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QUASI-STATIC AND DYNAMIC GRANULAR FLOWS:
SCALING BEHAVIOR, MICROSTRUCTURE, AND PARTICLE SHAPE EFFECTS

Abstract: Granular processes in nature and industry often involve complex quasistatic or dy-
namic flows of various particle shapes and frictional properties. Although empirical approaches
have been developed for such flows, advanced particle dynamics simulations can be used for
detailed sensitivity analysis of their scaling behavior as a function of system parameters or to
connect their behavior to the microstructure. In this work, extensive simulations are used in 3D
to study the effects of polyhedral particle shape on quasi-static granular flows under fully peri-
odic boundary conditions and dynamic cascading flows in rotating drums. Orthotropic elastic
moduli under triaxial compression are expressed as a function of the contact network anisotropy
and a constraint number accounting for different types of contacts between polyhedra. In rotat-
ing drums, the cascading flow regime is investigated for a broad range of parameter values and
shown to be governed by a unique dimensionless scaling parameter that combines all system
parameters. Finally, the impact-induced breakage of a single particle is modeled by means of
a novel fracture model based exclusively on fracture energy. The fragment shapes and sizes
are studied systematically and the distribution of fragment masses is found to be a power-law
function with an exponent depending on the fracture energy.
Keywords: Granular Materials, Discrete Element Method, Microstructure, Scaling

ECOULEMENTS GRANULAIRES QUASI-STATIQUES ET DYNAMIQUES: MISE À
L’ÉCHELLE, MICROSTRUCTURE ET EFFETS DE LA FORME DES PARTICULES

Resumé: Les processus granulaires naturels et industriels impliquent souvent des écoulements
quasi-statiques ou dynamiques complexes de diverses formes de particules. Même si des modèles
empiriques de tels écoulements existent, les simulations avancées de dynamique granulaire per-
mettent aujourd’hui de réaliser des analyses de sensibilité détaillée de leur comportement en
fonction des paramètres de l’écoulement ou relier leur comportement à la microstructure. Dans
ce travail de thèse, des vastes campagnes de simulation ont été menées dans le but d’étudier
les effets de la forme polyédrique des particules sur les écoulements granulaires quasi-statiques
sous conditions tri-périodiques et sur les écoulements dynamiques dans le régime de cascade
dans des tambours rotatifs. Les modules élastiques orthotropes sous compression triaxiale ont
été exprimés en fonction de l’anisotropie du réseau de contacts et un nombre de contrainte
prenant en compte différents types de contacts entre polyèdres. Dans les tambours rotatifs, le
régime d’écoulement en cascade a été étudié pour un large spectre de valeurs des paramètres
et il a été montré qu’il est régi par un paramètre d’échelle sans dimension qui combine tous
les paramètres du système. Il a été également démontré que la mise à l’échelle proposée est
cohérente avec une méthode de coarse-graining. Enfin, la rupture d’une seule particule sous
l’effet d’impact avec un plan a été simulée par un nouveau modèle de fracture basé exclu-
sivement sur l’énergie de rupture. Les simulations révèlent une distribution des masses des
fragments en loi de puissance avec un exposant qui dépend de l’énergie de rupture.
Mots Clés: Matériaux granulaires, Discrete Element Method, Microstructure, Scaling
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General introduction

The grinding process is one of the most widely used processes in various fields such as mining
industry, civil engineering, powder metallurgy, agronomy and pharmacy. In the field of nuclear
energy, a great majority (about 90%) of nuclear electricity worldwide is generated in Light
Water Reactors (LWR), which uses fuel in the form of cylindrical oxide pellets, either uranium
dioxide or mixed oxide (MOX) that is composed of uranium dioxide and plutonium dioxide
with a Pu content between 5 and 10%. Grinding is the first step in the process of manufacturing
MOX fuels. In terms of particle shape, the uranium and plutonium dioxide powders are basically
composed of agglomerates or sub-micron platelets, respectively; see Fig. 0-1. Nevertheless,
when the two powders are co-milled, agglomerates similar to uranium dioxide are prone to
form.

Fig. 0-1. SEM photographs showing granules of (a) uranium dioxide and (b) plutonium dioxide
[1].

Mixed oxide pellets for LWR are manufactured by powder metallurgy, but the flow-sheet
is more complex because of the use of two different types of powders that need to be mixed.
Because of moderate diffusion coefficient of U and Pu at 1700°C, a simple mixture of UO2

and PuO2 powders is not sufficient to achieve a good homogeneity of plutonium distribution.
The first stage of fabrication is therefore a simultaneous milling of the UO2 and PuO2 powders
with a Pu content between 25 and 30 %, much higher than the target Pu content of the pellets
(∼ 5 to 10 %). This operation is performed during several hours using a rotating ball mill with
low alloy uranium balls. The milling, which produces an intimate homogeneous mixture of both
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powders on the scale of a few cubic micrometers, also modifies their characteristics, in particular
affecting the flowability of the resulting powder, and causing the formation of agglomerates.

Fig. 0-2. The main steps of MOX pellet fabrication with (a) raw materials, (b) powder blending,
(c) pelletizing and (d) sintering.

To improve the performance of milled powders while minimizing the energy cost, the grind-
ing process is a major subject of current research. The complexity of this process in rotating
drums has two main sources. The first one concerns the dynamic and inhomogeneous nature of
flows in the drum geometry, which depends on various parameters such as rotation speed, filling
degree, particle size, drum size, and the number and size of grinding balls. The second factor is
the complexity of the material composed of particles of various shapes and sizes and interacting
through cohesive-frictional interactions. Previous studies are largely empirical and the phenom-
ena of flow inside the rotating drum and commutation are poorly understood [2–6]. Neither a
change of scale, nor an increase in rates by optimizing the parameters is possible. However, as
the constraints on the implementation of nuclear materials continues to grow, it becomes very
difficult to multiply the experiments. Several constraints must be taken into account. In par-
ticular, small amounts of the material can be held under controlled conditions, requiring sealed
environment to avoid all kind of contamination and the equipment must be specialized.

Under these conditions, particle dynamics simulations based on the Discrete Element Method
(DEM) provide a truly precious tool for a detailed study of the physical mechanisms involved in
the milling process. However, it requires high physics-fidelity models of the material and high-
performance computations allowing for a meaningful representation of the granular material.
In previous numerical studies (thesis L. Orozco 2016-2019 [7]), an approach was developed to
model dynamic fragmentation of particles in 3D and single-particle fracture was studied. The
numerical method was Contact Dynamics, which is based on nonsmooth modeling of frictional
contacts with an implicite integration of the equations of motion. Its use for the simulations
of grinding in rotating drums was limited by difficulties of its efficient parallelization. It was,
however, shown that the bonded cell method with a rupture criterion based on fracture energy
provides realistic and scalable particle breakage. The 3D studies were therefore limited to spher-
ical particles in rotating drums for the scaling of cascading flows. The process of grinding was
also studied in 2D with breakable polygonal particles. Several relationships between surface
profile, thickness of the active layer, sliding at the walls and variability of the forces were iden-
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tified, and a new scaling parameter was proposed for both breakage rate and flow characteristics.
These results already put into perspective certain experimental observations which were poorly
understood until then. They showed that simulations of granular flows with particle breakage in
rotating drums provides a powerful means to investigate the grinding process.

This thesis work represents an extension of the previous work with the goal of developing
advanced particle simulations based on DEM to investigate quasistatic and dynamic granular
flows of polyhedral-shaped particles and modeling particle breakage for the simulation of the
comminution process in rotating drums. To improve computational performance, a different
approach to DEM based on the penalty method is necessary to allow for massively parallel
simulations. For this reason, new numerical developments are made to reformulate the repre-
sentation and fragmentation model of particles by accounting for particle shape and fracture
energy in the new framework. We use the simulation code called Rockable, developed by V.
Richefeu in Grenoble and made available within a collaborative project involving four institu-
tions (CNRS, CEA, INRAE, and University of Montpellier). The key components of this code
are 1) the representation of arbitrary particle shapes as sphero-polyhedra, 2) a fast contact detec-
tion algorithm, and 3) the explicite differentiation between different types of contacts (face-face,
face-edge. . . ) between polyhedra. To further reduce computation time, new developments were
necessary during this doctoral work to optimize contact detection (between cylindrical walls of
the rotating drum and polyhedra, for example) and to implement fully periodic boundary condi-
tions with the possibility of controlling either displacement or pressure in every space direction.
Periodic boundary conditions are also used along the rotating drum axis. Furthermore, the code
is parallelized and run efficiently on multiple processors.

As in the previous thesis, extensive parametric simulations are performed to identify a gen-
eral scaling of flow characteristics in the drum geometry. These characteristics are flow thick-
ness in the active layer, the shape of the free surface flow, and inertial number in the flowing
layer. As we use for the first time polyhedral particles in this thesis, we also compare the scaling
law with those previously proposed for spherical particles in the cascading regime. For that, we
use the data of L. Orozco’s thesis. Since our simulation method differs from that used in that
thesis, this comparison provides also elements of comparison between the two methods. An-
other novelty of our study is the inclusion of a particle-coarsening argument for the derivation
of the scaling law.

Part of this thesis work is devoted to quasistatic deformations granular materials composed
of polyhedral particles. We use fully periodic boundary conditions to study the quasi-static be-
havior for several polyhedral particle shapes (octahedra, dodecahedra, icosahedra) as well as
spherical particles. We determine for the first time the five orthotropic elastic moduli of our
samples during triaxial compression by applying small strain probes at regular intervals of evo-
lution of the samples. We also analyze the evolution of the microstructure and the correlation
between the elastic moduli and the microstructure for four different values of the friction coef-
ficient. Our results clearly evidence the role of coordination number and fabric anisotropy and
the effect of particle shape through several parameters involved in the linear correlation between
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elastic moduli and microstructure. These results are compared with the predictions of the effec-
tive medium theory that we apply to our triaxial configuration. Although quasi-static conditions
are not directly related to the problem of grinding in rotating drums, this investigation provides a
framework to analyze in the next step particle fragmentation and its effect on the rheology under
periodic boundary conditions. The passive state in rotating drum undergoes quasi-static defor-
mations and an aspect of grinding concerns precisely autogenic fragmentation of the particles
in this zone. Quasi-static particle fracture can also be used for comparison between simula-
tions and experiments under tomography and used for the validation and/or calibration of the
breakage model.

For particle fragmentation, we developed a new model in the framework of the bonded cell
method. In this method, the particles are tessellated into irregular convex cells and a fracture
model is attributed to the interfaces between cells. The advantage of the bonded cell method is
to account for the distribution of stresses inside each particle, but its success crucially depends
on the fracture model. The model developed in this thesis is based on fracture energy. Since the
face-face links between the cells are modeled as multiple contact points, the total tensile elastic
energy stored in the linear springs attributed to each contact point is compared with the fracture
energy of the interface. The interface is broken if the elastic energy exceeds the fracture energy.
This criterion is equivalent to Griffith’s criterion of crack propagation. We perform extensive
simulations of single particle breakage and compare the results with those previously obtained
by L. Orozco. In particular, the scaling of the effective restitution coefficient and the total energy
dissipated by fracture as a function of impact velocity and fracture energy is at the focus of this
work.

This PhD dissertation is organized in several chapters. First, a literature review on granular
materials as well as the numerical methodology are presented in Chapter 1. We introduce the
physical and mechanical properties of granular flows in representative volume element and
rotating drums. We also present several important findings of particle fragmentation process
from previous research studies that are relevant to the research work presented in this document.

In Chapter 2, the effect of faceted particle shape on the elastic behavior of granular packings
will be studied in the framework of particle dynamics simulations based on DEM. By comparing
the simulation data with effective medium theory, we propose a general analytical expression
that nicely predicts the elastic moduli as a function of two microstructural parameters: 1) a
constraint number that accounts for contact types (face-face and face-edge contacts between
polyhedra) and is reduced to coordination number for spherical particles, and 2) the contact
orientation anisotropy. This expression quantifies both the direct effect of particle shape through
our model parameters and indirect effect through microstructure.

In Chapter 3, we study the rheology and scaling of granular flows in a rotating drum partially
filled with polyhedral particles. We use the same numerical method presented in Chapter 2 to
perform extensive simulations for a wide range of values of drum diameter, particle diameter,
rotation speed, and filling degree. We focus on cascading regime due to its important role in
industrial processes and the lack of systematic analysis of its variables. We find a dimensionless
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scaling parameter that accounts for the effect of all system parameters by a detailed analysis
of flow variables such as the average and maximum slopes of free surface, flow thickness,
shear rate and inertia number in the flowing layer. This chapter presents the particle-coarsening
method and we show that it is consistent with our scaling of flow variables.

In Chapter 4, by means of Bonded Cell Method the impact-induced fracture of a single
particle is analyzed. We introduce a breakage model fully based on fracture energy, in which
a cell-cell interface breaks only if elastic energy stored in whole interface exceeds the fracture
energy of the interface. We analyze the impact process with its distinct regimes, as well as
transition between the regimes based on the breakage variables such as restitution coefficient,
particle damage, and fracture efficiency. We propose also fitting forms that predict the evolution
of breakage variables as a function of impact energy. We study the distribution of fragment
masses and their shapes as a function of fracture energy.

The last chapter 5 outlines conclusions, salient results, and perspectives of this PhD work.
Finally, Appendices (A-D) present a detailed analysis of the evolution of the microstructure

in simulations used in Chapter 2 for the investigation of elastic behavior.
We also include an extended abstract of the PhD work in French.
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1.1 Granular flows

The behavior of assemblies of grains can be complex even in the simple case of dry cohesionless
particles. When grain size is large enough (d > 250 µm) and the surrounding fluid is not too
viscous, the particle interactions are dominated by contact interactions. Capillary forces, van
der Waals forces or viscous interactions can be neglected and the mechanical properties of the
material are only controlled by the momentum transfer during collision or frictional contacts
between grains.

However, the flows of these dry granular materials are not easy to describe. They are usually
divided into three classes depending on the flow velocity. First, the dense quasi-static regime
where the deformations are very slow and the particles interact via frictional contacts. This
regime is often described by elasticity and plasticity theories [8]. Secondly, a gas-like regime
exits when the medium is strongly agitated and the grains are far apart one from another, in
which case particles interact through binary collisions [9]. The intermediate liquid regime,
where the granular material is dense but still flows like a liquid, and the particles interact by
both collisions and frictional contacts. This is the least understood regime [10, 11]. These
different flow regimes can coexist in a single configuration as shown by the flow of beads on a
pile in Fig. 1-1.

(a) (b) (c) (d)

Fig. 1-1. Three phases of granular flows, behaving like (a) a solid, (b) a liquid, (c) a gas. Panel
(d) illustrates the pouring of steel beans on a pile, where all three phases can be observed.

It is interesting to mention that the local dynamical properties of flows depend only upon a
single dimensionless variable called inertia number, which is defined as

I = γ̇d(ρ/p)1/2, (1.1)

where d is mean particle diameter, ρ is material density, p is local pressure and γ̇ is strain rate.
The inertia number measures the local mobility of particles. Small values of I correspond to a
quasi-static regime in the sense that macroscopic deformation is slow compared to microscopic
rearrangement, whereas large values of I correspond to rapid flow. This inertial number is also
equivalent to the square root of the Savage number or Coulomb number introduced by several
authors [12, 13]. Importantly, for rigid particles, the shear stress is proportional to the pressure,
with the effective friction coefficient and the solid fraction being functions of I, τ = pµ(I) and
Φ = Φ(I).
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1.1.1 Quasi-static regime: triaxial compression

In the limit of quasi-static flows I → 0 (I < 10−3), the effective friction coefficient µ and solid
fraction Φ tend toward a constant value independent of I. In this regime, the behavior under load
can be described as a succession of static configurations of particles and stable force networks
that slowly evolve with deformation. Here, we briefly introduce an example of quasi-static
regime achieved by triaxial shearing and described as elastic and plastic behavior. Macroscopic
phenomenological laws have been proposed for this regime in soil mechanics, and more re-
cently the particle-scale variables have been investigated by means of DEM simulations, but the
relationship between the macroscopic behavior and grain-level physical phenomena has not yet
been fully understood [14–17].

In triaxial experiments in soil mechanics, samples are subjected to axisymmetric states of
stress, the axial stress σ1, or the axial strain ε1, is controlled via the relative motion of the end
platens, while the lateral pressure p0 = σ2 = σ3 is imposed through a flexible membrane by
a fluid; see Fig. 1-2(a). In a typical triaxial compression, one starts from a given state, e.g,
prepared under isostatic stress. Then, most often ε1 is increased at a constant slow rate, while
lateral pressure p0 is maintained constant. Axial stress σ1 or deviator q = (σ1 − p0)/3, and
lateral strain ε2 = ε3 or volumetric strain εv = −tr(εεε) are measured. Evolution of q and εv as
ε1 monotonically increases are schematically represented in Fig. 1-2(b). In a loose sample,
the packing fraction and deviator gradually increase, until residual constant values are reached.
In a dense sample, the deviator increases more quickly, reaches the peak and then decreases
before reaching a constant value coinciding with that of the loose sample, whereas the sample
is initially contractant and then dilatant.

(a) (b)

Fig. 1-2. (a) An illustration of triaxial experiment. (b) Variation of deviator q (solid lines) and
volumetric strain εv (dotted lines) for a dense and a loose sample [8].
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For ε1 > 10−5, the increase of q with ε1 is not reversible. If the direction of deformation
is reserved, the same curved is not retraced back, the decrease of the deviator is steeper, with
a slope comparable to that of the tangent at the origin of coordinates in Fig. 1-2(b). As ε1

increases, the curves approach a plateau, corresponding to an asymptotic state that is called the
critical state, and is independent of the initial state [8,18]. The stress-strain path depends on the
nature of the granular material. For example, the role of inter-particle friction coefficient µs in
the stress-strain relationship during triaxial loading has been reported by several authors [19,20].
It is found that the maximum stress deviator increases with µs up to a value beyond which µs

has not effect any more.
In parallel to the analysis of stress-strain relationship, microscopic studies have tried to

define internal state variables of granular systems and to relate them to stresses and strains. For
instance, the density of contacts and some parametrization of the distribution of their orientation
called fabric or texture have been studied. Their evolution can be related to the strain and
their values can be correlated to the supported stress orientations [18, 21–24]. Furthermore, the
solid fraction Φ, as a geometrical property, is a state variable. When free volume changes are
allowed (volume change allowed), the solid fraction evolves with the applied deviatoric strain
rate ε̇q. Reynold’s dilatancy refers to the incremental volume change produced by shearing
and characterized generally by a dilation angle ψ , sinψ =−(2ε̇v + ε̇q)/3ε̇q. The negative sign
here ensures that negative values of the dilation angle correspond to contraction. The dilation
angle ψ is thus a basic plastic flow property of a granular material, and like the internal angle
of friction ϕ , sinϕ = 3q/(2p+ q), where p = (σ1 +σ2 +σ3)/3 is mean stress, it has to be
specified as a function of the fabric. While the internal angle of friction ϕ basically reflects
the Coulomb’s friction law (at the contact scale), the dilation angle ψ is a purely structural
property which has no counterpart at the contact scale for spherical particles [25]. The variation
of ψ versus ϕ , a sort of stress-dilatancy diagram, has been proposed as flow rule for plastic
deformations of granular media [26].

1.1.2 Nonaffine displacement field

In granular systems, the physics of deformations at the microscopic level is very different from
that of perfect crystals. Under an infinitesimal constant shear, the particles will move and settle
into new equilibrium positions. For a crystalline solid, it is natural to suppose that the new
positions of the particles are related to the old positions by a simple affine transformation that
can be calculated from the strain tensor. Nevertheless, in disordered systems, no such affine
transformations exists. In fact, there is a net nonzero force acting on each particle in its affine
position. An extra (nonaffine) displacement away from the affine position is needed in order to
maintain the mechanical equilibrium throughout the deformation. The nonaffine displacement
provide an additional contribution to the standard displacement field of elasticity theory. The
nonaffine part of the displacement field is random and does not possess any particular symmetry
[27].

Figure 1-3 displays the rearrangement or displacements of particles upon the application of
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an external shear strain. If the deformation is affine, particles which sit exactly on dashed lines
in the underformed frame (Fig.1-3(a)) would still sit exactly on the dashed line of deformed
frame (Fig.1-3(b)). However, the particles that are sitting on the dashed lines in the underformed
frame are no longer sitting on the dashed lines in the deformed frame, but are displaced from
them. The distance from the actual positions of the atoms to the dashed line corresponds to the
nonaffine displacements.

(a) (b)

Fig. 1-3. An illustration of nonaffine displacement in disorder systems. Position of particles (a)
before shearing and (b) after shearing [27].

One can observe the nonaffine deformation in granular media when the large-scale affine de-
formation, is subtracted from the displacement field. Some examples of such observations can
be found in variety of works. Radjai and Roux showed that the nonaffine granular motions are
similar to those observed in fluids undergoing turbulence [28, 29]. Peters and Walizer studied
nonaffine displacements in biaxial test, denoted as swirls, consist of rotational motions that sat-
isfy the kinematic boundary conditions. They proved that the sliding motion can be represented
as the sum of an affine motion and rotation [30], see Fig. 1-4.

Fig. 1-4. (a) Map of normal forces in a polydisperse packing of disks, line thickness is propo-
tional to normal force; (b) map of nonaffine particle displacement in a sheared packing of
disks [29].
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1.1.3 Elastic moduli of spherical particle packings

The role of nonaffine displacement in elastic moduli has been discussed in several studies in the
vcase of isotropic packings of disks [26, 31], spheres [32–34], and anisotropic packings under
oedometric compression (compression along one axis with no lateral strain) [35]. These studies
indicate that nonaffine displacements make packings softer, in the sense that the elastic moduli
are reduced. The reduction is especially important for shear modulus, while for bulk modulus,
the nonaffine effect is less pronounced for geometrical reasons due to the local excluded-volume
packing constraints [36–39]. It is worth noting that the elastic moduli are bounded between an
upper bound called Voigt approximation based on the uniform strain assumption and a lower
bound called Reuss approximation based on uniform stress assumption [40, 41]. The Voigt ap-
proximation also refers to Effective Medium Theory (EMT), in which an affine field of particle
displacements is assumed, and determined by the macroscopic strain. In the Reuss approxima-
tion, the force field is calculated by macroscopic stress, and the elastic energy is written as a
function of force increment.

For isotropic assemblies of disks, the upper bounds of the bulk and shear modulus predicted
by by EMT are given by [31], 

K
kn

=
nsΓ

8
l2,

G
kn

=
nsΓ

16

(
1+

kt

kn

)
l2,

(1.2)

where kn, kt are normal and tangential stiffness, respectively, ns is contact density which is the
average number of particles per unit volume, Γ is coordination number which is the average
number of contacts per particle, and l2 is average over all contacts of the squared length of the
branch vector. These predictions can be improved by including the fluctuations from average
strain, namely the particle fluctuations and pair fluctuations.

For isotropic spherical particle packings, Zacconne et al [27,42] proposed an expression for
bulk and shear modulus for spherical particles based on the approximate Hessian matrix:

K =
1

18
N
V

κR2
0(Z −6),

G =
1

30
N
V

κR2
0(Z −6),

(1.3)

where N is number of particles, V is volume of packing, κ is stiffness of contact, R0 is branch
vector length, and Z is coordination number. Generalizing the result to arbitrary space dimen-
sions gives the scaling for the moduli in d dimensions G ∼ K ∼ (Z−2d). The negative term in
Eq. (1.3) due to nonaffine displacement makes the moduli vanish at the isostatic state (Z = 6).
The reason for this might be identified with the fact that in their theory, just like in networks,
excluded volume effects are irrelevant while they are important in packings of rigid particles.
However, people claimed that by observing in simulations many times Eq. (1.3) is not correct
for K, which, unlike G does not vanish as the minimum (isostatic) value of Z is approached.
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The bulk modulus K jumps from 0 in the gas phase toward a constant value when the system
becomes jammed [43].

The elastic moduli of a packing of elasto-frictional Hertz-Mindlin spherical grains can also
be predicted using EMT. The main prediction of the theory is the scaling of bulk and shear
modulus with pressure as G ∼ K ∼ p1/3 [32, 44]. For the case of frictionless grains, one finds

K =
kn

12π
(ΦZ)2/3

(
6π p
kn

)1/3

,

G =
kn

20π
(ΦZ)2/3

(
6π p
kn

)1/3

.

(1.4)

For frictional grains, tangential elastic forces are taken into consideration. Note that bulk mod-
ulus is not affected by the introduction of tangential forces, but the shear modulus is modified
to

G =
kn +(3/2)kt

20π
(ΦZ)2/3

(
6π p
kn

)1/3

. (1.5)

It is also possible to calculate a lower bound bulk modulus (analogous to the Reuss bound),
in the case of Hertzian contacts:

K =
1

2Z(5/3)

(
ΦZẼ
3π

)2/3

p1/3, (1.6)

and for linear contact elasticity, the corresponding prediction is

K =
ΦZkn

3πaZ(2)
, (1.7)

where Z(5/3) and Z(2) are dimensionless quantities given by Z(α) = ⟨Nα⟩/⟨N⟩α , where N is
normal contact force, a is average particle diameter, Ẽ = E/(1−ν2) with E being the Young
modulus of the material, and ν is Poisson’s ratio [32,35,45]. For shear modulus, no Reuss esti-
mate is available. More elaborate prediction methods for elastic moduli were proposed. Kruyt
and Rothenburg consider two-dimensional assemblies of nonrotating particles [41]. Velicky and
Caroli studied the case of an imperfect lattice system with contact disorder [46]. Jenkins et al.
dealt with frictionless sphere packings [47].

For anisotropic systems, Khalili et al. have studied how the elastic properties reflect the
evolution of their internal state under oedometric compression (compression along one axis,
with no lateral strain) [35]. It is observed that the elastic moduli, as in isotropic packings, are
primarily determined by the coordination number. In addition, the anisotropy of the elastic
moduli matrix is related to the anisotropies of both the contact network (the fabric) and the
angular force distribution. In order to reach more general conclusions on possible anisotropic
states and connections between elasticity, fabric and force anisotropies, it is necessary to explore
different states and microstructures, and to vary stresses and fabric independently, by using
triaxial loading, for example.
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1.1.4 Rheology of particle flow in rotating drums

Rotating drums are widely used to process granular materials in a great variety of industries such
as pharmaceutical, food processing, polymer, ceramic, metallurgical, solid waste treatment,
etc [48–50]. Due to their facility of using and heat transfer efficiency, as well as their ability
to handle heterogeneous feedstock, they are used in a broad range of processes such as size
reduction, sintering, mixing, drying, heating, cooling and chemical reactions. However, the
dynamics and rheology of granular materials in rotating drums remains challenging because of
the complex of particle flow combining the upward rigid-body motion of the particles at the
drum wall, downward bulk flow and free surface dynamics. Moreover, in a single rotating drum
configuration, different flow regime can be identified. For instance, a solid-like regime that is
characterized by dense quasi-static flow can be found in regions located close to drum wall,
where the deformations are very slow and the enduring multiparticle contacts are governed by
friction. At the free surface, the flows are in gas-like fluidized state that is characterized by
very rapid and dilute flows in which the particles interact mainly by collision, while in the
intermediate region, a liquid-like state, which is also densely packed but still able to flow like a
liquid with particles interacting through both frictional and collisional contacts, can be found. A
common classification of flows inside rotating drums includes six different regimes as a function
of the Froude number :

Fr =
ω2R

g
, (1.8)

where ω is rotation speed, R is drum radius and g is the gravity acceleration [51–57]; Fig. 1-5.

Fig. 1-5. Six flow regimes of granular materials in a rotating drum.

The flow regimes are not only dependent on Fr, but also the filling rate and the friction
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coefficient between particles and drum walls. With a small value of Fr and smooth cylinder
walls, the slumping (sliding) regime can occur. The particles move as a block that slides and
oscillates on the drum wall. When the wall friction is increased, the sliding regime turns to
surging regime, where the granular bed adheres to the rotating wall up to a high angle and
subsequently slides back to the lowest position of the drum [58–60]. The first two regimes have
no application in industry because the mixing of particles does not take place. With the increase
of rotation speed or wall friction, the rolling regime can be observed, in which the particles
avalanche downward on the free surface due to gravity, while they are transported upward by
solid body rotation with the rotation of drum near the drum wall. The free surface is flat with
a dynamic slope and the regime can be decomposed into two layer, namely active and passive
layers [61–64].

The cascading regime is observed for larger values of Froude number. The particles cascade
downward and free surface of granular flow has a curved shape [52,65–68]. For further increase
of Fr, the flow enters the cataracting regime, where the particles undergo ballistic motion and
they collide with the downstream part of free surface [69–72]. For even larger value of Fr, the
particles begin to adhere to the drum wall and the centrifuging regime is observed [73–75]. In
granulation process, the particles should be well mixed and undergo fluctuating motions that
can trigger the particle collision. Thus, the intermediate state between rolling and cataracting
regimes are appropriate geometries for industrial application.

Several studies suggest that the Froude number is insufficient for classifying granular flow in
rotating drums as it does not account for finite size effect and filling degree that affect features
such as active layer thickness, and surface velocity. Moreover, there is no exact method to
predict the transition between the different forms of flow regimes. By using semi-empirical
relations, the six modes of bed motion had been represented on a Bed Behavior Diagram for
different solids rotated in cylinders of different size [56]. This diagram was corrected gradually
by Mellmann’s work by accounting for more parameters that can influence on the transition
of regimes [53]. He indicated that the motion behavior can be represented on a diagram that
plots wall friction coefficient and Froude number against the filling degree. He found that in
principle, the motion behavior of the bed materials is similar except for the slumping-rolling
and rolling-cascading transitions that could differ in shifting to lower Froude number.

The transition to centrifuging granular flow in rotating tumblers was studied by Juarez et
al. [74]. They showed that the critical rotational speed for dry systems is not affected by particle
diameter unless the fill fraction is above 75%, where endwall friction begins to play a significant
role, and it is proportional to fill fraction. Félix et al. [76] worked on the transition from rolling
to cascading regime. The free surface shape had been characterized by the parameter ∆θ =

θmean − θmin, as shown in Fig. 1-6. This means that the free surface becomes curved when
∆θ > 0. They also showed that the transition takes place when the particle accelerations reach
a value equal to 6% of the maximal acceleration down an inclined plane gsinθ . Ding et al. [77]
suggested that the transition from slumping to rolling regime occurs when the two turnover
times are equal, where the turnover time is defined as the time required to turn the whole particle
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bed over once. The Froude number based upon the bed turnover frequency is shown to be more
appropriate in constructing the bed behavior diagram than that based on the rotation speed.

The rheology of granular flow has been investigated in both 2D and 3D in rotating drums by
means of experiments and simulations for different types of particle shape varying from spher-
ical to aspherical particles. Most of numerical researches conducted with the DEM involve
spheres due to their simplicity in terms of contact detection, which results in lowest possible
computing time. The drawback of using spherical particles is that most industrial granular ma-
terials exhibit a significantly different shape. Recently, aspherical particles have been modeled
and used in simulations examples of which are superellipsoids [68, 78], superquadrics [79–81],
clumps or glued shepres [82–84], and non-convex polyhedra [82].

A study that compares different particle shapes inside a rotating drum indicated that an in-
crease of particle angularity leads to an increase of the dynamic angle of free surface, see Fig.
1-6. On the other hand, while spheres mix faster than the polyhedral dices, no significant differ-
ence in the mixing behaviors of the dices can be observed [85]. It was also found that particle
aspect ratio had no significant effect on the thermal conduction properties of the system whereas
shape irregularity had the most pronounced effect [86]. Another experimental study was carried
out to compare the mixing process in rotating drum of spheres and non-spherical tablets [87].
They found that particles having an aspect ratio larger than two can lead to significant deviations
in velocity profile and residence time. In addition, the non-spherical particle higher degree of
spatial orientation in the active layer leads to a lower axial dispersion coefficient than the ones
obtained with spherical particles. In 2D, the effect of polygonal particles to mixing process was
studied [88]. The mixing index indicates higher mixing degree for the square, hexagonal, trian-
gular shapes, and the kinetic energy increases with number of polygonal particles sides. Despite
these studies based on DEM, the dynamics and rheology of granular flows of aspherical parti-
cles in rotating drums as a function of particle shape has not been investigated on a systematic
basis. More generally, it is desirable to understand the scaling behavior for a range system pa-
rameters such as Froude number, drum size, particle size, and filling degree for various particle
shapes [65].

