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1

INTRODUCTION

The Internet has become an omnipresent and indispensable part of our lives, expanding

at an astonishing pace. Its global reach and influence continue to grow exponentially,

fundamentally transforming the way we communicate, access information, and conduct

business. Recent statistics project a mind-boggling 175 zettabytes of generated data

worldwide by 2025, with an annual growth rate of approximately 61% (IDC, 2018). More-

over, the number of Internet users has surpassed 4.9 billion, accounting for nearly 63%

of the world’s population (ITU, 2021). These remarkable figures underscore the relent-

less expansion of the internet, necessitating a comprehensive exploration and analysis to

comprehend its profound and far-reaching impact on society.

With the evolution of the Internet, malicious actors have also evolved their techniques to

exploit vulnerabilities for financial gain, data theft, extortion, and denial of service attacks.

Intrusion Detection Systems (IDSs) play a vital role in monitoring and analyzing network

traffic to identify and respond to unauthorized or suspicious activities, as these attacks

pose significant threats to network security and integrity.

The proliferation of Internet of Things (IoT) devices, driven by advancements in computer

technology and affordability, has resulted in a vast network generating massive amounts

of data. However, relying solely on cloud-based processing for IoT data presents chal-

lenges such as latency, bandwidth constraints, and privacy concerns. Processing data at

the edge, closer to its source, has emerged as a solution to overcome these limitations,

enabling faster response times and reduced network congestion.

IoT devices have revolutionized various industries and transformed our daily lives, but

they have also introduced unprecedented security challenges. IDSs play a critical role

in identifying and mitigating these threats, ensuring the security and integrity of IoT net-

works.

Machine learning (ML) is a fundamental aspect of artificial intelligence that enables com-

putational systems to learn and improve from data without explicit programming. In the

context of IDS, ML techniques are employed to identify and classify malicious activities

1



2 CHAPTER 1. INTRODUCTION

and network attacks by analyzing network traffic data. Through training on extensive

datasets, ML algorithms can recognize and flag suspicious or anomalous behavior.

However, deploying ML models for IDS faces two significant challenges. Firstly, the com-

putational demands of these models, coupled with the vastness of the datasets involved,

present obstacles, especially for resource-constrained IoT devices. Lightweight and ef-

ficient ML algorithms are crucial to ensure their suitability without compromising perfor-

mance.

Secondly, training ML models for IDS heavily relies on large-scale datasets comprising

real network traffic. However, privacy concerns surrounding sensitive information in these

datasets pose challenges for data collection and sharing. Developing novel learning

algorithms that strike a balance between the necessity for extensive training data and

privacy-preserving techniques is essential to generate accurate models while safeguard-

ing privacy. Addressing the challenges of computational overhead and privacy-preserving

training processes concurrently represents a critical research endeavor for the effective

development and deployment of IDS within IoT environments.

1.1/ MOTIVATION

Effective IDSs are crucial in today’s interconnected and digitized world. Networks face

complex and sophisticated attacks, posing significant threats to their security and in-

tegrity. Traditional IDS approaches have evolved to adapt to emerging threats, utilizing

techniques such as signature-based detection, anomaly-based detection, and behavior-

based detection. However, these approaches struggle to keep pace with the evolving

threat landscape and the scale of modern networks.

The challenges of IDS are amplified in IoT networks, where limited computational power

and the sheer volume of network traffic pose additional hurdles. Novel learning-based

IDS, particularly those leveraging ML algorithms, have emerged as promising solutions.

ML empowers IDS to autonomously learn from vast amounts of data and adapt to the

network environment. Despite the evolution of lightweight IDSs to provide security for

thin nodes within IoT networks operating in untrusted environments, there is still a cru-

cial missing component: an efficient sampling algorithm that complements the IDS and

minimizes resource strain. Acknowledging the challenges imposed by limited resources

and the impracticality of analyzing every packet, our research endeavors to develop a

lightweight sampling algorithm specifically designed for thin IoT nodes. Our goal is to

create an algorithm that operates at low sampling ratios, enabling us to extract represen-

tative packets for analysis. By addressing these challenges, our aim is to enhance the

security posture of thin IoT nodes, ensuring the integrity and representativeness of the
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collected data samples.

Given the resource constraints faced by IoT devices and the ever-evolving threat land-

scape, there is an urgent need to address the inherent challenges and enhance the ef-

fectiveness of IDSs in lightweight IoT networks. To tackle these obstacles, we acknowl-

edge the significance of integrating sampling and intrusion detection through a cross-

layer design approach. By embracing the potential of distributed (federated) processes in

IDS, we seek to enable collaboration among multiple IoT devices in training models while

preserving data privacy and enabling efficient knowledge sharing across the network.

This approach not only addresses the limitations of individual devices but also promotes

collaboration and information sharing to combat sophisticated attacks, while preserving

privacy by eliminating the need for nodes to share their sensitive traffic datasets.

Motivated by the challenges encountered in anomaly-based intrusion detection, particu-

larly the persistent issue of false positives, we aim to explore the potential of ensemble

learning techniques to mitigate this problem. Previous research has shown that employ-

ing ensemble learning, such as a two-stage architecture combining unsupervised and

supervised methods, can effectively reduce false positives. However, the suitability of

unsupervised learning and the availability of labeled data pose limitations. Considering

these factors and our research’s focus on a semi-supervised novelty detection task with

a limited labeled dataset, we propose a lightweight, semi-supervised, federated IDS for

IoT devices. Our motivation stems from the desire to enhance the detection capabilities

of IoT security systems while maintaining a low false positive rate over time, ensuring

reliable and sustainable protection against malicious activities.

In conclusion, the motivations behind our research are driven by the need to overcome

resource constraints, enhance the security posture of IoT networks, and address the

evolving threat landscape. By developing efficient sampling algorithms, incorporating

cross-layer design, and leveraging federated learning and ensemble techniques, we aim

to create robust intrusion detection mechanisms for lightweight IoT environments. Our ul-

timate goal is to ensure the resilience, reliability, and sustainability of IoT-based systems,

safeguarding them against sophisticated attacks and protecting the privacy and integrity

of IoT data.

1.2/ RESEARCH OBJECTIVES

Our research aims to address the challenges posed by limited computational power,

memory constraints, and the dynamic nature of IoT networks in order to enhance the

effectiveness and efficiency of IDS. By leveraging advanced cluster sampling techniques,

federated learning, cross-layer approaches, and ensemble learning, we seek to achieve
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the following objectives

1. Conduct a comprehensive survey on existing sampling algorithms and perform a

thorough comparative analysis in terms of execution speed and accuracy. The main

objective of this survey is to evaluate the performance and effectiveness of various

sampling techniques in capturing network traffic characteristics. Additionally, we

aim to analyze the behavior and robustness of different network features under

diverse sampling strategies and parameters. Moreover, we strive to identify attacks

that exhibit resilience to the sampling process and determine a set of features that

demonstrate greater stability. By providing valuable insights into the strengths and

weaknesses of different sampling techniques, this survey will assist in identifying

the most suitable approach for effective IoT intrusion detection.

2. Develop a novel Cluster-based Sampling technique specifically designed for thin

IoT nodes within IoT networks. By leveraging clustering techniques, our algorithm

will create representative samples from the data stream while considering the lim-

ited resources available. The objective is to overcome the limitations of existing

sampling methods by ensuring high sample representativeness, low sampling er-

ror, and minimal resource utilization. Our proposed Cluster-based Sampling ap-

proach, with its focus on very small sampling ratios, provides an optimized and

privacy-preserving solution that retains the essential characteristics of the traffic.

This research endeavor aims to enhance the security posture of thin IoT nodes by

addressing the challenges associated with sampling in resource-constrained envi-

ronments and providing a tailored solution for lightweight IoT applications.

3. Investigate the application of cross-layer federated learning techniques in the con-

text of intrusion detection in lightweight IoT. We proposed the baseline k-means, a

semi-supervised novelty detection approach, based on the original K-means clus-

tering technique. This technique leverages a small amount of labeled data to es-

tablish a baseline for learning and trains a classifier to label additional unlabeled

data points. To adapt the K-means algorithm for intrusion detection, we adopt the

approach of using a distance measure to a known baseline. This enables the iden-

tification of outliers or observations that significantly deviate from the distribution of

the training data, even if they fall within a high-density region. By integrating these

core ideas of the baseline k-means technique and distance-based anomaly detec-

tion into the cross-layer federated learning framework, we aim to develop a robust

and privacy-preserving IDS for lightweight IoT environments. This integration allows

for the collaborative training of models across multiple IoT devices, enhancing the

overall detection capabilities and enabling efficient adaptation to evolving network

conditions and emerging threats.
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4. Develop cross-layer ensemble learning techniques as the latest evolution to en-

hance the accuracy and precision of IDSs in lightweight IoT networks, as depicted

in Figure 1.1. While our previous contribution, the baseline k-means approach,

effectively utilizes available labeled data to enhance intrusion detection accuracy,

it prioritizes the false-negative rate over the false-positive rate. However, a high

false-positive rate could undermine the trustworthiness of the IDS and compromise

its utility. To mitigate the false positive rate inherent in anomaly-based IDSs, we

propose a heterogeneous ensemble learning approach that incorporates different

models with the baseline k-means approach. This ensemble consists of local nov-

elty detection models assigned to individual workers, which are then integrated us-

ing weighted and voting-based strategies. By embracing this ensemble approach

and pushing the sampling ratios to new lows, we not only improve the classification

of normal and abnormal data points in lightweight IoT networks but also address

the scarcity of labeled regular or benign traffic data. Our research objective is to

present a lightweight, semi-supervised, federated IDS for IoT, specifically designed

to operate following a sampling layer and employing a heterogeneous ensemble

learning strategy.

