Moreover, our model not only denoise quite sucessfully

the input simulations but also accounts for the increase in dose that occur conjointly with

the increase in number of simulated particles. This means that our framework, designed to

handled sequential information, succeeds in generating the extra missing dose corresponding to

the ground-truth simulations. However, 2D frameworks suffer from a lack of continuity in the

prediction. When considering a whole dose volume, each axial slice of the volume is processed

by the 2D model. The reconstructed predicted volume lacks smoothness along the axial view,

indicating a bad continuity of predictions impeding the generation of accurate 3D dose distri-

butions. Therefore, these first results encouraged us to directly pursue experiments with our

recurrent framework and generalize it to handle dose volumes.

3.3 3D-ConvLSTM

3.3.1 Introduction

Due to the limitations of the 2D approach, we generalize the ConvLSTM framework to cope

with three-dimensional inputs for denoising of whole 3D dose distributions. As 3D trainings

usually require an increased amount of GPU ressources, we also investigate incorporating 3D

ConvLSTM cells into a 3D UNet (Çiçek et al. 2016b), hoping that the spatial downsampling

that occurs can alleviate the computational bottleneck.

This study aims to demonstrate that this novel recursive framework harnesses its strength

from the sequential nature of its input and its ability to derive correlation between the levels

of noisiness induced by the different number of particles simulated in the 3D space.

3.3.2 Methods

3DConvLSTM cells: As we are considering data that present spatial information in three

dimensions, we extended the ConvLSTM framework to deal with temporal sequences of 3D

volumes. This can be achieved by using 3D convolutional operators indicated by ∗. In that

structure, Wz and bz in the equations below denote the parameters (filters and bias) of the

considered convolutional layers. ⊙ stands for the Hadamard product and σ for the sigmoid

function. The following equations (3.1-3.5) describe how gates are activated and states modified:

70



it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ⊙ Ct−1 + bi) (3.1)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ⊙ Ct−1 + bf ) (3.2)

Ct = ft ⊙ Ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc) (3.3)

ot = σ(Wxo ∗Xt +Wco ⊙ Ct + bo) (3.4)

Ht = ot ⊙ tanh(Ct) (3.5)

All the states of the 3D ConvLSTM cell are initialized with zeros which corresponds to

ignorance of the future states. To ensure that dimensions match between the input and the

various states inside the cell, padding is applied before convolutions. Therefore, the output of

the 3DConvLSTM has the same spatial dimensions as the input.

This extension of ConvLSTM allows processing of medical volumetric sequential data in

a fully convolutional manner. Each voxel’s future state can be seamlessly predicted using

contextual information brought by both temporal and spatial features from its own and its

neighbours’ past states in all dimensions. In the following subsections we present the two

different setups that we used to integrate the 3D ConvLSTM cells.

Figure 3.7: Proposed architecture with stacked 3D ConvLSTM cells. The number of output
channels after each block appears above or below the layers’ output volumes.

Proposed model with stacked 3DConvLSTM cells: The model consists of 7 cells 3D

ConvLSTM stacked on top of each other, without introducing any spatial downsampling. All
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convolutional layers in the 3D ConvLSTM cells contain 3× 3× 3 filters. Figure 3.7 shows the

architecture of the Stacked ConvLSTM model. The spatial dimensions remain equal to that of

the input through all propagation.

Figure 3.8: 3D Unet enhanced with 3D ConvLSTM cells in the skip connections. The
introduction of 3D ConvLSTM cells in each skip connection of the UNet enables the model to process
sequences of volumes.

Proposed UNet-based models with 3DConvLSTM cells in skip connections: We

also introduce a model based on the 3D UNet Çiçek et al. 2016a architecture and enhanced

with 3D ConvLSTM cells in the skip connections to further extract features at each of the

5 down-sampling steps. Down-sampling is performed using max pooling with kernel size and

stride of 2 and comprises two identical convolutional layers. All convolutions have 3×3×3 filters.

The bottleneck has two identical convolutions with a residual connection to further exploit the

deep features. The up-sampling blocks have a transpose convolution for up-sampling and a

regular convolutional layer for further processing. Each convolutional layer is ended with a

LeakyReLU Maas 2013 activation function, and batch normalization Ioffe et al. 2015 is used

for faster convergence. Details regarding the number of channels at each stage are shown in

Figure 3.8. This model is trained in the same setting as the proposed model with stacked 3D
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ConvLSTM cells.

3.3.3 Methods

Dataset : The dataset was split to 40, 5 and 5 patients for training, validation and test

respectively. Anatomies were distributed as evenly as possible between these sets. The input

sequence comprises 3 decreasingly noisy dose volumes simulated with 5× 108, 109 and 5× 109

particles of the same patient case. We use random horizontal and vertical flipping as sole

augmentation techniques. The ground-truth was the corresponding highly sampled simulation

with 1011 particles. Each sample was selected and fed to the model along the axial view.

Loss function: To optimize the weights of the considered models, we considered a hybrid

loss function that consists in a weighted sum of the SSIM and the L1 loss (3.6):

L =

Nsamples∑
i=0

(∣∣∣∣∣∣X(i,estimated)
NT+1

−X i
NT+1

∣∣∣∣∣∣
1
+ SSIM

(
X

(i,estimated)
NT+1

, X i
NT+1

))
(3.6)

where X
(i,estimated)
NT+1

is the model’s estimation of the i-th denoised dose volume sample.

Optimization: A patch-based training was implemented by randomly selecting sub-volumes

from the 3D input sequences - ground-truth pairs, in areas within 30% - 100% of the dose

maximum. The patch size was 64 mm3 subvolumes, i.e. 12.8 cm3. We used Adam optimizer

with learning rate, weight decay, beta1, beta2 and epsilon parameters set to 10−5, 10−4, 0.9,

0.999 and 10−8 respectively. The learning rate was reduced by half when the validation loss

stagnated, i.e. when difference in loss was inferior to 1e−2 for more than 200 iterations. The

batch size was set to 8. All models were trained for 3 · 105 iterations. The final model we kept

was the one that performed best on the validation set.

3.3.4 Results

Benchmarked models: We compare our method with other commonly used learning based

denoising methods in the literature. Our first benchmarking model is a 3DUNet Çiçek et al.

2016a with 5 down-sampling blocks. The second one is Pix2Pix Isola et al. 2017, a generative

adversarial framework. Pix2Pix has been adapted to a 3D setting. Moreover, since we are

considering smaller data in terms of height and width, we remove one down-sampling block
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and the corresponding decoding block from the generative model. The adapted generator

thus consists of 5 down-sampling blocks, giving a fair comparison with the proposed 3DUNet

architecture. Since these models don’t handle sequential data, the input is the last volume of

the sequence fed to the recurrent architecture, i.e. the least noisy simulation of the sequence.

Finally, we also compared with the recently proposed BiONet architecture Xiang et al. 2020

after adapting it to 3D data and also limiting the number of down-sampling blocks.

Method SSIM (%) GPR (%) L1 #
Inputs 5e9 particles 58.1 ± 0.1 59.1± 2.1 0.149± 0.050

3DUNet Ronneberger et al. 2015a 80.0 ± 2.4 61.2 ± 2.8 0.088 ± 0.007 10 M
Pix2Pix 3D Isola et al. 2017 55.4 ± 8.6 66.6 ± 14.4 0.102 ± 0.009 120 M
3D BiONet Xiang et al. 2020 93.0 ± 0.2 90.6 ± 1.2 0.080 ± 0.001 178 M

3DUNet ConvLSTM 64.5 ± 6.1 79.1 ± 1.2 0.037 ± 0.004 36 M
Stacked 2D ConvLSTM 81.6 ± 3.2 74.1 ± 3.1 0.021 ± 0.003 1.5 M
Stacked 3D ConvLSTM 97.9 ± 0.9 94.1 ± 1.2 0.004 ± 0.001 5 M

Table 3.2: Evaluation metrics for the performance of the models on the test set. The
3D ConvLSTM-based models are benchmarked against several deep learning architectures and
also against our 2D ConvLSTM model.

Quantitative results: Extensive quantitative comparison using the L1 error, SSIM and

gamma passing rate (GPR) for each model on the test set are presented in Table 3.2. We

evaluate the GPR criteria with a dose to agreement and tolerance on dose values of 3%/3mm

within 30% - 100% of maximum dose. Results show that Stacked 3DConvLSTM outperforms

all benchmark models in all metrics while having the lowest number of trainable parameters.

We also trained the original ConvLSTMs, on slices of dose volumes. Results in Table 3.2 reveal

that the 2D version still performs better than 3DUNet and Pix2Pix3D with regards to all

metrics with only 1.5 million parameters indicating the need of sequential data for this task.

