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Chapter 2

How to read this manuscript

2.1 On what and with whom

During my doctoral research, at the crossroad of biology, statistics, bioinformatics and com-

puter science, I worked on the development and the application of statistical models, algorithms

and methods for the analysis and interpretation of high-throughput biological (sequencing) data.

I submitted or published three research articles as the first author, along with another article as

the second author :

1. Liehrmann et al. [2021] is a modeling research article where, in collaboration with Guillem

Rigaill and Toby Hocking (Northern Arizona University), I compared different multiple

changepoint detection models and specialized bioinformatics heuristics within the context

of epigenetic mark detection ;

2. Liehrmann et al. [2023] is a methodological and applied research article where, in col-

laboration with Étienne Delannoy, Guillem Rigaill and Benoît Castandet, I introduced

DiffSegR, a method designed to identify transcriptome-wide expression differences across

two biological conditions in Ribonucleic Acid (RNA) sequencing data ;

3. Liehrmann and Rigaill [2023] is an algorithmic research article where, in collaboration

with Guillem Rigaill, I introduced Multiscale Functional Pruning Optimal Partitioning

(Ms.FPOP), a fast and exact multiple changepoint detection algorithm incorporating a

multiscale penalty [Verzelen et al., 2020] ;

4. Guilcher et al. [2021] is an applied research article where we studied the coordination of

chloroplast RNA maturation events at the transcriptome-scale using Nanopore-based RNA

sequencing data.

This last paper was made possible through the development of a method called comaturationTra-

ckeR. This was a collaborative project I initially embarked on with Chloé Seyman, a bachelor’s

student, and later continued with Benjamin Vacus, a master’s student. I had the opportunity to

co-supervise Chloé and Benjamin during the initial two years of my doctoral research.

In the ensuing chapters of this manuscript, I provide different perspectives on one or more of

these research articles, which can be found in the Appendix. I recommend that the reader first
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goes through the introductory Chapters 3 and 4 in their entirety, then refers back to Figure 2.1

for a deeper investigation of a particular problem of interest. As depicted in Figure 2.1, Chapters

5 and 6, which introduce more technical aspects of my papers, can be read in any order that aligns

with the reader’s preference. Nonetheless, it may be beneficial to first familiarize oneself with

the standard changepoints model presented in Chapter 5, as it forms the core of the DiffSegR

method introduced in Chapter 6.

2.2 Chapter 3

My thesis predominantly explores the transcriptome, which refers to the comprehensive set of

RNA molecules generated within a specific cell, tissue, or organism during a particular develop-

mental or physiological stage. Two of my research papers, Liehrmann et al. [2023] and Guilcher

et al. [2021], directly engage with its analysis. To contextualize these articles, in Chapter 3,

which also serves as a general introduction, I illustrate a multiscale perspective of transcriptome

analysis (Section 3.2.1), spanning from the gene-level, event-level, pair of events level, to the

isoform-level. I highlight a series of challenges that encompass technical, statistical, and biologi-

cal factors encountered at each scale (Section 3.2.2). These challenges are particularly acute at

the isoform-level. In conclusion, I suggest two strategies, Strategy 1 and Strategy 2, to improve

transcriptome analysis (Section 3.2.3). With my co-authors, I employed Strategy 1 and Strategy

2 in Liehrmann et al. [2023]. We also applied Strategy 1 in Guilcher et al. [2021].

2.3 Chapter 4

Throughout my doctoral research, I have had the privilege to work at the intersection of se-

veral disciplinesÐbiology, statistics, bioinformatics and computer scienceÐeach offering unique

insights and challenges in the study of high-throughput sequencing data. This interdisciplinary

collaboration involved close discussions with biologists, statisticians, bioinformaticians. Not wi-

thout effort, I tried to interpret biological questions and appropriately exploit statistical tools to

navigate the complexity of sequencing data. This was only made possible by adopting a patient

and attentive approach that values dialogue between disciplines. I was lucky enough to land in

research teams where such interdisciplinary dialogue was already an established practice, and

supported by researchers who are truly convinced of its usefulness. In this chapter, I try to make

these disciplines dialogue by providing a concise overview of :

1. the precise biological questions that I investigated ;

2. the corresponding statistical problems ; and

3. the statistical models that I proposed to tackle these specific problems.
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2.4 Chapters 5 to 6

I have written Chapters 5 and 6 as technical introductions to my four research articles.

In Chapter 5, I begin by introducing a standard model for multiple changepoint detection

(Sections 5.1 to 5.3), a model used in my research articles Liehrmann et al. [2021], Liehrmann

et al. [2023] and Liehrmann and Rigaill [2023]. Subsequently, I present a comprehensive review

of dynamic programming techniques to optimize this model (Section 5.4). I leveraged an exten-

sion of one of these techniques (functional pruning) in Ms.FPOP Liehrmann and Rigaill [2023].

Towards the end of this chapter (Section 5.5), I introduce the Ms.FPOP algorithm, beginning

by highlighting the statistical advantages of the multiscale penalty it employs, along with the

algorithmic challenge linked to optimizing the standard changepoints model with this type of

penalty. Lastly, I offer a brief description of how functional pruning operates within Ms.FPOP.

In Chapter 6, I articulate a rigorous strategy for the differential analysis of genes, events, and

pairs of event sites. This generic strategy prominently rests on a negative binomial Generalized

Linear Model (GLM), and an adaptive error control approach through a post-hoc procedure.

The methods to which I have actively contributed in development, namely DiffSegR (Section

6.4) and comaturationTrackeR (Section 6.5), implement this strategy.

2.5 Chapters 7

In Chapter 7, I provide some perspectives pertaining to the studies carried out in the course

of this thesis.
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Sections 3.1 to 3.3:
general introduction

Section 4.2:
detection of

epigenetic marks

Section 4.3:
detection of

RNA regulations

Section 4.4:
coordination of

RNA events

Sections 5.1 to 5.3:
standard changepoints

 model

Sections 6.1 to 6.3:
differential analysis

Sections 5.4 to 5.5: 
dynamic programming

& Ms.FPOP

Section 6.4: 
DiffSegR

Section 6.5: 
comaturationTrackeR

chapters: flow of reading:

normal
4. Formalization of the biological question and
proposal of a baseline model

5. Multiple changepoint detection

6. Applications for the multiscale analysis of the
transcriptome

7. Appendix (research articles)

shortcut

Appendix B.1:
Liehrmann and Rigaill

2023

Appendix A:
Liehrmann et al. 2021

3. General introduction

Appendix C: 
Liehrmann et al. 2023

Appendix D:
Guilcher, Liehrmann, 

et al. 2021

Figure 2.1 ś Dependencies between the sections of this manuscript.
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Chapter 3

Introduction

3.1 The transcriptome

3.1.1 RNA’s pivotal role in the central dogma of molecular biology

3.1.1.1 The central dogma

The central dogma of molecular biology is a fundamental principle that describes the ŕow

of genetic łinformationž within a cell through the use of three major classes of biopolymers :

Deoxyribonucleic Acid (DNA), RNA and proteins. It was first proposed by Francis Crick in

1957, subsequently published in 1958 [Crick, 1958], and specified by the same author in 1970

[Crick, 1970]. The term "information" here refers to the precise determination of sequence, either

of nucleotides in the nucleic acid or of amino acid residues in the protein. According to Crick’s

definition, once genetic information has passed into a protein, it cannot be transferred back to

nucleic acids. In more detail, the transfer of information from nucleic acid to nucleic acid, or

from nucleic acid to protein, is possible. However, the transfer of information from protein to

protein or from protein to nucleic acid is not (Figure 3.1). It is worth noting that the central

dogma of molecular biology has been rigorously tested, and not contradicted, through countless

experiments conducted in the latter half of the 20th century and the early 21st century, and

continues to provide a foundation for understanding biological processes at the molecular level.

3.1.1.2 The RNA, a central biopolymer in the central dogma

Within this framework, RNA plays a critical role in connecting DNA, which carries the geno-

type (the complete set of an organism’s genetic information) [Johnson et al., 2002], and proteins,

which constitute the highest level of biopolymers that link genotype to phenotype (the obser-

vable physical and functional traits of an organism) [Hartwell et al., 1999, Nussinov et al., 2019].

Therefore, one key aspect of deciphering the genotype-phenotype relationship is to thoroughly

investigate the transcriptome, which includes the complete set of RNA molecules, or simply

transcripts, produced within a given cell, a tissue, or an organism at a specific developmental or

physiological stage.
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Figure 3.1 ś The central dogma of molecular biology. Published in 1958 by Cricks, the central
dogma of molecular biology describes the ŕow of genetic information through three major classes
of biopolymers : DNA, RNA (both types of nucleic acids) and proteins. Crick posited that
the transfer of information from one nucleic acid to another, as well as from nucleic acids to
proteins, is possible. However, the reverse transfer of information from proteins to nucleic acids
is not possible. Within this framework, the RNA plays a central role in connecting DNA, which
carries the genotype, and the proteins, which constitute the highest level of biopolymers that
link genotype to phenotype. Consequently, the transcriptomeÐthe comprehensive set of RNA
molecules generated within a specific cell, tissue, or organism during a particular developmental or
physiological stageÐbecomes an ideal subject for exploring the genotype-phenotype relationship.
Notably, since its description, the central dogma has withstood the test of time, remaining
consistent with all experimental findings to date.
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In the subsequent sections, I will provide a comprehensive overview of two fundamental

biological processes that contribute to RNA metabolism :

RNA transcription Ðthe process through which genetic information from a specific DNA

segment is copied into RNA, and

RNA maturation Ðthe process through which a transcript is modified.

These biological processes play a crucial role in shaping transcriptome diversity, which in turn

plays a crucial role in determining phenotypic outcomes.

3.1.2 RNA metabolism

3.1.2.1 The RNA transcription, first stage of gene expression

The DNA template. The DNA is a biopolymer consisting of a well-ordered sequence of four

nucleotides most commonly referred to as bases : adenine (A), cytosine (C), thymine (T), and

guanine (G). As mentioned above, the intricate arrangement of nucleotides constitutes the genetic

information. In the cell, DNA molecules consist of two complementary oriented strands, with A

pairing with T and C pairing with G, forming a distinctive double helix structure. Both strands

undergo transcription, with the transcribed DNA segment encompassing one or more genes.

Transcription is the first stage of a series of biological processes known as "gene expression",

which is responsible for producing the functional RNAs and the proteins.

The transcription in three steps. The transcription process can be broadly divided into

three steps common among various life forms :

(initiation) the process starts with the binding of an RNA polymerase to a promoter region

which is located upstream of the Transcription Start Site (TSS), i.e. the first base being

transcribed (Figure 3.2.A) ;

(elongation) then the RNA polymerase unwinds the DNA molecule and starts synthesizing

the RNA molecule from the TSS using the template strand (3′ → 5′) of the DNA. The

adenine of the template strand is paired with uracil (in RNA, uracil ’U’ replaces T present

in DNA), T with A, G with C, and C with G (Figure 3.2.B) ;

(termination) and finally the RNA polymerase dissociates from the newly synthesized RNA

molecule and the DNA molecule at the level of the Transcription Terminator Site (TTS),

i.e. the last base being transcribed (Figure 3.2.C).

In the remainder of this subsection I review a key transcription mechanism that allows a

single gene to potentially produce several transcripts, known as alternative isoforms, in varying

amounts.
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The alternative transcription initiation. Near a gene promoter, it is common to find not

just a single TSS, but instead a group of TSS known as a transcription start region. Additionally,

a gene may contain several transcription start regions, suggesting the existence of alternative

promoters whose choice is known to inŕuence transcription efficiency [Juven-Gershon et al.,

2008, Lenhard et al., 2012]. When the RNA polymerases start synthesizing transcripts from this

collection of TSS, they produce varying amounts of isoforms with different lengths and distinct

5’ end positions (Figure 3.3.B). This widespread biological process is well known as Alternative

Transcription Initiation (ATI) [Policastro and Zentner, 2021].

Several studies have described large-scale shifts in patterns of transcription initiation during

development [Batut et al., 2012, Zhang et al., 2017b, Cvetesic et al., 2018, Danks et al., 2018]. ATI

has also been implicated in human diseases, including cancer [Sandelin et al., 2007, Davuluri et al.,

2008, Demircioğlu et al., 2019]. Additionally, in bacterial life forms, it operates as an adaptive

response to environmental ŕuctuations [Ishihama, 2000, Liu and Wulf, 2004, Typas et al., 2007].

Broadly speaking, ATI has been demonstrated to regulate RNA stability, translation efficiency

[Leppek et al., 2017, Kurihara et al., 2018], and the generation of alternative isoforms with

distinct protein-coding potential [Mejía-Guerra et al., 2015, Ushijima et al., 2017].

Besides ATI, the main sources of alternative isoforms come from maturation mechanisms that

occur simultaneously with or after RNA transcription. In the following subsection we examine

key maturation mechanisms that substantially contribute to the transcriptome complexity.

3.1.2.2 The RNA maturation

The alternative splicing. Groundbreaking research in the 1970s [Berget et al., 1977, Aloni

et al., 1977, Breathnach et al., 1977, Doel et al., 1977] revealed that eukaryotic gene organiza-

tion does not consist of continuous nucleotide sequences encoding proteins. Instead, genes are

segmented with protein-coding exons separated by intervening sequences known as "introns" (a

term introduced by Gilbert in 1978 for intragenic regions). During transcription, these introns

are excised from a precursor, and the remaining exons are joined together in a process called

RNA splicing. This process enables the formation of alternative isoforms through Alternative

Splicing (AS) [Gilbert, 1978]. Various AS modes have been observed, with two common ones

being exon skipping and intron retention [Wang et al., 2014, Gehring and Roignant, 2021]. In

these modes, a specific exon or intron may be included or excluded resulting in two alternative

isoforms (Figure 3.3.C). It is worth noting that AS has also been observed in many precursors

of non-coding RNA [Khan et al., 2021].

Several studies have revealed that pervasive AS events vary across different tissue types and

developmental stages [Wang et al., 2008, Pan et al., 2008, Kalsotra and Cooper, 2011]. Specific

AS events have also been implicated in human diseases such as cancer, amyotrophic lateral

sclerosis or Alzheimer’s disease [Scotti and Swanson, 2015, Love et al., 2015, Bonnal et al., 2020].

In general, AS serves as a prevalent mechanism for generating alternative isoforms that possess

unique protein-coding capacities [Nilsen and Graveley, 2010].
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The processing of extremities. The 5’ end or 3’ end of transcripts are not always defined

by their TSS or TTS, but instead by the cleavage and/or the degradation of a precursor, pos-

sibly accompanied by the subsequent synthesis of additional bases (see below), a phenomenon

observed in all kingdoms of life [Condon, 2003, Clouet-d’Orval et al., 2018, Kim et al., 2004,

Gregory et al., 2008]. For instance, the mature 3’ ends of nearly all eukaryotic messenger RNAs

(mRNAs)Ðan RNA that encodes a proteinÐare created by a two-step reaction that involves an

endonucleolytic cleavage of a precursor, followed by the synthesis of a polyadenylate tail onto the

upstream cleavage product. Like TSS, it is common to find several of these cleavage sites, also

called Polyadenylation Sites (PAS), by gene. The PAS can be located within the 3’ Untranslated

Regions (UTRs), introns, or exons. Like ATI, alternative usage of PAS, or simply Alternative Po-

lyadenylation (APA), allows a single gene to encode multiple alternative isoforms [Giammartino

et al., 2011, Tian and Manley, 2016] (Figure 3.3.D).

Numerous research findings indicate that APA plays a role in activating oncogenes and promo-

ting cell proliferation in cancer cells [Sandberg et al., 2008, Mayr and Bartel, 2009]. Additionally,

APA has also been implicated in development [Shepard et al., 2011, Agarwal et al., 2021]. In-

vestigations have also revealed that APA impacts neuronal signaling and function [Flavell et al.,

2008, Miura et al., 2013, Tushev et al., 2018]. At the molecular level, APA can modify the coding

potential of mRNA or change the length of the 3’ UTR, which in turn affects mRNA fate in

various ways, such as by altering binding sites for proteins and microRNAsÐa specific type of

small RNAs [Neve et al., 2017, Hong and Jeong, 2023].

Single nucleotide editing. After transcription, an RNA molecule can undergo Single Nucleo-

tide Editing (SNE), which involves the precise conversion/alteration of individual nucleotides.

This process leads to a difference in sequence between the original DNA template and the edited

RNA product. Referring to Knoop’s classification [Knoop, 2010], RNA SNE includes any nucleo-

tide conversions and any chemical alterations to the four standard nucleotides (A,U,G,C). For

instance, the most common form of RNA SNE in metazoans is the conversion of A to Inosine (I)

by an adenosine deaminase (Figure 3.3.E). I is interpreted as G by cellular machinery, leading to

alterations in structural properties of RNA and protein sequences [Nishikura, 2006, 2010, 2015,

Eisenberg and Levanon, 2018].

In various organs and tissues of model metazoans, RNA SNE has been shown to regulate de-

velopmental processes [Buchumenski et al., 2021, Graveley et al., 2010], neural network plasticity

[Behm and Öhman, 2016, Rosenthal and Seeburg, 2012], immune responses [Mannion et al., 2014,

Liddicoat et al., 2015], skeletal muscle formation [Noda et al., 2022], and organismal adaptation

to environmental changes [Buchumenski et al., 2021]. Deficiencies in the RNA editing machinery

have been linked to neurological disorders, autoimmune diseases, and even cancers in humans

[Zipeto et al., 2015, Ben-Aroya and Levanon, 2018].
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3.1.3 RNA events

3.1.3.1 Definition

I will refer to the regions of RNA that are affected by ATI or maturation processes descri-

bed in the previous section as "variable regions", or more simply, "variables". These variables

are intended to be transcribed/not-transcribed, eliminated/not-eliminated, or edited/not-edited.

Furthermore, ATI and maturation processes can accumulate, creating a sequence of events along

the RNA molecule, resulting in the formation of an isoform. For example, if a gene, which we

will call α, has 2 alternative TSS, 1 alternative exon, 1 editing site and 2 alternative PAS (Figure

3.3.A), then 4 events can occur (or not) and accumulate along the corresponding RNA molecule :

event complementary event

the first TSS is chosen or the second TSS is chosen ;
the alternative exon is included or the alternative exon is spliced ;
the nucleotide is edited (I) or the nucleotide is not edited (A) ;
the first PAS is chosen or the second PAS is chosen.

When a gene possesses multiple TSS or PAS, it is beneficial to define an event for each TSS

or PAS. These events are mutually exclusive, meaning they cannot occur simultaneously, since

each isoform is linked to a distinct TSS or PAS. Not all mutually exclusive events are as evident

as the case of multiple TSS or PAS. For instance, this phenomenon can also occur between two

exons [Pohl et al., 2013] and all such coordinations are currently not known.

3.1.3.2 Upper bound complexity

At least theoretically, the number of isoforms we could generate from a set of events of size

K is exponential, formally of the order of 2K . For instance, 24 = 16 theoretical isoforms could be

produced from the 4 events annotated on gene α (Figure 3.4). However, it is essential to recognize

this calculation as an upper bound, since some events may, as exemplified above, be mutually

exclusive, and hence not all combinations may be feasible. This raises the question : Will all

combinations of events actually be expressed ? While it may not always be the case, it is certainly

not impossible. For instance, in the Drosophila melanogaster transcriptome, the DSCAM gene

demonstrated an astonishing 18,496 observed isoforms, almost reaching the theoretical limit of

19,008 possible combinations [Sun et al., 2013].

For the sake of clarity and brevity in the ensuing discussion of this manuscript, I will use the

upper bound (2K) to refer the number of isoforms generated by a specific gene.
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3.2 The multiscale analysis of the transcriptome

Today biologists and bioinformaticians are exploring the transcriptome 1 at multiple scales

[Berge et al., 2019]. These scales are defined by the number of events jointly studied along RNA

molecules.

3.2.1 Definition of the scales

3.2.1.1 Analysis of the transcriptome at the gene-level

In the majority of studies, researchers seek to understand the global patterns of gene expres-

sion, possibly under various biological conditions such as normal, developmental, or pathological

conditions [Kim et al., 2001, Merryweather-Clarke et al., 2011, Tello-Ruiz et al., 2015, Yang

et al., 2016, Singh et al., 2017, Hahn et al., 2021]. Numerous specialized tools have been designed

or predominantly employed for this type of analysis [Robinson et al., 2009, Hardcastle and Kelly,

2010, Tarazona et al., 2012, Ritchie et al., 2015, Pimentel et al., 2017]. DESeq2 [Love et al., 2014],

a package initially developed to investigate systematic changes of expression at gene-level across

various experimental conditions, serves as a prime example, boasting over 49,000 citations in

2023. Throughout this analysis, RNA isoforms are considered indistinctly, meaning that events

happening along RNAs are overlooked.

3.2.1.2 Analysis of the transcriptome at isoform-level

Focusing solely on the aggregate of all isoforms for a gene can be an overly simplistic approach

in some research contexts. For instance, the differential transcript usage analysis in Alzheimer’s

disease human brains reveals gene expression alterations overlooked in differential gene expression

analysis [Marques-Coelho et al., 2021]. Similar alterations have been observed in Parkinson’s

disease [Marques-Coelho et al., 2021, Rhinn et al., 2012, Dick et al., 2020]. To address this

limitation, some molecular biologists place more emphasis on examining individual isoforms

using dedicated tools like RSEM [Li and Dewey, 2011], Cufflink [Trapnell et al., 2012], Salmon

[Patro et al., 2017], and many others [Glaus et al., 2012, Bernard et al., 2014, Bray et al., 2016,

Tang et al., 2020, Hu et al., 2021, Gleeson et al., 2021, Prjibelski et al., 2023, Hu et al., 2023].

Throughout the analysis at isoform-level all events are monitored jointly along RNAs, which is

indeed equal to investigating isoforms.

3.2.1.3 Analysis of the transcriptome at event-level

An intermediate approach lies between analyzing an aggregate of all isoforms and examining

each isoform individually. This approach focuses on investigating the occurrence of events inde-

pendently along RNAs, possibly under various biological conditions. DEXSeq [Anders et al., 2012]

1. As a reminder, the transcriptome is the comprehensive set of transcripts generated within a specific
cell, tissue, or organism during a particular developmental or physiological stage.
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is a widely recognized method employed for such analyses. In addition, the field is continually ex-

panding with the development of newer tools [Shen et al., 2014, Tran et al., 2016, Li et al., 2017,

Yalamanchili et al., 2020, Policastro and Zentner, 2021]. As a result, it enables researchers to gain

insights into gene regulation with greater resolution compared to aggregate gene-level analysis.

Simultaneously, it avoids the complexity associated with exploring each individual isoform (as

described hereafter).

3.2.1.4 Analysis of the transcriptome by pair of events (or more)

However, it is highly improbable that all biological processes affecting RNA variables are

independent. In fact, numerous dependencies have already been identified. For example, two

exons may exhibit coordination if both are under similar control of polymerase speed [Fededa

et al., 2005]. Mechanisms connecting the selection of PAS and exon inclusion at the 3’ ends

of genes have also been suggested [Black, 2003, Movassat et al., 2016, Hardwick et al., 2022].

Moreover, distinct promoter usage can affect splicing decisions, resulting in non-random pairing

of transcription start sites TSS and exons [Cramer et al., 1997, Xin et al., 2008]. At this scale,

researchers are monitoring events in pairs, triplets, or even larger groups along the RNAs to

account for these dependencies. While there are fewer tools designed for this type of analyses,

some specialized packages do exist, such as Insplico which focuses on investigating the splicing

order of neighboring introns [Gohr et al., 2023].

In the following subsection, we will discuss how an increase in the number of jointly studied

events along RNA molecules makes the analysis of the transcriptome technically, statistically

and biologically more challenging.

3.2.2 Challenges in transcriptome analysis

3.2.2.1 Overview of an RNA sequencing experiment

Over time, researchers have designed technologies, including complementary DNA (cDNA)

microarrays, tilling arrays, Illumina-based RNA sequencing (RNA-Seq) and Nanopore/Pacbio-

based RNA-Seq, whose results have been used as a proxy of RNAs produced by genes [Schena

et al., 1995, Lockhart et al., 1996, Perou et al., 2000, Johnson et al., 2005, Mortazavi et al.,

2008, Branton et al., 2008, Wang et al., 2009]. Currently, the most widely adopted technology is

the Illumina-based RNA-Seq, which provides a quantitative, large-scale approach for analyzing

transcriptional outcomes.

A conventional RNA-Seq experiment (Figure 3.5) begins with the extraction and the selection

of RNAs, which are then fragmented into smaller segments typically spanning from 300 to 500

nucleotides (nt) in length (a common unit of length for single-stranded nucleic acids). These

RNA fragments then undergo reverse transcription into cDNA, subsequently prepared for the

sequencing stage. The sequencing output is a collection of "reads"Ðessentially fragments of the

original transcripts, with lengths ranging from 50 to 300 nt [Kukurba and Montgomery, 2015,

Stark et al., 2019].
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3.2.2.2 Quantification challenge

After completing an RNA-Seq experiment, the analyst is presented with files containing

millions of sequencing reads. Quality control is conducted on the sequencing reactions [Li et al.,

2014], and these reads are then aligned to a reference genome or a reference transcriptome

[Srivastava et al., 2020] (Figure 3.6). The reads are subsequently assigned to compatible genes

(Figure 3.7.A), events (Figure 3.7.B), event pairs (Figure 3.7.C), and so on up to the isoforms

(Figure 3.7.D), depending on the analysis scope.

Nevertheless, when addressing multiple events concurrently, such as at the isoform-level, a

notable challenge surfaces due to the limitation in read size that prevents complete coverage

of events along RNA molecules. Consider, for instance, that typical human RNA molecules

extend beyond 2000 nt [Leung et al., 2021, Lopes et al., 2021], approximately seven times the

reach of the longest reads, which are confined to around 300 nt. This discrepancy inevitably

results in ambiguity regarding the origin of numerous reads, thus complicating their assignment.

As illustrated in Figure 3.7.D, the read that overlaps the second and third exons of gene β

could potentially derive from either isoform 1 or isoform 3. These isoforms are characterized by

unique TSS, which are not captured by the read in question. Indeed, the nearest TSS is located

more than 100 nt away from the second exon, which is more than the length of the reads (100

nt). There is also an uncertainty with the read that overlaps with exons 1 and 3 but bypasses

exon 2, suggesting potential origin from either isoform 2 or isoform 4. Probabilistic models

based on maximum likelihood or bayesian inference are required for these assignments ; however,

the accuracy of such models is markedly variable [Steijger et al., 2013, Mehmood et al., 2019,

Sarantopoulou et al., 2021]. Furthermore, as highlighted by [Zhang et al., 2017a], a noticeable

decline in accuracy is observed with a rise in the number of isoforms.

The challenge associated with read size mechanically lessen as the scale of analysis is adjusted

to involve fewer concurrent events, such as single events or pairs of proximal events. This ad-

justment allows for straightforward quantification (Figure 3.7.B-C). It is worth highlighting that

substantial enhancements in read length have been achieved thanks to recent advancements in

RNA-Seq technology, specifically the development of long-read sequencing, including Nanopore

and Pacbio platforms. This technological evolution potentially increases the number of events

that can be captured on a single molecule [Byrne et al., 2017, Sessegolo et al., 2019, Soneson

et al., 2019, Wang et al., 2021, Kovaka et al., 2023].

Apart from the fragmentation challenge, various biases inherent to RNA-Seq protocols can

result in the preferential selection of certain RNAs, leading to a skewed representation of the

transcriptome [Shi et al., 2021]. Furthermore, the accuracy of the quantification process is highly

dependent on the quality of annotations [Angelini et al., 2014, Soneson et al., 2016], which are

recognized to be incomplete for genes, events, and by extension, isoforms (see Box 1 : Shall we

ever reach a complete reference transcriptome ? ).
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Figure 3.6 ś Alignment of sequencing reads. Various sequencing technologies, including (A)
the Illumina platform and (B) Nanopore or PacBio platforms, generate sequencing reads whose
precise genomic originÐboth specific region and strandÐremains unknown. To identify their
source, these reads are mapped to either (C) a reference transcriptome, encompassing all anno-
tated RNA isoforms from all genes, or (D) a reference genome, consisting of all annotated genes.
A notable computational hurdle in aligning RNA-seq reads to a reference genome is managing
spliced junctions. These are instances where a segment of the read corresponds to the terminal
region of one exon while the remainder associates with another exon, potentially thousands of
base pairs distant from the first. In response to this challenge, the development of spliced-aware
aligners such as STAR [Dobin et al., 2012] and HISAT [Kim et al., 2015] has taken place. The
figure is derived from [Deshpande et al., 2023].
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3.2.2.3 Statistical challenge

In a conventional RNA-Seq experiment, the study design usually involves the comparison of

two distinct conditions, each represented by several biological replicates. Under this experimental

design, researchers typically aim to identify : genes, events and isoforms with significant difference

of expression or pairs of events with significant difference of dependency.

After the quantification phase is completed, each of the aforementioned differences, also re-

ferred to as "contrasts" can be estimated from the counts (Chapter 6). Following this estimation,

statistical tests are performed to evaluate whether these contrasts significantly deviate from zero,

thus addressing the original research objective [Berge et al., 2019].

It is noteworthy to mention that the number of statistical tests increases in tandem with the

number of events being jointly examined. Indeed, the sequence of tests performed per gene scales

as follows : a single test at the gene level, K tests at the event-level (one for each event),
(
K
2

)

tests when examining events by pair (one for each pair of events), and an exponential increase

to 2K tests at the isoform-level (one for each isoform).

The escalating number of tests necessitates the implementation of multiple testing correction

procedures to mitigate the risk of false positives. However, this introduces a trade-off with the

statistical power of the study, making it more difficult to discern genuine differences [Goeman and

Solari, 2014]. Particularly at the isoform-level, the exponential increase in the required number

of tests, coupled with their intricate dependencies, accentuates this challenge.

3.2.2.4 Biological challenge

The last step in a standard transcriptomics study is often the characterization of the molecular

functions or pathways in which differentially expressed genes or isoforms are involved.

At this stage the emphasis on gene-level analysis has primarily been driven by our limited

knowledge of the functional differences between distinct isoforms arising from ATI and RNA

maturations. In fact, despite the significance of ATI and RNA maturations, information on the

cellular functions, endogenous expression and localization, and signaling pathways associated

with individual isoforms, is known for only a small number of genes [Lerch et al., 2012, Ke-

lemen et al., 2013, Yap and Makeyev, 2016, Baralle and Giudice, 2017, Bhuiyan et al., 2018].

Consequently, to date, making scientific sense out of such data is still a complicated task [Kar-

lebach et al., 2022]. At the event-level, the analyst can leverage on the regulatory signals or

functional domains in which the corresponding RNA variable is involved as valuable biological

interpretation.

Moreover, gene-level discoveries are more experimentally actionable than isoform-level disco-

veries due to the difficulty of knocking down single isoforms [Kisielow et al., 2002]. Transgene-

mediated overexpression of splicing variants of interest is also used for studying isoform-specific

functions and subcellular localization in specific cells. However, it is well documented that ove-

rexpressed corresponding proteins often do not mimic the endogenous proteins in their spatio-

temporal expression, localization, and functions [Prelich, 2012, Moriya, 2015].

34



Box 1: Shall we ever reach a complete reference transcriptome ?

Since the beginning of the 21st century, thanks to the rapid development of high-

throughput RNA-Seq technologies, major efforts have been made to build a comprehen-

sive picture of the transcriptome generated by organisms, also known as the reference

transcriptome. To achieve this, bioinformatics pipelines have been used to annotate genes

and their isoforms from the sequencing data, before validation by expert biologists and

bioinformaticians. These structural annotations are then made available to the scientific

community via genomic databases and can be visualized in genome browsers.

As expected, the transcriptomes available in these databases are characterized by the

abundance of alternative isoforms. For example, the version 43 of the human reference

transcriptome proposed by the GENCODE database contains 252, 913 transcripts (+497

compared to version 42) associated to 62, 703 genes (+7 compared to version 42), i.e. an

average ratio of observed isoforms per gene of 4.03 (https://www.gencodegenes.org/

human/stats.html).

The average number of isoforms observed per gene in humans (4.03) seems low compa-

red to the diversity of biological processes leading to the formation of a new isoform, and

recent research suggests that the actual number of isoforms is indeed underestimated [Per-

tea et al., 2018, You et al., 2017]. In particular, a large number of studies have identified

new variable regions of RNAs that play a prominent role in disease development [Whiffin

et al., 2020, Griesemer et al., 2021, Makhnovskii et al., 2022]. In this context, part of the

scientific community believes that achieving an exhaustive description of transcriptomes

is ultimately a Sisyphean task (Figure 3.8) [Nellore et al., 2016, Deveson et al., 2018,

Morillon and Gautheret, 2019].

3.2.3 A roadmap for improving transcriptome analysis

In previous subsections, we discussed how studying an increasing number of events along

RNA molecules concurrently can make the transcriptome analysis more complex from statistical,

technical, and biological standpoints. To circumvent the exponential complexity of investigating

each individual isoform while still allowing researchers to gain more detailed insights into gene

regulation compared to aggregate gene-level analysis, a promising approach involves :

Strategy 1

� developing methods that simultaneously examine a manageable number of events.

This can be done either by studying each event independently or by jointly analyzing a few

events (for example, in pairs). In this context, utilizing long-read technologies can be beneficial

for jointly monitoring RNA events that may be separated by hundreds or even thousands of

nucleotides.
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3.3.2 The chloroplast

The chloroplast (Figure 3.9), an organelle located in cytoplasm of plant cells, is the key site

of photosynthesis, a bioenergetic reaction crucial for life on Earth. It was formed by the primary

endosymbiosis of a cyanobacteria-like organism [Archibald, 2009, Keeling, 2010], followed by

successive transfers of genes involved in photosynthesis and its metabolism to the nuclear genome

of the host cell [Timmis et al., 2004, Barbrook et al., 2006, Ponce-Toledo et al., 2019]. Today, the

chloroplast contains a reduced genome (about 1.5× 104 base pairs 2 ; for comparison, the nuclear

genome of Arabidopsis thaliana comprises about 1.35× 108 base pairs and that of Homo sapiens

about 3.09 × 109), the expression of which is essential for photosynthetic activity, retrograde

signaling or plant development [Fey et al., 2005].

The chloroplast is an interesting model for the effective examination and testing of methods

geared towards transcriptome analysisÐincluding that of the nuclear transcriptomeÐusing RNA-

Seq data.

1. Firstly, its genome and the expression of its approximately 120 genes (in the chloroplast

of A. thaliana) have been extensively documented in the scientific literature [Zhang et al.,

2023, Small et al., 2023].

2. Secondly, the compact size of the chloroplast facilitates a faster validation of these methods’

outcomes. Indeed, the results can be quickly assessed by directly visualizing the RNA-Seq

data using, for instance, the integrative genomics viewer [Thorvaldsdottir et al., 2012].

3. Finally, as I intend to illustrate in the following section, there is no indication that the

fundamental processes at play in the metabolism of chloroplast RNAs are simpler than

those involved in the metabolism of nuclear RNAs.

3.3.3 The metabolism of chloroplast RNAs

3.3.3.1 Extensive transcriptional activity of the chloroplast genome

In plant cells, nearly the entire chloroplast genome is transcribed, as established by a number

of studies [Hotto et al., 2011, Lima and Smith, 2017, Smith, 2018]. This observation can be

explained by a relative ŕexibility of the transcriptional process, which typically initiates from

multiple promoter regions per gene and often exhibits ineffective termination. The resulting

primary transcriptome is highly heterogeneous, including polycistronic mRNAsÐan RNA that

encodes several proteinsÐwith a broad spectrum of start and end positions [Stern and Gruissem,

1987, Germain et al., 2011]. Evidence of this complexity is found in the chloroplast of A. thaliana

which have been shown to possess over 200 distinct TSS [Castandet et al., 2019]. This is on average

more than one per gene. Following transcription, the primary transcriptome is subject to a series

of maturation steps, ultimately resulting in the formation of the mature RNA population.

2. a common unit of length for double-stranded nucleic acids
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Figure 3.9 ś The chloroplast. The chloroplast is an organelle measuring between 5 and 10
micrometers and located in the cytoplasm of plant cells. It is enveloped by two membranesÐan
outer and an inner membrane. Within the chloroplast lies a complex membrane network known
as the thylakoids. The interior space of the thylakoids is called the lumen. One of the most
important functions of these thylakoid membranes is to host the electron transport chain, which
converts the energy of photons into chemical energy. Each chloroplast can contain thousands of
thylakoids, which facilitate these light-dependent reactions of photosynthesis. Additionally, the
chloroplast carries its own DNA (ctDNA) of about 1.5× 104 base pairs and typically consisting
of around 120 genes. This reduced genome is distinct from the cell’s nuclear genome (nDNA).
The chloroplast mRNA translation is conducted by bacterial-type 70S ribosomes. Interestingly,
the chloroplast doesn’t operate in isolation from the rest of the cell ; it is interconnected with
the nuclear gene expression system. Notably, numerous nucleus-encoded proteins are translated
in the cytosol and imported into the chloroplast, where they control chloroplast gene expression.
The figure is derived from Buchanan et al. [2015].
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3.3.3.2 Extensive maturations of chloroplast RNAs

The maturation of chloropast RNAs involves a set of events, including the formation of

new ends, intron splicing, and site-specific editing. Significantly, these maturation events are

primarily facilitated by ribonucleases [MacIntosh and Castandet, 2020] and a wide array of

nucleus-encoded RNA-Binding Proteins (RBPs). For example, 185 RBPs are estimated to be

present in the chloroplast of A. thaliana (more than one per gene). For comparison, the number

of RBPs per gene in nucleus of A. thaliana is less than 0.05 [Small et al., 2023]. Among RBPs,

the majority belong to the Pentatricopeptide Repeat (PPR) family [Lurin et al., 2004].

The processing of extremities. Transcripts are subjected to intercistronic cleavage by en-

doribonucleases, creating new 5’ and 3’ ends that can be further digested by exoribonucleases

(Figure 3.10.B). Certain RNA molecules are safeguarded from such nuclease attacks through

their interactions with proteins, specifically PPRs. Secondary structures may also perform a si-

milar protective role [Germain et al., 2013, Barkan and Small, 2014]. The processing of these

extremities considerably amplifies the complexity of the chloroplast transcriptome. For instance,

1628 processed 5’ ends and 1299 3’ ends were identified in Castandet et al. [2019]. For illustra-

tion, Figure 3.11 displays the positions of the 5’ and 3’ ends of each isoform originating from the

polycistronic gene cluster psbB-psbT-psbN-psbH-petB-petD. Interestingly, the combination of 5’

and 3’ ends in this region significantly exceeds the number of genes.

The splicing of introns. In the chloroplast genome of A. thaliana, 20 introns are present :

six in tRNAsÐan RNA that carries an amino acid to the protein synthesizing machineryÐand

fourteen in mRNAs. The primary mechanism of splicing is cis-splicing, wherein the two exons

separated by the spliced intron reside within the same RNA molecule (Figure 3.10.D). However,

instances of trans-splicing do exist, where the exons to be joined are located on two separate

RNA molecules [Choquet et al., 1988, Germain et al., 2013].

The single nucleotide editing. RNA editing in chloloroplast implies the transformation of C

into U via deamination [Baudry, 2019]. In the context of A. thaliana, 43 editing sites have been

found in chloroplast RNAs [Ruwe et al., 2013], although more are likely to exist. These sites can

occur within coding or non-coding sequences. For instance, ndhD editing by PPR CRR4 restores

a start codon (Figure 3.10.D) [Okuda et al., 2006].
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The coordination of maturation events. The question of whether one (or more) of the

aforementioned chloroplast RNA maturation events is required for another maturation event to

occur remains largely unexplored. Nevertheless, a handful of examples have been documented. For

instance, it has been observed that the splicing of the ndhA intron is needed for editing the second

exon of the same gene [Schmitz-Linneweber, 2001]. Additionally, more subtle coordinations have

been identified, such as the concurrent loss of editing at the atpF_12707 site and the reduction

in splicing of the atpF transcript in the aef1 mutant [Yap et al., 2015]. In the same vein, the

pnp1-1 mutant, marked by a decline in the trimming activity of transcripts at their 3’ ends, also

displays editing defects [Ruwe et al., 2013].
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Chapter 4

Formalization of the biological question and pro-

posal of a baseline model

In this chapter, I present the biological questions that I have investigated, along with the

corresponding statistical problems, and the statistical models that I proposed to tackle these

specific problems. My objective was to put forth straightforward models that would simplify data

interpretation for biologists, and in turn, enhance interdisciplinary communication. Additionally,

I sought to leverage existing methodologies whenever practical. To be specific, I have learned

through a first experience on the detection of epigenetic marks (Section 4.2), and then confirmed

by another experience on the detection of RNA regulations (Section 4.3), that simpler models,

despite being mathematically unsatisfying, can be simultaneously (1) easier for non-specialists to

understand, (2) easier to implement and calibrate, and (3) surprisingly efficient or even superior

at addressing the biological question. Therefore, it is my opinion that such simpler models should

be given priority. Furthermore, acknowledging that in the worst-case scenario these models may

be less effective, they nonetheless serve a crucial role in substantiating the necessity to develop

and implement more sophisticated models. This principle of parsimony, to which I fully subscribe,

guided me throughout my doctoral research, particularly when working on the detection of RNA

regulations (Section 4.3) and co-maturations (Section 4.4).

4.1 Chapter summary at glance

1. In Section 4.2, I discuss the problem of detecting epigenetic marks, starting from the biolo-

gical objective (Biological question 1) and proceeding to the formulation of the respective

statistical problem (Statistical problem 1). A comprehensive review of the state-of-the-art

methods, recently devised to address the statistical issue, is subsequently delivered. Finally

I introduce a baseline model (Baseline model 1), which is purely based on the conventio-

nal principles of signal transformation and segmentation, developed during the 1940s and

1980s respectively. The effectiveness of this baseline solution is observed to be as accurate,

if not superior, to the recent advancements as elucidated in Liehrmann et al. [2021].

2. In Section 4.3, mirroring the structure from Section 4.2, I delve into the problem of de-
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tecting RNA regulations. Finally, I recall the standard changepoints model previously

employed in the detection of epigenetic marks. Once more, the standard changepoints mo-

del is found to outperform state-of-the-art methods in the detection of RNA regulations,

as detailed in Liehrmann et al. [2023].

3. In Section 4.4, I brieŕy present the problem of studying the coordination of RNA events,

a problem which I co-supervised two interns on during the first and second year of my

thesis.

4.2 Detection of epigenetic marks

4.2.1 Foreword

During my Master’s research internship and at the beginning of my thesis, I worked on the

detection of epigenetic marks in data obtained from Chromatin Immunoprecipitation followed

by Sequencing (ChIP-Seq). These epigenetic marks, pivotal in a multitude of essential biological

processes including gene transcription, modulate DNA region accessibility to regulatory proteins.

As a result, in addition to being a valuable example of high-throughput sequencing data analysis,

studying epigenetic marks in ChIP-Seq data helped me to understand gene expression at an early

stage. I tackled this challenge by understanding the biological objective of the analysis in order

to propose a statistically relevant model.

4.2.2 Biological goal

In response to environmental stress or during developmental stages, the accessibility of various

DNA regions in eukaryotic organisms can undergo significant transformations [Gao et al., 2010,

Widiez et al., 2014, Donkin and Barrès, 2018, Iwagawa and Watanabe, 2019]. This process is

partially facilitated by modifications to the tails of histonesÐproteins associated with DNA.

These modifications can locally alter the chemical interactions between DNA and regulatory

proteins, inŕuencing gene expression.

Histone modifications are diverse, encompassing methylation, acetylation, ubiquitination,

and phosphorylation, among others. A notable modification is the lysine methylation on the

N-terminal tail of histone H3, which has been the subject of extensive study. For instance, the

trimethylation at the 4th lysine residue of histone H3 (H3K4me3) is a modification strongly

associated with TSS. As such, H3K4me3 is often considered a reliable marker for TSS [Lloret-

Llinares et al., 2012, Benayoun et al., 2014].