Figure 1.1: Innovative Evolution in Lightweight IoT IDS Research: Sampling, Federated,
and Ensemble Learning Advancements

1.3/ THESIS ORGANIZATION

The thesis is organized into five chapters, each focusing on specific aspects of intrusion

detection in IoT networks and contributing to the development of robust security mea-
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sures.

• Chapter 1 serves as the introduction, providing an overview of the research topic,

discussing the motivation behind the study, and outlining the research objectives.

It highlights the complexity of attacks in interconnected environments, emphasizes

the need for effective IDSs, and introduces novel learning-based IDS types.

• Chapter 2 focuses on cluster-based sampling, discussing its advantages over tra-

ditional sampling techniques and reviewing related work. The chapter presents the

taxonomy of packet sampling policies, methodology, experiments, and discusses

the implications of cluster-based sampling.

• Chapter 3 introduces the concept of cross-layer federated IDS, addressing chal-

lenges in IoT networks and exploring existing IDS and network attacks. The chap-

ter evaluates lightweight semi-supervised intrusion detection techniques through

experiments, concluding with a summary of findings and implications.

• Chapter 4 integrates ensemble learning techniques into the cross-layer federated

IDS framework. It explains anomaly-based intrusion detection techniques, dis-

cusses ensemble learning methods, and presents the implementation methodology

and experimental results of the cross-layer federated ensemble learning IDS.

• Chapter 5 is the conclusion, providing a summary of the key findings and contri-

butions of the thesis. It highlights the strengths of the proposed approaches and

discusses future research directions for intrusion detection techniques in securing

IoT networks.
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CLUSTER-BASED SAMPLING

2.1/ INTRODUCTION

The rapid emergence of new technologies and applications has resulted in a significant

increase in Internet traffic, both in terms of speed and volume. To meet the growing

demands of businesses, advanced information networks must integrate various technolo-

gies such as distributed storage systems, encryption/decryption mechanisms, and remote

and wireless access. The increased reliance on those information networks opens them

up to security risks from malicious attacks.

These attacks come in many different forms, such as unauthorized intruders attempting

to gain access to protected resources, legitimate users attempting to escalate their privi-

leges (Privilege escalation attacks), or malicious agents trying to disrupt the network and

deny others access to a network’s resources (DDoS attacks). As networks become more

complex and traffic volume increases, malicious attacks become harder to detect and

prevent. Hence the need for IDSs [1].

IDSs play a critical role in ensuring network security by monitoring user activity and de-

tecting security violations based on data patterns. However, the effectiveness of an IDS

is often challenged by the flaws of the network, the complexity of attacks, the diversity of

traffic data sources, and the traffic volume going through the network.

This increased focus on network monitoring and analysis is essential to maintain the

security and integrity of computer networks. By detecting and responding to potential

threats in real-time, IDSs can help prevent data breaches, malware infections, and other

cyberattacks. As technology continues to advance, it is likely that network-based security

systems will become even more sophisticated and effective in protecting against a wide

range of threats.

Real-time network monitoring requires rapid processing and inspection of network traffic,

which is challenging when the traffic is large, and IDSs cannot inspect every incoming

packet. In IoT environments, IDSs must be implemented on programmable devices such

7
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as Field Programmable Gate Arrays (FPGAs). However, IoT devices’ limited computing

and energy resources can affect the IDS performance [2]. Collaborating between IoT

devices and the router can shift the compute load from resource-constrained IoT devices

to the resource edge router and reduce intrusion detection time. However, in the case

of lightweight IoT networks where the nodes possess limited computational and energy

resources, ensuring adequate security becomes a challenge. Implementing a lightweight

IDS becomes crucial in elevating the security level of IoT nodes with resource constraints.

Traditional packet measuring and processing technologies are not practical for the exten-

sive use of high-speed internet, which makes it difficult to apply IDSs to network traffic [3].

One possible solution to this issue is to distribute network packets to multiple IDSs, which

can increase the storage and computing resources of the IDS, although this approach

can be expensive [4, 5]. Another approach is to summarize the data on the fly and store

only the relevant information by filtering the data before applying ML algorithms in IoT

environments [6]. However, the application of ML in IoT environments is a challenging

task due to the computing and energy constraints of IoT devices, and the high compu-

tational needs of modern ML algorithms. Thus, there is a need to filter and summarize

data efficiently to enhance the performance of IDSs in IoT environments, hence the need

for efficient sampling algorithms. It is worth noting that while Lightweight IDS for IoT is

receiving attention from the research community, as will be elaborated in section 2, there

still exists a gap in the development of efficient sampling algorithms for lightweight IDS.

This work aims to address this gap by introducing the first sampling algorithm specifically

designed to enable IoT nodes to implement a lightweight IDS system with minimal impact

on their limited resources.

2.1.1/ DATA SAMPLING

Given the limitations of analyzing every individual incoming packet and the issues previ-

ously outlined, it is paramount to adopt a methodical selection of a statistically represen-

tative subset of network packets, as demonstrated in Figure 2.1. As a result, intrusions

can be identified based on the sampled data instead of analyzing the entire traffic.

Data sampling techniques have been proposed to enhance attack detection accuracy

and reduce network traffic volume [7]. However, data sampling causes intrinsic loss of

information with adverse effects on IDS performance, as demonstrated in multiple studies

[8, 9, 10].

Several studies and benchmarking papers have attempted to evaluate the impact of using

different data sampling policies on intrusion detection accuracy [10, 11, 12]. Silva et

al. [13] established a framework to characterize sampling techniques and evaluate their

efficiency.
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Adaptive sampling algorithms that aim to increase the representation of the samples, and

preserve traffic feature distributions have also been proposed. For instance, Bartos et al.

[14] proposed an adaptive flow-level sampling algorithm that adapts to traffic variations,

and they compare its performance against other sampling techniques. In this chapter,

an experimental comparison of existing sampling techniques is performed based on their

impact on several well-known statistical measures.

Figure 2.1: Packets sampling of network traffic.

2.1.2/ PROBLEM DEFINITION AND MOTIVATION

IDSs are critical for preventing attacks, but the limited resources make it challenging to

manage and monitor the network efficiently. One possible solution to address this problem

is to apply a data sampling algorithm to reduce the amount of traffic that needs to be

processed [15]. Packet sampling provides a dynamic overview of the network and allows

the inference of various estimates such as the number and size of packets, interarrival

delays, and traffic flows. El Sibai et al. [16] provide metrics to assess the quality of a

data sampling algorithm, which include single-pass processing over the data, its memory

consumption, its skewing ability through packet weighting, and the algorithm’s complexity.

Packet sampling is a versatile process that goes beyond merely detecting network intru-

sions. It can also facilitate network management by identifying faulty links and servers,

providing guidance for traffic shaping, and enhancing Quality of Service (QoS).

With the ability to capture and analyze a representative subset of network traffic, packet

sampling offers valuable insights into network behavior, enabling network administrators

to identify and address issues proactively. Several sampling strategies can be employed

to select packets for analysis. These strategies include count-based, time-based, and

content-based sampling decisions. However, in the context of lightweight IoT, achieving

an extremely low sampling ratio is preferable. Nonetheless, finding the delicate balance

between sample representation and sampling rate proves to be a challenging task.

Within this chapter, we conduct an evaluation of various data sampling algorithms and

explore the different sampling decisions available for selecting packets to be analyzed.

Additionally, we propose a cluster-based sampling algorithm that demonstrates supe-
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rior performance compared to other algorithms, particularly for extremely small sampling

rates.

2.1.3/ OBJECTIVE AND CONTRIBUTIONS

The aim of this chapter is to assess the effectiveness of using summarized (sampled)

data for detecting attacks in high-speed networks and to analyze the impact of different

sampling strategies on the accuracy of intrusion detection algorithms, specifically in the

context of lightweight IoT nodes. For this end, we compare statistical measures derived

from the sampled data and the original traffic dataset in order to quantify the degree of

degradation resulting from the sampling process. By evaluating the impact of sampling on

statistical properties such as mean, variance, and distribution, we aim to gain a deeper

understanding of how accurately the sampled data reflects the original traffic dataset’s

characteristics. We also evaluate the behavior and robustness of various network features

under different sampling strategies and parameters, and identify which attacks are more

resilient to the sampling process.

In this chapter, we will first present a comprehensive survey of existing data stream sam-

pling algorithms, followed by an experimental comparison of these methods. Additionally,

we will propose a cluster-based sampling algorithm as an innovative solution. Further-

more, we will highlight research challenges and offer potential solutions based on our

findings, to position our work in the context of the state of the art.

Data sampling is a lossy process and will inevitably introduce distortion to the statistical

distribution of the sampled data, but few studies explore how the network characteristics

estimation varies according to the sampling method used, or how this affects subse-

quent inference processes. Pescape et al. [11] evaluated the use of 2 statistical metrics,

“Hellinger” for similarities and “Fleiss Chi-Square” for classification, to assess the im-

pact of sampling on selected feature sets. Their work concludes that the impact of data

sampling algorithms on the anomaly detection process depends less on the sampling

technique used, and more on the data measurement method.

