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Abstract

The reduction of CO2 emission into the atmosphere is mandatory to achieve
ecological transition. CO2 geological storage is an essential instrument for
efficient Carbon Capture and Storage (CCS) policies.

Numerical simulations provide the solution to the multi-phase flow equations
that model the behavior of the CO2 injection site. They are an important
tool to decide either or not to exploit a potential carbon storage site and to
monitor the operations (potential gas leakage, optimal positioning of CO2

injection wells, etc.).

However, numerical simulations of fluid flow in porous media are computa-
tionally demanding: it can take up to several hours on a HPC cluster in
order to simulate one injection scenario for a large CO2 reservoir if we want
to accurately model the complex physical processes involved.

More specifically, well events (opening and closure) cause important numeri-
cal difficulties due to their instant impact on the system. This often forces a
drastic reduction of the time step size to be able to solve the non-linear system
of equations resulting from the discretization of the continuous mathematical
model. However, these specific well events in a simulation are relatively sim-
ilar across space and time: the degree of similarity between two well events
depends on a few parameters such as the injection condition, the state of
the reservoir at the time of the event, the boundary conditions or the porous
media parameters (permeability and porosity) around each well.

Recent interest in machine learning applied to the prediction of physical
processes has fueled the development of ”Physics Informed Deep Learning”,
where machine learning models either replace or complement traditional nu-
merical algorithms while preserving the inherent constraints from the physical
model.
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Therefore, the objective of this thesis is to adapt recent advances in physics
informed deep learning in order to alleviate the impact of well events in
the numerical simulation of multiphase flow in porous media. Our main
contributions are separated in three parts.

In the first part, we replace the traditional numerical solver with a machine-
learning model. We demonstrate the feasibility of learning parameter-to-
solution operators for partial differential equation problems. However, when
utilizing the machine-learning model for time iteration, we observe that the
predicted solution diverges from the true solution.

Consequently, in the second part, we use an hybrid approach that comple-
ments the traditional non-linear solver with a machine-learning model while
preserving numerical guarantees. In practice, we utilize and tailor to our
purpose the hybrid Newton methodology, which involves predicting a global
initialization for Newton’s method closer to the solution than the standard
one. We use the state-of-the-art Fourier Neural Operator machine-learning
model as a predictive model. Our methodology is applied to two test cases
and exhibits promising results by reducing up to 54% the number of Newton
iterations compared to a reference method.

In the last part, we apply the hybrid Newton methodology to predict an
initialization in the near-well region, where the main variations of CO2 sat-
urations occur. We investigate the impact of the local domain size and then
demonstrate, for a 1D case, that it is possible to learn a local initialization for
any well location. Then, we apply this local approach to a 2D case and com-
pare the performances between the hybrid Newton strategy and a Domain
Decomposition-inspired strategy. We speed up the handling of well events
by around 45% in terms of Newton iterations.
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Résumé
La réduction des émissions de CO2 dans l’atmosphère est primordiale afin
d’accomplir la transition écologique. Le stockage géologique du CO2 est
un instrument essentiel parmi les stratégies de capture et de stockage du
CO2.

Les simulations numériques fournissent la solution aux équations de l’écou-
lement multiphasique qui modélisent le comportement du site d’injection de
CO2. Elles constituent un outil essentiel pour décider de l’exploitation ou
non d’un site potentiel de stockage de CO2.

Cependant, les simulations numériques d’écoulement en milieu poreux sont
exigeantes en termes de calcul : il peut falloir plusieurs heures sur un clus-
ter HPC pour simuler un scénario d’injection pour un grand réservoir de
CO2 afin de modéliser avec précision les processus physiques complexes im-
pliqués.

En particulier, les événements liés aux puits (ouvertures et fermetures) posent
d’importantes difficultés numériques en raison de leurs impacts immédiat sur
le système. Cela force souvent une réduction drastique de la taille du pas
de temps afin de résoudre le système d’équations non-linéaires résultant de
la discrétisation du modèle mathématique continu. Cependant, ces événe-
ments spécifiques liés aux puits sont relativement similaires dans l’espace et
le temps : le degré de similitude entre deux événements de puits dépend de
quelques paramètres tels que le débit d’injection, l’état du réservoir au mo-
ment de l’événement, les conditions aux limites ou les paramètres du milieu
poreux (perméabilité et porosité) autour de chaque puits.

L’intérêt récent pour l’application de l’apprentissage automatique à la pré-
diction des processus physiques a stimulé le développement de la ”Physics
Informed Deep Learning” (PIDL), où les modèles d’apprentissage automa-
tique remplacent ou complètent les algorithmes numériques traditionnels tout
en préservant les contraintes inhérentes au modèle physique.

Par conséquent, l’objectif de cette thèse est d’adapter les avancées récentes en
PIDL afin de réduire l’impact des événements de puits dans la simulation nu-
mérique des écoulements multiphasiques en milieux poreux. Nos principales
contributions sont divisées en trois parties.

Dans la première partie, nous remplaçons le solveur numérique traditionnel
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par un modèle d’apprentissage automatique. Nous montrons qu’il semble pos-
sible d’apprendre des opérateurs ’parameter-to-solution’ pour les problèmes
d’équations aux dérivées partielles. Cependant, lorsque nous utilisons le mo-
dèle d’apprentissage automatique afin d’itérer en temps, la solution prédite
s’éloigne de la solution réelle.

De ce fait, dans la deuxième partie, nous utilisons une approche hybride, qui
complète le solveur non-linéaire traditionnel avec un modèle d’apprentissage
automatique, tout en préservant les garanties numériques. En pratique, nous
utilisons la méthode de Newton hybride, qui consiste à prédire une initia-
lisation globale pour la méthode de Newton plus proche de la solution que
l’initialisation standard. Le Fourier Neural Operator est utilisé comme mo-
dèle prédictif. Notre méthodologie est appliquée à deux cas tests et présente
des résultats prometteurs en réduisant jusqu’à 54% le nombre d’itérations de
Newton par rapport à une méthode de référence.

Dans la dernière partie, nous appliquons la méthode de Newton hybride pour
prédire une initialisation dans la région proche du puits, où se situent les
principales variations de saturations en CO2. Nous étudions d’abord l’impact
de la taille du domaine local et démontrons ensuite, sur un cas 1D, qu’il
est possible d’apprendre une initialisation locale précise pour n’importe quel
emplacement de puits. Nous appliquons ensuite cette approche locale à un
cas 2D et comparons les performances entre la stratégie hybride de Newton
et une stratégie inspirée de la décomposition de domaine. Nous accélérons
la gestion des événements de puits d’environ 45% en termes d’itérations de
Newton.
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1.1 Context and Motivations
The reduction of CO2 emission into the atmosphere is mandatory to achieve
ecological transition. CO2 geological storage is an essential instrument for
efficient Carbon Capture and Storage (CCS) policies. According to the Inter-
national Agency Energy’s 2017 report, we must sequester 940 Megatonnes of
CO2 (MtCO2) through CCS by 2060 to limit global warming to 2 degrees [2].
In 2020, there were 21 Carbon Capture, Utilisation and Storage facilities with
the capacity to store up to 40MtCO2 annually [3]. Among these 21 facilities,
only 5 sites -Sleipner, Snøhvit, Quest, IllinoisBasin, and Gorgon- are dedi-
cated to geological CO2 storage, accounting for approximately 7MtCO2/year
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[3]. The primary storage type for the other sites is for Enhanced Oil Recov-
ery (EOR), which involves injecting CO2 into an oil reservoir to increase oil
production. This is one the most common applications of CO2 utilisation.
In the context of CCS, the underground geological storage of carbon dioxide
(CO2) in offshore deep saline aquifers is being explored to reduce greenhouse
gases emissions. This method accounts for approximately 80% of the the-
oretical global capacity storage, which is estimated at 10, 000 gigatonnes of
CO2 according to the Sixth assessment report of the Intergovernmental Panel
on Climate Change [1]. There are three main types of subsurface reservoirs
considered for CO2 geological storage : depleted oil and gas fields, unminable
coal beds and deep saline aquifers, as depicted on figure 1.1.

Figure 1.1: Possible natural reservoirs for CO2 storage from earth sciences
society [11]

Carbon dioxide injection in the underground has two main impacts: the
near-field impact due to the upward vertical migration of free-phase CO2 to
superficial aquifers, and the far-field impact caused by large-scale displace-
ment of formation waters by the injected CO2 [30]. Potential leaks of free
phase CO2 exist along abandoned or active wells (see figure 1.2) and through
the caprock when the entry pressure is reached and when fractures or faults
are open for flow, naturally or because of excessive injection pressure build-up
[30].

Numerical simulations provide the solution to the multi-phase flow equations
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Figure 1.2: Schematic showing the two different regions of influence associ-
ated to CO2 storage in saline aquifers. The footprint area of the carbon diox-
ide plume leaking in superficial aquifers is defined as the near-field. The foot-
print area of elevated pressure, updip formation water flow and brine (highly
saline groundwater) leakage into shallow units across abandoned boreholes
are defined as the far-field. From [30].

that model the behavior of the CO2 injection site. They are an important
tool to decide either or not to exploit a potential carbon storage site and
to monitor the operations (long term storage of injected CO2, potential gas
leakage, optimal positioning of CO2 injection wells, etc.).

However, numerical simulations of fluid flow in porous media are computa-
tionally demanding : it can take up to several hours on a HPC cluster in
order to simulate one injection scenario for a large CO2 reservoir if we want
to accurately model the complex physical processes involved. This becomes
a limiting issue when performing a large number of simulations, e.g. in the
process of ”history matching” : in order to fit the various model parame-
ters to match the available historical data, a large number of simulations
corresponding to various parameter sets needs to be performed.

More specifically, well events (opening and closure) cause important numeri-
cal difficulties due to their instant impact on the system. This often forces a
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drastic reduction of the time step size to be able to solve the non-linear system
of equations resulting from the discretization of the continuous mathematical
model. However, these specific well events in a simulation are relatively sim-
ilar across space and time : the degree of similarity between two well events
depends on a few parameters such as the injection condition, the state of
the reservoir at the time of the event, the boundary conditions or the porous
media parameters (permeability and porosity) around each well.

Recent interest in machine learning applied to the prediction of physical
processes has fueled the development of ”Physics Informed Deep Learning”,
where machine learning models either replace or complement traditional nu-
merical algorithms while preserving the inherent constraints from the phys-
ical model. These models can be trained in a supervised or unsupervised
manner. In supervised learning, the objective is to match the labeled data
available from experiment or previous simulations. In unsupervised learning,
no labeled data is available and the objective is simply to directly enforce
physical constraints, e.g. by minimizing the residual of the partial differential
equations describing the evolution of the solution, by penalizing deviations
to mass conservation, etc.

Therefore, the objective of this thesis is to adapt recent advances in physics
informed deep learning in order to alleviate the impact of well events in the
numerical simulation of multiphase flow in porous media.

1.2 State of the art of Physics Informed Deep
Learning

Physics Informed Deep Learning (PIDL) is an emerging field of research
that aims to combine the strengths of both physics-based modeling and deep
learning to improve the accuracy and efficiency of prediction models. PIDL
seeks to integrate domain-specific knowledge from physics or other sciences
into deep learning models to enhance their performance and interpretabil-
ity.

In the current literature, there is a lack of consensus regarding the terminol-
ogy used to describe the integration of prior knowledge of a physical phe-
nomenon with deep learning. Terms such as ’physics-informed,’ ’physics-
based,’ ’physics-guided,’ and ’theory-guided’ are commonly employed. In
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order to address this issue, [24] have devised a comprehensive taxonomy
termed ’informed deep learning.’ The taxonomy is structured around three
fundamental conceptual stages: (i) the type of deep neural network utilized,
(ii) the representation of physical knowledge, and (iii) the manner in which
physical information is integrated.

In traditional deep learning, data-driven models are trained on large datasets
to learn complex patterns and relationships in the data. However, these mod-
els may not be able to incorporate prior knowledge of physical laws or con-
straints, making them less suitable for tasks that require physical reasoning.
In contrast, physics-based models are built on physical principles and laws,
but they may lack the flexibility to capture complex and possibly unknown
nonlinear relationships in the data.

PIDL seeks to address these limitations by integrating physics-based knowl-
edge into deep learning models. This is typically achieved by incorporating
physical constraints or equations into the loss function of a deep learning
model. By doing so, the model can learn to satisfy both the data-driven
constraints and the physical laws, leading to more accurate and physically
meaningful predictions. There are three main approaches: i) add physical
constraints, ii) design specific neural architectures for physical problems, iii)
hybrid approaches mixing neural networks and traditional numerical meth-
ods for physical problems.

Regarding the approach i) add physical constraints, it is possible to add ’soft’
or ’hard’ constraints. An example of soft constraint is including the residual
of a PDE in the objective function of a deep learning model while an example
of hard constraint is enforcing the the initial and boundary conditions directly
in neural network construction. We detail those two specific methodologies
in the 1.2.1 section.

PIDL has applications in a wide range of fields, including fluid dynamics, ma-
terials science, robotics, and geosciences, among others. It has the potential
to significantly improve the accuracy and efficiency of modeling tasks that
require both physical reasoning and complex nonlinear relationships. We
present a few examples and references from the flourishing literature.

• Fluid Dynamics: PIDL has been applied to the simulation of fluid
dynamics problems, such as predicting fluid flow behavior around ob-
stacles [69] or designing optimal flow control strategies [45].
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• Materials Science: PIDL has been used to design new materials with
desired properties. By integrating physical principles into deep learning
models, PIDL helps predicting material properties such as strength,
conductivity, and elasticity, which can be used to optimize material
design and discovery [63].

• Robotics: PIDL has been applied to the control of robotic systems, such
as predicting the motion of robotic arms or improving the stability of
walking robots. By incorporating physical constraints such as energy
conservation or force balance into deep learning models, PIDL can im-
prove the performance of robotic systems while reducing the need for
extensive training data [62] [23].

• Geosciences: PIDL has been used to predict and analyze geophysical
phenomena such as earthquakes [37], climate change [16] [43], and ocean
currents [12][20]. By integrating physical models into deep learning
models, researchers can improve the accuracy of predictions and gain
new insights into complex systems.

The straightforward and popular theoretical application of PIDL are Physics
Informed Neural Networks.

1.2.1 Physics Informed Neural Network

1.2.1.1 Neural Network Reminder: Multi-layer perceptron

A perceptron, also referred to as a neuron [48] serves as the foundational
and simplest model within the realm of deep learning. Figure 1.3 depicts
an illustration of a perceptron’s architecture. In this context, x ∈ Rd is the
input vector, the vector w = (w1, . . . , wd) symbolizes the weights, b represents
the bias and σ stands for a nonlinear (more precisely a non polynomial,
see Theorem 1 below) and monotonous function known as the activation
function.

Activation functions play a pivotal role in neural networks and continue to
stand out as one of the most crucial components responsible for the remark-
able success of Deep Neural Networks (DNNs) [10]. They serve the vital
function of introducing nonlinearity into the model, thus enabling the net-
work to grasp intricate patterns and relationships in the data. In the absence
of activation functions, a neural network would merely perform linear trans-
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Figure 1.3: Architecture of a perceptron or neuron.

formations, severely restricting its ability to learn.

Each activation function possesses unique characteristics, making some more
suitable for particular types of problems than others. Consequently, the
choice of an activation function hinges on the specific problem at hand. For
instance, the sigmoid function [41] is common for binary classification tasks
since it maps neuron outputs to probabilities ranging from 0 to 1, inter-
pretable as the probability of inputs belonging to specific classes. The hy-
perbolic tangent function (tanh) operates similarly to the sigmoid but maps
the output to a range between -1 and 1. In contrast, the Rectified Linear
Unit (ReLU) [14], defined by ReLu(x) = max(0, x), has gained popularity
in recent years due to its simplicity and effectiveness.

A feed-forward neural network (FNN) represents a category of artificial neural
networks structured with multiple layers where data propagation occurs in a
unidirectional manner, strictly from the input layer to the output layer, with
no cycles nor loops within the network. A multi-layer perceptron (MLP), also
known as a fully connected network (FCN), falls within the FNN category. It
comprises a series of layers of interconnected neurons, as depicted in Figure
1.4. Notably, with the exception of the neurons in the input layer, each
neuron in the network employs an activation function.

The neurons within a hidden layer take as input the outputs of neurons from
the preceding layer and transmit their own outputs to the neurons in the
subsequent layer by means of synaptic weights.
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Figure 1.4: An example of MLP architecture with ℓ = 5 layers. It contains
an input layer, 4 hidden layers and an output layer.

Likewise, the neurons in the output layer receive as input the outputs orig-
inating from the final hidden layer. Formally, in the context of an ℓ-layer
MLP denoted as fθ parametrized by θ, the output:

z := aℓ = fθ(x) ∈ Rdℓ (1.1)

from the input x ∈ Rd0 is computed as

a0 := x, si = Wiāi−1, ai = σi(si), for i from 1 to ℓ, (1.2)

with Wi ∈ Rdi×(di−1+1) corresponds to the weight matrix associated with layer
i. si is termed to as pre-activation of the layer. The augmented activation
vector, denoted as āi−1 = (1, aTi )

T where the value 1 is used for the bias, and
where σi is the activation function at layer i. The number of neurons in layer
i is di and the overall count of parameters is denoted as p =

∑ℓ
i=1 di(di−1+1).

The MLP is parameterised by θ, encompassing all of its weights,

θ = [vec(W1)
T , vec(W2)

T , . . . , vec(Wℓ)
T ]T ∈ Rp,
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with “vec” the operator that transforms a matrix into a vector.

Despite their straightforward architectures, the MLP has demonstrated re-
markable effectiveness in modeling tabular data and is often used as reference
in specific tasks such as the learning of physical solutions.

1.2.1.2 Neural Network Reminder: Training

Training a neural network consists in fitting its learnable parameters so as
it can accurately map some input data to a desired output or prediction. It
is therefore an optimization process. This training can be unsupervised or
supervised. In unsupervised learning, a dataset of only inputs is provided
and the objective is to discover hidden patterns or structures in the data.
Therefore, the training algorithm has no access to predefined labels. Exam-
ples of unsupervised learning are k-means clustering, principal component
analysis and Physics Informed Neural Networks. We detail the Physics In-
formed Neural Network approach in the next section. In supervised learning,
a dataset of inputs and their corresponding outputs or labels is provided. It
is to note that it is possible to mix supervised and unsupervised approaches
leading to semi-supervised learning.

In practice, the supervised or unsupervised training of neural networks, such
as a ℓ-layer MLP denoted as fθ and parametrized by θ, are realised through
the following steps. First, the neural architecture is initialized i.e input layer,
hidden layers and an output layer. Their respective weights and biases θ are
also initialized. Then, given some input data x ∈ Rd0 , a Forward pass is
realised, as indicated in (1.2), mapping x to the output z = fθ(x). This
Forward pass is realised for each data in a dataset or collection of data
{(|x0|x1| · · · |xN |), x ∈ Rd0} with N the number of data.

Then, we evaluate the misfit of the prediction through a loss or cost function.
In supervised learning for regression problems, the mean squared error (MSE)
is a popular choice as loss function:

MSE =
1

N

N∑

i=0

|fθ(xi)− f(xi)|2 (1.3)

with f(xi) the true label. For physical problems, it is more common to use the
relative mean squared error or relative L2 error with a small regularization
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term ϵ:

MSE =
1

N

N∑

i=0

|fθ(xi)− f(xi)|2
|f(xi)|2 + ϵ

(1.4)

Moreover, in unsupervised learning for physical problems, an example of loss
function is based on the residual of a differential equation

Then, we wish to minimize the loss by updating the parameter θ. The most
popular optimization algorithms are based on gradient descent which update
the parameters by propagating the error backward through the network (i.e
back-propagation). In practice, for each layer, we calculate the gradient of the
loss L w.r.t the parameter θ using the chain rule. Then, we iteratively repeat
the forward pass, the Loss calculation and the parameter update through
back-propagation until the loss converges to a satisfactory level.

For differential equation problems, an idiomatic approach using neural net-
works is the ’Physics Informed Neural Network’.

1.2.1.3 Physics Informed Neural Network

The main idea behind Physics Informed Neural Network (PINN) is to create
an artificial neural network for solving differential equations by minimizing a
loss function representing the equation residual. This can be seen as unsuper-
vised or semi-supervised learning with a soft constraint. Given the residual
of a general differential equation G:

G(x⃗,Ψ(x⃗)) = 0, x⃗ ∈ D (1.5)

and subject to boundary conditions, where D ⊂ Rn is the domain of defini-
tion and Ψ(x⃗) is the solution to be computed.

For example, given a partial differential equation (PDE) such as Burgers’
equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,
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with u the velocity and ν the viscosity. In this case, the PINN solution of
Burgers’ equation is obtained by minimizing a loss function corresponding to
the equation residual (i.e G):

G(x⃗, u(x⃗)) =
∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
,

with x⃗ a vector containing x and t.

To solve equation (1.5), we use a Neural Network (NN) to predict Ψ̂(x⃗, θ)
with θ the adjustable parameters of the NN (i.e weights and biases). The
loss function used to fit Ψ̂(x⃗, θ) to Ψ(x⃗) is the L2 norm of G. Hence, Ψ̂(x⃗, θ)
used together with the loss function is a physics informed neural network.
The quadrature points to approximate the loss function are generated by
sampling inside and at the border of the domain (see figure 1.5).