Another significant modification is the trimethylation at the 36th lysine residue of histone

H3 (H3K36me3). This modification typically occurs within the body of actively transcribed genes,

where it is involved in finely regulated processes like RNA elongation and splicing. For example,

variations in exon inclusion/exclusion have been linked with intragenic H3K36me3 levels in gene

bodies. This is facilitated by the recruitment of H3K36me3 reader proteins (such as MRG15 and
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ZMYND11 ), which directly modulate the activity of splicing factors [Zhang et al., 2006, Kim

et al., 2011, Guo et al., 2014].

In this context, to study either the regulation of transcription initiation or the regulation of

RNA splicing, biologists can perform a ChIP-Seq experiment [Park, 2009] (Figure 4.1) with the

aim of knowing :

Biological question 1

� Which regions of the genome are enriched with specific epigenetic marks ?

Indeed, in the results of this experiment, regions enriched in epigenetic marks are characteri-

zed by a higher density of aligned reads than in non-enriched regions. Biologists curious enough

to visualize the ChIP-Seq data they generate often associate the enriched regions with peaks, in

reference to their shapes (Figure 4.2). The reads can be counted at each genomic position, and

this results in a series of non-negative integer count data ordered along the genome, hereafter

called coverage profile. Please be aware that additional heuristics for calculating coverage profiles

exists, as outlined in Note S1 of [Liehrmann et al., 2023].

Bearing in mind that ChIP-Seq reads are a biased proxy of epigenetic marks [Diaz et al.,

2012], we can reformulate Biological question 1 as :

Statistical problem 1

� Where are the start and end of each peak in the coverage profile ?

4.2.3 Statistical model for peak calling

4.2.3.1 Survey of peak calling methods for epigenetic marks enrichment

In the past few years, several teams have developed methods to provide practical solutions to

Statistical problem 1 [Fejes et al., 2008, Spyrou et al., 2009, Zang et al., 2009, Rozowsky et al.,

2009, Xu et al., 2010, Rashid et al., 2011, Xing et al., 2012, Harmanci et al., 2014]. While a

comprehensive review of all the methods would be beyond the scope of this manuscript given

the vast number of techniques developed, I will focus on highlighting a selected few that have

made considerable strides in enhancing the detection accuracy of one or both epigenetic marks

H3K4me3 and H3K36me3.

MACS. MACS [Zhang et al., 2008] is a widely recognized method in the field of bioinformatics,

garnering over 13,000 citations, evidence to its credibility and usefulness in the scientific commu-

nity. It is particularly good at pinpointing sharp peaks that correspond to epigenetic marks such

as H3K4me3. MACS implements a two-stage procedure. At its core, MACS operates a one-sided

exact Poisson test within a sliding, constant-length window across the genomic landscape. The

test accommodates local biases in the genome, including factors such as chromatin structure, GC
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content and copy number variations. Subsequently, MACS applies the Benjamini-Hochberg pro-

cedure to correct p-values for multiple comparisons. A region is deemed to demonstrate significant

enrichment if the corrected p-value falls below a user-defined threshold. Secondly, MACS merges

any overlapping significant peaks. Importantly, MACS provides at least five user-adjustable pa-

rameters that inŕuence both the position and the number of peaks identified.

HMCan. HMCan [Ashoor et al., 2013] is another notable method that shows good perfor-

mances in detecting broad peaks that correspond to epigenetic marks such as H3K36me3. There-

fore, its functionality complements MACS. HMCan also implements a two-stage procedure. First,

similar to MACS, it conducts a one-sided exact Poisson test. Secondly, it uses regions identified

as significantly enriched to estimate the parameters of a two-state (peak, not-peak) Hidden Mar-

kov Model (HMM). Following this estimation, an iterative Viterbi algorithm is applied to the

coverage profile to infer the location of peaks across the genome. Importantly, HMCan adjusts

the coverage profile to account for GC content and copy number variations. Similar to MACS,

HMCan provides at least five user-adjustable parameters that inŕuence both the position and

the number of peaks identified.

Constrained segmentation. Segmentation analysis, in simple terms, is the process of pin-

pointing locations where there is a change, also called changepoint, in statistical properties of the

data. Peak calling can naturally be thought of as a specialized form of this process. It involves

identifying multiple changepoints within a coverage profile, but with an added nuance : there is a

directional constraint on these changes. This means that if an upward change is observed from a

genomic region of sparse coverage to an adjacent region with substantial coverage, it is inevitably

followed by a downward change, and vice versa (Up-Down). The Figure 4.3.A provides a com-

prehensive schematic illustration of the Up-Down rules. Additionally, a mathematical definition

can be found in Equation 2 of Liehrmann et al. [2021].

Building upon a succession of previous studies within the Gaussian homoscedastic framework

[Auger and Lawrence, 1989, Rigaill, 2015, Maidstone et al., 2016] and concurrently extended

to the Poisson and negative binomial 1 cases [Cleynen and Lebarbier, 2014a], a segmentation

model that encapsulates the Up-Down rules was first introduced by [Hocking et al., 2015] for the

Poisson case. In the same study, the authors introduced a heuristic for estimating the model’s

parameters (including the start and end position of the peaks). It is a heuristic in the sense

that it is not guaranteed to find the maximum likelihood estimator. A few years later, the

General Functional Pruning Optimal Partitioning (GFPOP) method, an exact segmentation

algorithm, was developed to address this limitation. GFPOP is available in the PeakSegDisk

R package [Hocking et al., 2022] as well as the gfpop R package [Runge et al., 2023]. The Up-

Down model has demonstrated slightly higher accuracy compared to MACS and HMCan on

1. The Gaussian, Poisson, and negative binomial distributions are distinct types of statistical noises
utilized to represent unexplained variability within the data.
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Figure 4.3 ś Changepoint models for peak calling. (A) Schematic illustration of the directional
rules on the changes incorporated within the constrained segmentation model (B) Schematic
illustration of the standard changepoints model (the directional rules are dropout). In order to
be interpretable in terms of peaks, one will have to define a post-processing rule which choose
within each sucessive increases the start of the peak, and within each sucessive decreases the end
of the peak.
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H3K36me3 and H3K4me3 epigenetic marks, respectively [Hocking et al., 2020]. Furthermore,

the number of peaks identified by GFPOP is governed by one parameter, thereby simplifying

both calibration. Moreover, the number of peaks is a decreasing function of the parameter value,

which substantially simplifies its interpretation.

Continuing this line of research, we presented an Up-Down segmentation model for the ne-

gative binomial case in Liehrmann et al. [2021]. This model was designed to accommodate a

higher level of data variability than expected by the Poisson model (Figure 4 of Liehrmann et al.

[2021]), aiming to boost the method’s accuracy. Unfortunately, we did not observe this expected

improvement (Figure 6 of Liehrmann et al. [2021]).

The Up-Down model is certainly a useful model that required several years of development

and contributed to the enhancement of epigenetic mark detection. However, it is not without its

shortcomings. Specifically, upon analyzing the shapes of peaks in coverage profiles, it becomes

evident that the background noise and peak tops are sometimes divided by one or more subtle

variations (Figures 1 and 2 of Liehrmann et al. [2021]). The Up-Down segmentation model cannot

capture these subtle changes while a segmentation model without the directional constraintÐand

thus making more parsimonious assumptionsÐshould be. This problem, while significantly am-

plified by the Up-Down model, is not exclusive to it. Indeed, any approach that solely focuses on

identifying a start and an end (such as MACS or HMCan) will invariably make the same mis-

take. It is my opinion that, by articulating these assumptions through a mathematical model,

we not only bring their limitations into sharp relief, but also open avenues for questioning and

re-evaluating them. In essence, always model and regularly doubt.

4.2.3.2 Establishing a baseline model for peak calling

The standard changepoints model. In Liehrmann et al. [2021], we compared the recently

developed methods to the standard changepoints model : a deterministic piecewise constant

function with an additional homoscedastic Gaussian noise [Auger and Lawrence, 1989] 2. After

making minor adjustments as outlined below, we found that the standard changepoints model,

inferred by minimizing a penalized Least Squares Criterion (LSC) 3, was equally or even more

accurate than these methods (Figure 6 of [Liehrmann et al., 2021]).

The penalized LSC mentioned above can be swiftly optimized via the Functional Pruning

Optimal Partitioning (FPOP) algorithm [Maidstone et al., 2016] 4. FPOP’s computation time

is log-linear or linear, relative to the length of the signal, when there are few or many chan-

gepoints, respectively. This allows to segment 107 datapoints in less than 10 seconds, thereby

matching the speed of linear heuristics like MACS. Furthermore, similar to GFPOP, the number

of changepoints identified by FPOP is governed by one parameter, and is a decreasing function

of this parameter value. It should be noted that, contrary to heuristics like MACS and HMCan,

2. see Equation (5.1) for a mathematical definition
3. see Equation (5.5) for a mathematical definition
4. see Section 5.4.2 for a review of the key elements of FPOP
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Figure 4.5 ś Illustration from a manuscript featuring William of Ockham (Summa totius Logicae,
1341). William of Ockham (1287-1347), was an esteemed English Franciscan friar and a scholarly
theologian. He made significant contributions as a philosopher during the medieval. His lasting
fame, mainly as an eminent logician, rests largely on a philosophical principle widely attributed to
him, known as Ockham’s Razor. This razor is metaphorically employed to trim down superŕuous
assumptions or dissect similar conclusions when distinguishing between two hypotheses, thereby
emphasizing simplicity and parsimony in reasoning. Today, the principle of Occam’s Razor is
frequently used across various fields as a heuristic guide to decision-making, problem-solving,
and hypothesis testing [Anderson and Burnham, 2004, Gigerenzer and Gaissmaier, 2011].

seasoned user. The advanced user’s response, with a hint of levity, aptly encapsulates the predi-

cament : "... peak calling is an "art". It’s actually more like witchcraft."

Somewhat at odds with this literature, the standard changepoints model, with minor ad-

justments, saves assumptions by proposing a single (interpretable) adjustable parameter. Addi-

tionally, it forgoes the directional rules set in the Up-Down model, instead suggesting a post-

processing rule. Applying the max jump post-processing rule is arguably close to what a spe-

cialist’s eye does when annotating peaks by hand. Despite fewer assumptions, the standard

changepoints model demonstrates accuracy equal to, if not better than, its competitors.

In line with the principle of Ockham’s RazorÐthe simplest sufficient assumptions should be

preferred (Figure 4.5)Ð, I advocate using

Baseline model 1

� the standard changepoints model with minor adjustments

to identify peaks in ChIP-Seq data (Statistical question 1).
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4.3 Detection of RNA regulations

4.3.1 Biological goal

As mentioned in the section discussing RNA metabolism, numerous studies have highligh-

ted the occurrence of extensive alterations in the patterns of transcription initiation and RNA

maturation processes during development, under stress conditions, or in diseases.

In this context, to study RNA regulations, biologists classically design an RNA-Seq expe-

riment including several biological replicates from a condition of interest and a control (e.g. a

diseased and healthy tissue). Through this experiment, a part of the biologists seeks to know :

Biological question 2

� What are the transcriptome differences between the two biological conditions ?

Indeed, in the results of a typical RNA-Seq, discarding any normalization issues due to

different library sizes [Abbas-Aghababazadeh et al., 2018], the differences in RNA maturation

or ATI lead to local variations in read density along the genome between the two biological

conditions (Figure 4.6). Throughout this manuscript, I will refer to these local variations as

Differentially Expressed Regions (DERs). Consequently, if one of these DERs overlaps with an

annotation (e.g. the first intron), an event-level analysis allows us to detect it (Strategy 1). It is

through this annotation that we can also formulate a hypothesis about the underlying regulatory

mechanism (e.g., "we observe an accumulation of the first intron in biological condition A, thus

the biological processes involved in the splicing of this intron seem to differ between the compared

biological conditions").

Relying solely on annotations is a baseline which is biologically unsatisfactory for two rea-

sons : (1) you do not look outside of these annotations, (2) the limits of these annotations can

be ill-suited, making both detection and interpretation impossible (Figure 4.7). An alternative

approach involves identifying DERs along the genome (Strategy 1) without relying on annota-

tions (Strategy 2). This data-driven approach addresses the detection issue but does not readily

provide an interpretation of the underlying regulatory mechanism. We can reformulate Biological

question 2 as :

Statistical problem 2

� Which regions are differentially expressed along the genome ?

53





rbcL

fo
rw

ar
d 

co
ve

rg
ae

chloroplast genome positions

mutant PNPase wild type

rbcL

unannotated 3' UTR

Figure 4.7 ś The annotation of the rbcL gene does not capture the 3’ extension observed in the
A. thaliana mutant deficient in PNPase activity. The coverage profile overlapping the 3’ region of
the rbcL gene on the forward strand is presented for both a wild type and a PNPase-deficient
mutant of A. thaliana. Examining the coverage within the gene annotation, represented by an
orange arrow, reveals no significant expression difference between the mutant and the wild type.
However, upon inspecting the area adjacent to the annotation, which corresponds to the 3’
unannotated UTR, we observe a drop in coverage slightly before the mutant when compared to
the wild type. This suggests an extension of rbcL transcripts in the mutant, consistent with the
role of PNPase in 3’ ends transcript trimming. This extension of transcripts cannot be evidenced
within the scope of analyzing DERs within gene annotations.
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4.3.2 Statistical model for transcriptome-wide detection of expression diffe-

rences

4.3.2.1 Survey of methods for transcriptome-wide detection of expression diffe-

rences

Similar to the detection of epigenetic marks problem, numerous research teams have advanced

innovative and practical solutions to address Statistical Problem 2. These methods, occasionally

referred to as "identify-then-annotate" tools [Frazee et al., 2014], approach the task of identifying

DERs in two distinct steps. The first step involves summarizing the coverage profiles (one per

replicate) from an RNA-Seq experiment into a single signal and using it to delineate the boun-

daries of candidate DERs along the genome. The primary differentiating factors among these

methods lies in the specific type of signal they segment and their specific segmentation approach

(Figure 1 of [Liehrmann et al., 2023]). The subsequent step involves a statistical evaluation of

expression differences within the newly defined regions. Most of these methods utilize the ne-

gative binomial GLM of DESeq2, originally conceived for gene counts [Love et al., 2014] 5, but

found to be reasonably effective for event counts as well [Anders et al., 2012]. I will now describe

the candidate DERs identification stage for two identify-then-annotate methods that have opted

for distinct modeling approaches.

derfinder RL. The core functionality of derfinder RL [Collado-Torres et al., 2016] relies on

a threshold-based heuristic approach to detect candidate DERs in the coverage. This process

unfolds in several stages. Initially, derfinder RL normalizes the coverage profiles with respect to

sample-specific library size. Following this, for each genomic position, it calculates the mean of

these normalized coverage profiles, thereby creating an average coverage profile. Subsequently, a

user-determined cutoff, which likely inŕuences both the position and number of DERs, is applied

to this average coverage profile. Any contiguous sequence of bases that exhibits an expression

exceeding this cutoff is designated as a candidate DERs.

srnadiff. srnadiff [Zytnicki and González, 2021] combines the candidate DERs identified by

two distinct approaches : (srnadiff IR) a threshold-based heuristic applied to the per-base log2

fold-change (log2-FC)Ðthe difference of expression on the logarithmic scale, and (srnadiff HMM)

a two-state Hidden Markov Model used on the per-base p-values. To begin, like derfinder RL,

srnadiff normalizes the coverage profiles with respect to sample-specific library size. In the IR

procedure, srnadiff subsequently calculates the average coverage profile for each biological condi-

tion, leading to the derivation of the per-base log2-FC profile. From this profile, the IR procedure

pinpoints any regions where the absolute log2-FC surpasses a user-defined threshold. Finally,

srnadiff merges closely located candidate DERs that exhibit similar log2-FC. In the HMM pro-

cedure, srnadiff executes a DESeq2 analysis, extracting the Wald test p-value for each genomic

5. see Section 6.3 for a general introduction
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position displaying an expression that exceeds a user-defined threshold. Following this, srnadiff

constructs a two-state HMM (differentially expressed, not-differentially expressed) with user-

determined parameters. Subsequently, the Viterbi algorithm is applied to the per-base p-values

to infer the location of candidate DERs. Ultimately, the candidate regions of srnadiff IR and

srnadiff HMM are merged using rules based on p-value and overlap. It is worth to note that,

srnadiff provides at least six user-adjustable parameters that inŕuence both the position and the

number of DERs.

4.3.2.2 Establishing a baseline for transcriptome-wide detection of expression dif-

ferences

The standard changepoints model (again). In Liehrmann et al. [2023], we assessed the re-

cently developed methods mentioned above in contrast to the standard changepoints model, with

changepoints observed in the per-base log2-FC 6. After locating the changepoints with FPOP and

assessing the resulting candidate DERs with DESeq2, we noted that, once again, the standard

changepoints model was more accurate than state-of-the-art methods. For this evaluation, we in-

corporated biological labels that reŕected molecularly validated accumulations of RNA fragments

in two mutants of A. thaliana for chlorolastic ribonucleases 7.

Moreover, the standard changepoints model was better in accurately capturing the differential

landscape. Specifically, it exhibited two strengths : (i) it demonstrated a reduced propensity

to merge regions that likely arise from distinct regulatory mechanisms, and (ii) it showed a

diminished tendency to fragment non-DERs, thus curbing the unnecessary inŕation of regions

for testing 8.

Finally, the outcome of the per-base log2-FC segmentation using FPOP is largely independent

of coverage normalization 9. Consequently, unlike in many other methods, normalization is not a

compulsory pre-processing step to find candidate DERs.

Applying the Ockham’s Razor (again). The derfinder RL method only identifies 4 out

of the 23 biological labels used in [Liehrmann et al., 2023]. This low accuracy could arguably

be attributed to the chosen approach of segmenting the mean of coverages using a threshold-

based heuristic. Such an approach could potentially merge DERs and non-DERs, which may in

turn mask DERs. For instance, this phenomenon is illustrated in Figure 5.C of Liehrmann et al.

[2023]. Under these circumstances, defining derfinder RL as a baseline would likely be of limited

interest.

On the other hand, srnadiff manages to detect 20 out of 23 labels, thus seemingly better

at identifying expression differences than derfinder RL, albeit less so than the standard change-

points model (which finds all the labels). However, srnadiff operates under multiple assumptions

6. see Differential transcription profile section of Liehrmann et al. [2023] for a mathematical definition
7. see DiffSegR improves the search for DERs section of Liehrmann et al. [2023]
8. see DiffSegR better captures the differential landscape section of Liehrmann et al. [2023]
9. see Normalization section of Liehrmann et al. [2023]
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that lead to a complex procedure for identifying candidate DERs, which involves several para-

meters that need calibration. Indeed, as previously detailed, srnadiff merges the candidate DERs

identified by two distinct segmentation approaches, and the results are inŕuenced by at least six

user-specified parameters.

Contrary to the prevailing literature, the standard changepoint model provides a parsimo-

nious solution without compromising accuracy. Moreover, this model is extensively justified and

supported by a rich body of statistical and applied literature, as outlined in Chapter 5.

In this context, harking back to the principle of Ockham’s Razor, I advocate using

Baseline model 2

� the standard changepoints model after transforming the coverage profiles in the per-

base log2-FC

and subsequently testing the identified candidate DERs with DESeq2 (Statistical problem 2).

4.4 A few words on the coordination of RNA events

4.4.1 From a deterministic to a probabilistic view of dependence

A relationship in which one or more RNA events are absolutely required for another RNA

event to occur (as mentioned in Section 3.3.3.2) is conceptually practical and experimentally easy

to validate. However, this rather deterministic perspective of dependence is rarely corroborated

by data. For instance, no such relationship was identified in our study on the coordination of

chloroplast RNA maturation events [Guilcher et al., 2021]. Statistical dependence allows, in a set

of random experimental data, to discern significant outcomes in a variety of scenarios including

the case discussed below (Figure 4.8.C) and others that are less clear-cut (Figure 4.8.B).

4.4.2 Transcriptome-wide detection of co-maturations

Together with Marine Guilcher, Benoît Castandet, Guillem Rigaill, and Etienne Delannoy,

as well as two studentsÐChloé Seyman, a bachelor’s student, and Benjamin Vacus, a master’s

student, whom I had the pleasure of co-supervising for periods of three and six months respec-

tively, we explored the interplay of biological processes involved in RNA events.

Intuitively, examining the statistical dependence of the K events that may occur along an

RNA is similar to studying the 2K isoforms. As we have seen in Section 3.2.2, this is a substan-

tially complex task. To mitigate this complexity, we turned our attention on the dependence of

the
(
K
2

)
annotated event pairsÐor what we refer to as co-maturationsÐas proposed in Strategy

1, and focusing for now on intron splicing and editing sites. Notably, we applied this strategy in

Guilcher et al. [2021].
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In the same vein as the detection of epigenetic marks or RNA regulations, our most recent ite-

ration of this project harnessed an established modelÐthe DESeq2 model for RNA-Seq dataÐto

assess the dependence between each annotated event along an RNA molecule. This testing is

feasible provided that both events are covered by the same read.
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Chapter 5

Multiple changepoint detection

Before starting this thesis, my succinct vision of a successful interdisciplinary project entailed

the development of a novel statistical model or a new algorithm to handle each incoming biologi-

cal project (the question and data). However, this vision swiftly evolved. As I have demonstrated

in Chapter 4, it may be wise to economize on development by proposing or adapting an existing,

proven model or algorithm. Yet, trusting in existing methodologies also entails continuing to

develop interesting models and algorithms. Throughout my doctoral research, I have put this

revised vision of interdisciplinary research into practice. In this chapter, I start by introducing a

standard changepoints model that I employed in the detection of epigenetic marks [Liehrmann

et al., 2021] and the detection of RNA regulations [Liehrmann et al., 2023], which yielded promi-

sing results. In the second part of this chapter, I introduce a new multiple changepoint detection

algorithm, Ms.FPOP, that incorporates a multiscale penalty with better statistical properties

than previously introduced penalties [Liehrmann and Rigaill, 2023].

5.1 Detecting changes in mean

Multiple changepoint detection, a regression problem, has been an area of active research since

the 1950s [Page, 1954, 1957, Girshick and Rubin, 1952]. Initially sparked by a need for quality

control within manufacturing operations, it has now risen to prominence as one of the "grand

challenges of inference" in massive data analysis, as identified by the US National Research

Council [Council et al., 2013]. Detecting changepoints is important in an extensive array of

disciplines including genomics [Muggeo and Adelfio, 2010], neuroscience [Koepcke et al., 2016],

econometrics [Bai, 1997], computer network security [Tartakovsky, 2014], and climate research

[Reeves et al., 2007].

The prototypical and most prevalent changepoint detection problem is the identification of

abrupt shifts in the mean of a univariate ordered signal, such as those manifested over time or

along the genome. These sudden shifts, known as changepoints, delimit segments characterized

by a homogeneous signal. In the context of my research, these changepoints might signify either

the start/end of a peak in ChIP-Seq data, or the start/end of a DERs in RNA-Seq data drawn
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its effectiveness. Notably, it has already achieved state-of-the-art results in genomic applications

[Lai et al., 2005, Hocking et al., 2013a, Cleynen et al., 2014b, Hocking et al., 2016].

5.2 Chapter summary at a glance

1. In Section 5.3, I introduce a standard model for multiple changepoint detection, along

with the associated penalized likelihood problem. I applied this model on ChIP-Seq data

in Liehrmann et al. [2021], and on RNA-Seq data in Liehrmann et al. [2023] as practical

solution for the detection of peaks and candidate DERs, respectively. Various dynamic

programming algorithms aimed at maximizing the penalized likelihood have been proposed

over the years. I will introduce some of them in the second part of this first section.

2. In Section 5.5, I present a new multiscale penalty, introduced by Verzelen et al. [2020],

that possesses superior statistical properties in terms of detection and localization com-

pared to other penalties documented in the literature. Subsequently, I introduce a novel

segmentation algorithm, Ms.FPOP, which leverages functional pruning techniques for ef-

ficient minimization of a least squares criterion with this multiscale penalty as elucitaded

in Liehrmann and Rigaill [2023].

5.3 Model and penalized likelihood

5.3.1 The standard changepoints model

We consider the data Y1, Y2, · · · , Yn and D changepoints τ1 < · · · < τD within the range of 0

and n. We adopt the convention that τ0 = 0 and τ|τ | = n. These changepoints define |τ | = D+1

distinct segments. The jth segment includes the data Kτj−1, τjK = {τj−1 + 1, · · · τj}.

Each segment is premised on the assumption that the Yi therein are independent and follow

the same Gaussian distribution, with a mean µj specific to that segment and a common variance

σ2. The model is illustrated in Figure 5.1.B. Expressed mathematically, we have :

∀ i ∈ Kτj−1, τjK Yi ∼ N (µj , σ
2) iid. (5.1)

5.3.2 Penalized likelihood

If the number of segments is known to be |τ |, the model as described by Equation (5.1) is

characterized by a parameter vector θ = (µ1, . . . , µ|τ |, σ
2, τ1, . . . , τ|τ |). The log-likelihood function

derived from this model, denoted as ℓ(y1, . . . , yn; θ), can be expressed as follows :

ℓ(y1, . . . , yn; θ) =

|τ |∑

j=1

f(yτj−1+1, . . . , yτj ;µj , σ
2), (5.2)

where f(yτj−1+1, · · · , yτj ;µj , σ
2) denotes the joint distribution of the data. Assuming Gaussian

distribution and data independence, the log-likelihood can be expressed as follows :
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−
1

2σ2

|τ |∑

j=1

τj∑

i=τj−1+1

(yi − µj)
2 −

n

2
log
(
2πσ2

)
. (5.3)

By taking the derivative with respect to the parameter σ2, which is assumed to be constant in

(5.1), we find that to maximize the likelihood, we need to minimize the following quantity C|τ |,n,

also known as least squares criterion (LSC) [Auger and Lawrence, 1989, Bellman and Kotkin,

1962, Fisher, 1958] :

C|τ |,n = min
τ1,...,τD
µ1,...,µ|τ |





|τ |∑

j=1

τj∑

i=τj−1+1

(yi − µj)
2





= min
τ1,...,τD





|τ |∑

j=1

τj∑

i=τj−1+1

(
yi − ȳτj−1+1:τj

)2


 ,

(5.4)

where ȳτj−1+1:τj is the sample mean of the jth segment :

ȳτj−1+1:τj =

τj∑

i=τj−1+1

yi
(τj − τj−1)

.

In practice, the number of segments is usually unknown and needs to be determined from

the data. In this context, without any form of penalization, the smallest value of C|τ |,n will

always be attained when |τ | = n, leading to a segmentation cost of 0. As illustrated in the

third panel of Figure 5.2, this result, while maximizing the likelihood, is clearly not meaningful

from a practical standpoint, as it essentially overfits the data without revealing any underlying

structure. In order to promote a more parsimonious, interpretable solution, as illustrated by

the second panel of Figure 5.2, it is therefore conventional to introduce a penalty term in the

likelihood, effectively discouraging models with excessive segmentation.

Numerous penalties have been proposed and examined in depth within the literature [Yao

and Au, 1989, Birgé and Massart, 2001, Lebarbier, 2005, Zhang and Siegmund, 2006b, Davis

et al., 2006, Baraud et al., 2009, Garreau and Arlot, 2018, Arlot et al., 2019, Verzelen et al.,

2020]. The number of changepoints is typically a decreasing function of such penalties, which are

commonly dependent on the parameters n and σ2. For instance, one of the simplest and earliest

penalties, proposed by Yao and Au [1989] and known as the Bayesian Information Criterion (BIC)

or Schwarz Information Criterion (SIC) [Fryzlewicz, 2014], is linear in |τ | and can be expressed

as 2σ2 log(n)|τ | (Figure 5.2).

The variance σ2 is often required to be estimated empirically from the data. A commonly used

method for this involves the unbiased estimator of the variance, denoted σ̂2, which is calculated

as follows :

σ̂2 =
1

n− 1

n∑

i=1

(yi − ȳ1:n)
2.
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Figure 5.2 ś Likelihood and penalized likelihood. An iid Gaussian signal of length n = 100 and
variance σ2 = 1 is affected by two changepoints at positions 25 and 75. The mean values corres-
ponding to the initial, intermediate, and final segments are -2, 1, and -1, respectively. Different
segmentation of the signal are depicted in a series of panels. From top to bottom, these segmenta-
tions represent the divisions of the signal into 2, 3, and 100 segments, respectively. With respect
to the least squares criterion, the costs associated to these segmentations are C2,100 = 160.530,
C3,100 = 78.128, and C100,100 = 0, in that order. In this scenario, an estimator aiming to minimize
the cost would select the final segmentation into 100 segments. This estimator accurately detects
the two true changepoints at positions 25 and 75, but unfortunately also falsely identifies 97
other positions as changepoints (the last datapoint can never be a changepoint). Incorporating
a penalty term into the cost, like in the form of 2|τ | log(100), also known as BIC, changes the
optimal segmentation. With this penalty, the (penalized) cost-minimizing segmentation would
be a division into three segments, which accurately identifies the two real changepoints without
any false positives. 65



I used this strategy for estimating σ2 and calibrating the BIC penalty in [Liehrmann et al., 2023].

Nonetheless, it is important to note that the literature also presents more robust estimatiors for

σ2 [Hall et al., 1990].

In [Liehrmann et al., 2021], I employed an alternative strategy that aims to calibrate the

penalty based on ChIP-Seq profiles annotated by biologists and bioinformaticians. The under-

lying concept is straightforward : identify the penalty values that minimize the annotation error

[Hocking et al., 2013b].

Box 2: Section switch

� At this stage, non-specialist readers should possess a sufficient technical foundation on

the standard changepoints model to engage with Liehrmann et al. [2021] (Appendix A).

In this paper, I compare the accuracy of several models of multiple changepoint detection,

as well as peak calling heuristics from the bioinformatics literature, in the context of the

detection of epigenetic marks and the supervised learning of these methods’ parameters.

Notably, I demonstrate that the standard changepoints model has an accuracy at least as

good as its competitors.

� For readers less interested in the algorithmic dimension of this thesis, and in particular

the development of the Ms.FPOP algorithm, I would recommend proceeding directly to

Chapter 6.

5.3.3 Definition of the penalized optimization problem

Considering a linear penalty expressed as α|τ |, where α denotes a constant, the algorithmic

objective is to optimize the ensuing penalized optimization problem :

Fn = min
|τ |

τ1,...,τD





|τ |∑

j=1




τj∑

i=τj−1+1

(
yi − ȳτj−1+1:τj

)2

+ α|τ |



 . (5.5)

The number of segmentations that could be solution of the problem (5.5) is 2n−1. As stated

earlier, the search for the optimal solution by investigating all possible solutions independently

becomes fastly computationally unfeasible.

5.4 Minimizing Fn through dynamic programming

Through the utilization of dynamic programming, Fn can be minimized efficiently. This

computation hinges on a specific recurrence relation, and two primary forms of this relation are

discussed in the literature :

"Recurrence on the last changepoint" the first approach considers all the possible po-

sitions of the last changepoint ;

"Recurrence on the last segment mean" the second approach considers all the possible

means of the last segment.
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5.4.1 Recurrence on the last changepoint

5.4.1.1 Optimal partioning

Because the cost of a segmentation in (5.5) is the sum of the cost of its segments, meaning

that the cost
∑τj

i=τj−1+1

(
yi − ȳτj−1+1:τj

)2
only depends of data within the jth segment, one can

apply Bellman’s dynamic programming principle to minimize (5.5) [Auger and Lawrence, 1989,

Bellman and Kotkin, 1962].

The recurrence. The Optimal Partitioning (OP) methodology, depicted in Jackson et al.

[2003], is specifically tailored to address the linear penalty present in (5.5). The optimal cost at

iteration t, Ft, is derived by considering the costs of the best segmentation up to last changepoint

candidate s, Fs, such that 0 ≤ s < t. To this, we add the cost of the last segment and the penalty.

Mathematically, we obtain the following recurrence :

Ft = min
0≤s<t

{
Fs +

t∑

i=s+1

(yi − ȳs+1:t)
2

}
+ α, initialized at F0 = −α. (5.6)

Complexity. It can be proven that the time complexity of OP is O(n2), and the memory

complexity is O(n) [Jackson et al., 2003].

5.4.1.2 Inequalities based pruning

The recurrence (5.6) suggests that we have to go through all changepoint candidates s be-

fore t. Naively, reducing the numbers of comparisons to be performed at each iteration reduces

the overall complexity. Killick et al. [2012] show that we can indeed, without resorting to an

approximation, definitively eliminate all s such that :

Fs +

t∑

i=s+1

(yi − ȳs+1:t)
2 > Ft. (5.7)

The recurrence. This pruning idea is implemented in PELT [Killick et al., 2012]. PELT

operates using two recurrences, one on Ft, another on the set of changepoints to consider at each

iteration Rt :

Ft = min
s∈Rt−1

{
Fs +

t∑

i=s+1

(yi − ȳs+1:t)
2

}
+ α

Rt =

{
s ∈ Rt−1|Fs +

t∑

i=s+1

(yi − ȳs+1:t)
2 ≤ Ft

}
∪ {t}.

(5.8)

Complexity. If the number of changepoints increases linearly with n, the time complexity of

PELT is O(n). If there are few or no changepoints, it is still O(n2). The memory complexity is

O(n) [Killick et al., 2012].
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5.4.2 Recurrence on the last segment mean

5.4.2.1 Functional based pruning

Building upon the prior works of Rigaill [2015] and Johnson [2013], Maidstone et al. [2016]

proposed a recurrence on the last segment mean µ rather than the last changepoint candidate

position s. In this context the pruning is said "functional". This idea is implemented within the

FPOP algorithm [Maidstone et al., 2016].

Functionalization. FPOP introduces for every changepoint candidate s its best cost as func-

tion of the last segment mean µ at iteration t, f̃t,s(µ). Formally,

f̃t,s(µ) = Fs +
t∑

i=s+1

(yi − µ)2 + α, with f̃t,t(µ) = Ft + α and F0 = −α. (5.9)

Throughout the procedure, f̃t,s(µ) is maintained and updated with new datapoint yt using the

following formula :

f̃t,s(µ) = f̃t−1,s(µ) + (yt − µ)2. (5.10)

At each iteration t, the FPOP algorithm considers the minimum of the f̃t,s(µ), denoted as F̃t(µ),

a piecewise quadratic function :

F̃t(µ) = min
s≤t

{
f̃t,s(µ)

}
. (5.11)

By definition, each interval of µ is associated with one last changepoint candidate s that achieves

this optimal cost. Note that Ft, is obtained by minimizing (5.11) over µ. Formally, Ft = min
µ

[
F̃t(µ)

]
.

The recurrence. Maidstone et al. [2016] have demonstrated that F̃t(µ) can be updated itera-

tively,

F̃t(µ) = min





F̃t−1(µ)︸ ︷︷ ︸
best past

changepoint candidates

, Ft−1 + α︸ ︷︷ ︸
last introduced

changepoint candidate





+ (yt − µ)2 (5.12)

The recursion (5.12) suggests that to update F̃t(µ) we need to compare the cost functions of

changepoint candidates that achieve optimal cost (best past changepoint candidates) with the

cost function of the most recently introduced changepoint candidate, i.e. Ft−1 + α. The other

changepoint candidates can be pruned. More formally, for each changepoint candidate s, we

define its "living set", Z∗
t,s, as the set of µ for which f̃t,s(µ) equals F̃t(µ),

Z∗
t,s =

{
µ | f̃t,s = F̃t(µ)

}
. (5.13)

Given (5.12), s is pruned as soon as its living set is empty, which is justified because
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Z∗
t,s ⊃ Z∗

t+1,s and Z∗
t,s = ∅ =⇒ Z∗

t+1,s = ∅ . (5.14)

Application. Below I propose a detailed example of the calculation of the recurrence (5.12)

at the third iteration on the signal y1 = 1, y2 = 0.5, y3 = 0.5 (Figure 5.3).

Initialization of the new changepoint candidate s = 2 : In Figure 5.3.A, on the left

panel, I have depicted, in bold, the piecewise quadratic function F̃2(µ), composed of cost

functions of the best past changepoint candidates s=0 (no changepoints) and s=1 (divides

the signal into two, with the first segment composed of point {y1} and the second segment

composed of datapoints {y2, y3}). The changepoint candidate s = 0 has an optimal cost

over Z∗
2,0 = [0.5, 1.7], while s=1 has an optimal cost over Z∗

2,1 =]1.7, 2] (the intervals are

shown on the same figure below the curves). The minimum of F̃2(µ), which equals 0.125,

is obtained through polynomial calculus. It is represented by the origin of the arrow on

the right panel. After calculating this minimum, we initialize a new changepoint candidate

whose cost function f̃2,2(µ) is equal to F2 +α = 0.125+ 0.5 = 0.625. By default, its living

set is equal to the range of the data : Z∗
2,2 = [0.5, 2].

Recurrence interval-by-interval : The function min{F̃2(µ), F2 + α} is then calculated

interval by interval, once again utilizing polynomial calculus. In our example, over the first

interval µ ∈ [0.5, 1.7] (left panel of Figure 5.3.B), we seek the roots of the polynomial

f̃2,0(µ)− (F2 + α) = 0.625− 3µ+ 2µ2.

The two roots equate to 0.25 and 1.25. Consequently, the changepoint candidate s = 0

is optimal over Z∗
2,0 = [0.5, 1.25], and the changepoint candidate s = 2 is optimal over

Z∗
2,2 =]1.25, 1.7]. Similarly, over the second interval µ ∈ [1.7, 2] (right panel of Figure

5.3.B), we seek the roots of the polynomial

f̃2,1(µ)− (F2 + α) = 0.125− µ+ µ2.

The two roots equate to 0.15 and 0.86. As a result, s = 2 is optimal over Z∗
2,2 = [1.25, 2],

and the living set of s = 1 is empty. We can, therefore, safely prune s = 1.

Adding new datapoint y3 : The third iteration ends by updating the cost functions of

the remaining changepoint candidates with the last datapoint y3 cost :

f̃3,0(µ) = f̃2,0(µ) + (y3 − µ)2 = 2.25− 5µ+ 3µ2,

f̃3,2(µ) = f̃2,2(µ) + (y3 − µ)2 = 1.625− 2µ+ µ2.

Complexity. Rigaill [2015] has shown that the number of intervals at iteration n is less than

2n − 1. From this upper bound, we infer a worst-case complexity of O(n2), and a memory
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complexity of O(n). However, for many signals, computation times are log-linear or linear in n

when there are few changepoints or when the number of changepoints increases linearly with

n, respectively. A theoretical proof supporting a log-linear complexity can be found in Romano

et al. [2023].

5.4.2.2 FPOP vs PELT

Maidstone et al. [2016] has demonstrated that the complexity of FPOP is always less than

that of PELT, meaning that FPOP prunes at least as well as PELT, regardless of the signal.

The computation time of FPOP is also better than PELT (Figure 7 of Maidstone et al. [2016]

and Figure 3 of Liehrmann and Rigaill [2023]). Both methods are implemented in C++/C.

5.5 Ms.FPOP : An exact and fast segmentation algorithm with

a multiscale penalty

5.5.1 Key criteria for effective changepoint detection and localization

As detailed in Verzelen et al. [2020], an efficient changepoint detection and localization esti-

mator should fulfill certain properties. These characteristics are formally articulated in Section

3.3 of the same study. My goal is to deliver below a succinct and understandable synopsis of

these principles.

(NoSp) Spurious changepoints are avoided. This first principle states that the procedure

should avoid estimating more than one changepoint in the proximity of a real one.

(Detec) Evident changepoints are detected. The second principle emphasizes that the

procedure should identify an ’evident’ changepointÐone whose height and spacing from neigh-

boring changepoints are large enough. A formal lower bound can be found in the Proposition 5

of Verzelen et al. [2020].

(Loc) Localization hinges on height and spacing. The last principle states that the

distance error between an evident changepoint and its estimation should only depend on the

height of this changepoint and spacing from neighboring ones. Specifically, the procedure should

localized this changepoint at optimal rate as define in Equation (30) of Verzelen et al. [2020].

Limitations of current estimators. The changepoint detection estimator builds on a LSC

with a BIC penalty does not simultaneously satisfy the (NoSp), (Detec), and (Loc) properties.

Likewise, the penalty proposed in Lebarbier [2005], despite possessing superior statistical pro-

perties compared to BIC, does not met concurrently all three properties either (Section 4.2.3 of

Verzelen et al. [2020]). In particular both penalties fail to retrieve with high probability evident
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changepoints with small jump heights and large adjacent segments. This typically occurs in sce-

narios where there are few well-spread changepoints. This is clearly illustrated in our simulations

on hat-like and step-like profiles for the BIC penalty (see Section 4.3 of Liehrmann and Rigaill

[2023]).

5.5.2 Optimization with a multiscale penalty

Definition. [Verzelen et al., 2020] put forth a LSC with a multiscale penalty adhering to

(NoSp), (Detec), and (Loc) properties. This multiscale penalty is defined by the negative

logarithm of segment lengths, which promotes the detection of well-spread changepoints. The

penalty can be expressed mathematically as :

|τ |∑

j=1

γ + β log(n)− β log(τj − τj−1). (5.15)

Here, γ = qL and β = 2L where q is a positive value and L > 1.

The penalized optimization problem given by (5.5) can be reformulated with the multiscale

penalty as follows :

Fn = min
|τ |

τ1,...,τD





|τ |∑

j=1




τj∑

i=τj−1+1

(
yi − ȳτj−1+1:τj

)2
− β log(τj − τj−1)


+ α|τ |



 . (5.16)

Applying α = γ + β log(n), we retrieve the multiscale penalty of (5.15), with γ and β as the

constants requiring calibration.

Complexity. As mentioned in Verzelen et al. [2020] (5.16) demonstrates segment additivity.

This attribute allows the application of dynamic programming algorithms that utilize a recur-

rence based on the last changepoint position or the last segment mean to optimize it. As detailed

above, the latter recurrence exhibits better pruning capacity and computational efficiency, ma-

king it a more compelling choice for optimizing (5.15).

Ms.FPOP algorithm. In Liehrmann and Rigaill [2023], in collaboration with Guillem Rigaill

I introduce Ms.FPOP, a dynamic programming algorithm designed to optimize a more general

penalty, inclusive of (5.15). This algorithm extends the functional pruning techniques used by

FPOP. This expansion is notably challenging due to the fact that (5.16) do not meet the point ad-

ditive cost function criteria, as detailed in Section 2.2 of the same article. While FPOP maintains

an optimal parameter set (Z∗
t,s) that progressively reduces with the addition of new datapoints,

(5.16) does not guarantee such reduction, thereby complicating the update process. Ms.FPOP

circumvents this complexity by managing a marginally larger set (Zt,s) easier to update. As a

reminder, Zt,s represents a set of intervals on µ, as depicted in Figure 5.4.
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Sketch of the update rule. In this paragraph, I aim to elucidate the process of updating the

best changepoint candidates in the Ms.FPOP algorithm (Equation (12) of Liehrmann and Rigaill

[2023]). Importantly, the purpose here is not to justify why this update ensures the optimality of

Ms.FPOP, but rather to present the essential operations comprising it. This explanation should

serve as a valuable introductory step prior to engaging with Liehrmann and Rigaill [2023] in

detail.

Figure 5.4.A illustrates the update of a recently initialized changepoint candidate t with the

past changepoint candidates s. The cost function of t is compared to each s cost function. For

each of these comparisons, the µ interval on which t does not have the lower cost is found using

polynomial calculus and saved. The living set of t is then determined by taking the union followed

by the complement in µ of these intervals.

Figure 5.4.B illustrates the update of a changepoint candidate s with another candidate s′,

which is initialized after s. The cost function of s is compared to that of s′, and the µ interval

where s exhibits a lower cost is determined using polynomial calculus and saved. The living set

of s is then intersected with this interval, with the resulting intersection serving as the new living

set of s. The interval on which s has a lower cost relative to s′ diminishes at each iteration. This

property suggests comparing s and s′ at multiple iterations. In practice, at each iteration and

for each s, we randomly draw one s′ for comparison.

At the end of iteration t, the living set of s, Zt,sÐwhich, as a reminder, includes the true

living set of s, Z∗
t,sÐis empty. Consequently, s is pruned.