Nevertheless, it does not outperform its 3D counterpart nor 3D BiONet. This fact highlights

that our 3D model as well as 3D BiONet extract volumetric features that greatly improve the

quality of the predictions. Moreover, Stacked 3D ConvLSTM achieves the lowest L1 value and

displays GPR scores with standard deviations of 1.2. Although BiONet also shows comparative

robustness in its predictions, the quality of the denoised dose volumes remain inferior to that

of our proposed models. Another remark stemming from these results is that, despite having

a higher SSIM than Pix2Pix3D, 3DUNet’s GPR is lower. This might indicate that 3DUNet is

able to infer structural coherence in the dose volumes but lacks in precision at a voxel level.

In contrast, the proposed recurrent 3DUNet outperforms 3DUNet on the GPR by 18% even
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though its SSIM score fails to match the 3DUNet.

Figure 3.9: Comparison of dose distributions generated by 3D ConvLSTMs and bench-
marked methods. On the first row from left to right: a single slice of the 5 · 109 dose volume,
BiONet’s, Stacked 3D ConvLSTM’s predictions and ground-truth 1 ·1011 dose volume. On the second
row from right to left error maps for the three different representations.

Figure 3.10: Comparison of dose profiles and DVHs generated by 3D ConvLSTMs and
benchmarked methods. Left: DVH curves, showing that the dose gradients are reproduced faith-
fully. Right: Dose profile along the line indicated on the ground truth image of Figure 3.9.
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Qualitative results: Figure 3.9 shows the predictions of the best performing models, namely

BiONet and the Stacked 3DConvLSTM, on a test case. Both models reproduce high dose

regions well. To further assess the denoising ability of the models, dose profiles are provided in

Figure 3.10. Both models succeed in smoothing the noise of the low-simulation input. Error

maps between predictions and ground-truth dose associated with BiONet point out that BiONet

globally overestimates the dose in low dose gradient regions. Stacked 3DConvLSTM performs

better in those regions but underestimates dose in high dose gradient regions where denoising

is expected to be more challenging.

However, we can notice that both models unfortunately tend to smooth fine details of the

Monte-Carlo ground-truth simulation. Figure 3.10 plots the dose volume histogram (DVH)

corresponding to the patient studied in Figure 3.9. Both models substantially improve the

DVHs towards the ground-truth DVHs. Nevertheless, the DVHs of BiONet indicate that the

model still slightly overestimates the dose in voxels, in contrary to the Stacked 3DConvLSTMs.

3.3.5 Discussion

Independently of GPU-accelerated computation, MC simulation time can be further decreased

using deep learning-based frameworks. The goal of this work is to highlight how considering

the MC simulation task as a spatiotemporal problem can be an asset to reach accurate and

fast computation of dose. Extensive experiments and comparisons with other state of the art

methods highlight the potential of our method. However, the fact that our model does not

perform any spatial down-sampling implies that the required GPU memory usage could still

be reduced. Achieving high GPR scores while decreasing the computational load could enable

real-time Monte-Carlo dose simulation. Future work aims to reduce the number of simulated

particles, or in other words increase the level of noise of the input dose volumes.

3.4 Ablation studies

Following these results, we performed ablation studies aiming a quantifying the impact of

changes in input data and architecture.

3.4.1 Alterations in the input data

Length of input sequence: In prior works, the input sequence comprises 3 decreasingly

noisy Monte-Carlo simulation of the radiotherapy dose of a single patient. Each simulation
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corresponds to a number of simulated particles.

Input length Test GPR Test SSIM Test L1 (×10−3)
1 91.98 ± 8.43 97.20 ± 0.64 5.70 ± 1.01
2 90.62 ± 1.31 96.04 ± 1.01 7.45 ± 1.64
3 95.40 ± 1.37 97.34 ± 0.63 5.46 ± 1.08

Table 3.3: Impact of the sequence length on quantitative performances of 3D ConvLSTMs
results.

In this experiment, we train the model with the input comprising only of the first and noisiest

simulation or the two noisiest simulations. Results are displayed in table 3.3 and showcase that

the performance of the model deteriorates when the noise level increases. Additionnally, with a

single input, the model displays instability in the GPR values, underlining a reduced robustness

of the model towards outliers and a loss of generalization power.

Impact of the CT: We added the CT as a second channel in the input of the model while

training. Table 3.4 compares both trainings and shows that adding the CT as extra information

in the input does not improve nor jeopardize the model’s performance significantly.

CT Test GPR Test SSIM Test L1 (×10−3)
No 95.31 ± 1.55 97.26 ± 0.65 5.58 ± 1.10
Yes 95.27 ± 1.66 97.27 ± 0.63 5.57 ± 1.08

Table 3.4: Lighweight 3DConvLSTM: Impact of CT addition to the input of the model.

3.4.2 Towards lighter 3D ConvLSTM

By reducing the number of output channels of each ConvLSTM layer in the model, we lowered

the number of parameters almost by a factor 10. Performances are reported in 3.5 and point

out that the decrease in complexity does not impact the performances negatively. This means

that fewer parameters allow efficient denoising of the Mone-Carlo dataset.

N parameters Test GPR Test SSIM Test L1 (×10−3)
3×106 95.89 ± 1.35 97.50 ± 0.73 5.25 ± 1.25
5×105 95.31 ± 1.55 97.26 ± 0.65 5.58 ± 1.10

Table 3.5: Impact of complexity reduction of 3D ConvLSTMs on quantitative metrics.
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3.4.3 Evaluation per anatomy area

Metric Pelvis + Thorax ORL
GPR (%) 96.32 ± 1.14 94.93 ± 0.84
SSIM (%) 97.30 ± 0.31 97.62 ± 0.92
L1 (×10−3) 5.53 ± 0.58 4.98 ± 1.55

Table 3.6: Qunatitative results per anatomy group on the test set for the lightweight 3D
ConvLSTM model.

Table 3.6 displays quantitative results depending on the type of anatomy considered. Per-

formances displayed highlight a satisfactory generalization to various anatomies. A slight dis-

crepancy can be noted when comparing the GPR values of ORL patients versus pelvis/thorax

patients. Nonetheless, ORL structures - PTV or OAR - are usually smaller than structures

encountered in pelvis/thorax patients. This difference of size can explain smaller GPR values

in the case of ORL patients.

3.4.4 Discussion

We carried out ablation studies to determine the sensitivity of our framework to several param-

eters: the length of the input sequence comprising noisy MC simulations, considering the CT

as physical prior and input to the model, and reducing the number of trainable parameters in

the model. Results show that a lower number of parameters deterioriates performances of the

model in terms of GPR and robustness to outliers. Adding the CT as input to the model did not

lead to better results, nor did it worsen the performances. We hypothesize that no additional

information can be found in the CT that is not already present in the input sequence of MC

simulations. Reducing the number of trainable parameters in the model by a factor of 10 did

not have any impact on the performances. These results suggest that the task of denoising 3D

MC simulations is either too simple or that the dataset does not comprise enough variability in

3D. Based on these ablation studies, the following experiments either focus on using a weakly

supervised training setting to overcome the small dataset size in 3D, or are conducted in 2D

with a supervised training to yield significant results.
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3.5 Weakly-Supervised ConvLSTMs

3.5.1 Introduction

Figure 3.11: Noise2Noise training pipeline applied to our sequence denoising task. The
optimization of the model’s parameters during training relies on the comparison of the model’s pre-
diction with another noisy simulation for the same patient.

The ablation studies in the previous section pointed to the small dataset size. Indeed,

considering a traditional supervised training strategy calls for a substantial dataset, which in our

case implies high-precision and therefore expensive-to-compute ground-truth dose simulations.

To circumvent this impeding requirement, we leverage the weakly supervised Noise2Noise (N2N)

method Lehtinen et al. 2018.

The N2N framework is a deep learning paradigm aimed at denoising images or data without

requiring clean reference samples during training. It leverages pairs of noisy observations, x1

and x2, of the same underlying clean data y to train a neural network F to predict the clean data

from the noisy inputs, thus minimizing a suitable loss function L between the network’s output,

F (x1) or F (x2) and one of the noisy inputs, i.e. minimizing L(F (x1), x1) or L(F (x2), x2). N2N

has found application in various image restoration tasks, including denoising, deblurring, super-

resolution, and inpainting, as it offers a robust solution when access to clean reference data is

challenging or non-existent. Using this weakly-supervised framework we take full advantage of
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the abundance of cheap-to-compute noisy dose simulations at our disposal to train our model.

Using the N2N framework, the objective of this section is to confirm that 3D ConvLSTMs

outperform other models as suggested by the results of sections 3.2 and 3.3.

3.5.2 Methods

Dataset: The cohort described in section 2.1 was split to 40, 5 and 5 patients for training,

validation and test respectively, while anatomies were distributed as evenly as possible across

sets. As precised in table 2.1 of section 2.1, to each patient correspond 20 independent noisy

MC dose distributions computed with 5e9 simulateed particles. The input-output pairs during

training are comprised of a noisy sequence for the input, and the corrupted reference is an-

other distinct simulation with 5e9 particles. The training and testing pipeline is displayed in

Figure 3.11. Following the N2N framework, the training loss is computed between the model’s

prediction and the corrupted reference, i.e. the distinct noisy MC simulation during train-

ing. At inference we performed direct denoising of entire dose volume, enabled by the fully

convolutional character of the ConvLSTM architecture.

