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ABSTRACT

Time series data is abundant in various fields including finance, energy, and social networks.
Extracting knowledge from time series, to perform subsequent tasks such as forecasting,
interpolation, and classification, has therefore become essential in several scientific and
industrial domains. Deep Learning (DL) models, i. e., neural networks, have emerged as
powerful tools in various data applications since they provide flexible methods for knowledge
extraction and can easily learn from multiple sources of data. However, DL models typically
require large datasets for improved generalization and often lack interpretability, thus their
industrial application remains limited. Specifically for time series modeling, the adaptability
of neural networks to the continuous-time dynamics of such data remains an open question.
Additionally, neural networks’ origins in discrete sequential tasks, like text analysis, limit their
understanding of complex time-dependent series properties. To bridge this gap, systematically
assessing the effectiveness of DL architectures under diverse time series characteristics and
distortions is crucial. Time series distortions encompass extrinsic factors, such as noisy
observations and irregular sampling. Additionally, intrinsic features, such as strong inter-
variable and inter-temporal correlations and prior knowledge (e. g., imposed constraints) of
the underlying dynamics are prominent among different time series datasets. However, both
extrinsic distortions and intrinsic characteristics pose significant challenges to the robust
deep learning modeling of time series. The current study critically evaluates the performance
of existing DL models across these challenges and proposes new modeling approaches.

In terms of time series regression tasks, such as forecasting, standard evaluation metrics of-
ten fall short of capturing the nuanced statistical characteristics of the series. Simultaneously,
the robustness of training loss functions while training for time series tasks often proves
insufficient, particularly when dealing with abrupt changes and data noise. Additionally,
conventional sequential architectures like RNNs and CNNs, designed to handle fixed time
intervals between successive time steps, may struggle with the complexity of irregular time
series datasets. Moreover, the prevalence of strong temporal and inter-variable correlations in
multivariate time series datasets necessitates the development of sophisticated networks capa-
ble of adeptly handling variable dependencies across both time and variables. As a response
to these challenges, our contributions encompass the formulation of robust loss functions and
metrics tailored for forecasting, the adaptation of traditional neural architectures, e. g., CNNs,
to accommodate irregular sampling, and the creation of algorithms adept at capturing rich
embeddings of intricate temporal and inter-variable dependencies. Furthermore, our study
extends to practical applications in spatio-temporal data and dynamic systems, integrating
physics-informed models to harness prior knowledge.

In conclusion, this thesis delivers a comprehensive exploration of cutting-edge deep learning
approaches for time series modeling, shedding light on their limitations while introducing
novel contributions. The extensive discussion section outlines potential directions for future
work, including the exploration of generative modeling for time series. We envision that

i



the topics explored, coupled with our proposed methods, present promising avenues for
significantly enhancing the robustness of neural and automatic modeling for time series data.
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RÉSUMÉ

Les données de séries temporelles sont abondantes dans divers domaines, notamment la
finance, l’énergie et les réseaux sociaux. L’extraction de connaissances à partir des séries
temporelles, pour effectuer des tâches ultérieures telles que la prévision, l’interpolation
et la classification, est donc devenue essentielle dans plusieurs domaines scientifiques et
industriels. Les modèles d’apprentissage profond (deep learning - DL), c’est-à-dire les réseaux
neuronaux, se sont révélés être des outils puissants dans diverses applications de données,
car ils fournissent des méthodes flexibles pour l’extraction de connaissances et peuvent
facilement apprendre à partir de sources de données multiples. Cependant, les modèles
d’apprentissage profond nécessitent généralement de grands ensembles de données pour une
meilleure généralisation et manquent souvent d’interprétabilité, de sorte que leur application
industrielle reste limitée. En ce qui concerne plus particulièrement la modélisation des séries
temporelles, l’adaptabilité des réseaux neuronaux à la dynamique à temps continu de ces
données reste une question ouverte. En outre, l’origine des réseaux neuronaux dans des tâches
séquentielles discrètes, comme l’analyse de texte, limite leur compréhension des propriétés
complexes des séries dépendant du temps. Pour combler cette lacune, il est essentiel d’évaluer
systématiquement l’efficacité des architectures DL en fonction de diverses caractéristiques
et distorsions des séries temporelles. Les distorsions des séries temporelles englobent des
facteurs extrinsèques, tels que des observations bruyantes et un échantillonnage irrégulier. En
outre, les caractéristiques intrinsèques, telles que les fortes corrélations inter-variables et inter-
temporelles et la connaissance préalable (contraintes imposées) de la dynamique sous-jacente,
sont prédominantes parmi les différents ensembles de données de séries temporelles. Cependant,
les distorsions extrinsèques et les caractéristiques intrinsèques posent des défis importants à
la modélisation robuste des séries temporelles par l’apprentissage profond. L’étude actuelle
évalue de manière critique la performance des modèles d’apprentissage profond existants face
à ces défis et propose également de nouvelles approches de modélisation.

En ce qui concerne les tâches de régression de séries temporelles, telles que la prévision,
les mesures d’évaluation standard ne parviennent souvent pas à capturer les caractéris-
tiques statistiques nuancées des séries. Simultanément, la robustesse des fonctions de perte
d’apprentissage lors de l’apprentissage pour les tâches de séries temporelles s’avère souvent
insuffisante, en particulier lorsqu’il s’agit de changements brusques et de bruit de données. En
outre, les architectures séquentielles conventionnelles telles que les RNN et les CNN, conçues
pour traiter des intervalles de temps fixes entre des étapes temporelles successives, peuvent
se heurter à la complexité des ensembles de données de séries temporelles irrégulières. En
outre, la prévalence de fortes corrélations temporelles et inter-variables dans les ensembles de
données de séries temporelles multivariées nécessite le développement de réseaux sophistiqués
capables de gérer habilement les dépendances variables à la fois dans le temps et entre les
variables. En réponse à ces défis, nos contributions englobent la formulation de fonctions de
perte robustes et de mesures adaptées à la prévision, l’adaptation des architectures neuronales
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traditionnelles pour tenir compte de l’échantillonnage irrégulier, par example CNNs, et la créa-
tion d’algorithmes capables de capturer de riches enchâssements de dépendances temporelles
et inter-variables complexes. En outre, notre étude s’étend aux applications pratiques des
données spatio-temporelles et des systèmes dynamiques, en intégrant des modèles informés
par la physique pour exploiter les connaissances antérieures.

En conclusion, cette thèse propose une exploration complète des approches d’apprentissage
profond de pointe pour la modélisation des séries temporelles, mettant en lumière leurs limites
tout en introduisant de nouvelles contributions. La section de discussion détaillée décrit les
directions potentielles pour les travaux futurs, y compris l’exploration de la modélisation
générative pour les séries temporelles. Nous pensons que les sujets explorés, associés aux
méthodes que nous proposons, présentent des voies prometteuses pour améliorer de manière
significative la robustesse de la modélisation neuronale et automatique des données de séries
temporelles.
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Part I

SETT ING THE STAGE : INTRODUCTION AND

BACKGROUND





1 INTRODUCTION

1.1 modern deep learning challenges for time series data

The extraction of valuable insights from time series data can be useful in various practical
situations and challenging real-world applications. In particular, predicting the future values of
observed time series [65], interpolating missing points [196] and classifying multivariate [115],
fully or partially observed inputs, are important in almost all scientific and engineering
domains, including economics, business intelligence, meteorology, telecommunication and
energy [10, 201, 239, 308]. At the same time, extracting embeddings that capture both inter-
variable and inter-temporal dependencies in time series is crucial [82]. The need for learning
large amounts of historical data and capturing non-linear patterns has drawn attention
to Deep Learning (DL) models. However, similar to the the pitfalls of discrete statistical
models [52], deep neural network architectures for time series mostly derive from networks for
other sequential tasks, such as text that is discrete, thus they have limited intuition on the
continuous time-dependent properties of the series [47]. Since DL architectures make fewer
structural assumptions compared to statistical approaches, they often require large datasets
to make accurate predictions. Additionally, in the presence of input noise and perturbations,
such as irregular sampling, missing observations, high autocorrelations and others, they
often fail or show unstable behavior in capturing the complex statistical properties of the
underlying continuous-time dynamics. Enhancing the robustness of DL architectures when
handling specific types of data, has been a research area of paramount importance in the
recent years [303] and is also very prominent to the problem of effective time series modeling.

Distortions in time series data refer to any factors or anomalies that disrupt the idealized,
regular, and continuous nature of the time series [83]. Those typically include irregularities,
errors, or artifacts that are introduced during data collection, such as irregularly sampled
or missing observations, noise and outliers, repeating patterns (e. g., cyclical) that are not
associated with the underlying process and distributional shifts of the data over time [254].
On the other hand, inherent characteristics of the data, such as high correlations among
variables in different timestamps, as well as, prior knowledge about the evolution of the
series (e. g., constraints and approximations on governing equations) [128, 168] constitute
aspects that necessitate the development of complex models. Such peculiarities, while they
do not directly account for extrinsic distortions can pose challenges to robust and continuous
modeling of time series data.

In the next sections, we highlight some key challenging characteristics of time series data
that motivate our contributions to the development of robust deep learning approaches for
time series modeling. Following this discussion, we outline the topics that will be covered in
this study.
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4 introduction

1.1.1 Noisy Observations

challenges. Noise in time series and data, in general, refers to random variations or
errors that can be present in measurements or observations. These variations can result
from various sources, including measurement inaccuracies, or other factors that introduce
randomness into the data. For instance, time series may sometimes miss key correlated
variables or features that are critical for making accurate predictions, which can lead to
increased noise on the available data. Noise and outliers are therefore considered a form of
distortion in data. In terms of preprocessing, techniques such as noise reduction, smoothing,
or filtering are commonly employed to mitigate the impact of noise and enhance the reliability
of the data for further analysis or modeling for subsequent tasks.

motivation. The robustness of DL approaches under noisy inputs is crucial and has been
a long-standing challenge while training with deep neural networks [6]. Robust models should
effectively filter out or minimize the impact of noise, ensuring that it does not unduly influence
their predictions. At the same time, robust models should maintain stable and consistent
performance across different datasets with varying levels of noise, instead of overfitting the
training data. In terms of time series, robust deep learning modeling incorporates the loss
function design [17, 57, 97, 98] as well as the neural architecture module design to implicitly
or explicitly handle noisy observations.

1.1.2 Irregular Sampling

challenges. Time series data are often collected with the assumption of regular
sampling, where data points are observed at consistent time intervals. In many real-world
scenarios, time series data may not be collected at fixed intervals, leading to irregular sampling.
Irregular sampling can be considered a form of distortion in time series data, particularly
when the irregularity deviates significantly from the expected or desired regular sampling
frequency. This can result in data points that are not uniformly spaced in time and varying
time gaps between observations, creating discontinuities in the time series. Additionally, for
multivariate inputs, observations might be missing due to irregular sampling, which can
result in gaps in the input series. These gaps can hinder the continuous analysis and modeling
of the data if not treated properly. However, several time series models, from statistical to
deep learning ones, assume fixed intervals between observation times, thus such kind of time
series data necessitates important modifications in existing approaches to enable continuous
modeling.

motivation. Instead of ignoring or discarding time series segments with missing
data [164], robust DL models should provide reasonable estimates for the missing values
based on the available information. Robustness also implies that the model can handle
different lengths of missing data segments. Some segments might include just a few missing
values, while others might form larger gaps in the input series. The models should be capa-



1.1 modern deep learning challenges for time series data 5

ble of accommodating these variations, e. g., by introducing continuous-time deep learning
approaches and minimizing preprocessing steps that hinder end-to-end modeling of the
underlying dynamics [31, 132, 214, 234].

1.1.3 Strong Correlations (Inter-Variable and Inter-Temporal)

challenges. Many datasets contain multiple variables or features, which can be corre-
lated with each other, meaning that they exhibit some degree of statistical association. For
example, in a healthcare dataset, variables like blood pressure, heart rate, and cholesterol
levels might be correlated and are overall related to the patient’s health condition. Such
dependencies can be referred to as inter-variable. On the other hand, inter-temporal correla-
tions refer to the dependencies or relationships that exist between observations at different
time steps [133]. For example, in financial data, stock prices today may be correlated with
stock prices from the previous days due to trends or market dynamics. High correlations
between variables or strong temporal dependencies in time series data are not distortions
in the traditional sense. Instead, they represent inherent characteristics of the data. These
relationships exist naturally and provide valuable information for time series analysis and
modeling [147, 231]. While such dependencies are not distortions, they present challenges
when building DL architectures, as they often require more complex modeling techniques to
be captured effectively.

motivation. Therefore, robust deep learning models should be able to account for
inter-variable correlations and make accurate predictions while considering how changes in
one variable might affect others. At the same time, they should be able to capture temporal
dependencies on the time series evolution which is crucial for generating accurate forecasts
or detecting anomalies.

1.1.4 Prior Knowledge on the Underlying Dynamics

challenges. In many real-world applications, data must adhere to certain physical con-
straints [242]. For example, in a physics experiment, measurements must satisfy conservation
laws (e. g., conservation of energy or mass). Dynamic systems constitute prominent examples
of time series data in which the state of the system evolves over time according to specific
rules or equations and are present in different fields, e. g., mechanics, biology, economics and
others [5, 108]. Constraints or laws of dynamics in data can not be considered distortions. In
contrast, they represent the inherent rules and principles that govern how data behaves in
a specific context and are fundamental to understanding the true nature of the data and
the underlying system it represents. However, failing to effectively incorporate such prior
knowledge about the temporal process into the modeling approach, can lead to significant
errors [255].
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motivation. To conclude, specific knowledge and constraints about the data, which is
particularly common in the case of dynamical systems, can be a significant aspect of robust
DL modeling for time series [255]. In this case, robustness can be evaluated based on the
model’s ability to generalize from the training data to unseen data while maintaining fidelity
to the underlying physical or dynamic principles.

1.2 thesis outline

The challenging properties of time series data, e. g., noise, irregular sampling, strong correla-
tions of variable periodicities and prior knowledge on constraints on the underlying dynamics,
as presented in Section 1.1.1, Section 1.1.2, Section 1.1.3, Section 1.1.4, pose significant
barriers on DL models’ robustness and therefore performance and generalization capabilities.
While several studies focus on improving models’ performance in various tasks and domains
of applications, there is yet little understanding of the general requirements of end-to-end
continuous and robust modeling of time series and dynamical systems using deep neural
networks. At the same time, there is room for improvements in existing approaches, in terms
of computational resources or complexity, as well as methods that have not been adequately
explored or extended to enable robust modeling. Therefore, our study consists of validating
and developing neural network architectures, that are able to handle continuous-time dynam-
ics and noise and perturbations of large real-world time series, by extending standard deep
learning approaches on various tasks.

We next present the organization of the presentation of the studies conducted in terms of
this thesis, as well as the theoretical background information provided for understanding the
topics discussed in each chapter.

introduction and background. In Chapter 1, we presented some of the most
dominant challenges on the robustness of modern deep learning approaches for real-world time
series data. In this chapter, we also provide the thesis organization and an outline of the main
chapters and topics that are discussed. In Chapter 2, we provide some key definitions and
notations for time series data and an overview of traditional methods and recent advances in
machine and deep learning approaches. Those are important for understanding the background
of the existing methods in this field and contain information about modules and properties
to which we will refer in the main chapters that follow.

increasing robustness via loss functions. The largely dominant loss func-
tions to train and evaluate deep models in time series point forecasting are Lp norms, i. e., Mean
Squared Error (MSE) and its variants (e. g., Mean Absolute Error (MAE), Symmetric Mean
Absolute Percentage error (SMAPE)). Even though MSE and related loss functions enjoy some
nice properties, when dealing with real-world data with multiple co-occurring patterns, abrupt
changes and noisy components, these functions might become sensitive to noise. In Chapter 3,
we aim to address the issue of ‘mimicking’ in time series forecasting, particularly in noisy or
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incomplete datasets (i. e., missing correlated variables). This can be achieved by introducing
a robust loss function that extends the standard MSE loss with a regularization term.

In Section 3.1, we provide an introduction to the notations and background related to
forecasting techniques and loss functions, setting the foundation for the analysis of our
contribution in the next section. Section 3.2 formalizes the phenomenon of ‘mimicking’,
by providing a quantifiable definition to help practitioners identify models that replicate
past values instead of making genuine predictions. Synthetic experiments are conducted to
assess the relationship between low MSE values and forecast quality. We also emphasize the
importance of improving forecasting quality with standard loss functions and introduce a
versatile regularization term applicable to various neural network architectures. Lastly, the
proposed loss function is validated on common deep neural networks and real-world datasets,
with an emphasis on evaluating change point accuracy in the predicted series.

However, apart from improving the optimization process of the models, several studies
have focused on incorporating time information in the learnable hidden states of the models,
knowing that this information is essential in terms of another extrinsic distortion in the data,
called irregular sampling.

handling irregular sampling in time series. In Chapter 4, we focus on
robust modeling of irregularly sampled multivariate time series data, a common challenge
in various application domains. These time series often exhibit sparse, non-aligned, and
incomplete observations across different variables, presenting unique challenges for modeling
and analysis. Traditional sequential neural network architectures, including Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs), assume regularly spaced
observations, which can limit their effectiveness in handling irregular time intervals.

Section 4.1 presents the most dominant continuous-time modeling techniques, giving an
overview of their key components and the architectural requirements to handle irregularly-
sampled time series. While RNN variants have been proposed to address irregular sampling,
CNNs have not received as much attention in this context. In response to this gap, in Sec-
tion 4.2, we introduce the Time-Parameterized Convolutional Neural Network (TPCNN), an
extension of vanilla 1-D CNNs to handle time series of variable time intervals. The proposed
model utilizes kernels that are explicitly initialized with temporal information. These kernels
can capture the underlying dynamics of continuous-time inputs, making them well-suited
for handling irregularly sampled data. To assess TPCNN’s performance, we conduct a series
of experiments involving real-world multivariate time series datasets, focusing on tasks like
interpolation and classification. The outcomes of our experiments not only showcase TPCNN’s
competitiveness and efficiency when compared to existing methods but also emphasize its
distinctive feature: interpretability. TPCNN enables us to gain deeper insights into the input
time series by employing adaptable time functions.

Designing architectures that can capture intricate inter-variable and inter-temporal corre-
lations to extract valuable discrete embeddings, is an additional novel direction to boost the
robustness of deep neural networks for time series. When such correlations are not explicitly
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extracted due to their variable periodicities can act like additional noise to the input, leading
to poor optimization of the models.

extracting discrete embeddings from continuous time series via
graph learning. Time series are continuous in nature, but at the same time, they
might encounter several distortions (e. g., noise, irregular timestamps) potentially due to
their collection process. Contrary to other types of sequential data, e. g., text that is discrete,
it is hard to introduce algorithms for discretizing time series and capture their information,
similarly to the context or meaning of words, in descriptive embeddings. Discretization
algorithms for time series could pave the way for summarizing their information in task-
specific representations, but necessitate the construction of efficient methodologies that
capture substantially inter-variable and inter-temporal correlations, while not violating the
series evolution of dynamics. This idea is extensively presented in Chapter 5.

Graph representation learning algorithms that operate on spatio-temporal data can boost
our creativity towards this direction. We present an overview of such algorithms and existing
works on time series in Section 5.1. Building upon the motivation for graph-based embeddings
that effectively capture correlations in complex time series data, we recognize that the existing
approaches, though promising, often encounter challenges related to computational intensity
and scalability. We, therefore, propose the Time Graph Neural Network (TimeGNN) framework
in Section 5.2 with the objective of harnessing the power of graph neural networks while
addressing these challenges. TimeGNN introduces a dynamic temporal graph representation
that retains the capacity to capture intricate inter-variable and inter-temporal correlations in
a remarkably efficient manner. The proposed model not only accelerates the inference process,
with speeds surpassing state-of-the-art methods but also upholds good forecasting performance
in several benchmark datasets. At the same time, TimeGNN bridges the gap between the need
for robust, correlation-sensitive embeddings and the imperative of computational efficiency
in handling large-scale time series datasets.

It is crucial to acknowledge that the concept of robustness, especially when dealing with
time series data, encompasses more than just addressing distortions and capturing inherent
correlations. Specifically, situations where data adheres to specific rules or equations governing
the temporal system but isn’t accurately accounted for in the model should also be considered.

applications on dynamical systems. In Chapter 6, we delve into the integration
of prior knowledge, particularly for modeling dynamical systems, that constitute a character-
istic example of such data. Dynamical systems follow specific physical constraints or laws of
dynamics, which far from being distortions, are inherent to the data. Those are, in essence,
guiding principles that can enhance the accuracy and robustness of our forecasting models.
Leveraging this prior knowledge enables us to develop models that align with the underlying
physics or dynamics governing the time series, resulting in more reliable predictions.

In Section 6.1, we present an overview of the intersection of physics-based knowledge and
DL, exploring how existing approaches extend predictive models, particularly when applied
to dynamic systems with inherent physical constraints. Following this, in Section 6.2, we
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focus on a specific application for dynamical systems, i. e., spreading processes on networks of
contacts under the constraint of epidemic compartmental models. In this study, we focus on
the Susceptible-Infectious-Recovered (SIR) epidemic model on networks. While this model is
theoretically approximated by a system of ordinary differential equations, the mathematical
derivation of the system’s solution is infeasible in practice due to its computational complexity.
We tackle this challenge by devising a streamlined approximation system, enabling us to
harness recent advancements in neural ordinary differential equations. Our proposed neural
architecture proves adept at predicting epidemic courses on networks, demonstrated through
extensive experimentation with various datasets and settings. The results affirm the potential
of interpretable and robust neural networks in advancing the field of epidemic spreading,
providing both improved predictive capabilities and computational efficiency, even on large
networks where conventional methods falter.

discussion. In Chapter 7, we present a comprehensive analysis of the topics presented
in this thesis, focusing on their interactions with intricate challenges and opportunities
in the domain of deep learning for time series, where the interpretability, generalizability,
and robustness of models are of paramount importance. Our aim is to dissect the broader
applicability of the methods and their practical implications. Furthermore, we explore future
research directions stemming from these findings. Through this discussion, we shed light
on the intricate performance of deep learning models in the face of real-world time series
complexities, offering insights that can guide both researchers and practitioners in leveraging
these models effectively or exploring new directions in the field.

Finally, Appendix A presents additional results and specifications on the employed DL

architectures for some of the contributions we introduce in the chapters of Part ii.





2 BACKGROUND : LEARNING FROM TIME SER IES DATA

2.1 time series data

Time series data, a collection of sequentially recorded observations over time, can be found
in various scientific and engineering fields and encompass a wide range of applications.
For instance, in finance, stock prices exhibit daily fluctuations, while economic indicators,
e. g., inflation rates, are regularly tracked over the years [75]. In climate science, weather data
such as temperature, precipitation, and wind speed measurements are collected at specific
locations [230]. In healthcare, patients’ vital signs, such as heart rate and blood pressure, are
continuously monitored [30]. Additionally, traffic data [101, 156], social media metrics [76],
energy production or consumption patterns [237], and environmental factors, e. g., air quality
measurements [104], form examples of time series data. This versatile data type can be
therefore significant for forecasting, pattern recognition, and trend analysis in a wide range
of application domains.

2.1.1 Fundamentals

Definition 1 (Time Series). A time series is a sequence of data points collected, observed,
or recorded at successive time intervals. Let x1:T = (x1, . . . , xT ) a sequence of T data points,
t the time index and xt represents the value of the series at time step t. For multivariate
time series, the notation above can be extended to include multiple variables and additional
covariates. For the multivariate case, let X = {xi,1:Ti

}Ni=1 a set of N univariate time series,
where xi,1:Ti

= (xi,1, . . . , xi,Ti
) the i-th time series. The set of time series might be associated

with additional variables or covariates that can be used to explain or predict the behavior of
each time series from the multivariate collection.

For the definitions of Chapter 2, for simplicity we refer to the notation of univariate time
series, i. e., xt, but (DL) models can directly be extended to deal with multivariate inputs.

time series main components. The main components of a time series are often
identified to correspond to the following patterns [180]:

- Trend. It represents the long-term movement or pattern in the data. It captures
whether the data tends to increase, decrease, or remain relatively constant over time.
Trends can be linear, exponential, or follow other patterns.

- Seasonality. This component pertains to the consistent and recurring variations or
patterns in the data that happen at specific intervals. An illustration of seasonality can
be observed in retail sales, which tend to surge during the holiday season.

11
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- Cyclic Patterns. Contrary to the predictable and recurring nature of the seasonal
component, cyclic patterns do not adhere to precise and predetermined time intervals.
They denote longer-term oscillations or fluctuations that are less consistent than seasonal
trends. These cycles can endure for multiple years and may lack a predetermined length.

- Irregular or Residual Component. Residuals capture the stochastic fluctuations
or random noise in the data that cannot be ascribed to the aforementioned components
and are very prominent in real-world data.

A time series xt can be directly decomposed into the aforementioned main components, as
follows:

xt = Tt + St +Rt

that constitutes an additive decomposition model, where Tt captures the trend and cyclic
patterns, St represents the seasonal patterns and Rt is the remaining irregular component.
Similarly, a multiplicative decomposition model or more sophisticated techniques can be
employed based on the complexity and general evolution of the series [49, 59].

stationarity. Stationarity is a key notion in the field of time series analysis. Stationary
time series are those in which statistical characteristics, including mean, variance and
autocorrelation, exhibit no change during their whole length [180]. In other words, a stationary
time series has consistent behavior throughout time. There are two main types of stationarity:

- Strict Stationarity. In this case, the joint probability distribution of any set of
observations in the time series is the same at different time points. This means that
the statistical properties do not change with time.

- Weak Stationarity (or Covariance Stationarity). In this case, the time series
exhibits a consistent mean and variance across time, and the autocovariance (or
autocorrelation) between any two observations is solely determined by the time lag
between them, rather than the specific moment at which they occur.

Certain statistical modeling approaches presuppose stationarity in the input series, which
makes these properties critical [145]. A typical transformation is based on differencing the
original time series at lagged time points. For instance, first-order differencing, i. e., at lag 1,
∆xt = xt � xt�1, is often used to achieve stationarity prior to employing a statistical model.

autocorrelation. Autocorrelation captures the degree of linear association between
a time series and a lagged version of itself [18]. It quantifies how a data point at a particular
time is related to data points at previous times. Mathematically, the autocorrelation function
(ACF) at lag k for a time series xt is defined as:

ACF(k) =
Cov(xt, xt�k)

p

Var(xt) · Var(xt�k)

where the covariance Cov(·,·) measures the degree to which two random variables change
together and variance Var(·) measures the spread or dispersion of a random variable. If



2.1 time series data 13

classes

...

Classification Forecasting

Imputation

Anomaly Detection

Figure 2.1: Time series main tasks. Examples for a given univariate time series.

ACF(k) is close to 1 or �1, this indicates a strong positive or negative autocorrelation
respectively, meaning that values at time t and t � k are highly correlated or follow an
inverse relationship. If ACF(k) is close to 0 there is no or little relationship between values at
different lags. Autocorrelation is a valuable tool in time series analysis for identifying patterns
within the data and understanding how past observations can influence future values in the
series. Similarly, partial autocorrelation (PACF(k)) measures the correlation between two
observations at different lags while removing the influence of all the intermediate observations
between them. In other words, it measures the direct relationship between the time series
and its lagged observations.

2.1.2 Time Series Tasks

Common time series tasks include forecasting, classification, imputation and anomaly de-
tection. These tasks are fundamental in various domains, including finance, healthcare,
environmental monitoring, and more. We provide some relevant definitions below:

Forecasting. Time series forecasting involves predicting future values of a time-ordered
sequence of data points based on historical observations. For some given time series data,
which can be univariate or multivariate, the goal is to predict the value of one or multiple
time series respectively for a specified horizon h (i. e., the number of future time steps to
predict) in the future.

Classification. Time series classification aims to assign a class label or category to each
time series data sample. For some univariate or multivariate time series data and a set of
possible class labels, the goal is to map the one or multiple time series to a class label.

Imputation. Time series imputation involves filling in missing or incomplete values within
a time-ordered sequence of data points. For one or multiple time series some values may be
missing, denoted by a relevant indicator (e. g., zero value). The task is to estimate these
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missing values to reconstruct the complete time series data.

Anomaly Detection. Time series anomaly detection identifies data points or sequences that
deviate significantly from normal patterns in a time series dataset. Anomalies represent time
points or sub-sequences where the data behaves unusually compared to the expected behavior.

Additional tasks that are typical in classic time series data mining, outside the scope of
this study, include clustering, motif discovery and others [83]. A visualization of the main
time series tasks described above is provided in Figure 2.1.

2.2 modeling time series data

Different mathematical models can be employed to analyze and model time series data for
various applications and relevant tasks. We next provide an overview of the most prominent
statistical, machine and deep learning methods for tackling time series data that will be often
referred to in the next chapters. In terms of the applications of this study and the proposed
contributions, we mainly focus on time series prediction, classification and imputation
methods. More details on time series prediction with modern deep learning approaches
are provided in Chapter 3 and Chapter 5, whereas further approaches for imputation and
classification of irregularly sampled data are provided in Chapter 4.

2.2.1 Statistical and Machine Learning Methods

methods for forecasting time series. A traditional statistical technique, the
Autoregressive Integrated Moving Average (ARIMA) model combines autoregressive (AR),
differencing (I), and moving average (MA) parts to represent a time series. Its application
assumes stationarity of the time series data [18, 20]. It is often represented using the
mathematical notation ARIMA(p, d, q). The order of the autoregressive (AR) component,
denoted by the p variable, determines the number of lagged observations incorporated into
the model. The d variable represents the degree of differencing, which denotes the number of
times the time series data needs to be differenced to achieve stationarity. Finally, variable q
denotes the rank of the moving average (MA) component in the prediction equation, which
specifies the number of lagged forecast errors.

Definition 2 (ARIMA). We first denote the backshift operator B(·) such that B(xt) =
xt�1, B

2(xt) = xt�2, . . . , B
d(xt) = xt�d. Let yt = rdxt = (1�B)dxt, based on the degree of

differencing d. Let also et represent the white noise error term in a distribution with zero
average and contact variance �2

e . Then for p,q parameters, the value of the time series at t,
xt, is derived from:

yt = �1yt�1 + �2yt�2 + ...+ �pyt�p + et + ✓1et�1 + ✓2et�2 + ✓qet�q,

) �p(B)(1�B)dxt = ✓q(B)et,
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where �p(B) = 1 � �1B � �2B
2 � ... � �pB

p and ✓q(B) = 1 + ✓1B + ✓2B
2 + ... + ✓qB

q.
We denote as �1,�2, . . . ,�p the autoregressive coefficients and as ✓1, ✓2, . . . , ✓q the moving
average coefficients.

The values of p, d, q can be defined using the autocorrelation plots (ACF and PACF) or
information criteria, e. g., the Akaike Information Criterion (AIC) for estimating the goodness
of fit based on the number of parameters and the log-likelihood of the model [180]. The
next step involves estimating the coefficients outlined in the above equation, by Maximum
Likelihood Estimation (MLE), which is similar to Least Square Estimation used in regression
equations [106].

The seasonal ARIMA (SARIMA) method extends the ARIMA model to handle seasonality
in time series by combining a non-seasonal and a seasonal ARIMA component at multiples
of the specified season. This model is appropriate in cases where seasonal variations are not
successfully handled by differencing I(d). For multivariate inputs, the autoregressive (AR)
part can be extended to form the Vector Autoregressive (VAR) statistical models [309], which
formulate each variable as a linear combination of past values of itself and past values of
all other variables in the system. Additionally, classic statistical methods for forecasting
are based on exponential smoothing [90], such as Single Exponential Smoothing (SES),
Double Exponential Smoothing (Holt’s), and Triple Exponential Smoothing (Holt-Winters)
methods. Such methods focus on capturing patterns in data by assigning exponentially
decreasing weights to past observations. The forecasting process in exponential smoothing
models involves updating the level of the series and, if applicable, trend and seasonality
components at each time step based on historical data, while progressively reducing the
influence of previous observations.