Another issue concerns segregation and mixing in rotating drums. Particle size is not the
only factor responsible for the segregation of materials in rotating drum, but the particle mass
plays also an important role [65, 89]. The question of whether density or particle size are the
dominant segregation mechanism was answered by Jain et al. [90]. If the core is composed
of denser beads, then segregation is dominated by density, if the core is composed of smaller
beads, the segregation is dominated by size. It was also found that in order to achieve a correct
mixing in system with particles of different sizes and densities, the best strategy is to have
larger particles with higher density compared to smaller ones. Moreover, several researches
investigated the effect of polydispersity on granular flow, mixing and segregation [91–94]. The
results revealed similar velocity profiles and residence times for monodisperse and polydisperse
systems, but the small particles tend to remain in the bed core while the bigger ones flow around
[94].
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Fig. 1-6. Different dynamic angles of free surface that can be defined in a rotating drum geom-
etry: (a) maximum and minimum, (b) average.

1.1.5 Scaling law in rotating drums

In mixing and/or grinding applications, a key issue is the increase of the linear dimensions from
the laboratory to the plant size. This process is called scale-up, which is generally defined as a
procedure for applying the same process to different output volumes. There are several scale-up
issues such as scaling based on wrong unit operation mechanisms, insufficient knowledge of
process, or even changes in the product or process during scale-up. In order to eliminate these
problems, one needs to understand what makes the processes similar. Dimensional analysis can
be used in scale-up process. It is a method for producing dimensionless number that completely
characterizes the process. According to the theory of models, two processes may be considered
completely similar if they take place in similar geometrical space and if all the dimensionless
numbers necessary to describe the process have the same numerical value [95]. Then, the
process is expressed by using a complete set of dimensionless numbers, and match them at
different scales [96].

Dimensionless numbers, such as Froude number Fr, are frequently used to describe granular
flows in rotating drums. However, most scalings based on Fr for scaling purposes do not ac-
count for essential parameters like filling degree and particle size. Some of the parameters that
should be accounted for in scale-up process are the dynamic angle of repose θ , the active layer
thickness, and the total kinetic energy. The relationships between layer thickness, free surface
profile, dynamic angle of repose, angular speed, cylinder radius and particle diameter have been
considered in several works [97–101]. Other studies were concerned about dimensionless flow
rate [11, 102], and impact energy [103].

Taberlet et al. [99] proposed a parameter Λ which includes most relevant parameters: parti-
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cle size d, drum length W , and drum radius R, rotation speed, and gravity.

Λ =

(
Fr

d
R

)1/4 R
W

. (1.9)

In this study, the shape of the free surfacewas found to changes as a function of the drum length
or friction with the end walls. It was shown that the frictional end plates have a major and
nontrivial influence on the shape of a granular flow in rotating drum. Pignatel et al. [102] found
that the flowing layer thickness and the dynamic angle of repose scale with the dimensionless
flow rate Q∗. In the dry case, Q∗

dry is given by

Q∗
dry =

1
2

Fr1/2
(

R
d

)3/2

. (1.10)

In the case of immersed flows in a viscous liquid, the dimensionless flow rate must be modified

Q∗
dry =

1
2

Fr1/2
(

R
d

)3/2(
ρp

∆ρ

)1/2(
1+

1
St

)
, (1.11)

where ∆ρ is the difference of density between liquid and solid particle (ρp), and St is the Stokes
number, defined as the ratio of viscous time to flow time.

Orozco et al. [65] introduced the scaling parameter ϒ which includes filling degree J, and is
given by

ϒ = Fr1/4
(

R
d

)1/2

J. (1.12)

They proved that the parameter ϒ scales well the slope ratio and force variability, and can
be used to upscale drum size from laboratory to industrial scale. Note that this study was
concerned with the cascading regime, and the width of the drum had no effect due to periodic
lateral boundaries.

In spite of multiple efforts to obtain a general scaling law, a full agreement on the scale-up
of flow regimes in rotating drums has not been achieved yet. The difficulty of finding a unique
general expression valid for all cases resides in the large number of system parameters involved
and the system’s intrinsic heterogeneity.

1.2 Particle fragmentation

Particle breakage occurs commonly in natural granular flows and industrial processes involving
the transport, handling, and compaction of granular materials. Particle size reduction can be
undesirable or uncontrolled, and it is referred to as the attrition process like in rock fracture,
ballast degradation, etc. In contrast, the fragmentation of particles under controlled conditions is
used in comminution processes such as the grinding of mineral materials, and milling of vegetal
products. Due to dependence on many factors of the evolution of particle size distribution
and energy dissipation, there is not yet a clear quantitative understanding of its origins at the
particle scale. For this reason, it is necessary to broaden the horizons in terms of the effects
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of various parameters that control fracture-induced phenomena independently of the specific
crushing or grinding machines employed in different applications. The fragmentation process
in an assembly of particles subjected to shearing or compaction and particles in ball mills can be
investigated experimentally [104–108]. However, numerical simulations based on DEM should
be used for a better understanding of this process and its impact on the macroscopic behavior.

1.2.1 Single particle crushing

Studying the fracture of a single particle is the first step towards a quantitative description of the
complex multi-particle fracture dynamics. The Finite Element Method (FEM) has been used
by several authors to study single-particle fracture by incorporating the material behavior and
an adequate damage or rupture criterion [109–111]. This method can help us to account for
the true nature of the materials and provide an access to the full stress field in a continuum
framework. Nevertheless, it requires rather a fine meshing of the particle at its borders or at
least around its contact points with other particles and at crack tips. One more drawback is that
its application to an assembly of particles requires a proper treatment of frictional contacts and
large deformations, which make it computationally inefficient [112].

Another approach to deal with the problem is the method that combines the general frame-
work of the DEM, based on particle dynamics and frictional interactions, with a particle fracture
model. The advantage of DEM is to allow for the treatment of frictional contact interactions
and provide detailed information about local particle environments and force chains that control
the breakup events. This model can be classified at least two main groups. The first method is
Bonded Particle Method (BPM), in which the particles are modeled as aggregates of spherical
sub-particles bonded together by cohesive forces [113–117]. A major issue of this method is
that the total volume of the material is not conserved during the fragmentation process due to the
voids between spherical sub-particles. To address the volume loss issue, several authors have
used polygonal or polyhedral sub-particles or cells generated by Voronoi tessellation, a method
that is called Bonded Cell Method (BCM) [118,119]. These cells pave the whole volume of the
particle so that the volume is conserved during particle fragmentation. However, in such studies
the intercell contacts are modeled by a linear force law as that between spherical sub-particles.
This is clearly an unphysical approximation since the contacts extend along a line (in 2D) or a
surface (in 3D) between cells and thus their treatment needs at least two or three displacement
variables, respectively. Later, the issue of contact treatment was addressed in multiple studies
by combining BCM with the contact dynamics (CD) method [112, 120, 121].

Another issue is that the rupture criterion should be compatible with fracture mechanics
and themodynamics in which the fracture is fully based on energy. Apart from Orozco’s work
[121] using a fracture law combining material strength and fracture energy, nearly all studies
reported in the literature are based on stress thresholds which lead to brittle behavior. Note
that the simulations implemented in the framework of the Contact Dynamics Method (CDM)
do not account for elastic deflections at contact points due to the fact that the sub-particles
are considered as perfectly rigid particles, so the energy stored in elastic deformations is not
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accounted. Moreover, it is not obvious that the work performed by external forces is dissipated
since in CDM the dissipation is controlled by relative velocities rather than displacements.

In Orozco’s work, a cell-cell interface loses its cohesion when it is at a normal or tangential
stress threshold and an amount of work equal to the fracture energy is absorbed as a result of the
relative cell-cell displacements. She analyzed the damage and fragmentation efficiency defined
as the ratio of consumed fracture energy to the impact energy as a function of the impact energy
and stress thresholds, and their scaling with fracture energy and impact force. It was shown that
the fragmentation efficiency is unmonotonic as a function of the impact energy, and the highest
efficiency, which is only 27% of supplied energy, occurs when the impact energy required to
fracture the particle into its building cells is 1.81 times the total fracture energy of the particle.

Nguyen et al. [112] showed that the compressive strength scales well with tensile threshold
between cells. However, due to the Mohr-Coulomb plastic criterion and interlocking between
rigid cells, the strength is also an increasing function of the friction coefficient. the statistical
scatter of the data is well described by the Weibull distribution function with a shape parameter
varying from 6 to 10 depending on cell shape distribution:

σp

σc
∼ n−(1−α)/2

v ∼ d−(1−α), (1.13)

where σp and σc are the compressible and tensile strengths, respectively, nv is number of cells, d
is average cell diameter, and the exponent α may take a different value depending on the nature
of the network. For this reason, the cells should be generated in a fully random way both in sizes
and shapes. However, it was also confirmed that for nv > 100 the fracture threshold is nearly
independent of nv, indicating that the number of meshes do not affect the fracture behavior of
the particles if the latter is sufficiently high. Note that size effects in single particle fracture
suggest that in an assembly of crushable particles the largest particles are most susceptible to
break. However, particle size affects the local distribution of contacts forces. In particular,
large particles have more contacts and sustain for this reason lower deviatoric stresses. Due to
such competing effects, the fragmentation of a granular packing is a complex process that needs
further investigation.

In impact fragmentation, a critical velocity that separates the particle response from damage
to fragmentation, often referred to as a phase transition, was first identified by Thornton et
al. [122] and later confirmed by several authors [123–126]. Timár et al. [127] performed a finite
size scaling analysis to determine the critical exponents of the damage-fragmentation phase
transition and deduced scaling relations in terms of radius of spherical solid bodies and impact
velocity. They proposed that the total amount of damage Dtot has a power law dependence on
impact velocity v0 in the damage phase

Dtot ∼ vα
0 , (1.14)

while in the fragmentation phase a critical behavior is obtained

Dtot ∼ (v0 − vc)
α . (1.15)

14



The exponent α gets different values αd = 4.45 and α f = 0.22 in the damage and fragmentation
states, respectively, see Fig. 1-7(a).

(a) (b)

Fig. 1-7. (a) Total amount of damage as a function of the impact velocity. The vertical arrow
indicates the critical impact velocity separating the damage and fragmentation states [127]. (b)
Number of fragments in two fragmentation regimes [126].

For the effects of impact angle, one observes that the damage ratio (i.e. the number fraction
of the broken bonds) depends on the normal component of the impact velocity only, the tangen-
tial component has little effect [124, 128]. The effects of material properties such as interface
energy [129,130], agglomerate packing density [131], dominant fracture mechanism [114], and
material microstructure [132] on the fracture pattern and fragments mass distribution were also
investigated. The impact breakage behavior of aspherical agglomerates as also been studies by
DEM approaches [133, 134].

Laboratory impact experiments have found that impact fragments tend to be elongated. The
shapes of fragments from catastrophic collisions defined by axes a, b, and c, these being the
maximum dimensions of the fragment in three mutually orthogonal planes (a ≥ b ≥ c), are
distributed around mean values of the axial ratio b/a ≃ 0.7 and c/a ≃ 0.5. This corresponds
to a : b : c in the simple proportion 2 :

√
2 : 1 [135, 136]. However, by carrying out the impact

experiments, Michikami et al. [137] found that the mean value of c/a in each impact decreases
with decreasing impact energy per unit target mass Q. For instance, the mean value of c/a in
an impact cratering event is nearly 0.2, which is considerably smaller than c/a in catastrophic
disruption (∼ 0.5). On the other hand the mean b/a ratios seem to be roughly constant with
Q, see Fig. 1-8. Matsushima et al. [138] describes a procedure used to characterize the three-
dimensional grain shape of lunar soil. They indicated that the values of elongation ratio b/a ≃
0.723, and flatness ratio c/b ≃ 0.694 implying that c/a ≃ 0.502, see Fig. 1-9.

Besides the axial ratio of fragments, one can use the surface to volume ratio S f = ARq/V to
characterize the shape of objects generated by fragmentation events, where A/V is surface-to-
volume ratio, Rg is radius of gyration [139]. Assuming rectangular shape of fragments Rg reads
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(a) (b)

Fig. 1-8. (a) An example of fragment, (b) the mean b/a and c/a ratio versus impact energy per
unit target mass Q. Note that the mean c/a ratios decrease with decreasing Q when Q is less
than 1000 J/kg [137].

as Rg =
√

c2 +b2 +a2/(2
√

3), S f is given by

S f =
1√
3

(
1
a
+

1
b
+

1
c

)√
c2 +b2 +a2. (1.16)

For cubic fragments a ≃ b ≃ c, the shape parameter simplifies to S f = 3 independent of the size
of fragments, while larger values of S f > 3 characterize elongated shapes.

During the past decades research on fragmentation mainly focused on the statistic of frag-
ment masses m which revealed power law distributions

p(m)∼ m−τ . (1.17)

The value of the exponent τ is mainly determined by the dimensionality of system and by the
brittle and ductile character of the mechanical response on the material involved [114, 140–
142]. In Domokos’s study the universal exponent τ = (2D− 1)/D depending solely on the
dimensionality D of the system [139].

1.2.2 Particle breakage in representative volume element

There are several theoretical [106, 143–146] experimental [105, 107, 108, 147, 148] and numer-
ical [116, 149–153] studies of particle fragmentation of a packing subjected a compression or
a deformation. It is obvious that the rupture of particles depends on the contact network and
the distribution of force chains in granular packings. Moreover, the initial distribution particle
size, particle shape, solid fraction and confining stress play an important role in comminution
processes.
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(a) (b)

Fig. 1-9. (a) Example of cluster identified following attribution process, (b) Zingg diagram
showing grain shape properties [138].

Several experiments seem to indicate that particle fragmentation does not significantly change
the size of the largest particles though their number declines [104, 154, 155]. In fact, the larger
particles are surrounded by smaller particles, reducing thus the mean shear stress that they sup-
port. In this way, the lower shear stress exerted on the large particles outweighs the decreasing
strength of individual particles with increasing particle size. For this reason, the resulting size
distribution is expected to be dependent on the initial size distribution. In particular, a number
of large particles never breaks whereas a large number of particles are fully shattered. As a
result, the packing keeps the memory of its initial particle size distribution, whereas a power-
law distribution is observed for particles of intermediate size due to consecutive fragmentation
events whereby the memory of the initial state is lost [151].

(a) (b)

Fig. 1-10. Snapshot of a portion of the contact network at different levels of shear deformation
εq, (a) εq = 0.2, and (b) εq = 0.6. The gray level of particles is proportional to the coordination
number [151].

Nguyen et al. [151] also confirmed that the usual dilatant behavior of dense granular system
is reduced or canceled by effect of particle fragmentation. In some cases, they found that
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dilation is counter-balanced by fragments of particles, tending to increase the packing fraction
by numerous small particles filling the space between larger particles. Hence, the stress-strain
curve no longer passes through a peak stress, and a progressive monotonic evolution towards
a pseudo-steady state is observed instead. The shear strength of the packing is well expressed
in terms of contact anisotropies and force anisotropies. The stress ratio q/p is independent of
the internal cohesion of the particles due to the additive compensation between the increase of
normal force anisotropy a f n and the decrease of contact anisotropy ac. The increase of a f n may
be attributed to the production of particle of anisotropic shape by fragmentation whereas the
decrease of ac is a consequence of increasing polydispersity.

The evolution of particle size distribution of crushable particle packings has been studied
in 3D during oedometric [156–159], and triaxial compression [117, 160, 161]. In general, the
crushing of particles reduces the shear stress ratio peak, and the fragmentation of particles does
not have a significant effect on the critical shear stress ratio. Some authors suggested that the
fracture characteristics are highly dependent on the particle shape factor [157, 162]. Spherical
particles seem to be more likely to undergo major splitting fractures, while realistic particles are
more likely to undergo local asperity breakage. Consequently, spherical particles have greater
characteristic crushing strength and much higher Weibull modulus than those of realistic particle
shape.

(a) (b)

Fig. 1-11. Sand sample at different vertical pressures: (a) initial condition, (b) stress is 30 MPa.
The color indicates the number of crushing events experienced by a particle [158].

1.2.3 Fragmentation Process in Ball Mills

The grinding process in rotating drums is complex and poorly understood from physical and me-
chanical points of view. The granular flow has an inertial nature and develops a complex geom-
etry with inhomogeneous flow patterns and curved free surface due to the rapid-flow regime in
rotating drums, i.e., cascading or cataracting regimes. There are several studies on the grinding
process using experimental measurements [103,163,164], numerical simulations [65,165–169],
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mechanistic or stochastic models [170–172], and mathematics models [173]. However, the evo-
lution of particle size, powder specific surface, collision energy, and their scaling with operation
parameters are open issues.

In the grinding process, particle breakage occurs as a result of frictional and collisional
interactions between particles and with the drum walls. Breakage events of different types
such as impact, shearing, crushing or compression can take place simultaneously at different
locations of flow. Fig. 1-12 describes four different conditions that can make particles to break,
for example, (a) colliding with the drum wall, (b) crushing between the wall and an approaching
ball, (c) compression of shearing of a particle between tow balls, and (d) the impact and/or
weight load of a ball with a bed of particles. In particular, particles can be broken under the
particle-particle interactions that carry the forces transmitted from these different events.

(a) (b) (c) (d)

Fig. 1-12. Types of interactions that particles can undergo in rotating drums.

In experiments the range of tested parameters is limited, and therefore conclusive paramet-
ric results are difficult to obtain. This gap may be filled by numerical simulations which allow
for different particle shapes and values of parameters to be considered and continuous tracking
of particles and their mechanical interactions is possible. The numerical studies have, however,
their own challenge of reconciling numerical performance with the realism of the underlying
physical model. The population balance model (PBM) is a strategy that has been widely used
for modeling the rate of change of particle size distribution in materials subjected to comminu-
tion processes [173–176]. The PBM combines particle breakage probability, usually obtained
from single impact tests, with a mass transfer function to sequentially predict the evolution of
particle size distribution during grinding. One disadvantage of this method is the large number
of parameters that must be tuned for each specific case. In most cases, the calibration is based
on experimental results, and some functions such as the mass transfer are fully empirical as their
measurement in experiments is not possible. Moreover, these models do not directly account
for the mechanics of particle fracture in multicontact configurations, in which the breakage
mechanisms are substantially different from those in a single particle impact test.

Orozco et al. [177, 178] analyzed the evolution of particle breakage in a 2D rotating drum
for a broad range of values of rotation speed, drum size, filling degree, and particle size and
shape. They were interested in the influence of each system parameter on the evolution of
specific surface and mean particle size. They proposed a scaling parameter incorporating all
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system parameters:

Γ = Fr3/4 f−1
(

R
d0

)1/4(
ρgd0

Cn

)3/2

, (1.18)

where Fr is Froude number, f is filling degree, R is drum radius, d0 is initial mean particle
diameter, Cn is normal stress threshold, and ρ is particle density. This scaling parameter implies
an increase of breakage rate with increasing rotation speed, drum size, particle size, density and
a decrease of breakage rate with increasing filling degree and internal cohesion of the particles.

The scaling parameter Γ is dimensionless and fully constrained by all the available dimen-
sional parameters of the system. It is shown that the rates of particle breakage for all values of
system parameters collapse on a master curve when the times are scaled by the characteristic
time defined in the linear regime:

t∗

τ
≃ 0.073Fr−3/4 f

(
R
d0

)−1/4(
ρgd0

Cn

)−3/2

, (1.19)

where t∗ is characteristic time, τ =C1/2
n /

(
gρ1/2

)
is typical time between two breakage events.

They also investigated the grinding process in a simulated ball mill geometry, see Fig. 1-13.
When the total volume of grinding balls is kept constant, changing the ball size has little

effect on the evolution of grinding, since the total kinetic energy is proportional to the total
volume and hence it has nearly the same value. Orozco et al. found that the grinding rate in-
creases with the number of balls of the same size, but this trend is counterbalanced by energy
dissipation due to inelastic collisions between balls for a large number of balls. There is there-
fore an optimal number of balls for which the grinding rate has its largest value. The effect of
size and number of the grinding balls on breakage rate parameter is investigated in experiments.
For instance, a mathematical equation was proposed to predict the particle size and ball size
when maximum breakage occurs [164], providing one way to establish the optimum ball size
in grinding process.

Fig. 1-13. A snapshot of force chains in a simulation with 50 grinding balls. Red lines thickness
is proportional to normal force [177].
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1.3 Methodology

1.3.1 Discrete Element Method and particle shape strategy

Discrete Element Method (DEM) is a powerful and reliable research tool. This method is
based on the integration of equations of motion for all particles, described as rigid elements, by
considering contact forces and external forces acting on the particles. Technically, this method
requires a time-discretized form of the equations of motion governing particle displacements
and rotations and a force law formulated as a force-displacement relation [179]. The equations
of motion for each particle are the following:

mi
d2x⃗i

dt2 =∑
j
( fn⃗n+ ft⃗t)+mi⃗g,

Ii
d2ϕ⃗i

dt2 =∑
j
( fn⃗n+ ft⃗t)× r⃗,

(1.20)

where mi, Ii, x⃗i, ϕ⃗i are mass, moment of inertia, position and orientation of particle i, and n⃗
and t⃗ are the normal and tangential unit vectors at the contact point between particle i and its
neighboring particles j. g⃗ is the acceleration of gravity and r⃗ is the vector of minimum distance
between contact point and the current rotation axis passing through the mass center of particle
i.

Fig. 1-14. Schematic representation of linear spring contact, (a) contact coordinate, (b) relation
between normal force fn and overlap δn, (c) Coulomb’s friction law and relation between tan-
gential force ft and tangential displacement δt .

The normal force ( fn) and tangential force ( ft) are calculated from force laws which gen-
erally describe frictional contact interactions. An important feature of DEM is to allow the
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particles to overlap. This overlap δn represents a normal strain localized in the vicinity of the
contact point. Generally, a simple linear relation is assumed between fn and δn. This is con-
sistent with the fact that the overlaps allow for a penalty-based explicit formulation of particle
motions, i.e. the elastic repulsion force is mobilized to prevent two penalize the overlap. The
condition of particle undeformability implies that the overlaps must stay small compared to
particle size. In this linear approximation, the normal force is given by

fn =

0, f̃n ≤ 0

f̃n, f̃n > 0
(1.21)

where f̃n =−knδn−γδ̇n is the candidate normal force, kn is normal stiffness, δn is overlap (δn <

0, when two particle overlap), δ̇n is relative normal velocity, γ is viscous damping coefficient.
The first part of candidate normal force (knδn) is repulsive force, the second part (γδ̇n) is a
viscous damping force that models the inelasticity of the contact.

Energy dissipation at contacts is an intrinsic characteristic of granular materials and must be
considered. The viscous damping coefficient can be related to the normal restitution coefficient
en:

γ =


−2logen

√
mkn√

(logen)2+π2
for 0 < en ≤ 1,

2
√

mkn for en = 0.
(1.22)

en = 0 corresponds to fully inelastic collisions, en = 1 is for perfectly elastic collisions, m is
effective mass of the colliding particles calculated from the masses of the colliding particles:
m = mim j/(mi +m j).

The tangential force is constrained by Coulomb’s law, and it is updated at each time step
with the following increment vector [180]

δ f⃗t =

δ f⃗t =−kt δ⃗t for | ft |< µ fn,

0⃗ ortherwise
(1.23)

where kt is tangential stiffness, δ⃗t is the relative tangential displacement, and µs is interparticle
friction coefficient. Both the normal and tangential force are shown in Fig. 1-14(b) and 1-
14(c), respectively. Note that, here we do not consider the energy dissipation along tangential
direction, and granular materials are much more complex than the model that has just been
presented. Nevertheless, the linear elastic spring model has several advantages such as simple
to increment, its harmonic behavior is well understood that makes it is easier to interpret the
results.

The most common nonlinear interaction law is the Hertz law [181]. For smooth spherical
particles of diameter a, the normal force is a nonlinear function of overlap as fn =(Ẽ

√
aδ

3/2
n )/3,

with Ẽ = E/(1−ν2), where E is the Young modulus, and ν is Poisson’s ratio of spheres. The
Hertz law implies that normal stiffness kn is a function of overlap: kn = d fn/dδn =(Ẽ

√
aδ

1/2
n )/2.

In the same way, the tangential stiffness is within good approximation proportional to normal
stiffness: kt = (2− 2ν)kn/(2− ν). The Hertz law has significant influence on the acoustic
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properties of simulated granular materials, and on the global elastic moduli of static packings.
If we are interested in such questions, Hertzian model should be considered instead of linear
law [179].

To solve the equations of motion several methods can be applied, but the velocity-Verlet
algorithm is widely used because of its accuracy and numerical robustness. It uses a small
number of variables in each time step, so it helps to save the memory of computer and speed up
calculations. Let us consider a time discretization of equal intervals h (time step). The state of
the system at time t is given by the position q(t) and the velocity q̇(t) of each of its degrees of
freedom. The latter can be a scalar or a component of a vector describing a displacement or a
rotation. We would like to calculate the position q(t +h) and the velocity q̇(t +h) at the end of
the time step (at time t +h). The position is calculated by a second-order expansion in time:

q(t +h) = q(t)+ q̇(t)h+
1
2

q̈(t)h2 (1.24)

where q̈(t) is the acceleration at the beginning of time step calculated in the preceding time step
by dividing the resultant force F (or the moment for angular degrees of freedom) by particle
mass m (respectively, by the moment of inertia I). This is the prediction step.

The velocity is calculated in two steps. First, it is calculated by a first-order expansion at the
half-step:

q̇(t +h/2) = q̇(t)+ q̈(t)
h
2

(1.25)

and the acceleration q̈(t+h) is calculated from the forces evaluated at the positions q(t+h) and
the velocities q̇(t +h/2):

q̈(t +h) =
F(t +h)

m
(1.26)

This acceleration is then used to correct the velocity for the remaining half step:

q̇(t +h) = q̇(t +h/2)+
1
2

hq̈(t +h) (1.27)

This is the correction step. If for a degree of freedom the velocity q̇ is imposed, the same
scheme can be applied by setting F(t +h) = 0 in the direction of the imposed velocity. Fig. 1-
15 provides a summary of the particle simulation flow implemented in the software Rockable
[182].

Particle shape is of primary important because it strongly influences stress transmission and
volume change behavior in granular media. Different strategies are possible for the simulation
of aspherical particles in DEM such as super-ellipsoids [78], clumps of glued spheres [82]
and polyhedra [82]. The code Rockable models the particles as sphero-polyhedra. A sphero-
polyhedron is a shape resulting from the sweeping of a sphere onto the surface of a polyhedron.
Mathematically, this particle shape is the Minkowski sum of a polyhedron and a sphere. In
sphero-polyhedron, vertices are formed of spheres, the cylinders form edges and the planar
polygons form faces. This model shape has several advantages including highly simplified
contact detection such as finding contact locations and associated local frames. Indeed, all
contact configurations between two sphero-polyhedrons can be reduced to a set of only four
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Fig. 1-15. Flow chart of the code Rockable utilized in this work.

types of elementary contact configurations: vertex-vertex, vertex-edge, vertex-face and edge-
edge. For example, a face-face intersection test is simply replaced by a set of edge-edge and
vertex-face tests [183].

Fig. 1-16. Modeling of complex block shapes by sphero-polyhedra: (a) actual shape introduced
in the code, (b) view of the 26 simple elements composing the shape [183].

A clear advantage of polyhedral shape is that arbitrary shapes can be represented as polyhe-
dral particles by simply meshing their surface by polygons. However, polyhedral particle shape
makes the computational cost increase significantly due to higher number of contacts which
have to be detected. Fig. 1-17 shows that more than 70% of the total simulation time is used for
contact detection. Together with neighbor search and contact update, contact-related computa-
tion takes more than 90% if the simulation time in DEM [184]. Fig. 1-17 suggests that the effort
for parallelizing polyhedral particle simulations should be focused on the contact detection part
to maximize the efficiency of the program.
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Fig. 1-17. Computational time for each function in DEM [184].

1.3.2 Contact detection strategy and time step

To reduce calculation time, it is necessary to have a suitable strategy of creating neighbor list
which avoids calculation of interaction forces of all possible pairs of particles, so that only
the interaction forces between two particles that are likely to come into contact need to be
computed. In a system of N particles, each involving M edges, the number of operations requires
to update the particle positions in each time step is of the order of O(NM) whereas the number
of calculations for contact detection is O(N2M2). Simulations therefore become very slow when
either the number of particles or vertices is large [185].

The first step to speed up simulations is to execute the force calculation only over neighbor
particles. With this aim, creating the neighbor list is necessary, which is the collection of pair
particles whose distance between them is less than 2δ (the distance between two particles is
defined as the minimum of all vertex-edge distances) where the parameter δ is equivalent to
the Verlet distance. The Link Cell algorithm is used to allow rapid calculation of this neighbor
list: Firstly, the space occupied by the particles is divided in cells, and then the Link Cell List
is defined as the list of particles hosted in each cell. Finally, the candidates of neighbor for
each particle are searched only in the cell occupied by this grain and its eight neighbor cells.
The neighbor list is calculated at the beginning of the simulation, and it is updated when the
maximal displacement and rotation of the particles after last neighbor list update are greater
than Verlet distance δ . The update condition is checked in each time step.

Increasing the value of δ makes updating of the list less frequent, but increases its size, and
hence the memory used in the simulation rises. Therefore, the parameter δ must be chosen by
making a compromise between the storage and the computation time. Neighbor list reduces
the amount of calculations to O(NM2). Therefore, the simulations are still very expensive
when particles consist of many vertices. Further reduction of the calculation number between
neighbor particles can be achieved by identifying which part of particle is neighbor to the other.
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This idea is implemented as follows. For each element of the neighbor list, we create a contact
list, which consists of those vertex-edge pairs whose distance between is below 2δ . In each
time step, only these vertex-edge pairs are involved in the contact force calculations. Overall,
neighborhood identification requires a neighbor list with all pairs of neighboring particles, and
one contact list for each pair of neighbors. These lists require little memory storage, and they
reduce the amount of calculations of contact forces to O(N), which is of the same order as in
simulations with spherical particles [185].

An explicit scheme is incremented in the code used in this thesis, so it is important to ensure
that the collision dynamics is accurately resolved, which requires a time step much smaller than
the typical time of collision [186]. This scheme is only conditionally stable, with the stability
determined by the size of time step δ t. A small time step can slow down the simulations
unnecessarily and thereby increases the computational cost whereas a large time step can lead
to numerical instability, as well as excessively large overlaps between particles. Although there
are different approaches to estimate the critical time step δ tc, the common approach is the
consideration of the critical time step as a function of mass and stiffness, in which δ tc is equal to
a half of natural frequency of the system δ tc = π

√
m/kn, where m is effective mass of colliding

particles, kn is normal stiffness of contact between particles [187].

Explicit integration method makes its parallelization more efficient by using OpenMP or
MPI. MPI (Message Passing Interface) is a common standard for parallel programming on
high performance distributed computing systems to take advantage of multi-core processors
in different systems. DEM parallelization by MPI adopts a domain decomposition method.
In this method, data is sent from one domain to neighboring domains and each core handles
their own domains to prevent any race condition. If the user can access a distributed memory
system with a large number of cores, domain decomposition may achieve good performance
[184]. Another standard for parallel programming on a shared memory multi-core system is
OpenMP (Open Multi-Processing). This approach significantly reduces communication costs.
However, the number of available processor cores in a shared memory system is smaller than
those in a distributed computing environment where MPI can be employed. Shared memory
implementation can be done without data transfer, and the effects of these additional tasks
related to domain decomposition can be far less pronounced when compared to a distributed
memory system.

The performance of OpenMP in our code is displayed in Fig. 1-18. In the first version (V0),
which was not fully optimized, the use of more than 5 threads did not increase the speed of
calculation. It even decreased efficiency. The simulations are, however, significantly sped up
by using OpenMP in the latest version (V2). Although the curve is close to the ideal line for
the number of threads below 50, increasing the number of threads does not much speed up the
simulations.
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Fig. 1-18. Speed-up in calculation time using OpenMP parallezation method with different
versions of the code Rockable. The dotted line represents theoretical (ideal) efficiency.

1.3.3 Periodic boundary conditions

In most reported simulations based on DEM both in 2D and 3D, the number of particles is
below 105, as a result of the restrictions imposed by available computation power and memory.
As a consequence, the numerical samples are not always statically representative of the bulk
behavior but are also influenced by spurious wall effects. The solid fraction is generally lower
in the vicinity of rigid walls and wall-induced ordering can deeply propagate into the bulk.
Such effects are real and arise also naturally in experiments on granular materials. However,
the number of particles in experiments is generally much higher and hence the wall effects are
more critical in numerical simulations [188].