Optimization: For all considered architectures, training was patch-based to promote better

robustness of the models. The patch size was 32 × 32 × 32 i.e. 6.4 mm3 and the batch

size was 8, to match our hardware limitations in terms of available GPU RAM. The training

lasted until the difference in validation loss was inferior to 10e−2 for more than 1000 iterations

using AdamW optimizer (learning rate=0.001, betas=(0.9, 0.999), weight decay=0.01). The

loss function combines the SSIM and the L1 loss as follows: Loss = 20 × L1 + SSIM . The

indicated weighing coefficient presented here was found after thorough hyperparameter search

and yielded the best performing model on the test set.

3.5.3 Results

The results of our experiments in section 3.3 promoted 3D BiONet as sole competitor to our

recurrent framework. Thus, in this section we benchmarked our model against 3D BiONet

trained with the N2N scheme. Furthermore, we carried out two trainings for BiONet, while

keeping the same number of trainable parameters:

• The full input sequence was given as input to BiONet, as it was to the 3D ConvLSTMs.

• Only the noisy MC dose distribution computed by simulating 5× 109 particles was given

as input.
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Figure 3.12: Visual comparison of denoised volumes by each model and the ground truth.

Figure 3.12 displays slices of denoised volumes by each model for further qualitative compar-

ison. Unfortunately, we observe that both models give visually smoothed predictions compared

to the fine-grained ground-truth.

Model SSIM (%) L1 GPR (%)
3D BiONet (input: noisy input sequence) 91.1±2.2 1.02e−1 ± 2.2e−2 50.5±4.8
3D BiONet (input: noisy 5e9 particles) 90.4± 3.4 7.22e−2±1.1e−2 71.9±5.1
Stacked 3D ConvLSTMs 86.4± 5.2 1.04e−1 ± 2.2e−2 83.8±3.4

Table 3.7: Quantitative results for the different evaluated models.

Table 3.7 shows the SSIM, the L1 loss and the GPR computed between the models’ denoised

volume and the corresponding ground-truth dose volume (simulated with 1e11 particles) over

the test set. The GPR is computed with a dose to agreement and tolerance on dose values of

3%/3mm within 30% - 100% of maximum dose.

Regarding the input given to BiONet during training, results suggest that BiONet does

not extract meaningful information from the given input sequence. Indeed, its performance

with respect to the GPR are drastically improved by 20% when using the 5 × 109 simulation

alone. We note that the SSIM scores are equivalent between the two training and outperform

3D ConvLSTMs. Yet, despite having the lowest number of parameters, the 3DConvLSTMs

remain unrivaled with respect to the GPR values.

3.5.4 Discussion

In this experiment, we leveraged the N2N framework to overcome potential limitations linked

to the small dataset size when considering full 3D distributions. This weakly supervised setting

allower us to fully exploit the abundance of low precision MC simulations within our dataset

to train models. We benchmarked our model against BiONet. Performances of both remained

competitive in terms of SSIM. However, 3D ConvLSTMs outperformed BiONet by 20% with

respect to GPR values. A side conclusion from the experiments stems from comparing the
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impact of the input simulation on the performances of BiONet. When training BiONet using

full input sequences as input while preserving the number of trainable parameters, BiONet’s

performances deteriorates drastically. This suggests that BiONet’s architecture is ill-suited to

handle sequences, despite having a distinctly higher number of trainable parameters than our

model comprising 3D ConvLSTMs.

3.6 Conclusion

In this chapter, we conducted several experiments to determine the validity of our approach

to accelerate MC simulations of dose distributions. Our approach consisted in predicting a

high precision dose using an input sequence of low precision simulations as input to the model,

therefore taking advantage of the information regarding the deposition of the dose and spatial

correlations comprised in the sequence. To verify this approach, we investigated a recurrent

yet fully convolutional architecture, ConvLSTMs, that we generalized to handle 3D volumes.

We benchmarked our ConvLSTM-based models against state-of-the-art and classical methods

and evaluated the quality of the generated dose maps using the metrics presented in section

2.3. Results indicate that 3D ConvLSTMs outperform other methods, especially with respect

to the clinical metric (GPR).

We performed ablation studies to further the test the sensitivity of our architecture to

changes in the input sequence, physical prior and architectural complexity. The main limitation

arising from our experiments is the small dataset size when considering 3D trainings. We

therefore explored a weakly supervised setting to bypass this challenge and validated the results

observed under a supervised training. 3D ConvLSTMs display drastically improved GPR values

than other models at test time. Moreover, ConvLSTMs seem to take full advantage of the

input sequence of MC simulations while its contenders fail to extract meaningful features and

perform best when considering a single input simulation, i.e. in a one-to-one prediction setting.

Thus, ConvLSTMs show promising performances and seem to confirm the advantages of our

many-to-one approach to denoise and accelerate MC simulation. Nevertheless, this architecture

necessitates computing the input sequence, even at inference time, to generate a high precision

distribution. This requirement boils down to an additional computational bottleneck problem

that we try to address in the following chapter.
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4.1 Introduction

In the previous chapter, we studied ConvLSTM-based approaches to generate precise dose

distribution from a sequence of Monte-Carlo simulations with higher noise levels. Nevertheless,

a significant drawback of this approach lies in the substantial computational resources needed
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to simulate input sequences for both model training and inference. In this chapter, we explore

frameworks that circumvent this impediment at inference time. These architectures not only

enhance the speed of dose prediction but also make effective use of our sequential perspective

throughout the training process. We precise that we conducted the following experiments in

2D to emancipate trainings from the data scarcity issue and encourage significant results and

evaluation of the models’ generalization power.

4.2 Cascaded Denoising

4.2.1 Introduction

Cascaded U-Nets (Christ et al. 2016) represent a powerful architectural innovation in the field

of image processing, particularly in medical imaging and computer vision applications like med-

ical image segmentation (Aswathy et al. 2022; Lachinov et al. 2018; H. Liu et al. 2019). These

networks are an extension of the popular U-Net architecture, known for its exceptional perfor-

mance in tasks like image segmentation and object detection. The concept behind Cascaded

U-Nets is to stack multiple U-Net models sequentially, creating a cascading structure that re-

fines and enhances the accuracy of the output at each stage. The primary use of Cascaded

U-Nets is to tackle complex image processing challenges where high levels of precision and de-

tail are required. In this work we try to leverage the refining power of cascaded networks to

denoise MC simulations while alleviating the computational bottleneck of simulating the input

dose distributions at inference time.

4.2.2 Methods

Pipeline: Figure 4.1 displays the training pipeline to achieve our goal. First, we train a

2D UNet to denoise pairs of incrementally noisy simulations. More precisely, this first training

focuses on generating from 108 particles to 109, from 109 to 1010 and from 1010 to 1011. Secondly,

we duplicate this pre-trained model into 3 identical models. We finetune each of then on one

single transition - 108 to 109, 109 to 1010, or 1010 to 1011. After convergence of these finetuned

models, we cascade them, thus yielding a global model that directly process dose distributions

simulated with 108 particles. The cascaded model finally generates a dose map similar to the

high precision distribution simulated with 1011 particles.
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Figure 4.1: Pipeline for end-to-end dose denoising with cascaded UNets. The first step of
the pipeline consists in training a 2D UNet to denoise pairs of MC simulation with incremental noise
levels. Then, this model is duplicated into three separated versions that are each finetuned to map
selected noise levels. Finally, these finetuned copies are cascaded to yield a denoising pipeline.

Optimization: The dataset detailed in section 2.1 was split in 35, 5 and 10 patients for

respectively the train, validation and test sets with anatomies dispatched as evenly as possible

across the partition. In constrast with previous experiments from Chapter 3, we added 5

patients to the test from the train set to help better assess the behavior of the model at test

time. Each sample consisted of a slice of noisy MC simulation and its corresponding reference

slice in the ground-truth dose volume. Slices were selected in areas with dose values superior to

10% of the maximum dose. We trained our model on whole images. To that end, we enabled

batch training by padding each dose map in the datasets to the size 256× 256.

Our 2D UNet model comprised 3 downsampling-upsampling stages. Convolutional blocks in

the encoder comprised 2 convolutional layers with Swish activation functions (Hendrycks et al.
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2016) and residual connections combined with group normalization, following the suggestions

in Kolesnikov et al. 2020.The bottleneck comprised 4 convolutional layers with residual con-

nections. Overall the architecture is very similar to the UNet model modified and presented in

Ho et al. 2020. However, our model does not perform positional encoding, nor does it include

any kind of attention module.

We trained the models using the AdamW optimized with default parameter values and an

initial learning rate of 10−3. We performed early stopping to decide when to stop the training.

The learning rate was decayed by a factor of 10% each time the validation loss plateaued for

more than 200 iterations. Batch size was set to 16. We used a hybrid loss function combining

the SSIM and the L1 loss similarly to experiments in chapter 3.

