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Résumé : Mon travail peut étre divisé en deuxr par-
ties principales. Premiérement, j’ai congu des outils dédiés a
Uanalyse différentielle du transcriptome. Deuxiémement, j’ai
développé et appliqué des méthodes de détection de ruptures
sur des ensembles de données génomiques.

La diversité remarquable des isoformes d’ARN est
principalement attribuable & des modifications post-
transcriptionnelles, en plus des sites alternatifs d’initiation
de la transcription. Ces modifications couvrent un ensemble
d’événements qui peuvent se produire le long des molécules
d’ARN, comprenant I’épissage, la maturation des extrémités,
la polyadénylation alternative, I’édition, et la modification
de base azotée. L’avénement de la transcriptomique a haut
débit a catalysé une compréhension sans précédent de cette
diversité. Cependant, I'analyse de ces données présente des
défis statistiques, informatiques, techniques et biologiques
considérables.

J’ai activement contribué au développment de deux mé-
thodes, DiffSegR et comaturationTrackeR, dédiées a I’analyse
différentielle du transcriptome. Ces méthodes sont congues
pour atténuer les difficultés liées a I’étude des isoformes indi-
viduelles, souvent non annotées, en se concentrant plutot sur
des analyses événement par événement ou par paire d’événe-
ments. DiffSegR permet d’identifier les différences d’expres-
sion & I’échelle du transcriptome entre deux conditions bio-
logiques & partir de données RNA-Seq. Grace a 'intégration
d’un algorithme de détection de ruptures multiples, il délimite
avec précision les frontiéres des régions/événements différen-
tiellement exprimés, éliminant ainsi la nécessité d’annotations
préalables. D’autre part, comaturationTrackeR, qui utilise des
données RNA-seq a lectures longues, est congu pour détecter
les co-maturations & 1’échelle du transcriptome, c’est-a-dire
les dépendances entre les paires d’événements de maturation
tels que l'édition et I’épissage. Les deux méthodes sont in-
tégrées au cadre statistique DESeq2. Cette intégration per-
met de tester rigoureusement les différences d’expression et
les co-maturations. De plus, ces méthodes ont été intuitive-
ment encapsulées dans des packages R, ce qui garantit leur
convivialité tant pour les biologistes que pour les bioinforma-
ticiens. En effet, la sortie de ces packages est congue pour

créer des pistes IGV (Integrated Genome Viewer) et/ou des

objets Bioconductor. Ces approches ont été appliquées et ont

prouvé leur efficacité sur le transcriptome du chloroplaste, de
la mitochondrie et d’une bactérie. En outre, il est important
de noter que de nombreux résultats ont été validés au ni-
veau moléculaire. Cela inclut une liste publiée d’événements
co-maturés dans le chloroplaste d’Arabidopsis thaliana, une
liste d’extensions 3’ et 5’ de transcrits, ainsi que ’accumu-
lation d’ARN antisens et d’introns dans deux mutants d’A.
thaliana pour les ribonucléases du chloroplaste—Mini-III et
PNPase. Elle inclut également des candidats potentiels a la
dégradation directe par Rael dans Bacillus subtilis.

Une autre facette de ma thése concerne le développe-
ment et Papplication de méthodologies de détection de rup-
tures multiples sur des ensembles de données génomiques. La
popularité de ces modéles en génomique provient de leur ca-
pacité inhérente a révéler des événements biologiques non an-
notés le long du génome, tels que les différences d’expression
résultant de variations d’épissage (comme le montre I’exemple
de DiffSegR). Divers algorithmes de programmation dyna-
mique visant & maximiser une vraisemblance pénalisée ont
été proposés. Ces algorithmes et les contrastes qu’ils opti-
misent présentent des propriétés informatiques et statistiques
remarquables, leur rapidité justifiant leur utilisation avec des
données génomiques. Dans cette lignée, j’ai congu et mis en
ceuvre un algorithme de programmation dynamique exact et
efficace, Ms.FPOP. Cet algorithme optimise un critére des
moindres carrés et incorpore une pénalité multi-échelle, dont
il a été démontré qu’elle possédait des propriétés statistiques
supérieures au critére des moindres carrés pénalisé avec un cri-
tére d’information bayésien. Ms.FPOP utilise des techniques
d’élagage fonctionnel pour accélérer le temps de calcul de
quadratique (I’algorithme le plus rapide connu & ce jour) a
en moyenne log-linéaire en la longueur du signal. Ms.FPOP
est implémenté en C++ et est interfacé avec R pour un ac-
cés convivial. J’ai effectué des simulations approfondies de
Ms.FPOP avec une grande variété de scénarios, et les résul-
tats sont prometteurs. Paralléelement, j’ai appliqué des mé-
thodes de détection de ruptures multiples & des ensembles de
données génomiques et j’ai observé que ces méthodes amélio-
raient I’état de I’art pour la détection des régions différentiel-
lement exprimées dans les données RNA-Seq et des pics dans

les données ChIP-Seq.
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Abstract : My work can be divided into two main parts.
First, I have designed tools dedicated to the differential analy-
sis of the transcriptome. Second, I have developed and applied

multiple changepoint detection methods for genomic datasets.

The remarkable diversity of RNA isoforms, besides alter-
native transcription initiation sites, is primarily attributable
to post-transcriptional modifications. These alterations span
an array of events that can occur along RNA molecules inclu-
ding splicing, processing, alternative polyadenylation, editing,
and base modification. The advent of high-throughput trans-
criptomics has catalyzed an unprecedented understanding of
this diversity. However, the analysis of such data presents sub-
stantial statistical, computational, technical, and biological

challenges.

I actively contributed to the development of two me-
thods, DiffSegR and comaturationTrackeR, dedicated to the
differential analysis of transcriptomes. These methods are
built to alleviate the complications arising from studying,
often unannotated, individual isoforms, focusing instead on
event-by-event or pairwise analyses. DiffSegR empowers the
identification of transcriptome-wide expression differences
across two biological conditions using RNA-Seq data. With
the integration of a multiple changepoint detection algo-
rithm, it precisely delineates the boundaries of differen-
tially expressed regions/events, eliminating the necessity for
prior annotations. On the other hand, comaturationTrackeR,
utilizing long-read RNA-seq data, is tailored for the de-
tection of transcriptome-wide co-maturations—dependencies
between pairs of maturation events such as editing and spli-
cing. Crucially, both methods are integrated with the DE-
Seq2 statistical framework. This inclusion allows for rigorous
testing of expression differences and co-maturations. Further-
more, these methods have been intuitively encapsulated into
R packages, ensuring user-friendliness for both biologists and
bioinformaticians. The output from these packages is designed
to create IGV (Integrated Genome Viewer) tracks and /or Bio-
conductor objects. These approaches have proven their effecti-

veness through practical applications on the transcriptomes of

chloroplasts, mitochondria, and bacteria. Importantly, many
of the findings have been validated molecularly. This includes
a published list of co-matured events within the chloroplast
of Arabidopsis thaliana, an comprehensive list of 3’ and 5’
termini extension of transcripts, as well as the accumulation
of antisense RNA and introns from two A. thaliana mutants
for chloroplast ribonucleases—Mini-III and PNPase. It also
includes potential candidates for direct degradation by Rael
in Bacillus subtilis.

Another facet of my thesis involves the development and
application of multiple changepoint detection methodologies
on genomic datasets. The popularity of these models in geno-
mics stems from their inherent capability to reveal unanno-
tated biological events along the genome, such as expression
differences resulting from splicing variations (as exemplified
in DiffSegR). Various dynamic programming algorithms ai-
med at maximizing a penalized likelihood have been proposed
over the years. These algorithms and the contrasts they op-
timize display remarkable computational and statistical pro-
perties, with their speed performance being a rationale for
their use with genomic data. Building upon this line of re-
search, I have designed and implemented an exact and efficient
dynamic programming algorithm, Ms.FPOP. This algorithm
optimizes a least squares criterion and incorporates a multis-
cale penalty, which has been demonstrated to possess superior
statistical properties compared to the standard least squares
criterion with a bayesian information criterion. Ms.FPOP em-
ploys functional pruning techniques to accelerate the compu-
tation time from quadratic (the best-known algorithmic speed
so far) to on average log-linear relative to the length of the si-
gnal. Ms.FPOP is implemented in C++ and is interfaced with
R for user-friendly access. I have conducted extensive testing
of Ms.FPOP across a wide variety of simulated scenarios, and
the results have been promising. Concurrently, I have applied
multiple changepoint detection algorithms to genomic data-
sets, and observed that these methods improve the current
state-of-the-art methods for detecting differentially expressed

regions in RNA-Seq data and peaks in ChIP-Seq data.
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1.2

1.2.1

1.

Oral communications

Invited

Arnaud Liehrmann and Guillem Rigaill. "Ms.FPOP : An exact and fast segmentation
algorithm with a multi-scale penalty", StatScale ECR Meeting, United Kingdom, 2022
(Talk)

. Arnaud Liehrmann, Benoit Castandet and Guillem Rigaill. "Systematic Identification

of Differential Regulation Events in RNA-Seq Data with DiffSegR", Gordon Research
Seminar : Post-Transcriptional Gene Regulation, United States, 2022
(Talk)

1.2.2 Others

1.

Arnaud Liehrmann, Benoit Castandet and Guillem Rigaill. "Systematic Identification
Regulation Events in RNA-Seq Data with DiffSegR", Journées Jeunes Chercheurs - Bio-
logie et Amélioration des Plantes, France, 2023

(Talk)

. Arnaud Liehrmann and Guillem Rigaill. "Ms.FPOP : An exact and fast segmentation

algorithm with a multi-scale penalty", Paris-Saclay Change-Point Workshop, France, 2023
(Talk)

Arnaud Liehrmann, Benoit Castandet and Guillem Rigaill. "Systematic Identification
of Differential Regulation Events in RNA-Seq Data with DiffSegR", Gordon Research
Conference : Post-Transcriptional Gene Regulation, United States, 2022

(Poster)

Benjamin Vacus, Arnaud Liehrmann, Guillem Rigaill, Benoit Castandet and Etienne
Delannoy. "Using contrast to study RNA transcripts co-maturations”, Open Days in Bio-
logy, Computer Science and Mathematics (JOBIM), France, 2022

(Poster)

Arnaud Liehrmann, Benoit Castandet and Guillem Rigaill. "Automatic differential ana-
lysis of transcription variants in the chloroplast with changepoint detection", Open Days
in Biology, Computer Science and Mathematics (JOBIM), France, 2021

(Poster)

Arnaud Liehrmann, Benoit Castandet and Guillem Rigaill. "Automatic differential ana-
lysis of transcription variants in the chloroplast with changepoint detection (DiffSegR)",
Congress of French Society of Biochemistry and Molecular Biology, France, 2021

(Talk)
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1.5

Arnaud Liehrmann and Guillem Rigaill. "W-FPOP : an exact and fast segmentation
algorithm with a multi-scale penalty", 52nd days of statistics of the French Statistical
Society (SFDS), France, 2021

(Talk)

R packages

. DiffSegR : An R package that accepts BAM files from an RNA-Seq dataset encompassing

two distinct biological conditions, and outputs transcriptome-wide expression differences
between these two conditions without using pre-existing annotations (typically genes).
The R package is currently (2023) accessible at the following GitHub repository : https:
//github.com/aliehrmann/DiffSegR

. comaturationTrackeR : An R package that accepts BAM files from an RNA-Seq dataset

along with an annotation file (inclusive of editing sites and introns), and outputs a list of
co-maturated events. The R package is currently (2023) accessible at the following GitHub

repository : https://github.com/SimiliSerpent/comaturationTracker

Teaching

Fall 2022 and 2023 : Detection of transcription variants, 1% year master’s students

in Biology, University of Paris-Saclay, 4h

Fall 2021 : Differential expression analysis, PhD students, Genopole summer school,

with Guillem Rigaill, 3h

Fall 2021 : Statistics, 2"® year bachelor’s students in Biology, University of Evry Val
d’Essonne, 27h

Co-supervisions

. Benjamin Vacus, 2"¢ year master’s student, 2022 (6 months), "Analysis of nanopore

data to study co-maturations of the chloroplast transcriptome", with Benoit Castandet

and Guillem Rigaill

Chloé Seyman, 3" year bachelor’s student, 2021 (3 months), "Coordination of plastid

transcript processing analysis using nanopore sequencing data'", with Guillem Rigaill
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Chapter 2

How to read this manuscript

2.1 On what and with whom

During my doctoral research, at the crossroad of biology, statistics, bioinformatics and com-
puter science, I worked on the development and the application of statistical models, algorithms
and methods for the analysis and interpretation of high-throughput biological (sequencing) data.
I submitted or published three research articles as the first author, along with another article as

the second author :

1. Liehrmann et al. [2021] is a modeling research article where, in collaboration with Guillem
Rigaill and Toby Hocking (Northern Arizona University), I compared different multiple
changepoint detection models and specialized bioinformatics heuristics within the context
of epigenetic mark detection;

2. Liehrmann et al. [2023] is a methodological and applied research article where, in col-
laboration with Etienne Delannoy, Guillem Rigaill and Benoit Castandet, I introduced
DiffSegR, a method designed to identify transcriptome-wide expression differences across
two biological conditions in Ribonucleic Acid (RNA) sequencing data;

3. Lichrmann and Rigaill [2023] is an algorithmic research article where, in collaboration
with Guillem Rigaill, T introduced Multiscale Functional Pruning Optimal Partitioning
(Ms.FPOP), a fast and exact multiple changepoint detection algorithm incorporating a
multiscale penalty [Verzelen et al., 2020] ;

4. Guilcher et al. [2021] is an applied research article where we studied the coordination of
chloroplast RNA maturation events at the transcriptome-scale using Nanopore-based RNA

sequencing data.

This last paper was made possible through the development of a method called comaturationTra-
ckeR. This was a collaborative project I initially embarked on with Chloé Seyman, a bachelor’s
student, and later continued with Benjamin Vacus, a master’s student. I had the opportunity to
co-supervise Chloé and Benjamin during the initial two years of my doctoral research.

In the ensuing chapters of this manuscript, I provide different perspectives on one or more of

these research articles, which can be found in the Appendix. I recommend that the reader first
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goes through the introductory Chapters 3 and 4 in their entirety, then refers back to Figure 2.1
for a deeper investigation of a particular problem of interest. As depicted in Figure 2.1, Chapters
5 and 6, which introduce more technical aspects of my papers, can be read in any order that aligns
with the reader’s preference. Nonetheless, it may be beneficial to first familiarize oneself with
the standard changepoints model presented in Chapter 5, as it forms the core of the DiffSegR
method introduced in Chapter 6.

2.2 Chapter 3

My thesis predominantly explores the transcriptome, which refers to the comprehensive set of
RNA molecules generated within a specific cell, tissue, or organism during a particular develop-
mental or physiological stage. Two of my research papers, Liehrmann et al. [2023] and Guilcher
et al. [2021], directly engage with its analysis. To contextualize these articles, in Chapter 3,
which also serves as a general introduction, I illustrate a multiscale perspective of transcriptome
analysis (Section 3.2.1), spanning from the gene-level, event-level, pair of events level, to the
isoform-level. I highlight a series of challenges that encompass technical, statistical, and biologi-
cal factors encountered at each scale (Section 3.2.2). These challenges are particularly acute at
the isoform-level. In conclusion, I suggest two strategies, Strategy 1 and Strategy 2, to improve
transcriptome analysis (Section 3.2.3). With my co-authors, I employed Strategy 1 and Strategy
2 in Liehrmann et al. [2023]. We also applied Strategy 1 in Guilcher et al. [2021].

2.3 Chapter 4

Throughout my doctoral research, I have had the privilege to work at the intersection of se-
veral disciplines—biology, statistics, bioinformatics and computer science—each offering unique
insights and challenges in the study of high-throughput sequencing data. This interdisciplinary
collaboration involved close discussions with biologists, statisticians, bioinformaticians. Not wi-
thout effort, I tried to interpret biological questions and appropriately exploit statistical tools to
navigate the complexity of sequencing data. This was only made possible by adopting a patient
and attentive approach that values dialogue between disciplines. I was lucky enough to land in
research teams where such interdisciplinary dialogue was already an established practice, and
supported by researchers who are truly convinced of its usefulness. In this chapter, I try to make

these disciplines dialogue by providing a concise overview of :

1. the precise biological questions that I investigated ;
2. the corresponding statistical problems; and

3. the statistical models that I proposed to tackle these specific problems.
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2.4 Chapters 5 to 6

I have written Chapters 5 and 6 as technical introductions to my four research articles.

In Chapter 5, I begin by introducing a standard model for multiple changepoint detection
(Sections 5.1 to 5.3), a model used in my research articles Liehrmann et al. [2021], Liehrmann
et al. [2023] and Liehrmann and Rigaill [2023]. Subsequently, I present a comprehensive review
of dynamic programming techniques to optimize this model (Section 5.4). I leveraged an exten-
sion of one of these techniques (functional pruning) in Ms.FPOP Liechrmann and Rigaill [2023].
Towards the end of this chapter (Section 5.5), I introduce the Ms.FPOP algorithm, beginning
by highlighting the statistical advantages of the multiscale penalty it employs, along with the
algorithmic challenge linked to optimizing the standard changepoints model with this type of
penalty. Lastly, I offer a brief description of how functional pruning operates within Ms.FPOP.

In Chapter 6, I articulate a rigorous strategy for the differential analysis of genes, events, and
pairs of event sites. This generic strategy prominently rests on a negative binomial Generalized
Linear Model (GLM), and an adaptive error control approach through a post-hoc procedure.
The methods to which I have actively contributed in development, namely DiffSegR (Section

6.4) and comaturationTrackeR (Section 6.5), implement this strategy.

2.5 Chapters 7

In Chapter 7, I provide some perspectives pertaining to the studies carried out in the course

of this thesis.

17



Sections 3.1 to 3.3:
general introduction

Section 4.2:
detection of
epigenetic marks

Section 4.3:
detection of
RNA regulations

Section 4.4:
coordination of
RNA events
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Sections 5.1 to 5.3:
standard changepoints
model

Appendix A:
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Sections 6.1 to 6.3:
differential analysis
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Appendix B.1: Sections 5.4 to 5.5: . . o
Liehrmann and Rigaill dynamic programming SeDc_;lft;n 6": Li hAppendl:( ?'2023
& Ms.FPOP ISeg lenrmann et al.

Section 6.5: .Appenldix D: .
comati?alt?gnTrackeR Gwlcr:tegl—l-_lggzrq\ann, <
chapters: flow of reading:
O 3. General introduction
O 4. Formalization of the biological question and
proposal of a baseline model —_— normal
Q 5. Multiple changepoint detection
© 6. Applications for the multiscale analysis of the + =+ » shortcut
transcriptome
|:| 7. Appendix (research articles)

FIGURE 2.1 — Dependencies between the sections of this manuscript.
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Chapter 3

Introduction

3.1 The transcriptome

3.1.1 RNA’s pivotal role in the central dogma of molecular biology

3.1.1.1 The central dogma

The central dogma of molecular biology is a fundamental principle that describes the flow
of genetic “information” within a cell through the use of three major classes of biopolymers :
Deoxyribonucleic Acid (DNA), RNA and proteins. It was first proposed by Francis Crick in
1957, subsequently published in 1958 [Crick, 1958|, and specified by the same author in 1970
[Crick, 1970]. The term "information" here refers to the precise determination of sequence, either
of nucleotides in the nucleic acid or of amino acid residues in the protein. According to Crick’s
definition, once genetic information has passed into a protein, it cannot be transferred back to
nucleic acids. In more detail, the transfer of information from nucleic acid to nucleic acid, or
from nucleic acid to protein, is possible. However, the transfer of information from protein to
protein or from protein to nucleic acid is not (Figure 3.1). It is worth noting that the central
dogma of molecular biology has been rigorously tested, and not contradicted, through countless
experiments conducted in the latter half of the 20" century and the early 21 century, and

continues to provide a foundation for understanding biological processes at the molecular level.

3.1.1.2 The RNA, a central biopolymer in the central dogma

Within this framework, RNA plays a critical role in connecting DNA, which carries the geno-
type (the complete set of an organism’s genetic information) [Johnson et al., 2002, and proteins,
which constitute the highest level of biopolymers that link genotype to phenotype (the obser-
vable physical and functional traits of an organism) [Hartwell et al., 1999, Nussinov et al., 2019].
Therefore, one key aspect of deciphering the genotype-phenotype relationship is to thoroughly
investigate the transcriptome, which includes the complete set of RNA molecules, or simply
transcripts, produced within a given cell, a tissue, or an organism at a specific developmental or

physiological stage.
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FIGURE 3.1 — The central dogma of molecular biology. Published in 1958 by Cricks, the central
dogma of molecular biology describes the flow of genetic information through three major classes
of biopolymers : DNA, RNA (both types of nucleic acids) and proteins. Crick posited that
the transfer of information from one nucleic acid to another, as well as from nucleic acids to
proteins, is possible. However, the reverse transfer of information from proteins to nucleic acids
is not possible. Within this framework, the RNA plays a central role in connecting DNA, which
carries the genotype, and the proteins, which constitute the highest level of biopolymers that
link genotype to phenotype. Consequently, the transcriptome—the comprehensive set of RNA
molecules generated within a specific cell, tissue, or organism during a particular developmental or
physiological stage—becomes an ideal subject for exploring the genotype-phenotype relationship.
Notably, since its description, the central dogma has withstood the test of time, remaining
consistent with all experimental findings to date.
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In the subsequent sections, I will provide a comprehensive overview of two fundamental

biological processes that contribute to RNA metabolism :

RNA transcription —the process through which genetic information from a specific DNA

segment is copied into RNA, and
RNA maturation —the process through which a transcript is modified.

These biological processes play a crucial role in shaping transcriptome diversity, which in turn

plays a crucial role in determining phenotypic outcomes.

3.1.2 RNA metabolism
3.1.2.1 The RNA transcription, first stage of gene expression

The DNA template. The DNA is a biopolymer consisting of a well-ordered sequence of four
nucleotides most commonly referred to as bases : adenine (A), cytosine (C), thymine (T), and
guanine (G). As mentioned above, the intricate arrangement of nucleotides constitutes the genetic
information. In the cell, DNA molecules consist of two complementary oriented strands, with A
pairing with T and C pairing with G, forming a distinctive double helix structure. Both strands
undergo transcription, with the transcribed DNA segment encompassing one or more genes.
Transcription is the first stage of a series of biological processes known as "gene expression",

which is responsible for producing the functional RNAs and the proteins.

The transcription in three steps. The transcription process can be broadly divided into

three steps common among various life forms :

(initiation) the process starts with the binding of an RNA polymerase to a promoter region
which is located upstream of the Transcription Start Site (T'SS), i.e. the first base being
transcribed (Figure 3.2.A);

(elongation) then the RNA polymerase unwinds the DNA molecule and starts synthesizing
the RNA molecule from the TSS using the template strand (3" — 5’) of the DNA. The
adenine of the template strand is paired with uracil (in RNA, uracil "U’ replaces T present
in DNA), T with A, G with C, and C with G (Figure 3.2.B);

(termination) and finally the RNA polymerase dissociates from the newly synthesized RNA
molecule and the DNA molecule at the level of the Transcription Terminator Site (TTS),
i.e. the last base being transcribed (Figure 3.2.C).

In the remainder of this subsection I review a key transcription mechanism that allows a
single gene to potentially produce several transcripts, known as alternative isoforms, in varying

amounts.
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FIGURE 3.2 — The transcription of RNA, first stage of gene expression. The transcription process
consists of three main steps : initiation, elongation, and termination. (A) Initiation begins with
RNA polymerase binding to a promoter region, located upstream of the transcription start
site TSS. (B) During elongation, the RNA polymerase unwinds the DNA and synthesizes the
RNA molecule using the DNA template strand (3’ — 5’), pairing complementary bases. (C)
Termination occurs when the RNA polymerase detaches from the RNA and DNA molecules at
the transcription terminator site T'TS.

22



The alternative transcription initiation. Near a gene promoter, it is common to find not
just a single T'SS, but instead a group of T'SS known as a transcription start region. Additionally,
a gene may contain several transcription start regions, suggesting the existence of alternative
promoters whose choice is known to influence transcription efficiency [Juven-Gershon et al.,
2008, Lenhard et al., 2012]. When the RNA polymerases start synthesizing transcripts from this
collection of T'SS, they produce varying amounts of isoforms with different lengths and distinct
5" end positions (Figure 3.3.B). This widespread biological process is well known as Alternative
Transcription Initiation (ATI) [Policastro and Zentner, 2021].

Several studies have described large-scale shifts in patterns of transcription initiation during
development [Batut et al., 2012, Zhang et al., 2017b, Cvetesic et al., 2018, Danks et al., 2018|. ATI
has also been implicated in human diseases, including cancer [Sandelin et al., 2007, Davuluri et al.,
2008, Demircioglu et al., 2019|. Additionally, in bacterial life forms, it operates as an adaptive
response to environmental fluctuations [Ishihama, 2000, Liu and Wulf, 2004, Typas et al., 2007].
Broadly speaking, ATI has been demonstrated to regulate RNA stability, translation efficiency
|[Leppek et al., 2017, Kurihara et al., 2018|, and the generation of alternative isoforms with
distinct protein-coding potential [Mejia-Guerra et al., 2015, Ushijima et al., 2017].

Besides ATT, the main sources of alternative isoforms come from maturation mechanisms that
occur simultaneously with or after RNA transcription. In the following subsection we examine

key maturation mechanisms that substantially contribute to the transcriptome complexity.

3.1.2.2 The RNA maturation

The alternative splicing. Groundbreaking research in the 1970s |Berget et al., 1977, Aloni
et al., 1977, Breathnach et al., 1977, Doel et al., 1977] revealed that eukaryotic gene organiza-
tion does not consist of continuous nucleotide sequences encoding proteins. Instead, genes are
segmented with protein-coding exons separated by intervening sequences known as "introns" (a
term introduced by Gilbert in 1978 for intragenic regions). During transcription, these introns
are excised from a precursor, and the remaining exons are joined together in a process called
RNA splicing. This process enables the formation of alternative isoforms through Alternative
Splicing (AS) [Gilbert, 1978]. Various AS modes have been observed, with two common ones
being exon skipping and intron retention [Wang et al., 2014, Gehring and Roignant, 2021]. In
these modes, a specific exon or intron may be included or excluded resulting in two alternative
isoforms (Figure 3.3.C). It is worth noting that AS has also been observed in many precursors
of non-coding RNA [Khan et al., 2021].