The undesired effects of wall-like boundaries can be removed by means of periodic bound-
ary conditions. In this framework, the simulation domain becomes a unit cell containing the
particles with periodic copies paving the whole space. The particles located at the borders of
the simulation cell may then interact with the image particles in a neighboring cell. In this
way, the periodic boundary condition extend the system boundaries to the infinity so that the
simulation cell simply plays the role of a coordinate system to locate particle positions [189].

Let us consider, for example, a dense 3D sample of mono-sized polyhedral particles con-
fined in a cubic box, number of particles is varied from 83 to 223 (see Fig. 1-19). The solid
fraction of packing Φ = Vs/V , where Vs is total volume of particles and V is volume of cubic
box, is displayed in Fig. 1-20. We see that Φ in a packing using wall as boundary is generally
lower. This effect is due to the fact that the particle close to the wall can settle down in an order
that make more void between particles. In addition, the wall effect is dependent on proportion
of particle near to the wall, so that this influence is less critical when the number of particles
increases. For a packing using tri-periodicity, Φ is stable and reaches homogeneous behavior
of representative volume element (RVE) of the material. Such effects arise also in experimental
tests on granular materials, but the number of particle in experiments is generally much higher.

27



As a result, Φ in packings using wall boundaries increases gradually and reaches the value in
three-periodic packings.

With wall boundaries, the external stresses or displacement are applied on the simulation
box through wall degrees of freedom, which are alternatively kept free or frozen depending
on whether a stress of a displacement is monitored in a given space direction. With periodic
boundary conditions, this role is played by the collective degrees of freedom carried by the
coordinate system, whose basis vector becomes a dynamic variable, and their conjugate stresses
are expressed as a state function of the granular configuration. The simulation cell evolves with
the particles and change its shape and volume [190].

Fig. 1-19. A cubic sample of polyhedral particles using (a) wall as a simplified boundary
condition and (b) 3-periodic boundary conditions.
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Fig. 1-20. Evolution of solid fraction Φ with the number of particles in an isostatic packing of
polyhedral particles using wall boundaries and 3-periodic boundary conditions.

1.3.4 Bonded Cell Method

Particle breakage occurs in natural flows and industrial processes involving granular materials.
It can be undesirable or uncontrolled such as rock fracture, ballast degradation, and can also
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be a controlled process like grinding of mineral materials and milling of vegetable products.
The fragmentation process raises several industrial and scientific challenges that can be listed
as follows. First, the distributions of fragment shapes and sizes are difficult to control. We
do not know how energy supplied at the process scale is dissipated down to the particle scale.
Secondly, we can not mill the particles down to very fine particles (below micrometer). As
finer fragments are produced, surface forces (van der Waals, electrostatic, capillary) tend to
re-agglomerate the fragments. Hence, part of the power supplied is consumed to break the
agglomerates. Finally, we do not know how particle fragmentation depends on the mechanical
properties of the particles and their contacts, on the one hand, and on the process operational
factors, on the other hand.

Within the framework of DEM, we would like to be able to simulate a granular assembly
while allowing the particles to break into smaller particles with the following requirements:

• Cost-effective: we do not use methods such as finite elements that need a fine meshing of
the particles. In this method, each particle is discretized into a finite element mesh. The
potential fracture paths are represented by pre-inserted cohesive interface elements with
a progressive damage model [111], see Fig. 1-21.

Fig. 1-21. Fracture process of particles in crushing test using finite element method [111].

• Mass and volume conservation: the sum of all fragment volumes should be strictly con-
served during fragmentation. Particle fragmentation has been modeled using the Bonded
Particle Method (BPM), in which the particles are modeled as agglomerates of glued
disks [122] or spheres [114, 131, 191–193]. An issue with this method is that the total
volume of the material is not conserved during the fragmentation process, see Fig. 1-22.

• Allowing for arbitrary fragment shapes: the simulation should be able to handle polyhe-
dral particle shapes. Moreover, the generated fragments should be fully random in both
size and shape [120, 121], see Fig. 1-23.

• Compatible with fracture mechanics and thermodynamics: Nearly all simulations re-
ported in the literature are based on stress thresholds that leads to brittle behavior. In
Orozco’s work [7], the fracture involving both a strength and a fracture energy was im-
plemented in the framework of the Contact Dynamics method, which does not account
for elastic deflections at the contact points. It can not be implemented in smooth DEM
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Fig. 1-22. Final states of impact at low impact velocities in the experiment (a) and in the
simulation (b). The particle is a cluster of cohesive spheres, up to 40% of volume is lost upon
fragmentation [114].

Fig. 1-23. Particles generated with different numbers of polyhedral cells which are represented
by different colors [121].

with visco-elastic contacts where energy is stored in elastic deflections. Moreover, it is
well known that the fracture mechanics is fully based on energy, so the rupture criterion
should involve an energy criterion.

In the Bonded Cell Method (BCM), the particles are modeled as aggregates of potential
fragments (cells), whose shapes are polygonal in 2D and polyhedral in 3D [112, 118, 119, 121,
194, 195]. The cells are generated by Voronoi tessellation, and they pave the whole volume
of each particle so that the volume is conserved during fragmentation process. They should
be generated randomly in their shape and size since the particle strength is influenced by the
ordering of the cellular structure of particles [112, 120]. The cells interact through an interface
area that needs at least three geometric constraints and a cell-cell contact breaks according to a
rupture criterion, which can be reversible or irreversible. When a particle breaks, the fragments
generated are smaller particles, each composed of cells, and the smallest fragment is a single
cell. The cells are assumed to behave as independent rigid particles, so that their dynamic
behavior can be simulated by DEM. A key issue of using DEM with crushable particles is
the statistical representation of the particles and their fragments during crushing. In fact, the
sizes of the initial particles and cells are, respectively, the upper and lower bounds on the size
distribution of fragments in the debris. The statistical representation of particle size distribution
in the process of fragmentation is therefore determined by their ratio.
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The interface behavior is characterized by a relationship between the normal and tangential
components of the cell-cell stress, on the one hand, and the relative cell displacement or velocity,
on the other hand. Moreover, a criterion for debonding is required, i.e. the loss of internal
cohesion and thus creation of a cohesionless frictional interface between two cells. In our
model, the criterion for debonding is governed by an energy propagation condition, in which
the propagation of a crack requires that an amount of work per unit area equal to or larger than
the fracture energy G f is supplied; see below.

1.3.5 Voronoi tessellation

From mathematical point of views, given two sets A and B and a distance metric d(a,b) defined
for a ∈ A and b ∈ B, a Voronoi tessellation or diagram is a subdivision of A into subsets, each of
which contains the objects in A that are closer, with respect to the distance metric, to one object
in B than to any other object in B. Now we are given an open bounded domain Ω ∈Rd and a set
of distinct points {xxxi}n

i=1 ⊂ Ω. For each point xxxi, i = 1, ...,n, the corresponding Voronoi region
Vi, i = 1, ...,n is defined by

Vi = {xxx ∈ Ω | ∥ xxx− xxxi ∥<∥ xxx− xxx j ∥ for j = 1, ...,n and j ̸= i}, (1.28)

where Vi∩Vj = /0 for j ̸= i, and ∪n
i=1⟨Vi⟩= ⟨Ω⟩, so that {Vi}n

i=1 as the Voronoi tessellation of Ω

associated with the point set {xxxi}n
i=1 [196]. A point xxxi is called a generator, a subdomain Vi ∩Ω

is referred to as the Voronoi cell corresponding to the generator xxxi. Voronoi cells {Vi}n
i=1 are

polygons in two dimensions and polyhedra in three dimensions, see Fig. 1-24.

(a) (b)

Fig. 1-24. The Voronoi tessellation in 2D of the square (a), and in 3D of the cubic (b) corre-
sponding to 8 randomly selected generators [197].

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations having the prop-
erty that the generators of the Voronoi tessellation are also the center of mass, with respect to
a given density function, of the corresponding Voronoi regions. CVT methodologies produce
high quality point distributions in regions and surfaces in Rd or within sets of discrete data.
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Given a density function ρ(xxx)≥ 0 defined on Ω, for any region V ∩Ω, the standard mass center
xxx∗ of V is given by

xxx∗ =
∫

V xxxρ(xxx)dxxx∫
V ρ(xxx)dxxx

. (1.29)

A generic Voronoi tessellation does not in general satisfy the CVT property, see Fig. 1-25 for an
illustration as well as for an illustration of CVT. On the other hand, given a density function and
the number of generators, the CVT of a domain always exits, although it may not be unique.

(a) (b)

Fig. 1-25. A Voronoi tessellation of the unit square, the open circles denote the centroids of the
Voronoi polygons with respect to a uniform density. (a) The centroids do not coincide with the
generators. (b) Voronoi tessellation with the generators and centroids coincide [198].

One of the algorithm for constructing CVT is Lloyd’s method which simply alternates be-
tween constructing Voronoi tessellations and mass centroids [199]. This method may be de-
scribe as follows:

1. Select an initial set of n points {xxxi}n
i=1 on Ω.

2. Construct the Voronoi regions {Vi}n
i=1 of Ω associates with {xxxi}n

i=1.

3. Determine the centroids, with respect to the given density function, of the Voronoi region.
These centroids form the new set of points {xxxi}n

i=1.

4. If the new points meet some convergence criterion, return {(xxxi,Vi)}n
i=1 and terminate,

otherwise go to step 2.

The convergence criterion that can be used is given by

∑
n
i=1 ∥ xxx− xxx∗ ∥

∑
n
i=1 ri

≤ λ , (1.30)

where ri is the average radius of cell i, and λ is the tolerance. The quantity λ may be interpreted
as a measure of disorder of the cell shapes and their distributions.
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(a) (b)

Fig. 1-26. Examples of icosahedral particles composed of 250 Voronoi cells and disorder pa-
rameter λ = 0.005 (a) and λ = 0.5 (b) [120].

1.3.6 Fracture modes and stress intensity factors

A crack is defined as a surface in 3D or a line in 2D of discontinuity. At the tip, the displacement
jump, which is the difference between the displacement of the upper an lower surfaces of the
crack, can be decomposed in three directions including normal, in-plane tangential, and out-
of-plane tangential displacement discontinuity. This decomposition allows the definition of the
three modes of fracture. A crack is said to be loaded in Mode I, if the displacement jump reduces
to a normal displacement discontinuity. This mode is often referred to as the opening mode;
see Fig. 1-27(a). Mode II refers to a loading that leads to an in-plane tangential displacement
discontinuity. This mode is referred to as the sliding mode; see Fig. 1-27(b). Mode III refers
to a loading that leads to an out-of-plane tangential displacement discontinuity. This mode is
the tearing mode; see Fig. 1-27(c) [200, 201]. Mode I is the most common failure type. For
example, fracture in Mode I can take place when a crack is sheared with a kink angle between
the initial crack direction and the direction followed under shearing.

Fig. 1-27. Fracture modes in 3D: (a) Mode I: opening, (b) Mode II: sliding, (c) Mode III:
tearing.

Due to the displacement discontinuity that defines a crack, stresses become singular at the
crack tip, with a value of the order of σ ∝ r−1/2, where r is the distance to the tip. The stress
intensity factors KI and KII of the Mode I and Mode II quantify the degree of singularity of the
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normal and in-plane shear stresses, respectively. If we consider the case of a crack belonging to
the z-plane, the stress intensity factors can be defined asymptotically from the stresses: KI = lim

r→0

√
2πrσzz(r,θ = 0),

KII = lim
r→0

√
2πrσxz(r,θ = 0),

(1.31)

where (r,θ) a polar coordinate system with origin at the crack tip.

1.3.7 Crack propagation criteria in solid mechanics

There are two approaches to crack propagation in solids. The first one is said to be local
in the sense that it focuses on what happens at the crack tip. The relevant quantities are the
stress intensity factors. The other one is based on the energy dissipation during the process and
therefore is known as the global approach.

Irwin’s criterion or the local approach
Irwin’s criterion applies to cracks in linear elastic brittle solids subjected to purely Mode I
loading. A critical stress intensity threshold, named fracture toughness KIc has to be reached in
order to allow the crack to propagate [202]. It is commonly considered as a material property,
independent of the problem considered. This approach also establishes that the crack opening is
irreversible. The drawback of Irwin’s criterion is that it accounts only for pure Mode I loading.
According to this criterion, an existing crack subjected to a pure Mode II loading would never
propagate since 0 = KI < KIc.

Griffith’s criterion or the global approach
While Irwin’s criterion uses the notation of fracture toughness KIc, Griffith’s criterion makes use
of the fracture energy G f which is a material property characterizing a brittle material. When
a crack propagates, surfaces are created and energy is dissipated. This energy is proportional
to the area of the surfaces created, the proportionality factor being the fracture energy G f . If
any other dissipative phenomenon (such as plasticity) is ignored, this energy should be equal
to 2γs, where γs is the surface energy and the factor two accounts for upper and lower surfaces
associated with surface created during propagation. A crack propagates if the rate of energy
release (reduction of elastic energy) by surface created s is above the fracture energy, which is
second law of thermodynamics.

G(s) =−
∂Epot

∂ s
, (1.32)

where Epot is the potential elastic energy stored in the whole volume of the material due to
external loading.

When Irwin’s and Griffith’s criteria are put together in the case of a crack opening under
pure Mode I, the fracture energy G f can be related to the fracture toughness KIc as follows:

G f =
K2

Ic
E ′ , (1.33)
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where E
′

is the reduced Young’s modulus (E
′
= E/(1− ν2) in 3D and 2D plane-strain and

E
′
= E in 2D plane-stress). This relation can be extended to the case where mixed loading

modes takes place using the generalized toughness Kc:

Kc =
√

E ′G f . (1.34)

Note that since G f is mode angle independent (the mode angle Θ is defined as tanΘ = KII/KI),
the fracture toughness should also be mode angle independent.

1.4 Conclusion

In this brief review, we presented a general description of the scientific context regarding particle
dynamics simulations based on the Discrete Element Method (DEM), the granular flow for both
quasi-static state in representative volume element and liquid-like state in rotating drums, and
the particle fragmentation process. In this thesis, before carrying out the research in terms of
rotating drum, we would like to understand the influences of particle shape on both elastic and
plastic behavior of granular materials. For that, we need to prepare polyhedral particle packings
with 3-periodic boundary conditions, so that either pressure or displacement on the boundaries
can be fully controlled. Our literature review reveals that there are multiple studies of spherical
particle packings, but realistic particle shapes have been seldom used. Obviously, particle shape
plays a vital role for the flow and breakage of particles in various industrial applications. We
will therefore consider flow behavior and comminution with polyhedral particle shapes in both
representative volume element (RVE) and rotating drums.

In this review we also highlighted the fact that most numerical simulations of the fragmen-
tation process in RVE and ball mills has been studied in 2D. Hence, there is significant room
for extending simulations to 3D in order to fill the gaps in our understanding of the complex
phenomena related to the flow of breakable particles. This can be achieved only by means of
an appropriate optimization of numerical codes. Furthermore, the rupture criteria for particle
breakage in most previous researches should be adapted to conform to fracture mechanics and
thermodynamics.
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Macro-elasticity of granular materials
composed of polyhedral particles
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Particle shape variability is a key to understanding the rich behavior of granular materials.
Polyhedra are among the most common particle shapes due to their ubiquitous origins in nature
such as rock fragmentation and mineral crystallisation. Because of their faceted shape, polyhe-
dral particles tend to assemble in jammed structures in which face-face and face-edge contacts
between particles control the packing-level properties. In this chapter, we use tri-periodic parti-
cle dynamics simulations to derive for the first time a generic analytical expression of the elastic
moduli of polyhedral and spherical particle packings subjected to triaxial compression as a func-
tion of two contact network variables: 1) a “constraint number” that accounts for the face-face
and edge-face contacts between polyhedra and is reduced to the coordination number in the case
of spherical particles, and 2) the contact orientation anisotropy induced by compression. This
expression accurately predicts the simulated evolution of elastic moduli during compression,
revealing thereby the origins of the higher elastic moduli of polyhedral particle packings. We
show that particle shape affects the elastic moduli through its impact on the contact network
and the level of nonaffine particle displacements is the same for the simulated shapes. Its nearly
constant value during compression underlies the constant values of our model parameters. By
connecting the elastic moduli to the contact network through parameters that depend on particle
shape, our model makes it possible to extract both the connectivity and anisotropy of granular
materials from the knowledge of particle shape and measurements of elastic moduli.

2.1 Introduction

Granular materials have been at the focus of extensive research for their rich and complex prop-
erties rooted in dissipative particle interactions, disordered microstructure, and particle charac-
teristics such as shape and size distribution [29, 203, 204]. Although hard-sphere packing has
often been used as a model of granular materials, aspherical particle shape is omnipresent in
nature and industry. The crucial role of realistic particle shape for quantitative prediction of
the strength and space-filling properties of granular materials has been clearly evidenced by
recent simulations and experiments [21–23,205–216]. For example, packings composed of par-
ticles slightly deviating from spherical shape are more compact than sphere packings whereas
larger deviations towards more elongated or platy shapes lead to significantly lower packing
fraction [23, 205, 208].

Among diverse particle shapes, regular and irregular polyhedral particles are quite common
due to their ubiquitous origins such as rock fragmentation and mineral crystallisation. Their
specific feature is to assemble in structures involving face-face and edge-face contacts which,
in contrast to simple contact points between spheres, provide a finite support for the contact
force. Particle dynamics simulations have shown that such contacts in packings of polyhedral
particles are less in number but they capture strong force chains and carry thereby a much
higher average force than simple contacts [21, 22]. The microstructure has also been analyzed
as a function of the number of facets in relation to shear strength [22, 209, 213]. However, we
are aware of no published work on the elastic properties of polyhedral particle packings.
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Past work on granular elasticity has essentially focussed on isotropic sphere packings [31,
32,217,218]. The bulk and shear moduli are proportional to kn/d, where kn is the normal contact
stiffness and d is mean particle diameter. The moduli depend also on the number of contacts per
unit volume, and stiffness ratio kt/kn, where kt is the tangential contact stiffness [35, 44, 217–
219]. It is well known that, because of its failure to account for the nonaffine nature of particle
displacements in granular media, the effective medium theory (EMT) over-estimates the elastic
moduli [36, 42]. The origins of elastic moduli in the general case of anisotropic sheared media
and the effects of particle shape mediated by microstructure and nonaffine displacements are
therefore widely open issues.

We report in this chapter on a detailed investigation of the elastic moduli of dodecahedral
(12 faces), icosahedral (20 faces), and spherical particle packings by means of extensive particle
dynamics simulations based on the discrete element method (DEM) with a proper treatment of
the contact interactions between polyhedral particles. In particular, each face-face interaction is
reduced to a set of elastic/frictional contacts between the edges composing the two faces. This
allows the geometrical constraints associated with rigid faces to be imposed and the overlaps
between the edges are used to compute point forces according to a linear dashpot-spring force
law.

Initially isotropic random close packings were prepared by isotropic compaction at zero
friction, representing the unique reproducible densest state of each shape. Subjecting then each
packing to quasi-static triaxial compression with tri-periodic boundary conditions and a non-
zero friction coefficient between particles, we calculated their five orthotropic elastic moduli at
regular strain intervals together with contact network variables such as connectivity and contact
anisotropy. A key finding is that the elastic moduli can be fully expressed as a function of
connectivity and anisotropy with a functional form that does not depend on particle shape, but
involve coefficients that depend on particle shape. Accurate determination of these coefficients
makes it therefore possible to nicely predict the evolution of elastic moduli with strain. These
expressions also reveal how the face-face and face-edge contacts enhance the elastic moduli
compared to sphere packings.

In the following, we first introduce numerical procedures. Then, we discuss in Section
2.3 the evolution of sample-level variables during triaxial compression. The evolution of elastic
moduli will be presented in Section 2.4. In Section 2.5, we consider the evolution of microstruc-
tural variables. In Section 2.6, we introduce our expression of elastic moduli as a function of
microstructural variables by a detailed comparison between the predictions of EMT and our
numerical data. Finally, we discuss the most salient results of this chapter.

2.2 Numerical procedures

The simulations were carried out by means of an in-house code based on DEM [182, 220,
221]. The interactions between polyhedral particles need a model for face-face and face-edge
contacts. The vertex-face and edge-edge interactions involve a single contact point, which can
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be treated in the same way as the contacts between spherical or smooth convex particles. Such
simple contacts represent a single unilateral constraint, which is treated either by a penalty
approach, i.e. introducing a repulsive force depending on the overlap, or by means of Lagrange
multipliers as in the Contact Dynamics method [179, 222, 223]. In contrast, in the case of a
face-face interaction, there are three steric constraints that must be correctly treated to avoid
interpenetration between the two particles as a result of their relative normal displacement or
rotations around the two other axes.

For rigid polyhedral particles with their finite faces defined by their contours composed of
several edges, a face-face interaction can be reduced to interactions between edges composing
the two faces or between a vertex and one of the faces [182]. This means that a face-face
interaction is reduced to a set of contact points, as shown in Fig. 2-1(a). If a penalty approach
is applied to all contact points, the three constraints will be fully satisfied. It is noteworthy that,
the number of contact points can be large depending on the number of edges, but the number of
independent constraints is always 3 due to the rigidity of the particles. Similar considerations
apply as well to edge-face interactions, which involve two independent steric constraints; see
Fig. 2-1(b). We may thus refer to the face-face and face-edge interactions as triple and double
contacts, respectively.

Fig. 2-1. Different types of contacts between two polyhedra: (a) face to face, (b) face to edge,
(c) vertex to face.

The contact points between polyhedral particles are detected by considering separately the
sub-elements (vertices, edges and faces). At each contact point, either a linear or a nonlinear
force law is implemented. As for Hertz contacts, the nonlinear interactions arise from the
curvature of the surface at the contact points (e.g. between two edges modeled as cylinders).
However, in this paper we are interested in the effects of particle shape and contact network
anisotropy, and therefore we used linear contact laws to reduce computational cost. The normal
force law is defined as follows [179, 204, 224, 225]:

fn =

0, f̃n ≤ 0,

f̃n, f̃n > 0,
(2.1)

where f̃n =−knδn − γδ̇n, kn is normal stiffness, δn is overlap (with sign convention that δn < 0
when two particle overlap), δ̇n is the relative normal velocity, and γ is the viscous damping
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coefficient. The tangential force is governed by the Coulomb friction law given by

ft =−min{ktδt , µs fn}sgn(δ̇t), (2.2)

where kt is tangential stiffness, δt is cumulative tangential displacement, δ̇t is relative tangential
velocity, and µs is the interparticle friction coefficient.

2.3 Triaxial compression

We prepared three samples composed of monodisperse particles of dodecahedral, icosahedral,
and spherical shapes enclosed in a 3-periodic cubic cell [45, 188, 226]. They had exactly the
same number of particles (8000), values of parameters, and boundary conditions. We first ap-
plied an isotropic compression with zero friction between particles, leading to dense isotropic
states corresponding to a random closed packing (RCP) of solid fraction Φ ≃ 0.648 for dodec-
ahedral particles, Φ ≃ 0.632 for icosahedral particles, and Φ ≃ 0.637 for spherical particles.

1

(a) (b)

1
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z
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ε̇z

p

p

Fig. 2-2. A snapshot of the sample of dodecahedral particles in the isotropic state.

The isotropic samples were sheared by triaxial compression for four values of friction co-
efficient µs = 0.1, 0.2, 0.3, and 0.4 between particles. The compression was applied along
the z axis by imposing a constant strain rate ε̇z while keeping the same stress p in lateral di-
rections x and y. The simulation box can expand along these directions to accommodate the
applied compression. Since the material is in an initially dense state, the packing dilates and
the packing fraction declines towards a stead-state value in all simulations. The inertial number
I = ε̇zd(ρ/p)1/2, where ρ is the particle density and d is the mean particle diameter, is low
enough (< 10−3) to qualify the compression as quasi-static [10, 11, 179]. By symmetry, the
principal stresses and strain rates coincide with the three space directions with σ1 and ε1 along
the z direction, σ2 = σ3 = p, and ε2 ≃ ε3.

Figure 2-3 shows the evolution of stress ratio q/p, where q = (σ1 −σ2)/3 is stress deviator
and p = (σ1+σ2+σ3)/3 is mean stress, as well as the packing fraction Φ as a function of shear
strain εq = εz−εx for dodecahedral and spherical particle packings (the trends being similar for
icosahedral particles). Due to the initially high value of packing fraction, the samples yield
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only when q/p reaches a threshold where plastic deformation can begin as a result of particle
rearrangements and dilation. Beyond this point, q/p continues to increase to a peak value before
slowly decreasing towards a residual plateau at ∼ 60% of shear strain. The peak value reflects
therefore the initially high packing fraction although no shear bands develop in our system
due to three-periodic boundary conditions. The peak value increases with µs. In polyhedra
packings the peak stress ratio is higher and the effect of friction coefficient is more pronounced
as compared to sphere packings. Since the initial packing fraction is high, Φ decreases gradually
before reaching a nearly constant value. The reduction of Φ increases when µs is larger. This
effect is more pronounced in the case of polyhedral particle packing.
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Fig. 2-3. Stress ratio q/p (a), and packing fraction Φ (b) versus shear strain εq for packings of
spherical and dodecahedral particles with four values of friction coefficient µs. The dashed and
solid lines join data points for spheres and dodecahedra, respectively. The symbols represent
instances where strain probes are applied.
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2.4 Evolution of elastic moduli

Due to axial symmetry, there are 5 independent moduli Ci j, defined as follows, based on the
Voigt notation [227, 228]:

δσ11

δσ22

δσ33

δσ23

δσ31

δσ12


=



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C55 0
0 0 0 0 0 2C55





δε11

δε22

δε33

δε23

δε31

δε12


(2.3)

The elements C11 and C22 are the longitudinal moduli, C44 and C55 are the shear moduli, and
C12 and C23 are the off-diagonal moduli. The bulk modulus K is given by:

K = (C11 +4C12 +2C22 +2C23)/9. (2.4)

To determine the moduli, we applied two distinct strain probes in two different directions.
To compute the elastic moduli, we used the sheared samples at 16 instances of their evolu-

tion and applied a small strain increment δεi j to obtain the corresponding stress response δσi j,
from which the elastic moduli were extracted. The sample was allowed to relax to a fully static
state before the application of the strain probe. The response is elastic if there are no particle
rearrangements, and, as we shall see below, this is the case when δεi j < 10−5.

To determine all elastic moduli, two distinct strain probes in two different directions were
applied at a given stage of evolution of the system. For the first probe, a small strain rate ε̇ was
imposed along the z direction while a constant pressure was applied along the directions x and
y. Due to axial symmetry, we have ε22 ≃ ε33 and δσ22 = δσ33 = 0. Hence, from the general
stress-strain relation, we have

C11ε11 +2C12ε22 = δσ11,

2C55ε12 = δσ12,

C12ε11 +(C22 +C23)ε22 = 0.

(2.5)

For the second probe, ε̇ was imposed along the y direction while keeping a constant pressure
along z and x directions. Therefore, we have δσ ′

11 = δσ ′
33 = 0 and the stress-strain relations are

C12ε
′
11 +C22ε

′
22 +C23ε

′
33 = δσ

′
22,

2C44ε
′
23 = δσ

′
23,

C11ε
′
11 +C12ε

′
22 +C12ε

′
33 = 0,

C12ε
′
11 +C23ε

′
22 +C22ε

′
33 = 0.

(2.6)

From the applied stress and strain increments, we use Eqs. (2.5) and (2.6) to calculate all
elastic moduli. Note that there are only 5 independent moduli while we have 7 equations. The
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consistency of the values obtained in this way for the six moduli was verified by checking the
following relation imposed by axial symmetry:

C22 −C23 = 2C44. (2.7)

In all cases, we find that this relation holds within an error of 1% in the initially fully elastic
regime and up to 10% around the stress peak, where the response to the applied strain probe
may involve a plastic component due to softening and unstable particle rearrangements.

It is noteworthy that, since the simulations are based on linear contact laws with constant
stiffness parameters kn and kt , our packings have an inherent stress scale E∗ = kn/d with which
all moduli are expected to scale. In the rigid-particle limit, the condition p/E∗ ≪ 1 should be
satisfied. In our simulations, we have p/E∗ ≃ 4.10−6. The normalized elastic moduli depend
also on the stiffness ratio αt = kt/kn [31,41,217]. In this work, we set αt = 0.8 in all simulations.

Figures 2-4, 2-5, and 2-6 display the evolution of the longitudinal moduli C11 and C22,
off-diagonal moduli C12 and C23, the shear moduli C44 and C55, and the bulk modulus K for
packings of spherical and dodecahedral particles together with theoretical predictions that will
be discussed in Section 2.6. The moduli of the polyhedral particle packings at each instance of
shear are generally above those of spherical particle packings. They are constant and indepen-
dent of µs at very small shear strains (< 10−5), but they change significantly at larger strains
when slip events at persistent contacts increase in number and intensity; see Fig. 2-7.
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Fig. 2-4. Normalized longitudinal elastic moduli (a) C11/E∗ and (b) C22/E∗, as a function of
shear strain εq for packings of spherical and dodecahedral particles with different values of
friction coefficient µs. The dashed and solid lines are theoretical predictions (Eq. (2.30)) for
packings of spheres and dodecahedra, respectively.
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Fig. 2-5. Normalized elastic moduli: off-diagonal moduli, (a) and (b), and shear moduli, (c) and
(d), as a function of shear strain εq for packings of spherical and dodecahedral particles with
different values of friction coefficient µs. The lines are predictions by our proposed expression
(2.30).

The behavior beyond this elastic limit is rather complex. All moduli first decline to values
all the more small that the friction coefficient is large. Then, they increase again or continue to
decrease slightly depending on particle shape and µs, followed by a slight increase or decrease
for εq > 0.1. Note that the ratio C11/C22 increases to values as large as 4 before decreasing
to ∼ 2, a value previously reported for dense granular materials with low coordination number
[35, 229].

2.5 Evolution of microstructure

The evolution of elastic moduli reflects that of the granular microstructure encoded in the force-
bearing contact network. The lowest-order descriptors of granular microstructure are the coor-
dination number Z and contact orientation anisotropy ac [24, 230]. The latter can be obtained
from the fabric tensor defined as

Fi j = ⟨nin j⟩, (2.8)

where n⃗ is the unit contact normal. By definition, we have tr(FFF) = 1, and the largest eigenvalue
F1 occurs along the compression axis. The two other eigenvalues are F2 = F3 = (1−F1)/2. We
define the contact anisotropy as [22, 231, 232]

ac = 5(F1 −F2)/2. (2.9)

The fabric tensor can be evaluated from the probability distribution P(⃗n) of the unit contact
normal n⃗. In 3D, the contact normal n⃗ is parametrized by two angles θ ∈ [0;π] and φ ∈ [0;2π].
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Fig. 2-6. Normalized bulk modulus as a function of shear strain εq for packings of spherical and
dodecahedral particles with different values of friction coefficient µs. The lines are predictions
by our proposed expression (2.30).

The probability density function P(Ω) of contact normals provides a detailed statistical infor-
mation about the fabric, where Ω = (θ ,φ) is the solid angle, with dΩ = sinθdθdφ . The fabric
tensor can then be expressed as [22, 230, 233, 234]:

Fi j =
∫

Ω

nin jP(Ω)dΩ =
1

Nc
∑
c∈V

nc
i nc

j, (2.10)

where i and j design the components in a reference frame, and Nc is the total number of contacts
in the control volume V . Under axi-symmetric conditions, the probability density function is
independent of the azimuth angle φ . So, within a second-order harmonic approximation, we
have

P(Ω) =
1

4π

[
1+ac(3cos2

θ −1)
]
. (2.11)

From Eqs. (2.10) and (2.11), and given the unit contact normal n⃗=(cosθ ,sinθ cosφ ,sinθ sinφ),
the eigenvalues of the fabric tensor are given by

F1 =
∫

Ω

n2
1P(Ω)dΩ =

5+4ac

15
, (2.12a)

F2 = F3 =
∫

Ω

n2
2P(Ω)dΩ =

5−2ac

15
. (2.12b)

While the definitions of Z and ac are straightforward in the case of spherical particles, we
need to consider the contact types for polyhedral particles, as discussed in Section 2.2. We
generalize the coordination number by attributing different weights to different contact types.
In particular, we define here a constraint number Zc by weighing each contact type by the
number of constraints it represents:

Zc = 2(Ns +2Nd +3Nt)/Np, (2.13)

where Ns, Nd , and Nt are the numbers of simple, double, and triple contacts, respectively, and Np

is the total number of particles. The constraint number is reduced to the coordination number
in the case of spherical particles.
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A packing of frictionless particles is isostatic so that the number of degrees of freedom per
particle must be equal to the number of constraints per particle Zc/2. The number of degrees
of freedom is 3 per particle in the case of frictionless spheres (the rotations being ineffective),
whereas polyhedra have 6 degrees of freedom per particle both with and without friction. Hence,
the constraint number for packings of spheres and polyhedra is 6 and 12, respectively. We find
Zc ≃ 6.03 for spheres and Zc ≃ 12.05 for polyhedra at the end of isotropic compaction, both
remarkably close to the expected values. The small difference is due to the finite stiffness and
overlaps between particles. This suggests that Zc is the relevant connectivity parameter for
polyhedral particle packings, in contrast to Z which has a lower value (≃ 8) in the isostatic
state. The same remarks apply to the definition of fabric tensor for polyhedra by considering
that face-face contacts are equivalent to 3 contact points and edge-face contacts to 2 contact
points.

