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RESUMÉ EN FRANÇAIS

Introduction

Distance Geometry (DG) est l’étude des concepts géométriques basés sur la distance.
Un des premiers résultats historiques dans le contexte de DG est la formule de Heron,
dont l’origine remonte au 1er siècle de notre ère. Cette formule peut être utilisée pour
calculer l’aire d’un triangle uniquement en fonction de ses côtés (les distances entre ses
sommets). De nombreux outils et techniques pratiques permettent de mesurer les distances
entre objets, comme les capteurs des réseaux de capteurs [1] ou les expériences Nuclear
Magnetic Resonance pour les distances inter-atomiques dans les protéines [2]. DG est
la branche des mathématiques qui s’occupe de la façon dont nous pouvons obtenir plus
d’informations sur l’ensemble des objets en utilisant uniquement des distances par paires.
Dans cette thèse, nous étendons la discussion afin de considérer non seulement les distances
euclidiennes, mais également d’autres concepts géométriques tels que les angles et les
orientations locales ou différents types de distances. Le problème central dans le domaine
de DG est le Distance Geometry Problem (DGP) [3], dans lequel nous sommes chargés de
trouver les positions (relatives) des objets, de telle sorte que les distances mesurées entre
eux soient satisfaites. Dans cette thèse, nous étudions différents aspects du problème de la
géométrie des distances. Le DGP est un problème avec de nombreuses applications. Notre
objectif principal réside dans l’application de la biologie structurale, où l’objectif est de
déterminer la structure d’une protéine sur la base des distances interatomiques. Outre la
détermination de la structure des protéines, nous discuterons également du problème du
reciblage de mouvement, qui est lié à la dynamique DG [4, 5]. La dernière application
que nous étudions est celle des cartes adaptatives. Notre travail pour cette application
comprend le développement et la mise en œuvre d’un modèle linéaire qui montre des
résultats prometteurs.

Il existe diverses méthodes et algorithmes qui peuvent trouver des solutions au DGP.
Elles vont des méthodes basées sur la décomposition matricielle, l’optimisation globale,
les heuristiques et les méta-heuristiques. Dans cette thèse, nous nous concentrons sur un
algorithme qui exploite la discrétisabilité de certaines instances. Cette classe d’instance
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est connue sous le nom de Discretizable Distance Geometry Problem (DDGP) [6]. Lorsque
nous discrétisons l’espace de recherche, nous permettons d’énumérer toutes les solutions
possibles au problème posé. L’algorithme capable d’effectuer cette tâche est branch-and-
prune (BP), qui fonctionne en phase de branchement et d’élagage. Notez que cet algo-
rithme ne peut énumérer complètement toutes les solutions possibles que lorsque nous
utilisons principalement des données de distance précises. Dans de nombreuses applica-
tions, nous sommes confrontés à un degré élevé de bruit, ce qui conduit à des intervalles de
distance. Il existe diverses implémentations de l’algorithme BP conçues pour gérer cette
incertitude. Dans cette thèse, nous nous concentrons sur un en particulier: MDjeep [7].
Cette implémentation, initialement écrite en C, a été adaptée à Java pour cette thèse. De
plus, dans le cadre de cette thèse, cet algorithme a été étendu pour utiliser non seulement
les distances, mais également les angles de torsion. En particulier, elle a été étendue pour
exploiter le signe des angles dièdres dans la phase de branchement. Cela signifie que la
taille de l’espace de recherche est considérablement réduite, ce qui augmente les chances
de l’algorithme d’identifier des solutions de bonne qualité.

Biologie structurale

L’algorithme BP est particulièrement utile dans le contexte de la biologie structurale.
Certaines instances qui surviennent dans le contexte d’expériences Nuclear Magnetic Res-
onance (NMR) peuvent être discrétisées [8]. De plus, dans ces cas, l’inclusion des informa-
tions sur l’angle de torsion devrait améliorer l’efficacité de la méthode BP. Pour étudier
cela, nous avons présenté plusieurs expériences avec l’algorithme étendu BP, implémenté
en Java. La première série d’expériences concerne des instances issues de données réelles
NMR. Dans la littérature, il est courant d’étudier BP pour la biologie structurale en
utilisant des données simulées au lieu de données réelles [7–14]. En effet, le bruit dans
les données réelles est si élevé que les méthodes BP ont tendance à échouer. Les expéri-
ences présentées dans cette thèse montrent que, au moins pour les petites protéines, les
structures générées à l’aide de la méthode BP étendue sont de bonne qualité. Cependant,
à mesure que la taille des protéines augmente, l’incertitude capturée dans les instances
augmente également. Cette incertitude a un impact important sur la qualité des résultats.
Cela nous amène à la deuxième série d’expériences. Une source d’inexactitude dans les
cas provient des variations dans la géométrie covalente des protéines. Nous présentons une
analyse qui montre que les angles de liaison et l’angle de torsion ω peuvent présenter de
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grands écarts d’un acide aminé à l’autre. Cependant, dans les cas que nous utilisons, ces
variations ne sont pas capturées et ces angles (et les distances associées) sont souvent con-
sidérés comme constants. Dans les expériences que nous présentons, nous montrons l’effet
de ces variations sur la méthode BP et les solutions générées. Dans les résultats, nous
constatons une corrélation claire entre la taille des protéines et la qualité des solutions,
montrant que pour des protéines plus grosses, l’algorithme produit des structures moins
bonnes. Les travaux futurs sur ce sujet visent principalement à résoudre le problème de
ces variations, ainsi qu’à améliorer la gestion de l’incertitude dans les instances.

Géométrie de distance dynamique

Nous examinons ensuite la géométrie dynamique des distances en nous concentrant
principalement sur les mouvements humains. Les mouvements humains sont des anima-
tions généralement enregistrées par capture de mouvement. Ces mouvements décrivent un
personnage squelettique effectuant un mouvement à travers différentes images. La raison
pour laquelle nous nous intéressons particulièrement aux mouvements humains est que,
comme chez les humains, les protéines présentent également une structure squelettique.
Par conséquent, avec cette étude, nous posons les bases de futurs projets qui pourraient
se concentrer sur la modélisation de la dynamique des protéines. Dans cette section de la
thèse, nous nous concentrons sur le problème du retargeting de mouvement [15–17]. Ici,
l’enjeu est de copier le mouvement d’un acteur vers un deuxième personnage, de morpholo-
gie différente. Ce problème peut être décrit en utilisant Distance Geometry dynamique
et des travaux antérieurs montrent que cette approche basée sur la distance peut être
fructueuse [4, 5]. Nous étendons davantage l’approche basée sur la distance, en travail-
lant directement dans l’espace des angles d’Euler. De plus, nous proposons une nouvelle
représentation des mouvements humains, inspirée de la biologie structurale, qui pourrait
être particulièrement utile dans le contexte du reciblage des mouvements humains [18,
19]. En utilisant cette nouvelle représentation, nous présentons une analyse statistique,
mettant en valeur la pertinence de la représentation. Les prochaines étapes sur ce sujet
consistent notamment à améliorer encore la stratégie basée sur la distance pour le reci-
blage de mouvement. Deuxièmement, les travaux devraient être étendus à la modélisation
de la dynamique des protéines.
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Cartes adaptatives

La dernière application sur laquelle nous nous concentrons est celle des cartes adap-
tatives [20, 21]. Ici, nous générons des cartes où les distances entre les Point of Interest
(POIs) clés sur la carte ne sont pas euclidiennes, mais plutôt basées sur des mesures sub-
jectives de proximité, qui dépendent de l’utilisateur. L’un des défis lors de la génération
de cartes adaptatives est de déplacer les POI de manière à ce que ces distances subjectives
soient satisfaites, tout en s’assurant que la nouvelle carte ressemble toujours à l’ancienne
carte à usage général. Ce problème de relocalisation des POI peut être formulé comme
un type de DGP, où nous incluons des contraintes basées sur les orientations locales entre
les POI. Ces mêmes contraintes permettent de linéariser le problème. Pour cette thèse,
un nouveau modèle linéaire a été proposé et implémenté. De plus, nous présentons di-
verses expériences avec le nouveau modèle, montrant des résultats prometteurs. Enfin,
nous examinons une possibilité d’amélioration de la méthode, qui consiste à essayer dif-
férentes rotations des axes des orientations locales. Les travaux futurs se concentreront
sur l’amélioration de cette méthode de rotation.

Représentations binaires et DGP en dimension 1

Enfin, l’auteur a apporté des contributions mineures à deux autres sujets. Le premier
travail se concentre sur les représentations binaires de problèmes combinatoires et sur la
manière dont nous pouvons utiliser les méta-heuristiques pour trouver des solutions. Cela
concerne DG car les solutions aux instances de la sous-classe DDGP peuvent être représen-
tées à l’aide d’une chaîne binaire. Le deuxième travail considère le DGP en dimension 1.
En particulier, nous nous sommes concentrés sur un type spécifique d’instances «para-
doxales», qui semblent triviales mais sont en fait difficiles à résoudre par les méthodes
branch-and-prune. Nous proposons des méthodes alternatives, basées sur une reformu-
lation matrice par vecteur, qui permettent de résoudre plus efficacement ces instances
paradoxales.
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Chapter 1

INTRODUCTION

Distance Geometry (DG) is the study of geometric concepts based on distance. An
early historical result in the context of DG is Heron’s formula, which was proven in the 1st
century CE. This formula can be used to compute the area of a triangle solely based on its
sides (the distances between its vertices). Many practical tools and techniques allow for
the measurement of distances between objects, such as the sensors in sensor networks [1]
or Nuclear Magnetic Resonance experiments for inter-atomic distances in proteins [2]. DG
is the branch of mathematics occupied with how we can obtain more information about
the set of objects by using only pairwise distances. In this thesis, we extend the discussion
so that we do not only consider Euclidean distances, but also other geometric concepts
such as angles and local orientations or different distance types. The core problem within
the field of DG is the Distance Geometry Problem (DGP), in which we are tasked with
finding the (relative) positions of objects, such that the measured distances between them
are satisfied. This thesis is focused on different variants of the DGP, its discretization,
and some of its major practical applications, with an emphasis on structural biology.

In this introductory chapter, we start by giving formal definitions for the DGP (Sec-
tion 1.1). Next, we will touch on the applications of the DGP (Section 1.2). Afterwards,
in Section 1.3 we show that sometimes it is desirable to include other geometric informa-
tion in the instances besides distances. We will discuss different methods of solving the
general DGP found in the literature in Section 1.4. Finally, in Section 1.5, we will describe
the Java package that was created and used for the various experiments conducted as part
of this thesis. The second chapter of the thesis will focus on one of the most interesting vari-
ants of the DGP: the Discretizable Distance Geometry Problem (DDGP), whose instances
arise in the context of molecular biology. The rest of the thesis is structured according to
three applications of the DGP, to each of which a chapter is dedicated (Chapters 3 to 5).
Chapter 3 focuses on structural biology, Chapter 4 discusses motion retargeting and hu-
man motions and Chapter 5 explores the application of adaptive maps. Finally, Chapter 6
closes off with a short summary and a brief discussion of some ongoing work to which the
author has made minor contributions as part of the thesis.
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1.1. Defining the Distance Geometry Problem

1.1 Defining the Distance Geometry Problem

The Distance Geometry Problem (DGP) [3] is a problem that involves determining
the positions of a set V of n points in a K dimensional space, based on a (possibly
incomplete) set D of pairwise proximity measures between these points. In general, D is a
set of distances δ(u, v) for different pairs of points (u, v) ∈ V . Historically, this problem has
had different names [22], such as the position-location problem [23] or the K-embeddability
problem [24]. In the context of sensor network localization, the problem is often referred to
as the Graph Realization problem [1]. The DGP was proven to be NP-complete for K = 1,
while for K > 1, it was shown to be NP-hard [24]. The most studied variant of the DGP
is the assigned version, where the assignment of every distance δ ∈ D to a corresponding
pair of points {u, v} ∈ V × V is known. There also exists the less researched unassigned
DGP [25]. In this thesis, we will focus on the assigned variant.

An instance of the assigned DGP may be represented in different ways. One of the most
widely used representations in the literature [3, 18, 19, 22, 26–30], and the representation
that we will use throughout this thesis, utilizes a graph structure to describe the problem.
For this representation, we use a simple, undirected graph G = (V,E, d). The vertices of
G correspond to the set of points that we want to find a realization for. The existence of
an edge {u, v} ∈ E in G indicates that we have access to the distance from u to v. Finally,
d is the weight function in G which pairs every edge {u, v} ∈ E to its corresponding
distance δ ∈ D:

d : {u, v} ∈ E −→ δ(u, v) ∈ D. (1.1)

Using the graph representation, the DGP can be formalized as follows [3, 22]:

Definition 1 Given a simple weighted undirected graph G = (V,E, d) and an integer
K ∈ Z+ the (assigned) DGP asks whether a realization

x : v ∈ V −→ xv ∈ RK (1.2)

exists, such that

∀{u, v} ∈ E, ||xu − xv|| ∈ δ(u, v) (1.3)

There are two important details to note here. Firstly, it is natural to think of the
distances δ and the norm || · || in the constraints (1.3) to be Euclidean. However, there are
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different methods in which the proximity between objects is estimated via non-Euclidean
measures. Despite this, we will still attempt to find a realization in the Euclidean space.
For example, in Section 1.4.6 and Chapter 5, we will see that in order to linearize the
DGP, we need to use a linear distance measure, such as the L1 and L∞ norms [31, 32].
Secondly, various applications will have distances that may include noise (for example,
distances obtained through physical experiments). For this reason, the constraints (1.3)
leave space for the distances δ(u, v) to be non-exact (an interval) [δ(u, v), δ(u, v)]:

δ(u, v) ≤ ||xu − xv|| ≤ δ(u, v),

as well as the exact case (degenerate interval):

||xu − xv|| = δ(u, v).

In some cases, where we have a lot of noise on the input distances, it may not be
possible to find a realization such that all distances are satisfied. In these cases, it can
instead be useful to consider the DGP as a Global Optimization (GO) problem, where we
aim to minimize the error on the distances [26]:

Definition 2 Given a simple weighted undirected graph G = (V,E, d) and an integer
K ∈ Z+ the unconstrained optimization-based DGP asks to determine a realization

x : v ∈ V −→ xv ∈ RK

such that a penalty function σ is minimized.

The penalty function σ should measure the violation of the distance constraints. For
example, we may use [4, 33]:

σ(x) = 1
2

∑
{u,v}∈E

(∥xu − xv∥ − δ(u, v))2 (1.4)

Note that when all distances are exact, the problems given in Definitions 1 and 2 are equiv-
alent. An important property of σ(x) is that it is differentiable at x when no two points
are in the same position. Thus we can compute the gradient ∇σ(x) and use methods such
as gradient descent to find local minima. In Section 1.4, we will see several optimization
techniques that find solutions for the DGP by minimizing such penalty functions.
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When the distance graph G is complete, or at least dense, it may make sense to
represent the DGP using an Euclidean Distance Matrix (EDM) [34–36], which is a hollow
square matrix containing the pairwise squared distances between the points in V . Consider
some order on the points in V = {v1, . . . , vn}, where n = |V |. The entry of the EDM at
indices (i, j) contains the squared distance δ(vi, vj)2. This is a matrix of real values, which
means an EDM cannot be used to represent interval distances, but only exact ones. This
may be too limiting for some of the applications of the DGP. Figure 1.1 showcases the
graph representation of the DGP and compares it to the EDM representation.
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Figure 1.1 – On the left we see the graph representation of the DGP, where the presence of an edge
represents the fact that we know a distance. The colours of the edges represent the value of the distance.
On the right, we see the EDM representation of the same two instances. On the top, we have a fully
complete instance where we have access to all pairwise distances. On the bottom, we see a cycle graph,
where we miss half of the distances, leading to a sparser matrix. Inspiration was taken from Fig. 1 in [36].

Note that in the graph representation of the DGP, we do not have a specific vertex
order on V , while the EDM does include a implicit vertex ordering. The advantage of the
EDM representation is that we can use several techniques to find an embedding for V that
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operates directly on the EDM (see Section 1.4.1). However, there are several complications
with these techniques. In many real-world applications, we will have missing distances, and
thus the EDM will be incomplete. One can only use the matrix-based techniques to find a
realization of the distances when the EDM is complete. This leads to a problem known as
EDM completion, where efforts are made to complete the missing distance information in
the matrix, for example through the use of Semidefinite Programming. More information
on these techniques is given in Section 1.4.1.

1.2 Different DGPs and their applications

Distance Geometry Problems can come in many forms. Instances of these different
types of problems can be found in different practical applications. Common themes are
the notions of discretization, graph rigidity, non-Euclidean distance norms, and the fact
that in practice we often have a large degree of noise on the input distances. As part
of this thesis, practical work was done on four of these applications (molecular structure
determination, motion retargeting, adaptive maps, and clock synchronization).

A very important application, and the main focus of this thesis, is molecular structure
determination [27, 33, 37–45]. In this application, the vertices V of the graph G correspond
to atoms of a molecule, and the distance information d associated with the edges E of
the graph are the inter-atomic distances. The goal is to determine the three-dimensional
structure of the molecule such that the inter-atomic distances are satisfied. The instances
of the DGP in the context of molecular structures often belong to a special subclass of
the problem. The distance graphs that we obtain satisfy special conditions that let us
discretize the search space [6, 8, 26]. This means that we may be able to enumerate all
three-dimensional structures that a protein can fold into. These types of problems are
referred to as instances of the Discretizable Distance Geometry Problem (DDGP). More
detail on this instance type can be found in Chapter 2. The problem of molecular struc-
ture determination is further examined , where several experiments will be presented. In
the literature, most experiments with DDGP methods for protein structure determina-
tion are done with artificially generated instances from known structures. In Chapter 3,
experiments will be presented with instances created from real protein data. An example
of some of the results of these experiments can be seen in Figure 1.2, which shows the
structures of two proteins with complex secondary structures, that were computed by
exploiting several available distances between the atoms of the molecules.
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Figure 1.2 – Examples of conformations of two proteins (PDB codes from left to right: 1YD0A, 4WZXA).
These structures were computed using the inter-atomic distances and other geometric information, us-
ing software created as part of this thesis. The image was generated using molecule viewing software
Chimera [46].

It is known that, because of the inter-atomic forces at play, the atoms of a protein
move over time, forcing the protein to take on different conformations. Instances of the
DGP where we have such a dynamic aspect, where the points that we want to embed may
move over time, are referred to as instances of the Dynamical Distance Geometry Problem
(dynDGP). An example of an application of this dynamical variant is motion retargeting,
where we want to copy the animation of one character to another while avoiding unwanted
contact between the joints of the character. To do this, we may exploit the distances
between the joints in the original character, and attempt to map these to the second
animation. To solve such a dynDGP, essentially we have to solve a series of DGP instances.
In the case of motion retargeting, we are solving one DGP instance per frame. Aside from
motion retargeting, the dynDGP has other applications such as simulating pedestrians in
a crowd [47, 48] or aircrafts in the air [49]. More information about the dynDGP will be
given in Chapter 4, in which several experimental results will be presented on the problem
of motion retargeting.

The concept of discretizability, which was mentioned in relation to the application of
molecular structure determination, is closely linked to the notion of graph rigidity [23, 50–
54]. In fact, if a graph is rigid, we know the number of possible incongruent realizations
of the graph is finite [22, 55]. A graph is said to be rigid if its edges will not bend or
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flex under an applied outside force. This leads us to a historical application of Distance
Geometry (DG): statics [56, 57], which is the study of forces that act on non-moving bodies
in physical systems that are in static equilibrium. More details of how this application
relates to DG can be found in [22].

Another interesting application of the DGP is wireless sensor network localization [1,
58–63], which is a problem where rigid graph theory is very relevant [64]. Here, we have
a set of wireless sensors in a network. To properly route communication signals through
the network, the router must determine the positions of the sensors. Every sensor, given
a certain radius, is aware of its neighbours. This awareness is expressed in the form of a
distance, which means that we have an instance of the DGP. In our graph representation
for this problem, the vertices V are the sensors and edges E reflect the distances between
them. These sensors are prone to making errors, so similarly to when we deal with inter-
atomic distances for molecular structure determination, the measured distances between
the sensors may contain a lot of uncertainty. Rigid graphs have the property of sustaining
various kinds of deformations due to translation, rotation, and reflection. Hence, it is
fruitful to use the concepts of rigid graphs, to find the locations of the sensors, even when
we have noise on the distances between them.

A classical application of the Distance Geometry Problem is dimensionality reduc-
tion [65–70]. Dimensionality reduction is the transformation of data points in a high-
dimensional space to a lower-dimensional space. In the context of Distance Geometry, the
main idea is to start by computing the distances between the data points in the input.
This is an example of a case in which we use distance norms other than the Euclidean one.
This is because distances computed at higher dimensions are likely to be non-realizable
in lower dimensional spaces. Therefore, other distance norms may be used, such as the L1

norm (see Section 1.4.6 for a definition of this norm). Once we have the distances between
the data points, we can solve an instance of the DGP with a different target dimension K,
lower than the original dimension of the data points. The DG-based techniques for solving
dimensionality reduction problems are known as Multi-dimensional scaling (MDS) [34, 36,
65], and work directly on EDMs (see Section 1.4.1).

Another application of Distance Geometry in which non-Euclidean distance norms are
important is the more recently studied problem of Adaptive maps. More often than not,
geographical maps are meant for general use. Because of this, the distances between Points
of Interest (POIs) on modern maps are based on the Euclidean distance between them.
Adaptive maps on the other hand are maps that are modified based on characteristics
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specific to the end-user, such as the slope of the route or the accessibility of the user.
To create such an adaptive map, the original geographical map needs to be modified to
match these new user-specific distances. This corresponds to solving a DGP in dimension
2. To make sure the adaptive map still bears a resemblance to the original, some extra
linear constraints are added to the problem. This makes Linear Programming one of the
best tools for finding solutions to the problem. More information on Linear Programming
as a tool to solve DGPs can be found in Section 1.4.6 while more details on adaptive maps
and several related computational experiments can be found in Chapter 4.

In dimension 1, the L1, L2, and L∞ norms are the same. In this dimension, we have
the clock synchronization problem, where we are given a set of clocks, a subset of offset
measurements between pairs of clocks as well as some offsets to a central clock, for which
we know the time. The goal is to compute the precise time on each of the clocks [61, 71,
72]. This is the main practical application for the DGP in dimension K = 1. The clocks
represent the vertices V of our graph G and the edges E and their weight d corresponds
to the temporal offsets between the clocks. Section 6.2.2 focuses on this problem and the
DGP in dimension 1. Specifically, we focus on one special difficult subclass of the DGP
in dimension 1, in which our distance graph G is a cycle graph.

One of the reasons that the DGP is an interesting and multifaceted problem is that ap-
plications seemingly appear everywhere. For example, a niche application, closely related
to sensor networks, is that of controlling and locating autonomous underwater vehicles [73,
74]. An application of the DGP can even be found in music [75], where Distance Geometry
is used to provide a quantitative analysis of rhythm and music. Aside from these, DG is
also relevant for visualization [76, 77] and graph coloring [78].

1.3 Not only distances

In some of the applications mentioned in the previous section, we may have more
geometric data available that is not captured by the input distances. Therefore, it is
desirable to include this extra information in the instances so that we may exploit it.

Vector and torsion angles

In the context of molecular structure determination, we have access to two types of
angles: vector and torsion angles. Vector angles ζ(v1, v2, v3) ∈ [0, π/2] are induced by
three vertices v1, v2 and v3, where we know δ(v1, v2) and δ(v2, v3). These vector angles can
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be easily converted to a third distance δ(v1, v3) by using the cosine rule, without losing
any information. In the case of proteins, these angles come in the form of bond angles,
which are angles created by every pair of atomic bonds that include a common atom.

In contrast to these types of angles, torsion angles cannot be so easily translated to
distance information. Given four vertices v1, v2, v3 and v4. The torsion angle τ ∈ [−π, π]
is the dihedral angle created by the two planes induced by v1, v2, v3 and v2, v3, v4. From
this point onward, we will confuse the two terms dihedral and torsion angle.

Examples of one torsion angle and two vector angles induced by four vertices are shown
in Figure 1.3. In the case we know the three distances δ(v1, v2), δ(v2, v3) and δ(v3, v4), as
well as the vector angles ζ(v1, v2, v3) and ζ(v2, v3, v4) we may convert the torsion angle to
a distance δ(v1, v4).

One way to do this is by computing the coordinates of the points v1 and v4 with the
origin set at the midpoint of the vector −−→v2v3. We imagine the particular case where the
torsion angle τ = 0. Then, from this specific case, we generalize for all other cases by
rotating the vector −−→v1v2 around the x axis, with an angle of τ/2. We rotate −−→v3v4 in the
opposite direction, with angle −τ/2. This gives us the below formulas for v1 and v4:

v1 =


1 0 0
0 cos τ/2 − sin τ/2
0 sin τ/2 cos τ/2



−δ(v1, v2) cos ζ1

+δ(v1, v2) sin ζ1

0

−

δ(v2, v3)/2

0
0

 ,

v4 =


1 0 0
0 cos τ/2 sin τ/2
0 − sin τ/2 cos τ/2



−δ(v3, v4) cos ζ2

+δ(v3, v4) sin ζ2

0

 +


δ(v2, v3)/2

0
0

 .

All that remains is to compute the distance from v1 to v4 using the Euclidean distance
formula.

However, converting such a torsion angle to a distance is not a lossless process. In
fact, +τ and −τ lead to the same distance δ(v1, v4). It is therefore desirable to include
the torsion angles directly in the instances and exploit them in other ways, such that the
information of the sign is not lost.
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Figure 1.3 – An illustration of two vector angles ζ1 = ζ(v1, v2, v3) and ζ2 = ζ(v2, v3, v4) as well as the
dihedral angle τ

To achieve this, we represent the problem using a directed weighted hypergraph G(V,E, d).
In such a graph, an edge (called hyperedge) can join any number of vertices. Such a hy-
peredge e ∈ E consists of a pair of subsets of V . In our hypergraph we will only have
two types of edges, those that relate to distances and those that relate to torsion an-
gles. We will refer to the edges that correspond to distances as Eδ ⊂ E. An edge that
relates to the distance between the vertices u and v is simply represented using a pair
of singletons: ({u}, {v}) ∈ Eδ. For every hyperedge ({u}, {v}) ∈ Eδ, we should have the
corresponding hyperedge ({v}, {u}) ∈ Eδ. The edges that relate to torsion angles concern
quadruplets of vertices which together (in a specific order) form a torsion angle τ . These
edges Eτ ⊂ E will consist of a pair of a triplet of vertices with a singleton. For example, if
a hyperedge relates to a torsion angle formed by the quadruplet v1, v2, v3 and v4, we will
have an edge ({v1, v2, v3}, {v4}) ∈ Eτ . Note that these (directed) edges imply a specific
vertex order. Vertex orders and their importance are discussed in detail in Chapter 2. In
order to complete our description, the hypergraph is paired with the weighting function
d. The function d maps each hyperedge ({u}, {v}) ∈ Eδ to an interval distance δ(u, v),
where δ(u, v) = δ(v, u). Every edge ({v1, v2, v3}, {v4}) ∈ Eτ is mapped to an interval
[τ(v1, v2, v3, v4), τ(v1, v2, v3, v4)] described by τ(v1, v2, v3, v4). Note that just like before,
the intervals δ(u, v) and τ(v1, v2, v3, v4) may be degenerate, i.e., they may correspond to
an exact value.
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This hypergraph lets us define a new variant of the DGP, in which torsion angles given
in the input should also be observed:

Definition 3 Given a weighted directed hypergraph graph G = (V,E, d), where d maps
edges E to distances δ and torsion angles τ , the (torsion angle enriched) DGP asks whether
a realization

x : v ∈ V −→ xv ∈ R3 (1.5)

exists, such that
∀({u}, {v}) ∈ Eδ, ||xu − xv|| ∈ δ(u, v)

and
∀({v1, v2, v3}, {v4}) ∈ Eτ , dihed(xv1 , xv2 , xv3 , xv4) ∈ τ(v1, v2, v3, v4, )

where dihed(xv1 , xv2 , xv3 , xv4) corresponds to the dihedral angle that is formed by the posi-
tions of v1, v2, v3 and v4.