Several studies have revealed that pervasive AS events vary across different tissue types and
developmental stages [Wang et al., 2008, Pan et al., 2008, Kalsotra and Cooper, 2011|. Specific
AS events have also been implicated in human diseases such as cancer, amyotrophic lateral
sclerosis or Alzheimer’s disease [Scotti and Swanson, 2015, Love et al., 2015, Bonnal et al., 2020)].
In general, AS serves as a prevalent mechanism for generating alternative isoforms that possess

unique protein-coding capacities [Nilsen and Graveley, 2010].
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The processing of extremities. The 5" end or 3’ end of transcripts are not always defined
by their TSS or TTS, but instead by the cleavage and/or the degradation of a precursor, pos-
sibly accompanied by the subsequent synthesis of additional bases (see below), a phenomenon
observed in all kingdoms of life [Condon, 2003, Clouet-d’Orval et al., 2018, Kim et al., 2004,
Gregory et al., 2008]. For instance, the mature 3’ ends of nearly all eukaryotic messenger RNAs
(mRNAs)—an RNA that encodes a protein—are created by a two-step reaction that involves an
endonucleolytic cleavage of a precursor, followed by the synthesis of a polyadenylate tail onto the
upstream cleavage product. Like TSS, it is common to find several of these cleavage sites, also
called Polyadenylation Sites (PAS), by gene. The PAS can be located within the 3’ Untranslated
Regions (UTRs), introns, or exons. Like ATI, alternative usage of PAS, or simply Alternative Po-
lyadenylation (APA), allows a single gene to encode multiple alternative isoforms [Giammartino
et al., 2011, Tian and Manley, 2016] (Figure 3.3.D).

Numerous research findings indicate that APA plays a role in activating oncogenes and promo-
ting cell proliferation in cancer cells [Sandberg et al., 2008, Mayr and Bartel, 2009]. Additionally,
APA has also been implicated in development [Shepard et al., 2011, Agarwal et al., 2021]|. In-
vestigations have also revealed that APA impacts neuronal signaling and function [Flavell et al.,
2008, Miura et al., 2013, Tushev et al., 2018]. At the molecular level, APA can modify the coding
potential of mRNA or change the length of the 3> UTR, which in turn affects mRNA fate in
various ways, such as by altering binding sites for proteins and microRNAs—a specific type of
small RNAs [Neve et al., 2017, Hong and Jeong, 2023|.

Single nucleotide editing. After transcription, an RNA molecule can undergo Single Nucleo-
tide Editing (SNE), which involves the precise conversion/alteration of individual nucleotides.
This process leads to a difference in sequence between the original DNA template and the edited
RNA product. Referring to Knoop’s classification [Knoop, 2010], RNA SNE includes any nucleo-
tide conversions and any chemical alterations to the four standard nucleotides (A,U,G,C). For
instance, the most common form of RNA SNE in metazoans is the conversion of A to Inosine (I)
by an adenosine deaminase (Figure 3.3.E). I is interpreted as G by cellular machinery, leading to
alterations in structural properties of RNA and protein sequences |Nishikura, 2006, 2010, 2015,
Eisenberg and Levanon, 2018|.

In various organs and tissues of model metazoans, RNA SNE has been shown to regulate de-
velopmental processes [Buchumenski et al., 2021, Graveley et al., 2010]|, neural network plasticity
[Behm and Ohman, 2016, Rosenthal and Seeburg, 2012], immune responses [Mannion et al., 2014,
Liddicoat et al., 2015], skeletal muscle formation [Noda et al., 2022|, and organismal adaptation
to environmental changes [Buchumenski et al., 2021]. Deficiencies in the RNA editing machinery
have been linked to neurological disorders, autoimmune diseases, and even cancers in humans

[Zipeto et al., 2015, Ben-Aroya and Levanon, 2018|.
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FIGURE 3.3 — Key transcriptional and maturation mechanisms enable a single gene to generate multiple
RNA isoforms. (B) Alternative Transcription Initiation (ATI) : In the gene o (Panel A), there are two
TSS. RNA polymerase can initiate transcription from either of these sites, leading to the production of
two alternative transcripts with distinct 5’ end positions. ATI has been shown to control the stability
of RNA, the efficiency of translation, and the production of alternative isoforms that possess unique
protein-coding capabilities. (C) Alternative Splicing (AS) : The gene « contains an exon-skipping event,
in which the second exon can be either included or excluded during the RNA splicing process. This pro-
cess generates two alternative transcripts with unique protein-coding capacities and potentially different
biological functions. (D) Alternative Polyadenylation (APA) : In gene «, there are two polyadenylation
sites that can be used to create different mature 3’ ends of the mRNA. APA has the ability to alter
the coding capacity of mRNA or adjust the length of the 3> UTR, which in turn affects mRNA fate in
various ways, such as by altering binding sites for proteins and microRNAs. (E) The gene « features a
nucleotide within its third exon that can undergo precise conversion A to I on the corresponding RNA
molecule. Single nucleotide editing (SNE) can lead to alterations in structural properties of RNA and
protein sequences.
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3.1.3 RNA events

3.1.3.1 Definition

I will refer to the regions of RNA that are affected by ATI or maturation processes descri-
bed in the previous section as "variable regions", or more simply, "variables". These variables
are intended to be transcribed /not-transcribed, eliminated /not-eliminated, or edited /not-edited.
Furthermore, ATI and maturation processes can accumulate, creating a sequence of events along
the RNA molecule, resulting in the formation of an isoform. For example, if a gene, which we
will call o, has 2 alternative TSS, 1 alternative exon, 1 editing site and 2 alternative PAS (Figure

3.3.A), then 4 events can occur (or not) and accumulate along the corresponding RNA molecule :

event complementary event

the first TSS is chosen or the second TSS is chosen;

the alternative exon is included or the alternative exon is spliced ;
the nucleotide is edited (I) or the nucleotide is not edited (A);
the first PAS is chosen or the second PAS is chosen.

When a gene possesses multiple T'SS or PAS, it is beneficial to define an event for each TSS
or PAS. These events are mutually exclusive, meaning they cannot occur simultaneously, since
each isoform is linked to a distinct T'SS or PAS. Not all mutually exclusive events are as evident
as the case of multiple TSS or PAS. For instance, this phenomenon can also occur between two

exons [Pohl et al., 2013] and all such coordinations are currently not known.

3.1.3.2 Upper bound complexity

At least theoretically, the number of isoforms we could generate from a set of events of size
K is exponential, formally of the order of 2% For instance, 2* = 16 theoretical isoforms could be
produced from the 4 events annotated on gene « (Figure 3.4). However, it is essential to recognize
this calculation as an upper bound, since some events may, as exemplified above, be mutually
exclusive, and hence not all combinations may be feasible. This raises the question : Will all
combinations of events actually be expressed ? While it may not always be the case, it is certainly
not impossible. For instance, in the Drosophila melanogaster transcriptome, the DSCAM gene
demonstrated an astonishing 18,496 observed isoforms, almost reaching the theoretical limit of
19,008 possible combinations [Sun et al., 2013].

For the sake of clarity and brevity in the ensuing discussion of this manuscript, I will use the

upper bound (2%) to refer the number of isoforms generated by a specific gene.
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of these events can generate 2* = 16 theoretical RNA isoforms for the gene o.
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3.2 The multiscale analysis of the transcriptome

Today biologists and bioinformaticians are exploring the transcriptome! at multiple scales
[Berge et al., 2019]. These scales are defined by the number of events jointly studied along RNA

molecules.

3.2.1 Definition of the scales
3.2.1.1 Analysis of the transcriptome at the gene-level

In the majority of studies, researchers seek to understand the global patterns of gene expres-
sion, possibly under various biological conditions such as normal, developmental, or pathological
conditions [Kim et al., 2001, Merryweather-Clarke et al., 2011, Tello-Ruiz et al., 2015, Yang
et al., 2016, Singh et al., 2017, Hahn et al., 2021]. Numerous specialized tools have been designed
or predominantly employed for this type of analysis [Robinson et al., 2009, Hardcastle and Kelly,
2010, Tarazona et al., 2012, Ritchie et al., 2015, Pimentel et al., 2017]. DESeq2 [Love et al., 2014],
a package initially developed to investigate systematic changes of expression at gene-level across
various experimental conditions, serves as a prime example, boasting over 49,000 citations in
2023. Throughout this analysis, RNA isoforms are considered indistinctly, meaning that events

happening along RNAs are overlooked.

3.2.1.2 Analysis of the transcriptome at isoform-level

Focusing solely on the aggregate of all isoforms for a gene can be an overly simplistic approach
in some research contexts. For instance, the differential transcript usage analysis in Alzheimer’s
disease human brains reveals gene expression alterations overlooked in differential gene expression
analysis [Marques-Coelho et al., 2021|. Similar alterations have been observed in Parkinson’s
disease [Marques-Coelho et al., 2021, Rhinn et al., 2012, Dick et al., 2020]. To address this
limitation, some molecular biologists place more emphasis on examining individual isoforms
using dedicated tools like RSEM [Li and Dewey, 2011], Cufflink [Trapnell et al., 2012, Salmon
[Patro et al., 2017], and many others [Glaus et al., 2012, Bernard et al., 2014, Bray et al., 2016,
Tang et al., 2020, Hu et al., 2021, Gleeson et al., 2021, Prjibelski et al., 2023, Hu et al., 2023|.
Throughout the analysis at isoform-level all events are monitored jointly along RNAs, which is

indeed equal to investigating isoforms.

3.2.1.3 Analysis of the transcriptome at event-level

An intermediate approach lies between analyzing an aggregate of all isoforms and examining
each isoform individually. This approach focuses on investigating the occurrence of events inde-

pendently along RNAs, possibly under various biological conditions. DEXSeq [Anders et al., 2012]

1. As a reminder, the transcriptome is the comprehensive set of transcripts generated within a specific
cell, tissue, or organism during a particular developmental or physiological stage.
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is a widely recognized method employed for such analyses. In addition, the field is continually ex-
panding with the development of newer tools [Shen et al., 2014, Tran et al., 2016, Li et al., 2017,
Yalamanchili et al., 2020, Policastro and Zentner, 2021]. As a result, it enables researchers to gain
insights into gene regulation with greater resolution compared to aggregate gene-level analysis.
Simultaneously, it avoids the complexity associated with exploring each individual isoform (as

described hereafter).

3.2.1.4 Analysis of the transcriptome by pair of events (or more)

However, it is highly improbable that all biological processes affecting RNA variables are
independent. In fact, numerous dependencies have already been identified. For example, two
exons may exhibit coordination if both are under similar control of polymerase speed [Fededa
et al., 2005]. Mechanisms connecting the selection of PAS and exon inclusion at the 3’ ends
of genes have also been suggested [Black, 2003, Movassat et al., 2016, Hardwick et al., 2022].
Moreover, distinct promoter usage can affect splicing decisions, resulting in non-random pairing
of transcription start sites T'SS and exons [Cramer et al., 1997, Xin et al., 2008]. At this scale,
researchers are monitoring events in pairs, triplets, or even larger groups along the RNAs to
account for these dependencies. While there are fewer tools designed for this type of analyses,
some specialized packages do exist, such as Insplico which focuses on investigating the splicing
order of neighboring introns [Gohr et al., 2023|.

In the following subsection, we will discuss how an increase in the number of jointly studied
events along RNA molecules makes the analysis of the transcriptome technically, statistically

and biologically more challenging.

3.2.2 Challenges in transcriptome analysis
3.2.2.1 Overview of an RNNA sequencing experiment

Over time, researchers have designed technologies, including complementary DNA (cDNA)
microarrays, tilling arrays, Illumina-based RNA sequencing (RNA-Seq) and Nanopore/Pacbio-
based RNA-Seq, whose results have been used as a proxy of RNAs produced by genes [Schena
et al., 1995, Lockhart et al., 1996, Perou et al., 2000, Johnson et al., 2005, Mortazavi et al.,
2008, Branton et al., 2008, Wang et al., 2009]. Currently, the most widely adopted technology is
the Illumina-based RNA-Seq, which provides a quantitative, large-scale approach for analyzing
transcriptional outcomes.

A conventional RNA-Seq experiment (Figure 3.5) begins with the extraction and the selection
of RNAs, which are then fragmented into smaller segments typically spanning from 300 to 500
nucleotides (nt) in length (a common unit of length for single-stranded nucleic acids). These
RNA fragments then undergo reverse transcription into ¢cDNA, subsequently prepared for the
sequencing stage. The sequencing output is a collection of "reads"—essentially fragments of the
original transcripts, with lengths ranging from 50 to 300 nt [Kukurba and Montgomery, 2015,
Stark et al., 2019].
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FIGURE 3.5 — RNA-Seq experiment in a nutshell. The process of preparing an RNA-Seq library
begins with the extraction of RNAs from a selected biological material, like cells or tissues.
This is followed by the isolation of specific RNA molecules using a defined protocol. One such
protocol could be the poly-A selection method, which is employed to concentrate polyadenylated
transcripts, or a ribo-depletion protocol that aids in removing ribosomal RNAs (rRNAs), or a
selection based on the size of transcripts. Upon extraction and selection, the RNA molecules
are typically fragmented (not shown on this diagram). In the subsequent phase, the RNA is
converted into cDNA through a procedure known as reverse transcription. Once the cDNA is
formed, sequencing adaptors—small pieces of known DNA sequences—are affixed to the cDNA
fragment ends. Finally, a Polymerase Chain Reaction (PCR) is used to amplify these fragments.
This step increases the amount of DNA available for sequencing. Post-amplification, the RNA-
Seq library is sequenced using a high-throughput sequencing platform, such as Illumina. The
figure is derived from Kukurba and Montgomery [2015].
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3.2.2.2 Quantification challenge

After completing an RNA-Seq experiment, the analyst is presented with files containing
millions of sequencing reads. Quality control is conducted on the sequencing reactions |Li et al.,
2014], and these reads are then aligned to a reference genome or a reference transcriptome
[Srivastava et al., 2020| (Figure 3.6). The reads are subsequently assigned to compatible genes
(Figure 3.7.A), events (Figure 3.7.B), event pairs (Figure 3.7.C), and so on up to the isoforms
(Figure 3.7.D), depending on the analysis scope.

Nevertheless, when addressing multiple events concurrently, such as at the isoform-level, a
notable challenge surfaces due to the limitation in read size that prevents complete coverage
of events along RNA molecules. Consider, for instance, that typical human RNA molecules
extend beyond 2000 nt [Leung et al., 2021, Lopes et al., 2021], approximately seven times the
reach of the longest reads, which are confined to around 300 nt. This discrepancy inevitably
results in ambiguity regarding the origin of numerous reads, thus complicating their assignment.
As illustrated in Figure 3.7.D, the read that overlaps the second and third exons of gene 3
could potentially derive from either isoform 1 or isoform 3. These isoforms are characterized by
unique T'SS, which are not captured by the read in question. Indeed, the nearest T'SS is located
more than 100 nt away from the second exon, which is more than the length of the reads (100
nt). There is also an uncertainty with the read that overlaps with exons 1 and 3 but bypasses
exon 2, suggesting potential origin from either isoform 2 or isoform 4. Probabilistic models
based on maximum likelihood or bayesian inference are required for these assignments ; however,
the accuracy of such models is markedly variable [Steijger et al., 2013, Mehmood et al., 2019,
Sarantopoulou et al., 2021|. Furthermore, as highlighted by [Zhang et al., 2017al, a noticeable
decline in accuracy is observed with a rise in the number of isoforms.

The challenge associated with read size mechanically lessen as the scale of analysis is adjusted
to involve fewer concurrent events, such as single events or pairs of proximal events. This ad-
justment allows for straightforward quantification (Figure 3.7.B-C). It is worth highlighting that
substantial enhancements in read length have been achieved thanks to recent advancements in
RNA-Seq technology, specifically the development of long-read sequencing, including Nanopore
and Pacbio platforms. This technological evolution potentially increases the number of events
that can be captured on a single molecule [Byrne et al., 2017, Sessegolo et al., 2019, Soneson
et al., 2019, Wang et al., 2021, Kovaka et al., 2023].

Apart from the fragmentation challenge, various biases inherent to RNA-Seq protocols can
result in the preferential selection of certain RNAs, leading to a skewed representation of the
transcriptome [Shi et al., 2021]. Furthermore, the accuracy of the quantification process is highly
dependent on the quality of annotations [Angelini et al., 2014, Soneson et al., 2016|, which are
recognized to be incomplete for genes, events, and by extension, isoforms (see Box 1 : Shall we

ever reach a complete reference transcriptome ?).
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FIGURE 3.6 — Alignment of sequencing reads. Various sequencing technologies, including (A)
the Illumina platform and (B) Nanopore or PacBio platforms, generate sequencing reads whose
precise genomic origin—both specific region and strand—remains unknown. To identify their
source, these reads are mapped to either (C) a reference transcriptome, encompassing all anno-
tated RNA isoforms from all genes, or (D) a reference genome, consisting of all annotated genes.
A notable computational hurdle in aligning RNA-seq reads to a reference genome is managing
spliced junctions. These are instances where a segment of the read corresponds to the terminal
region of one exon while the remainder associates with another exon, potentially thousands of
base pairs distant from the first. In response to this challenge, the development of spliced-aware
aligners such as STAR [Dobin et al., 2012 and HISAT [Kim et al., 2015 has taken place. The
figure is derived from [Deshpande et al., 2023].
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Both reads are assigned to respective scenario. (C) Pair of events analysis : focusing on the pair
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exons are included. In contrast, the second read reflects the outcome where the second exon is
excluded while the third exon is included. (D) Isoform-level analysis : the origin of both reads is
ambiguous. The first read could potentially originate from either isoform 1 or 3, while the second
read could derive from either isoform 2 or 4.
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3.2.2.3 Statistical challenge

In a conventional RNA-Seq experiment, the study design usually involves the comparison of
two distinct conditions, each represented by several biological replicates. Under this experimental
design, researchers typically aim to identify : genes, events and isoforms with significant difference
of expression or pairs of events with significant difference of dependency.

After the quantification phase is completed, each of the aforementioned differences, also re-
ferred to as "contrasts" can be estimated from the counts (Chapter 6). Following this estimation,
statistical tests are performed to evaluate whether these contrasts significantly deviate from zero,
thus addressing the original research objective [Berge et al., 2019].

It is noteworthy to mention that the number of statistical tests increases in tandem with the
number of events being jointly examined. Indeed, the sequence of tests performed per gene scales
as follows : a single test at the gene level, K tests at the event-level (one for each event), (12()
tests when examining events by pair (one for each pair of events), and an exponential increase
to 25 tests at the isoform-level (one for each isoform).

The escalating number of tests necessitates the implementation of multiple testing correction
procedures to mitigate the risk of false positives. However, this introduces a trade-off with the
statistical power of the study, making it more difficult to discern genuine differences [Goeman and
Solari, 2014|. Particularly at the isoform-level, the exponential increase in the required number

of tests, coupled with their intricate dependencies, accentuates this challenge.

3.2.2.4 Biological challenge

The last step in a standard transcriptomics study is often the characterization of the molecular
functions or pathways in which differentially expressed genes or isoforms are involved.

At this stage the emphasis on gene-level analysis has primarily been driven by our limited
knowledge of the functional differences between distinct isoforms arising from ATI and RNA
maturations. In fact, despite the significance of ATI and RNA maturations, information on the
cellular functions, endogenous expression and localization, and signaling pathways associated
with individual isoforms, is known for only a small number of genes [Lerch et al., 2012, Ke-
lemen et al., 2013, Yap and Makeyev, 2016, Baralle and Giudice, 2017, Bhuiyan et al., 2018|.
Consequently, to date, making scientific sense out of such data is still a complicated task [Kar-
lebach et al., 2022]. At the event-level, the analyst can leverage on the regulatory signals or
functional domains in which the corresponding RNA variable is involved as valuable biological
interpretation.

Moreover, gene-level discoveries are more experimentally actionable than isoform-level disco-
veries due to the difficulty of knocking down single isoforms [Kisielow et al., 2002]. Transgene-
mediated overexpression of splicing variants of interest is also used for studying isoform-specific
functions and subcellular localization in specific cells. However, it is well documented that ove-
rexpressed corresponding proteins often do not mimic the endogenous proteins in their spatio-

temporal expression, localization, and functions |Prelich, 2012, Moriya, 2015].
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Box 1: Shall we ever reach a complete reference transcriptome ?

Since the beginning of the 215 century, thanks to the rapid development of high-
throughput RNA-Seq technologies, major efforts have been made to build a comprehen-
sive picture of the transcriptome generated by organisms, also known as the reference
transcriptome. To achieve this, bioinformatics pipelines have been used to annotate genes
and their isoforms from the sequencing data, before validation by expert biologists and
bioinformaticians. These structural annotations are then made available to the scientific
community via genomic databases and can be visualized in genome browsers.

As expected, the transcriptomes available in these databases are characterized by the
abundance of alternative isoforms. For example, the version 43 of the human reference
transcriptome proposed by the GENCODE database contains 252,913 transcripts (4+497
compared to version 42) associated to 62,703 genes (47 compared to version 42), i.e. an
average ratio of observed isoforms per gene of 4.03 (https://www.gencodegenes.org/
human/stats.html).

The average number of isoforms observed per gene in humans (4.03) seems low compa-
red to the diversity of biological processes leading to the formation of a new isoform, and
recent research suggests that the actual number of isoforms is indeed underestimated [Per-
tea et al., 2018, You et al., 2017]. In particular, a large number of studies have identified
new variable regions of RNAs that play a prominent role in disease development [Whiffin
et al., 2020, Griesemer et al., 2021, Makhnovskii et al., 2022|. In this context, part of the
scientific community believes that achieving an exhaustive description of transcriptomes
is ultimately a Sisyphean task (Figure 3.8) [Nellore et al., 2016, Deveson et al., 2018,
Morillon and Gautheret, 2019].

3.2.3 A roadmap for improving transcriptome analysis

In previous subsections, we discussed how studying an increasing number of events along
RNA molecules concurrently can make the transcriptome analysis more complex from statistical,
technical, and biological standpoints. To circumvent the exponential complexity of investigating
each individual isoform while still allowing researchers to gain more detailed insights into gene

regulation compared to aggregate gene-level analysis, a promising approach involves :

Strategy 1

1z developing methods that simultaneously examine a manageable number of events.

This can be done either by studying each event independently or by jointly analyzing a few
events (for example, in pairs). In this context, utilizing long-read technologies can be beneficial
for jointly monitoring RNA events that may be separated by hundreds or even thousands of

nucleotides.
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FIGURE 3.8 — The rock of Sisyphus. Sisyphus was an ancient Greek king condemned by the gods
to roll a boulder up a hill forever, only to see it fall back down the hill each time he reached the
top. A "Sisyphean task" thus refers to a difficult job that must be done over and over again. (C)
The Sisyphean Task of Drawing Sisyphus / Chaz Hutton

An additional consideration is that the accuracy of the analysis results at each scale is heavily
reliant on the quality of the annotations, which are known to be incomplete for genes, events,
and subsequently, isoforms. As a result, to improve transcriptome analysis, another promising

approach involves :

Strategy 2

1z developing methods that analyze the transcriptome without relying on pre-existing

annotations.

Such techniques are commonly recognized as data-driven approaches.

3.3 Scientific context

3.3.1 Foreword

My thesis project is part of a collaboration between two biologists, Benoit Castandet and
Etienne Delannoy, from the Organellar Gene Expression team located at the Institut des Sciences
des Plantes de Paris-Saclay and a statistician, Guillem Rigaill, from the Genomic Networks team
and the Statistics and Genomes team located respectively at the Institut des Sciences des Plantes
de Paris-Saclay and at the Laboratoire de Mathématiques et Modélisation d’Evry. The goal of
this collaboration is to develop efficient bioinformatics tools that use RNA-Seq data (small reads

and long reads) to study the chloroplast transcriptome.
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3.3.2 The chloroplast

The chloroplast (Figure 3.9), an organelle located in cytoplasm of plant cells, is the key site
of photosynthesis, a bioenergetic reaction crucial for life on Earth. It was formed by the primary
endosymbiosis of a cyanobacteria-like organism [Archibald, 2009, Keeling, 2010], followed by
successive transfers of genes involved in photosynthesis and its metabolism to the nuclear genome
of the host cell [Timmis et al., 2004, Barbrook et al., 2006, Ponce-Toledo et al., 2019|. Today, the
chloroplast contains a reduced genome (about 1.5 x 10* base pairs 2 ; for comparison, the nuclear
genome of Arabidopsis thaliana comprises about 1.35 x 10% base pairs and that of Homo sapiens
about 3.09 x 10°), the expression of which is essential for photosynthetic activity, retrograde
signaling or plant development |Fey et al., 2005].

The chloroplast is an interesting model for the effective examination and testing of methods
geared towards transcriptome analysis—including that of the nuclear transcriptome—using RNA-

Seq data.

1. Firstly, its genome and the expression of its approximately 120 genes (in the chloroplast
of A. thaliana) have been extensively documented in the scientific literature [Zhang et al.,

2023, Small et al., 2023].

2. Secondly, the compact size of the chloroplast facilitates a faster validation of these methods’
outcomes. Indeed, the results can be quickly assessed by directly visualizing the RNA-Seq

data using, for instance, the integrative genomics viewer [Thorvaldsdottir et al., 2012].

3. Finally, as I intend to illustrate in the following section, there is no indication that the
fundamental processes at play in the metabolism of chloroplast RNAs are simpler than

those involved in the metabolism of nuclear RNAs.

3.3.3 The metabolism of chloroplast RNAs
3.3.3.1 Extensive transcriptional activity of the chloroplast genome

In plant cells, nearly the entire chloroplast genome is transcribed, as established by a number
of studies [Hotto et al., 2011, Lima and Smith, 2017, Smith, 2018]. This observation can be
explained by a relative flexibility of the transcriptional process, which typically initiates from
multiple promoter regions per gene and often exhibits ineffective termination. The resulting
primary transcriptome is highly heterogeneous, including polycistronic mRNAs—an RNA that
encodes several proteins—with a broad spectrum of start and end positions [Stern and Gruissem,
1987, Germain et al., 2011]. Evidence of this complexity is found in the chloroplast of A. thaliana
which have been shown to possess over 200 distinct T'SS [Castandet et al., 2019]. This is on average
more than one per gene. Following transcription, the primary transcriptome is subject to a series

of maturation steps, ultimately resulting in the formation of the mature RNA population.