Pan et al. [17] suggested a method that uses a variable sampling rate and an adaptive

sampling probability for measuring packet sampling based on IP flow. They used Root

Mean Square Error (RMSE) to measure volume anomalies in the size of the IP stream and

the hit detection rate to measure the sequence of variance, Silva et al. [13] developed a

data-sampling framework that adjusts the characteristics and sampling techniques based

on the measurement task, using a sampling taxonomy that determines the granularity,

selection scheme, and selection trigger.

Our contributions include a detailed survey of data sampling algorithms, a comprehen-

sive experimental evaluation of different sampling techniques, and the identification of
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research challenges and potential solutions based on our findings. We also compare

our work with previously published benchmarks, as summarized in Table 2.1, where C1

shows whether the benchmark evaluated all sampling algorithms, C2 represents whether

the benchmark studied the appropriate sampling policy and parameters, C3 indicates

whether the benchmark presented an exhaustive study of the sampling algorithms, C4

shows if the benchmark evaluated the sampling impact on different types of attacks,

C5 shows if the benchmark studied the sampling impact on feature behavior, C6 shows

whether the benchmark analyzed sampling performance with respect to accuracy, and C7

shows whether the benchmark assessed sampling distortion. Furthermore, we introduce

our novel proposal: a cluster-based sampling algorithm. This innovative algorithm acts as

a crucial link between sampling techniques and lightweight IDSs specifically designed for

IoT environments. To substantiate the effectiveness of our proposed algorithm, we delve

into the simulation environment employed in our experiments and present the results we

have obtained. In conclusion, we summarize our findings and engage in a discussion

concerning future trends within the realm of lightweight sampling.

Table 2.1: Comparison of Our Work with Others on Benchmark Criteria.

Reference Year C1 C2 C3 C4 C5 C6 C7
Pescape et al. [11] 2010 ✓ ✓ ✗ ✗ ✓ ✓ ✓

Pan et al. [17] 2012 ✓ ✓ ✗ ✓ ✗ ✗ ✓

Singh et al. [18] 2014 ✓ ✓ ✗ ✗ ✓ ✓ ✓

Silva et al. [13] 2015 ✓ ✓ ✗ ✗ ✗ ✓ ✓

This research 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.2/ RELATED WORK

2.2.1/ STATIC DATA SAMPLING

2.2.1.1/ TAXONOMY OF PACKET SAMPLING POLICIES

a. SIMPLE RANDOM SAMPLING OVER A SLIDING WINDOW (SRSSW)

The SRS algorithm [19] samples packets randomly such that all packets have the

same probability p of being sampled. SRS can be performed with and without

replacement. When applying SRS with replacement, the sample will contain redun-

dant packets because each packet may be selected at least once. However, with

SRS without replacement, each packet can be sampled only once. In this study, we

only considered SRS without replacement.

b. SIMPLE RANDOM SAMPLING OVER A FIXED WINDOW (SRSFW)
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The SRS without replacement algorithm can also be applied to build a sample over

a fixed window. This is done by constructing a sample over each window of the

traffic stream and removing the samples constructed on the former windows. To

sample k packets from a window of size n, each packet is selected with a probability

p equal to the sampling ratio k/n. This step must be repeated until k distinct packets

are selected [16].

c. DETERMINISTIC SAMPLING OVER A FIXED/SLIDING WINDOW

The deterministic algorithm is a non-probabilistic sampling algorithm that constructs

a sample without randomness. It consists of constructing a sample of size k by

selecting one packet from every x packet of the traffic stream. Assuming that the

traffic stream consists of packets with an always-increasing index, to construct a

sample of distinct packets among the n most recent packets of the traffic, and given

the sampling ratio p, each 1/x packet is sampled. The selection of one packet from

every x packet depends on the packet index. If the packet index equals α × n/k,

where α is a positive integer, the packet will be selected.

d. SYSTEMATIC SAMPLING

The systematic sampling algorithm partitions the traffic into x groups of size x=n/k

and selects a random value j ϵ [1,x] and adds packets to the sample at the following

indices: j, j+x, j+2x, j+3x, etc. [19]. One potential limitation of this method is that

when the periodicity of the traffic stream and the sample size are synchronized,

there may be a reduction in randomness. This can occur because the sample may

not fully capture the full range of variation in the traffic stream, leading to biased or

incomplete data.

e. STRATIFIED SAMPLING

The stratified sampling algorithm [19] divides the traffic into homogeneous sub-

groups and randomly builds a sample from each subgroup. Stratified sampling

enhances sampling accuracy and ensures the representation of extreme or rare

groups of packets in the sample

f. WEIGHTED RANDOM SAMPLING WITHOUT REPLACEMENT

The Weighted Random Sampling algorithm (WRS) [20, 21], samples each packet

with a probability based on the packet’s weight to deal with the lack of representa-

tiveness of some packets in the sample.

g. RESERVOIR SAMPLING

The reservoir sampling algorithm [22, 23] aims to randomly retain a fixed size sam-

ple (k) from a continuous stream of data by probabilistically selecting elements from
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the stream based on their index. When a new element arrives, it may be included

in the sample while a random element from the existing sample is removed.

h. BACKING SAMPLING

The backing sampling [24, 25] adds the first k elements of the stream to the sample

and then skips a random number of elements and adds the next element to the

sample with a probability equal to k/n, and repeats the process.

i. CHAIN-SAMPLING

The chain-sample algorithm [26] provides a random sample of size k selected from

the last elements of the stream by constructing a sample containing one element

selected from the last sliding window of the stream. The algorithm samples one

element from the first window and chooses a successor’s index for the ith element

from the elements with indexes [i+1, i+n], and repeats the process.

j. CHAIN+ SAMPLING

the chain+ sampling algorithm [27] builds a sample of k elements by sampling each

element in the first sliding window with a probability equal to min(i,n)/n, where n

is the window size and i is the index of the element in the window. The algorithm

repeats this process until k distinct elements are sampled.

k. PRIORITY SAMPLING

The priority sampling algorithm [26] constructs and maintains a random sample

over a physical sliding window. To build a sample of one element, the algorithm

assigns a random priority p ϵ [0, 1] to each element, and selects the element with

the highest priority in the sliding window. To construct a sample of k elements,

the process is repeated k times. In this work, we implement a newer version of

the priority sampling algorithm as proposed in [28], which assigns weights to the

packets based on their arrival time, contents, and impact on the sample accuracy.

l. RANDOM PAIRING SAMPLING

The Random Pairing (RP) sampling algorithm [29, 30] constructs and retains a ran-

dom sample over the most recent sliding window of the stream. The algorithm

tracks the number of expired elements in the sample over the window, and replaces

expired items with a probability that increases as more items in the sample expire.

m. STREAMSAMP

The StreamSamp [31] is a progressive sampling technique based on the Simple

Random Sampling algorithm [19]. The algorithm samples stream elements with a

predefined sampling ratio, and stores the sample in an order equal to 0. When

the sample size is reached, a second sample of the same size is constructed, and
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both samples are merged using a simple random sampling approach. When the

number of samples in order 0 exceeds a certain limit, StreamSamp merges the two

old samples of order 0 into a single sample, and the process continues for order 1

and so on.

Table 2.2 provides a comparison of the presented sampling algorithms highlighting the

strengths and weaknesses of each method.

2.2.1.2/ METHODOLOGY

Our methodology employs static sampling algorithms to summarize a real traffic dataset.

This allows us to gain insights into the behavior of these algorithms. To estimate the

degree of distortion introduced by the sampling process, we conducted a comparative

evaluation of diverse statistical metrics.

The Overall Statistic (OS) that captures the overall statistical disparity between the un-

sampled and sampled traffic datasets is defined by equation 2.1 [32, 33]:

OS = |(µ0 − µ)/µ0| + |(med0 − med)/med0| + |(σ0 − σ)/σ0| (2.1)

µ0 and µ represent the actual average values approximated before and after traffic sam-

pling respectively.

med0 and med represent the median values of the traffic parameter before and after sam-

pling respectively.

σ0 and σ represent the standard deviation values of the traffic approximated before and

after sampling respectively.

In our research, we carried out the following experiments for each of the studied sampling

strategies:

Step 1 - Without sampling: In this scenario, we compute the mean, standard deviation,

and median of the unsampled dataset to establish a baseline. We obtain the values for

µ0, med0 and σ0.

Step 2 - With sampling: iIn this scenario, we compute the mean, standard deviation and

median of the sampled dataset. We obtain the values for µ, med and σ .

We calculate the value for our OS metric defined in equation (1) and use it to assess

multiple sampling strategies with varying parameters. We also evaluated the computa-

tional resources and execution time required for each of those algorithms. Finally, we

conducted a comparative analysis of all the studied strategies.