In Section 2.5, we will see that including this extra information into our instances
will let us decrease the size of the search space in the context of the branch-and-prune
(BP) method. Furthermore, experiments in Section 3.5.2 will illustrate the usefulness of
torsion angles in the context of molecular structure determination. Molecular structure
determination is not the only application for which we are interested in these angles.
In Chapter 4, we will see that they are also of interest for motion retargeting, where they
allow us to define a new representation for human motions.

Local relative orientations

Instances of the DGP relating to adaptive maps showcase another interesting case
where we have additional geometric information. Because we have access to the original
geometric map, we have access to the relative orientations between each pair of points
that we want to embed. Specifically, we have access to the relative orientations for every
pair of vertices (u, v) ∈ E. In the case of adaptive maps where the dimension K = 2,
these orientations are included in the instances in terms of linear constraints by using
four quadrants (NW, NE, SW, and SE). The edge set E is partitioned into four subsets
that correspond to these quadrants. For example, when we have (u, v) ∈ NW we know
that the positions for v should be to the North-West of the positions for u. Including
these constraints let us define a new variant of the DGP, where the local orientations
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are imposed on the desired realization x. This variant of the problem can be solved by
constrained optimization methods. The linear nature of these constraints makes Linear
Programming an important contender for solving these instances. More information can
be found in Section 1.4.6 and Chapter 5.

1.4 Methods for solving the DGP

Many algorithms have been proposed for solving the Distance Geometry Problem.
There are methods using matrix operations directly on the EDM. We also have the op-
tion to use fast-running non-linear optimization methods that work mostly well on small
instances. For applications where it makes sense to linearize the problem, we can opt for
Linear Programming to find good-quality solutions effectively. Finally, if our instances
meet specific conditions we can use geometric build-up methods that have the capability
of providing us with all possible realizations to the problems at hand. In this section, we
will describe the most important methods and frameworks. We also touch on the strengths
and weaknesses of each of these methods.

1.4.1 Operating on Euclidean Distance Matrices

We are given a collection of n points in dimension K, described by a coordinate matrix
X with K rows and n columns, where every column represents the set of coordinates of
one of the points. We can now exploit the Euclidean distance formula to devise a function
that computes the Euclidean Distance Matrix given such a (centered) coordinate matrix
X [36]:

edm(X) = 1diag(X⊤X)⊤ − 2X⊤X + diag(X⊤X)1⊤ (1.6)

where 1 is a column vector of ones and diag(A) is a column vector with the diagonal
entries of the matrix A. Solving the DGP, given an EDM, corresponds to inversing the
equation shown in (1.6), as long as all the distances are exact and we are considering the
Euclidean norm. This is precisely the approach that Multi-dimensional scaling (MDS) [34,
36, 65] methods take to find solutions for the DGP. Recall from Section 1.1 that when we
have instances with interval distances, we cannot use an EDM to represent the problem.
Therefore we cannot use classical MDS techniques for these instances. However, as we will
see towards the end of this section, EDM completion methods can be used to deal with
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instances with interval distances. Classical MDS was implemented as part of the Java
package for this thesis and included as a benchmark for other methods (see Section 1.5).

Note that in (1.6), we see that the EDM can actually be defined as a function of the
Gram matrix G:

G = X⊤X (1.7)

Given a complete Euclidean Distance Matrix D, the first step of classical MDS is
to compute G, starting from D. We can do this by exploiting the Geometric centering
matrix J :

J = I − 1
n

11⊤ (1.8)

G = −1
2JDJ (1.9)

where I is the identity matrix. Schoenberg’s theorem [79] shows that there is a one-to-one
relation between a matrix being an Euclidean Distance Matrix and its Gram matrix G

being positive semi-definite (all of its eigenvalues are non-negative) [34]. This means that
if D is a valid EDM we can use the eigenvalue or singular value decomposition of G to
compute X, which is the last step of classical MDS. This method was already proposed
in 1901 by the name Principal Component Analysis (PCA) [80], and has been widely
used for finding realizations for EDMs [42, 81]. This method works reasonably well, even
when the distances include noise. This is because it uses only the top-K eigenvalues to
compute the realization matrix X, where K is the dimension we are trying to embed in.
However, remember classical MDS only works if we have access to a complete EDM, with
all pairwise squared distances. The application that is most relevant to these methods
is that of of dimensionality reduction (see Section 1.2), because in this application we
often know all pairwise distances between the input data points and can thus construct a
complete EDM.

In the case where we have an incomplete EDM, it may still be possible to use EDM-
based methods to solve these incomplete instances. The general approach is by first using
an algorithm to complete the missing distance information in EDM. Then, as a final
step, we can use classical MDS to compute the coordinate matrix X corresponding to
a realization of the EDM. One can directly exploit the rank of the EDM. Because the
coordinate matrix X has K rows, the ranks of X and X⊤X are at most K. The other
two terms in (1.6) have rank 1, which means that any valid EDM has a maximal rank
of K + 2 [36]. Because we know the embedding dimension K and thus the rank of the

36



1.4. Methods for solving the DGP

matrix, one approach is to try to iteratively complete the EDM, while enforcing the
(noisy) distances that we know, until the desired rank is reached. Alternatively, because
we know that the EDM will have a low rank, we may use several general algorithms for
low-rank matrix completion that have been proposed in the literature. One example of
this is OptSpace [82], which is based on spectral methods followed by local manifold
optimization. Apart from gradient descent methods, we can also use an alternating least
squares minimization approach, such as AltMinComplete proposed in [83].

Aside from exploiting the rank of the EDM, we can try to complete it by propa-
gating triangle and tetrangular inequalities from the known distances. The well-known
EMBED algorithm works using this approach [37]. These inequalities give us lower and
upper bounds on the missing distances. To be able to use classical MDS, we need an EDM
with only real, exact values, and no interval distances. The EMBED algorithm overcomes
this issue by iteratively selecting a ”trial” matrix by randomly choosing values within the
distance intervals. These random values can be chosen uniformly or one can use metriza-
tion, to compute a random metric space whose distances all lie within their respective
limits [37]. The obtained matrix will most likely not be a valid EDM, which is why the
second step includes running local optimization to attempt to convert the invalid EDM
to a valid one. A similar approach is the Alternating Projections Algorithm (APA) [84].
This is based on Successive Projection Methodology (SPM) [85], which projects a starting
alternatively on two convex sets. Instead of first exploiting triangle and tetrangular in-
equalities, here we simply generate a random starting point EDM D, such that all entries
of D either satisfy the known distance constraints or are equal to 0 otherwise. Then, we
alternatively project D on two convex sets: the set of matrices with a zero-diagonal and
the set of matrices that correspond to a positive semi-definite Gram matrix G (1.9). At
the intersection of these two sets lie the completed, valid EDMs.

Semidefinite Programming (SDP) [1, 35, 38, 45, 58, 59] has been widely used for EDM
completion as well. Semi-definite programming can be used to solve convex relaxations of
a global optimization problem, with the requirement that the variables in the optimization
problem correspond to entries in a positive semi-definite matrix. Because we know that
the gram matrix G is positive semi-definite, we can cast EDM completion as a semidef-
inite program, and then we solve this (convex) relaxation. In fact, the EDM completion
problem corresponds to a special case of the general Semidefinite Programming feasibil-
ity problem [86]. These semidefinite programs may be solved using primal-dual interior
point-solvers. However, this is an expensive process and may lead to inexact solutions.
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Instead, it is possible to avoid SDP solvers altogether when a facial reduction technique
is used [87, 88]. Interestingly, this method finds solutions by regarding the problem in
three equivalent forms: as a graph realization problem, as the EDM completions problem
as well as a rank restricted SDP. The face of the SDP cone corresponding to a given
clique in the graph is characterized. Next, the intersection of two faces corresponding to
overlapping cliques is characterized. Such an intersection may be obtained by computing
the singular value decomposition. This intersection step is equivalent to completing blocks
of the EDM. This process is repeated until the EDM is fully completed, which can be
done in a finite number of intersection steps. Note that this method cannot be used for
all instances of the problem. In some cases, the entire problem may not be reduced to a
single clique. In this case, it is still necessary to use a SDP solver to complete the EDM.

In general, EDM-based methods can be effective and produce good-quality results.
When the EDM is complete, classical MDS is a fast-running method that provides good-
quality results even if we have some noise present in the input distances. However, having a
complete EDM is a very strict requirement for most important applications. For example,
in molecular structure determination, we are missing many distances making the EDM
incomplete (see Figure 1.1, bottom-right). When we are missing only a few distances,
the EDM completion methods can still lead to good-quality results. Another advantage
of some of these EDM completion methods (EMBED and SDP approaches) is that they
can handle interval distances in the input as well. However, these algorithms do have some
pitfalls. A very important shortcoming is that when the EDM is sparse even the methods
based on EDM completion tend to fall short [45]. This means that for many of the harder
applications of Distance Geometry, these methods will not be very effective.

Furthermore, when we have instances with a large number of points, these large ma-
trices use a lot of memory space. Furthermore, the MDS based methods do not scale so
well: generally, O(n2) or worse. In the next two sections, we describe (meta) heuristics
and non-linear optimization techniques which aim to address this problem of scalability,
and will generally run much faster on larger applications.

1.4.2 Stochastic Proximity Embedding

One straightforward heuristic has been proposed for the DGP, known as Stochastic
Proximity Embedding (SPE) [89]. For a description of the algorithm using pseudocode,
see Algorithm 1. We start by initializing with a random initial realization x and choosing
a learning rate λ. From here, we try to improve x in iterations, until a maximum number
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of iterations is reached. To do this, we have a double loop: the inner loop runs for several
steps S while the outer loop runs for an amount of cycles C. In the inner loop, at every
step, we select one random vertex pair (u, v) for which we know the true distance δ(u, v).
Then, we adjust the coordinates xu and xv such that the distance ||xu − xv|| better
approximates δ(u, v). The amount by which we ”correct” the coordinates is calculated
by using the learning rate λ. In the outer loop, after each set of steps, we decrease our
λ by a predetermined amount. This means that in the earlier cycles, we will update the
coordinates more drastically. When we start to converge towards a solution, only small
modifications are made.

Algorithm 1 Stochastic Proximity Embedding (SPE)
Input: Cycles C, steps S, learning rate λ and decrease factor δλ, small tolerance value ϵ
Output: Realization x
x← initial random realization
while c ≤ C do

while s ≤ S do
Select a random distance δ(u, v)
duv ← ||xu − xv||
if duv ∈ δ(u, v) then

ruv ← δ(u, v) if it is exact, otherwise the nearest bound to duv

xu ← xu + λ
2

ruv−duv

duv+ϵ
(xu − xv)

xv ← xv + λ
2

ruv−duv

duv+ϵ
(xv − xu)

end if
s← s+ 1

end while
c← c+ 1
λ← λ− δλ

end while
return x

SPE was implemented as part of this thesis to serve as a benchmark for the other
solvers (see Section 1.5). One of the main advantages of SPE is that it is very straightfor-
ward to implement. SPE is a great alternative to EDM based methods, as the computation
time scales in order of O(n) and because it can trivially handle interval distances. Fur-
thermore, the inner loop of the SPE procedure lends itself to parallelization, which will
make it run even faster. Another advantage of SPE over the MDS techniques is that it
does not require the distance graph to be dense at all. However, these advantages come at
a price. As it is such a simple heuristic, we cannot always expect high-quality solutions.
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Because of its stochastic nature, we have no guarantees on the accuracy of the solution.
In the next section, we will see some (global) optimization techniques that are a little
more robust than SPE.

1.4.3 Nonlinear Programming

In a heuristic like SPE, at every iteration, we only modify up to two positions of the
realization x. However, we can also update the positions xv for all v ∈ V , at the same
time, by regarding the problem as a Global Optimization (GO) problem (see Definition 2).
We may use different Nonlinear Programming (NLP) methods to attempt to solve this
global optimization problem. These methods exploit the fact that penalty functions such
as (1.4) are differentiable on realizations x when there are no pairs of vertices that have
the same position [26].

When we use the graph representation of the DGP (see Definition 1) we may use some
mixed combinatorial methods based on graph decomposition. The idea is to divide our
graph G into a set of smaller graphs. Then, in the first phase, we use local optimization
to solve these subgraphs. In the second phase, we attempt to combine the solutions to
the subgraphs to find a solution for the global optimization problem. The first algorithm
to use this graph decomposition approach was ABBIE [90], where local optimization
techniques were used for both phases. Alternatively, Semidefinite Programming techniques
may be used for both phases as well [91, 92]. This second, global optimization phase of this
approach is the most challenging step and is what can complicate matters. Often, heuristic
approaches must be taken to do this effectively. An example of this is the algorithm 3D-
ASAP [93]. A drawback of these graph decomposition methods is that they only work
on exact distances, and extending them to interval data is not trivial [22].

Another option is Spatial Branch-and-Bound (SBB), which is a divide-and-conquer
technique used to find the solution to global optimization problems. SBB uses a deter-
ministic search using three steps: branching, bounding and, pruning. We start with the
branching phase, in which we divide the global problem into regions. Each of these regions
lets us compute lower and upper bounds on the objective function by utilizing local op-
timization. This is called the bounding step. Finally, in the pruning step, we discard any
regions that have lower bounds larger than the best local optimum found so far. We repeat
these three steps, on increasingly smaller regions, until the computed bounds converge,
which means we have found a local optimum. This general purpose approach was tried
for the DGP in [94]. The advantage is that it is deterministic, while most of the other
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approaches discussed in this section are stochastic. However, this method is extremely
slow, even for small-sized instances.

There are also several algorithms based on smoothing, in which local optimization is
used to find minimizers for increasingly finer smoothings of the original global optimization
problem. At each iteration, we end up with fewer local minima, until we finally end up
with a convex optimization problem that we can solve with local optimization. This is
known as a global continuation method. A well-known example of this approach is the
DGSOL algorithm [43, 44]. A similar algorithm (DCA) was introduced in [95, 96], which
differs mostly in their choice of local optimizer. DGSOL is a fast-running algorithm that
provides good-quality solutions for small instances. To extend to (slightly) larger instances,
DGSOL was combined with the meta-heuristic VNS [97] (discussed as a stand-alone
method in the next section). This lead to better quality solutions for larger instances, but
increased the computation time of the approach.

An example of a global constrained optimization method that was introduced specifi-
cally to solve instances related to molecular structure determination is GNOMAD [98].
This is a multi-level iterative algorithm that groups the vertices at the highest level. Next,
it attempts to identify an order within each of the groups based on the contribution of
each vertex to the total error on the distance constraints. Then, in this order, the vertices
are moved using a series of local optimization steps, while making sure all constraints
remain satisfied. This algorithm can handle exact distance constraints as well as intervals.

These non-linear optimization methods can be a good compromise between the ac-
curacy of MDS methods and the fast computation times of SPE. Not all methods work
well with interval data, such as the graph decomposition methods. On the other hand,
methods based on smoothing can be adapted such that they use hyperbolic smoothing,
which works for interval data [99]. In general, we cannot guarantee the level of quality
of the solutions. However, SBB is an example that does provide us with a bound on the
expected error. Despite this, the SBB method is not the best option, as it is extremely
slow on larger instances [94].

1.4.4 Meta-heuristics

A common way to tackle the optimization problem given in Definition 2 is by means
of meta-heuristic searches. The general idea of these methods is to repeatedly find local
minima for the penalty function σ, until something close to the global minimum has been
found. Different meta-heuristics have been tried in the context of Distance Geometry. Two
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that were tested in [94] were variations of Multi-start [100] and Variable Neighbourhood
Search (VNS) [101]. The most simple of these is Multi-start, which works by repeated
local searches (gradient descent) from randomly selected starting points. Multi-start was
tested on the DGP in [102]. VNS is a more sophisticated meta-heuristic. Instead of running
gradient descent from random starting points, it performs the searches in neighbourhoods
of already identified local optima, in an attempt to find the global optimum. These two
methods were effective for finding solutions for the DGP, but only for instances on the
small side, with n < 50 [94]. For larger instances, the method is too slow.

Two meta-heuristic global optimization methods for the DGP were presented in [102].
These methods are variations of the Basin Hopping (BH) algorithm, which was inspired by
Monte Carlo minimization and used for finding minimum energy structure for molecules [103].
For solving instances of the DGP, two versions of this algorithm were tried: Monotonic
Basin Hopping (MBH) and Population Basin Hopping (PBH). MBH looks like VNS in
the way that it repeatedly finds local minima and performs neighbourhood changes. How-
ever, in contrast to VNS, a change of neighbourhoods is done by performing a local move,
which is a procedure that allows us to move from one local minimum to another. The
nature of these local moves is very important to the efficacy of the algorithm. Because
these algorithms are stochastic, a better choice for the local move procedure will lead to
a higher chance of finding a global optimum. Two options for local moves are discussed
in [102], showing that a problem-specific local move is the best option. PBH is an exten-
sion to MBH that includes performing several MBH runs in parallel, in order to increase
the chance of success. Aside from these algorithms, there are a group of methods that are
based on the Simulated Annealing (SA) meta-heuristic. These are specialized for protein
structure determination and are discussed in Section 3.4.1.

The stochastic meta-heuristics find good-quality solutions for small instance sizes [22,
94, 102]. However, the larger the instances get, the more difficult it becomes for some of
these methods to perform well. Just like the optimization techniques mentioned in the
previous section, most of these methods do not give any guarantee about the level of the
quality of the solutions. They are perhaps best used as a refinement tool, in combination
with another DG method. In general, the meta-heuristic methods are quite easily adapted
such that they work with interval distances as well as exact distances. These methods
differ also in another facet: some of them are general purpose while others need are
more specialized. The advantage of the general purpose methods is that generally there
is a lot of information about them in the literature, and often their implementation is
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straightforward. The specialized methods may be harder to implement, but in the end,
they may provide us with better results, especially if we further fine-tune them to the
specific application that corresponds to the instance of the DGP that we are attempting
to solve.

1.4.5 Spectral Projected Gradient

We focus our attention on a specific local optimization method: Spectral Project Gra-
dient (SPG). SPG is often used in the context of Distance Geometry [4, 39]. We highlight
this method because it was used in various experiments in this thesis, across different
applications. In particular, the algorithm can be used to refine a solution obtained via
another approach. For example, it has shown to be an effective refining tool for instances
relating to molecular structure determination, where it was used in combination with
SDP and classical MDS [104]. SPG can be used for constrained as well as unconstrained
optimization. In the Java package (see Section 1.5) for this thesis, we used the constrained
variant in combination with branch-and-prune (see Section 1.4.7 and Chapter 2), which
has been shown to be a fruitful approach in [9]. Aside from this, we will show experi-
ments in the context of Dynamical Distance Geometry Problem, where the unconstrained
variant of SPG was used as the main method for solving the motion retargeting problem.
SPG was used as a tool for the motion retargeting problem also in [4, 19, 105, 106].

Given an initial realization x0, the spectral projected gradient is a method that will
try to improve the quality of the solution iteratively by minimizing the penalty function
σ. This initial realization x0 can be chosen arbitrarily, but when we use SPG as a refine-
ment method, x0 will generally already be of a decent quality. The main component of
SPG is gradient descent, which is a well-known local optimization procedure and one of
the principal ingredients of deep learning methods such as neural networks [107–110]. For
gradient descent, the step size is an important parameter. If the step size is too large,
we might step over a minimum. When it is too small we could take forever to converge.
We attempt to address this issue by using a spectral projected gradient method, which
means that the step size used throughout the gradient descent is spectral [111], based on
the underlying local Hessian, rather than using a standard decrease in the objective func-
tion. The spectral projected method is combined with a non-monotone line search [112] to
speed up the convergence. For this line search method, global convergence was shown for
smooth and non-convex functions, and R-linear convergence was proven for strongly con-
vex functions [113]. It is important to note that these convergence properties were shown
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for unconstrained optimization problems. In practice, the method is still very effective for
constrained optimization.

The pseudocode for the full procedure is given in Algorithm 2 and will be referenced
throughout the explanation. This pseudocode is based on [106, 111] and the implementa-
tions of SPG in the context of Distance Geometry. SPG operates through a main loop,
which runs for a maximal number of iterations I, which is given as an input parameter.

Algorithm 2 Spectral Project Gradient (SPG)
Input: Initial solution x0, penalty function σ, maximal iterations I, thresholds ϵ and αϵ,

stepsize bounds µmin, µmax, decrease parameter γ, nonmonotonicity degree η
Output: Final solution x

1: i← 0, q0 ← 0
2: m0 ← σ(x0) ▷ Using penalty function σ
3: while i < I and σ(xi) > ϵ do ▷ Stopping criteria 1 and 2
4: if i = 0 then
5: µ0 ← 1
6: else
7: yi−1 ← σ(xi)−∇σ(xi−1)
8: si−1 ← xi − xi−1
9: µi ← (s⊤

i−1si−1)/(s⊤
i−1yi−1)

10: µi ←min(µmax,max(µmin, µi)) ▷ Using safeguards
11: end if
12: di ← −µi∇σ(x0) ▷ Using µi to compute di

13: di = PΩ(xi − di)− xi ▷ Projection constraints (only for constrained version)
14: αi ← 1
15: while σ(xi + αidi) > mi + γαi∇σ(xi)⊤di do ▷ Nonmonotone line search
16: αi ← αi/2
17: end while
18: if αi < ϵα then
19: return xi ▷ Terminate early (stopping criteria 3)
20: end if
21: xi+1 ← xi + αidi ▷ Computing next solution and preparing next iteration
22: qi+1 ← ηqi + 1 ▷ qi is a helper variable for mi

23: mi+1 ← (ηqimi + σ(xi+1))/qi+1
24: i← i+ 1
25: end while
26: return xi ▷ Output the final solution

Recall the penalty function σ(x) which can be used to measure the violation of the
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distance constraints for a realization x:

σ(x) = 1
2

∑
{u,v}∈E

(∥xu − xv∥ − δ(u, v))2

Because this function is differentiable (when no two points have the same position), we can
use its gradient to improve a solution x. At every iteration i ∈ 0, . . . , I, a new, improved
solution xi+1 is computed by performing a step in the opposite direction di of the gradient
∇σ(xi). The direction di can be computed from the gradient using the spectral stepsize
µi (line 12) and the projection PΩ [114, 115] (line 13):

di = PΩ(xi − µi∇σ(xi))− xi,

Ω is the feasible convex set onto which we know how to project solutions x. Incorporating
the projections PΩ is what allows us to perform constrained optimization by using SPG.
The spectral stepsize µi is computed based on the previous step from iteration i− 1 to i
(line 9):

µi = s⊤
i−1si−1

s⊤
i−1yi−1

.

where si−1 = xi − xi−1 and yi−1 = ∇σ(xi) −∇σ(xi−1). This stepsize should be bounded
by the parameters µmin and µmax as a safeguard (line 10). The last ingredient we need is
the multiplier α, obtained from the non-monotone line search (lines 14-17). Initially, αi is
set to 1.0. Next, αi is reduced by half until the following stopping criteria are met (line
15):

σ(xi + αidi) ≤ mi + γαi∇σ(xi)⊤di,

where γ ∈ (0, 1) is a sufficient decrease parameter and mi is a variable based on the
penalty values σ of the previous iterations. Often, a parameter η is included in the line
search as well, which controls the degree of nonmonotonicity and is used to update mi

throughout the iterations. More information about these parameters and variables as
well as an analysis of this step can be found in [113]. Once we have obtained the three
ingredients µi, di and αi, we proceed to compute the next solution xi+1 by taking a step
in the right direction (line 21):

xi+1 = xi + αidi.

The above three steps (computation of spectral stepsize, non-monotone line search,
and stepping in the opposite direction of the gradient) are repeated until one of several
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stopping criteria is reached:

1. The maximal number of iterations I is reached (line 3).

2. The objective value σ(xi) reaches below a certain threshold ϵ, where ϵ is given as a
parameters (line 3).

3. The stepsize multiplier α reaches below a threshold αϵ, where αϵ is given as a
parameter (line 18).

1.4.6 Distance norms and Linear Programming

The optimization variant of the DGP in Definition 2 is non-linear. Firstly, the penalty
function σ has quadratic terms. Next, the Euclidean distance norm (L2), which we gen-
erally have in the applications of the DGP, is non-linear:

L2(xu, xv) =

√√√√ K∑
i

(xi
u − xi

v)2 (1.10)

where xi
u is the i-th coordinate of vertex u in the realization x.

However, it is possible to linearize this problem when we replace the Euclidean norm
(L2) with a linearizable distance measure. In [31], it was proposed to replace the Euclidean
distances by the L∞ norm:

L∞(xu, xv) = max
i
|xi

u − xi
v| (1.11)

This norm has some useful properties when the DGP instance contains interval distances.
When we use the L∞ norm, these bounds are now linear. In [32] this idea was expanded
upon. Here, not only the L∞ norm was considered, but also the L1 norm, which is also
known as taxi-cab or Manhattan distance:

L1(xu, xv) =
K∑
i

|xi
u − xi

v| (1.12)

These alternative distance norms cannot be linearized without the introduction of bi-
nary variables. Using these binary variables, it is possible to replace nonlinear functions
with piecewise linear forms. This allows us to transform the non-linear optimization prob-
lem described in Definition 2 to a linear one. We can specify Mixed-integer programming
(MIP) formulations of the now linear problem, which is a special type of linear program
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(LP) which allows for a mix of binary and integral variables. The MIP formulations for
the L1 and L∞ norms can be found in [32].

In practice, using Linear Programming for general instances of the DGP is not so
effective as it becomes very slow with larger input sizes, due to the combinatorial explosion
of constraints [32]. This approach is most promising in the context of the additional
local orientation constraints discussed in Section 1.3. For the application of adaptive
maps, this approach provides us with good-quality solutions with a low computation
time. Experiments with this approach are presented in Chapter 5.

1.4.7 Build-Up and Branch-and-prune

In this section, we describe two unique approaches. The methods discussed here do not
rely on solving the DGP as an optimization problem or matrix decomposition problem.
Instead, these methods iteratively embed the vertices by exploiting geometric properties
of the combinations of distances that we have access to.

The Build-Up algorithm was proposed in the context of the DGP for molecular
structure determination [116–118]. As the name of the algorithm suggests, we attempt
to build up an embedding for the vertices V in a sequential manner. Because the focus
was on determining protein structures, the dimension K is set to 3. We start by fixing
the coordinates for the first four vertices. Next, we find a vertex v for which we know a
distance to at least four vertices that we have already embedded. These four vertices are
called reference vertices for v. When we have a vertex v and four such reference vertices, we
can use trilateration to compute the coordinates for v. We repeat this process until there
are no vertices left to embed or we cannot embed any more vertices (in which case the
algorithm fails). The original version of the algorithm had an issue with an accumulation
of round-up errors, which meant that there were large inaccuracies in the coordinates
of the vertices embedded towards the end. An update to the algorithm was made [118]
such that these numerical errors were put under control. A second modification to the
algorithm made it so only three reference vertices are needed when embedding a vertex
v [119]. It is important to note that this approach only works if we have the right number
of distances available at the right time. Essentially, we require a specific order on the
vertices. Because we do not know beforehand which vertex order will lead to a successful
run of the algorithm, this approach is heuristic in nature.