State-space models (SSM) [81] constitute a category of statistical models applied in the
analysis and modeling of time series data. They prove especially beneficial when handling
intricate systems and data with substantial noise. SSMs use state variables to describe the
underlying hidden states and observations of a system as well as the probabilistic relationships
between them in a system (e. g., by a set of differential equations). Additionally, gradient-
boosting models, e. g., XGBoost and LightGBM [35, 173], are often employed for time series
forecasting by treating time lags as features. Finally, the more recent Prophet model [246]
for univariate time series is an additive regression method that decomposes the input into
trend, seasonality, and holiday components and is suitable for data including missing values
and multiple seasonal patterns.

methods for classifying time series. Time series classification employs super-
vised machine learning techniques to extract patterns from various labeled instances of time
series data, and then predict or assign class labels based on the samples’ similar features. We
can identify four categories of different machine learning approaches for the classification
task [7], applying to both univariate and multivariate data with some modifications:

Distance-based methods measure the similarity or dissimilarity of two time series, typi-
cally by converting the data into vectors and employing a distance measure [260], e. g., Lp
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norms (Manhattan, Euclidean distance) between those points in the vector space. Dynamic
time warping (DTW) offers an alternative solution for comparing two series, that do not
perfectly align by considering slight shifts or distortions in the series to be similar, showing
improved performance [74]. DTW is calculated using dynamic programming techniques.
Distance measurements can be effectively combined with distance-based algorithms, such as
the k-nearest neighbors (k-NN) method.

Shapelet-based methods identify distinctive patterns within time series, called shapelets,
that are subsequences of the time series that are representative of a specific class [278].
The most dominant method among shapelet-based is the shapelet transform (ST) [109],
which ranks potential shapelets based on their information gain. The resulting selection of
k number of indicative shapelets is employed to transform the time series into k respective
features based on their distance measurements from the initial time series. Consequently,
this transformation constitutes datasets suitable for standard vector-based classification
algorithms, such as the tree-based Rotation Forest [210].

Dictionary-based methods follow the concept of dictionaries used in natural language
processing. Instead of words, these dictionaries capture patterns or shapes within time series
data. These patterns, often referred to as shapelets or kernels, are essential elements that help
in understanding and classifying time series. The idea is to create a dictionary of such patterns
that can effectively represent the underlying characteristics of different classes or categories
within time series datasets. Algorithms like Symbolic Fourier Approximation (SFA) [222],
BOSS [221] and Bag-of-Patterns (BoP) [161] leverage these dictionaries to transform raw
time series data into a structured format suitable for machine learning models. Similarly, the
ROCKET method [67] employs convolutional kernels to extract feature maps that express if
a pattern captured by the kernel is present in the series.

Interval-based methods, such as the Time Series Forest (TSF) [69], segment time series
data into intervals, similar to the Bag-of-Patterns approach. Each interval is used to train an
individual machine learning classifier based on summary (e. g., mean, standard deviation,
slope measurements) or spectral features (e. g., Fourier, autocorrelation features) [163]. An
ensemble of classifiers collectively assigns the final class label to each sample, based on the
most frequent class predicted by the individual classifiers.

2.2.2 Sequential Deep Learning Models

Temporal learning or sequential models are a class of machine learning models specifically
designed to handle sequential data, where the order and respective values of data points are
crucial for analyzing and modeling for subsequent prediction tasks. These models are widely
used in various fields, including natural language processing, time series forecasting, speech
recognition, and others [61, 186]. We next present the most widely used sequential neural
network components that are often incorporated into time series model architectures.
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Figure 2.2: RNN visualization. (Left) Rolled and (Right) Unrolled.

recurrent architectures. Recurrent Neural Networks (RNNs) were introduced
to handle and process data incorporating sequential relations. Unlike traditional feedforward
neural networks [176], RNNs have recurrent connections (i. e., self-loops), allowing them to
maintain a hidden state representing information from previous time steps in the sequence.
This recurrent architecture enables RNNs to capture temporal dependencies and relationships
within sequential data.

Definition 3 (Recurrent Neural Networks (RNNs)). RNNs are a type of neural network
designed to model sequences. They maintain a hidden state that allows them to capture
dependencies between previous and current inputs in a sequence. Let x1:T = (x1, . . . , xT )
represent the input sequence of length T , where xt is the input value at time step t. Then,
ht 2 R

d forms the hidden state of the RNN at time step t and captures information about the
sequence up to that point. The update of the hidden state in standard RNNs is calculated as
follows:

ht = f(Wxxt +Whht�1 + bh) (2.1)

where f(·) is usually a non-linear activation function, such as the hyperbolic tangent (tanh)
or rectified linear unit (ReLU), Wx and Wh are weight matrices and bh a bias vector that
the model learns during training.

A visualization of a vanilla RNN layer is provided in Figure 2.2, including both a more
abstract and an unrolled version of the general architecture. However, traditional RNNs can
struggle with capturing long-range dependencies due to the vanishing gradient problem [170].
To overcome this limitation two prominent RNN variants, i. e., Long Short-Term Memory
Networks (LSTMs) [110] and Gated Recurrent Units Networks (GRUs) [72] networks have
been proposed [289].

Definition 4 (Long Short-Term Memory Networks (LSTMs)). LSTMs are a variant of RNNs
that use gated cells to selectively update and remember information over long sequences,
making them more suitable for tasks that require capturing long-term dependencies. The forget
gate, ft, decides what information from the previous cell state Ct�1 should be discarded or
kept for the current time step. The input gate, it, determines the new information to be added
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to the cell state. The output gate, ot, regulates what information from the current cell state
should be forwarded as the output of the LSTM cell. An LSTM cell can be defined as:

ft = �(Wf [ht�1, xt] + bf ),

it = �(Wi[ht�1, xt] + bi),

ot = �(Wo[ht�1, xt] + bo),

C̃t = tanh(WC [ht�1, xt] + bC),

Ct = ft �Ct�1 + it � C̃t,

ht = ot � tanh(Ct),

(2.2)

where �(·) is the sigmoid activation function that squashes the gate output values between 0
and 1, tanh(·) the hyperbolic tangent function and � denotes the element-wise (Hadamard)
product. C̃t represents the candidate for the cell state of the LSTM unit and Ct the final cell
state value. The hidden state for each time step is computed based on the output state ot and
the cell state Ct.

Additionally, GRUs were introduced as an alternative to LSTMs to simplify architecture,
reduce parameters, speed up training, and potentially improve performance in certain tasks.
Their two-gate design, as opposed to LSTM’s three gates, makes them computationally
efficient and easier to train, particularly in scenarios with limited data or computational
resources.

Definition 5 (Gated Recurrent Units Networks (GRUs)). GRUs are a variant of RNNs, that
similarly to LSTMs, use an update gate, ut, and a reset gate, rt. The update gate calculates
the proportion of the previous memory cell content that should be transferred to the current
memory cell, while the reset gate determines the amount of information from the previous
state that should be disregarded. A GRU cell is defined as follows:

ut = �(Wuxt +UuCt�1 + bu),

rt = �(Wrxt +UrCt�1 + br),

C̃t = tanh(WCxt +UC(rt �Ct�1) + bC),

Ct = ut �Ct�1 + (1� ut)� C̃t

(2.3)

where C̃t represents the candidate for the cell state of the current GRU unit and Ct the final
cell state value.

temporal convolutional neural networks (cnns). A 1-D Convolutional
Neural Network (CNN) is a neural network architecture specifically designed for analyzing
one-dimensional data. While traditional CNNs are designed for two-dimensional data such as
images, 1-D CNNs are tailored to handle sequential data, such as time series, audio signals,
text, and other one-dimensional sequences [9, 96]. 1-D CNNs may offer advantages over
traditional RNNs when handling sequential data. They excel in parallelization, are efficient
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Figure 2.3: Sequential Models. (Left) Causal TCN derived from [186] and (Right) Transformer [248].

at capturing local patterns, exhibit translation invariance, require fewer parameters, and
mitigate the vanishing gradient problem that can affect RNNs.

A Causal Temporal Convolutional Network (TCN) [186] is a convolutional network variant
designed for sequential tasks involving very long input sequences. It preserves causality, by
making predictions based only on only past and present data. This makes TCN ideal for tasks
such as time series forecasting where respecting the temporal order is crucial. Additionally,
causal TCNs can be employed to efficiently capture long-range dependencies in sequences.

Definition 6 (Causal Temporal Convolutional Neural Networks (Causal TCN)). Causal
TCN employs a causal 1-D convolution, where each output element depends only on past and
current inputs within its receptive field. The convolution operation in a causal TCN can be
expressed as:

yt = (x1:T ⇤d f)(t) =
k�1
X

i=0

f(i) · xt�d·i (2.4)

where f : {0, . . . , k � 1} �! R is the filter (also called the kernel) of size k applied to the
input and d is the dilation rate that defines the range of dependencies to capture. Also, yt

represents the value of the output sequence at time t, f(i) is the i-th element of the filter and
xt�d·i is the i-th past value of the input sequence adjusted by the dilation rate d.

Following the idea of Wavenet [186], one can incorporate hierarchical structures into the
network architecture by stacking multiple layers of causal 1-D convolutions with increasing
dilation factors at each level [286]. This approach allows for the extraction of increasingly
abstract features from the input data, which can be useful for more complex tasks and
remains computationally efficient despite the increased depth of the network. A visualization
of stacked Causal TCN layers following Wavenet architecture is presented in Figure 2.3
(Left).

temporal self-attention networks. Temporal self-attention networks are
neural architectures designed for processing sequences, emphasizing the order of elements,
such as text and audio data. They employ self-attention mechanisms [248] to weigh the
significance of elements within a sequence based on their temporal relationships. This
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sequential processing captures long-range dependencies, which enables temporal self-attention
networks to excel in applications where understanding the temporal context of data is crucial
for accurate modeling and predictions.

Definition 7 (Self-Attention or Transformer-basedNetworks (AttN)). Self-attention is a
mechanism used in neural networks, particularly in Transformer-based models [248], to weigh
and combine different parts of the input sequence, giving more attention to relevant elements.
The mathematical notation for self-attention in a Transformer-like model can be represented
as follows, employing a scaled-dot product mechanism:

Q = x1:TWQ, K = x1:TWK , V = x1:TWV ,

Attention(Q,K,V) = Softmax

 

QKT

p
dk

!

V
(2.5)

where WQ, WK , WV are weight matrices for learnable linear transformations on the input
x1:T , Q, K, V are the obtained representations that correspond to the queries, keys and values
of self-attention respectively and dk is the dimension of the key vectors which determines the
scaling factor. Operation QKT represents the dot product between queries and keys and the
Softmax(·) function normalizes the dot product scores to produce attention scores that sum
to 1. Dividing by

p
dk prevents the dot products from becoming too large and stabilizes the

training process.
Since transformer-based architectures do not inherently consider the order of elements,

similar to RNNs or CNNs, positional encoding is crucial to inject information about the
positions or order of elements in a sequence into the model. The most common way to
introduce positional encoding in the model is by adding sinusoidal functions of different
frequencies to the input embeddings, as follows:

PE(pos,2i) = sin

 

pos

10002i/dmodel

!

,

PE(pos,2i+1) = cos

 

pos

10002i/dmodel

!

where PE(pos,2i), PE(pos,2i+1), are the positional encoding values for position pos and dimension
2i, 2i + 1 respectively, pos is the position of the element in the sequence, i the dimension
of the positional encoding and dmodel the dimension of the model’s embedding. The use
of sine and cosine functions with varying frequencies ensures that each dimension of the
positional encoding captures different periodic patterns, allowing the model to differentiate
between positions effectively. By adding this positional encoding to the input embeddings,
the transformer model can differentiate between elements in different positions within the
sequence, even if the elements have similar values.

Multi-head self-attention is a crucial design choice of the transformer architecture, that
leverages several self-attention mechanisms on the input data. This mechanism splits the
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query, key, and value matrices into multiple heads, computes attention independently for each
head, and then combines the results to create a rich representation of the input sequence. It
allows the model to focus on different parts of the input simultaneously and capture various
patterns and dependencies within the sequence. Transformer’s main components, including
positional embeddings, linear transformations, the scaled dot-product attention and a final
feed-forward neural network are visualized in Figure 2.3 (Right).

hybrid deep learning models. Hybrid models for time series tasks combine differ-
ent modeling approaches or algorithms to improve the accuracy and robustness of predictions.
Hybrid DL approaches mostly include variants based on RNNs, CNNs and Attention-based
networks. Dominant combinations include convolutions combined with RNNs [147, 230],
convolutional self-attention [254] and self-attention applied prior to RNNs [234].

task-specific overview. Based on the above definitions, different DL modules and
their combinations show prominent results for task-specific applications.

In time series forecasting, DeepAR [216], a deep autoregressive model, is a neural network-
based architecture that leverages the power of RNNs to capture complex temporal de-
pendencies in time series data. DeepAR provides probabilistic forecasts instead of point
predictions, by modeling the entire probability distribution of future values. This makes it
well-suited for uncertainty quantification which is crucial in a wide range of applications,
e. g., demand forecasting. More details about different loss functions for probabilistic and
point estimate forecasting are provided in Section 3.1. Similarly, the multi-horizon quantile
forecaster (MQRNN) [264] combines the flexibility of RNNs with quantile regression to model
different quantiles simultaneously, extending the idea of the one-step ahead DeepAR model to
direct multi-step ahead forecasting. Details about the difference between one- and multi-step
ahead forecasting modules and the architectural design for the latter case of forecasting, are
provided in Section 3.1. On the other hand, Deep State Space Models [206] combine the
strengths of both recurrent neural networks and state space models (SSMs), specifically a
linear Gaussian SSM. The strict structural assumption of observations following a Gaussian
distribution has been tackled by extending SSMs with normalizing flows using Normalizing
Kalman Filters [15]. More details on recent contributions in the state-of-the-art for time
series forecasting with deep neural networks beyond RNNs (e. g., convolutional, attention
modules and recently graph neural networks) are provided in Section 3.2 and Section 5.2.

In time series classification, CNNs have achieved significant performance and are often
employed by stacking hierarchically several 1-D convolutional kernels [115]. Inspired by image
recognition networks, Multi-scale CNNs (MCNN) [55] and Time LeNet (t-LeNet) [151] com-
bine convolutional with pooling layers and employ data augmentation techniques, e. g., window
slicing and window warping, to prevent overfitting. In the opposite direction, Fully Convo-
lutional Networks (FCNs) [262], which are not based on pooling layers, replace the final
prediction, i. e., fully-connected, layer with a global average pooling layer that summarizes
the contribution of parts of the series to the output class [306]. Deep CNN architectures with
residual connections, i. e., Residual Networks (ResNets), exploit skip or shortcut connections
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to improve accuracy by avoiding unstable training in deep architectures [262]. Addition-
ally, Multi-Channel Deep Convolutional Neural Networks (MCDCNN) [304, 305] offer an
alternative for modeling multivariate time series, by applying convolutions independently
on each channel of the multivariate input. On the other hand, instead of using a softmax
output layer as the aforementioned approaches, the Time-CNN model is optimized using
MSE loss in place of the standard cross-entropy for classification [299]. A single convolution
is applied to all dimensions of the multivariate input and the final fully-connected layer
is followed by a sigmoid activation function. Finally, inspired by AlexNet [143] for image
classification, InceptionTime [116] extends the idea of ensembling multiple Inception modules
with convolutional filters of various lengths for extracting information in different historical
lengths. DL approaches for classifying time series which are sampled in non-fixed intervals and
involve missing data, necessitate more sophisticated formalizations of standard modules. The
most dominant methods for classification and imputation of irregular series are thoroughly
described in Chapter 4.

2.3 time series distortions and robustness

In time series analysis, modeling complex inherent patterns or extrinsic distortions of the data
poses a significant challenge to modern machine and DL approaches. Natural irregularities or
variations may be present in the data due to the underlying processes governing them. These
are often considered intrinsic fluctuations in the time series and are essential to understanding
its true behavior. On the other hand, distortions can also arise from errors or inaccuracies
introduced during the data collection, processing, or modeling stages. These distortions are
external to the inherent characteristics of the data and can lead to misinterpretations or
deviations from the actual underlying patterns. Effectively capturing these challenging types
of time series characteristics is critical for improving the model’s performance.

2.3.1 Definitions

Time series data exhibit specific characteristics based on transformations or distortions applied
to them. Following the definitions of existing literature [83] to refer to such transformations,
some relevant notations are provided below.

Given a univariate time series x1:T = (x1, . . . , xT ) of T data points, several transformations
on the series can be applied so as to obtain a transformed series x0

1:T = (x01, . . . , x
0
T ):

1. Amplitude Shifting. Time series x0
1:T can be extracted via a linear amplitude shift of

the series, such that x0i = xi + c, where c 2 R denotes an added constant value.

2. Uniform Amplification. Time series x0
1:T can be extracted by multiplying the ampli-

tude of the series by a constant c 2 R, such that x0i = c · xi.
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3. Dynamic Amplification. Time series x0
1:T can be extracted by multiplying the ampli-

tude of the series with a dynamic amplification non-zero function, such that x0i = h(i) · xi.

4. Uniform Time Scaling. Time series x0
1:T can be obtained by applying a uniform change

of the time scale of the series, such that x0i = xdc·ie, where c 2 R.

5. Dynamic Time Scaling. Time series x0
1:T can be obtained by dynamically changing

the time scale, x0i = xh(i), where h(i) a positive, strictly increasing function such that
h : N �! [1, . . . , n].

6. Noise and Outliers. Noise can be added to the original series such that x0i = xi + ✏i,
where ✏i is independent identically distributed white noise. Outliers can also be introduced
at random positions, such that x0k = ✏k for some points {k | k 2 [1, . . . , n]}.

Most time series learning tasks use similarity metrics between time series, e. g., distance
metrics for time series classification and loss functions (e. g., mean squared error (MSE) and
Lp norms) for optimizing neural networks in terms of forecasting and imputation. Based on
the time series task, the employed model architecture or similarity measure must be robust
to some or all combinations of the above transformations. This necessitates the definition
of four general robustness properties in terms of time series data. Those properties can be
defined as robustness with respect to scaling (i. e., modifications in amplitude), robustness
with respect to warping (i. e., temporal distortions) as well as robustness in the presence of
noise and outliers. Similarity measures need to respect several properties, in order to be scale
robust, warp robust and noise and outlier robust [83].

2.3.2 Prominent Challenges and Contributions

However, except for the evaluation of similarity measures for time series with respect to the
aforementioned distortions, there has been limited attention devoted to the formalization
and empirical evaluation of the robustness of deep neural network architectures for different
time series tasks.

In this study, we systematically assess the robustness of deep learning methodologies when
confronted with diverse time series data characteristics or distortions, encompassing:

- The presence of noisy observations and training using conventional loss functions (e.g.,
Lp norms) and sequential deep learning architectures (e. g., recurrent, convolutional and
attention-based). We propose a methodology to mitigate the effects of poor optimization
by introducing a new loss variant for time series forecasting.

- Irregularly sampled and multivariate instances that contain missing observations. Such
distortions pose a significant challenge to continuous modeling and to understand them
we provide a thorough overview of continuous-time deep neural architectures as well as
extend such efforts to basic modules not previously studied (i. e., convolutional).
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- Strong inter-variable and inter-temporal correlations. We focus on formalizing algorithms
for discretizing the time series in dependence networks, that capture such characteristics
and extracting informative time series embeddings in the spectral domain.

- Physical constraints or information about the governing temporal dynamic process
that produces the experimental data. We present the most prominent challenges while
modeling spatio-temporal dynamical systems. We also introduce a physics-informed
robust model and an experimental methodology to assess robustness while modeling
spreading phenomena on networks.

The first two aforementioned challenges can be conceptualized as extrinsic distortions in
the studied time series data and directly refer to the notations (i. e., 4-6, time scaling and
noise) provided in Section 2.3.1. The last two challenges, while they do not directly refer to
time series distortions, are inherent characteristics of the underlying data. Those inherent
characteristics when are not properly accounted for in terms of modeling or analysis, can
potentially lead to reduced performance introduced by the modeling process. Therefore, since
strong correlations and physical knowledge of the data constitute common characteristics of
different time series data, we include them in our theoretical and experimental analysis as
part of the dominant challenges in robust DL modeling for time series.

We, therefore, analyze in Chapter 3, Chapter 4, Chapter 5 that follow, specific case
studies on the robustness of standard deep neural network architectures applied to different
tasks (e. g., forecasting, classification and imputation). We also propose and mathematically
formalize some novel neural architectures that handle time series challenging properties and
experimentally test their generalization performance in various real-world datasets. Finally, we
present in chapter Chapter 6 some significant real-world applications incorporating time series
data on networks, particularly focusing on predicting spreading processes using information
for the underlying dynamical system’s principles.



Part II

BREAKING GROUND : METHODOLOGIES ,

CONTRIBUT IONS AND FUTURE AVENUES





3 INCREAS ING ROBUSTNESS V IA LOSS FUNCTIONS

3.1 preliminaries: forecasting outputs and loss functions

Time series forecasting constitutes the task of predicting the future values of single or
multiple variables based on observed historical (lagged) values. In this section, we provide
some key definitions and notations for different types of forecasting outputs, with respect
to the employed loss function (Section 3.1.1) as well as the number of considered variables
and the length of the forecasting horizon (Section 3.1.2). The design of the optimization
steps for DL architectures, i. e., employed loss function and forecasting strategy (e. g., autore-
gressive or sequence-to-sequence), combined with the deep sequential neural architecture
modules discussed in Chapter 2, enable the construction and evaluation of several forecasting
architectures, that we present in Section 3.2 and Section 5.2.

3.1.1 Types of Forecasting Outputs with Respect to the Loss Function

Deep Neural Network architectures offer the versatility of adapting decoder blocks and output
layers so as to approximate both discrete and continuous output targets. Predictions can be
classified into two main categories, i. e., probabilistic outputs and point estimates [159].

probabilistic outputs. Except for the significance of estimating the expected value
of a target variable in the future, obtaining the uncertainty of a model can be crucial for
decision-making in several application domains, e. g., financial risk management. In order
to model the uncertainty of predictions, deep neural networks can be parameterized to
learn estimates of the probability distribution of the target values [92, 208], by employing a
probability density function (PDF) or a quantile function. Gaussian distributions are widely
used for forecasting with the networks producing parameter estimates (e. g., mean, variance)
that can be used to model the target values [206, 216].

point estimates. However, there are situations in which it is beneficial to model
particular values, i. e.,the expected value, middle value, or other specified quantiles, instead of
learning the complete probability distribution. These models are commonly known as point
forecast models. Different evaluation metrics may favor different summary statistics, and
the choice should be made based on the specific requirements and goals of the forecasting
task [138]. Determining the expected value of the target variable denotes a classification task
for discrete targets and a regression task for continuous outputs. Mean squared error (MSE)
and binary cross-entropy constitute the most common loss functions, for continuous and
binary targets respectively. Variants of the above losses have also been introduced [114].

27



28 increasing robustness via loss functions

3.1.2 Types of Forecasting with Respect to the Forecasting Horizon and Variables

In the following sections, we provide some formal definitions of univariate and multivari-
ate forecasting and multi-step ahead time series prediction, following the notations and
categorization of techniques in relevant studies [13, 159].

3.1.2.1 Univariate and Multivariate Forecasting

Let X = {xi,1:Ti
}Ni=1 a set of N univariate time series, where xi,1:Ti

= (xi,1, . . . , xi,Ti
) the i-th

time series and xi,t the value of the i-th time series at t. The input time series are correlated
with a set of covariates, which may exhibit temporal variation or remain constant, denoted
by Z = {Zi,1:Ti

}Ni=1. We can denote by Φ the learnable parameters (e. g., weights and biases)
of the employed neural network. In the general form, we aim to forecast the conditional
distribution:

p(Xt+1:t+h|X1:t,Z1:t+h; ✓) (3.1)

where ✓ the parameters of the probabilistic model, for multivariate X (i. e., N > 1) and
multi-step ahead forecasting (where h the horizon length) and Xt+1:t+h the sequence of
values of all N time series in the time interval [t+ 1, t+ h].

univariate models. A separate model can be trained independently for N time series
to model (i) the predictive distribution or (ii) the point estimate:

p(xi,t+1:t+h|xi,1:t,Zi,1:t+h; ✓i), ✓i = Ψ(xi,1:t,Zi,1:t+h) (3.2)

x̂i,t+1:t+h = Ψ(xi,1:t,Zi,1:t+h) (3.3)

for probabilistic (3.2) and point forecasts (3.3) respectively. In the above equations, Ψ is
a generic function that maps input features to the parameters of the probabilistic model
(i. e., case (i)) for the i-th time series.

A single, cross-learning model can also be trained using all data from the N time series
and still predict a univariate output. This joint model provides (i) the predictive distribution
or (ii) the point estimate:

p(xi,t+1:t+h|X1:t,Z1:t+h; ✓i), ✓i = Ψ(xi,1:t,Z1:t+h,Φ) (3.4)

x̂i,t+1:t+h = Ψ(xi,1:t,Zi,1:t+h,Φ) (3.5)

for probabilistic (3.4) and point forecasts (3.5) respectively. In the above equations, Ψ uses
shared parameters Φ, although the parameters of the probabilistic model ✓i for each time
series are different (i. e., in case(i)). Such a model exploits information while learning across
the different time series, resulting in improved extracted features. After optimizing Ψ, the
model forecasts each time series independently.
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Training

Iterative Methods Direct Methods

Figure 3.1: (Left) Iterative methods for multi-step forecasting. (Right) Direct methods for multi-step
forecasting.

multivariate models. A single model is trained for N time series using all data to
predict the multivariate target:

p(Xt+1:t+h|X1:t,Z1:t+h; ✓), ✓ = Ψ(X1:t,Z1:t+h,Φ) (3.6)

X̂t+1:t+h = Ψ(X1:t,Z1:t+h,Φ) (3.7)

for probabilistic (3.6) and point forecasts (3.7) respectively. This model captures the depen-
dency among time series while forecasting.

3.1.2.2 One-step and Multi-step Ahead Forecasting

Practitioners are often interested in predicting variables at multiple future time steps. The
provided notation in the previous equations covers the one-step ahead forecasting case,
i. e., for h = 1, and for greater horizon values, i. e., h > 1, the multi-step ahead forecasting
case. Methods for multi-step ahead forecasting using deep neural networks can be classified
into iterative and direct ones [159], or autoregressive and Seq2Seq respectively [13].

iterative methods. Iterative techniques for forecasting multiple time steps ahead are
implemented using autoregressive deep learning modules [160, 216, 261]. For the generation of
multi-horizon forecasts, the iterative strategy extends conventional one-step ahead forecasting
models, by progressively feeding target estimates to the subsequent time step. However,
it is essential to note that the errors introduced recursively, can accumulate significantly,
especially for large forecasting horizons h [159, 243].

direct methods. The key idea behind direct forecasting techniques incorporates the
employment of only the accessible lagged information for generating forecasts, which is often
implemented by the popular sequence-to-sequence architectures. In this case, an encoder
module is used to condense historical information and a decoder that combines them with
known future inputs to generate forecasts. Alternatively, simpler models can be employed to
produce a fixed-length vector output representing the multi-step forecast, which necessitates
specifying a predefined maximum horizon length h [159].
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Figure 3.1 provides a visualization of the two main strategies, i. e., iterative methods
(Left) and direct methods (Right), for multi-step ahead prediction using neural network
architectures, adapted from the relevant study [159].

While several sophisticated loss variants for forecasting have been proposed, MSE and Lp

norms, in general, remain the principally employed loss functions and most evaluated point
forecast metrics across different research works. Their computational efficiency, simplicity
and the fact that they provide a direct measure of the real deviation from target values
constitute them a straightforward choice for many practitioners, that are not necessarily
experts in time series analysis. For this reason, in the study we present in the next section
(Section 3.2), we aim to highlight the main challenges encountered when employing MSE for
training and a methodology to tackle its poor performance.

3.2 time series forecasting models copy the past: how to mitigate

Time series forecasting is at the core of important application domains posing significant
challenges to machine learning algorithms. Recently neural network architectures have been
widely applied to the problem of time series forecasting. Most of these models are trained
by minimizing a loss function that measures predictions’ deviation from the real values.
Typical loss functions include mean squared error (MSE) and mean absolute error (MAE).
In the presence of noise and uncertainty, neural network models tend to replicate the last
observed value of the time series, thus limiting their applicability to real-world data. In
this work, our goal is to formally define the aforementioned problem such that practitioners
can identify whether their models replicate previous values instead of making predictions.
Thus, we provide a formal definition of the above problem and we also give some examples
of forecasts where the problem is observed [142]. We also propose a regularization term
penalizing the replication of previously seen values. We evaluate the proposed regularization
term both on synthetic and real-world datasets. Our results indicate that the regularization
term mitigates to some extent the aforementioned problem and gives rise to more robust
models.

3.2.1 Introduction

Time series are ubiquitous in several application domains including quantitative finance,
seismology and meteorology, just to name a few. Due to this abundance of time series
data, the problem of time series forecasting has recently emerged as a very important task
with applications ranging from traffic forecasting to financial investment. Indeed, accurate
forecasting is of great importance since it can improve future decisions which is the main
objective in a number of scenarios. For example, traffic forecasting seeks to predict future
web traffic to make decisions for better congestion control [101]. Moreover, forecasting the
spread of COVID-19 is of paramount importance to governments and policymakers in order
to impose measures to combat the spread of the disease [44].
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With the advent of deep learning, deep neural networks have become the dominant approach
to the problem of time series forecasting. For instance, models and layers such as Long Short-
Term Memory [110], Gated Recurrent Units [45] and Temporal Convolution Networks [9]
have proven to be very successful in temporal modeling. Specifically, these models have
demonstrated great success in capturing complex nonlinear dependencies between variables
and time, while they usually operate on raw time series data, thus requiring considerably
less human effort than traditional approaches. However, as these architectures make fewer
structural assumptions, they typically require larger training datasets to learn accurate
models, while they also lack robustness and are very sensitive to noise and perturbations.
A common problem in time series forecasting with deep neural networks is the one where
the model just replicates the last observed value of the time series. This is quite common in
the case of noisy datasets, and is a problem of paramount importance since most real-world
datasets contain noise. In fact, this problem which we refer to as “mimicking” also depends
on the nature of the employed loss function (e. g., MSE).

In this contribution, our goal is to formally define the aforementioned problem such that
practitioners can identify whether their models replicate previous values instead of making
predictions. Therefore, we provide a definition of “mimicking” in time series forecasting and
a methodology to quantify the extent to which a model suffers from it. Furthermore, we
present examples of forecasts where this phenomenon is clearly observed. The key technical
contribution of this work is a carefully designed regularization term which can be added to the
loss function and mitigate the drawbacks of “mimicking” which might occur in models trained
by minimizing common loss functions. The proposed regularization term is evaluated on a
range of different datasets. Our results suggest that the proposed term mitigates “mimicking”
and reduces its impact on the model’s performance. The main contributions of this study are
summarized as follows:

• To the best of our knowledge, we are the first to formally define the problem of
“mimicking” in time series forecasting.

• We designed a regularization term that, when added to the loss function, mitigates
to some degree the effect of “mimicking”. This term is general for all neural network
architectures and does not make any assumptions.

• We specifically investigate and deal with the phenomenon of “mimicking” on three
standard deep neural networks (LSTM, TCN and Transformer) which are some of the
most widely used and effective models in time series forecasting and sequence modeling.