4.2.3 Results

Denoising level Global model Finetuned models
1e8 to 1e9 49.39 ± 6.94 48.42 ± 3.99
1e9 to 1e10 73.12 ± 1.97 80.33 ± 3.18
1e10 to 1e11 70.90 ± 9.77 74.03 ± 9.17
End-to-end models
1e8 to 1e10 51.24 ± 6.47 64.32 ± 7.56
1e9 to 1e11 0 69.39 ± 8.08
1e8 to 1e11 0 60.40 ± 7.13

Table 4.1: GPR (3mm/3%) values computed on the test set in areas within 20% of the maximum
dose.

Quantitative results are displayed in table 4.1. The global model refers to the UNet trained

on all pairs of MC simulations. The finetuned models are the global model duplicated and

finetuned on each pair of MC simulations. Results show that cascading the global model

with itself without further finetuning yields abismal GPR scores. Overall, finetuning improves

on simply training a UNet to perform pairwise denoising. Yet, when cascading the finetuned

models, results remain modest and the high standard deviation across all combinations suggests

that the framework is not robust. As noise and error propagation seem to prevail when cascading

the models, we argue that the cascaded framework may be ill-suited for our denoising task.
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4.2.4 Discussion

We tried to alleviate the computational requirements to generate the input data at inference

with a cascaded UNet framework. Results remain modest, suggesting that the cascaded frame-

work propagates error at inference. We use this experiment as baseline to benchmark against

the next approach.

4.3 Deep Particle Embeddings

4.3.1 Introduction

In previous experiments, we used ConvLSTMs to generate dose distributions with a quality

rivaling Monte-Carlo precision. The input of this architectures was a sequence of low precision

MC simulations. Through our experiments, we gave proof that our ConvLSTM models take

advantage of the extra information enclosed within the sequence and outperform other bench-

marked models. Nevertheless, one limitation remains: the proposed framework still suffered

from the impeding need to simulate the input sequence, resulting in a computation bottleneck

prior to inference. The previous experiment with cascaded UNets in section 4.2 failed to provide

a competitive alternative, most probably because of error propagation.

In this section, we present a novel framework that uses feature positional embeddings to

circumvent both the computational overhead at inference time and bypass the issue of er-

ror propagation induced by separate model trainings. Additionally, the proposed framework

promises to infer high precision dose distributions from any level of noise that was present in

the training sequences of MC simulations.

4.3.2 Methods

Sinusoidal Positional Embeddings: Sinusoidal positional embeddings (Vaswani et al. 2017),

i.e. positional encodings, are a technique commonly used in natural language processing and

computer vision tasks to provide deep learning models with information about the positions

of elements in a sequence or grid-like data. These embeddings are designed to capture the

positional relationships between elements without relying solely on sequential order. They are

often used in conjunction with other embeddings, such as word embeddings in NLP or image

embeddings in computer vision.

The idea behind sinusoidal positional embeddings is to encode positional information using
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a set of sine and cosine functions with different frequencies and phases. These functions create

distinct patterns that help the model differentiate between positions. Let pos represent the

position of the element in the sequence or grid, i refer to the dimension or feature index within

the embedding, and dmodel be the dimensionality of the embeddings. Then sinusoidal positional

embeddings PE are described with the following formula:

PE(pos,2i) = sin
( pos

10000(2i/dmodel)

)
PE(pos,2i+1) = cos

( pos

10000(2i/dmodel)

)
The sinusoidal positional embeddings are computed for each position in the sequence (from

1 to the maximum sequence length) and for each dimension within the embedding. The use of

both sine and cosine functions with varying frequencies and phases ensures that the embeddings

encode different positional information for different dimensions. The choice of 10,000 in the

formula is a commonly used constant but can be adjusted based on the problem and sequence

length.

These sinusoidal positional embeddings are then added element-wise to the existing word or

feature embeddings to incorporate positional information into the input representation fed into

the neural network. This allows the model to learn positional dependencies and relationships,

which is especially important in tasks like machine translation, text summarization, and image

segmentation where the order or spatial arrangement of elements matters. By using sinusoidal

positional embeddings, models can capture both the content and the position of elements in

the input data, leading to improved performance on a wide range of sequence-based tasks.

More recently, positional embeddings have been used within diffusion models (Ho et al.

2020) to encode the time step, i.e. noise level the model is operating. Inspired by this usage

of positional encoding, we employ this architecture to embed the noise level of considered MC

simulations, i.e. the number of simulated particles.

Deep Particle Embedding (DPE): The model displayed in Figure 4.2 has the same ar-

chitecture than the UNet used for the experiments of section 4.2. The main difference resides

in the addition of the computation of sinusoidal positional embeddings of the number of par-

ticles simulated to compute the corresponding input dose distribution. Indeed, much like the

assumptions in the works with diffusion models (Ho et al. 2020), embedding the number of

particles boils down to encoding the corresponding MC noise level.
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Figure 4.2: Architecture of the Deep Particle Embedding Model and denoising pipeline.
The model is a UNet with integrated sinusoidal positional embeddings of the number of simulated
particles associated with the input MC dose simulation.

Instead of considering pairs of decreasingly noisy simulations as in the approach of section

4.2, we train the model to directly predict the high-precision dose from any noisy MC simulation,

i.e. any level of noise. We note that the main difference between this model and the standard

UNet used as benchmark against ConvLSTMs in section 3.3 stems from the computation of

the particle embeddings. Similarly, the model has 10 million trainable parameters.

During training, the model learns to infer the high-precision dose from any of the 3 associated

low-precision distributions and associated positional embeddings of the corresponding numbers

of simulated particles, 108, 109, 1010. At convergence of the training, we obtain a model that

takes as input a single noisy MC simulation and its number of simulated particles to yield

a high-precision dose map. Thus, at inference, the model can infer from any of these low-

precision distributions independently. With this framework, we take full advantage of both the

information residing in the input sequence and the reduced computational bottleneck implied

by the one-to-one prediction.

Optimization: The training, validation and test sets draw slices of dose volumes from re-

spectively 35, 5 and 10 non overlapping patients as described in section 4.2. We train the model

on complete slices extracted from the patients’ dose volumes. We enabled batch training by

padding all slices to match the size 256×256. We apply random horizontal and vertical flipping

as data augmentation during training. We use AdamW optimizer and the loss function is the

89



sum of the MSE and the SSIM. function. We stopped the training when necessary according

to early stopping and decayed the learning rate by 10% when the validation loss plateaued

for more than 200 iterations. At inference, no padding is required as the architecture is fully

convolutional.

4.3.3 Results

Figure 4.3: Denoising results - dose prediction and gamma index matrix - of a 1e9 simulation with
the deep particle embedding model.

For benchmark, we trained the same model using only one low-precision simulation as input.

The chosen simulation was the one computed with 109 particles as it is the intermediate MC

simulation of the input sequence. We also compare with our 2D ConvLSTM model presented in

section 3.2 (Martinot et al. 2021) and with our cascaded UNets from section 4.2. We evaluate

the model using the GPR, the SSIM and the MAE. Table 4.2 show the results on the test set.
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Input simulation GPR (%) SSIM MAE
Cascaded UNets - 1e9 to 1e11 69.39 ± 8.08 N/A N/A

DPE trained to denoise 1e9 alone 77.1 ± 17.9 90.1 ± 6.1 8.6e-1 ± 3.0e-2
DPE - 1e8 61.4 ± 6.6 74.3 ± 7.2 1.1e-1 ± 4.1e-2
DPE - 1e9 83.2 ± 10.2 91.1 ± 3.1 8.3e-2 ± 2.3e-2
DPE - 1e10 95.7 ± 3.6 94.5 ± 2.1 6.8e-2 ± 2.1e-2

Martinot et al. 2021 (1e10) 83.2 ± 12.9 97.3 ± 2.7 N/A

Table 4.2: Evaluation metrics for the performance of the models on the test set.

First we notice that training the model on the single MC simulation with 109 particles

yields GPR scores that are consistent with the performances of the finetuned and cascaded

UNets. Secondly, denoising simulations computed with 109 particles with our deep particle

embedding model trained to denoise any MC noise level, yields a relatively better GPR score,

MAE value and even SSIM score, than the model trained on the sole task of denoising the

simulations computed with 109 particles. This observation suggests that training the model to

denoise various levels of noise leads to superior denoising capabilities. Finally, our deep particle

embedding model outperforms our previous work with 2D ConvLSTMs (Martinot et al. 2021)

on the task of denoising simulations computed with 1010 particles by 10% on the GPR scores,

setting a new record.

Figure 4.3 displays a low-precision dose map computed with 109 particles, the associated

ground-truth simulation, the dose predicted by our deep particle embedding model and the

gamma index matrix computed between the predicted dose map and the reference distribution.