This lead to the development of the branch-and-prune (BP) framework [10]. Similar
to the Build-Up algorithm, we iteratively embed the vertices. This framework works for
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all dimensions K, as long as when embedding a vertex v we have at least K reference
distances for v. An important difference with the Build-Up algorithm is that in the BP
framework, much research has been done on how to identify vertex orders which guarantee
that every vertex v will have a sufficient number of reference distances. This means that,
given the correct vertex order, the BP algorithms are not heuristics, but exact methods
(as long as we are dealing with exact distances). Furthermore, instead of identifying one
position at every step, we may identify two or more possible positions for a vertex v.
Effectively, this allows us to discretize the search space, making it possible for us to
enumerate every possible solution to an instance of the DGP that allows for a vertex
order that satisfies our requirements. An in-depth description of the branch-and-prune
algorithm and its implementations is given in Chapter 2.

The several papers that researched the Build-up algorithm showed that can be very
effective for determining protein structures given somewhat sparse distance graphs [117,
118]. The resulting solutions had low Root mean square deviation (RMSD) scores when
compared to the structures obtained from x-ray crystallography. The biggest drawback
of the Build-up algorithm is that we are not guaranteed to find a solution. When we
embed the vertices using a greedy method, we do not know if we will always have the right
reference distances available. A second important drawback, when comparing Build-up
to BP, is that the requirements for a vertex order for the Build-Up algorithm are stricter
than for BP.

Another advantage of the BP framework is that is has several extensions that allow us
to solve instances that contain interval distance data [11, 12]. The BP framework is one of
the most promising avenues of research for solving the DGP, especially in the context of
structural biology. This framework was implemented in the Java package and intensively
used for experiments in this thesis.

1.5 The Java Package

Several different methods for the DGP were implemented as part of this thesis. Most
of these methods were grouped into one Java package. While this Java package is not
published in its entirety (as it is still in development), a subset of the classes used in
the context of protein structure determination was made public on GitHub 1. More in-
formation about this repository is found in Section 3.5.1. The class diagram of the full

1. https://github.com/simonheng/BP_ProteinFileReader
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Java package is shown in Figure 1.4. This diagram shows the relations between the sev-
eral classes in the package based on dependency and inheritance. To avoid the diagram
from getting cluttered, duplicate dependencies are not visualized. For example, the utility
classes Maths and Geometry are used by almost all other classes, but these arrows are
not included if the dependency is already passed through an different class.

Used byPair

Used by

Maths

Used by MatrixGeometry

Used by

Coordinates

Weight

Extends

Used by

Distance

Used by Graph

Extends 

Used by

Used by

DGP

Extends

Extends

Torsion

Vector Torsion

Extends

Cartesian

Solved by

Extends Euler Used by BVH

Extends

Used byAtom

ImplementsSolved by SPG

Extends DGP Solved by

AdaptiveMap

LinearSolver

Extends DGP<Atom>

MDGP

ClassicalMDS

Solved by

Im
plem

ents

MDjeep

SPE

ForceField

Revorder

NMR

Used by

PDB

Solver

Used by Realization

Used by

Used by

Used by

Implements

Figure 1.4 – A class diagram representing the java package that was created for this thesis.

In the top left of the diagram we have four classes with subroutines that are used
by almost all other classes in the project. Pair is an object class which represents an
immutable tuple, while the Maths and Geometry are utility classes containing static
methods corresponding to subroutines such as complex number division and sphere in-
tersections (Section 2.3). Matrix is an object class for matrices, based on the JAMA
package 2.

We use the graph representation of the DGP, which is why we include the object
classes Graph and Weight to describe weighted directed and undirected graphs. The
DGP object class is an extension of the Graph class where the weights are Distance

2. https://math.nist.gov/javanumerics/jama/
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objects. The vertices of the graph described by the DGP class are extensions of the ab-
stract Coordinates class. For each of the different applications of the DGP, the package
contains an object class that extends the DGP class which represents the instances for
the application in question. For protein structure determination (Chapter 3) we have the
class MDGP, which stands for Molecular DGP. The vertices of the graph that MDGP
describes are of the Atom type, which is a special implementation of the Cartesian
coordinate subclass. MDGP also relies on three other classes which deal with molecu-
lar input data: ForceField, NMR and PDB. More information about this is given in
(Chapter 3). For motion retargeting (Chapter 4), we have the BVH class, which uses the
Euler coordinate extension class for its vertices. The Vector Torsion object class
represents the new representation that we propose for human motions, described in Sec-
tion 4.4. Finally, for adaptive maps (Chapter 5) we have the AdaptiveMap class which
uses Cartesian vertices, where the dimension K is 2.

The different methods of solving the DGP are included in the Java package as imple-
mentations of the Solver interface. The solutions to the problems may be represented
using the Realization class. Some of these solvers work for any extension of the DGP
class while other work for only specific ones. The MDjeep class contains an implemen-
tation of the branch-and-prune framework (Chapter 2) which only works if the DGP is
discretizable. As we will see in Chapter 3, this is the case for the instances that arise
for protein structure determination, which is why in the Java package MDjeep is used
specifically to solve instances represented by the MDGP class. The class Revorder is
used to make sure that we have an order of vertices which allows us to discretize the
search space (see Section 2.1 and Definition 5). As we will see in Chapter 5, we use Linear
Programming in the context of Adaptive Maps, which is why the LinearSolver class
works specifically with the Adaptive Map class. The LinearSolver class relies on
the Java interface provided by CPLEX [120] using the Concert Technology. The Classi-
cal MDS class works on DGP objects as long as the coordinates are Cartesian and
the graph is complete. The classical MDS (Section 1.4.1) method was implemented as a
benchmark for the linear programming technique used for adaptive maps. As a benchmark
for the more general methods, SPE (Section 1.4.2) was implemented in the SPE class,
which is compatible with any of the DGP (sub)classes that use Cartesian coordinates.
The implementation of SPG (Section 1.4.5) works with any extension of the DGP object.
When the coordinates used are Cartesian, SPG uses an exact method to compute the
gradient. This is the case when SPG is used as a refinement step for MDjeep (more
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on this in Section 2.4.2). In the context of motion retargeting (Chapter 4), where the
coordinates are Euler (or perhaps in the future Vector Torsion), SPG relies on a
numerical differentiation method (finite differences) [121] to approximate the gradient.
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DISCRETIZABLE DISTANCE GEOMETRY

Given certain assumptions, the search space relating to an instance of the Distance
Geometry Problem can be discretized. In fact, we can construct a tree in which each node
corresponds to a candidate position for a vertex v. Every path from the root node to a
leaf node corresponds to a possible solution to the DGP instance at hand. Combinatorial
methods may be used to explore the tree and enumerate every possible solution for the
given DGP instance. In particular, we will look at the branch-and-prune framework and
its implementations for the dimension K = 3. As part of this thesis, one of the two open-
source branch-and-prune implementations was implemented into Java with some extra
features.

In this chapter, we begin with the main theory of discretization and vertex orders
in Section 2.1. Next, in Section 2.2, we describe the algorithmic framework of branch-
and-prune, which is the method that exploits the discretization. Section 2.3 discusses
several methods that can be used for generating coordinates during the branching step of
BP. Afterwards, in Section 2.4 we investigate how the different implementations handle
interval distances in the input. Finally, we discuss how including torsion angles in the
DDGP instances lets us decrease the size of the search space (Section 2.5).
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Chapter 2 – Discretizable Distance Geometry

2.1 Introduction

It has been shown that, when several assumptions are met, a DGP instance G =
(V,E, d) with K > 0 can be discretized [6]. The discretization of the search space of
such an instance makes it possible for combinatorial methods to enumerate all feasible
solutions for the problem at hand. This is of great interest, especially in the applications of
molecular structure determination (see Chapter 3), because it allows us to identify distinct
protein structures given inter-atomic distances. In fact, in the context of protein structure
determination, the instances often satisfy the required assumptions for discretization.
For more information about which inter-atomic distances are required to discretize, see
Sections 3.3 and 3.4.3. The subclass of the DGP which captures such instances is referred
to as the Discretizable Distance Geometry Problem (DDGP). The DDGP was shown to
be NP-hard [6, 8].

As part of this thesis, an explanatory video concerning this subclass of instances was
created and entered to the Summer of Math Exposition (SoME) 22 contest. It can be
found on Youtube 1. In order to discuss this subclass and the necessary discretization
assumptions, we need to partition the set of edges E. Let E ′ be the subset of edges in
G that are related to exact distances. As a consequence, E \ E ′ is the subset of edges
in G that contain all the interval distances. We can now give a formal definition of the
DDGP [6, 26]:

Definition 4 A simple weighted undirected graph G = (V,E, d) represents a DDGP in-
stance in dimension K if and only if there exists a vertex ordering on V such that the
following two assumptions are satisfied:

(a) G[{1, 2, . . . , K}] is a clique whose edges are in E ′;

(b) ∀v ∈ {K + 1, . . . , |V |}, there exist K vertices u1, u2, . . . , uk ∈ V s.t.

(b.1) u1 < v, u2 < v, . . . , uK < v;

(b.2) {{u1, v}, {u2, v}, . . . , {uK−1, v}} ⊂ E ′ and {uK , v} ∈ E;

(b.3) VS(u1, u2, . . . , uK) > 0 (if K > 1),

where G[·] is the subgraph induced by the subset of vertices of V given in argument
and VS(·) is the volume of the simplex S generated by a valid realization of the vertices
u1, u2, . . . , uK.

1. https://www.youtube.com/watch?v=ZTR8txn2wBU
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The first assumption (a) lets us fix the coordinate space of the instance at hand.
Because of assumptions (b.1) and (b.2), at least K other distinct vertices, preceding the
current vertex v in the given vertex ordering, can be used as a reference for positioning the
vertex v. Because of this notion, these vertices are referred to as reference vertices and the
distances δ(u1, v), δ(u2, v), . . . , δ(uK , v) are referred to as reference distances. Moreover,
assumption (b.2) makes sure that at most one of the K available distances has a large
enough degree of uncertainty to be considered as an interval distance, while at least K−1
other distances can be considered as “exact”. These two previous conditions ensure that
for every vertex v ∈ V to be placed, there is only a “small” subset (under some conditions,
a discrete subset) of feasible positions for that vertex. This is because the K reference
distances can be used to define K Euclidean objects, which we can then intersect to obtain
a discrete number of positions for v. For each reference vertex ui for which {ui, v} ∈ E ′,
this object is a K-sphere, which we construct with radius δ(ui, v). If one of the reference
vertices (uK) relates to an interval distance, we will instead construct a K-spherical shell,
where the thickness of the shell is linked to the size of the interval. The assumption (b.2)
is necessary because if more than one of the reference vertices would relate to an interval
distance, the intersection between the Euclidean objects would not correspond to a disjoint
set of arcs or points which would mean that we cannot use the algorithms that will be
discussed in this chapter. The final assumption (b.3) makes sure that these K Euclidean
objects will have at most two disjoint sets as intersection. In the case that all K reference
distances are exact, these K-spheres will intersect in at most two positions where we know
that all reference distances are satisfied. These are the candidate positions for v. When we
instead intersect K − 1 spheres and 1 spherical shell, we obtain at most two disjoint arcs.
The vertex v may be anywhere inside these two arcs, which means the problem is still
continuous. These arcs may then be sampled so that we can still obtain a discrete number
of positions for v. More details on this will be given in Section 2.4. This discretization lets
us model the domain of the search space as a tree, where we have a layer for every vertex
v. Each possible position of v will correspond to a node in this layer. An example of such
a tree is given in Figure 2.1. Note that the first K vertices (that form a clique in G) are
fixed, so we have only one candidate position for each of them (modulo isometries).

To be able to satisfy the assumptions in Definition 4 we need a specific order on ver-
tices. Given an unordered instance of the DGP and reordering it such that the assumptions
are met is not a trivial task. For instances related to molecular structure determination,
different handcrafted orders have been proposed in the literature [11, 122, 123]. Reorder-
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v1

v2

v3

v4

v5

v6

Figure 2.1 – An example of a tree representing the search space of an instance of the DDGP with |V | = 6
and K = 3. A path in the tree, corresponding to a possible solution to the instance is highlighted.

ing the vertices of V such that the discretization assumptions are met corresponds to
a problem in the literature known as the Referenced Vertex Ordering (Revorder) [124]
problem. Let σ be a vertex order with ranks 1, . . . , n, where n = |V | and let Rσ(i) be the
reference set of the vertex v with rank i in the order σ. The Revorder problem can be
defined as a decision problem as follows [124]:

Definition 5 Given a simple directed graph G = (V,E), a positive integer K is there a
vertex order σ such that:

∀i ∈ {1, . . . , K}, |Rσ(i)| = i− 1

∀i ∈ {K + 1, . . . , n}, |Rσ(i)| ≥ K

A vertex order that satisfies the above definition is called a referenced order. Note that this
definition does not distinguish between reference vertices relating to exact and interval
distances. However, the definitions and the algorithms discussed in this section can be
trivially extended so that the assumptions from the previous section are precisely met.

In the literature, several works have been published which study a problem that is
similiar to the Revorder problem [8, 125]. This problem is known as the Discretization
Vertex Order Problem (DVOP) [125] and is in fact a specific case of the Revorder problem
where an extra assumption is included. This assumption is known as the consecutivety
assumption, which requires that the reference set of a vertex v, together with v itself, are
consecutive in the vertex order. However, this is not strictly required for discretization,
and thus in later works this additional assumption was dropped.
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For the DVOP, a greedy algorithm was proposed in [8]. This algorithm was greatly
improved upon in [124], which extended it to the more general Revorder problem. The
greedy search starts from an initial clique (of size K) and attempts to build a referenced
order from there. The running time of this greedy algorithm is O(n log(n) + m), where
n = |V | and m = |E|. The same paper also proposed other algorithms and branch-and-
bound enumeration schemes that pertain to the Revorder problem. The greedy algorithm
was implemented into Java during this thesis, and used for various experiments (the
Revorder class in Figure 1.4).

Once we have identified a suitable order for the vertices, either by using an algorithm
or by following a handcrafted order, we may proceed with exploring the full search space of
the tree. This can be done by utilizing the branch-and-prune algorithm, which is discussed
in the next section.

2.2 Branch-and-prune in dimension 3

The branch-and-prune (BP) [10–12] algorithm is the method that exploits the dis-
cretization of the DDGP instances. We will focus on the case where K = 3, which
matches the application of structural biology. In this section, we will describe the general
branch-and-prune framework. In the next sections, we will describe how each phase of the
algorithm may be handled or implemented differently.

The algorithm operates in three main phases, the initialization phase, the branching
phase, and the pruning phase. In the initialization phase, we embed the first three vertices
u, v, and w in the order, which is possible because these three vertices are a clique in the
graph (see assumption (a) in Definition 4). For example, we may fix the first vertex
directly at the origin: xu = (0, 0, 0). We can then use the distance δ(u, v) to place the
second vertex, e.g. xv = (−δ(u, v), 0, 0). To place the third vertex w, we draw two circles.
One around u, using as radius δ(u,w) and one around v using radius δ(v, w). These circles
intersect in two points, which are both candidate positions for w. We can simply pick one
of the two and use it to place the third vertex w (the other intersection point leads to a
symmetric solution). Essentially, in this phase, we are fixing the coordinate space.

After the initialization phase, the next step is to iteratively or recursively embed
the rest of the vertices, exploiting the vertex order. We do this by switching between
the branching phase and the pruning phase until we have identified all valid candidate
positions for every vertex v ∈ V .
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In the branching phase, we perform the sphere intersections to compute the possible
embeddings of a vertex v. This step is illustrated in Figure 2.2. Different methods can be
used to compute these candidate positions, and this differs among the implementations.
Section 2.3 will discuss these various methods. In the case that one of the reference
distances is an interval, several approaches can be taken so that we may still discretize
the search space. This will be further investigated in Section 2.4. It is important to note
that when all distances are exact, BP is an exact method that guarantees to enumerate
all possible solutions to the DGP instances at hand. However, when we have interval
distances, the sampling methods that the implementations use are heuristic, and thus the
algorithm loses this property of exactness.

u3

u2

u1

v

v
′

Figure 2.2 – An illustration how a vertex v is embedded in dimension K = 3, using three reference
distances. The distance δ(u3, v) may be an interval distance.

Once we have obtained a candidate position for a vertex v in the branching phase,
we validate it during the pruning phase. In this phase, we verify if there exists any other
vertex u < v for which we have a known distance δ(u, v) and that is not one of the reference
vertices. For each of such vertices u, we check whether the computed position for v satisfies
the distance δ(u, v). If not, we reject this candidate position and prune the corresponding
branch. The distances δ(u, v) are referred to as pruning distances. When a pruning distance
δ(u, v) is checked, the implementations generally use a tolerance parameter ϵ, allowing for
a small error. The reason for this is to take into account noise that may be included in
the input distances. Other information, aside from distances, may be verified as well in
this phase. In [126], experiments were conducted in the context of molecular structure
determination, where different pruning devices were used. One of the pruning devices
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that was tested was based on verifying torsion angles τ , that were part of the instances,
as we described in Section 1.3. However, as we will see in Section 2.5, it may be more
advantageous to directly use the torsion angle information during the branching phase so
that we can avoid creating infeasible branches.

Two open-source BP implementations for K = 3, which are both written in C, are
publicly available: ibp-ng 2 [127] and MDjeep 3 [7]. A multi-threaded implementation
of ibp-ng is also available, known as TAiBP 4 [128]. MDjeep was incorporated in the
Java package for this thesis (Figure 1.4), so that several new features could be tested.
While, compared to C, Java is slower at execution time, it is easier to permute which
means different ideas can be implemented and tested at a higher rate. Table 2.1 shows
concisely how the various implementations overlap and how they differ. One aim of the
Java implementation of MDjeep was to combine the best parts of both MDjeep and
ibp-ng.

ibp-ng (C) MDjeep (C) MDjeep (Java)

Error tolerance Tolerance parameter Tolerance parameter ϵ Tolerance parameter ϵ

Tree traversal Iterative
(depth-/breadth-first)

Recursive (depth-first) Recursive (depth-first)

Coordinate
generation
(Section 2.3)

Clifford algebra [129] Matrix approach [130] Matrix approach [130]

Intervals
(Section 2.4)

Sampling the arcs Refinement by SPG Refinement by SPG

Torsion angles
(Section 2.5)

Used for branching Purely distance based
(sign is lost)

Used for branching

Table 2.1 – An overview of the similarities and differences between the three implementations.

To further illustrate the BP algorithm and its framework, the pseudocode for the main
recursive step in MDjeep, based on the Java implementation, is shown in Algorithm 3.
In the Java implementation, and in this pseudocode, at every recursive step we build a
candidate list L (line 6) for a vertex v (at position i in the order). During the coordinate
generation phase (lines 7-13), we populate the candidate list with either directly com-

2. https://github.com/geekysuavo/ibp-ng
3. https://github.com/mucherino/mdjeep
4. https://github.com/tmalliavin/TAiBP
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puted candidate positions (three exact distances) or samples from the arcs (one interval
distance). More information about this step can be found in Section 2.3. Next, for each of
these candidate positions, we verify its feasibility (line 15). If the candidate xv is feasible,
we move on to the next layer i + 1. If it is not feasible, MDjeep carries out an extra
refinement step using local optimization, in order to attempt to satisfy the pruning dis-
tances, before moving on to the next candidate xv. More about this refinement step can
be found in Section 2.4.2.

Algorithm 3 The main recursive step of MDjeep: BP(i, x)
Input: Index i of the vertex v in a discretization order σ, incumbent solution x

1: if i > |V | then
2: save current solution x ▷ We are done
3: else
4: v ← vertex at position i in σ
5: u1, u2, u3 ← reference vertices for v
6: L← empty list of candidate positions
7: if u3 ∈ E \ E ′ then ▷ We have one reference interval distance
8: compute at most two candidate arcs ▷ See Section 2.3
9: add samples from both arcs to L ▷ See Section 2.4

10: else
11: compute at most two candidate positions ▷ See Section 2.3
12: add candidate positions to L
13: end if
14: for xv ∈ L do
15: if xv is feasible then ▷ Pruning phase
16: BP(i+ 1, x) ▷ Move on to the next candidate vertex in the order
17: else ▷ Local optimization refinement (see Section 2.4.2)
18: refine current solution x and verify feasibility again
19: if still infeasible move on to next candidate position xv

20: else BP(i+ 1, x), with refined solution x
21: end if
22: end for
23: end if

2.3 Coordinate generation

In the branching phase of BP, when K = 3, we compute the intersection of either three
spheres or two spheres and one spherical shell in order to identify the candidate positions
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of a vertex v. When we have three reference vertices u1, u2 and u3, this corresponds to
solving the following system of quadratic equations:


||xv − xu3||2 = δ(u3, v)2

||xv − xu2||2 = δ(u2, v)2

||xv − xu1||2 = δ(u1, v)2

(2.1)

In one of the earliest implementations of BP [6], where only exact distances were con-
sidered, solutions to the above quadratic system were identified by solving two linear
systems [131]. However, this approach lead to a build-up of errors, which was especially
noticeable for larger instances. That is why in later works, a different method was used
altogether. Instead of solving the quadratic system given in (2.1), we can instead exploit
the torsion angle τ , defined by the two planes defined by the triplet of vertices (u3, u2, u1)
and (u2, u1, v). Figure 2.3 shows the relation between this dihedral angle, and the candi-
date positions for v. The torsion angle τ can be computed by exploiting the cosine law
(see [8]). The necessary distances are available either because of assumption (b), or we
may calculate them from the positions xu1 , xu2 and xu3 . If δ(u3, v) is an interval distance,
we can instead compute the corresponding interval (τ , τ) and use the methods discussed
below to compute the endpoints of the arc. When we compute τ from the distances we
do not have any information about the sign and are forced to consider both candidate
positions v+ and v−. Alternatively, τ can be part of the DGP instance (see Section 1.3).
When we have the signed τ included in the input, we may a priori disregard the branches
corresponding to the incorrect sign of the angle. This is further discussed in Section 2.5.

Using τ , the positions xu1 , xu2 and xu3 as well as the three distances δ(u1, v), δ(u2, v)
and δ(u3, v), we can compute the Cartesian coordinates xv. Different methods have been
used for this step. In [8, 11], a matrix multiplication method was proposed which was
very efficient in practice. However, it relied on the consecutivity assumption (mentioned
in Section 2.1), which means that u1, u2 and u3 have to be consecutive in the order.
Instead, in [130], a new method was put forward that does not require the consecutivity.
Furthermore, practical tests showed that the method performs well and that there is little
to no build-up of errors. This approach is used in the BP solver MDjeep and was also
implemented as part of this thesis and used for the experiments discussed in later chapters.
This coordinate generation method prevents error build-up by avoiding the accumulation
of matrices when we step from one vertex to the next one. Instead, only one matrix U is
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u3

u2

u1

v+

v
−

τ+

τ
−

Figure 2.3 – The candidate positions v+ and v− can be computed by exploiting the dihedral angle τ . In
case we know the sign of τ (given in the input), we can consider only one of the two candidate positions
or arcs.

defined, which can be used to convert a vertex position in the coordinate system defined
by u1 to the canonical coordinate system. The three columns of U itself are the unitary
vectors x̂, ŷ, ẑ which correspond to the three axes of the coordinate system centered in u1.
The first column, x̂ is defined by the vector −−→u2u1. The third column, ẑ can be obtained
by the vectorial product −−→u2u1 × −−→u2u3. Finally, the second column ŷ is the result of the
vectorial product of the other two column vectors: ŷ = x̂ × ẑ. Once we have U , we can
use it to obtain the coordinates of a candidate position xv as follows:

xv = xu1 + U


−δ(u1, v) cos τ
δ(u1, v) sin ζ cos τ
δ(u1, v) sin ζ sin τ

 (2.2)

where ζ is the vector angle defined by the triplet u2, u3, v which can be obtained using the
cosine law. A very similar method for the conversion of torsion space to Cartesian space is
presented in [132]. Here, a matrix called ˆ̂

M (corresponding to the above U) is used. The
method is referred to as the Natural Extension Reference Frame (NeRF). NeRF is used
in the software Rosetta [133], which can be used for analyzing protein structures, which
is an application where torsion angles are often encountered.

Aside from the above methods, there are many different ways to compute the can-
didate positions xv from the geometric information that we have available during the
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branching step. For example, the BP implementation ibp-ng relies on a specific (usually
handcrafted) vertex order and Clifford algebra when computing the vertex positions [127,
129].

2.4 Handling interval distances

In the previous section, we discussed the tools that we can use to compute the can-
didate positions for a vertex v. However, in the case that we have a vertex v for which
one of the reference distances is an interval, we can only use the coordinate generation
methods to obtain the endpoints of the arc as well as the corresponding interval on the
dihedral angle τ . In this case, we need to take some extra measures to obtain a discrete
number of candidate positions for each vertex v. There are two main methods that we can
use, which we will discuss below. As mentioned earlier, both these methods are heuristic
which means that for interval distances, BP is no longer an exact method, as we cannot
guarantee that all possible solutions will be identified.

2.4.1 Sampling the arcs

The first method we will look at is straightforward and is how the implementation
ibp-ng handles the interval distances (see [127]). The algorithm is parameterized by a
parameter, which in ibp-ng is called the branching parameter B. In case we encounter
a vertex v for which we have a reference interval distance, we simply sample B points
from the computed arc. In practice, this is done by cutting the interval distance into B
pieces. For each sub-interval, we select the middle point as a candidate position for v
and use it to create a new branch. For a visual example, see Figure 2.4 (a). This means
that in practice, ibp-ng will generally create 2 branches for every v with exact reference
distances, and 2B for every v with an interval reference distance. In the case that ibp-ng
is supplied with torsion angle information, only 1 or B branches are created at every
branching step (we can disregard half the branches). The choice of the parameter B is
vital for this approach. In case it is picked too small, the chance is high that the correct
sample position is missed and the tree is pruned entirely. When it is picked too large, the
size of the tree may explode and the algorithm will take very long to terminate. Even
when B is a large number, there is a significant chance that this approach will not be able
to find a solution for the DDGP instance at hand. This is especially the case in which we
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have a large number of interval distances or a high degree of noise. To avoid this problem,
MDjeep relies on a different method for handling intervals.

2.4.2 A coarse-grained representation and local optimization

In MDjeep, a combination of a coarse-grained representation of the search space [9]
and a refinement step is used. For this, a resolution parameter ρ is included for the input.
The key point is that we define boxes around each candidate position of a vertex. In a
later refinement step, the points will be allowed to move within these boxes. Consider the
case in which we have a vertex v, and all its reference distances are exact. We are quite
certain about the position of v, so we define a very small box, where its dimensions are
equal to the tolerance parameter ϵ. When we have a vertex v with two exact reference
distances and one interval, we first compute the length of the arc induced by the interval
distance. If the length of the arc is smaller than ρ, we fit the entire arc into one box
(see Figure 2.4 (b). When it is larger than ρ, we divide the arc into equally sized sub-arcs
smaller than ρ, and cover each such piece with a box (see Figure 2.4 (c)). Within these
boxes, the vertex is initially positioned on the arc or sub-arc, near the center of the box.
For each such box, we create a branch in our tree. When we use this method, the tree
that represents the search space is different from the classical branch-and-prune tree. Each
node no longer only describes a candidate position of a vertex v, but also its surrounding
box.