Figure 2-7 displays the evolution of Zc and ac during compression. Consistently with the
elastic moduli, at small shear strains (< 10−5), both Zc and ac ≃ 0 (initially isotropic state) are
constant and independent of µs due to the stability of the contact network. With the onset of
particle rearrangements, Zc decreases and tends to a constant value whereas ac initially increases
as a result of the loss of contacts perpendicular to the compression axis [18, 21]. The fabric
anisotropy is larger in packings of polyhedral particles compared to spheres, and its peak value
increases with µs.

The microstructure evolves also in terms of the distribution of different types of contacts.
Fig. 2-8 displays a snapshot of force chains in the isotropic (initial) state and near the stress peak
with different colors for different contact types. The proportions Nt/Nc of face-face contacts
declines from 0.14 in the isotropic state to 0.1 in the peak state although we distinctly observe
columnar force chains of face-face contacts along the compression axis in the peak state. In a
similar vein, the proportion Nd/Nc of edge-face contacts declines during compression. Hence,
the larger proportion of single contacts near the stress peak is the necessary condition for the
stability of columnar force chains [232].

2.6 Relation between elastic moduli and microstructure

The central issue that we address here is whether the values of elastic moduli shown in Figs.
2-4, 2-5, and 2-6 can be univocally expressed in terms of Zc and ac. The connection between
elasticity and granular microstructure has been previously investigated in the case of isotropic
packings of spherical particles and compared with the predictions of EMT [31, 35, 36, 41]. We
first derive analytical expressions of elastic moduli in the EMT framework for anisotropic me-
dia with orthotropic symmetry. Then, we compare our simulation data with its predictions to
propose a general expression which correctly predicts the evolution of elastic moduli all along
triaxial compression from the isostatic state up to the stress peak state.
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Fig. 2-7. Constraint number Zc (a) and fabric anisotropy ac (b) as a function of shear strain εq

for packings of spherical and dodecahedral particles and different values of friction coefficient
µs. The dashed and solid lines are for packings of spheres and dodecahedra, respectively. The
symbols represent instances where strain probes were applied.

2.6.1 Elastic moduli from EMT

The medium is assumed to behave as a continuum with particle centers moving according to
the applied strain field (affine assumption). Hence, in response to an incremental strain δεi j, the
normal and tangential displacements at each contact are simply given by

δn = δεi jnin j, (2.14)

δt = δεi jnit j, (2.15)

where t⃗ represents a tangential unit vector. The contact forces can therefore be obtained from
these displacements and the force laws (2.1) and (2.2).

Let (n⃗′, t⃗ ′, s⃗′) be a local frame associated with the branch vector ℓ⃗ = ℓn⃗′ joining the centers
of two touching particles. In spherical coordinates, we have

n⃗′ =(cosθ ,sinθ cosφ ,sinθ sinφ),

t⃗ ′ =(−sinθ ,cosθ cosφ ,cosθ sinφ),

s⃗′ =(0,−sinφ ,cosφ),

(2.16)

where φ is the azimuth and θ is the latitude.
By affine assumption, the variation of ℓ is given by

δ ℓ⃗= ℓεεε n⃗′. (2.17)

47



(a) (b)

Fig. 2-8. Snapshot of the normal force network of a dodecahedral particle packing at isotropic
state (a), and near stress peak (b) with friction coefficient µs = 0.1. Line thickness is propor-
tional to normal force. Single contacts are in white, double contacts in blue, and triple contacts
in brown. The compression axis is along the vertical direction. At isotropic state, the fractions
of single, double and triple contacts are 0.5, 0.36, and 0.14, respectively. At stress peak state,
they are 0.59, 0.31, and 0.1, respectively.

This variation leads to relative displacements δn, δt , and δs at any contact point between the
two particles with its associated frame (⃗n,⃗ t, s⃗), n⃗ being normal unit vector to the contact plane.
For spherical particles, this frame exactly coincides with the frame associated with the branch
vector. Due to disorder, this property holds also on average in the case of two convex particles.
Indeed, we checked that in our samples, we have n⃗ · n⃗′ ≃ 1. For this reason, we can use the
contact frame together with the branch vector length to approximate the relative displacements
at contact points: 

δn = ℓεεε n⃗ · n⃗,
δt = ℓεεε n⃗ ·⃗ t,
δs = ℓεεε n⃗ · s⃗.

(2.18)

From the contact displacements, we write down the elastic energy per unit volume ∆We as
a function of the strain tensor εεε . Let kn and kt be the normal stiffness and tangential stiffness,
respectively, and nc = Nc/V the contact number density in a volume V containing Nc contacts.
Then, we have

∆We =
nckn

2
⟨δ 2

n ⟩+
nckt

2
⟨δ 2

t ⟩+
nckt

2
⟨δ 2

s ⟩

=
nc

2
⟨ℓ2⟩[kn⟨(εεε n⃗ · n⃗)2⟩+ kt⟨(εεε n⃗ ·⃗ t)2⟩+ kt⟨(εεε n⃗ · s⃗)2⟩],

(2.19)

where it has been assumed that the branch vector length ℓ and contact orientation n⃗ are not
correlated. Indeed, we checked that in our samples, we have ⟨ℓcos2 θ⟩ ≃ ⟨ℓ⟩⟨cos2 θ⟩.
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In the frame of the principal axes of the strain tensor εεε , we have
εεε n⃗ · n⃗ =ε11 cos2

θ + ε22 sin2
θ cos2

φ + ε33 sin2
θ sin2

φ ,

εεε n⃗ ·⃗ t =1
2

sin2θ(−ε11 + ε22 cos2
φ + ε33 sin2

φ),

εεε n⃗ · s⃗ =1
2

sinθ sin2φ(ε33 − ε22).

(2.20)

The average values ⟨(εεε n⃗ · n⃗)2⟩, ⟨(εεε n⃗ · t⃗)2⟩, and ⟨(εεε n⃗ · s⃗)2⟩ are evaluated by integrating their
expressions from Eq. (2.20) over the angles θ and φ by using the probability distribution
function P(θ ,φ) given by Eq. (2.11). Once inserted in Eq. (2.19), an expression of the total
elastic energy ∆We is obtained as a function of nc, fabric anisotropy ac, contact parameters, and
strain tensor coefficients.

By definition, the elastic moduli Ci j are the second derivatives of this energy function with
respect to εi j: 

C11 =
∂ 2∆We

∂ε2
11

= nc⟨ℓ2⟩kn

(
3+2αt

15
+

24+4αt

105
ac

)
,

C22 =
∂ 2∆We

∂ε2
22

= nc⟨ℓ2⟩kn

(
3+2αt

15
− 12+2αt

105
ac

)
,

C12 =
∂ 2∆We

∂ε11∂ε22
= nc⟨ℓ2⟩kn (1−αt)

(
1

15
+

2
105

ac

)
,

C23 =
∂ 2∆We

∂ε22∂ε33
= nc⟨ℓ2⟩kn (1−αt)

(
1

15
− 4

105
ac

)
,

(2.21)

where αt = kt/kn is the stiffness ratio.

The shear moduli C55 and C44 are given by the second derivatives of the energy function
with respect to the variables εq = ε11 − ε22 and εq′ = ε22 − ε33:


C55 =

∂ 2∆We

∂ε2
q

=
nc⟨ℓ2⟩kn

30

(
2+3αt +

4+3αt

7
ac

)
,

C44 =
∂ 2∆We

∂ε2
q′

=
nc⟨ℓ2⟩kn

30

(
2+3αt −

8+6αt

7
ac

)
.

(2.22)

Finally, the bulk modulus K is the second derivative of the energy function with respect to
the volumetric strain εv = ε11 + ε22 + ε33,

K =
∂ 2∆We

∂ε2
v

=
nc⟨ℓ2⟩kn

9
. (2.23)

Note that, we have C22 −C23 = 2C44, so that the bulk modulus can be expressed as a function
of Ci j:

K =
C11 +4C12 +2C22 +2C23

9
. (2.24)

49



2.6.2 Comparison with numerical results

The above expressions of elastic moduli based on EMT are proportional to the number density
nc of contacts. It is easy to show that

nc =
ZcΦ

2Vp
, (2.25)

where Vp is the average particle volume. Furthermore, the elastic moduli can be normalized by
E∗, which defines the reference value of all elastic moduli. Hence, following Eq. (2.23), the
bulk modulus KEMT can be expressed as

KEMT = mE∗
ΦZc, (2.26)

where

m =
⟨ℓ2⟩d
18Vp

. (2.27)

Equation (2.26) suggests that the bulk modulus is proportional to ΦZc with a prefactor de-
pending mainly on the mean square distance ⟨ℓ2⟩ between particle centers. This expression of
K is the same as the one derived previously for isotropic granular materials composed of spher-
ical particles [31, 35]. Here, it is extended to polyhedral particles by replacing Z by Zc. Figure
2-9 shows K as a function of ΦZc from all our simulation data at different instances of com-
pression. The EMT prediction is also plotted for comparison with the values of ⟨ℓ2⟩ extracted
from the simulations. All our data points, independently of friction coefficient, nicely collapse
on a straight line for both spherical and polyhedral particle packings, as predicted by EMT, in
exception to data points lying slightly above the line at low values of ΦZc. These data points
represent actually the late stages of compression where the system is in the post-peak softening
regime with intense particle rearrangements, leading to an over-estimation of elastic moduli.
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Fig. 2-9. Normalized bulk modulus K/E∗ as a function of ΦZc from simulations of dodecahe-
dral and spherical particle packings. The thin lines are linear fits to the data. The thick lines
represent predictions of EMT for polyhedra (solid line) and spheres (dashed line).

While the predicted linear dependence of elastic moduli on ΦZc is in agreement with the
simulation results, there are two key differences between the predicted values of bulk modulus
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KEMT and the values measured in simulations for both spherical and polyhedral particle pack-
ings. First, the prefactor m is higher in the simulations. Secondly, KEMT vanishes only when
ZcΦ tends to zero whereas in the simulations the bulk modulus vanishes for a finite value of
ZcΦ. This means that the bulk modulus can be approximated as

K = E∗(n+mΦZc), (2.28)

where n is a parameter of negative value which depends on particle shape. The fitted values of
n and m are given in Table 2-1 for different particle shapes together with the values predicted
by EMT. The differences between the EMT prediction and the simulated values of n and m
have their origin in the nonaffine relative particle displacements which contradict the EMT
assumption of an affine displacement field [31, 217]; see below.

Interestingly, the non-zero value of n in the linear fit to the simulation data implies that
K vanishes at ΦZc = −n/m. This ratio is ≃ 2.6 for polyhedra and ≃ 1.65 for spheres. The
vanishing of K for a finite value of ΦZc is a reminiscent of unjamming transition at a finite
value of Zc. Obviously, unjamming does not occur in our system during compression but Fig.
2-9 shows that the lowest values of ΦZc (≃ 2.4 for spheres and ≃ 3.1 for polyhedra) occur
during post-peak softening and they are close to the values of −n/m.

C11 C22 C12 C23 C44 C55 K
r11 s11 r22 s22 r12 s12 r23 s23 r44 s44 r55 s55 n m

EMT (expression) 9+6αt
5

72+12αt
35

9+6αt
5 -36+6αt

35
3−3αt

5
6−6αt

35
3−3αt

5 -12−12αt
35

6+9αt
10 -12+9αt

35
6+9αt

10
12+9αt

70 0 ⟨ℓ2⟩d
18Vp

EMT (value) 2.760 2.332 2.760 -1.166 0.120 0.034 0.120 -0.069 1.320 -0.549 1.320 0.274 0 0.105
Simulation (dodecahedra) 2.617 4.151 2.542 -3.258 0.225 0.387 0.213 0.100 1.132 -1.694 1.234 0.500 -0.378 0.145
Simulation (icosahedra) 2.547 4.565 2.563 -3.482 0.223 0.500 0.215 0.200 1.154 -2.176 1.172 0.932 -0.400 0.150
Simulation (octahedra) 2.486 5.182 2.608 -3.573 0.219 0.420 0.210 0.142 1.227 -1.861 1.215 1.530 -0.360 0.157
Simulation (spheres) 2.490 3.105 2.490 -2.812 0.240 0.255 0.250 0.080 1.065 -2.000 1.087 0.120 -0.265 0.160

Table 2-1. Fitting parameters in Eq. (2.30) for elastic moduli from the effective medium theory
(EMT) and DEM simulations of the four particle shapes.

According to Eqs. (2.21) and (2.22), all elastic moduli Ci j are proportional to K and their
ratio depends linearly on the contact orientation anisotropy ac:

Ci j = K(ri j + si jac), (2.29)

where the parameters ri j and si j depend on particle shape. This linear dependence on fabric
anisotropy is indeed what we observe in Fig. 2-10 for all elastic moduli and for both polyhedral
and spherical particle packings, but with values of ri j and si j that deviate from those predicted
by EMT due to nonaffine displacement field; see Table 2-1.

2.6.3 General expression of elastic moduli

Based on the simulation data and effective medium theory discussed previously, we propose the
following analytical expression for the five orthotropic elastic moduli:

Ci j = E∗(n+mΦZc)(ri j + si jac). (2.30)
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Fig. 2-10. Normalized moduli Ci j/K as a function of fabric anisotropy ac for the dodecahedral
(a) and spherical (b) particle packings from simulations with different values of the friction
coefficient, together with theoretical prediction (c) based on the EMT. The straight lines are the
best linear fits to the data points. The data of icosahedra is shown in Supplemental Material and
it follows a similar evolution.

The EMT predictions of n, m, ri j, and si j are shown in Table 2-1 together with their values mea-
sured from our simulations for the three particle shapes. This expression relates in a univocal
way the elastic moduli to the microstructure of granular materials under transversely isotropic
symmetry. With its parameter values given in Table 2-1, it allows us to predict the evolution
of elastic moduli as a function of shear strain εq from that of Zc and ac extracted from simu-
lations. Figures 2-4, 2-5, and 2-6 show the evolution of the elastic moduli according to this
analytical expression together with their measured values from simulations. We see that this
expression follows amazingly well the simulation data from the isostatic state up to the stress
peak state. The observed “wavy” feature of the evolution of elastic moduli observed in these
figures can therefore be explained as a consequence of the multiplicative contributions of the
isotropic part n+mΦZc and the anisotropic part ri j + si jac with decreasing Zc and increasing ac

during compression.

It is remarkable that the model parameters n, m, ri j, and si j are independent of friction
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coefficient. The differences between elastic moduli for different values of µs arise therefore
from the effect of the latter on the evolution of Zc and ac. The values of parameters in Table 2-1
show also that the higher value of K in the case of polyhedral particle packings compared to that
of the sphere packing is mainly due to the higher values of ZcΦ rather than the smaller variations
of the model parameters. Furthermore, the dodecahedral and icosahedral particle packings
have slightly different elastic moduli. A detailed comparison between the elastic moduli of
polyhedral particle packings with different numbers of faces will be presented elsewhere.

The observed linear dependence of the elastic moduli on ZcΦ and ac in our simulations
suggests that, despite the evolution of the microstructure the level of nonaffine displacements is
nearly constant during triaxial compression. To check this point, we investigated the nonaffine
displacements in our simulations. Several methods can be used to quantify the level of non-
affinity [235–238]. We used a measure of non-affinity from the relative particle displacements.
Let δ rα

z = δ ri
z−δ r j

z be the relative displacement at the contact α between particles i and j pro-
jected along the z direction and ℓα the length of the branch vector joining their centers. Then,
the actual strain increment at contact α along the z direction is δεα

z = δ rα
z /ℓ

α . We define the
nonaffinity ξ along the compression axis as

ξ =

√
⟨(δεz)2⟩−⟨δεz⟩2

⟨δεz⟩
, (2.31)

where the averages run over all contacts inside the packing. Note also that the average ⟨δεz⟩ is
simply equal to the mean affine displacement imposed when probing the elastic response.
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Fig. 2-11. Level of non-affinity ξ (equation (2.31)) as a function of shear strain εq for packings
of spherical and dodecahedral particles with friction coefficient µs = 0.1.

We calculated ξ at all probing instances and Fig. 2-11 displays its evolution for the three
particle shapes in the case µs = 0.1 (the evolution being similar for other values of µs). Inter-
estingly, ξ has nearly the same value for all shapes during compression and increases slowly
from ≃ 0.2 at low compression until the stress peak at εq ≃ 5× 10−2. Beyond this point, it
grows rapidly to higher values as a result of softening and unstable particle motions. This is
consistent with the evolution of the elastic moduli shown in Fig. 2-9, where the correspond-
ing data points deviate from expression (2.30). The nearly constant level of non-affinity before
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stress peak explains the linear dependence of elastic moduli on the microstructural prameters Zc

and ac and thus the constant values of the parameters n, m, ri j, and si j in the analytical expres-
sion (2.30) implying that their values are almost only functions of particle shape. Obviously,
the small second-order effects arising from the dependence of non-affinity on the increasing
anisotropy of the packing during compression are not observable within the statistical precision
of our simulation data.

2.7 Conclusion

We derived a general expression (2.30) of the orthotropic elastic moduli of granular materials
under triaxial boundary conditions as a function of microstructural parameters for three different
particle shapes and four different values of the interparticle friction coefficient. This expression
reveals three different origins of elastic moduli: a stress scale E∗, an isotropic part, and an
anisotropic part. The stress scale E∗ depends on the force model. In our linear force model, its
value is simply kn/d, but for a Hertz contact, which is obviously not adapted to faceted particles,
it should be multiplied by a ratio {p/(ẼZcΦ)}1/3, where Ẽ = E/(1−ν2) is the reduced elastic
modulus [32, 35, 44], and makes depend the moduli on the confining pressure.

The effect of particle shape appears at two levels: on the one hand, through the parameters n,
m, ri j, and si j, which do not depend on friction coefficient and are not neither expected to depend
on p for Hertzian contacts, and on the other hand, through the microstructure via the values of
Zc and ac, which depend on both particle shape and friction coefficient µs. While the expression
(2.30) provides a powerful model of elastic moduli in the hardening regime (before stress peak)
with a clear distinction between the two effects of particle shape, our results indicate that, due
to unstable particle rearrangements, the measurement of elastic moduli in the softening regime
requires strain probes well below 10−5 used in this work throughout triaxial compression.

The expression (2.30) makes it possible to extract the values of Zc and ac and the model
parameters n, m, ri j, and si j from experimental measurements of the elastic moduli. This is
specially relevant for granular materials composed of aspherical particle shapes whose elastic
properties have not yet been a subject of systematic investigation. More work is currently un-
derway to further validate Eq. (2.30) for other particle shapes, different values of the stiffness
ratio, and different boundary conditions. A detailed comparison of the elastic moduli of poly-
hedral particle packings with increasing number of faces will be published in a forthcoming
paper.
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2.8 Supplementary Information

2.8.1 Evolution of Poisson’s ratios of dodecahedral and spherical particle
packings

Poisson’s ratio can be extracted from two strain probes as follows:

ν12 =−ε22

ε11
=

C12

C22 +C23
(2.32a)

ν23 =−
ε ′33
ε ′22

=
C11C23 −C2

12
C11C22 −C2

12
(2.32b)

It is worth mentioning that although Poisson’s ratio for isotropic materials is bounded between
−1 and 0.5, those of anisotropic materials can have no bounds [239]. Fig. 2-12 displays the
evolution of Poisson’s ratios ν12 and ν23 as a function of shear strain εq for dodecahedral and
spherical particle packings. Our data show that the initial Poisson’s ratios corresponding to
isotropic state is 0.1 for spherical particle packings, in agreement with those of Agnolin and
Roux [32], and 0.09 for packings of polyhedral particles. This lower value of the Poisson’s ratio
reflect the lower mobility of the particles. We also find that Poisson’s ratios are independent of
µs at very small shear strain, but they increase significantly at larger strains when slip events
at persistent contacts happen. After reaching the peak, which occurs at εq ∼ 0.1, they decrease
considerably or slightly depending on particle shape and µs. From the prediction of EMT for
elastic moduli in Eqs (2.21) and (2.22), it is clear that the Poisson’s ratios are independent of
contact density (ΦZc), and depend chiefly on the fabric anisotropy ac.
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Fig. 2-12. Poisson’s ratios as a function of shear strain εq for the packings of dodecahedral and
spherical particles with different values of friction coefficient µs. The lines are predictions by
our proposed expression; see main text.
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2.8.2 Evolution of microstructure and elastic moduli of icosahedral par-
ticle packings

The evolution of stress ratio q/p and microstructures properties for icosahedral particle pack-
ings is shown in Fig. 2-13. We see that they change similarly with those of dodecahedral
particle packings shown before. Figures 2-14 and 2-15 displays the evolution of elastic moduli
for packings of icosahedral particles together with theoretical predictions (2.30) as a function
of shear strain εq. Fig. 2-16 describes the relation of elastic moduli and microstructures for
packings of icosahedral particles.
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Fig. 2-13. (a) Stress ratio q/p, (b) packing fraction Φ, (c) constraint number Zc, and (d) fabric
anisotropy ac as a function of shear strain εq for packings of icosahedral particles and different
values of friction coefficient µs. The symbols represent instances where strain probes were
applied.

The fractions of each type of contacts is shown in Fig. 2-17(a). The fractions are constant
when εq < 5×10−6 reflecting the stable of force network. Then the particles start moving, the
fraction of single contacts increases whereas those of double and triple contacts reduce. This
means a part of double and triple contacts are damaged to become single contacts which are less
stable. After that, the number of contacts in whole sample decrease because of the disintegration
of not only single contacts but also double and triple contacts. As a consequence, the fraction
of double and triple contacts approaches a plateau with εq > 10−3. Furthermore, the evolution
of average normal force of single, double, and triple contacts is shown in Fig. 2-17(b). We
find that average normal force of double and triple contacts are approximate two and three time
bigger in those of single contacts, respectively. This means that most of the forces in the sample
are carried by more stable contacts (double and triple).
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Fig. 2-14. Normalized elastic moduli: longitudinal (a) and (b), off-diagonal (c) and (d) as a
function of shear strain εq for packings of icosahedral particles with different values of friction
coefficient µs. The solid lines are predictions by our proposed expression; see main text.

2.8.3 Theoretical model of EMT

Herein, we present more detailed transformation of theoretical model of EMT. The elastic en-
ergy per unit volume ∆We is given by

∆We =
1
2 ∑δσi jεi j, (2.33)

where the relation between incremental response stress δσi j and incremental applied strain εi j

is extracted from Eq.(2.3). We have

∆We =
1
2
(
C11ε

2
11 +C22ε

2
22 +C22ε

2
33
)
+C12(ε11ε22+ε11ε33)+C23ε22ε33+C44(ε

2
12+ε

2
13)+C55ε

2
23.

(2.34)
From Eq.(2.34), the elastic moduli Ci j are calculated by the second derivatives of the elastic
energy function with respect to εi j, as shown in Eqs. (2.21) and (2.22).

Due to the anisotropy, we have

⟨cos4
θ⟩=

∫
π

0
cos4

θP(Ω)sinθdθ

∫ 2π

0
dφ =

1
5
+

8
35

ac. (2.35)

In similar vein, we have

⟨sin4
θ⟩= 8

15
− 32

105
ac,⟨sin2 2θ⟩= 8

15
+

16
105

ac,⟨sin2
θ⟩= 2
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− 4

15
ac

⟨sin2 2φ⟩= 1
2
,⟨cos4

φ⟩= ⟨sin4
φ⟩= 3

8
,⟨cos2

φ⟩= ⟨sin2
φ⟩= 1

2
.

From that the average values ⟨(εεε n⃗ · n⃗)2⟩, ⟨(εεε n⃗ ·⃗ t)2⟩, and ⟨(εεε n⃗ · s⃗)2⟩ in Eq. (2.19) are given by
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Fig. 2-15. Normalized elastic moduli: shear (e) and (f), bulk (g) as a function of shear strain εq

for packings of icosahedral particles with different values of friction coefficient µs. The solid
lines are predictions by our proposed expression; see main text.



⟨(εεε n⃗ · n⃗)2⟩=
(

1
5
+

8
35

ac

)
ε

2
11 +

(
1
5
− 4

35
ac

)
ε

2
22 +

(
1
5
− 4

35
ac

)
ε

2
33 +

(
2

15
+

4
105

ac

)
ε11ε22

+

(
2

15
+

4
105

ac

)
ε11ε33 +

(
2

15
− 8

105
ac

)
ε22ε33

⟨(εεε n⃗ ·⃗ t)2⟩=
(

2
15

+
4

105
ac

)(
ε

2
11 +

3
8

ε
2
22 +

3
8

ε
2
33 − ε11ε22 − ε11ε33 +

1
4

ε22ε33

)
⟨(εεε n⃗ · s⃗)2⟩=

(
1

12
− 1

30
ac

)(
ε

2
22 + ε

2
33 −2ε22ε33

)
.

(2.36)

C11 =
∂ 2We

∂ε2
11

= nc⟨l2⟩
[

1
5

kn +
2

15
kt +ac

(
8
35

kn +
4

105
kt

)]
C22 =

∂ 2We

∂ε2
22

= nc⟨l2⟩
[

1
5

kn +
2

15
kt −ac

(
4
35

kn +
2

105
kt

)]
C12 =

∂ 2We

∂ε11∂ε22
= nc⟨l2⟩

[
1
15

(kn − kt)+
2

105
ac (kn − kt)

]
C23 =

∂ 2We

∂ε22∂ε33
= nc⟨l2⟩

[
1
15

(kn − kt)−
4

105
ac (kn − kt)

]
.

(2.37)

In order to measure C55, we consider in coordinate (εv,εq) on plane Oxz. Assuming that
ε33 = 0, we have {

εv = ε11 + ε22

εq = ε11 − ε22
⇒


ε11 =

εv + εq

2

ε22 =
εv − εq

2
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Fig. 2-16. (a) Normalized bulk modulus K/E∗ as a function of ΦZc from simulations of icosahe-
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contacts as a function of shear strain εq in the packing of icosahedral particles with friction
coefficient µs = 0.1.
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Shear modulus on plane Oxz:
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On plane Oxy, assuming ε11 = 0, we have{
εv = ε22 + ε33

εq = ε22 − ε33
⇒


ε22 =

εv + εq

2

ε33 =
εv − εq

2
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Shear modulus on isotropic plane Oxy:
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To evaluate bulk modulus K, we need to consider volumetric strain of whole cubic box, we
have 

εv = ε11 + ε22 + ε33

εq = ε11 − ε33

ε
′
q = ε22 − ε33

⇒
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Bulk modulus K:

K =
∂ 2We

∂ε2
v

=
nc⟨l2⟩kn

9
. (2.42)

Note that the bulk modulus K, expressing the response of mean stress δ p = (δσ1 + δσ2 +

δσ3)/3 to a volumetric strain δεv = (δε1 +δε2 +δε3)/3 as δ p = Kδεv. From Eq. (2.3) with
the assumption that δε1 = δε2 = δε3 = δεv/3, it is easy to get

K =
C11 +4C12 +2C22 +2C23

9
. (2.43)

The relation between K and Ci j as shown in Eq. (2.43) is also confirmed by the expression of
Ci j in EMT shown in Eq. (2.37)
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We use particle dynamics simulations to investigate the rheology of granular flows com-
posed of regular octahedral particles in a rotating drum. We focus on the cascading regime and
perform an extensive parametric study by varying drum size, particle size, rotation speed, and
filling degree. Our simulations indicate that the passive layer undergoes quasistatic shearing
and, in contrast to spherical particle flows, no sliding occurs at the drum wall due to the angular
particle shape. A scaling parameter combining the Froude number, the ratio of drum to particle
size, and the filling degree captures the kinematic and dynamic characteristics of the granular
flow such as free surface shape, shear velocity, flow thickness, and inertial number. This scaling
suggests simple linear correlations between free surface curvature, flow thickness, and inertial
number. We also show that this scaling is fully consistent with the expected effects of increasing
particle size.

3.1 Introduction

The flow of granular materials inside a rotating drum is extensively applied in industrial pro-
cesses such as mixing, grinding, granulation of granular materials. Although it has been studied
by means of numerical models and experiments in recent years, there still remain open issues
due to the complex and heterogeneous flow combining the upward rigid-body motion of the par-
ticles at the drum wall, downward bulk flow, and free surface dynamics [51,65]. Drum flows are
commonly classified into six different regimes: slipping, slumping, rolling, cascading, cataract-
ing, and centrifuging [53,54,57]. These regimes are obtained by increasing the Froude number,
Fr = ω2R/g, where ω is rotation speed, R is drum radius and g is gravity acceleration. The
cascading regime provides a suitable particle flow configuration for industrial applications in-
volving convection, mixing, segregation, and milling of particles [57,65,86,94]. This is mainly
due to the fact that this regime involves a continuous inertial flow of particles cascading down-
ward due to gravity along a curved free surface and within a thick flowing layer [52, 65].

A major issue regarding drum flows is that they depend not only on the Froude number but
also on other system parameters such as particle size and filling degree whose effect on the
flow has not been fully understood [52, 54, 97]. Several scaling laws that include the system
parameters have been proposed. For instance, Félix et al. [240] introduced a scaling law linking
mean velocity ⟨v⟩ and thickness ha of the active (flowing) layer through a power law ⟨v⟩ ∼ hm

a ,
where the exponent m decreases with increasing size ratio D/d, with D and d being the drum and
particle diameters, respectively. Pignatel et al. [102] found a constant value m ≃ 1.27 whereas
Govender et al. [241] found m ≃ 0.997 in their work. By using theoretical and numerical
models, Taberlet et al. [99] showed that the end walls are responsible for the curvature of the free
surface, which is controlled by a dimensionless number including drum width, drum diameter,
and rotation speed. In the case of wet granular flows of glass beads in rolling regime, Jarray
et al. [242] found experimentally that dynamic angle of repose can be scaled by a parameter
combining the Froude number and Weber number (ratio of inertial forces to capillary forces).
The flow variables in the cascading regime were studied by Orozco et al. [65] who proposed a
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scaling by a single parameter that combines the Froude number, drum size D, particle size d,
and filling degree J.

The above examples show that, although most previous studies have focused on the rolling
regime and the flow of spherical particles, there are significant differences between the proposed
scaling laws. Furthermore, the cascading regime has received much less attention and has been
only recently studied on a systematic basis [51,65]. Another important issue concerns the influ-
ence of particle shape on the flow regimes and more specifically on the behavior of the cascading
regime [80, 206, 243–245]. With increasing computational power and optimization of contact
detection algorithms, aspherical shapes are becoming accessible to large-scale particle dynam-
ics simulations based on the Discrete Element Method (DEM). Examples of particles shapes
that have been used in rotating drums for different applications are ellipsoids [68, 246–248],
surperquadrics [87, 249, 250], arbitrary-shaped clumps of spheres [82, 251, 252], and polyhe-
dra [253–256].

Among these shapes, polyhedral particles are of primary importance since they are common
in many applications and in nature, and also because arbitrary particles shapes can in principle
be represented as polyhedra by meshing their surface into polygons. A key aspect of polyhe-
dral particles is that they can interact through face-face, face-edge, vertex-face, and edge-edge
contacts, which must be taken into account both in the contact detection procedure and for the
calculation of forces. The distinction of contact types in drum flows has been addressed by a
few recent DEM developments [86, 87, 256, 257].