Figure 1.5: Example of initial and boundary points sampled on a domain
using the Latin Hypercube Sampling strategy from [46]

Generally speaking, a PINN has three building blocks, an approximation
block which is a neural network usually, an approximation corrector block
i.e a loss function and a minimization block which minimizes the loss func-
tion.

Each of these blocks brings an error, an approximation error from the ap-
proximation block which depends on the neural network architecture, an
estimation error brought by the approximation corrector block and the op-
timization error from the minimization block. Regarding the approximation
error, there are results such as the ’Universal approximation theorem’ show-
ing that a single layer neural network with a sufficiently large width can
uniformly approximate a function and it’s derivative [18][31] [44]. Then the
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Figure 1.6: Schematic of a physics-informed neural network (PINN) com-
posed of 3 blocks. An approximation block composed of a neural network
parameterized by theta. The approximation corrector block which computes
the loss function through automatic differentiation. Finally, an minimization
block that minimizes the loss with respect to the neural network parameters
leads to an approximation u(x, θ∗) of the solution of a PDE.

estimation error, comes from the use of finite data. Finally, the optimization
is the harder to tackle as the objective function is highly non convex. The
optimization is often realised using Gradient-based optimization methods or
quasi-Newton methods. In particular, stochastic gradient descent (SGD) and
all its variants [49] such as Adam [25] are popular for PINN optimization.
Additionally, L-BFGS [34] is a popular quasi-Newton method for PINN op-
timization.

To construct a PINN, there are two seminal approaches, the first one from
Lagaris et al. [28] and the second one from Raissi et al. [46]. Their main
differences are in the approximation and estimation block.

Overview of Lagaris’ method

In 1997, Lagaris et al. [28] proposed to construct the trial solution Ψ̂(x⃗, θ)
such that it satisfies the boundary conditions. Therefore, this can be seen as
unsupervised or semi-supervised learning with hard constraints.

Ψ̂(x⃗, θ) = A(x⃗) + F (x⃗, N(x⃗, θ)) (1.6)

where N(x⃗, θ) is a single output feedforward neural network with adjustable
parameters θ and fed with the input vector x⃗, A(x⃗) satisfies the boundary
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conditions and F is constructed so as not to contribute to the boundary
conditions. It is to note that the notation x⃗ may encompass multiple variables
such as space and time (i.e can represent x⃗ = (x, y, t)) and therefore A(x⃗)
satisfies the boundary and initial conditions. According to these definitions,
Ψ̂(x⃗, θ) also satisfies the boundary conditions.

The adjustable parameters θ can be learned by minimizing the mean square
error loss:

MSE =
1

NG

NG∑

i=1

|G(xD̂
i , Ψ̂(xD̂

i , θ))|2 (1.7)

with (xD̂
i )1≤i≤NG

the sampled points on the domain and G the residual func-
tion.

Overview of Raissi’s method

Raissi et al. [46] propose a different approach. Instead of creating a trial
function that satisfies the boundary conditions by construction such as La-
garis proposes, Raissi includes the boundary conditions inside the loss func-
tion.

If Ψ̂(x⃗, θ) denotes the solution with adjustable parameters θ of problem (1.5),
G the residual, then the parameters θ can be learned by minimizing the mean
squared error loss

MSE =
1

NG

NG∑

i=1

|G(xD̂
i , Ψ̂(xD̂

i , θ))|2 +
1

Nu

Nu∑

i=1

|Ψ̂(xŜ
i , θ)−Ψ(xŜ

i )|2 (1.8)

here (xŜ
i )1≤i≤Nu denote the sampled points where Dirichlet boundary condi-

tions are imposed.

The nature of PINN can be understood as unsupervised learning when it
relies exclusively on physical equations and boundary conditions to solve
forward problems.
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1.2.1.4 Limitations of Physics Informed Neural Networks

Physics-Informed Neural Networks (PINN) strive to integrate domain-specific
physical knowledge as flexible constraints within an empirical loss func-
tion. These constraints are subsequently optimized using established ma-
chine learning training techniques. Nevertheless, it is crucial to acknowledge
certain intricate aspects and potential pitfalls.

Optimization

The training of a Physics Informed Neural Network can be viewed as an
optimization problem where we try to minimize a loss function L. This last
can be formulated as

min
θ

L(x⃗, Ψ̂(x⃗, θ)) (1.9)

such that
G(x⃗, Ψ̂(x⃗, θ)) ≃ 0, x⃗ ∈ D .

More generally, the loss function contains multiple terms corresponding to the
residual of the differential equation, the initial conditions and the boundary
conditions:

L = Lic + Lbc + λLG . (1.10)

Where Lic and Lbc measure the misfit of the neural network prediction with
respect to the initial and boundary conditions and LG measures the misfit of
the neural network prediction with respect to the residual of the differential
equation. Here, λ is a hyperparameter that manages the balance between
the initial and boundary conditions and the residual.

This loss function is most of the time highly non-convex. Therefore, it is
generally admitted that the optimization process aims to converge at a crit-
ical point, but this critical point has no guarantee to be a global minimum.
Moreover, the optimization process often involves engineering tricks and fine-
tuning of parameters by trial and error. Those problems are common in
most of deep learning fields, however PINN’s have shown some special is-
sues in the optimization process. The analyze of PINN models on simple
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physical models show that the balance between the residual contribution
and the initial/boundary conditions contributions in the optimization pro-
cess is not straightforward to manage. Indeed, [61] shows that, during train-
ing using gradient descent, the back-propagated gradients of the residual
and initial/boundary conditions show unstable imbalance in magnitudes and
proposed a solution using an adaptive balance coefficient λ.

Generalization

The generalization can be first seen through its error which is the sum of
the estimation error and the approximation error. References [40] and [39]
provide upper bounds on this error for PINN’s under certain conditions. Ba-
sically, the training error should be low, i.e the optimization process has
been correctly done. Then, the number of collocations points must be suffi-
ciently large and the solution of the underlying PDE is stable with respect
to perturbations of inputs. For nonlinear PDEs, this might imply that the
PDE solution is sufficiently regular. Moreover, PINN may have issues learn-
ing solutions of specific PDE’s. Indeed, [27] shows that PINNs struggle to
capture essential physics in PDEs with large coefficients in opposite with
small coefficients where PINNs show satisfying performances. Moreover, [13]
shows that given a specific non linear hyperbolic partial differential equa-
tion (PDE) and considering different choices for the flux function (concave,
convex, non-convex), it is observed that PINN models face difficulties in ac-
curately learning non-convex flux functions. This holds true even in cases
where the solution can be adequately represented by a piece-wise continuous
function. Finally, for PDE problems with low-regularity solutions, defining
the PINN formulation requires a battle-hardened expertise [5].

Utilization

Suppose that one succeeds at training a Physics Informed Neural Network
model. The obtained model will be useful as a relatively cheap surrogate
model to solve the exact same problem with the same initial and bound-
ary conditions. Therefore, in its original formulation, the model can only
be used on one specific case. Changing the initial and/or boundary condi-
tions requires to train a new model. There is a lack of generalization in the
methodology itself.

Instead of learning one specific solution given a PDE with boundary/initial
conditions, a more general idea is to learn operators that map functions to
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functions and therefore handle a whole family of solutions corresponding to
various boundary/initial conditions.

1.2.2 Neural Operators

Neural operators are a class of deep learning models that aim to learn and
approximate mathematical operators directly from data. These operators
can be differential operators, integral operators, or other types of mathemat-
ical operations encountered in various fields of science and engineering. The
concept of neural operators originates from the field of scientific computing,
where traditional numerical methods are commonly used to solve complex
mathematical problems involving differential equations. However, these tra-
ditional methods often require explicit knowledge of the underlying equations
and may become computationally expensive for high-dimensional problems
or complex domains. Neural operators provide an alternative approach by
leveraging the representational power of deep neural networks to approxi-
mate the operators directly from input-output data pairs. The underlying
idea is to train a neural network to learn the mapping between input data
and the desired operator output, without explicitly specifying the mathemat-
ical equations or operations involved. The development of neural operators
has been greatly influenced by the success of deep learning in various do-
mains, particularly in computer vision and natural language processing. By
extending deep learning techniques to mathematical operators, researchers
have sought to apply neural networks to problems in scientific computing,
physics, and other areas where the accurate approximation of operators is
crucial.

Recall that the universal approximation theorem states that a single hidden
layer neural network can be used to approximate any continuous function to
arbitrary accuracy [31]. It has been extended to continuous operators. The
universal approximation theorem of operators [8] states that a shallow neural
network can approximate accurately any nonlinear continuous functional or
operator. This last result shows the interest in neural networks to learn non-
linear operators. However, in practice, deep neural networks and specific
architectures outperform shallow neural networks for many tasks such as the
classification of images.

The architecture and design of neural operators can vary depending on
the specific problem and type of operator being approximated. Techniques
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such as convolutional neural networks (CNNs) [29], recurrent neural net-
works (RNNs) [22][50], attention mechanisms [57], and graph neural net-
works (GNNs) [51] have been adapted and tailored to capture the inherent
structure and properties of the operators being learned.

Overall, neural operators provide a promising avenue for enhancing compu-
tational methods in scientific and engineering applications by enabling the
automatic learning of complex mathematical operators directly from data,
leading to improved accuracy, efficiency, and generalization capabilities.

We present in the next sections, two popular types of neural networks that
perform well at learning operators: DeepONet and Fourier Neural Opera-
tor.

1.2.2.1 Deep Operator Network (DeepONet)

DeepONet idea is based on an extension of the first operator network pro-
posed by Chen and Chen [8], where they considered only shallow neural net-
work. In the most used way, DeepONet is composed of two neural networks:
a branch net and a trunk net. In [8], the following theorem is proved:

Theorem 1 (Universal approximation theorem for operators [8]). Suppose
that σ is a continuous non polynomial function, X is a Banach Space, K1 ⊂
X, K2 ⊂ Rd, are two compact sets, V is a compact set in C(K1), G is a
(linear or non-linear) continuous operator, which maps V into C(K2). Then
for any ϵ > 0, there are positive integer n, p,m constants cki , ξ

k
ij, θ

k
i , ζk ∈ R,

wk ∈ Rd, xj ∈ K1, i = 1, ..., n, k = 1, ..., p, j = 1, ...,m such that,

∣∣∣∣∣G(u)(y)−
p∑

k=1

n∑

i=1

cki σ

(
m∑

j=1

ξkiju(xj) + θki

)

︸ ︷︷ ︸
branch

σ(wk · y + ζk)︸ ︷︷ ︸
trunk

∣∣∣∣∣ < ϵ (1.11)

holds for all u ∈ V and y ∈ K2

This theorem shows that it is possible to learn non-linear operators through
a neural network trained in a supervised manner and is at the basis of the
DeepONet architecture [36]. In practice, this architecture has two inputs,
the u function evaluated at m distinct points [u(x1), u(x2), ..., u(xm)] and y
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Figure 1.7: DeepONet architecture is composed of two networks, a Branch
net and a Trunk net. The branch takes the evaluation of the function u
at different points and returns p basis. The trunk takes any point y on
the domain of G(u) and returns p coefficients. Finally, the two outputs are
multiplied and summed to reconstruct the desired evaluation of the operator
G.

any point on the domain of G(u). The output of a DeepONet is a linear
combination of p basis functions. The basis functions bk are the output of
the branch net while the coefficients tk of the linear combination are given
by the trunk net:

G(u)(y) ≈
p∑

k=1

bktk.

It is to note that the branch and trunk can be any neural network architec-
ture.

As a practical example, we detail what would be DeepONet input and outputs
for an elliptic equation:

{
−∇ · (D(x)∇G) = f, x ∈ (0, 1),

G(0) = a, G(1) = b.
(1.12)

We want to use DeepONet to represent the parameter-to-solution operator
(D, f) 7→ G, with D a function within a certain distribution and f the
right-hand side. Using the terminology of [36], the domain is discretized
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NNs DeepONets Interpolation Neural Operators
Discretization Invariance ✗ ✗ ✓ ✓

Is the output a function? ✗ ✓ ✓ ✓

Can the output be evaluated at any point? ✗ ✓ ✓ ✓

Input at any point ✗ ✗ ✓ ✓

Universal approximation ✗ ✓ ✗ ✓

Table 1.1: Comparison of different properties of deep learning models taken
from [26].

in m distinct sensor points [x1, x2, · · · , xm] for D and in m′ sensor points
[x′

1, x
′
2, · · · , x′

m] for f . The input of the branch net is the function D eval-
uated at each sensor point [D(x1), D(x2), · · · , D(xm)] and the function f is
evaluated at each sensor point [f(x′

1), f(x
′
2), · · · , f(x′

m′)]. Then the input y
of the trunk net is a new point to evaluate which does not necessarily co-
incide with the sensor points. Therefore, the output of the DeepONet is
G(D, f)(y).

1.2.2.2 Fourier Neural Operator

Neural operators are especially useful to learn solution operators associated
with PDEs. In their paper "Neural Operator: Learning Maps Between Func-
tion Spaces With Applications to PDEs" [26], Kovachki et al. propose a
new definition of neural operators as a class of models that guarantee both
discretization-invariance and universal approximation. A Discretization-invariant
model can: handle any set of points in the input domain, be estimated at any
point of the output domain and, as the discretization is refined, converge to
a continuum operator . In opposition with other models such as DeepONet
where modifying grid points makes the model no longer applicable. The main
differences are sum up in the table 1.1.

We present the neural operator framework. The main parts consist in a lifting
operation of the inputs to a higher-dimensional space, apply multiple Kernel
Operators which can be seen as hidden layers, and finally project back to the
output function. In a more formal way, let A and U be spaces of functions.
Given input functions a ∈ A = A(D;Rda) with values in Rda defined on a
bounded domain D ⊂ Rd, and output functions u ∈ U = U(D′;Rdu) with
values in Rdu and defined on the bounded domain D′ ⊂ Rd′ . Neural operator
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Gθ : A 7→ U has the following structure:

1. Lifting: map the input {a : D → Rda} 7→ {v0 : D → Rdv0} with
dv0 > da to the first hidden representation.

2. Iterative Kernel Integration: map each hidden representation to
the next {vt : Dt → Rdvt} 7→ {vt+1 : Dt+1 → Rdvt+1} for t ∈ [0, 1, .., T −
1] (with t the layer index) by combining a local linear operator, a linear
integral kernel operator, and a bias function, and then applying a fixed,
point-wise non linearity i.e an activation function. It is to note that
D0 = D and DT = D′.

3. Projection: map the output of the last layer {vT : D → RdvT } 7→ {u :
D′ → Rdu} with dvT > du to the output function.

This can be written as:

Gθ := Q ◦ σT (WT−1 +KT−1) ◦ · · · ◦ σ1(W0 +K0) ◦ P , (1.13)

where P : Rda 7→ Rdv0 is the lifting mapping, Q : RdvT 7→ Rdu is the projection
mapping, Wt : Rdvt+1×dvt are local linear operators and Kt : {vt : Dt 7→
Rdvt} 7→ {vt+1 7→ Rdvt+1} are the linear kernel integral operators. Finally,
σ is a non-linear activation function. The kernel integral operator mapping
can be defined by:

(Kθvt) (x) :=

∫

D

κθ(x, y)vt(y)dy,∀x ∈ D (1.14)

where κθ is a neural network parameterized by θ and represents a kernel
function which is to learn from data. Therefore, the overall structure mimics
the one of a finite dimensional neural network.

When it comes to the numerical computation of the kernel integral operator,
the Monte Carlo approximation of (1.14) on a J-points discretization of D
requires O(J2) matrix-vector multiplications. Therefore, it is not fit for use
in case of a supervised learning as it will be too computationally intense.
Multiple solutions to reduce the cost have been proposed and are exposed
in [26] but the solution that showed the most promising performances is the
Fourier Neural Operator (FNO) [33].
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The main idea behind FNO is to substitute the kernel integral operator in
equation (1.14) with a convolution operator that is defined within Fourier
space. This enables the use of the Fast Fourier Transform (which requires an
uniform discretization) to efficiently compute (1.14) in quasi-linear complex-
ity. To do so, κθ(x, y) = κθ(x − y) is enforced, making (1.14) a convolution
operator.

The Fourier integral operator K is then defined as:

(Kθvt) (x) = F−1 (Rθ · (Fvt)) (x) ∀x ∈ D (1.15)

with F the Fourier transform, F−1 the inverse Fourier transform and Rθ =
F(κθ). This notation assumes that κ is periodic in order for it to admit a
Fourier series expansion. Moreover, we can select a finite-dimensional param-
eterization by truncating the Fourier series at a maximal number of modes
kmax = |{k ∈ Zd : |kj| ≤ kmax,j, j = 1, · · · , d}|. This truncation can be inter-
preted as a low-pass filter of Fourier high-frequency modes induced by the
non-linearity of the activation functions. Therefore, Rθ is the complex-valued
tensor of parameters to learn.

This defines a Fourier layer which is exposed on figure 1.8. Finally, we can
define the whole Fourier Neural Operator as presented in figure 1.9 which
consists in a lifting layer, which can be any transformation including a neu-
ral network, multiple Fourier layers corresponding to the iterative kernel
integrator and at the end a projection layer usually chosen as a neural net-
work.

1.2.3 Physics Informed Deep Learning for CO2 stor-
age

Now that we have presented the main neural architectures used in Physics In-
formed Deep Learning, let’s delve into their specific applications to geological
CO2 storage.

Physics Informed Deep Learning has been applied to geological sequestration
of CO2 using a wide range of machine learning techniques. One important
aspect to assess when injecting CO2 in the underground is the potential for
leakage. Therefore, numerous numerical simulations are required to validate
an injection scenario. These simulations are costly, and machine learning has
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Figure 1.8: Architecture of a Fourier layer. The Fourier layer starts with an
input vector v, applies the Fourier transform F to it, then performs a linear
transformation R on the lower Fourier modes while filtering out the higher
modes. The inverse Fourier transform F−1 is then applied. A local linear
transformation W is applied to the original input vector v. The output of
the top and bottom operations are then added together and an activation
function is applied.

Figure 1.9: Architecture of the Fourier Neural Operator. Given an input a,
lift to a higher dimension channel space by a neural network P, then apply
T layers of integral operator i.e Fourier layers. Finally, project back to the
desired dimension using a neural network Q and get the output u.
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the potential to accelerate them, facilitating decision-making and enabling
a faster and scalable deployment of CCS. For example, in [9], simulations
were accelerated by a factor of 8000 compared to the traditional numerical
solvers, while maintaining reasonable accuracy. This was achieved using a
novel architecture based on FNO. In [65], yet another innovative architecture,
also based on the FNO achieves a remarkable speedup compared to existing
methods in the numerical simulation of CO2 storage. Several other notable
articles also demonstrate a substantial reduction in the computational cost of
CO2 storage numerical simulations [67] [66] [54] [21] [71] [52] [68] [64]. These
performances are essential to evaluate plume migration and consequently,
predicting potential leakage. In [55], a deep-learning based surrogate model
is developed to manage operations for coupled flow and geomechanic simula-
tions in a deep saline aquifer. The surrogate’s goal is to reduce uncertainty
aquifer’s pressure buildup. Furthermore, since the mineralization of the CO2

is an essential trapping mechanism and modeling it involves coupled reactive
transport models that are computationally expensive, machine learning can
offer cost-effective and accurate surrogate models, as shown in [56]. Addi-
tionally, machine learning models serve as a predictive tools for assessing the
trapping performances of CO2, as demonstrated in [59].

Another crucial aspect is reservoir monitoring over time. Effective monitoring
ensures the safe and permanent storage of CO2. Geophysical surveys serve
as important tools for achieving high-resolution reservoir monitoring through
historical data. However, the inversion of this data can be costly. Machine
learning techniques have the potential to reduce the cost of this process,
as demonstrated in [35]. Moreover, there are multi-objectives monitoring
approaches such as those in [53], where reinforcement learning is used to
optimally manage CO2 storage in deep saline aquifer while extracting brine,
or in [72], where machine learning is employed to optimize CO2 storage in
an oil reservoir while maximizing the oil production through enhanced oil
recovery. Additionally, in [7], a machine-learning-based approach is proposed
that accounts for uncertainties in reservoir monitoring.

As injection scenarios span over long periods, lasting at least 30 years for
injection and potentially thousands of years for sequestration, assessing well
degradation rates becomes essential. Machine learning approaches have shown
promising results in addressing this issue, as demonstrated in [32] [60].
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1.2.4 Hybrid approaches and hybrid Newton’s method

In most of the cases, the resulting machine learning model is used as a sur-
rogate model that supplant the traditional solver. This allows for faster
evaluation of new input parameters in contrast to the original numerical
solver. This becomes especially valuable when the numerical solver is com-
putationally expensive and time-consuming, as surrogate models can pro-
vide quick approximations. However, this ’black-box’ approach lacks
a guarantee of predicting solutions accurately, in contrast to the
reliability of a numerical solver. Indeed, these machine-learning mod-
els may induce errors even greater as the new data to evaluate are far from
the training data, but we can not assess these errors without employing the
numerical solver. Consequently, hybrid approaches that complement the nu-
merical solver with a machine learning model while preserving the numerical
guarantees are worth considering for evaluation. Before delving into the hy-
brid Newton method, which is the primary focus of this thesis, we wish to
highlight some other hybrid methods.