Our study contributes to the comprehension of static sampling algorithms and their influ-
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Table 2.2: Advantages and weaknesses of data stream sampling algorithms

Sampling Algorithm Advantages Weak Points
Simple Random (SRSFW
and SRSSW [16] and [19])

The sample is accurate,
convenient, and represen-
tative of the entire stream

Biased sample in case
of periodicity in the data
stream, no skewing ability

Deterministic (DETFW and
DETSW) [19], [16]

It provides a sample with
an exact size, the sample
is representative of the en-
tire stream when no peri-
odicity is displayed

Biased sample in case
of periodicity in the data
stream, no skewing ability

Chain-sample [26] It provides a sample with
an exact size

Redundant samples, no
skewing ability

Chain+ [27] It provides a representative
sample with an exact size
without duplication

No skewing ability

Stratified [19] The use of this algorithm
is beneficial when it is de-
sired to highlight a specific
subgroup within the data
and ensure its presence in
the sample, this algorithm
is also used to represent
the smallest, extreme or
rare subgroups of the data
in the sample

Unbounded sample size,
no policy to choose the
sample size, no skewing
ability

Systematic [19] The sample is easy to be
built, The sampling pro-
cess is fast and accu-
rate since sampled data
are spread over the entire
stream

Unbounded sample size,
biased sample in case of
data stream periodicity, no
skewing ability

Reservoir [22, 23] This algorithm is simple
and suitable for streaming
environments since it is ex-
ecuted in one pass

Recent elements have less
chance of being sampled,
no skewing ability

Backing [24, 25] This algorithm is suitable
for streaming environ-
ments since it is executed
in one pass

Performs several passes
over the data, no skewing
ability

Priority [26] It provides a sample with
an exact size

No policy for the determi-
nation and revision of the
weights

Random Pairing [29, 30] The algorithm builds and
maintains a uniform sam-
ple of fixed size

No skewing ability

StreamSamp [31] The algorithm maintains a
sample of a fixed size

No policy for the determi-
nation and revision of the
weights
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ence on statistical metrics. We believe that our results will facilitate informed decisions

regarding the selection of an appropriate sampling strategy for a particular application.

2.2.1.3/ EXPERIMENTS AND RESULTS

a. Dataset choice

The dataset used in this study is the Network Security Laboratory-KDD (NSL-KDD),

which is a benchmark dataset widely used for evaluating the performance of net-

work intrusion detection algorithms.It is an improved version of the KDD Cup 1999

dataset, originally developed for the Conference on Knowledge Discovery and Data

Mining (KDD) in 1999. However, the KDD Cup 1999 dataset suffers from redun-

dant data and duplicate records, which can lead to inaccurate intrusion detection

results [34]. The obtained dataset contains approximately 150K records divided

into training and testing subsets. The NSL-KDD dataset consists of 41 attributes

and includes 22 attack types and contains 125.974 records with a size of 18.662

MB.

b. Comparison of computational resources

In this section, we evaluate the impact of different sampling policies and rates on the

distortion introduced by the sampling process. Our goal is to identify the features

that are least prone to distortion by the sampling process. The specifications of our

machine include 8 GB RAM, a 450 GB system disk, and a 2.7 GHz Intel Core i7

processor.

Intuitively, computational costs are positively correlated with the sampling rate, i,e.

higher sampling rates produce larger samples and thus require more processing.

This can be seen in the trends shown in Figure 2.2 comparing execution times of

different sampling policies presented in this study, relative to the sampling ratio. For

stream sampling algorithms, there is also a trade-off between execution time and

window size, with execution time becoming longer for a larger window.

Figure 2.2 shows that the deterministic and systematic sampling algorithms have

the lowest execution time, out of all non-stream sampling algorithms.

Stream sampling algorithms show higher discrepancies. For instance, in the

SRSFW and stratified sampling algorithms, the sample may contain duplicate el-

ements. Figure 2.3 plots the collision rate of the SRSFW and stratified sampling

algorithms relative to the sampling ratio, against the theoretical probability of colli-

sion Pcollision which is computed as follows:

Pcollision = 1 −Cn
k = 1 − (n! )/((n − k)! nk ) (2.2)
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(a) Non-stream sampling (b) Stream sampling

Figure 2.2: Execution time of non-stream (a) and stream sampling (b) algorithms using
different window sizes.

where k is the sample size and n is the window size.

This equation shows that the collision rate increases with k and n, as revealed in

Figure 2.3. Redundancy greatly affects the accuracy of the sample, and there-

fore a deduplication process is necessary, which introduces additional overhead.

This effect is demonstrated by comparing the stratified sampling algorithm against

SRSFW in Figures 2.2 and 2.3. While the stratified sampling algorithm produces

slightly fewer collisions, SRSFW is slightly faster to compute.

A notable comparison in Figure 2.2 is between the SRSSW and Chain+ sampling

algorithms. The execution time for both of these algorithms increases as k/n grows.

The difference, however, is notable for k/n > 0.5, where the Chain+ algorithm re-

duces the collision rate to k/n - 0.5, thus decreasing its execution time, as demon-

strated in [27]. It’s worth mentioning that the priority and chain-sample algorithms

exhibit nearly identical execution times.

For stream sampling algorithms, execution time is dependent on both the sampling

rate and the sliding window size. Some algorithms show more variation in execution

time for different values of k and n than others. For example, it is observed that the

DETSW algorithm has less variation in the execution time regardless of the sam-

pling ratio, whereas the SRSSW exhibits the highest variation as shown in Figure

2.4.

c. Comparison of traffic statistics

In this study, various sampling policies and sampling rates were evaluated to as-

sess their effectiveness in detecting four types of cyber-attacks: DoS, Probe, R2L,

and U2R attacks. Table 2.3 presents the most important numeric features of the

NSL-KDD dataset that can be used to detect DoS, Probe, R2L, and U2R attacks,

according to Ao et al. [35].

The methodology adopted involves sampling the NSL-KDD traffic using different

sampling techniques, followed by the calculation of statistical measures to evaluate
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Figure 2.3: Collision rate of the SRSFW and stratified sampling algorithms.

the accuracy of the sampling estimates for the unsampled traffic. The mean, stan-

dard deviation, and median of the traffic stream were estimated before and after

sampling, from which we calculated the OS Metric using equation (1) to represent

the relative deviation of the sample from the original traffic, as detailed in section III.

For non-stream sampling strategies, we compare the OS metric of the studied

strategies at different sampling ratios. For stream-based sampling strategies, we

consider the average OS metric of 3 window sizes of 10, 100 and 1000 respectively,

at different sampling ratios.

Below is a comparative study of all the different sampling strategies, regarding their

efficiency in preserving traffic statistics used in each of the considered attack types.

i DoS Attack

Denial of Service (DoS) attacks are best detected using features 5, 7, and 8 as

listed in Table 2.3. The results in Figure 2.5 show that regardless of the non-

stream sampling policy used, the level of distortion introduced by the sampling

process does not vary significantly when the sampling ratio is ϵ [70, 90]. Con-

versely, for a given sampling ratio of less than 50%, the estimation accuracy

of all algorithms is highly variable. The results also show that the SRSFW and

WRS-N-W are the worst sampling strategies because they provide the highest

OS value, regardless of the sampling ratio.

Based on the above discussion, one can conclude that to estimate the values

of features 5, 7, and 8 needed to detect DoS attacks, the best non-stream sam-

pling strategy, and sampling ratio to apply in order to achieve the lowest distor-
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Figure 2.4: Variation of the execution time of stream sampling algorithms, using a window
size equal to 10.

tion level is the deterministic/systematic sampling with a sampling ratio of 60%.

Conveniently, these 2 strategies also produced the lowest execution times as

shown in Figure 2.2. This makes them excellent candidates to consider when

looking for sampling strategies for DoS attack detection. For stream sampling

strategies, as with their non-stream counterparts, OS values drop significantly

when the sampling rate reaches 90%. Our results in Table 2.4 show that the

Chain sampling algorithm performs poorly regardless of sampling rate for fea-

tures 5, 7 and 8. Conversely, DETSW and Priority sampling achieve optimal

OS scores at a sampling rate of 60%, which is a considerable reduction in the

total volume of data needed to be analyzed.

ii Probe Attack

Probe attacks are best detected using features 5, 28, 30, and 36 as listed

in Table 2.3. The results in Figure 2.6 show that regardless of the non-stream

sampling policy used, the level of distortion introduced by the sampling process

does not vary significantly when the sampling ratio is ϵ [70, 90]. For stream

sampling algorithms, the level of distortion is stable when the sampling ratio

is ϵ [60%, 90%]. The results in Table 2.5 show that the variation in the OS

value at a given sampling ratio is dependent on the sampling policy. DETSW

and Priority sampling strategies achieve OS values close to zero at a sampling

rate of 60%. However, for certain features, other algorithms reach acceptable

distortion levels at much lower sampling rates.

iii R2L Attack
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Table 2.3: Relevant features for each attack type in the NSl-KDD dataset

Attack feature names feature numbers
DoS source bytes, land, wrong fragment 5, 7, 8
Probe source bytes, srv error rate, diff srv rate, src port rate 5, 28, 30, 36
R2L destination bytes, failed logins, count, dst host error rate 6, 11, 23, 39
U2R root shell, srv count, src port rate 14, 24, 36

(a) Feature 5 (b) Feature 7 (c) Feature 8

Figure 2.5: Comparison of OS metric for non-stream sampling policies at different sam-
pling ratios for features 5, 7, and 8.

Remote-to-Local (R2L) attacks are best detected using features 6, 11, 23 and

39 as listed in Table 2.3. The results in Figure 2.7 show that regardless of

the non-stream sampling policy used, the level of distortion introduced by the

sampling process does not vary significantly when the sampling ratio is ϵ [70,

90]. For all stream sampling algorithms, the OS value reaches its minimum

when the sampling rate is equal to 90%. At lower sampling rates, the variation

of the OS value at a given sampling ratio is dependent on the sampling policy.

The results in Table 2.6 show that for the SRSSW, Chain+, and StreamSamp

sampling algorithms, the minimum OS value is achieved when the sampling

rate is equal to 70%. For the reservoir and RP sampling algorithms, it was

achieved for a sampling rate equal to 80%. DETSW and Priority sampling

achieve an OS value close to zero at a sampling rate of 60%.

iv U2R Attack

User-to-Root (U2R) attacks are best detected using features 14, 24, and 36 as

listed in Table 2.3. The results in Figure 2.8 show that regardless of the non-

stream sampling policy used, the level of distortion introduced by the sampling

process does not vary significantly when the sampling ratio is ϵ [50, 90]. For all

stream sampling algorithms, the OS value reaches almost its minimum when

the sampling rate is equal to 90%. At lower sampling rates, the variation of

the OS value at a given sampling ratio is dependent on the sampling policy.