Qualitatively, the generated dose map seems to smooth details in dose deposition in both low

dose and high dose areas. According to the look of the gamma index matrix, failing voxels

appear significantly in low dose areas. Some voxels fail to satisfy the gamma index criterion

(γ ≤ 1) in the high dose areas that correspond to regions with high gradients, i.e. in regions

where the dose seems to vary a lot from one voxel to another.

4.4 Conclusion

In chapter 3, we had presented the capabilities of deep learning architectures based on the

recurrent ConvLSTM modules on the task of accelerating MC simulations. However, the ap-

proach still experienced one critical flaw stemming from the computational overhead induced

by the computation of the complete input sequence. In this chapter, we offered to improve on
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the recurrent framework and to overcome this limitation. The goal was to bypass the computa-

tional requirement of computing all the simulations in the input sequence, at least at inference

time.

First, we proposed to investigate cascaded UNets to progressively denoise each noisy MC

simulation. Each UNet was trained on pairs of decreasingly noisy MC simulations. Cascading

these models then resulted in a single model capable of denoising simulations computed with

108 particles into a high-precision dose distribution. Nonetheless, the quantitative evaluation of

this model revealed that it suffered from error propagation, resulting in subpar performances.

Subsequently, we investigate another deep learning architecture that enables to discard

any problem related to error propagation but still exploit the information contained in the

input sequence while reducing the computational overhead at inference. We proposed to use

positional embeddings to encode the number of simulated particles associated to each input

MC simulation, i.e. to encode the noise level and give it as extra information to the model. At

inference, any MC simulation is required to predict the high-precision dose map. The outcomes

of training this model highlight that using both positional embeddings to encode the number

of simulated particles, and training the model to denoise from any MC noise level allowed the

model to extract more meaningful features and to outperform our previous frameworks. The

results showcase a new efficient way to accelerate MC computations using neural networks while

reducing the computational overhead.
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5.1 Introduction

In experiments presented in the previous chapter, we focused on proving the efficiency of adopt-

ing a many-to-one strategy instead of one-to-one to predict dose distributions with a quality

approximating Monte-Carlo precision. Nevertheless, we trained all models involved to optimize

loss functions based on weighted combinations of common computer vision metrics. Even if

such methods provide a good trade-off between time and performance, training on such loss

functions amounts to solving a proxy problem, with no strict assurance to conjointly optimize

the clinical validation of the generated dose, which is performed using the GPR.

The GPR is one of the most essential and commonly used clinical evaluation metric for ver-

ification of complex radiotherapy dose delivery such as Intensity Modulated Radiation Therapy

or Volumetric Modulated Arc Therapy (VMAT) Quan et al. 2012. As such, the GPR provides

a clinical criterion to assess the quality of the model’s predictions. Therefore, training directly

with the GPR as primary objective would yield more accurate training from a clinical stand-

point. However, the GPR has two main limitations that deter from using it as loss function.

First, training neural networks in a supervised setting requires a differentiable loss function to

allow backpropagation and to update the model’s weights. Yet, the GPR is non-differentiable

thus jeopardizing gradient descent. Secondly, despite efforts to bridge the gap, current Gamma

index and GPR computations remain time-consuming, especially when comparing high dimen-

sional dose distributions.

We circumvent these challenges by incorporating the GPR as an optimization criterion dur-

ing training of neural networks. We created a tensorized and differentiable approximation of

the GPR that asymptotically tends towards the true GPR values. According to our knowledge,

this is the first study to create a new class of loss functions based on the GPR and to bring

the speed of gamma index computations down to milliseconds, both for 2D and 3D dose dis-

tributions. We provide a proof-of-concept showcasing deep learning acceleration of MC dose

simulations with models trained to optimize the presented GPR-based loss functions. Finally,

we study the behavior of the GPR-based loss functions and benchmark them against the SSIM,

the MAE, the MSE and combinations of these.
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5.2 Related work

5.2.1 Loss functions

When training a neural network on a task, the choice of the loss function is crucial. Loss

functions such as the Dice Loss Sudre et al. 2017, the Focal Loss T.-Y. Lin et al. 2017, or

the Structural Similarity Index Measure (SSIM) Zhou Wang et al. 2004 have revolutionized,

respectively, segmentation, object detection, and image processing tasks. Moreover, all loss

functions do not yield the same impact on the training and inference, as explained in the study

introducing the Multiscale-SSIM H. Zhao et al. 2016.

This problem becomes even more evident in the medical field, in which models need to

ensure reliable performance. For this reason, integrating mathematical objectives that train

the models to optimize clinically relevant properties is of utmost importance for their integration

into clinical practice.

In light of these considerations, we overcome the mathematical challenge of the GPR and

turn this clinical metric into a viable loss function for our task of accelerating the simulation

of MC radiotherapy dose distributions. We provide a family of GPR-based criteria that are

therefore in adequacy with clinical requirements.

5.2.2 Gamma index

The main challenges of computing the gamma index matrix reside in the pixel-wise computation

of gamma index values that can be time-consuming proportionally to the dimensionality of the

evaluated dose distribution. Prohibitive calculation time hinders the potential of the GPR as

loss function. Many works propose ways to decrease the computation complexity, either by

changing the mathematical formalism or accelerating the calculations. In Gu et al. 2011, Gu et

al. use a geometric method with a GPU-accelerated radial pre-sorting technique to speed up

calculations. Chen et al. M. Chen et al. 2009 consider reducing the search distance by using a

fast Euclidean distance transform.

In this paper, we present an acceleration approach adequate for deep learning frameworks

that significantly reduces the calculation speed and enables fast training with our GPR-based

loss functions.
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5.3 Definitions

5.3.1 The Gamma index

Let Dr and De be two dose distributions (Rk → R), respectively the reference and the evalu-

ated. In our case, the evaluated dose distribution is the model’s prediction. To each of them

corresponds a grid of points in which each point, Pr of Dr, and Pe of De has a coordinate vector,

respectively d⃗(Pr) and d⃗(Pe), and a dose value, Dr(Pr) and De(Pe).

Let us consider a point Pr in Dr and the points Pe in a vicinity V (Pr) around Pr. Then the

gamma index Γ is defined as a function of real values such that for all Pr ∈ Dr, Γ(Pr) writes

as follows:

Γ(Pr) = min
Pe∈V (Pr)

√
||d⃗(Pe)− d⃗(Pr)||2

DTA2
+

(De(Pe)−Dr(Pr))2

∆2
(5.1)

where DTA is the tolerance on the Distance-To-Agreement (DTA), commonly in mm, and

∆ is the tolerance on the relative dose difference expressed as a percentage of the reference dose

value Dr(Pr). This definition entails that each point Pr has its own gamma index value in Γ,

which indicates whether there exists an evaluated point Pe in its neighbourhood that is close

enough to its dose value.

5.3.2 The Gamma index Passing Rate

Let us introduce a dose threshold δ and consider a point Pr of the reference distribution such

that Dr(Pr) ≥ δ. Then, given a DTA and dose tolerance ∆, the evaluated distribution matches

the reference at Pr, if the passing criterion is satisfied, i.e. if:

Passing criterion: Γ(Pr) ≤ 1 (5.2)

The Gamma index Passing Rate (GPR) is defined as the percentage of points Pr that satisfy

the condition in eq. 5.2 while Dr(Pr) ≥ δ.

Let 1Dr≥δ and 1Γ≤1 be the indicator functions defined such that:

1Dr≥δ(Pr) =

{
1 if Dr(Pr) ≥ δ.

0 otherwise.
1Γ≤1(Pr) =

{
1 if Γ(Pr) ≤ 1.

0 otherwise.
(5.3)
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Then we can write the GPR as follows:

GPR(Dr, De) =

∑
Pr∈Dr

1Dr≥δ(Pr) · 1Γ≤1(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(5.4)

5.4 Methods

5.4.1 Minimization problem

With the GPR formulation in eq. 5.4, maximizing the GPR amounts to minimizing the corre-

sponding loss function Lδ
GPR which draws values in [0, 1]:

Lδ
GPR(Dr, De) = 1−

∑
Pr∈Dr

1Dr≥δ(Pr) · 1Γ≤1(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
= 1−GPR (5.5)

Due to the fact that the indicator function 1Dr≥δ does not depend on Γ, the gradient of

Lδ
GPR (with respect to the trainable parameters) can be written as follows:

∂Lδ
GPR

∂w
=

1∑
Pr∈Dr

1Dr≥δ(Pr)
·
∑

Pr∈Dr

1Dr≥δ(Pr)
∂1Γ≤1(Pr)

∂Γ

∂Γ(Pr)

∂w
, (5.6)

where w represents any of the trainable parameters of the neural network.

The problem with the above definition of Lδ
GPR is that it generates zero gradients, which is

a direct consequence of the fact that the indicator function 1Γ≤1(·) is stepwise constant with

respect to Γ, therefore preventing training with gradient descent and parameter updates.

To address this issue, in the following we propose the use of a soft approximation of the

objective function Lδ
GPR with non-zero gradients.