2. a common unit of length for double-stranded nucleic acids
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FIGURE 3.9 — The chloroplast. The chloroplast is an organelle measuring between 5 and 10
micrometers and located in the cytoplasm of plant cells. It is enveloped by two membranes—an
outer and an inner membrane. Within the chloroplast lies a complex membrane network known
as the thylakoids. The interior space of the thylakoids is called the lumen. One of the most
important functions of these thylakoid membranes is to host the electron transport chain, which
converts the energy of photons into chemical energy. Each chloroplast can contain thousands of
thylakoids, which facilitate these light-dependent reactions of photosynthesis. Additionally, the
chloroplast carries its own DNA (ctDNA) of about 1.5 x 10* base pairs and typically consisting
of around 120 genes. This reduced genome is distinct from the cell’s nuclear genome (nDNA).
The chloroplast mRNA translation is conducted by bacterial-type 70S ribosomes. Interestingly,
the chloroplast doesn’t operate in isolation from the rest of the cell; it is interconnected with
the nuclear gene expression system. Notably, numerous nucleus-encoded proteins are translated
in the cytosol and imported into the chloroplast, where they control chloroplast gene expression.
The figure is derived from Buchanan et al. [2015].
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indicated by a bent arrow, and concludes with a stem-loop-forming inverted repeat is depicted.
Note that some gene clusters may contain several TSS (not shown here). There are different types
of RBPs, specifically pentatricopeptide repeat and tetratricopeptide repeat (PPR/TPR) proteins,
which are differentiated by color in the figure to indicate their unique binding sites. (B & C &
D) The precursor transcript is subjected to intercistronic cleavage by endoribonucleases (RNase
J and RNase E) and the 5" and 3’ ends are digested by exoribonucleases (RNase J and PNPase).
Certain RNA molecules are safeguarded from such nuclease attacks through their interactions
with PPR/TPR or certain stability factors specific to genes. The 3’ to 5’ exoribonuclease activity
of the PNPase can also be hindered by RNA secondary structures. (D) The transcripts are further
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Stern et al. [2010].
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3.3.3.2 Extensive maturations of chloroplast RN As

The maturation of chloropast RNAs involves a set of events, including the formation of
new ends, intron splicing, and site-specific editing. Significantly, these maturation events are
primarily facilitated by ribonucleases [MacIntosh and Castandet, 2020] and a wide array of
nucleus-encoded RNA-Binding Proteins (RBPs). For example, 185 RBPs are estimated to be
present in the chloroplast of A. thaliana (more than one per gene). For comparison, the number
of RBPs per gene in nucleus of A. thaliana is less than 0.05 [Small et al., 2023]. Among RBPs,
the majority belong to the Pentatricopeptide Repeat (PPR) family [Lurin et al., 2004].

The processing of extremities. Transcripts are subjected to intercistronic cleavage by en-
doribonucleases, creating new 5’ and 3’ ends that can be further digested by exoribonucleases
(Figure 3.10.B). Certain RNA molecules are safeguarded from such nuclease attacks through
their interactions with proteins, specifically PPRs. Secondary structures may also perform a si-
milar protective role [Germain et al., 2013, Barkan and Small, 2014]. The processing of these
extremities considerably amplifies the complexity of the chloroplast transcriptome. For instance,
1628 processed 5’ ends and 1299 3’ ends were identified in Castandet et al. [2019]. For illustra-
tion, Figure 3.11 displays the positions of the 5" and 3’ ends of each isoform originating from the
polycistronic gene cluster psbB-psbT-psbN-psbH-petB-petD. Interestingly, the combination of 5’

and 3’ ends in this region significantly exceeds the number of genes.

The splicing of introns. In the chloroplast genome of A. thaliana, 20 introns are present :
six in tRNAs—an RNA that carries an amino acid to the protein synthesizing machinery—and
fourteen in mRNAs. The primary mechanism of splicing is cis-splicing, wherein the two exons
separated by the spliced intron reside within the same RNA molecule (Figure 3.10.D). However,
instances of trans-splicing do exist, where the exons to be joined are located on two separate

RNA molecules [Choquet et al., 1988, Germain et al., 2013].

The single nucleotide editing. RNA editing in chloloroplast implies the transformation of C
into U via deamination [Baudry, 2019]. In the context of A. thaliana, 43 editing sites have been
found in chloroplast RNAs [Ruwe et al., 2013], although more are likely to exist. These sites can
occur within coding or non-coding sequences. For instance, ndhD editing by PPR CRRA4 restores
a start codon (Figure 3.10.D) [Okuda et al., 2006].
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FIGURE 3.11 — Visualization of isoform extremities for the polycistronic gene cluster psbB-psb T-psb/N-
psbH-petB-petD in A. thaliana (wild type). The 3’ (X-axis) and 5’ (Y-axis) ends have been derived
from the same long-read sequencing data that were utilized in Guilcher et al. [2021]. The figure
was created using the custom-built vizExtremities R package, which is accessible at https://
github.com/aliehrmann/vizExtremities. This package employs the Shiny framework, offering
an interactive method for visualizing the extremities of long-read sequencing data.
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The coordination of maturation events. The question of whether one (or more) of the
aforementioned chloroplast RNA maturation events is required for another maturation event to
occur remains largely unexplored. Nevertheless, a handful of examples have been documented. For
instance, it has been observed that the splicing of the ndhA intron is needed for editing the second
exon of the same gene [Schmitz-Linneweber, 2001]. Additionally, more subtle coordinations have
been identified, such as the concurrent loss of editing at the atpF 12707 site and the reduction
in splicing of the atpF transcript in the aef! mutant [Yap et al., 2015]. In the same vein, the
pnpl-1 mutant, marked by a decline in the trimming activity of transcripts at their 3’ ends, also

displays editing defects [Ruwe et al., 2013].
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Chapter 4

Formalization of the biological question and pro-

posal of a baseline model

In this chapter, I present the biological questions that I have investigated, along with the
corresponding statistical problems, and the statistical models that I proposed to tackle these
specific problems. My objective was to put forth straightforward models that would simplify data
interpretation for biologists, and in turn, enhance interdisciplinary communication. Additionally,
I sought to leverage existing methodologies whenever practical. To be specific, I have learned
through a first experience on the detection of epigenetic marks (Section 4.2), and then confirmed
by another experience on the detection of RNA regulations (Section 4.3), that simpler models,
despite being mathematically unsatisfying, can be simultaneously (1) easier for non-specialists to
understand, (2) easier to implement and calibrate, and (3) surprisingly efficient or even superior
at addressing the biological question. Therefore, it is my opinion that such simpler models should
be given priority. Furthermore, acknowledging that in the worst-case scenario these models may
be less effective, they nonetheless serve a crucial role in substantiating the necessity to develop
and implement more sophisticated models. This principle of parsimony, to which I fully subscribe,
guided me throughout my doctoral research, particularly when working on the detection of RNA

regulations (Section 4.3) and co-maturations (Section 4.4).

4.1 Chapter summary at glance

1. In Section 4.2, I discuss the problem of detecting epigenetic marks, starting from the biolo-
gical objective (Biological question 1) and proceeding to the formulation of the respective
statistical problem (Statistical problem 1). A comprehensive review of the state-of-the-art
methods, recently devised to address the statistical issue, is subsequently delivered. Finally
I introduce a baseline model (Baseline model 1), which is purely based on the conventio-
nal principles of signal transformation and segmentation, developed during the 1940s and
1980s respectively. The effectiveness of this baseline solution is observed to be as accurate,

if not superior, to the recent advancements as elucidated in Liehrmann et al. [2021].

2. In Section 4.3, mirroring the structure from Section 4.2, I delve into the problem of de-
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tecting RNA regulations. Finally, I recall the standard changepoints model previously
employed in the detection of epigenetic marks. Once more, the standard changepoints mo-
del is found to outperform state-of-the-art methods in the detection of RNA regulations,

as detailed in Liehrmann et al. [2023].

3. In Section 4.4, I briefly present the problem of studying the coordination of RNA events,
a problem which I co-supervised two interns on during the first and second year of my

thesis.

4.2 Detection of epigenetic marks

4.2.1 Foreword

During my Master’s research internship and at the beginning of my thesis, I worked on the
detection of epigenetic marks in data obtained from Chromatin Immunoprecipitation followed
by Sequencing (ChIP-Seq). These epigenetic marks, pivotal in a multitude of essential biological
processes including gene transcription, modulate DNA region accessibility to regulatory proteins.
As a result, in addition to being a valuable example of high-throughput sequencing data analysis,
studying epigenetic marks in ChIP-Seq data helped me to understand gene expression at an early
stage. I tackled this challenge by understanding the biological objective of the analysis in order

to propose a statistically relevant model.

4.2.2 Biological goal

In response to environmental stress or during developmental stages, the accessibility of various
DNA regions in eukaryotic organisms can undergo significant transformations |Gao et al., 2010,
Widiez et al., 2014, Donkin and Barres, 2018, Iwagawa and Watanabe, 2019]. This process is
partially facilitated by modifications to the tails of histones—proteins associated with DNA.
These modifications can locally alter the chemical interactions between DNA and regulatory
proteins, influencing gene expression.

Histone modifications are diverse, encompassing methylation, acetylation, ubiquitination,
and phosphorylation, among others. A notable modification is the lysine methylation on the
N-terminal tail of histone H3, which has been the subject of extensive study. For instance, the
trimethylation at the 4" lysine residue of histone H3 (H3K4me3) is a modification strongly
associated with TSS. As such, H3K4me3 is often considered a reliable marker for T'SS |Lloret-
Llinares et al., 2012, Benayoun et al., 2014].

Another significant modification is the trimethylation at the 36" lysine residue of histone
H3 (H3K36me3). This modification typically occurs within the body of actively transcribed genes,
where it is involved in finely regulated processes like RNA elongation and splicing. For example,
variations in exon inclusion/exclusion have been linked with intragenic H3K36me3 levels in gene

bodies. This is facilitated by the recruitment of H3K36me3 reader proteins (such as MRG15 and
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ZMYNDI11), which directly modulate the activity of splicing factors [Zhang et al., 2006, Kim
et al., 2011, Guo et al., 2014].

In this context, to study either the regulation of transcription initiation or the regulation of
RNA splicing, biologists can perform a ChIP-Seq experiment [Park, 2009] (Figure 4.1) with the

aim of knowing :

Biological question 1

1 Which regions of the genome are enriched with specific epigenetic marks ?

Indeed, in the results of this experiment, regions enriched in epigenetic marks are characteri-
zed by a higher density of aligned reads than in non-enriched regions. Biologists curious enough
to visualize the ChIP-Seq data they generate often associate the enriched regions with peaks, in
reference to their shapes (Figure 4.2). The reads can be counted at each genomic position, and
this results in a series of non-negative integer count data ordered along the genome, hereafter
called coverage profile. Please be aware that additional heuristics for calculating coverage profiles
exists, as outlined in Note S1 of [Liehrmann et al., 2023].

Bearing in mind that ChIP-Seq reads are a biased proxy of epigenetic marks [Diaz et al.,

2012|, we can reformulate Biological question 1 as :

Statistical problem 1

1= Where are the start and end of each peak in the coverage profile ?

4.2.3 Statistical model for peak calling
4.2.3.1 Survey of peak calling methods for epigenetic marks enrichment

In the past few years, several teams have developed methods to provide practical solutions to
Statistical problem 1 |[Fejes et al., 2008, Spyrou et al., 2009, Zang et al., 2009, Rozowsky et al.,
2009, Xu et al., 2010, Rashid et al., 2011, Xing et al., 2012, Harmanci et al., 2014]. While a
comprehensive review of all the methods would be beyond the scope of this manuscript given
the vast number of techniques developed, I will focus on highlighting a selected few that have
made considerable strides in enhancing the detection accuracy of one or both epigenetic marks

H3K4me3 and H3K36me3.

MACS. MACS [Zhang et al., 2008] is a widely recognized method in the field of bioinformatics,
garnering over 13,000 citations, evidence to its credibility and usefulness in the scientific commu-
nity. It is particularly good at pinpointing sharp peaks that correspond to epigenetic marks such
as H3K4me3. MACS implements a two-stage procedure. At its core, MACS operates a one-sided
exact Poisson test within a sliding, constant-length window across the genomic landscape. The

test accommodates local biases in the genome, including factors such as chromatin structure, GC
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FIGURE 4.1 — ChIP-Seq experiment in a nutshell. The process of preparing an ChIP-Seq library
begins with cross-linking, mainly with formaldehyde, to secure the interactions between the DNA
and proteins. The structure formed by the DNA and proteins, known as chromatin, subsequently
undergoes fragmentation. This is followed by the central process of the protocol where the shea-
red chromatin is incubated with an antibody that targets the protein of interest. The DNA
fragments bound to the target protein are then separated from non-specific DNA by centrifu-
gation. Subsequently, the cross-links between DNA and protein are reversed, which allows the
DNA to be separated and purified through an extraction process. Then, adaptors are ligated to
the ends of the DNA fragments. The adapted DNA fragments are amplified using PCR. Finally,
the amplified DNA fragments are sequenced. The figure is derived from Furey [2012].
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Which regions of the genome are enriched with specific epigenetic marks?
gene A gene B

ChIP-Seq experiments

-
=
=]
=] [}
[==]] =
= =
DI O I O . N . Il Il I I =
- > < > < > - | 2
peak 1 peak 1 peak 2 peak 2

genomic positions
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FIGURE 4.2 — Results of two separate ChIP-Seq experiments focusing on H3K4me3 and H3K36me3
histone modifications. The TSS of both gene A and gene B are enriched of H3K4me3, signifying
its role in regulating transcription initiation. When a ChIP-Seq experiment specifically targets
H3K4me3, it results in a significant density of reads that mapped directly to the TSS of these
genes. We observe a sharp peak at T'SS levels in the coverage profile. Similarly, the body of both
gene A and gene B are enriched of H3K36me3, signifying its role in transcription elongation
and RNA maturation. At the end of a ChIP-Seq experiment targeting H3K36me3, we notice a
broad peak within the gene body in the coverage profile. In practical scenarios we can use the
results from ChIP-Seq experiments as a viable proxy of regions enriched in epigenetic marks.
This involves scanning for peaks throughout the genome.
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content and copy number variations. Subsequently, MACS applies the Benjamini-Hochberg pro-
cedure to correct p-values for multiple comparisons. A region is deemed to demonstrate significant
enrichment if the corrected p-value falls below a user-defined threshold. Secondly, MACS merges
any overlapping significant peaks. Importantly, MACS provides at least five user-adjustable pa-

rameters that influence both the position and the number of peaks identified.

HMCan. HMCan [Ashoor et al., 2013] is another notable method that shows good perfor-
mances in detecting broad peaks that correspond to epigenetic marks such as H3K36me3. There-
fore, its functionality complements MACS. HMCan also implements a two-stage procedure. First,
similar to MACS, it conducts a one-sided exact Poisson test. Secondly, it uses regions identified
as significantly enriched to estimate the parameters of a two-state (peak, not-peak) Hidden Mar-
kov Model (HMM). Following this estimation, an iterative Viterbi algorithm is applied to the
coverage profile to infer the location of peaks across the genome. Importantly, HMCan adjusts
the coverage profile to account for GC content and copy number variations. Similar to MACS,
HMCan provides at least five user-adjustable parameters that influence both the position and

the number of peaks identified.

Constrained segmentation. Segmentation analysis, in simple terms, is the process of pin-
pointing locations where there is a change, also called changepoint, in statistical properties of the
data. Peak calling can naturally be thought of as a specialized form of this process. It involves
identifying multiple changepoints within a coverage profile, but with an added nuance : there is a
directional constraint on these changes. This means that if an upward change is observed from a
genomic region of sparse coverage to an adjacent region with substantial coverage, it is inevitably
followed by a downward change, and vice versa (Up-Down). The Figure 4.3.A provides a com-
prehensive schematic illustration of the Up-Down rules. Additionally, a mathematical definition
can be found in Equation 2 of Liehrmann et al. [2021].

Building upon a succession of previous studies within the Gaussian homoscedastic framework
[Auger and Lawrence, 1989, Rigaill, 2015, Maidstone et al., 2016] and concurrently extended
to the Poisson and negative binomial! cases [Cleynen and Lebarbier, 2014a], a segmentation
model that encapsulates the Up-Down rules was first introduced by [Hocking et al., 2015] for the
Poisson case. In the same study, the authors introduced a heuristic for estimating the model’s
parameters (including the start and end position of the peaks). It is a heuristic in the sense
that it is not guaranteed to find the maximum likelihood estimator. A few years later, the
General Functional Pruning Optimal Partitioning (GFPOP) method, an exact segmentation
algorithm, was developed to address this limitation. GFPOP is available in the PeakSegDisk
R package [Hocking et al., 2022| as well as the gfpop R package [Runge et al., 2023|. The Up-
Down model has demonstrated slightly higher accuracy compared to MACS and HMCan on

1. The Gaussian, Poisson, and negative binomial distributions are distinct types of statistical noises
utilized to represent unexplained variability within the data.

48



region with cubstential coverage

A (peak)

G 3

upward downard

change change T ‘D.

coverage

<< 5N
< 174

region with cparce coverage

v

genomic positions

d
. 7St peak 7gtpeak 2" peak y
W otart end ctart 27p eak
07\" 4/0;/— i end
2, A/a:/
S
3
g

v

genomic positions

FIGURE 4.3 — Changepoint models for peak calling. (A) Schematic illustration of the directional
rules on the changes incorporated within the constrained segmentation model (B) Schematic
illustration of the standard changepoints model (the directional rules are dropout). In order to
be interpretable in terms of peaks, one will have to define a post-processing rule which choose
within each sucessive increases the start of the peak, and within each sucessive decreases the end
of the peak.
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H3K36me3 and H3K4me3 epigenetic marks, respectively [Hocking et al., 2020]. Furthermore,
the number of peaks identified by GFPOP is governed by one parameter, thereby simplifying
both calibration. Moreover, the number of peaks is a decreasing function of the parameter value,
which substantially simplifies its interpretation.

Continuing this line of research, we presented an Up-Down segmentation model for the ne-
gative binomial case in Liehrmann et al. [2021|. This model was designed to accommodate a
higher level of data variability than expected by the Poisson model (Figure 4 of Liehrmann et al.
[2021]), aiming to boost the method’s accuracy. Unfortunately, we did not observe this expected
improvement (Figure 6 of Liehrmann et al. [2021]).

The Up-Down model is certainly a useful model that required several years of development
and contributed to the enhancement of epigenetic mark detection. However, it is not without its
shortcomings. Specifically, upon analyzing the shapes of peaks in coverage profiles, it becomes
evident that the background noise and peak tops are sometimes divided by one or more subtle
variations (Figures 1 and 2 of Liehrmann et al. [2021]). The Up-Down segmentation model cannot
capture these subtle changes while a segmentation model without the directional constraint—and
thus making more parsimonious assumptions—should be. This problem, while significantly am-
plified by the Up-Down model, is not exclusive to it. Indeed, any approach that solely focuses on
identifying a start and an end (such as MACS or HMCan) will invariably make the same mis-
take. It is my opinion that, by articulating these assumptions through a mathematical model,
we not only bring their limitations into sharp relief, but also open avenues for questioning and

re-evaluating them. In essence, always model and reqularly doubt.

4.2.3.2 Establishing a baseline model for peak calling

The standard changepoints model. In Lichrmann et al. [2021]|, we compared the recently
developed methods to the standard changepoints model : a deterministic piecewise constant
function with an additional homoscedastic Gaussian noise [Auger and Lawrence, 1989] 2. After
making minor adjustments as outlined below, we found that the standard changepoints model,
inferred by minimizing a penalized Least Squares Criterion (LSC)?3, was equally or even more
accurate than these methods (Figure 6 of [Liechrmann et al., 2021]).

The penalized LSC mentioned above can be swiftly optimized via the Functional Pruning
Optimal Partitioning (FPOP) algorithm [Maidstone et al., 2016]*. FPOP’s computation time
is log-linear or linear, relative to the length of the signal, when there are few or many chan-
gepoints, respectively. This allows to segment 107 datapoints in less than 10 seconds, thereby
matching the speed of linear heuristics like MACS. Furthermore, similar to GFPOP, the number
of changepoints identified by FPOP is governed by one parameter, and is a decreasing function

of this parameter value. It should be noted that, contrary to heuristics like MACS and HMCan,

2. see Equation (5.1) for a mathematical definition
3. see Equation (5.5) for a mathematical definition
4. see Section 5.4.2 for a review of the key elements of FPOP
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Peak callers for ChIP seq comparison

Hi, I am quite a novice for NGS analysis. | had a conversion with my colleagues about peak calling for ChIP seq data. | got
confused about several comments she mentioned.

8 1. comment one "MACS is too old, and no one use it any more", is that true? It seems to me that it is still the most widely \]
used, if not the best, peak caller now. | could still see it being used in the most recent high profile journals.
2. "Setting the parameter of peak calling is an art", OK, i made this up. She said it is essential to tailor parameters to fit 7.1 years ago
each set of data. | understand that it is important to adjust the parameters based on whether the enrichment is broad  wet&Dryimmunology
(many histone modifications) or narrow (TFs). but she comments seems suggest that you could tailor you parameter as 4220

much as | want, as long as you apply the same parameter to the same dataset you are supposed to look at. Are there
general rules or principles.

Another is that are there any peak caller optimized for low cell number ChIP seq, say 110"5 as input for H3K27ac ? | applied the MACS14 to two
inputs using the same parameters, one has 10 times cell numbers ( 11076 ) , the generated bed could be used for downstream analysis, but the
low cell number inputs had some issue with downstream analysis.

Thank you for any suggestion and comments. (simple links to relavent literature would be appreciated)

ChiP-Seq | * 5.8k views

ADD COMMENT * link updated 7.1 years ago by ivivek_ngs * 5.2k « written 7.1 years ago by Wet&Drylmmunology a 220

& | would agree with your colleague that peak calling is an "art". It's actually more like witchcraft.

4

0 MACS is quite old but as far as | can tell, none of the newer peak callers are much better. | use the peak callers to start, then I filter through
a human eyeball attached to a brain, and | use the lab to verify. Select a range of peaks and ChIP-qPCR until my replicates start failing.
That's my personal workflow.

The ENCODE guidelines are a good place to start.

Cell numbers requirements will vary between different types of samples. For example, you can get away with far fewer cells for TFs (point
source) compared to histone mods (broad source).

ADD REPLY * link 7.1 years ago by jotan * 1.3k

FIGURE 4.4 — Peak calling is an "art" https://www.biostars.org/p/190812/ (Biostars).

the standard changepoints model offers well studied statistical guarantees [Yao and Au, 1989,
Garreau and Arlot, 2018], and has proven versatile, finding use in other applications like in the

detection of DNA copy number variations [Picard et al., 2011].

Minor adjustments. Firstly, to approximately variance-stabilize the coverage profile, we used
the Anscombe transformation as a preprocessing step [Anscombe, 1948| (Figure 4 of Liehrmann
et al. [2021]). Secondly, the segmentation output from the standard changepoints model does not
lend itself to a straightforward interpretation in terms of peaks (Figure 4.3.B). We proposed a
rather natural post-processing rule, hereafter called max jump, to predict the start and end of
peaks. Specifically, within successive increases and decreases, we select the upward and downward
changes, respectively, that exhibit the largest mean-difference (Figure 2 of Liehrmann et al.
[2021]).

Applying the Ockham’s Razor. The two-stage peak calling procedures utilized in MACS
and HMcan are influenced by a variety of parameters. Assessing the effects of tweaking these
parameters—either individually or in combination—on the number and positions of detected
peaks is not straightforward. However, as outlined in "ChIP-seq guidelines and practices of the
ENCODE and modENCODE consortia" [Landt et al., 2012|, the composition of the final peak
list is profoundly shaped by the specific parameter settings used and these parameters should be
fine-tuned to suit each individual dataset.

Figure 4.4 illustrates this complexity through a snapshot of a discussion from the Biostars

bioinformatics forum. The conversation occurs between a novice MACS tool user and a more
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FIGURE 4.5 — Illustration from a manuscript featuring William of Ockham (Summa totius Logicae,
1341). William of Ockham (1287-1347), was an esteemed English Franciscan friar and a scholarly
theologian. He made significant contributions as a philosopher during the medieval. His lasting
fame, mainly as an eminent logician, rests largely on a philosophical principle widely attributed to
him, known as Ockham’s Razor. This razor is metaphorically employed to trim down superfluous
assumptions or dissect similar conclusions when distinguishing between two hypotheses, thereby
emphasizing simplicity and parsimony in reasoning. Today, the principle of Occam’s Razor is
frequently used across various fields as a heuristic guide to decision-making, problem-solving,
and hypothesis testing [Anderson and Burnham, 2004, Gigerenzer and Gaissmaier, 2011].

seasoned user. The advanced user’s response, with a hint of levity, aptly encapsulates the predi-
cament : "... peak calling is an "art". It’s actually more like witchcraft.”

Somewhat at odds with this literature, the standard changepoints model, with minor ad-
justments, saves assumptions by proposing a single (interpretable) adjustable parameter. Addi-
tionally, it forgoes the directional rules set in the Up-Down model, instead suggesting a post-
processing rule. Applying the max jump post-processing rule is arguably close to what a spe-
cialist’s eye does when annotating peaks by hand. Despite fewer assumptions, the standard
changepoints model demonstrates accuracy equal to, if not better than, its competitors.

In line with the principle of Ockham’s Razor—the simplest sufficient assumptions should be

preferred (Figure 4.5)—, I advocate using

Baseline model 1

1z the standard changepoints model with minor adjustments

to identify peaks in ChIP-Seq data (Statistical question 1).
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4.3 Detection of RNA regulations

4.3.1 Biological goal

As mentioned in the section discussing RNA metabolism, numerous studies have highligh-
ted the occurrence of extensive alterations in the patterns of transcription initiation and RNA
maturation processes during development, under stress conditions, or in diseases.

In this context, to study RNA regulations, biologists classically design an RNA-Seq expe-
riment including several biological replicates from a condition of interest and a control (e.g. a

diseased and healthy tissue). Through this experiment, a part of the biologists seeks to know :

Biological question 2

i What are the transcriptome differences between the two biological conditions ?

Indeed, in the results of a typical RNA-Seq, discarding any normalization issues due to
different library sizes [Abbas-Aghababazadeh et al., 2018], the differences in RNA maturation
or ATI lead to local variations in read density along the genome between the two biological
conditions (Figure 4.6). Throughout this manuscript, I will refer to these local variations as
Differentially Expressed Regions (DERs). Consequently, if one of these DERs overlaps with an
annotation (e.g. the first intron), an event-level analysis allows us to detect it (Strategy 1). It is
through this annotation that we can also formulate a hypothesis about the underlying regulatory
mechanism (e.g., "we observe an accumulation of the first intron in biological condition A, thus
the biological processes involved in the splicing of this intron seem to differ between the compared
biological conditions").