For instance, Table 2.7 shows that for the SRSSW, Chain+, and RP sampling

algorithms, the minimum OS value is achieved when the sampling rate is equal



2.3. CLUSTER-BASED SAMPLING 21

Table 2.4: Lowest achieved OS values for stream-sampling policies and the correspond-
ing sampling rates, for features 5, 7 and 8

Feature SRSSW Chain Chain+ DETSW Reservoir Backing Priority RP StreamSamp
5 80% 10% 80% 60% 80% 60% 60% 80% 70%

0.137 1.245 0.067 0.0004 0.171 0.318 0 0.421 0.104
7 80% 10% 80% 60% 60% 20% 60% 80% 30%

0.197 2.06 0.161 0.0002 0.264 0.574 0 0.446662 0.070885
8 70% 10% 70% 60% 80% 30% 60% 60% 80%

0.047 0.455 0.028 0.0006 0.076 0.101 0 0.068 0.048

Table 2.5: Lowest achieved OS values for stream-sampling policies and the correspond-
ing sampling rates, for features 5, 28, 30, and 36

Feature SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
5 80% 10% 80% 60% 80% 60% 60% 80% 70%

0.137 1.245 0.067 0.0004 0.171 0.318 0 0.421 0.003
28 70% 10% 70% 60% 80% 40% 60% 80% 40%

0.002 0.037 0.002 0.0001 0.001 0.002 0 0.008 0.002
30 80% 10% 80% 60% 40% 60% 60% 70% 80%

0.01043 2.935 0.014 0.0001 0.007 0.02127 0 0.009 0.003
36 70% 10% 70% 60% 80% 50% 60% 40% 50%

0.007 2.463 0.014 0.00004 0.003 0.0193 0 0.003 0.008

to 70%. For the reservoir and StreamSamp algorithm, it was achieved for a

sampling rate equal to 80%. For the Backing algorithm, it was achieved for

a sampling rate equal to 50%. DETSW and Priority sampling achieve an OS

value close to zero at a sampling rate of 60%.

2.3/ CLUSTER-BASED SAMPLING

2.3.1/ CLUSTER-BASED SAMPLING ALGORITHM

Stream sampling algorithms and non-stream sampling algorithms demonstrated excep-

tional performance at high sampling ratios, but their effectiveness diminishes significantly

at low sampling ratios, rendering them unsuitable for resource-constrained or lightweight

scenarios, such as IOT environments. Therefore, there is a pressing need to identify a

sampling algorithm that is specifically tailored for low sampling ratios. In this section, we

introduce a novel Cluster-based sampling algorithm that enhances sample representa-

tion, even when confronted with challenging low sampling rates. Cluster-based sampling

involves dividing a large dataset into clusters or groups and selecting a representative

subset of clusters for analysis. A sample must be truly representative of the entire data

stream. This category of algorithms is related to other types of static data sampling, such

as stratified sampling and systematic sampling, but is distinct in that it employs a clus-

tering technique to categorize data into distinct clusters and maintain a representative

sample for each cluster. Clustering algorithms aim to uncover new emerging patterns in

the data and detect any changes in the patterns and data distribution.

The proposed algorithm classifies the data into different clusters and builds and maintains

a sample for each cluster. Data is inserted in the samples in a way that ensures that
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(a) Feature 5 (b) Feature 28 (c) Feature 30 (d) Feature 36

Figure 2.6: Comparison of OS metric for non-stream sampling policies at different sam-
pling ratios for features 5, 28, 30, and 36.

Table 2.6: Lowest achieved OS values for stream-sampling policies and the correspond-
ing sampling rates, for features 6, 11, 23, and 39

Feature SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
6 70% 10% 70% 60% 60% 60% 60% 80% 80%

0.066 3.092 0.097 0.0003 0.099 0.058 0 0.105 0.109
11 60% 10% 60% 60% 80% 60% 60% 70% 70%

0.014 2.198 0.014 0.0006 0.0199 0.055 0 0.039 0.007
23 80% 10% 80% 60% 80% 50% 60% 60% 70%

0.006 2.719 0.002 0.0003 0.002 0.009 0 0.004 0.005
39 70% 10% 70% 60% 80% 30% 60% 80% 70%

0.002 2.525 0.0015 0.0006 0.008 0.021 0 0.0111 0.009

the difference between the sample and the corresponding cluster is minimal. Thus, the

cluster tends to be homogeneous so that a small sample from this cluster contains a

large amount of information about all of the items in the cluster. This ensures that all the

subgroups within the data are present in the final sample, and minimizes the sampling

error due to high data variance.

The proposed method uses the k-means algorithm to divide the data stream into separate

groups or clusters, as shown in Figure 2.9. Then, a sample is built and maintained for

each cluster. To ensure proper representation of all subgroups, the size of each sample

is kept proportional to the size of the cluster. As more stream items arrive, the size of

each cluster sample is adjusted accordingly, as shown in Figure 2.10. The final sample

is constructed by combining all the clusters’ samples.

The first k items of the stream are classified using the k-means algorithm and serve

as a learning base. From the data in the first window of the stream, i initial clusters

are constructed. Then, for each cluster j, a sample is built and maintained by randomly

selecting k j items from the cluster.

When new items arrive, they will be processed in sequential order. Each new item will be

added to one of the clusters based on the Euclidean distance between the item and the

center of each cluster. After fitting the item to one of the clusters, a decision will be made

on whether to add it to the corresponding cluster sample. This is done by comparing the

sampling error of the cluster sample with and without the item: If adding the item to the

cluster sample leads to a higher sampling error, it will be rejected, otherwise, it will be
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(a) Feature 6 (b) Feature 11 (c) Feature 23 (d) Feature 39

Figure 2.7: Comparison of OS metric for non-stream sampling policies at different sam-
pling ratios for features 6, 11, 23, and 39.

Table 2.7: Lowest achieved OS values for stream-sampling policies and the correspond-
ing sampling rates, for features 14, 24, and 36

Feature SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
2*14 80% 10% 80% 60% 70% 70% 60% 80% 50%

0.075 2.112 0.049 0.0006 0.071 0.093 0 0.069 0.088
2*24 70% 10% 70% 60% 80% 50% 60% 70% 80%

0.006 2.104 0.001 0.0004 0.011714 0.059 0 0.010 0.005
2*36 70% 10% 70% 60% 80% 50% 60% 40% 50%

0.007 2.463 0.014 0.00004 0.003 0.0193 0 0.0030 0.008

sampled with a probability equal to ∣∣∣∣∣∣1 − ei

center(C j)

∣∣∣∣∣∣ . (2.3)

The sampling error with/without a given item ei is calculated as follows:

error =
∣∣∣∣∣m − X

m

∣∣∣∣∣ (2.4)

Where m is the cluster data’s mean and X is the sample’s empirical mean, an unbiased

estimator of m calculated as follows:

X =
1
k

∑
ei (2.5)

where k is the sample size, and ei is the value of the item at index i in the sample.

To keep the cluster sample size fixed, an item must be removed from the sample when the

featured cluster size exceeds k j. To find out which item to replace, we propose a ranking

procedure that follows the ”remove-from-sample” principle, in which we assign a rank for

each item in the sample based on the item’s sampling error contribution, i.e. lower ranks

are assigned to items that lead to higher sampling errors. The items with the lowest rank

are the first candidates to be replaced.

Ideally, all items in the current cluster sample should be re-ranked after a new item is

added to the sample. This is done by recalculating the sampling error using the ”remove-

from-sample” principle for all items in the current cluster sample. To keep our compu-

tational load low, a trade-off between the sampling precision and needed computing re-
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(a) Feature 14 (b) Feature 24 (c) Feature 36

Figure 2.8: Comparison of OS metric for non-stream sampling policies at different sam-
pling ratios for features 14, 24, and 36.

Figure 2.9: Proposed algorithm.

sources is needed here. Thus, re-ranking is only done after x% of a cluster’s items are

changed, where

x = (number o f replaced items)/(cluster size) ∗ 100 (2.6)

Table 2.8 shows the conceptual idea of ranking. For instance, item 10 is ranked highest

because its removal produces the minimum sampling error. Similarly, item 17 is ranked

lowest because its removal produces the highest sampling error. Thus, it is the best

candidate to be replaced by future incoming items.

Figure 2.11 describes the proposed algorithm which is also explained in the pseudo-code

procedure CLUSTER BASED SAMPLING.

Three parameters impact the sampling accuracy: (1) the sampling ratio k/n, (2) change

percentage. It is possible to sample the data with a sampling ratio equal to k/n while using

different k and n values, such that:

p = k/n = (x.k′)/(x.n′) (2.7)

where x is a positive integer.

Thin IoT nodes have three main concerns that should be the focus of any lightweight

sampling algorithm. The concerns are:

• Limited memory: Dynamic sampling algorithms have increasing sample size [36]

and this exceeds thin nodes’ capabilities. Static sampling algorithms have fixed
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Figure 2.10: Item admission.