Box 3: Section switch

� At this stage, readers should have acquired sufficient knowledge of dynamic program-

ming and its acceleration via functional pruning, or pruning based on inequality tech-

niques, to engage with Liehrmann and Rigaill [2023] (Appendix B.1). In this paper, I

present the Ms.FPOP algorithm in detail, and demonstrate that for large signals (with

n ≥ 105) containing relatively few real changepoints, Ms.FPOP is typically quasi-linear

and an order of magnitude faster than PELT. Lastly, I illustrate through simple simula-

tions that for sufficiently large profiles (n≥ 104), Ms.FPOP using the multiscale penalty

is typically more powerful than FPOP using the BIC penalty.

5.5.3 Implementation of Ms.FPOP

5.5.3.1 Foreword

In the remainder of this section, I will shed light on the implementation of Ms.FPOP, which

has not been elaborated upon extensively in the original paper.

The multifaceted concepts intrinsic to the Ms.FPOP algorithm, such as quadratic functions,

last changepoint candidates, and intervals, suggested that an object-oriented programming ap-

proach would be suitable for its implementation. This approach provides a structured platform
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where all information and related methods for manipulating an object are grouped, enhancing

code readability and maintainability.

Ms.FPOP has been implemented in C++, a compiled, highly efficient language whose object-

oriented nature aligns perfectly with our requirements. The extensive utilization of the C++

standard library in this implementation harnesses powerful features like containers, iterators,

and a variety of functions for sorting, searching, counting, and object manipulation, thereby

substantiating the decision to use the C++.

5.5.3.2 Overview of the classes.

Six classes were identified during the design of Ms.FPOP :

Candidate. The first class, Candidate, defines the concept of last changepoint candidate.

Each changepoint candidate is characterized by its position. From a functional perspective,

it is associated with a cost function and a living set. The cost function can be broken down

into three parts : the cost of the best segmentation up to the changepoint candidate, the

quadratic form, and the penalty which depends on the last segment length.

Interval. The second class, Interval, defines the concept of an interval. An interval is boun-

ded by two real numbers. An empty interval is represented by an upper bound smaller

than the lower bound. As justified in Section B.2, I have chosen to treat the specific case

of singletons 1 as empty intervals.

Ordered_list_of_intervals. The third class, Ordered_list_of_intervals, defines a list of

non-empty intervals ordered by their lower bound. The ordered property of this list is

used to enhance the performance of updating the living set of changepoint candidates.

In particular, this structure speeds up set operations such as union, complement and

intersection (figure 5.4).

MsFPOP. The fourth class, MsFPOP, is the main class of this project. It facilitates ins-

tantiating a segmentation problem based on the data to be segmented and the penalty.

Leveraging the other classes, it implements the procedure for estimation changepoints.

Quadratic. The fifth class, Quadratic, defines the quadratic form a0+a1µ+a2µ
2. This qua-

dratic form is one of the components of the cost function associated with each changepoint

candidate.

Sampling. The sixth class, Sampling, implements various strategies for sampling change-

point candidates, specifically those introduced after a defined point in time (future chan-

gepoint candidates).

In Section B.2 I elaborate on the six classes mentioned above, as well as the relationships

between the objects they define. Notably, I explain in details a few implementation choices that

enhance the overall execution time of Ms.FPOP.

1. A singleton is an interval of the form [a, a].
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Chapter 6

Applications for the multiscale analysis of the

transcriptome

This chapter highlights the engineering facet of my thesis. Here below, I articulate my strategy

for precise and rigorous analysis of expression differences and co-maturations. This strategy

leverages the DESeq2 model and includes the control of evaluated differences, for instance, by

employing a post-hoc procedure. Subsequently, I detail how I have incorporated this strategy

into two R packagesÐDiffSegR and comaturationTrackeR. These tools exemplify the successful

integration of complex analytical methodologies into practical, user-friendly software solutions.

6.1 Differential analysis

An important aspect of the transcriptome-wide detection of expression differences and co-

maturations is the quantification of systematic changes between two groups, also known as dif-

ferential analysis. In the first instance, the change pertains to the expression level of a site

depending on the biological condition ; in the second instance, it relates to the maturation level

of a site, contingent upon the maturation state of a second site. Quantifying these changes is

challenging because the expression and maturation levels of a site can vary between samples.

To account for this variability, both technical and biological, it is crucial to model the counts

per event or per pair of events effectively. The GLM with a negative binomial distribution for

RNA-Seq data, as implemented in the DESeq2 R package Love et al. [2014], performs this task

reasonably well.

6.2 Chapter summary at a glance

1. Section 6.3 introduces key elements of the statistical model of gene counts implemented in

DESeq2.

2. In Section 6.4, I unveil how to use the statistical model of DESeq2 to evaluate candidate

DERs identified using FPOP. This is followed by a short presentation of DiffSegR, an R

package that integrates the Baseline 2 and DESeq2 as shown in Liehrmann et al. [2023].
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3. In Section 6.5, I provide a brief introduction of comaturationtrckeR, a method that exists

in two forms : a published R pipeline [Guilcher et al., 2021] and a subsequent R package

(still in development). The second version also leverages the statistical model of DESeq2

to assess co-maturations.

6.3 Generalized linear model for RNA-Seq data

6.3.1 Gene counts model

Let’s revisit the DESeq2 model for gene counts. Here, Kjd is defined as the number of

sequencing reads that align onto gene j in sample d, a concept diagrammatically depicted for

one sample in Figure 3.7.A. In addition, we designate qj,d to be a quantity proportional to the

expected concentration of cDNA fragments (Figure 3.5) for gene j in sample d.

To simplify matters, technical artifacts can be reduced to a multiplicative factor for each

sample, denoted as sd, or the "size factor". This factor adjusts variations in read counts across

samples to account for differences in the total number of sequenced reads per sample. For instance,

if sample A contains twice the total sequenced reads as sample B, it is reasonable to anticipate

twice the reads mapping to each gene, suggesting that sA = 2sB.

Through systematic empirical analysis, it has been observed that the variance in gene counts

obtained from multiple biological replicates tends to exceed their mean. In statistical terms,

these counts display an "overdispersion" in comparison with a Poisson distribution. To account

for overdispersion effectively, DESeq2 employs the gamma-Poisson distribution, also referred to

as the negative binomial distribution. This approach introduces an extra gene-specific parameter,

symbolized as φj , that establishes a relationship between the mean and variance. Mathematically,

the DESeq2 model for gene counts is expressed as :

Kj,d ∼ NB(µj,d, φj) ,

Var (Kj,d) = µj,d︸︷︷︸
technical noise

+ φjµ
2
j,d︸ ︷︷ ︸

biological noise

, (6.1)

where µj,d = sjqj,d designates the un-normalized mean expression of gene j in sample d. The

variance can be decomposed in two components : (technical noise) the variability in the mea-

surements, and (biological noise) the variability in the biology of the samples. Additionally, one

can observe a characteristic pattern in the relationship between gene dispersion and mean values

in RNA-Seq data (Figure 6.1). The trend in dispersion smoothly decreases as gene expression

increases, and eventually reaches an asymptote.

6.3.2 Generalized linear model

The underlying proportion qj,d can be effectively represented using the notation of a GLM.

This involves the use of a design matrix, X, and gene-specific regression parameters, symbolized
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Figure 6.1 ś Visualization of the gene dispersion trend in RNA-Seq data. The figure is derived
from the DESeq2 R package Vignette.

as βj . To make this model intuitive, I describe X and βj below in the simple scenario where we

are comparing two biological conditions (♣).

The GLM is characterized as "linear" since we apply the regression parameters, βj , to form

a linear combination of the columns in the design matrix, X. This is expressed as a matrix

multiplication, Xβj , that aims to minimize the error (or log-likelihood) when approximating

normalized gene countsÐgene counts divided by multiplicative size factorsÐ denoted as K̃ =

s−1

d Kj,d.

The term "generalized" in GLM refers to the utilization of a link function, which establishes

the relationship between the linear predictor, Xβj , and the underlying proportions, qj,d. In the

case of DESeq2, a log2 link function is used. Mathematically, this relationship is expressed as :

log2(qj,d) = xdβj (6.2)

where xd denotes the dth row of X.

After carrying out the non-trivial task of estimating sd and φj parameters, as detailed in

Love et al. [2014], we can proceed to estimate the coefficients βj . This task can be accomplished

utilizing standard GLM algorithms, as thoroughly elaborated in the works of Park and Hastie

[2007] and Friedman et al. [2010].

♣ Difference between two biological conditions. Let’s consider a simple scenario 1 that

includes two distinct biological conditions, each with two samples. In this case, the design matrix

1. Freely inspired by the differential expression analysis courses taught by Christophe Ambroise, Pro-
fessor of Statistics at the University of Évry Val d’Essonne.
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X can be formulated as :

X =




1 0

1 0

1 1

1 1




.

In the context of this two-condition design matrix, the gene-specific regression parameters βj can

be expressed as :

βj =

(
βj,0

βj,1

)
.

Here, βj,0 symbolizes the log2 of the mean of normalized counts for the jth gene in the first two

samples, which belong to the first biological condition. In addition, βj,0+βj,1 represents the log2

of the mean of normalized counts for the jth gene in the last two samples, associated with the

second biological condition. To illustrate, let’s assume that βj,0 = 3 and βj,1 = 1. In this case,

the underlying proportions qj,d for samples 1, 2, 3, and 4 are :

qj,1 = qj,2 = 2βj,0 = 8,

qj,3 = qj,4 = 2βj,0+βj,1 = 16.

The log2 fold-change (log2-FC) between the mean of normalized counts of the two conditions

under comparison is then βj,1 :

log2

(
qj,3
qj,1

)
= log2(qj,3)− log2(qj,1) = (βj,0 + βj,1)− βj,0 = βj,1.

6.3.3 Contrast

Following the estimation of the GLM parameters to individual genes, the subsequent statis-

tical inference typically involves scrutiny of either a singular estimated regression parameter’s

nullity or that of a linear combination of such parameters, often referred to as a "contrast".

Mathematically, the null hypothesis, denoted as H0, is characterized as follows :

H0 : ⟨c, βj⟩ = 0, (6.3)

where c ∈ R
p symbolizes the contrast vector, with p the number of parameters. In the earlier

described scenario (♣), the process of assessing differences in gene expression across the two

compared conditions aligns with testing the nullity of the coefficient βj,1, a.k.a the estimated

log2-FC between the mean of normalized counts :

H0 : βj,1 = 0. (6.4)

To do so, both the Wald test and likelihood ratio test are available for GLMs with known

(asymptotic) distribution under the null hypothesis (6.3). In theory, the distribution of associated
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Figure 6.2 ś Different p-value histogram classes. (A) This figure depicts various classes of p-value
histograms. The algorithmic thresholds demarcating distinct classes of p-value histograms are
depicted by red lines. Unique histogram types such as bimodal, conservative, and others stand
out as anomalies. The anti-conservative histogram is the expected in an experiment with high
statistical power and differentially expressed genes, denoted by a peak at the lower p-values
(uniform otherwise). In a low statistical power experiment or one lacking differentially expressed
genes, a uniform histogram is anticipated. (B) Summary of p-value histograms identified from
4,616 Gene Expression Omnibus datasets. The figure is taken from Päll et al. [2023].

raw p-values is dominated by a uniform distribution. Therefore, any deviations from this pattern

in the raw p-value histogram, as illustrated by the bimodal, conservative and other histograms in

Figure 6.2, can reveal inadequacies in the statistical model’s fit to the data [Rigaill et al., 2016].

6.3.4 Multiple testing

In the process of evaluating a large number of genes (or regions as discussed in the subsequent

section) for expression differences, it is often deemed acceptable to allow for a certain fraction of

false positives (genes incorrectly identified as differentially expressed) in order to yield a higher

count of true ones. The prevalent approach in dealing with large-scale multiple testing is through

controlling the False Discovery Rate (FDR) [Benjamini and Hochberg, 1995], which refers to

expected proportion of false positives amongst all selected genes, known as the False Discovery

Proportion (FDP). The Benjamini-Hochberg procedure, typically adopted to control the FDR, is

effective when the null hypotheses are independent or show a specific kind of positive dependence

called Positive Regression Dependency on a Subset (PRDS) [Benjamini and Yekutieli, 2001].

PRDS is generally accepted as a reasonable assumption within differential gene expression studies

[Goeman and Solari, 2014].

However, If the user is not satisfy with the results, it may snoop into the data, possibly

selecting a subset of gene of interest. One typical approach involves setting a threshold on the
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absolute log2-FC, facilitating the selection of genes that manifest the most significant expres-

sion differences between the two conditions under comparison. Importantly, recent comprehensive

simulation studies by Ebrahimpoor and Goeman [2021] have demonstrated that this picking stra-

tegy often leads to inŕated FDRs. In such circumstances, a post-hoc inference procedure can be

used to provide confidence bounds for the FDP in arbitrary, and potentially data-driven, subsets

of genes [Goeman and Solari, 2011, Ebrahimpoor and Goeman, 2021]. This tool is quite practi-

cal and well-suited to biologists’ needs, despite its current underutilization. For these reasons, I

have chosen to implement this feature in the DiffSegR R package, building upon the sanssouci

R package Neuvial et al. [2022]. A description of how to use the post-hoc procedure in DiffSegR

is outlined in the Advanced tutorials section of the associated Vignette (Section 6.4.2.2). I also

plan to incorporate it into the comaturationTrackeR R package.

I will not delve further into the concept of post-hoc inference in this manuscript, but an

excellent introduction can be found in [Enjalbert-Courrech and Neuvial, 2022].

6.4 Transcriptome-wide detection of expression differences

As previously mentioned in section 4.3, during my thesis I worked on the detection of DERs

across the genome. In [Liehrmann et al., 2023], we introduced DiffSegR, a method that delineates

candidates DERs within the log2-FC using FPOP (Baseline 2) and subsequently evaluates these

regions using DESeq2. In the following two sections, I will first outline the statistical contrast

that is tested using DESeq2 in DiffSegR, and then describe the four main stages of the DiffSegR

method.

6.4.1 Contrast

Assume τ̂ is the set of changepoints estimated by FPOP on the per-base log2-FC calculated

on an RNA-Seq experiment involving two biological conditions. Here, the jth segment starts

at position τ̂j + 1 and ends at position τ̂j+1. In the context of transcriptome-wide expression

difference detection, each such segment is considered as a candidate DER.

We subsequently redefine Kj,d as the number of sequencing reads overlapping the jth can-

didate DER. Note that a single read may be assigned to multiple candidate DERs. The counts

of candidate DERs can be modeled with (6.1) and (6.2). Candidate DERs can subsequently be

assessed by testing the contrast (6.4).

Significantly, in three separate analyses conducted as detailed in Liehrmann et al. [2023], the

dispersion trends observed in candidate DERs (Figures S2, S5 and S8) as well as the p-value

histograms (Figures S3, S6 and S9) appeared regulars.
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6.4.2 DiffSegR : An RNA-Seq data driven method for differential expression

analysis using changepoint detection

6.4.2.1 DiffSegR in a nutshell

As illustrated in Figure 6.3, a classical differential expression analysis conducted using Diff-

SegR along the genome involves :

Computing the coverage profiles and the differential transcription profile. (1.A)

Firstly, coverage profiles are generated from specified BAM files, which contain the aligned

reads, and a user-determined genomic region. Individual coverage profiles for each strand

are produced for every replicate of both biological conditions. (1.B) Following this, the

per-base log2-FC for each strand is computed based on these coverage profiles.

Summarizing the differential transcription landscape. (2.A) FPOP is employed on

the per-base log2-FC of each strand in order to identify segment boundaries. (2.B) Then,

the featurecounts program [Liao et al., 2013] is utilized to assign mapped reads to these

identified segments, leading to the creation of a count matrix.

Differential expression analysis. (3) DESeq2 is used to test the difference in average ex-

pression of each segment (candidate DERs) under the two compared biological conditions.

Annotating and visualizing the DERs. (4.A) The DERs are annotated based on user-

specified annotations file (in gff3 or gtf format). (4.B) Concurrently, data for DERs,

non-DERs, segmentations, the mean of coverage profiles from both biological conditions,

and per-base log2-FC are saved in formats that are compatible with genome viewers such

as the Integrative Genomics Viewe (IGV). An IGV session in XML format is also created,

which allows all tracks to be loaded simultaneously, thereby providing a user-friendly way

to visualize and interpret DiffSegR results.

6.4.2.2 DiffSegR R package

I encapsulated the implementation of DiffSegR in an R package named after the method itself.

The DiffSegR package is available on GitHub : https://aliehrmann.github.io/DiffSegR/

index.html. Importantly, this package includes a Vignette which shows a minimal example on

how to use the main functions, and then delves into a more advanced uses of DiffSegR. This

Vignette should be considered as an extension of this manuscript.
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Box 5: Section switch

At this stage, readers can delve into Guilcher et al. [2021], where we have highlighted the

co-maturation of 42 pairs of splicing and editing sites in the chloroplast of A. thaliana

(wild type), along with a preferred chronology where splicing typically occurs post editing

at most sites. The analyses undertaken in this study rely on the comaturationtrackeR

method. Comprehensive details regarding the initial and subsequent versions of comatu-

rationtrackeR are provided in the bachelor’s thesis of Chloé Seyman (Appendix D.2) and

the master’s thesis of Benjamin Vacus (Appendix D.3), respectively. Together with Ben-

jamin, we further explored co-maturations in a PNPase mutant of A. thaliana and the

dependencies among triple event sets.
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Chapter 7

Perspectives

7.1 Ms.FPOP

7.1.1 Implementation of a more efficient update rule

An effective reduction of the living set of a candidate changepoint s presupposes comparing

it with one or more candidate changepoints s′ introduced after it (future candidates). Indeed, as

intuitively shown in Figure 5.4.B and more formally in inclusion (15) of Liehrmann and Rigaill

[2023], the interval over which s has a lower cost solution than s′ decreases with t. However,

it is evident that this operation, carried out at each iteration, comes at a cost. Alternatively,

when comparing changepoint candidates s′ to s, on top of computing the current bound of the

intervals, one could computes and stores the iteration tempty at which s′ would lead to an empty

intersection with s. Assuming this value is stored we can discard the interval as soon as the

current iteration is larger than tempty.

7.1.2 Further simulations

By employing signals simulated under Gaussian noise without changepoints, we have de-

monstrated that it is feasible to calibrate the multiscale penalty such that Ms.FPOP does not

yield an excessive number of false positives (below 5% in our calibration). Under this frame-

work, we evaluated Ms.FPOP against FPOP (which implements the LSC with the BIC penalty)

in various scenarios. Ms.FPOP outperformed FPOP in segmentations with well-spread change-

points. In addition, Ms.FPOP was at least on par with FPOP for smaller segments within large

enough profiles (n ≥ 104). It is anticipated that a comparison with the penalty proposed in

Lebarbier [2005] (known to have better statistical properties than the BIC penalty) will yield

similar results [Verzelen et al., 2020]. However, this hypothesis remains to be confirmed using

similar simulations. Additionally, I could compare Ms.FPOP with further proposed approaches

to detecting changes in mean : R-FPOP Fearnhead and Rigaill [2018], WBS Fryzlewicz [2014],

IDetect Anastasiou and Fryzlewicz [2021].
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7.1.3 Applying Ms.FPOP to genomic series

As mentioned above, by using the multiscale penalty implemented in Ms.FPOP, we can

enhance the detection power for fairly large segments, in comparison to the BIC penalty. Hence,

when this methodology is applied to empirical data, it allows for the identification of these

segments in the results of a more noisy RNA-Seq experiment (or in any other experiments where

results can be aligned along the genome). Moreover, by leveraging Ms.FPOP in methods like

DiffSegR, which segment the average coverage profile from multiple biological replicates, we

could reasonably anticipate achieving equally good segmentation with fewer replicates.

However, the applicability of Ms.FPOP, with its current calibration, to real data is yet to

be substantiated. Moreover, all our simulations have been conducted on signals with known

variance, which is not typically the case in most real-world applications, like in genomics. As

indicated in Section 5.3.2, it becomes necessary to derive the variance directly from the data.

Several estimators and heuristic approaches for this purpose are available [Hall et al., 1990, Arlot

et al., 2019].

I intend to compare the results of FPOP (currently implemented in DiffSegR) and Ms.FPOP

in identifying candidate DERs based on the chloroplast RNA-Seq data, and the associated biolo-

gical labels, that I used in Liehrmann et al. [2023]. With the help of biologists of the Organellar

Gene Expression team we will scan the segmented profiles in IGV to assess the goodness of each

segmentation.

Finally, I plan to compare Ms.FPOP with FPOP and other multiple changepoint detection

methods on annotated datasets of DNA copy number variation [Hocking et al., 2013b] and ChIP-

Seq [Hocking et al., 2016]. For the latter I will reuse the simulations from Liehrmann et al. [2021].

7.2 DiffSegR

7.2.1 Challenge in analyzing larger genomes with increased zeroes

Results from Liehrmann et al. [2023] (Section DiffSegR can be used on sparser genomes)

suggest that DiffSegR is effective and powerful at detecting DERs in bacteria RNA-Seq datasets.

Compared to the chloroplast, the coverage profiles computed on this bacterial dataset contain

many more genomic positions with 0 counts. The assumption of a constant per-base log2-FC

variance is less likely to hold in these case, thereby challenging the assumption of the standard

changepoints model. As a result, the per-base log2-FC may be over-segmented and the resulting

DERs may be less interpretable (Figure S38 of Liehrmann et al. [2023]). This problem is likely

to be more severe on larger genomes, such as nuclear genomes.

A rather straightforward solution to the issue of low coverage is to apply DiffSegR to smaller

chunks of the genome that have sufficient coverage. This is not as easy as it might seem. Indeed,

(i) identifying those chunks is a segmentation problem itself, (ii) one ends up with multiple chunk

and thus several multiple changepoint detection problems complexifying the model selection, and
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(iii) we get a triple-dipping a problem as the data is used three times to recover the chunks, detect

changes within the chunks, and tests segments within the chunks.

An alternative route would be to integrate more advanced segmentation methods, available

in the statistical literature, in DiffSegR. In particular, it might make sense (i) to weight the base

pair according to its coverage (using a weighted version of FPOP [Rigaill, 2022]), (ii) to consider

full length reads 1 at the prize of modeling auto-correlation [Romano et al., 2021], and (iii) to

model the discrete nature of the data using a negative binomial model [Cleynen and Lebarbier,

2014a].

7.2.2 Complex designs

In DiffSegR we only consider a simple RNA-seq experimental design with two conditions.

In that case it is rather natural to segment the per-base log2-FC. For more complex design

one could consider various contrasts. For example, consider a two-way anova design with two

factors : lineage (wild type or mutant) and stress (standard or heat). In this experiment, one can

be interested for example in :

1. the effect of the lineage irrespective of the stress condition ;

2. the effect of the stress irrespective of the lineage ;

3. the effect of the stress in the wild type lineage ;

4. the effect of the stress in the mutant ;

5. the effect of the lineage in the standard condition ;

6. the effect of the lineage in the heat condition ;

7. the interaction between the two factors Lambert et al. [2020].

If someone has a specific interest in a particular contrast, it make sense to define the signal

to segment based on this contrast and then use DESeq2 on the resulting segments.

In reality, it is probable that one’s interest extends to multiple contrasts, not just a single

one. A straightforward solution is to run the DiffSegR analysis on each of these contrasts of

interest, following by the correction of all the contrasts tested. Alternatively, an option could be

to segment the signals corresponding to these multiple contrasts jointly. GeomFPOP [Pishchagina

et al., 2023], a segmentation algorithm for multidimensional signals, allows to solve this problem

exactly within a reasonable timeframe (a few minutes) for four contrasts and signals of size 105,

which is approximately the size of the chloroplast genome.

7.2.3 Applying the diffsegR strategy to other genomic series

The DiffSegR strategy, which involves segmenting with FPOP, testing with DESeq2’s ne-

gative binomial GLM, and then controlling multiple tests with a post-hoc bound, is relatively

versatile. Furthermore, the tools employed at each step are statistically rigorous and robust.

1. see Note S1-2 of Liehrmann et al. [2023]

89



Ultimately, from an application perspective, the primary decision lies in selecting the signal that

FPOP should segment, and eventually the contrast evaluated in DESeq2. As explained below re-

sults on RNA-Seq (chloroplast, bacteria) and RNA Immunoprecipitation Sequencing (RIP-Seq)

(mitochondria) data lead me to believe that this versatility does not compromise the relevance

of the biological events identified.

In [Liehrmann et al., 2023], we demonstrated that DiffSegR is proficient in accurately iden-

tifying 3’ and 5’ extensions of transcripts, as well as the accumulation of antisense RNAs and

introns in two A. thaliana mutants for chloroplast ribonucleasesÐMini-III [Hotto et al., 2015]

and PNPase [Castandet et al., 2013]. As previously mentioned, we also showed that it could

successfully find all potential candidates for direct degradation by Rae1 in B. subtilis. The can-

didates and two confirmed sites were previously identified by Leroy et al. [2017] and Deves et al.

[2023].

Furthermore, in collaboration with Huy Cuong Tran (PhD student, Lund University, Sweden)

and Olivier Van Aken (Associate Professor, Lund University, Sweden), we utilized DiffSegR on

RIP-Seq data to establish that a protein under study has a binding affinity towards 5’ untransla-

ted regions [Tran et al., 2023]. This collaboration strengthened my conviction that DiffSegR holds

potential for application across a wide range of RNA-Seq based strategies aimed at capturing

specific biological events [Han et al., 2015].

For instance, it could be used to detect newly transcribed RNAs compared to mature RNA

controls in nascent RNA analysis [Wissink et al., 2019], discern differences in ribosome-bound

RNA in translatome analysis [Calviello and Ohler, 2017], or to distinguish structured (double-

stranded RNA) from unstructured RNAs in structurome analysis [Kertesz et al., 2010], to men-

tion just a few possibilities.

7.3 Coordination of chloroplast RNA maturation events

Leveraging a dedicated Nanopore long-read protocol [Guilcher et al., 2021], we sequenced the

chloroplast transcripts of A. thaliana under normal growth conditions. This sequencing data was

subsequently analyzed using the initial version of comaturationTrackeR, revealing dependencies

between 42 pairs of editing and intron splicing sites. Some of these dependencies had been

previously documented in scientific literature. Furthermore, our findings elucidated a preferential

sequence of maturation events, wherein splicing generally transpired subsequent to the editing

of most sites [Guilcher et al., 2021]. This investigation represents a pioneering study exploring

the coordination of chloroplast RNA maturation events at transcriptome-scale.

However, in its current form, comaturationTrackeR is not equipped to analyze dependencies

between the 5’/3’ ends of transcripts and other maturation events. Without committing to a

specific methodology, this feature is eagerly anticipated by the biologists, including those from

the Organellar Gene Expression team.
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Long term perspectives. In the context of co-maturation predictions by comaturationTra-

ckeR, questions arise of how to validate the list of identified co-maturations and decipher the

molecular mechanisms underlying the observed co-maturations. The Organellar Gene Expression

team has proposed a potential validation strategy. This strategy involves conducting experiments

with a mutant specific to a particular event, to investigate its impact on other dependent events.
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Increased peak detection accuracy 
in over‑dispersed ChIP‑seq data with supervised 
segmentation models
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Background

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-

seq) is amongst the most widely used methods in molecular biology [15]. This method 

aims to identify transcription factor binding sites [20, 22] or post-translational histone 

modifications [24, 25], referred to as histone marks, underlying regulatory elements. 

Consequently, this method is essential to deepen our understanding of transcriptional 

regulation. The ChIP-seq assay yields a set of DNA sequence reads which are aligned to 

Abstract 

Background: Histone modification constitutes a basic mechanism for the genetic 

regulation of gene expression. In early 2000s, a powerful technique has emerged that 

couples chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq). 

This technique provides a direct survey of the DNA regions associated to these modifi-

cations. In order to realize the full potential of this technique, increasingly sophisticated 

statistical algorithms have been developed or adapted to analyze the massive amount 

of data it generates. Many of these algorithms were built around natural assumptions 

such as the Poisson distribution to model the noise in the count data. In this work we 

start from these natural assumptions and show that it is possible to improve upon 

them.

Results: Our comparisons on seven reference datasets of histone modifications 

(H3K36me3 & H3K4me3) suggest that natural assumptions are not always realistic 

under application conditions. We show that the unconstrained multiple changepoint 

detection model with alternative noise assumptions and supervised learning of the 

penalty parameter reduces the over-dispersion exhibited by count data. These mod-

els, implemented in the R package CROCS (https:// github. com/ aLieh rmann/ CROCS), 

detect the peaks more accurately than algorithms which rely on natural assumptions.

Conclusion: The segmentation models we propose can benefit researchers in 

the field of epigenetics by providing new high-quality peak prediction tracks for 

H3K36me3 and H3K4me3 histone modifications.

Keywords: ChIP-seq, Histone modifications, Over-dispersion, Peak calling, Multiple 

changepoint detection, Likelihood inference, Supervised learning
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a reference genome and then counted at each genomic position. This results in a series 

Y = (y1, . . . , yn) of n non-negative integer count data (yi ∈ Z+) , hereafter called cover-

age profile, ordered along a chromosome. The binding sites or histone marks of interest 

appear as regions with high read density referred to as peaks in the coverage profile.

Since there is a biological interest in detecting these peaks, several methods, hereaf-

ter called peak callers (c), have been developed / adapted and used to filter out back-

ground noise and accurately identify the peak locations in the coverage profile. They take 

a coverage profile of length n and classify each base from it as a part of the background 

noise (0) or peak (1), i.e. c : Y → {0, 1}n . Among these peak callers we can mention 

MACS [26] and HMCan [2], two heuristics which are computationally fast but typically 

accurate only for a specific pattern, i.e. respectively sharp and broad peaks [7]. More 

recently, it has been proposed to solve the peak detection problem using either opti-

mal constrained or unconstrained multiple changepoint detection methods [8, 12]. The 

constraints ensure that the segmentation model can be interpreted in terms of peaks 

and background noise which is a practitioner’s request. The unconstrained one doesn’t 

have an output segmentation with a straightforward interpretation in terms of peaks 

and needs to be followed by an ad-hoc post-processing rule to infer the start and end of 

peaks (see Fig. 2). For each of these methods, there are one or more tuning parameters 

that need to be set before solving the peak detection problem and that may affect the 

results accuracy.

In a supervised learning approach, Hocking et al. [7] introduced seven labeled histone 

mark datasets that are composed of samples from two different ChIP-seq experiments 

directed at histone modifications H3K36me3 and H3K36me3. In a recent study, after 

training different peak callers using these datasets, Hocking et al. [12] compared them 

and showed that the constrained segmentation model with count data following a Pois-

son distribution outperforms standard bioinformatics heuristics and the unconstrained 

segmentation model on these datasets.

Modeling question

From a modeling perspective the constrained segmentation model and the Poisson noise 

are certainly the most natural assumptions to detect peaks in coverage profiles. How-

ever, it is not clear that they are realistic:

• By looking at the shapes of the peaks in coverage profiles (see for instance in Fig. 1), 

we can see that the background noise and the top of the peaks are sometimes sepa-

rated by one or more subtle changes. In contrast to the constrained segmentation 

model, the unconstrained one should be able to capture these subtle changes. One 

major issue is that the output segmentation of the unconstrained model does not 

have a straightforward interpretation in terms of peaks.

• Parametric models such as the negative binomial [14, 17] or the Gaussian, following 

a proper transformation of the count data for the latter [1, 13], are preferred over the 

Poisson one for the analysis of many high-througput sequencing datasets. Indeed, 

count data often exhibit more variability than the Poisson model expects which 

changes the interpretation of the model and makes it difficult to estimate its param-
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eters. These alternative parametric models are well known to reduce this phenom-

enon, also called over-dispersion.

In this work we try to start from these natural assumptions and show that it is possible 

to improve upon them.

Contribution

1. We show that the distribution of counts from H3K36me3 and H3K4me3 datasets 

exhibits over-dispersion which invalidates the Poisson assumption. The two alterna-

tive noise models we propose (negative binomial with constant dispersion parameter 

& Gaussian after Anscombe transformation) effectively reduce the over-dispersion 

on these datasets (see Fig. 4).

Fig. 1 Examples of ChIP-seq coverage profiles from the histone mark H3K36me3 and H3K4me3 datasets. 

(Top) In blue , a piecewise constant function affected by three unconstrained abrupt changes shown in red 

. (Bottom) In blue , a piecewise constant function affected by two constrained abrupt changes shown in 

red 

Fig. 2 (Top) Segmentation of a coverage profile containing one peak using the unconstrained model. 

The location of the changepoints on the chromosome are shown by red dotted lines . The mean of 

the segments are shown in blue . According to this segmentation there are two alternative starts and 

two alternative ends of the peak, i.e. four alternative variants of the same peak formed by the regions: 

[Start1:End1], [Start1:End2], [Start2:End1] and [Start2:End2]. (Bottom) Three different rules are proposed to 

interpret the segmentation as peaks. Thinnest peak: the resulting peak is defined by the region [Start2:End1]. 

Largest peak: the resulting peak is defined by the region [Start1:End2]. Max jump: the resulting peak is defined 

by the region [Start1:End1]
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2. We propose a new and rather natural post-processing rule to predict the start and 

end of peaks in an estimated unconstrained segmentation (see Fig. 2). Indeed, in the 

unconstrained segmentation we can observe several up (respectively down) changes 

and it is not obvious which one should be considered as the start or end of the peak. 

We show that this new post-processing rule improves the accuracy of the uncon-

strained segmentation model in both H3K36me3 and H3K4me3 datasets compared 

to the same model with previous rules described by Hocking et al. [12] (see Fig. 5).

3. Hocking et al. [11] described a procedure to extract all optimal constrained segmen-

tations for a range of peaks. It is an essential internal step in the supervised approach 

for learning the penalty parameter of segmentation models. In this work we general-

ize this procedure so that it works with the unconstrained segmentation model and 

the post-processing rule mentioned in the previous point (see Algorithm 1).

4. We describe a method to learn jointly both the penalty and dispersion parameters of 

segmentation models with a negative binomial noise. We then compare the accuracy 

of unconstrained and contrained segmention models with different noise distribu-

tions on the labeled H3K36me3 and H3K4me3 datasets (see Fig. 6).

Methods

Segmentation models for ChIP‑seq data

Unconstrained segmentation model

The observed data (y1, . . . , yn) are supposed to be a realization of an independent ran-

dom process (Y1, . . . ,Yn) . This process is drawn from a probability distribution F  which 

depends on two parameters: θ is assumed to be affected by K − 1 abrupt changes called 

changepoints and φ is constant. We denote τk the location of the kth changepoint with 

k = {1, . . . ,K − 1} . By convention we introduce the fixed indices τ0 = 0 and τK = n . The 

kth segment is formed by the observations (yτk−1+1, . . . , yτk ) . θk stands for the parameter 

of the kth segment (see Fig. 1). Formally the unconstrained segmentation model [5], can be 

written as follows:

Constrained segmentation model

In order to have a segmentation model with a straightforward interpretation in terms 

of peaks, we add inequality constraints to the successive segment specific parameters 

(θ1, . . . , θK ) so that non-decreasing changes in these parameters are always followed by 

non-increasing changes. Therefore, we formally assume the following constrained segmen-

tation model [8], hereafter called Up–Down:

(1)∀i | τk−1 + 1 ≤ i ≤ τk , Yi ∼ F(θk ,φ).

(2)

∀i | τk−1 + 1 ≤ i ≤ τk , Yi ∼ F(θk ,φ)

subject to

{
θk−1 ≤ θk ∀k ∈ {2, 4, . . . }
θk−1 ≥ θk ∀k ∈ {3, 5, . . . }

.
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Probability distributions

In the case of the Poisson distribution we have F(θk ,φ) = Pois(�k ,φ = ∅) where �k 

stands for the mean and the variance of the kth segment. In the case of the Gaussian 

distribution we have F(θk ,φ) = N (µk , σ
2) where µk is the mean of the kth segment 

and σ 2 is the variance assumed constant across the segments. Also in this case, the 

non-negative integer count data have been transformed in real values (Z+ → R+) 

through an Anscombe transformation (
√

Y +
3

8
) which is a useful variance-stabilizing 

transformation for count data following a Poisson distribution [1]. In the case of the 

negative binomial distribution we have F(θk ,φ) = NB(µk ,φ) where µk is the the mean 

of the kth segment and φ is the dispersion parameter that needs to be learned on the 

data. In this parametrization σ 2

k
 , the variance of the kth segment, is µk + φ−1µ2

k
.

Optimization problems

In both unconstrained and constrained optimal multiple changepoint detection prob-

lems, the goal is to estimate the changepoint locations (τ1, . . . , τK−1) and the param-

eters (θ1, . . . , θK ) both resulting from the segmentation. Runge et al. [19] introduced 

gfpop (Graph-Constrained Functional Pruning Optimal Partitioning), an algorithm 

that solves both problems using penalized maximum likelihood inference. It imple-

ments several loss functions including the Gaussian, Poisson and negative binomial 

that allowed us to compare different noise models for the count data. The number of 

changepoints in a coverage profile being unknown, gfpop takes a non-negative penalty 

� ∈ R+ parameter that controls the complexity of the output segmentation. Larger 

penalty � values result in models with fewer changepoints. The extreme penalty val-

ues are � = 0 which yields n − 1 changepoints, and � = ∞ which yields 0 changepoint. 

The time complexity of gfpop is empirically O(Vn log(n)) . Intuitively, V stands for the 

number states you will need to encode your priors about the form of the output seg-

mentation, e.g. with the Up–Down model at each time the signal can be a part of the 

background noise (Down) or a peak (Up). Consequently, the empirical time complex-

ity of gfpop with the Up–Down model is O(2n log(n)) while with the unconstrained 

model it is O(n log(n)).

Rules for inferring the start and end of peaks with the unconstrained segmentation model

As mentioned before, one of the main motivation of the Up–Down model is that it 

can be interpreted in terms of peaks which is a practitioner’s request. In the case of 

the unconstrained model, the output segmentation may results in successive non-

decreasing changes ( Up∗ ), e.g. in Fig.  2: Up∗ = {Start1, Start2} , and successive non-

increasing changes ( Dw∗ ), e.g. in Fig.  2: Dw∗ = {End1, End2} , in the signal. Thus, it 

is necessary to specify a post-processing rule to select the start and end of peaks 

among the returned changepoints in respectively each Up∗ and Dw∗ . This results in 

|Up∗| × |Dw∗| alternatives of the same peak. Rules. We propose three different rules to 

select the start and end of peaks (see Fig. 2):

• thinnest peak: we select the last up change in Up∗ and the first down change in Dw∗ ;
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• largest peak rule: we select the first up change in Up∗ and the last down change in 

Dw
∗ ;

• max jump: we select the up and down change with the largest mean-difference in 

Up∗ and Dw∗.

Hocking et al. [12] introduced similar rules to the thinnest peak and largest peak.

Labeled data for supervised learning peak detection

Tuning parameters

For each peak callers there are one or more tuning parameters that need to be set before 

solving the peak detection problem and that may greatly affect the result accuracy. For 

segmentation methods this parameter is the penalty � which controls the number of 

peaks in the resulting segmentation, while for heuristics, such as MACS or HMCan, 

they use a threshold parameter whose value allows to only consider the top p peaks 

given their significance. Moreover, if we want to model the over-dipersion phenomenon 

observed in the count data using a negative binomial probability distribution, this is 

done at the cost of another parameter (φ) that we need to set as well. Its value may also 

affect the number of peaks in the resulting segmentation. In theory, if the correct noise 

model was known, it would be possible to use statistical arguments to choose the param-

eter to use. However, in practice the correct noise model is complex and unknown. There 

are many factors that influence the signal and noise patterns in real ChIP-seq data, e.g. 

experimental protocols, sequencing machines, alignment software. These factors results 

in poor accuracy for the detection of peaks [7]. Therefore, we will consider the super-

vised peak detection problem in which the value of tuning parameters can be learned 

using manually determined labels that indicate a presence or absence of peaks.

Benchmark datasets

Introduced by Hocking et  al. [7], these seven labeled histone mark datasets are com-

posed of samples from two different ChIP-seq experiments directed at modifications 

found on the histone 3 N-terminal tails. The first experiment is directed at histone H3 

lysine 4 tri-methylation (H3K4me3), a modification localized in promoters. The sec-

ond one is directed at histone H3 lysine 36 tri-methylation (H3K36me3), a modification 

localized in transcribed regions. Both these modifications are involved in the regula-

tion of gene expression [21]. The histone modifications H3K4me3 and H3K36me3 are 

respectively characterized by sharp and broad peak patterns in coverage profiles. Expert 

biologists, with visual inspection, have annotated some regions by indicating the pres-

ence or absence of peaks. Then, they grouped the labels to form 2752 distinct labeled 

coverage profiles. Standard used for labeling by the expert biologists is described in Sup-

plementary Text 1 of Hocking et al. [10].

Definition of labeled coverage profiles and errors

In the context of supervised peak detection each labeled coverage profile of 

size n, denoted w ∈ Z
n
+

 , is a problem. Formally we have a set of M problems 

(w1, . . . ,wM) where M = 2752 . Each problem wm is associated with a set of N labels 

Hm = {(s1, e1, h1) . . . , (sN , eN , hN )} where s is the start genomic location of the label, e is 
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the end genomic location of the label and h is the type of the label. There are four types 

of labels that allow some flexibility in the annotation (see Fig. 3):

• noPeaks label stands for a region that contains only background noise with no peak. 

If any peak is predicted in this region, the label counts as a false positive ;

• peaks label means there is at least one overlapping peak in that region. Hence, one or 

more peaks in that region is acceptable. If there is not at least one overlapping peak 

predicted in this region, it counts as a false negative ;

• peakStart and peakEnd labels stand for regions which should contain exactly one 

peak start or end. If more than one peak start / end is predicted in this region, the 

label counts as a false positive. Conversely, if less than one peak start / end is pre-

dicted in this region, the label counts as a false negative.

The set of labels Hm is used to quantify the error Em , i.e. the total number of incorrectly 

predicted labels (false positive + false negative) in the coverage profile wm given the set 

of peaks returned by a peak caller.

Supervised algorithms for learning tuning parameters of negative binomial segmentation 

models

Objective function

The error function for a given problem wm , denoted Em : R
2
+

→ Z+ , is a mapping 

from the tuning parameters (φ, � ) of negative binomial segmentation models to the 

number of incorrectly predicted labels in the resulting optimal segmentation. With 

the supervised peak detection approach the goal is to provide predictions of φ and � 

that minimize Em(φ, �) . The exact computation of the 2-dimensional defined Em(φ, �) 

is intractable with respect to φ . Thus, we computed it over 16 φ values evenly placed 

on the log scale between 1 and 10,000, � = (φ1 = 1, . . . ,φ16 = 10,000) . Our results 

suggest that this grid of values is a good set of candidates to test in order to calibrate 

the dispersion parameter φ (see Additional file 1: Fig. 2). The exact computation of 

the error rate as a function of � ( φ remains constant), a piecewise constant function, 

Fig. 3 (Top) Example of a ChIP-seq coverage profile annotated by an expert biologist. The labels represented 

by colored rectangles indicate the absence  or presence of a peak, here characterized by its start  and 

its end . (Bottom) The model with 1 peak in its output segmentation has an associated error of 2 ( 2× False 

Negative ). The model with 3 peaks has an associated error of 1 ( 1× False Positive ). The model with 2 

peaks is a good model for which all the labels optimized on this coverage profile are correct 
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requires to retrieve all optimal segmentations up to 9 peaks. This way, on the advice 

of the biologists who annotated the benchmark datasets, we ensure that for each 

problem there is a segmentation with at least one false positive label and another 

with one false negative label. A procedure that retrieves one optimal segmenta-

tion for each targeted number of peaks P∗ has already been described by Hock-

ing et al. [11]. It can be used with the Up–Down model for which there is at most 

one optimal segmentation that results in P∗ peaks but not with the unconstrained 

model for which there can be several ones. Indeed, the constraints in the Up–Down 

model require it to add, if the associated cost is optimal, 2 changepoints that lead to 

the formation of a new peak. With the unconstrained model adding a changepoint 

can either refine an already existing peak or, in combination with another change-

point, form a new peak. More generally there is a need of an algorithm that takes 

as input any penalized changepoint detection solver S with a penalty � constant 

along the changepoints, optionally the dispersion parameter φ , and outputs all opti-

mal segmentations between two peak bounds denoted P  and P  . We present CROCS 

(Changepoints for a Range of ComplexitieS), an algorithm that meets this need.