Relying solely on annotations is a baseline which is biologically unsatisfactory for two rea-
sons : (1) you do not look outside of these annotations, (2) the limits of these annotations can
be ill-suited, making both detection and interpretation impossible (Figure 4.7). An alternative
approach involves identifying DERs along the genome (Strategy 1) without relying on annota-
tions (Strategy 2). This data-driven approach addresses the detection issue but does not readily
provide an interpretation of the underlying regulatory mechanism. We can reformulate Biological

question 2 as :

Statistical problem 2

1 Which regions are differentially expressed along the genome ?

93



What are the transcriptome differences between the

two biological conditions ?
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FIGURE 4.6 — Results of an RNA-Seq experiment on a diseased tissue compare to an healthy tissue.
In the diseased tissue, the biological processes involved in the splicing of the first intron of gene
A are down-regulated, resulting in an intron retention within the produced transcripts. In the
healthy tissue, the splicing is done correctly. When an RNA-Seq experiment is done on both
biological conditions, discarding any normalization issue, it results in a local variation of the
density of reads at the level of the first intron. In practical scenarios, we can use results from an
RNA-Seq experiment as viable proxy of RNA regulations.
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FIGURE 4.7 — The annotation of the rbcL gene does not capture the 3’ extension observed in the
A. thaliana mutant deficient in PNPase activity. The coverage profile overlapping the 3’ region of
the rbcL gene on the forward strand is presented for both a wild type and a PNPase-deficient
mutant of A. thaliana. Examining the coverage within the gene annotation, represented by an
orange arrow, reveals no significant expression difference between the mutant and the wild type.
However, upon inspecting the area adjacent to the annotation, which corresponds to the 3’
unannotated UTR, we observe a drop in coverage slightly before the mutant when compared to
the wild type. This suggests an extension of rbcL transcripts in the mutant, consistent with the
role of PNPase in 3’ ends transcript trimming. This extension of transcripts cannot be evidenced
within the scope of analyzing DERs within gene annotations.
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4.3.2 Statistical model for transcriptome-wide detection of expression diffe-

rences

4.3.2.1 Survey of methods for transcriptome-wide detection of expression diffe-

reinces

Similar to the detection of epigenetic marks problem, numerous research teams have advanced
innovative and practical solutions to address Statistical Problem 2. These methods, occasionally
referred to as "identify-then-annotate" tools [Frazee et al., 2014|, approach the task of identifying
DERs in two distinct steps. The first step involves summarizing the coverage profiles (one per
replicate) from an RNA-Seq experiment into a single signal and using it to delineate the boun-
daries of candidate DERs along the genome. The primary differentiating factors among these
methods lies in the specific type of signal they segment and their specific segmentation approach
(Figure 1 of [Liechrmann et al., 2023|). The subsequent step involves a statistical evaluation of
expression differences within the newly defined regions. Most of these methods utilize the ne-
gative binomial GLM of DESeq2, originally conceived for gene counts [Love et al., 2014]®, but
found to be reasonably effective for event counts as well [Anders et al., 2012]. I will now describe
the candidate DERs identification stage for two identify-then-annotate methods that have opted

for distinct modeling approaches.

derfinder RL. The core functionality of derfinder RL [Collado-Torres et al., 2016] relies on
a threshold-based heuristic approach to detect candidate DERs in the coverage. This process
unfolds in several stages. Initially, derfinder RL normalizes the coverage profiles with respect to
sample-specific library size. Following this, for each genomic position, it calculates the mean of
these normalized coverage profiles, thereby creating an average coverage profile. Subsequently, a
user-determined cutoff, which likely influences both the position and number of DERs, is applied
to this average coverage profile. Any contiguous sequence of bases that exhibits an expression

exceeding this cutoff is designated as a candidate DERs.

srnadiff. srnadiff |Zytnicki and Gonzalez, 2021| combines the candidate DERs identified by
two distinct approaches : (srnadiff IR) a threshold-based heuristic applied to the per-base log,
fold-change (logy-FC)—the difference of expression on the logarithmic scale, and (srnadiff HMM)
a two-state Hidden Markov Model used on the per-base p-values. To begin, like derfinder RL,
srnadiff normalizes the coverage profiles with respect to sample-specific library size. In the IR
procedure, srnadiff subsequently calculates the average coverage profile for each biological condi-
tion, leading to the derivation of the per-base log,-FC profile. From this profile, the IR procedure
pinpoints any regions where the absolute log,-FC surpasses a user-defined threshold. Finally,
srnadiff merges closely located candidate DERs that exhibit similar log,-FC. In the HMM pro-

cedure, srnadiff executes a DESeq2 analysis, extracting the Wald test p-value for each genomic

5. see Section 6.3 for a general introduction
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position displaying an expression that exceeds a user-defined threshold. Following this, srnadiff
constructs a two-state HMM (differentially expressed, not-differentially expressed) with user-
determined parameters. Subsequently, the Viterbi algorithm is applied to the per-base p-values
to infer the location of candidate DERs. Ultimately, the candidate regions of srnadiff IR and
srnadiff HMM are merged using rules based on p-value and overlap. It is worth to note that,
srnadiff provides at least six user-adjustable parameters that influence both the position and the
number of DERs.

4.3.2.2 Establishing a baseline for transcriptome-wide detection of expression dif-

ferences

The standard changepoints model (again). In Lichrmann et al. [2023], we assessed the re-
cently developed methods mentioned above in contrast to the standard changepoints model, with
changepoints observed in the per-base logy,-FC ©. After locating the changepoints with FPOP and
assessing the resulting candidate DERs with DESeq2, we noted that, once again, the standard
changepoints model was more accurate than state-of-the-art methods. For this evaluation, we in-
corporated biological labels that reflected molecularly validated accumulations of RNA fragments
in two mutants of A. thaliana for chlorolastic ribonucleases .

Moreover, the standard changepoints model was better in accurately capturing the differential
landscape. Specifically, it exhibited two strengths : (i) it demonstrated a reduced propensity
to merge regions that likely arise from distinct regulatory mechanisms, and (ii) it showed a
diminished tendency to fragment non-DERs, thus curbing the unnecessary inflation of regions
for testing 8.

Finally, the outcome of the per-base logy-FC segmentation using FPOP is largely independent
of coverage normalization ?. Consequently, unlike in many other methods, normalization is not a

compulsory pre-processing step to find candidate DERs.

Applying the Ockham’s Razor (again). The derfinder RL method only identifies 4 out
of the 23 biological labels used in |Lichrmann et al., 2023|. This low accuracy could arguably
be attributed to the chosen approach of segmenting the mean of coverages using a threshold-
based heuristic. Such an approach could potentially merge DERs and non-DERs, which may in
turn mask DERs. For instance, this phenomenon is illustrated in Figure 5.C of Liechrmann et al.
[2023]. Under these circumstances, defining derfinder RL as a baseline would likely be of limited
interest.

On the other hand, srnadiff manages to detect 20 out of 23 labels, thus seemingly better
at identifying expression differences than derfinder RL, albeit less so than the standard change-

points model (which finds all the labels). However, srnadiff operates under multiple assumptions

see Differential transcription profile section of Liehrmann et al. [2023] for a mathematical definition
see DiffSegR improves the search for DERs section of Liehrmann et al. [2023]

see DiffSegR better captures the differential landscape section of Liehrmann et al. [2023]

see Normalization section of Liehrmann et al. [2023]
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that lead to a complex procedure for identifying candidate DERs, which involves several para-
meters that need calibration. Indeed, as previously detailed, srnadiff merges the candidate DERs
identified by two distinct segmentation approaches, and the results are influenced by at least six
user-specified parameters.

Contrary to the prevailing literature, the standard changepoint model provides a parsimo-
nious solution without compromising accuracy. Moreover, this model is extensively justified and
supported by a rich body of statistical and applied literature, as outlined in Chapter 5.

In this context, harking back to the principle of Ockham’s Razor, I advocate using

Baseline model 2

iz the standard changepoints model after transforming the coverage profiles in the per-
base logy-FC

and subsequently testing the identified candidate DERs with DESeq2 (Statistical problem 2).

4.4 A few words on the coordination of RNA events

4.4.1 From a deterministic to a probabilistic view of dependence

A relationship in which one or more RNA events are absolutely required for another RNA
event to occur (as mentioned in Section 3.3.3.2) is conceptually practical and experimentally easy
to validate. However, this rather deterministic perspective of dependence is rarely corroborated
by data. For instance, no such relationship was identified in our study on the coordination of
chloroplast RNA maturation events [Guilcher et al., 2021]. Statistical dependence allows, in a set
of random experimental data, to discern significant outcomes in a variety of scenarios including

the case discussed below (Figure 4.8.C) and others that are less clear-cut (Figure 4.8.B).

4.4.2 Transcriptome-wide detection of co-maturations

Together with Marine Guilcher, Benoit Castandet, Guillem Rigaill, and Etienne Delannoy,
as well as two students—Chloé Seyman, a bachelor’s student, and Benjamin Vacus, a master’s
student, whom I had the pleasure of co-supervising for periods of three and six months respec-
tively, we explored the interplay of biological processes involved in RNA events.

Intuitively, examining the statistical dependence of the K events that may occur along an
RNA is similar to studying the 2% isoforms. As we have seen in Section 3.2.2, this is a substan-
tially complex task. To mitigate this complexity, we turned our attention on the dependence of
the (I2< ) annotated event pairs—or what we refer to as co-maturations—as proposed in Strategy
1, and focusing for now on intron splicing and editing sites. Notably, we applied this strategy in
Guilcher et al. [2021].

o8



U C C C
[l | | |
I I I 1
if —gf\g —gﬁg then site 1 and site 2 are dependent

site 1 edited 70%

site 1 edited 59.5%

site 1 edited 50%

site 1 site 1 site 1
© U C X U C © U C
& |site 2 = [site 2 o |site 2
(o] o N~
o ] o
2 9] D
5 U 63 27 = U 100 <+ 50 = U 100 €— 50
o) @ o)
o~ N A eV A
2 0 : i '
= 2 =
C 7 3 o C 10 25 C 0 50
independence dependence site 1 — site 2
(common) (common) (rare)
dependence level between site 1 and site 2
r-r————- - - - - - - - - - - - - - - -"—= - - - -=-=-—"=-=-=- = |
| edition state: chronology: I
l |
| U edited EERE 4 preferential |
| . |
| C not edited —> unique |

FIGURE 4.8 — Examining the statistical dependence between two editing sites. We can investigate
the dependence between two editing sites by examining the difference in the fold change of
one site’s editing, conditional on the editing state of the other site. If we observe a significant
difference, this allows us to reject the hypothesis of independence. In scenario (A), we depict a
hypothetical contingency table representing the number of transcripts for each combination of
editing states for two sites. We notice that the fold change in editing of site 2 is 9 (% =9 and
%7 =9), irrespective of the state of site 1. Under this condition, we cannot reject the hypothesis
of independence. In scenarios (B) and (C), we observe, following the same logic, that the pairs
demonstrate dependency. In scenario (B), site 2 seems to be preferentially edited before site 1
(indicating a preferred chronology), while in scenario (C), site 2 is consistently edited prior to
site 1 (indicating a unique chronology). Note that in all three scenarios, the marginal proportion
of site 1 being edited is lower than that of site 2, which could potentially be explained by different
reaction rates of editing on these two sites. Importantly, the observed dependency is independent
of this difference.

99



In the same vein as the detection of epigenetic marks or RNA regulations, our most recent ite-
ration of this project harnessed an established model—the DESeq2 model for RNA-Seq data—to
assess the dependence between each annotated event along an RNA molecule. This testing is

feasible provided that both events are covered by the same read.
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Chapter 5

Multiple changepoint detection

Before starting this thesis, my succinct vision of a successful interdisciplinary project entailed
the development of a novel statistical model or a new algorithm to handle each incoming biologi-
cal project (the question and data). However, this vision swiftly evolved. As I have demonstrated
in Chapter 4, it may be wise to economize on development by proposing or adapting an existing,
proven model or algorithm. Yet, trusting in existing methodologies also entails continuing to
develop interesting models and algorithms. Throughout my doctoral research, I have put this
revised vision of interdisciplinary research into practice. In this chapter, I start by introducing a
standard changepoints model that I employed in the detection of epigenetic marks [Liehrmann
et al., 2021] and the detection of RNA regulations [Liehrmann et al., 2023|, which yielded promi-
sing results. In the second part of this chapter, I introduce a new multiple changepoint detection
algorithm, Ms.FPOP, that incorporates a multiscale penalty with better statistical properties
than previously introduced penalties |Lichrmann and Rigaill, 2023].

5.1 Detecting changes in mean

Multiple changepoint detection, a regression problem, has been an area of active research since
the 1950s [Page, 1954, 1957, Girshick and Rubin, 1952]. Initially sparked by a need for quality
control within manufacturing operations, it has now risen to prominence as one of the "grand
challenges of inference" in massive data analysis, as identified by the US National Research
Council [Council et al., 2013|. Detecting changepoints is important in an extensive array of
disciplines including genomics [Muggeo and Adelfio, 2010], neuroscience [Koepcke et al., 2016],
econometrics [Bai, 1997], computer network security |Tartakovsky, 2014|, and climate research
[Reeves et al., 2007].

The prototypical and most prevalent changepoint detection problem is the identification of
abrupt shifts in the mean of a univariate ordered signal, such as those manifested over time or
along the genome. These sudden shifts, known as changepoints, delimit segments characterized
by a homogeneous signal. In the context of my research, these changepoints might signify either

the start/end of a peak in ChIP-Seq data, or the start/end of a DERs in RNA-Seq data drawn
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FIGURE 5.1 — The mean of the per-base logy-FC is affected by several noticeable changepoints. (A)
The per-base logy,-FC has been calculated from RNA-Seq data comparing two biological condi-
tions, specifically for positions 76000 to 78500 of the chloroplast genome. Several changepoints
can be visually identified, notably around positions 76500 and 77250. These changepoints mark a
specific biological event : the accumulation of an intron in one of the two conditions, as detailed
in Table 1 of Lichrmann et al. [2023]. (B) I present below a diagram of the standard Gaussian
segmentation model applied to the same differential transcription profile. Each j segment is

bound by two changepoints, 7;_1 and 7;. Within this segment, datapoints Y; are independent

and follow a Gaussian distribution with mean p; and variance o2

from two distinct biological conditions. In either scenario, these changepoints disclose biological
events, such as genomic regions enriched with H3K4me3 epigenetic markers or disparities in RNA
maturation processes.

The Figure 5.1.A illustrates an example of a differential transcription profile from an RNA
seq experiment encompassing two distinct conditions. The signal displays significant variations
in its mean. While detecting these changes may initially seems easy to spot with our eyes, it is
actually a challenging problem. One way to grasp the challenge is by considering the number of
potential segmentations of a profile with n datapoints. Each point, except the last one, can serve
as a changepoint, resulting in a total of n — 1 possible changepoints. Consequently, the number
of segmentations reaches 27!, For instance, for n = 100, the total number of segmentations
exceeds 6 x 10%Y. This raises numerous statistical and algorithmic problems.

In this context, during my thesis, I developed [Lichrmann and Rigaill, 2023] and applied
to genomic data [Liehrmann et al., 2021, 2023| multiple changepoint detection algorithms that
maximize a penalized likelihood. This approach, deeply anchored in traditional statistics, offers
both asymptotic [Yao and Au, 1989, Boysen et al., 2009] and non-asymptotic [Lebarbier, 2005,
Garreau and Arlot, 2018, Arlot et al., 2019] statistical guarantees for signal estimation and chan-
gepoint detection. Its computational efficiency is particularly suited for the intensive demands of
genomic data analysis, where it is routine to handle profiles with millions of datapoints [Rigaill,
2015, Maidstone et al., 2016]. Finally, empirical evidence from both simulations |Fearnhead and

Rigaill, 2020 and real-world applications frequently yields satisfactory outcomes, demonstrating
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its effectiveness. Notably, it has already achieved state-of-the-art results in genomic applications

[Lai et al., 2005, Hocking et al., 2013a, Cleynen et al., 2014b, Hocking et al., 2016].

5.2 Chapter summary at a glance

1. In Section 5.3, I introduce a standard model for multiple changepoint detection, along
with the associated penalized likelihood problem. I applied this model on ChIP-Seq data
in Lichrmann et al. [2021], and on RNA-Seq data in Liehrmann et al. [2023] as practical
solution for the detection of peaks and candidate DERs, respectively. Various dynamic
programming algorithms aimed at maximizing the penalized likelihood have been proposed

over the years. I will introduce some of them in the second part of this first section.

2. In Section 5.5, I present a new multiscale penalty, introduced by Verzelen et al. [2020],
that possesses superior statistical properties in terms of detection and localization com-
pared to other penalties documented in the literature. Subsequently, I introduce a novel
segmentation algorithm, Ms.FPOP, which leverages functional pruning techniques for ef-
ficient minimization of a least squares criterion with this multiscale penalty as elucitaded

in Liehrmann and Rigaill [2023].

5.3 Model and penalized likelihood

5.3.1 The standard changepoints model

We consider the data Y7, Yo, -+ ,Y,, and D changepoints 7 < --- < 7p within the range of 0
and n. We adopt the convention that 7o = 0 and 7j,| = n. These changepoints define |7| = D +1
distinct segments. The j* segment includes the data |7;_1,7;] = {rj—1 + 1, - 75}

Each segment is premised on the assumption that the Y; therein are independent and follow
the same Gaussian distribution, with a mean p; specific to that segment and a common variance

o2. The model is illustrated in Figure 5.1.B. Expressed mathematically, we have :
Vi €rji_1,7] Yi~N(pj, 0% did. (5.1)

5.3.2 Penalized likelihood

If the number of segments is known to be |7|, the model as described by Equation (5.1) is
characterized by a parameter vector 6 = (1, ... ,,uM,UQ, 1, .+, TJ7|)- The log-likelihood function

derived from this model, denoted as £(y1, ..., yn;0), can be expressed as follows :

||

€(y17 <oy Yn; 9) = Z f(y7j71+1a sy Yt :uj70-2)7 (52)
j=1

where f(yr, i 11, Yr;5 ijs 02) denotes the joint distribution of the data. Assuming Gaussian

distribution and data independence, the log-likelihood can be expressed as follows :
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|| T

_ﬁ Z Z (yi — 1j)®  — glog (2m0?) . (5.3)

j=li=1;_1+1
By taking the derivative with respect to the parameter o2, which is assumed to be constant in
(5.1), we find that to maximize the likelihood, we need to minimize the following quantity C.|,,,

also known as least squares criterion (LSC) [Auger and Lawrence, 1989, Bellman and Kotkin,
1962, Fisher, 1958| :

7] 7j
. 2
Clrpn = ,min §> > (i — )

Motz j=11i=1;_1+1

|7| 7

= Tll;nin Z Z (yz - gTj_1+1:Tj)2 9

j=1i=7j_1+1

where §r,_, 4+1.7; is the sample mean of the §t segment :

7j
7 _ Z Yi
Tj—1+1:7—j - °
Ti — Tj—
i=r;_1+1 ( J J 1)

In practice, the number of segments is usually unknown and needs to be determined from
the data. In this context, without any form of penalization, the smallest value of C, will
always be attained when |7| = n, leading to a segmentation cost of 0. As illustrated in the
third panel of Figure 5.2, this result, while maximizing the likelihood, is clearly not meaningful
from a practical standpoint, as it essentially overfits the data without revealing any underlying
structure. In order to promote a more parsimonious, interpretable solution, as illustrated by
the second panel of Figure 5.2, it is therefore conventional to introduce a penalty term in the
likelihood, effectively discouraging models with excessive segmentation.

Numerous penalties have been proposed and examined in depth within the literature [Yao
and Au, 1989, Birgé and Massart, 2001, Lebarbier, 2005, Zhang and Siegmund, 2006b, Davis
et al., 2006, Baraud et al., 2009, Garreau and Arlot, 2018, Arlot et al., 2019, Verzelen et al.,
2020|. The number of changepoints is typically a decreasing function of such penalties, which are
commonly dependent on the parameters n and 2. For instance, one of the simplest and earliest
penalties, proposed by Yao and Au [1989] and known as the Bayesian Information Criterion (BIC)
or Schwarz Information Criterion (SIC) [Fryzlewicz, 2014], is linear in |7| and can be expressed
as 202 log(n)|7| (Figure 5.2).

The variance o2 is often required to be estimated empirically from the data. A commonly used
method for this involves the unbiased estimator of the variance, denoted 62, which is calculated

as follows :
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FIGURE 5.2 — Likelihood and penalized likelihood. An #id Gaussian signal of length n = 100 and
variance 02 = 1 is affected by two changepoints at positions 25 and 75. The mean values corres-
ponding to the initial, intermediate, and final segments are -2, 1, and -1, respectively. Different
segmentation of the signal are depicted in a series of panels. From top to bottom, these segmenta-
tions represent the divisions of the signal into 2, 3, and 100 segments, respectively. With respect
to the least squares criterion, the costs associated to these segmentations are Cy 109 = 160.530,
Cs3,100 = 78.128, and C1go,100 = 0, in that order. In this scenario, an estimator aiming to minimize
the cost would select the final segmentation into 100 segments. This estimator accurately detects
the two true changepoints at positions 25 and 75, but unfortunately also falsely identifies 97
other positions as changepoints (the last datapoint can never be a changepoint). Incorporating
a penalty term into the cost, like in the form of 2|7|log(100), also known as BIC, changes the
optimal segmentation. With this penalty, the (penalized) cost-minimizing segmentation would
be a division into three segments, which accurately identifies the two real changepoints without
any false positives. 65



I used this strategy for estimating o2 and calibrating the BIC penalty in [Lichrmann et al., 2023].
Nonetheless, it is important to note that the literature also presents more robust estimatiors for
o? [Hall et al., 1990].

In [Liehrmann et al., 2021, I employed an alternative strategy that aims to calibrate the
penalty based on ChIP-Seq profiles annotated by biologists and bioinformaticians. The under-
lying concept is straightforward : identify the penalty values that minimize the annotation error

[Hocking et al., 2013b].

Box 2: Section switch

1z At this stage, non-specialist readers should possess a sufficient technical foundation on
the standard changepoints model to engage with Liehrmann et al. [2021] (Appendix A).
In this paper, I compare the accuracy of several models of multiple changepoint detection,
as well as peak calling heuristics from the bioinformatics literature, in the context of the
detection of epigenetic marks and the supervised learning of these methods’ parameters.
Notably, I demonstrate that the standard changepoints model has an accuracy at least as
good as its competitors.

1z For readers less interested in the algorithmic dimension of this thesis, and in particular
the development of the Ms.FPOP algorithm, I would recommend proceeding directly to
Chapter 6.

5.3.3 Definition of the penalized optimization problem

Considering a linear penalty expressed as «|7|, where o denotes a constant, the algorithmic

objective is to optimize the ensuing penalized optimization problem :

|7 T

F, = min Z Z (yz - gTj—1+12Tj)2 + CV|7_| . (55)

T X .
717!-~!7D j=1 |i=1j_1+1

The number of segmentations that could be solution of the problem (5.5) is 2"~ 1. As stated
earlier, the search for the optimal solution by investigating all possible solutions independently

becomes fastly computationally unfeasible.

5.4 Minimizing F), through dynamic programming

Through the utilization of dynamic programming, F;, can be minimized efficiently. This
computation hinges on a specific recurrence relation, and two primary forms of this relation are

discussed in the literature :

"Recurrence on the last changepoint" the first approach considers all the possible po-

sitions of the last changepoint ;

"Recurrence on the last segment mean" the second approach considers all the possible

means of the last segment.
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5.4.1 Recurrence on the last changepoint
5.4.1.1 Optimal partioning

Because the cost of a segmentation in (5.5) is the sum of the cost of its segments, meaning
that the cost ZZLTFIH (yz — yTj_1+1;Tj)2 only depends of data within the jth segment, one can
apply Bellman’s dynamic programming principle to minimize (5.5) [Auger and Lawrence, 1989,

Bellman and Kotkin, 1962].

The recurrence. The Optimal Partitioning (OP) methodology, depicted in Jackson et al.
[2003], is specifically tailored to address the linear penalty present in (5.5). The optimal cost at
iteration ¢, F}, is derived by considering the costs of the best segmentation up to last changepoint
candidate s, F§, such that 0 < s < ¢. To this, we add the cost of the last segment and the penalty.

Mathematically, we obtain the following recurrence :

t

F, = min {FS + Z (yi — fgsﬂ:t)z} + o, initialized at Fy = —a. (5.6)
i=s+1

Complexity. It can be proven that the time complexity of OP is O(n?), and the memory

complexity is O(n) [Jackson et al., 2003].

5.4.1.2 Inequalities based pruning

The recurrence (5.6) suggests that we have to go through all changepoint candidates s be-
fore t. Naively, reducing the numbers of comparisons to be performed at each iteration reduces
the overall complexity. Killick et al. [2012] show that we can indeed, without resorting to an

approximation, definitively eliminate all s such that :

Fs + Z y$+1t >Ft. (57)
i=s+1

The recurrence. This pruning idea is implemented in PELT [Killick et al., 2012]. PELT
operates using two recurrences, one on F}, another on the set of changepoints to consider at each

iteration R; :

F,= min {F, )2
t Séantnl{ +Z — Yst1:t) }+oz

1=s+1

t
Ry = {S € Ry1|Fs + Z (Vi — Ps+14)” < Ft} u{t}.

i=s+1

Complexity. If the number of changepoints increases linearly with n, the time complexity of
PELT is O(n). If there are few or no changepoints, it is still O(n?). The memory complexity is
O(n) [Killick et al., 2012].
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5.4.2 Recurrence on the last segment mean
5.4.2.1 Functional based pruning

Building upon the prior works of Rigaill [2015] and Johnson [2013|, Maidstone et al. [2016]
proposed a recurrence on the last segment mean p rather than the last changepoint candidate
position s. In this context the pruning is said "functional". This idea is implemented within the

FPOP algorithm [Maidstone et al., 2016].

Functionalization. FPOP introduces for every changepoint candidate s its best cost as func-

tion of the last segment mean p at iteration ¢, ft,s (). Formally,
~ t ~
frsw) =Fs+ D (i—p)’+a, with fi(p)=F+a and Fp=-a (5.9

1=s+1

Throughout the procedure, ft,s () is maintained and updated with new datapoint y; using the

following formula :

Frs(w) = Frovs(w) + (mn — ). (5.10)

At each iteration ¢, the FPOP algorithm considers the minimum of the ft s(1), denoted as Fy(p),

a piecewise quadratic function :

Fy(u) =min {Fos(w)}. (5.11)

i
s<t
By definition, each interval of y is associated with one last changepoint candidate s that achieves

this optimal cost. Note that Fy, is obtained by minimizing (5.11) over u. Formally, F; = min [ﬁ’t(u)] .
m

The recurrence. Maidstone et al. [2016] have demonstrated that Fy(u) can be updated itera-

tively,
Fy(y) = min Foa(p) ., Foi+4a + (e — p)? (5.12)
best past last introduced

changepoint candidates changepoint candidate

The recursion (5.12) suggests that to update ﬁt(u) we need to compare the cost functions of
changepoint candidates that achieve optimal cost (best past changepoint candidates) with the
cost function of the most recently introduced changepoint candidate, i.e. F;_1 + «. The other
changepoint candidates can be pruned. More formally, for each changepoint candidate s, we

define its "living set", Z};, as the set of u for which ﬁs(u) equals Fy(p),

Zio={n| Jos = B} (5.13)

Given (5.12), s is pruned as soon as its living set is empty, which is justified because
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770 Zi, and  Zi =0 = Zf,,=0. (5.14)

Application. Below I propose a detailed example of the calculation of the recurrence (5.12)

at the third iteration on the signal y; = 1, yo = 0.5, y3 = 0.5 (Figure 5.3).

Initialization of the new changepoint candidate s =2 : In Figure 5.3.A, on the left
panel, I have depicted, in bold, the piecewise quadratic function ﬁQ(M), composed of cost
functions of the best past changepoint candidates s=0 (no changepoints) and s=1 (divides
the signal into two, with the first segment composed of point {y;} and the second segment
composed of datapoints {y2,y3}). The changepoint candidate s = 0 has an optimal cost
over Z3, = [0.5,1.7], while s=1 has an optimal cost over Z3; =|1.7,2] (the intervals are
shown on the same figure below the curves). The minimum of ﬁQ(M), which equals 0.125,
is obtained through polynomial calculus. It is represented by the origin of the arrow on
the right panel. After calculating this minimum, we initialize a new changepoint candidate
whose cost function ﬁg(ﬂ) is equal to Fy +a = 0.125 4+ 0.5 = 0.625. By default, its living
set is equal to the range of the data : Z3, = [0.5,2].