Table 2.8: Items ranking within a cluster

Item Index Sampling error Rank
10 3.61 1
11 ... 2
12 ... 3
17 9.62 4

sample size. In the current version of the proposed algorithm, a fixed number of

elements are stored in clusters making the stored sample size similar to static sam-

pling algorithms. As will be discussed later in this article, it is possible to eliminate

all the stored elements and only keep the cluster definitions. That will significantly

reduce the memory requirements of the algorithm to less than 1% of the current

standard.

• Limited computation/energy: The proposed algorithm can be configured for running

with significantly less computation using the Change Ratio (CR). Lower CR values

result in lower computational requirements. Computational resources vs. sample

distortedness should be optimized.

• Privacy-preserving collective learning: The ability for IoT nodes to share their knowl-

edge about the network traffic is a significant enhancement to the security of the

whole system and allows for a significant reduction in computational and energy re-

quirements. By keeping and sharing only cluster definitions among different nodes,

our method can guarantee privacy preservation, on top of reducing bandwidth re-

quirements and network load.



26 CHAPTER 2. CLUSTER-BASED SAMPLING

Figure 2.11: Cluster management.

2.3.2/ SIMULATION

2.3.3/ SIMULATION ENVIRONMENT

Our algorithm is implemented using Python. The code is accessible through GitHub [37].

In this simulation parameters are defined in Table 2.9. The algorithm has been tested

against the NSL-KDD test dataset [38]. Clusters’ compactness is measured using the

silhouette score [39]. The specifications of our machine are RAM: 12GB, System disk:

108GB, and processor: 2.20GHz Intel Xeon CPU.

Table 2.9: Simulation Parameters

Parameter Range of values
Change rate 0.5, 0.75, 0.9

Learning base size 0.1, 0.3, 0.5, 0.7, 0.9 (× Dataset size)
Number of clusters 2, 5 (3, 4 and 6 tested but not reported)

2.3.3.1/ SIMULATION RESULTS

We’ve experimented with cluster sizes 2, 3, 4, 5 and 6. Here we report the results of

our algorithm with cluster sizes 2 and 5, as these configurations performed consistently

better on mean, median and standard deviation. With our 2 cluster configuration, we

group packets into normal or attack, whereas with the 5 cluster configuration, we group

packets into normal or one of the four attack types listed in Table 2.3. To validate our

observations, we measured the clustering performance using silhouette score for each

of the configurations presented in Table 2.9. The silhouette measurements are shown in

Figure 2.12, where the x-axis is (Learning base, Change rate). As shown in Figure 2.12,

the cluster fitness is increasing with the increase in the number of clusters, but this is not

always correlated with the performance in maintaining the stream’s mean, median and
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standard deviation within the sample. For this reason, cluster fitness is not a good metric

for selecting the appropriate configuration of the IDS.

Figure 2.12: Silhouette score for cluster fitness.

The results shown in this work are consistent with the format used in [40], including mean,

median, standard deviation, and OS value of the selected dataset features that are most

representative of network attacks shown in Table 2.3. In the following, we compare our

proposed lightweight sampling algorithm to other sampling algorithms, surveyed in the

previous section.

Figure 2.13 shows the mean, stddev and OS value of feature 5 in the sample generated

by each sampling algorithm. The red dotted line represents the dataset’s original metrics

for that feature.

It can be seen in Figure 2.13 that the most accurate algorithms at high sampling ra-

tios/learning base sizes, higher or equal than 0.7, are systematic and deterministic sam-

pling algorithms, as shown in the survey in the previous section. For lower sampling

ratios/learning base sizes, those same algorithms are among the least accurate. Those

observations are consistent with [40].

For low sampling rates, SRS offline, stratified and the proposed cluster-based sampling

algorithm (with 2 clusters and 90% change ratio) are among the best performers.

The results of feature 6, shown in Figure 2.14 are consistent with those of feature 5.

feature 6 shows even better performance for the proposed cluster-based sampling algo-

rithm (with 2 clusters and 90% change ratio) for lower sampling ratios than SRS offline

and stratified. The proposed cluster-based sampling algorithm (with 2 clusters and 90%

change ratio) resulted in the least distortion for two sampling ratios/learning base sizes

0.3 and 0.5.

The results for feature 14, shown in Figure 2.15, are not as consistent with the other

features. The proposed cluster-based sampling algorithm, all configurations, resulted in

the least distortion for sampling ratio/learning base sizes = 0.3 only. The performance of

the proposed algorithm is average for all other sampling ratios/learning base sizes.
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The results for feature 28 are consistent with that of features 5 and 6. The proposed

cluster-based sampling algorithm (with 2 clusters and 90% change ratio) achieved the

lowest distortion for sampling ratios/learning base sizes 0.1, 0.3, and 0.5 as shown in

Figure 2.16.

The results of the remaining features are consistent with the ones presented here. They

show that the proposed algorithm performs consistently well at very low sampling rates,

which is a feature that thin IoT nodes with limited resources can greatly benefit from.

2.3.4/ DISCUSSION AND CONCLUSION

The literature covers sampling algorithms for traditional IDSs and lightweight IDSs for IoT,

but lightweight sampling algorithms for IDSs operation in IoT has not been explored fully.

This work is the first, to the best of our knowledge, to try to cover this gap and develop

a sampling algorithm that requires minimal resources and achieves good results for low

sampling ratios, which is the type of configuration suitable for thin IoT nodes.

The highlight of our proposed method, on top of it being lightweight and performing well

on very low sampling rates, is it being a stepping stone for more interesting privacy-

preserving learning-based anomaly and IDSs. Such a system could be designed to col-

lect and share summarized cluster statistics, such as cluster centroids and sizes, among

multiple nodes to create a distributed lightweight IDS, without the need to share sensitive

packet meta-data or traces of actual network traffic.
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Algorithm 1 procedure CLUSTER BASED SAMPLING {n: initial learning base size}

Initialization:

Swj is the initial sample of cluster Cj,

at the beginning S1 = {},

k is the sample or learning base size

x is the change ratio

N is the number of clusters

//starting pseudo-code presented in Figure 2.10

for i in [1, k] do

for each item ei in the learning base of size k do

Add ei to the corresponding cluster Cj

end for

end for

//ending pseudo-code presented in Figure 2.10

//starting pseudo-code presented in Figure 2.11

While a new item ei is received, (i<n) do

i <- i + 1 {i is the index of e}

Add ei to the corresponding cluster Cj

CalculateError(ei, Sj) {Compute sampling error with and without ei added to Sj}

if samplingErrorWithSampling < samplingErrorWithoutSampling then

Add ei to Sj with a probability |1- ei/center(Cj)|

Cj.change_count <- Cj.change_count + 1

if(Sj.size() > k/n) then

Remove the item having the highest rank from Sj

end if

end if

if(Sj.size()* x < Cj.change_count) then

UpdateRankTable();

end if

end while

return Sj

end procedure=0

//ending pseudo-code presented in Figure 2.11
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(a) Mean (b) Stddev

(c) OS values

Figure 2.13: Mean, Stddev, and OS values for feature 5.
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(a) Mean (b) Stddev

(c) OS values

Figure 2.14: Mean, Stddev, and OS values for feature 6.
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(a) Mean (b) Stddev

(c) OS values

Figure 2.15: Mean, Stddev, and OS values for feature 14.
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(a) Mean (b) Stddev

(c) OS values

Figure 2.16: Mean, Stddev, and OS values for feature 28.
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CROSS-LAYER FEDERATED IDS

3.1/ INTRODUCTION

Intrusion detection plays a pivotal role in securing IoT systems. As the number of inter-

connected devices continues to grow and data transmission exponentially increases, the

potential for malicious actors to exploit vulnerabilities has become a significant concern

[41]. Developing effective IDSs for IoT applications presents a fundamental challenge

of efficiently handling large volumes of data while ensuring data privacy and minimiz-

ing energy consumption [42]. In this chapter, we will explore the importance of intrusion

detection in IoT systems and delve into the challenges associated with managing data,

privacy, and energy efficiency. By leveraging IDSs, we can effectively monitor network

activities, detect intrusion attempts, and protect IoT systems from potential threats.

To address this challenge, we propose a lightweight federated sampling and intrusion

detection approach based on an adaptation of the K-means clustering algorithm, known

as the baseline k-means algorithm.

The baseline k-means algorithm serves as a semi-supervised novelty detection technique

that trains a classifier using limited labeled benign data. It then utilizes this classifier to

label additional unlabeled data points. This approach proves advantageous in scenarios

where there is an abundance of unlabeled data but a scarcity of benign data. The pro-

posed model employs two centroids, one for the baseline distribution and another for the

anomalous distribution, and utilizes the Mahalanobis distance as a metric to account for

the covariance of the distributions. Compared to the standard K-means clustering that

relies on Euclidean distance, this approach enables a more robust and accurate identifi-

cation of anomalous behavior.

35
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3.1.1/ LIGHTWEIGHT IDS FOR IOT

Cybersecurity has become increasingly challenging with the rapid growth of the IoT and

the massive volume of data generated by IoT devices, which is projected to reach 73.1

ZB (zettabytes) by 2025 [43]. Due to the limited computational capabilities of IoT devices,

researchers have focused on designing lightweight IDSs that can provide the necessary

security while operating efficiently on resource-constrained devices. In the literature, two

tracks of lightweight IDSs have emerged: signature-based and anomaly-based. This

work focuses on the anomaly-based track, which aims to detect abnormal behaviors and

attacks in IoT systems. Various approaches have been proposed to address specific

challenges in lightweight IDS design. Researchers such as Lee et al. [44] and Le et

al. [45] have tackled energy consumption attacks by developing IDSs that limit sensing

operations to cluster heads, allowing other nodes to operate normally. Jan et al. [46]

have concentrated on creating computationally lightweight IDSs using supervised ML

techniques like support vector machines, which can handle multiple attack types and

scale to a large number of nodes.