• The proposed regularization term improves the movement predictive performance of
the vanilla models on 6 public time series benchmark datasets and one stock dataset.
On average, it leads to absolute improvements of 3.33% in accuracy (considered for the
three models), while MSE increases slightly.
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3.2.2 Related Work

time series forecasting. Before the advent of deep learning, the Auto-Regressive
Integrated Moving Average (ARIMA) model [18] and exponential smoothing [111] were
among the most popular and widely used methods for time series forecasting. However, these
approaches have some drawbacks (e. g., ARIMA assumes stationarity, while most real-world
time series are not stationary), and thus have been replaced recently with neural network
architectures [159]. Different instances of recurrent neural networks such as Long Short
Term Memory Networks (LSTMs) [110] and Gated Recurrent Units (GRUs) [45] have become
the dominant approaches for time series forecasting mainly due to their ability to model
complex patterns and long term dependencies, and to extract useful features from raw data.
Besides recurrent neural networks, convolutional neural networks have also been recently
investigated in the task of time series forecasting. The Temporal Convolution Network
(TCN) [9] is perhaps the most prominent example from this family of models. Attention
mechanisms have proven very successful in many tasks and have also been applied to the
problem of time series forecasting [154, 199]. Different neural network components such
as recurrent, convolutional and attention layers have been combined with autoregressive
components to make predictions [147]. The potential of residual connections along with a
very deep stack of fully-connected layers in the context of time series forecasting has also
been explored recently [189]. Matrix factorization methods have achieved prominent results
in the case of high-dimensional time series data [225, 288]. Some recent works have combined
neural networks and state space models [206, 261]. Probabilistic forecasting, for predicting
the distribution of possible future outcomes, has also recently started to receive increasing
attention [38, 216].

loss functions. Besides the traditional functions (MSE, MAE, etc.), other measures
that capture different time series properties have been proposed. However, in most cases,
these evaluation metrics are not differentiable, thus they cannot be directly employed as loss
functions. Examples of such measures include the dynamic time warping algorithm which
captures the shape of the time series, and standard evaluation metrics of supervised learning
algorithms (e. g., accuracy, f1-score) in the context of change point detection algorithms [4].
The need for measures alternatives to MSE has recently led to the development of new
differentiable loss functions which capture different meaningful statistical properties of
time series such as shape and time, including differentiable variants of Dynamic Time
Warping (DTW) [17, 57]. These differentiable dynamic time warping terms can also be
combined with terms that penalize temporal distortions (Temporal Distortion Index (TDI))
for more accurate temporal localization [97], while they have also been generalized to non-
stationary time series [98] and binary series [209].
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3.2.3 The Phenomenon of “Mimicking” and How to Mitigate

We first introduce some key notations for time series forecasting. Let x1:T = (x1, x2, . . . , xT )
be a univariate time series where xt 2 R denotes the value of the time series at time t. We
denote sliding windows extracted from the whole series x1:T as samples of length ⌧ , such that
(xt, xt+1, . . . , xt+⌧�1) for t 2 {1, . . . , T � ⌧}. The goal of a forecasting model is to predict the
future values xt+⌧ for t 2 {1, . . . , T � ⌧}. Let y1:n = (y1, y2, . . . , yn) = (x⌧+1, x⌧+2, . . . , x⌧+n)
the target values of time series to predict (i. e., for n = T � ⌧) and ŷ1:n = (ŷ1, ŷ2, . . . , ŷn)
denote the predictions of the forecasting model. Neural network models for time series
forecasting are typically trained to minimize the MSE which is defined as the sum of squared
distances between the target variables and predicted values, i. e., MSE = 1/n

Pn
i=1(ŷi � yi)

2.
Similar metrics, that measure the difference between the forecast and the actual value per
time step, such as MAE, are also employed in various applications.

3.2.3.1 “Mimicking” in Time Series Forecasting

Even though MSE and related functions enjoy some nice properties (e. g., MSE is convex
on its input), when dealing with real-world data with multiple co-occurring patterns and
noisy components, these functions might become sensitive to noise. This might result into
the problem of predicting previously seen values (usually the last seen observation in the
time series), rather than making predictions based on long-term extracted patterns. We next
formalize the problem described above. The following analysis focuses on the MSE loss, but
it also applies to other loss functions that are commonly employed in time series forecasting
(e. g., MAE). To investigate whether the model just replicates the last observed value of the
time series, we can examine if the MSE between the forecast in time step t and the real value
in time step t is greater than the MSE between the forecast in time step t and the real value
in time step t� 1.

Definition 8 (“Mimicking” in Time Series). We say that the phenomenon of “mimicking” in
time series forecasting occurs if the following inequality holds

n
X

i=1

(yi � ŷi)
2 >

n
X

i=1

(yi�1 � ŷi)
2 (3.8)

We can quantify the amount of “mimicking” as follows (the larger the (positive) value of MIM,
the larger its severity): MIM =

Pn
i=1

⇥

(yi � ŷi)
2 � (yi�1 � ŷi)

2
⇤

.

To demonstrate that “mimicking” is related to the level of noise present in a dataset, we
generated a synthetic dataset that corresponds to a sum of sinusoidal series with added
random Gaussian noise (more details are given in Section 3.2.4). A linear term is also added
to the above terms. Table 3.1 illustrates the MSE achieved by an LSTM and a TCN model
along with the amount of “mimicking” as a function of the level of noise (i. e., increasing
variance). We observe that the LSTM model is more prone to “mimicking” than the TCN
model, while the greater the value of the variance of the Gaussian noise, the greater the
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Table 3.1: MSE and “mimicking” as a func-
tion of the level of noise added to
a synthetic dataset.

� MSE (⇥10−3) MIM (⇥10−3)

L
S
T

M

0 6.191 0.048

0.01 3.225 0.035

0.1 9.765 0.052

0.25 10.446 0.066

0.5 13.357 0.069

T
C

N

0 0.024 -0.006

0.01 0.007 -0.003

0.1 0.046 0.002

0.25 0.068 0.004

0.5 0.182 0.008

Figure 3.2: A visualization of the proposed
loss L of Equation 3.14 for differ-
ent values of �, ŷt and yt−1.

impact of “mimicking” on the models’ performance. We also need to mention that the TCN
model does not suffer from “mimicking” for � = 0 and � = 0.01.

3.2.3.2 Proposed Regularization Term

To mitigate the effects of mimicking in time series forecasting, we begin our analysis from
the definition provided above. Specifically, we would like the second term of inequality (3.8)
to be greater or at least equal to the first term, i. e., we would like the following to hold

n
X

i=1

⇥

(yi � ŷi)
2 � (yi�1 � ŷi)

2
⇤

 0 (3.9)

By introducing the above term into the loss function, we directly punish “mimicking” to some
extent. However, incorporating solely the above term into the loss function gives rise to an
unbounded function. Indeed, in case

Pn
i=1(yi � yi�1) < 0, setting ŷi ! +1 can drive the

loss to negative infinity. Likewise, if
Pn

i=1(yi � yi�1) > 0, setting ŷi ! �1 also leads to a
loss function that is unbounded from below. Hence, since the loss is not bounded, there is no
admissible estimator, and this will render the model to be of no practical use.

Note that a perfect model would achieve an MSE equal to 0, i. e.,
Pn

i=1(yi � ŷi) = 0. In
such a scenario, we would like the loss function to take its lowest value. If we replace the
term that corresponds to the MSE in Equation 3.9 with 0, we obtain 0�

Pn
i=1(yi�1 � ŷi)

2 =
�Pn

i=1(yi�1 � yi)
2 The equality is due to the fact that the model is perfect, i. e., yi = ŷi

8i 2 1, . . . , n holds. We would like the above term to be the lower bound of the proposed
loss function (since the model is perfect). Therefore, we have

�
n
X

i=1

(yi�1 � yi)
2 

n
X

i=1

(yi � ŷi)
2 �

n
X

i=1

(yi�1 � ŷi)
2 (3.10)
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By combining Equation 3.9 and Equation 3.10, we obtain the following inequality

�
n
X

i=1

(yi�1 � yi)
2 

n
X

i=1

(yi � ŷi)
2 �

n
X

i=1

(yi�1 � ŷi)
2  0

() 0 
n
X

i=1

2(yi � yi�1)(yi � ŷi) 
n
X

i=1

(yi�1 � yi)
2

() 0 
n
X

i=1

(yi � yi�1)(yi � ŷi) 
1

2

n
X

i=1

(yi�1 � yi)
2

(3.11)

Ideally, we would like the above inequality to hold. That would mean that the phenomenon
of mimicking does not occur. However, the middle term is still not bounded, thus we cannot
directly minimize that term. Note that all the terms are nonnegative. Hence, we can square
all the sides of the inequality as follows

0 
n
X

i=1

⇥

(yi � yi�1)(yi � ŷi)
⇤2  1

4

n
X

i=1

(yi�1 � yi)
4 (3.12)

Now, the middle term is nonnegative by construction, and we can thus safely minimize it.
Interestingly, the above function is continuous and differentiable which are both desirable
properties for loss functions. For instance, the first and second derivatives of the function are
shown below

d

dŷi
⇠

n
X

i=1

2(yi�1 � yi)
2(ŷi � yi),

d2

dŷ2i
⇠

n
X

i=1

2(yi�1 � yi)
2 (3.13)

From the above, it is also clear that the second derivative of the function is nonnegative
on its entire domain, thus the function is convex. However, we need to mention that even
though the function is convex in ŷi, in case neural networks are employed (or other non-linear
models), we have ŷi = f(yi�1, . . . , yi�k; ✓) and the function is not convex in ✓.

Our proposed loss function for a sequence of n time steps is defined as

L =
n
X

i=1

(yi � ŷi)
2 + �

n
X

i=1

⇥

(yi � yi�1)(yi � ŷi)
⇤2

(3.14)

where � is a parameter which controls the importance of the regularization term, i. e., how
much penalty needs to be imposed to alleviate “mimicking”. The two factors (yi�yi�1), (yi�ŷi)
that constitute the penalty term above can be interpreted as a discrete-time cross-correlation
measure function between the difference of the series at i and i� 1 and the predicted error at
i. If we expand the term for a specific i, we derive [(yi � yi�1)yi � (yi � yi�1)ŷi)]

2. The closer
the prediction ŷi is to yi�1 and the farther yi is from yi�1, the larger the imposed penalty
term will be. Figure 3.2 illustrates how the proposed loss function varies as a function of
yt�1 and ŷt for different values of � (for yt fixed to 0.5).
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In some cases, the model might not replicate solely the last observed value of the time
series x⌧ , but also observations that occurred farther in the past, e. g., x⌧�1, x⌧�2, etc. We
next generalize the proposed penalty term to account for such kind of scenarios. To prevent
a neural network model from replicating the last K observations, we can use the following
loss function

L =

n
X

i=1

(yi � ŷi)
2 + �

n
X

i=1

K
X

k=1

⇥

(yi � yi�k)(yi � ŷi)
⇤2

(3.15)

The proposed loss of Equation 3.14 can also be generalized to the case of multi-step ahead
forecasting. Specifically, it can be directly applied to iterative 1-step methods [159], while in
the case of direct multi-horizon forecasting (vector output/Seq2Seq architectures), we need
to consider vectors ŷi 2 R

h of length h which refer to the desired horizon.

3.2.4 Experimental Evaluation

3.2.4.1 Datasets

synthetic. This synthetic dataset corresponds to a sum of sinusoidal series with added

random noise: y(t) = sin (t)+sin
⇣

⇡
2 t
⌘

+sin
⇣

�3⇡
2 t
⌘

+✏(t), where ✏(t) is a Gaussian distribution

with mean µ and variance �2 (µ = 0, � = 0.5).

monthly sunspots. This dataset describes a monthly count of the number of observed
sunspots from 1749 to 1983, a total of 2, 820 observations.

electricity. It contains electricity consumption measurements (kWh) from 321 clients,
recorded every 15 minutes from 2012 to 2014. We utilize the first univariate series of length
26, 304.

beijing pm2.5. This hourly dataset contains the PM2.5 data of the US Embassy in
Beijing. It is a multivariate dataset that consists of eight variables, including the PM2.5
concentration and a total number of 43, 824 observations. The task is to predict the future
hourly concentration given the other variables.

solar energy. It contains the solar power production data from photovoltaic plants in
Alabama in 2006. We utilize the first univariate series of length 52, 560.

exchange rate. It includes the exchange rates of eight foreign countries (Australia,
Britain, Canada, China, Japan, New Zealand, Singapore, and Switzerland) from 1990 to
2016. We utilize the first univariate series of length 7, 588.
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(a) Synthetic-LSTM (b) Sunspots-LSTM (c) Electricity-TCN (d) PM2.5-TCN

Figure 3.3: 1-step predictions of models trained with MSE on part of the test set.

3.2.4.2 Evaluation Metrics

In order to evaluate the performance of our proposed loss function in the experiments that
follow, we employ the following metrics:

mean squared error (mse) and shifted mean squared error (s-mse).
MSE compares the predictions ŷt against the targets yt. Shifted MSE compares ŷt against
the last values yt�1, i. e., s-MSE = 1/n

Pn
i=1(ŷi � yi�1)

2.

accuracy (acc) and shifted accuracy (s-acc). To compute these two
metrics, we turn the forecasting problem into a classification one. Let v be a n-dimensional
vector such that its i-th element is defined as vi = change(yi, yi�1) where change(a, b) =
sign(a� b). Let also v̂ be a n-dimensional vector such that v̂i = change(ŷi, ŷi�1). Then, Acc
is defined as the accuracy between the above two vectors. s-Acc is defined as the accuracy
between the vector v̂ and the vector v shifted by 1 step to the left. Predicting whether
the value of a time series will increase or decrease is a task of high importance for many
applications such as stock price prediction. Indeed, successful predictions would enable hedge
funds or investors to lay a successful strategy for buying and selling stocks.

We should note here that MSE and accuracy are two metrics orthogonal to each other. A
time series forecasting model ideally would achieve a low value of MSE and a high accuracy.
Models that suffer from “mimicking” can yield low values of MSE, thus achieving solely a
low MSE might not be a clear indicator of the model’s predictive power. On the other hand,
a model that yields solely high accuracy captures the shape and the change points of the
time series, but the predicted values might significantly deviate from the actual values of the
series.

3.2.4.3 Experimental Setup

We divide the sequence into multiple samples, where ⌧ observations are given as input and
the expected output is the actual value of the observation that follows each sample. We
choose ⌧ from {32, 64, 128, 256, 512}.
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Table 3.2: 1-step prediction performance of the different models, and the baseline on the 6 considered
datasets. All MSE/s-MSE results are in scale (⇥10−3).

Methods
Synthetic Sunspots Electricity

MSE s-MSE MSE s-MSE MSE s-MSE

Avg. Window

1 9.759 0.0 6.825 0.0 5.063 0.0

3 12.398 4.524 6.881 3.03 4.766 2.15

5 18.378 9.791 7.541 4.54 4.851 3.05

7 22.896 15.382 8.642 5.91 5.066 3.62

9 24.883 19.127 9.737 7.22 5.363 4.11

LSTM 4.742 4.778 5.739 3.572 3.594 1.49

TCN 3.784 5.650 6.043 3.485 3.582 2.22

Transf. 5.422 5.128 12.21 11.21 4.299 2.659

Methods
Beijing PM2.5 Solar Exchange Rate

MSE s-MSE MSE s-MSE MSE s-MSE

Avg. Window

1 0.489 0.0 1.803 0.0 0.248 0.0

3 0.905 0.30 3.531 1.150 0.244 0.103

5 1.358 0.72 5.654 2.918 0.292 0.171

7 1.793 1.16 7.998 4.998 0.348 0.235

9 2.192 1.57 10.485 7.291 0.407 0.298

LSTM 0.421 0.08 1.358 0.463 0.388 0.236

TCN 0.506 0.12 1.489 0.397 0.270 0.122

Transf. 0.560 0.18 1.802 0.391 3.811 3.747

We choose parameters as follows. For the LSTM model, we use a single LSTM layer. We use
the hidden state of the last time step of the LSTM layer as the vector representation of the time
series. The generated vector representations are then fed into a two-layer MLP with a ReLU
activation function. For the TCN model, we adjust the parameters to capture the different
history lengths ⌧ that we test, from the equation Rfield = 2D�1 ·Ksize, for Ksize = 2 and D
the number of dilation layers. Each layer has dilation rate of 2Nl�1, where Nl = {1, 2, ..., D}.
We also implement a model consisting of two stacked encoders of the Transformer architecture
followed by a fully-connected layer for the final prediction. The hidden-dimension size of the
LSTM, TCN and Transformer layers is chosen from {32, 64, 128, 256}. For all the three models,
we use the Adam optimizer with an initial learning rate of 10�3 and decay the learning rate
by 0.1 every 10 epochs. We choose the batch size from {32, 64, 128}. We set the number
of epochs to 100, and we retrieve the model that achieves the lowest validation loss. The
regularization parameter � is chosen from {0.1, 0.5, 1, 5, 10, 20, 50, 100, 200, 500, 800, 1000}.

We also implement a simple baseline method (Avg. Window) which, given the past n values
of the time series, predicts the average value: ŷt = 1/n

Pn
i=1 yt�i.

3.2.4.4 Results

examples of “mimicking”. We next provide some examples of forecasts where the
LSTM model and the TCN model just learn to replicate the last seen observations. Figure 3.3



3.2 time series forecasting models copy the past: how to mitigate 39

(a) Synthetic-LSTM (b) Sunspots-LSTM (c) Electricity-TCN (d) PM2.5-TCN

Figure 3.4: Predictions as in Figure 3.3 but after training with the proposed loss.

(a) Synthetic-LSTM (b) Electricity-LSTM (c) PM2.5-LSTM (d) Sunspots-TCN

Figure 3.5: 1-step prediction performance of different models, trained to minimize the proposed loss,
as a function of � and the baseline (Avg. Window (n = 1)).

illustrates such examples for some of the considered datasets. The first 2 plots (i. e., (a) and
(b)) correspond to predictions of the LSTM model, while the last 2 plots (i. e., (c) and (d))
to predictions of the TCN model. On the synthetic dataset, the LSTM model learns to infer
quite accurately the future values of the time series. This is mainly due to the simplistic
nature of that dataset. On the other hand, on the real-world datasets, the two models fail to
generalize, replicating previously observed data. This is especially true for plots (b) and (d).
Specifically, on the Beijing PM2.5 dataset, “mimicking” is observed to a very large extent,
probably due to the complexity of the dataset.

Besides the above qualitative results, we also present some quantitative results in Table 3.2.
We can see that on the 5 real-world datasets, the LSTM, TCN and Transformer models
suffer from “mimicking” since s-MSE is smaller than MSE in all cases. Interestingly, s-MSE
can even be an order of magnitude smaller than MSE (see LSTM on Beijing PM2.5 and all
three models on Solar). On the other hand, on the synthetic dataset both the LSTM and the
TCN model achieve a smaller MSE than s-MSE. Thus, on this dataset, the two models are
more robust. Indeed, this dataset is less noisy, while its trend is more predictable than that
of the real-world datasets. With regards to the baselines, in most cases, they also achieve
low values of MSE (especially when n = 1). In fact, on the Beijing PM2.5 dataset, the Avg.
Window (n = 1) outperforms the TCN model since it yields a smaller MSE than TCN. This
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Table 3.3: 1-step prediction performance of the different models on the 6 considered datasets trained
with MSE and with the proposed loss function. All MSE/s-MSE results are in scale
(⇥10−3). We mention in bold the maximum accuracy (Acc) and we underline the minimum
shifted accuracy (s-Acc) achieved for each model.

Methods
Synthetic Sunspots

MSE s-MSE Acc s-Acc MSE s-MSE Acc s-Acc

LSTM 4.742 4.778 0.616 0.695 5.739 3.572 0.388 0.739

LSTM+reg. 5.747 9.767 0.657 0.586 8.857 8.033 0.440 0.628

TCN 3.784 5.650 0.677 0.636 6.043 3.485 0.439 0.725

TCN+reg. 4.491 9.335 0.685 0.569 7.554 6.207 0.529 0.631

Transf. 5.422 5.128 0.603 0.713 12.21 11.21 0.447 0.659

Transf.+reg. 6.467 8.780 0.636 0.610 22.05 21.99 0.479 0.488

Methods
Electricity Beijing PM2.5

MSE s-MSE Acc s-Acc MSE s-MSE Acc s-Acc

LSTM 3.594 1.490 0.278 0.702 0.421 0.080 0.547 0.846

LSTM+reg. 28.97 29.79 0.440 0.122 1.605 1.263 0.553 0.661

TCN 3.582 2.220 0.366 0.497 0.506 0.120 0.540 0.822

TCN+reg. 26.01 27.32 0.442 0.319 0.518 0.140 0.542 0.809

Transf. 4.299 2.659 0.350 0.509 0.560 0.180 0.559 0.791

Transf.+reg. 15.86 16.73 0.417 0.337 0.890 0.510 0.545 0.696

Methods
Solar Exchange Rate

MSE s-MSE Acc s-Acc MSE s-MSE Acc s-Acc

LSTM 1.358 0.463 0.262 0.352 0.388 0.236 0.427 0.685

LSTM+reg. 3.638 3.250 0.257 0.313 0.524 0.414 0.436 0.594

TCN 1.489 0.397 0.269 0.364 0.270 0.122 0.430 0.643

TCN+reg. 3.855 3.240 0.255 0.304 0.494 0.379 0.443 0.586

Transf. 1.802 0.391 0.266 0.363 3.811 3.747 0.454 0.444

Transf.+reg. 3.927 2.834 0.254 0.320 9.320 9.321 0.471 0.453

interesting result indicates that a simplistic baseline may outperform a sophisticated model
on this dataset.

regularization term. In this set of experiments, we train the models to minimize
the loss function of Equation 3.14 and we report the 1-step forecasting results in Table 3.3.
We also provide some examples of the predictions of the models in Figure 3.4. We observe
that the proposed regularization term mitigates to some extent the effects of “mimicking”,
however, it does not eliminate it completely. In most cases, the models trained with the
proposed loss function result into a slight increase in MSE compared to the vanilla models,
but also into a larger increase in s-MSE. We also observe that even though the proposed
function incurs a very small increase in MSE, it improves the generalization ability of the
base models since they achieve higher accuracy in the task of predicting whether the value of
the time series will increase or decrease. The increase in the achieved accuracy of the binary
problem is in some cases significant. The proposed loss offers LSTM a relative increase of
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Table 3.4: 5-step prediction performance of
models on the Electricity dataset. All MSE/
s-MSE results are in scale (⇥10−3).

Methods MSE s-MSE Acc s-Acc

Seq2Seq 5.495 0.522 0.375 0.605

Seq2Seq+reg. 5.410 0.477 0.383 0.547

LSTM 5.534 0.502 0.380 0.646

LSTM+reg. 5.561 0.328 0.385 0.614

TCN 5.546 0.621 0.398 0.626

TCN+reg. 5.541 0.745 0.401 0.610

Transf. 5.845 0.3819 0.373 0.659

Transf.+reg. 5.346 0.3850 0.387 0.592

Table 3.5: 1-step prediction perfor-
mance of models on the
stock price dataset.

Methods Acc F1

LSTM 0.552 0.398

LSTM+reg. 0.570 0.520

TCN 0.545 0.184

TCN+reg. 0.586 0.360

16.2% in accuracy and Transformer an increase of 6.7% on the Electricity dataset, while
TCN’s accuracy increases by 9.0% on Sunspots.

sensitivity analysis. We next study how the performance of the proposed loss
varies as a function of hyperparameter �. We expect the effect of “mimicking” to be inversely
proportional to �. Figure 3.5 illustrates how the performance of the different models on 4
datasets varies with respect to �. We observe that both MSE and s-MSE increase as the
value of � increases. This is not surprising since the objective of the regularization term is to
make s-MSE as large as possible without hurting MSE much. In most cases, the increase
of s-MSE is larger than that of MSE, which is the desired behavior. In many cases, large
values of � result into MSEs that are even greater that that of the baseline (Avg. Window
(n = 1)). In terms of accuracy, we observe that in most cases, increasing the value of � leads
to a slight increase of Acc and a slight decrease of s-Acc.

multi-step ahead predictions. We present in Table 3.4 results of the multi-step
ahead forecasting experiments performed on Electricity. We employ a sequence-to-sequence
model of LSTM encoder and decoder, as well as LSTM, TCN, and Transformer encoders
followed by fully connected layers for direct predictions. In most cases, when trained to
minimize the proposed loss function, the different models achieve slightly larger values of Acc
and in some cases significantly smaller values of s-Acc. In terms of MSE, quite surprisingly
in the case of all models except LSTM, MSE decreases when the proposed loss is employed.

case study: predicting stock prices trends. We also experiment with a
dataset recording high-frequency bids for the TSLA stocks. Due to the class imbalance,
besides accuracy, we also report F1-scores in Table 3.5. The proposed term leads to slight
improvements in accuracy, but significant ones in F1-score.
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3.2.5 Conclusion

In this study, we deal with “mimicking” in time series forecasting. Our results indicate that
the proposed regularization term partially mitigates this phenomenon, constituting a first
approach towards this research direction. We plan to further study its properties along with
potential improvements in the future. Also, investigating the exact conditions under which a
model replicates the last observed values of the time series is on our agenda for future work.
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4.1 prominent deep learning approaches

Recurrent neural networks are the most prominent sequential neural network architectures for
several application domains, especially when involving one-dimensional data, e. g., speech, text
and time series. However, time series data may naturally arise in non-uniform time intervals,
which fundamentally violates the hypothesis behind RNNs for operating on equidistant data
observations. This is typical in different fields, such as electronic health records, astronomy
and others [205, 233]. A straightforward solution to handle this time irregularity is to fill
in missing data by employing an imputation method prior to applying a standard RNN.
However, this approach remains heuristic and data-driven leading to potential information
loss on the relevant input data, since knowledge about the underlying temporal dynamics is
not explicitly taken into consideration for the model design.

We next provide some overview of key studies in this field for obtaining a continuous-
time model, starting from the standard RNN architecture for irregular time series data,
based on significant contributions in the field [34, 214]. We also provide an overview of the
interpolation-prediction networks that can provide a flexible framework for interpolating or
classifying irregular data with missing values [232, 234].

recurrent neural networks (rnns). Let x0:L = (x0, x1, . . . , xL) and t0:L =
(t0, t1, . . . , tL) denote univariate time series observations of length (L+1) and their associated
timestamps. We refer to xi as the i-th ordered value of the series and ti as the corresponding
timestamp. Without loss of generality, we assume a univariate series as input, but the
notations that follow are simply extended for the multivariate case.

A naive way to employ RNNs for irregularly sampled time series incorporates the time
interval between input observations, ∆t = ti � ti�1, i. e., in the conventional function of
hidden state update of standard RNNs, as presented by the authors in [214], such that:

hi = RNNCell(hi�1,∆t, xi) (4.1)

where h denotes the hidden states. It is then necessary to define a function that describes
the hidden state variation between successive observations. Hidden states can naturally vary
with exponential decay as proposed in several studies [26, 31, 181, 205]. Then the employed
RNN can be described as:

hi = RNNCell(hi�1 · exp{�⌧∆t}, xi) (4.2)

where ⌧ denotes the decay rate. Unfortunately, this exponential decay of the hidden state
has been shown experimentally to be as efficient in terms of performance as conventional
RNNs [181].

43
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neural ordinary differential equations (neural odes). Neural ODEs
are a class of neural network architectures that build upon the concept of ordinary differential
equations (Ordinary Differential Equations (ODEs)) to model continuous-time dynamics, as
proposed in [34]. They provide a flexible framework for learning continuous transformations of
data over time, which makes them particularly useful for modeling time series data, dynamical
systems, and continuous processes. In a Neural ODE, the key idea is to parameterize the
continuous dynamics of a system using neural networks [34]. Instead of specifying discrete
layers and time steps as in traditional neural networks, a Neural ODE defines a continuous
path of transformations. This path is governed by an ODE, typically represented as [34]:

dh(t)

dt
= f✓(h(t), t) (4.3)

where h(t) represents the hidden state of the system at time t, f✓ is a neural network function
with learnable parameters ✓, which defines how the state changes over time, dh(t)

dt represents
the rate of change of the state.

Let also the initial value be h(t0) = h0. Then, the solution to the above ODE can be
approximated using a solver [34]:

h0, . . . , hL = Solver(f✓, h0, (t0, . . . , tL)) (4.4)

Neural ODEs can be trained by learning the parameters ✓ to match observed data. They are
especially powerful when dealing with irregularly sampled time series or when continuous-time
modeling is more natural for the problem at hand. The adjoint sensitivity method is used
in Neural ODEs to efficiently compute gradients during training [34]. It introduces adjoint
variables to capture how changes in the loss function affect the intermediate states of the
ODE solution. Unlike traditional backpropagation, it computes gradients by integrating
these adjoint variables backwards in time, enabling efficient training of continuous-time
models [198]. This method is particularly useful in scenarios where continuous-time modeling
is beneficial and long-range horizons are involved, as it avoids the need to store and propagate
gradients at every time step, making training more computationally efficient.

latent neural odes (ode-rnn). RNNs with exponential decay rate on hidden
states of Equation 4.2 can be considered to satisfy the ODE [214]:

dh(t)

dt
= �⌧h, where h(t0) = h0

The solution to the above equation is indeed h0 · e
�⌧∆t. This fixed approximation can be

generalized by modeling the hidden state dynamics using a Neural ODE, as observed by the
authors in [214].

Then an ODE-RNN hybrid model [214] can be defined as follows, using Equation 4.3
and Equation 4.4:

h̃i = Solver(f✓, hi�1, (ti�1, ti)),

hi = RNNCell(h̃i, xi)
(4.5)
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Table 4.1: Comparison of the presented
encoder-decoder architectures.

Model Encoder Decoder

RNN-VAE RNN RNN

Latent ODE (ODE) ODE-RNN ODE

Latent ODE (RNN) RNN ODE

Table 4.2: Hidden state h evolution of the pre-
sented autoregressive models.

Model Hidden state hi evolution

RNN hi−1

RNN-Decay hi−1 · exp{�⌧∆t}
ODE-RNN Solver(fθ, hi−1, (ti−1, ti))

such that the hidden state between observations h̃i is considered to be the solution to an ODE
and an RNN model is used to update the value of the hidden state hi in the presence of the
current observation xi. Following [181], the proposed method in [214] describes the evolution
of hidden state h̃ by the solution of a Neural ODE, rather than keeping it fixed, which con-
stitutes an implicit and elegant parameterization of the temporal dynamics of the input series.

Autoregressive Modeling. The hybrid ODE-RNN of Equation 4.5 [214] can be employed
for probabilistic autoregressive modeling, as standard RNNs, by learning the conditional
distributions p✓(xi|xi�1, . . . , x0) for each xi based on the historical observations. However,
autoregressive models, have experimentally shown to lead to decreased performance on
missing input data, and accumulated errors over large forecasting horizons.

Latent-variable Modeling (Latent ODE). As in the standard Neural ODE model [34],
latent-variable time series models can be conceptualized as encoder-decoder models, in which
input series are transformed into a learnable fixed-size representation z, which is consequently
processed by the decoder to generate the new sequence. More specifically, authors in [34]
employ an RNN for encoding the input series and computing the approximate posterior
distribution, which is then followed by an ODE-based decoder for generation for the latent
embedding. To extend this architecture to the irregular sampling setting, authors of the
hybrid ODE-RNN [214] propose an ODE-RNN encoder followed by an ODE decoder. The
characteristics of the approximate posterior distribution (i. e., mean and standard deviation)
are computed as a learnable function of the last hidden state of the encoder. The variational
encoder-decoder framework is trained to maximize the evidence lower bound (ELBO) function.
The key advantage of this approach is that it directly incorporates an uncertainty measure
in the predictions, contrary to conventional RNNs and ODE-RNNs.