Recurrence interval-by-interval : The function min{F5(x), F» + a} is then calculated
interval by interval, once again utilizing polynomial calculus. In our example, over the first

interval p € [0.5,1.7] (left panel of Figure 5.3.B), we seek the roots of the polynomial
Fr0(1) — (F2 + @) = 0.625 — 31 + 2417

The two roots equate to 0.25 and 1.25. Consequently, the changepoint candidate s = 0
is optimal over Z3, = [0.5,1.25], and the changepoint candidate s = 2 is optimal over
Z34 =]1.25,1.7]. Similarly, over the second interval p € [1.7,2] (right panel of Figure

5.3.B), we seek the roots of the polynomial
Far(p) — (Fa + @) = 0.125 — p+ pi2.

The two roots equate to 0.15 and 0.86. As a result, s = 2 is optimal over Z3, = [1.25,2],

and the living set of s = 1 is empty. We can, therefore, safely prune s = 1.

Adding new datapoint y3 : The third iteration ends by updating the cost functions of

the remaining changepoint candidates with the last datapoint y3 cost :

Fao(i) = foo(p) + (ys — ) = 2.25 — 5+ 342,

Fao(u) = fao(p) + (ys — ) = 1.625 — 2 + .

Complexity. Rigaill [2015] has shown that the number of intervals at iteration n is less than

2n — 1. From this upper bound, we infer a worst-case complexity of O(n?), and a memory
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FIGURE 5.3 — lllustration of the recurrence on the last segment mean. Detailed example of the

calculation of the recurrence (5.12) at the third iteration on the signal yi, y2, y3. Step (A)
illustrates the initialization of the new changepoint candidate s = 2. Step (B) shows the update
interval-by-interval of the piecewise quadratic function Fa(u) by comparing best past changepoint
candidates (s = 0 and s = 1) with the newly introduced one (s = 2). The recurrence ends at
step (C), with the addition of the new datapoint y3 cost. Each cost function (described above
each panel) is prominently displayed as a bold line in the figure.
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complexity of O(n). However, for many signals, computation times are log-linear or linear in n
when there are few changepoints or when the number of changepoints increases linearly with
n, respectively. A theoretical proof supporting a log-linear complexity can be found in Romano

et al. [2023].

5.4.2.2 FPOP vs PELT

Maidstone et al. [2016] has demonstrated that the complexity of FPOP is always less than
that of PELT, meaning that FPOP prunes at least as well as PELT, regardless of the signal.
The computation time of FPOP is also better than PELT (Figure 7 of Maidstone et al. [2016]
and Figure 3 of Liechrmann and Rigaill [2023]). Both methods are implemented in C++/C.

5.5 Ms.FPOP : An exact and fast segmentation algorithm with

a multiscale penalty

5.5.1 Key criteria for effective changepoint detection and localization

As detailed in Verzelen et al. [2020], an efficient changepoint detection and localization esti-
mator should fulfill certain properties. These characteristics are formally articulated in Section
3.3 of the same study. My goal is to deliver below a succinct and understandable synopsis of

these principles.

(NoSp) Spurious changepoints are avoided. This first principle states that the procedure

should avoid estimating more than one changepoint in the proximity of a real one.

(Detec) Evident changepoints are detected. The second principle emphasizes that the
procedure should identify an ’evident’ changepoint—one whose height and spacing from neigh-
boring changepoints are large enough. A formal lower bound can be found in the Proposition 5

of Verzelen et al. [2020].

(Loc) Localization hinges on height and spacing. The last principle states that the
distance error between an evident changepoint and its estimation should only depend on the
height of this changepoint and spacing from neighboring ones. Specifically, the procedure should
localized this changepoint at optimal rate as define in Equation (30) of Verzelen et al. [2020].

Limitations of current estimators. The changepoint detection estimator builds on a LSC
with a BIC penalty does not simultaneously satisfy the (NoSp), (Detec), and (Loc) properties.
Likewise, the penalty proposed in Lebarbier [2005], despite possessing superior statistical pro-
perties compared to BIC, does not met concurrently all three properties either (Section 4.2.3 of

Verzelen et al. [2020]). In particular both penalties fail to retrieve with high probability evident
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changepoints with small jump heights and large adjacent segments. This typically occurs in sce-
narios where there are few well-spread changepoints. This is clearly illustrated in our simulations
on hat-like and step-like profiles for the BIC penalty (see Section 4.3 of Liehrmann and Rigaill
[2023]).

5.5.2 Optimization with a multiscale penalty

Definition. [Verzelen et al., 2020] put forth a LSC with a multiscale penalty adhering to
(NoSp), (Detec), and (Loc) properties. This multiscale penalty is defined by the negative
logarithm of segment lengths, which promotes the detection of well-spread changepoints. The

penalty can be expressed mathematically as :

I7|

> 7+ Blog(n) — Blog(rj — mj-1)- (5.15)

j=1
Here, v = gL and 8 = 2L where ¢ is a positive value and L > 1.
The penalized optimization problem given by (5.5) can be reformulated with the multiscale

penalty as follows :

|7 7

F,, = min Z Z (yl — QTJ.AH:TJ.)Q — Blog(mj — 1j—1) | +alt| ;. (5.16)

|7 - .
Tl,...,‘TD Jj=1 |i=7j_1+1

Applying o« = v 4 flog(n), we retrieve the multiscale penalty of (5.15), with v and § as the

constants requiring calibration.

Complexity. As mentioned in Verzelen et al. [2020] (5.16) demonstrates segment additivity.
This attribute allows the application of dynamic programming algorithms that utilize a recur-
rence based on the last changepoint position or the last segment mean to optimize it. As detailed
above, the latter recurrence exhibits better pruning capacity and computational efficiency, ma-

king it a more compelling choice for optimizing (5.15).

Ms.FPOP algorithm. In Liehrmann and Rigaill [2023], in collaboration with Guillem Rigaill
I introduce Ms.FPOP, a dynamic programming algorithm designed to optimize a more general
penalty, inclusive of (5.15). This algorithm extends the functional pruning techniques used by
FPOP. This expansion is notably challenging due to the fact that (5.16) do not meet the point ad-
ditive cost function criteria, as detailed in Section 2.2 of the same article. While FPOP maintains
an optimal parameter set (Z;) that progressively reduces with the addition of new datapoints,
(5.16) does not guarantee such reduction, thereby complicating the update process. Ms.FPOP
circumvents this complexity by managing a marginally larger set (Z;s) easier to update. As a

reminder, Z; ; represents a set of intervals on p, as depicted in Figure 5.4.
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Sketch of the update rule. In this paragraph, I aim to elucidate the process of updating the
best changepoint candidates in the Ms.FPOP algorithm (Equation (12) of Liehrmann and Rigaill
[2023]). Importantly, the purpose here is not to justify why this update ensures the optimality of
Ms.FPOP, but rather to present the essential operations comprising it. This explanation should
serve as a valuable introductory step prior to engaging with Liehrmann and Rigaill [2023] in
detail.

Figure 5.4.A illustrates the update of a recently initialized changepoint candidate ¢ with the
past changepoint candidates s. The cost function of ¢ is compared to each s cost function. For
each of these comparisons, the p interval on which ¢ does not have the lower cost is found using
polynomial calculus and saved. The living set of ¢ is then determined by taking the union followed
by the complement in g of these intervals.

Figure 5.4.B illustrates the update of a changepoint candidate s with another candidate s,
which is initialized after s. The cost function of s is compared to that of s/, and the p interval
where s exhibits a lower cost is determined using polynomial calculus and saved. The living set
of s is then intersected with this interval, with the resulting intersection serving as the new living
set of s. The interval on which s has a lower cost relative to s’ diminishes at each iteration. This
property suggests comparing s and s’ at multiple iterations. In practice, at each iteration and
for each s, we randomly draw one s’ for comparison.

At the end of iteration ¢, the living set of s, Z; ,—which, as a reminder, includes the true

living set of s, Z; ;—is empty. Consequently, s is pruned.

Box 3: Section switch

1z= At this stage, readers should have acquired sufficient knowledge of dynamic program-
ming and its acceleration via functional pruning, or pruning based on inequality tech-
niques, to engage with Liehrmann and Rigaill [2023| (Appendix B.1). In this paper, I
present the Ms.FPOP algorithm in detail, and demonstrate that for large signals (with
n > 10°) containing relatively few real changepoints, Ms.FPOP is typically quasi-linear
and an order of magnitude faster than PELT. Lastly, I illustrate through simple simula-
tions that for sufficiently large profiles (n> 10%), Ms.FPOP using the multiscale penalty
is typically more powerful than FPOP using the BIC penalty.

5.5.3 Implementation of Ms.FPOP
5.5.3.1 Foreword

In the remainder of this section, I will shed light on the implementation of Ms.FPOP, which
has not been elaborated upon extensively in the original paper.

The multifaceted concepts intrinsic to the Ms.FPOP algorithm, such as quadratic functions,
last changepoint candidates, and intervals, suggested that an object-oriented programming ap-

proach would be suitable for its implementation. This approach provides a structured platform
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where all information and related methods for manipulating an object are grouped, enhancing
code readability and maintainability.

Ms.FPOP has been implemented in C4++, a compiled, highly efficient language whose object-
oriented nature aligns perfectly with our requirements. The extensive utilization of the C4++
standard library in this implementation harnesses powerful features like containers, iterators,
and a variety of functions for sorting, searching, counting, and object manipulation, thereby

substantiating the decision to use the C++.

5.5.3.2 Overview of the classes.

Six classes were identified during the design of Ms.FPOP :

Candidate. The first class, Candidate, defines the concept of last changepoint candidate.
Each changepoint candidate is characterized by its position. From a functional perspective,
it is associated with a cost function and a living set. The cost function can be broken down
into three parts : the cost of the best segmentation up to the changepoint candidate, the

quadratic form, and the penalty which depends on the last segment length.

Interval. The second class, Interval, defines the concept of an interval. An interval is boun-
ded by two real numbers. An empty interval is represented by an upper bound smaller
than the lower bound. As justified in Section B.2, I have chosen to treat the specific case

of singletons ! as empty intervals.

Ordered list of intervals. The third class, Ordered_list_of _intervals, defines a list of
non-empty intervals ordered by their lower bound. The ordered property of this list is
used to enhance the performance of updating the living set of changepoint candidates.
In particular, this structure speeds up set operations such as union, complement and

intersection (figure 5.4).

MsFPOP. The fourth class, MsFPOP, is the main class of this project. It facilitates ins-
tantiating a segmentation problem based on the data to be segmented and the penalty.

Leveraging the other classes, it implements the procedure for estimation changepoints.

Quadratic. The fifth class, Quadratic, defines the quadratic form ag+ a1+ aspu?. This qua-
dratic form is one of the components of the cost function associated with each changepoint

candidate.

Sampling. The sixth class, Sampling, implements various strategies for sampling change-
point candidates, specifically those introduced after a defined point in time (future chan-

gepoint candidates).

In Section B.2 I elaborate on the six classes mentioned above, as well as the relationships
between the objects they define. Notably, I explain in details a few implementation choices that

enhance the overall execution time of Ms.FPOP.

1. A singleton is an interval of the form [a, a].
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5.5.3.3 Ms.FPOP R package

An R package, named after the method, was implemented using the
Repp R package |Eddelbuettel and Francois, 2011|, which allows cal-
ling C++4 code within the R environment via a wrapper function. The
Ms.FPOP package is available on GitHub : https://aliehrmann.github.
io/MsFPOP/index.html. Importantly, this package includes a Vignette
which shows on a minimal example how to use the main function. This

Vignette should be considered as an extension of this manuscript.
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Chapter 6

Applications for the multiscale analysis of the

transcriptome

This chapter highlights the engineering facet of my thesis. Here below, I articulate my strategy
for precise and rigorous analysis of expression differences and co-maturations. This strategy
leverages the DESeq2 model and includes the control of evaluated differences, for instance, by
employing a post-hoc procedure. Subsequently, I detail how I have incorporated this strategy
into two R packages—DiffSegR and comaturationTrackeR. These tools exemplify the successful

integration of complex analytical methodologies into practical, user-friendly software solutions.

6.1 Differential analysis

An important aspect of the transcriptome-wide detection of expression differences and co-
maturations is the quantification of systematic changes between two groups, also known as dif-
ferential analysis. In the first instance, the change pertains to the expression level of a site
depending on the biological condition ; in the second instance, it relates to the maturation level
of a site, contingent upon the maturation state of a second site. Quantifying these changes is
challenging because the expression and maturation levels of a site can vary between samples.
To account for this variability, both technical and biological, it is crucial to model the counts
per event or per pair of events effectively. The GLM with a negative binomial distribution for
RNA-Seq data, as implemented in the DESeq2 R package Love et al. [2014], performs this task

reasonably well.

6.2 Chapter summary at a glance
1. Section 6.3 introduces key elements of the statistical model of gene counts implemented in

DESeq2.

2. In Section 6.4, I unveil how to use the statistical model of DESeq2 to evaluate candidate
DERs identified using FPOP. This is followed by a short presentation of DiffSegR, an R
package that integrates the Baseline 2 and DESeq2 as shown in Liehrmann et al. [2023].
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3. In Section 6.5, I provide a brief introduction of comaturationtrckeR, a method that exists
in two forms : a published R pipeline [Guilcher et al., 2021] and a subsequent R package
(still in development). The second version also leverages the statistical model of DESeq2

to assess co-maturations.

6.3 Generalized linear model for RNA-Seq data

6.3.1 Gene counts model

Let’s revisit the DESeq2 model for gene counts. Here, K4 is defined as the number of
sequencing reads that align onto gene j in sample d, a concept diagrammatically depicted for
one sample in Figure 3.7.A. In addition, we designate ¢;4 to be a quantity proportional to the
expected concentration of cDNA fragments (Figure 3.5) for gene j in sample d.

To simplify matters, technical artifacts can be reduced to a multiplicative factor for each
sample, denoted as sq, or the "size factor". This factor adjusts variations in read counts across
samples to account for differences in the total number of sequenced reads per sample. For instance,
if sample A contains twice the total sequenced reads as sample B, it is reasonable to anticipate
twice the reads mapping to each gene, suggesting that s4 = 2sp.

Through systematic empirical analysis, it has been observed that the variance in gene counts
obtained from multiple biological replicates tends to exceed their mean. In statistical terms,
these counts display an "overdispersion" in comparison with a Poisson distribution. To account
for overdispersion effectively, DESeq2 employs the gamma-Poisson distribution, also referred to
as the negative binomial distribution. This approach introduces an extra gene-specific parameter,
symbolized as ¢;, that establishes a relationship between the mean and variance. Mathematically,

the DESeq2 model for gene counts is expressed as :

Kja~ NB (14, 5) »
Var (K q) = Hd + @jﬂ?,d , (6.1)
~~ ~———
technical noise  biological noise
where ;4 = s;jq;4 designates the un-normalized mean expression of gene j in sample d. The
variance can be decomposed in two components : (technical noise) the variability in the mea-
surements, and (biological noise) the variability in the biology of the samples. Additionally, one
can observe a characteristic pattern in the relationship between gene dispersion and mean values
in RNA-Seq data (Figure 6.1). The trend in dispersion smoothly decreases as gene expression

increases, and eventually reaches an asymptote.

6.3.2 Generalized linear model

The underlying proportion g;4 can be effectively represented using the notation of a GLM.

This involves the use of a design matrix, X, and gene-specific regression parameters, symbolized
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FIGURE 6.1 — Visualization of the gene dispersion trend in RNA-Seq data. The figure is derived
from the DESeq2 R package Vignette.

as ;. To make this model intuitive, I describe X and §; below in the simple scenario where we
are comparing two biological conditions (é).

The GLM is characterized as "linear" since we apply the regression parameters, 3;, to form
a linear combination of the columns in the design matrix, X. This is expressed as a matrix
multiplication, X /;, that aims to minimize the error (or log-likelihood) when approximating
normalized gene counts—gene counts divided by multiplicative size factors— denoted as K =
S(;lK jod-

The term "generalized" in GLM refers to the utilization of a link function, which establishes
the relationship between the linear predictor, X 3;, and the underlying proportions, g; 4. In the

case of DESeq2, a logy link function is used. Mathematically, this relationship is expressed as :

logs(qj,a) = Taf; (6.2)

where 24 denotes the d** row of X.

After carrying out the non-trivial task of estimating s; and ¢; parameters, as detailed in
Love et al. [2014], we can proceed to estimate the coefficients ;. This task can be accomplished
utilizing standard GLM algorithms, as thoroughly elaborated in the works of Park and Hastie
[2007] and Friedman et al. [2010].

& Difference between two biological conditions. Let’s consider a simple scenario! that

includes two distinct biological conditions, each with two samples. In this case, the design matrix

1. Freely inspired by the differential expression analysis courses taught by Christophe Ambroise, Pro-
fessor of Statistics at the University of Evry Val d’Essonne.
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X can be formulated as :

e e e
= = O O

In the context of this two-condition design matrix, the gene-specific regression parameters [3; can

_ [Pio
K Q%)'

Here, 80 symbolizes the logy of the mean of normalized counts for the 4t gene in the first two

be expressed as :

samples, which belong to the first biological condition. In addition, 8;0 + 3;,1 represents the log,
of the mean of normalized counts for the j** gene in the last two samples, associated with the
second biological condition. To illustrate, let’s assume that 3;0 = 3 and 3,1 = 1. In this case,

the underlying proportions g; 4 for samples 1, 2, 3, and 4 are :

Qi1 = g2 = 290 = 8,
4js = qja = 2°0001Pir = 16,

The log, fold-change (logy-FC) between the mean of normalized counts of the two conditions

under comparison is then 3; 1 :
45,3
log, (qj, 1> = logy(g5,3) — loga(gj1) = (Bjo + Bj1) — Bjo = Bja-
]7

6.3.3 Contrast

Following the estimation of the GLM parameters to individual genes, the subsequent statis-
tical inference typically involves scrutiny of either a singular estimated regression parameter’s
nullity or that of a linear combination of such parameters, often referred to as a "contrast".

Mathematically, the null hypothesis, denoted as Hy, is characterized as follows :
Hy: (c,B;) =0, (6.3)

where ¢ € RP symbolizes the contrast vector, with p the number of parameters. In the earlier
described scenario (&), the process of assessing differences in gene expression across the two
compared conditions aligns with testing the nullity of the coefficient 3,1, a.k.a the estimated

log,-FC between the mean of normalized counts :

HO : Bj,l =0. (64)

To do so, both the Wald test and likelihood ratio test are available for GLMs with known
(asymptotic) distribution under the null hypothesis (6.3). In theory, the distribution of associated

80



A
anti-conservative

4'““IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

bimodal

|
I|||||||||||||Iﬂ|||||||||||||||||||||JFB cws

anti-conservative 1171

conservative

‘ bimodal 1210

conservative 438

other 1780

other
uniform 17
T L T
uniform

T

FIGURE 6.2 — Different p-value histogram classes. (A) This figure depicts various classes of p-value
histograms. The algorithmic thresholds demarcating distinct classes of p-value histograms are
depicted by red lines. Unique histogram types such as bimodal, conservative, and others stand
out as anomalies. The anti-conservative histogram is the expected in an experiment with high
statistical power and differentially expressed genes, denoted by a peak at the lower p-values
(uniform otherwise). In a low statistical power experiment or one lacking differentially expressed
genes, a uniform histogram is anticipated. (B) Summary of p-value histograms identified from
4,616 Gene Expression Omnibus datasets. The figure is taken from Péll et al. [2023].

raw p-values is dominated by a uniform distribution. Therefore, any deviations from this pattern
in the raw p-value histogram, as illustrated by the bimodal, conservative and other histograms in

Figure 6.2, can reveal inadequacies in the statistical model’s fit to the data [Rigaill et al., 2016].

6.3.4 Multiple testing

In the process of evaluating a large number of genes (or regions as discussed in the subsequent
section) for expression differences, it is often deemed acceptable to allow for a certain fraction of
false positives (genes incorrectly identified as differentially expressed) in order to yield a higher
count of true ones. The prevalent approach in dealing with large-scale multiple testing is through
controlling the False Discovery Rate (FDR) [Benjamini and Hochberg, 1995], which refers to
expected proportion of false positives amongst all selected genes, known as the False Discovery
Proportion (FDP). The Benjamini-Hochberg procedure, typically adopted to control the FDR, is
effective when the null hypotheses are independent or show a specific kind of positive dependence
called Positive Regression Dependency on a Subset (PRDS) [Benjamini and Yekutieli, 2001].
PRDS is generally accepted as a reasonable assumption within differential gene expression studies
|Goeman and Solari, 2014].

However, If the user is not satisfy with the results, it may snoop into the data, possibly

selecting a subset of gene of interest. One typical approach involves setting a threshold on the
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absolute logy-FC, facilitating the selection of genes that manifest the most significant expres-
sion differences between the two conditions under comparison. Importantly, recent comprehensive
simulation studies by Ebrahimpoor and Goeman [2021] have demonstrated that this picking stra-
tegy often leads to inflated FDRs. In such circumstances, a post-hoc inference procedure can be
used to provide confidence bounds for the FDP in arbitrary, and potentially data-driven, subsets
of genes [Goeman and Solari, 2011, Ebrahimpoor and Goeman, 2021]. This tool is quite practi-
cal and well-suited to biologists’ needs, despite its current underutilization. For these reasons, I
have chosen to implement this feature in the DiffSegR R package, building upon the sanssouci
R package Neuvial et al. [2022]. A description of how to use the post-hoc procedure in DiffSegR
is outlined in the Advanced tutorials section of the associated Vignette (Section 6.4.2.2). I also
plan to incorporate it into the comaturationTrackeR R package.

I will not delve further into the concept of post-hoc inference in this manuscript, but an

excellent introduction can be found in [Enjalbert-Courrech and Neuvial, 2022.

6.4 Transcriptome-wide detection of expression differences

As previously mentioned in section 4.3, during my thesis I worked on the detection of DERs
across the genome. In [Liehrmann et al., 2023], we introduced DiffSegR, a method that delineates
candidates DERs within the log,-FC using FPOP (Baseline 2) and subsequently evaluates these
regions using DESeq2. In the following two sections, I will first outline the statistical contrast
that is tested using DESeq2 in DiffSegR, and then describe the four main stages of the DiffSegR
method.

6.4.1 Contrast

Assume 7 is the set of changepoints estimated by FPOP on the per-base logy-FC calculated
on an RNA-Seq experiment involving two biological conditions. Here, the j** segment starts
at position 7; + 1 and ends at position 7j41. In the context of transcriptome-wide expression
difference detection, each such segment is considered as a candidate DER.

We subsequently redefine K; 4 as the number of sequencing reads overlapping the jth can-
didate DER. Note that a single read may be assigned to multiple candidate DERs. The counts
of candidate DERs can be modeled with (6.1) and (6.2). Candidate DERs can subsequently be
assessed by testing the contrast (6.4).

Significantly, in three separate analyses conducted as detailed in Liehrmann et al. [2023], the
dispersion trends observed in candidate DERs (Figures S2, S5 and S8) as well as the p-value
histograms (Figures S3, S6 and S9) appeared regulars.
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6.4.2 DiffSegR : An RNA-Seq data driven method for differential expression

analysis using changepoint detection

6.4.2.1 DiffSegR in a nutshell

As illustrated in Figure 6.3, a classical differential expression analysis conducted using Diff-

SegR along the genome involves :

Computing the coverage profiles and the differential transcription profile. (1.A)
Firstly, coverage profiles are generated from specified BAM files, which contain the aligned
reads, and a user-determined genomic region. Individual coverage profiles for each strand
are produced for every replicate of both biological conditions. (1.B) Following this, the

per-base log,-FC for each strand is computed based on these coverage profiles.

Summarizing the differential transcription landscape. (2.A) FPOP is employed on
the per-base log2-FC of each strand in order to identify segment boundaries. (2.B) Then,
the featurecounts program [Liao et al., 2013| is utilized to assign mapped reads to these

identified segments, leading to the creation of a count matrix.

Differential expression analysis. (3) DESeq2 is used to test the difference in average ex-

pression of each segment (candidate DERs) under the two compared biological conditions.

Annotating and visualizing the DERs. (4.A) The DERs are annotated based on user-
specified annotations file (in gff3 or gtf format). (4.B) Concurrently, data for DERs,
non-DERs, segmentations, the mean of coverage profiles from both biological conditions,
and per-base logy-FC are saved in formats that are compatible with genome viewers such
as the Integrative Genomics Viewe (IGV). An IGV session in XML format is also created,
which allows all tracks to be loaded simultaneously, thereby providing a user-friendly way

to visualize and interpret DiffSegR results.

6.4.2.2 DiffSegR R package

I encapsulated the implementation of DiffSegR in an R package named after the method itself.
The DiffSegR package is available on GitHub : https://aliehrmann.github.io/DiffSegR/
index.html. Importantly, this package includes a Vignette which shows a minimal example on
how to use the main functions, and then delves into a more advanced uses of DiffSegR. This

Vignette should be considered as an extension of this manuscript.
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Box 4: Section switch

By this stage, readers who have read the introduction of Chapter 5 should have a good
understanding of how DiffSegR identifies homogeneous segments of the log,-FC along the
genome using FPOP. After reading the first sections of the current chapter, they should
now have a solid theoretical knowledge on the differential expression analysis of segments
with DESeq2. Interested readers can now proceed to read [Lichrmann et al., 2023] (Ap-
pendix C). In addition to other technical details on DiffSegR, they will find a benchmark
of DiffSegR with other methods from bioinformatics literature, on two plant RNA-Seq
datasets that were previously used in conjunction with molecular biology techniques to
decipher the roles of the chloroplast ribonucleases PNPase and Mini-III. Notably, I de-
monstrated that DiffSegR is the only method capable of retrieving all segments known to
differentially accumulate outside of the annotated genic regions (3" and 5’ extensions, anti-
sense). I also present encouraging results from the application of DiffSegR to the Bacillus

subtilis transcriptome.

6.5 Transcriptome-wide detection of co-maturations

The co-maturations can also be assessed using DESeq2.

6.5.0.1 A few words on comaturationTrackeR

In 2021, along with Chloé Seyman and Guillem Rigaill, I developed a
novel approach, comaturationTrackeR. This tool utilizes RNA-seq data to
detect co-maturations, provided that both events are cover by the same
read. The initial version of comaturationTrackeR was completed and pu-

blished as a pipeline |Guilcher et al., 2021]. The following year, I collabo-

'IJ‘rackeR

rated with Benjamin Vacus and Guillem Rigaill on a second version, which

is presently under development and presented as an R package. Without
going into exhaustive details, both iterations of comaturationTrackeR rely
on a homemade function which annotates the reads by registering the maturation state of each
user-provided event they cover. Following this, the statistical dependence of each pair of event
is evaluated based on a Fisher’s exact test for the first version of the method, and by testing

n2

the nullity of the classical "difference in differences" © estimator that we estimate using the GLM

model of DESeq2 in the second version.