These boxes come into play in the pruning phase of the algorithm. When we encounter
a pruning distance that is not satisfied we do not immediately prune. First, we run a
constrained local optimization method, minimizing the error on the distances and moving
all the vertices within their boxes. For this refinement step, we use a Spectral Project
Gradient (SPG) method as described in Section 1.4.5. The SPG method is included in the
Java package (see Figure 1.4). In case local optimization manages to satisfy the pruning
distances, we can continue with the next vertex. Otherwise, the branch is pruned. In [13],
it was noted that when we use box sizes that are too small, this can lead to issues for
SPG. This is because bounds that are too strict may harm its ability to converge to a
local optimum. Furthermore, in each refinement step, the reference vertices of a vertex v
may be moved. Therefore, the box corresponding to a candidate position of v should be
expanded. In practice, this issue is largely solved by re-centering the box around the new
candidate position obtained after each refinement step. These expanding and re-centering
routines are also included in the Java version of MDjeep. Apart from its use for the size
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Figure 2.4 – In dashed lines, the circles obtained by intersecting the two spheres centered in u1 and u2.
(a) The strategy of selecting a predefined number B samples. In this example, B = 3, so six branches
would be created.
(b) The arc is smaller than the resolution parameter ρ. We fully cover the arc with a box and initialize
the candidate position v+ in the center of the arc. We create 2 branches.
(c) The arc is larger than the resolution parameter ρ. We cover the arc with equally sized boxes and
initialize the four candidates positions v+ in the center of their sub-arcs. We create four branches.

of the boxes, the resolution parameter ρ has a second application as well [9]. If at least
one solution has already been found we can use ρ to verify if any new solution is too
close to this previously found solution. For example, when the BP algorithm is currently
exploring alternative candidates for a given vertex v to only consider positions xv that are
at a distance larger than ρ away from the position of v in the previously found solution.
Alternatively, after generating a new solution, one can measure the Root mean square
deviation (RMSD) between the new solution and the previous one. If the RMSD is lower
than some threshold (one could use ρ), two solutions should be considered too close, and
the current branch should be discarded.

Compared to the sampling method, this refinement approach improves the chances of
identifying solutions. This was confirmed in [134], where an intermediate version of Java
MDjeep and ibp-ng were compared experimentally. However, since we are using local
optimization, we cannot guarantee that every possible solution will be found.

2.5 Torsion angles and the search space

Recall that in Section 1.3, we discussed certain DGP instances where not only distance
information is captured, but also torsion angles. These instances are very relevant for the
branch-and-prune methods. When we compute candidates for a vertex v, given reference
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vertices u1, u2 and u3, the problem of intersecting the three spheres (or two spheres and
one spherical shell) can be reduced to the problem of computing and exploiting a torsion
angle τ . However, in the case that we have a torsion angle τ in the instance, we can forego
computing it. Furthermore, we will have access to the sign of the dihedral angle, which
means we may disregard the branch corresponding to the other sign (see Figure 2.3).
Including the torsion angles in the input not only discontinues our use for the distance
δ(u3, v) but also lets us greatly reduce the size of the search space. Such instances allow for
the definition of the DDGP3, specific to dimension 3, based on Definition 3 in Section 1.3.
We will use the same weighted directed hypergraph G(V,E, d) to represent the instances.
Recall that the hyperedge set E is partitioned into Eδ (a pair of two singletons) and Eτ

(spanning a quadruplet of vertices), where Eδ relates to the distances and Eτ corresponds
to a torsion angle in the input. We will further partition the edgeset Eδ such that the
edges E ′

δ ⊂ Eδ are the edges that relate to exact distances δ(u, v). The weighting function
d maps the edges Eδ to the distance δ and the edges Eτ to a torsion angle interval τ .

Definition 6 A weighted directed hypergraph G = (V,E, d) represents a DDGP3 instance
in dimension 3 if and only if there exists a vertex ordering on V such that the following
two assumptions are satisfied:

(a) G[{1, 2, 3}] is a clique whose edges are in E ′;

(b) ∀v ∈ {4, . . . , |V |}, there exist 3 vertices u1, u2, u3 ∈ V s.t.

(b.1) u1 < v, u2 < v, . . . , u3 < v;

(b.2) {({u1}, {v}), ({u2}, {v}}) ⊂ E ′
δ and either ({u3}, {v}) ∈ Eδ or ({u3, u2, u1}, {v}) ∈

Eτ ;

(b.3) VS(u1, u2, u3) > 0

The main difference can be found in assumption (b.2), where we now require either the
edge ({u3}, {v}) ∈ Eδ or the torsion angle formed by the reference vertices {u3, u2, u1} and
v to be included in the instance (({u3, u2, u1}, {v}) ∈ Eτ ). Consider the case where, given
the vertex order, for every vertex v, we have such a torsion angle τ(u3, u2, u1, v) available.
If all reference distances are exact and the torsion angles are precise values, we will end
up with a very narrow tree, with only one solution (given a feasible instance). In case we
have an instance including reference interval distances, the search space will only grow as
a result of these interval distances, and the lengths of the induced arcs (or the branching
parameter B, if we branch by sampling). This case is of interest because when dealing
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with certain instances related to protein determination, we have access to the torsion angle
τ(u3, u2, u1, v) for (almost) every vertex v the vertex order (see Section 3.3). For these
instances, we can greatly reduce the search space when we directly use the torsion angle
values in the branching phase. This is done by ibp-ng, but not by the original C-version
of MDjeep, which is purely distance-based. The Java implementation of MDjeep does
use the torsion angles during branching. Of course, the solutions identified by the Java-
version of MDjeep will be a subset of the solutions found by the C-version. However, in
practice we often stop execution after a certain number of solutions are identified. These
first solutions have a higher chance of being accurate when we use the sign of the torsion
angles in the branching phase.
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Chapter 3

MOLECULAR STRUCTURE

DETERMINATION

One of the most important applications of the DGP, and the main topic of this thesis,
is molecular structure determination [27, 33, 37–45]. The work done in the context of this
thesis focuses only on proteins which are a specific type of molecules. However, a lot of the
work may be extended to other types of molecules as well. Proteins are molecules that per-
form vital functions in our bodies. They make up about 15-20% of the human body [135].
Additionally, proteins are important components of medicines, such as vaccines. How the
human body reacts to a medicine relates strongly to the three-dimensional structure of
the proteins that make up the treatment. This makes protein structure determination a
topic of great practical importance and by extension one of the most researched applica-
tions of the Distance Geometry Problem. In this application, the vertices V of the graph
G represent atoms of a given molecule, and the distance information d associated with
the edges E of the graph reflects inter-atomic distances. These distances may either be
derived from the chemical geometry of the molecules or experimental techniques, such as
Nuclear Magnetic Resonance (NMR) [2]. The DGP instances that we have in the con-
text of this application satisfy the special conditions discussed in Chapter 2 that let us
discretize the search space [6, 8, 26], and use an algorithm that can enumerate all the
possible conformations of the protein at hand.

We will start this chapter with an introduction to the problem of protein structure
determination (Section 3.1). Next, in Section 3.2, we review the experimental and machine
learning methods that we can use. In Section 3.4 we look at which distances are available
in the protein instances and we review the use of different DGP and DDGP methods in
the literature. After this, Section 3.5 will cover different experimental works done as part
of this thesis, including experiments with real protein data. Finally, in Section 3.6 we will
summarize the chapter and draw some conclusions.

68



3.1 The problem of Protein Structure Determination . . . . . . . . . . 70
3.2 Experimental techniques and machine learning . . . . . . . . . . . 72

3.2.1 X-ray crystallography . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Cryo-Electron Microscopy . . . . . . . . . . . . . . . . . . 73
3.2.3 Nuclear Magnetic Resonance Spectroscopy . . . . . . . . . 74
3.2.4 Machine learning and AlphaFold . . . . . . . . . . . . . 76

3.3 Inter-atomic distances and torsion angles . . . . . . . . . . . . . . 77
3.4 Distance-based approaches . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . 81
3.4.2 General DGP methods . . . . . . . . . . . . . . . . . . . . 82
3.4.3 Exploiting the discretizability of the instances . . . . . . . 84

3.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . 85
3.5.1 Branch-and-prune with real NMR instances . . . . . . . . 85
3.5.2 Covalent geometry and branch-and-prune . . . . . . . . . . 90

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

69



Chapter 3 – Molecular Structure Determination

3.1 The problem of Protein Structure Determination

Proteins are molecules that are part of many vital functions of the human body, from
immunity to brain activity. They consist of a chain of smaller molecules, called amino
acids or residues. There are 20 different amino acids that can exist within a protein. Each
amino acid has the same core structure, which consists of a central carbon atom (CA)
bonded to an amino group (NH2) a carboxyl group (COOH), and a hydrogen atom (HA).
This core structure is known as the backbone of an amino acid. Aside from the backbone,
the residues have a group of atoms that make each type of amino acid unique. This group
of atoms is attached to the CA atom and is known as the side chain. Amino acids chained
within a protein are linked together by peptide bonds which are formed when the carboxyl
group of one amino acid combines with the amino group of a second. The backbones of
the amino acids in combination with the peptide bonds form the backbone of the protein.

Proteins are described by different levels of structure. The most simple level is the
primary structure, which refers to the linear sequence of amino acids that make up the
protein. The secondary structure of a protein refers to the structural patterns that com-
binations of amino acids often conform to. For example, groups of amino acids often form
secondary structure patterns such as alpha helices and beta sheets. Finally, the tertiary
structure of a protein is the three-dimensional conformation of the atoms that make up
the molecule. Essentially, the tertiary structure of a protein describes how its different
amino acids fold into one, complex three-dimensional structure. Figure 3.1 visualises the
different structural levels of a protein.

Beta sheet Alpha helix

Alpha helix

Beta sheet

Amino acids

Figure 3.1 – Three different levels of protein organization. Left: primary structure (linear sequence of
amino acids). Middle: secondary structure (structural patterns, alpha helix, and beta sheets). Right:
tertiary structure (three-dimensional confirmation of proteins). Image modified of original provided by
National Human Genome Research Institute 1.

1. https://www.genome.gov/genetics-glossary/Protein.

70



3.1. The problem of Protein Structure Determination

If we have an unidentified protein, different techniques may be used to determine its
primary structure, such as Edman degradation [136–138] and mass spectrometry [139–
141]. Once we know its primary structure, we have identified the protein. However, to
know its function we need to predict, compute, or measure its tertiary structure. This is
known as protein structure determination. A protein in vivo will tend to fold in such a
way that its total energy is minimized. The potential energy of tertiary protein structure
x can for example be estimated using a force field f , which are computational models
that estimate forces between atoms of a protein:

f : RKn −→ R

An example force-field function is AMBER [142], which relies on the chemical composi-
tion of the protein structure x and force field parameters (such as req, θeq, Kr and Kθ) to
compute the global energy Etotal:

Etotal =
∑

bonds
Kr(r − req)2 +

∑
angles

Kθ(θ − θeq)2+

∑
dihedrals

Vn

2 [1 + cos(nϕ− γ)] +
∑
i<j

Aij

R12
ij

− Bij

R6
ij

+ qiqj

ϵRij

More information about this function is found [142], while these types of angles and
other force-field parameters used in this function are discussed in Section 3.3. There-
fore, protein structure determination (generally in the context of computer simulation) is
regarded as a minimization problem [143, 144]:

Definition 7 Given the primary structure P of a protein, determine a tertiary structure
x that respects the chemical composition implied by P such that a force field function f(x)
is minimized.

There are different approaches that one can take to try to compute or predict protein
structures, these include experimental techniques, machine learning methods, and several
distance-based approaches. Some of these methods, in particular the methods that we will
use in the experiments in this chapter do not rely on energy terms but will instead define
the protein folding problem as a version of the DGP or DDGP. In the next sections we
will explore the various methods that one can use to determine protein structures.
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3.2 Experimental techniques and machine learning

There are various (non-distance-based) approaches to protein structure determination.
In this section, we will look at two popular and effective groups: techniques relying on
physically analysing the protein and methods that exploit large datasets of known struc-
tures using machine learning, mostly by employing neural networks. These approaches
are connected because the known structures that make up the datasets that are used
for training the neural networks have often been measured using one of the experimental
techniques.

3.2.1 X-ray crystallography

Most known protein structures have been measured using X-ray crystallography [145–
148]. The first step in this process is to purify and the protein and then crystallize it. Ob-
taining this crystal is not an easy step, as it requires conditions that promote the formation
of a regular, repeating crystal lattice. Different techniques are used to grow crystals, such
as vapor diffusion [149] and (micro) batch crystallization [150]. Once the crystal has been
grown the next step is to mount it on a goniometer inside an X-ray diffractometer. Then,
the crystallized protein is exposed to a series of X-ray beams. The crystal causes the in-
cident rays to diffract in many directions onto a screen. These directions, angles, and the
intensities of the diffracted beams are then analyzed which allows for the determination
of the distribution of the electrons in the protein. Techniques such as Fourier analysis and
Patterson synthesis are employed in this step. The resulting map of the electron density
can in turn be used to deduce the position of each atom in the crystallized protein, giving
us the three-dimensional structure. Once the three-dimensional structure is obtained, it
undergoes validation to ensure accuracy and reliability, generally this involves checking
its geometric feasibility.

The structures measured with X-ray crystallography are generally of very high quality,
but can lack precision, because using the X-ray beams causes a small portion of radiation
damage to the proteins. Aside from this, there are several other limitations. Firstly, this
method works well only on proteins that have rigid structures that form nice, ordered
crystals. It fails to measure the structure of flexible proteins because X-ray crystallography
relies on having many molecules aligned in the same orientation. The portions of a protein
that do not follow this pattern will be invisible in the electron maps which in turn leads
to missing coordinates [151]. Another shortcoming is that the structure that the protein
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forms inside the crystal is not necessarily the natural confirmation that it has in other
environments.

3.2.2 Cryo-Electron Microscopy

A more recent technique avoids the need for crystallization and X-ray beams. This
eliminates the issue of the X-ray beams causing damage to the protein sample. Cry-
oEM [152–154], short for Cryo-Electron Microscopy, relies on cooling the molecules down
to cryogenic temperatures, preserving them in a thin layer of non-crystalline ice. To do
this, the proteins are applied to a grid covered with a thin layer of support material. An
example of a support material that is often used is carbon [155]. The excess solution is blot-
ted away, leaving a thin film of sample across the holes of the grid. The grid is then rapidly
plunged into a cryogen (such as liquid ethane or propane) to freeze the sample [156]. Once
the sample is frozen, the grid is transferred to a cryo-electron microscope. The microscope
operates under vacuum conditions to minimize electron scattering. A beam of electrons
is transmitted through the frozen protein, and the interactions of electrons with the sam-
ple produce an image. Several such images are taken from different orientations of the
sample, resulting in a collection of 2D projection images. The collected 2D images are
processed using computational methods to reconstruct a 3D model of the specimen. This
process, known as single-particle reconstruction [157], involves aligning and averaging the
2D images to improve signal-to-noise ratio and resolve the 3D structure. Advanced image
processing techniques, such as classification and refinement algorithms [158], are employed
to sort and refine the images to obtain a high-resolution 3D reconstruction.

The CryoEM technique is more recent and is able to rival [159] and in some cases
even surpass [160] the quality of the structures found by X-ray crystallography. CryoEM
is still being extensively researched and improved. Despite these advantages, there are
several drawbacks [161]. It suffers the same limitation as X-ray crystallography when
it comes to flexible proteins: we can only measure to protein structure found in the
molecule’s frozen state. Furthermore, X-ray crystallography is a much faster technique
than CryoEM and thus has a higher throughput. Work is also being done to combine
the results of CryoEM and X-ray crystallography in one model. This process is known
as integrative modeling [162]. Both methods give us access to high-resolution protein
structures, albeit structures of the protein in a specific, fixed state. We will see that
when we use specific distance-based approaches we can overcome this issue. Applying
these experimental techniques is an expensive process requiring large machines and a
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lot of power. Therefore, it is desirable to have different methods, which rely only on
computation. One promising avenue of approach is based on machine learning.

3.2.3 Nuclear Magnetic Resonance Spectroscopy

The above two methods are effective for measuring the structure of a protein. However,
one main shortcoming is that before the measurements are made, the protein is fixed in
space in a way where, either by freezing or by capturing it in a crystal. This means that
the structures that we measure using X-ray crystallography or CryoEM do not necessarily
correspond to the way a protein will behave in vivo. Moreover, these methods are not well
suited for flexible proteins. When we use solution Nuclear Magnetic Resonance (NMR)
spectroscopy [2, 163], a protein is dissolved in a solvent (often water), so that it is free
to rotate and tumble naturally. NMR spectroscopy relies on the fundamental quantum
mechanical property of nuclear spins. The protein (in solution) is placed in a strong and
homogeneous magnetic field. In this magnetic field, atoms with nonzero spin numbers
are at different energy levels. When a radio-frequency pulse is applied to the sample at
a specific frequency, it matches the energy difference between the spin states. Some of
the atoms absorb energy and transition between energy states. The amount by which the
energy transitions is called the chemical shift of the atom. After this process, the resonant
frequency of the nuclei of the atoms can be measured, which is known as resonance. Using
a Fourier transform we can convert these resonances and chemical shifts to a spectrum.
Such spectra allow for the assignment of each peak in the spectrum to a specific atom
within the protein. In Section 3.2.3 we see an example of such a spectrum, created using
the NOE [164]. Such a spectrum is referred to as a NOESY spectrum, and it allows
it to identify through-space interactions within the molecule. The Nuclear Overhauser
effect is what happens when two atoms of the same type with similar nuclei (e.g. 1H,
13C and 15N) are close together and engage in cross-relaxation, which means that energy
is being transferred between their ions. This is visible in the spectrum because, at the
intersection of the chemical shifts of the atom pairs, we will see cross-peaks, indicating that
the offending atoms must be close together in the molecule [165]. This type of spectrum
is of great interest to us because it allows us to identify an interval distance between
light-weight atoms (such as hydrogen atoms). Aside from this, the chemical shifts in the
two-dimensional 13C and 15N spectra give us information about the ϕ and ψ dihedral angles
in the backbone of the proteins. More details about these distance restraints and torsion
angles can be found in Section 3.3. The restraints obtained from the NMR experimental
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data can then be exploited to generate protein structures. The standard method of doing
this is by using the meta-heuristic Simulated Annealing [166, 167], which is discussed
in Section 3.4.1. However, as we will see in Sections 3.4.2 and 3.4.3, these distances can
be exploited by DG methods as well.

Crosspeaks

Figure 3.2 – An example of a two-dimensional NOESY spectrum for a small molecule, where the chemical
shifts on the axes correspond to 1H protons (labeled in ppm). At the top of the spectrum, the different
frequencies are labeled with the hydrogen that emits it. In the bottom right there is a two-dimensional
diagram of the molecule that is being analysed. The red peaks in the diagonal are the self-peaks for each
of the hydrogen atoms. The cross-peaks (blue) away from the diagonal are the ones we are interested in.
For example, the indicated cross-peaks in the figure tell us that both H8 atoms are in close proximity
to the H4 and H7 atoms in the molecule. We see that there is a peak for H8b and the H3,H9 pair, but
no peak between the pair and H8b, possibly indicating that H8b is not close to H3 and H9. Figure taken
from [168] and modified.
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3.2.4 Machine learning and AlphaFold

In some cases, when experimental techniques are expensive or otherwise unpractical,
other approaches must be used. Some of the most successful methods for protein struc-
ture prediction are knowledge-based. Knowledge-based methods involve learning and ex-
tracting knowledge from existing solved protein structures (using the methods from the
previous section) and generalizing this knowledge to unknown protein structures. Note
that we use the word prediction instead of determination because we have no guarantee
of the correctness of the output. Machine learning methods automatize this process of
knowledge extraction. At the start, a dataset of known structures is partitioned into two
parts: a training set and a test set. The training set is used to train the machine learning
model so that it becomes capable of recognizing patterns between the primary structure
of the proteins and their tertiary structure. Once it has been trained sufficiently, it can
now be used to predict the tertiary structure of the proteins in the test set. Afterward, the
accuracy of the model is measured by comparing the computed structures to the known
structures in the test set. Once we have identified a model with high enough accuracy, we
can start to use it on proteins for which the structures are unknown.

The type of machine learning that has gained the most popularity and has attained
the best results is deep learning [107] using neural networks. Recently, AlphaFold [169]
by DeepMind has produced structures with very high accuracy. The process of using deep
learning for protein structure prediction generally consists of three steps [170]: (1) an
input module, which converts the primary structure of a protein into different features,
(2) a neural network that transforms these features to spatial information, and finally
(3) an output model that uses to spatial information to compute and refine the three-
dimensional conformation of the protein. The resulting structure may be further refined
in an additional step if necessary. For each of these steps, different approaches have been
considered.

1. The features extracted from the primary structures almost always consist of Multiple
Sequence Alignments (MSAs) between homologous proteins [171]. Such alignments
can be used directly as raw features (AlphaFold) or they can be converted into
different features [172–175].

2. The choice of neural network in the second step is of vital importance. The first
neural networks used were shallow convolutional neural networks (CNNs). These are
a type of neural networks that work very well in the context of computer vision [107].
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The motivation for using CNNs was that the features obtained from the MSAs
resemble an image. Modest accuracies were achieved using CNNs [172, 174]. This
is because CNNs have several shortcomings when it comes to protein structure
prediction. For example, CNNs assume translational invariance as to where patterns
appear in the input. This is true for general images, but in the case of proteins, the
position in which a pattern occurs in an amino acid sequence is very relevant to its
final structure. Next, CNNs were enriched with deep residual networks [173, 175],
booking some great improvements. Finally, AlphaFold introduced the use of the
attention networks, which was a major breakthrough [169]. Such attention networks
are powerful architectures that are capable of selectively focusing on certain parts
of the input data that are relevant to the task at hand. Instead of assuming that
local patterns are most important, these networks initially place equal weights on all
possible interactions, and then later refine these weights during the training phase.

3. As output, the first deep learning models produced binary contact maps [172, 173],
based on the distances between amino acids. These binary contact maps must
then be converted into folded proteins by using protein modeling software such
as Rosetta [133]. Other models improved on this by using discretized distances
(using small increments) instead of binary contacts [175, 176]. This improved the
quality of the predicted structures. However, an extra step was still necessary to
transform these amino acid distance maps into folded protein structures. The fi-
nal version of AlphaFold improves on these approaches by being able to directly
output the three-dimensional structures, based on a method proposed in [177].

3.3 Inter-atomic distances and torsion angles

Before we discuss the distance-based methods, we will explore the different types of
inter-atomic distance restraints and dihedral angles that we can deduce from the primary
structure of a protein. As mentioned before, not only the primary structure but also the
spectra obtained from NMR let us derive information about distances and torsion angles.
Some of these distance restraints are precise values, while others give us only a lower and
upper bound on the distance. As mentioned in Section 1.3, these torsion angles may be
converted to distances and included in the DGP instance, so that general DGP methods
may use them. However, as we saw in Section 2.5 if we are using branch-and-prune, we
may directly exploit the signs of the torsion angles during the branching phase. As part
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of this thesis, Java code was written that derives all these distance and torsion angle
types directly from STAR-NMR files (see Section 3.5.1). In the Java package the code for
parsing STAR-NMR files can be found in the NMR class (see Figure 1.4). The code that
represents the protein structure determination problem as a DGP is found in the MDGP
class. We will now explore the different distance types and torsion angles.

Type 1: van der Waals radii

The van der Waals radius of an atom u ∈ V is the radius of an imaginary sphere
which represents the closest any other atom v may approach u [178]. This means that
the sum of these radii can be used to provide an expected lower bound to the distance
between any pair of atoms. The van der Waals radius is specific to the type of atom.
This radius allows us to describe the electron cloud around the nucleus of an atom as
a sphere. However, due to polarisability, these clouds are never real spheres, such that a
pair of atoms can actually be closer than the sum of their van der Waals radii. In other
words, the spheres in the van der Waals model can be considered as soft spheres, meaning
that they can slightly penetrate one another, which is why generally only a portion of
this sum is used as the lower bound on the distances. On the one hand, van der Waals
distances are not very informative because they only carry a lower bound, while their
upper bound is generally very large (initially set to infinity, it can be improved by using
triangular inequalities involving related distances). On the other hand, these distances are
very abundant because they can be defined for every pair of atoms that are not bonded.
Furthermore, if these restraints are respected, they make sure that clashes are avoided
between atoms within the computed molecular structures. In the experiments conducted
as part of this thesis, not all van der Waals distances are included in the instances. This is
because only a subset is necessary to avoid clashes, and a very large number of distances
will greatly slow down the refinement step in MDjeep.

Type 2: covalent geometry, force fields, and torsion angles

These distances and torsion angles are based on the covalent geometry of the molecules,
which refers to the way the different atoms are bonded together. Because we know the
primary structure of the protein, we know precisely which atoms are bonded together in
which amino acid. This means that we can use information from force fields to derive
distances and torsion angles. Alternatively, this information can also be extracted from
protein structures in the Protein Data Bank (PDB), if the structure of the protein at hand
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was already measured or computed by a different technique (when generating artificial
instances, see Section 3.5.2). As mentioned in Section 3.1, force field models define a
function for the potential energy of a molecule, where the parameters of this function
encapsulate information about the forces between atoms. One such parameter that is of
interest to us is the bond lengths. For every pair of bonded atoms (u, v) we may derive an
exact distance between u and v, which differs based on the types of atoms involved as well
as where they are located within the amino acid. A second parameter of interest is the bond
angles. For every pair of atoms (u,w) that are bonded to a common atom v, this parameter
describes the angle that the three atoms form. This, in combination with the two bond
lengths that we know, allows us to compute the diagonal distance between u and w. This
bond angle distance is regarded as exact, even though there may be small variations in
the covalent geometry of different proteins. Section 3.5.2 gives more detail on this issue of
variance. Examples of force fields that one can use are AMBER [142], CHARMM [179],
and PARALLHDG [180]. Different force fields may have slightly different parameters. In
the Java package described in Section 1.5, the Forcefield class is responsible for deriving
these distances, and supports the AMBER and CHARMM forcefields. Apart from bond
lengths and bond angles, the primary structure of the protein also lets us deduce values
on specific torsion angles. Firstly, we have information about a torsion angle ω in the
backbone of the protein. This is a backbone torsion angle that is formed by a sequence
of four atoms between two consecutive amino acids. For ω, the sequence of four atoms
consists of the CA and C of the first amino acid and the N and CA of the next amino
acid, describing the rotation around the peptide bond between C and N. The angle ω is
almost always close to 180◦, except when the peptide bond is cis, in which case it is close
to 0◦. In experiments from the literature, the torsion angles ω are often fixed directly
at 180◦, even though in practice there can be quite large variations (see Section 3.5.2).
Another type of torsion angles, known as improper torsion angles, can taken from force
field parameters. These torsion angles regard sequences of atoms (v1, v2, v3, v4), where we
already know the distance δ(v1, v4) from a bond length or bond angle. This means that
for general DGP methods, they do not give any extra information. However, exploiting
the sign of these torsion angles is very valuable for DDGP methods, as they do give a lot
of information about the structure of the proteins at hand (see [181]). For example, the
improper torsion angle created by the atom sequence N, CA, C, and HA (all in the same
amino acid) tells us whether the amino acid is left- or right-handed. They are included in
the instances used in the experiments in this thesis and exploited by Java MDjeep.
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Type 3: NMR restraints from NOESY spectra

As described before, the NMR spectra obtained from NMR experiments can be used
to derive distance restraints. The spectrum that is relevant for this distance type is the 1H
two-dimensional NOESY spectrum, for which an example is shown in Section 3.2.3. This
is a spectrum in which each peak corresponds to a chemical shift of a hydrogen atom (or
to noise). Once a cross-peak is identified in such a spectrum, we know that the distance
between the two hydrogen atoms that correspond to the peaks should be between 1.8 and
5Å [182]. This lets us enrich the distance graph G with several such interval distances
between hydrogen atoms that are relatively close together.