Table 4.1 and Table 4.2 provide a comparison of the key components of the previously
explained sequence-to-sequence models for the irregular sampling setting, as well as the
hidden state dynamics of the respective autoregressive parts of the architectures.

Poisson Process Likelihood Modeling. Observation times might be also significant for
explicitly describing the evolution of the dynamics of particular time series data [31]. In the
original Neural ODE paper [34], a Poisson process ODE-based model is also demonstrated to
parameterize dynamics from observation times solely on a synthetic dataset. Following this
line of work, authors of the latent ODE-RNN architecture [214] employed a Poisson process
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to parameterize the intensity of events as a function of the latent representation z. Based on
the starting and ending timestamp of an observation, the integral of the Poisson intensity
function can be directly calculated and then latent states at all time steps can be derived
using a solver on the parameterized ODE.

interpolation-based models. For multivariate time series inputs, the irregular
sampling setting might lead to a different number of observations across each variable as
well as missing values in the channel dimension for a specific variable and a given timestamp.
Thus, frameworks that jointly perform interpolation and prediction for multivariate time
series can be a promising approach for solving subsequent tasks [89, 148, 155, 232].

Continuous-time interpolation-based models are described as follows:

x̂(t) =

P

i ✓(t, tj)x(ti)
P

i ✓(t, ti)
(4.6)

where ✓ denotes a similarity kernel, e. g., squared exponential.
Following this idea, authors in [232] propose a framework that consists of a radial basis

function (RBF) network for interpolation against a set of reference points, followed by a deep
neural network that performs the prediction. Instead of using a fixed similarity kernel, the
key idea of the proposed model in [234] is to extend to a learnable similarity measure that
can be optimized in a neural network architecture. This could improve the representational
flexibility of the model compared to traditional interpolation-based approaches. Attention-
based similarity [248] is a straightforward approach to form such a learnable kernel. We next
present an example of the attention-based interpolation framework of [234].

Let T = {(xi,1:Li
, ti,1:Li

)}mi=1 be the collection of observations and time points and for
the multivariate case of m time series. In the case of irregular sampling, each time series
i 2 {1, . . . ,m} has a different length equal to Li. We can access the values of the i-th channel
and j-th timestamp by xi,j and the values of the i-th channel for all timestamps by xi. Let
also a set of R reference time points t̃ = (t̃1, . . . , t̃R). The proposed multi-time attention
module (mTAN) [234] uses the following kernel smoothing approach applied to the i-th
dimension of the series:

x̂
(h)
i

�

t̃, (xi, ti)
�

=

Li
X

i=1

softmax

 

�h(t̃)wvT�h(ti,j)
T

p
m

!

xi,j (4.7)

where w,v 2 R
d⇥m are learnable matrices and 1

m a scaling factor that normalizes the
dot product in dimension m. The attention weights are defined based on a time attention
mechanism using learnable time embeddings �h:

�h(t)[i] =

8

<

:

!0h · t+ ↵0h, i = 0

sin (!ih · t+ ↵ih), 0 < i < d
(4.8)

where !ih, ↵ih are learnable parameters. The time embedding consists of a linear function at
the first dimension and is followed by periodic functions for the rest dimensions. The above
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time embedding function transforms each continuous time point into H different (d + 1)-
dimensional vectors. Employing learnable time embeddings in the attention mechanism [129,
275], instead of the standard fixed positional encodings that capture discrete positions,
provide flexible and continuous time representations.

Finally, mTAN given a set of query time points and a set of keys and values from the
multivariate input time series, returns a P -dimensional embedding at time t̃:

mTAN

✓

t̃, (xi, ti)

◆

[p] =
H
X

h=1

m
X

i=1

x̂
(h)
i

�

t̃, (xi, ti)
�

· Uhip (4.9)

that is a linear combination of continuous-time functions x̂
(h)
i (t̃,

�

xi, ti)
�

parameterized by
the learnable weights Uhip. The introduced mTAN modules of Equation 4.9 in [234] are
coupled with RNN components in both the encoder and decoder parts and form a latent
variable sequence-to-sequence architecture. The whole framework is trained in a variational
manner, similar to the aforementioned Latent ODE model.

convolutional networks. The potential of Convolutional Neural Networks (CNNs)
for addressing multivariate and irregularly sampled time series problems has not been as
extensively explored as that of Recurrent Neural Networks (RNNs), which are employed as
main building blocks in all the aforementioned architectures. CNNs are often favored over
Recurrent Neural Networks for time series data and sequence modeling in general, due to their
ability to efficiently capture localized features, parallelize processing across multiple channels,
and provide translation-invariant and hierarchical feature learning. CNNs are not susceptible
to the vanishing gradient problems of RNNs [170], offer regularization mechanisms, and are
easier to implement. However, the choice between CNNs and RNNs depends on the specific
characteristics of the data and the problem’s requirements, with RNNs being more suitable
when modeling sequential dependencies is crucial.

We next aim to provide a thorough experimental analysis of the state-of-the-art baselines
in the irregular sampling case, as well as formalize and experimentally evaluate the use of
convolutions for this particular type of time series data (Section 4.2).

4.2 time-parameterized cnns for irregularly sampled time series

Irregularly sampled multivariate time series are ubiquitous in several application domains,
leading to sparse, not fully-observed and non-aligned observations across different variables.
Standard sequential neural network architectures, such as recurrent neural networks (RNNs)
and convolutional neural networks (CNNs), consider regular spacing between observation
times, posing significant challenges to irregular time series modeling. While most of the
proposed architectures incorporate RNN variants to handle irregular time intervals, convolu-
tional neural networks have not been adequately studied in the irregular sampling setting.
In this study, we parameterize convolutional layers by employing time-explicitly initialized
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kernels [141]. Such general functions of time enhance the learning process of continuous-time
hidden dynamics and can be efficiently incorporated into convolutional kernel weights. We,
thus, propose the time-parameterized convolutional neural network (TPCNN), which shares
similar properties with vanilla convolutions but is carefully designed for irregularly sampled
time series. We evaluate TPCNN on both interpolation and classification tasks involving real-
world irregularly sampled multivariate time series datasets. Our experimental results indicate
the competitive performance of the proposed TPCNN model which is also significantly more
efficient than other state-of-the-art methods. At the same time, the proposed architecture
allows the interpretability of the input series by leveraging the combination of learnable
time functions that improve the network performance in subsequent tasks and expedite the
inaugural application of convolutions in this field.

4.2.1 Introduction

Recently, there has been a growing interest in applying machine learning techniques to
time series data. Besides time series forecasting, which has been extensively studied for
decades [65], other tasks have also emerged recently such as time series classification [115]
and generation [84].

Time series are constructed from real-world data and usually several of their observations
are missing or are subject to noise. This is mainly due to irregular sampling and is common
in different types of data including medical records, network traffic, and astronomical data.
Unfortunately, the most successful machine learning models in sequential modeling, namely
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) cannot properly
handle such irregularly sampled time series data. Indeed, those models treat observations
successively and assume an equidistant sampling scheme. Thus, time series data that exhibits
variable gaps between consecutive time points pose a significant challenge to such conventional
deep learning architectures. A naive approach to deal with the above problem would be to
drop some observations such that the distance between consecutive (remaining) observations
is fixed. However, this would increase data sparsity, thus leading to poorly defined latent
variables. A more prominent approach would be to first apply some imputation method to
replace missing values with estimated values, and then to use the standard models which
assume an equidistant sampling scheme. In fact, several recent approaches build on the above
idea [31, 89]. However, this could potentially result in a loss of information and a violation of
the underlying dynamics.

Recently, there has been an increasing interest in effectively capturing the continuous
dynamics of real-world sparse and irregular multivariate time series. Most studies have
extended RNNs to continuous-time hidden dynamics defined by ordinary differential equations
(ODEs) [34, 214]. The effectiveness of Convolutional Neural Networks (CNNs) [152] as an
alternative to recurrent architectures has been established, as long as the input dependencies
that are essential fall within the memory horizon of the network. CNNs are based on parallel
computations and thus are more efficient, contrary to the training instability and gradient
problems of RNNs that employ back-propagation through time [265]. However, since discrete



4.2 time-parameterized cnns for irregularly sampled time series 49

convolutions learn independent weights for each time step in the kernel range, they do
not directly capture the time irregularities. Efforts for the continuous implementation of
convolutional kernels have targeted 3D data [224, 257] and recently, sequences [211]. The
proposed continuous convolution for sequential data [211], CKConv, parameterizes the
kernel values using a multi-layer perception (MLP) on the relative positions {∆⌧i} of the
observations, followed by a periodic activation function [238]. In contrast to [211] that take
advantage of periodic activations, our layer can be constructed employing any predefined set
of continuous functions and be followed by any activation, while using significantly fewer
learnable parameters, since a single feed-forward layer is used for the parameterization of the
convolutional kernel.

Following the above line of research, in this study, we develop a new model, so-called
Time-Parameterized Convolutional Neural Network (TPCNN), which generalizes the standard
CNN model to irregularly sampled time series. To achieve that, we replace the fixed kernels of
CNNs with kernels whose values are parameterized both by time and by trainable variables.
Thus, instead of keeping the kernel weights fixed over the whole time series length, we use
different functions (e.g., linear, sinusoidal) to produce the kernels that will be convolved
with each patch of the time series. Therefore, kernels can be seen as continuous functions of
time, and the proposed TPCNN model can naturally learn continuous latent representations
of irregular time series. Furthermore, the use of the aforementioned functions improves the
explainability of the proposed model. We combine our time-parameterized convolutions with
vanilla convolutions by stacking them in a deep encoder module. The proposed TPCNN
model is evaluated in the tasks of time series classification and time series interpolation. Our
experiments demonstrate that the proposed model performs comparably to state-of-the-art
methods. The main contributions of the study are summarized as follows:

(i) Generalizing conventional, fixed convolutional kernels to time functions, that increase
their representational power and still leverage properties of convolutions (e.g., locally
aggregated information, fast training).

(ii) Enabling the application and proving the efficiency of deep stacked convolutions in the
irregular sampling setting.

(iii) Achieving high-performance results in interpolation and classification of irregularly
sampled benchmark datasets, which are comparable to other state-of-the-art methods.

4.2.2 Related Work

The long-standing challenge in multivariate irregular time series modeling has led to the de-
velopment of various neural network architectures that explicitly handle such time-dependent
peculiarity.

One strategy suggests dividing the timeline into equal intervals, filling in missing data,
and then using a Recurrent Neural Network (RNN) on the imputed inputs. Using a weighted
average between the empirical mean and the previous observation to perform imputation
has also been proposed [31]. Alternative methods for imputation include the use of Gaussian
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processes [89], or generative adversarial networks [171] prior to running the RNN on time-
discretized inputs. The interpolation-prediction network [232] employs several semi-parametric
interpolation layers for multivariate time series input with missing values, followed by a
prediction network which is applied on the produced regularly spaced and fully observed
representations. Multi-directional RNNs (M-RNN) combine past and future observations for
each timestamp [281]. A differentiable set function method for classifying irregularly sampled
is another line of work presented in [112].

An alternative strategy for handling irregularly sampled data involves architectures that
directly model such temporal sequences. Various techniques, including adaptations of gated
recurrent unit networks (GRUs) [46] and Long Short-term Memory networks (LSTMs) [110],
have been introduced for this purpose. Among the several proposed modified GRU architec-
tures [31], a prominent example takes as input observed values, indicators denoting missing
data points, and the differences in time between observations. The LSTM architecture has
been extended for handling the time irregularity of the data, by introducing a novel time
gate in [182] that updates the memory state. The activation and deactivation of this gate are
governed by distinct rhythmic oscillations, controlled by some learnable parameters. Another
LSTM modification is presented in [197], where the proposed forget gate moderates the
passing of memory from one time step to another. Another solution for handling irregularly
sampled data is to incorporate the time gaps between observations directly into Recurrent
Neural Networks (RNNs). One approach is to add the time gap ∆t to the RNN input, which
has been found to be susceptible to overfitting [181]. An alternative method is to introduce
hidden states that decay over time, which has been proposed in several works as a viable
solution [26, 31, 205].

Hidden states with an exponential decay can be employed to parameterize neural Hawkes
processes and explicitly model observations via latent state changes at each observation
event [177]. Many works focus on the continuous modeling of time series by learning a
continuous-time neural representation with a latent state defined at all times. More specifically,
a variational auto-encoder model, which utilizes a latent ordinary differential equation (ODE)
method to approximate the hidden state dynamics via an ODE solver, has been presented [34].
Based on this approach, an ODE-RNN encoder that combines the neural ODE part of the
encoder [34] with an RNN part for the hidden state update, has been proposed as an
improved variation [214]. A continuous version of the GRU architecture was introduced
to model the input series via continuous ODE dynamics describing the evolution of the
probability distribution of the data [64]. Finally, an alternative to Neural ODEs, Neural
Controlled Differential Equations represent the continuous-time analogue of an RNN, which
benefits from memory-efficient adjoint-based backpropagation across observations [132].

Attention mechanisms combined with time encodings, as an alternative to positional
ones [248], have been proposed [241, 244, 298]. By extending attention with learnable time
embeddings [274], the recently proposed Multi-Time Attention Network [234] computes the
similarity between observations at different time points using a learnable time embedding.
This approach works similarly to kernel-based interpolation, but by leveraging a learnable time
attention-based similarity kernel. Except for the optimization issues of RNNs, the conventional
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dot-product self-attention mechanism matches queries with keys without considering the
surrounding context. At the same time, space complexity grows quadratically with the input
length, leading to memory constraints and potential performance limitations.

The use of implicit neural representations for creating continuous data representations by
encoding the input in the weights of a neural network has recently gathered interest [193, 238].
Our approach can be conceptualized as an implicit representation of the convolutional kernels
since they are parameterized as learnable and continuous functions of time. In this study, the
proposed time-parameterized convolutional layer (TPC) introduces time-varying convolutional
kernels, allowing for more efficient representational learning of the time dependencies among
partially-observed variables. We leverage several continuous time functions for extracting
learnable time embeddings of the time intervals across different variables. The proposed
architecture is carefully designed for interpolation and classification tasks on irregularly
sampled time series.

4.2.3 The TPC Layer

In this section, we define the mathematical properties of the employed Time-Parameterized
layer (TPC) and analytically explain a proposed framework for tasks involving irregularly
sampled, partially observed and multivariate time series.

4.2.3.1 Preliminaries

Convolution is a well-studied mathematical operation which has applications in many diverse
scientific fields [19]. The convolution of two functions f and g, denoted by f ⇤ g, expresses
how the shape of one is modified by the other.

continuous convolution. If the domains of functions f and g are continuous,
convolution is defined as the integral of the product of the two functions after one is reflected
and shifted. Formally, given f : RD ! R and g : RD ! R, the continuous convolution
operation is defined as:

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

discrete convolution. In real world, signals are discrete and finite. For functions f ,
g, defined over the support domain of finite integer set ZD and {�K,�K+1, ...,K� 1,K}D,
respectively, the discrete equivalent of convolution is defined as:

(f ⇤ g)[n] =
K
X

k=�K

f [n� k]g[k] (4.10)

Thus, the integral is replaced by a finite summation. Standard CNN models consist of layers
that perform discrete convolutions that are defined over the discrete domain.
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4.2.3.2 Time-Parameterized 1D Convolutions

We first introduce the key notations behind the employed time-parameterized convolutions
for irregular and multivariate time series and analyze their fundamental properties.

irregular time series and standard cnns. Let {X(1), . . . ,X(N)} be a collec-
tion of multivariate time series where X(i) 2 R

m⇥L for all i 2 {1, . . . , N}. For irregular and
multivariate time series, each sample X(i) can have a different length Li, but in this notation,
we assume that samples, i. e., values and timestamps, are zero-padded to reach a maximum
length L. Thus, each time series consists of m channels and has a length (i.e., number of
observations) equal to L which corresponds to the observation times {t1, t2, . . . , tL}. Let
also d(·, ·) denote a function that measures the distance (in time) between observations of a
single channel of the collection of time series. The convolution operation of standard CNNs
assumes that consecutive observations are equally spaced across all samples, and thus, the
weights of the different kernels of standard CNNs are fixed across all chunks of the time
series. In other words, the summation in the right part of Equation 4.10 is performed over the

elements of the same set for all n. Formally, we have that d
⇣

X
(ı)
i,j ,X

(|)
i,j+1

⌘

= ⌧ holds for all

i 2 {1, . . . ,m}, j 2 {1, . . . , L� 1} and ı, | 2 {1, . . . , N} where N is the number of samples.
However, the above does not necessarily hold in the case of irregularly sampled time series
data. Indeed, irregularly sampled time series can exhibit varying observation counts across
distinct dimensions and also between different data instances. Thus, due to the assumptions
it makes, the standard convolution operation of CNNs is not suitable for irregular time series
data.

time-parameterized convolutional kernels. To deal with the irregularity of
time series, we propose to use time-parameterized kernels. Thus, instead of a fixed kernel that
slides over the patches of the time series, we use a parameterized kernel whose components
are functions of time. The kernel is also parameterized by the weights of a neural network.
We constraint the size of the kernel to be equal to 2z + 1 where z 2 N0 where N0 denotes the
set of natural numbers together with zero. Then, the elements of the kernel are constructed
by some function g(✓,∆t) where ✓ denotes some trainable parameters and ∆t denotes the
distance (in time) of the observation associated with some element of the kernel and the
z + 1-th observation. Formally, the convolution is defined as follows:

(f ⇤ g)(t) =
2z+1
X

i=1

f(ti)g(✓, t� ti) =
2z+1
X

i=1

f(ti)g(✓,∆ti) (4.11)

where t1, . . . , t2z+1 are the timestamps associated with the observations of the patch the
kernel is applied to.

The function g(✓,∆t) is quite general and can have different forms. In this work, we focus
on interpretability and thus function g(✓,∆t) : R5 ! R is defined as follows:

g
⇣ h

✓1 ✓2 ✓3 ✓4 ∆t
i> ⌘

= ✓1

✓

�
⇣

h
�

✓3 ·∆t+ ✓4
�

⌘

+ ✓2

◆
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where h : R ! R is a continuous function in R and � : R ! R denotes some activation
function (i.e., sigmoid, ReLU, etc.). Thus, to construct each element of the kernel, function
g takes as input four trainable parameters (i.e., ✓1, ✓2, ✓3 and ✓4) and the time difference
between the current observation and the center observation of the patch. Function h is chosen
such that inductive bias is injected into the model. This can allow the model to capture
patterns that commonly occur in time series data and also make its internal operations more
interpretable. For example, a function h(x) = c where c is some constant would not be a
good candidate for extracting useful features from the time series. On the other hand, we
employ more informative functions which can capture useful properties of time series such as
trend and seasonality. In particular, we employ the following ten functions:

1. h1(x) = x

2. h2(x) = sin(x)

3. h3(x) = cos(x)

4. h4(x) = tan(x)

5. h5(x) = exp(x)

6. h6(x) = x2

7. h7(x) = x3

8. h8(x) = sinh(x)

9. h9(x) = cosh(x)

10. h10(x) = tanh(x)

Most of the time, trend is a monotonic function, and therefore, functions h1, h6 and h7 are
chosen to detect trend in time series. Seasonality is a typical characteristic of time series in
which the data experiences regular and predictable changes that recur over a defined cycle.
Functions h2, h3, h9 and h10 are responsible for extracting features that take seasonality into
account.

The approach presented above generates kernels for univariate time series. In the case of
multivariate time series, different parameters are learned for the different components of
the time series. Therefore, the four parameters (✓1, ✓2, ✓3 and ✓4) are replaced by vectors of
dimension m, i. e., θ1,θ2,θ3,θ4 2 R

m. Thus, function g(θ,∆t) : R4m+1 ! R
m is computed

by applying function h(·) pointwise to m different elements. Note that ∆t is still a scalar
since observation times are identical across all components of the series.

4.2.3.3 The Time-Parameterized Convolutional (TPC) Layer

Given a sample X(i), its corresponding observation times {t1, t2, . . . , tL}, and a time-parameterized

function g, the kernel centered at the j-th observation (i. e., X(i)
:,j ) is constructed as follows:

Patch X
(i)
:,j−K . . . X

(i)
:,j . . . X

(i)
:,j+K

Observation time tj−K . . . tj . . . tj+K

Difference in time ∆tj−K . . . 0 . . . ∆tj+K

Kernel g(θ,∆tj−K) . . . g(θ, 0) . . . g(θ,∆tj+K)
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Note that X
(i)
:,j denotes the j-th column of matrix X(i). Once we construct the kernel, the

output of the convolution is computed as follows:

c =

m
X

l=1

g(θ,∆tj�K)l X
(i)
l,j�K + . . .+

m
X

l=1

g(θ, 0)l X
(i)
l,j + . . .

+
m
X

l=1

g(θ,∆tj+K)l X
(i)
l,j+K

where c 2 R. In some cases, features of the multivariate time series might be missing. In
such cases, the above operation would compute the sum of a smaller number of terms (since
missing features are ignored). Thus, we also experimented with the mean function:

c =
1

⌫

 

m
X

l=1

g(θ,∆tj�K)l X
(i)
l,j�K + . . .+

m
X

l=1

g(θ, 0)l X
(i)
l,j + . . .

+
m
X

l=1

g(θ,∆tj+K)l X
(i)
l,j+K

! (4.12)

where ⌫ denotes the actual number of features (out of the (2K + 1)m features, those that
are not missing).

Thus, the convolution between a sequence of observations and the kernel outputs a real
number. We use zero padding and apply the kernel to all observations and, therefore we
obtain a vector c 2 R

L. Furthermore, similar to standard CNNs, not a single kernel, but
instead a collection of kernels is generated and applied to the input. These kernels might
correspond to different functions of the ones defined above (i. e., h1, . . . , h10). Suppose that
we use p different kernels in total (potentially of different functions). Then, the output of the
TPC layer of the multivariate and irregularly sampled time series X(i) is computed as:

TPC
�

X(i), t(i)
�

=
�

�

p

i=1
ci 2 R

L⇥p

where k is the concatenation operator between vectors and t(i) is a vector that stores the
observation times of the time series.

4.2.3.4 Properties of TPC Layer

constant number of parameters An interesting property of the TPC layer is
that the number of parameters of each kernel is constant and equal to 4m regardless of
the size of the kernel. This is because the kernel is dynamically generated based on the
observation times and only 4m trainable parameters are involved. This is in contrast to
standard convolutional layers where the number of parameters is equal to the size of the
kernel plus the bias. Thus, the number of parameters of the TPC layer will be less than
the number of parameters of a standard convolutional layer when the size of the kernels is
greater than 4. This is likely to lead to less complex models and might significantly reduce
overfitting.
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time complexity. The time complexity of the proposed TPC layer is approximately
O(L`mp) for kernel size `, similar to the vanilla 1D convolution. Since TPC relies on
convolutions, that take advantage of parallel computations, it can be trained faster than
recurrent neural network architectures. The complexity comparison becomes even more
advantageous when compared with continuous-time models, such as neural ODEs that are
significantly slower than RNNs [132].

learning properties. The proposed TCP layer introduces time-varying convolutional
kernels as opposed to fixed kernels that are commonly employed in traditional convolutional
neural networks (CNNs). In other words, the employed kernels do not remain fixed throughout
the whole length of the input series. This particular trait of TPC does not explicitly force
weight sharing between different subsequences of the time series during convolution. Weight
sharing is, however, implicitly modeled via the learnable representations of time, that are
used to initialize the kernel weights. This is based on the assumption that observations that
are mapped to similar time embeddings will probably share similar values of weights in
the convolutional operation. The proposed approach still maintains the ability to locally
aggregate information by retaining the notion of fixed kernel size in the convolution operation.
This allows for the output of the convolution to be locally aggregated, while still incorporating
the benefits of time-varying convolutional kernels.

invariance properties. If some patterns in the time series are identical, both in
terms of the observations but also in terms of difference in time between the observations,
then the TPC layer will produce the same output for those two patterns. For example,
let xi = (xi�K , . . . , xi, . . . , xi+K) and xj = (xj�K , . . . , xj , . . . , xj+K) denote two sequences
of values and ti = (ti�K , . . . , ti, . . . , ti+K) and tj = (tj�K , . . . , tj , . . . , tj+K) denote their
respective observation times. If xi = xj holds and ∆ti = ∆tj also holds, where ∆ti =
(ti�K � ti, . . . , 0, . . . , ti+K � ti) and ∆tj = (tj�K � tj , . . . , 0, . . . , tj+K � tj), then the kernels
produced for these two sequences of values are identical and therefore, the layer produces the
same output.

Furthermore, the different functions defined in the previous subsection make the kernels
invariant to different transformations. For instance, in the above example, suppose that
∆ti 6= ∆tj , and that the k-th element of the second sequence is equal to (k + 1)2⇡ times
the corresponding element of the first sequence for k 2 {0, 1, . . . , 2K + 1}. Then, the TPC
layer equipped with the h2 function (i. e., sin(·) function) and with ✓3 = 1 and ✓4 = 0 would
produce the same output for both patterns. Such a function can capture periodic temporal
correlations.

4.2.3.5 TPCNN Framework for Irregularly Sampled Time Series

We will next discuss how the TPC layer can be integrated into neural network architectures
for dealing with various tasks that involve irregular time series, such as interpolation and
classification. Following previous work, we propose an encoder-decoder framework, so-called
Time-Parameterized Convolutional Neural Network (TPCNN) framework. In what follows,
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...

... ...

Figure 4.1: (Left) An encoder that consists of the proposed TPC layer, convolutions and pooling layer
and produces a fixed-size latent representation z. (Right) An encoder-decoder framework
that reconstructs the series from the input using TPC and linear layers.

we give more details about the two main components of the proposed framework, namely its
encoder and its decoder.

tpcnn encoder. This module is responsible for mapping the input time series into
a latent vector which captures their overall shape and their specificities. The first layer of
the encoder is an instance of the TPC layer introduced above. The TPC layer receives as
input the irregular and multivariate series X(i) 2 R

m⇥L and the corresponding vector of
observation times t(i) = {t1, t2, ..., tL}. The output of TPC layer is then successively fed to
vanilla convolution layers which can capture longer-time dependencies of the continuous latent
representation of the time series. A pooling layer follows each convolution layer, including
TPC. By down-sampling the output, such layers are expected to extract features that are good
indicators of class membership or of the shape of the time series. Finally, a fully-connected
layer is applied to the output of the last convolution layer to extract a low-dimensional
representation z(i) 2 R

d of the series.

tpcnn decoder. This part of the architecture is responsible for reconstructing the
multivariate input series from the latent vector that is produced by the encoder. The latent
vector z that was produced by the encoder is first given as input to a fully-connected layer
whose objective is to perform rescaling. The emerging vector is then passed onto another
fully-connected layer which produces a matrix X̂(i) that matches the dimension of the input
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time series. These reconstructed time series are then compared against the input series to
evaluate the autoencoder’s performance.

interpolation and classification setting. Note that some components of
the TPCNN framework depend on the considered task, i. e., interpolation or classification.
For instance, in the interpolation setting, each time a kernel of the TPC layer is applied
to some subset of the input series, the observation that lies at the center of that subset is
masked such that the model does not have direct access to it. On the other hand, such a
masking is not performed in the case of the classification setting.

The reconstruction loss of a standard autoencoder is typically measured using the mean
squared error (MSE) between the original input and the reconstructed output. For an input
time series X(i), the MSE loss is computed as:

Linterpolation =
1

|O|

X

j2O
kX(i)

:,j � X̂
(i)
:,j k

2

2

where O is a set that contains the indices of the observed values and X̂(i) denotes the
reconstructed series produced by the decoder as a function of the latent vector z.

The encoder-decoder framework of Figure 4.1 (Right) is combined with the MSE loss for
the interpolation task. Additionally, as already discussed, masking is performed on the center
element of each slice of the input series, and the rest of the observed values of the slice are
used for interpolation.

In the case of classification, the latent representation z that is generated by the encoder
and which preserves the information about the multivariate time series’ dependencies, can
be directly fed to a classifier module to make predictions. In the experiments that follow, we
employ a 2-layer multi-layer perceptron (MLP) with ReLU activation function.

Thus, in the case of a classification problem with |C| classes, the output is computed as
follows:

p = softmax(MLP (z))

Then, given a training set consisting of time series X(1), . . . ,X(N), we use the negative
log-likelihood of the correct labels as training loss:

Lclassification = �
N
X

i=1

|C|
X

j=1

y
(i)
j logp

(i)
j

where y
(i)
j is equal to 1 if X(i) belongs to the j-th class, and 0 otherwise.

The application of the TPCNN model to the above two scenarios is illustrated in Figure 4.1
(classification on the left and interpolation on the right).
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4.2.4 Experimental Evaluation

In this section, we describe the experimental setup and methodology used to evaluate the
performance of our proposed time-parameterized convolutional layer on various tasks involving
irregular time series, including interpolation and classification.

4.2.4.1 Datasets

We evaluate the performance of the proposed architecture and the baselines on the following
real-world datasets:

physionet: The PhysioNet Challenge 2012 dataset [236] comprises 8000 multivariate
time series that correspond to records from the first 48 hours of a patient’s admission to
the intensive care unit (ICU). Measurements include 37 variables which can be missing at
different steps and occur in irregular intervals. Half of the instances are labeled with 13.8% of
instances being in the positive class (in-hospital mortality). For the interpolation experiments,
we used all available instances and for the classification experiments, we used the labeled
ones, following the work of [234]. We use the same experimental protocols and preprocessing
steps as in [214].

mimic-i i i: The MIMIC-III dataset [124] consists of multivariate health records, that can
have missing values, at the Beth Israel Deaconess Medical Center between 2001 and 2012.
Based again on the preprocessing strategy of [214], we extract 53211 samples including 12
features. Given the first 48 hours of data, the task is to predict in-hospital mortality, with
8.1% of the data samples in the positive class.

human activity: The human activity dataset contains time series data from five
individuals performing various activities (such as walking, sitting, lying, standing, etc.), based
on the 3D positions of tags attached to their belts, chest and ankles (12 features in total).
Following the preprocessing procedures outlined by [214], a dataset of 6554 sequences and 50
time steps is extracted. The task for this dataset is to classify each time step in the series in
one of the different activity classes.

4.2.4.2 Experimental Setting

We next explain the experimental setting we follow for interpolation and classification,
similar to the work of [234]. In the case of interpolation, we study all instances (labeled and
unlabeled) from the PhysioNet dataset. The dataset is partitioned into an 80% training set
and a 20% test set, with a fraction (20%) of the training data serving as the validation set.
The interpolation task is to predict based on a subset of available data points values for
the unobserved points. This is executed using different percentages of observed steps, which
vary between 50% and 90% of the total available steps. For this experiment, we perform five
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different runs and report performance on the unobserved data using the mean squared error
(MSE) metric.

We also use the labeled data from the PhysioNet, MIMIC-III and Human Activity datasets
to conduct classification experiments. For the physiological data of PhysioNet and MIMIC-III,
the classification task considers the entire time series, whereas, in the context of the human
activity dataset, classification is performed for each time step in the series. We follow the
same train, validation and test splitting procedure as described in the interpolation setting.
For this experiment, we perform five different runs to provide the classification performance
on the different datasets. For PhysioNet and MIMIC-III datasets, we report performance
using the area under the ROC curve (AUC) score, due to class imbalance. For the Human
Activity dataset, we asses the model performance using the accuracy metric. The validation
set is used to select the best set of hyperparameters for our models via grid search.

4.2.4.3 Baseline Models

In this study, we conduct a thorough evaluation of several deep learning architectures as
baseline models for performance comparison. These models are specifically designed to handle
irregular time series and include variations of the Recurrent Neural Network (RNN), Attention
modules and encoder-decoder architectures.