Discussion of pseudocode

CROCS (Algorithm 1).(i) The algorithm begins by calling SequentialSearch [described 

underneath] to search two penalty bounds � (line 6) and � (line 5) that result in a seg-

mentation with respectively P − 1 (line 3) and P + 1 (line 4) peaks. Indeed, using gfpop 

with the Up–Down model as solver S , the number peaks in the resulting optimal seg-

mentations is a non-increasing function of � . This propriety guarantees that with the 

previous penalty bounds we can reach every optimal model from P to P peaks. For 

unconstrained segmentation models, we suspect it also should be true in the vast major-

ity of cases. (ii) Then, the algorithm calls CROPS [described underneath] (line 7) to 

retrieve all the optimal segmentations between these two penalty bounds. (iii) Finally, 

a simple post-processing step (not shown in the algorithm) allows to remove segmen-

tations with P − 1 and P + 1 peaks. The time complexity of the CROCS algorithm is 

bounded by the time complexity of the CROPS procedure, i.e. O(O(S)(K� − K
�
)) , where 

K
�
 and K� are the number of segments in optimal segmentations associated to respec-

tively � and � . O(S) is the time complexity of the solver S , e.g. empirically O(2n log(n)) 

for gfpop with the Up–Down model.

• SequentialSearch is a procedure described by Hocking et al. [11] that takes as input a 

problem wm , a target number of peaks P∗ and outputs an optimal segmentation with 

P
∗ peaks in addition to the penalty � for reaching it.

• CROPS is a procedure described by Haynes et al. [6] that takes as input a problem 

wm , as well as two penalty bounds � & � and outputs all the optimal segmentations 

between these two bounds.

We slightly modified the original implementation of both SequentialSearch and CROPS 

in such way that they can work with any penalized changepoint detection solver S pro-

vided by the user.
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Learning jointly φ and �

Once the error function Em(φ ∈ �, �) is computed for each problem of the training set, 

a natural way to learn the dispersion and penalty parameters is to select the pair of val-

ues (φ ∈ �, �) that achieves the global minimum error. We denote these values φ∗ and 

�
∗ . Recall that Em(φ ∈ �, �) is piecewise constant on � . The sum of Em(φ ∈ �, �) over 

all problems is still piecewise constant on � . Therefore, φ∗ and �∗ can be easily retrieved 

using a sequential search. We refined the previous learning method, hereafter called 

constant � , by taking advantage of the piecewise constant propriety of Em(φ ∈ �, �) . 

Indeed, the minimum error is not reached for a unique penalty value �∗ but an interval 

denoted I�,m . After fixing φ∗ , we can use I�,m computed for each problem of the training 

set in order to learn a function that predicts problem-specific � values. This function is 

a solution of the interval regression problem described by Rigaill et al. [16]. We denote 

this learning method linear �.

In the case of segmentation models with a Poisson or a Gaussian noise, the only tuning 

parameter that we need to learn is � . Thus, the objective function becomes a 1-dimen-

sional defined function denoted Em(�) . The methods we used to learn � are similar than 

those presented above (see Hocking et al. [12] for more details).

Empirical results

Cross‑validation setup and evaluation metric

In the following section, for each model compared, a 10-fold or 4-fold1 cross-val-

idation was performed on each of the seven datasets. Here, the results are shown 

by type of experiments (H3K36me3 & H3K4me3). The metric we used to evalu-

ate the performance of our models is the test accuracy which can be formally written 

1 −
(
∑

m∈ test set
Em /

∑

m∈ test set
|Hm|

)

 . One may be concerned about the size of the 

datasets used for supervised learning of the tuning parameters. We have shown in Addi-

tional file 1: Fig. 1 that only a dozens of labels are enough to learn tuning parameters and 

associated segmentations close to the model-specific maximum accuracy. By increas-

ing the number of labels in the learning set, the accuracy also becomes more consistent 

between test folds.

1 In order to satisfy the assumption about the independence between the training and test set in the cross-validation, 
we could not exceed 4-fold in two of the seven benchmark datasets (for more details see caption of Additional file 1: 
Table 1).
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Learning of tuning parameters

In previous section we have described two methods for learning the tuning param-

eters of segmentation models. Based on results shown in Additional file 1: Fig. 3, for 

the rest of this section, the parameters of the models compared on H3K36me3 data-

sets are learned through the constant � method. The parameters of the models com-

pared on H3K4me3 datasets are them learned through the linear � method.

The over‑dispersion exhibited by count data under a Poisson noise model can be 

effectively reduced using a negative binomial or a Gaussian transformed noise model

Initially, we wanted to validate the presence of over-dispersion in count data follow-

ing a Poisson distribution. In a second step, we wanted to confirm that alternative 

noise models such as the negative binomial or the Gaussian one, following an Ans-

combe transformation of the counts for the latter, could allow us to reduce this over-

dispersion. A simple way to highlight the over-dispersion is to plot the log2 -ratio of 

the empirical and theoretical variances of count data. If the log2 -ratio is positive, the 

distribution of count data exhibits over-dispersion. If it is negative, the distribution 

of count data exhibits under-dispersion. If it is null, the dispersion of the count data 

does not show inconsistency with respect to the noise model. In Fig. 4, each observa-

tion corresponds to a segment from the segmentations selected during the cross-val-

idation procedure for the 2752 coverage profiles. The segmentation were computed 

using CROCS with gfpop and the unconstrained model as solver. Then, We estimated 

the empirical and theoretical variances for each of the selected segments. In the case 

of the Poisson noise model, the estimated theoretical variance is formally written 

σ̂k
2

= µ̂ , where µ̂ stands for the estimation of the mean of count data belonging to the 

same segment. For the negative binomial one it is formally written σ̂ 2 = µ̂ + φ−1µ̂2 , 

where φ stands for the dispersion parameter learned during the cross-validation 

Fig. 4 The over-dispersion exhibited by count data under a Poisson noise model can be effectively 

reduced using a negative binomial or a Gaussian transformed noise model. The red  indicator line stands 

for the equality of the theoretical and empirical variances. (Left) Observations above this line stand for 

over-dispersed count data. Observations under this line stand for under-dispersed count data. (Right) A 

zoom on the Left distributions
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procedure. For the Gaussian one, the theoretical variance is assumed constant across 

the segments. We estimated it using the mean squared error computed over all 

segments. In Fig.  4 we can see that in both H3K36me3 and H3K4me3 datasets the 

median of the log2 -ratio is above 1 with the Poisson noise model. Hence, For most 

observations the empirical variance is at least two times larger than the theoretical 

variance. Therefore, count data under the Poisson noise model shows a clear over-

dispersion phenomenon. In both H3K36me3 and H3K4me3 datasets, the median of 

the log2 -ratio is slightly closest to 0 with the negative noise model than with Poisson 

noise one (from 1.19 to 0.70 in H3K36me3 and 1.69 to 1.39 in H3K4me3). Therefore, 

the negative noise model helps partially correct this over-dispersion. The reduction 

is even greater with the Gaussian transformed noise model (from 1.19 to 0.16 in 

H3K36me3 and 1.69 to 0.18 in H3K4me3).

Max jump is the most accurate rule for inferring the peaks in segmentations obtained 

through the unconstrained model

Solving the peak detection problem with the unconstrained model requires to introduce 

a rule for selecting the changepoints corresponding to the start and end of the peaks in 

the output segmentation. We wanted to compare the peak detection accuracy of the new 

rule we propose (max jump) against the others (largest peak & thinnest peak) which have 

an equivalence in Hocking et al. [12]. In the user guide of how to create labels in ChIP-

seq coverage profiles [7], the authors strongly advise to label peaks which are obviously 

up with respect to the background noise. Hence, we expected that the max jump rule, 

which sets the start and end of the peaks on the change with the largest mean-difference, 

performs at least as well as the other two rules. In Fig. 5, we look at the mean of dif-

ferences in accuracy between each model with either the largest peak or thinnest peak 

rule, denoted target models, against the same model with the max jump rule, denoted 

reference model. In agreement with our expectation, we observe that for the different 

models in both H3K36me3 & H3K4me3 datasets, the mean accuracy of the max jump 

Fig. 5 Max jump is the most accurate rule for inferring the peaks in segmentations obtained through a 

unconstrained model. The mean of differences in accuracy and its 95% CI computed on the test folds pooled 

by types of experiment (H3K36me3 & H3K4me3) are shown in red . If the mean of differences in accuracy is 

negative (left side of the blue indicator line ), the max jump rule is better in average than the target rule. The 

results of the paired t-test used to assess the difference of mean accuracy are summarized in the following 

way: non significant (ns) means adjusted p-value > 0.05 ; * means adjusted p-value ≤ 0.05 ; *** means 

adjusted p-value ≤ 0.001
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rule is greater than the mean accuracy of the largest peak rule (3.66–12.36% more accu-

rate on average). Except for the unconstrained model with a Poisson noise in H3K4me3 

(0.11% less accurate on average), the mean accuracy of the max jump rule is also greater 

than the mean accuracy of the thinnest peak (0.38–3.03% more accurate on average). 

In order to test if the mean accuracy of the target and the reference models are signifi-

cantly different, we performed a paired t-test. The accuracy of each fold were previously 

pooled by type of experiments as it is suggested in Fig. 5. After correcting the p-values 

of the paired t-test with the Benjamini & Hochberg method, eight differences were still 

significant (adjusted p-value < 0.05 ). As a result of these observations, for the next com-

parisons we will infer the peaks in the output segmentations obtained with the uncon-

strained model using the new max jump rule we propose.

The unconstrained model with a negative binomial or a Gaussian transformed noise 

is more accurate than previous state‑of‑the‑art

We wanted to compare the peak detection accuracy of the Up–Down model with a Pois-

son noise2 against other segmentation models such as the unconstrained or Up–Down 

model with either a negative binomial or a Gaussian transformed noise. HMCan, MACS 

and other heuristics have already been compared to the Up–Down model with a Poisson 

noise in Hocking et al. [12]. We included them again as a baseline from the bioinformat-

ics literature. Both of them use a threshold that affects their peak detection accuracy and 

whose learning is also described in the previous cited study. Because we saw in previ-

ous results that a negative binomial or Gaussian transformed noise effectively reduces 

the over-dispersion exhibited by count data under a Poisson noise, we expected that 

the unconstrained or Up–Down model with these alternative noises will improve the 

peak detection accuracy on the test set. In Fig. 6 we look at the mean of differences in 

Fig. 6 The unconstrained model with a negative binomial or a Gaussian transformed noise is more accurate 

than previous state-of-the-art. The mean of differences in accuracy and its 95% CI computed on the test 

folds pooled by types of experiment (H3K36me3 & H3K4me3) are shown in red . If the mean of differences 

in accuracy is negative (left side of the blue indicator line ), the Up–Down model with a Poisson noise is 

better in average than the target model. The results of the paired t-test used to assess the difference of mean 

accuracy are summarized in the following way: non significant (ns) means adjusted p-value > 0.05 ; * means 

adjusted p-value ≤ 0.05

2 Model built on natural assumptions to detect peaks in coverage profiles and actual state-of-the-art on H3K36me3 and 
H3K4me3 datasets.
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accuracy between the Up–Down model with a Poisson noise, denoted reference model, 

against other segmentation models and heuristics, denoted target models. In agreement 

with our expectation, we can see that the unconstrained model with a negative bino-

mial noise has a mean accuracy greater than the reference model in both H3K36me3 

and H3K4me3 datasets (respectively 2.0% and 0.86% more accurate on average). It has 

also a greater mean accuracy with a Gaussian transformed noise (respectively 2.15% and 

1.77% more accurate on average). As described previously, in order to test if the mean 

accuracy of the target and the reference models are significantly different, we performed 

a paired t-test. After correcting the p-values, the unconstrained model with a Gaussian 

transformed noise was still significant (adjusted p-value < 0.05 ). Note that the uncon-

strained model with a Poisson noise has a mean accuracy similar to reference model 

(the mean of differences in accuracy < 0.5% in both datasets). Thus, the improvement in 

accuracy cannot be attributed solely to the unconstrained model with the max jump rule 

but also to the distribution chosen for the noise. In disagreement with our expectation, 

with the Up–Down model the use of alternative noise distributions does not improve 

significantly the accuracy compared to the Poisson one (mean of differences in accuracy 

< 1% in H3K36me3 and < 0.1% in H3K4me3).

The Up–down segmentation models are more robust than the heuristics 

from the bioinformatics literature HMCan and MACS

In addition to comparing the peak detection accuracy, we wanted to assess the robust-

ness of segmentation models against the heuristics HMCan and MACS. To assess the 

robustness of the segmentation models and heuristics we used the coverage profiles 

from biological replicates available in each of the seven labeled histone mark datasets. 

The value of tuning parameters for the segmentation models and heuristics are the same 

as those learned during the cross-validation procedure. As explained in the introduction, 

the peak calling problem can be seen as a binary classification problem. In this frame-

work each base from the coverage profiles are classified as a part of the background 

noise (0) or peak (1). Hence, the robustness can be assessed by computing the distance 

between partitions of the coverage profiles from the biological replicates. The more the 

distance between these partitions is close to zero the more the segmentation model or 

the heuristic is robust. As a metric we used the normalized information distance, or 

NID, which has a range between 0 and 1 [3, 23]. For each genomic chunk we computed 

the NID between all pairs of biological replicates. In Fig. 7 we look a the mean of dif-

ferences of NID between segmentation models and the heuristics HMCan or MACS. 

We can see that the mean of the NID of Up–Down models, independently of the noise 

model, is lower than with the heuristics HMcan and MACS in both H3K36me3 and 

H3K4me3 datasets (respectively from 0.09 to 0.12 and 0.02 to 0.03 less distant on aver-

age). After correcting the p-values of the paired t-test with the Benjamini & Hochberg 

method, five differences were still significant (adjusted p-value < 0.05 ). Regarding the 

unconstrained models, except for the negative binomial noise model in the H3K24me3 

datasets (NID is lower by 0.09 in average & paired t-test with adjusted p-value < 0.01 ), 

there is no clear improvement in robustness compared to the heuristics HMCan or 

MACS. With the Poisson model, which do no reduce the over-dispersion, we conclude 
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even the opposite in the H3K4me3 datasets (NID is longer by 0.05 in average, paired 

t-test with adjusted p-value < 0.01).

Discussion

Modeling of over‑dispersed ChIP‑seq count data

We have seen in Fig. 4 that count data under a Poisson noise model exhibit over-disper-

sion in H3K36me3 and H3K4me3 datasets. We have shown that this over-dispersion can 

be effectively reduced in these datasets using either a negative binomial or a Gaussian 

transformed noise model.

The use of a negative binomial noise model implies that we must be able to estimate a 

suitable value for the φ dispersion parameter. We have proposed to learn it jointly with 

the penalty of the segmentation model directly on the labeled coverage profiles. More 

precisely, a constant φ is selected because it minimizes the label errors of the training 

set. The negative binomial combined with the constant dispersion parameter allows the 

phenomenon of over-dispersion to be slightly reduced.

With the Gaussian noise model there are no additional parameters than the penalty of 

the segmentation model to set. This is an advantage compared to the negative binomial 

one. In this study, in order to satisfy the Gaussian proprieties, we transformed the count 

data with an Anscombe transformation which is highly appreciated for its variance sta-

bilization properties. Gaussian transformed noise model allowed to reduce the over-dis-

persion even more efficiently than the negative binomial noise model on the H3K4me3 

and H3K36me3 datasets, while being simpler to implement.

Segmentation models for peak detection in ChIP‑seq count data

The unconstrained model seems to capture more subtle changes in count data than the 

Up–Down one which have sometimes a poor fit to the signal (see Fig.  1). One major 

issue of the unconstrained model is its output segmentation which doesn’t have a 

straightforward interpretation in terms of peaks compared to the Up–Down one. The 

introduction of the max jump rule (see Fig. 2), which have shown to perform at least as 

Fig. 7 The Up–down segmentation models are more robust than the heuristics from the bioinformatics 

literature HMCan and MACS. The mean of differences of the normalized information distance (NID) and its 

95% CI are shown in red . If the mean of differences in NID is negative (left side of the blue indicator line 

), the target segmentation model is more robust in average than HMCan (H3K36me3) or MACS (H3K4me3). 

The results of the paired t-test used to assess the difference of mean of NID are summarized in the following 

way: non significant (ns) means adjusted p-value > 0.05 ; * means adjusted p-value ≤ 0.05 ; ** means adjusted 

p-value ≤ 0.01
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well as rules proposed in Hocking et al. [12] (thinnest peak & largest peak), helps to cor-

rect this weakness (see Fig. 5).

In Fig.  6 we have seen that when combining the unconstrained model with a nega-

tive binomial or a Gaussian transformed noise it is possible to improve upon the natural 

and current state-of-the-art on the peak detection accuracy, the Up–Down model with 

a Poisson noise, in both H3K36me and H3K4me3 datasets. We argue that this improve-

ment is likely explained by the ability of the negative binomial and the Gaussian trans-

formation to reduce the over-dispersion as illustrated in Fig. 4. In summary, we believe 

that the better we model dispersion the better we improve the accuracy of the segmenta-

tion model. Figure 7 have shown that the unconstrained segmentation model with noise 

models reducing over-dispersion are also at least as robust as MACS or HMCan heuris-

tics. It is an important criterion showing the applicability of our proposed models.

Still in Fig. 6, we have seen that the Up–Down model with a negative binomial or a 

Gaussian transformed noise, which reduce the over-dispersion phenomenon, doesn’t 

improve the accuracy upon the Up–Down model with a Poisson noise. One hypothesis 

to explain these results is that the constraints, which lead to the reduction of the space 

of optimal reachable segmentations with the Up–Down model, also reduce the probabil-

ity of adding biologically uninformative changepoints induced by the over-dispersion. 

Consequently, the Up–Down model has the advantage to be a model with good internal 

over-dipsersion resistance properties but is bounded by its poor adaptability to the sig-

nal. We argue the constraints also explain that the Up–Down model is more robust than 

the unconstrained model and the MACS and HMcan heuristics (see Fig. 7).

We have added several supplementary figures (see Additional file 1: Figs. 4–10) which 

illustrate typical results from the test folds for the MACS and HMCan heuristics as well 

as our proposed segmention models.

Segmentation models applied to other types of ChIP‑seq experiments

In this paper, the broad (H3K36me3) and sharp (H3K4me3) histone signals have been 

discussed. Previous studies already demonstrated the applicability of optimal change-

point algorithms to other types of experiment. For example, Fig. 7 in Hocking and Bour-

que [9] showed that optimal changepoint algorithms on H3K9me3 and H3K27me3 data 

typically result in peaks with intermediate sizes (3.5–3.9 kb on average) compared with 

the relatively small H3K4me3 (1.0–1.7 kb) and relatively large H3K36me3 (35.8–48.0 

kb). The peak calling of transcription factor binding sites such as MAX, SRF and NRSF 

was also previously tested (see Supplementary Fig. 3 in Hocking et al. [7]). By reducing 

the over-dispersion in count data with the Gaussian transformed or the negative bino-

mial noise models, we would expect similar improvements in accuracy for these other 

experiment types. Furthermore, we did not test our proposed models on mixed signal 

like Pol II. We leave the two last points for future research.

Conclusion

We developed the CROCS algorithm that computes all optimal models between two 

peak bounds, given any segmentation algorithm with constant penalty � for each change-

point. This set of optimal segmentations is essential to compute the error rate function, 

which is in turn used in the supervised approach for learning the tuning parameters of 
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the segmentation models. We proposed to solve the peak detection problem by using 

the unconstrained segmentation model that takes advantage of the max jump rule we 

introduced as well as the negative binomial or Gaussian transformed noise model. We 

have shown that this model improves upon the accuracy of the model built on natural 

assumptions (constrained segmentation (Up–Down) with Poisson noise model) in both 

H3K36me3 and H3K4me3 datasets. The unconstrained model with the negative bino-

mial or Gaussian transformed noise model can be used to provide new high-quality peak 

prediction tracks for H3K36me3 and H3K4me3 histone modifications. These peak pre-

diction tracks will be a more accurate reference for researchers in the field of epigenetics 

who want to analyze these data.

Future work

Our results suggest that with both negative binomial and Gaussian transformed noise 

models the over-dispersion could be further reduced. Regarding the negative binomial 

noise model, one could think about predicting a local dispersion parameter for each cov-

erage profile. Furthermore, the literature about Gaussian transformations is wide and a 

comparative study integrating segmentation models with different transformations for 

count data, e.g. the Box–Cox transformation, arcsin square root transformation or log-

transformation, would also be an interesting avenue for future work. As described in 

Anscombe [1] some of these well-known transformations have, in theory, better vari-

ance-stabilizing proprieties for over-dispersed count data than the one we used in this 

study (
√

Y +
3

8
) . Still, they are highly dependent on the estimation of the dispersion 

parameter φ which in our case can be directly taken into account in the statistical model, 

i.e by using the negative binomial noise model implemented in gfpop.

In this paper we explored two different segmentation models, the unconstrained seg-

mentation model and a constrained segmentation model where each non-decreasing 

change is followed by an non-increasing change in the mean (Up–Down). The gfpop 

method makes it possible to model changepoints even more precisely by constraining 

for example the minimum size of jumps or the minimum size of segments. It would be 

interesting in future work to test other constrained models or to model the auto-correla-

tion [4, 18] in the context of the peak detection problem in ChIP-seq data.

Abbreviations

ChIP-seq: Chromatin immunoprecipitation followed by high-throughput sequencing; Up–Down: Constrained segmenta-
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Supplementary materials for “Increased peak detection

accuracy in over-dispersed ChIP-seq data with

supervised segmentation models”

datasets type of ChIP-Seq experiment number of folds

H3K36me3_AM_immune H3K36me3 (broad peaks) 10
H3K36me3_TDH_immune H3K36me3 (broad peaks) 4
H3K36me3_TDH_other H3K36me3 (broad peaks) 4
H3K4me3_PGP_immune H3K4me3 (sharp peaks) 10
H3K4me3_TDH_immune H3K4me3 (sharp peaks) 10
H3K4me3_TDH_other H3K4me3 (sharp peaks) 10
H3K4me3_XJ_immune H3K4me3 (sharp peaks) 10

Table 1: Summary of the number of folds in the cross-validation procedure by dataset.
Two of the seven labeled histone mark datasets, i.e. H3K36me3_TDH_immune &
H3K36me3_TDH_other, can be considered small datasets as they include biological repli-
cates from four independent genomic chunks. In order to satisfy the assumption of indepen-
dence between the training and test set in the cross-validation, we could not exceed 4-fold
for both of them.
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Figure 2: (Top) Visualization of
∑

m∈ training set Em(φ ∈ Φ, λ). The global minimum error
(57), shown in red , is reached for λ∗ = 46.86 and φ∗ = 135.94. (Bottom) For each φi,
i.e 16 values evenly placed on the log scale between 1 and 10000, the minimum error of
Em(φi, λ) has been plotted. We can see the errors growing constantly at the left en right
side of φ∗ which suggests that this range of φ is appropriate for learning a suitable dispersion
parameter value.
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Chapter B

Ms.FPOP : an exact and fast segmentation al-

gorithm with a multiscale penalty

B.1 Ms.FPOP

This article has been submitted to the journal Journal of Computational and Graphical

Statistics and is already available on arXiv (doi.org/10.48550/arXiv.2303.08723).
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Abstract

Given a time series in R
n with a piecewise constant mean and independent noises,

we propose an exact dynamic programming algorithm to minimize a least square cri-
terion with a multiscale penalty promoting well-spread changepoints. Such a penalty
has been proposed in Verzelen et al. (2020), and it achieves optimal rates for change-
point detection and changepoint localization.

Our proposed algorithm, named Ms.FPOP, extends functional pruning ideas of
Rigaill (2015) and Maidstone et al. (2017) to multiscale penalties. For large signals,
n ≥ 105, with relatively few real changepoints, Ms.FPOP is typically quasi-linear and
an order of magnitude faster than PELT. We propose an efficient C++ implementa-
tion interfaced with R of Ms.FPOP allowing to segment a profile of up to n = 106 in
a matter of seconds.

Finally, we illustrate on simple simulations that for large enough profiles (n ≥ 104)
Ms.FPOP using the multiscale penalty of Verzelen et al. (2020) is typically more
powerfull than FPOP using the classical BIC penalty of Yao (1989).

Keywords: changepoint detection, multiscale penalty, maximum likelihood inference, dis-
crete optimization, dynamic programming, functional pruning
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1 Introduction

A National Research Council report [Council et al., 2013] identifies changepoint detection

as one of the “inferential giants” in massive data analysis. Detecting changepoints, whether

a posteriori or online, is important in areas as diverse as bioinformatics [Olshen et al., 2004,

Picard et al., 2005], econometrics and finance [Bai and Perron, 2003, Thies and Molnár,

2018], climate [Reeves et al., 2007], autonomous driving [Galceran et al., 2017], computer

vision [Ranganathan, 2012] and neuroscience [Jewell et al., 2020]. The most common

and prototypical changepoint detection problem is that of detecting changes in mean of a

univariate gaussian signal :

yt = ft + εt, for t = 1, . . . , n, (1)

where ft is a deterministic piecewise constant with changepoints whose number D and

locations, 0 < τ1 < . . . < τD < n, are unknown, and εt are independant and follow

a Gaussian distribution of mean 0 and variance 1. A large number of approaches have

been proposed to solve this problem (amongst many others [Yao, 1989, Lebarbier, 2005,

Harchaoui and Lévy-Leduc, 2010, Frick et al., 2014, Fryzlewicz, 2020], see [Aminikhanghahi

and Cook, 2017, Truong et al., 2020] for a review).

Recently, [Verzelen et al., 2020] characterize optimal rates for changepoint detection and

changepoint localization and proposed a least-squares estimator with a multiscale penalty

achieving these optimal rates. This multiscale penalty depends on minus the log-length of

the segments which promotes well spread changepoints. It can be written as :

D+1∑

d=1

γ + β log(n)− β log(τd − τd−1), (2)

where γ = qL and β = 2L with q positive and L > 1, and with the convention that τ0 = 0

and τD+1 = n.

Up to a multiplicative constant this penalty is always smaller than the BIC penalty

(2 log(n)) [Yao, 1989]. Intuitively, it favors balanced segmentation as:

• the penalty of a fixed sized segment (r) increases with n : β log(n/r).
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• while the penalty for a segment whose size is proportional to n (α.n) is constant of

n : β log(1/α).

Contribution In this paper, we propose a dynamic programming algorithm, named

Ms.FPOP optimizing a slightly more general penalty. where the log(τd − τd−1) is replaced

by g(τd − τd−1) for an arbitrary function g satistying assumption A1.

Existing works Ms.FPOP extends functional pruning techniques as in PDPA or FPOP

[Rigaill, 2015, Maidstone et al., 2017] to the case of multiscale penalties. A key condition

for FPOP and PDPA is that the cost function is point additive (condition C1 in [Maidstone

et al., 2017]). As we will explain in more details later, this condition is not verified for the

multiscale penalty (2), making the extension not trivial. The key idea behind functionnal

pruning is to store the set of parameter values for which a particular change is optimal.

For a classical penalty (i.e. with a point additive cost function) this set gets smaller with

every new datapoint. This is not the case with the multiscale penalty making the update

more complex. A key insight of Ms.FPOP is to store a slightly larger set that is easy to

update.

Importantly, it is possible to optimize the multiscale criteria of [Verzelen et al., 2020]

using inequality based pruning as in PELT. We will call Ms.PELT this strategy. However

for large signals with relatively few true changepoints it is our experience that Ms.PELT is

quadratic while Ms.FPOP is quasi-linear. For example it can be seen on Figure 1.A that

it takes about 193 seconds for Ms.PELT to process a signal of size n = 128000 without

any changepoint. In the same amount of time Ms.FPOP can process signals of size larger

than n = 4 × 106. In the presence of true changepoints, (one every thousand datapoints)

Ms.PELT as expected is much faster but still slower than Ms.FPOP (see Figure 1.B).
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if τ is inMD
1:n then |τ | = D + 1. We can enumerate the elements ofM1:n and we get :

|M1:n| =
n−1∑

D=0

|MD
1:n| =

n−1∑

D=0

(
n− 1

D

)
= 2n−1

Multiscale penalized likelihood Under the piecewise constant model (1) a classical

method to estimate the position and the number of changes is to optimize a penalized like-

lihood criterion. It is common to use a penalty that is linear in the number of changepoints

[Yao, 1989, Killick et al., 2012, Maidstone et al., 2017] and optimization wise the goal is to

compute:

τ
∗
n = argmin

τ∈M1:n





|τ |∑

j=1

min
µ




τj∑

i=τj−1+1

(yi − µ)2


+ α|τ |



 ,

Fn = min
τ∈M1:n





|τ |∑

j=1

min
µ




τj∑

i=τj−1+1

(yi − µ)2


+ α|τ |



 ,

(3)

where α is a constant to be calibrated (e.g. α = 2 log(n)).

Here we consider a more general penalty that depends on the length of the segments:

τ
∗
n = argmin

τ∈M1:n





|τ |∑

j=1

min
µ




τj∑

i=τj−1+1

(yi − µ)2 − βg(τj − τj−1)


+ α|τ |



 ,

Fn = min
τ∈M1:n





|τ |∑

j=1

min
µ




τj∑

i=τj−1+1

(yi − µ)2 − βg(τj − τj−1)


+ α|τ |



 ,

(4)

where g is a function satistfying assumption A1 described in the next paragraph, and α and

β are constants to be calibrated. We recover the multiscale criteria proposed in [Verzelen

et al., 2020] taking g = log, α = γ + βg(n), and γ a constant that remains to be chosen.

We recover the classical penalty of [Yao, 1989] taking g = 0, α = 2 log(n).

Assumption 1. h(t, s, s′) = g(t − s′) − g(t − s) is a non-decreasing function in t and

limt→∞ h(t, s, s′) = 0, therefore h(t, s, s′) ≤ 0.
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This assumption will be useful later to bound the difference between the cost of two

changes s and s′. Intuitively, assumption A1 states that g favors older changes but that

asymptotically (large enough t relative to s and s′) this advantage for older changes van-

ishes. Importantly, this assumption is true for the multiscale penalty proposed in [Verzelen

et al., 2020] as β > 0 and g(t− s′)− g(t− s) = log(1− (s′− s)/(t− s)) is increasing with t.

1.2 Optimization with dynamic programming

In this section we explain how one can optimize equation (4) using dynamic programming

ideas with (i) inequality based pruning and (ii) functional pruning.

Dynamic programming with inequality based pruning The penalised cost of a

segmentation τ inside the argmin of equation (4) can be written as a sum over all segments

of τ :
|τ |∑

j=1

min
µ




τj∑

i=τj−1+1

(yi − µ)2 − βg(τj − τj−1) + α


 ,

therefore the optimisation can be done iteratively using the Optimal Partionning (OP)

algorithm proposed in [Jackson et al., 2005] using dynamical programming ideas developped

in [Auger and Lawrence, 1989] and [Bellman, 1961]. It is possible to speed up calculations

using the PELT algorithm [Killick et al., 2012] because equation (4) of [Killick et al., 2012]

is true at least for constant K = −β(max1≤ℓ≤n{g(ℓ)} − 2min1≤ℓ≤n{g(ℓ)}) (see Appendix

A). If g is concave (such as in the penalty (2) proposed in [Verzelen et al., 2020]), K can

be chosen much closer to zero : K = −β(g(2) − 2g(1)) (see Appendix A), or adaptively

to the last segment length ℓ : Kℓ = −β(g(ℓ) + g(1) − g(ℓ + 1)) (see Appendix B). Our

implementation of PELT optimizing (4) with g = log and Kℓ = −β log(1
ℓ
+ 1) is called

Ms.PELT. Note that Kℓ ≤ −β log(2).

As shown in the Figure 1, if the number of real changepoints is not linear in n, for

g = log, and a positive β, Ms.PELT is quadratic. This makes the analysis of large profiles

with 105 or 106 datapoints long and unpractical (e.g. more than 100 seconds for a profile

with 105 datapoints and one changepoint, more than 1 hour for a profile with 106 datapoints

and one changepoint).
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Dynamic programming with functional pruning In the rest of the paper, we present

a functional pruning algorithm (called Ms.FPOP), in the sense of the PDPA [Rigaill, 2015]

or FPOP [Maidstone et al., 2017], to solve (4). Ms.FPOP optimizes (4) in a matter of

seconds even for n = 106. As the cost of equation (4) is not point-additive, condition C1 of

[Maidstone et al., 2017] is not true, and maintaining the set of means for which a change

is optimal is more complex. Our key idea is to maintain a slightly larger set that is easier

to update.

2 Functional pruning

2.1 Functional pruning optimal portioning (FPOP)

To better explain Ms.FPOP, we first review some of the key elements of FPOP to optimize

equation (3). FPOP introduces for every change s its best cost as function of the last

parameter µ at time t, f̃t,s(µ). Formally this is:

f̃t,s(µ) = Fs +
t∑

i=s+1

(yi − µ)2 + α, with f̃t,t(µ) = Ft + α and F0 = −α. (5)

f̃t,s(µ) is a second degree polynomial in µ defined by three coefficients : a2µ
2+a1µ+a0 with

a2 = t− s, a1 = −2
∑t

i=s+1
yi and a0 = Fs + α +

t∑

i=s+1

y2i . The update of these coefficients

is straightforward using the following formula:

f̃t,s(µ) = f̃t−1,s(µ) + (yt − µ)2. (6)

At each time step t, FPOP updates the minimum of all f̃t,s(µ), denoted F̃t(µ) =

mins≤t

{
f̃t,s(µ)

}
. The key idea behind FPOP is that to compute and update F̃t(µ) one

only need to consider changes s with a none empty “living-set” : Ft = {s ≤ t|Z∗
t,s ̸= ∅}

where the “living-set” of change s is Z∗
t,s = {µ|f̃t,s(µ) = F̃t(µ)}. Given those definitions we

have F̃t(µ) = mins∈Ft

{
f̃t,s(µ)

}
. In other words, s is pruned as soon as its “living-set” is

empty, which is justified because

Z∗
t,s ⊃ Z∗

t+1,s and Z∗
t,s = ∅ =⇒ Z∗

t+1,s = ∅ . (7)

Note that we can then retrieve Ft by minimizing F̃t(µ) on µ.
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2.2 Ms.FPOP: functional pruning for a multiscale penalty

Ms.FPOP optimizes equation (4). As for FPOP we introduce for every change s its best

cost as a function of the last parameter µ at time t, f̃t,s(µ). Formally this is :

f̃t,s(µ) = Fs +
t∑

i=s+1

(yi − µ)2 + α− βg (t− s) , (8)

with f̃t,t(µ) = Ft + α and F0 = −α. As in FPOP, f̃t,s(µ) can be stored as a second degree

polynomial in µ. The update is also straightforward using the following formula:

f̃t,s(µ) = f̃t−1,s(µ) + (yt − µ)2 + βg (t− 1− s)− βg (t− s) (9)

Analogously to FPOP we can calculate Ft by minimizing f̃t,s both on µ and s. The

main difference with FPOP is that the rule (7) is no longer true for Ms.FPOP because

f̃t,s(µ)− f̃t,s′(µ) depends on t:

f̃t,s(µ)− f̃t,s′ (µ) = Fs − Fs
′ +

s′∑

i=s+1

(yi − µ)2 + β(g(t− s
′

)− g(t− s))︸ ︷︷ ︸
a function varying

with t, s et s’

). (10)

Because of that, in the course of the algorithm we need to re-evaluate the set on which the

candidate change s is better than s′ at various t, It,s,s′ with s < s
′
:

It,s,s′ = {µ | f̃t,s(µ) ≤ f̃t,s′ (µ)}. (11)

For arbitrary functions g the set It,s,s′ may vary drastically from one t to the next.

Using assumption A1 we can control those variations.

2.2.1 Update of the candidate changes living set (Zt,s)

Rather than evaluating the exact living set Z∗
t,s of all changes, we are seeking to update a

slightly larger set, Zt,s, including Z∗
t,s and such that if Zt,s is empty we can guarantee that

Z∗
t+h,s is also empty for all h > 0. The possibility of defining such a Zt,s depends on the

property of the function g.
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Assume A1 we propose to update Zt+1,s as follow:

Zt+1,s = Zt,s ∩

comparison with future changes︷ ︸︸ ︷
(
⋂

s′∈At,s

It+1,s,s′) \

comparison with past changes︷ ︸︸ ︷
(
⋃

s′′∈Bs

I∞,s′′,s) , (12)

where At,s is any subset of {s + 1, ..., t}, Bs is any subset of {1, ..., s − 1}, and I∞,s,s
′

correspond to It,s,s′ when t→∞ (which is properly define under assumption A1).

Pruning Based on update (12) it should be clear that if Zt,s is empty so are all Zt+h,s,

for h > 0. In the next lemma we show that Zt,s includes Z∗
t,s. Therefore we further have

that if Zt,s is empty so are all Z∗
t+h,s, and change s can be pruned.

Lemma 1. Taking Zs,s =]miniyi,maxi yi[, updating Zt+1,s using equation (12) and assum-

ing A1 we have

Z∗
t,s ⊂ Zt,s , (13)

and for an integer h > 0

Z∗
t+h,s ⊂ Zt+1,s . (14)

Proof. For any t, we will prove by induction that for any t′ in {s, · · · , t} we have Z∗
t,s ⊂ Zt′,s.

For t′ = s and for any t larger or equal to s we have (by definition of Zs,s) that

Z∗
t,s ⊂ Zt′,s = Zs,s.

Now assume that for t′ < t we have Z∗
t,s ⊂ Zt′,s. As h is non-decreasing for any t′+1 ≤ t

we have the following two inclusions :

It,s,s′ ⊂ It′+1,s,s
′ . (15)

I∞,s,s
′ ⊂ It′+1,s,s

′ (16)

9



Therefore for t′ < t we have

Z∗
t,s = (

⋂

s<s
′≤t

It,s,s′ )\(
⋃

s
′′
<s

It,s′′,s) by definition of Z∗
t,s

Z∗
t,s ⊂ Zt′,s ∩ (

⋂

s<s
′
≤t

It,s,s′ )\(
⋃

s
′′
<s

It,s′′,s) by induction

⊂ Zt′,s ∩ (
⋂

s <s
′≤ t

It′+1,s,s
′ )\(

⋃

s
′′
< s

I∞,s
′′
,s) using equation (15) and (16)

⊂ Zt′,s ∩ (
⋂

s
′∈ At′,s

It′+1,s,s
′ )\(

⋃

s
′′
∈ Bs

I∞,s
′′
,s) by definition of At′,s and Bs.

Using equation (12) we thus get that Z∗
t,s ⊂ Zt′+1,s, proving the induction.

To recover equation (14) we notice from update (12) that Zt+1,s ⊂ Zt,s and apply

equation (13).

2.2.2 Ms.FPOP algorithm, choice of At,s and Bs

The update rule (12) suggest that for each candidate change s we should compare it future

change s′ in At,s, and past change s′′ in Bs. For past candidate changes s
′′
this comparison

can be done once and for all considering that t goes to infinity (I∞,s
′′
,s). For future candi-

date changes s
′
, on the contrary, it might be usefull to update the interval It,s,s′ . Performing

at each time step, for each s, a comparison with all s’ is time consuming. Intuitively, the

complexity of each time step is in O(number of candidate changes2). Ideally, for each s, one

would like to make the minimum number of comparisons that would result in its pruning.

In the Algorithm 1 we consider a generic sampling function of s′ that returns At,s (see the

Sampling Strategies paragraph in section 3).
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Algorithm 1: Ms.FPOP
Input: Y = (y1, ..., yn), α, β, g = log(.)

Output: set of last best changes cpn

1 n← |Y |;

2 F0 ← −α;

3 cp0 ← ∅;

4 R1 ← {0};

5 D ← [min(Y ), max(Y )];

6 Z0,0 ← D;

7 f̃0,0 ← F0 + α (= 0);

8 for t← 1, ..., n do

9 for s ∈ Rt do

10 f̃t,s(µ)← f̃t,s(µ) + (yt − µ)2 + β × g(t− 1− s)− β × g(t− s);

11 end

12 Ft ← mins∈Rt
(minµ∈Zt,s

(f̃t,s(µ)));

13 st ← argmins∈Rt
(minµ∈Zt,s

(f̃t,s(µ)));

14 cpt ← (cpst , st);

15 f̃t,t ← Ft + α;

16 Zt,t ← D;

17 for s ∈ Rt do

18 Zt,t ← Zt,t \ I∞,s,t;

19 At,s ← sample({s
′

∈ {Rt ∪ {t}} : s
′

> s});

20 Zt,s ← Zt,s ∩ (
⋂

s
′
∈ At,s

It,s,s′ );

21 end

22 Rt+1 ← {s ∈ {Rt ∪ {t}} : Zt,s ̸= ∅};

23 end

3 Rcpp implementation of Ms.FPOP algorithm

Ms.FPOP R package The dynamic programming and functional pruning procedures

describe in the algorithm 1 are implemented in C++. The input and output operations

are interfaced with the R programming language thanks to the Rcpp R package. The main

function MsFPOP() takes as input the sequence of obervations, a vector of weights for these

obervations, the parameters β and α of the multiscale penalty. The function returns the
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set of optimal changepoints in the sense of (4). Analogously, we implemented a version of

the PELT algorithm, MsPELT(), that optimizes (4).

Sampling strategies To recover At,s we consider either an exhaustive sampling of all

future changes s′ > s in Rt or a uniform random subsampling of them without replacement.

The main function parameter size can be set by the user to specify for each s the number

of sampled s′. In the appendix we compare the runtime of different sampling strategies

(see Appendix D).

4 Simultation study

4.1 Calibration of constants γ and β from the multiscale penalty

Paper [Verzelen et al., 2020] does not recommend values for γ and β in their penalty (2).

As explained in detail below, we calibrated those values to control the percentage of falsely

detecting at least one change in profiles simulated without any actual change.

No change simulation We repeatedly simulate iid Gaussian signals of mean 0, variance

1 and varying lengths n (n ∈ {102, 103, 104, 105, 2.5 × 105}). On these profiles we run

Ms.FPOP for different γ values (ten γ values evenly spaced on the interval [1, 20]) and

different β values (β ∈ {2, 2.25, 2.5, 2.75, 3}).

Percentage of false detection We denote R>0 as the proportion of replicates for which

Ms.FPOP returns at least one changepoint. These changepoints are false positives. Our

goal is to find a combination of β and γ such that

R>0 < 0.05 (significance level) . (17)

Empirical results In Figure 2 we observe that, by setting β = 2.25, a conservative range

of γ satisfying inequality (17) can be reached for γ ∈ [7.5, 10]. Note that this interval satisfy

inequality (17) for all tested n and β (see Appendix C).
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Based on these results, in the following simulations we set γ = 9 and β = 2.251 for all

methods optimizing (4) (Ms.FPOP, Ms.PELT). We set α = 2σ2 log(n) for all methods

optimizing (3) (FPOP, PELT).
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Figure 2: Proportion of stationary Gaussian signal replicates on which Ms.FPOP

returns at least one changepoint (R>0). R>0 is computed for a series of γ and profile

lengths (see Design of Simulations). In these simulations we set β = 2.25. Results for other

β values are availables in Appendix C.