Type 4: Distances from ϕ and ψ backbone torsion angles

Aside from the distances between hydrogen atoms discussed in the previous paragraph,
the NMR spectra can offer us more. The chemical shifts in the two-dimensional 13C and
15N spectra give us information about the ϕ and ψ dihedral angles in the backbone of the
proteins. In the protein backbone, just like the ω angle mentioned before, these angles are
formed between two consecutive amino acids. The ϕ angle corresponds to the dihedral
angle formed by the atoms N, CA, and C of the first amino acid and the N of the next
amino acid, describing the rotation around the CA - C bond. The ψ angle corresponds
to the dihedral angle formed by the atom C of the previous amino acid and the atoms
N, CA, and C of the next amino acid, describing the rotation around the N - CA bond.
The chemical shifts from the NMR spectra, in combination with machine learning tools
such as TALOS+ [183], let us predict the secondary structure of the proteins with high
accuracy. Knowing the secondary structure allows for the derivation of bounds on the
backbone dihedral angles ϕ and ψ. The values for the torsion angles can then be exploited
in the same way as the ω dihedral angle.

3.4 Distance-based approaches

In this section, we will discuss how we can exploit inter-atomic distances (and torsion
angles) to compute protein structures. First we will look at the standard method that
is used for generating structures from NMR experimental data: Simulated Annealing.
SA works by solving the optimization problem given in Definition 7, while observing the
distance and angular restraints given by the NMR data. Next, we will look at methods

80



3.4. Distance-based approaches

that regard the protein structure determination problem as an instance of the Distance
Geometry Problem where the dimension K = 3. In this case, the vertices V of the graph
G = (V,E) are the atoms of the protein and the edges (u, v) ∈ E together with their
weight δ(u, v) describe inter-atomic distances. This variant of the DGP is often referred
to as the Molecular Distance Geometry Problem (MDGP) in the literature [3, 8, 10–12,
22, 33, 94, 95, 97, 102]. Note that the distance graphs for these DGP instances, especially
those with interval distances, will likely have many possible embeddings. Many DGP tools
will find only one such embedding or several possible embeddings. That is why solving
the DGP instances in the context of protein structure determination is often referred to
as conformational sampling because the methods only sample some of the many possible
conformations. Different such methods from the literature are reviewed in Section 3.4.2.
Another class of algorithms, present within the branch-and-prune framework, is capable
of enumerating all possible conformations. This method is discussed in Section 3.4.3, and
is the approach that we used in this thesis for generating protein structures.

3.4.1 Simulated Annealing

As mentioned in Section 3.1, a protein in vivo will tend to fold in such a way that its
total energy is minimized. Therefore, the goal becomes to compute a protein structure
that satisfies the identified distance constraints while minimizing the global energy of
the molecule. This optimization problem is not straightforward because one must avoid
getting stuck in a local minimum. Simulated Annealing (SA) [166, 167] is used to overcome
exactly that. SA is a constrained meta-heuristic search that attempts to approximate a
global optimum. It was inspired by annealing in metallurgy, where a metal is heated
to a high temperature quickly and then slowly cooled, which increases its strength while
making it easier to work with. SA attempts to mimic this as a global optimization approach
with a high-temperature phase and a cooling phase.

The SA process starts by generating an initial solution, which will likely have a high
global energy. In the context of protein structure determination, different ways of pro-
ducing initial solutions have been proposed, generally based on random generation [184].
In this initial phase we also initialize a temperature control parameter to a high value.
Then we will attempt to minimize the energy of our solutions while gradually lowering
the temperature as we attempt to reach a state of minimum energy. At each iteration,
a new solution is generated and its energy is measured. In the classic SA approach, this
new solution is generated randomly. However, in the context of protein structure deter-
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mination, other strategies are employed more often used. For example, in [184], a genetic
algorithms based method is proposed to choose a neighboring solution. Once we have the
next solution, we compute its global energy. If the new energy is lower than the current
energy we accept this new solution as better. However, to avoid getting stuck in a local
optimum, sometimes a solution with a higher energy is accepted as well. This is done us-
ing a specific probability which depends on the temperature control parameter. When the
temperature is high, we accept worse solutions (in terms of energy) with a higher proba-
bility. This way, as the temperature control parameter declines, we converge towards an
(approximate) global minimum.

Several computer programs have been developed based on the above algorithm. Exam-
ples of software tools that are used widely in practice are XPLOR-NIH [185], CYANA [186]
and GeNMR [187]. XPLOR-NIH is a powerful tool, which can directly take NOESY
spectra as input, where it can automatically detect crosspeaks, avoiding peaks arising from
noise. It can be used to read input data from X-ray crystallography as well. The software
package CYANA also works directly on NOESY spectra [188]. GeNMR was developed
to offer a tool that works as a web service. It uses a combination of XPLOR-NIH and
Rosetta [133] to generate structures at the back end.

All of these tools provide very good results when tested on real data [189]. These
software tools allow for the integration of X-ray crystallography data as well as in some
cases CryoEm measurements. Combining these experimental techniques with NMR mea-
surements leads to integrative models that can predict protein structures with very high
atomic resolution. Currently, these energy minimization tools are the best approach for
structure determination by NMR if one is interested in sampling the conformational space
of a protein. However, there is a drawback to these methods. While they generate a set of
possible structures with low potential energy, there is no guarantee that these are all the
possible low-energy states the protein could take (because of the use of a meta-heuristic).
Furthermore, proteins can sometimes move from one state to another and shortly be
at a point where their potential energy is not minimal. To model these dynamics other
approaches may need to be used.

3.4.2 General DGP methods

Several general DGP, discussed in Section 1.4, have been tested in the context of
protein structure determination and conformational sampling. However, none of these
methods have been tested on distance constraints derived from real NMR experiments.
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Instead, these algorithms were tested on artificially generated instances. Some of these
instances were randomly generated, and tend to follow a general protein-like structure.
For example, several of the meta-heuristics VNS and Multi-start as well as the global
optimization method SBB were tested on small random instances, providing good re-
sults [94]. However, these instances only had exact distances and do not closely resemble
DGP instances derived from NMR experiments at all.

In other experiments, known protein conformations are taken from the Protein Data
Bank (PDB) [190], which are structures that are generally measured using one of the
experimental techniques that were discussed before. Next, distances are generated fol-
lowing a set of rules, which generally aim to mimic instances from real NMR data. The
reason for using these artificial instances is because real NMR data contains a large de-
gree of uncertainty and noise, which cannot be handled by these general DGP methods.
The graph decomposition algorithm ABBIE was tested on such instances, but only ex-
act distances were considered [90]. The Build-Up algorithm was tested on similar exact
instances with great results [119]. The simple heuristic Stochastic Proximity Embedding
(SPE) was shown to work well on artificial instances where both intervals and exact
distances were included, providing results that are competitive with other popular confor-
mational sampling methods [191]. GNOMAD was also tested on such instances. In these
instances, only distances between “close” atoms were included, which are all distances
lower than 10Å [98]. Yet another step closer are test instances with interval and exact
distances only between atoms in consecutive amino acids. Both the smoothing-based al-
gorithms, DGSOL and DCA have been tested on such instances with good results [44,
95, 96]. In [103], Monotonic Basin Hopping (MBH) was tested on similar instances and
was shown to outperform DGSOL in most cases. The EMBED algorithm was tested on
instances with exact and interval data as well, where all pairwise distances smaller than
4Å were included. The resulting structures were of good quality. The Alternating Projec-
tions Algorithm was tested on artificial instances that are very close to real data. Here,
each of the distance types was aptly simulated. The algorithm was tested on a specific
protein (bovine pancreatic trypsin inhibitor) and was shown to work well [84].

General DGP methods can work well for artificially generated instances, including
instances with large proteins. However, some of these algorithms work only on instances
with exact distances and are thus not useful in the context of instances derived from NMR
spectra. Others can work on instances with intervals, but the bounds that were used in
the experiments were smaller than they should be and many more distances were included
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compared to what is present in real data. It is hard to compare these algorithms fairly, as
they may work well for specific instances and not so well for others. In the next section,
we will look at methods that exploit the discretizability of the instances related to protein
structure determination.

3.4.3 Exploiting the discretizability of the instances

The distance types described in Section 3.3 allow for the discretization of the DGP
instances related to protein structure determination. In particular, for this, we require
the information about bond lengths, bond angles, the ω angle (type 2) and the ϕ, and
ψ torsion angles (type 4). These distances and dihedral angles are enough to satisfy
the assumptions given in Definition 6. The other geometric information may be used
as pruning devices. Different branch-and-prune methods have been tested on instances
related to protein structure determination [7, 9–14]. The advantage of this approach is that
BP theoretically will allow us to identify all protein structures that satisfy the geometric
information captured in the DDGP instances. For all the papers cited above, just like for
the general DGP methods, the DDGP instances were artificially generated. As mentioned
in the previous section, one cause of this uncertainty is noise in the NMR data, which
will be further investigated in Section 3.5, where we present experiments with genuine
NMR instances. Secondly, the BP methods regard distances from the covalent geometry
as exact, while in practice they may vary a lot. More information about this is given
in Section 3.5.2, where we experimentally study the effect of the variations in the covalent
geometry.

Initial implementations of branch-and-prune, in 2009, had trouble with small amounts
of noise and required the input distances to be of very high precision [192]. This was
improved on in the same year [10] by including a tolerance parameter for the pruning
step. Test instances were generated by including all distances smaller than 6Å. Different
amounts of noise were then introduced into a subset of these distances, creating interval
distances. The results showed clear correlations between the amount of noise (the range
of the intervals), the number of found solutions, and the quality of the found solutions.
Next, in 2013, experiments were done with instances generated with all distances shorter
than 5Å and a small amount of noise (0.3Å) [11].

In 2010, MDjeep was first released [7] and was tested on generated instances with
only exact distances. Later releases of MDjeep [9, 13, 14] could also handle interval data.
In particular, in [9], experiments were done with artificial instances that are getting closer
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to genuine NMR instances. The instances were generated with special rules for some of
the distance types discussed in Section 3.3. For type 2, the bond length and bond angle
distances, exact values were used with three decimals. For type 3, interval distances with
a range of 0.5Å are used. It is important to note here that for these distances from NMR
restraints, only distances between hydrogen atoms closer than 5Å were kept. This is a
clear improvement as compared to previous experiments, where all distances smaller than
5Å are included. Lastly, for type 4, intervals with range 0.1Å were created. The methods
were tested on some small proteins and peptides, showing good results. However, note
that while these experiments got closer to genuine data, the ranges on the intervals are
still quite small compared to what they are in real NMR data. In the next section, we will
present results where MDjeep was tested on instances created from genuine NMR data.

3.5 Experiments and results

In this section, we will discuss the several experiments conducted throughout this
thesis, where we used branch-and-prune methods to compute protein structures.

3.5.1 Branch-and-prune with real NMR instances

As mentioned in the previous section, the BP implementations are often only tested
on artificially generated data, simulated in a way to resemble real NMR distance data (see
for example [14]). This motivated a study on the different distance types, published and
presented at the Computational Structural Bioinformatics Workshop, which is a satel-
lite workshop of the IEEE Bioinformatics and Biomedicine conference BIBM [27]. In this
study, different experiments were conducted using real data as well as a mix of real and
artificial distance data. The goal was to see which type of distances have the largest ef-
fect on the quality of the embeddings as well as the feasibility of the BP algorithm. The
structures were computed using the C-version of MDjeep. In this section, we will focus
on the experiments with the instances from real NMR data. Furthermore, the structures
that we will discuss here are computed with the Java implementation of MDjeep, which
exploits the signs of the dihedral angles (see Table 2.1 for the differences). In all experi-
ments with proteins presented in this thesis, we will only consider atoms in the backbone
of the proteins. The atom names of the atoms considered for each amino acid are: N, CA,
C, O, OXT, H1, H2, H and HA. We only consider the backbone atoms, because once
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we have the backbone, placing the side chains becomes a straightforward post-processing
step. This final step can be done using protein analysis software such as Rosetta [133].

In order to be able to handle real NMR data, the Java package created for this thesis
is capable of reading a STAR-NMR file. STAR-NMR is an extension of the more general
STAR format, which is a text-based file format for storing structured data. STAR-NMR
files describe distance constraints and torsion angle constraints that result from the spec-
tra obtained from NMR experiments. Furthermore, parsers were added for two different
force fields: AMBER [142] and CHARMM [179]. The NMR data, combined with force
field parameters and the primary structure, lets the package generate DDGP3 instances
(Definition 6) from real data. Even when there is no NMR data available, or the distance
information is sparse, we can still generate discretizable instances. The NMR restraints
(type 3) are only used for pruning so are not required for discretiztaion. The NMR tor-
sion (type 4) angles are used for discretization, but when they are missing they can be
replaced by full 360◦ intervals (more about this later in this section). This instance gen-
eration tool was extracted from the Java package and can be found at a public GitHub
repository 2. This tool does not only generate instances from NMR data, but also from
X-ray crystallography data (see Section 3.5.2). Once we have the instances generated, we
can proceed with branch-and-prune to generate solutions (which are saved as PDB files).

Experiments were conducted on seven small proteins and peptides from the Protein
Data Bank [190]: 2jmy, 1vm2, 2jp8, 2jta, 6nm2, 6nm3 and 2fbu. The PDB contains known
structures of these proteins, which were generated by NMR in combination with one of the
simulated annealing methods described in Section 3.2.3. For example, the known structure
for the peptide 2jp8 was created with the software XPLOR-NIH [185]. Table 3.1 shows
the number of atoms (|V |) and the number of inter-atomic distances available in the
generated DDGP instances, grouped by distance type (which sum to |E|). Note that the
values in this table differ from the ones reported in Table 1 in [27]. This is because, for
these experiments, we only consider the backbone, while in [27] the side chains were also
considered. The table shows the different properties of the proteins. First, we see the size
of the proteins in terms of the number of atoms as well as the number of amino acids.
Next, the different number of distances are listed. Only a subset of the van der Waals
distances are included, only those between a select number of C atoms. This is because
including too many distances slows down the refinement step, and we do not need to
consider all type 1 distances in order to avoid clashes.

2. https://github.com/simonheng/BP_ProteinFileReader
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Properties 2jmy 1vm2 2jp8 2jta 6nm2 6nm3 2fbu

Number of amino
acids

15 13 7 10 8 8 12

Number of atoms 91 78 43 61 48 48 73

Type 1
(van der Waals radii)

91 66 21 36 21 21 55

Type 2
(Bonds/bond angles)

350 316 171 61 191 190 296

Type 3
(NMR restraints)

59 37 10 12 16 8 14

Type 4
(NMR torsion)

20 10 0 0 5 6 9

Type 3
Average range (Å)

2.07 2.42 1.72 3.80 2.18 2.60 1.67

Type 4
Average range (◦)

68.2 80.0 - - 72 113.7 65.55

Table 3.1 – Different properties of the proteins and peptides considered for these experiments. Includes
the number of distances, per type, that can form our DDGP instances.

For the first peptide, 2jmy, we see that there are 15 amino acids. This means that
there are 14 ϕ and 14 ψ backbone dihedral angles for this protein. However, in the table,
we see that the NMR chemical shift prediction only gave us information about 20 out of
28 torsion angles. This is a recurring phenomenon for these peptides. For the two peptides
2jp8 and 2jta we have no dihedral angle information whatsoever. This is logical because
these structures have no clear secondary structure present, and thus TALOS+ is not
able to predict these backbone dihedral angles. To still discretize despite missing this
information, for each of the absent dihedral angles we include an interval from −180◦ to
180◦, covering the full range and both signs. Missing backbone torsion angles is one part
of the uncertainty present in these instances. Aside from this lack of information, we have
very large degrees of noise, also visible in the information presented in the table. The
intervals on the NMR restraints (type 3) can sometimes be quite large. Even more, the
backbone torsion angles predicted with TALOS+ [183] tend to have average ranges of
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65◦ up to even 113◦. The uncertainty in these backbone torsion angles means that the
search space of the tree will be quite large.

For this experiment, we used the force field CHARMM and ran Java MDjeep with
tolerance parameter ϵ = 0.01Å and the maximum number of solutions was capped at 5000.
The resolution parameter ρ was set to 2.0Å. When we decrease ρ, we cut the sub-arcs
more often, thus increasing the chances of finding even better structures, at the expense
of increasing the size of the tree. Recall that the effect of the resolution parameter ρ is
twofold, not only does it decide the length of the sub-arcs we create when we branch, but
it is also used to decide when two consecutive solutions are too close to each other. In
fact, because the uncertainty in the instances causes a very large search space, many of
these solutions are pruned using this resolution parameter. The value of 2.0Å was chosen
for these proteins after preliminary tests because it gives a good balance between the
quality of the best solution found and the total size of the tree. To measure the quality
of the accepted solutions, we compute the Root mean square deviation (RMSD) between
the computed structures and the known structures, after alignment. This straightforward
metric is computed for two realizations x and y as follows:

RMSD(x, y) =
√√√√ 1
|V |

∑
v∈V

||xv − yv||2 , (3.1)

where || · || is the Euclidean distance norm. For aligning we used a Kabsch alignment
algorithm [193]. Our implementation also attempts, together with translations and rota-
tions, to perform a total reflection of the protein models to improve the alignments. The
results of the experiments are summarized in Table 3.2.

Results 2jmy 1vm2 2jp8 2jta 6nm2 6nm3 2fbu

Best RMSD 1.63 2.02 1.55 2.00 1.66 1.49 2.52

Worst RMSD 3.61 6.88 4.67 5.98 6.46 5.06 5.11

Mean RMSD 3.0 4.43 2.89 4.02 2.78 3.47 4.06

Table 3.2 – The resulting RMSD scores for the proteins (in Å).

Firstly, we see that the best found RMSD scores of the computed structures for each
of the proteins are quite low. This means that some of the structures that we compute are
close to the structures that are in the PDB, which is a very good sign. Secondly, we can

88



3.5. Experiments and results

note that the differences between the worst and best RMSD scores are quite large. This is
no surprise, given the large amount of uncertainty in the instances. This uncertainty leads
to a very large search space, which means there are many possible solutions. Furthermore,
each of these possible solutions satisfy all the distance and angle restraints at hand, given
the tolerance ϵ, which means they are all valid solutions for the DGP at hand. We will
now take a closer look at the computed structures with the best (lowest) RMSD scores.

2jmy

2jp8
2jta

6nm3

1vm2

2fbu6nm2

Figure 3.3 – The structures computed by Java MDjeep (blue) with lowest RMSD super-imposed with
the structures from the PDB. The structures were not subject to energy minimization or any other post-
processing step.
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In Figure 3.3 we see the computed structures super-imposed with one of the measured
(ground truth) structures from the PDB. Keep in mind that the structures that we see are
the raw output of Java MDjeep and were not subject to energy minimization. Visually,
the results for some proteins are better for others, which seem to match the scores reported
in the table. For instance, the three proteins 2jmy, 6nm2 and 6nm3 had the lowest
RMSD scores, and their computed structures look fairly close to the measured structure.
The structure computed for 2fbu has the highest RMSD score among the proteins in
the testbed, and this is also clearly visible in the figure. The helix in the computed
structure does not look like a proper helix, which means that some of the backbone
dihedral angles present in the structure are not correct. One interesting result is that
in our computed structure, there seems to be a secondary structure element present in
the protein 2jta (visualized as a thicker ribbon) which is not present in the measured
structure of the protein. From these experiments, we can conclude that for small proteins,
branch-and-prune (with refinement) is a useful tool and is capable of computing good-
quality structures when using real protein data. For larger proteins, there are still some
obstacles to be overcome, as we will see in the next section.

3.5.2 Covalent geometry and branch-and-prune

In the previous section, we saw that the uncertainty in genuine NMR instances can
cause challenges for branch-and-prune. The obstacles discussed relate to interval distances
and torsion angles which are type 3 and type 4. However, in practice, there can also be
a problem with the distances that are often regarded by BP methods as exact. These are
the distances from force field parameters (type 2), which are bond lengths, bond angles
as well as the ω torsion angle (which is often set to either 0◦ or 180◦). In practice, these
distances and angles vary a lot from what is given by the force field parameter files. This
issue was studied in [134], where we compared ibp-ng with an intermediate version of
Java MDjeep. Through the use of the refinement step with SPG, MDjeep was able to
identify solutions for all the proteins in the testbed, while ibp-ng was not. However, ibp-
ng on average computed structures with better RMSD scores. Since then, Java MDjeep
was further updated (using torsion angles for branching), which greatly improved the
quality of the computed structures and which lead to much better RMSD values. In this
section, we will extend the experiments presented in [134], using the newest version of
Java MDjeep. These experiments aim to see the effect of the variations of the covalent
geometry on the structures produced by branch-and-prune. In the previous section, we
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3.5. Experiments and results

conducted experiments with proteins for which the structures in the PDB were produced
by NMR and simulated annealing. In this section, we will instead use proteins that were
analyzed with X-ray crystallography. In particular, we selected 435 proteins from the
PISCES server [194]. The criteria for selection were:

— Smaller than 100 residues

— No Proline present (all ω angles should be close to 180◦)

— An identity smaller than 20% between the structures (they are not too similar)

— An X-ray crystallographic resolution better than 1.6Å (the accuracy of the X-ray
measurements)

— An R-factor of at least 0.25 (how well the refined structure predicts observed data)

We start by presenting a small data analysis with these proteins which confirms that
there are substantial variations present in the bond angles as well as in the ω torsion
angles. This analysis was done on a subset of the proteins in the testbed. More details
can be found in [134]. The analysis is summarized in Figure 3.4.

Firstly, we can see that the angles can vary quite strongly between amino acid types,
which is not captured by the force field data (dashed line). We also see the deviations based
on some Ramachandran regions of the proteins. These regions are defined by combinations
of values that the ϕ and ψ angles often take [195]. The twelve Ramachandran regions used
in this analysis are further illustrated in Figure 3.5, which displays an approximation of
the Ramachadran plot. Recall that the ω angles are generally assumed to be close to 180◦.
However, we see in Figure 3.4 that for several of these regions, it is especially striking
how much the ω angles can deviate from 180◦. In some cases it can even be around 150◦.
These variations can be a problem for the BP methods. For small proteins, such as those
analyzed in the previous section, this may not be a problem. However, when we look at
larger proteins, the error introduced by these variations can build up. The proteins that
we experiment with in this section are up to ten times larger than the NMR proteins that
we analyzed before, and will thus likely exhibit problems with the variations of covalent
geometry.
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Figure 3.4 – The average values of the bond angles between the heavy backbone atoms (N, CA, C, O)
as well as on the torsion angle ω of the peptide plane. Np denotes the nitrogen atom N of the next
residue, Cm denotes the carboxyl carbon C of the previous residue, and CA denotes the CA atom. The
distributions of these angle values are uni-modal, which means that we can use their averages as a suitable
descriptor. On the left, we see the averages of the angles according to the amino-acid types, while on
the right we see them according to the Ramachandran region of the residue. The horizontal dashed lines
correspond to the values of the angles from the force field parameters [180].
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Figure 3.5 – The Ramachandran plot illustrating the 12 different regions used in the data analysis. Note
that this figure is only an approximation of the regions based on a 5-degree grid.

To study how these variations can affect branch-and-prune, we ran experiments on
two sets of instances, that will be referred to as instances A and B. Both these instances
are generated using the same instance generation tool described in the previous section,
which can be found on GitHub. The parsing of PDB files is done by the PDB class in
the main Java package (see Figure 1.4). Instance A is a completely artificial instance,
where we generate distances purely from the PDB files, introducing only a small amount
of error. Instance B is an instance where we use genuine (type 2) distance information
from the force field parameters and set ω to a small interval around 180◦. Note that
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since we are dealing with structures from X-ray crystallography, we do not have NMR
restraints (type 3) in our instances because there are no hydrogen atoms present in the
PDB structures. In fact, we should also not have access to torsion angles and distances
relating to (type 4), because they are generally obtained by making predictions based on
the chemical shifts from NMR spectra. However, we require these ϕ and ψ torsion angles
for the discretization of the instances, which is why they are simulated from the measured
structures in the PDB files (with the introduction of some noise). In fact, for instance
class B, the only artificial information that is included are these (type 4) torsion angles.
The instances are further detailed in Table 3.3.

Distance/angle type Instances A Instance B

Type 1
(van der Waals radii)

60% of sum of radii 60% of sum of radii

Type 2
(bond lengths and bond
angles)

Exact distances and ω
angle taken from PDB
(capturing the variations)

From force field
parameters, ω in a 5
degree interval around
180◦

Type 2
(Improper torsion angles)

From force field
parameters

From force field
parameters

Type 3
(NMR restraints)

Not present Not present

Type 4
(TALOS+ torsion
angles)

From PDB placed
randomly in 5◦ intervals

From PDB placed
randomly in 5◦ intervals

Table 3.3 – Details for the two instance classes that were experimented with. Instances A are completely
artificial while instance B mixes artificial with information from force-field parameters.

There are some important details to note about these instance types. Recall that the
geometric information captured by type 2 and type 4 is used for discretization, and that
their distances are used as reference distances in branch-and-prune. For these instances,
for every amino acid (except the very first one), we have access to the proper torsion
angles ϕ, ψ, and ω and we know the improper dihedral angles from the force fields. This
means that whenever we are branching, for almost every candidate atom v we know the
dihedral angle τ ({u3, u2, u1, v} ∈ Eτ ). Therefore, we will only branch based on the size
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3.5. Experiments and results

of the intervals of these torsion angles, which we know is 5◦. Thus, the BP trees that are
created for these instances have a small size. For these instances, with our parameters,
Java MDjeep will only identify one solution because the other solutions are too close
and are thus rejected. These instances are generated in this way specifically because we
want to study the effect of the variations of the covalent geometry.

For each of the 435 proteins in the testbed, we created instances A and B and used
Java MDjeep to find one solution for every instance. The parameters used were ϵ = 0.01,
ρ = 1.0 and the force field used was CHARMM [179]. Similarly to the experiments in
the previous section, to measure the quality of the computed structures we use the RMSD
metric (see Equation (3.1)). The results are visualized in Table 3.4 and further explored
in Figure 3.6.

Results Instance A Instance B

Mean 0.79 3.45

Median 0.65 3.37

Standard deviation 0.62 1.78

Worst RMSD score 5.64 11.69

Correlation coefficient size and RMSD 0.49 0.80

Table 3.4 – The resulting RMSD statistics for the 435 proteins for instances A and B.

The results for the instances of class A are very good, with a mean of 0.79Å, which is
a rather low score for proteins of these sizes. In fact, as we see in Figure 3.6, most of the
proteins are in the first bin with RMSD scores between 0 and 2. Logically, for instance
class B, the results are much worse, with much higher RMSD scores with a mean of 3.37Å.
This was to be expected because the instances of class A rely mostly on data extracted
directly from the X-ray structure that we are comparing with. The last line in Table 3.4 is
also of interest, which displays the correlation coefficient between the RMSD scores and
the size of the protein. We can see that the correlation between size and RMSD is much
stronger for instance class B (0.80) than for A (0.49). This confirms the idea that there is
a large build-up of errors when we do not account for variations in the covalent geometry.
In instance A, there is still an intermediate correlation between the size of the protein
and the RMSD. One of the reasons for this is that the uncertainty in the ϕ and ψ angles
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will also build up, but to a lesser degree.
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Figure 3.6 – A histogram with the resulting RMSD scores for the two instance classes, with bins of size
2Å.