The specific models evaluated in this study include:

(i) Basic RNN variants including: RNN-Impute, RNN-∆t, RNN-decay, GRU-D. The RNN-
Impute model employs a method to impute missing data points based on the weighted
average between the last observation and the total mean of the variable [31]. In RNN-∆t

the input to RNN is extended with a missing indicator for the variable and the time
interval ∆t since the last observed point. The RNN-decay is an RNN with hidden states
that decay exponentially over time [31, 181], whereas GRU-D employs exponential
decay on both hidden states and input [31].

(ii) Other RNN variants, such as Phased-LSTM, IP-Nets, SeFT, RNN-VAE. The Phased-
LSTM model incorporates time irregularity through the use of a time gate that
controls information from the hidden and cell states of the LSTM [182]. IP-Nets
are Interpolation-Prediction Networks (IPN), which perform interpolation prior to
prediction with an RNN on the transformed equally-spaced intervals [232]. The SeFT
model employs learnable set functions for time series and combines the representations
with an attention-based mechanism [112]. RNN-VAE is a standard variational RNN
encoder-decoder.

(iii) ODE variants, such as ODE-RNN, L-ODE-RNN, L-ODE-ODE. In ODE-RNN neural
ODEs are combined with an RNN and trained autoregressively [214]. The other variants
correspond to encoder-decoder frameworks, with the former, L-ODE-RNN, employing
an RNN encoder [34] and the latter, L-ODE-ODE, an ODE-RNN encoder [214].
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Figure 4.2: Performance for interpolation with different percentages of observed time points on
PhysioNet.

(iv) Attention-based frameworks, including mTAND. The multi-time attention network,
mTAND, interpolates missing data using a learnable attention similarity kernel between
observations, which are accessed based on trainable temporal embeddings [234].

4.2.4.4 Results

interpolation of missing data. In Figure 4.2 we present the results of the
experimental setting designed for interpolation, as described in Section 4.2.4.2. For different
percentages of observed values (i. e., ranging from 50% to 90%), we record the interpolation
performance on the reconstructed irregularly sampled multivariate time series of the PhysioNet
dataset using the MSE metric. We compare the proposed TPCNN model to different baseline
methods designed for interpolation, including RNN-VAE, L-ODE-RNN, L-ODE-ODE and
mTAND-Full (i. e., mTAND encoder-decoder framework for interpolation). We also perform
tests for measuring the statistical significance of the studied methods, which leads to two
distinct models that refer to the highest performances, with mTAND-Full being the best
performing followed by our TPCNN model, which is the second best performing. The rest
of the baselines show significantly worse performance compared to the proposed TPCNN,
including the highly accurate in the irregular setting ODE-based method L-ODE-ODE. The
performance of the proposed model ranges from ⇠ 6.0⇥ 10�3 to ⇠ 5.5⇥ 10�3 in terms of
MSE, showing a slightly improved performance as the percentage of missing observations
decreases. On the other hand, mTAND-Full ranges from ⇠ 4.9 ⇥ 10�3 to ⇠ 4.1 ⇥ 10�3 in
terms of MSE, while it also shows a slightly degrading performance for a smaller percentage
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Table 4.3: Performance for per-sequence classification on PhysioNet and MIMIC-III and per-

time-point classification on Human Activity datasets. We mention in bold the best-
performing method(s) and underline the second best-performing method(s) based on
statistical significance tests.

Model
AUC Accuracy

PhysioNet MIMIC-III Human Activity

RNN-Impute 0.764 ± 0.016 0.8249 ± 0.0010 0.859 ± 0.004

RNN-∆t 0.787 ± 0.014 0.8364 ± 0.0011 0.857 ± 0.002

RNN-Decay 0.807 ± 0.003 0.8392 ± 0.0012 0.860 ± 0.005

RNN GRU-D 0.818 ± 0.008 0.8270 ± 0.0010 0.862 ± 0.005

Phased-LSTM 0.836 ± 0.003 0.8429 ± 0.0035 0.855 ± 0.005

IP-Nets 0.819 ± 0.006 0.8390 ± 0.0011 0.869 ± 0.007

SeFT 0.795 ± 0.015 0.8485 ± 0.0022 0.815 ± 0.002

RNN-VAE 0.515 ± 0.040 0.5175 ± 0.0312 0.343 ± 0.040

ODE-RNN 0.833 ± 0.009 0.8561 ± 0.0051 0.885 ± 0.008

L-ODE-RNN 0.781 ± 0.018 0.7734 ± 0.0030 0.838 ± 0.004

L-ODE-ODE 0.829 ± 0.004 0.8559 ± 0.0041 0.870 ± 0.028

mTAND-Full 0.858 ± 0.004 0.8544 ± 0.0024 0.910 ± 0.002

TPCNN (ours) 0.833 ± 0.001 0.8380 ± 0.0011 0.897 ± 0.004

of missing data. Finally, the simple RNN-VAE model is the worst-performing among the
compared approaches.

classification. We also report in Table 4.3 the results of the different baselines, as
described in Section 4.2.4.3, and the proposed TPCNN model on classification for the labeled
instances of PhysioNet, MIMIC-III and Human Activity datasets. For the first two imbalanced
datasets, we use AUC as an evaluation metric and perform per-sequence binary classification,
whereas, for the Human Activity dataset, we report accuracy for the task of per-time-point
classification. For all datasets, we boldly mention the best-performing methods and underline
the results for the second best-performing methods. Due to several non-statistically significant
differences in performances, we have several methods being among the first or second best-
performing. For PhysioNet and Human Activity datasets, our proposed TPCNN framework
is the second-best method in terms of metrics, surpassed by the attention-based model
mTAND-Full. More specifically, in PhysioNet the proposed model performs as well as the
ODE variants (i. e., ODE-RNN, L-ODE-ODE) that are however significantly slow in terms
of computational time, as mentioned in [234]. In Human Activity classification, TPCNN
shows quite improved performance being ⇠ 1% worse than mTAND-Full. However, in the
MIMIC-III classification, the proposed TPCNN model lies among the third-best-performing
methods, being surpassed by several baselines. In this dataset, ODE-RNN, L-ODE-ODE and
mTAND-Full methods achieve the highest AUC scores, followed by the SeFT model, which
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Table 4.4: Memory and computational costs, in terms of size (number of parameters) and time per
epoch (in minutes).

Model PhysioNet MIMIC-III Human Activity

Size (parameters)

mTAND-Full 1.3M 1.4M 1.6M

TPCNN (ours) 350K 100K 300K

Time per epoch (min)

mTAND-Full 0.06 0.5 0.006

TPCNN (ours) 0.15 0.2 0.008

however performs significantly worse in classification experiments for the other two datasets.
The significant performance advantage of mTAND-Full in this task can be attributed to its
design which jointly performs interpolation and classification while directly attending only to
observed time points. On the other hand, the proposed model handles missing data inside
the convolutional kernel of the TPC layer by applying the mean aggregator of Equation 4.12.
The aggregation neighborhood however is constrained by the kernel size and remains fixed
throughout the series length. Extending the proposed architecture to incorporate size-varying
kernels could further improve the learning capabilities of the TPC layer.

computational cost. In Table 4.4 we provide a comparison in terms of memory and
computational costs between the proposed TPCNN and its main competitor mTAND-Full.
We report the size, i. e., the number of parameters, and the time per epoch in minutes for
the two methods and the three real-world datasets. Comparisons of mTAND and previous
state-of-the-art models, among which the efficient ODE-based methods, as shown in [234]
have demonstrated that the former is significantly faster (i. e., approximately 100 times)
than ODE-based methods that make use of an ODE solver. As we can observe in Table 4.4,
TPCNN is as fast as mTAND-Full in terms of time cost comparison. When it comes to the
size of the model, the proposed TPCNN uses significantly fewer parameters compared to
mTAND-Full, while maintaining competitive performance. More specifically, TPCNN uses
approximately some hundred thousand parameters, i. e., 100 � 350 thousand parameters,
while mTAND-Full size scales to millions of parameters, i. e., approximately 1.5 million. This
comparison highlights the high efficacy of convolutions in the irregular sampling setting,
which allow the training of neural networks that are significantly smaller and fast compared
to the baselines. Therefore, the proposed TPCNN can easily scale to larger datasets and
remains efficient even when trained with fewer parameters.
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Figure 4.3: Ablation study on different time functions for the parameterization of convolutional
kernels for each dataset. Each plot captures the performance (AUC or Accuracy) for each
function or combination of functions on the test set.

ablation study. We also present in Figure 4.3 an ablation study on different time
functions employed for parameterizing the weights of the convolutional kernels. The per-
formance metric (AUC or accuracy) on the test set is reported on the classification task of
the real-world datasets given a different time function or combination of time functions. For
all three datasets, we examine a subset of the functions described in Section 4.2.3.2. More
specifically, we employ h1(x), h2(x), h3(x), h5(x) (i. e., lin(·), sin(·), cos(·), exp(·)) and their
combination (e. g., {sin(·), cos(·)}, {sin(·), cos(·), lin(·), exp(·)}). We observe that different
functions may contribute more or less to the classification performance for the given dataset.
In PhysioNet, while the linear function lin(·) and exponential function exp(·) lead to the
lowest AUC on the test set, when combined with sin(·) and cos(·) they achieve a performance
improvement by ⇠ 1%. Additionally, in MIMIC-III classification cos(·) and exp(·) functions
show the highest AUC test, while sin(·) and lin(·) (i. e., linear function) lead to a reduced
performance by ⇠ 4%. At the same, the combination of functions improves performance but
does not surpass cos(·) and exp(·) when employed alone. Finally on the Human Activity
dataset, cos(·) function and the combination {sin(·), cos(·), lin(·), exp(·)}, followed by the
exp(·) function achieve the highest test accuracy. The linear lin(·) function again, in this case,
leads to the lowest accuracy score compared to the rest of the time functions. During training,
we can observe that the linear time function followed by a standard non-linear activation
(e. g., ReLU) when used for the parameterization of the convolutional kernel weights suffers
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from slow convergence and consequently worse performance. On the other hand, periodic time
functions and the exponential function seem to more efficiently describe the time dynamics
and lead to smoother training when used for parameterizing convolutions. This experiment
highlights the explainability aspects of the proposed TPCNN model since it allows us to
determine which time functions better describe the considered time series. Furthermore,
under certain conditions, the time series could be considered as a composition of such kind
of functions.

4.2.5 Conclusion

In this work, we carefully designed and experimentally evaluated a novel time-parameterized
convolutional neural network, which incorporates learnable time functions into the weights
of convolutional kernels. The proposed method generalizes well in different tasks involv-
ing irregularly sampled multivariate time series while being computationally efficient and
interpretable.



5 EXTRACTING DISCRETE EMBEDDINGS FROM

CONTINUOUS T IME SER IES V IA GRAPH LEARNING

5.1 modeling time series with graph neural networks

Graph Neural Networks (GNNs) have emerged as a transformative paradigm in the field of
machine learning, enabling the modeling of complex relationships and dependencies in data
structured as graphs. These networks are designed to operate on data represented using
nodes and edges, making them ideal for scenarios where relationships between entities are as
critical as the entities themselves. GNNs have found applications across a wide spectrum of
domains, ranging from social network analysis and recommendation systems to bioinformatics
and chemistry [88, 91, 184]. Despite the emergence of various GNN variations in recent
years, they all fundamentally adhere to a shared core concept [14, 54, 66, 103, 130, 249,
294]. Specifically, GNNs are grounded in a message passing mechanism, wherein each node
refines its feature vector by aggregating information from its neighboring nodes, as outlined
by [94]. Following p iterations of this message passing process, each node possesses a feature
vector that captures the structural characteristics within its p-hop neighborhood. These
feature vectors can serve as valuable resources for tasks on individual nodes. When confronted
with tasks that pertain to the entire graph, GNNs employ a permutation-invariant readout
function, such as summation over the feature vectors of all nodes within the graph, to compute
a feature vector representing the entire graph.

In the next paragraphs, we provide some key definitions and notations on GNNs and present
relevant ideas on how to perform graph learning on raw time series to extract underlying
networks. We also present an overview of spatio-temporal modeling approaches for different
time series tasks and their basic components in Section 5.1.4.

5.1.1 Motivation

The plethora of physical and virtual sensors has enabled the vast abundance of time series
data in various scientific and engineering fields [83, 263]. Hence, techniques for time series
analysis have become a crucial stage in modeling historical data to enable the extraction of
insights into both past occurrences and future trends in various tasks, such as forecasting,
classification, time series imputation and anomaly detection [16, 86]. Time series data may
incorporate complex interactions across different variables, i. e., inter-variable relationships,
as well as interactions across different time steps, i. e., inter-temporal relationships. Often,
time series data arise in a spatio-temporal structure, with several variables within the series
containing information about different spatial locations, thus data involve both temporal and
spatial information [256]. Recently, graph learning techniques for mapping such relationships
between time series variables and GNNs for feature extraction on the relevant graphs, have

65
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been employed for several tasks involving data without necessarily an apriori underlying
graph structure [122, 310].

5.1.2 Preliminaries: Graph-Structured Data and Graph Neural Networks

In this section, we provide some formal definitions for graph-structured data as well as some
useful notation for graph neural networks.

Definition 9 (Static Graph with Node Attributes). A graph denoted as G = (V, E ,A,X),
with V = {v1, v2, . . . , vn} being the set of nodes, E = {(vi, vj) 2 V ⇥ V | Aij 6= 0} the set
of edges (notation extends also for directed or weighted graphs), A 2 R

n⇥n the adjacency
matrix representing the network structure, and X 2 R

n⇥d the nodes’ feature matrix. Then,
Aij denotes the element corresponding to the i-th row and j-th column of matrix A. Let also
xv 2 R

d the node features of the i-th node, i. e., v, that is contained in the corresponding row
of matrix X.

We next provide a more general definition involving a sequence of graphs, referring to
spatial-temporal graphs, for the cases where the network structure dynamically evolves rather
than being static.

Definition 10 (Discrete-Time Dynamic Graph). A discrete-time dynamic graph can be
defined as the collection of graphs for T time steps, i. e., G = {G1,G2, . . . ,GT }, where
Gt = (V, E t,At,Xt) is the graph with node attributes at t, At the respective adjacency matrix,
and Xt the nodes’ feature matrix.

Graph Neural Networks (GNNs) are neural network models specifically created to process
data that is structured as a graph. They enable learning complex relationships and patterns
within graph data by aggregating information from neighboring nodes and edges. GNNs have
garnered considerable interest across several domains owing to their capacity to effectively
handle a wide range of applications that include structured data represented as graphs.
Mathematically, GNNs may be described as a mapping function that transforms graph-
structured input, consisting of nodes, edges, and features, into an output representation.
These representations can be further processed to classify nodes or the whole graph and
predict links for different data instances. Following, we define spatial GNNs, which contrary
to spectral GNNs that are inspired by spectral graph theory, are more efficient in modeling
local interactions and are computationally efficient [271].

Definition 11 (Graph Neural Networks). Let G = (A,X) denote an attributed graph and
xv 2 R

d the vector of features for node v. Graph neural networks (GNNs) perform operations
on the graph to learn and propagate information. The two primary operations include (1)
aggregation; where information is aggregated from nodes in each node’s neighborhood and
transformed, e. g., for node v, this operation involves aggregating information from its neighbors
u based on the edge structure and (2) updating; where the aggregated information is used
to update the node’s feature representation (e. g., using neural network layers, non-linear
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activations, and other operations). For p 2 {1, . . . , P} aggregation steps, the p-th GNN layer
is defined by:

m(p)
v = AGGREGATE (p)

⇣n

h(p�1)
u : u 2 N (v)

o⌘

h(p)
v = COMBINE (p)

⇣

h(p�1)
v ,m(p)

v

⌘

where m
(p)
v , h

(p)
v denote the aggregated neighborhood (i. e., N (v)) information and the node

embedding for v at the p-th layer respectively. The input to the above GNN is xv and the

output is extracted from the last GNN layer, i. e., h
(P )
v .

5.1.3 Graph Construction for Time Series Data

In the absence of an underlying graph structure in a given time series dataset, several
approaches can be employed to infer a topology that can be subsequently processed by
machine learning methods that extract knowledge from graphs. We next provide some key
methods for graph construction from input data.

heuristic-based approaches. A straightforward way to extract a graph structure
from the available data involves the use of heuristics that extract correlations among variables
based on prior knowledge or their statistical properties. A few relevant heuristic-based graph
extraction examples [122], are provided below:

• Based on priors about correlation and proximity: If some information on whether
two time series are correlated is provided, a binary adjacency matrix A (directed or
undirected) can be constructed, containing an edge between vi, vj that corresponds
to the connectivity of series i, j. Relevant examples, in this case, refer to spatial data
information about roads or other types of networks [93, 259]. When time series data can
be described by geographical locations a simple way to define their adjacency graph A

is to consider their proximity and more specifically the shortest distance, dvivj , between
two adjacent nodes (vi, vj), such that Aij = 1/dvivj . Alternative measures, such as
kernel functions can also be used to define proximity [28, 283].

• Based on similarity measures: Correlation graphs can also be constructed based
on similarity measures between pairs of correlated time series. Such measures might
include the cosine similarity measure [77], Pearson Correlation Coefficient [11], Dynamic
Time Warping (DTW) [153] and others. For instance, the cosine similarity measure
between nodes vi, vj can be computed as follows:

Aij =
x
|

vixvj

kxvikkxvjk

where k·k the Euclidean norm. The dependencies among pairs of time series or nodes
can also be expressed in terms of binary graphs based on the Granger causality [3], as
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Figure 5.1: Time series graph structure learning framework.

well as by employing other dependency functions such as the transfer entropy [218]
and the directed phase lag index [185].

The above heuristics are in their primary form suitable for creating correlation graphs among
time series, such that each node corresponds to features extracted from an individual time
series and the edges among the nodes capture the correlation or inter-variable relationship
between pairs of series. Fewer works focus on creating graphs that capture inter-temporal
dependencies. In terms of heuristic approaches, the visibility graph [146] and recurrence
network [78] are some prominent examples, where edges connect time steps rather than
variables in a univariate series.

deep learning approaches. Deep learning methods for graph construction from
time series data focus on extracting a parameterized graph structure, preferably in a differen-
tiable way, and jointly optimize it with the modules employed for performing downstream
tasks (e. g., classification, forecasting). Such learning-based approaches give the opportunity
to capture more complex, non-linear dependencies among time series data compared to
heuristic ones. At the same time, the underlying graphs are more informative of the relevant
task.

Graph learning modules aim to produce an adjacency matrix A, where Aij denotes the
edge weight between nodes vi, vj . In many studies, there is a need for A to be sparse, such
that few relations are considered important to be captured in the parameterized graph. A
straightforward approach is to firstly represent each node vi by a fixed-size vector hvi from
a given time series i and calculate the pairwise similarity between any pair (vi, vj), based
on different measures (e. g., dot product). These fixed-size representations can be obtained
directly from the whole training time series [227] or dynamically for temporal windows of
the series [135]. The former method leads to a global matrix for all time series making the
number of parameters increase with the length of the input series . At the same time, the
latter method is more flexible but computationally expensive in terms of handling several
adjacency matrices for the different windowss [310]. A simpler approach computes the fixed-
size representations hvi as node embeddings [68, 272]. The adjacency matrix is frequently
obtained by considering the top-K scores per node and adding relevant edges [68, 272].
However, this method is not differentiable, which might significantly challenge end-to-end
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Figure 5.2: General time series joint graph structure learning and prediction framework for down-
stream tasks, including a taxonomy of the basic modules.

optimization of graph structure learning along with the other deep learning modules in the
architecture. Another approach involves mapping the pairwise scores into the range [0, 1] by
applying an activation function e. g., sigmoid or softmax [135, 227]. Then a differentiable
sampling-based approach can be applied so as to extract the adjacency matrix based on the
edge probabilities. Gumbel softmax parameterization trick constitutes a sampling method
widely used in several studies for this purpose [118, 172]. Similarly, attention-based methods
can be employed for extracting a weighted adjacency matrix, based on the attention similarity
score between the series [25, 220].

In the above methods, jointly learning a correlation graph, i. e., among variables in the
multivariate input (m in number), introduces a computational complexity of O(m2), thus
the benefit of such an approach should be considered along with the potential performance
improvement in the underlying task.

5.1.4 Spatio-Temporal Modeling for the Time Series Inferred Graph Structure

We next provide a general literature review of the basic deep learning approaches for graph-
based feature learning performed jointly with neural network architectures for different
downstream tasks, e. g., forecasting, classification and time series imputation and their
taxonomy based on relevant surveys [120, 122]. Figure 5.1 visualizes the pipeline to incorporate
graph-based extracted features to a task-specific module using a correlation graph (i. e., each
node represents a single correlated time series of the data collection). Figure 5.2 shows
the general framework along with the key modules (i. e., spatial and temporal) for jointly
performing graph structure learning, graph-based feature extraction and temporal feature
extraction for the downstream tasks involving time series [120, 122].

Spatial information from the parameterized graphs is encoded by exploiting the node-
to-node relationships, while temporal information can be captured by modeling the node
features’ variation over time. Inter-variable and inter-temporal relations are depicted by
spatial and temporal network parts respectively, as shown in Figure 5.2.
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spatial network. Dependencies between time series in a correlation graph can be
captured using the main GNN architectures on static graphs, i. e., spectral, spatial and
hybrid, which combine spectral and spatial modules [120, 122]. Spectral GNNs employ the
graph shift operator (e. g., Laplacian) to encode frequency-based node interactions [219, 235].
Spatial GNNs, on the other hand, capitalize on each node’s graph neighborhood to extract
representations applying relevant functions. Mathematical details for spatial GNNs were
provided in Definition 11.

temporal network. Temporal dependencies across time series data can be extracted
by the temporal part of the architecture that can be combined with the spatial network
that operates on the structure information. Methods can be classified based on whether
they extract information on the time or frequency domain. Typical time-domain approaches
include recurrent [156, 253, 258, 300], convolutional [179, 273, 283] and attention-based [302]
architectures as well as their combination [121, 174], which are the most prominent for
operating on raw sequential or temporal data.

The final model architecture for spatial-temporal data modeling is formed using a com-
bination of spatial and temporal modules. More specifically, spatial learning networks and
temporal learning networks are commonly arranged in a stacked manner, either sequentially
or in parallel, as outlined by the authors in relevant surveys [120, 122]. In the first case, each
distinct network might follow the other (i. e., temporal module before or after the spatial),
in discrete [283, 300] or continuous architectures [87]. In the second case, modules can be
repeatedly coupled in a discrete [156] or continuous way [123].

Time Series Forecasting. For capturing dependencies among variables for time series
forecasting, various architectural frameworks have been explored. Spectral GNN-based
approaches employ ChebConv [66] and novel modifications for spatial-temporal pattern
capturing, e. g., STGCN [283]. Spatial GNN-based approaches use Message Passing Neural
Network (MPNN) or graph diffusion to extract local relationships. Relevant models include
DCRNN [156] and ST-MetaNet [190]. Hybrid approaches combine spectral and spatial
GNNs. Auto-STGNN [252] uses neural architecture search for performance optimization,
while SLCNN [295] combines global and local convolutions for extracting multi-scale spatial
relations.

For capturing inter-temporal dependencies in time series, some methods, e. g., DCRNN [156],
ST-MetaNet [190] and MRA-BGCN [37], utilize recurrent models such as GRUs to capture
inter-temporal relations in the time domain. Convolutional Neural Networks (CNNs) also
offer efficient ways to model inter-temporal dependencies. For instance, several works use
convolutional networks with various modifications to extract temporal patterns [73, 283, 295].
Attention mechanisms, inspired by the Transformer model, are also gaining popularity for
modeling temporal correlations. Prominent examples of such models include GMAN [302],
ST-GRAT [192] and STAR [285], which employ self-attention layers to embed historical
information and capture temporal dependencies. Additionally, hybrid approaches integrate
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multiple techniques. For instance, some methods combine temporal attention with convolu-
tion [99, 100], while GRUs have also been combined with Transformers [259].

Finally, in terms of mixing modules for capturing spatial-temporal dependencies within
time series data, architectures can be discrete and continuous, while the spatial and temporal
modules can be stacked sequentially or in parallel [120, 122]. The most prominent discrete
architecture, i. e., ST-UNet [284] model, incorporates graph diffusion or attention modules
into RNN cells to extract both spatial and temporal dependencies. The method proposed
in [37] forms another relevant example, by combining a multi-range attention mechanism
with a graph convolutional RNN for leveraging multiple-range spatial-temporal information.
Similarly, the STGNN* method integrates a position-wise attention mechanism in the GNN
module for capturing spatial relations and combines GRU with transformer layers to extract
multi-range temporal information [259]. Additionally, the presented model in [8] merges
GRUs with a factorized variant of Graph Convolutional Network (GCN) on top of a graph
structure learning module, while similarly, the authors in [287] propose a slightly modified
graph convolutional recurrent network.

Time Series Classification. In univariate time series classification, the goal is to differ-
entiate patterns between input series examples using class labels. Two main graph-based
strategies have been employed for classification in the literature, i. e., series-as-graph and
series-as-node. In the series-as-graph method, each univariate time series is transformed into
a graph structure that captures distinct patterns. These graphs represent each series, with
subsequences serving as nodes connected by edges that signify the evolution dependencies
between them. A GNN then classifies these graphs, by modeling inter-temporal relations in
order to distinguish patterns among different series classes. This approach was first introduced
by Time2Graph [42] and later improved upon with Time2Graph+ [41], which incorporates
shapelet graphs and GNNs for classification. On the other hand, in the series-as-node ap-
proach, each series sample refers to a separate node and edges between nodes are estimated
based on pairwise distance measures. Thus, the time series classification task is essentially
reframed as a node classification task. SimTSC [292] was the original study following this
approach by connecting series nodes using DTW distances and applying GNNs to identify
similar patterns among time series samples.

For multivariate time series classification, the idea is to model the inter-variable relation-
ships in a relevant graph structure. Spatio-temporal architectures, as previously presented
for forecasting, can then be employed and the final output layer is replaced so as to produce
the class probabilities [80, 296].

Time Series Imputation. GNN-based time series imputation can be classified into in-
sample and out-of-sample imputation. In-sample imputation is focused on filling missing
values within provided time series data, offering both deterministic, single-estimate, and
probabilistic, uncertainty-aware, imputations. Notable GNN-based methods for in-sample
imputation include GACN [279], which combines Graph Attention Networks (GAT) and
temporal convolutional layers for capturing both spatial and temporal dependencies in de-
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scriptive embeddings that are then fed into reverse variants of such modules for imputation.
Similarly, the SPIN method [175] utilizes sparse joint spatio-temporal and hierarchical at-
tention modules to extract representations and also conditions the series’ reconstruction on
available observations. Additionally, GRIN [48] method leverages an RNN, which gates are
implemented by a MPNN that performs imputation by aggregating information from neigh-
boring nodes. Finally, DGCRIN [139] introduces a novel graph generator to model dynamic
spatial correlations based on recurrent generated imputation data and historical information.
Among probabilistic in-sample methods, a promising architecture, i. e., PriSTI [166], treats
imputation by employing a denoising diffusion probabilistic generation model.

On the other hand, out-of-sample imputation is preferred when the purpose of the model is
to predict missing values in different, but possibly related, time series. Recent out-of-sample
imputation methods, e. g., IGNNK [269] and SATCN [270], focus on recovering signals for
unobserved time series by leveraging subgraph sampling, and the integration of spatial GNNs
networks with temporal convolutional networks.

Following the recent advances in time series joint graph structure learning and forecasting, in
the study we present in the next section (Section 5.2), we aim to enhance the representational
power of the underlying learnable graphs as well as provide a scalable but efficient end-to-end
architecture for graph-based forecasting. Our proposed method aims to highlight a more
natural mapping of time series to evolution graphs by constructing and modeling temporal
dynamic graphs from input time series.

5.2 timegnn: temporal dynamic graph learning for time series fore-
casting

Time series forecasting lies at the core of important real-world applications in many fields of
science and engineering. The abundance of large time series datasets that consist of complex
patterns and long-term dependencies has led to the development of various neural network
architectures. Graph neural network approaches, which jointly learn a graph structure based
on the correlation of raw values of multivariate time series while forecasting, have recently seen
great success. However, such solutions are often costly to train and difficult to scale. In this
study, we propose TimeGNN, a method that learns dynamic temporal graph representations
that can capture the evolution of inter-series patterns along with the correlations of multiple
series [276]. TimeGNN achieves inference times 4 to 80 times faster than other state-of-the-art
graph-based methods while achieving comparable forecasting performance.

5.2.1 Introduction

Accurately predicting the future real values of series based on available historical records
forms a coveted task over time in various scientific and industrial fields. There is a wide
variety of methods employed for time series forecasting, ranging from statistical [18] to
recent deep learning approaches [159]. However, there are several major challenges present.
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Real-world time series data are often subject to noisy and irregular observations, missing
values, repeated patterns of variable periodicities and very long-term dependencies.

While the time series are supposed to represent continuous phenomena, the data is usually
collected using sensors. Thus, observations are determined by a sampling rate with potential
information loss. Several continuous analogues of architectures, mainly based on RNNs and
CNNs, that implicitly handle the time information have been proposed to address irregularly
sampled missing data [211, 214]. The variable periodicities and long-term dependencies
present in the data make models prone to shape and temporal distortions, overfitting and
poor local minima while training with standard loss functions (e. g., MSE). Variants of DTW

and MSE have been proposed to mitigate these phenomena and can increase the forecasting
quality of deep neural networks [142, 150].

A novel perspective for boosting the robustness of neural networks for complex time series
is to extract representative embeddings for patterns after transforming them to another
representation domain, such as the spectral one. Spectral approaches have seen much use
in the text domain. Graph-based text mining (i. e., Graph-of-Words) [213] can be used for
capturing the relationships between the terms and building document-level representations.

It is natural, then, that such approaches might be suitable for more general sequence
modeling. Capitalizing on the recent success of graph neural networks (GNNs) on graph-
structured data, a new family of algorithms jointly learns a correlation graph between
interrelated time series while simultaneously performing forecasting [25, 227, 272]. The nodes
in the learnable graph structure represent each individual time series and the links between
them express their temporal similarities. However, since such methods rely on series-to-series
correlations, they do not explicitly represent the inter-series temporal dynamics evolution.

Some preliminary studies have proposed simple computational methods for mapping time
series to temporal graphs where each node corresponds to a time step, such as the visibility
graph [146] and the recurrence network [78]. In this work, we propose a novel neural network,
TimeGNN, that extends these previous approaches by jointly learning dynamic temporal
graphs for time series forecasting on raw data. TimeGNN (i) extracts temporal embeddings
from sliding windows of the input series using dilated convolutions of different receptive
sizes, (ii) constructs a learnable graph structure, which is forward and directed, based on
the similarity of the embedding vectors in each window in a differentiable way, (iii) applies
standard GNN architectures to learn embeddings for each node and produces forecasts based
on the representation vector of the last time step.

We evaluate the proposed architecture on various real-world datasets and compare it
against several deep learning benchmarks, including graph-based approaches. Our results
indicate that TimeGNN is significantly less costly in both inference and training while
achieving comparable forecasting performance.