In this paper, we use DEM simulations to analyze granular flows of octahedral particles in
rotating drums in the cascading regime. The simulations are based on an original approach
dealing properly with different contact types. We perform extensive simulations for a wide
range of values of rotation speed, drum diameter, particle diameter, and filling degree. By a
detailed analysis of flow variables such as the average and maximum slopes of free surface,
flow thickness, shear rate, and inertia number in the flowing layer we find a dimensionless
scaling parameter that accounts for the effect of all system parameters. In particular, we focus
on the effect of particle-coarsening and we show that it is consistent with our scaling of flow
variables. As we shall see, our scaling works also for spherical particles allowing thereby to
highlight the effect of polyhedral particle shape through differences between model parameters.

In the following, we first introduce in Section 3.2 the numerical model and the procedures
used to simulate drum flows. In Section 3.3, we describe the particle velocity fields and free
surface profiles of drum flows. The scaling law of cascading flows will be proposed in Section
3.4. We also introduce a particle coarsening model in Section 3.5. Finally, we discuss the most
salient results of this work in Section 3.6.
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3.2 Numerical model and procedures

3.2.1 Simulation of polyhedral particles

The simulations were carried out by means of DEM in which polyhedral particles are treated as
rigid bodies while the contacts between them are assumed to be compliant and obeying a vis-
coelastic behavior [22, 224, 258]. Polyhedral particles are transformed by means of Minkowski
sum with a sphere of a small radius Rm [259]. This operation smoothens the polyhedra by
replacing all edges by thin cylinders and all vertices by spheres. As a consequence, each poly-
hedron consists of three sub-elements, namely vertices which are small spheres of radius Rm,
edges which are cylinders of radius Rm connecting two vertices, and faces which are planes of
thickness 2Rm connecting at least three vertices.

The contacts between two polyhedra are represented by the contacts of its sub-elements,
leading to six contact types: vertex-face, edge-edge, vertex-edge, vertex-vertex, edge-face, face-
face. The unilateral constraint associated with these contact types do not have the same nature.
The vertex-face, vertex-edge, vertex-vertex, and edge-edge interactions involve a single con-
tact point, which can be treated in the same way as the contacts between spherical particles.
Such simple contacts represent a single unilateral constraint as shown in Figs 3-1a and 3-1b. In
contrast, a face-face contact is a plane that needs at least three points for its definition. There-
fore, a face-face contact is equivalent to three simple contacts or unilateral constraints [22,223].
This means that at least three contact points are necessary to represent the contact. Note that,
the number of contact points can be larger depending on the number of edges as illustrated in
Fig. 3-1d, but the number of independent constraints is always 3 since the particles are rigid.
In a similar vein, edge-face interactions need two contact points as shown in Fig 3-1c. For
this reason, edge-face and face-face contacts can be described as ‘double’ and ‘triple’ contacts,
respectively.

(a) (b) (c) (d)

Fig. 3-1. Different types of contacts between two polyhedra: (a),(b) simple contact, (c) double
contact, and (d) triple contact.

At each contact point, either a linear or a nonlinear force law is implemented. For smooth
particle surfaces with well-defined curvatures at the contact point, the Hertz law can be used.
However, in this paper due to the faceted shape of particles, we used linear elastic law which
is equivalent to a linear unilateral spring acting the the contact point. To account for contact
inelasticity, a viscous damping term is added to the normal elastic repulsion force. Let n⃗ and t⃗
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be the normal and tangential unit vectors at a contact point c between particles i and j. The force
f⃗ = fn⃗n+ ft⃗t acting by particle j on particle i is expressed as a function of the normal overlap
δn and cumulative tangential displacement δ⃗t . The normal force law is defined as follows [204,
224]:

fn =

0, f̃n ≤ 0,

f̃n, f̃n > 0,
(3.1)

where f̃n = knδn − 2a
√

knmδ̇n, kn is normal stiffness, δn is overlap (with sign convention that
δn > 0 when two particle overlap), δ̇n is the relative normal velocity, m is reduced mass of
two touching particles, and a is the dimensionless damping parameter which can take a value
between 0 and 1. For a = 0, the contact is fully elastic whereas for a = 1 the contact is fully
inelastic. In binary collisions, the normal restitution coefficient is a decreasing function of
a [181, 260]. It is noteworthy that energy dissipation in dense granular flows is a collective
multicontact process that involves elastic wave propagation across the system. Typically low-
frequency vibration modes are damped slowly in DEM calculations. For this reason, in DEM
simulations of dense granular flows it is convenient to enhance contact dissipation by setting
the restitution coefficient to a value close to zero (i.e. a close to 1). In our simulations, we set
the coefficient of restitution to 0.001.

The tangential force ft is governed by the Coulomb friction law:

ft = min{|kt δ⃗t |, µs fn}, (3.2)

where kt is tangential stiffness, δt is cumulative tangential displacement, and µs is the interparti-
cle friction coefficient. The orientation of the tangential force t⃗ is opposite to either the relative
elastic displacement δ⃗t below the Coulomb threshold or the relative velocity v⃗t at the contact
point when the Coulomb threshold is reached.

3.2.2 Sample setup and boundary conditions

We consider horizontal drums of diameter D = 2R and width W filled with monodisperse oc-
tahedral particles of diameter d, and subjected to rotation speed ω as illustrated in Fig. 3-2a.
We used a monodisperse system to avoid introducing unnecessary parameters. Note also that
long-range ordering in monodisperse systems is a pathology of 2D systems. A packing of
monodisperse particles in 3D does not develop long-range ordering. Octahedral particle shape
was chosen due to its high angularity, distinguishing it from spherical shape [22]. Periodic
boundary conditions are imposed along the drum axis y to reduce wall effects. This makes the
flow invariant along the y axis. The filling degree is defined by the ratio J = h0/D, where h0

is the thickness of granular material at the midpoint of the free surface at rest. The friction
coefficients between particles and with drum wall are set to µ = 0.4, which is a common value
used for smooth drum wall [65, 261].

The simulations were carried out for a broad range of values of ω , D, d, and J as shown in
Table 3-1. As we shall see, the selected ranges of these parameters the flow is in the cascading
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Fig. 3-2. Geometrical parameters of granular flow in rotating drum in the steady state (a), and
particle velocity profile along the bed depth direction in the center of the cylinder (b).

regime. In order to isolate the effect of drum size, particle size and filling degree, we performed
four sets of simulations. In the first set (set A), drum diameter D was changed for d = 0.682
mm and J = 0.40. In the second set (set B), d was varied for D = 40 mm and J = 0.40. In the
third set (set C), J was changed for D = 40 mm and d = 0.682 mm. Furthermore, to verify the
accuracy of the scaling law that will be discussed in this paper, we performed more simulations
by changing all parameters simultaneously (set D).

The simulations were run for at least 10 drum rotations to allow the system to reach a steady
flow state. The data analyzed in this paper, such as the free surface profile, flow thickness,
relative particle velocities, flow rate, and inertia number are averaged over time in the steady
state.

Parameter Symbol Value Unit
Number of particles Np [2522;18392] -
Particle density ρs 1.2×104 kg/m3

Normal stiffness kn 108 N/m
Tangential stiffness kt 8×107 N/m
Restitution coefficient e2

n 0.001 -
Friction coefficient µ 0.4 -
Gravity acceleration g 9.81 m/s2

Mean particle diameter d [0.682;1.092] mm
Rotation speed ω [10;20] rad/s
Drum diameter D [30;55] mm
Drum width W 6 mm
Froude number Fr [0.12;0.70] -
Filling degree J [0.29;0.40] -

Table 3-1. Simulation parameters of rotating drums.
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3.3 Particle velocity fields and free surface profiles

A snapshot of particle velocity vectors in a rotating drum of size ratio D/d = 81, and the free
surface for different size ratios, but with the same filling degree J and rotation speed ω , are
displayed in Fig. 3-3. The largest velocities are located at the center of free surface where
particles are cascading down, and they increase in magnitude with drum size despite the constant
value of rotation speed ω . We see that for all values of size ratio the flow is in the cascading
regime with a free surface curvature that increases with size ratio.

1

(a)

D/d = 44
D/d = 51
D/d = 66
D/d = 81

(b)

v (m/s)

1

Fig. 3-3. Velocity vector fields in drum of the size ratios D/d = 81 (a), the free surface in drums
of different size ratios (b). The filling degree (J = 0.4), mean particle diameter (d = 0.682 mm),
and rotation speed (ω = 12 rad/s) are the same in all cases. The arrow length and color are
proportional to particle velocity magnitude.

Two examples of averaged particle velocity fields in drums of different size ratios are dis-
played in Fig. 3-4. The velocity vectors are projected on the secant slope. Positive values
correspond to particles flowing downward under the effect of gravity whereas negative values
correspond to upward motion of the particles. From the velocity field, we clearly distinguish
the active layer (upper) from the passive layer (lower). The passive layer behaves as a solid
body undergoing slow deformation against the drum wall. When the particles reach the free
surface, they join the active layer at different positions above the borderline between the two
layers, flow downward, and eventually rejoin the passive layer. We also see the boundary at the
interface between the active and passive layers. The flow thickness hb is evaluated from the free
surface along the line passing by the midpoint of the secant slope and perpendicular to it (see
Fig. 3-2a). The secant line is defined by joining the uppermost point of the free surface to its
lowermost point. The active layer thickness ha is part of hb, and is defined as the distance from
the free surface to the interface between the active and passive layers (see Fig. 3-2b). The active
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layer thickness ha is an important parameter for phenomena such as mixing, segregation, and
heat transfer in rotating drums [54, 57] and it varies with system parameters in the cascading
regime.
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Fig. 3-4. Time-averaged particle velocity field in drums of two different size ratios D/d of 44
(a) and 81 (b) for filling degree J = 0.4, mean particle diameter d = 0.682 mm, and rotation
speed ω = 12 rad/s in all cases. The particle velocity is projected on the secant slope defined
by its angle θm.

Figure 3-5 displays the velocity profile along the bed depth direction (with depth h measured
from the free surface) for our three data sets (set A, set B, and set C). The particle velocity is
projected on the secant slope defined by the angle θm. The profile in the passive layer is almost
linear. From v ≃−0.5ωR to v ≃ 0, we observe an intermediate region over which the transition
to the active layer occurs. For v > 0, the particles are in the active layer and the velocity profile
is again nearly linear [87, 94, 262]. The transition zone is the locus of convective rolls that
accommodate strain fields between the passive and active layers as suggested by the particle
velocity vectors shown in Fig 3-3. The thickness of this zone is nearly 5 particle diameters in
the center of the drum. In Fig. 3-5(a) we observe that for D/d = 74 and D/d = 81 the velocity
profile tends to turn upward near the free surface, deviating from the linear profile. This is due
to the high value of Froude number and small size of the particles, which, as we shall see, lead
to larger curvature of the free surface and increasing fluidization in the center of the flow. This
deviation is a signature of transition to the cataracting regime in which the particles in the center
of flow follow a ballistic motion.

It is noteworthy that the particle velocity of the layer in contact with the drum wall is close
to ωR, implying that the particles do not slide along the drum wall. Slippage of particles against
drum wall has been observed in the case of spherical particles. We also see that the ratio ha/hb,
where hb is the thickness of the flow in the center of the drum during flow, and the free surface
curvature increase with increasing drum size [65]. On the other hand, the free surface velocity
and the ratio ha/hb decrease for larger particle sizes.

To characterize the free surface shape, we define two slope angles: the secant slope θm and
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Fig. 3-5. Time-averaged velocity profile in the center of the drum as a function of depth mea-
sured from the free surface and normalized by the total bed depth hb for three data sets: (a) set
A (D is varied) with ω = 15 rad/s, d = 0.682 mm, (b) set B (d is varied) with ω = 15 rad/s,
ξ = d/d0, where d0 = 0.682 mm, and (c) set C (J is varied) with ω = 10 rad/s, d = 0.682 mm.
The particle velocity is projected on secant slope and normalized by ωR.

the tangent slope θmax of the steepest descent along the free surface, as shown in Fig. 3-2a.
The secant slope represents the average slope of the free surface. The angle θmax reflects the
kinematics of the free surface flow and the flow rate due to the amount of feeding particles.
The rotation speed ω or Froude number Fr are insufficient to capture the evolution of θm and
θmax [65, 97]. The slope ratio θmax/θm represents a measure of the curvature of the slope. Its
significance appears through its scaling with system parameters, as we shall see below.

The evolutions of slope ratio θmax/θm and thickness ratio ha/hb as a function of size ratio
D/d are shown in Fig. 3-6 for data set A with four values of ω . We see that both ratios increase
with drum size and with rotation speed in agreement with previous studies [65]. Note that all
data points shown in Fig. 3-6 are in the cascading regime. The maximum values reached are
θmax/θm = 1.7 and ha/hb = 0.5. Beyond this limit, a crossover is observed from cascading
flow to cataracting flow. By definition, in the rolling regime we have θmax/θm = 1. Hence, it is
expected that the lowest value of this ratio is 1 and occurs at crossover from rolling regime to
cascading regime. However, in Fig. 3-6 we see that the lowest value is ∼ 1.3. This point will
be discussed in Sec. 3.4.

Let us define vr as the relative velocity of particles in contact with drum wall:

vr = ωR− vw, (3.3)

where vw is the time-averaged velocity of particles in contact with drum wall in the steady state.
Figure 3-7 shows vr as a function of the relative velocity γ̇pd, where γ̇p is shear rate in the
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Fig. 3-6. The ratios (a) θmax/θm and (b) ha/hb as a function of size ratio D/d for different
rotating speeds ω for d = 0.682 mm and variable drum diameter D. The error bars represent
standard deviation in steady flow.

passive layer. We see that vr increases with and is nearly equal to γ̇pd. This means that the
value of vw is mainly controlled by shearing in the passive layer rather than sliding against the
drum wall. The absence of sliding at the drum wall can be attributed to the lower mobility of
polyhedral particles as compared to spherical particles [65, 99]. In the rolling regime, where
wall sliding is often observed, vr is much higher than γ̇pd [100].

Since there is almost no sliding at the wall, mass conservation implies that the upward flux
of particles in the passive layer must be equal to the downward flux in the active layer. Let us
consider the flow rate per unit of width Q = Φvh, where Φ, v, and h are solid fraction, average
velocity and thickness of a layer, respectively. In the passive layer, the average flow rate is given
by Qp ≃ ⟨Φp⟩(hb − ha)⟨vp⟩, where ⟨Φp⟩ and ⟨vp⟩ are the average solid fraction and velocity,
respectively, in the passive layer evaluated for the whole period of flow. In the same way, in
the active layer, the average flow rate is Qa ≃ ⟨Φa⟩ha⟨va⟩, where ⟨Φa⟩ and ⟨va⟩ are the average
solid fraction and velocity, respectively, in the active layer. Figure 3-8 shows Qa/(d

√
gd) as

a function of Qp/(d
√

gd) for all our datasets. We see that all data points collapse well on the
Qa/(d

√
gd) = Qp/(d

√
gd) line. This confirms that sliding at the wall is negligible. Deviations

are due to the fact that the flow profile is not symmetric around the secant line used to define
the average direction of flow and the interface between the passive and active layers fluctuates
in time.
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3.4 Scaling behavior of cascading flows

Dimensional analysis suggests that the flow behavior depends on three dimensionless numbers:
(1) Froude number, which accounts for the dynamics and inertial effects, (2) size ratio D/d
accounting for finite-size effects, and (3) filling degree J characterizing the geometry of the
flow. As suggested previously for spherical packings [65], we look for a general dimensionless
scaling parameter based on a multiplicative combination of the above three parameters:

Γ = Frα

(
D
d

)β

Jγ , (3.4)

where the exponents α , β , and γ will be fixed from the simulation data. Since J = h0/D and
Fr = ω2R/g, the scaling parameter Γ is proportional to ω2αDα+β−γd−β .

To find the values of the three exponents, we can use any dynamical variable of the system
as a function of Γ. The value of α can be calculated by plotting the relation between vr and ω

while keeping other system parameters constant. In Fig. 3-9, we plot the normalized velocity
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vr/
√

gd as a function of ω for different values of drum size D with the same values of d and J.
We see that vr/

√
gd is proportional to ω so that α = 1/2. The value of β can be extracted from

the relation of vr and d while keeping D, J, and ω at constant values. Figure 3-10 shows that vr

is independent of d, meaning that vr/
√

gd ∼ d−1/2, and thus we have β = 1/2.
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Fig. 3-9. The normalized relative velocity of particles in contact with drum wall as a function of
rotation speed ω for different values of drum diameter D and constant mean particle diameter
d = 0.682 mm and filling rate J = 0.40.
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Fig. 3-10. Relative velocity of particles at drum wall as a function of mean particle diameter d
for different values of rotation speed ω and constant drum diameter D = 40 mm and filling rate
J = 0.40.

With the values α = 1/2 and β = 1/2, we plotted normalized relative velocity vr/
√

gd as
a function of Γ for all our simulation data and we found that all the data collapse on a master
curve for γ = 1/4, as shown in Fig. 3-11. Furthermore, this curve is a linear function:

vr√
gd

≃ 0.29Γ−0.05. (3.5)

This simple relation suggests that Γ = Fr1/2(D/d)1/2J1/4 can be the scaling parameter not only
for vr but for all flow variables of the system. Indeed, as shown in Fig. 3-12, within statistical
precision of the simulation data, both the thickness ratio ha/hb and slope ratio θmax/θm are well
fit to linear functions of Γ for all our simulation data:

ha

hb
≃ 0.07Γ+0.16, (3.6)
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and
θmax

θm
≃ 0.15Γ+1.00. (3.7)
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Fig. 3-11. The normalized velocity of particle in contact with drum wall as a function of the
scaling parameter Γ defined by Eq. (3.4) with α = 1/2, β = 1/2, γ = 1/4 for all simulation
data.

We also note that in Fig. 3-12 the data points at higher values of Γ seem to deviate from
the above general scaling. This observation suggests that these points are at the crossover from
cascading regime to cataracting regime. These deviations occur when ha/hb approaches 0.5 and
θmax/θm reaches 1.7, corresponding therefore to the thickest flow layers and highest slopes. It
is noteworthy that previous studies of the rolling regime have indicated that the transition from
rolling to cascading regime occurs at ha/hb ≃ 0.3, which corresponds to Γ ≃ 2 as seen in Fig.
3-12 [57, 263]. Hence, according to our data for octahedral particles, the cascading regime is
limited to the range of values of Γ from 2 to 5 independently of the specific values of ω , D, d,
and h0.

The above scaling suggests that all flow variables are connected together through their de-
pendence on Γ. For example, the ratio θmax/θm as a kinematic property of drum flow is corre-
lated with the active layer thickness ratio ha/hb, which is a dynamic property of the flow. Our
scaling predicts the following relation:

ha

hb
≃ 0.47

θmax

θm
−0.31. (3.8)

This relation is in excellent agreement with our data as shown in Fig. 3-13.
Another important flow variable is the average inertia number I in the active layer. It is

defined as follows:
I = ⟨γ̇a⟩d(ρs/p)1/2, (3.9)

where ⟨γ̇a⟩ is average shear rate in the center of the active layer, ρs is particle density, and
p ≃ 0.5⟨Φa⟩ρsgha is the average pressure in the center of the active layer. Figure 3-14 shows
that I is scaled quite well by Γ with the following linear relation:

I ≃ 0.45Γ+0.2. (3.10)
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Fig. 3-12. Thickness ratio ha/hb (a) and slope ratio θmax/θm (b) as a function of the scaling
parameter Γ defined by Eq. (3.4) with α = 1/2, β = 1/2, γ = 1/4 for all simulation data. The
dashed lines are fitted lines proposed.

We see that I has generally high values and exceeds 2 at Γ = 4.

Similar scaling parameters have been proposed by other authors. In particular, Orozco et
al. [65] found a different scaling parameter for their data obtained from simulations of rotating
drums filled with spheres for periodic boundary conditions along drum axis to remove end wall
effects. We consider here part of their data as a function of our scaling parameter Γ in order
to compare the flows of polyhedra and spheres in the cascading regime. For comparison, we
consider the data of Orozco et al. either at a constant value of the filling degree J = 0.45 or for
changing values of J and ω . Figure 3-15 displays the evolution of slope ratio θmax/θm for both
octahedral and spherical drum flows versus the scaling parameter Γ in these two cases. We see
that the data of spherical particles at J = 0.45 coincide well with those of octahedral particles.
However, for variable J and ω and a constant size ratio D/d, the slope ratio for spheres increases
with Γ but they do not fall on the scaling line of octahedral particles. We have no clear clue as to
the origins of this discrepancy, but we believe that a full comparison is necessary to understand
the differences for the two particles shapes with respect to all system parameters and the scaling
behavior. In particular, the effect of the filling degree seems to be less well accounted for in the
simulations of spheres. It is also important to remark that the ranges of values of Γ for which
the flow is in the cascading regime is different for octahedral and spherical particle flows.
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Fig. 3-13. The ratio θmax/θm versus the ratio of active layer thickness to total thickness ha/hb

for all our data points. The dashed line shows the prediction of the scaling relation in Eq. (3.8).
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Fig. 3-14. Average inertia number in the center of the active layer I as a function of scaling
parameter Γ defined by Eq. (3.4) with α = 1/2, β = 1/2, γ = 1/4 for all simulation data.

3.5 Particle coarsening approach

The scaling parameter Γ = Fr1/2(D/d)1/2J1/4 extracted from our simulation data involves a
dependence of cascading flow properties on particle size as d−1/2. Here, we would like to show
that this size dependence is consistent with the particle coarsening approach. In this approach,
particle size is artificially scaled up by a factor ξ , i.e. d → d′ = ξ d, while keeping the size
of the system, i.e. D → D′ = ξ 0D, so that the total number of particles is reduced by a factor
ξ 3 (Np → N′

p = ξ−3Np) [264–266]. The scaling of the dimensional quantities of the system
depends on the variables that are assumed to be invariant functions of ξ . In general, we require
that both macroscopic variables and system-scale quantities (boundary conditions and loading)
are invariant by scale change. The physical rationale behind this assumption is that coarse-
grained variables must be independent of particle size, which is a microscopic length of the
system.

In application to rotating drum, we assume that drum size D, particle density ρs, and filling
degree J are invariant. This implies that the total mass of the flowing particles is invariant.
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Fig. 3-15. Slope ratio θmax/θm as a function of scaling parameter Γ defined by Eq. (3.4) with
α = 1/2, β = 1/2, γ = 1/4 for simulation data of octahedral particles (this work) and spherical
particles (data from Orozco et al. [65]) in which the filling degree J is kept constant or varies
with other parameters kept constant.

In the same way, the rotation speed ω , gravity g, and velocity field {⃗vi} are invariants of ξ .
Consistently, it is easily seen that the total kinetic energy Etot =Np(⟨mv2/2⟩+⟨Ioω2

o/2⟩), where
Io is the moment of inertia of the particle around its rotation axis and ωo is angular speed around
the axis, is also invariant since Np →N′

p = ξ−3Np, m→m′= ξ 3m, v→ v′= ξ 0v, Io → I′o = ξ 5Io,
and ωo → ω ′

o = ξ−1ωo. In our simulations, we have 5 values of d which can be considered as
upscaled diameters of the smallest particle size d0 = 0.682 mm by coarsening factors ξ = d/d0,
which vary from 1 to 1.6. Figure 3-16 shows the total kinetic energy Etot and relative velocity
vr for three different values of rotation speed as a function of ξ while all other parameters keep
their values in set B. We see that both Etot and vr are invariant as a function of the coarsening
factor ξ .

Regarding dynamic variables, since gravity g is invariant, momentum balance implies that
particle weights and contact forces scale with ξ 3 while stresses vary as ξ . As a consequence, the
inertial number in the active layer I = γ̇ad

√
ρs/p varies as I′ = ξ−1/2I. This is fully consistent

with the linear dependence of I on Γ in Eq. (3.10). Hence, the exponent β ≃ 1/2 in Eq. (3.4)
is a natural consequence of coarse graining. Fig. 3-17 displays ⟨γ̇a⟩d and ξ 1/2(I − 0.2) as a
function of ξ for the data set B for three different values of ω . We see that both variables are
independent of ξ . The offset 0.2 in I − 0.2 has been added here to restrict the analysis to the
cascading regime, in which the lowest value of I is 0.2. Note also that the invariance of ⟨γ̇a⟩d
simply reflects that of the velocity field. It implies that ⟨γ̇a⟩ varies as ξ−1 and thus also all times
scale as ξ . This property of particle coarsening is well known in granular gases and leads to a
decrease of collision rate and dissipation when particles are coarsened [267].

The dependence of inertial number on particle size leads to the variation of the free surface
shape. Figure 3-18 shows snapshots of the particles in the drums at steady state with the same
rotation speed ω , but different coarsening factors ξ . We see that the free surface becomes less
curved as ξ increases. This is in agreement with the scaling law of Eq. (3.7). The proposed
scaling law also implies that changing particle size can lead to a change of flow regime. Hence,
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Fig. 3-16. Total kinetic energy of particles Etot and relative velocity of particles near drum wall
vr as a function of coarsening factor ξ . The error bars represent the standard deviation.

the range of values of parameters for which the system is in the cascading regime varies with
particle size. This issue and particle size dependence of thickness ratio ha/hb and slope ratio
θmax/θm can be mitigated by applying a scale factor ξ 1/2 to rotation speed ω which leads to the
multiplication of shear rates by a factor ξ 1/2, making them independent of coarsening factor.
This solution can be applied to the simulations of industrial-scale drums with a reduced number
of coarser grains for the sake of computational efficiency.

It is also worth noting that the assumption of the invariance of velocity field may seem to
contradict the evolution of flow geometry as observed in Fig. 3-4. Indeed, the particle velocities
can not be strictly compared between the two configurations. The issue is that the surface shape
is a free parameter in drum flow. We showed that the relative velocity vr near drum wall and the
total kinetic energy are indeed invariants of particle coarsening (see Fig. 3-16). This suggest
that we may adopt this weaker form of invariance when the geometrical configuration varies
with particle coarsening. In other words, the particle coarsening analysis can be applied to the
mean flow variables rather than full field variables.
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Fig. 3-17. The evolution of relative velocity ⟨γ̇a⟩d and inertial number I inside active layer as a
function of coarsening factor ξ . Error bars represent standard deviation.

3.6 Conclusions

In this paper, we used particle dynamics simulations to analyze granular flows composed of
octahedral particles in 3D rotating drums for a range of control parameters for which the flow
remains in the cascading regime, characterized by dense flows of particles with a curved free
surface. A major effect of angular particle shape is the absence of particle slippage at the drum
wall, which is commonly observed in drum flows of spherical particles. For this reason, the
steady state is characterized by a full balance between flow rates in the passive upward flow and
active downward flow layers independently of the values of system parameters such as drum
size and rotation speed.

A detailed parametric study was carried out by varying independently drum diameter D,
particle diameter d, rotation speed ω , and filling degree J. We showed that the free surface
curvature, inertial active flow thickness, and shear velocity are unique linear functions of a
scaling parameter Γ = Fr1/2(D/d)1/2J1/4, which combines the Froude number Fr=Dω2/2g,
size ratio D/d, and filling degree J. We argued that this scaling is fully consistent with a
particle-coarsening analysis in which the flow scale variables are assumed to be constant and
independent of particle size d. We also briefly compared our data with those obtained for flows
of spherical particles in a drum.
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Further work is necessary to extend the proposed scaling to other particle shapes and to
perform a full comparison with drum flows of spherical particles. We are also interested in the
effect of both friction coefficient between particles and particle shape angularity on the scaling
and crossover from rolling to cascading and from cascading to cataracting regimes. Another
important direction of research concerns the effects of size polydispersity and particle breakage
on the scaling behavior. While we expect that the general scaling proposed in this paper will
not be affected, the numerical parameters involved in the expressions of flow variables as a
function of the scaling parameter may well depend on size polydispersity or evolve with particle
breakage. Actually, this scaling provides also a general framework for quantifying such effects.

Last but not least, the findings discussed in this paper suggest new experiments. The flow
variables such as slope ratio and thickness ratio are easy to measure using particle tracking. The
simple relations between these variables suggested by our simulations, such as the relations
(3.8) and (3.10), can therefore be checked by experiments using model particles of octahedral
shape. By performing experiments with different particle sizes, it is also possible to investigate
the effect of particle size through the scaling parameter Γ for different flow variables. For
example, relation (3.8) predicts that the surface curvature increases with increasing ratio D/d.
Experiments can be used to validate this trend and to determine whether it holds for large values
of D/d and evaluate its limits. We believe that the scaling proposed in this paper holds also for
other particle shapes such as elongated particles. However, due to the effect of particle shape on
the angle of repose, the numerical values of parameters involved in the relations derived in this
paper may change with particle shape. The effect of particle shape can be investigated in parallel
by both simulations and experiments. We currently develop new experiments in the geometry of
rotating drum with the goal of performing a detailed comparison between experiments and the
findings of this paper. The uncertainties associated with possible code-level errors or numerical
model parameters can also be evaluated within this project.
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We introduce a novel approach to particle breakage, wherein the particle is modeled as an
aggregate of polyhedral cells with their common surfaces governed by the Griffith criterion of
fracture. This model is implemented within a discrete element code to simulate and analyze the
breakage behavior of a single particle impacting a rigid plane. We find that fracture dynamics
involves three distinct regimes as a function of the normalized impact energy ω . At low values
of ω , the particle undergoes elastic rebound, and no cracks occur inside the particle. In the
intermediate range, the particle is damaged by nucleation and propagation of cracks, and the
effective restitution coefficient declines without breakup of the particle. Finally, for values
of ω beyond a well-defined threshold, the particle breaks into fragments, and the restitution
coefficient increases with ω due to kinetic energy carried away by the fragments. We show
that particle damage, restitution coefficient, and fracture efficiency (the amount of energy input
consumed for particle fracture) collapse well as a function of dimensionless scaling parameters.
Our data are also sufficiently accurate to scale fragment size and shape distributions. It is found
that fragment masses (volumes) follow a power-law distribution with an exponent decreasing
with fracture energy. Interestingly, the average elongation and flatness of fragments are very
close to those observed in experiments and lunar samples at the optimal fracture efficiency.

4.1 Introduction

Particle breakage is a commonly observed phenomenon in natural flows and industrial processes
involving powders and grains [268–272]. Particle breakage is most of time undesirable, but
it represents also the goal of milling operations, which are known for their energy intensive
nature. Despite extensive past research, particle breakage mechanisms in granular materials
remain poorly understood due to their multi-scale nature, involving material sub-particle scales
to particle scale and up to the packing and process scales [139, 273–275]. The fragmentation
of particles is controlled by the mechanical properties of the particles and their contacts, on
the one hand, and the process operational factors, on the other hand [125, 133, 177, 178, 276,
277]. For instance, the distribution of fragment sizes during the grinding process in ball mills
is influenced by the cohesive strength of single particles, numbers and sizes of grinding balls,
amount of granular material, and other system parameters [121, 178]. The particles can break
under various loading modes such as compression, distortion, shear, and impact. Different
fracture modes generally take place simultaneously during a comminution process in different
parts of the system [51]. To model particle breakage, an important issue is therefore to identify
physical mechanisms at different scales: sub-particle processes at the origin the strength and
potential weaknesses of particles, single particle fracture by impact or forces exerted by other
particles, collective dynamics of particles, and process-scale mechanisms of energy supply to
the particles.

Experimental studies of single particle fragmentation have been carried out to analyze the
fragment mass and size distributions, crack patterns, and failure modes. The masses in the range
of small fragments are often found to follow a power law distribution with exponents that do
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not always seem to be universal but depend on the brittle or ductile nature of fracture and di-
mensionality of the object [139,278–284]. A general observation is that during impact between
two particles plastic deformation develops first around the contact point, then cracks appear
and propagate through the particle and eventually split the particle [278, 285]. Part of supplied
energy is consumed in producing new fracture surfaces inside the particle while a large amount
of the supplied energy is also taken away in the form of the kinetic energy of the fragments after
collision and dissipated by plastic deformations and frictional or inelastic collisions. Impact-
induced fragmentation was found experimentally to generate elongated shapes characterized by
the dimensions a, b, and c of their bounding box. In several reported investigations, the ratios
were found to be distributed around the proportions a : b : c ≃ 2 :

√
2 : 1 [126, 137, 138, 286].

Due to the inherent complexity of experimental measurement of dynamic fracture of a sin-
gle particle or the evolution of a collection of particles in real time, particle dynamics sim-
ulations based on the Discrete Element Method (DEM) have also been developed as an al-
ternative approach for the investigation of particle breakage in granular materials. For ex-
ample, experimental findings of fragment size distributions were reproduced by such simu-
lations [114, 140, 287, 288]. Important results were obtained by DEM simulations such as
crossover from damaged state to the fragmented state at a well-defined value of impact en-
ergy [122, 124–127]. The critical point of this transition was identified as the impact velocity
for which the average fragment mass takes a maximum value [127,132]. The effects of material
properties such as interface energy on the fracture pattern were also investigated [129, 130].