5.4.2 Soft counting with Sigmoid-GPR

To avoid the propagation of null gradients, we propose to use the sigmoid function, σ(x) =(
1 + exp−βx

)−1
, to approximate counting passing voxels. The slope of the sigmoid depends on

the value of its sharpness β that we consider as a hyperparameter.

Moreover, we note that for all Pr ∈ Dr, it stands that:

lim
β→+∞

σ(β · (1− Γ(Pr)) = 1Γ≤1(Pr) (5.7)

Hence, the asymptotic behaviour of the sigmoid function combined with shifting the gamma
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index values can provide an estimate of the count of passing voxels by summation over all points

Pr. The accuracy of the estimation then depends on the value of β: the bigger the β, the more

precise the estimation will be.

Thus, we approximate the loss Lδ
GPR in eq. 5.5 with Lδ

σ−GPR defined using the sigmoid

function:

Lδ
σ−GPR = 1−

∑
Pr∈Dr

σ(β · (1− Γ(Pr)))1Dr≥δ(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(5.8)

Lδ
σ−GPR is differentiable everywhere and, provided the sharpness β is not too high, gradients

are non-zero and allow gradient descent to update the model’s weights during backpropagation.

Given eq. 5.7, we remark that Lδ
σ−GPR accurately approximates the true GPR loss function,

i.e., Lδ
σ−GPR → Lδ

GPR as β → +∞.

5.4.2.1 Annealing schedule of β:

In light of the equations above, we propose to consider β as a hyperparameter. At the beginning

of training, the model usually predicts poorly and the majority of voxels fail to satisfy the

gamma index passing criterion. This implies that the corresponding loss computed with Lδ
σ−GPR

generates zero gradients everywhere if the value of β is set too high. To avoid this behaviour,

we propose an annealing schedule for β that starts with low initial values and progressively

increases β over the training. Moreover, when β ∼ 0+, the Taylor series expansion of the

sigmoid function yields:

σ(β · (1− Γ(Pr))) ∼ β · (1− Γ(Pr)) (5.9)

Given eq. 5.9, we can write the Taylor expansion of Lδ
σ−GPR when β ∼ 0+:

Lδ
σ−GPR ∼ 1− β +

∑
Pr∈Dr

Γ(Pr)1Dr≥δ(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(5.10)

Consequently, we introduce the loss function Lδ
Γ(Dr, De) to model the linear behaviour of

Lδ
σ−GPR at the start of the annealing schedule:

Lδ
Γ(Dr, De) =

∑
Pr∈Dr

Γ(Pr) · 1Dr≥δ(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(5.11)

As the training continues and the loss decreases, the annealing scheme proceeds in progres-

sively increasing β in order to improve the approximation of the GPR loss Lδ
GPR defined in

Eq. 5.5. As β increases and is acquiring larger values, minimizing the loss amounts to getting

98



failing voxels (voxels with Γ > 1) to satisfy the passing criterion.

To model the behaviour of Lδ
σ−GPR at this stage (i.e. as β is acquiring larger values), we

modify Lδ
Γ in eq. 5.11 by introducing the loss function Lδ

Γ>1. To prevent backpropagation of

zero gradients with respect to 1Γ>1, we use the stopgrad operation:

Lδ
Γ>1(Dr, De) =

∑
Pr∈Dr

Γ(Pr) · 1Dr≥δ(Pr) · stopgrad(1Γ>1(Pr))∑
Pr∈Dr

1Dr≥δ(Pr)
(5.12)

For the sake of characterizing the behaviour of Lδ
σ−GPR in eq. 5.8, we also study trainings

that involve the use of loss functions Lδ
Γ and Lδ

Γ>1 in the following experiments.

5.4.3 Accelerating gamma index computations

Having a differentiable GPR loss does not make it directly applicable for neural network training

since, by definition, it requires iterating over all voxels in the given distributions, therefore

leading to prohibitive computation time when considering high-resolution distributions. To

deal with this issue, we propose an accelerated version of GPR for faster calculations.

To avoid physical incoherence when computing gamma index values, we sample the evalu-

ated and reference distributions to the resolution 1 mm3 with bilinear interpolation. By the

definition in eq. 5.1, one can observe that the evaluated voxels located farther than DTA mm

from Pr automatically yield a gamma index superior to 1. Thus we limit the search within

an invariant vicinity defined by the chosen DTA. More precisely, the gamma index value of

a reference point then stems from comparing gamma values computed with voxels in a cube

comprising (2×DTA+1)k voxels, in the case of k dimensional dose distributions. We then use

unfolding to extract sliding local blocks of the evaluated distribution generated by the model.

This operation creates one channel per voxel in the vicinity defined by the DTA. We then apply

the minimum operation over the channel dimension to get the minimal gamma index value.

The approach enables fast computation of the gamma index distribution Γ, which is neces-

sary for the calculations of Lδ
σ−GPR, L

δ
Γ an Lδ

Γ>1 presented in eq. 5.8, 5.11, 5.12. Computation

times are discussed in Section 5.6.

5.5 Experimental design

Dataset & Preprocessing: We carried out the experiments on the publicly available dataset

presented in Sonia Martinot et al. 2021 comprising 50 patients treated with VMAT plans. Each

patient has a reference dose distribution computed from 1× 1011 particles and a low precision
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DL Model

Figure 5.1: Pipeline of training using sigmoid-GPR-based loss functions. The Gamm-index
based loss function require to compute the gamma index matrix between the dose predicted by the
model and the reference distribution. Then, a soft GPR is computed using a sigmoid function. The
sharpness parameter β of this sigmoid functions plays as a hyperparameter that can be tuned to take
various values depending on the advancement of the training.

simulation computed from 1×109 particles. The main goal of the methods benchmarked on this

task is to generate the high precision simulation of the dose from the available low precision one.

More details about the dataset can be found in the original publication. For our experiments,

we split patients to 35-5-10 for respectively, the train, validation and test sets. The cases in

the dataset correspond to various anatomies and therefore, we split them as equally as possible

between sets to avoid biases.

Even though our approach enables training on 3D dose distributions, the dataset comprises

a small number of samples. Thus, we decided to carry out the experiments in 2D to favour

significant experiments and a relevant benchmark. In this setting, a training sample corresponds

to an axial slice of a patient’s dose volume. The 2D training dataset therefore comprises around

11k training samples, where a sample is a pair of corresponding slices of low precision and high

precision dose simulation.

We normalized both low precision and reference distributions using the average dose max-

imum computed over the reference dose volumes from the training set. We then applied the
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same normalization on the validation and test sets. To enable batch training, we padded each

training sample with zeros in order to match a fixed size of 256 × 256. To further help the

model generate accurate dose predictions, we added the corresponding CT slice as second input

channel to incorporate the corresponding anatomy. We applied minimax normalization to CT

volumes so voxel values remain in [0, 1] range.

Model: In all experiments, the model is a standard UNet architecture Ronneberger et al.

2015b with skip connections between the encoder and the decoder. The encoder part of the

model performs downsampling twice with convolutional layers using 4×4 filters and a stride of

2. Symmetrically, transposed convolutions upsample feature maps in the decoder. Each stage

of the UNet comprises two convolution blocks before downsampling or upsampling. Much like

the convolutional block presented by Liu et al. in Z. Liu et al. 2022, a convolution block first

applies a convolution with 7× 7 filters and 3×3 padding, and then two convolutions with 3× 3

filters to further process the features maps. Each convolution is followed by Gaussian Error

Linear Units (GELU) activation units. The block ends with a residual connection to keep high

frequency details from the block’s input. Overall, the model has around 10 million trainable

parameters.

Optimization set-up: In all trainings, we trained the model using AdamW optimizer Loshchilov

et al. 2017b. We set the initial learning rate to 3e−4 and decreased it progressively during the

training when the validation loss stagnated. Weight decay was set to 5e−4 and batch size to

16. We trained for 20k iterations on a NVidia GeForce RTX 3090 GPU. The trainings were

stopped when overfitting appeared by adopting the early stopping strategy. With this training

scheme, early stopping occurred after around 15k iterations, when the validation loss fails to

decrease 2% after 500 iterations.

Loss functions: To train with the GPR-based loss using sigmoid count Lδ
σ−GPR presented in

eq. 5.8, we designed the following annealing schedule for the sharpness parameter β. We set

the inital value of β to 2 × 10−2 for the first 150 iterations. Then, β increased by a factor of

5% every 50 iterations until it reached an intermediate value of 3 where updates slowed down

to 5% every 100 iterations. Increasing updates stopped when β reached a chosen ceiling value

of βmax = 5. Setting βmax prevented the slope of the sigmoid from getting too sharp and the

loss from encountering a vanishing gradient problem, which would stop the updates of gradient

descent. Additional benchmarks with the approximating loss functions Lδ
Γ and Lδ

Γ>1 have been

also conducted, in order to better characterize the behaviour of Lδ
σ−GPR for small values of β.
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For all GPR-based functions, we set the dose threshold δ to 20%. This means that, while

loss functions compute the gamma index distribution by considering all voxels, the computed

approximated GPR value takes into account only voxels Pr for which the dose value is superior

to 20% of the maximum dose of the reference distribution, i.e. Dr(Pr) ≥ 20%·maxPr∈Dr Dr(Pr).