2. https://en.wikipedia.org/wiki/Difference_in_differences
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Box 5: Section switch

At this stage, readers can delve into Guilcher et al. [2021], where we have highlighted the
co-maturation of 42 pairs of splicing and editing sites in the chloroplast of A. thaliana
(wild type), along with a preferred chronology where splicing typically occurs post editing
at most sites. The analyses undertaken in this study rely on the comaturationtrackeR
method. Comprehensive details regarding the initial and subsequent versions of comatu-
rationtrackeR are provided in the bachelor’s thesis of Chloé Seyman (Appendix D.2) and
the master’s thesis of Benjamin Vacus (Appendix D.3), respectively. Together with Ben-
jamin, we further explored co-maturations in a PNPase mutant of A. thaliana and the

dependencies among triple event sets.
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Chapter 7

Perspectives

7.1 Ms.FPOP

7.1.1 Implementation of a more efficient update rule

An effective reduction of the living set of a candidate changepoint s presupposes comparing
it with one or more candidate changepoints s’ introduced after it (future candidates). Indeed, as
intuitively shown in Figure 5.4.B and more formally in inclusion (15) of Liehrmann and Rigaill
[2023], the interval over which s has a lower cost solution than s’ decreases with t. However,
it is evident that this operation, carried out at each iteration, comes at a cost. Alternatively,
when comparing changepoint candidates s’ to s, on top of computing the current bound of the
intervals, one could computes and stores the iteration tempty at which s’ would lead to an empty
intersection with s. Assuming this value is stored we can discard the interval as soon as the

current iteration is larger than te,,pty -

7.1.2 Further simulations

By employing signals simulated under Gaussian noise without changepoints, we have de-
monstrated that it is feasible to calibrate the multiscale penalty such that Ms.FPOP does not
yield an excessive number of false positives (below 5% in our calibration). Under this frame-
work, we evaluated Ms.FPOP against FPOP (which implements the LSC with the BIC penalty)
in various scenarios. Ms.FPOP outperformed FPOP in segmentations with well-spread change-
points. In addition, Ms.FPOP was at least on par with FPOP for smaller segments within large
enough profiles (n > 10%). It is anticipated that a comparison with the penalty proposed in
Lebarbier [2005] (known to have better statistical properties than the BIC penalty) will yield
similar results [Verzelen et al., 2020]. However, this hypothesis remains to be confirmed using
similar simulations. Additionally, I could compare Ms.FPOP with further proposed approaches
to detecting changes in mean : R-FPOP Fearnhead and Rigaill [2018], WBS Fryzlewicz [2014],
IDetect Anastasiou and Fryzlewicz [2021].
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7.1.3 Applying Ms.FPOP to genomic series

As mentioned above, by using the multiscale penalty implemented in Ms.FPOP, we can
enhance the detection power for fairly large segments, in comparison to the BIC penalty. Hence,
when this methodology is applied to empirical data, it allows for the identification of these
segments in the results of a more noisy RNA-Seq experiment (or in any other experiments where
results can be aligned along the genome). Moreover, by leveraging Ms.FPOP in methods like
DiffSegR, which segment the average coverage profile from multiple biological replicates, we
could reasonably anticipate achieving equally good segmentation with fewer replicates.

However, the applicability of Ms.FPOP, with its current calibration, to real data is yet to
be substantiated. Moreover, all our simulations have been conducted on signals with known
variance, which is not typically the case in most real-world applications, like in genomics. As
indicated in Section 5.3.2, it becomes necessary to derive the variance directly from the data.
Several estimators and heuristic approaches for this purpose are available [Hall et al., 1990, Arlot
et al., 2019].

I intend to compare the results of FPOP (currently implemented in DiffSegR) and Ms.FPOP
in identifying candidate DERs based on the chloroplast RNA-Seq data, and the associated biolo-
gical labels, that I used in Liehrmann et al. [2023]. With the help of biologists of the Organellar
Gene Expression team we will scan the segmented profiles in IGV to assess the goodness of each
segmentation.

Finally, I plan to compare Ms.FPOP with FPOP and other multiple changepoint detection
methods on annotated datasets of DNA copy number variation [Hocking et al., 2013b| and ChIP-
Seq [Hocking et al., 2016]. For the latter I will reuse the simulations from Liehrmann et al. [2021].

7.2 DiffSegR

7.2.1 Challenge in analyzing larger genomes with increased zeroes

Results from Liehrmann et al. [2023]| (Section DiffSegR can be used on sparser genomes)
suggest that DiffSegR is effective and powerful at detecting DERs in bacteria RNA-Seq datasets.
Compared to the chloroplast, the coverage profiles computed on this bacterial dataset contain
many more genomic positions with 0 counts. The assumption of a constant per-base log,-FC
variance is less likely to hold in these case, thereby challenging the assumption of the standard
changepoints model. As a result, the per-base logy-FC may be over-segmented and the resulting
DERs may be less interpretable (Figure S38 of Liehrmann et al. [2023]). This problem is likely
to be more severe on larger genomes, such as nuclear genomes.

A rather straightforward solution to the issue of low coverage is to apply DiffSegR to smaller
chunks of the genome that have sufficient coverage. This is not as easy as it might seem. Indeed,
(i) identifying those chunks is a segmentation problem itself, (ii) one ends up with multiple chunk

and thus several multiple changepoint detection problems complexifying the model selection, and
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(iii) we get a triple-dipping a problem as the data is used three times to recover the chunks, detect
changes within the chunks, and tests segments within the chunks.

An alternative route would be to integrate more advanced segmentation methods, available
in the statistical literature, in DiffSegR. In particular, it might make sense (i) to weight the base
pair according to its coverage (using a weighted version of FPOP [Rigaill, 2022|), (ii) to consider
full length reads® at the prize of modeling auto-correlation [Romano et al., 2021], and (iii) to
model the discrete nature of the data using a negative binomial model [Cleynen and Lebarbier,
2014a].

7.2.2 Complex designs

In DiffSegR we only consider a simple RNA-seq experimental design with two conditions.
In that case it is rather natural to segment the per-base logy-FC. For more complex design
one could consider various contrasts. For example, consider a two-way anova design with two
factors : lineage (wild type or mutant) and stress (standard or heat). In this experiment, one can

be interested for example in :
1. the effect of the lineage irrespective of the stress condition ;
2. the effect of the stress irrespective of the lineage ;

the effect of the stress in the wild type lineage ;

-

the effect of the stress in the mutant ;

5. the effect of the lineage in the standard condition ;

6. the effect of the lineage in the heat condition;

7. the interaction between the two factors Lambert et al. [2020].

If someone has a specific interest in a particular contrast, it make sense to define the signal
to segment based on this contrast and then use DESeq2 on the resulting segments.

In reality, it is probable that one’s interest extends to multiple contrasts, not just a single
one. A straightforward solution is to run the DiffSegR analysis on each of these contrasts of
interest, following by the correction of all the contrasts tested. Alternatively, an option could be
to segment the signals corresponding to these multiple contrasts jointly. GeomFPOP |Pishchagina
et al., 2023], a segmentation algorithm for multidimensional signals, allows to solve this problem
exactly within a reasonable timeframe (a few minutes) for four contrasts and signals of size 10°,

which is approximately the size of the chloroplast genome.

7.2.3 Applying the diffsegR strategy to other genomic series

The DiffSegR strategy, which involves segmenting with FPOP, testing with DESeq2’s ne-
gative binomial GLM, and then controlling multiple tests with a post-hoc bound, is relatively

versatile. Furthermore, the tools employed at each step are statistically rigorous and robust.

1. see Note S1-2 of Liehrmann et al. [2023]
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Ultimately, from an application perspective, the primary decision lies in selecting the signal that
FPOP should segment, and eventually the contrast evaluated in DESeq2. As explained below re-
sults on RNA-Seq (chloroplast, bacteria) and RNA Immunoprecipitation Sequencing (RIP-Seq)
(mitochondria) data lead me to believe that this versatility does not compromise the relevance
of the biological events identified.

In [Liehrmann et al., 2023|, we demonstrated that DiffSegR is proficient in accurately iden-
tifying 3’ and 5’ extensions of transcripts, as well as the accumulation of antisense RNAs and
introns in two A. thaliana mutants for chloroplast ribonucleases—Mini-III [Hotto et al., 2015]
and PNPase [Castandet et al., 2013]. As previously mentioned, we also showed that it could
successfully find all potential candidates for direct degradation by Rael in B. subtilis. The can-
didates and two confirmed sites were previously identified by Leroy et al. [2017] and Deves et al.
[2023].

Furthermore, in collaboration with Huy Cuong Tran (PhD student, Lund University, Sweden)
and Olivier Van Aken (Associate Professor, Lund University, Sweden), we utilized DiffSegR on
RIP-Seq data to establish that a protein under study has a binding affinity towards 5’ untransla-
ted regions [Tran et al., 2023]. This collaboration strengthened my conviction that DiffSegR holds
potential for application across a wide range of RNA-Seq based strategies aimed at capturing
specific biological events [Han et al., 2015].

For instance, it could be used to detect newly transcribed RNAs compared to mature RNA
controls in nascent RNA analysis [Wissink et al., 2019], discern differences in ribosome-bound
RNA in translatome analysis [Calviello and Ohler, 2017|, or to distinguish structured (double-
stranded RNA) from unstructured RNAs in structurome analysis [Kertesz et al., 2010], to men-

tion just a few possibilities.

7.3 Coordination of chloroplast RNA maturation events

Leveraging a dedicated Nanopore long-read protocol [Guilcher et al., 2021], we sequenced the
chloroplast transcripts of A. thaliana under normal growth conditions. This sequencing data was
subsequently analyzed using the initial version of comaturationTrackeR, revealing dependencies
between 42 pairs of editing and intron splicing sites. Some of these dependencies had been
previously documented in scientific literature. Furthermore, our findings elucidated a preferential
sequence of maturation events, wherein splicing generally transpired subsequent to the editing
of most sites |Guilcher et al., 2021|. This investigation represents a pioneering study exploring
the coordination of chloroplast RNA maturation events at transcriptome-scale.

However, in its current form, comaturationTrackeR is not equipped to analyze dependencies
between the 5’/3” ends of transcripts and other maturation events. Without committing to a
specific methodology, this feature is eagerly anticipated by the biologists, including those from

the Organellar Gene Expression team.
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Long term perspectives. In the context of co-maturation predictions by comaturationTra-
ckeR, questions arise of how to validate the list of identified co-maturations and decipher the
molecular mechanisms underlying the observed co-maturations. The Organellar Gene Expression
team has proposed a potential validation strategy. This strategy involves conducting experiments

with a mutant specific to a particular event, to investigate its impact on other dependent events.
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Abstract

Background: Histone modification constitutes a basic mechanism for the genetic
regulation of gene expression. In early 2000s, a powerful technique has emerged that
couples chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq).
This technique provides a direct survey of the DNA regions associated to these modifi-
cations. In order to realize the full potential of this technique, increasingly sophisticated
statistical algorithms have been developed or adapted to analyze the massive amount
of data it generates. Many of these algorithms were built around natural assumptions
such as the Poisson distribution to model the noise in the count data. In this work we
start from these natural assumptions and show that it is possible to improve upon
them.

Results: Our comparisons on seven reference datasets of histone modifications
(H3K36me3 & H3K4me3) suggest that natural assumptions are not always realistic
under application conditions. We show that the unconstrained multiple changepoint
detection model with alternative noise assumptions and supervised learning of the
penalty parameter reduces the over-dispersion exhibited by count data. These mod-
els, implemented in the R package CROCS (https://github.com/aLiehrmann/CROCS),
detect the peaks more accurately than algorithms which rely on natural assumptions.

Conclusion: The segmentation models we propose can benefit researchers in
the field of epigenetics by providing new high-quality peak prediction tracks for
H3K36me3 and H3K4me3 histone modifications.

Keywords: ChIP-seq, Histone modifications, Over-dispersion, Peak calling, Multiple
changepoint detection, Likelihood inference, Supervised learning

Background

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-
seq) is amongst the most widely used methods in molecular biology [15]. This method
aims to identify transcription factor binding sites [20, 22] or post-translational histone
modifications [24, 25], referred to as histone marks, underlying regulatory elements.
Consequently, this method is essential to deepen our understanding of transcriptional
regulation. The ChIP-seq assay yields a set of DNA sequence reads which are aligned to

©The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http:/creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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a reference genome and then counted at each genomic position. This results in a series
Y = (y1,...,yn) of n non-negative integer count data (y; € Z. ), hereafter called cover-
age profile, ordered along a chromosome. The binding sites or histone marks of interest
appear as regions with high read density referred to as peaks in the coverage profile.

Since there is a biological interest in detecting these peaks, several methods, hereaf-
ter called peak callers (c), have been developed / adapted and used to filter out back-
ground noise and accurately identify the peak locations in the coverage profile. They take
a coverage profile of length #n and classify each base from it as a part of the background
noise (0) or peak (1), i.e. ¢: Y — {0,1}". Among these peak callers we can mention
MACS [26] and HMCan [2], two heuristics which are computationally fast but typically
accurate only for a specific pattern, i.e. respectively sharp and broad peaks [7]. More
recently, it has been proposed to solve the peak detection problem using either opti-
mal constrained or unconstrained multiple changepoint detection methods [8, 12]. The
constraints ensure that the segmentation model can be interpreted in terms of peaks
and background noise which is a practitioner’s request. The unconstrained one doesn’t
have an output segmentation with a straightforward interpretation in terms of peaks
and needs to be followed by an ad-hoc post-processing rule to infer the start and end of
peaks (see Fig. 2). For each of these methods, there are one or more tuning parameters
that need to be set before solving the peak detection problem and that may affect the
results accuracy.

In a supervised learning approach, Hocking et al. [7] introduced seven labeled histone
mark datasets that are composed of samples from two different ChIP-seq experiments
directed at histone modifications H3K36me3 and H3K36me3. In a recent study, after
training different peak callers using these datasets, Hocking et al. [12] compared them
and showed that the constrained segmentation model with count data following a Pois-
son distribution outperforms standard bioinformatics heuristics and the unconstrained
segmentation model on these datasets.

Modeling question

From a modeling perspective the constrained segmentation model and the Poisson noise
are certainly the most natural assumptions to detect peaks in coverage profiles. How-
ever, it is not clear that they are realistic:

«+ By looking at the shapes of the peaks in coverage profiles (see for instance in Fig. 1),
we can see that the background noise and the top of the peaks are sometimes sepa-
rated by one or more subtle changes. In contrast to the constrained segmentation
model, the unconstrained one should be able to capture these subtle changes. One
major issue is that the output segmentation of the unconstrained model does not
have a straightforward interpretation in terms of peaks.

+ Parametric models such as the negative binomial [14, 17] or the Gaussian, following
a proper transformation of the count data for the latter [1, 13], are preferred over the
Poisson one for the analysis of many high-througput sequencing datasets. Indeed,
count data often exhibit more variability than the Poisson model expects which
changes the interpretation of the model and makes it difficult to estimate its param-
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Fig. 2 (Top) Segmentation of a coverage profile containing one peak using the unconstrained model.

The location of the changepoints on the chromosome are shown by red dotted lines . The mean of

the segments are shown in blue il According to this segmentation there are two alternative starts and

two alternative ends of the peak, i.e. four alternative variants of the same peak formed by the regions:
[Start1:End1], [Start1:End2], [Start2:End1] and [Start2:End2]. (Bottom) Three different rules are proposed to
interpret the segmentation as peaks. Thinnest peak: the resulting peak is defined by the region [Start2:End1].
Largest peak: the resulting peak is defined by the region [Start1:End2]. Max jump: the resulting peak is defined
by the region [Start1:End1]

eters. These alternative parametric models are well known to reduce this phenom-

enon, also called over-dispersion.

In this work we try to start from these natural assumptions and show that it is possible

to improve upon them.

Contribution

1. We show that the distribution of counts from H3K36me3 and H3K4me3 datasets
exhibits over-dispersion which invalidates the Poisson assumption. The two alterna-
tive noise models we propose (negative binomial with constant dispersion parameter
& Gaussian after Anscombe transformation) effectively reduce the over-dispersion

on these datasets (see Fig. 4).
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2. We propose a new and rather natural post-processing rule to predict the start and
end of peaks in an estimated unconstrained segmentation (see Fig. 2). Indeed, in the
unconstrained segmentation we can observe several up (respectively down) changes
and it is not obvious which one should be considered as the start or end of the peak.
We show that this new post-processing rule improves the accuracy of the uncon-
strained segmentation model in both H3K36me3 and H3K4me3 datasets compared
to the same model with previous rules described by Hocking et al. [12] (see Fig. 5).

3. Hocking et al. [11] described a procedure to extract all optimal constrained segmen-
tations for a range of peaks. It is an essential internal step in the supervised approach
for learning the penalty parameter of segmentation models. In this work we general-
ize this procedure so that it works with the unconstrained segmentation model and
the post-processing rule mentioned in the previous point (see Algorithm 1).

4. We describe a method to learn jointly both the penalty and dispersion parameters of
segmentation models with a negative binomial noise. We then compare the accuracy
of unconstrained and contrained segmention models with different noise distribu-
tions on the labeled H3K36me3 and H3K4me3 datasets (see Fig. 6).

Methods
Segmentation models for ChIP-seq data

Unconstrained segmentation model

The observed data (y1,...,y;,) are supposed to be a realization of an independent ran-
dom process (Y1, ..., Yy). This process is drawn from a probability distribution F which
depends on two parameters: 6 is assumed to be affected by K — 1 abrupt changes called
changepoints and ¢ is constant. We denote t; the location of the kth changepoint with
k ={1,...,K — 1}. By convention we introduce the fixed indices 7o = 0 and tx = n. The
kth segment is formed by the observations (y,_,+1,. ..,z ). Ok stands for the parameter
of the kth segment (see Fig. 1). Formally the unconstrained segmentation model [5], can be
written as follows:

Vi| p1+1<i<t, Y;i~F©b ). (1)

Constrained segmentation model

In order to have a segmentation model with a straightforward interpretation in terms
of peaks, we add inequality constraints to the successive segment specific parameters
(61,...,6k) so that non-decreasing changes in these parameters are always followed by
non-increasing changes. Therefore, we formally assume the following constrained segmen-
tation model [8], hereafter called Up—Down:

Vi| 1 +1<i<tw, Yi~F©Oe)

Or_1 <6 Vk € {2,4,...} (2)

subject to{ Op_1 >0 Vke{3,5...}"
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Probability distributions

In the case of the Poisson distribution we have F (0, ¢) = Pois(Ag, ¢ = #) where Ay
stands for the mean and the variance of the kth segment. In the case of the Gaussian
distribution we have F (6, $) = N (ux,02) where j1; is the mean of the kth segment
and o2 is the variance assumed constant across the segments. Also in this case, the
non-negative integer count data have been transformed in real values (Z; — Ry)
through an Anscombe transformation (/Y + %) which is a useful variance-stabilizing

transformation for count data following a Poisson distribution [1]. In the case of the
negative binomial distribution we have F (0, ¢) = NB(uk, ¢) where (i is the the mean
of the kth segment and ¢ is the dispersion parameter that needs to be learned on the
data. In this parametrization 01(2, the variance of the kth segment, is px + ¢_1M;2<~

Optimization problems

In both unconstrained and constrained optimal multiple changepoint detection prob-
lems, the goal is to estimate the changepoint locations (1, ..., Tx—1) and the param-
eters (61, ...,0k) both resulting from the segmentation. Runge et al. [19] introduced
gfrop (Graph-Constrained Functional Pruning Optimal Partitioning), an algorithm
that solves both problems using penalized maximum likelihood inference. It imple-
ments several loss functions including the Gaussian, Poisson and negative binomial
that allowed us to compare different noise models for the count data. The number of
changepoints in a coverage profile being unknown, gfpop takes a non-negative penalty
A € R4 parameter that controls the complexity of the output segmentation. Larger
penalty 4 values result in models with fewer changepoints. The extreme penalty val-
ues are 4 = 0 which yields #n — 1 changepoints, and /4 = oo which yields 0 changepoint.
The time complexity of gfpop is empirically O(Vrlog(n)). Intuitively, V stands for the
number states you will need to encode your priors about the form of the output seg-
mentation, e.g. with the Up—Down model at each time the signal can be a part of the
background noise (Down) or a peak (Up). Consequently, the empirical time complex-
ity of gfpop with the Up—Down model is O(2nlog(n)) while with the unconstrained
model it is O(nlog(n)).

Rules for inferring the start and end of peaks with the unconstrained segmentation model
As mentioned before, one of the main motivation of the Up—Down model is that it
can be interpreted in terms of peaks which is a practitioner’s request. In the case of
the unconstrained model, the output segmentation may results in successive non-
decreasing changes (Up*), e.g. in Fig. 2: Up* = {Startl, Start2}, and successive non-
increasing changes (Dw*), e.g. in Fig. 2: Dw* = {Endl, End2}, in the signal. Thus, it
is necessary to specify a post-processing rule to select the start and end of peaks
among the returned changepoints in respectively each Up* and Dw*. This results in
|[Up*| x |Dw*|alternatives of the same peak. Rules. We propose three different rules to
select the start and end of peaks (see Fig. 2):

o thinnest peak: we select the last up change in Up* and the first down change in Dw*;
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o largest peak rule: we select the first up change in Up* and the last down change in
Dw*;

+ max jump: we select the up and down change with the largest mean-difference in
Up* and Dw™.

Hocking et al. [12] introduced similar rules to the thinnest peak and largest peak.

Labeled data for supervised learning peak detection

Tuning parameters

For each peak callers there are one or more tuning parameters that need to be set before
solving the peak detection problem and that may greatly affect the result accuracy. For
segmentation methods this parameter is the penalty 4 which controls the number of
peaks in the resulting segmentation, while for heuristics, such as MACS or HMCan,
they use a threshold parameter whose value allows to only consider the top p peaks
given their significance. Moreover, if we want to model the over-dipersion phenomenon
observed in the count data using a negative binomial probability distribution, this is
done at the cost of another parameter (¢) that we need to set as well. Its value may also
affect the number of peaks in the resulting segmentation. In theory, if the correct noise
model was known, it would be possible to use statistical arguments to choose the param-
eter to use. However, in practice the correct noise model is complex and unknown. There
are many factors that influence the signal and noise patterns in real ChIP-seq data, e.g.
experimental protocols, sequencing machines, alignment software. These factors results
in poor accuracy for the detection of peaks [7]. Therefore, we will consider the super-
vised peak detection problem in which the value of tuning parameters can be learned
using manually determined labels that indicate a presence or absence of peaks.

Benchmark datasets

Introduced by Hocking et al. [7], these seven labeled histone mark datasets are com-
posed of samples from two different ChIP-seq experiments directed at modifications
found on the histone 3 N-terminal tails. The first experiment is directed at histone H3
lysine 4 tri-methylation (H3K4me3), a modification localized in promoters. The sec-
ond one is directed at histone H3 lysine 36 tri-methylation (H3K36me3), a modification
localized in transcribed regions. Both these modifications are involved in the regula-
tion of gene expression [21]. The histone modifications H3K4me3 and H3K36me3 are
respectively characterized by sharp and broad peak patterns in coverage profiles. Expert
biologists, with visual inspection, have annotated some regions by indicating the pres-
ence or absence of peaks. Then, they grouped the labels to form 2752 distinct labeled
coverage profiles. Standard used for labeling by the expert biologists is described in Sup-
plementary Text 1 of Hocking et al. [10].

Definition of labeled coverage profiles and errors

In the context of supervised peak detection each labeled coverage profile of
size n, denoted w € Z, is a problem. Formally we have a set of M problems
(w1,...,wy) where M = 2752. Each problem w,, is associated with a set of N labels
H,, = {(s1,e1,h1) ..., (sn,en, hn)} where s is the start genomic location of the label, e is
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Fig. 3 (Top) Example of a ChIP-seq coverage profile annotated by an expert biologist. The labels represented
by colored rectangles indicate the absence  or presence of a peak, here characterized by its start i and
its end . (Bottom) The model with 1 peak in its output segmentation has an associated error of 2 (2 x False
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peaks is a good model for which all the labels optimized on this coverage profile are correct i

the end genomic location of the label and 7 is the type of the label. There are four types
of labels that allow some flexibility in the annotation (see Fig. 3):

+ noPeaks label stands for a region that contains only background noise with no peak.
If any peak is predicted in this region, the label counts as a false positive ;

+ peaks label means there is at least one overlapping peak in that region. Hence, one or
more peaks in that region is acceptable. If there is not at least one overlapping peak
predicted in this region, it counts as a false negative ;

o+ peakStart and peakEnd labels stand for regions which should contain exactly one
peak start or end. If more than one peak start / end is predicted in this region, the
label counts as a false positive. Conversely, if less than one peak start / end is pre-
dicted in this region, the label counts as a false negative.

The set of labels H,, is used to quantify the error E,, i.e. the total number of incorrectly
predicted labels (false positive + false negative) in the coverage profile w,, given the set
of peaks returned by a peak caller.

Supervised algorithms for learning tuning parameters of negative binomial segmentation
models

Objective function

The error function for a given problem w,,, denoted E,, : R2 — Z, is a mapping
from the tuning parameters (¢, 1) of negative binomial segmentation models to the
number of incorrectly predicted labels in the resulting optimal segmentation. With
the supervised peak detection approach the goal is to provide predictions of ¢ and 4
that minimize E,, (¢, 4). The exact computation of the 2-dimensional defined E,, (¢, 1)
is intractable with respect to ¢. Thus, we computed it over 16 ¢ values evenly placed
on the log scale between 1 and 10,000, ® = (¢1 = 1,..., ¢16 = 10,000). Our results
suggest that this grid of values is a good set of candidates to test in order to calibrate
the dispersion parameter ¢ (see Additional file 1: Fig. 2). The exact computation of
the error rate as a function of 1 (¢ remains constant), a piecewise constant function,
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requires to retrieve all optimal segmentations up to 9 peaks. This way, on the advice
of the biologists who annotated the benchmark datasets, we ensure that for each
problem there is a segmentation with at least one false positive label and another
with one false negative label. A procedure that retrieves one optimal segmenta-
tion for each targeted number of peaks P* has already been described by Hock-
ing et al. [11]. It can be used with the Up—Down model for which there is at most
one optimal segmentation that results in P* peaks but not with the unconstrained
model for which there can be several ones. Indeed, the constraints in the Up—Down
model require it to add, if the associated cost is optimal, 2 changepoints that lead to
the formation of a new peak. With the unconstrained model adding a changepoint
can either refine an already existing peak or, in combination with another change-
point, form a new peak. More generally there is a need of an algorithm that takes
as input any penalized changepoint detection solver S with a penalty 1 constant
along the changepoints, optionally the dispersion parameter ¢, and outputs all opti-
mal segmentations between two peak bounds denoted P and P. We present CROCS
(Changepoints for a Range of ComplexitieS), an algorithm that meets this need.