Feature selection has also been explored to reduce computational overhead. Soe et al.

[47] proposed a lightweight anomaly-based IDS strategy that selects features with the

highest gain ratio while discarding others, reducing computation requirements. Davahli

et al. [48] proposed a hybrid feature selection method combining genetic algorithms and

the Grey Wolf Optimizer.

To enhance communication security in lightweight IoT devices, Khater et al. [49] com-

bined feature reduction and supervised deep learning. They used Modified Vector Space

Representation (MVSR) N-gram for feature extraction and a Multilayer Perceptron (MLP)

model to classify network traffic. Selective IDS activation based on time was proposed by

Sedjelmaci et al. [50]. They applied a game-theoretic approach to identify periods when

attacks are most likely to occur and enabled IDS functionality accordingly. Deep Neural

Networks (DNN) were employed to improve detection accuracy.

A recent development in lightweight IDSs is ”Realguard” by Nguyen et al. [51], which

utilizes a DNN-based approach. Realguard implements a simple MLP with five hidden

layers and achieves high attack detection accuracy while running on low-end IoT devices.

3.1.2/ FEDERATED LEARNING FOR IOT IDS

ML-based IDSs for IoT devices can be trained using cloud services, edge computing,

or on-device ML solutions [42]. Cloud-based training has the advantage of unlimited re-

sources and storage but can result in security and privacy concerns, high data transmis-

sion and energy consumption. Edge computing-based training processes data locally,
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reducing storage and network bandwidth requirements and latency, but lacking highly

configurable hardware opportunities and unlimited resources. On-device ML solutions

offer real-time learning and training on the IoT end devices, with the added benefit of

data privacy, but require significant computational power and data storage. The choice

of training approach depends on the specific trade-offs be- tween resources, latency, and

security and privacy concerns. Federated learning is a distributed ML technique that al-

lows multiple IoT nodes to collaboratively train a global model without sharing their raw

data with a centralized server. In the context of intrusion detection, federated learning

can be used to detect attacks on IoT devices without compromising the privacy of the

individual devices. Pei et al. [52] developed a data aggregation method for network traf-

fic anomaly detection based on self-coding of long- and short-term memory networks.

Attota et al. [53] employed multi-view classification and multi-view ensemble learning to

enhance prediction accuracy while preserving privacy. Mothukuri et al. [54] used Gated

Recurrent Units in a federated learning process.

To address data poisoning attacks, Nguyen et al. [55] incorporated Generative Adversar-

ial Networks (GANs) into federated learning. GANs help mitigate data poisoning attacks,

as demonstrated in [56] and [57]. Saadat et al. [58] compared hierarchical federated

learning with federated learning in the IoT context and showed that hierarchical federated

learning outperforms federated learning in terms of training loss, testing accuracy, and

convergence speed. This aligns with the work of Sarhan et al. [59], where a hierarchi-

cal federated learning framework was designed using blockchain technology. Federated

learning for IoT IDS has been extensively studied and benchmarked in the literature, as

evidenced by works such as [60, 61, 62, 63, 64, 65].

3.1.3/ OBJECTIVE AND CONTRIBUTION

Our primary objective is to present a federated, lightweight, and privacy-preserving IDS

tailored for lightweight IoT environments. We introduce a novel approach for real-time

intrusion detection in IoT applications by combining a federated version of the baseline

k-means algorithm with a cluster-based sampling method, referred to as the ”cross-layer”

federated IDS. This approach addresses the challenge at two distinct layers: sampling

and anomaly detection. By shifting the clustering process to the sampling layer, we

achieve a co-optimized performance of both layers. The proposed solution adopts a

cross-layer design, significantly reducing memory, power, and computational resources

while enhancing detection capabilities without compromising individual nodes’ privacy.

The cluster-based sampling technique serves as a crucial foundation for our proposed

federated baseline k-means algorithm. It ensures a high level of data representation, in-

cluding rare subgroups, effectively minimizing sampling errors caused by data variance.
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Initially, the cluster-based sampling algorithm applies feature reduction to the available

packets, decreasing the overhead based on a study that identifies essential features for

detecting various attacks. The algorithm offers several advantages, including significantly

improved efficiency compared to other sampling algorithms, particularly for very low sam-

pling rates resembling a lightweight IoT environment. Additionally, it provides extended

traffic visibility, vital in countering slow-rate attacks. Subsequently, the K-means cluster-

ing algorithm is employed to partition the data stream into homogeneous clusters, which

are then sampled proportionally according to a chosen sampling rate, ensuring consis-

tent representation of the cluster data even after sampling. In our approach, multiple

IoT devices actively participate in the training process by computing their local statistics,

such as means and distances to the benign distribution. These statistics are transmitted

to a central coordinator for aggregation, allowing each IoT node’s model to be updated

with recent and representative statistics without compromising data privacy. Moreover, by

employing cluster-based sampling prior to the intrusion detection process, we reduce pro-

cessing energy consumption and the volume of data to be transmitted, thereby extending

the lifetime of IoT nodes. The federated baseline k-means algorithm offers a practical,

scalable, and privacy-preserving solution for intrusion detection in IoT applications, effec-

tively addressing energy efficiency concerns. We provide a comprehensive explanation

of our proposed algorithm and its integration with the cluster-based sampling technique.

Furthermore, we present experimental results validating the effectiveness and efficiency

of our approach in detecting intrusions in IoT applications, showcasing the progressive

enhancement of IoT nodes’ performance over time through the merging and sharing of

statistics between the coordinator and the workers.

The remaining sections of this chapter are structured as follows: Section 3.2 presents

a comprehensive taxonomy of IDSs based on four primary characteristics. It provides a

systematic classification that helps understand the different types of IDSs and their fea-

tures. Additionally, it outlines well-known computer network threats, highlighting the spe-

cific risks that organizations face in today’s digital landscape. Furthermore, this section

includes a taxonomy of available datasets specifically curated for benchmarking IDSs,

enabling researchers and practitioners to evaluate the performance and effectiveness of

different intrusion detection approaches. Then, in section 3.3, we present our proposal

of a cross-layer federated learning framework for intrusion detection. We explore the

integration of federated learning techniques with cross-layer analysis to enhance the ac-

curacy and efficiency of IDSs. This novel approach leverages the collaborative power of

federated learning and sampling to improve threat detection and response. We discuss

the benefits, challenges, and potential applications of cross-layer federated learning in

the context of intrusion detection. Finally, section 3.4 concludes the work.
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3.2/ RELATED WORK

3.2.1/ INTRUSION DETECTION SYSTEMS

In the realm of network security, intrusion detection plays a pivotal role in upholding the

confidentiality, integrity, and availability of data exchanged over networks. As illustrated

in 3.1, intrusion detection entails the vigilant monitoring of network traffic from diverse

sources to identify abnormal patterns or anomalies, swiftly notifying the network admin-

istrator upon detecting any potential attacks. Unlike firewalls, IDSs do not impose strict

restrictions on end-users to adhere to predefined network security policies. Instead, IDSs

employ a variety of detection techniques and algorithms to monitor network traffic and

identify anomalies or specific patterns [66]. Furthermore, IDSs maintain a comprehen-

sive record of previous attacks, facilitating incident response and aiding security teams in

recognizing emerging threats.

Figure 3.1: Intrusion Detection System.

In recent years, the research community has extensively explored the field of intrusion

detection, leading to the publication of numerous studies and works. While Table 3.1 pro-

vides citations for recently published surveys focusing on anomaly-based intrusion detec-

tion techniques, datasets, or both, none of these surveys offer a comprehensive review

encompassing intrusion detection approaches, IDS types, IDS requirements, available

datasets, attack forms, categories, tools, and relevant features for collectively detecting

attacks.

One contribution in our work is to present an updated survey of IDSs that addresses

these research gaps. Our work distinguishes itself from other surveys in several key as-

pects. Firstly, we thoroughly discuss the requirements of IDSs, providing a comprehen-

sive and well-structured survey of Network Intrusion Detection Systems (NIDSs), with a

particular emphasis on those employing anomaly detection techniques. We meticulously

analyze their advantages and disadvantages, introducing a taxonomy of IDSs based on

four essential criteria. For each criterion, we explore various approaches and assess their

performance.

Moreover, unlike the majority of existing surveys that focus solely on four network attacks
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(Dos, Probe, R2U, and U2R), we present a taxonomy encompassing a wide range of net-

work attack forms, and we delve into the appropriate features required for detecting these

attacks. Additionally, we summarize the most commonly utilized datasets for IDS bench-

marking, along with the associated challenges they present. This includes a taxonomy

and comparison of these datasets based on their properties. Furthermore, we discuss

the performance criteria employed for evaluating IDSs.

Lastly, we address recent research challenges within the field and propose potential so-

lutions to overcome them. A summary of this comprehensive discussion can be found in

Table 3.1, which includes a comparison of various aspects such as Signature-based IDS

as C1, Anomaly-based IDS as C2, Hybrid IDS as C3, IDSs taxonomy based on several

criteria as C4, IDS requirements as C5, Datasets taxonomy and issues as C6, Data types

in datasets as C7, Attacks taxonomy as C8, Attacks types and tools as C9, and Attacks

features as C10. By providing a holistic view of IDSs, their characteristics, and their per-

formance, our survey aims to offer valuable insights to both researchers and practitioners,

contributing to the advancement of intrusion detection techniques.