To benchmark against our proposed GPR-based loss functions, we considered several other

loss functions commonly used in computer vision. The benchmark includes the MAE and

the MSE for a comparison with pixel-wise errors. Finally, we considered the combination of

pixel-wise errors with the SSIM. More precisely, the benchmark includes SSIM-MAE and SSIM-

MSE, which are the equally weighted sum of respectively the SSIM and MAE, and the SSIM

and MSE. For each training on the loss functions considered above, we used the exact same

model architecture and optimization strategy, in order to promote the reliability and fairness

of the comparison.

5.6 Results

5.6.1 Training with GPR-based loss functions

Extensive quantitative comparison on the test set for each training, using the MAE, MSE,

SSIM and GPR with various values of DTA and dose tolerance δ are summarised in Table

5.1. As the test set comprises 10 patients, we computed the metrics over each slice of each

patient’s volume, and then average over the test set per considered metric. Results point out

that models trained with GPR-based loss functions tend to outperform others with respect to

the GPR, the MAE and MSE. In contrast, models trained with SSIM-MAE and SSIM-MSE

show the highest SSIM scores. With a closer look however, one can observe that they report

among the lowest performance for the rest of the metrics. This result indicates that the SSIM

may not be a well-suited metric to evaluate the quality of dose distributions, since it seems to

be biased.

To assert statistical significance of the results, we take an in-depth look at each patient

in the test set to explain the high standard deviation values observed in Table 5.1. Boxplots

a), b) and d) in Figure 5.2 point out the presence of an outlier patient case on which models

tend to fail with respect to the GPR, SSIM and MSE. In contrast with SSIM, MSE and MAE-

trained models, we observe that models trained with GPR-based loss functions not only display

robustness to this outlier, but also show smaller standard deviation over the whole test set.

Figure 5.2 also allows to compare discrepancies within the family of GPR-based loss func-
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Loss function GPR 3%/3mm SSIM (%) MAE MSE
MAE 66.5 ± 10.0 83.3 ± 9.2 0.39 ± 0.10 0.51 ± 0.28
MSE 69.5 ± 10.3 83.9 ± 11.5 0.34 ± 0.09 0.43 ± 0.29

SSIM+MAE 64.6 ± 11.9 94.0 ± 8.8 0.35 ± 0.09 0.74 ± 0.36
SSIM+MSE 67.5 ± 13.2 93.3 ± 3.1 0.30 ± 0.07 0.30 ± 0.15

Lδ
Γ 79.2 ± 4.3 87.5 ± 7.6 0.28 ± 0.07 0.30 ± 0.23

Lδ
Γ>1 79.0 ± 4.4 86.7 ± 8.1 0.27 ± 0.07 0.25 ± 0.16

Lδ
σ−GPR 81.4 ± 4.0 88.2 ± 7.5 0.24 ± 0.06 0.22 ± 0.16

Table 5.1: Evaluation metrics over the dose distributions comprised in the test set. Different
benchmarks over the considered loss functions for different metrics are highlighted with their
mean and standard deviation. With bold we indicate the best performing methods per metric.

Metric 3D dose Time(ms) 2D dose Time(ms)
MSE 0.14 ± 0.02 0.13 ± 0.03
MAE 0.23 ± 0.06 0.19 ± 0.04
SSIM 27.49 ± 7.73 5.06 ± 3.32

Lδ
σ−GPR, L

δ
Γ>1, L

δ
Γ 30.54 ± 0.01 4.51 ± 0.00

Exhaustive 985 ± 515 8.01 ± 2.28
PyMedPhys > 1 second > 100 ms

Table 5.2: Speed comparison of metrics computed over 2D and 3D dose distributions.

tions. While all of them produce better performing models with respect to all evaluation metrics

except the SSIM, the loss function with sigmoid counting Lδ
σ−GPR outperforms Lδ

Γ and Lδ
Γ>1.

We explain this behaviour by the fact that both Lδ
Γ and Lδ

Γ>1 focus only on minimizing gamma

index values, and not directly maximizing the number of voxels satisfying the passing criterion.

We conclude that Lδ
σ−GPR yields better maximization of the GPR and is therefore the better

approximation of the true GPR loss function Lδ
GPR.

The MSE-trained model outperforms other models trained with non GPR-based loss func-

tions with respect to the GPR, so we chose to display its dose prediction conjointly with the

dose generated by the Lδ
σ−GPR trained model in Figure 5.3. Although both trainings achieved

convergence, the prediction of the MSE-trained model manifests important artefacts at the

bottom of the generated dose. Additionally, the dose itself seems to be smoother than the dose

predicted with the Lδ
σ−GPR training. Finally, the MSE-trained model appears to overestimate

the dose in low-dose regions to a greater extent than the Lδ
σ−GPR-trained model.
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Figure 5.2: Boxplots representing the evaluation metrics achieved by trained models for
each case in the test set depending on the loss function used for training. The y axis
indicates the values of the considered metric. The x axis spcifies the loss function with which the
corresponding model was trained.

5.6.2 Speed-up of GPR-acceleration approach

In an effort to promote the GPR-based loss functions as viable deep learning optimization

criteria that allow fast error computations and training, we had to accelerate gamma index

computations. To quantify the extent of our acceleration approach, we benchmark against

two methods. The first one is a GPU-accelerated exhaustive search approach in a limited

vicinity of 3mm3 around the considered reference voxel. The second is an open-source tool

from PyMedPhys Biggs et al. 2022 which makes use of acceleration ideas from Wendling et al.

Wendling et al. 2007 and executes on CPU and is single-threaded. Regarding the latter, we

limit the interpolation ratio to 2 to have a fair comparison.

The time estimation was twofold. We timed each evaluation metric and GPR-based loss

functions on 3D or 2D distributions stemming from the MC dataset used for the experiments.

3D dose distributions were interpolated to resolution 1 mm3 and of shape 128 × 200 × 200,

comprising around 5 × 106 voxels. The 2D dose distributions comprised axial slices of the 3D
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Failing voxels

Passing voxels

Figure 5.3: Qualitative comparison of the dose distributions and corresponding gamma
index matrices depending on the loss function chosen during training. First row from left
to right: a single slice of the 1e9 dose volume, predictions of models trained with MSE and Lδ

σ−GPR,
and reference 1e11 dose. Second row: gamma index maps for the three different representations.

dose distributions and were interpolated to a size 400× 400. For the GPR calculations, we set

the DTA and ∆ to respectively 2mm and 2%. Execution times are displayed in Table 2.

Figure 5.4 and Table 5.2 highlight that our approach has equivalent speed to that of the

SSIM. Compared to the exhaustive search method, our approach improves the speed of gamma

index computations by a factor of at least 30 in the case of 3D dose distributions and twofold for

2D distributions. Consistently with these results, we note that trainings took around 24 hours

for SSIM-MAE, SSIM-MSE and GPR-based loss function, whereas they lasted for 15 hours

for experiments with the MAE and the MSE. Results therefore validate our GPR-based loss

functions to efficiently train deep neural networks. Nonetheless, our comparison is limited to

speed assessment and does not encompass RAM usage and precision considerations. Although

our approach highlights significant speed gain in the computation of the GPR metric and, by

extension, of the GPR-based loss functions presented in this study, it comes at the price of an

increased RAM usage caused by the unfolding operation.

We make the remark that for all loss functions, the obtained GPRs do not meet the 95%

GPR threshold indicating clinical validation. Nevertheless, the goal of the experiments was to

show the benefits of optimizing directly the clinical metric during training and results support

that statement.
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Figure 5.4: Boxplots of execution times of our proposed approach, of the SSIM and the
exhaustive search method on 3D dose distributions. Our implementation of the gamma index
is faster than the open-source exhaustive search method. Its speed is comparable to the execution
time of the SSIM, thus ensuring tractable trainings of deep learning models.

5.7 Conclusion

Adopting the correct optimization criterion is essential to train deep learning models adequately

with the task they are designed to solve. For the task of accelerating MC radiotherapy dose

simulation with deep learning, this work proves that directly optimizing models with the clinical

validation metric yields significant improvement in predicted dose quality when compared to

other loss functions. We provide a fast computation of the GPR to enable such results. More-

over, the GPR is a similarity metric for distributions in general, and may be applied to other

tasks such as radiotherapy dose generation or even finding adversarial examples for generative

adversarial networks. Future work will focus on addressing the remaining limitations of our

approach and assessing the potential of our new class of loss functions in solving other deep

learning tasks.
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Chapter 6

Discussion and Future work
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6.1 Main findings

Simulating the radiation dose is a crucial step to ensure the safety and precision of radiotherapy

treatment plans. The MC method, while outperforming other dose simulation methods in terms

of precision, is hindered by its prohibitive computation times. AI-based methods offer promising

prospects on accelerating MC dose simulations. Moreover, the simulation of radiotherapy dose

from VMAT plans is particularly challenging due to the continuous movement of the gantry

around the patient and the motion of the MLC leaves. VMAT plans result in more precise

and homogeneous dose distributions, but this comes at the cost of increased complexity in the

dose simulation process. In the case of MC simulations, this added complexity necessitates the

simulation of a larger number of particles, leading to longer computation times. In this thesis,

we investigated deep learning-based methods to expedite the simulation of dose distributions
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using the gold-standard MC method, specifically in cases involving patients undergoing complex

VMAT plans.