4.2 Evalutation of Ms.FPOP: speed benchmark

Design of simulations We repeatedly simulate iid Gaussian signals with 105 dat-

apoints. The profiles are affected by one or more changepoints in their mean (D ∈

{1, 5, 10, 15, 20, 25, 30, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,

700, 750, 800, 850, 900, 950, 1000}). The mean of segments alternates between 0 and 1, start-

ing with 0. The variance of each segment is fixed at 1. On these profiles we run two methods

optimizing the penalized likelihood defines in (3): PELT [Killick et al., 2012] and FPOP

1This is equivalent to setting L = 1.125 and q = 8 in equations (31) and (32) of [Verzelen et al., 2020]
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[Maidstone et al., 2017], as well as methods optimizing the multiscale penalized likelihood

defines in (4): Ms.PELT and Ms.FPOP. For Ms.FPOP, after comparisons with other sam-

pling strategies (see Appendix D), we choose to randomly sample one future candidate

change.

Metric For each replicate we time in seconds the compared methods.

Empirical results In Figure 3 we firstly observe that for both criteria (multiscale pe-

nalized likelihood and penalized likelihood), functional pruning methods are always faster

than inequality based pruning ones. Indeed, Ms.FPOP and FPOP are always faster than

Ms.PELT and PELT, respectively. The smaller D, the larger the time difference between

functional pruning methods and inequality based pruning ones. For D = 1, Ms.FPOP runs

in 2.4 seconds in average and is about 50 times faster than Ms.PELT (121.3 seconds in

average). For D = 1000, Ms.FPOP runs in 0.7 second in average and is about 1.3 times

faster than Ms.PELT (0.9 second in average). Marginally to D, FPOP runs always under

0.05 seconds. Similar trends can be observed on iid Gaussian signals with 106 datapoints

(see Appendix D).
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4.3.1 Hat simulations

Design of simulations We repeatedly simulate iid Gaussian signals of varying size

n ∈ {103, 104, 105}. Each signal is affected by two changepoints. The second changepoint

(τ2) is fixed at position ⌊2n
3
⌋ while we vary the position of the first changepoint (τ1) (see

Figure 4.A). τ1 takes a series of 30 positive integers evenly spaced on the log scale on the

interval [1, ⌊n
3
⌋]. We also look at the symmetry of this series builds around ⌊n

3
⌋ (i.e. ⌊2n

3
⌋−τ1,

see dotted lines in Appendix E). Note that for τ1 = ⌊
n
3
⌋ the segmentation is balanced. The

means of the three resulting segments are set to µ1 = 0 , µ2 =
√

100

n
and µ3 = 0. We run

both Ms.FPOP and FPOP on these profiles. Ms.FPOP incorporates a multiscale penalty,

while FPOP assigns equal weight to all segment sizes and serves as a reference point for

comparison with Ms.FPOP. We anticipate that the multiscale penalty in Ms.FPOP will

lead to more accurate segmentations of profiles with well-spread changepoints compared

to FPOP. Additionally, as the size of the data (n) increases, we expect Ms.FPOP to get

similar performance or outperform FPOP in terms of accuracy for all segment sizes.

Metric We denote R2 the proportion of replicates for which a method returns exactly

two changepoints. We also denote ∆R2
, the log2-ratio between R2 of Ms.FPOP and FPOP.

Empirical results In Figure 4.B and Appendix E we observe that with both Ms.FPOP

and FPOP, R2 increases when τ1 tends towards ⌊n
3
⌋ (balanced segmentation). Note that

the maximum is reached before τ1 = ⌊
n
3
⌋.

Furthermore, in agreement with our expectations, in Figure 4.B we observe that ∆R2

increases when τ1 tends towards ⌊n
3
⌋. When n increases, the differences observed on small

segments in favor of FPOP (∆R2
< 0) disappear (∆R2

→ 0) and the differences on other

segments in favor of Ms.FPOP (∆R2
> 0) are accentuated.

16





4.3.2 Extended range of simulation scenarios

Design of simulations Following a protocol written by Fearnhead et al. 2020, we simu-

late different scenarios of iid Gaussian signals. Each scenario is defined by a combination of

D, n, τ , µ. For each scenario we vary the variance σ2 (see Supplementary Data of [Fearn-

head and Rigaill, 2020]). All the simulated profiles, with a variance one, can be seen in see

Appendix H. Based on these initial scenarios we simulate another set of profiles in which

profile lengths are multiplied so that each segments contain at least 300 datapoints. These

new set of simulated profiles can be seen in Appendix G. For each scenario and tested σ2

we simulate 300 replicates.

Metric We denote AE%, the average number of times a method is at least as good as

other methods in terms of absolute difference between the true number of changes and

the estimated number of changes (∆D), mean squared error (MSE) or adjusted rand index

(ARI). The closer to 100 (AE%), the better the method. See Supplementary Data of

[Fearnhead and Rigaill, 2020] for a formal definition of this criterion.

Empirical results On the simulation of [Fearnhead and Rigaill, 2020] in which a large

portion of the segments have a length under 100 the performance of Ms.FPOP are worse

than FPOP and MOSUM [Meier et al., 2021] on almost all scenarios except Dt7 that do

not contain any changepoint (see Appendix H).

On the second set of profiles, using ∆D as comparison criterion, we observe on Figure

5 that Ms.FPOP get similar performance or is better than FPOP and MOSUM in all

scenarios marginaly to σ2. The results are similar when we use MSE or ARI as a criterion

of comparison (see Appendix G).

5 Discussion

Extending functional pruning techniques to the multiscale penalty In section

2.2 we have explained how to extend functional pruning techniques to the case of multi-

scale penalty. In Figures 1 and 3 we have seen that for large signals (n ≥ 105) with few
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Figure 5: AE% as a function of the scaling factor for the variance (comparison

criterion : ∆D). The average number of times a method is at least as good as other

methods in terms of ∆D is computed for FPOP, Ms.FPOP, and MOSUM on different

scenarios of iid Gaussian signals and varying σ2. The smallest segment length is greater or

equal to 300 (see Design of Simulations). Each panel stands for the results on one scenario.

Corresponding profiles can be viewed in Appendix G.

changepoints, Ms.FPOP is an order of magnitude faster than Ms.PELT (which relies on

inequality based pruning, see Appendix A and B). Even when the number of changepoints

increased linearly with the size of the data, Ms.FPOP was still faster than Ms.PELT.
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The main update rule (12) of our dynamic programming algorithm suggests to compare

each candidate change s with a set of future candidate changes s′. As we have seen in

Appendix D, the strategy of randomly drawing one s′ according to a uniform distribution

is the best strategy and allows us to tackle large signals. It is likely that uniform sampling is

not optimal. The algorithm alternates between good draws (leading to a strong reduction of

Zt,s or even the pruning of s) and bad draws (leading to a weak reduction Zt,s). On average

this is sufficient but improvements are possible. In particular the study of h(t, s, s′) =

log( t−s′

t−s
) (see Assumption A1), suggests disfavoring s′ that are too recent or that have been

compared recently.

Calibration of γ and β from the multiscale penalty The least-squares estimator

with multiscale penalty proposed by [Verzelen et al., 2020] involves two constants γ and β

that still need to be investigated. Using signals simulated under the null hypothesis (no

changepoint) we have seen that it is possible to find a pair of constants γ = 9 and β = 2.25

for which Ms.FPOP controls R>0. Under this setting we have shown on hat (see section

4.3.1) and step (see Appendix F) simulations that Ms.FPOP is more powerful than FPOP

on segmentations with well-spread changepoints. This difference of power grows with n.

For segmentation with small segments FPOP is more powerful Ms.FPOP when n is small

(≈ 103), but for larger n (≥ 104) this difference disappears.

We also tested Ms.FPOP on the benchmark proposed in [Fearnhead and Rigaill, 2020].

The performances of Ms.FPOP are not so good on the original benchmark containing

mostly small profiles with small segments but much better for an extended benchmark

with larger profiles (see section 4.3.2).

Without additional work on the calibration of the constants, we would thus recommend

using Ms.FPOP for large profiles (≥ 104).

Unknown variance All our simulations have been done on signals with known variance,

σ2. However, in real-world situations, this may not always be the case. One approach is to

estimate σ2 and then plugging-in it in the problem, i.e scaling the signal or the penalty by

1

σ2 or σ2, respectively. A robust estimate of σ2 can be obtained by calculating the variance
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of ∆Y = Yi+1 − Yi using either the median absolute deviation or the estimator suggested

in [Hall et al., 1990]. As an alternative, [Verzelen et al., 2020] pointed out that one could

calibrate the multiplicative constant L of the penalized least-squares estimator using the

slope heuristic [Arlot, 2019]. Investigating the performances of these various approaches is

outside the scope of this paper.
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Appendix A PELT for multiscale penalized likelihood

Following the notation of the PELT paper [Killick et al., 2012] the cost of a segment from

s+1 to s′, s+1 : s′ is defined as Cs+1:s′ =
∑s′

i=s+1
(yi− ȳs+1:s′)

2−βg(s′− s). In what follow

we consider three time points s < s′ < t. Let ℓ = s′ − s denote the length of the sequence

of observations between time s and s′ and ℓ′ = t− s′ denote the length of the sequence of

observations between time s′ and t.

The key condition to apply the PELT algorithm [Killick et al., 2012] is that up to a

constant K adding a changepoints always reduce the cost, that is :

Assumption 1.

Cs+1:s′ + Cs′+1:t +K ≤ Cs+1:t (1)

The following lemma ensure that such K exists for any n and provide explicit values

for K in general and if g is concave.

Lemma 1. (a) For any function g from R to R, β ≥ 0, and any n, Assumption 1 is true

at least for K = 2βmin1≤ℓ≤n{g(ℓ)} − βmax1≤ℓ≤n{g(ℓ)}. (b) If g is concave the condition

is true for K = −βg(2) + 2βg(1).
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Proof. We first note that

mn = min
1≤ℓ<n



 min

1≤ℓ′<n
ℓ+ℓ′≤n

{g(ℓ) + g(ℓ′)− g(ℓ+ ℓ′)}





is well defined as the minimum of a finite set. By definition of mn we thus have, for any

1 ≤ s < s′ < t ≤ n and for any K < βmn, that

−βg(s′ − s)− βg(t− s′) +K ≤ −βg(t− s)

Combining this with

s′∑

i=s+1

(yi − ȳs+1:s′)
2 +

t∑

i=s′+1

(yi − ȳs′+1:t)
2 ≤

t∑

i=s+1

(yi − ȳs+1:t)
2.

we recover that equation (1) is true for any K < βmn.

Now for any ℓ, ℓ′ in {1, . . . , n}2 such that ℓ+ ℓ′ ≤ n we have

2 min
1≤ℓ≤n

{g(ℓ)} − max
1≤ℓ≤n

{g(ℓ)} ≤ g(ℓ) + g(ℓ′)− g(ℓ+ ℓ′).

Hence we get

2 min
1≤ℓ≤n

{g(ℓ)} − max
1≤ℓ≤n

{g(ℓ)} ≤ mn,

and we recover (a).

In case g is concave using the technical lemma 2 two times we get :

min
1≤ℓ′<n
ℓ+ℓ′≤n

{g(ℓ) + g(ℓ′)− g(ℓ+ ℓ′)} = g(ℓ) + g(1)− g(ℓ+ 1) (2)

and

min
1≤ℓ<n



 min

1≤ℓ′<n
ℓ+ℓ′≤n

{g(ℓ) + g(ℓ′)− g(ℓ+ ℓ′)}



 = 2g(1)− g(2)

For example, if g = log we get K = −β log(2)

Lemma 2. If g is concave then for any δ > 0, the function h : x→ g(x+ δ)− g(x) is non

increasing.
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Proof. Consider any δ′ > 0. We have x + δ = (1 − α)x + α(x + δ + δ′) for α = δ/(δ + δ′)

and similarly x+ δ′ = (1− α′)x+ α′(x+ δ + δ′) with α′ = δ′/(δ + δ′). Using concavity we

have

g(x+ δ) ≥ (1− α)g(x) + αg(x+ δ + δ′)

g(x+ δ′) ≥ (1− α′)g(x) + α′g(x+ δ + δ′).

Suming these two lines and noting that α+α′ = 1 we get g(x+ δ)− g(x) ≥ g(x+ δ′ + δ)−

g(x+ δ′)

Appendix B Adaptative PELT for concave multiscale

penalty

In the following lemma we show that for our multiscale penalty assuming the function g is

concave the constant K in theorme 3.1 of [Killick et al., 2012] can be chosen adaptively to

the length of the last segment.

Lemma 3. If g is concave and β ≥ 0. then if at time s′ we have,

Fs +
s′∑

i=s+1

(yi − ȳs+1:s′)
2 − βg(ℓ) +Ks′−s=ℓ ≥ Fs′ ,

with Kℓ = β(g(ℓ) + g(1)− g(ℓ+ 1)) then for any time t larger than s′ we have :

Fs +
t∑

i=s+1

(yi − ȳs+1:t)
2 − βg(ℓ+ ℓ′) ≥ Fs′ +

t∑

i=s′+1

(yi − ȳs′+1:t)
2 − βg(ℓ′),

and thus for any time t ≥ s′, a change at s can never be optimal. Taking g = log we get

Kℓ = −β log(1
ℓ
+ 1) ≤ −β log(2).

Proof. We follows the proof of Theorem 3.1 of [Killick et al., 2012] using the fact that if g

is concave then equation 2 is true.
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Appendix C Ms.FPOP: calibration of constants γ and

β from the multiscale penalty

The following plots were generated to calibrate the constants in the multiscale penalty of

[Verzelen et al., 2020]. They are generated as explained in section 4.1.
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Figure 1: Proportion of stationary Gaussian process replicates on which

Ms.FPOP returns at least one changepoint (R>0). R>0 is computed for a series

of γ, β, and profile lengths (see Design of Simulations in section 4.1.
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Figure 4: Ms.FPOP increases the probability of finding well spread changepoints

on hat profiles. The proportion of replicates for which Ms.FPOP and FPOP return two

changepoints, one changepoint, zero changepoint, and more than two changepoints are

computed for varying τ1 ∈ [1, ⌊2
3
n⌋ − 1] and n ∈ [103, 104, 105] on the hat-like profiles (see

Design of Simulations in section 4.3.1).
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Appendix G FPOP vs Ms.FPOP vs MOSUM: simu-

lations on several scenarios of Gaussian

signals (segments length > 300)

Figures G6, 5, G7, G8 were obtained as explained in section 4.3.2 when considering the

benchmark in [Fearnhead and Rigaill, 2020]. On these simulations a large portion of the

segments have a length under 100.
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Figure 6: Simulated scenarios of Gaussian signals with minimum segments length

equal to 300. All scenarios have been simulated following the protocol written by Fearn-

head et al. (2020). The length of each segment are scaled so that, in each profile, all

segments contain at least 300 datapoints.
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Figure 7: AE% as a function of the scaling factor for the variance (comparison

criterion : ARI). The average number of times a method is at least as good as other

methods in terms of ARI is computed for FPOP, Ms.FPOP, and MOSUM on different

scenarios of iid Gaussian signals and varying σ2. The smallest segment length is greater

or equal to 300. Each panel stands for the results on one scenario. Corresponding profiles

can be viewed in Figure G6.
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Figure 8: AE% as a function of the scaling factor for the variance (comparison

criterion : MSE). The average number of times a method is at least as good as other

methods in terms of MSE is computed for FPOP, Ms.FPOP, and MOSUM on different

scenarios of iid Gaussian signals and varying σ2. The smallest segment length is greater

or equal to 300. Each panel stands for the results on one scenario. Corresponding profiles

can be viewed in Figure G6.
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Appendix H FPOP vs Ms.FPOP vs MOSUM: simu-

lations on several scenarios of Gaussian

signals

Figures H9, H10, H11, H12 were obtained as explained in section 4.3.2 when considering an

extension of the benchmark in [Fearnhead and Rigaill, 2020]. Based on the initial scenarios

we simulated another set of profiles in which segments length are multiplied so that each

of segments contain at least 300 datapoints.
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Figure 9: Simulated scenarios of Gaussian signals. All scenarios have been simulated

following the protocol written by Fearnhead et al. (2020).
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Figure 10: AE% as a function of the scaling factor for the variance (comparison

criterion : ∆D). The average number of times a method is at least as good as other

methods in terms of ∆D is computed for FPOP, Ms.FPOP, and MOSUM on different

scenarios of iid Gaussian signals and varying σ2. Each panel stands for the results on one

scenario. Corresponding profiles can be viewed in Figure H9.
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Figure 11: AE% as a function of the scaling factor for the variance (comparison

criterion : ARI). The average number of times a method is at least as good as other

methods in terms of ARI is computed for FPOP, Ms.FPOP, and MOSUM on different

scenarios of iid Gaussian signals and varying σ2. Each panel stands for the results on one

scenario. Corresponding profiles can be viewed in Figure H9.
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Figure 12: AE% as a function of the scaling factor for the variance (comparison

criterion : MSE). The average number of times a method is at least as good as other

methods in terms of MSE is computed for FPOP, Ms.FPOP, and MOSUM on different

scenarios of iid Gaussian signals and varying σ2. Each panel stands for the results on one

scenario. Corresponding profiles can be viewed in Figure H9.
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B.2 Implementation of Ms.FPOP

To improve the readability of this section, I have defined a syntax for each programming

concept I will refer to, namely : A_class, an_attribute / a_variable, An_object_method(),

A_class_method(). When needed, the reader is also encouraged to refer to the corresponding

class diagram B.1.

Candidate. The Candidate class defines a last changepoint candidate. This changepoint is

characterized by its position s. Its cost function f̃t,s(µ) can be broken down and stored in three

separate attributes. The constant part of this function (Fs +α) is stored in the attribute named

cost_up_to_s. The quadratic form (
∑t

i=s+1
(yi − µ)2 + α), an object of type Quadratic, is

stored in the quad attribute. Lastly, the penalty component, which is dependent on the length

of the last segment is stored in the attribute pen. The living set of the candidate, an object of

type Ordered_list_of_intervals , is saved in the z attribute.

This class has a constructor that allows a changepoint candidate to be instantiated by spe-

cifying parameters that correspond to the various attributes mentioned above. There are several

methods to interact with a changepoint candidate :

- Minimum_of_cost_function() returns the minimum of the cost function by first calling

Minimum() on the quadratic form, which returns the optimal cost of the last segment,

then adding cost_up_to_s and pen ;

- Set_penalty() updates pen with the specified value ;

- Add_quadratic() adds the current point yi to the quadratic form by adding appropriate

coefficients (a0 = a0 + y2i ; a1 = a1 + 2yi; a2 = a2 + 1) ;

- GetZ(), Get_s() are the accessors for the attributes z and s, respectively ;

- Compare_to_past_candidate() updates a changepoint candidate’s z attribute by compa-

ring it with changepoint candidates introduced before it. This procedure corresponds to

step 18 in Algorithm 1 of Liehrmann and Rigaill [2023]. The naive approach of subtracting

I∞,s′′,s from z for each past candidate s′′ can become complex if z contains more than one

interval. I suggest an alternative approach. We instantiate the sorted union of I∞,s′′,s using

the appropriate constructor from the Ordered_list_of_intervals class. Then we seek

the complement of the previously formed sorted union of intervals in z = [min(Y ),max(Y )].

This step is performed by calling the Complementary_in() method. The returned object

of type Ordered_list_of_intervals is used to update z ;

- Compare_to_future_candidate() updates the current changepoint candididates’s z attri-

bute by comparing it with a sample of the changepoint candidates introduced after it, de-

noted as s′. This procedure corresponds to step 20 in Algorithm 1 of Liehrmann and Rigaill

[2023]. We start by instantiating the intersection of It,s,s′ using the appropriate constructor

from the Interval class. Then we intersect each interval contained in z with the previously
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Figure B.1 ś Class diagram of the MsFPOP project. A solid arrow signifies an association, a
dotted arrow indicates a dependency, while a diamond shape represents an aggregation.
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instantiated intersection. This step is performed by calling the Intersect_with() method.

Interval. The Interval class defines a bounded interval in R. The lower and upper bounds

are saved in two double type attributes, namely begin and end. Any interval of the form [a, b]

where a ≥ b is considered an empty interval. In the case of singletons, this choice is justified

by the properties of the piecewise quadratic function. This function is continuous, which implies

that the living set of cost functions adjacent to that associated with the singleton intersect at

this point. Thus, we can choose to no longer consider the singleton.

This class has three constructors. The first allows instantiating an empty interval. The second

permits instantiating an interval with explicitly provided bounds. The last enables instantiating

an interval that corresponds to the intersection of intervals saved in an unordered list. To do

this, the greatest of the lower bounds and the smallest of the upper bounds are sought in linear

time. Several methods allow interaction with an interval :

- IsEmpty_or_singleton() returns true if the interval is of the form [a, b] such that a ≥ b,

false otherwise ;

- Get_begin(), Get_end(), Set_begin(...), Set_end(...) are the accessors and mutators of

the bounds of an interval ;

- operator&=(...) interesects two intervals and modifies the bounds of the first interval so

that they equal the bounds of the intersection.

Interval also implements two class methods, Compare_begin(...) and Compare_end(...),

which return true when, respectively, the lower bound of the first interval is smaller than the

lower bound of the second interval, and when the upper bound of the first interval is smaller

than the upper bound of the second interval, false otherwise. These two comparison methods are

used by the algorithms of the standard library to manipulate containers of intervals (e.g., search

for the minimal upper bound, sorting based on the lower bound).

Ordered_list_of_intervals. The Ordered_list_of_intervals class defines a non-empty

list of intervals that are ordered by their lower bounds. The container list_of_intervals is of the

std::list type and has the properties of a doubly linked list. The ability to remove an element in

constant time (linear with the number of elements to remove) makes this container particularly

efficient for processing the dynamic living set of changepoint candidates.

This class has three constructors. The first allows instantiating an empty list. The second

allows instantiating a list with an explicitly provided interval. The last allows instantiating a

sorted list of intervals and empty intersections from a list of possibly unsorted intervals and

possibly non-empty intersections. In the latter case, a sorting operation is first performed on the

lower bounds of the intervals contained in the provided list. This operation has a complexity of

O(|list_of_intervals_to_merge| × log(|list_of_intervals_to_merge|)). Then, the union of

sorted intervals is performed. This operation has a complexity ofO(|list_of_intervals_to_merge|).

Several methods allow interaction with the current sorted list of intervals :
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- Intersect_with(...) updates a sorted list of intervals by intersecting, in place via the

overloaded &= operator in Interval , each interval contained in this list with inter-

val_to_intersect. If an intersection is empty, the concerned interval is removed from the

current list in constant time ;

- Complementary_in(...) updates a sorted list of intervals with the complement of intervals

contained in this list, in d. The first step is to call Intersect_with(d) on the sorted list of

intervals. The current list now only contains intervals strictly included in d. This operation

has linear time complexity. The operation to find the complement in d also has linear time

complexity ;

- Is_empty() returns true if the list is empty, false otherwise ;

- Clean() removes empty intervals from a sorted list of intervals ;

- Size() returns the size of a sorted list of intervals ;

- Get_list() returns a sorted list of intervals.

MsFPOP. The MsFPOP class is the main class in this project. It implements several at-

tributes that allow setting up the segmentation problem. A problem is instantiated using the

constructor of this class by specifying a data vector (y), the constants alpha and beta used in

the penalty calculations, a weight vector (wt) associated to the data, a sampling method (sam-

pling_method) from those offered by Sampling , and its associated parameter

(sampling_method_parameter).

The search() procedure finds the changepoints. Throughout the procedure, we maintain a

list of changepoint candidates and a vector of iterators, each of which points to a changepoint

candidate. Thanks to the operator [] implemented by the std::vector class, we can access each

changepoint candidate in constant time without needing to traverse this list.

At each step t (see main loop in Algorithm 1 of Liehrmann and Rigaill [2023]), we :

- update the quadratic form by calling Add_quadratic(...) on each changepoint candidate

with the new data y[t] and associated weight value wt[t] as arguments ;

- update the penalty calculated on the last segment by calling Set_penalty() on each chan-

gepoint candidate ;

- find the minimum cost (Ft) among all cost functions by calling Minimum_of_function_cost()

on each changepoint candidate. We save this cost and the associated changepoint candi-

date ;

- instantiate a new changepoint candidate t via the constructor of Candidate. The qua-

dratic form of its cost function and the penalty calculated on the last segment are null.

The constant part of its cost function is equal to Ft + α ;

- call Compare_to_past_candidate() on the recently introduced changepoint candidate ;

- for each changepoint candidate, we sample future changepoint candidate via sampling_method

and then call Compare_to_future_candidate() ;

- remove from the changepoint candidates whose cost function’s living set is empty.
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The Retrieve_changepoints() method recursively finds and returns the list of changepoints

that form the best segmentation of the data.

Quadratic. The Quadratic class defines a second degree polynomial a0 + a1x + a2x2. The

coefficients, a0, a1, and a2, of the quadratic form are saved in coef, an array of doubles of size

3. This class has two constructors that allow instantiating a quadratic form with either zero

coefficients or explicitly provided coefficients. Several methods allow interaction with a quadratic

form :

- Add_coef() modifies the current quadratic form by explicitly adding the coefficients of

another quadratic form ;

- Minimum() returns the minimum of the current quadratic form, i.e., a0 −
a2
1

4a2
;

- Negative_interval() first calculates the discriminant of a quadratic form (a21−4a2a0). If the

discriminant is strictly greater than 0, the method instantiates and returns an Interval

object whose bounds correspond to the ordered roots of the quadratic. Otherwise, the

method instantiates and returns an empty Interval object ;

- operator-() overloads the "-" operator. This operator instantiates and returns a quadratic

form whose coefficients are equal to the difference between the coefficients of two quadratic

upon which this operator is applied.

Sampling. The Sampling class implements two methods methods for sampling positive inte-

gers. These methods are used to sample future changepoint candidates (step 19 in Algorithm 1

of Liehrmann and Rigaill [2023]).

- Rand_without_replacement(...) : This function returns a vector containing nb positive in-

tegers, randomly sampled without replacement from the range (begin, end). This is possible

if nb < |(begin, end)|. If not, it returns all positive integers within the range (begin, end).

- All() : This function returns a vector containing all positive integers within the range

(begin, end).
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Chapter C

DiffSegR : An RNA-Seq data driven method

for differential expression analysis using chan-

gepoint detection

This article was published in the journal NAR Genomics and Bioinformatics

(doi.org/10.1093/nargab/lqad098).
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Abstract 

To fully understand gene regulation, it is necessary to ha v e a thorough understanding of both the transcriptome and the enzymatic and RNA- 
binding activities that shape it. While many RNA-Seq-based tools have been developed to analyze the transcriptome, most only consider the 
abundance of sequencing reads along annotated patterns (such as genes). These annotations are typically incomplete, leading to errors in the 
differential e xpression analy sis. To address this issue, we present DiffSegR - an R package that enables the disco v ery of transcriptome-wide 
e xpression differences betw een tw o biological conditions using RNA-Seq data. DiffSegR does not require prior annotation and uses a multiple 
changepoints detection algorithm to identify the boundaries of differentially expressed regions in the per-base log 2 fold change. In a few minutes 
of computation, DiffSegR could rightfully predict the role of chloroplast ribonuclease Mini-III in rRNA maturation and chloroplast ribonuclease 
PNPase in (3 ′ / 5 ′ )-degradation of rRNA, mRNA and tRNA precursors as well as intron accumulation. We belie v e DiffSegR will benefit biologists 
working on transcriptomics as it allows access to information from a la y er of the transcriptome o v erlook ed b y the classical differential expression 
analysis pipelines widely used today. DiffSegR is available at https:// aliehrmann.github.io/ DiffSegR/ index.html . 

Introduction 

It has long been recognized that transcriptomes largely surpass 
genomes in complexity ( 1 ). Besides alternative use of tran- 
scription initiation sites, most of the transcript diversity can 
be ascribed to post-transcriptional modifications, including 
RNA splicing, processing, alternative polyadenylation, editing 
or base modification ( 2 ). Although the advent of the transcrip- 
tomics revolution has allowed an unprecedented understand- 
ing of this transcript diversity, the combinatorial nature and 
very large number of variations is still an analytical challenge 
( 3 ,4 ). Moreover, because most strategies for RNA-Seq analysis 
rely on incomplete transcriptomic variant annotations, mean- 
ingful variations may currently be overlooked ( 5 ). This is a 
major issue for biological interpretation as illustrated by the 
crucial role played in disease development by poorly anno- 
tated non coding elements like 5 ′ and 3 ′ UTRs ( 6–9 ). 

As a consequence, there is a massive effort to improve tran- 
scriptomic annotations with the help of the third generation 
(long-read) sequencing technologies from Oxford Nanopore 
Technologies or Pacific Bioscience. Long RNA-Seq reads may 
cover an entire RNA isoform from start to end, directly il- 
lustrating the exon structure, splicing patterns and UTR com- 
position ( 10–12 ). They carry the promise to go beyond the 
limits of full-length transcript assembly, which is notoriously 
prone to error ( 13 ,14 ). Although such a strategy can double 
the number of referenced transcripts for a model organism 

( 15 ), reaching an exhaustive description of a transcriptome is 
arguably a Sisyphean task ( 5 , 16 , 17 ). 

Because most RNA-Seq experiments aim at identifying 
RNA processes that vary between two biological conditions 
(WT versus mutant or control versus stress, for example), an 
alternative to this issue is to identify portions of the tran- 
scriptome that vary between both experimental conditions 
(differentially expressed regions or DERs) directly from the 
RNA-Seq data, without relying on annotations and bypass- 
ing assembly altogether. This is performed by a class of meth- 
ods sometimes referred to as identify-then-annotate tools ( 18 ). 
Their gold standard is to be both highly specific (i.e. able to 
merge adjacent non-DERs) and highly sensitive (i.e. able to 
discriminate between adjacent DERs, in particular between 
up and down DERs). To do so, various methods summarized 
in Figure 1 ( 19–22 ) address a well-defined statistical problem 

known as multiple changepoints detection, or segmentation 
problem. This has been a long-standing problem in the field 
of genomic series analysis ( 23–27 ). To identify DERs, current 
identify-then-annotate tools mainly vary in the signal they seg- 
ment and in the way they segment it (Figure 1 ). 

Here, we introduced DiffSegR, an R package that uses a 
new strategy for delineating the boundaries of DERs. It seg- 
ments the per-base log 2 fold change (log 2 -FC) using FPOP, 
a method designed to identify changepoints in the mean of 
a Gaussian signal ( 28 ). Intuitively, the per-base log 2 -FC is a 
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Figure 1. State-of-the-art of Identify-then-annotate methods for 

detecting differentially expressed regions (DERs) in RNA-Seq data. The 

methods included in this figure—srnadiff, srnadiff IR, srnadiff HMM ( 19 ), 

derfinder SB, derfinder RL ( 22 ), RNAprof ( 21 ), parseq ( 20 ) and 

DiffSegR—belong to a class of methods known as identify-then-annotate, 

which enable the identification of DERs directly from RNA-Seq data 

without relying on annotations or assembly. To identify DERs, these 

methods address a well-defined statistical problem known as multiple 

changepoints detection or segmentation problem. The methods vary in 

the signal they segment and the way they segment it. For example, 

srnadiff merges the results of a three-le v el segmentation model on the 

per-base log 2 fold change (srnadiff IR) and a two-level segmentation 

model on the per-base P -value (srnadiff HMM). Similarly, derfinder SB 

and derfinder RL implement a tw o-le v el segmentation model on the 

per-base F -statistic (similar to per-base P -value) and the mean of 

co v erages, respectiv ely. RNAprof implements a three-le v el segmentation 

model on the per-base log 2 fold change. parseq segments the mean of 

co v erages without assuming the number of le v els. Finally, DiffSegR 

introduces a new strategy to identify DERs by segmenting the per-base 

log 2 fold change without assuming the number of levels. All the methods 

e x cept parseq assess the found DERs using DESeq2 ( 29 ). 

measure that scales with the intensity of the transcription dif- 
ferences at each genomic position between the two compared 
biological conditions. Expression differences are then statis- 
tically assessed for each region using the negative binomial 
generalized linear model of DESeq2 ( 29 ) and the outputs can 
be visualized in IGV ( 30 ). 

DiffSegR and competitor methods (Figure 1 ) were com- 
pared on two plant RNA-Seq datasets that were previously 
used in combination with molecular biology techniques to de- 
cipher the roles of the chloroplast ribonucleases PNPase and 
Mini-III ( 31 ,32 ). DiffSegR was the only method able to re- 
trieve all the segments known to differentially accumulate out- 
side of the annotated genic regions (i.e. 3 ′ and 5 ′ extensions, 
anti-sense accumulation). Moreover, it is the only method 
predicting the overaccumulation of intronic regions on the 
plastome-scale in the PNPase mutant. Globally, DiffSegR bet- 
ter captures multiple trends of differences within DERs while 
being more parsimonious in non-DERs than its competitors. 

We anticipate DiffSegR will be an important tool in pro- 
viding an in-depth description of local or regional transcript 
variations within RNA-seq libraries from two biological con- 
ditions, especially when studying RNA processes located out- 
side of the annotated coding sequences, like RNA processing, 
trimming or splicing. 

Materials and methods 

DiffSegR segmentation model 

Differential transcription profile 

DiffSegR builds the coverage profiles indexed on n genomic 
positions from the BAM files provided by the user. The cov- 
erage profile for replicate r of biological condition j is noted 

Q jr = { Q i jr } 
n 
i =1 ∈ N 

n . By default we propose to compute Q ijr 

using the geometric mean of the number of 5 ′ and 3 ′ end 
of the reads overlapping position i , denoted Q ijr5 ’ and Q ijr3 ’ . 
Formally: 

Q i jr + 1 = 
(

Q i jr 5 ′ + 1 
)1 / 2 

×
(

Q i jr 3 ′ + 1 
)1 / 2 

. (1) 

We describe alternative approaches that use either the full 
length or the 5 ′ or 3 ′ end of the reads, and compare them with 
our geometric mean heuristic in Notes S1–S3, Supplementary 
Table S9 and Supplementary Figures S40–S42. DiffSegR then 
builds the differential transcription profile between the bio- 
logical conditions (named 1 and 2 hereafter) using a log 2 -FC 

per-base transformation because it scales with the intensity 
of the transcriptional differences between conditions 1 and 2. 
The log 2 -FC at the i th genomic position (denoted Y i ) is given 
by 

Y i = 
1 

R 1 

R 1 
∑ 

r 1 =1 

log 2 (Q i 1 r 1 + 1) −
1 

R 2 

R 2 
∑ 

r 2 =1 

log 2 (Q i 2 r 2 + 1) (2) 

where R 1 and R 2 stand for the number of replicates in condi- 
tion 1 and 2, respectively. 

Segmentation model 

We consider D changepoints τ 1 < …< τD within the range 1 
and n – 1 . These changepoints correspond to unknown po- 
sitions along the genome where a shift in the mean of the 
per-base log 2 -FC (eq: 2) is observed. We adopt the conven- 
tion that τ 0 = 0 and τ | τ | = n . These changepoints define | τ | 
= D + 1 distinct segments. The j th segment includes the data 
]] τ j-1 ,τ j ]] = { τ j-1 + 1,…,τ j }. Each segment is premised on the as- 
sumption that the Y i therein are independent and follow the 
same Gaussian distribution, with a mean µj specific to that 
segment and a common variance σ 2 . Expressed mathemati- 
cally, we have: 

∀ i ∈ ] ] τ j−1 , τ j ] ] Y i ∼ N 
(

µ j , σ
2 
)

iid. (3) 

Estimation of the segment 

The parameters of the model (eq: 3), including τ 1 < …< τD , 
can be estimated using penalized maximum likelihood infer- 
ence. To achieve this, DiffSegR uses the FPOP algorithm ( 28 ) 
(a dynamic programming algorithm that implements func- 
tional pruning techniques) which solves the inference prob- 
lem exactly (see below). For many profiles lengths the compu- 
tation time of FPOP is log-linear allowing for the segmenta- 
tion of large data (10 6 < n < 10 7 ) in a matter of seconds. The 
number of changepoints estimated by FPOP is a decreasing 
function of the penalty λσ 2 log( n ). The constant λ is a hyper- 
parameter that can be adjusted by the user. A good starting 
point, based on theoretical arguments ( 33 ) and simulations 
( 34 ), is to set λ = 2. The variance σ 2 is estimated on the data 
using the unbiased sample variance estimator. 

FPOP 

Informally, the idea of the FPOP algorithm is to consider the 
penalized maximum likelihood of the data from observation 1 
to t as a function of the parameter (the mean) of the last seg- 
ment. This idea is referred to as ‘functional pruning’. In the 
Gaussian case, the resulting function is piecewise quadratic. 
For a new observation at time t + 1, it is possible to efficiently 
update this function (that is, compute the penalized maxi- 
mum likelihood function from observation 1 to t + 1) using a 
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formula similar to that of the Viterbi algorithm. This formula 
is applied piece by piece, that is by intervals. At each step, the 
algorithm searches for the best possible value of the parameter 
of the last segment to maximize the penalized likelihood. 

Normalization 

To account for differences in the total number of sequenced 
reads per sample, we assume that the mean of the coverage 
µijr is composed of a sample-specific size factor s jr and a pa- 
rameter q ijr proportional to the expected true concentration of 
transcripts overlapping position i in replicate r of condition j 
verifying µijr = s jr q ijr ( 29 , 35 , 36 ). As the coverage (eq: 1), the 
per-base log 2 -FC (eq: 2) depends on sample-specific size fac- 
tors. One can show that the non-normalized and normalized 
per-base log 2 -FC are linked together by an offset denoted ρ
such that 

ρ = 
1 
R 1 

R 1 
∑ 

r 1 =1 

log 2 ( s 1 r 1 ) −
1 
R 2 

R 2 
∑ 

r 2 =1 

log 2 ( s 2 r 2 ) . 

For a given penalty the output of FPOP is shift invariant. 
That is if the data is shifted by a given value the returned 
changepoints will be the same. Therefore the segmentation 
returned by DiffSegR does not depend on the knowledge of 
the normalization factors. This is a key difference with thresh- 
old based methods (e.g. srnadiff IR, srnadiff HMM, RNAprof, 
derfinder RL, derfinder SB). 

We acknowledge that when taking into account the offset 
to the logarithms (+1) in the per-base log 2 -FC, the previous 
argument is approximately true for large counts but does not 
hold for small counts. 

Overview of the DiffSegR package 

DiffSegR is implemented as an R package ( www.R-project. 
org/) and can be found on GitHub ( https://aliehrmann.github. 
io/ DiffSegR/ index.html ) with the installation procedure as 
well as a vignette with functional examples. The package im- 
plements the four steps of a conventional pipeline for identify- 
then-annotate methods (Figure 2 ). 

Step 1: computing the co ver age profiles and the differential 
transcription profile from BAMs 

The loadData function builds coverage profiles from BAM 

files within a locus specified by the user. If the reads are 
stranded, the function builds one coverage profile per strand 
for each replicate of both compared biological conditions. By 
default the heuristic used to compute coverage profiles is the 
geometric mean of the 5 ′ and 3 ′ profiles (eq: 1). Alternative 
approaches use either the full length or the 5 ′ or 3 ′ end of the 
reads (Note S1). loadData then converts the coverage profiles 
into the per-base log 2 -FC (eq: 2) (one per strand) using the 
reference biological condition specified by the user as the de- 
nominator. The function returns the coverage profiles and the 
differential transcription profile as a list of run-length encoded 
objects. 

Step 2: summarizing the differential transcription landscape 

The segmentation function uses FPOP ( 28 ) on the per-base 
log 2 -FC of both strands to identify the segment’s boundaries 
(or changepoints). The number of returned segments is con- 
trolled by the hyperparameter λ specified by the user. The seg- 
ments are stored as GenomicRanges object and the segmen- 
tation function finally uses featurecounts ( 44 ) to assign them 

the mapped reads from each replicate of each biological con- 

dition. By default a read is allowed to be assigned to every seg- 
ment it overlaps with. The segments and the associated count 
matrix are returned as a SummarizedExperiment object. 

Step 3: differential expression analysis (DEA) 

The dea function uses DESeq2 ( 29 ) to test the difference in 
average expression between the two compared biological con- 
ditions for every segment. The resulting P -values are then ad- 
justed using a Benjamini-Hochberg (BH) procedure to control 
the false discovery rate (FDR), which is a common approach in 
DEA. However, this approach does not guarantee that the pro- 
portion of false discoveries (FDP) will be upper bounded, and 
there is no statistical guarantee on the number of false discov- 
eries in subsets of segments selected using FDR thresholding. 
For example, while a widespread practice in DEA is to select a 
subset of segments whose absolute log 2 -FC passes a threshold 
it can potentially result in an inflated FDR. To address these 
limitations, the dea function can also call a post-hoc inference 
procedure that provides guarantees on the FDP in arbitrary 
segment selections ( 42 ). Finally, dea returns the user-provided 
SummarizedExperiment object augmented with the outcome 
of the DEA. 

Step 4.A: annotating the differentially expressed regions 
(DERs) 

The annotateNearest function annotates the DERs found dur- 
ing the DEA using user specified annotations in the gff3 or gtf 
format. Seven classes of labels translate the relative positions 
of the DER and its closest annotation(s): antisense, upstream, 
downstream, inside, overlapping 3 ′ , overlapping 5 ′ and over- 
lapping both 5 ′ and 3 ′ . These labels allow users to easily un- 
derstand the relationships between the DERs and their nearest 
annotations, and to analyze the potential functional signifi- 
cance of the DERs in the context of the annotated genomic 
features. 

Step 4.B: visualizing the DERs 

The exportResults function saves the DERs, not-DERs, seg- 
mentation, the mean of coverage profiles from both biolog- 
ical conditions and per-base log 2 -FC information, for both 
strands, in formats readable (bed, gff3) by genome viewers 
like the Integrative Genome Viewer (IGV) ( 30 ). For IGV, ex- 
portResults also creates a session in xml format that allows 
loading all tracks in one click. This provides a convenient 
way to save and visualize the results of the differential ex- 
pression analysis, allowing a user-friendly exploration and in- 
terpretation of the data generated by the DEA. An example of 
the graphical output obtained with DiffSegR is displayed in 
Figure 3 . 