5.2.2 Related Work

time series forecasting models. Time series forecasting has been a long-studied
challenge in several application domains. As mentioned already, the most recent advances in
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deep sequential time series modeling with application to forecasting, are built on RNNs, CNNs

and Attention-based modules. Bridging CNNs and LSTMs to capture both short-term local
dependency patterns among variables and long-term patterns, the Long- and Short-term
Time-series network (LSTNet) [147] has been proposed. For univariate point forecasting, the
recently proposed N-BEATS model [188] introduces a deep neural architecture based on a
deep stack of fully-connected layers with basis expansion. Attention-based approaches have
also been employed for time-series forecasting, including Transformer [248] and Informer
[307]. Finally, for efficient long-term modeling, the most recent Autoformer architecture
[268] introduces an auto-correlation mechanism in place of self-attention, which extracts and
aggregates similar sub-series based on the series periodicity.

graph neural networks. Over the past few years, graph neural networks (GNNs)
have been applied with great success to machine learning problems on graphs in various fields
[95, 130]. The field of GNNs has been largely dominated by the so-called message passing
neural networks (MPNNs) [94], where each node updates its feature vector by aggregating
the feature vectors of its neighbors. In the case of time series data on arbitrary known graphs,
e. g., in traffic forecasting, several architectures that combine sequential models with GNNs
have been proposed [156, 226, 283, 300].

joint graph structure learning and forecasting. However, since spatial-
temporal forecasting requires an apriori topology which does not apply in the case of most
real-world time series datasets, graph structure learning has arisen as a viable solution.
Recent models perform joint graph learning and forecasting for multivariate time series data
using GNNs, intending to capture temporal patterns and exploit the interdependency among
time series while predicting the series’ future values. The most dominant algorithms include
NRI [135], MTGNN [272] and GTS [227], in which the graph nodes represent the individual
time series and their edges represent their temporal evolution. MTGNN obtains the graph
adjacency from the as a degree-k structure from the pairwise scores of embeddings of each
series in the multivariate collection, which might pose challenges to end-to-end learning.
On the other hand, NRI and GTS employ the Gumbel softmax trick [118] to sample from
the edge probabilities a discrete adjacency matrix in a differentiable way. Both models
compute fixed-size representations of each node based on the time series, with the former
dynamically producing the representations per individual window and the latter extracting
global representations from the whole training series. MTGNN combines temporal convolution
with graph convolution layers, and GTS uses a Diffusion Convolutional Recurrent Neural
Network (DCRNN) [156], where the hidden representations of nodes are diffused using graph
convolutions at each step.
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Figure 5.3: The proposed TimeGNN framework for graph learning from raw time series and forecasting
based on embeddings learned on the parameterized graph structures.

5.2.3 Method

Let X 2 R
m⇥T be a multivariate time series that consists of m channels and has a length

equal to T . Then, X:,t 2 R
m represents the observed values at time step t. Let also G denote

the set of temporal dynamic graph structures that we want to infer.
Given the observed values of ⌧ previous time steps of the time series, i. e., X:,t�⌧ , . . . ,X:,t�1,

the goal is to forecast the next h time steps (e. g., h = 1 for 1-step ahead), i. e., X̂:,t, X̂:,t+1, . . . ,

X̂:,t+h�1. These values can be obtained by the forecasting model F with parameters Φ and
the graphs G as follows:

X̂:,t, X̂:,t+1, . . . , X̂:,t+h�1 = F(X:,t�⌧ , . . . ,X:,t�1;G;Φ) (5.1)

5.2.3.1 Time Series Feature Extraction

Unlike previous methods which extract one feature vector per variable in the multivariate
input, our method extracts one feature vector per time step in each window k of length
⌧ . More specifically, temporal sub-patterns are learned using stacked dilated convolutions,
similar to the main blocks of the inception architecture [162].

Given the sliding windows S = {X:,t�⌧+k�K ,X:,t�⌧+1+k�K , . . . ,X:,t+k�K�1}
K
k=1, we per-

form the following convolutional operations to extract three feature maps fk0 , fk1 , fk2 , per
window Sk. Let fki 2 R

⌧⇥d for hidden dimension d of the convolutional kernels, such that:

fk0 = Sk ⇤C1,1
0 + b01

fk1 = (Sk ⇤C1,1
1 + b11) ⇤C3,3

2 + b23

fk2 = (Sk ⇤C1,1
2 + b21) ⇤C5,5

2 + b25

(5.2)
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where ⇤ the convolutional operator, C
1,1
0 , C

1,1
1 , C

1,1
2 convolutional kernels of size 1 and

dilation rate 1, C3,3
2 a convolutional kernel of size 3 and dilation rate 3, C5,5

2 a convolutional
kernel of size 5 and dilation rate 5, and b01,b11,b21,b23,b25 the corresponding bias terms.

The final representations per window k are obtained using a fully connected layer on the
concatenated features fk0 , f

k
1 , f

k
2 , i. e., zk = FC(fk0 kfk1 kfk2 ), such that zk 2 R

⌧⇥d. In the next
sections, we refer to each time step of the hidden representation of the feature extraction
module in each window k as zki , 8i 2 {1, . . . ⌧}.

5.2.3.2 Graph Structure Learning

The set G = {G1,G2, . . . ,GK} describes the collection of graph structures that are parame-
terized for all individual sliding windows of length ⌧ of the series, where K defines the total
number of windows. The goal of the graph learning module is to learn each adjacency matrix
Ak 2 {0, 1}⌧⇥⌧ for a temporal window of observations Sk. Following the works of [135, 227],
we use the Gumbel softmax trick to sample a discrete adjacency matrix as described below.

Let Ak be a random variable of the matrix Bernoulli distribution parameterized by
θ
k 2 [0, 1]⌧⇥⌧ , so that Ak

ij ⇠ Ber(✓kij) is independent for pairs (i, j). By applying the Gumbel
reparameterization trick [118] for enabling differentiability in sampling, we can obtain the
following:

Ak
ij = �

⇣

�

log(✓kij/(1� ✓kij)) + (g1
ij � g2

ij)
�

/s
⌘

,

g1
ij ,g

2
ij ⇠ Gumbel(0, 1)8i, j

(5.3)

where g1
ij ,g

2
ij vectors of i.i.d samples drawn from Gumbel distribution, � the sigmoid activation

and s a parameter that controls the smoothness of samples, so that the distribution converges
to categorical values when s �! 0. The link predictor is applied on each pair of extracted
features (zki , z

k
j ) of window k and maps their similarity to a ✓kij 2 [0, 1] by applying fully

connected layers and a sigmoid activation:

✓kij = �
⇣

FC
�

FC(zki kzkj )
�

⌘

(5.4)

In order to obtain directed and forward (i. e., no look-back in previous time steps in the
history) graph structures G we only learn the upper triangular part of the adjacency matrices.

5.2.3.3 Graph Neural Network for Forecasting

Once the collection G of learnable graph structures per sliding window k are sampled, standard
GNN architectures can be applied for capturing the node-to-node relations, i. e., the temporal
graph dynamics. GraphSAGE [102] was chosen as the basic building GNN block of the
node embedding learning architecture. GraphSAGE can effectively generalize across different
graphs with the same attributes, which is fitting for this task. GraphSAGE is an inductive
framework that exploits node feature information and generates node embeddings (i. e., hv

for node v) via a learnable function, by sampling and aggregating features from a node’s
local neighborhood (i. e., N (v)).
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Let (Vk, Ek) correspond to the set of nodes and edges of the learnable graph structure
for each Gk. The node embedding update process for each p 2 {1, . . . , P} aggregation steps,
employs the mean-based aggregator, namely convolutional, by calculating the element-wise
mean of the vectors in {h

(p�1)
v , 8v 2 N (v)}, such that:

h(p)
v  � �

�

W · MEAN({h(p�1)
v } [ {h(p�1)

u 8u 2 N (v)})
�

(5.5)

where W trainable weights. The final normalized (i. e., h̃
(p)
u ) representation of the last

node (i. e., time step) in each forward and directed graph denoted as zvT = h̃
(P )
vT is passed

to the output module. The output module consists of two fully connected layers which
reduce the vector into the final output dimension, so as to correspond to the forecasts
X̂:,t, X̂:,t+1, . . . , X̂:,t+h�1. Figure 5.3 demonstrates the several components of the proposed
TimeGNN architecture, including feature extraction, graph learning, GNN and output
modules for forecasting.

5.2.3.4 Training and Inference

To train the parameters of Equation 5.1 for the time series point forecasting task, we use the
mean absolute loss. Let X̂(i), i 2 {1, ...,K} denote the predicted vector values for K samples
then the MAE loss is defined as:

L =
1

K

K
X

i=1

kX(i) � X̂(i)k

The optimized weights for the feature extraction, graph structure learning and GNN and
output modules are selected based on the minimum loss during training, which is evaluated
as described in the experimental setup (Section 5.2.4.3).

5.2.4 Experimental Evaluation

We next describe the experimental setup, including the datasets and baselines we use for
comparisons. We also demonstrate and analyze the results obtained by employing the proposed
TimeGNN architecture and the baseline models.

5.2.4.1 Datasets

This work was evaluated on the following multivariate time series datasets:

exchange-rate: This dataset consists of the daily exchange rates of 8 countries from
1990 to 2016, following the preprocessing of [147].

weather: This data collection contains hourly observations of 12 climatological features
over a period of four years 1, preprocessed as in [307].

1 https://www.ncei.noaa.gov/data/local-climatological-data/
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Figure 5.4: Computation costs of TimeGNN, TimeMTGNN and baseline models. a) the inference
and epoch training time per epoch between datasets. b) the inference and epoch times
with varying window sizes on the weather dataset

electricity-load: This dataset is based on the UCI Electricity Consuming Load
dataset 2 that records the electricity consumption of 370 Portuguese clients from 2011 to
2014. As in [307], the recordings are binned into hourly intervals over the period of 2012 to
2014 and clients reduced to 321 due to missing information.

solar-energy: The dataset contains the solar power production records in 2006,
sampled every 10 minutes from 137 PV plants in Alabama State 3.

traffic: This is a collection of 48 months, between 2015 and 2016, of hourly data from
the California Department of Transportation 4. The data describes the road occupancy rates
(between 0 and 1) measured by different sensors on San Francisco Bay area freeways.

5.2.4.2 Baselines

We consider five baseline models for comparison with our TimeGNN proposed architecture.We
chose two graph-based methods, MTGNN [272] and GTS [227], and three non graph-based
methods, LSTNet [147], LSTM [110], and TCN [9]. Also, we evaluate the performance of
TimeMTGNN, a variant of MTGNN that includes our proposed graph learning module.
LSTM and TCN follow the size of the hidden dimension and number of layers of TimeGNN.
Those were fixed to three layers with hidden dimensions of 32, 64 for the Exchange-Rate and
Weather datasets and 128 for Electricity, Solar-Energy and Traffic. In the case of MTGNN,
GTS, and LSTNet, parameters were kept as close as possible to the ones mentioned in their
experimental setups.

2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3 http://www.nrel.gov/grid/solar-power-data.html
4 http://pems.dot.ca.gov
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5.2.4.3 Experimental Setup

Each model is trained for two runs for 50 epochs and the average mean squared error (MSE)
and mean absolute error (MAE) score on the test set are recorded. The model chosen for
evaluation is the one that performs the best on the validation set during training. The same
dataloader is used for all models where the train, validation, and test splits are 0.7, 0.1, and
0.2 respectively. The data is split first and each split is scaled using the standard scalar. The
dataloader uses windows of length 96 and batch size 16. The forecasting horizons tested are
1, 3, 6, and 9 time steps into the future, where the exact value of the time step is dependent
on the dataset (e. g., 3 time steps would correspond to 3 hours into the future for the weather
dataset and 3 days into the future for the Exchange dataset). In this study, we use single-step
forecasting for ease of comparison with other baseline methods. For training, we use the Adam
optimizer with a learning rate of 0.001. Experiments for the Weather and Exchange datasets
were conducted on an NVIDIA T4 and Electricity-Load, Solar, and Traffic on an NVIDIA
A40 on the Alvis cluster at the National Academic Infrastructure for Supercomputing in
Sweden (NAISS).

5.2.4.4 Results

scalability: We compare the inference and training times of the graph-based models
TimeGNN, MTGNN, GTS in Figure 5.4. These figures also include recordings from the
ablation study of the TimeMTGNN variant, which is described in the relevant paragraph
below. Figure 5.4(a) shows the computational costs on each dataset. Among the baseline
models, GTS is the most costly in both inference and training time due to the use of the entire
training dataset for graph construction. In contrast, MTGNN learns static node features and
is subsequently more efficient.

In inference time, as the number of variables increases there is a noticeable increase in
inference time for MTGNN and GTS since their graph sizes also increase. TimeGNN’s graph
does not increase in size with the number of variables and consequently, the inference time
scales well across datasets. The training epoch times follow the observations in inference
time for the baseline models. GTS remains the most costly followed by MTGNN and finally
TimeGNN.

Since the size of the graphs used by TimeGNN is based on window size, the cost of
increasing the window size on the weather dataset is shown in Figure 5.4(b). As the window
size increases, so does the cost of inference and training for all models. As the GTS graph
learning module does not interact with the window size, the dramatic increase in cost can
primarily be attributed to its encoder-decoder forecasting module. Similarly, MTGNN’s
graph learning module does not rely on the window size. MTGNN’s inference times do not
increase as dramatically as GTS’s, showing the robustness of its forecasting modules. As
the window size increases, TimeGNN’s inference and training cost growth is slower than
the other methods and remains the fastest of the GNN methods examined. The time-based
graph learning module does not become overly cumbersome as window sizes increase.
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Table 5.1: Forecasting performance for Exchange-Rate, Weather and Electricity-Load multivariate
datasets and baselines for different horizons h - best in bold, second best underlined.

Exchange-Rate

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h
=

1 mse 0.328 ± 0.007 0.094 ± 0.118 0.004 ± 0.000 0.005 ± 0.001 0.006 ± 0.002 0.129 ± 0.012 0.004 ± 0.001

mae 0.475 ± 0.033 0.191 ± 0.163 0.033 ± 0.000 0.041 ± 0.004 0.048 ± 0.011 0.294 ± 0.029 0.034 ± 0.005

h
=

3 mse 0.611 ± 0.001 0.063 ± 0.035 0.013 ± 0.003 0.009 ± 0.000 0.012 ± 0.000 0.368 ± 0.059 0.008 ± 0.001

mae 0.631 ± 0.031 0.190 ± 0.041 0.078 ± 0.012 0.063 ± 0.000 0.078 ± 0.000 0.501 ± 0.045 0.061 ± 0.003

h
=

6 mse 0.877 ± 0.105 0.189 ± 0.221 0.033 ± 0.005 0.014 ± 0.001 0.024 ± 0.001 0.354 ± 0.031 0.019 ± 0.004

mae 0.775 ± 0.032 0.290 ± 0.214 0.139 ± 0.008 0.081 ± 0.005 0.111 ± 0.000 0.453 ± 0.052 0.099 ± 0.016

h
=

9 mse 0.823 ± 0.118 0.123 ± 0.030 0.030 ± 0.006 0.020 ± 0.001 0.035 ± 0.003 0.453 ± 0.149 0.034 ± 0.002

mae 0.743 ± 0.080 0.277 ± 0.037 0.124 ± 0.011 0.096 ± 0.001 0.140 ± 0.008 0.543 ± 0.084 0.139 ± 0.010

Weather

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h
=

1 mse 0.162 ± 0.001 0.176 ± 0.006 0.193 ± 0.001 0.209 ± 0.003 0.232 ± 0.008 0.178 ± 0.001 0.182 ± 0.003

mae 0.202 ± 0.003 0.220 ± 0.011 0.236 ± 0.002 0.213 ± 0.004 0.230 ± 0.002 0.185 ± 0.000 0.186 ± 0.000

h
=

3 mse 0.221 ± 0.000 0.232 ± 0.003 0.233 ± 0.001 0.320 ± 0.005 0.263 ± 0.003 0.234 ± 0.001 0.234 ± 0.002

mae 0.265 ± 0.000 0.275 ± 0.000 0.285 ± 0.000 0.320 ± 0.001 0.273 ± 0.000 0.249 ± 0.001 0.251 ± 0.001

h
=

6 mse 0.268 ± 0.004 0.274 ± 0.002 0.266 ± 0.001 0.374 ± 0.003 0.301 ± 0.003 0.287 ± 0.002 0.282 ± 0.007

mae 0.320 ± 0.004 0.323 ± 0.001 0.321 ± 0.000 0.388 ± 0.002 0.311 ± 0.002 0.297 ± 0.001 0.300 ± 0.003

h
=

9 mse 0.292 ± 0.007 0.307 ± 0.009 0.288 ± 0.000 0.399 ± 0.002 0.329 ± 0.001 0.316 ± 0.001 0.311 ± 0.002

mae 0.342 ± 0.003 0.350 ± 0.005 0.345 ± 0.003 0.420 ± 0.004 0.339 ± 0.004 0.331 ± 0.001 0.331 ± 0.001

Electricity-Load

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h
=

1 mse 0.226 ± 0.002 0.267 ± 0.001 0.064 ± 0.001 0.135 ± 0.002 0.046 ± 0.000 0.211 ± 0.003 0.047 ± 0.000

mae 0.323 ± 0.000 0.375 ± 0.002 0.167 ± 0.001 0.246 ± 0.001 0.131 ± 0.000 0.309 ± 0.001 0.135 ± 0.000

h
=

3 mse 0.255 ± 0.001 0.329 ± 0.015 0.065 ± 0.001 0.303 ± 0.019 0.079 ± 0.001 0.179 ± 0.003 0.077 ± 0.000

mae 0.339 ± 0.000 0.406 ± 0.013 0.163 ± 0.002 0.388 ± 0.019 0.171 ± 0.000 0.320 ± 0.002 0.173 ± 0.000

h
=

6 mse 0.253 ± 0.005 0.331 ± 0.010 0.125 ± 0.006 0.334 ± 0.000 0.097 ± 0.000 0.246 ± 0.004 0.104 ± 0.015

mae 0.340 ± 0.006 0.408 ± 0.009 0.238 ± 0.005 0.413 ± 0.000 0.189 ± 0.001 0.332 ± 0.004 0.200 ± 0.016

h
=

9 mse 0.271 ± 0.009 0.349 ± 0.022 0.144 ± 0.013 0.289 ± 0.021 0.108 ± 0.002 0.258 ± 0.010 0.104 ± 0.001

mae 0.351 ± 0.003 0.410 ± 0.019 0.251 ± 0.013 0.368 ± 0.020 0.198 ± 0.002 0.344 ± 0.007 0.196 ± 0.001

forecasting quality: Table 5.1 and Table 5.2 summarize the forecasting perfor-
mance of the baseline models and TimeGNN for different horizons h 2 {1, 3, 6, 9}. Table 5.1
provides the result for the first three datasets, i. e., Exchange-Rate, Weather, Electricity-Load
and Table 5.2 for the rest datasets, i. e., Solar-Energy, Traffic.

In general, GTS has the best forecasting performance on the smaller Exchange-Rate dataset.
The use of the training data during graph construction may give GTS an advantage over the
other methods on this dataset. TimeGNN however shows signs of overfitting during training
and is unable to match the other two GNNs. On the Weather dataset, the purely recurrent
methods perform the best in MSE score across all horizons. TimeGNN is competitive with
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Table 5.2: Forecasting performance for Solar-Energy and Traffic multivariate datasets and baselines
for different horizons h - best in bold, second best underlined.

Solar-Energy

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h
=

1 mse 0.019 ± 0.000 0.012 ± 0.000 0.007 ± 0.000 0.012 ± 0.001 0.006 ± 0.000 0.022 ± 0.000 0.006 ± 0.000

mae 0.064 ± 0.000 0.055 ± 0.001 0.035 ± 0.000 0.046 ± 0.003 0.026 ± 0.000 0.059 ± 0.000 0.026 ± 0.000

h
=

3 mse 0.031 ± 0.000 0.030 ± 0.001 0.026 ± 0.000 0.044 ± 0.001 0.022 ± 0.002 0.030 ± 0.000 0.022 ± 0.000

mae 0.086 ± 0.002 0.087 ± 0.004 0.080 ± 0.000 0.098 ± 0.003 0.058 ± 0.002 0.071 ± 0.000 0.058 ± 0.000

h
=

6 mse 0.046 ± 0.001 0.050 ± 0.000 0.049 ± 0.004 0.103 ± 0.001 0.042 ± 0.000 0.044 ± 0.000 0.043 ± 0.002

mae 0.108 ± 0.005 0.121 ± 0.005 0.125 ± 0.013 0.163 ± 0.001 0.086 ± 0.001 0.090 ± 0.000 0.088 ± 0.004

h
=

9 mse 0.067 ± 0.003 0.073 ± 0.001 0.068 ± 0.000 0.167 ± 0.003 0.055 ± 0.001 0.060 ± 0.002 0.060 ± 0.000

mae 0.138 ± 0.009 0.150 ± 0.005 0.154 ± 0.004 0.218 ± 0.006 0.101 ± 0.001 0.109 ± 0.001 0.110 ± 0.000

Traffic

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h
=

1 mse 0.558 ± 0.007 0.594 ± 0.091 0.246 ± 0.002 0.520 ± 0.010 0.233 ± 0.003 0.567 ± 0.002 0.293 ± 0.026

mae 0.296 ± 0.005 0.352 ± 0.025 0.203 ± 0.002 0.319 ± 0.013 0.157 ± 0.002 0.281 ± 0.000 0.162 ± 0.001

h
=

3 mse 0.595 ± 0.014 0.615 ± 0.002 0.447 ± 0.010 0.970 ± 0.027 0.438 ± 0.001 0.622 ± 0.006 0.465 ± 0.012

mae 0.318 ± 0.007 0.363 ± 0.003 0.286 ± 0.009 0.456 ± 0.010 0.205 ± 0.000 0.306 ± 0.002 0.218 ± 0.007

h
=

6 mse 0.603 ± 0.001 0.680 ± 0.021 0.465 ± 0.005 0.938 ± 0.048 0.450 ± 0.009 0.623 ± 0.004 0.495 ± 0.012

mae 0.321 ± 0.003 0.403 ± 0.013 0.288 ± 0.002 0.461 ± 0.023 0.213 ± 0.003 0.311 ± 0.007 0.239 ± 0.001

h
=

9 mse 0.614 ± 0.011 0.655 ± 0.017 0.467 ± 0.010 0.909 ± 0.024 0.471 ± 0.000 0.622 ± 0.002 0.494 ± 0.000

mae 0.329 ± 0.010 0.382 ± 0.014 0.290 ± 0.006 0.453 ± 0.016 0.220 ± 0.002 0.313 ± 0.002 0.236 ± 0.005

the recurrent methods on these metrics and surpasses the recurrent models on MAE. This
suggests TimeGNN is producing more significant outlier predictions than the recurrent
methods and TimeGNN is the best performing GNN method.

On the larger Electricity-Load, Solar-Energy, and Traffic datasets, in general, MTGNN
is the top performer with LSTNet close behind. However, for larger horizons, TimeGNN
performs better than GTS and competitively with LSTNet and the other recurrent models.

This shows that time-domain graphs can successfully capture long-term dependencies
within a dataset although TimeGNN struggles more with short-term predictions. This could
also be attributed to the simplicity of TimeGNN’s forecasting module compared to the other
graph-based approaches.

ablation study. To empirically examine the effects of the forecasting module and
whether the proposed graph construction module in TimeGNN is capable of learning meaning-
ful graphs, we conducted an ablation study where we replaced MTGNN’s graph construction
module with our own, so-called TimeMTGNN baseline. The rest modules and the hyperpa-
rameters in TimeMTGNN are kept as similar as possible to MTGNN. TimeMTGNN shows
comparable forecasting performance to MTGNN on the larger Electricity-Load, Solar-Energy,
and Traffic datasets and higher performance on the smaller Exchange-Rate and Weather
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datasets. The TimeGNN graph construction module is capable of learning meaningful graph
representations that do not impede and in some cases improve forecasting quality. As seen
in Figure 5.4, the computational performance of TimeMTGNN suffers in comparison to
MTGNN. A major contributing factor is the number of graphs produced. MTGNN learns a
single graph for a dataset while TimeGNN produces one graph per window, accordingly, the
number of GNN operations is greatly increased. However, the focus of this experiment was to
confirm that the proposed temporal graph-learning module preserves or improves accuracy
over static ones rather than to optimize efficiency.

5.2.5 Conclusion

We have presented a novel method of representing and dynamically generating graphs from
raw time series. While conventional methods construct graphs based on the variables, we
instead construct graphs such that each time step is a node. We use this method in TimeGNN,
a model consisting of a graph construction module and a simple GNN-based forecasting
module, and examine its performance against state-of-the-art neural networks, including some
that perform jointly graph learning and forecasting. While TimeGNN’s relative performance
differs between datasets, this representation is clearly able to capture and learn the underlying
properties of time series. Additionally, it is far faster and more scalable than existing graph
methods as both the number of variables and the window size increase. However, there are
several avenues for further improvement. The forecasting module, purposefully kept simple in
order to examine the effects of the learnable temporal representations, could be extended to
a more complex architecture. The graph learning module could also be modified to include
edge weights learned on separately extracted features.



6 APPL ICAT IONS ON DYNAMICAL SYSTEMS

6.1 modeling spatio-temporal data

Spatio-temporal data refers to data that have both spatial and temporal components.
It involves observations that are recorded over both space (location) and time. Spatio-
temporal data can represent various phenomena, such as weather patterns [201], population
movements [1], traffic flow [32, 33], or any other process that varies over both geographical
space and time. Examples of spatio-temporal data include satellite imagery capturing changes
in land cover over time, GPS tracking data of moving objects, or climate data collected at
different geographical locations over different time intervals [40, 58, 223]. A detailed overview
of the most dominant deep learning approaches for modeling spatio-temporal data is provided
in Section 5.1.4.

The main difference between spatio-temporal data and dynamical systems lies in their
representation and nature. Spatio-temporal data is the observed data that capture variations
over both space and time, while dynamical systems are mathematical models that describe
the temporal evolution of a system based on certain rules or equations. In some cases,
spatio-temporal data can be used to infer and validate dynamical systems, and dynamical
models can help predict the behavior of spatio-temporal phenomena. However, they are
two distinct concepts used to approach different aspects of understanding and analyzing
phenomena that involve both spatial and temporal variations.

Performing tasks involving complex dynamical systems is significant across different scien-
tific and engineering fields [242]. Prominent examples arise naturally in the fields of fluid
dynamics [5], epidemiology [108], neuroscience [117], economics [62] and cosmology [251].
Dynamical systems are systems whose states evolve with time over a state space and whose be-
haviour is described by a set of predefined rules. Dynamical systems are rigorously represented
and analyzed through the formulation of differential equations, serving as mathematical
expressions that encapsulate the relationships between variables and their derivatives, thereby
characterizing the evolution of the system over time or in spatial domains.

Following next, we present some precise mathematical descriptions and examples of
dynamical systems in Section 6.1.1, along with an overview of current deep learning techniques
used to address underlying challenges in Section 6.1.2, as outlined in relevant surveys [105,
255].

6.1.1 Preliminaries: Dynamical Systems

If the dynamical system evolves not only in time but also in space, it can be represented
using partial differential equations (PDEs). In this case, the state variables depend on both

83
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Figure 6.1: Example of the dynamical system of Equation 6.1 evolving in x, y and t coordinates.

Figure 6.2: Example of the dynamical system of Equation 6.2 evolving in t coordinate.

time and spatial coordinates. We next provide the mathematical notation for a dynamical
system described as a general system of PDEs [85].

Let h = (h1, h2, . . . , hd), h : Ω 7! R
d be functions in an open subset Ω of R

n and an
n-dimensional state vector x 2 R

n. The evolution of the system over time and space is
described by the following k-th order system of partial differential equations for a fixed
integer k � 1. Given F : Rmnk ⇥R

mnk−1 ⇥ . . .⇥R
mn ⇥R

m ⇥Ω 7! R
d, this system is defined

as follows:

F(Dkh(x),Dk�1h(x), . . . ,Dh(x),h(x),x) = 0 (6.1)

where Dk,Dk�1, . . . ,D are differential operators of order up to k and F are the corresponding
operators that model the evolution of the state vector. Solving these partial differential
equations provides a spatio-temporal trajectory that describes the evolution of the system’s
state variables over time and space, by finding the functions F that satisfy Equation 6.1.

We then define a simpler form of a dynamical system that evolves only in time (i. e., for
k = 1). Let h = (h1, h2, . . . , hd), h 2 R

d be the governing equations of the dynamical system,
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and let t represent time. The evolution of the system over time is described by the following
set of ordinary differential equations (ODEs):

dh

dt
= f(h, t) (6.2)

In this notation, each dhi

dt represents the time rate of change of each hi for i 2 {1, . . . , d}
with respect to time t, and f are the corresponding functions that model the evolution of
the state variable. This system of equations represents the dynamics of the system, where
the state equations change over time based on the functions f that govern their behavior.
Solving these differential equations provides a trajectory that describes the evolution of the
system over time.

We provide in Figure 6.1 and Figure 6.2 two examples of dynamical systems for Equation 6.1
and Equation 6.2, evolving in both space and time or only in time, respectively. Let hi(t)
describe the evolution of the state vector for each function i 2 {1, . . . , 6} and for each time
step t 2 {0, . . . , T}. We also consider a topology for the two dynamical system examples,
where vertices represent the governing functions and edges represent the correlations or forces
among those functions between different points of the considered space.

6.1.2 Deep Learning Methods for Dynamical Systems

numerical methods for approximating solutions. Numerically simulating
dynamical systems governed by nonlinear differential equations poses a considerable challenge
due to the inherent difficulty in mathematically tackling these equations [113, 165], resulting
in prolonged computation times. Alternatively, the development of models with reduced
complexity, guided by specific assumptions, provides a feasible approach [29]. However, in
complex real-world scenarios where comprehensive knowledge of the dynamics is lacking,
the task of deriving a simplified yet accurate model is challenging, potentially leading to
equations that inadequately represent the system’s evolution [255].

deep learning approaches and underlying challenges. Deep learning
techniques offer a promising avenue for comprehending and modeling complex spatio-temporal
dynamics [63, 137, 158, 217], without the need for employing extensive traditional numerical
methods. Despite their speed advantages, the data-driven nature of DL methods brings
limitations, especially when data availability is restricted, where most cutting-edge machine
learning methods lack robustness and convergence guarantees [254, 255]. The intrinsic
nonlinear and chaotic dynamics of real-world systems introduce significant challenges, often
leading to forecasts that contradict the underlying dynamics, unless explicit constraints are
provided.

Recently, the integration of conventional physics-guided methods with deep learning models
has garnered attention for modeling complex spatio-temporal data and dynamical systems [22,
128, 144, 266]. The so-called physics-guided deep learning methods remain fast and show
improved generalization performance compared to data-driven approaches. By embedding
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knowledge of system dynamics in the model architecture, faster convergence is enabled, since
the parameter space is significantly constrained based on the underlying physical principles.

approaches for increased efficacy and robustness. Deep neural net-
works are utilized to approximate solutions for problems associated with partial differential
equations in dynamic systems, adhering to the framework of the physics-informed neural
networks (PINNs) [27, 56, 203, 204]. By incorporating physics-based constraints into their loss
function, PINNs guide the network to learn solutions aligning with the governing equations
of the system. However, the performance of PINNs is dependent on the input properties,
thus noisy or limited observations may impact their generalizability, especially when applied
to data differing significantly from the training set [39, 277].

As an alternative to the above loss functions, physics-guided neural network architectures
can be designed, imposing harder constraints for increased generalizability, while being highly
demanding in terms of design. Neural ODE models [34], that leverage ordinary differen-
tial equations (ODEs) to model dynamic systems, constitute a prominent example of such
methods and exhibit computational efficiency. Few recently proposed deep learning models,
incorporating differential equations, have significantly outperformed purely data-driven ap-
proaches [168, 254]. Finally, several interesting research works extend the application of deep
learning architectures to residual estimation and approximation of complex components of
physics-based models [12, 247].

Following the recent advances in incorporating prior knowledge of the underlying dynamics
in DL architectures for simulating spatio-temporal dynamical systems, in the next section
(Section 6.2) we focus on the particular case of modeling spreading processes on networks. More
specifically, we study epidemic spreading on networks of contacts under the SIR mathematical
priors. Our proposed neural network architecture and the experimental design we follow
can be adapted to different spreading phenomena on networks, thus constituting a notable
application of physics-informed DL approaches for temporal dynamical systems.