Numerical schemes such as the theta-scheme or the backward difference for-
mulas [17], necessitate the assignment of coefficients typically set to constant
values based on the specific problem at hand. However, there is no guarantee
that utilizing these constant coefficients will result in the optimal solution,
i.e the one with the least error. In [38], machine-learning models are used to
predict the optimal coefficients of numerical schemes. Furthermore, machine-
learning models may enhance the discretization of dynamical systems [15],
facilitating the handling of the dynamics at various scales [4].

When dealing with problems involving conservation laws, discontinuities may
arise, necessitating specific attention to avoid numerical issues. The manage-
ment of these discontinuities typically involves two steps: i) the identification
of ’troubled-cells’, i.e cells in the mesh impacted by the discontinuities, and ii)
the application of a correction to these troubled-cells. This two-step method
can be numerically costly. Machine-learning models used as troubled-cells de-
tection functions have demonstrated significant performance improvements
[47] [58].
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1.2.4.1 Hybrid Newton’s method

Solving non-linear system of equations resulting from the discretization of
PDEs often requires a linearization method. In practice, Newton’s method is
often used and requires at each iteration to solve a linear system. Moreover,
Newton’s method shows a quadratic rate of convergence when the iterates
are in the neighbourhood of the solution. Therefore, Newton’s methods is
very sensitive to initialization. Indeed, an initial guess that is far from the
solution may require a lot of iterations to reach convergence. This leads to
an interesting hybrid approach which is the hybrid Newton’s method [42] [19]
[70] [6]. It consists in predicting an initialization of Newton’s method directly
in the zone of quadratic convergence. The hybrid initialization is obtained
through the prediction of a machine learning model. In [19], machine learn-
ing models are used to predict initialization of either Newton’s method for
solving non-linear PDEs or the shifted power method for eigenvalue problem.
Then in [70], the hybrid Newton’s method is used to accelerate the conver-
gence of Newton’s method for the kinematics of cable-driven parallel robots
with sagging cables. Indeed, for this kind of problems, a random initial guess
often leads to Newton’s method failure to converge i.e a number of Newton
iterations larger than a fixed threshold. In [42] addresses the numerical sim-
ulation of hyper-elasticity problems which also require to solve a non-linear
PDE through Newton’s method. In the standard Newton’s method, 46% of
their simulations would converge, this number increases to 71% using the
Hybrid Newton’s method. Finally in [6], a neural network is used to acceler-
ate a non-linear iterative solver (which one is not mentioned) for some single
gas-phase reservoir problems. Machine learning models are used to learn first
a pressure guess, then this pressure guess is used to predict the gas proper-
ties. Finally, both pressure and gas predictions are used as initialization.
Regarding the methodology, they first run a small part of the total reser-
voir simulation, then train the pressure and gas machine learning models on
it. Thereafter, they start applying hybrid Newton’s method and update the
model at each time-step. This approach is interesting as it does not necessi-
tate to construct a dataset in an offline phase, everything is constructed ’on
the fly’.

Overall, the hybrid Newton’s method is promising for cases where the stan-
dard Newton’s initialization is far from the solution and we can not use
information from the past solutions to interpolate for example. Therefore,
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this method combines the predicting capability of neural networks and the
numerical guarantees of the traditional solvers.

1.3 Outline and results summary of the the-
sis

This thesis aims to combine recent developments in physics informed deep
learning with Newton’s hybrid method in order to mitigate the impact of well
events in the numerical simulation of multiphase flow in porous media.

In our case, an initialization by the current solution is most of the time far
from the solution since a well opening or closing has a dramatic impact on
the reservoir. As a well event, can be described by few parameters, we think
that is is possible to develop a general methodology based on the hybrid
Newton’s method that ideally, may take into account any well parameters,
reservoir parameters and as many wells as needed at the same time.

In practice, we developed three main points: i) machine learning model as a
direct solver, ii) machine learning model as a global initializer of the iterative
non-linear solver, iii) machine learning model as a local initializer of the
iterative non-linear solver.

Before diving into these main points, chapter 2 presents the continuous math-
ematical model that we consider together with a reservoir use case. Then,
chapter 3 exposes the numerical resolution of the continuous model and the
numerical behaviour of well events.

In chapter 4, we assess the potential of machine learning models as ’black-box’
direct solver. We start with a benchmark study on different machine-learning
models as parameter-to-solution surrogate models for the steady-state heat
equation with a source term. Our results indicate that Neural Operators
such a Fourier Neural Operator (FNO) or DeepONet are well-suited neural
architectures to learn PDE parameter-to-solution operators in a supervised
manner. Nevertheless, the resulting prediction model has no guarantee to
perform well at predicting data that are out of the training distribution.
We then train in a supervised manner the Fourier Neural Operator to learn
a parameter-to-solution operator for the 1D incompressible two-phase flow
equation. Our results show that it is possible to predict accurately, given a
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data snapshot, the solution after a step of time. However, when replacing
the solver by the machine learning model and iterating through time by sub-
sequently applying the model on its outputs, we observe that a small error in
the prediction may lead to a significant error after a few iterations. Therefore,
we show this ’black-box’ approach lacks a guarantee of predicting solutions
accurately, in contrast to the reliability of a numerical solver. Consequently,
we turn in the next chapters to hybrid approaches that complement the nu-
merical solver with a machine learning model while preserving the numerical
guarantees.

We complement the traditional numerical solver in chapter 5 by using the
hybrid Newton’s method. It consists in predicting an initialization of New-
ton’s method closer to the solution than the standard initialization, i.e. the
solution at the previous time-step. Newton’s method is an iterative method
utilized to solve non-linear system of equations, and is sensible to initializa-
tion. Well events lead to numerical difficulties in Newton’s method as they
have an instant impact on the reservoir state, resulting in a standard initial
guess far from the solution. In practice, we train in a supervised manner a
Fourier Neural Operator to predict the saturation over the whole reservoir as
the saturation contains the main non-linearities. Regarding the pressure, we
use an implicit pressure solver that catches the main variations of pressure
and requires to solve only a linear system as an initial guess. We generate
two databases using the SHPCO2 benchmark reservoir geometry and a wide
range of well injection scenarios. We compare the required number of New-
ton iterations to achieve convergence between the Hybrid and the Standard
Newton’s methods using a global initialization. Our results show a significant
decrease in the required number of Newton iterations, by around 54% for the
first test case, and by around 39% for test case 2. Moreover, we observe
that the Hybrid Newton’s method seems to scale with the difficulty, meaning
that the more challenging the problem is using the standard methodology,
the greater the potential benefit from employing the hybrid methodology.
Even though the global hybrid Newton’s methodology shows significant per-
formances at handling a wide a range of well scenarios, it only works for a
constant well location and reservoir geometry.

Encouraged by these results, we wish to obtain a more general approach that
handles any well location and reservoir geometry. Well events induce local
variations of saturation, in the near-well region, but we trained a machine-
learning model to predict over the whole domain. Therefore, in chapter 6,
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we propose to train a model to predict the saturation in the near-well region.
First, we apply this local approach on a 1D test case to assess the impact
of the well extension and the well location on the hybrid Newton’s method.
Our results show a decrease of around 51% of the total number of Newton
iterations using a small local domain, in contrast to 81% for a larger local do-
main. Moreover, when using the model trained on the small local domain to
predict the saturation at any well location, we observe a reduction of around
83% of the total number of Newton iterations. Then, we apply the local
hybrid Newton’s method to the first test case of the global approach. We
propose two hybrid initial guesses, the first one using a Fourier Neural Oper-
ator to predict the saturation and the second one using a fully implicit solver
on the local domain which can be seen as a domain decomposition method.
We apply those two approaches to three test cases. Overall, our results show
that the domain decomposition initial guess performs equal or better for all
test case compared to the machine learning initial guess but still less than
the global approach initial guess. This is an important result as the domain
decomposition local guess approach handles any well location and injection
scenario by construction. Nevertheless, when moving to more difficult cases
(3D geometry, complex physics, etc.), we expect the machine learning initial
guess to infer significantly faster and hence provide an improvement with
respect to the domain decomposition initial guess.

To conclude, the global hybrid Newton’s method shows better performances
than the local hybrid Newton’s method for our test cases and is well-suited
when the goal is to optimize well injection scenarios with constant well loca-
tion. In opposite with the local hybrid Newton’s method is well-suited when
the goal is to optimize the well location for a wide range of injection sce-
narios. A straightforward perspective is to develop a 2D local model for any
well locations and compare its performances with the domain decomposition
approach.
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Chapter 2

Physical problem formulation and
use case
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This chapter aims at introducing the physical model problem considered in
this manuscript. We then define in this chapter a reservoir example.

2.1 Incompressible two-phase flow problem
Let us consider a two-phase fluid composed of an aqueous phase noted w and
a gaseous phase noted g flowing in a porous medium. The classical approach
of modeling a two-phase flow in a porous medium is based on the application
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of Darcy’s law [3] for each phase α ∈ {w, g} with dimensionless factors krα in
front of the tensor of permeability K, called relative permeabilities of the
phases. If two fluids are flowing simultaneously, there is a reduction in the
permeability of each fluid. The two fluids interfere with each other. This
interference is modeled by the relative permeabilities which are functions
depending on the saturation.

We consider the medium as isotropic. Therefore, the tensor of permeability
K, which represents the ability of a rock to allow fluids to flow through its
pores, can be considered as a scalar field K.

We consider reservoir geometries such that gravity can be neglected. For
incompressible fluids, the equations describing the conservation of pore vol-
ume and phase volume, the conservation of momentum, the capillary forces
between the two phases are written:

ϕ
∂

∂t
(Sw) + div(vw) = 0, ϕ

∂

∂t
(Sg) + div(vg) = 0, (2.1)

vw = −Kkrw(Sw)

µw

∇Pw, vg = −
Kkrg(Sg)

µg

∇Pg, (2.2)

Sg + Sw = 1, (2.3)

Pg − Pw = Pcw,g(Sw). (2.4)

Where Sα is the phase saturation, vα the Darcy flow velocity of the phase in
the porous medium, µα the phase viscosity, Pα the phase pressure, Pcg,w the
capillary pressure and ϕ the medium porosity. The relative permeabilities
krα are increasing functions of the saturation only.

We suppose that the permeability K and the porosity ϕ vary in space but
are constant through time. The viscosities µα are constant.

Consider Ω a bounded domain of RN for N = 1 or 2 such can be a reservoir
and T > 0 a given time. Using the previous definitions and assumptions
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and inserting (2.2) into (2.1), the problem of flow (2.1), (2.2), (2.3), (2.4)
considered in Ω can be reformulated as follows:





v +K(λT (S)∇P + λw(1− S)∇Pcg,w(1− S)) = 0

div(v) = 0 in Ω× (0, T )

ϕ
∂S

∂t
+ div(

λg(S)

λT (S)
(v −Kλw(1− S)∇Pcg,w(1− S))) = 0

(2.5)

where S = Sg, P = Pg and v is the total velocity:

v = vg + vw = −K(λT∇P + λw∇Pcg,w).

The mobility λα of the phase α ∈ {w, g} is defined as:

λα(Sα) =
krα(Sα)

µα

,

and the total mobility as:

λT (S) = λg(S) + λw(1− S).

In the remainder of these manuscript, it is assumed that the capillary pressure
Pcg,w is neglected.

The system (2.5) can be simplified as:





v +KλT (S)∇P = 0

div(v) = 0 in Ω× (0, T )

ϕ
∂S

∂t
+ div(fg(S)v) = 0

(2.6)

Where the function fg(S) is called the fractional flow. It is defined by:

fg(S) =
λg(S)

λT (S)
=

λg(S)

λw(1− S) + λg(S)
.
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Let ΓD ⊂ ∂Ω a part of the boundary of Ω and ΓD
− = {x ∈ ΓD/v(x).n(x) <

0}. The problem (2.6) closure is ensured by imposing the following boundary
conditions:





P = Pb(x) ∀x ∈ ΓD ,

S = Sb(x) ∀x ∈ ΓD
−,

v .n = 0 on ∂Ω\ΓD .

(2.7)

We consider in this thesis that the boundary conditions does not vary in time,
therefore we remove the dependency in time in the equation (2.7).

Also, the initial conditions at t = 0 are defined as P (x, t = 0) = P0(x) and
S(x, t = 0) = S0(x), x ∈ Ω.

2.1.1 Standard well model

A well can be modeled by a source term in the conservation equation. The
equations (2.1) become:

ϕ
∂

∂t
(Sw) + div(vw) = qw, ϕ

∂

∂t
(Sg) + div(vg) = qg, (2.8)

and the system 2.6:





v +KλT (S)∇P = 0,

div(v) = qT , in Ω× (0, T ),

ϕ
∂S

∂t
+ div(fg(S)v) = qg,

(2.9)

qw, qg and qT = qw+qg are respectively the water flow, gas flow and the total
injected or produced flow in the wells.

2.2 SHPCO2 benchmark
As a practical use case, we use the SHPCO2 [2] benchmark to test our meth-
ods. This benchmark was created for modelling reactive transport for CO2

geological storage. The SHPCO2 geological configuration is inspired from
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Sleipner, the world’s first commercial CO2 storage project. Sleipner is an
area located in the North-Sea, belonging to Norway and exploited for its
natural gas field since the mid-1990s.

As the natural gas produced contains up to 9% CO2 , the Sleipner CO2 gas
processing and capture unit is built to evade the expensive 1991 Norwegian
CO2 tax. The captured CO2 is thus injected and stored in a deep saline
formation one kilometer below the seabed.

One of the main risk of CO2 storage is leakage which is a human risk asso-
ciated to the escape of CO2 from a deep reservoir to a shallow aquifer or to
the surface [1]. Therefore, reservoir simulation is key to confidently predict
and understand CO2 behavior inside the geological formation.

Simulation context

We aim to reproduce the SHPCO2 synthetic test case but with simplified
physics for simulation. We consider an incompressible and immiscible two-
phase flow problem without chemical reaction. The targeted deep saline
aquifer is heterogeneous and located one kilometer below the seabed. The
area of interest is 4,750 meters in East-West direction and 3,000 meters in
north-south direction. The geological formation has a thickness of 100 me-
ters.

We assume that the geological layers limiting the aquifer in its upper and
lower parts are impermeable. The aquifer primarily consists of high-permeability
sandstone, with several low-permeability barriers. Flow is allowed on three
lateral surfaces: ’Injector1 ’, ’Injector2 ’, and ’Productor ’. Different uniform
pressures can be imposed on these surface boundaries. The overall flow in
the aquifer is directed from west to east but is significantly influenced by the
presence of the barriers.

1D and 2D Geometries

We consider the one and two dimensional cases, their geometries are described
in the figures below. The mesh sizes (XS, S, M, L) have different purposes.
The Extra Small (XS) is for setting up the code, Small (S) and Medium (M)
meshes are used for testing new methods and Large (L) is challenging and
used for robustness tests.

1D Geometry: see figure 2.1 and table 2.1
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Figure 2.1: 1D from SHPCO2 case geometry [2]

Mesh XS S M L
Dx 250 50 10 5
Dy 1000 1000 1000 1000
Dz 100 100 100 100
Nx 40 200 1000 2000
Ny 1 1 1 1
Nz 1 1 1 1

NCell 40 200 1000 2000

Table 2.1: 1D mesh parameters

2D Geometry: see figure 2.2 and table 2.2

Modifications in gas zone

We want to study well events, however in the SHPCO2 configuration, there
are no well openings or closings. We realise a modification to fit more to
our case. The gas zone in orange on figures 2.1 and 2.2 is replaced by a
well that injects CO2 at specific times. Therefore, there is no gas in the
initial configuration, all gas comes from this injector well that we denote well
CO2.

2.2.1 Physical configuration

Petrophysical properties

The domain after modification is separated in two zones, the first zone called
"Barrier zone" is coloured in green on the 2D figure and the second zone
called "Drain zone" is formed of the rest of the domain. These two domains
have different petrophysical properties.
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Figure 2.2: 2D SHPCO2 case geometry from [2]

Mesh XS S M L
Dx 250 50 10 5
Dy 250 50 10 5
Dz 100 100 100 100
Nx 19 95 475 950
Ny 12 60 300 600
Nz 1 1 1 1

NCell 228 5700 142 500 570 000

Table 2.2: 2D mesh parameters

Barrier zone Drain zone
Porosity [-] 0.2 0.2

Permeability[m2] 1.e-15 100.e-15

Table 2.3: Petrophysical Parameters

Phase properties

We consider two models of relative permeabilities:
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Gas phase Water phase
Viscosity [Pa.s] 0.0285e-03 0.571e-03

Table 2.4: Physical properties of fluids

Cross kr: krg(Sg) = Sg and krw(Sw) = Sw.

Quadratic kr: krg(Sg) = S2
g and krw(Sw) = S2

w.

Boundary Conditions

Pressure[Pa] Composition
Injector 1 110.e+05 Water
Injector 2 105.e+05 Water
Productor 100.e+05 -

CO2 injector - Gas

Table 2.5: Limit condition parameters

The pressure for the CO2 Injector (well CO2 ) is not given here because it
may change during each experiment, we will precise its value every time it is
needed. The composition of the Productor well is not given, it produces the
fluid composition of its location in the reservoir.
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Numerical resolution

Contents
3.1 Mesh definition and notations . . . . . . . . . . . . . . . . . 64

3.2 IMPES scheme . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Solving the pressure problem . . . . . . . . . . . . . . . 66

3.2.2 Solving the saturation problem . . . . . . . . . . . . . . 68

3.2.3 Taking wells into account . . . . . . . . . . . . . . . . . 69

3.3 IMPIMS scheme . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Fully Implicit scheme . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Time-step management . . . . . . . . . . . . . . . . . . . . . 74

3.5.1 Time stepping for each scheme . . . . . . . . . . . . . . 74

3.6 YADS reservoir simulation library . . . . . . . . . . . . . . . 75

3.6.1 YADS feature blocks . . . . . . . . . . . . . . . . . . . . 77

3.7 Numerical behaviour during well event . . . . . . . . . . . . 82

In this chapter we present three classical finite volume methods to numeri-
cally solve the problem (2.6) then we expose how the time step is managed
through simulations. Thereafter, we present the python library developed
to run the simulations. Finally, we expose the usual numerical behaviour
during well events.
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3.1 Mesh definition and notations
Let Kh a finite set of non empty, open and disjoint polyhedra forming a
partition of Ω such that h = max

k∈Kh

hk where hk is the diameter of element

k ∈ Kh. The set Kh thus forms a mesh of Ω whose elements k ∈ Kh are
the cells. We define Nh as the number of cells in the mesh Kh. Similarly, we
denote Fh the set of faces in the mesh. Moreover, we define Fi

h the set of
internal faces of the mesh

Fi
h = {σ ∈ Fh|σ ̸⊂ ∂Ω.}

We denote Fk
h the set of boundary faces

Fk
h = {σ ∈ Fh|σ ⊂ ∂Ω}.

The set of faces Fh of the mesh Kh then verifies Fh = Fi
h ∪ Fk

h. We denote
Fh,k the set of faces of a cell k ∈ Kh:

Fh,k = {σ ∈ Fh|σ ⊂ ∂k}.

Moreover, we denote Fi
h,k the set of internal faces of a cell k ∈ Kh:

Fi
h,k = Fh,k ∩ Fi

h,

and Fb
h,k, the set of faces of a cell k that are located on the border of the

domain Ω

Fb
h,k = Fh,k ∩ Fk

h.

Fb
h,k = ∅ if the cell k does not share faces with ∂Ω.

In the problem (2.9), boundary conditions (2.7) are imposed on a border
ΓD ⊂ ∂Ω. We then denote FD

h the set of border faces included in ΓD:

FD
h = {σ ∈ Fk

h|σ ⊂ ΓD},

and FD
h,k the set of faces of the cell k ∈ Kh, that are located on ΓD
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FD
h,k = Fh,k ∩ FD

h .

We denote by Π a set of wells, KΠ
i the set of cells perforated by a well i and

KΠ
k,i, the cell k perforated by a well i ∈ Π

KΠ
k,i = {k ∈ KΠ

i |i ∈ Π}.

In a similar way to Fh,k, we note Kh,σ the set of cells k ∈ Kh located on both
side of a face σ ∈ Fh:

Kh,σ = {k, l ∈ Kh|σ = ∂k ∩ ∂l}.

In particular, the set Kh,σ contains exactly two elements if σ ∈ Fi
h and one

element if σ ∈ Fk
h.

For each interface σ ∈ Fi
h, we define an unitary normal nσ arbitrarily oriented.

For a mesh k ∈ Kh,σ, let nσ,k the unitary σ-normal outgoing from k.

For a cell k ∈ Kh , we identify its center as xk . Similarly, for any face
σ ∈ Fh, xσ is the center of the face. For any mesh k ∈ Kh, and for any face
σ ∈ Fh,k, we note:

dk,σ = dist(xk, xσ).