Benchmarking 

Data and read mapping 

The true positive rate (see Evaluation metrics ) of DiffSegR and 
competitors were evaluated on two RNA-Seq datasets com- 
paring Arabidopsis thaliana control plants ( col0 ) to mutants 
deficient in the PNPase and Mini-III chloroplast ribonucleases 
( 31 ,37 ). We refer to these datasets as pnp1-1 and rnc3 / 4 , re- 
spectively. In the rnc3 / 4 dataset both conditions contained 
two replicates with about 19.5 million reads each while in 
the pnp1-1 dataset, both conditions contained two replicates 
with about 18.6 million reads each. DiffSegR ability to work 
on a bacterial genome was evaluated using a RNA-Seq dataset 
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Figure 2. Schematic representation of the DiffSegR pipeline. The DiffSegR pipeline consists of four major steps: (1) Computing the coverage profiles 

and the differential transcription profile from BAMs. The loadData function creates coverage profiles from user-specified BAM files and a genomic 

region. (1.A) It produces one profile per strand for each replicate of both biological conditions. (1.B) The function then calculates the per-base log 2 
fold change (log 2 -FC) based on the coverage profiles. (2) Summarizing the differential transcription landscape. (2.A) The segmentation function applies 

FPOP to the per-base log 2 -FC of each strand to identify segment boundaries, known as changepoints. (2.B) Then the featurecounts program is used to 

assign mapped reads to segments, resulting in a count matrix. (3) Differential expression analysis (DEA). The dea function uses DESeq2 to test the 

difference in a v erage e xpression betw een the tw o compared biological conditions f or each segment. (4) Annotating and visualizing the differentially 

expressed regions (DERs). (4.A) The annotateNearest function annotates DERs using user-specified gff3 or gtf format annotations. In parallel, (4.B) the 

e xportR esults function sa v es DERs, not-DERs, segmentation, the mean of co v erage profiles from both biological conditions, and per-base log 2 -FC 

information in formats compatible with genome viewers like IGV. An IGV session in XML format allows loading all tracks with one click, providing a 

user-friendly w a y to visualiz e and interpret DiffSegR results. 
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Figure 3. DiffSegR analysis of the psbB-psbT-psbN-psbH-petB-petD gene cluster in the pnp1-1 dataset. The tracks from top to bottom represent: 

(log 2 -Cov (+)) the mean of coverages on the log 2 scale for the forward strand in both biological conditions of interest, with the blue line representing the 

WT condition and the red line representing the pnp1-1 condition; (log 2 -FC (+)) the per-base log 2 -FC between pnp1-1 (numerator) and WT (denominator) 

for the forward strand. The straight horizontal line represents the zero indicator. When the per-base log 2 -FC is above or below the zero indicator line, it 

suggests up-regulation or down-regulation, respectively, in pnp1-1 compared to WT. The changepoint positions are indicated by vertical blue lines, and 

the mean of each segment is shown by horizontal blue lines connecting two changepoints; (DiffSegR (+)) the differential expression analysis results for 

segments identified by DiffSegR on the forward strand are presented as follows: up-regulated regions are depicted in green, down-regulated regions in 

purple, and non-differentially expressed regions in gray; (annotations) the genes provided by users for interpretations. Symmetrically, the remaining 

tracks correspond to the same data on the re v erse strand. DiffSegR finds 8 up-regulated DERs on the f orw ard strand (IDs 1 to 8), 5 up-regulated DERs 

on the re v erse strand (IDs 9 to 11, 14 and 15), and 2 down-regulated DERs on the reverse strand (IDs 12 and 13). Table 1 provides a summary of the 

molecular validations published for the DERs identified in the psbB gene cluster through DiffSegR analysis. The bedGraph and gff3 files used to 

generate the tracks and the xml file used to load them in IGV were created using the exportResults function of the DiffSegR R package. The session 

was loaded in IGV 2.12.3 for Linux. 

comparing a Bacillus subtilis control strain (CCB375 strain) 
to a mutant deficient for the Rae1 ribonuclease (SSB1002 
strain) ( 38 ). We refer to this dataset as ∆rae1 . Both condi- 
tions contained three replicates with about 14.8 million reads 
each. The IDEAs dataset used to evaluate the false positive 
rate (see Evaluation metrics ) contained ten RNA-Seq repli- 
cates of the Col-0 Arabidopsis thaliana accession grown in 
nitrogen deficiency condition with about 32.7 million reads 
each. The plants were grown at the IJPB Phenoscope platform 

( https:// phenoscope.versailles.inrae.fr/ ) to ensure maximal ho- 
mogeneity between the replicates (see the GEO database with 
the accession number GSE234377 for more details). RNA- 
Seq datasets were aligned to the Arabidopsis thaliana chloro- 
plast genome using the OGE pipeline ( https://forgemia.inra. 
fr/ GNet/ pipelineoge ) ( 39 ). This pipeline uses the STAR aligner 
( 40 ). The BAM files corresponding to the aligned Bacillus sub- 
tilis RNA-Seq dataset were kindly provided by Ciarán Con- 

don. The alignment was performed using the Bowtie aligner 
( 41 ). These alignments were then used for the downstream 

analyses. Because DiffSegR is the only evaluated method able 
to analyze stranded RNA-Seq reads, the BAM files were then 
split by strand in order to be used by the competing methods 
and the results for both strands were finally merged. 

Adjusting method parameters 

For the purpose of benchmarking DiffSegR against other 
methods in terms of true positive rate (see below), one or more 
parameters likely to change the number and / or the positions 
of the identified changepoints were adjusted. 

1. The minimum depth threshold ( minDepth ) is com- 
mon to derfinder RL and srnadiff. All contiguous posi- 
tions with mean of coverages above this threshold are 
kept. For each method, on both datasets, one hundred 

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/n
a

rg
a

b
/a

rtic
le

/5
/4

/lq
a

d
0

9
8

/7
3

6
9

4
5

6
 b

y
 g

u
e

s
t o

n
 1

2
 D

e
c
e

m
b

e
r 2

0
2

3



6 NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 

minDepth values evenly spaced within the interval 
[1,6000] were tested. The default minDepth value of 
derfinder RL and srnadiff are 5 and 10, respectively. 

2. The minimum log 2 -FC threshold ( minLogFC ) is used by 
srnadiff to keep only contiguous positions with abso- 
lute normalized log 2 -FC above the threshold. For both 
methods, on both datasets, one hundred minLogFC val- 
ues evenly spaced within the interval [0.1,7] were tested. 
The default minLogFC value of srnadiff is 0.5. 

3. The emission threshold ( emissionThreshold ) is used by 
srnadiff to define the HMM states. For both methods, on 
both datasets, one hundred ( emissionThreshold ) values 
evenly spaced within the interval [0.09, 0.9] were tested. 
The default emissionThreshold value of srnadiff is 0.1. 

For all these comparisons and on both datasets, the Diff- 
SegR hyperparameter λ was kept to its default value, λ= 2. 
In other analyses, all parameters from the different methods 
tested were set to their default values. 

Evaluation metrics 

At the end of the segmentation process, each method yields 
a collection of segments that may or may not correspond 
to genomic regions with differential expression. Differentially 
expressed regions (DERs) stand for the largest set of seg- 
ments with a fold change > 1.5 (symmetrically < 2 / 3) and a 
false discovery proportion upper bound set to 5%. Both per- 
segment fold change and P -value are estimated using DESeq2 
( 29 ). The post-hoc upper bound is obtained by controlling 
the joint error rate (JER) at significance level of 5% using 
the Simes family of thresholds implemented in the R pack- 
age sanssouci ( 42 ,43 ). Unless specified, all methods were com- 
pared using these thresholds. All quality control of the Diff- 
SegR results, including a PCA of counts, a dispersion-mean 
plot and an histogram of P -values are available in supplemen- 
tary data for pnp1-1 (Supplementary Figures S1-S3), rnc3 / 4 
(Supplementary Figures S4–S6) and ∆rae1 (Supplementary 
Figures S7–S9) datasets. For the comparisons on the pnp1- 
1 and rnc3 / 4 labeled dataset the error E was defined as the 
total number of labels which are not overlapped by at least 
one DER. A label is a genomic portion whose correspond- 
ing transcript has previously been validated by molecular bi- 
ology techniques to be differentially accumulated in the mu- 
tant compared to WT. The genomic coordinates of the labels 
can be found in Supplementary Tables S1-S2. The true posi- 
tive rate is given by T PR = 

N−E 
N 

where N is the total number 
of labels. In the blank experiment the replicates of the nitro- 
gen deficiency condition from the IDEAs project were resam- 
pled in two groups to test several 2 versus 2, 3 versus 3, 4 
versus 4 and 5 versus 5 designs. All the DERs identified are 
supposed to be false positives. The false positive rate is given 
by F PR = 

number of DERs 
number of segments 

. 

Results 

Foreword 

srnadiff merges the results of a two-level segmentation ap- 
proach on the per-base P -value (srnadiff HMM) and a three- 
level segmentation approach on the per-base log 2 -FC (srnadiff 
IR) (Figure 1 ). Consequently, for the purposes of the following 
comparisons, we will use srnadiff as a representative tool of 
the methods following similar strategies, including derfinder 
SB and RNAprof. In addition, due to the lengthy process of es- 

timating the parameters of the model implemented in parseq 
(days) ( 20 ), comparing this tool with srnadiff, derfinder RL 

and DiffSegR is beyond the scope of our study. 

Speed and memory comparisons 

All the simulations presented here were performed with an 
Intel Core i7-10810U CPU @ 1.10GHz, 16 Go of RAMs and 
10 logical cores. On both chloroplast RNA-Seq datasets, Diff- 
SegR returns results in less than 2 minutes. In comparison, it 
takes less than 30 s for a standard differential gene expression 
(DGE) analysis. The identification of segment boundaries us- 
ing changepoint detection analysis runs in less than a second 
on both datasets. The slowest step of the DiffSegR pipeline 
is the construction of the coverage profiles followed later by 
the segment count table using the featureCounts program and 
the BAMs files (Supplementary Table S3). Less than 1 Go of 
RAM is necessary and the peak of memory used is reached at 
the differential analysis step (Supplementary Table S4). 

DiffSegR facilitates the visualization of DERs 

DiffSegR was applied to a RNA-Seq dataset comparing con- 
trol plants ( col0 ) to a mutant deficient in the PNPase chloro- 
plast ribonuclease ( pnp1-1 ), a major 3 ′ processing enzyme 
( 37 ). When dealing with a gene dense genome like the plas- 
tome, annotating a DER using the nearest gene can lead to am- 
biguities. In this case, visualization of the DERs in a genome 
viewer, as exemplified for the psbB-psbT-psbN-psbH-petB- 
petD gene cluster (Figure 3 ), is often the simplest solution. 
In line with previous molecular studies, DiffSegR identifies 
15 DERs, 8 on the forward and 7 on the reverse strand, re- 
spectively. For example, the overexpressed segment, in 5 ′ of 
the psbB gene (DER 1 with genomic positions 72233–72395) 
matches an area previously shown to over accumulate RNA 

5 ′ ends in pnp1-1 ( 45 ) and the segment 2 overlapping psbH 

and antisense to psbN (DER 2 with genomic positions 74224 
to 74846) corresponds to various 400–700 nt long RNA iso- 
forms previously characterized in WT or pnp1-1 mutants 
( 37 ,46–48 ). The published molecular validations correspond- 
ing to the DERs identified in the psbB gene cluster by DiffSegR 

are summarized in Table 1 . 

DiffSegR improves the search for DERs 

The ability of DiffSegR and competitor methods derfinder and 
srnadiff ( 19 ,22 ) to identify DERs was evaluated on two RNA- 
Seq datasets generated for plants lacking the chloroplast ri- 
bonucleases PNPase (see above) and Mini-III ( rnc3 / 4 ) ( 31 ,37 ). 
In comparison to control plants, these two mutants over accu- 
mulate RNA fragments that are mainly located outside of the 
annotated genic areas and the RNA-Seq data have been ex- 
tensively validated using molecular techniques ( 31 ,32 ). These 
validations were used to define 23 labels (17 in pnp1-1 and 6 
in rnc3 / 4 ) where a DER was expected to be found (list and 
coordinates of the labels in Supplementary Tables S1-S2). Us- 
ing its default segmentation hyperparameters ( λ= 2) DiffSegR 

identified 434 and 25 DERs in the pnp1-1 and rnc3 / 4 datasets 
respectively (Supplementary Tables S5-S6; Supplementary Fig- 
ures S10–S30), including all the predefined labels (TPR = 1). 
By contrast, srnadiff and derfinder RL identified 16 and 4 la- 
bels out of 17 in pnp1-1 and 4 and 0 labels out of 6 in rnc3 / 4 
(Table 2 ). After adjusting the per-base log 2 -FC threshold, only 
srnadiff was also able to reach a TPR of 1 (Supplemen- 
tary Figure S31-S34). As expected, standard differential gene 
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Table 1. DERs identified by DiffSegR within the gene cluster psbB-psbT-psbN-psbH-petB-petD in pnp1-1 dataset 

Strand Positions DiffSegR result Genomic context ID Validation 

forward 72233–72395 up psbB 5 ′ ends 1 ( 45 ) 
forward 74224–74846 up psbH ; antisense to psbN 2 ( 37 ,46–48 ) 
forward 74847–75235 up petB intron 3 ( 47 ) 
forward 75236–75649 up petB intron 4 ( 47 ) 
forward 76487–77196 up petD intron 5 ( 47 ) 
forward 77740–77963 up petD 3 ′ ends; antisense to petD-rpoA intergenic 6 ( 37 ,47 ) 
forward 77964–78112 up petD 3 ′ ends; antisense to rpoA 7 ( 37 ,47 ) 
forward 78113–78218 up petD 3 ′ ends; antisense to rpoA 8 ( 37 ,47 ) 
reverse 71814–73668 up psbN 3 ′ ends; antisense to psbB 9 NA 

reverse 73669–73935 up psbN 3 ′ ends; antisense to psbB 10 NA 

reverse 73936–74085 up psbN 3 ′ ends; antisense to psbB-psbT intergenic 11 ( 37 ) 
reverse 74232–74365 down psbN 12 ( 47 ) 
reverse 74366–75133 down psbN 5 ′ ends; antisense to psbH and petB 13 ( 37 ) 
reverse 75134–77383 up rpoA 3 ′ ends; antisense to petB and petD 14 NA 

reverse 77384–77605 up rpoA 3 ′ ends; antisense to petD 15 NA 

Most DERs are supported by molecular validations described in the literature. Up is for up-regulated and down for down-regulated. 

Table 2. Comparison of the true positive rates (TPRs) for DiffSegR, sr- 

nadiff and derfinder RL methods on the pnp1-1 (17 labels) and rnc3 / 4 (6 

labels) datasets 

Dataset Method TPR 

pnp1-1 DiffSegR 1 (17 / 17) 
pnp1-1 srnadiff 0.94 (16 / 17) 
pnp1-1 derfinder RL 0.24 (4 / 17) 
rnc3 / 4 DiffSegR 1 (6 / 6) 
rnc3 / 4 srnadiff 0.67 (4 / 6) 
rnc3 / 4 derfinder RL 0 (0 / 6) 

Each method is executed using its default segmentation hyperparameters. 

expression (DGE) analysis, which relies on known gene anno- 
tations and is considered as a routine research tool ( 3 ), was 
unable to identify labels located outside of these annotations, 
therefore resulting in an TPR of 0. Because the large num- 
ber of DERs found by DiffSegR could suggest it has a high 
FPR, we evaluated and compared it to classical DGE anal- 
ysis ( 49 ) using a RNA-Seq dataset containing 10 replicates 
of the nitrogen deficiency condition. Any DER identified be- 
tween subsamples of the replicates was therefore considered 
a false positive. The empirical cumulative distribution func- 
tions (eCDFs) of the FPR for both DiffSegR and the DGE 

analysis were similar when using the 5 versus 5 designs. For 
the 2 versus 2 designs, approximately 90% and 80% of the 
designs resulted in < 2.5% of FPR with DiffSegR and tradi- 
tional DGE respectively (Figure 4 ). These observations con- 
firm that the FPR is not inflated in the results of DiffSegR 

(see Supplementary Figure S35 for 3 versus 3 and 4 versus 
4 designs). 

Dif fSegR bet ter captures the dif ferential landscape 

Because derfinder RL and srnadiff use a two- or three-level 
segmentation model they are susceptible to merge in a sin- 
gle DER various contiguous segments having different log 2 - 
FC. As a consequence, distinct DER events stemming from 

distinct RNA maturation processes could be wrongly asso- 
ciated together (Note S4 and Supplementary Figure S43). In 
contrast, DiffsegR segments the mean of the per-base log 2 -FC 

without making any assumption on the number of levels. It 
should therefore be able to distinguish between contiguous 
DER events, leading to shorter DER than the other methods. 
We therefore compared the length distribution of DERs identi- 

Figure 4. Comparison of the empirical cumulative distribution functions 

(eCDFs) of the False Positive Rate (FPR) from DiffSegR and the 

Differential Expression analysis within Gene annotations (DGE). The 

eCDFs of FPRs from DiffSegR (solid curves) and DGE (dashed curves) 

methods are compared by re-sampling two groups from 10 biological 

replicates of the same nitrogen deficiency condition in the IDEAs 

dataset. The figure displays results for group sizes of 2 (blue curves) and 

5 (red curves) (see Supplementary Figure S35 for 3v3 and 4v4 designs). 

The eCDF represents the proportion of comparisons (y-axis) with fewer 

f alse positiv es than a specified percentage (x-axis). T he eCDF analy sis 

demonstrates that the FPR in DiffSegR results is not inflated compared 

to the widely-used DGE approach. 

fied by DiffSegR, srnadiff and derfinder RL. In agreement with 
our expectation, the DERs identified by DiffSegR are on av- 
erage smaller than those identified by its competitors in both 
the pnp1-1 and rnc3 / 4 datasets (Figure 5 ). Respective median 
sizes are equal to 211 and 455 nt for DiffSegR and srnadiff 
( P -value < 2.2 × 10 −16 , Mann–Whitney U test) in pnp1-1 . In 
rnc3 / 4 respective median lengths are equal to 15 and 97 nt 
( P -value = 0.0362, Mann–Whitney U test) (Figure 5 A). An 
identical trend can be observed between DiffSegR and 
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A

B

C

Figure 5. Comparisons of DERs and not-DERs lengths between DiffSegR, derfinder RL and srnadiff on pnp1-1 and rnc3 / 4 datasets. (A) The length 

distribution of DERs and not-DERs identified by DiffSegR and srnadiff are shown using both boxplot and violin plot. Only overlapping (not-)DERs 

between the compared methods are kept. A (not-)DER of method DiffSegR is considered o v erlapping either if it co v ers 90% of a (not-)DER of srnadiff or 

if 90% of it is co v ered b y a DER of method srnadiff. When there are fe w er than 20 o v erlapping DERs or not-DERs, the violin plot is replaced b y a dot 

plot. (B) Similar comparisons were made between DiffSegR and derfinder RL methods. Derfinder does not identify DERs in rnc3 / 4 , which explains the 

lack of o v erlap betw een DiffSegR DERs and derfinder RL DERs in this dat aset. (A, B) In both dat asets, DiffSegR not-DERs are on a v erage longer than 

srnadiff not-DERs and derfinder RL not-DERs. Additionally, DiffSegR DERs are on a v erage smaller compared to srnadiff DERs and derfinder RL DERs 

(Mann-Whitney U test). (C) Comparison of DiffSegR, derfinder RL, and srnadiff analyses for the trnV gene and the 3 ′ ends of atpE , located on the 

re v erse strand of the chloroplast genome. The tracks are defined as depicted in Figure 3 , and further enhanced by incorporating the results from the 

derfinder RL and srnadiff analyses. DiffSegR identifies 6 up-regulated DERs (IDs 1–6). derfinder RL fails to detect any DERs within this region. Lastly, 

srnadiff disco v ers a singular DER (ID 7). 
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derfinder RL. In pnp1-1 respective median sizes are equal to 
220 and 826 nt ( P -value < 2.2 × 10 −16 , Mann–Whitney U 

test). In rnc3 / 4 , derfinder fails to detect DERs, accounting 
for the absence of overlapping DERs between DiffSegR and 
derfinder RL in this particular dataset (Figure 5 .B). We con- 
clude that srnadiff and derfinder RL indeed merge neighboring 
DERs with different log 2 -FC. 

Moreover, derfinder RL directly segments the mean of cov- 
erages and is therefore susceptible to split regions that are not 
differentially expressed into distinct segments (Note S5 and 
Supplementary Figure S44). This is because the shape of the 
transcriptional signal is strongly influenced by numerous bio- 
logical and technical factors that are not directly related to 
bona fide transcriptional differences ( 50 ). In contrast, Diff- 
SegR uses the per-base log 2 -FC that is largely unaffected by 
the underlying transcriptional coverage. This is because lo- 
cal variations in coverage are reproducible and cancel out 
when taking the difference of the log 2 (log 2 -FC) (Supplemen- 
tary Figure S36). As a consequence, we expect DiffSegR to 
return not-DER longer than derfinder RL. We therefore com- 
pared the length distribution of not-DERs identified by Diff- 
SegR, srnadiff and derfinder RL in both pnp1-1 and rnc3 / 4 
datasets. Figure 5 shows that the not-DERs identified by Diff- 
SegR are indeed on average longer than those identified by its 
competitors. Respective median sizes are equal to 833 and 80 
nt for DiffSegR and srnadiff ( P -value < 2.2 × 10 −16 , Mann–
Whitney U test) in pnp1-1 . In rnc3 / 4 respective median 
lengths are equal to 294 and 86 nt ( P -value < 2.2 × 10 −16 , 
Mann–Whitney U test) (Figure 5 A). An identical trend can 
be observed between DiffSegR and derfinder RL. In pnp1- 
1 respective median sizes are equal to 833 and 80 nt ( P - 
value < 2.2 × 10 −16 , Mann–Whitney U test). In the rnc3 / 4 
dataset, respective median lengths are equal to 327 and 122 
nt ( P -value < 2.2 × 10 −16 , Mann–Whitney U test) (Figure 5 B). 
We conclude that both srnadiff and derfinder RL over-segment 
regions that are not differentially expressed in comparison to 
DiffSegR. 

DiffSegR can be used on sparser genomes 

Sparsity refers to the fraction of a genomic region with a 
null RNA-Seq coverage and is known to cause artifacts in 
statistical analyses ( 51 ). Because the two plant chloroplasts 
RNA-Seq datasets previously used have a low sparsity rang- 
ing from 0.42 to 0.57 we tested DiffSegR on a Bacillus sub- 
tilis RNA-Seq dataset previously used to decipher the role of 
the Rae1 ribonuclease ( 38 ) and whose sparsity ranged from 

0.79 to 0.82 between the different replicates. Using standard 
differential expression analysis, Leroy et al. identified 46 mR- 
NAs and ncRNAs as significantly up-regulated in the rae1 
mutant ( q -value < 0.05 & fold change > 1.5) and eventu- 
ally selected seven of them ( S1025 , S1024 , S1026 , yrzI , bmrC , 
bmrD , bglC ) as candidates for direct degradation by Rae1. 
DiffSegR returned significant up-regulated DERs overlapping 
45 of the 46 genes identified by Leroy et al. including the seven 
candidates of interests (Supplementary Figures S37–S39). In 
addition, DiffSegR returned significantly up-regulated DERs 
overlapping 60 other genes (Supplementary Tables S7 and 
S8). A striking feature was however the over-representation 
of very short DERs. The five most abundant ones were indeed 
4 (6.5%), 6 (6.4%), 5 (5.9%), 2 (5.6%) and 8 (5.4%) nt long 
while the five most abundant ones in the pnp1-1 dataset were 
55 (1.7%), 73 (1.7%), 83 (1.1%), 204 (1.1%), 56 (0.8%) nt 
long. 

Discussion 

DiffSegR is a straightforward solution to the DERs 
detection problem 

We here introduced DiffSegR, an R package that allows the 
discovery of transcriptome-wide expression differences be- 
tween two biological conditions using RNA-Seq data (Figure 
2 ). While standard RNA-Seq differential analyses rely on ref- 
erence gene annotations and therefore miss potentially mean- 
ingful DERs, DiffSegR directly identifies the boundaries of 
DERs without requiring any annotation. Unlike its competi- 
tors, DiffSegR is designed to analyze stranded RNA-Seq reads, 
therefore allowing the identification of transcriptional differ- 
ences on both the forward and reverse strands. This is an in- 
valuable asset when considering the pervasiveness of antisense 
transcripts ( 52–54 ). The output generated by DiffSegR can be 
easily loaded into the Integrative Genomics Viewer (IGV), pro- 
viding a user-friendly platform for the exploration and inter- 
pretation of the results (Figure 3 ). 

Like other methods willing to automatically identify tran- 
scription differences along the genome, DiffSegR addresses 
a well-defined statistical problem known as the multiple 
changepoints detection or segmentation problem. Among the 
many algorithmically and statistically well-established meth- 
ods that have been developed to tackle this problem ( 55 ,56 ), 
DiffSegR uses FPOP ( 28 ). This method relies on a Gaussian 
model to detect changes in the mean of a signal. The compu- 
tation time of FPOP is log-linear in the signal length, making 
it time efficient (Supplementary Table S3). FPOP is statisti- 
cally grounded ( 33 ,57 ), and has been shown to be effective 
in numerous simulations ( 28 ,55 ) and genomic applications 
( 26 , 27 , 58 ). Another advantage of FPOP is that it only has one 
parameter (the penalty), therefore simplifying calibration and 
interpretation. 

A key feature of DiffSegR is the use of the per-base log 2 - 
FC signal for segmentation analysis, a strategy that carries 
three main advantages. First, it scales with the intensity of 
the difference up to a normalization constant. Second, it dis- 
criminates between up-regulated and down-regulated DERs 
and third, it is largely insensitive to local variations in cover- 
age as they are reproducible (Supplementary Figure S36) and 
cancel out when taking the difference of the logs (log 2 -FC). 
Moreover, in contrast to the two-level (DER and not-DER 

or expressed and not-expressed) and three-level (up-regulated 
DER, down-regulated DER, not-DER) segmentation models 
used by other approaches (Figure 1 ), FPOP does not make any 
assumptions on the number of levels in the log 2 -FC and can ef- 
fectively distinguish between adjacent DERs that involves dis- 
tinct RNA maturation processes. As a consequence DiffSegR 

detects fewer changes in non-differential regions but detects 
more segments in DERs than its competitors (Figure 5 ). This 
suggests that DiffSegR is able to effectively summarize the 
data, providing a detailed and accurate representation of the 
differential landscape while being more selective in its analysis 
of not-DERs. 

DiffSegR accurately captures the differential 
landscape 

DiffSegR finds all the extended 3 ′ and 5 ′ ends of transcripts, 
as well as accumulated antisense RNA, in RNA-Seq labeled 
datasets pnp1-1 and rnc3 / 4 . These labels were previously ver- 
ified through molecular techniques, and DiffSegR was able 
to identify them with its default settings, while none of the 
competitors tested were able to do so. However, the use of the 
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same dataset twice in DiffSegR (and its competitors), a proce- 
dure so-called double dipping, first for segmentation and then 
for differential analysis may result in an inflated false positive 
rate ( 59–61 ). We therefore verified that the FPR of DiffSegR 

is similar to standard DGE analysis using a blank experiment 
(Figure 4 ). A possible explanation to the observed robustness 
is the fact that DiffSegR uses different aspects of the data in 
its two steps: while the segmentation uses the per-base log 2 - 
FC, the DEA relies on normalized counts, per-segment log 2 - 
FC, and dispersion. The last three parameters are estimated 
by DESeq2. 

We are therefore confident that the numerous DERs iden- 
tified outside of the predefined labels in the two chloroplas- 
tic RNA-Seq datasets represent bona fide DERs. For example, 
387 out of the 434 DERs identified in the pnp1-1 RNA-Seq 
experiment did not overlap labels. While an exhaustive molec- 
ular validation of these 387 segments is beyond the scope 
of this study, numerous evidences suggest they are accurate. 
Specifically, DiffSegR identifies 72 DERs overlapping all the 
25 plastid introns in the PNPase mutant, a feature previously 
shown to reflect a lack of intron degradation following splic- 
ing in the mutant ( 47 ). Neither srnadiff nor derfinder RL were 
able to capture this feature entirely. Another example suggest- 
ing that DiffSegR does not over-segment the differential tran- 
scription profile is displayed for genomic area 51012–52156 
in Figure 5 .C. While it is not differentially expressed accord- 
ing to derfinder RL, srnadiff considers it as a single DER (DER 

7 with genomic positions 51003–52154) and DiffSegR identi- 
fies 6 contiguous different DERs within it. The multiplicity of 
DERs identified by DiffSegR seems to better reflect the shape 
of the log 2 -FC and is also consistent with the known roles 
of the PNPase in transcript 3 ′ end maturation (DER 1 with 
genomic positions 51012–51209 and DER 6 with genomic 
positions 51992–52156 for trnV and atpE , respectively) or 
the degradation of tRNA 5 ′ precursor (DER 5 with genomic 
positions 51889–51991 for trnV ) ( 32 ). Finally, both trnV ex- 
ons over accumulate (DERs 2 and 4 with genomic positions 
51210–51282 and 51833–51888, respectively) in the mutant, 
along with the corresponding intron (DER 3 with genomic 
positions 51283–51832). The segmentation in three different 
DERs is, once again, an accurate interpretation of the two dif- 
ferent biological mechanisms targeting tRNAs and introns in 
the mutant ( 47 ,62 ). 

Larger genomes with more zeroes 

DiffSegR is also effective and powerful on genomes larger and 
more complex than the chloroplast. It effectively identified the 
two RNA locations that have been shown to be degraded by 
the Rae1 endoribonuclease in Bacillus subtilis ( 38 ,63 ). This 
illustrates one of the big advantages of DiffSegR, it can be 
easily used to narrow down the number of genomic regions 
worth investigating. From the 4.2 Gb Bacillus genome it iden- 
tified 1833 regions (Supplementary Table S7) that contained 
the two known cleavage sites, a number that is compatible 
with the workforce of most research teams. It is however true 
that the segmentation model used by DiffSegR may result in 
an over segmentation in profiles containing many base pairs 
with a null coverage. This could be problematic when address- 
ing even larger genomes, like nuclear ones, and prevent inter- 
pretability of the results. 

A straightforward solution would be to apply DiffSegR to 
smaller portions of the genome, only keeping the ones with 
sufficient coverage. This however comes with issues of its 

own as (i) identifying those genomic portions is a segmenta- 
tion problem itself, multiplying the genomic areas complex- 
ifies selection, and (ii) this leads to a triple-dipping problem 

as the data is used three times (identification of the genomic 
area, segmentation within the genomic area and differential 
expression analysis). Alternative strategies would be to inte- 
grate more advanced segmentation methods already available. 
More specifically, we believe it could be useful to (i) weight the 
base pair according to its coverage (using a weighted version 
of FPOP, ( 64 )), (ii) consider full length reads at the prize of 
modeling auto-correlation ( 65 ), and (iii) model the discrete 
nature of the data using a negative binomial model ( 66 ). 

Conclusion 

In conclusion, DiffSegR is a powerful tool that provides re- 
searchers with a systematic and accurate way to discover ex- 
pression differences between two conditions using RNA-Seq 
data, without the need for prior annotations. Because it is de- 
signed to compare two conditions, we believe that DiffSegR 

has the potential to change the way researchers approach dif- 
ferential expression analysis, especially considering the wealth 
of RNA-Seq based strategies aimed at capturing specific events 
( 67 ). For example, it has already been used on RNA immuno- 
precipitation sequencing data to study translation initiation 
in plant mitochondria ( 68 ). We anticipate it could similarly 
be used to find newly transcribed RNAs compared to mature 
RNA control in nascent RNA analysis ( 69 ), to find differences 
in ribosome bound RNA in translatome analysis ( 70 ) or to 
discriminate structured (double-stranded RNA) from unstruc- 
tured RNAs in structurome analysis ( 71 ). We expect that the 
use of DiffSegR will lead to new discoveries and insights in 
the field of transcriptomic. 

Data availability 

S oftw are availability 

The latest version of the DIffSegR R package is available at 
https:// aliehrmann.github.io/ DiffSegR/ index.html and https:// 
zenodo.org/ doi/ 10.5281/ zenodo.10017833 . The package in- 
cludes a Vignette which shows on a minimal example how to 
use the main functions. 

Data availability 

• Raw sequences for the rnc3 / 4 dataset have been re- 
trieved from the BioProject database with the accession 
number PRJNA268035. 

• Raw sequences for the pnp1-1 dataset have been re- 
trieved from the SRA database with the accession num- 
ber SRA046998. 

• Raw sequences for the nitrogen deficiency condition 
from the IDEAs dataset are available at GEO database 
with the accession number GSE234377. 

• Raw sequences for the ∆rae1 dataset can be accessed 
from the GEO database with the number GSE93894. 

Reproducibility 

The scripts used to generate the figures / tables from this 
manuscript and figures / tables from the Supplementary 
Materials are available at https:// github.com/ aLiehrmann/ 
DiffSegR _ paper and https:// zenodo.org/ doi/ 10.5281/ zenodo. 
10017833 . 
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Supplementary data 

Supplementary Data are available at NARGAB Online. 
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Supplementary Figures S1 to S39

Figure S1: PCA of transformed counts from pnp1-1 RNA-Seq experiment analyzed with

DiffSegR. The biological replicates cluster well by condition on PC1.



Figure S2: Dispersion-mean plot from pnp1-1 RNA-Seq experiment analyzed with DiffSegR.

The plot shows a characteristic dispersion-mean trend for RNA-Seq data.



Figure S3: Histogram of p-values from pnp1-1 RNA-Seq experiment analyzed with

DiffSegR. The histogram does not show oddity.



Figure S4: PCA of transformed counts from rnc3/4 RNA-Seq experiment analyzed with

DiffSegR. The biological replicates cluster well by condition on PC1.



Figure S5: Dispersion-mean plot from rnc3/4 RNA-Seq experiment analyzed with DiffSegR.

The plot shows a characteristic dispersion-mean trend for RNA-Seq data.



Figure S6: Histogram of p-values from rnc3/4 RNA-Seq experiment analyzed with DiffSegR.

The histogram does not show oddity.









Figure S10: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 1 to 714 on the reverse strand in the pnp1-1 dataset. The tracks from top

to bottom represent: (log2-Cov (-)) the mean of coverages on the log2 scale for the reverse

strand in both biological conditions of interest, with the blue line representing the WT

condition and the red line representing the pnp1-1 condition; (log2-FC (-)) the per-base

log2-FC between pnp1-1 (numerator) and WT (denominator) for the reverse strand. The

straight horizontal line represents the zero indicator. When the per-base log2-FC is above or

below the zero indicator line, it suggests up-regulation or down-regulation, respectively, in

pnp1-1 compared to WT. The changepoint positions are indicated by vertical blue lines, and

the mean of each segment is shown by horizontal blue lines connecting two changepoints;

(DiffSegR (-)) the differential expression analysis results for segments identified by DiffSegR

on the reverse strand are presented as follows: up-regulated regions are depicted in green,

down-regulated regions in purple, and non-differentially expressed regions (non-DERs) in

gray. (derfinder RL (-)) the derfinder RL results in the same format as the previous track;

(srnadiff (-)) the srnadiff results in the same format as the previous track. (Castandet et al.

2013) the labels of differentially accumulated RNAs in pnp1-1 compared to WT based on

molecular biology validations described in Castandet et al. 2013; (annotations) the genes

annotations. The bedGraph and gff3 files used to generate the tracks and the xml file used

to load them in IGV were created using the exportResults function of the DiffSegR R

package. The session was loaded in IGV 2.12.3 for Linux.



Figure S11: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 27,146 to 27,446 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S12: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 34,994 to 36,500 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S13: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 44,202 to 44,900 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S14: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 47,520 to 48,370 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S15: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 48,406 to 48,762 on the reverse strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S16: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 51,958 to 52,350 on the reverse strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S17: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 56,300 to 56,800 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S18: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 62,476 to 63,189 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S19: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 66,198 to 66,911 on the reverse strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S20: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 77,589 to 77,990 on the forward strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S21: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 94,236 to 95,089 on the reverse strand in the pnp1-1 dataset. The tracks

are similar to those described in Figure S10.



Figure S22: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 107,213 to 107,926 on the forward strand in the pnp1-1 dataset. The

tracks are similar to those described in Figure S10.



Figure S23: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 108,978 to 109,691 on the reverse strand in the pnp1-1 dataset. The

tracks are similar to those described in Figure S10.



Figure S24: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 115,261 to 115,974 on the reverse strand in the pnp1-1 dataset. The

tracks are similar to those described in Figure S10.



Figure S25: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 104,561 to 104,917 on the forward strand in the rnc3/4 dataset. The

tracks are similar to those described in Figure S10.



Figure S26: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 107,549 to 107,905 on the forward strand in the rnc3/4 dataset. The

tracks are similar to those described in Figure S10.



Figure S27: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 107,587 to 107,943 on the reverse strand in the rnc3/4 dataset. The

tracks are similar to those described in Figure S10.



Figure S28: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 130,736 to 131,092 on the forward strand in the rnc3/4 dataset. The

tracks are similar to those described in Figure S10.



Figure S29: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 130,742 to 131,098 on the reverse strand in the rnc3/4 dataset. The

tracks are similar to those described in Figure S10.



Figure S30: Comparison of DiffSegR, derfinder RL, and srnadiff analyses of chloroplast

genomic positions 133,869 to 134,046 on the reverse strand in the rnc3/4 dataset. The

tracks are similar to those described in Figure S10.



Figure S31 : The true positive rate (TPR) of srnadiff on rnc3/4 and pnp1-1 labeled datasets

as a function of user-defined log2-FC threshold. The black vertical line represents the default

log2-FC threshold value (0.5).



Figure S32 : The true positive rate (TPR) of srnadiff on rnc3/4 and pnp1-1 labeled datasets

as a function of user-defined depth threshold. The black vertical line represents the default

depth threshold value (10).



Figure S33 : The true positive rate (TPR) of srnadiff on rnc3/4 and pnp1-1 labeled datasets

as a function of user-defined emission threshold. The black vertical line represents the

default emission threshold value (0.1).



Figure S34 : The true positive rate (TPR) of derfinder RL on rnc3/4 and pnp1-1 labeled

datasets as a function of user-defined depth threshold. The black vertical line represents the

default depth threshold value (5).



Figure S35: Comparison of the empirical cumulative distribution functions (eCDFs) of the

False Positive Rate (FPR) from DiffSegR and the Differential Expression analysis within

Gene annotations (DGE). The eCDFs of FPRs from DiffSegR (solid curves) and DGE

(dashed curves) methods are compared by re-sampling two groups from 10 biological

replicates of the same nitrogen deficiency condition in the IDEAs dataset. The figure displays

results for group sizes of 3 (blue curves) and 4 (red curves). The eCDF represents the

proportion of comparisons (y-axis) with fewer false positives than a specified percentage

(x-axis). The eCDF analysis demonstrates that the FPR in DiffSegR results is not inflated

compared to the widely-used DGE approach.



Figure S36 : Overview of coverage profiles overlapping psbA gene in pnp1-1 dataset.

Coverage profiles exhibit local variations highly reproducible from one sample to another.

Local variations could be caused by technical factors that shape the coverage, e.g. 5’/3’

bias, PCR bias, GC bias, non-random priming.

















Note S4: Segmenting in two or three levels merge

neighboring differential regions with different log2-FC

In the following paragraph we use a theoretical example to explain the limits of the

segmentation models used by state-of-the-art methods to recover differentially expressed

regions.

Apart from parseq, which segments the mean of coverages, several other tools (derfinder

SB, derfinder RL, srnadiff HMM) use a two-level segmentation with differentially expressed

(DE) and non-DE levels, or expressed and not-expressed levels. srnadiff IR uses a

three-level segmentation with down-regulated, up-regulated, and non-DE levels. However,

we argue that this can be detrimental to biological interpretation. For example, if a gene is

up-regulated in condition 2 compared to condition 1 and has an intron retention, a two or

three-level segmentation will result in a single large region that effectively combines the

up-regulation and intron retention (Figure S43). Additionally, two-level segmentation can

merge differential regions with opposite signs of log2-FC, which can also reduce statistical

power. A segmentation model that does not make assumptions about the number of levels in

the per-base log2-FC should be able to discriminate adjacent differently expressed

regulatory events, and this is what we tested in DiffSegR.



Figure S43: Segmenting in two or three levels merge neighboring differential regions with

different per-base log2-FC. In this second example the gene is two times more expressed in

condition 1 than in condition 2, and in condition 2 the gene also undergoes intron retention.

As a result, the log2-FC is higher within the intron than within the exons. Segmenting the

mean of coverages in two levels (expressed and not-expressed) merges the up-regulation

and intron retention. Segmenting the F-statistic in two levels (differentially expressed (DE)

and non-DE) or the per-base log2-FC in three levels (up-regulated, down-regulated, non-DE)

also results in the merging of these two events.





Figure S44: Additional changes in the per-base coverage and F-statistic. The first gene is

twice as highly expressed in condition 2 compared to condition 1, while the second gene has

the same level of expression in both conditions. Segmentation of the mean of coverages, the

F-statistic, and the per-base log2-FC results in 4, 2, and 1 changes, respectively. The

changes between positions 2 to 3 and 7 to 8 are caused by coverage bias, while the

changes between positions 4 to 5 and 6 to 7 mark the end of transcription of the first gene

and the start of transcription of the second gene. The change between positions 4 to 5 is the

only one that also corresponds to a difference in transcription between the two conditions.



Chapter D

Coordination of RNA events

D.1 Full Length Transcriptome Highlights the Coordination of

Plastid Transcript Processing

This article was published in the journal International Journal of Molecular Sciences

(doi.org/10.3390/ijms222011297).
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Abstract: Plastid gene expression involves many post-transcriptional maturation steps resulting

in a complex transcriptome composed of multiple isoforms. Although short-read RNA-Seq has

considerably improved our understanding of the molecular mechanisms controlling these processes,

it is unable to sequence full-length transcripts. This information is crucial, however, when it comes

to understanding the interplay between the various steps of plastid gene expression. Here, we

describe a protocol to study the plastid transcriptome using nanopore sequencing. In the leaf of

Arabidopsis thaliana, with about 1.5 million strand-specific reads mapped to the chloroplast genome,

we could recapitulate most of the complexity of the plastid transcriptome (polygenic transcripts,

multiple isoforms associated with post-transcriptional processing) using virtual Northern blots. Even

if the transcripts longer than about 2500 nucleotides were missing, the study of the co-occurrence of

editing and splicing events identified 42 pairs of events that were not occurring independently. This

study also highlighted a preferential chronology of maturation events with splicing happening after

most sites were edited.

Keywords: Arabidopsis thaliana; plastid; co-maturation; post-transcriptional; nanopore

1. Introduction

Plastids are derived from the endosymbiosis between photosynthetic organisms and
an ancestral Eukaryote. Although most of the initial symbiont genes have been trans-
ferred to the nucleus during the course of evolution, plastids of land plants and other
photosynthetic Eukaryotes still maintain a small but essential genome. It mainly encodes
subunits of each of the photosynthetic complexes (Photosystem I and II, cytochrome b6/f,
ATP synthase and Rubisco) and some of the plastid gene expression (PGE) machinery [1].
Most of the proteins involved in PGE are, however, encoded in the nucleus and need
to be targeted back to plastids. As a consequence, PGE retains characteristics from both
eukaryotes and bacterial systems, resulting in a sophisticated interplay between nucleus
and plastid encoded factors [2–4].

A striking feature of PGE is the importance and complexity of the post-transcriptional
maturation steps. In addition to the intron removal by RNA splicing [5] and the specific
conversion of cytosines into uridines by RNA editing [6], complete maturation also requires
intergenic cleavage of the multigenic transcripts and the generation of 5′ and 3′ ends
through RNA processing [7,8]. Most of the RNA binding proteins (RBP) or ribonucleases
known to be involved in PGE are localized in a membraneless structure surrounding the
plastome—the nucleoid [9]. This close association between RNA maturation factors might
be an explanation for the multiple pleiotropic effects observed in chloroplast mutants [7].
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Various investigations, both in vitro and in organellar gene expression mutant plants,
have indeed revealed situations where the different maturation events can influence each
other. For example, intron removal is a prerequisite for editing in the ndhA second exon [10]
and atpF splicing is severely reduced in the aef1 mutant in which the editing of atpF_12707 is
abolished [11]. Arabidopsis thaliana chloroplast RNA editing is affected in a mutant deficient
for the exoribonuclease PNPase [12] while correct processing of the potato mitochondrial
tRNA Phe requires RNA editing [13]. Editing sites can even influence each other. For exam-
ple, in A. thaliana, editing of mitochondrial ccmB_17869 by MEF19 depends on the editing of
ccmB_17884 by MEF37 [14]. Similarly, in Physcomitrium patens, editing of the mitochondrial
ccmFc-C103 by PpPPR_65 controls editing of ccmFc-C122 by PpPPR_71 [15,16].

These dependencies are usually explained according to two models. First, one matu-
ration event can modify the RNA secondary structure necessary for the second maturation.
Second, the proteins responsible for the maturation can interact with each other or, more
directly, target several maturation events. Most studies, however, only focused on a limited
set of transcripts or RNA maturation events precluding any general conclusions. This illus-
trates the urgent need for the development of global approaches capable of simultaneously
studying all the RNA maturation processes, at the transcriptomic level. This issue has
recently been tackled by the increasing use of Illumina-based RNA-Seq strategies to study
PGE from transcription to translation [17–23].

Although this has considerably increased the power and sensitivity of PGE analyses,
it is ill-suited to study the potential coordination between maturation steps. The short
reads used by Illumina technology (the maximum insert size of Illumina TruSeq RNA
libraries reaches around 350 base-pairs) make it impossible to monitor the co-occurrence of
these events on single RNA transcripts that can be several kilobases long. An alternative
would be to take advantage of other sequencing technologies such as PacBio or Oxford
Nanopore. They theoretically allow the sequencing of full-length cDNAs or RNA and
should therefore overcome the current technical limitations [24]. A major issue, however,
is that most of the available library preparation protocols only capture polyadenylated
RNA transcripts, therefore excluding plastid transcripts. A recent protocol analyzing
chromatin-bound transcripts also captures non-polyadenylated transcripts but was not
applied to the analysis of plastid transcripts [25,26].