The DEM -based model extensively used for particle fragmentation is known as Bonded
Particle Method (BPM) that simulates a parent particle as an aggregate of spherical particles
[114, 130, 131, 277]. For primary spheres, since the external boundary of the aggregate is used
to represent the particle surface and the aggregate is porous, the volume is not conserved during
fragmentation. In contrast, the primary polyhedra can fill the volume of a particle with zero
porosity and no volume is lost during particle breakage [120, 121, 132, 151]. Furthermore,
in a cluster of polyhedra the bonds coincide with the common surfaces between polyhedra,
so that the breakage of a bond naturally creates a fracture surface. Particle tessellation into
contiguous polyhedra was coined Bonded Cell Method (BCM) [151]. In BCM, each face-
face interaction represents a potential crack and the fracture energy is obtained by multiplying
the area by surface energy [121, 151]. The cell-meshed particles, when they are randomly
distributed, allow for arbitrary fragment shapes if the number of primary polyhedra composing
the particle is sufficiently high [151].

Particle fracture by BCM requires a fracture criterion. Numerical studies reported in the
literature are generally based on force or stress thresholds which lead to brittle behavior while
fracture mechanics requires a model fully based on energy [114,120,126,132,151,277]. In their
model of thermodynamically consistent breakup model, Orozco et al. [121] used a criterion
based on the fracture energy in the framework of the Contact Dynamics method (non-smooth
DEM), which does not account for elastic deflections at the contact points [223]. For this reason,
the debonding criterion was based on the amount of energy absorbed by an interface and it was
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postulated that an interface between two adjacent cells breaks if the total amount of energy
exceeds the fracture energy. Using this criterion they were able to scale particle breakage as a
function of the impact energy in 3D single-particle impact and the evolution of grinding in ball
mills [121, 177].

In this paper, we use BCM with a fracture law that is based on the Griffith criterion of
crack propagation by accounting for elastic energy release in each interface. In other words,
the initial formulation of this criterion in terms of incremental creation of new fracture area, is
coarse-grained for application to finite surface creation. Thus a cell-cell interface breaks only
if the total elastic energy stored per unit interface area exceeds two times the specific fracture
energy. We investigate in detail the breakage of a single particle impacting a rigid plane by
means of extensive simulations. We analyze particle damage, fracture efficiency, and restitution
coefficient as a function of impact energy. We propose functional forms that capture well the
behavior in each fracture regime and transition between different regimes and we compare our
data with those of Orozco et al. [121]. We also have enough data to analyze the resulting
fragment size distributions and particle shapes. As we shall see, our findings are consistent with
previous studies, but they provide a more general picture in the range of weak impact velocities
where rebound and damage of the particle occur without particle fragmentation.

In the following, we first introduce in Section 4.2 the fracture model and the boundary
conditions of impact test. The scaling of breakage behavior is presented in Section 4.3. In
Section 4.4 we analyze the distributions of fragment shapes and sizes. Finally, we discuss the
most salient results of this work in Section 4.5.

4.2 Bonded Cell Method and rupture model

4.2.1 Voronoi tessellation

We use the Bonded Cell Method (BCM) based on the division of the particle into polyhedral
cells interacting with their neighboring cells via an interface characterized by a fracture energy.
Each particle is divided into 1728 cells by Voronoi tessellation using the NEPER software [289].
One possible technique to construct the centroidal Voronoi tessellation is known as the Lloyd’s
method which simply alternates between constructing Voronoi tessellations and mass centroids
[120, 290, 291]. An example of particle model composed of polyhedral cells is shown in Fig.
4-1. For the sake of geometrical consistency between the shape of the parent particle and its
constitutive polyhedral cells, we use truncated pentakis dodecahedron shape composed of 92
faces involving 12 regular pentagons, 20 regular hexagons, and 60 mirror-symmetric hexagons.
The cells (primary particles) have random sizes and shapes but they are always convex and share
their faces with their neighboring cells. A key numerical parameter of BCM is the number of
cells in the particles (both the parent particle and its progeny) to ensure arbitrary fragment
shapes and a meaningful range of fragment sizes. For instance, several phenomena such as
particle shattering, surface breakage, and damage without breakage are well captured by the

84



simulation but the number of cells must be sufficiently high to avoid fragment shapes after
shattering that are controlled by initial Voronoi tessellation [151,178]. It has also been observed
that the fracture process is influenced by the number of cells if it is below 100 [120, 121].

Figure 4-2 displays the size and shape distribution of the primary particles generated by
Voronoi tessellation. The aspect ratio a cell is defined as the ratio of the longest dimension to
the shortest dimension of its bounding box. The diameter of a cell is defined as the diameter of
a sphere having the same volume as the polyhedral cell. We see that the aspect ratios of cells
range between 1 and 1.3 with a mean value around 1.2. Cell diameters mostly range from 0.16
to 0.17 mm, so that the cell sizes are approximately equal. The sizes of the parent particle and
cells are the upper and lower bounds, respectively, of the size distribution of fragments in the
debris generated by particle fracture. The statistical representativity of particle size distribution
in the process of fragmentation depends therefore on their ratio.

Fig. 4-1. Particle model generated by Voronoi tessellation with 1728 polyhedral cells repre-
sented by different colors.
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Fig. 4-2. The distribution of the shapes and sizes of primary particles.
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4.2.2 Interactions between polyhedra

In our simulation model, primary polyhedral cells are smoothed by means of Minkowski sum
with a sphere of desired radius (Minkowski radius). As a consequence, each polyhedron con-
sists of three sub-elements namely vertex which is a small sphere, edge which is a cylinder
connecting two vertices, and face which is a plane connecting at least three vertices. The con-
tacts between two polyhedra are represented by the contacts of its sub-elements, leading to six
contact types such as vertex-face, edge-edge, vertex-edge, vertex-vertex, edge-face, face-face.
The unilateral constraints associated with these contact types do not have the same dimension.
The vertex-face, vertex-edge, vertex-vertex, and edge-edge interactions involve a single contact
point, which can be handled in the same way as contacts between spherical particles. Such sim-
ple contacts represent a single unilateral constraint, see Figs 4-3a, 4-3b. In contrast, a face-face
contact is a plane that needs at least three points for its definition. Therefore, a face-face contact
is equivalent to three simple contacts or unilateral constraints [22, 223]. This implies that at
least three contact points are necessary to represent a face-face contact between two rigid poly-
hedra. Note that, the number of contact points can be larger than 3 depending on the number of
edges, but the number of independent constraints is always 3, see Fig. 4-3d. In a similar vein,
full representation of an edge-face interaction needs at least two contact points, see Fig 4-3c.
Thus the edge-face and face-face contacts can be described as ‘double’ and ‘triple’ contacts,
respectively.

(a) (b) (c) (d)

Fig. 4-3. Different types of contacts between two polyhedra: simple contact (a, b), double
(edge-face) contact (c), and triple (face-face) contact (d).

The Voronoi tessellation of the parent particle leads to a configuration of polyhedral cells
that have face-face, vertex-vertex and parallel edge-edge contacts. We consider only the face-
face contacts to define cohesive interfaces. The edge-edge and vertex-vertex contacts in the cell
configurations are assumed to carry no surface energy and neglected since the internal cohesion
of the particle is carried by the interfaces. However, as the interfaces break and the generated
fragments move during particle fracture, other contact types may appear, but they will be treated
as frictional cohesionless contacts due to the irreversible nature of fracture.

At each contact point between cells, either a linear or a nonlinear force law can be im-
plemented. For smooth particle surfaces with well-defined curvatures at the contact point, the
Hertz law can be used. However, in this paper due to the faceted shapes of the cells, we use
linear elastic law which is equivalent to a linear spring acting the the contact point. This means
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that the behavior of the particle as a whole is linear elastic. Let n⃗ and t⃗ be the normal and tan-
gential unit vectors at a contact point c between particles i and j. The force f⃗ = fn⃗n+ ft⃗t acting
by particle j on particle i at this point of the interface is expressed as a function of the normal
relative displacement (overlap) δn and cumulative tangential displacement δ⃗t . The normal force
law is expressed as

fn =−knδn −2α
√

knm δ̇n, (4.1)

where kn is normal stiffness of inter-cell bonds, δn is normal displacement (with the sign con-
vention that δn < 0 is an overlap and δn > 0 is a gap), δ̇n is the relative normal velocity, m is
the reduced mass of the two particles, and the dimensionless damping number α takes a value
between 0 and 1. The viscous damping term accounts for normal energy dissipation and α is a
function of restitution coefficient en:

α =


− logen√

(logen)2+π2
for 0 < en ≤ 1,

1 for en = 0.
(4.2)

In our simulations, en is set to a value close to 1 in order to showcase the effect of particle elas-
ticity on fracture in contrast to previous simulations in which en was set to zero. The tangential
force is given by:

f⃗t =−kt δ⃗t −2α
√

knm v⃗t , (4.3)

where kt is the tangential stiffness, and v⃗t =
˙⃗
δt is relative tangential velocity. For internal bonds

between cells there is no friction unless the interface fails and transforms into a frictional con-
tact; see below. Hence, as long as an interface between two cells has not failed, the only source
of dissipation is viscous damping.

4.2.3 Rupture criterion

Thermodynamically, the creation of cohesionless surface and crack propagation obeys the Grif-
fith criterion. According to this criterion, a crack propagates if the rate of elastic potential
energy released by surface creation is above the fracture energy. The Griffith formulation is
based on a differential criterion with the assumption that crack growth is a continuous process.
Hence, it can not be applied as such to a cell-cell interface of finite area S in BCM. For this
reason, a ‘coarse-grained’ form of the energy criterion should be applied by considering a finite
variation ∆Wp of the elastic energy. This condition for the creation of a surface equal to S can
be expressed as [121, 292]:

−
∆Wp

2S
= G ≥ Gc, (4.4)

where Gc is fracture energy per unit surface, the so-called toughness, and G is energy release
rate.

Since the elastic energy associated with the interface vanishes when the bond fails, ∆Wp

is actually the total potential elastic energy of interface. Furthermore, since the compressive
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failure threshold is very high compared to the threshold in tension, we set the threshold in
compression to infinity. Hence, ∆Wp must involve only the forces in tension:

∆Wp = ∑
i∈S

(
f 2
ni

2kn
H(δni)+

f 2
ti

2kt

)
, (4.5)

where the function H(δni) is the Heaviside function defined by:

H(δni) =

0 if δni ≤ 0,

1 if δni > 0.
(4.6)

This assumption implies that compressive forces do not contribute to fracture. Figure 4-4 shows
a strength envelope based on Eqs (4.4) and (4.5). This envelop is simplified by considering a
single contact point belonging to the interface. Since the interface involves at least three contact
points, the strength envelope should be represented in a six dimensional space.
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Fig. 4-4. Strength envelope of a single contact point belonging to an interface between polyhe-
dral primary cells.

Once G ≥ Gc, the cohesive bond fails and all contacts of this interface become frictional
without cohesion. If the gap created as a result of interface deformation is nonzero (δn > 0),
the normal and tangential forces are both zero and the newly created contact is open. Otherwise
(δn ≤ 0) the contact remains active and the relation between the normal force fn and the overlap
δn is given by Eq. (4.1). Note that, if the viscous damping term makes fn negative, we set fn to
zero. This is necessary to avoid negative normal forces at cohesionless contacts [293]. In our
simulations, we also set the restitution coefficient en for frictional contacts to a value close to
zero while the restitution coefficient for internal bonds between cells is high; see Table 4-1.

The tangential force of frictional contacts is governed by the Coulomb friction law:

ft = min{|kt δ⃗t |, µs fn}, (4.7)
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Parameter Symbol Value Unit
Number of cells Nc 1728 -
Particle density ρs 6000 kg/m3

Gravity acceleration g 9.81 m/s2

Impact velocity v0 [0.5;10] m/s
For frictional contacts
Normal stiffness kn 108 N/m
Tangential stiffness kt 8×107 N/m
Restitution coefficient e2

n 0.001 -
Friction coefficient µs 0.3 -
For cohesive bonds
Normal stiffness kn 107 N/m
Tangential stiffness kt 0.8×107 N/m
Restitution coefficient e2

n 0.999 -
Fracture energy Gc [0.2;2.0] J/m2

Table 4-1. Simulation parameters for impact test of single particle with a rigid plane.

where kt is tangential stiffness of frictional contact, and µs is the interparticle friction coefficient.
The values of normal and tangential stiffnesses and restitution coefficients are given in Table 4-
1. The orientation of the tangential force t⃗ is opposite to either the relative elastic displacement
δ⃗t below the Coulomb threshold or the relative velocity v⃗t at the contact point when the Coulomb
threshold is reached.

4.3 Scaling of breakage behavior

We performed 3D impact tests of a single particle with a rigid plane. The particle is placed
close to the horizontal plane and given an initial velocity v0. The impact energy (kinetic energy
before collision) is varied by changing the impact velocity in the range given in Table 4-1. The
parent particle diameter is 2 mm in all tests. Each impact test was repeated 5 times, each with a
different tessellation of the particle into cells. All our data points correspond to average values
over the 5 tests with an error bar representing their standard deviation. We note that the point
of impact with the plane should be random, so that the particle, which has a polyhedral shape,
can fall on a face, edge, or vertex. To avoid systematic errors due to this effect, we rotated the
particle in a random direction with a random angle before each impact test. As we shall see
below, the error bars are generally small, meaning that particle orientation has little effect on
the fragmentation process. For the parametric study, we also changed the fracture energy Gc, as
shown in Table 4-1.

During an impact, part of the initial kinetic energy W−
k =mv2/2 of the particle is transmitted

to the fragments. Note that v is pre-collision velocity of particle. Since the particle is placed very
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close to the rigid plane, we have v ≃ v0. Let W+
k be the total kinetic energy of the fragments

after collision. The difference Wd = W−
k −W+

k is consumed in fracture and other dissipative
interactions, including friction and inelastic collisions between fragments. If A is the total
cohesiveness surface area created during fracture, the total fracture energy is given by

Wf = 2A Gc. (4.8)

We also define the total surface energy Ws = 2A0Gc which is the total energy required to break
all interfaces of the total initial area A0. Hence, particle damage Dw can be defined as

Dw =
Wf

Ws
=

A

A0
. (4.9)

By definition, Dw varies from 0 to 1.
Figure 4-5 displays particle damage Dw as a function of impact velocity v, for different

values of fracture energy Gc. The damage first increases rapidly with v and then slowly tends to
a constant value. The maximum value of damage is below 1, meaning that despite huge initial
kinetic energy, the cell-cell interfaces do not break entirely apart. As we shall see, since the
number of primary cells is sufficiently high, elongated fragments composed of several cell-cell
interfaces are generated. Examples of particle fragmentation are shown in Fig. 4-6 for several
values of fracture energy Gc with impact velocity v= 4.5 m/s. Obviously, the damage of particle
with smaller values of Gc is higher at the same impact velocity v and increases faster than those
of larger Gc. We also see that the error bars are small, indicating that the variability of fracture
as a result of the variations of impact position is not significant.
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Fig. 4-5. Particle damage Dw versus impact velocity v for different values of fracture energy
Gc. For each test, the error bar represents standard deviation over 5 independent tests.

In the comminution process, the amount of energy consumed for fracture as a function of
impact energy is one of the most important aspects that must be considered thoroughly. We
define the fracture efficiency η as the ratio of the total energy Wf consumed for fracture to the
impact energy

η =
Wf

W−
k
. (4.10)
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Fig. 4-6. Fragmentation of a particle impacting a rigid wall for different values of fracture
energy Gc. The simulation was carried out with an impact velocity of 4.5 m/s.

Comminution is generally not an efficient process in the sense that most of the supplied energy
is not consumed in fracture. It is thus interesting to see how the value of η for a single particle
depends on the impact parameters.

The evolution of η as a function of impact velocity v for different values of Gc is shown in
Fig. 4-7. We see that fracture efficiency first decreases to a minimum value of the order of 0.05
and then it increases rapidly with v up to a peak value of the order of 0.2. After the peak, it
slowly declines towards a nonzero asymptotic value depending on Gc. The velocity at which η

takes its peak value increases with Gc. The variation of η in our study is consistent with previous
studies [121], except for the initial decrease of η at low impact velocity v. This decrease as a
function of impact velocity reflects energy loss by inelastic interactions and opening of cracks
inside the particle in the vicinity of the impact point. Since cracked interfaces are governed by
frictional contact interactions, the loss of energy at the increasing number of such contacts grows
with velocity and leads to a lower amount of energy available for fracture. Note also that the
velocity at which η reaches its minimum value increases with Gc. The unmonotonic behavior of
the evolution of η means that there is a characteristic velocity at which the conversion of kinetic
energy to fracture is optimal. As we shall see, below and above the characteristic velocity the
supplied energy is, to a large extent, either dissipated by inelastic collisions or taken away by
the fragments.

During fragmentation, the kinetic energy of the parent particle can be dissipated by viscous
damping between the particle and the rigid plane, plastic deformation, and damage of the par-
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Fig. 4-7. Fracture efficiency η versus impact velocity v for different values of fracture energy
Gc.

ticle or transferred to the fragments. We define an effective restitution coefficient ek from the
ratio of the pre-impact and post-impact kinetic energies:

e2
k =

W+
k

W−
k
. (4.11)

The evolution of e2
k as a function of impact velocity is shown in Fig. 4-8. Consistently with the

initial decrease of η , the squared restitution coefficient e2
k decreases from a value close to 1 since

the restitution coefficient between primary cells is close to 1. From a value of v at which fracture
efficiency η reaches its minimum, e2

k starts declining rapidly to a minimal value that decreases
with increasing fracture energy Gc and then increases again. The restitution coefficient at high
impact velocity is larger for lower values of Gc.
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Fig. 4-8. Squared restitution coefficient e2
k as a function of impact velocity v for different values

of fracture energy Gc.

These results show that the evolutions of Dw, η and e2
k as a function of v differ according to

the value of the fracture energy Gc. This is an expected behavior since the induced fracture by
impact energy W−

k directly depends on the surface energy. Thus we define a normalized impact
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energy ω as the ratio of supplied energy W−
k normalized by total surface energy Ws:

ω =
W−

k
Ws

. (4.12)

We naturally expect that the simulation data collapse when expressed as a function of this di-
mensionless energy ratio ω .
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Fig. 4-9. Squared restitution coefficient e2
k as a function of normalized impact energy ω on

log-log scale for different values of fracture energy Gc. The dotted lines are the fitting forms of
Eqs.(4.13) and (4.14).

Figure 4-9 displays the evolution of e2
k as a function of ω on the log-log scale. We see that

all data points fall into three distinct regimes with two well-defined crossover values ω0 and
ω1. The data nearly collapse on a master curve in the first two regimes, but differ slightly in
the third regime. In the range ω < ω0 ≃ 0.3, e2

k decreases slowly. In this regime, the particle
is not broken and only a small fraction of the supplied energy is used to create cracks close
to the impact point. There is otherwise no crack inside particle. In the range of intermediate
values ω0 < ω < ω1 ≃ 2.0, the restitution coefficient declines rapidly with increasing ω due
to increasing number of cracks created inside the particle. Finally, in the range ω1 < ω , the
particle breaks into an increasing number of fragments as a function of ω and the restitution
coefficient increases gradually and linearly in log-log scale. It is noteworthy that the first two
regimes of Fig. 4-9 were not clearly observed in simulations of Ref. [121] due to the low value
of restitution coefficient in those simulations. But the crossover to particle fragmentation occurs
at the same value ω1 ≃ 2.0 as in our simulations despite differences in the numerical methods
employed.

Figure 4-9 also shows that the whole range of the first two regimes ω < ω1 is well fit to a
double power-law function:

e2
k =

1

a
(

ω

ω0

)m
+b
(

ω

ω0

)n , (4.13)

with prefactors a = 0.058 and b = 1.165, and exponents m = 1.9 and n = 0.024. The data do
not exactly collapse as a function of ω in the second and third regimes. Higher values of Gc
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lead to lower values of ek at ω1. The values of parameters for the above fitting form slightly
depend on Gc. We used the highest value of Gc to obtain their values. It is also remarkable that
in the third regime, the data seem to tend to an asymptotic power law function as ω increases:

e2
k = c

(
ω

ω1

)k

, (4.14)

where c = 0.3 and k = 0.11.

10−4

10−3

10−2

10−1

100

ω0 ω10.01 0.1 1 10 100

D
w

ω

Gc = 0.2 J/m2

Gc = 0.5 J/m2

Gc = 1.0 J/m2

Gc = 2.0 J/m2

Fig. 4-10. Particle damage Dw as a function of the normalized impact energy ω on log-log
scale. The dotted lines are the fitting forms shown in Eqs. (4.15) and (4.16).

Figure 4-10 shows particle damage Dw as a function of ω . Here, all the data nicely collapse
on a single increasing function of ω . In the low-energy regime, Dw increases from 10−3 to
10−2. In the second regime, it increases faster from 10−2 to 0.2. In the third regime, it increases
from 0.2 towards 1. For the first two regimes, the following fitting function captures well the
data:

Dw =
a′(ω/ω0)

1+b′(ω/ω0)
, (4.15)

with a′ = 0.022 and b′ = −0.175. In the high-energy regime, the following form suits well to
the data:

Dw =
c′(ω/ω1)

1+d′(ω/ω1)
, (4.16)

where c′ = d′ = 0.403, ensuring that as ω → ∞, Dw tends to 1.
According to Eqs (4.9) and (4.10), we have η = Dw/ω . We may therefore express η as a

function of ω from that of Dw. Hence, for the low and intermediate-energy regimes, we have

η =
a′/ω0

1+b′(ω/ω0)
. (4.17)

For the high-energy regime, we have

η =
c′/ω1

1+d′(ω/ω1)
. (4.18)

The evolution of fracture efficiency η as a function of ω together with these fitting forms are
displayed in Fig. 4-11. In the first regime, η decreases slightly from 0.1. However, in the
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second regime at which part of supplied energy contributes to crack nucleation, η increases
with ω before reaching the peak value around ω = ω1. We see that the fitting form (4.17) does
not exactly capture the initial decrease of η but it follows the data points within the available
statistical precision. The third regime is excellently captured by the proposed fit. In this regime,
η declines although particle damage Dw increases. This means that the amount of energy con-
tributing to particle breakage increases, but it requires an excess energy supply which increases
faster, leading thereby to fast reduction of η .
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Fig. 4-11. Fracture efficiency η as a function of normalized impact energy ω . The dotted lines
are the fitting forms (4.17) and (4.18).

Another variable of interest is the ratio χ of the post-impact kinetic energy to the fracture
energy:

χ =
W+

k
Wf

. (4.19)

This variable quantifies the relative weight of the energy transported by the fragments with
respect to that consumed in particle breakage. It can be expressed as a function of ek and η :

χ =
e2

k
η
. (4.20)

Given the fitting forms of ek and η as a function of ω , the evolution of χ in the first and second
regimes must be captured by the following fitting form:

χ =
ω0 +b′ω

a′a
(

ω

ω0

)m
+a′b

(
ω

ω0

)n , (4.21)

and for the third regime by

χ =
c
c′
(ω1 +d′

ω)

(
ω

ω1

)k

, (4.22)

The evolution of χ as a function of ω on the log-log scale is shown in Fig. 4-12 for different
values of Gc. The fitting form is close to the data points in the first two regimes within statistical
precision but does not capture well the trend in the first regime, while in the third regime it
follows well the data points. The value of χ increases from 10 to 18 in the first regime, implying
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that the kinetic energy of fragments is high compared to the energy consumed for fracture,
which should be vanishingly small in the absence of crack generation. Then, it decreases in the
second regime at which the energy consumed for crack generation increases faster than kinetic
energy. It reaches its minimum value coinciding with the peak of η as shown in Fig. 4-11. At
this point, we have χ ≃ 1, which means that the amount of energy consumed at this point for
fracture is nearly equal to that carried away by the fragments. In the third regime χ increases
again due to the faster increase of the kinetic energy of fragments than the energy consumed by
breakage.

1
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Fig. 4-12. Fragmentation efficiency η as a function of the normalized impact energy ω . The
dotted lines are the fitting forms (4.21) and (4.22).

It is also interesting to consider the energy Wc dissipated by inelastic collisions and friction:

Wc =W−
k −W+

k −Wf . (4.23)

We normalize this energy by the total surface energy Ws and the following expression can be
easily established:

Wc

Ws
= ω

(
1−η − e2

k
)
. (4.24)

The evolution of this ratio as a function of ω is displayed in Fig. 4-13 for ω > ω1 where particle
breakage occurs. It increases almost linearly with ω with slope ≃ 1/2 up to very high values of
ω . This implies that approximately half of the supplied kinetic energy is dissipated by contact
inelasticity and friction when the particle breaks. The remaining half is either used for fracture
or carried away by the fragments.

4.4 Fragment sizes and shapes

The shapes and sizes of fragments reflect the fragmentation process. Several experimental
studies have shown that the fragments of rock generated by explosion or impact have an elon-
gated shape and the probability distribution of the fragment masses is a power-law function
[114, 137–139]. To define an appropriate shape descriptor, we construct the bounding box of
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Fig. 4-13. Normalized energy dissipated by inelastic collisions and friction Wc/Ws versus nor-
malized impact energy ω for ω > ω1.

each fragment with principal axis c ≤ b ≤ a as shown in Fig. 4-14. The length a of the bound-
ing box is the longest dimension of the fragment, b is the largest distance perpendicular to the
direction of a, and c is defined as the largest distance perpendicular to the plane determined by
a and b. The shapes of fragments can be described in terms of the elongation ratio b/a and
flatness ratio c/b. The inverse values a/b and b/c represent the two aspect ratios.

Fig. 4-14. The space dimensions of a fragment according to its bounding box in three mutually
orthogonal planes (a ≥ b ≥ c).

We consider the average value of elongation ratio and flatness ratio calculated over all frag-
ments generated as a result of particle breakage. We neglect the fragments composed of a
single primary cell in order to remove the effect of Voronoi tessellation. The values of ⟨c/b⟩
and ⟨b/a⟩ are shown in Fig. 4-15 as a function of ω for ω > ω1. The minimum values of elon-
gation ratio ⟨b/a⟩ and flatness ratio ⟨c/b⟩ are ≃ 0.69 and ≃ 0.77, respectively. Interestingly,
these values are close to the data obtained from particle size and shape distributions in lunar
samples [137,138,294]. The ratio c/b increases and tends to a constant value ≃ 0.88 while b/a
slightly decreases and remains constant and equal to 0.69. It has been argued that this ratio rep-
resents a self-similar shape: once broken into two equal fragments, each fragment has the same
elongation ratio as the parent particle [138]. Mathematically, the ratio of self-similar shape by
this operation is

√
2/2 ≃ 0.7.
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Fig. 4-15. The average shape descriptors as a function of normalized impact energy ω for all
values of fracture energy Gc, (a) the flatness ratio ⟨c/b⟩ and (b) the elongation ratio ⟨b/a⟩.

Another quantity that has been used for the characterization of particle shape is the shape
factor S f defined as [139]:

S f = (1/a+1/b+1/c)
√

a2 +b2 + c2/
√

3. (4.25)

This parameter reaches its lowest value S f = 3 for nearly spherical fragments with a ≃ b ≃ c,
while elongated shapes have larger values S f > 3. To quantify the statistics of occurrence of
different shapes of fragments, we determined the probability distribution p(S f ) of the shape
factor. Note that we gather data of fragment shapes for different impact velocities v together
to gain large enough data sets for calculating distribution function. Figure 4-16 shows that the
simulation data for all values of Gc collapse on a curve which has a decreasing exponential
form for S f > 3.2. This is in remarkable agreement with the experimental results of Ref. [139]
although the fragments in our simulations result from single-particle fracture rather than a multi-
particle granular process. The mean value of S f is about 3.3 for all cases in our simulations.

We also investigated the probability distribution p(m) of fragment masses. Several previous
studies suggest that the distribution is generically a power-law function:

p(m)∼ m−τ . (4.26)

It seems that the value of the exponent τ is not universal but depends on the material or the
amount of energy consumed for fragmentation [123, 139, 142, 274, 287, 295]. Figure 4-17
presents the fragment mass distributions p(m) for different values of fracture energy Gc on the
log-log scale. The masses of fragments m are normalized by the maximum mass mmax. We ob-
serve here a power-law behavior for all values of Gc. The value of exponent at Gc = 0.2 J/m2 is
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Fig. 4-16. Probability distribution of the shape factor S f on semilogarithmic plot for all values
of fracture energy Gc and impact velocity v.

τ = 3.0, but decreases as Gc increases. For Gc = 2.0 J/m2, we find τ = 2.1. The value of τ in our
study is higher than the value τ = 5/3 proposed for three-dimensional solids [114,139,287,296].
It is important to recall here again that particle size distribution resulting from the comminu-
tion of a granular material is a consequence of the combined effects of stress distribution in-
side the material and single-particle fragmentation process. For this reason, the size and shape
distributions of single-particle impact may differ from those of a granular process involving
multicontact stress transmission.
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Fig. 4-17. Fragment mass distributions p(m) for different values of the fracture energy Gc. The
solid line shows the power function (4.26) with τ = 3.0 for Gc = 0.2 J/m2 and the dotted line
with τ = 2.1 for Gc = 2.0 J/m2.

4.5 Conclusions

In this paper, a fracture law based on the Griffith criterion was used with the Bonded Cell
Method implemented in a 3D DEM code for the simulation of the fracture behavior of a single
particle impacting a rigid plane. The particle is discretized by means of Voronoi tessellation
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into polyhedral cells whose interfaces represent potential cracks while the cells and their com-
binations represent potential fragments. The fracture law implies that a cell-cell interface fails
if the energy release rate is above the fracture energy. Our results of single-particle fracture
compare well with both past simulations of the same process and recent experimental data.

Our simulations show that the behavior of the impacting particle involves three distinct
regimes depending on the ratio ω of the impact energy to the fracture energy of the particles.
Our results are consistent with previous experimental and numerical findings, in which our
two first regimes correspond to damaged state and high-energy regime is coincident with frag-
mented state. This behavior makes appear two critical energy ratios which determine whether
the particle breaks or it simply rebounds with or without being damaged. For different values of
fracture energy, we showed that several physical variables such as particle damage, restitution
coefficient, fracture efficiency, and the amount of energy dissipated by inelastic collisions and
friction are well scaled by ω . The fracture efficiency is an unmonotonic function of impact
energy with its optimal value at crossover to the third regime where particles break into several
pieces. We found that In the third regime, nearly half of the input energy is dissipated by contact
inelasticity and friction, the other half being either consumed for fracture or carried away by the
fragments generated as a result of particle breakage.

We also found that the distribution of fragment masses is a power-law function with an
exponent slightly decreasing with fracture energy. It is remarkable that the shape descriptors of
the fragments such as flatness ratio and elongation ratio have generic values previously observed
in real samples of granular materials. In particular, we found that the fragments in the whole
range of values of ω have an average aspect ratio which is nearly equal to

√
2, a value that hints

at a self-similar shape. This self-similarity is consistent with the existence of a power-law size
distribution, which is a consequence of the absence of characteristic lengths (between cell size
and initial particle size) in the system.

It will be important to extend this work to a broader parametric study to assess the general-
ity of the scaling behavior evidenced in this work. For example, the initial particle used in our
simulations is undamaged and its total surface energy Ws is constant. It will be interesting to
consider damaged initial particles (containing pre-cracks) to study the effect of varying Ws on
the dependence of restitution coefficient and damage on ω . Furthermore, the restitution coef-
ficient can be set to lower values to study its effect on the two first regimes and the crossover
values of ω . In longer terms, we would like to use our results to predict the fracture of particles
in rotating drums and during quasi-static deformation of granular materials. Extensive simula-
tions will be performed in both configurations for the scaling of particle breakage as a function
of system parameters to obtain clues for the scale-up of comminution from particle scale to a
collection of particles.
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Chapter 5

General conclusions and perspectives

5.1 Summary

The main objective of this PhD work was to apply advanced particle simulations based on
Discrete Element Method (DEM) to investigate quasistatic and dynamic granular flows of
polyhedral-shaped particles and modeling particle breakage for the simulation of the comminu-
tion process in rotating drums. Our numerical developments and simulations were carried out
by means of the simulation code Rockable. We did new developments during this doctoral work
to optimize contact detection between cylindrical walls of the rotating drum and polyhedra, and
to implement fully periodic boundary conditions with the possibility of controlling either dis-
placement or pressure in every space direction. Periodic boundary conditions were also used
along the rotating drum axis. The code was parallelized and efficiently used for all simulations
on multiple processors.