Similarly, for any k1, k2 ∈ Kh:

dk1,k2 = dist(xk1 , xk2).

For a face σ ∈ Fh, |σ| is the face area. In the same way, for a cell k ∈ Kh,
|k| is the cell volume.

In this work, we consider admissible meshes [4]. It consists in the following
formulation: ∀σ ∈ Fi

h such that σ = ∂k1 ∩ ∂k2, the segment [xk1 , xk2 ] is
orthogonal to σ. Similarly, if σ ∈ Fb

h such that σ ∈ ∂k, the segment [xk, xσ]
is orthogonal to σ.

65



The main admissible meshes are the cartesian meshes, the Voronoï meshes
and the triangular meshes if all angles of triangles are smaller than Π

2
.

Concerning the time discretization, we introduce a sequence of discrete times
{tn}0≤n≤N

0 = t0 < ... < tN = τ,

which divide the time interval (0, τ) into N time steps δt = tn+1− tn. There-
after, we denote P n = P (x, tn), Sn = S(x, tn) and P n

k , respectively Sn
k ap-

proximations of P (xk, t
n) and S(xk, t

n).

We also introduce the notation (u)+ = max(u, 0) and (u)− = min(u, 0).

3.2 IMPES scheme
The IMPES (Implicit in Pressure and Explicit in Saturation) [8] [2] [5] nu-
merical scheme allows to decouple the resolution in pressure and saturation.
This scheme is conditionally stable (Courant-Friedrichs-Lewy (CFL) condi-
tion). Considering the problem (2.6), we solve the semi-discrete system:

div(v(P n+1, Sn)) = 0, (3.1)

ϕ
Sn+1 − Sn

δt
+ div(fg(S

n)v(P n+1, Sn) = 0. (3.2)

We solve the pressure equation using 3.1 and the saturation problem with
3.2.

3.2.1 Solving the pressure problem

In the first place, we are interested in the pressure P n+1. To compute P n+1,
equation (3.1) is integrated over all cells k ∈ Kh. We then use Green’s
formula:

∫

k

div(v)dx =
∑

σ∈Fh,k

∫

σ

v.nk,σds =
∑

σ∈Fi
h,k

∫

σ

v.nk,σds+
∑

σ∈Fb
h,k

∫

σ

v.nk,σds.
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Diffusive fluxes on inner faces
For σ ∈ Fi

h such that σ = ∂k ∩ ∂l

∫

σ

v(P n+1, Sn).nk,σds ≃ Φi
k,σ,

with:
Φi

k,σ = λi,n
T,σT

i
σ(P

n+1
k − P n+1

l ),

where T i
σ the face transmissivity is calculated using a harmonic average:

T i
σ = |σ| KkKl

Kldk,σ +Kkdl,σ
,

and the total mobility λi,n
T,σ is computed through an up-winding from the

pressure gradient:

λi,n
T,σ =

{
λT (S

n
k ) if P n

k ≥ P n
l ,

λT (S
n
l ) else.

Diffusive fluxes on boundary faces
For σ ∈ Fb

h such that σ ∈ ∂k

∫

σ

v(P n+1, Sn).nk,σds ≃ ΦD
k,σ,

with:
ΦD

k,σ = λD,n
T,σ T

D
σ (P n+1

k − Pb,σ),

where TD
σ is given by:

TD
σ = |σ| Kk

dk,σ
,

and the total mobility λD,n
T,σ is computed through an up-winding from the

pressure gradient:

λD,n
T,σ =

{
λT (S

n
k ) if P n

k ≥ Pb,σ,

λT (Sb,σ) else.

Pb,σ and Sb,σ are respectively approximations of Pb and Sb on σ ∈ Fb
h.
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Solving the linear system

The discrete equation associated to a cell k for the pressure problem is:
∑

σ∈Fi
h,k

Φi
k,σ +

∑

σ∈FD
h,k

ΦD
k,σ = 0. (3.3)

After assembly, we obtain a linear system of size Nh (number of cells), that
can be written in the generic form:

Ax = b,

where x = P n+1.

3.2.2 Solving the saturation problem

Once the pressure P n+1 is computed, the saturation is explicitly solved
for a given cell k:

∫

k

(
ϕ
Sn+1 − Sn

δt
+ div(fg(S

n)v(P n+1, Sn))

)
dx = 0.

Using the divergence formula:
∫

k

(
ϕ
Sn+1 − Sn

δt

)
dx+

∑

σ

∫

σ

fg(S
n)v(P n+1, Sn).nk,σdσ = 0.

Accumulation term
We approximate the accumulation term:

∫

k

(
ϕ
Sn+1 − Sn

δt

)
dx ≃ |k|ϕk

Sn+1
k − Sn

k

δt
.

Flux term
For a face σ ∈ Fi

h,k such that σ = ∂k ∩ ∂l, we write:

∫

σ

fg(S
n)v(P n+1, Sn).nk,σdσ ≃ F i

g,σ(S
n
k , S

n
l ),

with
F i
g,σ(S

n
k , S

n
l ) = fg(S

n
k )(Φ

i
k,σ)

+ + fg(S
n
l )(Φ

i
k,σ)

−,
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for faces in Fb
h,k ∩ FD

h,σ

∫

σ

fg(S
n)v(P n+1, Sn).nk,σdσ ≃ FD

g,σ(S
n
k , Sb,σ),

with
FD
g,σ(S

n
k , Sb,σ) = fg(S

n
k )(Φ

D
k,σ)

+ + fg(Sb,σ)(Φ
D
k,σ)

−.

Solving
The discrete equation associated to cell k becomes:

Sn+1
k = Sn

k −
δt

|k|ϕk


 ∑

σ∈Fi
h,k

F i
g,σ(S

n
k , S

n
l ) +

∑

σ∈FD
h,k

FD
g,σ(S

n
k , Sb,σ)




Due to the explicit resolution of the saturation, the time-step δt must satisfy
a CFL condition.

δt ≤
inf
k∈Kh

(|k|ϕk)

sup
k∈Kh


− ∑

σ∈Fi
h,k

(F i
g,σ)

− − ∑
σ∈FD

h,k

(FD
g,σ)

−


 sup

S∈[0,1]

(
f ′
g(S)

)
.

3.2.3 Taking wells into account

On a discrete level, wells can be represented by source terms, equation (3.1)
and (3.2) become:

div(v(P n+1, Sn)) = qT , (3.4)

ϕ
Sn+1 − Sn

δt
+ div(fg(S

n)v(P n+1, Sn) = qg. (3.5)

Solving the pressure problem

The discrete pressure problem presented in section 3.2.1 and associated to a
cell k then becomes:

∑

σ∈Fi
h,k

Φi
k,σ +

∑

σ∈FD
h,k

ΦD
k,σ −

∑

i∈Π|K(i)=k

qΠTk,i
= 0. (3.6)
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with qΠTk,i
the total flux at the well i in the perforated cell k between tn and

tn+1, Π the set of wells, KΠ
i the set of perforated cells by a well i ∈ Π. If

qΠTk,i
> 0 the well is injector, else if qΠTk,i

< 0 the well is producer.

Diffusive fluxes at the wells

There are two well operation modes. Either a constant total flow rate qT
or a constant pressure P k

i . In this last case, the total flux at the wells are
approximated by:

qΠTk,i
= −IPkλ

Π
Tk,i

(P n+1
k − PΠ

i ),

where the total mobility λΠ
Tk,i

is computed through an up-winding from the
pressure gradient:

λΠ
Tk,i

=

{
λT (S

n
k ) if P n

k ≥ PΠ
i ,

λT (S
Π
i ) else,

and where SΠ
i is the gas saturation imposed at the well i and the production

index of the cell k IPk is given by Peaceman’s formula [6]:

IPk = 2π
Kk

log(re/rw)
,

with re ≃ 0.14
√

dx2 + dy2, dx and dy are the respective perforated cell length
and width of a cartesian mesh and rw is the well radius.

Solving the linear system
After assembly of 3.6, we obtain a linear system of size Nh (number of cells),
that can be written in the generic form:

Ax = b,

where x = P n+1.

Solving the saturation problem with wells
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The discrete equation associated to cell k is:

Sn+1
k = Sn

k−
δt

|k|ϕk


 ∑

σ∈Fi
h,k

F i
g,σ(S

n
k , S

n
l ) +

∑

σ∈FD
h,k

FD
g,σ(S

n
k , Sb,σ) +

∑

i∈Π|k∈KΠ
i

FΠ
g,i(S

n
k , S

Π
i )


 ,

where SΠ
i is the injected gas saturation of well i ∈ Π and:

FΠ
g,i(S

n
k , S

Π
i ) = fg(S

n
k )(−qΠTk,i

)+ + fg(S
Π
i )(−qΠTk,i

)−.

Due to the explicit resolution of the saturation, the time step δt must satisfy
a CFL condition (Courant-Friedrichs-Lewy).

δt ≤
inf
k∈Kh

(|k|ϕk)

sup
k∈Kh


− ∑

σ∈Fi
h,k

(F i
g,σ)

− − ∑
σ∈FD

h,k

(FD
g,σ)

− − ∑
i∈Π|k∈KΠ

i

(FΠ
g,i)

−


 sup

S∈[0,1]

(
f ′
g(S)

)
.

3.3 IMPIMS scheme
As for the IMPES scheme, the pressure and saturation resolutions are de-
coupled. In the IMPIMS (Implicit in Pressure and Implicit in Saturation)
scheme [3][5], the time integration is also of Euler type, the pressure is al-
ways implicit but the saturation is implied to calculate the fractional flow.
We solve the system

div(v(P n+1, Sn)) = qT , (3.7)

ϕ
Sn+1 − Sn

δt
+ div(fg(S

n+1)v(P n+1, Sn) = qg. (3.8)

Therefore, the pressure is computed as in section 3.2.3 and allows us to obtain
the total velocities. Then to compute the saturation at time tn+1, we realise
a finite volume discretization of equation (3.8). For any cell k ∈ Kh

Sn+1
k = Sn

k −
δt

|k|ϕk


 ∑

σ∈Fi
h,k

F i,n+1
g,σ +

∑

σ∈FD
h,k

FD,n+1
g,σ −

∑

i∈Π|k∈KΠ
i

FΠ,n+1
g,i


 , (3.9)
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with the discrete diffusive flux defined using an up-winding such in paragraph
3.2.3 and 3.2.2.

FΠ,n+1
g,i = fg(S

n+1
k )(−qΠTk,i

)+ + fg(S
Π
i )(q

Π
Tk,i

)−,

F i,n+1
g,σ = fg(S

n+1
k )(Φi

k,σ)
+ + fg(S

n+1
l )(Φi

k,σ)
−,

FD,n+1
g,σ = fg(S

n+1
k )(ΦD

k,σ)
+ + fg(Sb,σ)(Φ

D
k,σ)

−.

The calculation of the saturations Sn+1
k requires the resolution of a nonlinear

system because of the expression of the fractional flow function fg. This
resolution is done using Newton’s method. By evaluating the flows implicitly,
the obtained solution respects the maximum principle whatever the chosen
time step.

3.4 Fully Implicit scheme
For the fully implicit scheme, the pressure and saturation are solved simul-
taneously and the time integration is still of Euler type.

We consider the system (2.8) written in the following form:





ϕ
∂

∂t
(Sw) + div(vw) = qw,

ϕ
∂

∂t
(Sg) + div(vg) = qg,

(3.10)

with Sw+Sg = 1, and where vw, vg are given by (2.2) and qg, qw are the water
flow and gas flow in the wells.

The fully implicit discretization of (3.10) gives ∀k ∈ Kh and for α ∈ {w, g}:

|k|ϕk

Sn+1
α,k − Sn

α,k

δt
+


 ∑

σ∈Fi
h,k

F i
α,σ(P

n+1, Sn+1
α ) +

∑

σ∈FD
h,k

FD
α,σ(P

n+1, Sn+1
α )




+
∑

i∈Π|k∈KΠ
i

FΠ,n+1
α,k (P n+1, Sn+1

α ) = 0. (3.11)
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The phase fluxes are approximated as follows:

For a face σ ∈ Fi
h,k such that σ = ∂k ∩ ∂l:

F i
α,σ(P

n+1, Sn+1) = λi,n+1
α,σ T i

σ(P
n+1
k − P n+1

l ),

where:

λi,n+1
α,σ =

{
λα(S

n+1
α,k ) if T i

σ(P
n+1
k − P n+1

l ) ≥ 0,

λα(S
n+1
α,l ) if T i

σ(P
n+1
k − P n+1

l ) < 0,

for faces in Fb
h,k ∩ FD

h,σ

FD
α,σ(P

n+1, Sn+1) = λD,n+1
α,σ TD

σ (P n+1
k − Pσ),

where

λD,n+1
α,σ =

{
λα(S

n+1
α,k ) if TD

σ (P n+1
k − P σ) ≥ 0,

λα(Sb,σ) = if TD
σ (P n+1

k − Pσ) < 0.

For cells k ∈ KΠ
i

FΠ,n+1
α,k (P n+1, Sn+1) = λΠ,n+1

α,i IPk(P
n+1
k − PΠ

i ),

where

λΠ,n+1
α,i =

{
λα(S

n+1
α,k ) if IPk(P

n+1
k − PΠ

i ) ≥ 0,

λα(S
Π
α,i) = if IPk(P

n+1
k − PΠ

i ) < 0.

We still choose P and S = Sg as primary unknowns and Sw = 1 − S as
secondary unknown.

For each cell k, the system (3.11) can be written as:

{
Rgk(P

n+1, Sn+1) = 0,

Rwk
(P n+1, 1− Sn+1) = 0.

(3.12)

This non linear system of 2N equations is solved using Newton’s method.
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The fully implicit scheme is unconditionally stable but taking large time
steps can make Newton’s method diverge. The size of the linear system to
be solved at each iteration is more important than for other explicit schemes
(all unknowns are coupled).

Newton’s method stopping criterion

During the numerical resolution, we use a stopping criterion for Newton’s
method based on the residual norm.

At the Newton iteration number I, the instantaneous balance for a phase α
in a cell k ∈ Kh is:

BI
α,k = |RI

α,k|
δt

|k| , (3.13)

where |k| aims to put into perspective the error between the large and small
cells. Then, the stopping criterion is:

max
α∈{w,g}

max
k=1,N

BI
α,k < ϵ, (3.14)

with epsilon the stopping criterion value. This criterion can be seen as a test
on the residual infinity norm.

3.5 Time-step management
In this section, we expose specific numerical aspects related to the reservoir
simulation.

3.5.1 Time stepping for each scheme

IMPES

For this scheme, the time step is driven by the CFL condition.

IMPIMS and Fully implicit
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For those two schemes, the time step is driven by Newton’s method and
by a test on variable variations. In this thesis, we do not use the test on
variable variations as it relies on several hyperparameters that are chosen
empirically.

Newton time stepping

The time-step management driven by Newton’s method is described by al-
gorithm 1. We use relaxation technique which restrains the variable vari-
ations and clipping which ensures that the saturation remains physical (i.e
0 ≤ S ≤ 1).

As presented in the algorithm 1, the time step is reduced if the Newton’s
resolution does not converge in a certain number of iterations. This number
of iterations highly depends on the initialization. If we assume that there
are no big variations in pressure and saturation between tn and tn+1; in this
case the time step is not lowered.

Time-step management through events

Starting from a time t0 and with an event such as a well opening or closing
at a time t1, we want to completely capture the event by choosing wisely the
time step dt that reaches it. For now, we use the following method:

Given t0 the actual time, t1 the event time with t1 > t0 and a time step dt0.
If t0 + dt0 > t1 then we miss the event by keeping this time step. We so
chose dt1 = t1 − t0 in order to synchronize with the exact beginning of the
event.

3.6 YADS reservoir simulation library
This work involves running reservoir simulations using the numerical scheme
presented above, and artificial intelligence models can easily integrated into
the process. To the best of our knowledge, we haven’t found any available
library that meets these criteria. Therefore, we have developed our own:
YADS which stands for ’Yet another Darcy Solver’. YADS is fully written
in python and will be released as open-source at the end of this thesis at
the following link. We will start by presenting the main building blocks and
their key features. Then, we will provide a concrete script example that
demonstrates the use of some key features.
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Algorithm 1 Newton algorithm for Fully Implicit scheme
Initialization: P I=0 = P n, SI=0 = Sn

g (and SI=0
w = Sn

w), δSmax

Iteration
for I ← 1 to NMAXITER do

Solving the linear system:
(

∂RI
g

∂P

∂RI
g

∂S
∂RI

w

∂P
∂RI

w

∂S

)(
δP
δS

)
= −

(
Rg(P

I , SI)
Rw(P

I , 1− SI)

)
(3.15)

Update unknowns

α = min(1, δSmax/max(δS)) ▷ Compute relaxation coefficient

P I+1 = P I + α δP, SI+1 = SI + α δS (and SI+1
w = 1− SI+1)

SI+1 = clipping(SI+1,min = 0,max = 1) ▷ clip the saturation to [0, 1]

if convergence then ▷ Convergence test on the residual L∞ norm

P n+1 = P I+1, Sn+1 = SI+1 (and Sn+1
w = 1− SI+1)

break
else if I == NMAXITER then ▷ Max number of iterations reached

restart algorithm with ∆tn = ∆tn/2
end if

end for
End of Newton’s iterations
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3.6.1 YADS feature blocks

To build a reservoir simulation library, we require several fundamental build-
ing blocks. First, there’s the ’Mesh’ block, which handles tasks such as mesh
creation, loading, and modifications. Next, we have the ’Physics’ block,
responsible for applying physical laws to the grid, including tasks like imple-
menting relative permeability laws. Another crucial component is the ’Well’
block, which manages well-related operations from creation and connection
to the mesh to their management throughout the numerical simulation. Fi-
nally, once the mesh is defined, the wells are connected, and the physical laws
are established, we can execute the reservoir simulation using the ’Numeric’
block. In the following sections, we will delve into each of these blocks in
greater detail.

3.6.1.1 Mesh block

The ’Mesh’ block is built using the ’Mesh’ class, which serves as a repre-
sentation of a mesh object. It encapsulates all of the mesh’s properties and
provides methods to explore the relationships between its components. Im-
portantly, these relationships are dimensionless, meaning that the methods
for querying them remain consistent regardless of the mesh’s dimensionality
(1D and 2D are supported). Let’s now dive into the key features of this
block.

Mesh creation

When create a Mesh object, there are several options available. One way
is to use a construction method. In this case, the library supports the cre-
ation of one and two-dimensional Cartesian meshes using the method ’cre-
ate_2D_cartesian’. This method takes as input arguments the length of the
mesh and the number of cells per dimension.

1 # create 1D cartesian mesh
2 # 10 000m x 1000m with 200 cells in x-direction and 1 in y-

direction
3 grid = yads.mesh.two_D.create_2d_cartesian(
4 Lx=10000 , Ly=1000, Nx=200, Ny=1
5 )

This code creates a 1D Mesh object called grid with 200 cells in the x-
direction and 1 cell in the y-direction. The total length in the x-dimension
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is 10, 000 meters and 1, 000 meters in the y-dimension.

Another way to create a mesh, it to load it from an external file. As this func-
tionality has been developed to handle meshes coming from ’FreeFEM’ soft-
ware [7] (see FreeFEM.org). Therefore, it handles some of FreeFEM meshes
export extensions such as ’.mesh’ and ’.msh’ and the resulting meshes are not
necessarily cartesian. In this case, the associated method is ’load_meshfile
and only requires as argument the path to the mesh file in the correct exten-
sion. It is also possible to load Mesh using load_json method, this meshfile in
JSON (JavaScript Object Notation) extension is obtained through a specific
export method.

Mesh interface

With the mesh loaded, the next step is to interact with it, such as defining
groups that will have specific properties or obtaining relational information
between cells or faces. we will introduce some essential methods and provide
an example of their utilisation within the library.

• Mesh.measures : get faces or cells lengths.
Used to calculate transmissivities.

• Mesh.face_to_cell : given a face index, return one (boundary face) or
two cells (inner face) indexes.
Used to calculate fluxes

• Mesh.add_cell_group_by_square: Create a cell group composed of all
cells within a defined square.
Used to create permeability barriers

• Mesh.connect_well : connect a Well object to the Mesh object through
perforated cell(s).

Mesh export

Exporting Mesh objects is essential, as it enables loading them into other
software for visualization, for example. It also helps avoid the need for mesh
creation during numerical experiments, which can be costly depending on
the mesh size. To this extent, there are two methods: Mesh.to_json and
export_vtk. Mesh.to_json allows the conversion of a Mesh object to a JSON
file which is really useful as it can be seen as a dictionary that is supported
in most of the coding languages. Moreover, it can be loaded back using the
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load_json metod. Then the export_vtk method allows the export of the Mesh
object to the VTK extension. This extension allows the Mesh to be visualized
in some visualization software such as Paraview [1] (see Paraview.org).

3.6.1.2 Physics block

The physics block facilitates the computation of essential physical properties
for numerical schemes. It comprises three primary methods: fractional flow
computation, mobility computation, and relative permeability computation.
Additionally, there are auxiliary methods that assist in calculating derivatives
of these physical properties with respect to saturation, for example.