In Figure 3.7 we see four example proteins from the testbed. For each of the four
proteins, the two generated structures with instances A and B are overlapped with the
original, measured PDB structure. We see that as the RMSD scores suggest, the pink
structures (instance A) are very close to the original structures, while the blue (instance
B) one is not. In particular, for the protein 2ZW2 (which has the worst RMSD score of
all instance B proteins), the blue structure deviates quite significantly. For the protein
5YIU, both structures that were generated look quite close to the original. This protein
has 45 amino acids and is thus one of the smaller ones in the testbed, which can be
one of the reasons why it was easier to solve. The only difference between the instance
classes is the covalent geometry (type 2), which for instances A captures the variations,
and for instances B is static. These much worse RMSD scores confirm that the variations
in the covalent geometry pose a problem for branch-and-prune. However, despite these
variations, Java MDjeep was able to find a solution for every protein in the testbed.
Considering the small size of the search space, this is a good result, which is most likely due
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to the refinement step with SPG (see Section 2.4). This refinement step allows MDjeep
to identify solutions even when the distances in the input include error.

1EZG 2ZW2

5YIU1MK0

RMSD A: 0.79

RMSD B: 5.01

RMSD A: 1.87

RMSD B: 11.69

RMSD A: 0.21

RMSD B: 2.50
RMSD A: 0.49

RMSD B: 7.28

Figure 3.7 – The two structures computed by Java MDjeep for instances A (pink) and B (blue) overlapped
with the structure measured with X-ray crystallography (gold). Examples for four proteins: 1EZG, 2ZW2,
1MK0 and 5YIU. Underneath, we see the PDB code of the protein as well as the RMSD of the two
produced structures.

3.6 Discussion

In this chapter, we discussed different methods for protein structure determination,
ranging from experimental methods to distance-based approaches. Several experiments
were presented, where the problem of protein structure determination was cast as an
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instance of the Discretizable Distance Geometry Problem. These instances were subse-
quently solved by using a Java implementation of MDjeep which is a branch-and-prune
solver written as part of this thesis. When considering real protein data, uncertainty in
the input data is a significant issue for the BP methods. In the first set of experiments
(Section 3.5.1) we focused on small proteins and peptides, where uncertainty in the ex-
perimental NMR data is the key issue. We showed that for these small proteins, despite
a large degree of uncertainty, good quality structures may be produced by BP methods.
In the next set of experiments, we focused on larger proteins and a second problem of
uncertainty. When using BP algorithms, the distances relating to the covalent geometry
are regarded as exact, while in practice there may be large deviations in these distances.
When we do not capture these variations in the instances, this leads to a build-up of
error and protein structures of poor quality. The experiments that were conducted in Sec-
tion 3.5.2 confirm this hypothesis and show that there is a correlation between the size of
the protein and the effect of the variations in the covalent geometry.

Future work on the topic of protein structure determination has several directions.
Firstly, one strategy to solve the problem of the variations in the covalent geometry is to
no longer rely on force field data for these distances. Instead, perhaps a method involving
statistical analysis or machine learning may be used to identify the best distances. A
work in which progress was made towards such a method can be found in [196]. It is
important to capture some form of variations in these distances. For example, we may
want to vary the bond angles based on the secondary structure which they are in, or the
type of amino acid. Secondly, including long-range CB distances may improve the quality
of the structures when working with larger proteins. These distances can be obtained from
the contact maps that are created by machine learning methods. For instance, a previous
version of AlphaFold, created these contact maps as a final output (the current version
outputs the three-dimensional structure directly [169]).

When we overcome the problem of the variance in covalent geometry, perhaps we can
focus on solving larger structures using genuine NMR data. A final direction of future
research is visualizing the dynamics of protein structures. This relates directly to the
topic of the next chapter, which focuses on the Dynamical Distance Geometry Problem.
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DYNAMICAL DISTANCE GEOMETRY &
MOTIONS

So far we have only considered static problems, where distances between objects are
fixed, and where realizations of the distance graph G are snapshots of structures. However,
the framework of Distance Geometry may also be of interest when there is a dynamic
component present. For instance, using a distance-based model may be useful in the case
where we want to simulate objects in a way where specific distances between the objects
are enforced. For example in applications where collisions are undesired, such as air traffic
control. In this thesis, we focus on the application of human motion retargeting. We
are mainly interested in the application of human motions because it opens the path to
research on protein dynamics. Like human characters, proteins are skeletal structures,
which means that the methods used for both applications are similar.

We will start the chapter with an introduction and definition of the Dynamical Dis-
tance Geometry Problem (Section 4.1). Next, we will discuss the application of human
motion retargeting in Section 4.2. In Section 4.3 we will discuss experiments where we use
Distance Geometry for the motion retargeting problem. Afterward, in Section 4.4, we dis-
cuss a new representation for human motions that was inspired by structural biology and
that is useful for distance-based motion retargeting. We will end the chapter by discussing
the results and exploring future lines of work (Section 4.5).
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4.1. Introduction

4.1 Introduction

The subclass of the DGP in the literature that relates to dynamic problems is known
as the Dynamical Distance Geometry Problem (dynDGP) [4, 5]. The dynamic aspect
of the subclass is captured by a set of temporal instants T . In the representation of
the dynDGP, a vertex of our graph G no longer only represents an object. Instead, it
represents an object v ∈ V at a certain point of time t ∈ T , creating a simple weighted
undirected graph G = (V ×T,E, d). Because our list of distances D may include distances
between objects at different times, the mapping d now maps an edge between two objects
u, v at times q, t to a distance value:

d : {uq, vt} ∈ E −→ δ(uq, vt) ∈ D. (4.1)

In order to define the dynDGP [26], we extend the optimization variant of the DGP
that was given in Definition 2:

Definition 8 Given a simple weighted undirected graph G = (V ×T,E, d) and an integer
K ∈ Z+ the optimization-based dynDGP asks to determine a realization

x : V × T −→ RK

such that a penalty function σ is minimized.

When working on the dynDGP it is common to choose a penalty function σ which as-
signs varying priorities to different distances. For example, distances between two vertices
uq and vt where q and t are close may be given more importance. For these instances,
the mapping function d does not only assign a distance value to an edge {uq, vt} but
also a priority π(uq, vt). In the following, we will suppose that these priorities π(uq, vt)
are normalized between 0 and 1. An example of a priority-based penalty function for the
dynDGP is:

σ(x) =
∑

{uq ,vt}∈E

π(uq, vt)(∥xq
u − xt

v∥ − δ(u, v))2 (4.2)

where xv
t is the position of the object v at the time t. Like the penalty function described

in Equation (1.4), the gradient of ∇σ(x) of an incumbent solution x can be computed in
an exact way [26].

The dynDGP has many different applications. In general, much work has been done
in the context of animations and simulations. Because we are dealing with distances over
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time, regarding problems as instances of the dynDGP can be very useful when we want
to enforce distances between objects in an animation or simulation. For example, in the
context of air traffic management, one evident goal is to make sure that no two airplanes
are too close to each other at the same time. In [49, 197], a model with distances between
airplanes over time is used for air-conflict resolution. Another practical application is
crowd simulation [47, 48]. In this case, the distances in the model make sure that characters
in the crowd do not walk into each other, creating collisions.

One main interest for the dynDGP is to model the various changes of protein con-
formations. When visualizing a protein moving from one conformation to another, it is
important that certain inter-atomic distances are enforced. Furthermore, unwanted colli-
sions should be avoided.

In this thesis, we focus on the application of human motion retargeting. The reason
for the choice of this topic is that the human motions are akin to protein dynamics in the
way that the main characters in the motions both have a skeletal structure. The bones in
the human character can be seen as analogous to the bonds in the protein structures. In
the next section, we will look at human motions and motion retargeting in more detail.

4.2 Human motion retargeting

Human motion capture is the process of recording the movement of human actors [198].
This procedure is widely used for Computer Generated Imagery (CGI) in the movie
industry but is also important in the context of making animations for video games.
Once captured and digitalized, one may want to copy the movement of the actor to an
animated character. However, a problem arises when the human actor and the animated
character have a different morphology. For example, the animated character may have
limb sizes and proportions that are non-anthropoid. In this case, it is a challenge to copy
the motion from the human to a character with different proportions. This problem is
known in the literature as motion retargeting or motion adaptation [15–17, 105]. When
performing motion retargeting, it is crucial that contacts between joints that were present
in the original motion are transferred to the new motion. It is equally important to avoid
contacts that were not there to begin with. Therefore, using distance-based models for
this problem seems natural and we can consider motion retargeting as an instance of the
Dynamical Distance Geometry Problem.
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4.2.1 Representing human motions

In these motions, we have a skeletal human character that changes its posture over
time. The anatomy this character can be defined by using a graph H = (V,B), where a
vertex v ∈ V is a joint of the character and the edge b ∈ B is a bone. These graphs H are
trees, in which every joint v has a unique parent joint, assigned by a function:

p : v ∈ V \ {v0} → p(v).

To finish the representation of our characters, we need the function

χ : v ∈ V −→ χ(v) ∈ R3.

This function maps a three-dimensional offset from every joint of the character to its
unique parent joint. The value ||χ(v)|| corresponds to the length of the bone {v, p(v)} ∈ B.
This function χ together with the anatomy H lets us define the morphology of the skeleton
(H,χ) [105].

If we add a fictive root joint v0 to the tree H and fix it at the position (0, 0, 0), we can
use the offsets between a joint v and its parent defined by χ to find a realization of the
initial posture x0 of the skeleton:

x0 : v ∈ V −→

 (0, 0, 0) if v = v0,

χ(p(v)) + χ(v) otherwise.

Figure 4.1 shows an example of a commonly used initial posture for these human motions.
The motion itself is then defined by the changing positions of the joints V over time. Time
is defined by a series of frames m frames t ∈ T , with T = {1, 2, . . . ,m}. A straightforward
choice for representing the motion of the character would be to use Cartesian coordinates
to assign a three-dimensional position to each joint changing over time. In this case, we
may extend the function χ and let it vary for every frame t:

xt : v ∈ V −→

 (0, 0, 0) if v = v0,

χt(p(v)) + χt(v) otherwise.
(4.3)

However, this simple Cartesian representation has one large drawback: the morphology
of the skeleton is not explicitly captured. When we generate new motions (for instance
when we perform motion retargeting) there is a chance that the bone lengths will not be
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RightUpLeg

RightLeg

RightFoot

Spine

Neck, Neck1
Head

Spine1, LeftShoulder,

LeftArmLeftForeArm

LeftHand

ROOT: Hips, LHipJoint,

RHipJoint, LowerBack

RightShoulder

RightToeBase

Figure 4.1 – An example of a skeletal structure (H, χ). The initial T-pose along with the labels are
commonly used in in BVH files [199]. Joints with |χ| = 0 are shown next to their parent joint, marked in
italics. For the arm, only the left-side joints are labeled, for the legs only the right-side labels are shown.
The root of the tree H is the “Hips” joint. Note that this is the original root of H, and not the fictive
root node v0, which is instead placed at the origin of the coordinate system. This image and other human
motion images that we will present in this thesis are generated using the free software Blender 1.

constant throughout the animation. To be able to encapsulate the constant nature of
the bone lengths, the standard way of describing human motions utilizes an Euler angle
representation ρ. At every frame t, we assign a triplet of Euler angles θ (pitch), ϕ (roll),
and η (yaw) to every bone of the skeletal structure representing our character. Together
with the known offset between p(v) and v, we can define a transformation matrix Mt(v)
that takes into consideration both the translation data from χ(v) and the given Euler
angles. A precise expansion of the matrix Mt(v), based on a compound rotation matrix
R as well as three translation matrices, can be found in [199]. To compute the position
of the joint v, all offsets and all Euler angles from the root node of H up to v need to be
taken into consideration. The formula capable of converting the Euler angles in absolute

1. https://www.blender.org
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positions for the joints is therefore:

ρt : v ∈ V −→

 (0, 0, 0) if v = v0,∏
k∈P (v)(Mt(k)[0, 0, 0, 1])T otherwise,

(4.4)

where P (v) is set of vertices u that form the unique path from v0 to v over the tree
structure of the graph. See [199] for a more detailed examination of the Euler angle
representations. In fact, the Euler representation is the one used in the BVH file format,
which is discussed in the same reference, and which is the standard format for human
motions. In this representation, only the rotation of the bones changes throughout the
motion, which means that the bone lengths remain constant. Note that ρ uses 3 degrees
of freedom per bone, which is comparable to the degrees of freedom of the Cartesian
representation (see Equation (4.3)). However, it is possible to represent these human
motions while using fewer degrees of freedom, while still keeping the constant morphology.
More detail on this will be given in Section 4.4.

4.2.2 Motion retargeting in the literature

When we perform motion retargeting [15], the interest is in adapting an original mo-
tion, given for the character (H,χ), to a character having a different morphology (H, χ̂).
Note that both characters have the same anatomy H. We will refer to the newly gen-
erated motion as the target motion. One of the most straightforward ways to generate
the target motion is by Euler angle transfer. For each frame, one simply copies the Euler
angles (θ,ϕ, η) from the original joints to the joints of the target morphology. While this
is easily accomplished, it can quickly lead to problems in the output motion. The most
common problems that arise when using this method are that desired inter-joint contacts
are not preserved in the output method and that unwanted collisions may be introduced.
Examples of this are shown in Figure 4.2. To solve this problem, several methods are
introduced in the literature.

In [15], a non-linear constrained optimization method was used for motion retarget-
ing. First, important features in the original motion are identified, such as the feet of a
character touching the ground. Non-distance-based features were used as well, such as
the vector between two points having a specific orientation. For each of these features,
a constraint is introduced. Solutions are obtained by scaling the original motion while
observing the various constraints. A method that is closer to Distance Geometry was
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Figure 4.2 – Simple examples of frames in motions retargeted using the Euler angle transfer method, where
the motion is retargeted to a character with shorter shoulders. Two frames are selected of a motion with
a character dancing the well-known “Macarena” dance. On the left, we see a frame where the character
puts their hands on their head. In the retargeted motion we see that a collision is introduced, where
the hands are inserted in the head. On the right, we see another frame where an undesired contact is
introduced in the retargeted motion.

proposed in [16]. Here, interaction meshes are used to represent the spatial relationships
between nearby body parts. Then, target motions are generated by transforming these
interaction meshes directly using Laplacian deformation techniques. In [17], many other
methods are surveyed, including approaches that make use of statistics to perform motion
retargeting.

We will now focus on methods that are based on Distance Geometry and which regard
motion retargeting as an instance of the Dynamical Distance Geometry Problem, where
inter-joint distances are considered and the temporal instants correspond to the frames
T . The distance-based approach is natural considering that one of the goals of motion
retargeting is to retain contacts that were present in the original motion and avoid colli-
sions that were not. This can be achieved by enforcing certain distances between joints in
the target motion. In the literature, only inter-joint distances at the same frame t were
considered [105, 106], and instead of solving the dynDGP in one shot, it was solved as a
series of static DGP instances. At every frame t, we have the DGP instance G = (V,E, d),
where the objects V are the joints of the human character and the edges E combined with
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the mapping d represent inter-joint target distances. Some of these distances relate to the
bones B of the anatomy of the skeleton, while others are between joints that are connected
via a series of bones in the anatomy. The target distances for the target motion are ob-
tained by transforming the inter-joint distances of the original motion. The transformation
is done by first normalizing the distances in the original motion, using the morphology
of the original skeleton. Then, the target distances are computed by “denormalizing” the
distances using the morphology of the target character. When we have computed all the
distances, instead of solving the dynDGP instance in one shot, at every frame, we solve
an instance of a static DGP. Afterward, the resulting poses are combined into one smooth
animation using standard animation techniques.

The input for the method is the original human motion as a BVH file (the standard
motion capture format) as well as the morphology (H, χ̂) of the target character. An
overview of the full procedure is given below.

1. For each frame t:

(a) Derive Cartesian coordinates for each joint v, obtaining the pose xt in the
original motion

(b) For every pair (u, v) compute the target distance δ(u, v) by normalizing and
denormalizing the distances in the original motion

(c) Assign priorities π(u, v) to the target distances

(d) Solve the DGP instance arising from these target distances, obtaining the
(Cartesian) pose x̂t for the target motion

2. Combine resulting poses x̂t into one animation

The first step (a) in the procedure is straightforward and involves converting from Euler
space to Euclidean space and computing several distances. Step (b), the normalization
and denormalization step, is more complicated. To achieve this, we start by computing all
shortest paths P (u, v) = {w1, . . . , wk} between pairs of distinct vertices, where w1 = u,
wk = v and, for every i = 1, . . . , k − 1, we have {wi, wi+1} ∈ E (notice that the term
“shortest” makes reference to the number of edges that need to the crossed by the path to
walk from the vertex u to the vertex v of the anatomy graph H). To normalize a distance
δ(u, v), it is divided by the weight s(u, v) of the shortest path P (u, v) connecting u to v in
the morphology. The weight s(u, v) of the chain P (u, v) can be computed by combining
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the lengths of the bones we need to cross to get from u to v in the anatomy:

s(u, v) =
(|P (u,v)|−1)∑

i=1
||χ(wi)− χ(wi+1)||. (4.5)

Note that the weight of a chain s(u, v) in the original morphology χ is not the same as the
weight ŝ(u, v) in the target morphology χ̂, because the bone lengths are different between
the morphologies. For each pair of joints (u, v), the denormalized target distance (at frame
t) is computed as:

δ(u, v) = ŝ(u, v) · ||x
t
u − xt

v||
s(u, v) , (4.6)

where xt
v is the position of v at frame t in the original motion.

The kinetic chains P (u, v) are also used for step (c) where we assign priorities π(u, v)
to each target distance. The idea is that distances that relate to joints that are close
together in the anatomy should have higher priorities. This means that the smaller the
cardinality of the path P (u, v), the higher the priority π(u, v) should be. We start by
identifying the longest chain Pmax between any two joints in the anatomy, and use this to
determine the priority for any pair of joints (u, v):

π(u, v) = |Pmax| − |P (u, v)|+ 2
|Pmax|

(4.7)

Note that when δ(u, v) relates to a bone length, |P (u, v)| = 2, which means that π(u, v) =
1, which is the maximal priority value. After we have all the distances and priorities, the
DGP can be solved by minimizing the penalty function in Equation (4.2). Because the
gradient of this penalty function σ can be computed exactly, a logical choice is an opti-
mization method that relies on gradient descent. In [105, 106] a SPG method similar to
the refinement step for MDjeep was used. For more information about SPG, see Sec-
tion 1.4.5. When solving for xt, the starting point of the optimization is the result for the
previous frame xt−1.

This distance-based approach gives good results and results in retargeted motions
where undesired collisions are avoided and desired contacts are retained (see [105, 106]).
However, there is one drawback to this method and results as presented in the litera-
ture. Throughout the process, the poses xt and x̂t are represented in the Cartesian way
(see Equation (4.3)), instead of using the popular Euler angle method. This way, the
penalty function σ is easily computed and its gradient is exact. However, as we noted in
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the previous section, when we use this representation we cannot guarantee that the bone
lengths are constant. In fact, SPG may slightly perturb the bone lengths at each frame.
This is partly mitigated by the fact that large priority values π(u, v) are used when the
edge {u, v} corresponds to a bone b in the anatomy. In this case SPG will be less likely
to change the length of b. In the next section, we present a different approach that solves
this problem entirely, where the poses xt are represented directly in Euler space.

4.3 Distance-based motion retargeting in Euler space

In this section, we will present a method that extends and improves the motion retar-
geting approach from [105, 106]. More details on the extension and the new experiments
are found in [18]. Several new ingredients are added to the approach. In general, the goal
was to address two issues with the original distance-based method. Firstly, because we
have no inter-frame distances in the instances, the step from one frame to another can
theoretically be quite large. This leads to potential issues for the last step of the method,
where the poses are combined into one smooth animation. The second problem arises
when we use the Cartesian representation for poses xt, as this way we allow the method
to change the bone lengths from frame to frame.

To address the first problem, new inter-frame distances are introduced into the in-
stances, between joints in subsequent frames. We include all distances between pairs of
joints in subsequent frames, where the distance values are taken straight from the original
motion. This means that the DGP instances at each frame no longer only contain the
target distances that result from the normalization and denormalization process. Despite
these new inter-frame distances, we still solve the problem frame by frame. The distance
function δ for the DGP instance at frame t will then look like this:

δ : {uq, vt} ∈ E −→
ŝ(u, v)
s(u, v) ||x

t
u − xt

v||, if t = q,

||xq
u − xt

v||, if u = v and q = t− 1,

Apart from introducing these new distances, the way priorities π are assigned is also
changed. Firstly, the newly introduced inter-frame distances are assigned the maximal
priority of 1. For the other distances, the revisited approach improves the priority calcu-
lation by exploiting the information given by the interaction distance [200] between two
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joints u and v at a certain time frame t ∈ T . The interaction distance allows us to predict
the distance that the two joints will have if their current relative movement (computed by
comparing the current joint positions with the positions of the same joints at the previous
frame) will not change in the subsequent frames. When two joints are moving one towards
the other, their relative distances over time are important for performing the adaptation.
This is because they can guide the movement towards a joint contact that we want to
preserve. Alternatively, the relative distance over time will indicate potential self-contacts
in approaching joints that we wish to avoid. Therefore, we also assign a higher priority
to the distances between joints u and v for which the corresponding interaction distance
I(ut, vt) is smaller than a given positive threshold ∆. To sum up, the new π function has
the following form:

π : {uq, vt} ∈ E −→
1, if q = t− 1,
1, if q = t and I(uq, vt) < ∆),
(|Pmax| − |Puv|+ 2)/|Pmax|, otherwise.

To address the problem regarding the flexibility of the bone lengths, we instead rep-
resent the poses of the target motion directly in Euler angle space. SPG then works by
permuting the Euler angle variables, which makes sure that we will not be able to change
the length of the bones of the character in the target motion. Furthermore, it makes it
possible to easily output the BVH files for the resulting target motion. However, it com-
plicates several of the steps of SPG. When we have an incumbent solution x̂t and we
want to compute the penalty function σ(x̂t), we first have to convert from Euler space to
Cartesian space so that we may compute the Euclidean distances (see Equation (4.4)).
Therefore, the gradient ∇σ(x̂t) is no longer easily computed, because we have to also
capture the conversion from Euler space to Cartesian space in the derivation. In practice,
instead of using the exact derivation, we relied on numerical differentiation, using finite
differences methods [121]. Specifically, we used the five-point stencil. While this kind of
differentiation is slow, we do not have many vertices (joints) V in the instances, so for
this application, it works quite well.

This new motion adaptation method was programmed in Java, and several experiments
were conducted on human motions from the Graphics Lab Motion Capture Database, 2

provided by Carnegie Mellon University. Our Java code accepts a BVH file in input,

2. https://mocap.cs.cmu.edu
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containing the original motion, and outputs the retargeted motion in the same format.
We will not report the numerical values of the stress function for the frames of the obtained
motions because they do not always reflect the visual correctness of the postures and the
movements. Instead, we compare the motions that we generate to the motions that are
obtained by Euler angle transfer. The first motion that we consider is the “Macarena”
dance (database entry code 135_35, see Figure 4.3). At a certain point, the character is
supposed to place both hands on its head. The original frame is shown in the left-most
image in Figure 4.3.

Figure 4.3 – A frame from a motion representing the macarena dance. From left to right: the posture in
the original frame; the posture modified by simply transferring the original Euler angles to the different
morphology; the posture obtained by our distance-based motion adaptation. The shoulders are 30%
shorter in the target character as compared to the original animation.

Figure 4.4 – Another frame for the macarena dance. From left to right: the posture in the original frame;
the posture modified by simply transferring the original Euler angles to the different morphology; the
posture obtained by our distance-based motion adaptation. The shoulders are 30% shorter in the target
character. The distance between the two hands does not exactly correspond to the original distance in our
solution, but the local distances around the hands are well preserved, allowing the viewer to essentially
perceive the same posture.
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We can notice that, when the shoulders are reduced in length (−30%) and the original
Euler angles are simply transferred to the new character (see central image), the two
hands approach each other too much, and if one imagines where the head of the character
is supposed to be, the viewer has the impression that the hands penetrate the character
head. In the right-most image in Figure 4.3, our solution shows a correct adaptation of
the Euler angles to preserve the distance between the hands. In the same motion, the
hands of the character are placed on its back a few frames later. Another undesired effect
in the animation appears if we simply transfer the Euler angles. Figure 4.4 compares the
original, the angle-transfer result, and the result obtained with our approach. We see that
in our result, the distance between the hands is retained.

The next motion shows a character that feels like it is cold. To warm up the hands, it
rubs them together (entry code 79_68, see Figure 4.5). When the adapted character with
broader shoulders tries to warm up the hands, its two hands are too far from each other
(see central image in Figure 4.5). The right-most image shows instead that this artifact
is not present in our retargeted motion. These two retargeted motions, as well as a third
one, can be fully viewed in a YouTube video 3.

Figure 4.5 – A frame for the character feeling cold and hence rubbing its hands. From left to right: the
posture in the original frame; the posture modified by simply transferring the original Euler angles to the
different morphology; the posture obtained by our distance-based motion adaptation. The shoulders are
30% longer in the target character. In the angle-transfer solution, the two hands can hardly touch one
another.

Finally, one may wonder whether we can still obtain such good results when the
modifications on the bone lengths are more extreme (more than 30% modification of the
original length). In this case, as expected, the results get worse and worse. To better
deal with these more important changes, we have implemented an intermediate skeleton

3. https://www.youtube.com/watch?v=V5tkvTNRf1E
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approach (see Figure 4.6). The idea of using intermediate skeletons to improve the results
of motion retargeting was initially proposed in [201] in an inverse kinematics approach;
we have simply re-implemented it in our context. Instead of attempting to retarget a
motion with large morphology changes, the idea is to perform intermediate retargetings
in a sequence, in order to smoothly approach to the desired morphology. Every skeleton
in the sequence has one or more intermediate morphologies between the original χ and
the target χ̂. In the experiment depicted in Figure 4.6, we can see that the intermediate
skeleton approach (with 5 intermediate morphologies) can improve the quality of our
retargeted motions when the changes in the morphology are more drastic.

Figure 4.6 – On the right-most image, the result of retargeting the macarena dance frame shown in Fig-
ure 4.3 when the shoulders are 50% shorter. The sequence on the left side of the figure shows the 5 steps
to move from a 10% modification to the final 50% modification, with a change of 10% per step, necessary
to obtain a good-quality solution when the changes in the morphology are more important.

4.4 A representation for human motions inspired by
structural biology

Aside from these experiments, research was done on a new representation for human
motions [18, 19]. In this section, we will discuss this new representation. Furthermore, we
will present a statistical analysis of a motion capture database to underline the relevance
of this new representation to motion retargeting.