6.2 neural ordinary differential equations for modeling epidemic
spreading

Mathematical models of infectious diseases have long been used for studying the mechanisms
by which diseases spread, for predicting the spread of epidemics, and also for controlling their
outbreaks. These models are based on some assumptions and different assumptions give rise
to different models. Models on social networks of individuals which capture contact patterns
are usually more realistic and can more accurately model contagion dynamics. Unfortunately,
computing the output of realistic models is often hard. Thus, modeling the evolution of
contagion dynamics over large complex networks constitutes a challenging task. In this study,
we present a computational approach to model the contagion dynamics underlying infectious
diseases. Specifically, we focus on the susceptible-infectious-recovered (SIR) epidemic model
on networks [140]. Given that this model can be expressed by an intractable system of
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ordinary differential equations, we devise a simpler system that approximates the output of
the model. Then, we capitalize on recent advances in neural ordinary differential equations
and propose a neural architecture that can effectively predict the course of an epidemic on
the network. We apply the proposed architecture on several network datasets and compare it
against state-of-the-art methods under different experimental settings. Our results indicate
that the proposed method improves predictions in various spreading scenarios, paving the
way for the extensive application of interpretable neural networks in the field of epidemic
spreading. At the same time, the proposed model is highly efficient even when trained on
very large networks where traditional algorithms become significantly slower.

6.2.1 Introduction

Spreading phenomena over complex networks are ubiquitous ranging from infectious dis-
eases [51] and gossip in physical networks [43] to misinformation [23] and marketing cam-
paigns [76] on social media. Modeling such spreading phenomena over complex networks has
been lying at the core of various applications over the years. Indeed, such models would allow
governments and policymakers to predict and control the spread of epidemics (e. g., COVID-
19) on networks of contacts [169, 191], while they would also allow social media platforms to
predict and prevent the spread of rumors and misinformation [245, 301]. Different mathemati-
cal models have been developed over the years. For instance, in epidemiology, compartmental
models such as susceptible-infectious-recovered (SIR) and susceptible-infectious-susceptible
(SIS), are often applied to the mathematical modeling of infectious diseases.

The outcome of a spreading process over a network is generally quantified as a node’s
probability of infection, for simple models like the Independent Cascade, or a quantity in
compartmental models such as SIR. Several methods have been invented to derive a fast and
reliable prediction of a spreading process over a given network. One can solve the system of
differential equations that describes the epidemic model using computational methods [24].
Alternatively, the real state of the system can be approximated by simulating the spreading
process multiple times in a Monte-Carlo fashion [131, 194]. The first option is fast enough but
suffers from low accuracy, while the second is more accurate but too inefficient, as it requires
typically several thousands or millions of simulations for an accurate approximation. A more
balanced approach, dynamic message passing, approximates the solution using dynamic
equations between nodes [127].

Recently, there has been an increasing interest in applying machine learning and artifi-
cial intelligence approaches to combinatorial optimization problems on networks [60, 125].
This approach usually involves training predictive models on instances of those problems.
Once these models are trained, they can then be used for making predictions, but also for
gaining insights into complex phenomena. These approaches usually rely on graph neural
networks [271], a family of deep learning models that has attracted a lot of attention recently
and which is particularly suited to problems that involve some kind of network structure.
These models have been applied with great success to different problems such as predicting
the quantum mechanical properties of molecules [94] and traffic prediction [70]. Thus, graph
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neural networks could offer great potential to build effective data-driven dynamical models
on networks. However, graph neural networks, on their own, might fail to fully capture the
underlying dynamics of complex processes. For instance, in the case of mathematical models
of infectious diseases such as the well-known SIR model, it might be challenging for the model
to learn to predict the state of a node in a given time step. Fortunately, several of those
compartmental models can be described mathematically by a set of differential equations.
One can capitalize on such kind of information and incorporate structure into the learning
process. This approach has already been applied to some problems (e. g., in physics) and the
results indicate that it makes it easier for the model to encode the underlying dynamics [126].

In this work, we propose a novel deep neural network architecture for modeling and pre-
dicting spreading processes. We focus on the well-established susceptible-infectious-recovered
(SIR) epidemiological model on arbitrary networks. In each time step, the network can be
in one of 3n states, where n is the number of nodes of the network. The dynamics of the
SIR model is described by a Markov chain on a state space of dimension 3n, while the time
dependence of the probabilities of the states is governed by a system of 3n linear ordinary
differential equations. The exponential size of the system makes the analysis hard and thus,
previous studies have resorted to large-scale simulations. However, for large networks, it is
computationally very challenging to simulate the network SIR model, and hence, for such
kind of networks, little is known about the long- but also short-term evolution of the model.
Instead, in this study, we capitalize on recent advancements in the field of neural ordinary
differential equations [34] and we propose a new architecture, so-called Graph Neural ODE
Network (GN-ODE), to predict the probability that a node is in each one of the three states in
a given time step. More specifically, we study each node individually and we employ a simpler
system of differential equations which consists of 3n equations instead of 3n. Not surprisingly,
by decreasing the complexity, we obtain an approximation of the exact solution. This simpler
system of differential equations is integrated into a neural network model which is responsible
for fine-tuning the approximate system, thus leading to more accurate predictions. The
output of the neural network is computed using a black-box differential equation solver with
constant memory cost. It turns out that the proposed architecture employs a message passing
mechanism similar to those of graph neural networks (GNNs) [94], that forms the temporal
discretized approximation equations of the ODE solver, aiming to enhance their represen-
tational power in predicting epidemics spreading. To evaluate the proposed architecture,
we conduct experiments on several networks of different sizes, including out of distribution
testing of their generalization ability. We further investigate whether the proposed model
can generalize to unseen networks by training on small networks and then evaluating the
predictive performance on larger networks. Our results indicate that the proposed neural
differential equation architecture outperforms vanilla GNNs in forecasting complex contagion
phenomena, and thus can replace time-consuming simulations in several scenarios.
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6.2.2 Neural ODEs for Modeling Epidemic Spreading

6.2.2.1 Background

problem definition. Epidemics are usually studied via compartmental models, where
individuals can be in different states, such as susceptible, infected, or recovered. Contact
networks have been considered in modeling epidemics, as a realistic simulation of the contact
process in a social context. A contact network is composed of nodes representing individuals
and links representing the contact between any pair of individuals. Following previous studies,
we use an individual-based SIR approach to model the spread of epidemics in networks [282].

Let G = (V, E) denote a graph (a.k.a., network) where V is the set of nodes and E is the
set of edges. We will denote by n the number of vertices and by m the number of edges. The
adjacency matrix A 2 R

n⇥n of a network G is a matrix that encodes edge information in
the network. The element of the i-th row and j-th column is equal to the weight of the edge
between vertices vi, vj 2 V if such an edge exists, and 0 otherwise. There are three states
each node can belong to: (1) susceptible S; (2) infected I; or (3) recovered R.

The transmission of the disease is probabilistic. Thus, each edge (vi, vj) 2 E is associated
with a probability that vi transmits the disease to vj in case vi becomes infected while vj
is susceptible. Also, let �ij 2 [0, 1] be the infection rate of edge (i ! j) and �i 2 [0, 1] be
the recovery rate of node i. In this work, we assume uniform infection and recovery rates,
i. e., �ij = � for all pairs of nodes (vi, vj) connected by an edge and �i = � for every node vi
of the network.

In the considered model, disease spread takes place at discrete time steps t = 1, 2, . . . , T .
For a given network G and some time step t, three different probabilities are associated
with each node representing the probability that the node belongs to each one of the above
three states. These probabilities are stored in vectors s(t), i(t), r(t) 2 R

n for t 2 {1, . . . , T}.
Given the structure of the network and some initial conditions, exactly computing those
probabilities is intractable. Indeed, it has been shown that finding the probability of infection
of an SIR model on a network is an NP-hard problem and that this problem is related to
long-standing problems in the field of computer networks [228].

neural odes. These are deep neural network models which generalize standard layer to
layer propagation to continuous depth models [34]. More specifically, the continuous dynamics
of hidden units are parametrized using an ODE specified by a neural network:

dh(t)

dt
= f(h(t), t, ✓)

where t 2 {0, . . . , T} and h(t) 2 R
d. Starting from the initial layer h(0), the output layer

h(T ) is the solution to this ODE initial value problem at some time T . This value can be
obtained by a black-box differential equation solver. Euler’s method is the simplest method
for solving ODEs, among others (e. g., Runge-Kutta). For example, using Euler’s/1st-order
Runge-Kutta method the solution can be approximated by:

h(t+ s) = h(t) + s f(h(t), t, ✓)
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where s is the step size. To compute gradients with respect to all inputs of any ODE solver [36]
introduce a method that scalably backpropagates through the operations of the solver. This
allows training with constant memory cost as a function of depth.

6.2.2.2 The Proposed GN-ODE Model

As already discussed, we use an individual-based SIR approach to model the spread of
epidemics in networks. Nodes represent individuals, while edges represent the contact between
pairs of individuals. Unfortunately, the exact computation of the epidemic spread in a network
under this model is not feasible in practice. Therefore, approximate computation schemes
have been proposed, and some of them are described by a system of ordinary differential
equations (ODEs) [282]. We employ the following system of ODEs:

dS

dt
= ��(AIh) � Sh

dI

dt
= �(AIh) � Sh � �Ih

dR

dt
= �Ih

(6.3)

where A 2 R
n⇥n is the adjacency matrix of the network, S, I,R 2 R

n are vectors that
represent the three different states of the SIR model for all the nodes of the network,
Sh, Ih,Rh 2 R

n the hidden representations of the three states and � denotes the elementwise
product. We also denote as � 2 [0, 1] the infection rate of edges and as � 2 [0, 1] the recovery
rate of nodes. By solving the above ODEs (with some initial conditions), we can approximate
the spread of the epidemic in the network.

Unfortunately, the above system of ODEs might fail to capture the complex dynamics
of the epidemic, thus offering solutions that are not very accurate. Thus, to overcome
these limitations, we capitalize on recent advancements in neural ODEs. Specifically, we
parameterize the dynamics of the individual-based SIR model using a neural network. We
compute a vector for each node vi of the network, but we still require the ODEs of Equation 6.3
to hold (this time Sh, Ih,Rh 2 R

n⇥d are matrices where nodes’ representations are stored in
their rows). The output of the network is computed using a black-box differential equation
solver.

We next give more details about the proposed model. Let s(0), i(0), r(0) 2 R
n denote the

initial conditions of the SIR instance. Hence, s(0), i(0), r(0) are binary vectors and a value equal
to 1 in the i-th component of those vectors denotes that node vi is in the corresponding state
of SIR. Note that s(0)+ i(0)+ r(0) = 1 where 1 is the n-dimensional vector of ones. Therefore,
each node initially belongs to exactly one of the three states of SIR. Those representations of
the nodes are passed on to a fully-connected layer followed by the ReLU activation function,
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and are thus transformed into vectors of dimension d (i. e., 0 and 1 integers are mapped to
d-dimensional vectors), as follows:

S(0) = ReLU
�

s(0)W0 + b0

�

I(0) = ReLU
�

i(0)W0 + b0

�

R(0) = ReLU
�

r(0)W0 + b0

�

where W0 2 R
1⇥d the weight matrix and b0 2 R

d the bias term. Thus, three vectors are
associated with each node and each vector corresponds to one of the three states of the SIR
model. These vectors correspond to the rows of three matrices S(0), I(0),R(0) 2 R

n⇥d.
Then, these representations are fed to an ODE solver. The solver iteratively updates the

representations of the nodes stored in matrices S(t), I(t),R(t) 2 R
n⇥d for t 2 {1, . . . , T}. In

each iteration of the solver, first the representations of the previous iteration are further
transformed using a fully-connected layer followed by the sigmoid activation function �(·).
Formally, the following updates take place:

S
(t)
h = �

�

S(t)Wh + bh

�

I
(t)
h = �

�

I(t)Wh + bh

�

R
(t)
h = �

�

R(t)Wh + bh

�

where Wh 2 R
d⇥d the weight matrix and bh 2 R

d the bias term. Then, the representations
are re-updated based on the system of ODEs in Equation 6.3. We need to mention that
training the model requires performing backpropagation through the ODE solver. Even
though differentiating through the operations of the forward pass is straightforward, it incurs
a high memory cost and it also introduces numerical error. Following recent advancements in
the field of implicit differentiation [34], we treat the ODE solver as a black box, and compute
gradients using the adjoint sensitivity method [198] which solves a second, augmented ODE
backwards in time. This approach is computationally attractive since it scales linearly with
problem size and has low memory requirements, while it also explicitly controls numerical
error.

Once the solver has finalized its computations, the representations that correspond to
the problem’s discrete time steps are fed into a multi-layer perceptron (consisting of two
fully connected layers) which for each node and time step outputs a 3-dimensional vector.
The components of this vector correspond to the three states. Finally, the softmax function
is applied to all those 3-dimensional vectors, and the emerging values can be thought of
as the probabilities that a specific node belongs to state S, I or R in a given time step.
These probabilities are then compared to the ground-truth probabilities that emerge from
the simulations to compute the error. A high-level overview of the proposed model is given
in Figure 6.3.

It is interesting to note that the update scheme of the ODE solver is related to a family
of graph neural networks known as message passing neural networks [94]. These models
employ a message passing procedure where they update the representation of each node by
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Figure 6.3: Overview of the proposed GN-ODE architecture.

aggregating information from its neighborhood. The matrix multiplication AI performed
by the solver to update the states of the nodes can be seen as a form of message passing.
Indeed, for each node, the output of this operation produces a vector that aggregates the
representations of state I of its neighbors. Then, the emerging representations are multiplied
in an element-wise manner with S. Therefore, it is evident that message passing models
naturally emerge in different applications, and this perhaps justifies why these models have
demonstrated great success in several problems.

6.2.3 Experimental Evaluation

In this section, we evaluate the proposed GN-ODE model on several real-world datasets. We
first present the employed datasets, the baselines and other experimental details, and then,
we present and discuss the experimental results.

6.2.3.1 Experimental Setup

datasets. We perform our experiments on real-world networks that represent social
networks and are derived from online social networking and communication platforms (all
datasets are publicly available). Specifically, we experiment with the following network
datasets: (1) karate that contains social ties among the members of a University karate
club; (2) dolphins representing a social network of bottlenose dolphins; (3) fb-food and (4)
fb-social which represent the food page network of Facebook and private messages sent on a
Facebook-like platform at UC-Irvine, respectively; (5) openflights that contains ties between
two non-US-based airports and is downloaded from Openflights.org; (6) Wiki-Vote, a
network created by all the voting data between administrators of Wikipedia; (7) Enron, an
e-mail communication network; and (8) Epinions, an online social network created from the
product review website Epinions.com. More details about the datasets are given in Table 6.1.
The datasets are publicly available and can be derived from the following sources: Wiki-
Vote, Enron, Epinions are available in https://snap.stanford.edu/data/ and the rest five
datasets in https://networkrepository.com/ [212].

Openflights.org
Epinions.com
https://snap.stanford.edu/data/
https://networkrepository.com/
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Table 6.1: Statistics of the 8 datasets that were employed in this study. All networks are undirected
and are reduced to their largest connected component.

Dataset karate dolphins fb-food fb-social openflights Wiki-Vote Enron Epinions

#nodes 34 62 620 1,893 2,905 7,066 33,696 75,877

#edges 78 159 2,102 13,835 15,645 100,736 180,811 405,739

Transitivity 0.256 0.309 0.223 0.057 0.255 0.125 0.085 0.066

Density 0.1390 0.0841 0.0110 0.0077 0.0037 0.0040 0.0003 0.0001

Max. degree 17 12 134 255 242 1065 1383 3044

baseline models. In all experiments, we compare the proposed model against three
baseline methods, namely Dynamic Message Passing (DMP) [127, 167], Graph Convolution
Network (GCN) [134] and Graph Isomorphism Network (GIN) [275]. DMP is an algorithm
for inferring the marginal probabilities of stochastic spreading processes on networks. Under
the individual-based SIR process, DMP is exact on trees and asymptotically exact on locally
tree-like networks, while its complexity is linear in the number of edges and spreading time
steps. Note that DMP is not a machine learning approach, but a purely combinatorial method.
GCN and GIN are two well-established graph neural networks that have been recently applied
with great success to different problems. Both models belong to the family of message passing
neural networks. These architectures recursively update the representation of the nodes of a
graph by aggregating information from the nodes’ neighborhoods.

hyperparameters. In order to select the combination of hyperparameters that leads
to the best performance for each deep neural network architecture (GCN, GIN and GN-
ODE), we performed grid search on a set of parameters and selected those that achieved
the lowest error in the validation set. We chose learning rate from {0.0001, 0.001, 0.01},
batch size from {2, 4, 8, 16, 32, 64, 128} and hidden dimension size for the trainable layers
from {16, 32, 64, 128, 256, 512}. For larger datasets such as Wiki-Vote, Enron, Epinions we
only tested the combinations of batch size and hidden dimension size that could fit into the
memory of a single GPU (NVidia Quadro RTX 6000). We used the mean absolute error as
our loss function and trained each architecture for 500 epochs. To make predictions, we used
the model that achieved the lowest loss in the validation set. For the ODE solver in the case
of GN-ODE, we used Euler’s method with a step size equal to 0.5. The ground-truth values
s(t), i(t), r(t) were extracted after performing 104 simulations for 20 time-steps.

evaluation metric. We measure the mean absolute error (mae) across all nodes of
all test instances, states and time steps. More specifically, the error is computed as follows:

mae =
1

3NnT

N
X

i=1

n
X

j=1

T
X

t=1

X

s2{S,I,R}
|yi,j,t,s � ŷi,j,t,s|
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(a) (b)

Figure 6.4: (a) Mean absolute error (lower is better) achieved by the different approaches on the test
set of datasets consisting of instances of a single network structure. The values of � and �

for the different network instances are sampled randomly. (b) Comparison of the inference
time (in sec) of the different approaches on the test set of the considered datasets.

where N denotes the number of test samples, n the number of nodes of the graph (a.k.a.,
network), and T the number of time steps (i. e., 20 in our setting). Furthermore, yi,j,t,s
denotes the probability that node j of the i-th test sample is in state s in time step t, and
ŷi,j,t,s the corresponding predicted probability.

6.2.3.2 Results

We next present the experimental settings and the performance of the different models in
different scenarios.

6.2.3.3 Spreading Prediction on a Single Network

within distribution performance. In the experimental results that follow, we
investigate whether the different approaches can accurately estimate the spreading results
of the individual-based SIR model. In these experiments, all approaches are trained and
evaluated on instances of a single network.

To evaluate the performance of the different approaches, for each dataset, we created 200
samples by applying different instances of the SIR epidemic model to each network dataset.
For each instance, we choose the values of hyperparameters � and � of SIR randomly from
[0.1, 0.5] with uniform probability. This range for the hyperparameters is chosen so as to
form a realistic model and to evaluate how useful each method could be in a real-world
scenario [136]. We also choose two nodes randomly with uniform probability and set them to
be in the infected state I, while the rest of the nodes are set to be in the susceptible state S.
To estimate the marginal probabilities, we perform 10, 000 simulations, each running for 20
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(a) Test Loss for β values (b) Test Loss for γ values

Figure 6.5: Mean absolute error (lower is better) achieved by the different approaches on the test
set of datasets consisting of instances of a single network structure. Most test instances
have emerged from values of diffusion parameters � and � different from those of training
instances. Figures (a) and (b) illustrate the performance of the different approaches for
out of distribution values of � and �, respectively.

spreading time steps. The 200 samples were split into training, validation, and test sets with
a 60 : 20 : 20 split ratio, respectively.

Figure 6.4a illustrates the performance of the different methods. Note that each experiment
is repeated 5 times, and Figure 6.4a illustrates the average mean absolute error along with
the corresponding standard deviation. We observe that on most datasets, the proposed model
outperforms the baselines. More specifically, GN-ODE is the best-performing approach on 5
out of the 8 benchmark datasets. On some datasets, the proposed model outperforms the
baselines with wide margins. For instance, on the dolphins and fb-food datasets, it offers
absolute improvements of 58.37% and 49.41% in mae, respectively, compared to the best
competitor, respectively. Furthermore, on several datasets the proposed GN-ODE model
achieves very low values of error, i. e., less than 0.02 which demonstrates that it can provide
accurate predictions. With regards to the baselines, DMP and GCN perform comparably
well in most cases, while GIN is the worst-performing method. This is an interesting result
since GIN is known to be more powerful than GCN in terms of distinguishing non-isomorphic
graphs [275]. However, it turns out that in this task, we are more interested in estimating
distributions of the states of the neighbors of a node than the exact structure of the
neighborhood.

For the same set of experiments, we also demonstrate in Figure 6.4b the inference time
of each model on the test set of the considered datasets. We can clearly observe that the
inference time increases along with the size of the input networks. More specifically, the
employed models show equivalent computational costs for relatively small networks such
as the karate, dolphins and fb-food, where the proposed GN-ODE is slightly slower (a few
seconds) compared to the fast, in those cases, DMP. However, DMP becomes dramatically
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(a) (karate) Out of distribution γ values (b) (dolphins) Out of distribution β values

(c) (fb-food) Out of distribution γ values (d) (fb-social) Out of distribution β values

Figure 6.6: Mean absolute error (lower is better) achieved by the different approaches on each test
sample (i. e., network) of a given dataset. Results provided for the following four datasets:
karate, dolphins, fb-food, fb-social. Each figure is associated with one dataset and one
parameter (� or �). The out of distribution generalization performance of the different
methods is evaluated. Test samples that appear in between the two dotted vertical
lines correspond to test instances where values of � and � were sampled from the same
distribution as that of training instances. The rest of the samples correspond to instances
where values of � and � were sampled from different distributions than those of training
instances.
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slower on larger datasets, such as Epinions, where it suffers by an approximately ten times
greater inference cost compared to the proposed model. This behaviour demonstrates the
necessity of the development of accurate models that remain scalable on large datasets and
can be employed as alternatives to algorithms such as DMP. We also observe that the vanilla
GNNs (GCN and GIN) remain quite fast even for larger networks. The inference time of the
proposed GN-ODE model becomes relatively worse than that of the GNN variants, especially
on the three larger networks, which can be attributed to the intermediate step used for the
computations of the ODE solver, as explained in Section 6.2.2.

We also provide a visualization of the evolution of the diffusion process on the karate
dataset (i. e., probabilities of infection for all the nodes of the network) in the Appendix.

out of distribution generalization. Neural network models might fail to
generalize to unseen data. Thus, we also perform some experiments where we study whether
the different methods can accurately predict the spreading process over instances of the
network that are different from the ones the methods were trained on. To achieve this, we
add to the test set of a dataset, instances that emerged from values of � and � that fall
outside of the range of values used to train the model. In order to create the dataset, the
different values of � and � (from the 200 instances described above) were divided into 5 bins.
Then, 80 instances sampled from bins 2, 3 and 4 constitute the training set. The validation
and the test set both consist of some instances from bins 2, 3 and 4 and some instances from
bins 1 and 5. Overall, the validation set contains 40 samples, while the test set contains 80
samples. Note that the training set contains instances sampled exclusively from bins 2, 3 and
4, while the test set mostly consists of samples from bins 1 and 5. Therefore, test instances
can be considered as sampled from a different distribution compared to those of the training
set.

Figure 6.5 illustrates the performance of the different approaches on the eight datasets.
We again report the mean absolute errors across all nodes of all test instances, states and
time steps. The mean absolute errors are averaged over 5 runs. We observe that for out of
distribution values of both � and �, the GN-ODE model outperforms both GCN and GIN on
all datasets. We can also see that the performance of the proposed architecture degrades on
the largest networks (i. e., Wiki-Vote, Enron and Epinions) where DMP is the best-performing
approach. GIN yields the worst results and achieves much higher values of mae than the
rest of the methods. This might be due to the neighborhood aggregation method that this
neural network model utilizes (i. e., sum function). Figure 6.6 and Figure 6.7 illustrate the
error of the considered approaches for the different instances of each dataset (for clarity,
we provide for each dataset a single plot illustrating the generalization performance with
respect either to � or �). The vertical lines distinguish bins 1 and 5 (those from which test
samples emerged) from bins 2, 3 and 4 (those from which training instances were sampled).
The results indicate that the proposed GN-ODE model is relatively robust. In most cases,
its generalization performance is similar to its within distribution performance, i. e., the
obtained error for samples from bins 2, 3 and 4 is similar to the error for samples from bins 1
and 5. On the other hand, the two baseline architectures achieve lower levels of performance
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(a) (openflights) Out of distribution γ values (b) (Wiki-vote) Out of distribution β values

(c) (Epinions) Out of distribution γ values (d) (Enron) Out of distribution β values

Figure 6.7: Same as Figure 6.6. Results provided for the rest of the datasets: openflights, Wiki-vote,
Enron, Epinions.

on instances where values of � or � are different from those the models were trained on.
It is interesting to note that GIN yields much higher errors for the out of distribution
samples, thus the results suggest that this neural network model might not be useful in
real-world scenarios. With regards to the proposed model, as already mentioned, it achieves
very good levels of generalization performance on the karate, dolphins, fb-food, fb-social, and
openflights datasets, while a decrease in performance occurs on the largest datasets, namely
Wiki-Vote, Epinions, and Enron. Still, GN-ODE consistently outperforms the two baseline
neural architectures, while the obtained errors are not prohibitive.

6.2.3.4 Spreading Prediction on Multiple Networks

We are also interested in investigating whether a model that is trained on one or more
networks can generalize to networks different from the ones it is trained on. Thus, we
designed a series of experiments where the model was trained on a subset of the datasets
shown in Table 6.1, and evaluated on some dataset that was not contained in that subset.
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(a) (b)

Figure 6.8: (a) Mean absolute error (lower is better) on the test set achieved by the different approaches
when trained on instances of small networks and evaluated on instances of a large unseen
network (as mentioned in the x-axis). (b) Comparison of the mean absolute error achieved
by the different approaches when trained on instances of small networks and evaluated on
instances of larger unseen networks (Many Graphs) vs. when both trained and evaluated
on instances of the larger networks (Single Graph).

These experiments are of very high significance since for the model to be useful in real-world
problems, it is necessary that it can generalize to unseen networks. That would suggest that
a model trained on some networks could be then applied to any network.

More specifically, we investigated whether models trained on karate, dolphins, fb-food
fb-social, and openflights networks can accurately predict the spreading process over Wiki-
Vote, Enron, and Epinions. In the case of Wiki-Vote, training was performed on instances of
the dolphins, fb-food, fb-social, and openflights networks. We used 45 instances of each of
those networks, i. e., 180 training samples in total. The validation and test sets contain 60
instances of the Wiki-Vote network each. In the case of the Enron and Epinions networks,
training was performed on instances of the dolphins, fb-food, fb-social, openflights, and
Wiki-Vote networks. Specifically, 36 instances of each of those networks were generated
giving rise to 180 training samples in total. The validation and test sets both contain 60
instances of the considered network (i. e., Enron and Epinions). With regards to the rest of
the hyperparameters, for each instance, � and � of SIR were randomly chosen from [0.1, 0.5]
with uniform probability. Furthermore, for each instance, two nodes were randomly chosen
with uniform probability and were set to be in the infected state I, while the rest of the
nodes were set to be in the susceptible state S. To estimate the marginal probabilities, we
perform 10, 000 simulations, each running for 20 spreading time steps.

Figure 6.8a illustrates the performance of the different methods on the three datasets. Once
again, we report the mean absolute error achieved by each method, where we compare the
predicted probabilities that nodes belong to the different states against those that emerged
from the simulations. Each experiment is repeated 5 times, and besides the average mean
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absolute error, also standard deviations are provided. We observe that in all three experiments,
the proposed GN-ODE model outperforms the baselines, i. e., the GCN and GIN models.
Thus, the results suggest that the proposed model can generalize better to unseen networks
than the baseline models. The GIN model fails to accurately predict the probabilities that
nodes belong to the different states of SIR, thus achieving very high values of mean absolute
error. On the other hand, the proposed model and GCN make more accurate predictions,
and seem to be more robust since they can generalize to unseen networks.

We also investigate how the performance of the models on those three datasets compares
to their performance when they are trained directly on them (i. e., results of Figure 6.4a
and Figure 6.8a combined). Figure 6.8b shows the results. It is clear that all models achieve
better performance when instances of the network in the test set also occur in the training
set. However, for the proposed model GN-ODE, we can see that the difference in performance
is very small, while for the baseline models it is much higher. In the case of GIN, there is
a dramatic increase in mean absolute error when the test set contains unseen networks. In
the case of GCN, the increase is not that large, but still significantly greater than that of
the proposed model. Overall, the results indicate that the GN-ODE model is very robust
and can achieve good levels of performance even on unseen data. DMP on the other hand,
can be directly applied to the test set of the unseen networks, achieving comparably better
performance than the rest methods, as shown in Figure 6.8a, with the disadvantage however
of being significantly slower during inference and impractical to scale to large networks (as
shown in Figure 6.4b).

6.2.4 Conclusion

The analysis and modeling of spreading processes have been a key issue in different fields,
including physics, biology and computer science, among others. For instance, predicting
the course of an epidemic is of paramount importance for governments and policymakers.
Indeed, such predictions provide valuable information for adapting policies and protocols
such that the spread of the disease is controlled. Mathematical models have traditionally
been used to describe the underlying dynamics of different spreading phenomena. However,
to capture the exact dynamics of most spreading processes, we need more realistic models
which incorporate more parameters and are thus very complex. For example, most social
and biological contagion processes require incorporating each individuals’ contact patterns
in the mathematical model. Unfortunately, most real-world systems exhibit very complex
connectivity patterns, thus leading to models that are hard to solve. It turns out that even
the well-established SIR model on general networks is computationally intractable. Therefore,
there is a need for approximation techniques which can efficiently predict the model’s output.

In the past years, machine learning has emerged as a promising tool for studying physical
systems and has shown great potential in providing approximate solutions to complex
problems. Even though machine learning approaches can learn useful patterns directly from
empirical data, recently there is a trend towards embedding the knowledge of any physical
laws that govern a given dataset in the learning process. In our setting, these physical laws
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are described in the form of a system of ODEs. More specifically, to enhance the effectiveness
of neural network models specifically for the SIR problem on networks, we incorporate
knowledge on the evolution functions of the S,I,R using an approximate system of ODEs.
Combining ODE solvers with neural networks has recently become an area of increasing
interest for the research community. In this study, we are the first to apply task-specific
neural ODEs for the SIR model, intending to advance the learning capabilities of a standard
neural network model.

The obtained empirical results on a single network structure indicate that the proposed
architecture outcompetes the baselines on almost all datasets and parameter settings. We need
to stress that for a model to be useful, it is necessary to achieve high levels of performance
even on instances of the problem that are different from the ones the model was trained
on. This is, for instance, the case for most real-world datasets where training data might
be available only for specific values of parameters (i. e., � and �) and it is thus crucial for
the model to learn to generalize to previously unseen parameter values. Therefore, a great
deal of emphasis was placed on testing the generalization power of the models on parameters’
combinations that are not seen during training. This is because neural networks are often
prone to overfitting which results in a dramatic decrease in their performance when the
parameter distribution of the test set is different from that of the training set. The obtained
results demonstrate that the proposed model achieves better performance than GCN and GIN
for all (out of distribution) combinations of � and �, while it is competitive with DMP in the
case of larger networks (Wiki-Vote, Enron, Epinions), where DMP achieves state-of-the-art
performance at the cost of being significantly slower in terms of inference time. Besides the
generalization performance with respect to the values of � and �, many applications require
a model to be able to generalize to unseen networks. For instance, one might employ a
model trained on small networks (for which ground-truth labels might be available) to make
predictions for larger networks. In this setting, algorithms like Dynamic Message Passing,
which are directly calculated on the test data (in our case the final large network) cannot be
implemented in a way to achieve faster inference. Thus, neural network architectures that
can generalize well to unseen networks can be very useful for several real-world applications.
Our empirical results demonstrate that graph neural networks and especially the proposed
GN-ODE model are quite successful in this task, and can thus serve as a promising approach
for the modeling of spreading processes on complex networks.