3.6.1.3 Well block

Wells are managed through the ’Well’ class. The definition of a Well object
necessitates the following properties:

• name

• cell or group of cell: position(s) or cell index(es)

• mode: injector or productor

• control: Pressure (Dirichlet) or Flow rate control (Neumann)

• Injection gas saturation: only works if the well is injector

• well radius

• schedule: opening and closing times

It is to note that the name is useful when connecting the well to the grid
through the Mesh.connect_well method, as we will be able to work directly
with the Mesh cell group associated to the well.

3.6.1.4 Numeric block

Now that the mesh is defined using a Mesh object, the physical laws are es-
tablished, and the wells are defined and connected to the mesh, the ’Numeric’
block encompasses several features for running the numerical simulation. It
consists of two main packages and two auxiliary packages.
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Among the auxiliary packages, there is a physics module available for com-
puting numerical physical properties, such as transmissivity or well physical
models like the Peaceman formula. The second auxiliary package is related
to numerical tests associated with the numerical schemes. As we use an ex-
plicit saturation solver, which is conditionally stable, we need to compute a
CFL condition to ensure the numerical stability of the scheme.

The two main packages are the Solver and the Scheme packages. The Solver
package includes four primary features: an implicit pressure solver (IMP),
explicit and implicit saturation solvers (ES/IMS), and a fully implicit solver.
On the other hand, the Scheme package allows for running full numerical
simulations using specific schemes, including IMPES, IMPIMS, and Fully
Implicit. It manages the scheme and the succession of time steps.

Moreover, you can save simulations in JSON format. These saves can be
performed either at the time step scale, meaning you save the reservoir state
after each time step, or at the scheme scale. Saving Newton iterates provides
valuable insights into the simulation behavior. Additionally, you have the
option to save in VTK format at the time step scale for visualization in
Paraview.

We now provide a synthetic code example that loads the 2D SHPCO2 S size
mesh from a JSON file, create some properties and groups from it, run a
simulation using the fully implicit solver and save.

1 # Imports
2 import numpy as np
3 from yads.wells import Well
4 from yads.mesh.utils import load_json
5 from yads.numerics.schemes.solss import solss
6

7 # Load mesh
8 grid = load_json("SHP_CO2_2D_S.json")
9

10 # Boundary face groups creation
11 grid.add_face_group_by_line("injector_one",
12 (0., 0.), (0., 1000.))
13

14 # Permeability barrier zone creation
15 barrier_1 = grid.find_cells_inside_square ((1000. , 2000.) ,

(1250. , 0.))
16

17 # Diffusion coefficient (i.e Permeability)
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18 K = np.full(grid.nb_cells , 100.0e-15)
19 permeability_barrier = 1.0e-15
20 K[barrier_1] = permeability_barrier
21 # Porosity
22 phi = np.full(grid.nb_cells , 0.2)
23 # gaz saturation initialization
24 S = np.full(grid.nb_cells , 0.0)
25 # Pressure initialization
26 P = np.full(grid.nb_cells , 100.0 e5)
27 # viscosity
28 mu_w = 0.571e-3
29 mu_g = 0.0285e-3
30

31 # relative permeability law
32 kr_model = "quadratic"
33 # BOUNDARY CONDITIONS #
34 # Pressure
35 Pb = {"injector_one": 110.0e5 , "right": 100.0e5}
36 # Saturation
37 Sb_d = {"injector_one": 0.0, "right": 0.0}
38 Sb_n = {"injector_one": None , "right": None}
39 Sb_dict = {"Dirichlet": Sb_d , "Neumann": Sb_n}
40

41 # time step
42 dt = 2 * (60 * 60 * 24 * 365.25) # in years
43 # maximum number of Newton iterations
44 max_newton_iter = 200
45 # stopping criterion
46 eps = 1e-6
47

48 # Well creation
49 well_co2 = Well(
50 name="well co2",
51 cell_group=np.array ([[1475.0 , 2225]]) ,
52 radius =0.1,
53 control ={"Neumann": -(10 ** -3.1)},
54 s_inj =1.0,
55 schedule =[[2 * dt, 12 * dt],],
56 mode="injector",
57 )
58

59 solss(
60 grid=grid ,
61 P=P, S=S,
62 Pb=Pb, Sb_dict=Sb_dict ,
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63 phi=phi , K=K, mu_g=mu_g , mu_w=mu_w ,
64 dt_init=dt, total_sim_time =40 * dt ,
65 kr_model=kr_model ,
66 wells=[ well_co2],
67 max_newton_iter=max_newton_iter , eps=eps ,
68 save=True , save_step=1, save_path="shp_teaser_",
69 )

3.7 Numerical behaviour during well event
Well events generate pressure and saturation discontinuities (in time) in-
side the reservoir and lead to nonlinear convergence problems as they act as
singular point sources that are tightly coupled to the reservoir model. In this
section, we depict some typical behaviour induced by a well event.

We aim to assess the impact of a well event in a reservoir simulation through
a simple 1D test case. In this case, we employ a reservoir that is 10 km long
in the x-direction and 1 km long in the y-direction, with 200 cells in the
x-direction and 1 cell in the y-direction, effectively creating a 1D model. We
utilize the same physical configuration as outlined in the SHPCO2 physical
configuration 2.2.1, employing a drain zone permeability and a quadratic rel-
ative permeability law. Regarding the boundary conditions and well injection
parameters, we applied Dirichlet boundary conditions for pressure, setting it
to 110×105 Pa at the left boundary and 100×105 Pa at the right boundary.
Similarly, we use Dirichlet boundary conditions for the saturation, with only
water at both the left and right boundaries.

Thereafter, the well is located in the middle of the domain and we control the
gas injection in pressure with a constant injection pressure of 200× 105 Pa.
The simulation runs for 60 years with a time step of 2 years, we start injecting
at 4 years and stop injecting at 24 years. Finally, we set the maximum number
of Newton iterations at 200, and the stopping criterion at 1× 10−6.

In figure 3.1, we present the reservoir state just before the well opening and
right after. We notice a sudden global pressure discontinuity caused by the
well, this discontinuity is instantaneous and remains independent of the time
step. Furthermore, we observe a saturation discontinuity in the vicinity of
the well, and this latter discontinuity depends on the time step.

In figure 3.2, the evolution of the required number of Newton iterations to
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Figure 3.1: Example of well event impact on the pressure and saturation
profile. The left up and down figures represent the pressure and saturation
before a well opening, while the up and down right figures represent the
pressure and saturation after a well opening.
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Figure 3.2: Example of scenario and it’s impact on Newton’s method. The
scenario is composed of a well event opened after 2 time steps (red dashed
line) and closed at 12 time steps (red dotted line).

achieve convergence at each time-step is depicted. We observe that imme-
diately after the well opening, the number of required Newton iterations to
reach convergence peaks at 22 and remains consistently above 9 through-
out the entire well injection period. Conversely, when the well is closed, no
more than 3 iterations are needed to achieve converge. Consequently, it is
evident that the well event contributes significantly to the overall count of
Newton iterations over the entire simulation duration. This behavior can be
attributed to the sensitivity of Newton’s method to initialization. Since the
solution from the previous time step serves as the initial guess for the next
time step, a substantial deviation between the new and previous solutions
may necessitate a larger number of iterations.
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Chapter 4

Black-Box machine learning PDE
solver
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In this section, we evaluate whether the learning models have the potential
to serve as direct substitutes for solvers, or if they are more suited to aug-
menting traditional solver approaches. We consider parameter to solution
problems, all adapted to some geosciences applications. This work results
from the CEMRACS 2023 on Scientific Machine Learning. During this event,
we developed more test cases (that are not presented in this thesis) where
Physics Informed Neural Network are also part of the benchmark. For the
first problem, we propose to compare the performances of different methods
between the following:

• Proper orthogonal decomposition (POD)

• Multi-layer perceptron (MLP)

• Deep Operator Network (DeepONet)
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• Fourier Neural Operator (FNO)

MLP, FNO and DeepONet have been presented in the state of the art. We
expose a short introduction here on POD.

Proper orthogonal decomposition

Proper Orthogonal Decomposition (POD) [1] [3] is a mathematical technique
widely used in the field of fluid dynamics and computational mechanics to
analyze and extract information from complex data sets. It is composed of
two parts: the Truncated Singular Value Decomposition (SVD) which serves
as a tool for reducing the dimensionality of large datasets, enabling efficient
data representation and analysis through the creation of POD basis.

Mathematically, SVD operates by decomposing a dataset into a set of or-
thogonal basis functions or modes, often represented as eigenfunctions. These
modes are determined by capturing the most significant variations within the
data. They are organized in order of importance, with the first few modes
explaining the majority of the variance in the dataset. This ordered set of
modes allows for a concise representation of the data, shedding light on its
underlying structure and dynamics.

Given a collection of snapshot as a data matrix, the singular value decompo-
sition (SVD) factorizes the data matrix into a product of three matrices: the
left singular vectors, the singular values, and the right singular vectors. In
the context of fluid dynamics, the leading singular vectors correspond to the
primary POD modes, which effectively capture the dominant flow patterns
or structures present in the data.

After obtaining the POD basis through the SVD, a Galerkin projection is
applied to infer new data. Galerkin projection is a technique that allows us to
represent the dynamics of a high-dimensional system using a reduced set of
modes or basis functions. In the context of POD, Galerkin projection involves
approximating the governing PDEs or system dynamics using the POD basis
functions. The Galerkin projection provides a computationally efficient way
to study and simulate the system’s dynamics while significantly reducing the
computational cost associated with high-dimensional problems.
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4.1 Problems considered

4.1.1 Poisson equation

4.1.1.1 Problem presentation

For the first case, we consider the following elliptic equation.

{
−∇ · (D(x)∇u) = δ(x, y), x ∈ (0, 1),

u(0) = u(1) = 0.
(4.1)

Where D is the diffusion coefficient function and δ(x, y) can be interpreted
as a localised well injection flow rate defined by:

δ(x, y) =

{
1 if x = y,

0 otherwise.
(4.2)

We use a 1D cartesian grid composed of 101 points. To obtain non-zero values
for the source term delta, y must coincide with the grid points, we therefore
will have to train at a low data regime i.e with few data. We consider a
mapping from the parameters (D, y) to the solution u. We uniformly sample
61 points over the domain [0.2, 0.8], for each point y we generate a D map
over the whole domain using the following function:

D(x) = 0.1 + exp(−(x− y)2

0.02
). (4.3)

We therefore obtain Gaussian D maps centered on y, a standard deviation
of 0.1 and with minimum values of 0.1. It is to note that D is thus defined
by only one parameter y. Also we chose the well location at the maximum
diffusion location, this corresponds to the fact that the injection is realised in
a high permeability field corresponding to a reservoir for example. The main
issue is that we reduce the input variability by doing so. We use an implicit
finite difference solver to generate the solutions and show on figure 4.1 some
examples of inputs parameters and their corresponding solutions.

We then randomly split in train/validation sets with a 80/20 ratio. Finally,
we fit four models: POD, MLP, FNO and DeepONet.

88



0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Solution

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Input parameter

Figure 4.1: Right figure: input parameters D maps and source δ maps for
different positions and their corresponding solution on the left figure.

4.1.1.2 Results

We show on figure 4.2 the results of the fitting process for each method.
We use Optuna [2] (see Optuna.org) for the hyperparameter optimization.
We observe on 4.2b that two modes is enough to reach 99% of cumulative
explained variance. Moreover, we observe on 4.2a that the neural operators
outperform the MLP for training and validation by reaching a lower mini-
mum relative L2 error. Indeed, neural operators are constructed by design
to learn mappings from functions to functions. However, we observe that
DeepONet has a higher validation relative L2 error than the FNO meaning
that it overfits, this is mainly due to the low data regime (40 for training, 21
for validation).

To assess the potential of each model as a direct substitute to the solver, we
use parity plots on in distribution (ID) and out of distribution (OOD) data.
Parity plots consist in plotting the norm of the prediction ûD versus the
norm of the solution uD for each sample of a dataset. This helps us visualize
the performances of the predictive model over a whole dataset. An accurate
predictive model results visually in a parity plot corresponding to the identity.
The ID data is the concatenation of train and validation sets while the OOD
dataset is composed of grid values in [0.1, 0.2[∪ ]0.8, 0.9].
Figure 4.3 shows that all models except MLP performs well in distribution
according to the L2 norm which is in agreement with the fitting process
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Figure 4.2: Results of the different fitting process for each method. Left
figure shows the evolution of relative L2 error through the fitting process i.e
training and right figure is the scree plot of the POD.

curves. Indeed, a correct prediction should match the solution on the x = y
red dotted line. Moreover, the out of distribution prediction norms do not
match the solution norms for FNO, DeepONet and MLP models meaning
that the models do not generalize.

Considering the replacement of the solver with one of these models, it’s cru-
cial to acknowledge this significant factor. Substantial effort is necessary to
accurately sample the input data. This ensures that when the model takes
over the solver’s role, there won’t be any out-of-distribution points since we
are aware of the models’ limited generalization capabilities.

4.1.2 Incompressible two-phase flow problem

We now consider a ’piston’ reservoir problem. We replace the traditional
numerical solver by a black-box machine learning model. However, compared
to the previous problem, there is now a time-dependency. Therefore, we will
iterate through time using the machine learning model.
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Figure 4.3: In and out of distribution parity plots using L2 norm for each
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4.1.2.1 Problem presentation

We consider a 1D reservoir with only water inside. It is composed of 100
cells in the x-direction representing 10 kilometers and 1 kilometer in the y-
direction. The porosity and the permeability are constant over the whole
reservoir and equal to respectively 0.2 and 300 × 10−15. The water and
gas viscosity are as mentioned in the 2.2 section. We use a quadratic relative
permeability model. Regarding the boundary conditions, we inject gas at the
left boundary with a certain pressure, at the right boundary, the pressure is
equal to 10 MPa and and the initial conditions correspond to a reservoir with
only water.

Data generation

We generate 10000 data snapshots using a fully implicit solver with a constant
time-step of 1 year. We start at t = 0 with an initial pressure equal to 10 MPa
and we sample a left boundary pressure between 10.5 MPa and 20 MPa. Then
we iterate in time for a total of 101 iterations. At each iteration, we save the
reservoir state as pressure and saturation snapshots. Then, we remove the
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Figure 4.4: Example of saturation and pressure solutions at different times
using a left boundary pressure of 19.5× 106 Pa.

first snapshot as it has been initialized with a pressure that is not usable for
training. We repeat this process 100 times. This results in 10 000 snapshots,
each composed of a pressure and a saturation map. Finally, we split the
whole dataset in three sets: train, test and validation with a 60/20/20 ratio
by batch coming from the same simulation (i.e 100 per 100).

Model training

We use the Fourier Neural Operator architecture with 12 parameterized
modes and 128 channels. The input features are the pressure and saturation
snapshots, together with a constant map of boundary pressure, therefore a
single input data shape is (1, 100, 3). The predicted features are the pressure
and saturation after a time-step, therefore the output shape for a single sam-
ple is (1, 100, 2). We train on a A100 GPU using Adam optimizer, a learning
rate of 1× 10−4, a momentum of 0.9 during 2500 epochs and keep the model
parameters corresponding the the lowest test value. We show on the figure
4.5 the loss curve. The minimum loss value is 1.3 × 10−3 and is reached at
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epoch 2427. It’s corresponding train loss value is 2.2× 10−3.

4.1.2.2 Results

We present the results obtained by the machine learning model, first when
used for single sample predictions, then as a black-box simulator which iter-
ates through time.

Single sample

We show on the figure 4.6 three snapshots from the training dataset of pres-
sure and saturation at different times: at the very beginning of the simula-
tion (t = ∆t), at the mid-time of the simulation (t = 50∆t) and at the end
(t = 100∆t). The left boundary pressure is 14.1 × 106 Pa. In blue dots we
show the exact solutions for each snapshot while the red dashed line shows
the corresponding predictions using the machine learning model. We observe
that the predictions fit qualitatively well the exact solutions.

Parity plot

We show on figure 4.7 the parity plots of the predicted versus exact satura-
tion (left figure) and pressure (right figure) using the L2 norm for the three
datasets. We observe that, according to the L2 norm, the predictions for all
data sets are accurate as each point is on the identity line.

Therefore, given a snapshot coming from a simulator, it seems possible to
predict accurately the solution after a step of time.

Time iteration
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Figure 4.6: Example of exact and predicted saturation and pressure at dif-
ferent times with a left boundary pressure of 14.1× 106 Pa.
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Figure 4.8: Example of saturation and pressure snapshots obtained using the
machine-learning model to iterate through time starting from a time t = 0
and with a left boundary pressure of 17.5× 106 Pa.

Now, given a snapshot, we iterate through time using only the machine-
learning model i.e, we consecutively apply the model on it’s own predictions.
The figure 4.8 exposes different snapshots obtained starting from t = 0 and
a left boundary pressure of 17.5× 106 Pa. We observe that pressure remains
close the solution for all snapshots while the saturation remains accurate
everywhere except at the front of saturation. The figure 4.9 exposes different
snapshots obtained starting from t = 0 and a left boundary pressure of
14.1× 106 Pa. We observe that after 10 time-steps, the predicted saturation
starts to drift away from the solution at the bottom of the saturation front.
After a few more iterations, the predicted pressure and saturations have
drifted away from the solution on the whole domain. Therefore, a small
error at a specific location may lead to strongly non-physical solutions after
only a few iterations.

A straightforward engineering bootstrap of the case presented on the figure
4.9 is to incorporate, such as in Newton’s method, some clipping. Indeed,
we observe that the predicted saturation is negative at the bottom of the
saturation front after t = 10∆t. To prevent it, we set all negative values to 0
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Figure 4.9: Example of saturation and pressure snapshots obtained using the
machine-learning model to iterate through time starting from a time t = 0
and with a left boundary pressure of 14.1× 106 Pa.

and all values superior to 1 to 1. We show the same test case on the figure 4.10
and we observe that the clipping results in a much better quality prediction
even after multiple step of times. It is to note that this trick would not work
for the case presented on figure 4.8 as the saturation respects the maximum
principles at all times. Moreover, it is also possible to apply clipping on the
pressure if needed.

96



0.0

0.1

0.2

0.3

0.4

S

t = 5 t

0.0

0.1

0.2

0.3

0.4

0.5

t = 10 t

0.0

0.1

0.2

0.3

0.4

0.5

0.6
t = 15 t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t = 20 t

0 25 50 75 100
1.0

1.1

1.2

1.3

1.4

P

1e7

0 25 50 75 100
1.0

1.1

1.2

1.3

1.4
1e7

0 25 50 75 100
1.0

1.1

1.2

1.3

1.4
1e7

0 25 50 75 100
1.0

1.1

1.2

1.3

1.4
1e7

Exact Prediction

Figure 4.10: Example of saturation and pressure snapshots obtained using
the machine-learning model and saturation clipping to iterate through time
starting from a time t = 0 and with a left boundary pressure of 14.1 × 106

Pa. The predictions are represented in red dots while the solutions are in
blue dots.
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4.2 Conclusion
This study highlights the potential of machine-learning models to accurately
predict solutions of PDE problems. We observed that given snapshots gen-
erated by a traditional numerical solver, it is possible to learn the solution
after a certain step of time with different boundary conditions. However, it
is not straightforward to replace entirely the solver by the machine-learning
model. Indeed, a small error can make the predicted solution drift away
from the true solution in a few time iterations. This highlights the fact that
it is important to take into account numerical guarantees that the traditional
solver ensures. Therefore, we propose in this thesis to use machine-learning
models as a complement to accelerate the traditional numerical solver while
preserving it’s guarantees.
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5.1 Introduction
In this chapter, we complement the traditional numerical solver by predict-
ing a global initialization of Newton’s method. The continuous model (2.9)
is discretized using a two-points finite volume scheme and a Euler type time
integration. The pressure P and saturation S are solved simultaneously
through a fully implicit scheme (3.11). Finally, the resulting non-linear sys-
tem of equations is solved using Newton’s method. This last is initialized
using the solution obtained at the previous step Xn as an initial guess and
returns the solution at the next step Xn+1.

Time-step management

In theory, the time-step size of a fully implicit reservoir simulator is not lim-
ited by stability (i.e unconditionally stable). However, in practice, when us-
ing the standard Newton’s method, convergence may fail for larger time-step
sizes. This necessitates multiple time-step reductions to achieve convergence,
resulting in a significant number of superfluous iterations.

At the scale of a single time-step (in opposition with the global simula-
tion scale), the time-step is driven by Newton’s method. One can allow a
maximum number of Newton iterations Nmax under which the method must
converge. Above this number, we start over with a smaller time-step, usually
by dividing by a factor two. There are other time-step management mech-
anisms at the global simulation scale such as the management through the
solution variations. This mechanism presents multiple empirical parameters
to set without much justifying.

But these global simulation time-step management mechanisms do not con-
cern us in this study since we focus on the acceleration of the Newton
method, we work at the single time step scale and not at the global sim-
ulation scale.