We focussed on 1) the elasto-plastic behavior of samples composed of polyhedral and spher-
ical particles under tri-periodic boundary conditions and its relation with the microstructure, 2)
the scaling behavior of cascading flows of polyhedral particles in a rotating drum, and 3) the
breakage dynamics of a single polyhedral particle. The methodology developed for the simu-
lation and the micromechanical and scaling analysis of these different configurations lays the
foundations for realistic 3D simulations and analysis of the grinding process in rotating drums
with potential application to the fabrication process of nuclear fuel. The ultimate aim is to pro-
vide a generic and reliable framework combining discrete mechanical simulations with physical
analysis to optimize the properties of multi-component powders while minimizing the energy
cost.

For elastic behavior of granular packings, we found that the orthotropic elastic moduli under
triaxial boundary conditions can be expressed as a function of contact network variables such as
connectivity and contact orientation anisotropy. The proposed expression does not depend on
particle shape, but involves coefficients that depend on particle shape. We argued that accurate
determination of these coefficients makes it possible to predict the evolution of elastic moduli
with strain. This expression therefore reveals three different origins of elastic moduli, namely
a stress scale, an isotropic part, and an anisotropic part. The stress scale depends on the force
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model, and its value is simply given by the ratio of contact stiffness and particle diameter. We
compared the elastic moduli with the predictions of the effective medium theory (EMT) and
discussed important differences and similarities between them. We showed that the particle
shape affects the elastic moduli through our model parameters which do not depend on friction
coefficient, but relate to nonaffine displacement field and through its impact on the contact
network which depend on friction coefficient. We also showed that the level of nonaffinity
is the same for the simulated shapes during compression, underlying the constant values of
the model parameters. This expression also reveals how the face-face and face-edge contacts
enhance the elastic moduli compared to spherical particle packings.

For the influence of polyhedral particle shapes on the cascading flow regime in rotating
drums, extensive simulations were performed for a broad range of values of rotation speed,
drum diameter, particle diameter, and filling degree. By a detailed analysis of flow variables
such as the average and maximum slopes of free surface, flow thickness, shear rate, and iner-
tia number in the active layer, we found a unique dimensionless scaling parameter combining
Froude number, ratio of drum to particle diameter, and filling degree. We showed that this scal-
ing parameter works also for spherical particles thereby highlighting the effect of polyhedral
particle shape through differences between model parameters. We also analyzed on the effect
of particle coarsening and we showed that it is consistent with our scaling of flow variables.

For impact-induced breakage of single particle, we introduced a breakage model fully based
on the fracture energy. In this bonded-cell model, the cell-cell interface breaks only if the elastic
energy stored in the whole interface exceeds the fracture energy. We found that the impact
process involves three distinct regimes: 1) low-energy regime, 2) intermediate-energy regime,
and 3) high-energy regime. The critical transition impact energies between these regimes was
identified by a detailed analysis of breakage variables. We proposed fitting forms that correctly
adjust the evolution of breakage variables as a function of impact energy. We also found that
the distribution of fragment masses is a power-law function with an exponent depending on the
fracture energy.

5.2 Extensions and outlook

The 3D simulation of granular flows of breakable particles in rotating drums with and without
grinding balls is a natural extension of this PhD work. Several key issues can be investigated by
means of parametric simulations:

1. How does particle breakage influence the flow behavior in the cascading regime?

2. How does particle breakage scale with system parameters?

3. How does the microstructure evolve during comminution?

4. What is the optimal number of grinding balls for efficient milling with regard to energy
consumption and grinding time?
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5. How does grinding rate scale with drum size?

6. How do the breakage index and particle size distribution evolve with time?

These issues already been considered in previous 2D simulations in a rotating drum [65, 177].
But similar simulations in 3D requires much higher computational power and algorithmic de-
velopments some of which have been done during this thesis.

Fig. 5-1. Fragmentation of particles in a cubic box as a representative volume element with
fully periodic boundary conditions.

Another issue that was considered in the context of the scaling of cascading flows is particle
coarsening. We found that particle coarsening with the rules that were used in this work was
consistent with our data. These rules need, however, to be re-examined in the case of breakable
particles. This is because in the framework of the bonded cell method the energy needed for the
fracture of an interface depends on its area and varies as the square of particle size while the
kinetic energy depends on the particle size to power three.

Apart from particle breakage, the flow behavior in the cascading regime can be further in-
vestigated by considering the effects of rough drum walls. We found that the sliding of particles
at the walls is negligible for polyhedral particles. However, the effect of wall roughness on
the flow of spherical particles needs to be investigated to validate the comparison made with
polyhedral particles. In the same way, we assumed periodic conditions along the drum axis.
However, there are reports indicating that the friction with end walls plays a role in the charac-
teristics of flow. A systematic analysis of the effect of friction coefficient with the end walls and
the distance between the two end walls for polyhedral and spherical particles. It is also obvious
that more simulations with polyhedra of irregular numbers of faces must also be performed in
the future to analyze in a systematic way the effect of particle shape angularity on the nature of
the flows.
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Another important challenge will be to validate and/or calibrate simulations by direct com-
parison with experiments. Such experiments require model breakable particles, the possibility
of modifying particle size and drum size, and measurement of particle size distributions during
the milling process. These comparisons can be made by comparing the evolution of particle size
distribution between simulations and experiments. Furthermore, the particle shapes and sizes in
experiments can also be extracted from tomographic images. This technique has already been
applied to investigate particle breakage under quasi-static conditions [297].

Regarding elastic moduli, as far as we know, they have never been measured for polyhedral
particles. Moreover, most DEM simulations of polyhedral particles are based on contact forces
calculated using the penalty method based on the overlap volume between particles. This ap-
proach is clearly not physically well founded because it does not differentiate different types
of contacts between polyhedra. This is most crucial for face-face contacts that involves three
geometrical constraints between two particles. It would be therefore interesting to compare
the elastic moduli measured from our simulations with those obtained from the volume-overlap
approach. They both must also be compared with experiments with well-calibrated particle
shapes. Another very important extension of this work consists in simulating triaxial com-
pression of other particle shapes (elongated, platy, nonconvex) and applying strain probes to
measure the evolution of elastic moduli in order to calculate the coefficients of the linear model
as a function of constraint number and fabric anisotropy proposed in chapter 2. This will allow
generalizing our model to arbitrary particle shapes or to determine its limitations.
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Appendix A

Polyhedral particle packings under
triaxial compression

We prepared three different packings of octohedral, dodecahedral, and icosahedral shapes, each
of them composed of 8000 monodisperse particles enclosed in a triperiodic cubic cell such that
either force or displacement can be controlled in each direction [188,226,298]. We prepared one
more spherical particle packing with exactly the same number of particles, values of parameters,
and boundary conditions. We started with a gas of particles that undergoes isotropic compres-
sion by the application of a constant isotropic stress p. The gravity g and interparticle friction
coefficient µs are set to zero. For this reason, we obtained dense isotropic samples correspond-
ing to a Random Closed Packing (RCP) of solid fraction Φ ≃ 0.611 for octahedral particles,
Φ ≃ 0.648 for dodecahedral particles, Φ ≃ 0.632 for icosahedral particles, and Φ ≃ 0.637 for
spherical particles. Figure A-1 displays three snapshots of the polyhedral particle packings at
the end of isotropic compaction.

The isotropic packings prepared without friction were sheared by triaxial compression for
four value of friction coefficient µs = 0.1, 0.2, 0.3, and 0.4 between particles. The compression
was applied along the z axis by imposing a small constant strain rate ε̇z while keeping the same
stress p in lateral directions x and y. Since we are interested in quasistatic behavior, the shear
rate should be such that the kinetic energy supplied by shearing is negligible compared to the
applied lateral pressure. This can be formulated in terms of an inertia number I defined by [11]

I = ε̇zd
√

ρ

p
, (A.1)

where ρ is particle density and d is mean particle diameter. The quasi-static limit is character-
ized by the condition I < 10−3, which is remained during shearing [179, 299].

A.1 Strength and dilatancy

In this section, we consider the stress-strain and volume change behaviors as a function of the
particle shape and friction coefficient µs. To evaluate stress tensor, we start with the tensorial
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(a) (b)

(c)

Fig. A-1. A snapshot of the octohedral (a), dodecahedral (b), and icosahedral (c) particle pack-
ing.

moment MMMi of each particle i which is defined by [186, 300]

Mi
αβ

= ∑
c∈i

f c
αrc

β
, (A.2)

where f c
α is the α component of the force exerted on particle i at the contact c, rc

β
is the β

component of the position vector of the same contact c, and the summation runs over all contact
neighbors of particle i (noted briefly by c ∈ i). The average stress tensor σσσ in the volume V
of the granular assembly is given by the sum of the tensorial moments of individual particles
divided by the volume [23, 258]

σαβ =
1
V ∑

i∈V
Mi

αβ
=

1
V ∑

c∈V
f c
αℓ

c
β
, (A.3)

where ℓc
β

is the β component of the branch vector joining the centers of the two touching
particles at the contact c. Note that, the first summation runs over all particles whereas the
second summation involves the contacts, each contact appearing only once.

Under triaxial conditions, the principal stresses and strain rates coincide with the three space
directions with σ1 and ε1 along the z direction, σ2 = σ3, and ε2 ≃ ε3. The mean stress p, and
stress deviator q are defined by:

p = (σ1 +2σ3)/3,

q = (σ1 −σ3)/3,
(A.4)
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and cumulative volumetric strain εp, cumulative shear strain εq are given by:

εp = ε1 +2ε3,

εq = ε1 − ε3.
(A.5)

For our system, the stress state is characterized by the mean stress p and the stress ratio q/p.
Figure A-2a displays the stress ratio q/p versus shear strain εq of dodecahedral and spherical
particle packings with different friction coefficient µs. Due to initially high value of solid frac-
tion Φ, q/p quickly reaches the peak value and then decreases before approaching toward a
stress plateau corresponding to the so-called critical state at ∼ 60% of shear strain. Note that,
due to three-periodic boundary conditions, no shear band develops in our systems. We also see
that the peak value of q/p increases with µs. Cumulative volumetric strain εp as a function of
shear strain εq is shown in Fig. A-2b. Starting with initially dense state, shear strain-volumetric
strain curves first decrease from zero to negative values at very small value of εq and this means
that the packings are compressed. Then, they increase to positive values corresponding to dila-
tion of all packings and there exits a linear relation between the volume change and the change
of the shear strain. The variation of q/p and εp of octahedral and icosahedral particle packings
follow a similar evolution with shear strain.
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Fig. A-2. (a) Stress ratio q/p versus shear strain εq in log-linear scale, (b) cumulative volumet-
ric strain εp versus shear strain εq in linear scale for packings of dodecahedral and spherical
particles with four values of friction coefficient µs. The inset shows the same plot in the range
εp < 10−4. The dashed and solid lines are for spheres and dodecahedra, respectively. Only few
data points are shown for the sake of clarity.

We also consider the angle of friction ϕ expressing the ratio of a shear stress to a normal
stress, and can be defined in terms of principal stresses. Combining with Eq. (A.4), we have

sinϕ =
σ1 −σ3

σ1 +σ3
=

3q
2p+q

. (A.6)

It is important to note that the definition of the angle of friction remains unchanged for different
stress conditions (e.g. triaxial compression, plane strain). The dilation angle, ψ commonly
used to represent the dilation characteristic of soil, is defined clearly for plane strain conditions.
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However, the extension of the definition of ψ to other than plane strain conditions need to
be treated with more care. Although several definition of ψ have been used [301–303] under
axi-symmetric loading conditions, the usual definition employed is [301, 304]:

sinψ =
−(ε̇1 + ε̇2 + ε̇3)

ε̇1 − ε̇3
=

−ε̇p

ε̇q
. (A.7)

The minus sign in Eq. (A.7) arises simply from the convention that compressive stresses and
strains ae taken as positive, and is introduced so that the angle of dilation is positive when the
sample expands. The superposed dots to indicate the strain rates used in plasticity theory, in
which the time increment is artificial. The equation could just as well be expressed in terms of
strain increments δε rather than strain rate ε̇ .

The angle of dilation should strictly be defined in terms of the plastic components of the
strain rates, not the total strain rates. If the strain rate ε̇ is divided into elastic and plastic
components ε̇ = ε̇e + ε̇ p then Eq. (A.7) should be modified to:

sinψ =
−(ε̇ p

1 + ε̇
p
2 + ε̇

p
3 )

ε̇
p
1 − ε̇

p
3

. (A.8)

In theory this important distinction means that the determination of the angle of dilation from a
test becomes much more difficult, since it depends on the estimate of elastic strains. In practice
the distinction is less important since the elastic strains ae much smaller than the plastic strains
and the difference between Eqs. (A.7) and (A.8) is small. After stress peak, we assume that
elastic strain rates are sufficiently small that Eq. (A.7) can be used with adequate accuracy [301].

-1.0

-0.5

0.0

0.5

1.0

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

ψ
(r
a
d
)

εq

µs = 0.1
µs = 0.2

µs = 0.3
µs = 0.4

(a)

0.0

0.2

0.4

0.6

0.8

-1.0 -0.5 0.0 0.5 1.0

ϕ
(r
a
d
)

ψ (rad)

µs = 0.1
µs = 0.2
µs = 0.3
µs = 0.4

(b)

Fig. A-3. (a) The evolution of dilation angle ψ versus shear strain εq of dodecahedral particle
packings with different values of µs. Only few data points are shown for the sake of clarity. (b)
The stress-dilatancy diagram representing the relation between the internal angle of friction ϕ

and the dilation angle ψ of dodecahedral particle packings.

The evolution of ψ as a function of shear strain εq is shown in Fig. A-3a for the dodecahedral
particle packings. We see that ψ increases from a negative value corresponding to a contraction
of the packings. It reaches zero at εq ≃ 5× 10−6, which is a yield of characteristic state of
packings. In the first paper, we showed that if εq ≃ 5 × 10−6 the packings undergo elastic
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behavior and this means that the strain rate ε̇ is elastic. From Eq. (A.8), ψ in this range should
be zero. Then, ψ takes positive values meaning the packings are expanding. It reaches the peak
at stress peak and then decreases gradually to zero at residual state of triaxial compression.

The relationship between ϕ and ψ is illustrated in Fig. A-3b. It is well known that this
relation is linear function as following, so called a flow rule [301, 304]:

ϕ = mψ +ϕcv, (A.9)

where ϕcv is the critical state friction angle. The subscript “cv” is to indicate that in this case
the shearing takes place at constant volume, (e.g. no dilation occurs). The prefactor m is found
always smaller than 1. We see that the value of m depends on the friction coefficient and particle
shapes. From initial state to characteristic state, we do not consider such relation since the strain
tensor are almost elastic as discussed previously. We pay more attention to the stress-dilatancy
diagram in post-peak state where plastic strain rate exceeds significantly elastic strain rate. The
values of m and ϕcv for different µs, and particle shapes are shown in Table. A-1.

µs m ϕcv(rad) ϕmax(rad) ψmax(rad)
dodecahedra
0.1 0.400 0.370 0.528 0.415
0.2 0.388 0.433 0.646 0.549
0.3 0.387 0.461 0.706 0.638
0.4 0.380 0.479 0.740 0.684
icosahedra
0.1 0.423 0.360 0.519 0.414
0.2 0.414 0.436 0.647 0.529
0.3 0.415 0.470 0.721 0.642
0.4 0.387 0.489 0.751 0.737
octahedra
0.1 0.861 0.315 0.784 0.648
0.2 0.635 0.415 0.907 0.860
0.3 0.489 0.486 0.950 1.070
0.4 0.403 0.518 0.970 1.528
spheres
0.1 0.418 0.237 0.305 0.179
0.2 0.382 0.286 0.379 0.375
0.3 0.361 0.305 0.410 0.389
0.4 0.350 0.312 0.415 0.391

Table A-1. The values of parameters in Eq. (A.9) for different particle shapes, friction coeffi-
cients for post-peak state of triaxial compression.
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Appendix B

Relation between fabric and constraint
number

In the presence of steric exclusions, the granular microstructure is highly disordered at the parti-
cle scale [305]. For quasi-static state, since the mechanical interactions are governed by contact
and friction, the granular microstructure is basically encoded in the force-bearing contact net-
work. At the lowest order, the contact network is characterized by the coordination number Z,
which is average number of contacts per particle [24,306]. While the definition of Z is straight-
forward in the case of spherical particles, we need to consider the contact types for polyhedral
particles. As discussed in Section 2.5, we define a constraint number by

Zc =
2(Ns +2Nd +3Nt)

Np
, (B.1)

where Ns, Nd , Nt are the number of simple, double, and triple contacts, respectively, and Np is
number of particles.

At initial state of triaxial compression meaning in the end of isotropic compaction with zero
friction, we see that Zc jumps from ∼ 6 for spherical particle packing to ∼ 12 for polyhedral
particle packings (Zc = 12.07 for octahedra, Zc = 12.05 for dodecahedra, Zc = 12.04 for icosa-
hedra). This observation is in full agreement with the isostatic nature of our initial packings,
in which we expect that Zc = 6 for spheres and Zc = 12 for polyhedra. This is due to the fact
that for frictionless polyhedral particles the rotations should be considered as effective degrees
of freedom. The values of Zc in our samples are slightly above the expected values due to the
finite confining pressure and overlaps between particles.

Figure B-1 displays the evolution of Zc during triaxial compression of spherical and dodeca-
hedral particle packings. We see that Zc is constant and independent of µs when shear strains are
small (< 10−5), due to the stability of the contact network. When particle rearrangement begin
to occur, Zc decreases and tends to a constant value at critical state of compression where the
rate of loosing contact equalizes the rate of creating contacts. The variation of Zc in octahedral
and icosahedral particle packings follow the similar evolution.

Granular structure is generically anisotropic due to the relative motions of particles, leading
to contacts are gained along the directions of compression and lost along the directions of ex-
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Fig. B-1. Constraint number Zc versus shear strain εq for packings of spherical and dodecahe-
dral particles for different values of friction coefficient µs. The dashed and solid lines are for
packings of spheres and dodecahedra, respectively. Only few data points are shown for the sake
of clarity.

tension. In order to gain further information about the angular positions of contact neighbors,
one can rely on the fabric tensor FFF constructed from contact normals n⃗, or resort to the contact
probability density function P(⃗n) defined as the probability that a contact normal is oriented
along n⃗ [307]. For polyhedral particles, contact normals can be defined at contact points in con-
tact frame (⃗n, t⃗, s⃗), and also in the frame associated with the branch vector ℓ in branch vector
frame (⃗n′, t⃗ ′, s⃗′), as shown in Fig. B-2. These frames are exactly coincident for spherical parti-
cles. They are also parallel on average in the case of two convex particles. Indeed, we checked
that in our samples, we have ⟨⃗n · n⃗′⟩ ≃ 1. Since the anisotropies expressed in the branch frame
are simpler, we restrict here our analysis to the branch vector partition.

Fig. B-2. Geometry of a contact between two polyhedra. n⃗ is unit normal vector of contact
point, n⃗′ is unit normal vector of branch length.

In spherical coordinates, unit vector in branch vector frame can be parameterized by the
azimuth φ and the latitude θ . In general, we have

n⃗′ =(cosθ ,sinθ cosφ ,sinθ sinφ),

t⃗ ′ =(−sinθ ,cosθ cosφ ,cosθ sinφ),

s⃗′ =(0,−sinφ ,cosφ),

(B.2)

where the angle θ ∈ [0;π] and φ ∈ [0;2π]. Under axi-symmetric conditions, the probability
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density function P(n⃗′) is independent of the angle φ . So within a second-order harmonic ap-
proximation, we have

P(n⃗′) = P(Ω) = P(θ) =
1

4π

[
1+ac(3cos2

θ −1)
]
, (B.3)

where Ω is the solid angle that defines the orientation of n⃗′, with dΩ = sinθdθdφ , and ac is
contact orientation anisotropy.

In practice, the values of ac can be more conveniently extracted from the fabric tensor FFF ,
with

Fi j =
∫

Ω

n′in
′
jP(Ω)dΩ =

1
Nc

∑
c∈V

n′ci n′cj , (B.4)

where i and j design the components in a reference frame, and Nc is the total number of contacts
in the control volume V . From Eqs. (B.2), (B.3), and (B.4) the eigenvalues of the fabric tensor
are given by 

F1 =
∫

Ω

n′21 P(Ω)dΩ =
5+4ac

15
,

F2 = F3 =
∫

Ω

n′22 P(Ω)dΩ =
5−2ac

15
.

(B.5)

From Eqs. (B.2), (B.3), and (B.5) we have

ac =
5
4
⟨3cos2

θ −1⟩. (B.6)

The average ⟨3cos2 θ −1⟩ represents the anisotropy and it may be evaluated either from P(Ω)

or directly from the numerical data. However, the fabric anisotropy easier calculated by using
Eq. (B.5) [232, 308]:

ac = 5(F1 −F2)/2. (B.7)

The largest eigenvalue F1 occurs along the compression axis, the two other eigenvalues are
F2 = F3 = (1−F1)/2. Figure B-3 displays the evolution of ac during compression. The fabric
anisotropy initially increases as a result of the loss of contacts perpendicular to the compression
axis. It reaches the peak at stress peak and then decreases gradually to a constant value at critical
state of compression. It is larger in packings of polyhedral particles compared to spheres, and
its peak value increases with µs.

The constraint number Zc and the fabric tensor can be combined in a single enriched tensor
defined by [24]:

Gi j =
Zc

2
Fi j =

Zc

2

∫
Ω

n′in
′
jP(Ω)dΩ. (B.8)

By definition, since tr(FFF) = 1 we have tr(GGG) = Zc/2. We define the following invariant of GGG:
pG =

G1 +G2 +G3

3
=

Zc

6
,

qG =
G1 −G2

3
=

Zcac

15

(B.9)
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Fig. B-3. Fabric anisotropy ac versus shear strain εq for packings of spherical and dodecahedral
particles for different values of friction coefficient µs. The dashed and solid lines are for pack-
ings of spheres and dodecahedra, respectively. Only few data points are shown for the sake of
clarity.

Given its invariant, the enriched fabric tensor GGG may be represented by a Mohr circle in the
space of its normal and tangential projections Gn(m⃗) = GGGm⃗ ·m⃗ and Gt(m⃗) = GGGm⃗ ·⃗t, respectively,
along arbitrary space direction m⃗ parameterized by the angle θ . Simple algebra yieldsGn(θ) = pG +qG(3cos2

θ −1),

Gt(θ) =
3
2

qG sin2θ .
(B.10)

We assume that Zc is bounded between two limits Zmin
c and Zmax

c . The upper bound Zmax
c

is dictated by steric exclusions. The lower bound Zmin
c reflects the condition of mechanical

equilibrium. For instance, stable particles often involve more than four contacts in 3D. We
define two limit states: (1) the loosest isotropic state, characterized by Gt = 0 and Gmin

n =

Zmin
c /6, and (2) the densest isotropic state, characterized by Gt = 0 and Gmax

n = Zmax
c /6. All

accessible fabric states are enclosed between these two limit states, so that G1 ≤ Gmax
n and

G2 ≥ Gmin
n . Within this range ac and Zc are independent parameters unless one of the two

equalities G2 = Gmin
n or G1 = Gmax

n occurs, in which case pG and qG may no more evolve
independently.

The condition G2 = Gmin
n implies pG−qG = Zmin

c /6, which together with Eq. (B.9) yields

ac =
5
2

(
1− Zmin

c
Zc

)
. (B.11)

This limit corresponds to a loss saturation limit where the mechanical equilibrium implies that
no contacts may be lost along the direction of extension. In the same way, the condition G1 =

Gmax
n implies pG +2qG = Zmax

c /6, which together with Eq. (B.9) yields

ac =
5
4

(
Zmax

c
Zc

−1
)
. (B.12)

This is the gain saturation limit where no contacts may be gained along the direction of con-
traction. Hence, all accessible fabric states in the space (ac, Zc) belong to a domain defined
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by

amax
c (Zc) = min

[
5
2

(
1− Zmin

c
Zc

)
,
5
4

(
Zmax

c
Zc

−1
)]

. (B.13)

The largest anisotropy a∗c occurs when both conditions G2 = Gmin
n and G1 = Gmax

n are
satisfied simultaneously. Hence,

a∗c = amax
c (Z∗

c ) =
5
2

(
Zmax

c −Zmin
c

Zmax
c +2Zmin

c

)
(B.14)

with

Z∗
c =

Zmax
c +2Zmin

c
3

(B.15)

Figure B-4 shows the joint evolution of ac and Zc of dodecahedral particle packings with
different values of µs during triaxial compression. The solid lines represent the limit states
predicted by Eq. (B.13) whose parameters are shown in Table. B-1. The data follow differ-
ent gain-saturation limit lines with Zmax

c varying between 8.32 and 10.82 for dodecahedral
particles.
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Fig. B-4. Fabric evolution in the (Zc, ac) space for dedocahedral particle packings with different
values of friction coefficient µs. The solid lines represent the limits states predicted by Eq.
(B.13).

Figure B-5 shows Zcac as a function of Zc for dodecahedral particle packings with different
values of µs. We see that Z∗

c decreases as µs increases whereas a∗c increases nearly as 1/Z∗
c . We

also see that the value of Zcac at critical state seems to be constant.
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µs Z∗
c a∗c Zmax

c Zmin
c

dodecahedra
0.1 8.76 0.29 10.82 7.73
0.2 7.42 0.42 9.89 6.19
0.3 6.47 0.49 8.99 5.20
0.4 5.79 0.54 8.32 4.53
icosahedra
0.1 8.71 0.28 10.68 7.73
0.2 7.40 0.41 9.82 6.18
0.3 6.43 0.49 8.97 5.16
0.4 5.72 0.55 8.22 4.47
octahedra
0.1 8.93 0.33 11.29 7.74
0.2 7.66 0.53 10.93 6.03
0.3 6.73 0.64 10.19 5.00
0.4 6.01 0.72 9.47 4.28
spheres
0.1 5.31 0.26 6.42 4.76
0.2 4.90 0.33 6.18 4.26
0.3 4.59 0.36 5.92 3.92
0.4 4.38 0.39 5.73 3.70

Table B-1. The values of parameters in Eq. (B.13) for different particle shapes, friction coeffi-
cients.
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Fig. B-5. Fabric evolution in the (Zc, ac) space for dedocahedral particle packings with different
values of friction coefficient µs.
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Appendix C

Weak and strong force networks

As we show in Eq. (A.3), the stress tensor is expressed as an average involving branch vectors
and contact forces, so that partial summations allow one to define partial stress tensors that
can be used to investigate the scale up of local quantities. For instance, the subset of contacts
carrying a force below a threshold reveals the respective roles of weak and strong force chains
with respect to the overall shear strength of granular material [232, 309]. In this section, this
methodology is applied to analyze the stress and anisotropy parameters in view of elucidating
the effect of faceted particle shapes.

We consider various fabric and force parameters for the ξ networks defined as the subsets
S (ξ ) of contacts which carry a force below a cutoff force ξ normalized by the mean force
( fn/⟨ fn⟩ ∈ [0,ξ ]), where ξ is varied from 0 to the maximal force in the system. The weak
network corresponds to S (1) whereas the strong network is its complement.

In Eq. (B.3), we define the probability distribution of the contact normal P(n⃗′) as a function
of angle θ . In a similar vein, the distribution of the contact normal in a subset S (ξ ) also can
be defined by

P(θ ,ξ ) =
1

4π

[
1+ac(ξ )(3cos2

θ −1)
]
, (C.1)

where ac(ξ ) is the amplitude of contact anisotropy in the ξ network. The fabric tensor of subset
S (ξ ) is given by

Fi j(ξ ) =
∫

Ω

n′in
′
jP(θ ,ξ )dΩ. (C.2)

As a result, the contact anisotropy in the ξ network is given by

ac(ξ ) = 5(F1(ξ )−F2(ξ ))/2. (C.3)

Figure C-1 displays the amplitude of contact anisotropy ac in the ξ network as a function
of ξ for different values of friction coefficient for dodecahedral and spherical particle packings.
In polyhedral particle packings when the values of µs is small, the anisotropy of weak contacts
is negative but increases in absolute value and reaches its peak value at ξ ≃ 0.5, see Fig. C-
1a, which is different compared to ξ ≃ 1 in 2D spherical particle packings [232, 309]. This
negative value indicated that in low friction coefficient packings the weak contacts are oriented
preferentially perpendicular to the major principal stress direction. As more contacts come
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into play with increasing ξ , the partial anisotropy ac(ξ ) becomes less negative and finally get
the positive value. This means that the strong contacts are mainly oriented along the major
principal stress direction. We also see that this bimodal behavior of stress transmission holds in
the packing of spherical particles, see Fig. C-1b.

Interestingly, for bigger values of µs in polyhedral particle packings the partial anisotropies
of weak networks become positive, as observed in Fig. C-1a. This means that the weak and
strong contacts in polyhedral particle packings of high µs cannot be differentiated on the basis
of their roles in the ξ networks. Physically, this behavior can be interpreted by the fact that the
static equilibrium of the networks of polyhedral particles does not require the stabilizing effect
of the weak contacts. However, for spherical particle packings the friction coefficient plays no
significant role in the evolution of partial anisotropy of weak networks. The value of ac(ξ )

is always negative if ξ < 1, as shown in Fig. C-1b. This means that the networks of spheres
always require the stabilizing effect of the weak contacts.

The effects of friction coefficient are more pronounced in polyhedral particle packings than
those in spherical particle packings due to the appearance of face-face contacts. The friction
affects not only on magnitude of the fabric anisotropy in whole networks (ξ = ∞), but also on
partial anisotropy of weak networks (ξ < 1). On the one hand the face-face contacts, which is
strong networks, in polyhedral particle packings are more stable. On the other hand if friction
coefficient is sufficient high, the strong networks can stand along compression axis without the
weak contacts along lateral axis.
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Fig. C-1. Partial fabric anisotropy ac as a function of force cutoff ξ normalized by the mean
force for different values of friction coefficient µs of dodecahedral particle packings (a), and
spherical particle packings (b) in configuration before stress peak.

The partial force anisotropies can be defined by considering the angle average normal and
tangential forces, ⟨ fn⟩(θ ,ξ ) and ⟨ ft⟩(θ ,ξ ), in the ξ network. A second-order Fourier expansion
provides an adequate representation of these distributions for all values of ξ .{

⟨ fn⟩(θ ,ξ ) = ⟨ fn⟩(ξ )
[
1+an(ξ )(3cos2

θ −1)
]
,

⟨ ft⟩(θ ,ξ ) = ⟨ ft⟩(ξ )at(ξ )sin2θ ,
(C.4)

where an(ξ ) and at(ξ ) are the amplitude of normal and tangential force anisotropies in the ξ
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network. In practice, the anisotropy parameters can be calculated by means of the following
force tensors 

χ
fn

i j (ξ ) =
∫

Ω

⟨ fn⟩(θ ,ξ )n′in′jP(θ ,ξ )dΩ,

χ
ft

i j (ξ ) =
∫

Ω

⟨ ft⟩(θ ,ξ )n′it ′jP(θ ,ξ )dΩ.
(C.5)

With these definitions, the following relationship can be established{
an(ξ ) = 2.5(χ fn

1 (ξ )−χ
fn

2 (ξ ))−ac(ξ ),

at(ξ ) = 2.5(χ f
1 (ξ )−χ

f
2 (ξ ))−ac(ξ )−an(ξ ),

(C.6)

where χ
f

i j(ξ ) = χ
fn

i j (ξ )+χ
ft

i j (ξ ) and the indices 1, 2, and 3 refer to the principal values of each
tensor.
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Fig. C-2. Partial normal force anisotropies as functions of force cutoff ξ normalized by the
mean force for different value of friction coefficient µs in dodecahedral particle packings (a),
and spherical particle packings (b) in configuration before stress peak.