Overall, even though there exist mathematical models tailored to the specificities of
complex spreading phenomena, these models are usually analytically intractable. This is
more evident in the case of modern large-scale applications where large networks are involved
and simulation methods are inapplicable. In such settings, there is a need for approximate
techniques which can accurately predict the output of the mathematical models. In this
work, we have introduced and evaluated a neural network model that is robust and scalable
to large networks. The model employs prior knowledge in the form of a system of ODEs in
order to increase the correctness of the function approximation. Hence, the model can make
more accurate predictions and generalize well even with a small number of training examples.
We believe that the proposed model can serve as a useful addition to the list of traditional
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approximation approaches and motivate the further development of deep learning methods
for capturing the dynamics of physical systems.



7 DISCUSS ION

To conclude this thesis, we summarize our key findings and contributions. We also provide
further ideas for extensions and future research directions for robust DL modeling of time
series data.

the trap of loss functions and evaluation metrics. Regression problems
treated with deep neural networks are traditionally optimized under measures that capture
the deviation of predicted values from target values, e. g., MSE. Time series forecasting
falls in this category of problems, in the sense that observations xt 2 R and the goal is to
predict the future values xt+1:t+h for a specific horizon h. However, time series data often
face distortions due to flawed measuring devices as well as cyclical and seasonal patterns of
non-fixed periodicities, or lack of correlated variables and external knowledge that affect their
evolution. In this sense, optimizing under Lp norms, while a straightforward solution, tends
to overfit the data in the presence of noisy observations and abrupt changes. For instance,
MSE penalizes stronger predicted values that deviate significantly from the expected ones.
At the same time, the difference between the value of an observation and the value of the
previous observation might be small, since observations close in time are often close in
value. This makes MSE prone to learning to replicate past values for predictions [142]. The
need for measures alternatives to Lp norms has recently led to the development of new
differentiable loss functions, including differentiable variants of DTW [57, 178]. DTW-based
losses capture meaningful statistical properties of time series such as the shape but ignore
the temporal localization of changes. To tackle this, DILATE loss [149], combines soft-DTW
variant with penalized TDI. However, such measures require extra preprocessing steps to
become differentiable, while the time complexity of DTW variants becomes critical for large
subsequences,i. e., long-horizons in multi-step forecasting. At the same time, TDI is calculated
based on the DTW path, thus even DILATE loss remains sensitive to noise and scale of the
observations.

In the proposed MSE with a regularization term, as presented in Section 3.2, we aim to
tackle poor optimization when training with the standard MSE loss. Our proposed loss is a
straightforward and mathematically solid extension of MSE, that remains scalable for large
forecasting horizons. It also improves metrics among several real-world datasets including
noisy observations and fewer informative correlated variables. The evaluation metrics we
propose, e. g., accuracy of changes, highlight the need to capture shape rather than the point-
wise deviations solely. In future work, we also aim to identify and formally define the exact
properties (e. g., signal-to-noise ratio (SNR)) under which forecasting models are sensitive
to the introduced phenomenon of ‘mimicking’. At the same time, it would be interesting
to highlight similar phenomenons when optimizing forecasting models with probabilistic
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loss functions, following the work of [150] where the idea of DILATE loss is extended to
probabilistic forecasting.

Probabilistic forecasting, which is based on probabilistic loss functions, has shown po-
tential in datasets of several correlated variables that describe similar time series, e. g., the
Electricity dataset that contains the electricity consumption of hundreds of clients (employed
in experiments of Section 3.2 and Section 5.2). However, probabilistic forecasting models
can face challenges when dealing with data of complex dependencies and variables that
follow significantly different patterns. At the same time, selecting the appropriate probability
distribution to represent the uncertainty in forecasts can be challenging. Often, there is no
one-size-fits-all distribution, and the choice can impact the forecast quality.

To summarize, the field of time series forecasting lacks robust losses and evaluation metrics
that apply to different large and real-world time series datasets. While most studies adopt
MSE for training and evaluation purposes or task-specific metrics (e. g., profit for stock
prediction), following some unified training and evaluation principles for forecasting is crucial
for improved generalization to different datasets and interpretation of the quality of the
forecasts.

continuous models: transforming discrete approaches. Sequential
models like RNNs and CNNs have gained prominence in deep learning for time series data due
to their remarkable success in handling sequential data, e. g., text. However, the continuous
nature of time series data necessitates models that can capture temporal dependencies
and trends effectively, while modeling of discrete sequences, such as text data is more
concerned with understanding the context relationships between discrete elements (e. g., words
or characters). The discrepancy between the continuous nature of time series data and
discrete architectures becomes more challenging in terms of irregular sampling. In situations
characterized by fixed temporal intervals between observations, the conventional notational
framework of standard sequential modules (e. g., RNNs, CNNs) remains applicable. However,
this framework becomes inadequate when confronted with variable time intervals between
temporal observations. Continuous-time models like Neural ODEs [34, 132, 214] offer an
intuitively appealing approach by implicitly accounting for time. Nevertheless, their adoption
can be challenging due to their relatively high computational demands and sensitivity to
noisy data, limiting their scalability to large, real-world datasets. Meanwhile, state-of-the-art
methods for irregular sampling [31, 234] rely on RNNs, which face optimization challenges
when dealing with large time series inputs. This constraint could, for instance, restrict their
utility to tasks that prioritize short-term dependencies over long-range forecasting.

Our objective is to address the research gap in irregularly sampled time series modeling,
primarily dominated by RNN-based approaches, by extending conventional CNNs. In doing so,
we leverage the parallelization and fast training advantages inherent in CNNs, as presented
in Section 4.2. Notably, our proposed model, TPCNN, incorporates time functions that
facilitate the interpretation of series evolution, while enhancing its effectiveness. However,
it has demonstrated sensitivity to overfitting, which we attribute to the initialization of
the kernel relying on learnable time functions. Despite our comprehensive examination of
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parameter initialization methods for the convolutional kernel (explained in the Appendix A),
there remains room for improvement. To address this challenge, one could intend to explore
variational learning for the autoencoder component in the context of imputation. Additionally,
considering the substantial class imbalance in the datasets under study, training stability
could be enhanced by optimizing parameters jointly for the imputation and classification
tasks. Initial experiments with the variational autoencoder revealed that the model tends
to underfit during training. However, it appears that the sensitivity of kernel initialization
methods holds the key to enhancing this aspect.

Exploring the application of continuous-time models, that incorporate time information
implicitly and explicitly, to regularly sampled data can also be a worthwhile research
direction [129]. It offers the potential to leverage the benefits of continuous-time modeling,
such as capturing fine-grained dynamics, particularly when dealing with data of complex
temporal dependencies and patterns. Additionally, there is a growing interest in exploring
alternative methods to the dominant Neural ODEs model, that retain the advantages of
continuous-time modeling but are less computationally expensive.

quantizing continuity: discrete models for continuous data. In
contrast to the concept discussed in the preceding section, an intriguing avenue of investigation
involves the development of algorithms for discretizing time series data. This discretization
process can be founded upon inter-variable or inter-temporal dependencies within the data,
with the primary objective of extracting latent embeddings that can furnish a more abstract
input representation for deep neural networks. Such an abstraction facilitates enhanced
modeling, especially in scenarios characterized by noise, strong correlations among variables,
and long-term temporal dependencies. A direct and effective approach to creating a discrete
structure capable of capturing dependencies from time series involves the construction of
an underlying graph. Subsequently, neural networks like GNNs can be employed to process
and generate informative embeddings derived from these correlations, which can, in turn, be
harnessed for various subsequent tasks.

Nonetheless, there are several critical decisions to consider when applying the afore-
mentioned approach, including the method used for constructing the graph, the specific
GNN modules employed, and the choice of architecture for the subsequent tasks. Existing
approaches for the challenging task of time series forecasting [135, 227, 272], capture parame-
terized inter-variable correlation graphs in a differentiable way and optimize them jointly
with the forecasting module. In our novel approach, TimeGNN presented in Section 5.2, we
introduce nodes that represent individual time steps within subsequences of the multivariate
series, rather than nodes corresponding to the correlated variables. This deliberate choice
explicitly encourages the formation of dynamic temporal graph representations, aligning more
naturally with the sequential and chain-like nature of the series data [41, 42]. In contrast to
graph-based baseline methods, our approach relies solely on a straightforward spatial network
to extract information from the dynamically generated inter-temporal graphs, followed by a
feedforward network for forecasting from the produced embeddings. Our method performs
favorably compared to standard sequential approaches and, in certain cases, demonstrates
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performance that is closely competitive with state-of-the-art graph-based methods. At the
same time, it is significantly faster which is crucial for large time series datasets. Enhancing
the graph-based feature extraction by incorporating memory mechanisms between the un-
derlying dynamic graphs and extending to a more intricate forecasting architecture, while
keeping the framework computationally efficient, holds promise for future improvements on
TimeGNN.

In summary, the utilization of graph-structured learning in the context of time series, to
extract informative embeddings through GNNs, represents a nuanced yet highly intricate
approach to discretely model continuous data. Expanding upon this concept to address more
complex scenarios like irregularly sampled or noisy data, and subsequently evaluating these
methods for tasks like data generation, remains a relatively underexplored area of research
with great potential.

deciphering the significance of prior knowledge. Understanding the
role of prior knowledge in time series modeling is of paramount importance in various domains,
ranging from economics to natural sciences. One compelling example of this significance
lies in the domain of physics-based knowledge for dynamical systems. In this context, the
incorporation of prior knowledge about the underlying dynamics of a system can substantially
enhance the predictive performance of time series models. Using known physical laws to
constrain the modeling process provides valuable constraints and insights that help improve
model accuracy, especially in cases where data may be limited or noisy.

Following this idea in Section 6.2, we study a particular case of a dynamical system and
more specifically epidemic spreading on networks of contacts under the SIR compartmental
model. A data-driven approach for modeling epidemic spreading, exemplified by the analysis
of COVID-19 data, has become increasingly prevalent [191]. However, relying solely on
historical data without incorporating any prior knowledge or constraints related to the
spreading process can pose challenges. In such cases, the robustness of the applied method
may be compromised, potentially limiting its ability to generalize effectively to unseen data,
especially when trained on relatively small datasets. Therefore, we introduce GN-ODE, a
continuous-time model for epidemic spreading on networks, based on message-passing Neural
ODEs for the SIR model. In our research, we introduce innovative experimental configurations
to evaluate the performance of GN-ODE. These setups involve out-of-distribution evaluations,
where we vary infection hyperparameter rates in the test set to simulate different epidemic
settings. Additionally, we assess GN-ODE’s effectiveness by testing it on networks that
were not part of its training data. These experiments provide valuable insights into the
model’s robustness and its ability to generalize to diverse epidemic scenarios and network
structures. Our experimental results strongly affirm the substantial impact of incorporating
prior knowledge about the dynamical system that underlies time series data.

To conclude, dynamical systems, as a subset of time series data, require a thoughtful
approach that incorporates the underlying governing laws to derive meaningful predictions.
Moreover, many time series datasets, typically constructed from historical observations, may
adhere to underlying principles that are not fully captured by the temporal data alone. For
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instance, stock prices are influenced by various factors including stock market trends, news
events, and more. While deep learning, with its flexibility and data-driven approach, is often
employed as a versatile tool for modeling time series data, it can fall short when dealing
with datasets lacking prior or external knowledge about the underlying dynamics, resulting
in poor generalization performance. Identifying whether benchmark datasets necessitate
additional information or prior knowledge for specific applications represents a critical area
for experimental exploration. Such an approach holds the potential to enable researchers
and practitioners to perform thorough comparisons and evaluations of various deep learning
models using standardized benchmark datasets across diverse applications.

unlocking the future: deep learning for time series ahead. Except
for the aforementioned future ideas for increasing time series models’ robustness, recent DL

modeling techniques motivate several research directions for effectively capturing meaningful
representations. Following the recent advances in text pre-trained embeddings and large
language models (LLMs) [21, 202], the large amount of publicly available time series datasets
describing different temporal phenomena currently motivates the development of large
pre-trained models for their subsequent applications. Several research works have focused
on extracting embeddings for time series using autoencoders. The concept of pre-training
has been introduced in time series forecasting for weight initialization of the forecasting
architecture by employing an LSTM Autoencoder (AE) [215]. In time series generation,
architectures based on Generative Adversarial Networks (GANs) [183, 280], probabilistic
variants [71, 119] and masked autoencoders [293] have been proposed. However, contrary to
Natural Language Processing (NLP) and text modeling, generative time series architectures
are evaluated on the performance of the generated data on downstream tasks rather than the
quality of the learnable latent embeddings of the autoencoders. Additionally, transformer-
based architectures (i. e., using attention modules) that are the most dominant architectures
in NLP, have not been adequately explored for time series pre-training and generation.

As already mentioned, time series statistical properties and their acquisition process pose
significant challenges to the robustness of deep neural network architectures when applied
to raw data. Since time series are affected by distortions (as presented in Section 2.3.1),
investigating various types of distortions and their effects on different facets of representational
learning is crucial. Such distortions, except for being explicitly modeled by neural networks
based on their design or the employed loss function, can be incorporated as perturbations
in the input to enhance pre-training in an autoencoder fashion, similar to text pre-training
denoising autoencoder techniques [200] (e. g., token masking, sentence permutation). Recently,
there has been a notable expansion of diffusion models [240] into various applications related
to time series data, encompassing tasks such as time series forecasting [157, 207] and
imputation [2, 166]. Diffusion models are a class of probabilistic generative models that
estimate data distributions through a process of iteratively transforming and diffusing data
points to generate new samples from the underlying distribution. Since diffusion models
incorporate stochasticity and noise in their generative process, they are suitable for capturing
and simulating the continuous, dynamic patterns and irregularities often found in various time
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series applications. However, while their application on time series data for extracting robust
representations remains limited and computationally expensive, there exists significant room
for future contributions (e. g., application to time series generation, pre-trained embeddings).

Inspired by the ideas of invariant and equivariant transformations for images [50], sets [291]
and some recent works in time series [53], another research direction for time series embeddings
could focus on learning invariant or equivariant representations for a specific set of input
perturbations for pre-training. Such networks can directly learn to map distortions to the
input to the same or similar representations, based on the type of distortion, during training.
A possible research direction is towards the development of denoising autoencoders [250]
that handle time series perturbations explicitly via equivariant neural networks, which
constitutes a novel work in the field of time series. In a relevant research direction, several
studies have focused on contrastive learning for time series. Contrastive learning is a self-
supervised deep learning technique [187] with no explicit labels, that aims to learn useful
representations by contrasting similar and dissimilar pairs of data, thereby enabling the
model to capture meaningful patterns and features within the data. Contrastive pre-training
has been applied among time-based and frequency-based representations evaluated for
time series classification [297] and among trend and seasonal representations evaluated
for forecasting [267]. A more unified representational approach [290], performs contrastive
learning in a hierarchical way over augmented context views (i. e., by timestamp masking and
random cropping of the input series) and is evaluated on time series classification, forecasting
and anomaly detection. However, relevant works in contrastive learning for time series follow
different augmentation and consistency strategies to define positive and negative pairs and
their evaluation is limited to a few specific datasets and downstream tasks. Challenging
the capabilities of pre-training models on larger and more complex datasets (e. g., including
irregular sampling, noise and long-term dependencies) and defining versatile evaluation
metrics or tasks for the extracted representation is still an open field for experimentation
and research.

The use of large pre-trained embeddings and universal representation methods has the
potential to revolutionize the field of time series by enabling more accurate and efficient
modeling of complex patterns and unlocking new insights from the data, that were previously
unattainable. Moreover, pre-trained embeddings can provide a solid foundation for transfer
learning and domain adaptation, enabling these models to be applied to new, previously
unseen domains and accelerate the development of novel time series applications.

conclusion. In conclusion, this thesis has systematically examined prominent challenges
in robust deep learning modeling of time series data. By addressing a wide range of distortions
and complexities inherent in time series data, our contributions have introduced novel
techniques and architectures that enhance the generalization and employment of deep neural
networks across diverse time series tasks. The potential for future research in this field
is significant, as the demand for robust models capable of handling noisy, irregular, and
high-dimensional time series data continues to grow. Further exploration could focus on
advancing the interpretability of deep learning models, integrating domain-specific knowledge,
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and harnessing cutting-edge generative models. Moreover, optimizing and scaling these
models to accommodate increasingly large datasets is essential for real-world applications. In
summary, the future of robust deep learning for time series holds great promise, with ongoing
developments poised to contribute substantially to the progress of scientific and engineering
fields, as well as industrial applications involving real-world time series data.
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A APPENDIX

a.1 neural odes for epidemic spreading - additional results & for-
mulations

a.1.1 Individual-based SIR Model

We next give more details about the considered individual-based SIR model. We consider a
system Γ. In our setting, Γ corresponds to a complex epidemiological system, i. e., the SIR
epidemiological model. There are 3n different states in total (where n denotes the number of
nodes of the network) and each state is denoted by Γ

↵ where ↵ 2 {1, 2, . . . , 3n}. Then, the
probability P (Γ = ↵) that the system is in state Γ

↵ is given by the master equations:

dP (Γ = Γ
↵)

dt
=

3n
X

�=1

h

R�↵ P (Γ = Γ
�)�R↵� P (Γ = Γ

↵)
i

where R�↵ denotes the transition rate from state Γ
� to state Γ

↵. By solving these equations,
we can obtain the complete evolution of the probabilities of the states of the stochastic
system Γ. However, solving these equations is only feasible for very small networks.

We suppose that within the system Γ, there exist well-defined smaller systems (i. e., sub-
systems). Such a set of subsystems is formed by the individuals themselves. Let P (Xi = S)
denote the probability that node vi is susceptible, P (Xj = I\Xi = S) denotes the probability
that node vj is infectious and node vi is susceptible. Probabilities and joint probabilities
for the other states are defined in a similar manner. Then, the following system is an exact
description of node probability dynamics for an SIR model on a network:

dP (Xi = S)

dt
= ��

n
X

j=1

AijP (Xj = I \Xi = S)

dP (Xi = I)

dt
= �

n
X

j=1

AijP (Xj = I \Xi = S)� �P (Xi = I)

dP (Xi = R)

dt
= �P (Xi = I)

The above system is indeed exact, i. e., it gives the exact evolution of the probabilities of being
susceptible, infectious or recovered during an epidemic. Unfortunately, it is not closed and
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thus, has no solution. We can obtain a closed system if we assume statistical independence
in the states of individuals:

dP (Xi = S)

dt
= ��

n
X

j=1

AijP (Xj = I)P (Xi = S)

dP (Xi = I)

dt
= �

n
X

j=1

AijP (Xj = I)P (Xi = S)� �P (Xi = I)

dP (Xi = R)

dt
= �P (Xi = I)

The above approximate set of equations (from which our model is inspired) focuses on
an individual level and can be employed to evaluate the evolution of complex epidemics
on networks of individuals. The accuracy of the above system depends on how much the
independence assumption used to derive it holds in practice. Previous studies have shown that
the above system is less accurate than more complex models (e. g., pair-based models) [229].
Roughly speaking, the proposed approach uses a neural network architecture to refine the
output of the above system.

a.1.2 Comparison against System of ODEs

The system of ODEs of Equation 6.3, which motivated the proposed GN-ODE model, can
also be used to predict the spread of epidemics of networks as a function of time. More
specifically, by solving the system for some initial values s(0), i(0), r(0) 2 R

n, we can obtain
for each time step t a set of vectors Ŝ(t), Î(t), R̂(t) 2 R

n that describe the nodes’ states. Note
that no trainable parameters are involved in this system. We compare in Table A.1 the
proposed GN-ODE model against the solution of the system of Equation 6.3. To solve the
system, we utilized the ODE-RK method. ODE-RK follows the implementation of the SciPy
package1 and solves the fixed system of ODEs with a Runge-Kutta solver of order 5(4) [79].
The results reported in Table A.1 highlight the poor performance of the approximate system
when the representations that emerge at the different iterations of the solver are not refined
by a neural network model. We can observe that for all datasets, the fixed system fails to
capture the dynamics of the SIR process since it performs significantly worse compared to
GN-ODE, and the rest of the methods of Figure 6.4.

a.1.3 Visualization of the Spreading Process

We provide a visualization of the evolution of the diffusion process on the karate dataset
in Figure A.1. The results correspond to the experimental setting of Section 6.2.3.3 and
within distribution hyperparameter selection. More specifically, we illustrate the probabilities
of infection (i. e., probability of a node being in state I) for all the nodes of the network,

1 https://docs.scipy.org/doc/scipy/reference/integrate.html
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Table A.1: Mean absolute error achieved by GN-ODE and simple fixed ODE system with Runge-
Kutta solver, ODE-RK, on the test set of datasets consisting of instances of a single
network structure. The values of � and � for the different network instances are sampled
randomly.

Dataset
MODELS

ODE-RK GN-ODE

karate 0.09608 0.05631 ± 0.00062

dolphins 0.10653 0.01527 ± 0.00049

fb-food 0.19109 0.01924 ± 0.00111

fb-social 0.11061 0.01089 ± 0.00102

openflights 0.16087 0.02000 ± 0.00145

Wiki-Vote 0.12287 0.04173 ± 0.00287

Enron 0.16572 0.04885 ± 0.00125

Epinions 0.15917 0.05915 ± 0.00224

starting from a fixed initial set of infected nodes and fixed values of the transmission � and
recovery � rates, for several subsequent time steps (t = 4, t = 8 and t = 12). We compare
the predictions obtained by applying the proposed GN-ODE model against the ground
truth probabilities extracted via Monte-Carlo simulations on the test set. The color bars
on the right demonstrate the ranges of the probability of infection per time step, with dark
red and blue indicating the highest and lowest probabilities respectively. Not surprisingly,
based on the low score in Figure 6.4a, it is clearly observed that the proposed GN-ODE
architecture gives highly accurate predictions in comparison to the probabilities that emerge
from the Monte-Carlo simulations. Due to the small size of the considered network, we notice
that within a few time steps, many nodes become infected. In contrast, others obtain low
probabilities of infection, probably by transitioning to the recovered set.

a.1.4 Out of Distribution Generalization - Complementary Figures

We provide complementary results in Figure A.2 for the out of distribution performance of
the different methods for each dataset and different values of parameters �, �. These results
complement those of Figure 6.6 and Figure 6.7. The results show the error of the considered
approaches for different instances of each dataset, including samples outside of the ranges of
the parameters � or � in the training set. Following the observations made for Figure 6.6
and Figure 6.7, in the plots for each dataset and the remaining out of distribution parameters
� or � in Figure A.2, the proposed GN-ODE method seems to have comparatively more
robust performance when generalizing to unseen data compared to the other GNN models.
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t = 0
Monte-Carlo GN-ODE

t = 4

t = 8

t = 12

Figure A.1: Visualization of the evolution of infection over time on the karate dataset. Given the
initially infected nodes (with red at t = 0), we compare the predictions (probability that
a node is in state I) of the proposed GN-ODE model (right) against the ground truth
probabilities obtained through Monte-Carlo simulations (left).
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(a) (karate) Out of distribution β values (b) (dolphins) Out of distribution γ values

(c) (fb-food) Out of distribution β values (d) (fb-social) Out of distribution γ values

(e) (openflights) Out of distribution β values (f) (Wiki-vote) Out of distribution γ values

(g) (Epinions) Out of distribution β values (h) (Enron) Out of distribution γ values

Figure A.2: Mean absolute error (lower is better) achieved by the different approaches on each test
sample (i. e., network) of a given dataset. Each figure is associated with one dataset
and one parameter (� or �). The out of distribution generalization performance of the
different methods is evaluated. Complementary figures for each dataset and the out of
distribution parameter (� or �) are shown in Figure 6.6 and Figure 6.7.
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a.2 time-parameterized cnns - additional results & specifications

a.2.1 Experimental Details

hyperparameter tuning. To identify the optimal set of hyperparameters for each
deep neural network architecture, we conducted a comprehensive grid search across specified
parameter ranges. Our selection process defined the combinations that yielded the minimum
error on the validation dataset. The hyperparameters subjected to grid search included
the learning rate, drawn from the set {0.0001, 0.001, 0.01}, the batch size, taken from
{16, 32, 64, 128, 256, 512}, and the hidden dimension size for the trainable layers, chosen from
{16, 32, 64, 128, 256}. From the set of the time functions defined for the parameterization of
the proposed TPC layer, we tested all different combinations for employing up to 2, 4 and 8
functions simultaneously as well as each single time function alone. For the kernel sizes of the
proposed TPC layer, we tested the following set of lengths {3, 6, 9, 15, 25}, whereas for the
stacked vanilla convolutions we selected sizes from {2, 4, 8}. The deep learning framework
utilized for the development of the code and the experimental evaluation is the PyTorch
library [195]. Experiments were conducted on a single GPU, specifically an NVidia Quadro
RTX 6000. Each architecture underwent training for up to 300 epochs, while early stopping
was enabled in the case that the validation loss was not improved for 20 epochs. To generate
predictions, we employed the model that exhibited the lowest loss on the validation dataset.

The final set of hyperparameters for interpolation on PhysioNet includes a batch size equal
to 32, hidden size for the TPC layer equal to 128, a kernel size equal to 25 parameterized by
the exp(·) time function, while the model was trained for 300 epochs with learning rate 0.001.
For the classification task on PhysioNet, the obtained results correspond to the optimal
parameters of batch size 64, hidden size 128 for each time function, kernel size 3 for the TPC
layer, and the {sin(·), cos(·), lin(·), exp(·)} time functions for its parameterization. We employ
two stacked vanilla convolutions after the TPC layer of the same hidden dimensionality
and kernel size 2, while we use 3 max pooling layers after each convolution (with kernel 8
and stride 4 for the first, kernel 2 and stride 2 for the last two). The hyperparameters are
similar for classification on MIMIC-III but with batch size equal to 512, hidden size equal
to 256 and the exp(·) time function. Models for both datasets are trained for up to 200
epochs with early stopping and a learning rate equal to 0.0001. A final fully-connected layer
maps the representation to a hidden dimension of 64 and the final classifier is a multi-layer
perceptron with a hidden dimension of 300. Similarly for the classification of the Human
Activity dataset, we chose a batch size of 256 and hidden size 64 for each time function in
the set of {sin(·), cos(·), lin(·), exp(·)}. For this dataset, we use three average pooling layers,
one after each convolution, with kernel 4 and stride 4 for the first, kernel 2 and stride 2 for
the last two. The rest hyperparameters are the same as for the other two datasets. For both
classification and interpolation, each convolutional or fully-connected layer is followed by
a Leaky ReLU non-linear activation function, except for the final fully-connected layer. In
the case of classification, the last penultimate fully-connected layer is followed by a ReLU
activation function.
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weight initialization for the tpc layer. An important aspect of the fast
convergence and smooth training of the proposed architecture is the weight initialization
methods applied to the weights of the TPC layer. The trainable weights ✓1 and ✓3 for
each input dimension m and output dimension p are initialized using the kaiming uniform
distribution [107] with a negative slope equal to 10 and the Leaky ReLU non-linearity. The
bias terms ✓2, ✓3 are initialized with uniform distribution in the range (� 1p

m
, 1p

m
).

a.2.2 Experiments on synthetic data.

Following the line of work of [234], we reproduce their synthetic sinusoidal dataset that consists
of 1000 samples, each describing a time series of 100 time points where t 2 [0, 1]. Given 10
reference points, an RBF kernel with bandwidth 100 is used to obtain local interpolations at
the 100 time steps. For each sample, 20 time points are randomly selected so as to represent
an irregularly spaced series. A split of 80% and 20% extracts the respective train and test sets.
We employ the encoder-decoder interpolation framework of Figure 4.1 (Right). Contrary to
the interpolation setting for PhysioNet, we give as input the 20 irregular time steps, without
the missing points, and reconstruct each observation based on the rest using TPCNN with
the functions h2(x) = sin(x) (blue points) and h5(x) = exp(x) (green points). We visualize
the obtained reconstructions for 3 samples of the test set in Figure A.3. Each plot consists of
the true values (ground truth) for a test sample, while the dark markers represent the 20
observed input data points (observed data), the blue markers and the green markers the 20
predicted values (reconstruction) using sin(·) and exp(·) functions respectively. By employing
the function h2(x) = sin(x), we are able to achieve a lower MSE loss compared to the ones
achieved with the rest of the time functions defined in Section 4.2.3.2. We should mention
here that in case domain knowledge is available, it can be incorporated into the proposed
TPCNN method via the employed time function, which is likely to lead to performance
improvements.

Figure A.3: Reconstruction results using the proposed TPCNN model on the synthetic dataset. Three
different samples of the test set are visualized.
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Résumé : Les données de séries temporelles sont

abondantes dans divers domaines, notamment la fi-

nance, l’énergie et les réseaux sociaux. L’extraction

de connaissances à partir des séries temporelles,

pour effectuer des tâches ultérieures telles que la

prévision, l’interpolation et la classification, est donc

devenue essentielle dans plusieurs domaines scien-

tifiques et industriels. Les modèles d’apprentissage

profond (DL), se sont révélés être des outils puis-

sants dans diverses applications de données, car ils

fournissent des méthodes flexibles pour l’extraction

de connaissances et peuvent facilement apprendre à

partir de sources de données multiples. Cependant,

les modèles d’apprentissage profond nécessitent

généralement de grands ensembles de données pour

une meilleure généralisation et manquent souvent

d’interprétabilité, de sorte que leur application indus-

trielle reste limitée.

En ce qui concerne plus particulièrement la

modélisation des séries temporelles, l’adaptabilité

des réseaux neuronaux à la dynamique à temps

continu de ces données reste une question ouverte.

Pour combler cette lacune, il est essentiel d’évaluer

systématiquement l’efficacité des architectures de

DL en fonction de diverses caractéristiques et dis-

torsions des séries temporelles, telles que le bruit,

l’échantillonnage irrégulier, les fortes corrélations
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Nos contributions comprennent le développement
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chitectures neuronales, par ex. CNNs, pour un

échantillonnage irrégulier, et la création d’algorithmes

capables de capturer des dépendances temporelles
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données spatio-temporelles et aux systèmes dyna-
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Abstract : Time series data is abundant in various

fields including finance, energy, and social networks.

Extracting knowledge from time series, to perform

subsequent tasks such as forecasting, interpolation,

and classification, has therefore become essential in

several scientific and industrial domains. Deep Lear-

ning (DL) models, have emerged as powerful tools in

various data applications since they provide flexible

methods for knowledge extraction and can easily

learn from multiple sources of data. However, DL mo-

dels typically require large datasets for improved ge-

neralization and often lack interpretability, thus their

industrial application remains limited.

Specifically for time series modeling, the adaptability

of neural networks to the continuous-time dynamics

of such data remains an open question. To bridge this

gap, systematically assessing the effectiveness of DL

architectures under diverse time series characteris-

tics and distortions, such as noise, irregular sampling,

strong inter-variable and inter-temporal correlations

and prior knowledge, is crucial. The current study criti-

cally evaluates the performance of existing DL models

across these challenges and proposes new modeling

approaches.

Our contributions include the development of robust

loss functions, the adaptation of neural architectures,

e.g., CNNs, for irregular sampling, and the creation

of algorithms capable of capturing intricate temporal

and inter-variable dependencies. The application ex-

tends to spatio-temporal data and dynamic systems,

integrating physics-informed models.

In conclusion, the thesis provides a comprehen-

sive examination of cutting-edge deep learning ap-

proaches for time series modeling, revealing limita-

tions, proposing novel contributions, and outlining fu-

ture directions, including the exploration of generative

modeling, to significantly enhance the robustness of

neural and automatic modeling for time series data.
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