Impact of well events during the numerical resolution

Well events generate pressure and saturation discontinuities (in time) in-
side the reservoir and lead to nonlinear convergence problems as they act
as singular point sources that are tightly coupled to the reservoir model
[1]. These discontinuities often prevent Newton’s method from converging
while attempting to solve the system as the initial guess may be far from
the solution. In such situations, we attempt to solve the system again with
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Figure 5.1: Example of scenario and it’s impact on Newton’s method. The
scenario is composed of a well event opened after 2 time steps (red dashed
line) and closed at 12 time steps (red dotted line).

a reduced time step and continue this process until convergence is achieved.
Well events can thus account for a significant portion of the actual simulation
time. An illustrative scenario, inspired by the test case 2 discussed in Section
5.4, is depicted in Figure 5.1. This scenario involves a simulation of 40 time
steps, each spanning 2 years. At 4 years, an injection well is opened using
an well injection flow rate of 10−3.1 and closed at 24 years. We observe that
immediately following the well opening, Newton’s method necessitates 40 it-
erations to reach convergence, with a minimum of 5 iterations required at
each subsequent step throughout the entire well opening process. In contrast,
in the absence of well events, the maximum number of Newton iterations is
5 immediately after well closure and 3 otherwise. Consequently, the well
event-induced Newton iterations constitute the majority of the total Newton
iterations throughout the entire scenario, accounting for 54%. Furthermore,
if the maximum allowable iteration count were less than 40, the time step
would be halved.
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5.2 Methodology
We propose a methodology based on the Hybrid Newton algorithm [8] [5]
[11] [2] to alleviate the impact of well events. It consists in predicting via
machine learning an initialization closer to the solution than the standard
initialization, hence accelerating the Newton’s method convergence while still
guaranteeing the correct solver solution. We use a fixed reservoir geometry
and configuration where a well event occurs at a specific location. We aim to
alleviate the impact of the well opening for a wide range of scenarios.

5.2.1 Hybrid Newton algorithm

The hybrid Newton algorithm is a modification of the standard Newton algo-
rithm with respect to the initialization. Indeed, the hybrid method proposes
to initialize with a more accurate solution instead of using the standard ini-
tialization (i.e. the previous time step solution). By using an initialization
closer to the solution, we aim to converge in fewer iterations.

In this article, our primary focus is on the hybrid guess construction Xn+1
ML and

its performance compared to the standard initial guess Xn+1
init . We will com-

pare them through their impact on the number of Newton iterations.

5.3 Initial guess construction
In the hybrid Newton algorithm, a prediction guess Xn+1

ML := (Ppred, Spred)
is required. We propose the following construction for the pressure and sat-
uration:

1. Ppred: Implicit Pressure solver

2. Spred: Prediction using supervised learning

It is to note that, in this context, it is not possible to use an interpolation
from previous time-step solutions to construct an initial guess.

5.3.0.1 Pressure

During a well event, the pressure discontinuity is global in the reservoir and
instantaneous in time. We propose to use the solution of an implicit pressure
solver Pimp (IMP) [9] at the step n+1 as a prediction guess Ppred. The implicit
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pressure solver solves the linear elliptic equation (5.1) and catches the main
global variations of pressure but does not catch the small local variations of
pressure due to saturation variations. Moreover, the implicit pressure solver
only requires to solve a linear system. Therefore, we consider that it is not
worth it to train a machine learning model as we have a good approximation.
The implicit pressure solver solves the following equation:

div(v(Pimp, S
n)) = qT , (5.1)

with v = vg + vw, v, vg and vw are respectively the total velocity, the gas
velocity and the water velocity inside the reservoir. qT = qg + qw, qT , qg qw
are respectively the total, gas and water well injection flow rates. In practice,
only gas is injected, therefore qT = qg.

5.3.0.2 Saturation

During a well event, the saturation discontinuity inside the reservoir is local
and near to the well. One could use an implicit saturation solver (IMS) which
would require a Newton’s method to solve a non linear system. Therefore, we
propose to predict the saturation using a neural network considering that the
inference of a neural network is rather fast compared to the multiples Newton
iterations of the IMS solver which each require to solve a linear system. The
predicted saturation is denoted SML.

The standard methodology uses the initial guess Xn+1
init = Xn

sol = (P n, Sn) and
the hybrid methodology uses the initial guess Xn+1

ML = (Pimp, SML). Given
that we aim to conduct a fair assessment of the impact of a saturation pre-
dictive model, we compare the hybrid initialization with a reference initial-
ization. Therefore we use in this article the following initial guess for the
reference methodology Xn+1

init = (Pimp, S
n).

In the end, we will compare in terms of Newton iterations the two following
initialization:

1. Reference initialization: Xn+1
init = (Pimp, S

n)

2. Hybrid initialization: Xn+1
ML = (Pimp, SML)
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5.3.1 Neural Network architecture

The objective is to predict using reservoir and well information the global
saturation state reached after a well event. A well event at a specific location
and a specific well geometry can be described with few parameters: an injec-
tion well flow qg and a time-step dt. A neural network architecture with good
predictive capability for different physics-based processes is required.

Fourier Neural Operator

Neural networks are commonly used to learn relationships between finite-
dimensional spaces, but they can struggle to adapt to changes in governing
equations or conditions [3]. The Fourier Neural Operator (FNO) [7] addresses
this issue by learning relationships between infinite-dimensional spaces using
data-driven methods. This allows the FNO to understand the rules govern-
ing an entire family of partial differential equations. Additionally, the FNO
improves computational efficiency by converting convolution operations in
neural networks to multiplication through the use of discrete Fourier trans-
forms.

Selected Architecture

We use the architecture presented on figure 5.2 based on an uplifting dense
layer, four Fourier Layers (see figure 5.3) and two dense layers. We use the
Gaussian Error Linear Units (GELU) [4] as activation function for each layer.
We use two different versions of this general architecture for the training on
the two test cases. Nc and Ni are parameters respectively representing the
number of channels and the number of inputs.

The architecture of a Fourier layer fig. 5.3 is composed of two parts, one that
apply Fourier transform, a linear transform on the lower Fourier modes and
a filter on the higher mode, then it applies the inverse Fourier transform.
The other part is composed of a local linear transformation applied to the
original input. Finally, the output of the two parts are added together and
an activation function is applied.

Input Features

There are multiple features that can be considered as input features for the
selected neural architecture. We select four possible input features, the time-
step dt, the injection flow rate qg, the initial saturation Sn and the implicit
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Figure 5.2: Selected neural network architecture composed by an uplifting
dense layer, four Fourier layers, a dense layer and a projection dense layer.
Nc and Ni are parameters respectively representing the number of channels
and the number of inputs.

pressure Pimp. As Sn and Pimp have the same shape as the output feature,
they can be used straightforward. However, as qg and dt are scalars, they
need to be reshaped. We propose to reshape dt into a constant map of value
dt everywhere. For the injection flow rate qg, we reshape it to a map of value
zero everywhere except at the well location where it takes the value qg.

5.4 Test case and Database Generation

5.4.1 SHPCO2 benchmark

As a practical use case, we use the SHPCO2 benchmark presented in 2.2 to
test our methods.

Reservoir configuration

We adapt the original 2D SHPCO2 benchmark by removing the gas zone and
replacing it by a well at its center.

The domain after modification is separated in two zones, the first zone called
"Barrier zone" is coloured in green on the figure 5.5 and the second zone
called "Drain zone" is formed of the rest of the domain. These two domains
have different petrophysical properties.

Petrophysical properties
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Figure 5.3: The Fourier layer starts with an input vector v, applies the
Fourier transform F to it, then performs a linear transformation R on the
lower Fourier modes while filtering out the higher modes. The inverse Fourier
transform F−1 is then applied. A local linear transformation W is applied
to the original input vector v. The output of the top and bottom operations
are then added together and an activation function is applied.

Figure 5.4: Qualitative view of Neural network input feature possible assem-
bly.

Phase properties

Relative permeability model

We use a quadratic relative permeability model:

kr(S) = S2 and kr(Sw) = (1− S)2.

Boundary Conditions

The boundary conditions of the adapted SHPCO2 (figure 5.5) are presented
in the following table 5.3:

It is to note that the Productor has the composition of what it produces.
We consider the following mesh geometry which corresponds to the small (S)
mesh size of the SHPCO2 benchmark.
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Figure 5.5: Adapted 2D SHPCO2 case geometry

Barrier zone Drain zone
Porosity [-] 0.2 0.2

Permeability[m2] 1.e-15 100.e-15

Table 5.1: Petrophysical Parameters

Well conditions

We detail the well conditions in the following table 5.5

5.4.2 Test cases

We propose two different test cases based on the SHPCO2 benchmark and it’s
reservoir configuration presented in 5.4.1. The test case 1 has constant initial
saturation S0 while the test case 2 has more realistic initial saturations.

5.4.2.1 Test case 1

Database Generation

We launch simulations with a constant reservoir configuration except for
three parameters, S0 the initial saturation, qg the well injection flow rate
and dt the time-step. We allow a maximum of 200 Newton iterations to
converge. The convergence criterion is based on the residual norm and we
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Gas phase Water phase
Viscosity [Pa.s] 0.0285e-03 0.571e-03

Table 5.2: Physical properties of fluids

Pressure[Pa] Composition
Injector 1 110.e+05 Water
Injector 2 105.e+05 Water
Productor 100.e+05 -

Table 5.3: Boundary condition parameters

iterate till dt∥R∥∞/V ≤ ϵ with ϵ = 1e−6, V the cell volume (constant in our
case) and R the residual of the physical system. The residual R is detailed
in 3.4

We generate 5004 parameter combinations through a Latin Hypercube Sam-
pling strategy [10] within the following ranges: S0 ∈ [0, 0.6] , |qg| ∈ [10−5, 10−3]m2/s
which corresponds to a well pressure ∈]10, 20] MPa and dt ∈ [0.1, 10] years.
Note that Pimp is obtained using the Implicit Pressure solver (IMP).

Figure 5.6: Test case 1 example of reservoir Pressure (left) and Saturation
(right) obtained after a time-step with S0 = 3.81×10−4, qg = 7.61×10−4m2/s
and dt = 2.4× 10+8s.

5.4.2.2 Test case 2

In the test case 1, we use constant reservoir saturation maps as initial satu-
ration S0 and realised one well opening with a particular well injection flow
rate qg and time-step dt. In the test case 2, we use more realistic initial
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Mesh Dx [m] Dy [m] Nx Ny NCell
S 50 50 95 60 5700

Table 5.4: 2D mesh parameters

Injection Flow rate Composition well radius Opening period
parameters [m2/s] [m] [s]
CO2 injector qg Gas (S = 1.) 0.1 dt

Table 5.5: CO2 injection well conditions

saturation maps. To do so, we realise N consecutive well opening and closure
events (see figure 5.7. We use Latin Hypercube Sampling strategy to gener-
ate parameter combinations. The initial parameters are qg, dt and Sn. After
the first simulation, we close the well (i.e qg = 0m2/s) and launch another
simulation using the previous reservoir state obtained and a new time-step dt
(sampled through Latin Hypercube Sampling). Finally we open the well and
launch a simulation with qg and dt as parameters. The opening and closure
step are repeated as many times as needed (see figure 5.7). The reservoir
state is saved at every well opening or closure.

Figure 5.7: Test case 2 workflow with multiple well openings and closures.
A step of time with a null well flow is realised between each closure and
opening.

We generate data with N = 9 (i.e 5 well openings and 4 closures) and 3600
parameter combinations for each step. The parameters are sampled using a
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Latin Hypercube Sampling strategy within the following ranges: S0 ∈ [0, 0.6]
, |qg| ∈ [1× 10−5, 1× 10−3] m2/s and dt ∈ [1, 10] years in seconds.

We perform simulations for each parameter combination and we only con-
sider data where the well injected flow rate qg is not null. For N = 9, we have
5 wells openings (i.e qg > 0) and 3600 parameter combinations for each one.
Therefore, there is a total of 18000 samples. When splitting the samples in
train and test sets, data coming from a same scenario are sent together in a
set (i.e 5 per 5 for N = 9).

Figure 5.8: Example of reservoir Pressure (left) and Saturation (right) ob-
tained after a time-step with qg = 9.8 × 10−4 m2/s and dt = 3.1 × 10+8s.
The simulation required 12 Newton iterations to converge.

5.5 Results and discussion

5.5.1 Neural Network training

5.5.1.1 Test case 1

We use the Neural Network architecture presented in figure 5.2 with Nc = 32
channels in the Fourier layers and {qg, dt, Sn} as inputs (i.e Ni = 3). The
input parameter dt is a scalar, therefore, we reshape it in a constant map of
shape (95, 60). Moreover, qg is also a scalar. We reshape it in a (95,60) map
which values are zeroes everywhere except at the well location where it takes
qg as value.

We split the data in a train and test sets with a 80/20 splitting ratio. We train
the model on a NVIDIA V100 GPU during 27 hours using Adam optimizer,
a batch size of 10, a learning rate of 5× 10−5, a momentum of 0.9, a weight
decay of 1.×10−4 and keep the model parameters corresponding to the lowest
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test loss value. We show the relative L2 loss evolution on the figure 5.9. The
lowest test loss value is 1.9×10−3 reached at epoch 17285. The corresponding
train loss value is 2.0× 10−3.
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Epoch
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10 2

10 1
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ss
Train/Test loss

Train loss
Test loss

Figure 5.9: L2 loss evolution through epochs for test case 1. The lowest test
loss value is 1.9×10−3 reached at epoch 17285. The corresponding train loss
value is 2.0× 10−3.

5.5.1.2 Test case 2

We use the Neural Network architecture presented in figure 5.2 with Nc = 64
channels in the Fourier layers. As the case is more complex than the test
case 1, the neural network is harder to train. To alleviate this complex-
ity, the implicit pressure is added to the input features . We therefore use
{Pimp, qg, dt, S

n} as input features (i.e Ni = 4). The input parameter dt is a
scalar, therefore, we reshape it in a constant map of shape (95, 60). More-
over, qg is also a scalar. We reshape it in a (95,60) map which values are
zeroes everywhere except at the well location where it takes qg as value. Sn

and Pimp can be used straightforward.

We split the data in a train and test set with a 80/20 splitting ratio. We train
the model on a NVIDIA V100 GPU during 132 hours using Adam optimizer,
a batch size of 128, a momentum of 0.9, a weight decay of 1.×10−4 and keep
the model parameters corresponding to the lowest test loss value. We start
with a learning rate of 1. × 10−4, at iteration number 1000, we decrease it
to 5.× 10−5, then 1.× 10−5 at iteration number 1600 and finally we set the
learning rate to 5.× 10−7 at iteration number 3600 and until the end.
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We show the L2 loss evolution in the figure 5.10. The lowest test loss value
is 8.7 × 10−4 reached at epoch 7295. The corresponding train loss value is
9.3× 10−4.
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Figure 5.10: L2 loss evolution through epochs for the test case 2. The lowest
test loss value is 8.7× 10−4 reached at epoch 7295. The corresponding train
loss value is 9.3×10−4. We start with a learning rate of 1.×10−4, at iteration
number 1000, we change it to 5.× 10−5, then 1.× 10−5 at iteration number
1600 and finally we set the learning rate to 5. × 10−7 at iteration number
3600 and until the end.

5.5.2 Results

In this section, we present the results obtain using the hybrid methodology,
first on the scenario presented in the figure 5.1 and then on the two tests
cases. We compare the performances in term of Newton iterations obtained
between the standard and hybrid approaches.

5.5.2.1 Single prediction example

We apply the hybrid methodology on the example scenario presented in figure
5.1 only during the well event, this implies that every step outside of the well
event requires the same number of Newton iterations for the standard and
hybrid approaches.
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Figure 5.11: Hybrid Newton approach applied to the example scenario and
it’s impact on Newton’s method.

We observe on the figure 5.11 a significant reduction in the number of New-
ton iterations during the well event. Immediately after the well opening, the
standard approach (depicted by blue crosses) requires 40 iterations, whereas
the hybrid approach (represented by green crosses) only necessitates 3 iter-
ations. Furthermore, throughout the entire well event, the hybrid approach
consistently requires fewer Newton iterations compared to the standard ap-
proach, resulting in a 68% reduction in Newton iterations during the well
event and a 38% reduction across the entire scenario.

5.5.2.2 Test case 1

We launch simulations with the same parameters combinations of test case 1,
Xn+1

init = (Pimp, S
n) and Xn+1

ML = (Pimp, SML) as initial guesses. Pimp is calcu-
lated using the Implicit Pressure Solver and Spred using the model obtained
in the previous section. The results are presented in figure 5.12.

We observe that the hybrid methodology facilitates Newton’s method ini-
tialization directly within the domain of quadratic convergence, resulting in
a maximum of 5 Newton iterations for the training set and 4 for the test
set. This is particularly intriguing as it appears to scale with problem com-
plexity. In essence, the more challenging the problem using the standard
methodology, the greater the potential benefit from employing the hybrid
methodology. With the hybrid formulation, we achieve an average speedup
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Figure 5.12: Test case 1 scatter plot of the number of Newton iterations
needed to converge using reference (classic) methodology versus using hybrid
methodology on the train set (left figure) and on the test set (right figure).
The color bar shows the distribution of Newton iterations using reference
(classic) and Hybrid methodologies for the train and test set respectively.

of 54%, translating to 54% fewer Newton iterations compared to the reference
methodology for the training set and a 53% reduction for the test set.

5.5.2.3 Test case 2

We launch simulations with the same parameters combinations of test case
2, Xn+1

init = (Pimp, S
n) and Xn+1

ML = (Pimp, SML) as initial guesses. Pimp is cal-
culated using the Implicit Pressure Solver and SML using the model obtained
in the previous section.

Considering every simulations and using the hybrid methodology, we speed
up by 39% , i.e 39% less Newton iterations than the standard methodology
the computations for the training set and by 38.7% for the test set.

We observe in the figure 5.13 that for 17 simulations for the test set, the
hybrid methodology perform very slightly worse than the standard method-
ology since it requires 1 more Newton iteration to converge. This can be
explained by two main factors, the quality of the model and the position of
the points in the parameters space. Indeed, we do not observe this issue in
the test case 1 where the model has a test set loss of 2.02 × 10−2 while the
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Figure 5.13: Test case 2 scatter plot of the number of Newton iterations
needed to converge using reference (classic) methodology versus using hybrid
methodology on the train set (left figure) and on the test set (right figure).
The color bar shows the distribution of Newton iterations using reference
(classic) and Hybrid methodologies for the train and test set respectively.

test case 2 model has a test set loss of 1.16 × 10−1. Moreover, we show on
figure 5.14 that the points are close to the boundary of the space parame-
ters. Models trained through supervised learning are sensible to data coming
from the boundaries of the space parameters. In this case, we observe that
data with low gas injection rate qg and high step of time dt can present this
issue.

5.5.3 Discussion

Considering a wide range of injection scenarios, we show that it is possible
to learn the impact of a well event on a reservoir. We speed up by 53%
the handling of well events for the test case 1 and by 38% for the test case
2. Moreover the hybrid Newton methodology is quite general and can be
applied to any problem that requires an important number of costly itera-
tions. Finally, we observe that the more challenging the problem is using the
standard methodology, the greater the potential benefit from employing the
hybrid methodology. However, there are some limiting issues that needs to
be considered.

Constant discretization
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Figure 5.14: Distribution of Newton iterations considering well event param-
eters qg the well injection flow and dt the time-step in seconds. The black
points represent the simulations where the hybrid methodology requires more
Newton iterations than the standard methodology.

We use a specific discretization (SHPCO2 S mesh) for the data generation
and we predict on the same discretization. This implies that the model
would not work for different meshes. A new model has to be generated.
However, the idea of a model invariant to discretization is developed through
Neural Operators [6]. A model could be trained using data from different
discretizations and predict the solution on multiple discretizations.

Constant well position

The methodology is applied on a constant grid with a constant well position.
While the pressure variations are global during a well event, the saturation
variations are local. Therefore, if we change the well position, the model
prediction will not be accurate.

5.6 Conclusion
We proposed in this article a methodology to alleviate the impact of well
events during the numerical simulation of CO2 storage in the subsurface.
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We complement the standard numerical algorithm by predicting an initial-
ization of Newton’s method directly in the domain of convergence using a
supervised learning approach based on recently developed Fourier Neural
Operators. Our results show a significant decrease in the number of Newton
iterations required for convergence, while ensuring the convergence to the
correct solution. Moreover the hybrid Newton methodology is quite general
and can be applied to any problem that requires an important number of
costly iterations. Finally, we observe that the more challenging the problem
is using the standard methodology, the greater the potential benefit from
employing the hybrid methodology.

In reservoir simulation, the well location is usually constant as it is numer-
ically costly to optimize the well location and the reservoir parameters at
the same time. Therefore, accelerating the numerical handling of well events
for a wide range of positions is an interesting perspective. To do so, a local
approach could be used, i.e create a model that predicts the saturation only
in the near-well region.
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In the upcoming chapter, our focus remains on the hybrid Newton method-
ology for lessening the effects of well events. However, rather than using
a global initialization as discussed in the previous chapter, we implement a
local initialization in the near-well region. Indeed, as the variations of satura-
tion are local and represent the main complexity in the numerical resolution,
making predictions at the reservoir scale may be unnecessarily numerically
costly and may lack flexibility for various reservoir scenarios. Then, the train-
ing and inference of a machine-learning predicting local saturation maps is
numerically cheaper. Moreover, local initialization is the first step towards a
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unique generalized well model which would mitigate the impact of well events
for any possible well location.