Figure C-2 illustrates the normal and tangential force anisotropies as functions of ξ for
all value of µs in dodecahedral particle packings. A remarkable feature of an(ξ ) is that its
value is negative in the weak network for packing with high value of µs, and is positive for
those of small value of µs. Hence, the weak forces in a packing with high µs occur at contacts
preferentially oriented orthogonally to the principal stress direction, whereas in a packing of
small µs they are parallel. As we see before, an inverse behavior take places for the contact
anisotropies. The weak contacts in the packings with high µs are parallel to the principal stress
direction and orthogonal for packings of small µs. In the assemblies of high µs, an(ξ ) reaches
the negative peak at ξ ≃ 1, then increases as more contacts from the strong network with a
positive contribution to the anisotropy are included in the ξ network. an(ξ ) becomes positive
value at ξ ≃ 2 as the strong forces tend to parallel to the principal stress direction. The tangential
force anisotropy at(ξ ) is always positive and increasing for both ξ and µs.

The branch vector ℓ⃗= ℓn⃗′ in (⃗n′, t⃗ ′, s⃗′) frame. We introduce here its truncated expansion on
a Fourier basis:

⟨ℓ⟩(θ ,ξ ) = ⟨ℓ⟩(ξ )
[
1+ay(ξ )(3cos2

θ −1)
]
, (C.7)
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Fig. C-3. Partial tangential force anisotropies as functions of force cutoff ξ normalized by the
mean force for different value of friction coefficient µs in dodecahedral particle packings (a),
and spherical particle packings (b) in configuration before stress peak.

where ay(ξ ) is the branch anisotropy in the ξ networks. For calculation of ay(ξ ), we introduce
the following branch tensor:

χ
ℓ
i j(ξ ) =

∫
Ω

⟨ℓ⟩(θ ,ξ )n′in′jP(θ ,ξ )dΩ, (C.8)

The following relations are then easily obtained:

ay(ξ ) = 2.5(χℓ
1(ξ )−χ

ℓ
2(ξ ))−ac(ξ ), (C.9)

Figure C-4 shows the branch vector anisotropy as a function of ξ in dodecahedral particle
packings with different values of µs. From weak to strong networks, ay(ξ ) is always negative
although its absolute value is much smaller than the fabric or force anisotropies. Note that for
spherical particle packings, the value of ay(ξ ) is even smaller and close to zero.
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Fig. C-4. Partial branch anisotropy as a function of ξ for all value of friction coefficient µs in
dodecahedral particle packings in configuration before stress peak.

Since the stress tensor is a function of forces and branch vectors, as shown in Eq. (A.3).
We also can define the partial stress tensor of ξ network by restricting the summation to the
corresponding contacts

σi j(ξ ) =
1
V ∑

c∈V
f c
i (ξ )ℓ

c
j(ξ ). (C.10)
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From Eq. (C.10), we define deviatoric stress in the ξ network

q(ξ ) = (σ1(ξ )−σ3(ξ ))/3. (C.11)

The partial stress ratio q(ξ )/p as a function of ξ is displayed in Fig. C-5. We see that q(ξ <

1)/p is zero for the packing of µs = 0.1, implying that strong forces carry the whole deviatoric
load. The partial stress ratio q(ξ = 1)/p in the weak network increases slightly with µs but
remains small value, below 0.05, in all cases. The weak value of q(ξ )/p in the weak network
is a consequence of the opposite sign of ac(ξ = 1) and an(ξ = 1), together with small value of
at(ξ = 1).
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Fig. C-5. Partial stress ratio as a function of ξ for all value of friction coefficient µs in dodec-
ahedral particle packings (a), and spherical particle packings (b) in configuration before stress
peak.
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Appendix D

Different definitions of fabric anisotropy

As discussed previously, the contacts between polyhedra are divided into three types: simple,
double and triple contacts. From Eqs. (B.4) and (B.1), we define a fabric tensor that takes into
account contact types in branch vector frame:

F ′
i j =

1
Ns +2Nd +3Nt

∑
c∈V

hn′ci n′cj , (D.1)

where h = 1, 2, and 3 for simple, double, and triple contacts, respectively. By definition, we
also have tr(FFF ′′′) = 1, and due to axi-symmetry the principal values F ′

2 = F ′
3 = (1−F ′

1)/2. As a
result, the contact orientation anisotropy calculated by tensor FFF ′′′ is defined by:

a′c = 5(F ′
1 −F ′

2)/2. (D.2)

Since most triple contacts are strong networks and oriented along compression axis, we expect
that a′c > ac.

Another fabric tensor should be considered in the contact normal frame (⃗n,⃗ t, s⃗), as shown in
Fig. B-2. From Eq. (B.4), we define a fabric tensor by:

F∗
i j =

1
Nc

∑
c∈V

nc
i nc

j, (D.3)

By definition and under axi-symmetry conditions, we also have F∗
2 = F∗

3 = (1−F∗
1 )/2. As a

consequence, the contact orientation anisotropy corresponding to FFF∗ is given by

a∗c = 5(F∗
1 −F∗

2 )/2. (D.4)

Each contact between two polyhedra may involve several contact points as discussed pre-
viously. The normal and tangential vectors at each contact point are parallel with the frame
(⃗n,⃗ t, s⃗). We define a fabric tensor calculated from all contact points

F̃i j =
1

Ncp
∑

cp∈V
ncp

i ncp
j , (D.5)

where Ncp is number of contact points, the superscript “cp” is to indicate contact points. We
also have the relation F̃2 = F̃3 = (1− F̃1)/2, and the contact anisotropy in this case is given by

ãc = 5(F̃1 − F̃2)/2. (D.6)
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Corresponding to each definition of fabric tensor, we define also normal, tangential force,
and branch tensors in the same way. Note that we keep χχχ ′′′ fn = χχχ fn , χχχ ′′′ ft = χχχ ft , and χχχ ′′′ℓ = χχχℓ

due to the fact that the effect of contact types is already involved in the magnitude of the forces
and the branch vector length. In the same vein, we define normal force, tangential force, and
branch anisotropy as following

ân = 2.5(χ̂ fn
1 − χ̂

fn
2 )− âc,

ât = 2.5(χ̂ f
1 − χ̂

f
2 )− âc − ân,

ây = 2.5(χ̂ℓ
1 − χ̂

ℓ
2)− âc,

(D.7)

where âc represents for a′c, a∗c , ãc; ân represents for a′n, a∗n, ãn; ât represents for a′t , a∗t , ãt , and ây

represents for a′y, a∗y , ãy in its context.
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Fig. D-1. Different definition of anisotropy in dodecahedral particle packings as a function of
shear strain εq with friction coefficient µs = 0.1.

Figure D-1 describes the evolution of different anisotropy as a function of shear strain εq in
dodecahedral particle packings with µs = 0.1. The evolution of anisotropies in the packings of
other particle shapes and other values of friction coefficient is similar.

Neglecting cross products between all anisotropies, we get the following relation [22, 310,
311]:

q
p
=

2
5
(âc + ân + ât + ây). (D.8)

As shown in Fig. D-2 this relation is held only for combination of ac, an, at , and ay. As a result,
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the anisotropies should be calculated in the branch vector frame and without accounting contact
types.
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Fig. D-2. Relationship between stress ratio q/p and anisotropy in dodecahedral particle pack-
ings as a function of shear strain εq with friction coefficient µs = 0.1.
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Summary in French

Contexte général de la thèse

Afin d’améliorer les performances des poudres broyées tout en minimisant les coûts énergétiques
il est nécessaire de se pencher sur le procédé de broyage qui devient aujourd’hui un sujet majeur
de recherche. La complexité des phénomènes mis en jeux dans les tambours rotatifs à deux orig-
ines principales. La première réside dans la nature dynamique et inhomogène des flux résultant
de la géométrie de tambour. Ces flux de particules dépendent de nombreux paramètres procédés
comme la vitesse de rotation, le degré de remplissage, la taille des particules, la taille du tam-
bour, ainsi que le nombre et la taille de boulets. Le second facteur est la complexité du matériau
composé de particules de formes et de tailles diverses interagissant par le biais d’interactions
cohésives et frictionnelles. Les travaux antérieurs dans le domaine sont en général largement
empiriques et les phénomènes d’écoulement à l’intérieur de tambours rotatifs et à fortiori les
phénomènes de commutation restent mal compris. Ces travaux ne permettent pas, par exem-
ple, un changement d’échelle ou une augmentation du taux de fragmentation en s’appuyant sur
l’optimisation des paramètres de ces études. Cependant, les contraintes de sécurité sur la mise
en œuvre des matières nucléaires ne cessent de croı̂tre et il devient très difficile de multiplier
les expériences. Par exemple seuls de petites quantités de matière peuvent être conservées dans
des conditions contrôlées, nécessitant un environnement confiné et un équipement dédié pour
éviter toute forme de contamination.

Dans ces conditions, les simulations dynamique de particules basées sur la méthode des
éléments discrets (DEM) constituent un outil précieux pour l’étude détaillée des mécanismes
physiques impliqués dans le processus de broyage. Néanmoins, cette étude nécessite des modèles
physique précis du matériau et des calculs haute performance permettant une représentation
significative du matériau granulaire. Dans des études numériques antérieures (thèse L. Orozco
2016-2019 [7]), une approche a été développée pour modéliser la fragmentation dynamique
des particules en 3D et la fracture d’une seule particule a été étudiée. La méthode numérique
utilisée alors appelée Dynamique des Contacts, est basée sur la modélisation non régulière des
contacts frictionnels avec une intégration implicite des équations de mouvement. Son utilisation
pour les simulations de broyage dans des tambours rotatifs a été limitée par les difficultés d’une
parallélisation efficace. Il a toutefois été montré que la méthode des cellules liées (Bonded Cell
Method) avec un critère de rupture basé sur l’énergie de rupture permet d’obtenir une rupture
de particules réaliste et évolutive. Les études 3D ont été limitées aux particules sphériques dans

125



des tambours rotatifs pour la mise à l’échelle des flux en cascade. Le processus de broyage a
également été étudié en 2D avec des particules polygonales cassables. Plusieurs relations entre
le profil de la surface, l’épaisseur de la couche active, le glissement sur les parois et la vari-
abilité des forces ont été identifiées, et un nouveau paramètre d’échelle a été proposé pour le
taux de rupture et les caractéristiques de l’écoulement. Ces résultats mettent déjà en perspective
certaines observations expérimentales qui étaient mal comprises jusqu’ici et montrent que les
simulations d’écoulements granulaires avec rupture dans des tambours rotatifs constituent un
moyen puissant d’étude des processus de broyage.

Organisation générale de la thèse

Ce travail de thèse, qui représente une extension du travail précédent, a pour but de développer
un modèle DEM pour l’étude des écoulements granulaires quasistatiques et dynamiques de par-
ticules de formes polyédriques tout en intégrant une rupture potentielle de ces particules pour
la simulation du processus de broyage en tambours rotatifs. Pour améliorer les performances
de calcul, et permettre des simulations massivement parallèles, une approche alternative à celle
introduite dans la thèse de L. Orozco à été mise en oeuvre. De nouveaux développements
numériques ont été nécessaires dans le but de reformuler le modèle de fragmentation des par-
ticules en tenant compte de leur forme et de l’énergie de rupture dans ce nouveau cadre. Pour
cela nous nous sommes appuyés sur le code de calcul Rockable, développé par V. Richefeu à
Grenoble et mis à disposition dans le cadre d’un projet collaboratif impliquant quatre institu-
tions (CNRS, CEA, INRAE et Université de Montpellier). Les éléments clés de ce code sont 1)
la représentation de particules de formes arbitraires sous forme de sphéro-polyèdres, 2) un al-
gorithme de détection des contacts efficace, et 3) la différenciation explicite des différents types
de contacts (face-face, face-arête) entre polyèdres. Pour réduire encore plus le temps de calcul,
de nouveaux développements ont été nécessaires au cours de ce travail de doctorat comme par
exemple : l’optimisation de la procédure de détection des contacts (entre les parois cylindriques
du tambour rotatif et les polyèdres, par exemple) ou, la mise en œuvre de conditions aux limites
tri-périodiques avec possibilité de contrôler le déplacement ou la pression dans chaque direction
de l’espace. Des conditions limites périodiques ont également été implémentées le long de l’axe
du tambour rotatif.

Dans la continuité de la thèse de L. Orozco, des simulations paramétriques détaillées ont
été réalisées pour mettre à l’échelle des caractéristiques essentielles de l’écoulement dans la
géométrie de tambour. Ces caractéristiques sont l’épaisseur de l’écoulement dans la couche ac-
tive, la forme de la surface libre et le nombre inertiel dans la couche en écoulement. Comme les
particules polyédriques sont utilisées pour la première fois pour cette analyse, nous avons com-
paré la loi d’échelle avec les données de L. Orozco obtenues pour des particules sphériques dans
le régime de cascade. On pourra noter que comme notre méthode de simulation diffère de celle
utilisée par L. Orozco, la comparaison porte également sur les méthodes numériques. Enfin,
une autre nouveauté de notre étude est l’inclusion d’un argument du type “particle-coarsening”
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pour expliquer la dérivation de la loi d’échelle.

Une partie de ce travail de thèse est consacré aux déformations quasi-statiques de matériaux
granulaires composés de particules polyédriques. Nous utilisons des conditions aux limites
tri-périodiques pour étudier le comportement quasi-statique de plusieurs formes de particules
polyédriques (octaèdres, dodécaèdres, icosaèdres) ainsi que des particules sphériques. Pour
la première fois, les cinq modules élastiques orthotropes sont évalués en cours de compres-
sion triaxiale en appliquant des sondes en petites déformations sur des intervalles réguliers
d’évolution des échantillons. Pour quatre valeurs de coefficient de frottement entre particules,
nous analysons l’évolution de la microstructure et ses corrélations avec les différents modules
élastiques. Nos résultats mettent clairement en évidence le rôle du nombre de coordination
et de l’anisotropie de fabrique ainsi que l’effet de la forme des particules à travers plusieurs
paramètres impliqués dans la corrélation linéaire entre les modules élastiques et la microstruc-
ture. Ces résultats sont comparés aux prédictions de la théorie des milieux effectifs (effective
medium theory) que nous appliquons à notre configuration triaxiale. Bien que l’étude des con-
ditions quasi-statiques ne soient pas directement liées à la problématique du broyage en tam-
bours tournant, celle-ci fournit un cadre l’analyse, dans l’étape suivante, de la fragmentation
des particules et ses conséquences sur la rhéologie dans des conditions limites périodiques. De
plus, l’état passif dans le tambour se fait à déformation quasi-statique et un aspect important du
broyage concerne précisément la fragmentation autogène des particules dans cette zone. Enfin,
la fragmentation quasi-statique des particules est également impliquée dans certains procédés
et a un intérêt particulier pour la comparaison entre des simulations et des expériences tomo-
graphiques nécessairement lentes, en vue de la validation et/ou à l’étalonnage du modèle de
rupture.

Pour la fragmentation des particules, nous avons développé un nouveau modèle qui s’inscrit
dans le cadre des méthodes de type “cellules liées” (Bonded Cell Method). Dans cette méthode,
les particules sont décomposées en cellules irrégulières convexes obtenues sur la base d’une
tessellation irrégulière. Dans cette méthode une décohésion peut apparaitre aux niveaux des in-
terfaces entre cellules selon les conditions dictées par un modèle de rupture. Si un avantage de
la méthode des cellules liées est de prendre en compte la distribution des contraintes à l’intérieur
de chaque particule, son succès réside essentiellement dans la versatilité avec laquelle peut être
implémenté le modèle de rupture. Dans cette thèse, ce dernier est basé sur l’énergie de rupture
et est équivalent au critère de Griffith pour la propagation des fissures. Les liaisons face à face
entre cellules sont modélisées comme des points de contact multiples au niveau desquels des
liaisons linéaires (ressorts) sont implémentés. L’énergie élastique totale de traction stockée dans
ces ressorts est comparée à l’énergie de rupture de l’interface et celle-ci est rompue si l’énergie
élastique dépasse l’énergie de rupture. Une étude paramétrique détaillée de la rupture de par-
ticules uniques a été réalisée et comparée avec des résultats issus des travaux de L. Orozco. La
mise à l’échelle du coefficient de restitution effectif et de l’énergie totale dissipée par la rupture
en fonction de la vitesse d’impact et de l’énergie de rupture est au centre de ce travail.

Cette thèse de doctorat est organisée en plusieurs chapitres. Une revue de la littérature sur
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les matériaux granulaires ainsi que des éléments concernant la méthodologie numérique sont
présentées dans le chapitre 1. Les propriétés physiques et mécaniques des écoulements gran-
ulaires sont abordés pour des conditions aux limites de type volume élémentaire représentatif
(VER) et tambours rotatifs. Nous présentons également plusieurs résultats importants, issus
d’études antérieurs, concernant le processus de fragmentation des particules.

Dans le chapitre 2, l’effet de la forme de particule facetisées sur le comportement élastique
d’assemblages granulaires est étudiée. Cette étude s’appuie sur des simulations dynamique
basées sur la méthode des éléments discrets (DEM). En comparant les données de simulation
avec la théorie des milieux effectifs, nous proposons une expression analytique générale qui
prédit avec précision les modules élastiques en fonction de deux paramètres microstructuraux
: 1) un nombre de contrainte ou “constraint number” qui tient compte des types de contact
(contacts face-face et face-arête entre polyèdres) et qui est réduit à un nombre de coordination
pour les particules sphériques, et 2) l’anisotropie de l’orientation des contacts. Cette expression
quantifie à la fois l’effet direct de la forme des particules à travers les paramètres de notre
modèle et l’effet indirect à travers la microstructure.

Dans le chapitre 3, nous étudierons la rhéologie et la mise à l’échelle des écoulements gran-
ulaires dans un tambour tournant partiellement rempli de particules polyédriques. La méthode
utilisée est la même que celle présentée au chapitre 2 et qui a servi de base à une étude
paramétrique détaillée sur une large gamme de valeurs de diamètre de tambours, de diamètre
de particules, de vitesse de rotation et de degré de remplissage. Le régime de cascade sera
étudié en détail en raison de son rôle important dans les processus industriels et de l’absence
d’analyse systématique de ses variables d’influence. Un paramètre d’échelle sans dimension,
qui tient compte de l’effet de tous les paramètres du système, sera proposé. Il résulte d’une
analyse détaillée des variables d’écoulement telles que les pentes moyennes et maximales de la
surface libre, l’épaisseur de la zone d’écoulement, le taux de cisaillement et le nombre d’inertie
dans la couche d’écoulement. Enfin, ce chapitre présente la méthode de particle-coarsening et
sa pertinence dans la mise à l’échelle des variables d’écoulement.

Dans le chapitre 4, en s’appuyant sur la méthode des cellules liées, nous analyserons la
fragmentation sous impact de particules uniques. Un modèle de rupture entièrement basé sur
l’énergie de fracture est introduit. Dans ce modèle les interfaces cellule-cellule se rompent
si l’énergie élastique stockée à l’échelle de l’interface dépasse son énergie spécifique de frac-
ture. Nous analysons le processus de fragmentation ainsi que les régimes distincts de rupture.
La transition entre ces régimes sera étudiée en fonction des variables impliquées dans la rup-
ture telles que le coefficient de restitution, l’endommagement des particules et l’efficacité de la
fragmentation. Nous proposons également des modèles analytiques prédisant les tendances de
l’évolution des variables de rupture en fonction de l’énergie d’impact. Enfin, nous étudions la
distribution des masses de ces fragments en fonction de l’énergie de rupture.

Enfin, dans le dernier chapitre qui conclu cette thèse, les principaux résultats sont rappelés
et quelques perspectives de ce travail de doctorat sont évoquées.
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Principales conclusions

L’objectif principal de la thèse a été de mettre en oeuvre une approche DEM avancée pour
l’étude des écoulements granulaires de particules de forme polyédrique (en situation quasista-
tiques et dynamiques) et pour modéliser le processus de broyage en considérant la rupture des
particules dans une géométrie de tambours tournant. L’ensemble des développements et des
simulations numériques ont été réalisés sur la base du code Rockable développé en collabo-
ration avec Vincent Richefeu à l’Université Grenoble Alpes. Parmi les améliorations remar-
quable, on peu citer l’optimisation de la détection de contacts au niveau des parois cylindriques
du tambour rotatif, l’implémentation de conditions aux limites tripériodiques (avec possibilité
de contrôler le déplacement ou la pression dans chaque direction de l’espace), l’ajout de con-
ditions périodiques selon l’axe du tambour. Enfin, la parallélisation du code de calcul s’est
montrée particulièrement efficace permettant des simulations sur un nombre important de pro-
cesseurs et des études paramétriques de grande ampleur.

Nous nous sommes concentrés en particulier sur 1) le comportement élasto-plastique et sa
relation avec l’évolution de la microstructure dans le cas d’échantillons composés de particules
sphériques ou polyédriques en conditions aux limites tri-périodiques; 2) la mise à l’échelle,
dans le régime de cascade, des écoulements de particules polyédriques en tambour rotatif; 3)
la dynamique de rupture d’une seule particule polyédrique. La méthodologie développée pour
la simulation, l’analyse micromécanique et le changement d’échelle, jette les bases d’une ap-
proche de simulations 3D dynamique réaliste permettant l’analyse détaillée des processus de
broyage avec de nombreuses applications potentielles aux technologies des poudres en général
et aux procédés de fabrication du combustible nucléaire en particulier. L’objectif final est de
fournir un cadre générique combinant simulations mécaniques discrètes et analyse physique
afin d’optimiser les propriétés de poudres de compositions complexes tout en minimisant les
coûts énergétiques.

Dans l’analyse du comportement élastique des assemblage de particules sollicités en con-
ditions triaxiales, nous avons constaté que les modules élastiques orthotropes peuvent être ex-
primés comme une fonction des variables associées au réseau de contact telles que la connec-
tivité et l’anisotropie de l’orientation des contacts. L’expression générale proposée ne dépend
pas directement de la forme des particules, mais implique des coefficients qui eux en dépendent.
Leur détermination permet une prédire de l’évolution des modules élastiques en fonction de
la déformation. En outre, cette expression révèle trois origines différentes du comportement
élastique dépendants : d’une partie isotrope, d’une partie anisotrope et d’une échelle de con-
trainte. Cette dernière est associée au modèle de force, et sa valeur est simplement donnée par le
rapport entre la rigidité de contact et le diamètre des particules. Nous avons comparé les mod-
ules élastiques avec les prédictions de la théorie des milieux effectifs et discuté des différences
et similitudes entre ces modèles. Par exemple, la forme des particules influence les modules
élastiques à travers des paramètres de notre modèle ne dépendant pas directement du coefficient
de frottement mais qui sont liés au champ de déplacement non affine et à ses conséquences sur
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le réseau de contact (qui lui dépend du coefficient de frottement). Nous avons également montré
que le niveau de non-affinité est le même pour toutes les formes simulées pendant la compres-
sion, ce qui vient étayer des valeurs constantes des paramètres pour le modèle. Cette expression
révèle également la façon dont les contacts face-face et face-arête renforcent le module élastique
par rapport au cas de particules sphériques.

L’influence de la forme des particules sur le régime d’écoulement en cascade dans les tam-
bours tournants a été étudiée en détail. Un étude paramétrique a été réalisée pour une large
gamme de valeurs de vitesse de rotation, diamètre du tambour, diamètre des particules et de
degré de remplissage. Grâce à une analyse détaillée des variables d’écoulement telles que
les pentes moyennes et maximales de la surface libre, l’épaisseur de l’écoulement, le taux
de cisaillement et le nombre d’inertie dans la couche active, nous avons trouvé un paramètre
d’échelle sans dimension unique combinant le nombre de Froude, le rapport entre le diamètre du
tambour et celui de la particule et le degré de remplissage. Nous avons montré que ce paramètre
d’échelle fonctionne également pour les particules sphériques, mettant ainsi en évidence l’effet
de la forme polyédrique des particules. Nous avons également analysé l’effet de “particle-
coarsening” des particules et nous avons montré qu’il est cohérent avec notre mise à l’échelle
des différentes variables d’écoulement.

Enfin, pour la rupture induite par l’impact d’une particule unique, nous avons introduit
un modèle de rupture entièrement basé sur l’énergie de rupture. Dans ce modèle de cellule
liée, l’interface cellule-cellule ne se rompt que si l’énergie élastique emmagasinée au niveau
de l’interface dépasse l’énergie de rupture. Nous avons constaté que le processus de fragmen-
tation implique trois régimes distincts : 1) le régime de basse énergie, 2) le régime d’énergie
intermédiaire et 3) le régime de haute énergie. La transition critique des énergies d’impact en-
tre ces régimes a été identifiée par une analyse détaillée des variables de rupture. Nous avons
proposé des modèles analytiques qui ajustent correctement l’évolution des variables de rup-
ture en fonction de l’énergie d’impact. Nous avons également constaté que la distribution des
masses des fragments est une fonction en loi de puissance dont l’exposant dépend de l’énergie
de rupture.
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[1] Yannick Guérin, Daniel Parrat, Jean Noirot, Christine Struzik, Victor Blanc, Antoine
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[46] B Velickỳ and C Caroli. Pressure dependence of the sound velocity in a two-dimensional
lattice of hertz-mindlin balls: Mean-field description. Physical Review E, 65(2):021307,
2002. (Cited on page 7.)

[47] Vanessa Magnanimo, Luigi La Ragione, James T Jenkins, P Wang, and Hernán A Makse.
Characterizing the shear and bulk moduli of an idealized granular material. Europhysics
Letters, 81(3):34006, 2008. (Cited on page 7.)

[48] Marco A Cacciuttolo and Alahari Arunakumari. Scale-up considerations for
biotechnology-derived products. In Pharmaceutical Process Scale-Up, pages 163–194.
CRC Press, 2005. (Cited on page 8.)

[49] Luı́s Marcelo Tavares. A review of advanced ball mill modelling. KONA Powder and
Particle Journal, page 2017015, 2017. (Cited on page 8.)

[50] A Brunaugh and HDC Smyth. Process optimization and particle engineering of
micronized drug powders via milling. Drug Delivery and Translational Research,
8(6):1740–1750, 2018. (Cited on page 8.)

[51] Indresan Govender. Granular flows in rotating drums: A rheological perspective. Miner-
als Engineering, 92:168–175, June 2016. (Cited on pages 8, 62, 63, and 82.)

[52] R. Y. Yang, A. B. Yu, L. McElroy, and J. Bao. Numerical simulation of particle dynam-
ics in different flow regimes in a rotating drum. Powder Technology, 188(2):170–177,
December 2008. (Cited on pages 8, 9, and 62.)

[53] J. Mellmann. The transverse motion of solids in rotating cylinders–forms of motion
and transition behavior. Powder Technology, 118(3):251–270, August 2001. (Cited on
pages 8, 9, and 62.)

[54] Yulong Ding, J. P. K. Seville, R. Forster, and D. Parker. Solids motion in rolling mode
rotating drums operated at low to medium rotational speeds. Chemical Engineering Sci-
ence, 56:1769–1780, March 2001. (Cited on pages 8, 62, and 68.)

[55] H Henein, JK Brimacombe, and AP Watkinson. Experimental study of transverse bed
motion in rotary kilns. Metallurgical transactions B, 14(2):191–205, 1983. (Cited on
page 8.)

[56] H Henein, JK Brimacombe, and AP Watkinson. The modeling of transverse solids mo-
tion in rotary kilns. Metallurgical Transactions B, 14(2):207–220, 1983. (Cited on
pages 8 and 9.)

144



[57] Amara Aissa, Carl Duchesne, and Denis Rodrigue. Transverse mixing of polymer pow-
ders in a rotary cylinder part i: Active layer characterization. Powder Technology,
219:193–201, March 2012. (Cited on pages 8, 62, 68, and 73.)

[58] Troy Shinbrot, Albert Alexander, Maher Moakher, and Fernando J Muzzio. Chaotic
granular mixing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(3):611–
620, 1999. (Cited on page 9.)

[59] Manogna Adepu, Brandon Boepple, Bradley Fox, and Heather Emady. Experimental
investigation of conduction heat transfer in a rotary drum using infrared thermography.
Chemical Engineering Science, 230:116145, 2021. (Cited on page 9.)

[60] Clive E Davies, A Williams, SJ Tallon, K Fenton, and N Brown. A new approach to moni-
toring the movement of particulate material in rotating drums. Developments in Chemical
Engineering and Mineral Processing, 12(3-4):263–275, 2004. (Cited on page 9.)

[61] Amara Aı̈t Aissa, Carl Duchesne, and Denis Rodrigue. Effect of friction coefficient and
density on mixing particles in the rolling regime. Powder technology, 212(2):340–347,
2011. (Cited on page 9.)
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of fragment shapes. Phys. Rev. Lett., 96(2):025504, January 2006. (Cited on page 83.)

[289] R. Quey, P. R. Dawson, and F. Barbe. Large-scale 3d random polycrystals for the finite
element method: Generation, meshing and remeshing. Computer Methods in Applied
Mechanics and Engineering, 200(17):1729–1745, April 2011. (Cited on page 84.)

[290] Qiang Du, Maria Emelianenko, and Lili Ju. Convergence of the lloyd algorithm for com-
puting centroidal voronoi tessellations. SIAM J. Numer. Anal., 44(1):102–119, January
2006. (Cited on page 84.)

[291] Chuanfeng Fang, Zhihong Nie, Jian Gong, Bo Li, Wei Hu, and Ashiru Mohammed.
Discrete element simulation of effects of multicontact loading on single particle crushing.
Particuology, 69:49–60, October 2022. (Cited on page 84.)

[292] Dominique Leguillon. Strength or toughness? a criterion for crack onset at a notch. Eu-
ropean Journal of Mechanics - A/Solids, 21(1):61–72, January 2002. (Cited on page 87.)
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QUASI-STATIC AND DYNAMIC GRANULAR FLOWS:
SCALING BEHAVIOR, MICROSTRUCTURE, AND PARTICLE SHAPE EFFECTS

Abstract: Granular processes in nature and industry often involve complex quasistatic or dy-
namic flows of various particle shapes and frictional properties. Although empirical approaches
have been developed for such flows, advanced particle dynamics simulations can be used for
detailed sensitivity analysis of their scaling behavior as a function of system parameters or to
connect their behavior to the microstructure. In this work, extensive simulations are used in 3D
to study the effects of polyhedral particle shape on quasi-static granular flows under fully peri-
odic boundary conditions and dynamic cascading flows in rotating drums. Orthotropic elastic
moduli under triaxial compression are expressed as a function of the contact network anisotropy
and a constraint number accounting for different types of contacts between polyhedra. In rotat-
ing drums, the cascading flow regime is investigated for a broad range of parameter values and
shown to be governed by a unique dimensionless scaling parameter that combines all system
parameters. Finally, the impact-induced breakage of a single particle is modeled by means of
a novel fracture model based exclusively on fracture energy. The fragment shapes and sizes
are studied systematically and the distribution of fragment masses is found to be a power-law
function with an exponent depending on the fracture energy.
Keywords: Granular Materials, Discrete Element Method, Microstructure, Scaling

ECOULEMENTS GRANULAIRES QUASI-STATIQUES ET DYNAMIQUES: MISE À
L’ÉCHELLE, MICROSTRUCTURE ET EFFETS DE LA FORME DES PARTICULES

Resumé: Les processus granulaires naturels et industriels impliquent souvent des écoulements
quasi-statiques ou dynamiques complexes de diverses formes de particules. Même si des modèles
empiriques de tels écoulements existent, les simulations avancées de dynamique granulaire per-
mettent aujourd’hui de réaliser des analyses de sensibilité détaillée de leur comportement en
fonction des paramètres de l’écoulement ou relier leur comportement à la microstructure. Dans
ce travail de thèse, des vastes campagnes de simulation ont été menées dans le but d’étudier
les effets de la forme polyédrique des particules sur les écoulements granulaires quasi-statiques
sous conditions tri-périodiques et sur les écoulements dynamiques dans le régime de cascade
dans des tambours rotatifs. Les modules élastiques orthotropes sous compression triaxiale ont
été exprimés en fonction de l’anisotropie du réseau de contacts et un nombre de contrainte
prenant en compte différents types de contacts entre polyèdres. Dans les tambours rotatifs, le
régime d’écoulement en cascade a été étudié pour un large spectre de valeurs des paramètres
et il a été montré qu’il est régi par un paramètre d’échelle sans dimension qui combine tous
les paramètres du système. Il a été également démontré que la mise à l’échelle proposée est
cohérente avec une méthode de coarse-graining. Enfin, la rupture d’une seule particule sous
l’effet d’impact avec un plan a été simulée par un nouveau modèle de fracture basé exclu-
sivement sur l’énergie de rupture. Les simulations révèlent une distribution des masses des
fragments en loi de puissance avec un exposant qui dépend de l’énergie de rupture.
Mots Clés: Matériaux granulaires, Discrete Element Method, Microstructure, Scaling
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