4.4.1 The vector-torsion representation

It appears that the Euler representation for human motions in motion capture may
have been inspired by a remarkably similar representation in robotics. Various represen-
tations are used in robotics, such as the Denavit-Hartenberg representation [202]. One
of the popular representations uses a triplet of Euler angles to describe the orientation
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of a robot arm, which combined with the three-dimensional position of the end-effector
makes it possible to generate a realization for the arm [203–205]. This makes for a min-
imal representation which uses 6 degrees of freedom. The use of Euler angles seems to
work well for controlling a robot arm, which was conceived to directly execute the cor-
responding angle variations. However, the use of Euler angles leads to representational
singularities for the problems of kinematic and dynamic control [206]. A singularity that
can occur using the Euler angle representation is a gimbal lock [207]. This occurs when
the middle rotation in the sequence makes the rotation axes of the first and third rotations
parallel. When these axes are parallel, a change to either the first or third Euler angle
will lead to the same rotation of the object in question (i.e., the robot arm). Essentially,
such a singularity leads to the loss of a degree of freedom. To overcome this problem, an
alternative, non-minimal representation in robotics was conceived as well, to avoid this
problem. Similarly, in the context of human motions and motion capture, the usefulness
of the Euler angles is debatable. We identify four drawbacks of the popular Euler angle
representation for motions. Firstly, as outlined in [208], and explained above, Euler angle
sequences admit different singularities, which may cause problems (such as a gimbal lock)
for the representation when the angles approach the values leading to these singularities.
Secondly, for a given bone, i.e. an edge {u, v} ∈ E, various combinations of Euler angles
can place the joint v in the same position [209]. Thirdly, the Euler representation is not
optimal in terms of degrees of freedom. As we will see, it is possible to represent, in fact,
the same postures by employing two degrees of freedom only, instead of three, for most
of the skeleton bones. A final drawback of the use of Euler angles is that many of such
angle triplets correspond to unnatural human postures for human joints, which cannot
be filtered out, at least by simply imposing constraints on their values. This problem was
already encountered and partially addressed in [210], where the focus was specifically on
the human shoulders.

The representation that we will discuss here aims to address these problems. It was
inspired by structural biology and uses two angles that we have seen before in the previous
chapters: a vector and a torsion angle. These angles give rise to the name: the vector-
torsion representation [18, 19]. This pair of angles will sometimes replace the triplet of
Euler angles employed for the representation of a joint. Differently from an Euler angle,
which depends only on the joint v itself and on its parent p(v), the vector angle ζv depends
on v, p(v), as well as on (p ◦ p)(v). Moreover, the torsion angle τv depends on v, p(v),
(p ◦ p)(v), as well as on (p ◦ p ◦ p)(v). Despite this extra dependence, only the main joint
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v is indicated as a subscript of the angle names ζv and τv; this is done to have a lighter
notation. However, it will be supposed that, every time these two angles are taken into
account, the necessary ancestors of v all exist.

Given a morphology (H,χ), we can derive these angles by following the natural vertex
order present in the anatomy H [18, 19]:

Definition 9 Given a skeletal structure (H,χ) and one realization x, the vector angle ζv

for the joint v in this realization is the smallest angle (in the range [0, 180◦]) formed by
the line passing through x((p ◦ p)(v)) and x(p(v)), and the line passing through x(p(v))
and x(v).

We can remark that variations on values of the vector angle ζv imply movements of
the joint v. However, as for the Euler angles (because three of them are necessary to
reconstruct the motion for each joint), one vector angle, alone, cannot be used to fully
represent the motion of v. We therefore couple the ζv angle with a torsion angle τv, as
described in [18, 19].

Definition 10 Given a skeletal structure (H,χ) and one realization x, the torsion angle
τv for the joint v in this realization is the clockwise angle (in the range [0, 360◦]) formed
by the plane defined by x((p ◦ p ◦ p)(v)), x((p ◦ p)(v)) and x(p(v)), and the plane defined
by x((p ◦ p)(v)), x(p(v)) and x(v).

When a realization x preserves the morphology of the character, we can use this pair of
angles combined with the bone lengths (defined by χ) to find the Cartesian coordinates of
any joint v that has at least three ancestors. The two angles are illustrated in Figure 4.7
Note that we must use the clockwise and not the smallest angle for τv so that τv is
in the [0, 360◦] range. In fact, we see in Figure 4.7 that the vector-torsion angle pairs
(90◦, 90◦) (middle) and (90◦, 270◦) (right) would not be distinguishable if we instead used
the smallest angle for τv. Using these angles, it is clear to see that the combination of
ζv = 90◦ and τv = 270◦ leads to an unnatural position for this joint.

Not all joints v ∈ V have the required number of three ancestors. Let R ⊂ V be the
joints with fewer than three ancestors. Every joint r ∈ R must be represented using the
triplet of Euler angles, leading to a hybrid representation:

ρ′ : (v, t) ∈ V \ {v0} × T −→
(
θt

p(v),v, ϕ
t
p(v),v, η

t
p(v),v

)
∈ [0, 2π)3, if v ∈ R,

(ζt
v, τv) ∈ [0, 2π)2, if v ∈ V \R.
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ζv ≈ 90◦

p(v) = RightLeg

v = RightFoot

(p ◦ p)(v) =

(p ◦ p ◦ p)(v) = Hips τ ≈ 90◦

v = RightFoot

RightUpLeg

270◦

Figure 4.7 – An example of ζv and τv. Visible are the legs of a human skeleton, taken from a BVH file
describing a running motion. The left side illustrates the vector angle ζv, which is the angle between
the RightFoot, the RightLeg, and the RightUpLeg joints. The center shows how we arrive at the torsion
angle τv using two planes defined by RightFoot and its three ancestors RightLeg, RightUpLeg, and Hips
(or RightHips). On the right, we see what happens when τv = 270◦, while ζv remains 90◦.

The value that the vector-torsion representation has to offer for representing motions
is that it lets us avoid several of the drawbacks of the Euler representation ρ that were
mentioned before. Namely, we see the following advantages:

— The combination of a vector angle with a torsion angle cannot lead to any repre-
sentation singularities

— There exists a bijective correspondence between the value of the angles and the
positions in space for the joints

— It exhibits only two degrees of freedom for encoding the same information comprised
in a triplet of Euler angles

— It allows us to empirically constrain the feasible (and mostly continuous!) regions in
the vector-torsion angle space where only natural postures for the human skeleton
can be found.

The last point is of increased importance in the context of motion retargeting, as we will
see in the next section.
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4.4.2 Motion analysis

In this section, we present an analysis of the Graphics Lab Motion Capture Database,
which is the same database that we used in the experiments discussed in Section 4.3.
The database contains 2436 motion files which sum to a total of more than four million
frames. In the following, we will refer to human joints with labels such as Hips, Right-
Shoulder, and LeftLeg, which are taken directly from the BVH files in the database.
Using the vector-torsion representation we conducted a statistical analysis of the vector
angles ζt

v and torsion angles τ t
v of every applicable joint v at every frame t of these four

million frames. Using the resulting data from this experiment, we generated a heat-map
scatter plot for each joint v. This analysis, just like the representation itself, also has its
inspiration in structural biology. The plots that we will present are similar to the well-
known Ramachandran plots, which analyze combinations of the ϕ and ψ torsion angles
in proteins.

Even though it is not possible to define the vector and torsion angles for the joints
having fewer than three ancestors (see previous section) we performed the analysis on
these joints as well. There is no need in the analysis to build up human postures, but
only to look at the four million postures contained in the database. Therefore, for the
joints missing a sufficient number of ancestors, we have simply defined a different set of
“reference joints” in the graph G, that we subsequently use for defining the vector and
torsion angles. For example, Figure 4.8 shows how we can still compute the vector-torsion
angle pair for the RightLeg and LeftUpLeg, which have only two and one ancestor(s)
respectively. Throughout the analysis, for joints such as these, we make sure to always use
the same combination of joints when computing the angles, so that we obtain consistent
results. Joints v with |χv| = 0 are omitted and they are not counted as ancestors of other
joints either. For example, the LHipsJoint and the RHipsJoint (see Figure 4.1) are placed
in the same position as the Hips joint, and the associated Euler angles are supposed to
define the orientation for all joints that form the left and right leg, respectively. The
vector-torsion representation does not use these particular joints because the two angles
cannot be computed for them. Table 4.1 shows the complete set of joints for which we
performed our analysis, together with the list of three reference joints used for computing
the vector and the torsion angles.
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LeftUpLeg

RightLeg

ROOT: Hips

Spine

Spine1

RightUpLeg

Figure 4.8 – The RightLeg and the LeftUpLeg are two examples of joints that do not have enough
ancestors to be represented by the vector-torsion angle pair. We can still use other consecutive reference
vertices in the anatomy H to compute these angles and perform the same analysis for these joints. In the
figure, we show the two sets of joints used to define the angles for the RightLeg and the LeftUpLeg. For
the former, we used the joints RightUpLeg, Hips, and Spine (the dark blue path). For the latter, we used
the joints Hips, Spine, and Spine1 (the orange path).

joint ref#1 ref#2 ref#3 all ancestors?
Head Neck Spine1 Spine Yes
Neck Spine1 Spine Hips Yes

Spine1 Spine Hips RightUpLeg No
Spine Hips RightUpleg RightLeg No

LeftArm Spine1 Spine Hips Yes
RightArm Spine1 Spine Hips Yes

LeftForeArm LeftArm Spine1 Spine Yes
RightForeArm RightArm Spine1 Spine Yes

LeftHand LeftForeArm LeftArm Spine1 Yes
RightHand RightForeArm RightArm Spine1 Yes
LeftUpLeg Hips Spine Spine1 No

RightUpLeg Hips Spine Spine1 No
LeftLeg LeftUpLeg Hips Spine No

RightLeg RightUpLeg Hips Spine No
LeftFoot LeftLeg LeftUpLeg Hips Yes

RightFoot RightLeg RightUpLeg Hips Yes
LeftToeBase LeftFoot LeftLeg LeftUpLeg Yes

RightToeBase RightFoot RightLeg RightUpLeg Yes

Table 4.1 – The three reference joints for each joint that was involved in the analysis. The reference joint
with the smallest numerical label is the closest; the one with the largest numerical label is instead the
farthest. In some cases, the reference joints are not the joint ancestors given by the graph structure.
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We will present 18 scatter plots for different joints, starting at the head of the skeleton,
and working our way down to the feet. The vector angles are shown on the x-axis and the
torsion angles on the y-axis. In these plots, points tending to the warmer colors correspond
to pairs of angles that were found more frequently.
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Figure 4.9 – The plot for the Head.
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Figure 4.10 – The plot for the Neck. The en-
circled points correspond to the unnatural po-
sition seen on the right in Figure 4.27
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Figure 4.11 – The plot for the Spine1.
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Figure 4.12 – The plot for the Spine.

Figure 4.9 shows the scatter plot for the human head. As expected, this joint is not
able to perform much movement in the space defined by the vector and torsion angle.
Roughly speaking, only one-third of this space is feasible for the head joint. Moreover,
the warmer part of the scatter plot indicates that the most common posture for this joint
is when the two angles are close to 180◦, which is compatible with an erected posture for
the upper body part. While the Neck joint (Figure 4.10) exhibits a pattern very similar
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Chapter 4 – Dynamical Distance Geometry & Motions

to the one of the Head joint, we notice that the two joints involved in the modeling of
the human spine (see Figure 4.11 and 4.12) admit an even smaller feasible space. This
is particularly true for the Spine1 joint, where a large part of the scatter plot remained
white which means that the combinations of vector and torsion angles in these areas are
completely infeasible for a human spine.
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Figure 4.13 – The plot for the LeftArm.
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Figure 4.14 – The plot for the RightArm.
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Figure 4.15 – The plot for the LeftForeArm.
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Figure 4.16 – The plot for the RightForeArm.
The encircled points correspond to the unnat-
ural position seen on the right in Figure 4.27.

The plots for the LeftArm ( Figure 4.13) and RightArm ( Figure 4.14) show a quite
constrained pattern as well, which is similar to those found for some of the previous joints
but shifted in the center of the vector angle axis (the x-axis). This means that the angle
formed by the spine and one of these two joints is often close to 90◦. In fact, we see
that these two joints share the same global Cartesian positions with the LeftShoulder
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4.4. A representation for human motions inspired by structural biology

and RightShoulder joints. We can also remark that the two scatter plots are symmetric
w.r.t. the axis parallel to the x-axis and passing through the torsion angle value 180◦. The
expected flexibility for the human arms is reflected in the scatter plots in Figure 4.15
and 4.16, related to the LeftForeArm and RightForeArm joints, respectively. This is the
first pair of joints so far for which the “coloured areas” can cover more than 50% of the
two-dimensional space. Yet, there are still particular combinations of vector and torsion
angles that correspond to unnatural postures. As discussed in more detail later, the outliers
found in the scatter plot concerning the RightForeArm correspond to errors that we have
identified in the motion capture database. Again, the two scatter plots for the two forearms
are symmetric with one another.
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Figure 4.17 – The plot for the LeftHand.
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Figure 4.18 – The plot for the RightHand.

Similarly, Figure 4.17 and 4.18, depicting the scatter plots related to the LeftHand
and RightHand joints respectively, show a quite large range of movement possibilities for
these joints. This was expected as well. Moreover, the sparsely populated blue areas in
these two scatter plots seem to suggest the extremely high flexibility of the human hand:
even if sometimes very uncommon (a few frames of the database may contain them), there
exist very special (and still natural) postures that the human hand can take. Therefore, if
we take into consideration in full these low-populated areas, we can state that the scatter
plots related to the human hands are the ones that almost cover the entire two-dimensional
space.

When stepping down over the joints forming the human legs, we can observe similar
patterns. For the upper joints in Figure 4.19 and 4.20, concerning the LeftUpLeg and
the RightUpLeg joints, respectively, we can notice that the patterns are similar to those
observed for the two upper arm bones. Similarly, we have the pattern of the LeftLeg
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Figure 4.19 – The plot for the LeftUpLeg.
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Figure 4.20 – The plot for the RightUpLeg.
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Figure 4.21 – The plot for the LeftLeg joint.
The points in the green circle correspond to the
uncommon poses in Figure 4.28.
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Figure 4.22 – The plot for the RightLeg joint.
The points in the green circle correspond to the
uncommon poses in Figure 4.28.
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Figure 4.23 – The plot for the LeftFoot.
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Figure 4.24 – The plot for the RightFoot.
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4.4. A representation for human motions inspired by structural biology

joint in Figure 4.21, and the pattern of the RightLeg joint in Figure 4.22. The human
feet also exhibit large movement possibilities, as we have observed for the hands, but
the low-populated areas in the scatter plots for the feet are much more sparse. This can
be a consequence of the fact that the human feet lost, during evolution, part of their
movement possibilities, but the similarity to the hands is still visible in our figures. The
scatter plot for the LeftFoot joint is in Figure 4.23; the scatter plot for the RightFoot
joint is in Figure 4.24.

Finally, the LeftToeBase and RightToeBase joints, in Figure 4.25 and 4.26 respectively,
show that they are the only joints that can span the entire two-dimensional space, but the
region is not continuous and most of the vector-torsion combinations are placed around
the center of the plot, where ζv = 90◦ and τv = 180◦.
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Figure 4.25 – The plot for the LeftToeBase.
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Figure 4.26 – The plot for the RightToeBase.

To sum up, the analysis shows that there exist large differences in flexibility between
different joints, and the feasible regions tend to vary a lot based on the nature of each joint.
In general, the vector angle seems to be the most restrictive factor. For joints like the Head,
Neck, and Spine joints, we see that the feasible vector angle regions are around the 180◦

mark and do not vary much. The plots for these joints are quite similar, and this makes
sense when we look at their respective ancestor joints in the skeleton (see Figure 4.1)
Joints on the right and left sides of the human body have very comparable regions, except
for the fact that the values of the torsion angles are generally inverted. This is a result
of the fact that we use a clockwise rotation to compute the torsion angles between the
two planes defined by the quadruplets of joints. This gives rise to the symmetry property
mentioned above. Various of the white regions in these scatter plots appear to be in logical
positions intuitively. For instance, the example of the inverted knee (the vector-torsion
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Chapter 4 – Dynamical Distance Geometry & Motions

angle pair (90◦, 270◦)) in Figure 4.7 can be found in a (small) white region in the plot
the RightFoot joint.

One observation from the plots is that there exist various data points that appear to
be outside the “warmer”, more frequent regions. We looked at several of these deviating
data points and classified them into two categories: motion capture errors and uncommon
postures. The motions containing motion capture errors should be eventually excluded
from the data sets when using the results of the analysis. We provide some examples for
each of these categories and show that it is rather uncomplicated to distinguish between
the two. Figure 4.27 shows two instances of an erroneous pose in a human motion from
the database, where the angles lie far outside the normal ranges. Finally, we showcase two
examples of outliers that correspond to possible, yet rare, human poses. The examples
affect vector-torsion angles in at least two joints: LeftLeg and RightLeg. Figure 4.21
and 4.22 show the two plots affected by these postures, with the outlying points encircled
in green. What these two poses have in common, is that for both the left and right sides of
the skeleton, the vector angles (between the Leg, UpLeg, and Hips joints) are quite small.
While the figure only shows two examples, there are many similar cases, for example in
the scatter plot of the UpLeg joints, there are some outlying data points where the vector
angles are smaller than 70◦. These, and other data points, do correspond to valid human
postures.

Figure 4.27 – The two motion capture errors. On the left, we see a bug for the Neck (motion: #138_31,
frames: 70–688). The corresponding points in the scatter plot are encircled in red in Figure 4.10. On the
right, we see an error for the RightForeArm (motion: #143_38, frames: 625–660). The corresponding
points in the scatter plot are encircled in red in Figure 4.16

124



4.5. Discussion & Future work

Figure 4.28 – Examples of outlying data points that correspond to valid human postures. Left: a frame
of the character landing after a wide-legged jump (motion: #121_19, frame: 847). Right: a frame of the
character in a sitting position (motion: #111_09, frame: 357).

4.5 Discussion & Future work

In this chapter, we discussed several new results in the context of the Dynamical Dis-
tance Geometry Problem. In particular, we focused on the application of human motions
and motion retargeting. We expanded on a distance-based method for motion retargeting,
including new inter-frame distances, priorities based on the interaction distances between
joints, and optimization in Euler space. Next, we looked at a new representation for hu-
man motions, inspired by the vector and torsion angles from structural biology. This
representation has fewer degrees of freedom than the standard representation used in the
literature. Furthermore, it allowed for a detailed analysis of a large database of human
motions. This analysis lets us identify natural positions for the different joints in the
human body.

This leads directly to the first area of future work. The results from this analysis can
be used for motion retargeting. The constraints that we can obtain from the scatter plots
may be used during the optimization, making sure that our retargeted motions will never
contain the character taking an unnatural position. Furthermore, the results from the
analysis may be used to generate random motions that look natural. Next, these results
from the research on human motions should be applied to simulating protein dynamics
and animating conformational samplings of protein structures, which was one of the main
sources of our interest in the topic.

125



Chapter 5

ADAPTIVE MAPS & LINEAR

PROGRAMMING

In the context of molecular biology, we saw that not only including distances but also
torsion angles in the DGP instances can be beneficial. In this chapter, we will look at the
application of adaptive maps, where we generate maps where the distances between the
Points of Interest (POIs) on the map are not Euclidean but instead based on subjective
measures of proximity, which depend on the user. One of the challenges when generating
adaptive maps is to move the POIs in a way such that these subjective distances are
satisfied while making sure the new map still resembles the old, general-purpose map. We
will see that this problem of POI relocation can be formulated as a type of DGP, where
we include constraints based on local orientations. These same constraints allow us to
linearise the problem, making Linear Programming suitable for solving the problem.

We start with an introduction in Section 5.1. Next, in Section 5.2 we present a linear
program (LP) which can solve the problem of POI relocation for adaptive maps. Com-
putational experiments with this new LP are presented in Section 5.3. In Section 5.4 we
present preliminary work on a method that exhaustively performs virtual axes rotations
to find the combination of local orientations that lead to the best objective value. Finally,
in Section 5.4 we end with some discussions.
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Chapter 5 – Adaptive Maps & Linear Programming

5.1 Introduction

Geographical maps have been in use by human civilizations for centuries, and are
widely used in our everyday life. Early maps in history range from drawings etched on
cave walls to extensive maps produced by ancient empires such as Babylon, Greece, and
Rome [211]. These historic maps as well as most commonly used modern maps are to-
pographic, which, once we have a 2D map, means that the relation between depicted
elements is based on their Euclidean distance. A key point of these maps is that they
are general-purpose, i.e., they are meant for widespread public use. In contrast to such a
general-purpose map, an adaptive map is a map that is modified based on selected features
that matter to a specific user [20, 21]. An example of this is a touristic map fine-tuned for
pedestrians who have trouble climbing up or going down steep slopes. These users would
much prefer routes between the POIs with low inclinations and would like to have a map
capable of reflecting their preferences visually. Such an adaptive map can be created using
subjective distances between a set of Points of Interest (POIs) on the original topograph-
ical map. The first reference to this type of map seems to be in 1983 [212] and in [213],
where the idea was applied for generating metro maps. More recent works include [20, 21],
which coined the term adaptive maps. In these works, the generation of adaptive maps
was separated into three steps:

— Identifying the POIs and generating subjective distances between them

— Relocating POIs based on the subjective distances

— Modifying the original map so that the new POI locations are reflected

For this thesis, we focused only on the second step, relocating the POIs, while attempting
to best satisfy the subjective distances. The input to the problem is the output of step
1: the two-dimensional positions of the POIs in the original general-purpose map and the
pairwise subjective distances.

We can reformulate this problem as a type of Distance Geometry Problem. We have
a graph G = (V,E, d), where the vertices correspond to the POIs and the edges and
their weights relate to the subjective proximities. If we were to solve the POI relocation
problem using only this information, there is a chance that the given subjective distances
will force the POIs to move in such a way that their (relative) output positions will not
at all match their corresponding positions in the original map. This would make the third
step of modifying the original map very difficult. Therefore, we would like the set of
output POI positions after relocation to be topologically homeomorphic to the original
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map. By using the positions of the POIs in the original map (which can be seen as an
initial realization x0), we can include extra information in our instances: local orientations.
As previously described in Section 1.3, these are defined using four standard quadrants
(NW, NE, SW, and SE). In order to include these orientations, G must be a directed
graph. We can then partition our edge set E into the four quadrants. For example, when
we have (u, v) ∈ NW, it means that v is to the North-West of u in the original map. Of
course, the information about the orientations should remain symmetric, i.e., if we have
(u, v) ∈ NW, we must have (v, u) ∈ SE. Note that if a pair of POIs (u, v) have the same
x or y-coordinate, (u, v) will be in two of these quadrants (i.e., NW and NE), which is
not a problem for our definition or our methods. When a realization x satisfies all the
local orientations, we say that x is topologically homeomorphic to x0. Using this extra
information, we can define POI relocation as a variant of the optimization based DGP
(see also [214]):

Definition 11 Given a simple weighted directed graph G = (V,E,d) and an initial real-
ization x0 of G, where

— V is a set of POIs

— E represents the presence of proximity information and is partitioned into the four
subsets (NW, NE, SW, and SE) to encode the local orientations given in x0

— the weight function d provides the numerical values δ for the proximity measures

— For simplicity, xv is the x-coordinate and yv is the y-coordinate of POI v in a
realization x

find a realization x : v −→ R2 such that a penalty function σ is minimized,

s.t. :



∀(u, v) ∈ NW, xu ≥ xv and yu ≤ yv,

∀(u, v) ∈ NE, xu ≤ xv and yu ≤ yv,

∀(u, v) ∈ SW, xu ≥ xv and yu ≥ yv,

∀(u, v) ∈ SE, xu ≤ xv and yu ≥ yv,

(5.1)

Because we are dealing with maps in dimension 2, σ (see Equation (1.4)) can be defined
as:

σ(x) =
∑

(u,v)∈E

(√
(xv − xu)2 + (yv − yu)2 − δ(u, v)

)2
. (5.2)
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Note that the definition of the graph G allows the proximity measures δ(u, v) and δ(v, u) to
be different because G is directed. However, we will assume that the distance information
in our instances is symmetric.

Using this definition, the POI relocation problem can be seen as a particular DGP
subclass of instances, where the additional constraints on the relative orientations are
enforced. In general, adding constraints to a known problem is likely to increase its com-
plexity. In our case, while the POI relocation problem remains in the same complexity
class of the generic DGP, these new constraints as well as the use of a linearizable distance
measure will allow us to formulate the POI relocation problem as a linear program (LP)
consisting of only real variables.

5.2 A linear program for POI relocation

As discussed in Section 1.4.6, Linear Programming may be used for general Distance
Geometry Problems when we substitute the Euclidean distance norm with a linear one.
In [31], the L∞ (see Equation (1.11)) norm was used and binary variables were introduced.
In [32], both the L∞ and L1 (see Equation (1.12)) norms were employed. However, this
came at the price of adding binary variables and non-linear constraints which means that
the complexity of the resulting algorithm is non-polynomial. Instead, in the case of the
POI relocation problem as defined in Definition 11, we will see that the addition of the
relative orientation constraints allows us to use continuous variables only.

We will substitute the Euclidean distance norm by using the L1 norm. Because the
dimension K = 2, the L1 norm (also known as taxi or Manhattan distance) looks like
this:

L1(u, v) = |xv − xu|+ |yv − yu|, (5.3)

where the symbol | · | represents the absolute value of a real number. We use this distance
norm to define auxiliary variables zuv. The linear model that we propose in [214] aims to
minimize the sum of these auxiliary variables:

min
∑

(u,v)∈E

zuv, (5.4)

where zuv is an upper bound for the absolute difference between the L1 distance in our
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incumbent solution x and the proximity information δ in the input:

zuv ≥ ||xv − xu|+ |yv − yu| − δ(u, v)|, (5.5)

Absolute values of computations can be problematic for LP solvers to deal with because
their inclusion can cause the optimization problem to be non-convex and non-smooth.
However, the relative orientations that we have in the input actually allow us to avoid the
need for absolute values. This can be done by including two constraints on zuv for every
quadrant. For each quadrant, the combination of these two constraints is equivalent to
the inequality in Equation (5.5):



∀(u, v) ∈ NW, zuv ≥ yv − yu + xu − xv − δ(u, v)

∀(u, v) ∈ NW, zuv ≥ δ(u, v)− yv + yu − xu + xv

∀(u, v) ∈ NE, zuv ≥ yv − yu + xv − xu − δ(u, v)

∀(u, v) ∈ NE, zuv ≥ δ(u, v)− yv + yu − xv + xu

∀(u, v) ∈ SW, zuv ≥ yu − yv + xu − xv − δ(u, v)

∀(u, v) ∈ SW, zuv ≥ δ(u, v)− yu + yv − xu + xv

∀(u, v) ∈ SE, zuv ≥ yu − yv + xv − xu − δ(u, v)

∀(u, v) ∈ SE, zuv ≥ δ(u, v)− yu + yv − xv + xu

(5.6)

The objective function (5.4), the constraints (5.6), and the relative orientation constraints
(5.1) together define the linear model for our problem.

5.2.1 Implementing the model

The model was implemented into Java, using the LP solver CPLEX [120], which has
an interface for Java using the Concert Technology. The code for the model is found in
the LinearSolver class in the Java package (see Figure 1.4). In the model, we have two
variables xv and yv for every POI v. Since we require that δ(u, v) = δ(v, u), we only need
to use one auxiliary variable zuv for the edges {u, v} and {v, u}. This means the total
number of variables in the model is 2|V |+ 1

2 |E|.
For every variable zuv we have two constraints, which means there is a total of |E|

of such constraints. In a naive implementation of the model, one could include a relative
orientation constraint for every pair of vertices (u, v). However, this can be improved if

131



Chapter 5 – Adaptive Maps & Linear Programming

we use two vertex orders Ox and Oy. In the first order Ox, the POIs are sorted ascending
by their x-coordinate in the original map x0. In Oy, they are ordered ascending by their
y-coordinate. Using these orders, we can simplify the relative orientation constraints. For
a vertex v, let u be its successor in Ox and w be its successor in Oy. If we then include
the two constraints vx ≤ ux and vy ≤ wy for all the vertices v, (as long as the successor
u or w exists), we only need 2(|V | − 1) constraints to cover all relative orientations. This
leads to a total of 2(|V | − 1) + |E| constraints in the model.