Discussion of pseudocode

CROCS (Algorithm 1).(i) The algorithm begins by calling SequentialSearch [described
underneath] to search two penalty bounds 2 (line 6) and A (line 5) that result in a seg-
mentation with respectively P — 1 (line 3) and P + 1 (line 4) peaks. Indeed, using gfpop
with the Up—Down model as solver S, the number peaks in the resulting optimal seg-
mentations is a non-increasing function of A. This propriety guarantees that with the
previous penalty bounds we can reach every optimal model from P to P peaks. For
unconstrained segmentation models, we suspect it also should be true in the vast major-
ity of cases. (ii) Then, the algorithm calls CROPS [described underneath] (line 7) to
retrieve all the optimal segmentations between these two penalty bounds. (iii) Finally,
a simple post-processing step (not shown in the algorithm) allows to remove segmen-
tations with P — 1 and P + 1 peaks. The time complexity of the CROCS algorithm is
bounded by the time complexity of the CROPS procedure, i.e. O(O(S)(K; — K7)), where
K7 and K are the number of segments in optimal segmentations associated to respec-
tively / and 4. O(S) is the time complexity of the solver S, e.g. empirically O (21 log())
for gfpop with the Up—Down model.

+ SequentialSearch is a procedure described by Hocking et al. [11] that takes as input a
problem w,, a target number of peaks P* and outputs an optimal segmentation with
P* peaks in addition to the penalty / for reaching it.

« CROPS is a procedure described by Haynes et al. [6] that takes as input a problem
Wi, as well as two penalty bounds A & 4 and outputs all the optimal segmentations
between these two bounds.

We slightly modified the original implementation of both SequentialSearch and CROPS
in such way that they can work with any penalized changepoint detection solver S pro-
vided by the user.
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Algorithm 1 CROCS (Changepoints for a Range of ComplexitieS): extract all optimal

segmentations between P and P using a changepoint penalized solver S

1: Input: Data wyy,, lower bound P, upper bound P, solver S, dispersion ¢ (optional)

: Output: The details of optimal segmentations between P and P peaks

ifP>0: P+ P—1

P+ P+1

A + SequentialSearch(wm, P, S, ¢) > Hocking et al. [11]
X + SequentialSearch(wm, P, S, ¢)

: return CROPS(wim, A\, \, S, @) > Haynes et al. [6]

Learning jointly ¢ and /.

Once the error function E;, (¢ € ®, A) is computed for each problem of the training set,
a natural way to learn the dispersion and penalty parameters is to select the pair of val-
ues (¢ € @, 4) that achieves the global minimum error. We denote these values ¢* and
A*. Recall that E,, (¢ € ®, 4) is piecewise constant on A. The sum of E,,(¢ € ®, 1) over
all problems is still piecewise constant on A. Therefore, ¢* and 1* can be easily retrieved
using a sequential search. We refined the previous learning method, hereafter called
constant A, by taking advantage of the piecewise constant propriety of E, (¢ € @, ).
Indeed, the minimum error is not reached for a unique penalty value 4* but an interval
denoted 1; ,,. After fixing ¢*, we can use I ,, computed for each problem of the training
set in order to learn a function that predicts problem-specific 4 values. This function is
a solution of the interval regression problem described by Rigaill et al. [16]. We denote
this learning method linear A.

In the case of segmentation models with a Poisson or a Gaussian noise, the only tuning
parameter that we need to learn is 4. Thus, the objective function becomes a 1-dimen-
sional defined function denoted E,;(4). The methods we used to learn A are similar than
those presented above (see Hocking et al. [12] for more details).

Empirical results

Cross-validation setup and evaluation metric

In the following section, for each model compared, a 10-fold or 4-fold' cross-val-
idation was performed on each of the seven datasets. Here, the results are shown
by type of experiments (H3K36me3 & H3K4me3). The metric we used to evalu-
ate the performance of our models is the test accuracy which can be formally written
1= (X e testset Em /D me test set Hml). One may be concerned about the size of the
datasets used for supervised learning of the tuning parameters. We have shown in Addi-
tional file 1: Fig. 1 that only a dozens of labels are enough to learn tuning parameters and
associated segmentations close to the model-specific maximum accuracy. By increas-
ing the number of labels in the learning set, the accuracy also becomes more consistent
between test folds.

! In order to satisfy the assumption about the independence between the training and test set in the cross-validation,
we could not exceed 4-fold in two of the seven benchmark datasets (for more details see caption of Additional file 1:
Table 1).
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Learning of tuning parameters

In previous section we have described two methods for learning the tuning param-
eters of segmentation models. Based on results shown in Additional file 1: Fig. 3, for
the rest of this section, the parameters of the models compared on H3K36me3 data-
sets are learned through the constant /2 method. The parameters of the models com-
pared on H3K4me3 datasets are them learned through the linear 2 method.

The over-dispersion exhibited by count data under a Poisson noise model can be
effectively reduced using a negative binomial or a Gaussian transformed noise model
Initially, we wanted to validate the presence of over-dispersion in count data follow-
ing a Poisson distribution. In a second step, we wanted to confirm that alternative
noise models such as the negative binomial or the Gaussian one, following an Ans-
combe transformation of the counts for the latter, could allow us to reduce this over-
dispersion. A simple way to highlight the over-dispersion is to plot the log, -ratio of
the empirical and theoretical variances of count data. If the log, -ratio is positive, the
distribution of count data exhibits over-dispersion. If it is negative, the distribution
of count data exhibits under-dispersion. If it is null, the dispersion of the count data
does not show inconsistency with respect to the noise model. In Fig. 4, each observa-
tion corresponds to a segment from the segmentations selected during the cross-val-
idation procedure for the 2752 coverage profiles. The segmentation were computed
using CROCS with gfpop and the unconstrained model as solver. Then, We estimated
the empirical and theoretical variances for each of the selected segments. In the case
of the Poisson noise model, the estimated theoretical variance is formally written
&2 = [1, where /i stands for the estimation of the mean of count data belonging to the
same segment. For the negative binomial one it is formally written 62 = i + ¢ 112,
where ¢ stands for the dispersion parameter learned during the cross-validation
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Fig. 5 Max jump is the most accurate rule for inferring the peaks in segmentations obtained through a
unconstrained model. The mean of differences in accuracy and its 95% Cl computed on the test folds pooled
by types of experiment (H3K36me3 & H3K4me3) are shown in red . If the mean of differences in accuracy is
negative (left side of the blue indicator line [, the max jump rule is better in average than the target rule. The
results of the paired t-test used to assess the difference of mean accuracy are summarized in the following
way: non significant (ns) means adjusted p-value > 0.05; * means adjusted p-value < 0.05; *** means
adjusted p-value < 0.001

procedure. For the Gaussian one, the theoretical variance is assumed constant across
the segments. We estimated it using the mean squared error computed over all
segments. In Fig. 4 we can see that in both H3K36me3 and H3K4me3 datasets the
median of the log, -ratio is above 1 with the Poisson noise model. Hence, For most
observations the empirical variance is at least two times larger than the theoretical
variance. Therefore, count data under the Poisson noise model shows a clear over-
dispersion phenomenon. In both H3K36me3 and H3K4me3 datasets, the median of
the log, -ratio is slightly closest to 0 with the negative noise model than with Poisson
noise one (from 1.19 to 0.70 in H3K36me3 and 1.69 to 1.39 in H3K4me3). Therefore,
the negative noise model helps partially correct this over-dispersion. The reduction
is even greater with the Gaussian transformed noise model (from 1.19 to 0.16 in
H3K36me3 and 1.69 to 0.18 in H3K4me3).

Max jump is the most accurate rule for inferring the peaks in segmentations obtained
through the unconstrained model

Solving the peak detection problem with the unconstrained model requires to introduce
a rule for selecting the changepoints corresponding to the start and end of the peaks in
the output segmentation. We wanted to compare the peak detection accuracy of the new
rule we propose (max jump) against the others (largest peak & thinnest peak) which have
an equivalence in Hocking et al. [12]. In the user guide of how to create labels in ChIP-
seq coverage profiles [7], the authors strongly advise to label peaks which are obviously
up with respect to the background noise. Hence, we expected that the max jump rule,
which sets the start and end of the peaks on the change with the largest mean-difference,
performs at least as well as the other two rules. In Fig. 5, we look at the mean of dif-
ferences in accuracy between each model with either the largest peak or thinnest peak
rule, denoted target models, against the same model with the max jump rule, denoted
reference model. In agreement with our expectation, we observe that for the different
models in both H3K36me3 & H3K4me3 datasets, the mean accuracy of the max jump
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Fig. 6 The unconstrained model with a negative binomial or a Gaussian transformed noise is more accurate
than previous state-of-the-art. The mean of differences in accuracy and its 95% Cl computed on the test
folds pooled by types of experiment (H3K36me3 & H3K4me3) are shown in red . If the mean of differences
in accuracy is negative (left side of the blue indicator line i), the Up—-Down model with a Poisson noise is
better in average than the target model. The results of the paired t-test used to assess the difference of mean
accuracy are summarized in the following way: non significant (ns) means adjusted p-value > 0.05; * means
adjusted p-value < 0.05

rule is greater than the mean accuracy of the largest peak rule (3.66—12.36% more accu-
rate on average). Except for the unconstrained model with a Poisson noise in H3K4me3
(0.11% less accurate on average), the mean accuracy of the max jump rule is also greater
than the mean accuracy of the thinnest peak (0.38—3.03% more accurate on average).
In order to test if the mean accuracy of the target and the reference models are signifi-
cantly different, we performed a paired t-test. The accuracy of each fold were previously
pooled by type of experiments as it is suggested in Fig. 5. After correcting the p-values
of the paired t-test with the Benjamini & Hochberg method, eight differences were still
significant (adjusted p-value < 0.05). As a result of these observations, for the next com-
parisons we will infer the peaks in the output segmentations obtained with the uncon-
strained model using the new max jump rule we propose.

The unconstrained model with a negative binomial or a Gaussian transformed noise

is more accurate than previous state-of-the-art

We wanted to compare the peak detection accuracy of the Up—Down model with a Pois-
son noise” against other segmentation models such as the unconstrained or Up—Down
model with either a negative binomial or a Gaussian transformed noise. HMCan, MACS
and other heuristics have already been compared to the Up—Down model with a Poisson
noise in Hocking et al. [12]. We included them again as a baseline from the bioinformat-
ics literature. Both of them use a threshold that affects their peak detection accuracy and
whose learning is also described in the previous cited study. Because we saw in previ-
ous results that a negative binomial or Gaussian transformed noise effectively reduces
the over-dispersion exhibited by count data under a Poisson noise, we expected that
the unconstrained or Up—Down model with these alternative noises will improve the
peak detection accuracy on the test set. In Fig. 6 we look at the mean of differences in

2 Model built on natural assumptions to detect peaks in coverage profiles and actual state-of-the-art on H3K36me3 and
H3K4me3 datasets.
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accuracy between the Up—Down model with a Poisson noise, denoted reference model,
against other segmentation models and heuristics, denoted target models. In agreement
with our expectation, we can see that the unconstrained model with a negative bino-
mial noise has a mean accuracy greater than the reference model in both H3K36me3
and H3K4me3 datasets (respectively 2.0% and 0.86% more accurate on average). It has
also a greater mean accuracy with a Gaussian transformed noise (respectively 2.15% and
1.77% more accurate on average). As described previously, in order to test if the mean
accuracy of the target and the reference models are significantly different, we performed
a paired t-test. After correcting the p-values, the unconstrained model with a Gaussian
transformed noise was still significant (adjusted p-value < 0.05). Note that the uncon-
strained model with a Poisson noise has a mean accuracy similar to reference model
(the mean of differences in accuracy < 0.5% in both datasets). Thus, the improvement in
accuracy cannot be attributed solely to the unconstrained model with the max jump rule
but also to the distribution chosen for the noise. In disagreement with our expectation,
with the Up—Down model the use of alternative noise distributions does not improve
significantly the accuracy compared to the Poisson one (mean of differences in accuracy
< 1% in H3K36me3 and < 0.1% in H3K4me3).

The Up-down segmentation models are more robust than the heuristics

from the bioinformatics literature HMCan and MACS

In addition to comparing the peak detection accuracy, we wanted to assess the robust-
ness of segmentation models against the heuristics HMCan and MACS. To assess the
robustness of the segmentation models and heuristics we used the coverage profiles
from biological replicates available in each of the seven labeled histone mark datasets.
The value of tuning parameters for the segmentation models and heuristics are the same
as those learned during the cross-validation procedure. As explained in the introduction,
the peak calling problem can be seen as a binary classification problem. In this frame-
work each base from the coverage profiles are classified as a part of the background
noise (0) or peak (1). Hence, the robustness can be assessed by computing the distance
between partitions of the coverage profiles from the biological replicates. The more the
distance between these partitions is close to zero the more the segmentation model or
the heuristic is robust. As a metric we used the normalized information distance, or
NID, which has a range between 0 and 1 [3, 23]. For each genomic chunk we computed
the NID between all pairs of biological replicates. In Fig. 7 we look a the mean of dif-
ferences of NID between segmentation models and the heuristics HMCan or MACS.
We can see that the mean of the NID of Up—Down models, independently of the noise
model, is lower than with the heuristicc HMcan and MACS in both H3K36me3 and
H3K4me3 datasets (respectively from 0.09 to 0.12 and 0.02 to 0.03 less distant on aver-
age). After correcting the p-values of the paired t-test with the Benjamini & Hochberg
method, five differences were still significant (adjusted p-value < 0.05). Regarding the
unconstrained models, except for the negative binomial noise model in the H3K24me3
datasets (NID is lower by 0.09 in average & paired t-test with adjusted p-value < 0.01),
there is no clear improvement in robustness compared to the heuristics HMCan or
MACS. With the Poisson model, which do no reduce the over-dispersion, we conclude
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95% Cl are shown in red [l If the mean of differences in NID is negative (left side of the blue indicator line |l
), the target segmentation model is more robust in average than HMCan (H3K36me3) or MACS (H3K4me3).
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way: non significant (ns) means adjusted p-value > 0.05; * means adjusted p-value < 0.05; ** means adjusted
p-value < 0.01

even the opposite in the H3K4me3 datasets (NID is longer by 0.05 in average, paired
t-test with adjusted p-value < 0.01).

Discussion

Modeling of over-dispersed ChlIP-seq count data

We have seen in Fig. 4 that count data under a Poisson noise model exhibit over-disper-
sion in H3K36me3 and H3K4me3 datasets. We have shown that this over-dispersion can
be effectively reduced in these datasets using either a negative binomial or a Gaussian
transformed noise model.

The use of a negative binomial noise model implies that we must be able to estimate a
suitable value for the ¢ dispersion parameter. We have proposed to learn it jointly with
the penalty of the segmentation model directly on the labeled coverage profiles. More
precisely, a constant ¢ is selected because it minimizes the label errors of the training
set. The negative binomial combined with the constant dispersion parameter allows the
phenomenon of over-dispersion to be slightly reduced.

With the Gaussian noise model there are no additional parameters than the penalty of
the segmentation model to set. This is an advantage compared to the negative binomial
one. In this study, in order to satisfy the Gaussian proprieties, we transformed the count
data with an Anscombe transformation which is highly appreciated for its variance sta-
bilization properties. Gaussian transformed noise model allowed to reduce the over-dis-
persion even more efficiently than the negative binomial noise model on the H3K4me3
and H3K36me3 datasets, while being simpler to implement.

Segmentation models for peak detection in ChlP-seq count data

The unconstrained model seems to capture more subtle changes in count data than the
Up-Down one which have sometimes a poor fit to the signal (see Fig. 1). One major
issue of the unconstrained model is its output segmentation which doesn’t have a
straightforward interpretation in terms of peaks compared to the Up—Down one. The
introduction of the max jump rule (see Fig. 2), which have shown to perform at least as
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well as rules proposed in Hocking et al. [12] (thinnest peak & largest peak), helps to cor-
rect this weakness (see Fig. 5).

In Fig. 6 we have seen that when combining the unconstrained model with a nega-
tive binomial or a Gaussian transformed noise it is possible to improve upon the natural
and current state-of-the-art on the peak detection accuracy, the Up—Down model with
a Poisson noise, in both H3K36me and H3K4me3 datasets. We argue that this improve-
ment is likely explained by the ability of the negative binomial and the Gaussian trans-
formation to reduce the over-dispersion as illustrated in Fig. 4. In summary, we believe
that the better we model dispersion the better we improve the accuracy of the segmenta-
tion model. Figure 7 have shown that the unconstrained segmentation model with noise
models reducing over-dispersion are also at least as robust as MACS or HMCan heuris-
tics. It is an important criterion showing the applicability of our proposed models.

Still in Fig. 6, we have seen that the Up—Down model with a negative binomial or a
Gaussian transformed noise, which reduce the over-dispersion phenomenon, doesn’t
improve the accuracy upon the Up—Down model with a Poisson noise. One hypothesis
to explain these results is that the constraints, which lead to the reduction of the space
of optimal reachable segmentations with the Up—Down model, also reduce the probabil-
ity of adding biologically uninformative changepoints induced by the over-dispersion.
Consequently, the Up—Down model has the advantage to be a model with good internal
over-dipsersion resistance properties but is bounded by its poor adaptability to the sig-
nal. We argue the constraints also explain that the Up—Down model is more robust than
the unconstrained model and the MACS and HMcan heuristics (see Fig. 7).

We have added several supplementary figures (see Additional file 1: Figs. 4—10) which
illustrate typical results from the test folds for the MACS and HMCan heuristics as well
as our proposed segmention models.

Segmentation models applied to other types of ChIP-seq experiments

In this paper, the broad (H3K36me3) and sharp (H3K4me3) histone signals have been
discussed. Previous studies already demonstrated the applicability of optimal change-
point algorithms to other types of experiment. For example, Fig. 7 in Hocking and Bour-
que [9] showed that optimal changepoint algorithms on H3K9me3 and H3K27me3 data
typically result in peaks with intermediate sizes (3.5-3.9 kb on average) compared with
the relatively small H3K4me3 (1.0-1.7 kb) and relatively large H3K36me3 (35.8-48.0
kb). The peak calling of transcription factor binding sites such as MAX, SRF and NRSF
was also previously tested (see Supplementary Fig. 3 in Hocking et al. [7]). By reducing
the over-dispersion in count data with the Gaussian transformed or the negative bino-
mial noise models, we would expect similar improvements in accuracy for these other
experiment types. Furthermore, we did not test our proposed models on mixed signal
like Pol II. We leave the two last points for future research.

Conclusion

We developed the CROCS algorithm that computes all optimal models between two
peak bounds, given any segmentation algorithm with constant penalty / for each change-
point. This set of optimal segmentations is essential to compute the error rate function,
which is in turn used in the supervised approach for learning the tuning parameters of
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the segmentation models. We proposed to solve the peak detection problem by using
the unconstrained segmentation model that takes advantage of the max jump rule we
introduced as well as the negative binomial or Gaussian transformed noise model. We
have shown that this model improves upon the accuracy of the model built on natural
assumptions (constrained segmentation (Up—Down) with Poisson noise model) in both
H3K36me3 and H3K4me3 datasets. The unconstrained model with the negative bino-
mial or Gaussian transformed noise model can be used to provide new high-quality peak
prediction tracks for H3K36me3 and H3K4me3 histone modifications. These peak pre-
diction tracks will be a more accurate reference for researchers in the field of epigenetics
who want to analyze these data.

Future work

Our results suggest that with both negative binomial and Gaussian transformed noise
models the over-dispersion could be further reduced. Regarding the negative binomial
noise model, one could think about predicting a local dispersion parameter for each cov-
erage profile. Furthermore, the literature about Gaussian transformations is wide and a
comparative study integrating segmentation models with different transformations for
count data, e.g. the Box—Cox transformation, arcsin square root transformation or log-
transformation, would also be an interesting avenue for future work. As described in
Anscombe [1] some of these well-known transformations have, in theory, better vari-
ance-stabilizing proprieties for over-dispersed count data than the one we used in this
study (/Y + %). Still, they are highly dependent on the estimation of the dispersion

parameter ¢ which in our case can be directly taken into account in the statistical model,
i.e by using the negative binomial noise model implemented in gfpop.

In this paper we explored two different segmentation models, the unconstrained seg-
mentation model and a constrained segmentation model where each non-decreasing
change is followed by an non-increasing change in the mean (Up—Down). The gfpop
method makes it possible to model changepoints even more precisely by constraining
for example the minimum size of jumps or the minimum size of segments. It would be
interesting in future work to test other constrained models or to model the auto-correla-
tion [4, 18] in the context of the peak detection problem in ChIP-seq data.
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Supplementary materials for “Increased peak detection
accuracy in over-dispersed ChIP-seq data with
supervised segmentation models”

datasets type of ChIP-Seq experiment ‘ number of folds
H3K36me3 AM immune H3K36me3 (broad peaks) 10
H3K36me3 TDH immune | H3K36me3 (broad peaks) 4
H3K36me3 TDH other H3K36me3 (broad peaks) 4
H3K4me3 PGP _immune H3K4me3 (sharp peaks) 10
H3K4me3 TDH_immune H3K4me3 (sharp peaks) 10
H3K4me3 TDH other H3K4me3 (sharp peaks) 10
H3K4me3 XJ immune H3K4me3 (sharp peaks) 10

Table 1: Summary of the number of folds in the cross-validation procedure by dataset.
Two of the seven labeled histone mark datasets, i.e. H3K36me3 TDH immune &
H3K36me3 TDH other, can be considered small datasets as they include biological repli-
cates from four independent genomic chunks. In order to satisfy the assumption of indepen-
dence between the training and test set in the cross-validation, we could not exceed 4-fold
for both of them.
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Figure 2: (Top) Visualization of > iiine st Em(® € ®,A). The global minimum error

(57), shown in red M, is reached for \* = 46.86 and ¢* = 135.94. (Bottom) For each ¢;,
i.e 16 values evenly placed on the log scale between 1 and 10000, the minimum error of
E..(¢i, A) has been plotted. We can see the errors growing constantly at the left en right
side of ¢* which suggests that this range of ¢ is appropriate for learning a suitable dispersion

parameter value.
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Chapter B

Ms.FPOP : an exact and fast segmentation al-

gorithm with a multiscale penalty

B.1 Ms.FPOP

This article has been submitted to the journal Journal of Computational and Graphical

Statistics and is already available on arXiv (doi.org/10.48550/arXiv.2303.08723).
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Ms.FPOP: an exact and fast segmentation
algorithm with a multiscale penalty

Arnaud Liehrmann *12

and
Guillem Rigaill?
I Institute of Plant Sciences Paris-Saclay (IPS2)
? Laboratoire de Mathématiques et de Modélisation d'Evry (LaMME)

May 22, 2023

Abstract

Given a time series in R™ with a piecewise constant mean and independent noises,
we propose an exact dynamic programming algorithm to minimize a least square cri-
terion with a multiscale penalty promoting well-spread changepoints. Such a penalty
has been proposed in Verzelen et al. (2020), and it achieves optimal rates for change-
point detection and changepoint localization.

Our proposed algorithm, named Ms.FPOP, extends functional pruning ideas of
Rigaill (2015) and Maidstone et al. (2017) to multiscale penalties. For large signals,
n > 105, with relatively few real changepoints, Ms.FPOP is typically quasi-linear and
an order of magnitude faster than PELT. We propose an efficient C++ implementa-
tion interfaced with R of Ms.FPOP allowing to segment a profile of up to n = 10° in
a matter of seconds.

Finally, we illustrate on simple simulations that for large enough profiles (n > 10%)
Ms.FPOP using the multiscale penalty of Verzelen et al. (2020) is typically more
powerfull than FPOP using the classical BIC penalty of Yao (1989).

Keywords: changepoint detection, multiscale penalty, maximum likelihood inference, dis-
crete optimization, dynamic programming, functional pruning
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1 Introduction

A National Research Council report [Council et al., 2013] identifies changepoint detection
as one of the “inferential giants” in massive data analysis. Detecting changepoints, whether
a posteriori or online, is important in areas as diverse as bioinformatics [Olshen et al., 2004,
Picard et al., 2005], econometrics and finance [Bai and Perron, 2003, Thies and Molnér,
2018], climate [Reeves et al., 2007], autonomous driving [Galceran et al., 2017], computer
vision [Ranganathan, 2012] and neuroscience [Jewell et al., 2020]. The most common
and prototypical changepoint detection problem is that of detecting changes in mean of a

univariate gaussian signal :
yt:ft+€t7 fortzl,...,n, (1)

where f; is a deterministic piecewise constant with changepoints whose number D and
locations, 0 < 71 < ... < 7p < n, are unknown, and ¢; are independant and follow
a Gaussian distribution of mean 0 and variance 1. A large number of approaches have
been proposed to solve this problem (amongst many others [Yao, 1989, Lebarbier, 2005,
Harchaoui and Lévy-Leduc, 2010, Frick et al., 2014, Fryzlewicz, 2020], see [Aminikhanghahi
and Cook, 2017, Truong et al., 2020] for a review).

Recently, [Verzelen et al., 2020] characterize optimal rates for changepoint detection and
changepoint localization and proposed a least-squares estimator with a multiscale penalty
achieving these optimal rates. This multiscale penalty depends on minus the log-length of
the segments which promotes well spread changepoints. It can be written as :

D+1

S+ Blog(n) — Blog(ra — 7). (2)

where v = gL and = 2L with ¢ positive and L > 1, and with the convention that 75 = 0
and Tpi1 = n.

Up to a multiplicative constant this penalty is always smaller than the BIC penalty
(2log(n)) [Yao, 1989]. Intuitively, it favors balanced segmentation as:

e the penalty of a fixed sized segment (r) increases with n : Slog(n/r).



e while the penalty for a segment whose size is proportional to n («.n) is constant of

n: flog(l/a).

Contribution In this paper, we propose a dynamic programming algorithm, named
Ms.FPOP optimizing a slightly more general penalty. where the log(7y — 74-1) is replaced

by g(74 — 74-1) for an arbitrary function g satistying assumption Al.

Existing works Ms.FPOP extends functional pruning techniques as in PDPA or FPOP
[Rigaill, 2015, Maidstone et al., 2017] to the case of multiscale penalties. A key condition
for FPOP and PDPA is that the cost function is point additive (condition C1 in [Maidstone
et al., 2017]). As we will explain in more details later, this condition is not verified for the
multiscale penalty (2), making the extension not trivial. The key idea behind functionnal
pruning is to store the set of parameter values for which a particular change is optimal.
For a classical penalty (i.e. with a point additive cost function) this set gets smaller with
every new datapoint. This is not the case with the multiscale penalty making the update
more complex. A key insight of Ms.FPOP is to store a slightly larger set that is easy to
update.

Importantly, it is possible to optimize the multiscale criteria of [Verzelen et al., 2020]
using inequality based pruning as in PELT. We will call Ms.PELT this strategy. However
for large signals with relatively few true changepoints it is our experience that Ms.PELT is
quadratic while Ms.FPOP is quasi-linear. For example it can be seen on Figure 1.A that
it takes about 193 seconds for Ms.PELT to process a signal of size n = 128000 without
any changepoint. In the same amount of time Ms.FPOP can process signals of size larger
than n = 4 x 10°. In the presence of true changepoints, (one every thousand datapoints)

Ms.PELT as expected is much faster but still slower than Ms.FPOP (see Figure 1.B).
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Figure 1: Runtimes of PELT and Ms.FPOP as a function of n to optimize the multiscale
penalty of [Verzelen et al., 2020] with 8 = 2.25 and ¢ = 9 on an Intel Core i7-10810U CPU
@ 1.10GHzx12 computer for signals without changes (A) or signal with a change of size 1
every thousand datapoints (B).