We first work with a 1D test case to gain understanding on the local approach
before moving to a modified 2D SHPCO2 use case.

6.1 1D problem
We start with a simple 1D test case to set up the methodology. The reservoir
is composed of 200 cells, with a left boundary pressure of 11 MPa and a right
boundary pressure of 10 MPa. Moreover, the initial saturation S0 is zero i.e
there is only water is the reservoir. The porosity is constant equal to 0.2,
the permeability constant equal to 1.×10−13 and we use a quadratic relative
permeability law. Finally, an injection well is located at the middle of the
reservoir.

Data generation

A well event is characterized by an injection flow rate qg (only gas is in-
jected) and an opening time dt. We generate 1000 injection scenarios at
the center of the mesh using a Latin hypercube sampling strategy with
|qg| ∈ ]10−5, 10−3[m2/s and dt ∈ ]0.5, 5[ years and solve for each combination
using a fully implicit solver. We then remove the scenarios that result in a
production well instead of an injection well (lower imposed pressure at the
well than the reservoir local pressure) which results in a dataset consisting
of 731 data points.

Data exploratory analysis

We show on figure 6.1 an example of pressure and saturation solution ob-
tained. We define the well impact extension (red dotted line) as the zone
around the well that has been impacted by the well event. We observe on
the figure that the left well impact extension is about 62 cells while the right
cell extension is of 65 cells.

We present on figure 6.2 the evolution of the saturation for the same example
at different Newton iterates (left figure) and the evolution of residual through
all iterates (right figure) for the previous test case exposed in figure 6.1. The
initial saturation is zero everywhere. We observe on the saturation plot
that the first iteration (in blue) results in a small spike localised on the well
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Figure 6.1: Example of saturation (left) and pressure (right) obtained
through the numerical resolution using |qg| = 9.5e−4m2/s and dt = 1.6×108s
(i.e ≈ 5 years).

location, then the next iterates results in larger and larger saturation "spikes"
all centered on the well location. On the residual evolution plot, we observe
a typical Newton’s method convergence plot, with the residual decreasing
slowly until the quadratic attraction zone is reached.

Therefore, we observe that there is a link between the well extension and the
number of Newton iterations, meaning that ideally, a local initialization in
the near well region only needs to cover the well impact extension. If this
local prediction is accurate, then the initial guess should be in the quadratic
convergence regime of Newton’s method. Indeed, as the local domain size is
a parameter defined by the user, there is a trade-off between choosing a large
local domain or a small local domain. A large local domain is more likely
to contain the well extension but the training and inference process may be
more costly while a small local domain is faster to train and infer but may
lack accuracy.

On the whole dataset, we show on figure 6.3 the numerical performances.
We observe that the higher the well injection flow rate, the more Newton
iterations required to converge.
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Figure 6.2: Saturation (left) and residual (right) evolution through Newton
iterations. The final solution is presented in the figure 6.1.

6.1.1 Impact of local domain size

In this section, we will study the impact of the local domain size for the
hybrid initialization. The expected behaviour is that if the local domain is
larger or equal to the well extension impact, then we should obtain perfor-
mances comparable to the global initialization. However, if the local domain
is strictly smaller than the well extension impact, the local method should
require more Newton iterations than the global method.

We show on the figure 6.4 the distribution of well extension impacts in order
to determine the short and long range local domains.

We consider two local domain sizes: one short range consisting of 21 cells
(well cell plus 10 cells in each direction) and one long range consisting of 81
cells (well cell plus 40 cells in each direction). We apply the hybrid Newton’s
methodology for each of these cases.

6.1.1.1 Results

Model training: short-range local domain

We train a FNO model on the short-range local domain using as inputs qg,
dt and Pimp. It is to note that, for a constant well location, the solution in
saturation at the next time-step is entirely determined by qg and dt. We use
Pimp as an input feature as it eases this specific training process but it is not
mandatory.

124



4.5 4.0 3.5 3.0
log10(|qg|)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

dt

1e8

N
um

be
r 

of
 N

ew
to

n 
it

er
at

io
ns

0
5
10
15
20
25
30
35
40
45
50
55
60
65

Figure 6.3: Local approach 1D test case distribution of Newton iterations
considering well event parameters qg the well injection flow rate and dt the
time-step.
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Figure 6.4: Distribution of well extension impacts in terms of number of cells.

The input features are reshaped as in the global approach chapter: qg is a
map full of zeros except at the well location where it takes qg as value, dt a
constant map and Pimp the pressure obtained through the implicit pressure
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solver. Each input feature is of size the number of local cells i.e 21. After
concatenation, the entire dataset has the shape (731, 21, 3). We split it in
train/test with a 80/20 ratio. The output or predicted feature is the satura-
tion at time dt under the well injection flow rate qg. We use a Fourier Neural
Operator neural network architecture for the training, the loss function is the
relative L2 error and we keep the model parameters associated to the lowest
test loss. The figure 6.5 shows the loss evolution through 1000 epochs. The
best test loss is obtained at epoch 967 and is 3.56× 10−3 and its correspond-
ing train loss is 4.61× 10−3. The training process took around 5 minutes on
CPU.
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ss

train: 4.61e-03
test: 3.56e-03

Figure 6.5: Relative L2 loss evolution through 1000 epochs for the short-
range local model. The lowest test loss value is 3.56× 10−3 reached at epoch
967. The corresponding train loss value is 4.61× 10−3.

Model training: long-range local domain

We are now interested in a long-range local domain, i.e a local domain com-
posed of 81 cells centered on the well. We train using the exact same hyper-
parameter and the same dataset than the short-range local domain. We show
on the figure 6.6 the evolution of the relative L2 error through 1000 epochs.
We keep the model parameters corresponding to the lower test loss value
which is 5.29× 10−3 and 6.88× 10−3 its corresponding train loss value.

Hybrid Newton performances

The saturation prediction model is plugged into the solver as an initialization
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Figure 6.6: Relative L2 loss evolution through 1000 epochs for the short-range
local model. The lowest test loss value is 5.29 × 10−3. The corresponding
train loss value is 6.88× 10−3.

of Newton’s method with the implicit pressure. We highlight on the figure 6.7
the two main observed behaviours. The first one on the left figure corresponds
to the local domain not reaching the well extension impact while the right
figure shows a case where the size of the local domain is superior or equal to
the well extension impact.
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Figure 6.7: Example of reconstructed initial saturation guess composed of two
parts, local neural network prediction and initial saturation in the reservoir.
The left figure highlights a case where the local domain does not reach the
well extension impact while the right figure shows a case where the size of
the local domain is superior or equal to the well extension impact.
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We apply the local hybrid initialization on the whole dataset for both short-
range and long-range domains and show the results in terms of newton it-
erations per dataset on the figure 6.8. We observe two regimes separated
by a red vertical line. The first regime corresponds to the cases where the
number of Newton iterations is reduced to a constant amount through the
hybrid method. The second one is a constant reduction of the number of
Newton iterations. The explanation of these behaviours is straightforward,
the first regime is composed of cases such as exposed in the right figure of
6.1 i.e the local domain size is larger than the well extension impact. This
regime is identical to the global approach (since we pad the global initial
guess saturation with zeros outside of the local prediction domain) which
provides identical results. The second regime is composed of cases such as
exposed in the left figure of 6.1 i.e the local domain size is smaller than the
well extension impact. More specifically, in terms of Newton iterates, this
case can be seen as initializing ’half-way’ to the solution. Some iterations are
still required to reach the well extension impact. Therefore, this initialization
is not in the Newton’s quadratic convergence zone.

The table 6.1 sums up the result quantitatively. We observe that there is
an important difference in terms of performances between each regime, it is
therefore crucial to ensure that the local domain size meets at least the well
impact extension even though we do not know in advance this last.

Approaches Hybrid
Regimes 1 2 All

Short-range Train 74% 42% 51%
Test 73% 42% 52%

Long-range Train 84% 81% 83%
Test 85% 78% 84%

Table 6.1: Reduction of Newton iterations in % for each case compared to the
standard approach for the short-range and the long-range local approaches
applied on the global test case 1 dataset. ’Regime 1’ correspond to the case
where the local domain extension is smaller than the well impact extension
and ’regime 2’ is the opposite. ’All’ regime refers to both regime 1 and 2.

Linear interpolation

A straightforward extension that needs to be addressed is to complement
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(a) Short-range local domain
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(b) Long-range local domain

Figure 6.8: Short-range (figure a) and long-range (figure b) local approach 1D
test case scatter plot of the number of Newton iterations needed to converge
using standard methodology versus using hybrid methodology on the train
set (left figure) and on the test set (right figure). The color bar shows the
distribution of Newton iterations using standard and Hybrid methodologies
for the train and test set respectively. Finally the red vertical line shows the
separation between the two main regimes.
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the case where the local domain of prediction is not large enough to catch
the saturation variations with a linear interpolation in order to mitigate the
discontinuity. Indeed, we hope to displace the red vertical lines of figure 6.8
to the right by doing so in order to extend the first regime as much as we
can.
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Figure 6.9: Reconstructed global saturation using the initial saturation
(blue), the local predicted saturation (orange) and a linear interpolation
(green).

We present the results obtained using the short-range local model with linear
interpolation on the figure 6.9. We observe that the first regime remain the
same as with no interpolation, however the second regime is modified. Indeed,
the interpolation reduced the required iterations by a small amount, between
1 and 5 overall.

The table 6.2 presents the reduction of Newton iterations in % for the short-
range and short-range with interpolation hybrid Newton. Overall we observe
a gain of 5% in the performances which is non-negligible.

6.1.2 Impact of well location

We are now interested in the generalization of the local model at different well
locations. Therefore, the well location becomes a parameter in the dataset
generation and the information of the well location is included in the implicit
pressure. Before getting into the workflow, we detail the intuition of why the
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Figure 6.10: Local approach 1D test case scatter plot of the number of New-
ton iterations needed to converge using standard methodology versus using
hybrid methodology with linear interpolation on the train set (left figure)
and on the test set (right figure).

well location information is included in the implicit pressure.

Considering two reservoir problems that are exactly identical, with the same
well parameters but different well locations, we depict on figure 6.11 the
resulting global and local implicit pressure and saturation profiles. It is
noteworthy that, despite having identical well events, significant differences
arise in both the aspect and values of the pressure profiles. Additionally, the
saturation solutions differ, as the gas flows exhibit distinct directions.

Data generation

We generate 5000 injection scenarios at different locations of the mesh using a
Latin hypercube sampling strategy with |qg| ∈ ]10−4.5, 10−3[m2/s, dt ∈ ]0.5, 5[
years and the well location between one quarter and three quarter of the
domain corresponding to 100 possible cells. We solve for each combination
using a fully implicit solver. We then remove the scenarios that result in a
production well instead of an injection well (lower imposed pressure at the
well than the reservoir local pressure) which results in a dataset consisting
of 4686 data points.
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Approaches Hybrid
Regimes 1 2 All

Short-range Train 74% 42% 51%
Test 73% 42% 52%

Short-range + interpolation Train 74% 50% 56%
Test 73% 50% 57%

Table 6.2: Reduction of Newton iterations in % for each case compared to the
standard approach for the short-range and the short-range with interpolation
local approaches applied on the global test case 1 dataset.
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Figure 6.11: Comparison of global (left) and local (upper and lower mid-left)
implicit pressure for different well locations and their resulting true global
(mid-right) and local (upper and lower right) saturations obtained using the
parameters: qg = 2× 10−4m2/s and dt = 9.1× 107s.

6.1.2.1 Results

Model training: short-range local domain

We train a FNO model on the local domain of 21 cells using as inputs qg, dt
and Pimp. These features are reshaped as: qg is a map full of zeros except at
the well location where it takes qg as value, dt a constant map and Pimp the
pressure obtained through the implicit pressure solver. It is to note that the
well location information is characterized by Pimp.

Each input feature is of size the number of local cells i.e 21. We split it
in train/test with a 80/20 ratio. The output or predicted feature is the
saturation at time dt under the well injection flow rate qg. We train a FNO
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model, the loss function is the relative L2 error and we keep the model
parameters associated to the lowest test loss. The figure 6.13 shows the
loss evolution through 1000 epochs. The best test loss is obtained at epoch
962 and is 3.26 × 10−3 and its corresponding train loss is 4.35 × 10−3. The
training process took around 10 minutes on a NVIDIA A100 GPU.
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Figure 6.12: Relative L2 loss evolution through 1000 epochs for the short-
range local model. The lowest test loss value is 3.26×10−3. The correspond-
ing train loss value is 4.35× 10−3.

Model training: long-range local domain

We train a FNO model on the local domain of 81 cells using as inputs qg, dt
and Pimp. These features are reshaped as: qg is a map full of zeros except
at the well location where it takes qg as value, dt a constant map and Pimp

the pressure obtained through the implicit pressure solver. It is to note that
well location information is characterized by Pimp.

Each input feature is of size the number of local cells i.e 81. We split it
in train/test with a 80/20 ratio. The output or predicted feature is the
saturation at time dt under the well injection flow rate qg. We train a FNO,
the loss function is the relative L2 error and we keep the model parameters
associated to the lowest test loss. The figure 6.13 shows the loss evolution
through 1000 epochs. The best test loss is obtained at epoch 967 and is
2.72 × 10−3 and its corresponding train loss is 4.27 × 10−3. The training
process took around 15 minutes on a NVIDIA A100 GPU.
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Figure 6.13: Relative L2 loss evolution through 1000 epochs for the short-
range local model. The lowest test loss value is 2.72×10−3. The correspond-
ing train loss value is 4.27× 10−3.

Hybrid Newton performances

The saturation prediction model is plugged into the solver as an initialization
of Newton’s method with the implicit pressure. We highlight on the figure
6.14 the two main observed behaviours. The left figure corresponds to the
local domain not reaching the well extension (regime 1) impact while the right
figure corresponds to a local domain superior or equal to the well extension
impact (regime 2).

We apply the local hybrid initialization on the whole dataset for the short-
range and long-range local domains and show the results in terms of newton
iterations per dataset on the figure 6.15. We observe again the two regimes
separated by a red vertical line.

The table 6.3 sums up the result for the long-range local domain with different
well locations. We observe that the local domain size is crucial as there is an
important difference in performances between the short-range and long-range
local domains. Moreover, if we compare the long-range with constant well
location and long-range with variable well-location, it seems that the second
regime is better handled using a variable well location. The variable well
location is an important first step towards a generalized well model which
would work in any circumstances.
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Figure 6.14: Example of reconstructed initial saturation guess composed
of two parts, local neural network prediction and initial saturation in the
reservoir. The left figure highlights a case where the local domain does not
reach the well extension impact while the right figure shows a case where the
size of the local domain is superior or equal to the well extension impact.

Approaches Hybrid
Regimes 1 2 All

Short-range & variable well location Train 56% 19% 47%
Test 57% 19% 49%

Long-range & variable well location Train 85% 75% 82%
Test 85% 76% 83%

Table 6.3: Reduction of Newton iterations in % for each case compared to
the standard approach for the short-range and long-range with different well
locations local approaches.

6.2 2D SHPCO2
We are now interested in applying the local approach on a more realistic test
case, we will be using the adapted SHPCO2 reservoir geometry presented in
2.2.

6.2.1 Objectives and Workflow

In this section, we want to compare the performances of the local approach
with the global approach performances, therefore we apply the local method-
ology on a test case where the global methodology has already been evaluated,
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(a) Short-range local domain
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Figure 6.15: Short-range (figure a) and long-range (figure b) local approach
1D with a variable well location test case scatter plot of the number of New-
ton iterations needed to converge using standard methodology versus using
hybrid methodology on the train set (left figure) and on the test set (right
figure). The color bar shows the distribution of Newton iterations using stan-
dard and Hybrid methodologies for the train and test set respectively. Finally
the red vertical line shows the separation between the two main regimes.
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i.e the test case 1 of the global approach presented in 5.4.2. We exclusively
assess the 2D local approach using a fixed well location. The decision to
focus on a constant well location is rooted in the challenges associated with
training a machine-learning model for a 2D problem featuring a variable well
location. The introduction of a variable well location leads to sampling chal-
lenges that complicate dataset generation, particularly considering that the
number of degrees of freedom increases significantly and the prohibitively
high cost of generating each data point.

Therefore, as a natural and cheaper way to have access to a variable well
location model, we use a local initialization using the fully implicit solver
directly on the local domain. Indeed, the solver itself allows the handling of
any well location. This idea is inspired from Domain Decomposition philos-
ophy even though to the best of our knowledge, we have not seen domain
decomposition techniques used for this kind of problem.

Regarding the evaluation of the method, we want to assess the generalization
capacity of the hybrid initialization. Therefore, we evaluate the model on
three cases derived from the test case 1 and compare it with the domain
decomposition approach. Each case corresponds to a different well location,
we train a model on one location and apply it to the two others. We sum up
the cases in the figure 6.16.

6.2.1.1 Case 1: In Distribution

The case 1 is the straightforward evaluation of the local approach on the
global approach test case 1. The well location is indicated by a 1 on the
figure 6.16.

6.2.1.2 Case 2: Near Distribution

We displace the well at a short-range location from the case 1. We generate
a new dataset and apply the hybrid methodology with the model obtained in
the case 1. This should result in local implicit pressure fields slightly different
from the reference case 1 and therefore ’Near Distribution’ (ND). The well
location is indicated by a 2 on the figure 6.16. It’s corresponding location on
the grid is (1675, 1725).
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Figure 6.16: 2D SHPCO2 case geometry with three different local domains.
Each local domain has a well at its center.

6.2.1.3 Case 3: Out of Distribution

Finally, we displace the well at long-range location from the reference case 1.
We generate a new dataset and apply the hybrid methodology with the model
obtained in the case 1. This should result in local implicit pressure fields far
different from the reference case 1 and therefore ’Out of Distribution’ (OOD).
The well location is indicated by a 3 on the figure 6.16. It’s corresponding
location on the grid is (2975, 425).

6.2.2 Domain Decomposition

In this section, we detail the "Domain Decomposition" methodology that we
use as a reference for future performances comparison. The main idea of
the local approach is that we want a local approximation of the solution in
the near-well region. Therefore, the straightforward way is to use what we
have, i.e the fully implicit solver. This approximation is interesting as it only
requires to solve small linear systems. To do so, we need to formulate a local
problem from the global configuration. We use the notation introduced at
the Mesh definition and notations section 3.1.
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Figure 6.17: Example of global domain Ω1 and local domain Ω2. The cell
function ϕ applied on a face σ from the boundary of Ω2 is equal to ϕ applied
to the cell k.

Let Ω1 be the global domain mesh formed by the set of cells K1
h and the set

of faces F1
h. Similarly, let Ω2 ⊂ Ω1 be a local domain mesh formed by the set

of cells K2
h and the set of faces F2

h. With K2
h ⊂ K1

h and F2
h ⊂ F1

h.

Regarding the cell properties, we directly extract them from the global do-
main to the local domain. Formally, let φ be a cell property function on the
global domain Ω1. Then for k ∈ K1

h ∩K2
h and l ∈ K2

h, φ(k) = φ(l).

Thereafter, to extract face properties from the global domain to the local
domain in order to create boundary conditions, we use the cells from the
global domain which have a face in common with the local domain boundary
faces. Let F2,b

h the set of boundary faces of Ω2 and F
1,i
h the set of internal faces

of Ω1. For σ ∈ F
2,b
h ∩ F

1,i
h such that for k, l ∈ K1

h, σ = ∂k ∩ ∂l. Only one cell
between k and l is not inside K2

h. Suppose k /∈ K2
h, then φ(σ) = φ(k).

It is to note that, in this work, we do not consider local domains that
reaches the boundaries of the global domain, therefore, we do not detail
this case.

In practice, we extract cell properties such as permeability, porosity, satura-
tion, and pressure from the global domain to the local domain cells. Addi-
tionally, we extract properties like pressure and saturation from the global
domain cell properties to the boundary faces of the local domain.

After the creation of the local domain problem formulation, we solve it using
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the fully implicit solver. We then use the resulting pressure and saturation as
local guesses that we will concatenate with the global standard initialization.
Therefore, this is different from the hybrid initialization as this last uses the
global implicit pressure and the concatenation of the local saturation guess
and the global saturation standard initialization.

6.2.3 Data generation

We use the same data generation method than the one used for the case 1 in
the global approach. It is to note that as we use for each case the same seed
for the Latin hypercube sampling, the resulting parameters are the same for
all cases. The only parameter that varies between cases is the well location.
Otherwise the process is the same and we remind it here.

We launch simulations with a constant reservoir configuration except for
three parameters, S0 the initial saturation, qg the well injection flow rate
and dt the time-step. We allow a maximum of 200 Newton iterations to
converge. The convergence criterion is based on the residual norm and we
iterate till dt∥R∥∞/V ≤ ϵ with ϵ = 1. × 10−6, V the cell volume and R the
residual of the physical system.

We generate 5004 parameter combinations through a Latin Hypercube Sam-
pling strategy within the following ranges: S0 ∈ [0, 0.6] , |qg| ∈ [10−5, 10−3]m2/s
which corresponds to a well pressure ∈]10, 20] MPa and dt ∈ [0.1, 10] years.
Note that Pimp is obtained using the Implicit Pressure solver (IMP).