The model at hand may be solved either by primal or dual simplex methods, and both
can be used when employing the solver CPLEX. The model has more constraints than
variables, which means that the dual solver should be more efficient (as per the CPLEX
manual [120]). Therefore, we used the dual simplex method for the experiments in the
next two sections.

5.3 Experiments: the city of Granada

To test the model and its implementation, we used a 10-point POI relocation instance
available from [21]. These 10 POIs, and their initial coordinates (listed in Table 2 in [21]),
are based on real Points of Interest in the city of Granada in Spain. These experiments
were published in [214]. The subjective proximity information δ(u, v) between these POIs
instances are shown in Table 5.1, which are based on walking distance. The walking
distance is likely to differ from the Euclidean distance, while paths along streets resemble
more L1 norm distances. To present the data visually, Figure 5.1 shows a colored map
depicting the POI distance variations (when comparing the original Euclidean distances
and the given proximity distances) in the instance, as well as the local orientations of
the POIs. As mentioned in the previous section, we used IBM’s CPLEX solver to obtain
solutions to the implemented model. For this 10-point instance, the result was obtained
in 0.072 seconds on a MacOS (Ventura), 32GB RAM, and with CPU Apple M1 Max (10
cores). In order to superimpose the obtained coordinates with the original map, we first
center both point sets at the origin by subtracting the centroid from each point. Then,
we scale both point sets so that their distances are within the same range. The obtained
result, which has an objective function value equal to 10273, is shown in Figure 5.2. It
is not trivial to visually validate the result. We will do this by contrasting the heatmap
given in Figure 5.1 with the displacement of the POIs in our solution.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P1 0 1553 2783 3614 4240 5674 6972 6064 7408 5387
P2 1553 0 1674 3867 2975 5936 7234 6326 6807 4693
P3 2783 1674 0 3427 2118 5098 6396 5409 5950 3837
P4 3614 3867 3427 0 2471 2571 4609 3745 5222 3292
P5 4240 2975 2118 2471 0 3600 4684 3172 3840 1727
P6 5674 5936 5098 2571 3600 0 2569 3076 5083 3416
P7 6972 7234 6396 4609 4684 2569 0 2692 4966 3903
P8 6064 6326 5409 3745 3172 3076 2692 0 2415 1698
P9 7408 6807 5950 5222 3840 5083 4966 2415 0 2303
P10 5387 4693 3837 3292 1727 3416 3903 1698 2303 0

Table 5.1 – The walking distances between 10 pairs of POIs, that we use in our computational experiment.
Reproduced from [21] (Table A1)

Figure 5.1 – Information related to the 10-point instance in [21]. Top left: a visual representation of the
local orientations of the POIs in the original realization, which our linear model is supposed to preserve in
the found solution. Bottom right: a heatmap, where the colors encode the difference in values between the
Euclidean distances (in the original realization x0) and the given proximity distances (walking distances,
see Table 5.1). The lower the difference, the smaller the value attributed to the corresponding square in
the heatmap; all difference values are normalized between 0 and 1.
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P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Figure 5.2 – The solution found by our linear model to the POI relocation problem related to data
in Table 5.1. The points P∗ indicate the original locations of the POI in the initial map. In black, we see
the new positions for the POIs.

Let us first look at the pair P6 and P8, which correspond to a red area in our heatmap.
This means that there is a large difference between the walking distance given and the
Euclidean distance in x0. The distance between these two POIs is supposed to get larger
in the adaptive map, and we can notice that this happens in our solution. We can remark,
however, that the locations of some other POIs are subject to even larger modifications,
apparently contradicting our input data. For example, P9 is moved a lot, while in the
heatmap P9 seems to be associated with more green squares (lower differences between
walking distances and Euclidean distances). However, such POIs are actually displaced in
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other to to maintain their relative distances to other POIs which were moved to account
for the more red areas in the heatmap. For example, because P8 is moved South because
of the “red” edge {P6,P8}, P9 has to be moved South accordingly. Let us now consider the
point P3. Two of the edges related to P3 are “red” indicating a quite important variation
in the corresponding relative distances. However, the location of P3 does not seem to have
changed much in our adaptive map. This behavior is most likely due to the introduced
orientation constraints. In fact, P7 belongs to the SE quadrant of P10, and the little
movement it is allowed to take seems to be the consequence of the fact that P10 moved a
little in the South direction. Any other movement for P7 in the allowed quadrant would
have most likely caused larger distance penalties with its closest neighbors. In general, we
can observe that all local orientations are well respected.

5.4 Rotating the axes

In this section, we will present some ongoing work on the problem of POI relocation.
This work and the experimental results have not been published. However, we are prepar-
ing a journal publication based on these preliminary results and experiments, pending
some theoretical work.

The directions of the axes (North-South and East-West) that we used in the previous
sections are based on the directions of the axes in the original map. To obtain a linear
program these directions need to be fixed so that we may use them in the relative position
constraints, which allows for the linear calculation of the L1 distances. However, it may
be observed that we are not required to use these specific directions of the axes. In fact,
different LPs may be obtained if we choose other directions as axes. These other LPs could
perhaps lead to a better objective value, which means that they yield a better approx-
imation of the subjective distances δ(u, v) that are given in the input. This introduces
the problem of finding which system of axes will yield a LP with a minimal objective
value. Different axes may be obtained by rotating the original map x0 with an angle in
the range of [0, π/2]. However, not every rotation in this interval will lead to a different
linear program. In fact, we only need to consider 1

2n(n−1)+1 cases. Recall the two vertex
orders Ox and Oy, where the POIs are sorted according to their x and y-coordinates in
x0. When two rotation angles are sufficiently close such that they lead to the same orders
Ox and Oy, the corresponding LPs will be identical and yield the same objective value.
Therefore, a different LP is only obtained when the rotations lead to different orders Ox
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and Oy. Furthermore, we only obtain a different order if there is at least one pair of POIs
(u, v) such that the rotation makes either the x or y-axis cross the line defined by u and
v.

To identify all rotations that lead to a different LP, for every pair (u, v) ∈ V × V , we
compute the positive angle α between the line defined by (u, v) and the x-axis. Then, we
should force α in the range [0, π] by subtracting π if necessary. If α > π/2 it relates to
a change in the order Ox. if α ≤ π/2, the rotation relates to a change in Oy. Next, to
find out the solution with the best objective value, we can try all possible 1

2n(n− 1) + 1
rotations which relate to a change in the orders. We can avoid performing the rotations
numerically by instead rotating the axes virtually. If we keep a sorted list of the angles α,
we do not need the rotation of x0 when we move from one LP to the next one. In fact, we
only need to invert one of the inequalities relating to the relative orientation constraints.

5.4.1 Experiments

Several preliminary experiments were conducted with the method described above.
First, the set of 10 POIs from Section 5.3 was analyzed. For each of the rotations in
the range [0, π/2], we solved the corresponding LPs, leading to the scatter plot shown
in Figure 5.3.
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Figure 5.3 – An analysis of the data set with 10 POIs (see Table 5.1). The x-axis: the virtual axes rotation
in degrees. On the y-axis: the objective value of the corresponding LP.
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Figure 5.4 – Overlaps the original points (labeled) with the two sets of resulting points. In black, we see
the solution with an objective value of 10273, and in gray we see the solution with an objective value
of 7896. Gridlines are added for the points in black, showing the relative constraints relating to the pair
(P4,P8) and (P1,P10) are swapped.

We see that the different rotations lead to large variations in the objective value. The
objective value (as reported in the Section 5.3) is 10273 when we do not perform any
virtual rotation of the axes. The rotation leading to the best objective value is a very
small rotation of 0.79◦, which leads to a solution with an objective value of 7896. To
study this more deeply, consider Figure 5.4, where we contrast the original position of

137



Chapter 5 – Adaptive Maps & Linear Programming

the POIs, with the two solutions. The solution from the LP with the virtual rotation was
rotated back by 0.79◦ to match the axes of the original map.

The virtual rotation of 0.79◦ changes Ox, by swapping the order of two pairs of points:
(P1,P10) and (P4,P8). Swapping P1 and P10 has the immediate effect of creating a larger
(horizontal) distance between them in the gray solution, as compared to the black one.
In the original x-order given by x0, P4 is to the left of P8 but in the new one, we force
P4 to be to the right of P8. This is visible in Figure 5.4, where we see that in the black
solution with an objective value of 10273, P4 and P8 are almost on the same line, while
in the new gray solution they have moved apart by quite a bit. Flipping the inequality in
the two constraints decreases the error on the distances in different ways. For example,
the absolute error of the distance between P2 and P4 is decreased by 351 (P2 and P4 are
further away in the new (gray) solution, which better matches the subjective distances
in Table 5.1). The pair (P2,P3) has a similar story, decreasing the objective value by 374.
All these changes result in a large improvement of the objective value.

Instance P10 P15 P21 P31 P41 P51 P61 P71 P81 P91

LPs solved 46 106 211 466 821 1276 1831 2486 3241 4096

Objective
No rotation

10273 14039 49.6 145.3 314.4 338 573 754.4 1040.9 1428.7

Objective
Best rotation

7896 11400 42.5 131.8 292.1 318.9 500.3 735.1 994.3 1344.7

Improvement 23.1% 18.8% 14.3% 9.3% 7.1% 5.7% 12.7% 2.6% 4.5% 5.9%

Best rotation (◦) 0.78 19.5 24.1 85.6 30.5 4.2 15.2 14.3 24.8 14.8

Total time (s) 0.36 0.69 1.8 8.4 37.7 127.9 343.8 829.4 1819.4 3600.7

Total time (s)
Warm restart

0.24 0.37 0.54 1.37 4.5 12.3 32.6 79.5 179.6 365.4

Table 5.2 – Results of using the exhaustive rotation method on various point sets.

These experiments were also extended to larger data sets, with more POIs, all extracted
from the city of Granada. In total, tests were run on 10 data sets, with the following
number of POIs: 10, 15, 21, 31, 41, 51, 61, 71, 81, and 91. Note that the subjective
distances used in the various point sets were not all of the same type, which means the
absolute values of the objective function cannot be compared between the data sets. To
test the efficiency of the exhaustive virtual rotation method, we used it on the above data
sets, solving many different LPs in the process. For the largest point set, with 91 POIs,
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a total of 4096 LPs was solved. The results of these experiments are shown in Table 5.2.
The tests were run on the same system described in Section 5.3 and using the academic
version of the CPLEX solver.

In the table, we see that rotating the axes can lead to a significant improvement of the
objective value, which validates the use of the method. One drawback seems to be that
the larger the size of the set of POIs, the larger the number of rotations that we should
try to find the best axes for the problem. This is especially reflected in the penultimate
row of the table, where we see that the total running time of the method goes up to one
hour. However, in practice, the running time can be much reduced by the use of warm
restarts when solving the LPs. When we go from one virtual rotation to the next, only
one inequality is inverted in the new LP compared to the previous one. Therefore, the
solutions between the consecutive LPs should be rather close. If we supply the solver with
the solution from the previous LP, it is able to use it as a starting point, making it find
the next solution much faster. In the final column, we see the effect of including warm
restarts in the procedure: the total running time is generally improved by a factor of 10.
Apart from these, we can see that the relative improvement tends to decrease with the
size of the instance. This is logical because the relative effect of each POI on the objective
function decreases with the size of the instances.

5.5 Discussion

In this chapter, we used Distance Geometry to study the problem of POI relocation,
which is one of the necessary steps when generating adaptive maps. Similar to the topic
of structural biology, the instances for POI relocation contain more information than
just pairwise distances. In the case of adaptive maps, the instances also contain relative
orientations between POIs, which are included so that the generated, adapted maps have
a topology that is similar to the original map. These local orientations are forced upon the
generated maps in the form of linear constraints, and thus allow us to formulate a linear
program for the problem. We presented in-depth experiments for a data set of 10 POIs.
Aside from this, we saw that rotating the axes will lead to different local orientation
constraints, which in turn lead to different linear programs. These new LPs may have
better objective values, which means that the subjective distances in the input can be
better approximated. We presented several preliminary experiments using an exhaustive
virtual rotation method. The experiments show promising results.
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Currently, work is being done on improving this method, by reducing the number of
LPs that we need to solve. It is likely unnecessary to exhaustively check all possible virtual
rotations. Perhaps through sensitivity analysis [215, 216], we can find certain rules that
tell us beforehand whether or not a specific LP will lead to an optimal solution that is
better than a previously solved LP. Theoretical research into this topic is ongoing and is
expected to result in a submission to a journal.
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Chapter 6

DISCUSSION, ONGOING AND FUTURE

WORK

In this last chapter, we will summarize the results presented in the thesis. For each
of the topics discussed, we will look at various avenues for further research. Finally, we
will look at two projects which are ongoing work and to which only minor contributions
were made as part of this thesis. For the first project (Section 6.2.1), we will look at
binary representations of combinatorial problems and how we may use meta-heuristics to
find solutions. This is of interest in the context of Distance Geometry because solutions
to instances of the DDGP subclass may be represented using a binary string. For the
second topic (Section 6.2.2), we will consider the DGP in dimension 1. In particular, we
focus on one specific type of “paradoxical” instances, which appear to be trivial but are in
fact hard to solve by branch-and-prune methods. We propose alternative methods, based
on a matrix-by-vector reformulation, which can solve these paradoxical instances more
efficiently.
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6.1 Discussion and future work

In this thesis, we have discussed various aspects of Distance Geometry. The main focus
was the application of structural biology using Discretizable Distance Geometry methods.
A common theme in the work presented in this thesis is that not only Euclidean distances
but also other geometric concepts can be exploited by DG methods.

In Chapter 2 we showed that if we include not only distance information in the in-
stances, but also torsion angles (including their sign), this will help the branch-and-prune
methods that exploit the discretizability of the instances. Specifically, the inclusion of
the torsion angles will decrease the size of the tree that represents the search space.
In Chapter 3, we presented two sets of experiments for the application of protein struc-
ture determination, exploiting this idea in practice. We showed that it can be desirable
to not only include inter-atomic distances in the input instances, but also both proper
and improper dihedral angles. We saw that when we encapsulate this information in our
instances, BP methods can produce relatively good quality structures for small proteins
while relying on (noisy) NMR data. However, a second set of experiments shows that there
are still challenges to overcome. This is because, in the context of the BP framework, the
geometric information relating to the covalent geometry of the proteins is generally re-
garded as constant. However, in practice, we see that there are quite large variations in
this data. Despite the error-tolerance of the BP methods used, the discrepancies found
within the covalent geometry make it so that the methods tend to fall short for larger
proteins. Future work should focus on overcoming this problem. One strategy may be to
attempt to capture these variations in the input. This could be done by using machine
learning or statistical analysis in order to identify variations in the distances, for example,
based on the position of the amino acid in the primary structure of the protein. This
way, we may be able to use precise distances that better match the real distances in a
given conformation of a protein. The second problem, the uncertainty in the instances,
may be improved by including more distances. One possible new distance type that we
could include is based on pairwise CB distances. These distances can be obtained from
contact maps, which are produced by machine learning methods used in the context of
protein structure determination [172, 173]. Contact maps give us information about CB
atoms that are close in space but may be far from each other in the primary structure
of the protein. This means that these distances can be very useful, as they will let us
prune away large parts of the search space tree. However, the use of distances such as
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these presents many new challenges. Some preliminary experiments show that the pruning
distances may be too strict and branch-and-prune will end up pruning every branch of
the tree. In these same tests, it appears that SPG is not powerful enough to permute the
incumbent solution such that these distances are satisfied. This points to an additional
point of future work, which also relates to the refinement step. We saw in this thesis that
including torsion angles and their sign is very beneficial for the BP methods. However,
in the current state, SPG only minimizes the error on the distances in the instances and
does not consider the torsion angle information at all. Including this information in the
refinement step could lead to an improvement of the generated structures. The current
implementation of SPG relies on an exact derivation of the penalty function for the gra-
dient descent. Extending this derivation to also include a violation of the dihedral angles
is not a trivial task. Furthermore, this computation may slow down the algorithm. We
did some tests with numerical differentiation methods, but these tend to be very slow. A
possible tool that could be looked into is automatic differentiation.

Aside from these specific directions and points of improvement, a more general inter-
esting direction of research is combining the discrete, BP method with machine learning.
In recent years, the most promising methods for protein structure determination have
been based on machine learning and have achieved very positive results. However, these
machine learning methods have their advantages and disadvantages. Perhaps if we could
combine our discrete method with some machine learning aspects, we could take the
best things from both worlds. A straightforward example would be to use BP as a post-
processing step after a machine learning method has produced a contact map. However,
more intricate combinations could produce better results.

In Chapter 4 we studied dynamic Distance Geometry, focusing on human motions. Our
interest in human motions stems from the fact that the characters are represented using
skeletal structures. Researching these human motions lays the groundwork for studying
protein dynamics because proteins, like humans, also have a skeletal structure. Several ex-
periments were presented on the subject of using DG methods for the problem of motion
retargeting, where we wish to copy the motion from one actor to another character with a
different morphology. Furthermore, we proposed a new (vector-torsion angle) representa-
tion for human motions, which has its roots in molecular biology. This new representation
uses fewer degrees of freedom than the standard Euler angle representation. We showed
that the vector-torsion angle representation is a natural fit for the application of motion
retargeting. Future work directly on the topic of human motions includes expanding the
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DG methods for motion retargeting. Furthermore, the vector-torsion angle representation
(combined with the statistical analysis presented in Section 4.4 could potentially be used
to generate random motions that guarantee that the actor always has a natural pose.
Lastly, the conducted research should be extended to the subject of protein dynamics.
This way, proteins moving between conformations could be visualized in an accurate way
such that certain important pairwise distances (such as bond lengths and van der Waals
radii) are not compromised.

In Chapter 5 we studied the application of adaptive maps. For this application, sim-
ilarly to structural biology, the DGP instances also include geometric information other
than Euclidean distances. For adaptive maps, we use linear distance norms and constraints
based on local orientations. This special kind of DGP instances can be solved using lin-
ear models and linear programming. We presented experiments in which we solved these
linear models with promising results. Furthermore, we discussed ongoing work in which
different combinations of local orientations are tried by rotating the directions of the axes.
In future work, we will conduct an in-depth theoretical analysis of the concept of rotating
the axes and present more detailed experiments. Aside from continuing the research with
a focus solely on adaptive maps, it could also be interesting to study whether these find-
ings have any impact on other applications, such as structural biology. Perhaps the local
orientations and the linear programs can be interesting for problems in that field as well.

6.2 Ongoing work

In this section, we will shortly discuss some ongoing work, to which the author of
the thesis has contributed. This work spans two main topics which have not yet been
discussed so far in the thesis. The first topic that we will discuss is binary representations
of combinatorial problems and a meta-heuristics project that can be used to solve such
problems. Note that the DDGP is one such combinatorial problem for which we can
use a binary representation. The second topic covers the DGP in dimension 1 and two
approaches that can solve a specific type of instances in this dimension.
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6.2.1 Binary representations

This work concerns a project known as binMeta 1 [217], which is conceived particu-
larly to study meta-heuristic searches for global optimization problems for which a suitable
binary representation can be supplied. In such a binary representation of a solution to an
optimization problem, the smallest piece of information that we consider is a bit, while
a bit string of fixed length n provides the full representation. Two solutions are different
if at least one of their bits has an opposite value. The distance between two solutions
can be measured by using the Hamming distance [218], which counts the number of bits
that are different at the same positions in the two strings. Binary strings are useful for
representing problems when they admit a discrete search space.

Recall that in Chapter 2 we saw that under certain assumptions, the DDGP admits
a discrete search space (see Section 2.1). In fact, the DDGP is a global optimization
problem for which a binary representation comes naturally. An example of a binary tree
representing the search space of an instance of the DDGP with |V | = 6 and K = 3 is
given in Figure 6.1.

v1

v2

v3

v4

v5

v6

Figure 6.1 – An example of a tree representing the search space of an instance of the DDGP with |V | = 6
and K = 3. A path in the tree, corresponding to a possible solution to the instance is highlighted. The
binary string that corresponds to the highlighted path is 100.

Any path in this tree from the root to a leaf node corresponds to a solution for the
instance at hand. Such a path can be represented with a binary string in several ways. An
example of a simple binary representation scheme is to assign a bit for each level (vertex)
of the tree. If a bit is set to 0, it means that at the corresponding level in the tree, we
select the left candidate. If the bit is 1, we choose the right candidate. Because the first K
vertices are fixed, we only need |V | −K bits to represent a solution. The bit string that

1. https://github.com/mucherino/binMeta
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represents the highlighted solution in the tree in Figure 6.1 is 100. Every permutation of
such a bit string will correspond to a different path in the tree. For each such solution,
we know that all the reference distances are satisfied. Therefore, the quality of such a
solution may be quantified by using a penalty function that minimizes the violation of
the pruning distances.

The binMeta project groups implementations of meta-heuristics that can be used
to solve global optimization problems as long as they admit a binary representation.
A contribution was made to this project as part of the thesis. The well-known meta-
heuristic search Variable Neighbourhood Search (VNS) was adapted to binary solutions
and Hamming space and added to the list of binMeta implementations. More details
can be found in [219]. Future work can be done in various directions. Firstly, the different
meta-heuristic implementations should be tested in detail on instances of the DDGP. The
binary representation of the DDGP can be especially useful when the DDGP is regarded
as a series of nested subproblems, such as in [220]. The binary representations and the
meta-heuristics may be valuable in this context because we can perform contractions in
the bit strings, collapsing the solution for a subproblem into one bit. Apart from studying
the DDGP, in general, it may be interesting to investigate the meta-heuristics in the
context of problems with constraints. As mentioned before, a binary string may represent
a solution for the DDGP in which not all pruning distances are satisfied. Similarly, other
problems exist for which not all binary strings will represent feasible solutions, where all
constraints are satisfied. Particular attention should be given to the conception of the
binary representation, and the possibility of an a priori study of the implied landscapes
on the objective function.

6.2.2 The DGP in dimension 1

In 1979, Saxe proved that the DGP is NP-complete when K is set to 1 [24]. As
mentioned briefly in Chapter 1, the main application of the DGP in this dimension is the
clock synchronization problem [61, 71, 72], where we are given a set of clocks (represented
by vertices v ∈ V and offset measurements between the clocks (the edges {u, v} ∈ E and
the values of the weights d(u, v)).

As part of this thesis, contributions were made to a specific subclass of the DGP in
dimension 1. This subclass is referred to as paradoxical [28–30]. These kinds of instances
are represented by a graph G that is a cycle graph, for which a vertex order can trivially
be identified. The reason that we refer to this subclass as paradoxical is twofold. Firstly,
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constructing a solution for this subclass seems relatively easy: most vertices v depend only
on one predecessor (reference vertex) u. Therefore, if we were to solve such instances using
branch-and-prune, for each v, two new positions xv and x′

v are easily identified, allowing
us to build up the binary discretization tree. However, the absence of pruning distances
up to the last vertex makes this class of instances very hard. Only at the very last layer
of the tree, do we have access to the pruning distance between the first and last vertex,
which means only then we are able to validate and prune the incorrect branches in the
tree. Therefore, we first have to construct a tree of size 2|V |−1, before we can select the
2 correct solutions from all the generated realizations (paths in the tree). To avoid this
issue, we proposed matrix-by-vector reformulation of this paradoxical class in [29]. This
reformulation lends itself to parallelization and in two separate works we presented two
different methods to solve this matrix-by-vector multiplication.

The first method, proposed in [29], is based on optical processing. Optical computing
schemes have been proposed in the scientific literature to attempt to find the solutions
for NP-hard problems [221–224]. We presented a new architecture for the realization of
an optical processor, based on the modulation of an optical wavefront by spatial light
modulators. This architecture is able to perform fast matrix-by-vector multiplication,
which means that it could be used to solve instances of the paradoxical subclass of the
DGP in dimension 1. Future work on this topic includes putting the optical scheme into
practice and using it to solve some small instances. More details can be found in [29].

The second method, presented in [28], is implemented in C and CUDA so that the
computations may be employed on the GPU. We tested this implementation with ran-
domly generated paradoxical instances. In these experiments, the GPU implementation
was compared to a branch-and-prune implementation for dimension 1. The results show
that the GPU method is around 16 times faster than the BP implementation for these
paradoxical instances, showing the usefulness of the matrix-by-vector reformulation.

A first line of future work exists in extending the practical experiments for the DGP
in dimension 1. On a more theoretical note, it would be interesting to extend the study
of the paradoxical instance class to higher dimensions.
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Titre : Méthodes de géométrie d’extension des distances : pas seulement les distances (Une
étude de trois applications, avec un focus sur la biologie structurale)
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Résumé : Dans cette thèse, nous étudions
différents aspects du Distance Geometry Pro-
blem (DGP). Le DGP est un problème inverse
dans lequel un ensemble de distances par
paire est inversé pour trouver une structure
dans un espace euclidien, étant donné une
certaine dimension K. Nous nous concen-
trons principalement sur l’application de la bio-
logie structurelle, où nous pouvons exploiter
les distances inter-atomiques pour calculer les
structures des protéines. Pour cette applica-
tion, nous sommes en mesure de discrétiser
l’espace de recherche à l’aide de méthodes
de branchement et de découpage. Nous éten-
dons la méthode pour utiliser non seulement

les informations de distance, mais aussi les
angles de torsion. Nous présentons des ex-
périences utilisant des données NMR réelles
avec des résultats prometteurs. Ensuite, nous
nous penchons sur la géométrie dynamique
des distances en nous concentrant sur les
mouvements humains, jetant ainsi les bases
de futurs projets qui pourraient se concentrer
sur la modélisation de la dynamique des pro-
téines. En outre, nous discutons des cartes
adaptatives, qui sont un autre exemple d’ap-
plication de la DG dans laquelle nous pou-
vons exploiter plus que les informations de
distance. Enfin, nous terminons par un bref ré-
sumé et une description des travaux en cours.

Title: Extending Distance Geometry methods: not only distances (A study of three applications,
with a focus on structural biology)

Keywords: Distance Geometry, Distance Geometry Problem, Protein Structure Determination,

Protein Folding, Discretization, Motion Retargeting, Linear Programming, Adaptive maps .

Abstract: In this thesis, we study different
aspects of the Distance Geometry Problem
(DGP). The DGP is an inverse problem where
a set of pairwise distances is inverted to find a
structure in a Euclidean space, given a certain
dimension K. Our main focus lies on the appli-
cation of structural biology, where we can ex-
ploit inter-atomic distances to compute protein
structures. For this application, we are able
to discretize the search space using branch-
and-prune methods. We extend the method
to not only use distance information, but also

torsion angles. We present experiments using
real NMR data with promising results. Next,
we look at dynamical Distance Geometry with
a main focus on human motions, laying the
groundwork for future projects which could fo-
cus on modelling protein dynamics. Further-
more, we discuss adaptive maps, which is an-
other example of an application of DG in which
we can exploit more than just distance infor-
mation. Finally, we end with a short summary
of the thesis and a description of some ongo-
ing work.
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