Outline In the rest of the paper we will (1) introduce our notations, (2) review the
key idea behind FPOP, (3) explain how and under which conditions we extend FPOP to
multiscale penalty, (4) study the performance of Ms.FPOP relative to FPOP for various

signals and (5) conclude with a discussion.

1.1 Multiple changepoint model

In this section we describe our changepoint notations and the multiscale criteria we want

to optimize.

Segmentations and set of segmentations For any n in N we write 1 : n = {1,--- ,n}.
For any integer D > 0 we define a segmentation with D changes of 1 : n as an ordered
subset of 1 : (n—1) of size D, with 7; the location of the j change for jin 1,..., D. It will
be usefull to also consider the dummy indices 7o = 0 and 7p; = n. We call M¥  the set of
all such segmentations in D changes and M., the union of all these sets : Uog D<n_1 MP

For any segmentation 7 in M., we note |7| the number of segments of 7. In other words,



if 7is in M% then |7| = D + 1. We can enumerate the elements of M., and we get :

n—1 n—1
Mual = 1ME =3 (")) =2

D=0 D=0

Multiscale penalized likelihood Under the piecewise constant model (1) a classical
method to estimate the position and the number of changes is to optimize a penalized like-
lihood criterion. It is common to use a penalty that is linear in the number of changepoints
[Yao, 1989, Killick et al., 2012, Maidstone et al., 2017] and optimization wise the goal is to

compute:

. |7l 7j
_ ~ ‘ 2
T, = arg min E min E (yi — ) | +alt| 7,
TEM1:n j=1 i=Tj_141
|| j
F . . . o 2
n = min min (yi — ) | +alt| ¢,
TEMI:n 3 1 .
j=1 1=T7;—-1+1

(3)
where « is a constant to be calibrated (e.g. a = 2log(n)).

Here we consider a more general penalty that depends on the length of the segments:

|7 Tj
* ) .
T, = arg min Zmﬂln Z (y; — ,u)2 — Bg(rj —7j-1) | + 7| ¢,
TeMun | G5 i=rj_1+1
|| Tj
F, = TéIjE‘III me Z (y; — p)* — Bg(t; —1i21) | +alt| p,
o =1 1=T7;_1+1

(4)
where g is a function satistfying assumption A1l described in the next paragraph, and a and
[ are constants to be calibrated. We recover the multiscale criteria proposed in [Verzelen

et al., 2020] taking g = log, & = v + g(n), and 7 a constant that remains to be chosen.
We recover the classical penalty of [Yao, 1989] taking g = 0, o = 2log(n).

Assumption 1. h(t,s,s") = g(t — s') — g(t — s) is a non-decreasing function in t and

limy o h(t, s,s") = 0, therefore h(t,s,s’) < 0.



This assumption will be useful later to bound the difference between the cost of two
changes s and s'. Intuitively, assumption Al states that g favors older changes but that
asymptotically (large enough ¢ relative to s and s’) this advantage for older changes van-
ishes. Importantly, this assumption is true for the multiscale penalty proposed in [Verzelen

et al., 2020] as f > 0 and g(t —s') — g(t — s) = log(1 — (s’ — s)/(t — 5)) is increasing with ¢.

1.2 Optimization with dynamic programming

In this section we explain how one can optimize equation (4) using dynamic programming

ideas with (i) inequality based pruning and (ii) functional pruning.

Dynamic programming with inequality based pruning The penalised cost of a
segmentation 7 inside the arg min of equation (4) can be written as a sum over all segments

of 7:

|7l j

Zmuin Yo wi—w)’ = Belr—1) +al,

j=1 i=Tj_1+1
therefore the optimisation can be done iteratively using the Optimal Partionning (OP)
algorithm proposed in [Jackson et al., 2005] using dynamical programming ideas developped
in [Auger and Lawrence, 1989] and [Bellman, 1961]. It is possible to speed up calculations
using the PELT algorithm [Killick et al., 2012] because equation (4) of [Killick et al., 2012]
is true at least for constant K = —f(maxi</<,{g(¢)} — 2min;<,<,{g(¢)}) (see Appendix
A). If g is concave (such as in the penalty (2) proposed in [Verzelen et al., 2020]), K can
be chosen much closer to zero : K = —f(g(2) — 29(1)) (see Appendix A), or adaptively
to the last segment length ¢ : K, = —5(g(¢) + g(1) — g(¢ + 1)) (see Appendix B). Our
implementation of PELT optimizing (4) with ¢ = log and K, = —flog(3 + 1) is called
Ms.PELT. Note that K, < —flog(2).

As shown in the Figure 1, if the number of real changepoints is not linear in n, for
g = log, and a positive #, Ms.PELT is quadratic. This makes the analysis of large profiles
with 105 or 10® datapoints long and unpractical (e.g. more than 100 seconds for a profile
with 105 datapoints and one changepoint, more than 1 hour for a profile with 10¢ datapoints

and one changepoint).



Dynamic programming with functional pruning In the rest of the paper, we present
a functional pruning algorithm (called Ms.FPOP), in the sense of the PDPA [Rigaill, 2015]
or FPOP [Maidstone et al., 2017], to solve (4). Ms.FPOP optimizes (4) in a matter of
seconds even for n = 10°. As the cost of equation (4) is not point-additive, condition C1 of
[Maidstone et al., 2017] is not true, and maintaining the set of means for which a change
is optimal is more complex. Our key idea is to maintain a slightly larger set that is easier

to update.

2 Functional pruning

2.1 Functional pruning optimal portioning (FPOP)

To better explain Ms.FPOP, we first review some of the key elements of FPOP to optimize
equation (3). FPOP introduces for every change s its best cost as function of the last
parameter p at time ¢, f~t7s(u). Formally this is:
t
frs(p) = Fs + Z (yi— )’ +a, with fi(u)=F+a and Fy=-a. (5)
1=s+1
ﬁ,s(u) is a second degree polynomial in ;1 defined by three coefficients : au? +a;p+ag with
t

as=t—3s,a; = —2 Z:zsﬂ y; and ag = Fy + a + Z yf. The update of these coefficients

1=s+1
is straightforward using the following formula:

Fos(1t) = Frors (1) + (g — ). (6)

At each time step t, FPOP updates the minimum of all ft,s(u), denoted E(,u) =
ming<; {f;s(u)} . The key idea behind FPOP is that to compute and update F(j) one
only need to consider changes s with a none empty “living-set” : F; = {s < |2}, # 0}
where the “living-set” of change s is Z;, = {1 frs(1t) = Fy(11)}. Given those definitions we
have ﬁt(u) = minger, {ﬁs(u)} In other words, s is pruned as soon as its “living-set” is

empty, which is justified because
Z;(,s ) Z:—i—l,s and Zt*,s = @ = Z:—i—l,s = (Z) . (7)
Note that we can then retrieve F; by minimizing E(u) on .

7



2.2 Ms.FPOP: functional pruning for a multiscale penalty

Ms.FPOP optimizes equation (4). As for FPOP we introduce for every change s its best

cost as a function of the last parameter p at time t, ﬁys(u). Formally this is :

ﬁ,s(ﬂ):Fs+ Z(yi_ﬂ)2+a_ﬁg(t_s)7 (8)

i=s+1

with fi.(1) = F, + a and Fy = —a. As in FPOP, ﬁ,s(u) can be stored as a second degree

polynomial in p. The update is also straightforward using the following formula:

Frs(i) = fiors(m) + (g — p)? + Bg (t — 1 — 5) — By (t — 5) 9)

Analogously to FPOP we can calculate F; by minimizing fm both on p and s. The
main difference with FPOP is that the rule (7) is no longer true for Ms.FPOP because

ﬁ,s(ﬂ) — ﬁ,s/ (p) depends on t:

Foslt) = Fog ) = Fo— ot S (w— p? + Blglt —5) — gt =), (10)
1=s+1 e .
a function varying
with t, s et s’

Because of that, in the course of the algorithm we need to re-evaluate the set on which the

candidate change s is better than ' at various ¢, I, , » with s < s':

Lo ={nl fus() < fio(w}. (11)

For arbitrary functions g the set I, , o may vary drastically from one ¢ to the next.

Using assumption A1l we can control those variations.

2.2.1 Update of the candidate changes living set (7, )

Rather than evaluating the exact living set Z;, of all changes, we are seeking to update a
slightly larger set, Z; ,, including Z;, and such that if Z; ; is empty we can guarantee that
Zf p.s is also empty for all A > 0. The possibility of defining such a Z; ; depends on the

property of the function g.



Assume A1l we propose to update Z;;4 5 as follow:

comparison with future changes comparison with past changes

Zt+1,s:Zt,s N ( m It+1,s,s’) \ ( U Ioo,s”,s) ) (12)

s'€AL s s €Bs

where A, is any subset of {s + 1,...,t}, By is any subset of {1,...,s — 1}, and I

/
»S,S

correspond to I, . » when ¢ — oo (which is properly define under assumption Al).

Pruning Based on update (12) it should be clear that if Z; ; is empty so are all Z; s,
for h > 0. In the next lemma we show that Z;, includes Z; . Therefore we further have

that if Z; s is empty so are all Z;,, ., and change s can be pruned.

Lemma 1. Taking Zs s =|min;y;, max; y;|[, updating Zi 11 s using equation (12) and assum-

ing A1 we have

Zt*,s C Zt,s 9 (13)
and for an integer h > 0
Zinn C Zuvs (14)

Proof. For any t, we will prove by induction that for any ¢’ in {s, --- , ¢} we have Z}  C Zy ;.
For ¢ = s and for any ¢ larger or equal to s we have (by definition of Z,;) that
Zi  C lys = Zss.
Now assume that for t' < ¢ we have Z; C Zy ;. As h is non-decreasing for any ¢'+1 < ¢

we have the following two inclusions :

It,s,s’ - [t’+1,s,s/' (15)
Ioo,s,s’ - [t’+1,s,s/ (16)



Therefore for ¢’ < t we have

Zi, = ( () Lo\ Tuoms) by definition of Z;,
s<s' <t s <s
Zi, C Zyps N ﬂ I, o \( U Li g 5) by induction
s<s'<t s <s
C Zvs N () Topree)\( U o) using equation (15) and (16)
s <s'<t s'< s
C Zvs N( ﬂ It’+1,s,s’)\( U Ioo,s",s) by definition of Ay s and B;.
s'e Ay, s"€ By

Using equation (12) we thus get that Z;, C Zy 1, proving the induction.
To recover equation (14) we notice from update (12) that Z;11 s C Z;s and apply
equation (13). O

2.2.2 Ms.FPOP algorithm, choice of A, and B;

The update rule (12) suggest that for each candidate change s we should compare it future
change s’ in A, 5, and past change s” in By. For past candidate changes s" this comparison
can be done once and for all considering that ¢ goes to infinity (I, . ,). For future candi-

date changes s , on the contrary, it might be usefull to update the interval I, Performing

,s,s/ :
at each time step, for each s, a comparison with all s’ is time consuming. Intuitively, the
complexity of each time step is in O(number of candidate ChangeSQ). Ideally, for each s, one
would like to make the minimum number of comparisons that would result in its pruning.

In the Algorithm 1 we consider a generic sampling function of s’ that returns A;  (see the

Sampling Strategies paragraph in section 3).
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Algorithm 1: Ms.FPOP
Input: Y = (y1,..,9n), @, B, g=1log(.)

Output: set of last best changes cp,
1 n<+|Y];
2 Fy + —ao;
3 cpo < 0;
4 Ry + {0};
5 D+ [min(Y), max(Y)];
6 Zoo <+ D;
7 ﬁw — Fy+a(=0);
s fort+1,..,ndo

9 for s € R; do

10 Fros(i) = Fro(m) + (e — ) + B x gt —1— ) = B x g(t — s);
11 end

12 Fy + mingep, (mingez, | (J?t,s(ﬂ)))§

1o | s e argmingep, (minsez, ,(fa(n)):

14 cpy < (Cps“ 5t)§

15 ft,t < Ft + «o;
16 Zt,t — D,

17 for s € R; do

18 Zyy < Zyyg \ Too st

19 Ay s sample({s/ e {R:U{t}}: s > s});
20 Zis = Zes NV (Nye a,, Lo

21 end

22 RtJrl < {8 S {Rt U {t}} : Zt,s 7A 0}7

23 end

3 Rcpp implementation of Ms.FPOP algorithm

Ms.FPOP R package The dynamic programming and functional pruning procedures
describe in the algorithm 1 are implemented in C++. The input and output operations
are interfaced with the R programming language thanks to the Repp R package. The main
function MsFPOP () takes as input the sequence of obervations, a vector of weights for these

obervations, the parameters S and « of the multiscale penalty. The function returns the

11



set of optimal changepoints in the sense of (4). Analogously, we implemented a version of

the PELT algorithm, MsPELT (), that optimizes (4).

Sampling strategies To recover 4, we consider either an exhaustive sampling of all
future changes s’ > s in R; or a uniform random subsampling of them without replacement.
The main function parameter size can be set by the user to specify for each s the number
of sampled s’. In the appendix we compare the runtime of different sampling strategies

(see Appendix D).

4 Simultation study

4.1 Calibration of constants v and  from the multiscale penalty

Paper [Verzelen et al., 2020] does not recommend values for v and § in their penalty (2).
As explained in detail below, we calibrated those values to control the percentage of falsely

detecting at least one change in profiles simulated without any actual change.

No change simulation We repeatedly simulate iid Gaussian signals of mean 0, variance
1 and varying lengths n (n € {10% 10%,10% 10%,2.5 x 10°}). On these profiles we run
Ms.FPOP for different v values (ten v values evenly spaced on the interval [1,20]) and
different (3 values (5 € {2,2.25,2.5,2.75,3}).

Percentage of false detection We denote R~ as the proportion of replicates for which
Ms.FPOP returns at least one changepoint. These changepoints are false positives. Our

goal is to find a combination of # and 7 such that

R~y < 0.05 (significance level) . (17)

Empirical results In Figure 2 we observe that, by setting § = 2.25, a conservative range
of 7 satisfying inequality (17) can be reached for v € [7.5,10]. Note that this interval satisfy
inequality (17) for all tested n and /5 (see Appendix C).
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Based on these results, in the following simulations we set v = 9 and 8 = 2.25! for all
methods optimizing (4) (Ms.FPOP, Ms.PELT). We set a = 20%log(n) for all methods
optimizing (3) (FPOP, PELT).

1-alevel (0.95)

I e
w ~
S a

1 — proportion of designs with > 0 changepoints
o
°© :
[6)]

5 10 15 20
Y

n: 100 1000 — 10000 — 100000 250000

Figure 2: Proportion of stationary Gaussian signal replicates on which Ms.FPOP
returns at least one changepoint (R.y). R~ is computed for a series of  and profile
lengths (see Design of Simulations). In these simulations we set 5 = 2.25. Results for other

[ values are availables in Appendix C.

4.2 Evalutation of Ms.FPOP: speed benchmark

Design of simulations We repeatedly simulate iid Gaussian signals with 105 dat-
apoints. The profiles are affected by one or more changepoints in their mean (D €
{1,5, 10,15, 20, 25, 30, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,

700, 750, 800, 850, 900, 950, 1000} ). The mean of segments alternates between 0 and 1, start-
ing with 0. The variance of each segment is fixed at 1. On these profiles we run two methods

optimizing the penalized likelihood defines in (3): PELT [Killick et al., 2012] and FPOP

IThis is equivalent to setting L = 1.125 and ¢ = 8 in equations (31) and (32) of [Verzelen et al., 2020]

13



[Maidstone et al., 2017], as well as methods optimizing the multiscale penalized likelihood
defines in (4): Ms.PELT and Ms.FPOP. For Ms.FPOP, after comparisons with other sam-
pling strategies (see Appendix D), we choose to randomly sample one future candidate

change.

Metric For each replicate we time in seconds the compared methods.

Empirical results In Figure 3 we firstly observe that for both criteria (multiscale pe-
nalized likelihood and penalized likelihood), functional pruning methods are always faster
than inequality based pruning ones. Indeed, Ms.FPOP and FPOP are always faster than
Ms.PELT and PELT, respectively. The smaller D, the larger the time difference between
functional pruning methods and inequality based pruning ones. For D = 1, Ms.FPOP runs
in 2.4 seconds in average and is about 50 times faster than Ms.PELT (121.3 seconds in
average). For D = 1000, Ms.FPOP runs in 0.7 second in average and is about 1.3 times
faster than Ms.PELT (0.9 second in average). Marginally to D, FPOP runs always under
0.05 seconds. Similar trends can be observed on iid Gaussian signals with 106 datapoints

(see Appendix D).
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Figure 3: Runtimes as a function of the true number of changepoints. We timed
PELT, Ms.PELT, FPOP, Ms.FPOP on profiles of length n = 10° with varying number
of true changepoints D (see Design of Simulations) on an Intel Core i7-10810U CPU @
1.10GHzx12 computer. The comparison between sampling strategies of future candidate
changes implemented in Ms.FPOP and the comparison of PELT, FPOP, Ms.FPOP on
profiles of length n = 10° are availables in Appendix D.

4.3 Evalutation of Ms.FPOP relative to FPOP: accuracy bench-

marks

In this section we seek to illustrate using minimalist simulations the performances of the
multiscale criteria proposed in [Verzelen et al., 2020] and implemented in Ms.FPOP relative

to the BIC criteria proposed in [Yao, 1989] and implemented in FPOP.
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4.3.1 Hat simulations

Design of simulations We repeatedly simulate iid Gaussian signals of varying size
n € {103,10%,10°}. Each signal is affected by two changepoints. The second changepoint
(12) is fixed at position |2 | while we vary the position of the first changepoint (11) (see
Figure 4.A). 7 takes a series of 30 positive integers evenly spaced on the log scale on the
interval [1, [ #]]. We also look at the symmetry of this series builds around | 2] (i.e. [3]—m,
see dotted lines in Appendix E). Note that for 7, = | %] the segmentation is balanced. The
means of the three resulting segments are set to u; =0, ps = \/@ and pg = 0. We run
both Ms.FPOP and FPOP on these profiles. Ms.FPOP incorporates a multiscale penalty,
while FPOP assigns equal weight to all segment sizes and serves as a reference point for
comparison with Ms.FPOP. We anticipate that the multiscale penalty in Ms.FPOP will
lead to more accurate segmentations of profiles with well-spread changepoints compared
to FPOP. Additionally, as the size of the data (n) increases, we expect Ms.FPOP to get

similar performance or outperform FPOP in terms of accuracy for all segment sizes.

Metric We denote R, the proportion of replicates for which a method returns exactly

two changepoints. We also denote Ag,, the log,-ratio between Ry of Ms.FPOP and FPOP.

Empirical results In Figure 4.B and Appendix E we observe that with both Ms.FPOP

and FPOP, R, increases when 7 tends towards | %] (balanced segmentation). Note that

the maximum is reached before 7, = | % ].

Furthermore, in agreement with our expectations, in Figure 4.B we observe that Ag,
increases when 71 tends towards | % |. When n increases, the differences observed on small
segments in favor of FPOP (Ag, < 0) disappear (Ag, — 0) and the differences on other

segments in favor of Ms.FPOP (Ag, > 0) are accentuated.
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Figure 4: Ms.FPOP increases the probability of finding well spread changepoints
on hat simulations. - (A) denoised profile with two changepoints. The second change-
point is fixed at [%*] while the first one () varies on the interval [1, [%]]. The means of
the three resulting segments are set to ;1 = 0, ps = \/1»% and pu3 = 0 which gives the
profile a hat-like appearance. An iid Gaussian noise of mean 0 and variance one is then
added (see Design of simulations). - (B) The proportion of replicates for which Ms.FPOP
and FPOP return two changepoints (R2) as well as the log,-ratio of the two estimations

(Ag,) are computed for varying 7 and n.
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4.3.2 Extended range of simulation scenarios

Design of simulations Following a protocol written by Fearnhead et al. 2020, we simu-
late different scenarios of itd Gaussian signals. Each scenario is defined by a combination of
D, n, T, u. For each scenario we vary the variance o2 (see Supplementary Data of [Fearn-
head and Rigaill, 2020]). All the simulated profiles, with a variance one, can be seen in see
Appendix H. Based on these initial scenarios we simulate another set of profiles in which
profile lengths are multiplied so that each segments contain at least 300 datapoints. These
new set of simulated profiles can be seen in Appendix G. For each scenario and tested o2

we simulate 300 replicates.

Metric We denote AE%, the average number of times a method is at least as good as
other methods in terms of absolute difference between the true number of changes and
the estimated number of changes (Ap), mean squared error (MSE) or adjusted rand index
(ARI). The closer to 100 (AE%), the better the method. See Supplementary Data of
[Fearnhead and Rigaill, 2020] for a formal definition of this criterion.

Empirical results On the simulation of [Fearnhead and Rigaill, 2020] in which a large
portion of the segments have a length under 100 the performance of Ms.FPOP are worse
than FPOP and MOSUM [Meier et al., 2021] on almost all scenarios except Dt7 that do
not contain any changepoint (see Appendix H).

On the second set of profiles, using Ap as comparison criterion, we observe on Figure
5 that Ms.FPOP get similar performance or is better than FPOP and MOSUM in all
scenarios marginaly to o2. The results are similar when we use MSE or ARI as a criterion

of comparison (see Appendix G).

5 Discussion

Extending functional pruning techniques to the multiscale penalty In section
2.2 we have explained how to extend functional pruning techniques to the case of multi-

scale penalty. In Figures 1 and 3 we have seen that for large signals (n > 10°) with few
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Figure 5: AE% as a function of the scaling factor for the variance (comparison
criterion : Ap). The average number of times a method is at least as good as other
methods in terms of Ap is computed for FPOP, Ms.FPOP, and MOSUM on different
scenarios of #d Gaussian signals and varying o2. The smallest segment length is greater or
equal to 300 (see Design of Simulations). Each panel stands for the results on one scenario.

Corresponding profiles can be viewed in Appendix G.

changepoints, Ms.FPOP is an order of magnitude faster than Ms.PELT (which relies on
inequality based pruning, see Appendix A and B). Even when the number of changepoints

increased linearly with the size of the data, Ms.FPOP was still faster than Ms.PELT.

19



The main update rule (12) of our dynamic programming algorithm suggests to compare
each candidate change s with a set of future candidate changes s’. As we have seen in
Appendix D, the strategy of randomly drawing one s’ according to a uniform distribution
is the best strategy and allows us to tackle large signals. It is likely that uniform sampling is
not optimal. The algorithm alternates between good draws (leading to a strong reduction of
Zy s or even the pruning of s) and bad draws (leading to a weak reduction Z; ;). On average

this is sufficient but improvements are possible. In particular the study of h(t,s,s’) =

t—s’'
S

log(=%) (see Assumption Al), suggests disfavoring s’ that are too recent or that have been

compared recently.

Calibration of v and § from the multiscale penalty The least-squares estimator
with multiscale penalty proposed by [Verzelen et al., 2020] involves two constants v and
that still need to be investigated. Using signals simulated under the null hypothesis (no
changepoint) we have seen that it is possible to find a pair of constants v = 9 and 5 = 2.25
for which Ms.FPOP controls R-g. Under this setting we have shown on hat (see section
4.3.1) and step (see Appendix F) simulations that Ms.FPOP is more powerful than FPOP
on segmentations with well-spread changepoints. This difference of power grows with n.
For segmentation with small segments FPOP is more powerful Ms.FPOP when n is small
(= 10?), but for larger n (> 10*) this difference disappears.

We also tested Ms.FPOP on the benchmark proposed in [Fearnhead and Rigaill, 2020].
The performances of Ms.FPOP are not so good on the original benchmark containing
mostly small profiles with small segments but much better for an extended benchmark
with larger profiles (see section 4.3.2).

Without additional work on the calibration of the constants, we would thus recommend

using Ms.FPOP for large profiles (> 10%).

Unknown variance All our simulations have been done on signals with known variance,
o%. However, in real-world situations, this may not always be the case. One approach is to
estimate o2 and then plugging-in it in the problem, i.e scaling the signal or the penalty by

0—12 or 02, respectively. A robust estimate of o can be obtained by calculating the variance
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of Ay =Y;,1 — Y, using either the median absolute deviation or the estimator suggested
in [Hall et al., 1990]. As an alternative, [Verzelen et al., 2020] pointed out that one could
calibrate the multiplicative constant L of the penalized least-squares estimator using the
slope heuristic [Arlot, 2019]. Investigating the performances of these various approaches is

outside the scope of this paper.
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Appendix A PELT for multiscale penalized likelihood

Following the notation of the PELT paper [Killick et al., 2012] the cost of a segment from
s+1tos', s+1:5s isdefined as Cyi .o = Zflzsﬂ(yi —Ysr1:5)? — Bg(s’ — s). In what follow
we consider three time points s < s’ < t. Let £ = s’ — s denote the length of the sequence
of observations between time s and s’ and ¢/ =t — s’ denote the length of the sequence of
observations between time s’ and t.

The key condition to apply the PELT algorithm [Killick et al., 2012] is that up to a

constant K adding a changepoints always reduce the cost, that is :

Assumption 1.

Cs—i—l:s/ + Cs/—i-l:t + K S Cs+l:t (1)

The following lemma ensure that such K exists for any n and provide explicit values

for K in general and if g is concave.

Lemma 1. (a) For any function g from R to R, 8 >0, and any n, Assumption 1 is true
at least for K = 2B minj<y<,{9(¢)} — S maxi<p<,{g(0)}. (b) If g is concave the condition
is true for K = —fg(2) + 28g(1).



Proof. We first note that

o . . AN /
my = min o min {g(0) +g(C) —g(C+ L)}
L+0'<n

is well defined as the minimum of a finite set. By definition of m, we thus have, for any

1<s< s <t<nandfor any K < m,, that
—Bg(s' —s) = Pyt =) + K < —PBg(t —s)

Combining this with

s’ t t

Z (yz - gs+1:s’)2 + Z (yz - gs’+1:t)2 S Z (yz - ys+1:t)2-

i=s+1 1=s'+1 i=s+1
we recover that equation (1) is true for any K < fm,,.
Now for any ¢, ¢ in {1,...,n}? such that £ + ¢ < n we have

2 min {g(()} — max {g(£)} < g(¢) + g(¢') — g(£+ ).

1<t<n 1<i<n

Hence we get

2 min {g(0)} — max {g(0)} < my,

1<t<n 1<t<n
and we recover (a).

In case ¢ is concave using the technical lemma 2 two times we get :

min {g(0) + gil') —g(l+ 1)} =g(0) +g(1) = g(£ + 1) (2)
+0'<n
and
. . "N / _ .
Join § min {g(6) +9(C) —g(t+ )} p =29(1) = 9(2)
14+ <n
For example, if ¢ = log we get K = —/log<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>