6.1.1 Denoising Monte-Carlo

As developed in Chapter 1, several works try to address MC acceleration with AI-based meth-

ods in the case of patients undergoing IMRT or proton therapy. Performances are promising but

confined to a small dataset comprising patients receiving treatment for similar anatomies, usu-

ally prostate. Moreover, the approach to denoising in these works remains under the one-to-one

prediction paradigm. In constrast, we proposed a new approach that falls under the many-to-

one setting. As explained in section 1.6.1, we set out to address the following question: Does

training deep learning models on sequences of Monte-Carlo dose simulations lead

to more accurate dose distributions?

To be able to train deep learning models on the task, we first curated a dataset of ra-

diotherapy patients undergoing VMAT plans and receiving radiation in various regions of the

body. We provided a detailed account of the patients’ specificities, modelization choices and

simulation strategy in Chapter 2. We described this patient cohort in section 2.1. For each

patient we performed MC computations to simulate the associated radiation dose using the

machine parameters defined in their treatment plan. Despite adopting several approximations,

generating this dataset required the computational power of a supercomputer and underlined

the fact that the MC method suffers greatly from heavy computational bottlenecks, as stressed

in section 2.2.3.

In Chapter 3, we investigated ConvLSTM to set a benchmark for recurrent architectures.

We explored its advantages and drawbacks both in 2D and 3D and compared it with several

other deep learning architectures. ConvLSTMs show better GPR scores and global robustness

than other models while having the lowest complexity. Moreover, we discovered that adding

the CT as physical prior did not lead to improved performances of our models. Nonetheless,

ablation studies conducted in section 3.4 suggested that our dataset may be too small to

properly compare models in 3D. Additionally, our recurrent architectures still required the

computational burden of simulating the input sequence of MC dose simulations at inference.

In Chapter 4, we set out to address these limitations. First, we conducted our experiments

in 2D to augment the potential of our dataset. The first deep learning framework we studied

in section 4.2 did not mandate complete sequences of MC simulations to perform prediction at

inference. More precisely, we investigated progressive refinement conveyed by cascaded UNets.
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Regrettably, the outcomes demonstrated suboptimal performance with susceptibility to error

propagation. The subpar results of the cascaded UNets stemmed from aligning models that

were initially trained separately, even when end-to-end finetuning was performed afterwards.

To mitigate this issue, we then proposed an approach that circumvented this limitation.

To enforce exploitation of the information contained in the MC sequences, we integrated

sinusoidal positional embeddings to our UNet architecture as a means to encode the number

of simulated particles required for each simulation in section 4.3. This approach based on

deep particles embeddings boiled down to associating each low-precision MC simulation with

an encoding of its intrinsic noise level, thus encouraging the model to explicitely categorize

simulation discrepancies between different noise levels. Results highlighted several key points.

First, training this model on various noise levels achieved improved GPR results compared

with training the same model on a single noise level. Secondly, our deep particle embedding

model outperformed previous experiments from section 3.2 conducted with 2D ConvLSTMs.

Indeed, our model scored GPR values reaching the 95% clinically acceptable threshold with

an improved robustness on the test set. These outcomes supported our hypothesis that the

additional context brought during training by full MC sequences bore significant information

on how the radiation is deposited. This approach built upon previous models as it required

a single low-precision MC simulation at inference, therefore circumventing the computational

bottleneck of computing the complete MC dose sequence.

6.1.2 Clinical oriented training

InChapter 5, we tackled another aspect of the optimization of deep learning models on the task

of denoising MC simulations. Carefully choosing the loss function used to optimize the weights

of deep learning models often leads to improved results. Indeed, an ill-suited loss function can

result in suboptimal performances as the model is trained to optimize an inaccurate target and

thus to solve a proxy problem. In our case, the GPR is the metric we systematically seeked to

maximize across all presented experiments to ensure clinical viability of the model’s predictions.

Therefore, we wondered: Can we include the clinical validation goal directly into the

target loss function to optimize the model’s parameters? and does this improve

the quality of the predictions?

To address this question, we introduced a new loss function directly derived from the GPR.

The GPR is inherently non-differentiable, making it unsuitable for gradient descent in deep

learning training. To circumvent this limitation, we proposed an approximation of the metric
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that asymptotically converges to the actual GPR values. We implemented the gamma index

matrix as tensors to ensure efficient computation of loss values during training. We conducted

a performance comparison of a simple UNet model depending on the loss function used during

training. The results were exceptional, highlighting the superior performance achieved when

optimizing our GPR-based loss function. As a result, our contribution paves the way for robust

deep learning training applicable to a wide range of tasks, from MC denoising to dose generation

in clinical settings.

6.2 Limitations and future work

6.2.1 Available datasets for data-driven methods

Dataset size: The main limitation that transpires across presented 3D experiments boils

down to the limited number of samples available in the dataset. Indeed, the rather small size

of the dataset remains the major limit to quantifying the generalization power of the models

as well as impeding experiments with more sophisticated and complex neural networks. This

limitation was best pinpointed during the ablation studies in section 3.4.

Nonetheless, we carried out experiments in 2D to artificially augment our dataset. Even

though each 2D slice of a patient’s dose volume was regarded as an independent sample, we

cannot deny that such samples still share evident similarities, both spatially and regarding dose

deposition. Therefore, we believe that, although promising, our results will bear a stronger

statistical significance when confirmed by applying our methods on a bigger dataset, especially

for 3D frameworks.

Future work will therefore focus on curating a more substantial cohort of real-world VMAT

patients and corresponding MC dose simulations. Additionally, we argue that the use of transfer

learning (Torrey et al. 2010) would expedite our application as it greatly benefited other tasks

in computer vision (Brodzicki et al. 2020) and medical imaging (Raghu et al. 2019). Thus, we

would also generate an extensive dataset with a more general purpose of performing transfer

learning for various MC-based simulations. This dataset would comprise MC simulations of

photons’ interactions in random media, without necessarily any medical priors.

Noise level: We recall that computing a dose distribution by simulating the behaviour of 108

particles required 4 CPUs and approximately 2 hours of computation time. While our presented

approaches reduce the computational overhead required to compute high-precision simulations,
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the highest noise level of the MC simulations given as input to our models remains too high

to reach real-time dose simulations. Nonetheless, our work on deep particles embeddings offers

promising performances. Future work will therefore focus on pursuing this improvement and

reducing further the computational bottleneck by training models on noisier inputs. On another

level, we would like to investigate the fact that adding the CT as physical prior does not lead

to enhanced results. We hypothesize that the sequence of MC simulations might contain all

relevant information the CT brings, such as the absorption capacity of different organs and

media.

6.2.2 Data-driven models

Presented experiments seem to support our hypothesis that teaching a deep learning model to

predict the precise dosed distribution from a sequence of MC simulation yields better learning.

Thus, we would like to investigate other well-suited architectures that would benefit from the

sequential context, such as Transformers (Vaswani et al. 2017). Also, the performances of

the deep particles embeddings model call for studying more closely the inner workings of the

model. Current work involves exploring the latent space of the model to better understand how

encoding the noise level helps the model better partition low-precision MC simulations.

Moreover, future work will consist in generalizing our architectures and experiments to the

three-dimensional setting. Indeed, it is our belief that 3D architectures would better capture the

spatial dependencies and specificities of dose deposition witnessed in full 3D dose distributions.

Nonetheless, such experiments will undoubtedly call for a substantial dataset.

6.2.3 Clinical oriented priors

The main limitation of the gamma index-based loss function stems from its implementation.

Although vectorized, computing the loss demands a relatively large GPU capcacity. This trade-

off is emphasized when working with 3D dose distributions. Indeed, computing the gradients

of this loss functions during backpropagation brings the GPU memory consumption to a pro-

hibitive level. This limitation entails that batches of samples be confined to small sizes and

prohibits whole-image trainings. Current work focuses on reducing the computational tradeoff.

Future work with our gamma-index based loss function will also include evaluating its impact

on 3D deep learning training. Moreover, our method opens new avenues for accelerating Monte-

Carlo dose computation and with a broader perspective, for the dose generation field and other

imaging modalities. Our new family of loss functions offers a more robust way to train neural
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networks as optimization targets directly the quality assessment metric.
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Annexe

Here are some other examples similar to Figure 2.5 from Chapter 2 of simulations and corre-

sponding MC uncertainty of other patients from the cohort:
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reconnaissante pour tout ce que vous avez fait.
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