In this work, we describe the analysis of the A. thaliana plastid transcriptome by se-
quencing full-length non-polyadenylated and polyadenylated cDNAs using the Oxford
Nanopore technology (ONT). This analysis identified all known post-transcriptional matu-
ration events and provided an overview of their coordination in normal growth conditions.

2. Results

2.1. A Protocol to Sequence the Full Length Plastid Transcriptome

The library synthesis protocol is derived from the Switching Mechanism at the 5′ end
of RNA Transcript (SMART) technology developed to synthesize full-length cDNAs [27].
Because polyadenylation of chloroplastic RNAs acts as a degradation signal [28], we, how-
ever, had to first start with the ligation of an RNA adapter (modified from Hotto et al. [29])
at the 3′ end of the RNAs to allow the priming of the reverse transcription and an rRNA
depletion before completing the cDNA synthesis. The cDNAs are then incorporated into
an ONT sequencing library and sequenced. Sampling RNA from leaves of 5 week-old col-0
A. thaliana plants grown in long-day conditions at 20 ◦C, we mapped between 1.55 million
and 2.69 million stranded reads (mapping rate between 98.5% and 99.8%) to the A. thaliana
genome including between 10% and 40% to the plastid genome and between 0.3% and
0.8% to the mitochondrial genome. The median error rate was between 4% and 4.4%. The
rRNA depletion was very efficient with less than 0.1% of reads mapping to rRNA loci.
More than 99.5% of the reads mapped to the annotated nuclear genes corresponding to
the sense orientation, a proportion similar to Illumina stranded RNA-Seq. Most of the
reads (99%) were between 195 and 2141 nucleotides (nt) long with a median size of 852 nt
and a maximum size of 4805 nt. In A. thaliana, 7261 genes are producing transcripts longer
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Table 1. Quantification of known editing and splicing events.

Name Type Maturation Rate
Maturation Rate

(Guillaumot et al., 2017)
Maturation Rate

(Ruwe et al., 2013)

int_RPS16 splicing 4% 4% NA
int_ATPF splicing 89% 82% NA

int_RPOC1 splicing 64% 19% NA
int_YCF3_i2 splicing 79% 42% NA
int_YCF3_i1 splicing 63% 45% NA
int_CLP_i2 splicing 60% 71% NA
int_CLP_i1 splicing 69% 62% NA
int_PETB splicing 91% 58% NA
int_PETD splicing 97% 62% NA
int_RPL16 splicing 69% 12% NA
int_RPL2.1 splicing 66% 52% NA

int_NDHB.1 splicing 68% 55% NA
int_RPS12C splicing 92% 81% NA
int_NDHA splicing 68% 27% NA
matK_2931 editing 53% 79% 93%
atpF_12707 editing 89% 91% 95%

atpH_UTR_13210 editing 5% 3% 4%
rpoC1_21806 editing 33% 21% 15%
rpoB_23898 editing 87% 82% 85%
rpoB_25779 editing 64% 83% 86%
rpoB_25992 editing 69% 76% 94%
psbZ_35800 editing 93% 90% 95%
rps14_37092 editing 89% 93% 94%
rps14_37161 editing 92% 97% 96%

ycf3_i2_43350 editing 16% 10% 12%
rps4_UTR_45095 editing 6% 3% 10%
ndhK_ndhJ_49209 editing 4% 4% 6%

accD_57868 editing 90% 95% 99%
accD_58642 editing 76% 75% 83%
psbF_63985 editing 90% 98% 98%
psbE_64109 editing 95% 100% 100%
petL_65716 editing 79% 91% 86%

rps18_UTR_68453 editing 3% 4% NA
rps12_69553 editing 21% 26% 27%
clpP_69942 editing 82% 72% 81%
rpoA_78691 editing 78% 76% 91%
rpl23_86055 editing 34% 74% 75%

ycf2_as_91535 editing 3% 4% NA
ndhB_UTR_94622 editing 8% 0% NA

ndhB_94999 editing 88% 93% 94%
ndhB_95225 editing 95% 98% 99%
ndhB_95608 editing 87% 84% 80%
ndhB_95644 editing 78% 87% 81%
ndhB_95650 editing 88% 91% 84%
ndhB_96419 editing 75% 94% 92%
ndhB_96439 editing 6% 4% 6%
ndhB_96457 editing 6% 3% 5%
ndhB_96579 editing 90% 89% 90%
ndhB_96698 editing 81% 88% 82%
ndhB_97016 editing 94% 94% 95%
ndhF_112349 editing 85% 93% 96%
ndhD_116281 editing 76% 83% 92%
ndhD_116290 editing 77% 84% 90%
ndhD_116494 editing 88% 90% 93%
ndhD_116785 editing 94% 97% 98%
ndhD_117166 editing 35% 33% 45%
ndhG_118858 editing 69% 78% 85%

NA: Not Analyzed. The genomic position of each site and the corresponding nomenclature of Rüdinger et al. [34] are given in Table S1.
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enhancement) provided by one maturation event to the other is not symmetrical. This
asymmetry is involved in the chronology and could reinforce (at least in this case) any
putative effects caused by a difference in processing rates. Finally, because of the number of
maturation events jointly monitored for the ndhB (12 events) and ndhD transcripts (5 events,
Table S3), the observation of a preferred chronology of maturation is extremely unlikely
to be explained only by differences in maturation speed. We conclude that the observed
preferred chronology of maturation is due, at least partly, to interactions between the
processing events.

3. Discussion

Our protocol generates mostly full-length and stranded reads but transcripts longer
than 2000–2500 nt are clearly under-represented. This bias is common to nuclear and
plastid transcripts and several pieces of evidence (data not shown) strongly suggest that
it is associated with the initial RNA-RNA ligation at the 3′ end of transcripts. It has
indeed been described that the ligation step was sensitive to secondary structures at the 3′

end [35]. Maybe the denaturation step preceding the ligation step was not sufficient for
long transcripts.

Following transcription, plastid transcripts undergo a complex array of modifications
and maturation and the recent massive use of RNA-Seq based strategies has led to an
unprecedented knowledge about its different steps. What is sorely lacking, however, is a
global understanding of the interplay between RNA editing, splicing and processing.

Initially thought to be mainly independent [36,37], there are now more and more
pieces of evidence for crosstalk between the different maturation steps [10,38–41]. Most of
these results, however, have been obtained from experiments based on Sanger sequencing
of a cDNA of interest, therefore limiting any potential generalization. Taking advantage
of the development of nanopore sequencing, we systematically studied the link between
individual RNA splicing and RNA editing events, at the plastome level.

Our results show that co-maturation of several sites tends to occur even when located
far apart on their cognate transcript. This implies that all of the actors of these different
processing events are grouped or co-localized, likely in the nucleoid [9].

Looking at specific links, splicing of the atpF intron and RNA editing at the atpF_12707
site are clearly not independent (Figure 5). This was expected as AEF1, the PPR protein
responsible for atpF_12707 editing in A. thaliana, also facilitates atpF splicing [11]. Similarly,
clpP intron 2 and ndhB splicing is enhanced by RNA editing in the cognate transcripts
(Figure 6). Earlier studies have shown that some unspliced or unprocessed transcripts
can already be fully edited [36,37] and this was interpreted as evidence that RNA editing
is an early process, mainly occurring before splicing. Although RNA editing can be a
prerequisite for splicing when it restores sequences or structures within the intron [42,43],
this is an unlikely explanation here as the sites are located far from the identified splicing
key elements [44]. A possibility put forward by Yap et al. [11] is that the binding of the
RNA editing factor itself could have an indirect effect on splicing through the modification
of RNA secondary structure or accessibility.

In agreement with the idea that RNA editing is an early maturation step, we only found
marginal evidence that specific RNA editing sites could be influenced by splicing (Figure 5).
This result is, however, probably dependent on our experimental model, A. thaliana. In
various plants, ndhA intron removal was shown to be necessary for a ndhA editing site
located close to the 3′ splice site. In this case, splicing is thought to create the RNA sequence
necessary for the recognition of the RNA editing site [10], a site that is absent in A. thaliana.
A similar situation has been described in P. patens mitochondria where atp9 splicing is
necessary to one editing site on the same transcript [15]. As shown for clpP, the splicing of
one intron can also influence the splicing of another intron located on the same transcript
(Figures 5 and 6). Experiments with intron deletions in tobacco have previously shown that
the second intron in the ycf3 transcript needs to be spliced before the first intron. In this
case, splicing of the first intron was hypothesized to create a sequence masking essential
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structural elements of the second intron [45]. Although A. thaliana ycf3 structure is similar
to tobacco, our analysis did not confirm such dependence in this transcript.

The dependence between RNA editing sites themselves has long been debated. For
example, in vitro results on short fragments of the mitochondrial atp4 RNA suggested that
editing of individual sites did not influence others while in organello experiments with
longer cox2 transcripts showed a pattern of dependencies [46,47]. The identification of
distal elements able to enhance RNA editing was also a strong argument against complete
stochastic independence of the editing site recognition [41,48]. Our results show that both
cases exist in the chloroplast. Editing site ndhD_117166 generally requires earlier editing of
the four other ndhD sites and ndhB_97016 editing strongly influences editing at ndhB_96698
and ndhB_96579 sites. On the other hand editing at ndhB_95225 seems autonomous and
barely influences any other editing site (Figure 6).

Editing and splicing of organellar transcripts are required to get mRNA translated
into functional proteins as editing often restores conserved amino acids [49] and splic-
ing preserves the translation frame. However, the study of the translational landscape
of A. thaliana mitochondria [50] or maize chloroplasts [21] showed that ribosomes were
associated with partially edited transcripts and a small fraction of ribosomes were even
associated with intronic sequences. Earlier chloroplast polysome purification experiments
also showed that transcripts of the psbB gene cluster containing the petB or petD intron
could still be translated for other genes [51]. This suggests that partially mature (especially
partially edited) transcripts can access the organelle translation machinery. In addition to
the dependence of some maturations events, our results showed that they could be ordered
(Figure 6). In this chronology, splicing events seemed to occur later than editing events:
the splicing of ndhB occurred after editing at most sites and splicing of clpP occurred after
its editing. Even if the chronology was not clear from our results, Yap et al. also showed
that atpF editing probably occurs before its splicing [11]. In addition, events located at
the 5′ end of the transcripts tended to be later than the others. That is clearly the case for
clpP and ndhD associated transcripts. In ndhD, RNA editing at ndhD_117166 was generally
the last maturation event and is required to create the start codon and thus to allow the
translation of the transcript. This succession of the maturation events where splicing and
5′ end events tend to be last could be a way to ensure the complete (or at least a better)
maturation of the transcripts before initiating their translation. Although there is currently
no known underlying mechanism to support this hypothesis, it could at least explain why
partially edited RNA editing sites are generally more edited in ribosome-associated RNAs
than on the steady-state pool of transcripts [21,50]. In addition, it could also explain why
sites restoring cryptic start codons have variable but often lower editing rates [49,52].

Despite the modest size of the dataset and its rather simple analysis, the results
presented in this study highlight the potential of long-read RNA-Seq for the analysis
of plastid and mitochondrial transcriptomes. Even if the molecular protocol still needs
improvements to capture the longest transcripts, it provides access to the full complexity
of this transcriptome and already showed numerous links between splicing and editing.
For analytical reasons, we did not include the analysis of processing in this study but
nanopore RNA-Seq is suited for this type of analysis (Figure 3) and we are developing
the required bioinformatical and statistical tools. A potential improvement of our strategy
would be to directly sequence the chloroplastic RNAs, without performing any cDNA
synthesis. This would give access to the various epitranscriptomics marks [53] that are
now known to be pervasive in chloroplastic RNAs [54] and whose interactions have, for
example, been shown to be important in human diseases [55]. With this complete toolbox,
we anticipate it will be possible to explore the impact of growth conditions and/or mutants
or compare the nucleoid- or polysome-associated transcriptome to further decipher the
molecular mechanisms controlling plastid but also mitochondrial gene expression.
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4. Materials and Methods

4.1. Plant Growth and RNA Extraction

Col-0 plants were grown in soil in growth chambers with 16 h of light per day at
20 ◦C for 5 weeks. Fifteen minutes before the onset of lights, 2 adult leaves were flash-
frozen in liquid nitrogen. Total RNA was extracted using Nucleozol (Macherey-Nagel,
Hoerdt, France) followed by a purification with AMPure RNA XP beads (Beckman Coulter,
Villepinte, France). Three independent experiments were performed to get three biological
replicates.

4.2. Nanopore Sequencing

The step-by-step protocol for the construction of the sequencing library is available on-
line at https://forgemia.inra.fr/guillem.rigaill/nanopore_chloro (accessed on 18 October
2021). Briefly, 10 fmoles of the RNA oligo /5Phos/rNrNrNrNrUrGrArArUrGrCrArArCrAr-
CrUrUrCrUrGrUrArC/3InvdT/ (IDT Technologies, Leuven, Belgium) was ligated to the 3′

end of 100 ng of total RNA using 10 U of T4 RNA ligase 1 (NEB, Evry, France). Ligated RNA
was depleted of rRNA using the QIAseq FastSelect -rRNA Plant Kit (QIAGEN, Les Ulis,
France) before a full-length cDNA synthesis using the SMARTScribe™ Reverse Transcrip-
tase (Takara, Saint Germain en Laye, France) and the oligos AAGCAGTGGTATCAACGCA-
GAGTACrGrG + G and AAGCAGTGGTATCAACGCAGAGTACGTACAGAAGTGTTG-
CATTC (IDT Technologies, Leuven, Belgium). Full-length cDNAs were amplified with the
SeqAmp DNA Polymerase (Takara, Saint Germain en Laye, France) using the AAGCAGTG-
GTATCAACGCAGAGTAC primer and purified with AMPure XP beads (Beckman-Coulter,
Villepinte, France). 35 fmoles of amplified cDNAs were converted to a nanopore sequencing
library with the PCR barcoding kit (Oxford Nanopore Technologies, Oxford, UK) and then
sequenced on an R10.3 MinIon flow-cell (Oxford Nanopore Technologies, Oxford, UK).

4.3. Bioinformatics and Statistical Analyses

The raw data were base-called and demultiplexed with Guppy v5.0.7 (Oxford Nanopore
Technologies) using the dna_r10.3_450 bps_hac model. Reads were then oriented using
the in-house script “fastq_processing.sh” which uses LAST v1179 [56] and CUTADAPT
v2.10 [57] and is available online at https://forgemia.inra.fr/guillem.rigaill/nanopore_
chloro (accessed on 18 October 2021). They were mapped on the col-0 genomic sequence
with Minimap2 v2.1 [58]. Transcript body coverage and strandedness were measured
with the RSeQC v3.0 package [59]. The Illumina samples used to compare were the
dyw2_HE replicates 1 to 3 (NCBI GEO accession numbers GSM2677518, GSM2677519 and
GSM2677520) from Guillaumot et al. [33]. The plants used for these samples were grown in
the same growth chambers and the sequencing libraries were constructed with the Illumina
TruSeq stranded total RNA with Ribozero plant kit.

The maturation events analyzed in this study are listed in Table S1. They include the
editing sites detected by Ruwe et al. [12] and the introns of protein-coding genes. The
tRNA introns were omitted because the mature tRNAs are excluded from the sequencing
library during sizing. This information is used to annotate each read for every maturation
event according to three modalities: mature site, not mature site, and not read site. The
latter allows taking insertions/deletions into account which are frequent in nanopore
datasets. For each pair of events jointly observed the following configurations are listed
and counted in a contingency table: mature/mature, mature/immature, immature/mature,
and immature/immature. The dependency of two events, based on the contingency table,
is tested using a Fisher exact test and the p-values were adjusted with an FDR [60]. Only
pairs of events characterized by an adjusted p-value < 0.1 in at least 2 of the 3 replicates
and an adjusted p-value < 0.005 on the pool of the 3 replicates were considered significant.
Commented R scripts to annotate reads, create contingency table, perform Fisher’s exact
tests and generate the result table are available online at https://forgemia.inra.fr/guillem.
rigaill/nanopore_chloro (accessed on 18 October 2021).
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The splicing and editing rates were measured from pooled reads of the 3 replicates.
Virtual Northern blots were generated by extracting the length of the reads mapping
from position 75700 to position 76000 on the Watson strand (petB), from position 77200
to position 77500 on the Watson strand (petD), from position 74487 to position 74706 on
the Watson strand (psbH) or from position 74254 to position 74378 on the Crick strand
(psbN) using samtools [61] and bedtools [62]. The size distributions were normalized
by setting the value of the most abundant read length to 100. These distributions were
converted into virtual Northern blots with the “vNB.py” python script available online at
https://forgemia.inra.fr/guillem.rigaill/nanopore_chloro (accessed on 18 October 2021).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/

10.3390/ijms222011297/s1.
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D.2 comaturationTrackeR (1st version)

Here below is the bachelor’s thesis of Chloé Seyman, which I co-supervised alongside Guillem

Rigaill over a three-month period at the Laboratoire de Mathématiques et Modélisation d’Évry.

This thesis partially describes the initial version of ComaturationTracker, presented as an R pipe-

line available at the following link : https://forgemia.inra.fr/guillem.rigaill/nanopore_

chloro.
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D.3 comaturationTrackeR (2nd version)

Here below is the master’s thesis of Benjamin Vacus, which I co-supervised alongside Benoît

Castandet and Guillem Rigaill over a six-month period at the Institut des Sciences des Plantes

de Paris-Saclay. This thesis describes the second iteration of ComaturationTracker, presented as

an R package available temporarily at the following link : https://github.com/SimiliSerpent/

comaturationTracker.
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1 Introduction

This internship was conducted at the Institute for Plant Science Paris-Saclay (IPS2),
located in Gif-sur-Yvette, France. The institute is under the supervision of Université Paris
Saclay – Faculté des Sciences, CNRS2, INRAE3, Université d’Evry Val d’Essone and Université
Paris Cité. As the name suggests, it is specialized in plant biology.

Within the Institute, I was welcomed in the Organellar Gene Expression (OGE) team. The
team is directed by Etienne Delannoy and is composed of three other permanent members –
Wojciech Majeran, Dario Monachello and my supervisor Benôıt Castandet. They focus on the
gene expression of organellar genomes in plant cells.

The internship project involved a collaboration with Etienne Delannoy, with biostatistician
Guillem Rigaill (Laboratoire de Mathématiques et Modélisation d’Evry - LAMME; Genomic
Networks team at IPS2 - GNet) and PhD student Arnaud Liehrmann (OGE/GNet/LAMME).

1.1 Chloroplast RNA maturations

Plant cells harbor three different genomes contained in three distinct organelles: the
nucleus, the mitochondrion, and the chloroplast. Chloroplasts are the result of a complex
evolutionary history. They originate from an endosymbiosis between a heterotrophic eukaryote
and a cyanobacterium-like ancestor [1]. Before it became the current chloroplast, the symbiont
has progressively been dispossessed of many of its genes that were either lost or transferred to
the nuclear genome of the host. This complex history resulted in a complex RNA metabolism
in the plastid [2, 3, 4] summed up in Figure 1.

Different transcription start sites

Transcription in the chloroplast is performed by three different RNA polymerases. The first
one is homologous to the eubacterial RNA polymerase and its main subunits are encoded in the
chloroplast genome. It is called the Plastid Encoded RNA Polymerase (PEP). The other two
are homologous to T7-type bacteriophage polymerase, are nuclear encoded and localized in the
chloroplast. They are called Nuclear Encoded Plastid RNA Polymerases (NEPs). Many genes
can be transcribed by both PEP and NEP, which bind to different promoters, resulting in a set
of transcripts with multiple start positions. Looking for an exhaustive list of transcript termini
in A. thaliana, Castandet & al. [5] found 215 transcription start sites for a genome containing
less than 130 identified genes.

Trimming

Coupled with a relatively inefficient transcription termination [6], this relaxed transcription
often gives birth to polycistronic transcripts with multifarious start and end positions. Before
translation occurs, this heterogeneous set of primary transcripts is trimmed and reshaped by a
set of specialized enzymes [7]. Polycistrons are cleaved by endoribonucleases, mainly RNase E
and RNase J. Transcripts extremities are processed by exoribonucleases: PNPase and RNase II
degrade 3’ ends, while 5’ ends are degraded by RNase J which also possesses an exoribonuclease
activity. All those enzymes interact with secondary structures (stem loops) or RNA-Binding
Proteins (RBPs) that can stop them in their path and therefore participate in stabilizing specific

2Centre National de la Recherche Scientifique
3Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
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1.2 Studying co-maturations of the transcripts

A majority of the actors involved in those maturation steps are located in the nucleoids,
compact structures containing several plastome copies as well as proteins and RNAs [12]. This
spatial proximity suggests possible interactions between them. Even though the chloroplast
community has gone a long way in understanding those maturations and in identifying the
molecular actors, we often lack an accurate comprehension of how things articulate around each
other, and we certainly ignore most of the interplays happening during RNA metabolism.

Starting with this idea that effectors of different kinds of RNA maturations interact together, it
has been conjectured that some enzymes need other enzymes (or other enzymes’ work) to start
acting. As pointed out by the team in Guilcher & al. [8], this was verified multiple times. In
2001, Schmitz Linneweber & al. [13] evidenced a splicing-dependent editing event on spinach
ndhA gene fragments in a tobacco plastid. The other way around, in 2015, Yap & al. [14]
showed that the splicing of the atpF transcript was diminished in absence of the editing of that
very same transcript, thus exhibiting an editing-dependent splicing event in the chloroplast of
A. thaliana. Eventually, Malbert & al. [15] reported an editing default on a mitochondrial site
in absence of an enzyme responsible for the editing of a neighboring site, proving the existence
of editing-dependent editing events in the organelles.

From now on, we will refer to such dependencies using the term co-maturations introduced
by the team in Guilcher & al. The previously mentioned studies prove that co-maturations are
a thing. However, these studies targeted a very limited number of sites and might represent
anecdotal exceptions only. Today, Next Generation Sequencing (NGS) techniques grant access
to a more global view on all the RNA maturations in plant organelles. Namely, the growing
use of Illumina sequencing devices fostered the systematic recognition of maturation sites at the
transcriptome level [5]. Yet using those devices do not allow to jointly monitor multiple distant
maturation events on the same read. This technique indeed produces reads that are at most 350
nucleotides long when chloroplast transcripts can be substantially longer, and maturation events
can be distant from as much as several thousand bases. To address this issue, the team took
advantage of the Oxford Nanopore Technology (ONT) that is able to produce long reads [16].
This sequencing method was developed on polyadenylated RNAs. However, in chloroplasts,
polyadenylation of the RNAs acts as a degradation signal. The team succeeded in adapting the
protocol for non-polyadenylated RNAs, even though they were unable to capture reads longer
than about 2500 nucleotides.

Based on a list of 14 introns (after removing tRNAs because of their size) and on the list of
43 editing sites identified in Ruwe & al. [10], they surveyed the maturation states on every
site across all reads. Then, they built a contingency table for each pair of maturation events
indicating the number of reads in each maturation state for the two sites: it contained the
number of reads maturated on both / the first / the second / none of the sites. Eventually, they
ran a Fisher’s exact test on those tables to test for independence between the two maturation
events. P-values were adjusted with Benjamini-Hochberg correction [17]. Out of the 138 pairs
of maturation sites that were simultaneously covered, they found a total of 42 co-maturations.

1.3 Limitations of the existing approach

This approach successfully yielded a first plastome-wide map of the dependencies be-
tween pairs of maturation events. Despite constituting a breakthrough in the field of chloroplast
RNA maturations, it deserves to be examined and improved. The most questionable part cer-
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tainly is the statistical determination of true co-maturations: after using the Fisher’s exact test
and applying the correction, they called co-maturation a pair of events with a corrected p-value
< 0.1 on at least two replicates, and < 5 × 10−3 on the merge of the three replicates. This
procedure bears several unsatisfying aspects:

• The way the different replicates are assembled is debatable to say the least. Even though
arbitrary thresholds are commonplace in the field of statistics, the way the different repli-
cates are combined leads to a conservative testing (requesting a corrected p-value < 0.1
on 2 out of 3 independent experiments is demanding), and no effort is made to consider
their specificities (mean, internal variance).

• The method does not consider the specifics of the RNA-seq count data. It is common
knowledge today that those data are characterized by non-Poisson and singular depen-
dence of the variance on the mean. This does not correspond to the hypergeometric
distribution hypotheses of the Fisher’s exact test used in this approach.

Yet, modeling RNA-seq count data is an issue that has already been tackled in the recent
literature, as it quickly became necessary to handle data generated by modern NGS tools, mainly
in the study of differential expression of genes [18, 19]. Some widely used tools, like edgeR [20,
21] or DESeq [22] use a Negative-Binomial distribution (sometimes also called Gamma-Poisson
distribution) to model the RNA-seq count data. Under this assumption, the variance V and the
mean µ are related as follow: V = µ+αµ2 where α is the dispersion parameter. This dependence
on the mean better fits to the RNA-seq data than in the classical Poisson distribution (often
used to model discrete counts) where V = µ. The estimation of the dispersion parameter differs
according to the method, and the mean is estimated with a Generalized Linear Model (GLM)
having a logarithmic link function.

In the standard case of differential expression analysis, raw counts are first filtered to remove
genes with close-to-zero expression. This filtering step yields huge impact on the outcome of the
analysis [23]. Then comes a no less important normalization step whose goal is to remedy the
bias inherent in each bio-technical experiment: different coverage for each replicate, differences
in the nature of the genes (GC content, length) or environmental variability (growth conditions).
The usefulness of this normalization step is extensively accepted in the RNA-seq community;
nonetheless, the modalities found in the literature are diverse and no consensus has emerged so
far [24]. Differential expression is eventually tested, e.g. using a Wald test in the case of DESeq,
and an FDR control is next performed (with Benjamini-Hochberg correction).

The goal of my M2 internship was to overcome the shortcomings of the strategy previously used
by the team, by proposing a new statistical method based on contrast to track co-maturations
of chloroplast RNAs. I take advantage of the DESeq2 R package [25, 26] in an ingenious way
to accurately model the count data, and I compare the results with those obtained with the
Fisher former method. I present here a complete analysis pipeline that takes the aligned reads
.bam files along with the annotations of known maturation sites as input and outputs a list of
co-maturations. I also deliver the brand-new associated R package comaturationTracker [27].
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2 Results

2.1 A new method based on statistical contrast

This section first details the theoretical methodology used to find RNAs co-maturations
and how we model the co-maturation data with Deseq2, before moving on to the practical
pipeline.

2.1.1 Using contrast

Notations

For a given pair of maturation events, we write A (resp. B) when the first event site (resp. the
second) is matured, and we use A (resp. B) when it is not. With these notations, we further
denote by µAB the observed number of reads covering both sites and with both sites matured.
Likewise, we write µAB (resp. µAB, resp. µAB) the number of reads covering both sites where
only the first one is matured (resp. only the second site, resp. none of the sites). When this
number of reads corresponds to the situation in the ith replicate, we sometimes write µABi.

In our new method, read distribution is modelled by a Negative-Binomiale distribution. As
explained in introduction, this distribution is characterized by its mean µ and variance V =
µ + αµ2 where α is the dispersion parameter. The mean is estimated using a GLM with a
logarithmic link function. In this model, we use a baseline µ0. We add a parameter A when
the first site is matured and B when the second site is matured. Because we are looking for a
dependency between the two maturation events, we add a suitable interaction term AB when
both sites are matured. Eventually, we can add a replicate term Ri when modeling counts in
the ith replicate. The model can be written as follows:





log(µABi) = µ0 +A+B +AB

log(µABi) = µ0 +A

log(µABi) = µ0 +B

log(µABi) = µ0

Statistical contrast

The question of the dependency between two maturation events can be asked as follows: does
the maturation of one site impact the maturation of the other site? In other words, does
the maturation state at one site influence the maturation rate at the other site? This can be
answered by testing whether the proportion of reads matured at one site differs depending on
the maturation state of the other site. Mathematically, this is the same as testing the equality:

µAB

µAB

=
µAB

µAB

⇔ log(µAB)− log(µAB) = log(µAB)− log(µAB)

⇔
(
log(µAB)− log(µAB)

)
−
(
log(µAB)− log(µAB)

)
= 0

We write C =
(
log(µAB)− log(µAB)

)
−
(
log(µAB)− log(µAB)

)
and we call statistical contrast

this last quantity. Testing whether the maturations at both sites are dependent or not is the
same as testing whether the contrast significantly differs from 0 or not. When we replace the
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loadReads()

Aligned reads are first filtered as follows. Reads mapping outside of the genome range are
removed. The same is done for reads mapping none of the specified maturation sites, as well
as for reads with abnormal lengths or for reads mapping different locations on the genome.
This can be done in R using the comaturationTracker loadReads() function, with reads and
maturation sites of interest loaded from respectively user specified .bam and .gff3 files.

getStates()

For each read, the maturation state of any maturation site it covers is assessed. This is straight-
forward for known editing sites where a C indicates an absence of maturation whereas a U reflects
a matured position. It is not as easy for splicing because introns are never completely (or not at
all) spliced. In this case we retained the heuristic used in Guilcher & al.: if less than 10% of the
intron is found, it is considered spliced, i.e. matured. These maturation states are stored in a
matrix with one row for one read and one column for one maturation event site. This assession
step is accomplished by the comaturationTracker getStates() function.

buildCountsDF()

The GLM and statistical testing part is handled by the R DESeq2 package. DESeq2 functions
take as input a matrix with one row for each gene and one column for each experiment, since
it was built for a different purpose. To make it able to handle our data, I build a matrix where
one row corresponds to one pair of events, and one column describes a combination of replicate
number and maturation state at each site (see Figure 2). I also build a matrix equivalent to
the DESeq2 ”conditions” table that links the experiments with the parameters of the GLM.
Both matrices are computed by the comaturationTracker buildCountsDF() function.

I use the DESeq2 package to estimate the dispersion and the parameters of our GLM. Eventually,
I use it again to test whether the contrast term AB statistically differs from 0 or not. This is
done internally using a Wald test followed by a Benjamini-Hochberg adjustment of p-values.
Pairs of events with an adjusted p-value below an arbitrary 5 × 10−3 threshold are considered
dependent.

2.2 Application

In this section, I present the results obtained with this new method on a few application
cases. I start with comparing it with the Guilcher & al. approach before moving on to more
complex cases.

2.2.1 One condition, pairs of events

The pipeline was run on the same set of reads as in Guilcher & al.. My package
took 24 minutes 44 seconds to complete the analysis - see Appendix B.2 for details. Out of
the 6, 2 × 106 reads across the three biological replicates, 386885 reads have passed the filters.
Analysis results are shown in Figure 3.

From a set of 43 editing sites and 25 introns, one can consider 2278 pairs of maturation event
sites. However, for 2137 of them, no read covers both sites simultaneously. This issue is similar
to the one encountered in classical gene expression analysis, where many genes are lowly or not
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Figure 3: Analysis of co-maturations in col-0 A. thaliana - (A) Number of pairs of events
passing through a cut-off on reads coverage. Cut-off can be applied on the total sum of reads covering

both sites across all replicates (blue dots), or on the mean number of reads across replicates and
maturation states (red dots). (B) Principal Component Analysis (PCA) on the counts matrix after

filtration with a size 5 cut-off on total number of reads covering each pair. The twelve points accounts
for the three replicates and four maturation isoforms and are coloured according to maturation state at
each site. (C) Dispersion plot as output by DESeq2. Pair-wise empirical dispersions are represented by
black dots. Estimated dispersion (blue dots) is a shrinkage of empirical dispersion towards a fit (red

dots). (D) Histogram of p-values when testing the interaction term (or contrast term) AB.

at all expressed. To filter ”low expression pairs”, I used representations such as in Figure 3-A
where I show the number of pairs left after filtering on the total sum (blue dots) or the average
(red dots) of reads simultaneously covering both sites of the pair (note that the average is the
mean across all replicates and all possible isoforms). I chose a naive size 5 cut-off on the total
number or reads covering both sites of the pair. This resulted in 123 sufficiently covered pairs.

PCA and dispersion plot are displayed in Figure 3-B,C. As explained in 2.1, we tested the
dependence with a Wald test on the contrast term AB estimated in the GLM. Raw p-values dis-
tribution is shown in Figure 3-D. After DESeq2 -integrated Benjamini-Hochberg FDR control,
I applied a 5 × 10−3 arbitrary threshold on adjusted p-values. The independence hypothesis
H0 was rejected for 43 pairs of events. The raw list of co-maturation found with comatura-
tionTracker is available in Appendix B.3.

A brief comparison with the outcome of the Guilcher & al. method is shown in Figure 4. 40
pairs of maturation events are found to be co-maturations using both pipelines. For 3 other
pairs, H0 is rejected with our method but not using the former one. Conversely, for 2 pairs of
events, H0 is rejected in Guilcher & al. but not with our new approach. Figure 4-B displays
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Figure 4: Comparison of the two methods - (A) Venn diagram comparing co-maturations found
with both approaches. (B) Comparison between Guilcher & al. (Y axis) and our new method (X axis)
of the adjusted p-values for all pairs of events where H0 is rejected in at least one method. Black lines

materialize the 5× 10−3 thresholds.

the adjusted p-value for all of those 45 pairs. It reveals that ranking of co-maturations is similar
regardless of the method, with discriminant pairs lying close to the arbitrary thresholds.

2.2.2 Second condition, pairs of events

Plant culture and Nanopore sequencing was not only conducted on A. thaliana col-0
ecotypes but also on mutants for the PNPase enzyme, now referred to as PNP-mutant. PNPase
is an exoribonuclease responsible for 3’-ends degradation in the chloroplasts (see 1). Naturally,
the team wondered what impact the aforementionned mutation could have on co-maturations.
Again I ran the pipeline on those data to obtain the results shown in Figure 5.

As before, the filtering power of two kinds of cut-off (on the total number of counts or on the
mean of the counts across the different isoforms/replicates/conditions) are presented in panel
(A). With the same naive size 5 cut-off, I selected a set of 136 sufficiently covered pairs of
events. PCA, dispersion plot and raw p-values distribution are displayed in panel (A), (B) and
(C), respectively.

A Venn diagram between the set of co-maturations found in the PNP-mutant and the set found
in the WT is shown in panel (E). 43 co-maturations are found in both conditions, while 12
pairs of maturation events are found to be dependent only in the PNP-mutant, and 1 only in
the WT. Adjusted p-values for these 56 pairs are displayed for comparison in panel (F). Details
of the co-maturations found in both ecotypes are available in Appendix B.3.

2.2.3 Two conditions, pairs of events

The previous comparison between the different biological conditions does not take into
account the variability between the WT and the PNP-mutant experiments. An asset of our
new method is that it can be easily modified to study the evolution of co-maturations without
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neglecting this aspect. To adress this question, we denote by µ∗X the means of counts in the
wild-type (WT ) condition, and by µ∗Y the means of counts in the PNP-mutant condition. We
take this second biological condition into account in our GLM by adding a mutant parameter Y .
Because we are interested in finding interactions between the condition (WT or mutant) and
the co-maturations, we also add new interaction terms in the model. We obtain the following,
where the first four lines model counts in the mutant condition:





log(µABY i) = µ0 +A+B +AB + Y +AY +BY +ABY

log(µABY i) = µ0 +A+ Y +AY

log(µABY i) = µ0 +B + Y +BY

log(µABY i) = µ0 + Y

log(µABXi) = µ0 +A+B +AB

log(µABXi) = µ0 +A

log(µABXi) = µ0 +B

log(µABXi) = µ0

Figure 6: Analysis of the impact of mutation (pnp knock-out) on co-maturations - (A)
Number of pairs of events passing through a cut-off on reads coverage (cf supra). (B) PCA on the

counts matrix after filtration with a size 5 cut-off on total number of reads covering each pair. The 24
points accounts for the three replicates and four maturation isoforms across both conditions. They are
coloured as follows: matured on 1st site / matured on 2nd site / mutant. (C) Dispersion plot as output

by DESeq2. (D) Histogram of p-values when testing on the contrast term ABY .

The above-mentioned question translates as follows: how does the dependency between the two
events differ from one condition to another? The dependence in one condition can be tested as
we did with the previous model. Thus, the question mathematically comes down to knowing
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if:
µABY

µABY

/
µABY

µABY

=
µABX

µABX

/
µABX

µABX

This implies:

(
log(µABY )− log(µABY )

)
−
(
log(µABY )− log(µABY )

)

=
(
log(µABX)− log(µABX)

)
−
(
log(µABX)− log(µABX)

)

Which, by replacing with the model estimators, and after simplification, gives:

ABY = 0

We thus adapted the method shown before and re-used the R DESeq2 package with a new
input and a new design. As in the previous section, I present the analysis in Figure 6. Like
above, panel (A) shows the filtering power of two kinds of cut-off. Out of the 2278 imaginable
pairs, 144 were covered by at least one read. I chose a less naive size 20 cut-off on the means.
This left only 88 pairs that were sufficiently covered to be retained in the analysis. Impact of
the mutation was tested as before, using a Wald test on the ABY term. Distribution of raw
p-values is shown in panel (D). No pairs showed significant dependency evolution between WT
and PNP-mutant after FDR control.

2.2.4 One condition, trios of events

Since many maturation events sometimes take place on a unique transcript, it is likely
that groups of more than two events show co-maturations. Our method can be further extended
to look for such dependencies between more than two events. In this section we modify the
model to examine trios of events.

Just like in the previous section, we start with the basic model (one condition, pairs of events).
We add an event labeled C along with a new corresponding parameter C in the model. We also
try adding interaction terms AC, BC and ABC. The new model can be written like so:





log(µABCi) = µ0 +A+B + C +AB +BC +AC +ABC

log(µABCi) = µ0 +A+ C +AC

log(µABCi) = µ0 +B + C +BC

log(µABCi) = µ0 + C

log(µABCi) = µ0 +A+B +AB

log(µABCi) = µ0 +A

log(µABCi) = µ0 +B

log(µABCi) = µ0

Again we look at the following quantity:

((
log(µABC)− log(µABC)−

(
log(µABC)− log(µABC)

))

−
((

log(µABC)− log(µABC)−
(
log(µABC)− log(µABC)

))
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Figure 7: Analysis of co-maturations in trios of events - (A) Number of trios of events passing
through a cut-off on reads coverage. Cut-off can be applied on the total sum of reads covering all three
sites across all replicates, or on the mean number of reads across replicates and maturation states. (B)
PCA on the counts matrix after filtration with a size 5 cut-off on the average number of reads covering
each pair (averaged across isoforms and replicates). The 24 points accounts for the three replicates and
eight maturation isoforms. They are coloured according to the following: matured on first site / second
site / third site. (C) Dispersion plot as output by DESeq2. (D) Histogram of p-values when testing on

the interaction term (or contrast term) ABC.

This expression results in just ABC after simplification. Therefore, the question becomes: is the
estimated parameter ABC significantly different from 0? Again, I used the DESeq2 approach
on the wild-type data. Results are shown in Figure 7. No trios showed significant dependency
after FDR control.

2.3 Analysis of reads extremities processing state

Besides editing and splicing, the processing of the RNAs extremities represent a deci-
sive maturation step that has not been considered so far. Starting with the raw reads, one way
to visualize how they are processed is to look at the distribution of their extremities along the
genome. This is represented in Figure 8-A.

Because we were seeking for dependencies with other maturation events, I also analyzed the
distribution of the extremities of reads mapping editing or splicing sites. We divided the profile
in two plots based on their maturation state for this site. This allows for visual comparison of
the processing profiles. An example is given in Figure 8-B.
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Eventually, Figure 8-C displays the comparison between matured-vs-primary profiles in the
wild-type case and in the PNP-mutant case.

Figure 8: Overview of the distribution of reads extremities - Reads extremities positions have
been surveyed and their distribution is displayed using bar-plots. (A) Distribution of extremities of all
reads along the genome - inverted-repeated regions excluded. Extremities counts are averaged over the
three replicates and projected on a logarithmic scale. Represented distributions, from top to bottom:
plus strand 5’ ends ; plus strand 3’ ends ; minus strand 3’ ends ; minus strand 5’ ends. (B) This

bar-plot is zoomed in on a specific region of the minus strand. An editing site is located on the leftmost
position (position 12707). Only the 5’ extremities of reads mapping this site are shown. The top

graphic displays the distribution of the positions of 5’ ends of reads where the site is matured (edited),
whereas the bottom graphic shows the distribution of 5’ extremities of reads where the site has not
been edited. Genes ranges are represented with background colors. (C) Same as in (B) but with a
different editing site located at position 2931. Besides the two matured-vs-primary-site top graphics,

the same profiles for the PNP-mutant are displayed below.
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3 Methods

3.1 RNA-seq data

The WT RNAseq data I used during this internship are the same data as those used in
Guilcher & al. [8]. RNAs were extracted from the leaves of 5-weeks old col-0 A. thaliana. Please
refer to the Material and methods section of the aforementioned paper if you want to reproduce
the data. Protocols used for Nanopore sequencing can be found online at https://forgemia.
inra.fr/guillem.rigaill/nanopore_chloro. The output reads are publicly available from
the NCBI SRA database under the accession number PRJNA748959.

The PNP-mutant RNAseq data were produced in the exact same way, with the ith replicate of
each condition being cultivated in the same batch. However, the data have not been published
yet.

3.2 Statistical pipeline and package development

Finding co-maturations with R

All the work was conducted using the R statistical programming language (version
4.0.3 - 2022-10-10) under the windows RStudio IDE (version 2022.02.3) [25, 28]. I used Gitlab
as a version control tool.

All packages used are publicly available from the CRAN or from the Bioconductor project.
Maturation sites annotations were imported with the rtracklayer package [29]. RNA-seq reads
were imported using the readGAlignments() function from the GenomicAlignments package
[30]. Reads filtration was done with IRanges and Rsamtools [31]. GLM creating and statistical
testing were performed with the DESeq2 package [26].

The comaturationTracker package

The comaturationTracker package was developed based on the principles exposed
in the online R Packages (2e) book, available at https://r-pkgs.org/. The package itself
is available at https://github.com/SimiliSerpent/comaturationTracker. To install the
package, see Appendix B.1.

To make the package, I mainly used the devtools package [32], but I also used usethis, knitr,
testthat and roxygen2 [33, 34, 35, 36].
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4 Discussion

4.1 A new competitive statistical method

We have developed a new method to assess the co-maturations of the chloroplast
RNAs. It was meant to overcome some of the weaknesses of the Fisher method described in
introduction [8]. The fundamental remains: in both case we wonder whether the maturation
state at one site influences the maturation rate at the other site. We answer this question by
testing whether the proportion of reads matured at one site differs depending on the maturation
state at the other site - and this is precisely what the Fisher’s exact test does on the contingency
tables. In comparison our method shows several strengths.

By using the DESeq2 R package, we ensure a good modeling of the RNA-seq count data
using a tried-and-true negative-binomial distribution. Using a GLM we are able to efficiently
incorporate the different replicates with a replicate effect parameter Ri that takes into account
their specificities.

Like for the use of this replicate effect, the choice not to use the DESeq2 normalization of
the count data was not trivial. As pointed out by Dillies et al. [24], the DESeq normalization
method stands out, and we did not replace it with any other kind of normalization. Nevertheless,
we suffer from several biases which may for example be related to library size differences. Of
course this latter bias is corrected with the replicate parameter, but using this parameter in the
model prevents us from modeling batch effects, as is usually done in RNA-seq data analysis.
The decision not to normalize the data and to add a replicate effect was taken after trying all
kind of modalities on the data (results of the tests can be found in Appendix B.4). It comes
out that using replicate effects without any normalization is the only approach that gives results
coherent with those of the Fisher method. These results are discussed below.

Our method is also flexible and can be adapted to meet other constraints. For example, another
complication that I have neglected so far is the high error rate (or low precision) of the Nanopore
Technology devices. Even though this drawback is progressively corrected on the latest versions
of the Nanopore sequencers, it remains relatively imprecise compared to its Illumina counterpart.
The error rate on our data had previously been estimated to be about 5%. This means any
nucleotide in any sequence has 5% chance to be misread as another nucleotide. Our method
allows to account for this error rate by modifying the counts in the input matrix - under the
strong hypothesis that the error rate is constant along every read (see details in Appendix A.2).