6.2.3.1 Local domain extension

We use the SHPCO2 reservoir geometry and consider the reference well loca-
tion. Regarding the choice of the local domain size, we do not want to take
heterogeneities into account. There is a barrier of permeability in a range of
4 cells from the well, therefore the maximum size is a square of 9x9 cells (4
cells extension in both direction plus the well cell).

6.2.3.2 Model training

We keep the same train and test datasets as the test case 1, i.e 4003 data for
training and 1001 data for testing. We train a Fourier Neural Operator with
qg, dt, Pimp and S as input maps. We use the same reshaping methodology
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Pimp S qg dt Ssol

Figure 6.18: Qualitative view of local input features.

as the global approach for the input features. The Pressure and Saturation
fields can be used straightforward as images of shape (9,9). The time-step
is reshaped into a constant map of value dt and size (9,9). Finally, the well
injection flow rate qg is reshaped as a (9,9) map of zeros everywhere except
at the well location, where it takes the value qg.

We train the Fourier Neural Operator architecture presented in 5.2 with
Ni = 4 and Nc = 64 for 15 minutes on a NVIDIA A100 GPU representing
a total of 1500 epochs. We use Adam optimizer with a learning rate of 10−4,
a momentum of 0.9 and a weight decay of 10−4. We use a relative L2 loss.
We keep the model parameters corresponding to the lowest loss test value.
The minimum loss value on the test set is 2.5 × 10−3 and is reached at the
epoch 1368. Its corresponding train loss value is 2.5 × 10−3. We show the
loss evolution on the figure 6.19.

6.2.4 Results

We present the results of the local approach on the test case 1. First we
detail the effect of the methodology on single samples and then we analyse
on whole datasets.

6.2.4.1 Single prediction

Before presenting the results over the totality of each case, let us first have a
look of what happens at the single prediction scale. We show on figure 6.20
an example of local saturation guess (upper left) predicted by the machine
learning model on a sample coming from the case 1. We show the recon-
structed global saturation guess (upper right) composed of the global initial
saturation and the local guess. Then, we show the solution (lower left) and
the error between the solution and the global guess (lower right). Qualita-
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Figure 6.19: Relative L2 loss error through 1500 epochs. The lowest test
value is 2.5 × 10−3 reached at epoch 1368 and the corresponding train loss
value is 2.5× 10−3.

tively, we observe that the local prediction is accurate as the error in the
predicted is lower than outside the local domain.

In the figure 6.21, we present, on the same sample, the qualitative results of
the Domain Decomposition method. We observe a similar behaviour, as the
error between the global guess and the solution is small in the local domain
and higher around the local domain.

We show on figure 6.22 the evolution of residual norms through Newton it-
erations associated to the example presented in figure 6.20 and 6.21. The
stopping criterion is 10−6. The standard Newton’s method requires 8 itera-
tions to converge. Using the local approach to create an initial guess closer to
the solution leads to a reduction down to 4 Newton iterations for the hybrid
initial guess and 4 Newton iterations for the Domain Decomposition initial
guess. Regarding the quality of the initialization, we observe that the hybrid
initialization starts at a value over 102, which is ten times higher than the
standard initialization. Meanwhile, the Domain Decomposition initialization
has the lowest initial residual norm. However, we observe that after the sec-
ond Newton iterations, the hybrid and DD residual norms are quasi-equal.
This is interesting as we would suppose that an initialization closer to the
solution would result in a lower residual norm. The residual norm is com-
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Local saturation guess Global saturation guess

Saturation solution Saturation error

Figure 6.20: Case 1 local saturation machine learning prediction example
(upper left), global saturation guess (upper right), saturation solution (lower
left) and saturation error between the global guess and the solution (lower
right).

Local saturation guess Global saturation guess

Saturation solution Saturation error

Figure 6.21: Case 1 local domain decomposition saturation solution example
(upper left), global saturation guess (upper right), saturation solution (lower
left) and saturation error between the global guess and the solution (lower
right).
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Figure 6.22: Residual evolution through Newton iterations.

puted using the following formula: dt∥R∥∞/V with R the residual composed
of two parts Rw the water residual and Rg the gas residual. dt is the time
step and V the cell volume constant over the domain. Therefore, this metric
is not adapted to measure the quality of the initialization.

6.2.4.2 Case 1: In Distribution results

We apply the hybrid methodology on the test case 1 dataset. The saturation
machine learning model has been trained on this dataset, therefore we expect
to assess the ’in distribution’ numerical performances of the method.

In the figure 6.23, we present a comparative analysis between the standard
Newton methodology and the Hybrid Newton methodology. We observe a
substantial decrease in the number of Newton iterations, by 45.6% for the
training set and by 45.4% for the test set. Notably, we emphasize the tran-
sition point between two regimes using a vertical red line, which occurs ap-
proximately after 7 Newton iterations. The first regime, strictly at the left
of the vertical line (classic Newton iterations < 7) corresponds to the cases
where the local domain extension is larger than the well impact extension
while the second regime, at the right of the red vertical line (classic New-
ton iterations ≤ 7), corresponds to the opposite case, i.e the local domain
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Figure 6.23: Test case 1 local approach scatter plots showing the number
of Newton iterations needed to converge using standard methodology versus
using hybrid methodology on the train set (left figure) and on the test set
(right figure).

extension is smaller than the well impact extension.

Approaches Hybrid
Regimes 1 2 All

Short-range & variable well location Train 41.5% 48.3% 45.6%
Test 41.4% 48.3% 45.4%

Table 6.4: Reduction of Newton iterations in % for each case compared to
the standard approach for the short-range and long-range with different well
locations local approaches.

In the global approach on the same test case, we noted a reduction of Newton
iterations by 54% for the training set and by 53% for the test set. This is
quite interesting as for the global approach, the machine learning model
saturations on a grid of 5700 cells, while for the local approach, we predict
on a grid of 81 cells and at the end, we observe a difference of performances
less than 10%. Therefore, the gain in training and inference times of the local
machine learning model seems to be worth compared to the training time and
the inference time of the global approach machine learning model.
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Figure 6.24: Test case 1 local approach scatter plots showing the number
of Newton iterations needed to converge using standard methodology versus
using domain decomposition methodology on the train set (left figure) and
on the test set (right figure).

Next, in the figure 6.24, we depict a comparison between the standard New-
ton methodology and the Domain Decomposition Newton methodology. We
observe a noteworthy reduction in the number of Newton iterations, with
a decrease of 44.6% for the training set and by 44.7% noted for the test
set.

These numerical performances are comparable with the local hybrid approach
and therefore, are worth compared to the global approach. Moreover, at
equal numerical performances on the number of Newton iterations, the dif-
ference is on the computational cost of the creation and the inference each
method.

6.2.4.3 Case 2: Near distribution results

We apply the hybrid methodology on a case where we displaced slightly the
well from the test case 1 location. Therefore, the local pressure fields should
be slightly different from the reference test case 1. We use the saturation pre-
dictive model trained on the test case 1 dataset. This case assesses the gen-
eralization potential of the methodology for ’near distribution’ cases.
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Figure 6.25: Case 2 local approach scatter plots showing the number of
Newton iterations needed to converge using standard methodology versus
using hybrid methodology on the train set (left figure) and on the test set
(right figure).

We show on the figure 6.25 the comparison between standard Newton method-
ology and Hybrid Newton methodology. We observe a total reduction of
Newton iterations, amounting to a reduction of 41.3%.

We show on the figure 6.26 the comparison between standard Newton method-
ology and Domain decomposition Newton methodology. We observe a total
reduction of Newton iterations by 45.8%.

6.2.4.4 Case 3: Out of Distribution results

This last case assesses the ’out of distribution’ application of the local ap-
proach. By positioning the well far from it’s first location, the local pressure
fields are far different from the original distribution. We apply the hybrid
methodology on the resulting dataset using the saturation machine learning
model trained on the test case 1 dataset.

We show on the figure 6.27 the comparison between standard Newton method-
ology and Hybrid Newton methodology. We observe a total reduction of
Newton iterations by 17.2%.
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Figure 6.26: Case 2 local approach scatter plots showing the number of
Newton iterations needed to converge using standard methodology versus
using domain decomposition methodology on the train set (left figure) and
on the test set (right figure).

This result is expected as the new points that we infer are far from the train-
ing distribution. Moreover, we observe that in the first regime (left to the red
vertical line), many cases have worse performances using the hybrid method-
ology than the standard methodology. Indeed, if the local domain contains
the majority of the saturation variations over the whole domain, then a
saturation prediction far from the solution can be worse than the standard
initialization. In the second regime (right to the red vertical line), we observe
that as the standard required number of Newton iterations increases, the hy-
brid approach reduces the requires number of Newton iterations compared to
the standard approach. This can be explained as the local domain does not
catch the majority of saturation variations on the global domain. Therefore,
giving an initial saturation shape in the near-well region and let Newton’s
method correct and extend it is worth.

We show on the figure 6.28 the comparison between standard Newton method-
ology and Domain decomposition Newton methodology. We observe a total
reduction of Newton iterations by 41.6%. This outperform by far the hybrid
approach, which is expected as the hybrid methodology is applied on points
where it should not work by construction.
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Figure 6.27: Case 3 local approach scatter plots showing the number of
Newton iterations needed to converge using standard methodology versus
using hybrid methodology on the train set (left figure) and on the test set
(right figure).
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Figure 6.28: Case 3 local approach scatter plots showing the number of
Newton iterations needed to converge using standard methodology versus
using domain decomposition methodology on the train set (left figure) and
on the test set (right figure).
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6.2.4.5 Discussion and perspectives

We sum up the main results in terms of numerical performances in the table
6.5. Overall, we observe that the machine-learning hybrid methodology shows
significant results for ’In Distribution’ (case 1) and ’Near Distribution’ (case
2) datasets while the Domain decomposition methodology shows significant
and similar results for all three cases as it does not depend on a training
distribution. Considering strictly these results, local domain decomposition
methodology is better to use in all cases.

Approaches Hybrid Domain Decomposition
Regimes 1 2 All 1 2 All

Case 1: ID Train 41.5% 48.3% 45.6% 41.3% 45.5% 44.6%
Test 41.4% 48.3% 45.4% 41.5% 45.7% 44.7%

Case 2: ND 38.5% 45.5% 41.3% 44.5% 46.7% 45.8%
Case 3: OOD 3.% 39.% 17.2% 46.4% 38.% 41.6%

Table 6.5: Reduction of Newton iterations in % for each case compared to the
standard approach for the three local approaches applied on the global test
case 1 dataset. ’Regime 1’ correspond to the case where the local domain
extension is smaller than the well impact extension and ’regime 2’ is the
opposite. ’All’ regime refers to both regime 1 and 2.

Methodology comparison

We aim at comparing with a larger sight the hybrid methodology and the
domain decomposition methodology. There are two main stages, an offline
phase and an online phase. Regarding the offline phase, the domain de-
composition does not require any while the hybrid methodology requires the
creation of a dataset through the resolution of global problems which are
numerically expensive as we want them to require an important amount of
Newton iterations. Then the saturation model needs to be trained on this
dataset, for the local approach, this part does not require a lot of time (e.g 15
minutes in this case). Then, for the online phase, the domain decomposition
methodology requires a Newton’s method to solve the local problem. This is
not costly in the presented case as we consider a 9x9 local domain. However,
for three dimensional problems or problems with more complex physics, the
cost may raise quite fast. The hybrid methodology requires the inference of
the saturation model. Therefore, the cost is proportional to the number of
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parameters of the Neural Network. The FNO model has millions of param-
eters. In this study we did not focus on reducing the number of parameters
as we first wanted a performing predictive model.

Conclusion and Perspectives

In this study, we constructed an initialization of Newton’s method aim-
ing at being closer to the solution than the standard initialization for well
events problems, which often requires an important number of Newton iter-
ations.

This initialization process consists of two steps. First we construct a lo-
cal guess around the well where the majority of saturation variations are.
Subsequently, we concatenate this local guess with the standard global ini-
tialization resulting in an initial guess that catches the main global variations
in saturation, which is the unknown bringing the main non-linearity.

We propose two local guesses in pressure and saturation, the first one is
obtained through the supervised learning of a Fourier Neural Operator model
on a dataset generated during the global approach study. This model predicts
a local saturation map, then for the pressure, we use an implicit pressure
solver which only requires to solve one linear system as an initial guess. The
second guess is obtained through a domain decomposition technique where
we reformulate the local problem and solve it using a fully implicit solver.
The resulting solutions in pressure and saturation are used as a local guess.
This domain decomposition technique is particularly interesting as it handles
any well locations.

We first assessed the machine-learning initialization local approach to 1D
problems, where we studied the impact of local domain size and well loca-
tions. Our result highlights the important trade-off in terms of performances
between a short-range and a long-range local domain. Moreover, we show
that it seems possible to learn a local saturation predictive model for any
well location.

When moving to 2D problems, it is challenging to generate a training dataset
for any well location. Therefore, we used the domain decomposition initial
guess as it can handle any well location and we simply realised some tests for
different distribution for the machine-learning local guess. Subsequently, we
applied the domain decomposition and the machine-learning local approaches
to three cases. The first one ’In distribution’ (ID), the second one ’Near-
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distribution’ (ND) and the last one ’Out of Distribution’ (OOD). This name
refers to the fact that we train the machine learning model predicting the
saturation on the ID dataset and apply it on the ND and OOD datasets
afterwards without any further training.

Both methods show a significant reduction in the required number of Newton
iterations to converge, around 45% for the domain decomposition in all three
cases while around 45% for the hybrid methodology in the ID set up. As
soon as we step outside of the training distribution, we observe an important
diminution of the numerical performances compared to the ID, around 41%
reduction of Newton iterations for the ND case and down to 17% accelera-
tion for the OOD case. However, for each case we can separate two main
regimes, the first one corresponds to a local domain extension that catches
(i.e larger than) the main saturation variations induced by the well event and
the second regime corresponds to the cases where the local domain does not
contain the main global variations of saturations. The first regime matches
the cases with low standard Newton iterations while the second one matches
the cases with high number of Newton iterations. An important result is
that the hybrid methodology and the domain decomposition methodology
show the same numerical performances for the second regime, with a re-
duction between 39% to 45% of Newton iterations depending on the case.
For problems which require an important number of Newton iterations to
be solved, both methodologies seem to be valuable. However for cases in
the first regime, generally speaking, using a local guess may not be worth
as the gain is smaller, but if we want to use one, the domain decomposition
methodology is recommended. The choice between the hybrid or domain
decomposition methodology to construct a local guess depends on the infer-
ence time. Indeed, if the hybrid methodology is significantly faster to infer
than the domain decomposition methodology, then an interesting trade off
could be to build a dataset using the local domain decomposition guess to
accelerate the simulation and then train a neural network when enough data
are generated. It is to note that, overall, the global approach from previous
chapter outperforms the local approach. Indeed, for any given well event, the
global initialization is in the quadratic convergence zone while we distinguish
two cases for the local approach.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion
The main objective of this thesis was to adapt recent advances in physics
informed deep learning in order to alleviate the impact of well events in the
numerical simulation of multiphase flow in porous media.

We assessed the potential of machine learning models as direct solvers for two
problems, the steady-state heat equation and the incompressible two-phase
flow equation. Our results highlighted that it is possible to accurately learn
parameter-to-solution operators using suitable neural architectures such as
neural operators. However, when iterating in time using this ’black-box’
model, errors accumulate and the prediction drifts away from the solution.
In contrast, a traditional numerical solver provides guarantees on the solu-
tions.

Therefore, we investigated hybrid approaches, combining the predictive ca-
pability of neural networks and the robustness of the traditional solvers. In
practice, we proposed to adapt the hybrid Newton’s method in two different
ways, first as a global saturation initialization and second as a local satu-
ration initialization in the near-well region where all the main variations of
saturation are located.

For the global hybrid Newton’s method, our results showed, using the Fourier
Neural Operator as a predictive model, that it is possible to significantly re-
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duce the required number of Newton iterations to reach convergence for a
wide variety of well injection scenarios. Moreover, the global approach seems
to scale with the difficulty: the more iterations required by the standard
Newton’s method, the larger the acceleration provided by the hybrid New-
ton’s method. This method is particularly adapted to cases where the well
location is constant and the goal is to optimize the injection scenarios: we
are able to run an important amount of simulations and train an accurate
machine learning model. However, it is not well-suited for handling well
location optimization.

Regarding the local hybrid Newton’s method, the 1D study highlighted the
impact of the trade-off between small and large local predictive domains and
that it is possible to learn the solution in saturation for a wide range of well
locations. When moving to a 2D case, developing a predictive model for
different well locations is challenging due to sampling issues. Therefore, we
proposed two hybrid initial guesses, the first one using the Fourier Neural
Operator to predict the saturation in the near-well region for a constant well
location, and the second one using a fully implicit solver on a local domain,
which can be seen as a domain decomposition method. We applied those
two approaches to three test cases, including out of distribution test cases
for the FNO method. Overall, our results showed that the domain decom-
position initial guess performed equal or better for all test case compared
to the machine learning initial guess while being able to handle any well lo-
cation. Moreover, we distinguished two different behaviours: the first one
corresponds to an initialization in Newton’s quadratic convergence zone, and
the second one to a ’half-way’ initialization. In contrast, the global approach
initialization is always in Newton’s quadratic convergence zone resulting in
better performances. Nevertheless, for the local approach when moving to
more difficult cases (3D geometry, complex physics, etc.), we expect the ma-
chine learning initial guess to infer significantly faster and hence provide an
improvement with respect to the domain decomposition initial guess.

Therefore, we recommend using the global hybrid Newton’s method for prob-
lems with constant well location and the goal of optimizing the injection sce-
narios. On the other hand, when the goal is to optimize the well locations,
we recommend using the local hybrid Newton’s method as it is more flexible.
Moreover, there are some avenue of research that we wish to emphasize for
both the global and local hybrid Newton’s strategies.
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7.2 Perspectives

7.2.1 Local approach - Generalized well model and multi-
well simulations

In this thesis, we did not assess the potential of a machine learning model
for the 2D local hybrid Newton’s method with a variable location. Indeed,
the introduction of a variable well location leads to sampling challenges that
complicate dataset generation, particularly considering the prohibitively high
cost of generating each data point. Therefore, a perspective would be to de-
velop a generalized well model through a synthetic and general dataset of
small domains around a well. Indeed, generating a synthetic dataset by
solving only small local problems should reduce the cost of the dataset gen-
eration. To this end, we have initiated the development of several ideas and
will briefly present the underlying intuition.

The primary challenge lies in generating realistic implicit pressure fields.
When working with a constant saturation, the implicit pressure field is en-
tirely determined by the boundary conditions and the well injection param-
eter. Sampling the well injection parameter is straightforward, as it consists
of a single spatially independent value.

Regarding the boundary pressure, one possibility is to explore the following
workflow: within a square local domain composed of four boundary groups
(left, up, right, down), we randomly sample boundary pressure faces from
a variable number of boundary groups (between 2 and 4). Subsequently,
we apply a correction to ensure physical consistency among the sampled
points. Following this, we perform linear interpolation between the sampled
pressures to obtain a boundary pressure for each face. Finally, we consider
all rotations of this pressure configuration and, for each of them, launch the
implicit pressure solver. Figure 7.1 illustrates an example of the implicit
pressure in a local domain obtained through this workflow. It is to note that
the local domain is circumscribed to a virtual circle. In the two left figures,
the green and orange points correspond, respectively, to the same points on
the circle and the local square domain.
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Figure 7.1: Example of pressure obtained through the developed workflow.

7.2.2 Moving towards realistic problems

7.2.2.1 Integration in an industrial software

We applied our methodology on a 2D synthetic test case and running the
simulations of a library that we developed on our own. An objective would be
to challenge our results by incorporating in a more sophisticated 3D reservoir
simulation software such as OPM (Open Porous Medium) [2].

7.2.2.2 Working with different scales

We applied the Hybrid Newton’s method on a specific reservoir geometry,
the S (small) size SHPCO2 mesh in our case. However, Neural Operators
should have an invariance to discretization property. Therefore, it should be
possible to learn at a specific grid resolution and then infer at a different
resolution. This can be interesting in the upscaling or downscaling process,
i.e a process to infer high or low resolution information from low or high
resolution properties. An idea could be to generate a low resolution database,
train a neural operator in a supervised manner and then infer on a finer grid
resolution. The low resolution database should be cheap to generate and may
lead to non-negligible speed-up for the handling of well events on a higher
resolution grid.

7.2.2.3 Taking heterogeneities into account

In this work, we did not consider small scale heterogeneities. Heterogeneities
denotes the non-uniform distribution of properties such as the permeability
of the porosity within subsurface, which can lead to complex and variable
behaviour. This is a fundamental property in geosciences, any realistic model

156



Figure 7.2: Example of permeability field (K) at the layer 84 from the SPE10
comparative solution project.

should take into account the spatial and/or time variability of the porosity
for example. Therefore, an essential step should be to take into account
small scale heterogeneities in the presented test cases and apply the hybrid
Newton’s method. Another test case including heterogeneities is the SPE10
[1] comparative solution project.
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