4.2 Promising results

The results obtained on the one condition case are derived from simple design choices.
As mentioned above, a short investigation has motivated us to remove all kind of normalization
and to add replicate effects in the model. Given the curves shown in Figure 3.A, I used a small
filter to arbitrarily remove any pair of maturation sites that were almost never simultaneously
covered. This naive filter was retained because it yielded satisfying results, but it can probably
be optimized. Because the number of reads covering a pair of events is limited overall (< 100
for most pairs), power to detect any dependence is likely to be very small. Yet the results or
our new method on the WT data are deemed good because of several signals:

• the different maturation isoforms are well clustered on the output of the Principal Com-
ponent Analysis (see Figure 3.B)
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• the dispersion estimates are well approached by the DESeq2 fit and the raw p-values
histogram is close to a uniform distribution between 0 and 1 suggesting the Negative-
Binomial is a relevant choice to model the data (see Figure 3.C&D)

• the obtained co-maturations are close to what was found with the Fisher method, illus-
trating the coherence between the two methods (see Figure 4.A)

The list of co-maturations obtained here resembles the list found with the Fisher method but
with changes nonetheless. Before trying to analyze those differences, it is important to notice
that pairs of events considered to be a co-maturation in one case and not in the other always
lie close to the rejection threshold in the latter case. This can be seen in the top-right corner
of Figure 4.B. Another striking element in this figure is that the points are approximately
aligned along the y = x axis. This means the ranking of the co-maturations is well preserved
between the two methods.

That being said, it is virtually impossible to verify whether those gray cases should be held
as co-maturations or not. It would require many other replicates (and maybe also a higher
transcripts coverage) and given the cost of such experiments and the arbitrariness of the rejection
thresholds, the game is definitely not worth the gamble. However, it is plausible that the
different enhancements brought with the new method explain those changes, and I therefore
advise working with the final co-maturations list obtained.

Dense maturation sites clusters drive the analysis

It is critical to report here the influence of dense maturation sites clusters. During our explo-
ration of the data, I noticed that a small number of maturation sites that are close-enough
to be simultaneously covered by a few transcripts generate an exponential number of pairs of
events. In our case, the 15 sites of the ndhb gene region account for 22% of the sites. However,
almost every possible pair between those events is sufficiently covered to pass the cut-off. In
the end, they account for 92 pairs of events in the analysis - 75% of the 123 analyzed pairs.
Consequently, this region yields a huge impact on the DESeq2 estimates as well as on the shape
of the raw p-values histogram and, thus, on our appreciation of the method. To circumvent this
issue, I suggest weighting the pairs in the p-values histogram in order to give a lower strength
to highly represented sites.

4.3 The PNP-mutant

The co-maturations found in the PNP-mutant ecotype substantially differ from those
found in the WT. However, this comparison ignores the differences in library size and all other
possible bias and environmental factors between the two sets of experiments. For that reason,
I do not discuss these differences any further.

The two conditions model study limitations

Conversely, the two conditions model takes those biases into accounts by adding the Y parameter
to the second set of experiments. Hence the results are expected to be different.

However, the first time I ran the analysis, we were quite dissatisfied with the results, especially
with the p-values histogram that was far from being uniform between 0 and 1 and whose density
was clustered towards 1 (data not shown). This indicates that our data are poorly modeled
by the chosen Binomial-Negative distribution. Using the new model, it is also possible to test
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the impact of the condition on the maturation of site A (or B). To do so, I test the contrast
2AY + ABY - or 2BY + ABY (see Appendix A.3). The profiles of the p-values histograms
generated for sites A and sites B were very different. This came as a surprise because A is nothing
more than the first site in the pair and thus, we expect a symmetrical behavior between the
two profiles.

We improved the results by rethinking the filtration step. Indeed, having two biological condi-
tions means we have approximately twice more reads and thus the naive size 5 cut-off ends up
being less selective than before. We chose to filter the data with a size 20 cut-off on the mean
number of reads across conditions, replicates and maturation states (red dots on Figure 6.A).
This led to the results presented in 2.2.

The dispersion plot in Figure 6.C shows no oddity. Looking at the result of the Principal
Component Analysis in Figure 6.B, it seems that the points are all slightly shifted in the same
direction between the two conditions, but they cannot be clearly separated. This suggests there
is no big difference between the PNP-mutant and the WT, which is confirmed by the p-values
histogram (Figure 6.D). It is relatively close to a uniform distirbution between 0 and 1, but
lacks the close-to-zero peak indicating significant differences in the counts. Logically enough,
no co-maturation is found after FDR control.

These results are no real surprise because we are only looking at editing and splicing events,
but the mutated gene in the PNP-mutant encodes a ribonuclease and therefore we would expect
mainly changes at the extremities of the reads. However, I went from testing a dual interaction
- AB - to testing a triple interaction - ABY . Thus, it might require more statistical power to
perceive small differences (more replicates, more coverage) which is beyond our reach given the
current cost of those experiments. Unfortunately, I did not have data from a mutant with an
editing or splicing defect on hand.

This may also be the reason why we observe inconclusive results in the trios of events case.
Dispersion plot (Figure 7.C) and PCA (Figure 7.C) are more messy, and no co-maturation
of 3 events is found after p-values adjusting. This goes against the results found by Guilcher &
al. [8] who exhibit dependencies between no less than 9 events in the ndhb genomic region.

4.4 Future perspective

Analyzing the read ends processing event

What would be very interesting (given the available data from a PNP-mutant ecotype) is the
addition of the processing of read ends event in our list of maturations.

We can see in Figure 8 that the distribution of extremities is noisy - however, some peaks can
easily be distinguished. Those peaks correspond to preferred end positions. On Figure 8.B

(with the distribution of extremities for all reads mapping the 12707 editing site), we can see
that reads admit several precise preferred terminations. Even more interesting is the profile
difference between the top graphic (reads having site 12707 edited) and the bottom graphic
(where the site has not been edited). Some peaks can only be found in the former one and
hence this is an example of flagrant dependency between an editing event and the processing
of reads extremities: it could be that transcripts processed to a given length are always and
quickly edited.

Another example is given in Figure 8.C with the editing site localized at position 2931, where
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we can see again in the top two graphs an inversion of the preferred terminations. Below those
two profiles (edited state versus primary state in the WT ), distribution of the extremities in
the PNP-mutant are displayed for comparison, and the previously seen inversion is missing. It
suggests that co-maturations are not the same in the WT and in a PNP-mutant with a read
ends processing defect.

But this third kind of maturation event is not as easy to model as the other two. Where it is
straightforward to assess the editing state of a read, and relatively easy to decide whether an
intron is spliced or not, the distribution of reads extremities is noisy and we do not possess a pre-
computed list of preferential termination positions. To integrate the processing of extremities
in the analysis, for the sake of generalizability, we do not want to build a method based on a
list of known preferential terminations. I propose to test, for every editing/splicing event and
any position, the ratio between the number of reads (covering the event) ending on this position
and the number of reads (covering the event) ending elsewhere, before we compare the matured
and the primary states. Due to a lack of time, I have not implemented this test yet.

Pending developments

In its current shape, our method (along with the comaturationTracker R package) only takes
as input a set of reads and a list of maturation event sites. Thus, it can easily be transposed to
other data to test for co-maturations in different species or biological environment (like in the
mitochondrion for example).

However, there is still a lot of space for improvement and further development. No biological
investigations have been conducted on the obtained co-maturations so far, and many questions
are yet to be considered. What are the molecular mechanisms at work behind the newly obtained
co-maturations? What does it tell us about the role of transcripts maturation in the cell? The
statistical study of the processing of extremities still needs to be realized and tested. In Guilcher
& al., the authors proposed an ordering of the maturation events based on the counts of reads
maturated at both sites: can we do the same in the PNP-mutant? Would we find the same
ordering? How does the taking into account of the error rate modify this ordering?

On the package side, and beside adding the study of the extremities, some work is still required.
It lacks a control of the functions inputs for example, as well as some unit tests to facilitate
future developments. Before it becomes a handier tool, one might want to upgrade the outputs,
e.g. with graphics to display the several clusters of interdependent maturation events. Maybe
it would be better to encapsulate the DESeq2 part of the analysis in homemade functions to
make it even more plug-and-play. It would also be great to add some extremities visualization
tools since those are quite unprecedented observations. No doubt the package is going to evolve
in the foreseeable future.
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5 Career Assessment

From a professional point of view, I deem this internship a success because it accurately
met my expectations with, nevertheless a fair amount of challenge and difficulties.

Technically speaking, it was the first opportunity for me to extensively use the R
language. Despite being familiar with the software already - thanks to its use at school, I found
out that I was still very inexperienced with it. It was a long way before figuring out the spirit
of R programming and I am only beginning to see my limitations when it comes to producing
time and memory efficient R code. Although there is plenty of room for optimization, I was
proud to eventually assemble my own package.

This internship allowed me to further familiarize with the statistical analysis of transcriptomics
data. I had time to dive into the brass tracks of Generalized Linear Models and exponential
families. I discovered the statistical contrast which is quite a basic tool, but which is not
limited to bio-informatics and that sometimes proves to be surprisingly powerful. Using the
DESeq method, I have also refined my knowledge of read counts modeling. Even though I spent
most of my time behind a computer screen, I was largely immersed in the world of biology, and
especially in the context of chloroplasts in plant cells.

Methodologically speaking, I once again was given the chance to explore a scientific field and
to perform an ongoing bibliographical work. I was well directed and helped in the pursue of my
research and I discovered the circle making assumptions, testing, interpreting, investigating the
snags to understand better. It was hard yet instructive to spend weeks in the fog of misunder-
standing when faced with confusing results. I found out the researcher way that the outcome
is almost never as expected and that answering one question raises many others.

As mentioned above, I had a great time working with three accomplished researcher and a PhD
student. I had to learn to translate scientific questions in each of their respective languages,
from the most statistical-ish to the most biological-ish. It was very stimulating to be part of
an office with researchers, research engineers, post-doctoral fellows, PhD students and other
interns. I also had the unique opportunity to attend the JOBIM4 conference in Rennes and to
present my work with a poster5.

When I applied for this internship I was looking forward to work with Nanopore
Technology data. This is exactly what it was about and I believe most of what I learned during
those five months will be useful when I start working for the Defense. It seems the world of
bio-informatics is a tiny world: before I join the DGA6 in 2023, I applied for an internship at
CEA Evry that was connected to the IPS2 - and my future team leader found out about my
work at the JOBIM conference.

4Journées Ouvertes pour la Biologie, l’Informatique et les Mathématiques
5Poster is available at https://github.com/SimiliSerpent/JOBIM-2022/blob/main/poster_vacus.pdf
6Direction Générale de l’Armement
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Appendices

A Methodological comments

A.1 The contrast is independent from the replicate influence

If we write the whole model with three replicates, we have:





log(µAB1) = µ0 +A+B +AB +R1

log(µAB1
) = µ0 +A+R1

log(µAB1
) = µ0 +B +R1

log(µAB1
) = µ0 +R1

log(µAB2) = µ0 +A+B +AB +R2

log(µAB2
) = µ0 +A+R2

log(µAB2
) = µ0 +B +R2

log(µAB2
) = µ0 +R2

log(µAB3) = µ0 +A+B +AB +R3

log(µAB3
) = µ0 +A+R3

log(µAB3
) = µ0 +B +R3

log(µAB3
) = µ0 +R3

By taking the mean of contrast on every replicate, we get:

C =
1

3

3∑

i=1

(
log(µABi)− log(µABi)

)
−
(
log(µABi)− log(µABi)

)

=
1

3

3∑

i=1

(
µ0 +A+B +AB +Ri− (µ0 +B +Ri)

)
−
(
µ0 +A+Ri− (µ0 +Ri)

)

=
1

3

3∑

i=1

(A+AB)− (A)

=
1

3

3∑

i=1

AB

= AB

This demonstrates that the contrast does not change when adding different replicate effects into
the model.
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A.2 Contrast modified with respect to sequencing error rate

We propose to take the error rate of the Nanopore sequencer into account in our model under
strong hypotheses, namely:

• the operation of sequencing one base of any RNA transcript suffers from an error rate τ
which is independent from the base and the location on the genome.

• this error holds for the maturation event ”edition of a base”, but obviously not for the
event ”splicing of an intron” because many bases are involved in the latter - an error rate
of 0 is supposed for this second type of maturation.

As described in introduction, during the transcript maturation, a nucleotide C is sometimes
edited and turned into a U . The observed data is the result of the sequencing step in which a
nucleotide N is read as N with probability (1 − τ) and is misread as another nucleotide with
probability τ . Thus, one C would for instance be misread as a U with probability τ

3
since there

are three other possible nucleotides. Using the total probability formula, we can write:

IP(Ũ) = IP(Ũ |U)× IP(U) + IP(Ũ |Ū)× IP(Ū)

= (1− τ)× IP(U) + τ × IP(Ū)
(1)

where Ũ is the event ”a U is read”, U is the event ”the base really is a U” and Ū the event
”the base actually is not a U (it can be A, G or C)”.

From now on, the notations introduced in 2.1 designate the ”true” in vivo events, with observed
events being denoted with a ∼ : µ̃AB, µ̃AB, µ̃AB and µ̃AB. Then with numerous counts, (1)
allows to write the observed counts in terms of the ”true” ones:





µ̃AB = (1− τ)2µAB +
τ

3
(1− τ)(µAB + µAB) +

τ2

9
µAB

µ̃AB = (1− τ)2µAB +
τ

3
(1− τ)(µAB + µAB) +

τ2

9
µAB

µ̃AB = (1− τ)2µAB +
τ

3
(1− τ)(µAB + µAB) +

τ2

9
µAB

µ̃AB = (1− τ)2µAB +
τ

3
(1− τ)(µAB + µAB) +

τ2

9
µAB

Which one can rewrite:




µ̃AB

µ̃AB

µ̃AB

µ̃AB


 =




(1− τ)2 τ
3
(1− τ) τ

3
(1− τ) τ2

9
τ
3
(1− τ) (1− τ)2 τ2

9

τ
3
(1− τ)

τ
3
(1− τ) τ2

9
(1− τ)2 τ

3
(1− τ)

τ2

9

τ
3
(1− τ) τ

3
(1− τ) (1− τ)2







µAB

µAB

µAB

µAB



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Or again:




µ̃AB

µ̃AB

µ̃AB

µ̃AB


 =

τ

3
(1− τ)




3

τ
(1− τ) 1 1 ( 3

τ
(1− τ))−1

1 3

τ
(1− τ) ( 3

τ
(1− τ))−1 1

1 ( 3
τ
(1− τ))−1 3

τ
(1− τ) 1

( 3
τ
(1− τ))−1 1 1 3

τ
(1− τ)







µAB

µAB

µAB

µAB




The matrix in the middle is of the following form:




a 1 1 1

a

1 a 1

a
1

1 1

a
a 1

1

a
1 1 a


 with a =

3

τ
(1− τ), of inverse matrix:

a

(a2 − 1)2




a2 −a −a 1
−a a2 1 −a
−a 1 a2 −a
1 −a −a a2




Thus, after matrix inversion:




µAB

µAB

µAB

µAB


 = (

τ

3
(1−τ))−1

3

τ
(1− τ)

(( 3
τ
(1− τ))2 − 1)2




( 3
τ
(1− τ))2 − 3

τ
(1− τ) − 3

τ
(1− τ) 1

− 3

τ
(1− τ) ( 3

τ
(1− τ))2 1 −3 3

τ
(1− τ)

− 3

τ
(1− τ) 1 ( 3

τ
(1− τ))2 − 3

τ
(1− τ)

1 − 3

τ
(1− τ) − 3

τ
(1− τ) ( 3

τ
(1− τ))2







µ̃AB

µ̃AB

µ̃AB

µ̃AB




Or:




µAB

µAB

µAB

µAB


 =

9

(8τ2 − 18τ + 9)2




9(1− τ)2 −3τ(1− τ) −3τ(1− τ) τ2

−3τ(1− τ) 9(1− τ)2 τ2 −3τ(1− τ)
−3τ(1− τ) τ2 9(1− τ)2 −3τ(1− τ)

τ2 −3τ(1− τ) −3τ(1− τ) 9(1− τ)2







µ̃AB

µ̃AB

µ̃AB

µ̃AB




This leads to the reformulation of the initial system:
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



µAB =
9

(8τ2 − 18τ + 9)2
[
9(1− τ)2µ̃AB − 3τ(1− τ)(µ̃AB + µ̃AB) + τ2µ̃AB

]

µAB =
9

(8τ2 − 18τ + 9)2
[
9(1− τ)2µ̃AB − 3τ(1− τ)(µ̃AB + µ̃AB) + τ2µ̃AB

]

µAB =
9

(8τ2 − 18τ + 9)2
[
9(1− τ)2µ̃AB − 3τ(1− τ)(µ̃AB + µ̃AB) + τ2µ̃AB

]

µAB =
9

(8τ2 − 18τ + 9)2
[
9(1− τ)2µ̃AB − 3τ(1− τ)(µ̃AB + µ̃AB) + τ2µ̃AB

]

(2)

Based on the same hypotheses, the estimated log-means can be re-examined to take this error
rate into account. Contrast can then be used to test if some of them are significantly different
from 0 or not. For instance, if µAB is not significantly different from 0, then it means that A
is probably never edited before B is - unless µAB also does not significantly differ from 0, then
whether sites A and B are simultaneously edited, or they are both never edited.

A.3 Impact of the second condition on the maturation at one site

Recall that, with two conditions, the model can be written as follows:





log(µABY i) = µ0 +A+B +AB + Y +AY +BY +ABY

log(µABY i) = µ0 +A+ Y +AY

log(µABY i) = µ0 +B + Y +BY

log(µABY i) = µ0 + Y

log(µABXi) = µ0 +A+B +AB

log(µABXi) = µ0 +A

log(µABXi) = µ0 +B

log(µABXi) = µ0

Thus, one can derive the effect of the condition Y compared to condition X on the maturation
of site A (or, symmetrically, B) by looking at the ratio (or log-difference) between the count of
reads having site A matured and the count of reads with site A non-matured, and then looking
at the difference between the two conditions:

CY→A =
[
(log(µABY i) + log(µABY i))− (log(µABY i) + log(µABY i))

]

−
[
(log(µABXi) + log(µABXi))− (log(µABXi) + log(µABXi))

]

=
[
(µ0 +A+B +AB + Y +AY +BY +ABY + µ0 +A+ Y +AY )

− (µ0 +B + Y +BY + µ0 + Y )
]
−
[
(µ0 +A+B +AB + µ0 +A)− (µ0 +B + µ0)

]

= (2A+AB + 2AY +ABY )− (2A+AB)

= 2AY +ABY
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B comaturationTracker package

B.1 Installation

To install the comaturationTracker R package, run the following code:

1 install.packages("devtools")

2 library(devtools)

3 devtools :: install_github("SimiliSerpent/comaturationTracker")

4 library(comaturationTracker)

B.2 Runtime

I present in Table 1 the runtime of the different functions of the package. Wild-type RNAs
are used as input, along with the list of 43 editing and 25 splicing maturation sites.

Function Runtime Input size

loadReads() 51.90 sec 6199156 reads
getStates() 22.66 min 386885 reads

buildCountsDF() 1.07 min 386885x68 matrix

Table 1: Runtime of different functions in the comaturationTracker package.
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B.3 List of co-maturations found

The list of co-maturations found with our new method in the WT and in the PNP-mutant are
shown in Table 2 and 3, respectively.

Site A Site B p-value Adjusted p-value
Type Position/Range Type Position/Range

editing 116281 editing 116290 5.601000× 10−33 6.889230× 10−31

editing 12707 splicing 11939-12653 7.437862× 10−19 4.574285× 10−17

editing 116281 editing 116494 3.775895× 10−16 1.548117× 10−14

editing 116290 editing 116494 6.808637× 10−16 2.093656× 10−14

editing 37092 editing 37161 3.334053× 10−12 8.201771× 10−11

editing 95608 editing 95644 1.380346× 10−11 2.829709× 10−10

editing 95608 editing 95650 2.145083× 10−10 3.769217× 10−09

editing 116494 editing 116785 5.260672× 10−09 8.088283× 10−08

editing 95608 splicing 95703-96387 1.339157× 10−08 1.830181× 10−07

editing 96579 editing 96698 7.217350× 10−08 8.877341× 10−07

editing 63985 editing 64109 1.471742× 10−07 1.543392× 10−06

editing 94999 editing 95644 1.631227× 10−07 1.543392× 10−06

editing 95644 editing 95650 1.527332× 10−07 1.543392× 10−06

editing 94999 editing 95650 1.853527× 10−07 1.628456× 10−06

editing 116290 editing 116785 3.014314× 10−07 2.471737× 10−06

editing 95608 editing 96579 3.815855× 10−07 2.933439× 10−06

editing 95650 editing 96579 4.247158× 10−07 3.072944× 10−06

editing 96419 splicing 95703-96387 6.534599× 10−07 4.465309× 10−06

editing 96698 splicing 95703-96387 8.514756× 10−07 5.512184× 10−06

editing 96579 splicing 95703-96387 1.178918× 10−06 7.250346× 10−06

editing 96579 editing 97016 1.552259× 10−06 9.091803× 10−06

editing 94999 editing 95608 1.698825× 10−06 9.497977× 10−06

editing 116290 editing 117166 3.225854× 10−06 1.725131× 10−05

editing 95608 editing 96698 3.958034× 10−06 2.028492× 10−05

editing 95644 splicing 95703-96387 4.225503× 10−06 2.078948× 10−05

editing 69942 splicing 70138-70652 1.630433× 10−05 7.713202× 10−05

editing 95650 splicing 95703-96387 1.937094× 10−05 8.824539× 10−05

editing 96419 editing 96579 2.556382× 10−05 1.122982× 10−04

editing 94622 editing 97016 2.754275× 10−05 1.168192× 10−04

editing 95644 editing 96698 3.992642× 10−05 1.612055× 10−04

editing 95650 editing 96698 4.062903× 10−05 1.612055× 10−04

editing 116281 editing 116785 1.070179× 10−04 4.113501× 10−04

editing 95644 editing 96579 1.243285× 10−04 4.580159× 10−04

editing 116494 editing 117166 1.266060× 10−04 4.580159× 10−04

editing 116281 editing 117166 1.334544× 10−04 4.689970× 10−04

splicing 74847-75650 splicing 76489-77197 2.537521× 10−04 8.669864× 10−04

editing 95650 editing 97016 3.186044× 10−04 1.059144× 10−03

editing 95608 editing 96419 6.677647× 10−04 2.161449× 10−03

editing 95650 editing 96419 9.864158× 10−04 3.111004× 10−03

editing 96419 editing 96698 1.286260× 10−03 3.955248× 10−03

editing 94999 editing 96698 1.613005× 10−03 4.839016× 10−03

editing 97016 splicing 95703-96387 1.658236× 10−03 4.856262× 10−03

editing 96419 editing 97016 1.738506× 10−03 4.972936× 10−03

Table 2: List of co-maturations found in the WT using the comaturationTracker R package.
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Site A Site B p-value Adjusted p-value
Type Position/Range Type Position/Range

editing 116281 editing 116290 2.055134× 10−38 2.794982× 10−36

editing 63985 editing 64109 2.506005× 10−29 1.704083× 10−27

editing 116290 editing 116494 3.046326× 10−24 1.381001× 10−22

editing 95608 editing 95650 3.608106× 10−19 1.226756× 10−17

editing 95644 editing 95650 1.578165× 10−18 4.292610× 10−17

editing 95608 editing 95644 5.105095× 10−17 1.157155× 10−15

editing 116281 editing 116494 2.213633× 10−16 4.300772× 10−15

editing 116494 editing 116785 3.804978× 10−15 6.468462× 10−14

editing 12707 splicing 11939-12653 6.030501× 10−15 9.112757× 10−14

editing 96579 editing 96698 1.033457× 10−14 1.405502× 10−13

editing 94999 editing 95650 2.658270× 10−14 3.286589× 10−13

editing 116281 editing 116785 2.926917× 10−14 3.317173× 10−13

editing 37092 editing 37161 5.542289× 10−13 5.798086× 10−12

editing 95608 splicing 95703-96387 1.607115× 10−11 1.561197× 10−10

editing 94999 editing 95608 3.292122× 10−10 2.984857× 10−09

editing 96698 editing 97016 4.085608× 10−10 3.472767× 10−09

editing 116290 editing 116785 5.761951× 10−10 4.609561× 10−09

editing 96579 splicing 95703-96387 1.876296× 10−09 1.417646× 10−08

editing 96698 splicing 95703-96387 2.304918× 10−09 1.649836× 10−08

editing 96579 editing 97016 3.519788× 10−09 2.393456× 10−08

editing 95608 editing 96579 4.350625× 10−09 2.817547× 10−08

editing 95650 splicing 95703-96387 9.499729× 10−09 5.872560× 10−08

editing 95644 splicing 95703-96387 2.494577× 10−08 1.475054× 10−07

editing 94999 editing 95225 3.584929× 10−08 1.875194× 10−07

editing 94999 editing 95644 3.324331× 10−08 1.875194× 10−07

editing 96419 splicing 95703-96387 3.527716× 10−08 1.8751942× 10−07

editing 95225 editing 95608 9.751609× 10−08 4.736496× 10−07

editing 95608 editing 96698 9.715398× 10−08 4.736496× 10−07

editing 95644 editing 96579 1.654067× 10−07 7.757005× 10−07

editing 95650 editing 96579 2.224292× 10−07 1.008346× 10−06

editing 94999 splicing 95703-96387 5.667863× 10−07 2.486546× 10−06

editing 96419 editing 96579 7.520987× 10−07 3.177987× 10−06

editing 116494 editing 117166 7.711292× 10−07 3.177987× 10−06

editing 95608 editing 97016 2.182530× 10−06 8.730119× 10−06

editing 95644 editing 96698 3.105333× 10−06 1.206644× 10−05

editing 94999 editing 96419 4.637217× 10−06 1.751838× 10−05

editing 97016 splicing 95703-96387 5.612643× 10−06 2.063026× 10−05

editing 95650 editing 96698 6.304477× 10−06 2.256339× 10−05

editing 116290 editing 117166 9.502202× 10−06 3.313588× 10−05

splicing 74847-75650 splicing 76489-77197 1.141289× 10−05 3.880384× 10−05

editing 95650 editing 97016 1.285807× 10−05 4.265116× 10−05

editing 95225 editing 95650 1.568623× 10−05 5.079351× 10−05

editing 25779 editing 25992 1.913574× 10−05 6.052233× 10−05

editing 95650 editing 96419 2.262315× 10−05 6.992609× 10−05

editing 95608 editing 96419 4.553058× 10−05 1.376035× 10−04

editing 116281 editing 117166 5.445590× 10−05 1.610001× 10−04

editing 94999 editing 96579 7.981105× 10−05 2.309426× 10−04

editing 69942 splicing 70138-70652 8.767131× 10−05 2.484021× 10−04

editing 96419 editing 97016 1.447213× 10−04 4.016755× 10−04

editing 95644 editing 96419 1.844770× 10−04 4.934014× 10−04

editing 95644 editing 97016 1.850255× 10−04 4.934014× 10−04

editing 95225 editing 95644 3.545197× 10−04 9.272054× 10−04

editing 117166 editing 118858 5.009070× 10−04 1.285346× 10−03

editing 96419 editing 96698 5.143193× 10−04 1.295323× 10−03

Table 3: List of co-maturations found in the PNP-mutant.
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B.4 Effect of normalization and replicate parameter

Figure 9: Comparison of methodological designs - From Left to Right: With DESeq2
normalization, without replicate effect - Without DESeq2 normalization, without replicate effect -

Without DESeq2 normalization, with replicate effect. From Top to Bottom: DESeq2 dispersion plot
- Principal Component Analysis - Venn diagram comparing the co-maturations found here and with
the Fisher method - Raw p-values histogram - Adjusted p-values of all co-maturations found either
with Fisher (p-values on Y axis) or Contrast method (p-values on X axis) (black lines materialize the

5× 10−3 thresholds).
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Chapter E

Résumé détaillé

E.1 Sur quoi et avec qui ?

Pendant ma recherche doctorale, à la croisée de la biologie, des statistiques, de la bioin-

formatique et de l’informatique, j’ai travaillé sur le développement et l’application de modèles

statistiques, d’algorithmes et de méthodes pour l’analyse et l’interprétation des données biolo-

giques à haut débit (séquençage). J’ai soumis ou publié trois articles de recherche en tant que

premier auteur, ainsi qu’un autre article en tant que second auteur :

1. Liehrmann et al. [2021] est un article de recherche de modélisation où, en collaboration

avec Guillem Rigaill et Toby Hocking (Université du Nord de l’Arizona), j’ai comparé

différents modèles de détection de ruptures multiples et des heuristiques bioinformatiques

spécialisées dans le contexte de la détection de marques épigénétiques ;

2. Liehrmann et al. [2023] est un article de recherche méthodologique et appliqué où, en

collaboration avec Étienne Delannoy, Guillem Rigaill et Benoît Castandet, j’ai introduit

DiffSegR, une méthode conçue pour identifier les différences d’expression à l’échelle du

transcriptome entre deux conditions biologiques dans les données de séquençage d’ARN ;

3. Liehrmann and Rigaill [2023] est un article de recherche algorithmique où, en collaboration

avec Guillem Rigaill, j’ai introduit Ms.FPOP, un algorithme de détection de ruptures

multiples rapide et exact incorporant une pénalité à multi-échelles [Verzelen et al., 2020] ;
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4. Guilcher et al. [2021] est un article de recherche appliqué où nous avons étudié la coordina-

tion des événements de maturation de l’ARN des chloroplastes à l’échelle du transcriptome

en utilisant des données de séquençage d’ARN basées sur Nanopore.

Ce dernier article a été rendu possible grâce au développement d’une méthode appelée comatura-

tionTrackeR. Ce projet collaboratif a débuté avec Chloé Seyman, une étudiante en licence, et s’est

poursuivi avec Benjamin Vacus, un étudiant en master. J’ai eu l’opportunité de co-superviser

Chloé et Benjamin pendant les deux premières années de ma recherche doctorale.

Dans les chapitres suivants de ce manuscrit, je propose différentes perspectives sur un ou

plusieurs de ces articles de recherche, qui peuvent être trouvés en annexe. Je recommande au

lecteur de lire d’abord les chapitres introductifs 3 et 4 dans leur intégralité, puis de se référer à la

Figure E.1 pour une investigation plus approfondie d’un problème particulier. Comme le montre

la Figure E.1, les lecteurs peuvent choisir de lire les chapitres 5 et 6 dans l’ordre qui leur convient

le mieux. Néanmoins, il peut être bénéfique de se familiariser d’abord avec le modèle standard

de ruptures multiples présenté dans le Chapitre 5, car il est au cœur de la méthode DiffSegR

introduite dans le Chapitre 6.

E.2 Chapitre 3 : Introduction

Ma thèse explore principalement le transcriptome, qui désigne l’ensemble des molécules

d’ARN générées dans une cellule, un tissu ou un organisme spécifique à un stade de développe-

ment ou physiologique particulier. Deux de mes articles de recherche, Liehrmann et al. [2023]

et Guilcher et al. [2021], portent directement sur son analyse. Pour contextualiser ces articles,

dans le Chapitre 3, qui fait également office d’introduction générale, j’illustre une perspective

multi-échelle de l’analyse du transcriptome (Section 3.2.1), allant du gène, événement, paire d’évé-

nements, jusqu’aux isoformes. Je souligne une série de défis comprenant des facteurs techniques,

statistiques et biologiques rencontrés à chaque échelle (Section 3.2.2). Ces défis sont particuliè-
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chapitres: sens de lecture:

normal
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3. Introduction générale

Appendix C: 
Liehrmann et al. 2023

Appendix D:
Guilcher, Liehrmann, 
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Figure E.1 ś Dépendances entre les sections de ce manuscrit.
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rement aigus au niveau des isoformes. En conclusion, je suggère deux stratégies, Stratégie 1 et

Stratégie 2, pour améliorer l’analyse du transcriptome (Section 3.2.3). Avec mes co-auteurs, nous

avons employé la Stratégie 1 et la Stratégie 2 dans Liehrmann et al. [2023]. Nous avons également

appliqué la Stratégie 2 dans Guilcher et al. [2021].

E.2.1 Une feuille de route pour améliorer l’analyse du transcriptome

Dans la Section 3.2.2, je présente comment l’étude d’un nombre croissant d’événements le

long des molécules d’ARN peut rendre l’analyse du transcriptome plus complexe d’un point de

vue statistique, technique et biologique. Pour contourner la complexité exponentielle de l’étude de

chaque isoforme individuelle tout en permettant aux chercheurs d’avoir un aperçu plus détaillé

de la régulation génique par rapport à une analyse agrégée au niveau du gène, une approche

prometteuse consiste à :

Strategy 1

� développer des méthodes qui examinent simultanément un nombre petit d’événements.

Cela peut être réalisé soit en étudiant chaque événement indépendamment, soit en analysant

conjointement quelques événements (par exemple, par paires). Dans ce contexte, l’utilisation

de technologies de lectures dites longues peut être bénéfique pour surveiller conjointement des

événements d’ARN qui peuvent être séparés par des centaines, voire des milliers de nucléotides.

Une autre considération est que la précision des résultats de l’analyse à chaque échelle dépend

fortement de la qualité des annotations, qui sont connues pour être incomplètes pour les gènes,

les événements et par conséquent, les isoformes. Ainsi, pour améliorer l’analyse du transcriptome,

une autre approche prometteuse consiste à :

Strategy 2

� développer des méthodes qui analysent le transcriptome sans se fier aux annotations

préexistantes.
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Ces techniques sont communément reconnues comme des approches data-driven.

E.3 Chapitre 4 : Formalisation de la question biologique et pro-

position d’un modèle de base

Dans ce chapitre, je présente les questions biologiques que j’ai étudiées, ainsi que les pro-

blèmes statistiques correspondants, et les modèles statistiques que j’ai proposés pour aborder ces

problèmes spécifiques. Mon objectif était de proposer des modèles simples qui faciliteraient l’in-

terprétation des données pour les biologistes, et par conséquent, amélioreraient la communication

interdisciplinaire. De plus, j’ai cherché à tirer parti des méthodologies existantes chaque fois que

cela était possible. Plus précisément, j’ai appris grâce à une première expérience sur la détection

de marques épigénétiques (Section 4.2), puis confirmé par une autre expérience sur la détection

des régulations de l’ARN (Section 4.3), que des modèles plus simples, bien que parfois mathé-

matiquement insatisfaisants, peuvent être simultanément (1) plus faciles à comprendre pour les

non-spécialistes, (2) plus faciles à mettre en œuvre et à calibrer, et (3) étonnamment efficaces,

voire supérieurs pour répondre à la question biologique. Par conséquent, je pense que de tels

modèles devraient être privilégiés. De plus, reconnaissant que dans le pire des cas, ces modèles

peuvent être moins efficaces, ils jouent néanmoins un rôle crucial en justifiant la nécessité de

développer et d’implémenter des modèles plus sophistiqués. Ce principe de parcimonie, auquel je

souscris pleinement, m’a guidé tout au long de ma recherche doctorale, en particulier lorsque j’ai

travaillé sur la détection des régulations de l’ARN (Section 4.3) et des co-maturations (Section

4.4).

E.3.1 Résumé du chapitre en un coup d’œil

1. Dans la Section 4.2, je discute du problème de la détection des marques épigénétiques, en

partant de l’objectif biologique (Question biologique 1) et en procédant à la formulation
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du problème statistique respectif (Problème statistique 1). Un état de l’art des méthodes

de pointe, récemment conçues pour aborder le problème statistique, est ensuite exposé.

Finalement, je présente un modèle de base (Modèle de base 1), qui repose purement sur

des principes conventionnels de transformation et de segmentation du signal, développés

respectivement dans les années 1940 et 1980. L’efficacité de cette solution de base est obser-

vée comme étant aussi précise, sinon supérieure, aux avancées récentes. Cette comparaison

est élucidée dans Liehrmann et al. [2021].

2. Dans la Section 4.3, reprenant la structure de la Section 4.2, je m’intéresse au problème

de la détection des régulations de l’ARN. Finalement, je rappelle le modèle standard de

ruptures multiples précédemment utilisé dans la détection des marques épigénétiques. Une

fois de plus, ce modèle est démontré supérieur aux méthodes de pointe dans la détection

des régulations de l’ARN, comme détaillé dans Liehrmann et al. [2023].

3. Dans la Section 4.4, je présente brièvement le problème de l’étude de la coordination des

événements d’ARN, un problème sur lequel j’ai co-supervisé deux stagiaires durant la

première et la deuxième année de ma thèse.

E.4 Chapitre 5 : Détection de ruptures multiples

Avant de commencer cette thèse, ma vision succincte d’un projet interdisciplinaire réussi

impliquait le développement d’un nouveau modèle statistique ou d’un nouvel algorithme pour

chaque nouveau projet biologique (la question et les données). Cependant, cette vision a rapi-

dement évolué. Comme je l’ai démontré dans le Chapitre 4, il peut être judicieux d’économiser

sur le développement en proposant ou en adaptant un modèle ou algorithme existant et éprouvé.

Néanmoins, faire confiance aux méthodologies existantes implique également de continuer à dé-

velopper des modèles et algorithmes intéressants. Tout au long de ma recherche doctorale, j’ai

mis en pratique cette vision révisée de la recherche interdisciplinaire. Dans ce chapitre, je com-
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mence par introduire un modèle standard de ruptures multiples que j’ai employé dans la détec-

tion de marques épigénétiques [Liehrmann et al., 2021] et la détection de régulations de l’ARN

[Liehrmann et al., 2023], avec des résultats prometteurs. Dans la seconde partie de ce chapitre,

j’introduis un nouvel algorithme de détection de ruptures multiples, Ms.FPOP, qui intègre une

pénalité multi-échelle avec de meilleures propriétés statistiques que les pénalités précédemment

introduites dans la littérature [Liehrmann and Rigaill, 2023].

E.4.1 Détection des ruptures dans la moyenne

La détection de ruptures multiples, un problème de régression, est un domaine de recherche

actif depuis les années 1950 [Page, 1954, 1957, Girshick and Rubin, 1952]. Initialement motivé

par un besoin de contrôle de qualité dans les opérations de fabrication, il est désormais désormais

considéré comme l’un des « grands défis de l’inférence ż dans l’analyse de données massives, selon

le Conseil National de Recherche des États-Unis [Council et al., 2013]. La détection de ruptures

multiples est importante dans un large éventail de disciplines, y compris la génomique [Muggeo

and Adelfio, 2010], les neurosciences [Koepcke et al., 2016], l’économétrie [Bai, 1997], la sécurité

des réseaux informatiques [Tartakovsky, 2014], et la recherche climatique [Reeves et al., 2007].

Le problème de détection de ruptures multiples le plus typique et le plus répandu est l’iden-

tification des changements abrupts dans la moyenne d’un signal univarié ordonné, comme ceux

manifestés dans le temps ou le long du génome. Ces décalages soudains, connus sous le nom de

ruptures, délimitent des segments caractérisés par un signal homogène. Dans le contexte de ma

recherche, ces ruptures peuvent signifier soit le début/la fin d’un pic dans les données ChIP-Seq,

soit le début/la fin d’une région différentiellement exprimée dans les données RNA-Seq issues

de deux conditions biologiques distinctes. Dans les deux scénarios, ces ruptures révèlent des

événements biologiques, tels que des régions génomiques enrichies en marqueurs épigénétiques

H3K4me3 ou des disparités dans les processus de maturation de l’ARN.

La Figure E.2.A illustre un exemple de profil de transcription différentielle issu d’une ex-
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lot, 2018, Arlot et al., 2019] pour l’estimation du signal et la détection de ruptures multiples. Son

efficacité computationnelle est particulièrement adaptée aux exigences intensives de l’analyse des

données génomiques, où il est courant de traiter des profils avec des millions d’observations [Ri-

gaill, 2015, Maidstone et al., 2016]. Enfin, des preuves empiriques issues à la fois de simulations

[Fearnhead and Rigaill, 2020] et d’applications réelles offrent fréquemment des résultats satisfai-

sants, démontrant son efficacité. Notamment, elle est déjà considérée comme l’état de l’art dans

de nombreuses applications génomiques [Lai et al., 2005, Hocking et al., 2013a, Cleynen et al.,

2014b, Hocking et al., 2016].

E.4.2 Résumé du chapitre en un coup d’œil

1. Dans la Section 5.3, je présente un modèle standard pour la détection de ruptures multiples,

ainsi que le problème de vraisemblance pénalisée associé. J’ai mis en œuvre ce modèle sur

des données de ChIP-Seq dans Liehrmann et al. [2021], et sur des données de RNA-Seq

dans Liehrmann et al. [2023], respectivement comme solutions pratiques pour la détection

de pics et de régions différentiellement exprimées candidates. Divers algorithmes de pro-

grammation dynamique visant à maximiser la vraisemblance pénalisée ont été proposés

au fil des ans. Je présente quelques-uns de ces algorithmes dans la seconde partie de cette

première section.

2. Dans la Section 5.5, je présente une nouvelle pénalité multi-échelle, introduite par Verzelen

et al. [2020], qui possède des propriétés statistiques supérieures en termes de détection et de

localisation par rapport aux autres pénalités documentées dans la littérature. Par la suite,

j’introduis un nouvel algorithme de segmentation, Ms.FPOP, qui utilise des techniques

d’élagage fonctionnel pour minimiser efficacement un critère des moindres carrés avec cette

pénalité multi-échelle comme présenté dans Liehrmann and Rigaill [2023].
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E.5 Chapitre 6 : Application à l’analyse multi-échelle du trans-

criptome

Ce chapitre met en lumière l’aspect ingénierie de ma thèse. Je commence par formuler ma

stratégie pour une analyse précise et rigoureuse des différences d’expression et des co-maturations.

Cette stratégie s’appuie sur le modèle DESeq2 et inclut le contrôle des différences évaluées, par

exemple, en utilisant une procédure post-hoc. Par la suite, je détaille comment j’ai intégré cette

stratégie dans deux packages RÐDiffSegR et comaturationTrackeR. Ces outils illustrent l’inté-

gration réussie de méthodologies analytiques complexes dans des solutions logicielles pratiques

et conviviales.

E.5.1 Analyse différentielle

Un aspect important de la détection transcriptomique des différences d’expression et des co-

maturations est la quantification des changements systématiques entre deux groupes, également

connue sous le nom d’analyse différentielle. Dans le premier cas, le changement concerne le niveau

d’expression d’un site en fonction de la condition biologique ; dans le second, il se rapporte au

niveau de maturation d’un site, en fonction de l’état de maturation d’un second site. Quantifier

ces changements est un défi car les niveaux d’expression et de maturation d’un site peuvent varier

entre les échantillons. Pour tenir compte de cette variabilité, à la fois technique et biologique, il

est crucial de modéliser efficacement les comptages par événement ou par paire d’événements. Le

modèle linéaire généralisé avec une distribution négative binomiale pour les données RNA-Seq,

tel qu’implémenté dans le package R DESeq2 Love et al. [2014], réalise cette tâche de manière

satisfaisante.
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E.5.2 Résumé du chapitre en un coup d’œil

1. La Section 6.3 présente les éléments clés du modèle statistique des comptages par gènes

implémenté dans DESeq2.

2. Dans la Section 6.4, je dévoile comment utiliser le modèle statistique de DESeq2 pour

évaluer les régions différentiellement exprimées candidates identifiées à l’aide de FPOP.

Ceci est suivi par une courte présentation de DiffSegR, un package R qui intègre le Modèle

de Base 2 et DESeq2 comme montré dans Liehrmann et al. [2023].

3. Dans la Section 6.5, je fournis une brève introduction de comaturationTrackeR, une mé-

thode qui existe sous deux formes : un pipeline R publié [Guilcher et al., 2021] et un package

R (toujours en développement). La seconde version utilise également le modèle statistique

de DESeq2 pour évaluer les co-maturations.

E.6 Chapitre 7 : Discussion

Dans le Chapitre 7, je présente quelques perspectives relatives aux études menées au cours

de cette thèse.
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