Table 3.1: Comparison of this survey and similar recent works.

Reference Year C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Liao et al. [67] 2013 ✓ ✓ x x x x x x x x

agrawal et al. [68] 2015 x ✓ ✓ x x x x x x x
Buczak et al. [69] 2015 ✓ ✓ ✓ x x x x x x x
Ahmed et al. [70] 2016 x ✓ x ✓ x ✓ x x x x
Hodo et al. [71] 2017 ✓ ✓ ✓ ✓ x x x x x x

Khraisat et al. [72] 2019 ✓ ✓ ✓ x x ✓ x ✓ x x
Fernandes et al. [73] 2019 ✓ ✓ ✓ ✓ x x x ✓ x x

This survey 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In the existing literature, IDSs are classified based on various criteria. In this thesis, we

classify IDSs based on four key criteria: data sources, detection strategy, detection mode,

and architecture, as illustrated in Figure 3.2.

• Data Sources: The first criterion is data sources, distinguishing between Host Intru-

sion Detection Systems (HIDSs) and Network Intrusion Detection Systems (NIDSs).

HIDS monitors traffic generated by specific hosts, enabling the tracking of individual

user behavior and aiding in the detection of insider threats. Conversely, NIDS ana-

lyzes information from all network traffic, monitoring every packet transmitted across

the network to identify attacks and malicious behavior [67]. Table 3.2 provides a

summary of the advantages and disadvantages of Host-based and Network-based

IDSs.

• Detection Strategy: The detection strategy in IDSs can be categorized into two

types: misuse detection techniques (signature-based techniques) and anomaly-
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Figure 3.2: Taxonomy of Intrusion Detection Systems (IDSs).

Table 3.2: Comparison of Host-based and Network-based IDSs.

Advantages Drawbacks Data sources Examples

Host

Ability to detect malicious or
improper activities of all the
users
Very effective in detecting
suspicious user behaviors
Ability to operate in en-
crypted environments

They can get compromised
as soon as the host server is
compromised by an attack
Cannot monitor network traf-
fic
High system resources con-
sumption
High setting-up and man-
agement costs
Portability issue

Audits records
Security audit informa-
tion
System log files
System accounting
System calls
System configuration

PortSentry
[74]
Lhotsky [75]
Kim [76]

Network

Extremely portable
Independent of the installed
operating systems
Real-time detection
Low deployment and man-
agement costs

Scalability issue
Cannot operate in encrypted
environments

Simple Network Man-
agement Protocol
(SNMP)
Network connections
Network traffic packets

RealSecure
[?]
SecureNet
[77]
Roesch [78]

based detection techniques, as depicted in Figure 3.3. Signature-based techniques

compare actual traffic data with predefined patterns stored in an attack signatures

database, providing high detection accuracy for known attacks. However, they

struggle to detect rare and unknown attacks and require regular updates to the

attack signatures database [68]. On the other hand, anomaly-based IDSs identify

anomalies by comparing network traffic with normal behavior, making them effective

in detecting unknown attacks. However, they face challenges in determining normal

network traffic patterns, resulting in a higher false alarm rate [71]. Figure 3.4 il-

lustrates the three main phases of anomaly-based IDSs: data collection, training

phase, and testing/detection phase.

• Detection Mode: IDSs are categorized into online and offline modes based on how

network data is analyzed. Online IDSs inspect network packets in real-time, pro-

viding immediate detection and response to malicious activity. Offline IDSs perform
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Figure 3.3: SIDSs vs AIDSs detection main phases.

Figure 3.4: Anomaly-based intrusion detection phases.

post-analysis of recorded data, offering the advantage of lower computational re-

source requirements. However, they cannot provide real-time responses to prevent

attacks or mitigate their damage [72].

• Architecture: The IDS architecture determines how traffic is monitored and ana-

lyzed. Centralized IDSs involve collecting data from individual hosts and analyzing

it in a central entity. While easier to manage, centralized IDSs face scalability and

single point of failure limitations [73, 79, 80, 81]. Distributed IDSs consist of multiple

IDSs monitoring individual systems and cooperating to detect intrusions, offering

fault-tolerance and scalability advantages [82, 74, 75, 76]. Table 3.3 summarizes

the advantages and limitations of centralized and distributed IDS architectures.

By classifying IDSs based on these criteria, this thesis aims to provide a comprehen-

sive understanding of IDSs, their capabilities, and their applicability in different network

environments.
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Table 3.3: Comparison of IDS architectures.

Advantages Limitations Examples

Centralized

More secure
All the monitoring and detec-
tion activities of the IDS are
managed by a central unit
Require low maintenance
and administration costs

Cannot detect attacks occur-
ring at different locations at
the same time
Prone to single point of
failure
Large computational and
storage resources are re-
quired

Lunt [83]
Hochberg [84]
Mantur [85]
Wang [86]
Denning [87]
Hidoussi [88]
Abhishek [89]
Zkik [90]

Distributed

Flexibility
Scalability
Reliability
Low computational cost
Attack anticipation is possi-
ble
No single point of failure
Fast processing

Less secure
High deployment costs
High network traffic over-
heads

Abraham [91]
Maglaras [92]
Folino [93]
Riyad [94]
Kannadiga
[95]
Zhang [96]
Idhammad
[97]
Li [98]

3.2.2/ NETWORK ATTACKS

As networks grow in complexity, they also become more susceptible to attacks originating

from two types of intruders: external intruders seeking network access from the internet

and legitimate users aiming to misuse their authorized privileges for unauthorized gains.

According to [99], attackers typically follow a three-step process to launch their attacks:

(1) Information gathering, where the attacker collects sensitive information about the tar-

get network; (2) Vulnerability assessment, where the attacker attempts to compromise

hosts within the network; and (3) Attack launch, where the attacker initiates the attack on

the target network using the compromised hosts. [77] classifies these attacks into two

main categories: information gathering and attack launching, as depicted in Figure 3.5.

• Information Gathering: Information-gathering tools can be categorized into two

classes: sniffing tools and scanning tools [77]. Sniffing tools intercept, capture,

and analyze data transmitted across the network, enabling diagnosis of network

issues, monitoring of network usage and activity, identification of network vulnera-

bilities, filtering of network traffic, and identification of network configuration issues.

Scanning tools are used to gather information about active hosts in the network and

identify their vulnerabilities to potential attacks. Table 3.4 provides a summary of

existing sniffing and scanning tools.

• Attack Launching: Attack launching tools are utilized by intruders to generate at-

tacks against victim hosts within the network. These attacks may involve disabling

certain computers, stealing sensitive data, blocking or deleting resources, or launch-

ing further attacks through compromised hosts. The following attack tools are note-

worthy
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Figure 3.5: Taxonomy of computer network attacks. [Adapted from [100]]

– Trojan: Malicious software employed by attackers to breach system security

and gain unauthorized access.

– DoS: DoS attacks involve overwhelming the server with an excessive number

of connection requests, rendering the targeted website inaccessible to legiti-

mate users. Table 3.5 provides an overview of DoS attack variations.

– Packet forging: Manipulating and generating traffic packets, which are then

injected into the network connection.

– Virus: Malicious code designed to disrupt the normal functioning of a computer

system, capable of self-replication by spreading across multiple computers.

– Worm: A malicious program that replicates and spreads itself from one host to

another.

– Probe: An attack enabling intruders to gather information about the network or

a specific host, such as identifying applications in use or the number of active

machines on the network. Table 3.6 outlines different forms of probe attacks.

– Application layer attack: This tool targets web servers using Hyper Text Tranfer

Protocol (HTTP) requests originating from legitimate hosts.

– Fingerprinting attack: A traffic analysis tool used by intruders to sniff and iden-

tify specific features and characteristics of an encrypted network.
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Table 3.4: Summary of network information gathering tools.

Tool name Category Purpose Explanation Reference

Snoop Sniffing Packet capturing
It is a Linux packet analyzer software. It
allows the attacker to filter, capture, read,
interpret, and visualize packets data.

www.softpanorama.org

Tcptrace Sniffing Traffic analysis

It is used by the attacker to analyze tcp-
dump files and to produce various types
of outputs including information about the
connections, such as the elapsed time,
round trip times, throughput, etc.

www.tcptrace.org

Nmap Scanning Scanning

It is used to scan large networks in a fast
manner. It can identify different parame-
ters and configurations about the network
such as the available hosts and the ser-
vices offered by them, the running operat-
ing system, and the used firewalls.

www.insecure.or

Ike-scan Scanning Host discovery This tool uses IKE protocol to discover
IPSec VPN servers.

www.stearns.org

Tcpinject Attack launching Packet generator

This tool is used by the attacker to trans-
mit TCP/IP packets to a specific host in
the network by specifying several param-
eters, such as the source IP address, des-
tination IP address, source port, destina-
tion port, TCP window size, payload, etc.

www.packetstormsecurity.org

Dsniff Sniffing Password sniffing

It is password sniffer tool that permits
the attacker to intercept the network and
perform man-in-the-middle attack against
SSH and HTTPS sessions.

www.naughty.monkey.org

FSMax Attack launching DoS
It is DoS attack that tests a server to
find buffer overflows that may be exploited
during an attack.

www.brothersoft.com

Nast Sniffing Traffic analysis
It captures the header and payload in-
formation of network packets, and saves
them in files.

www.nast.berlios.de

RefRef Attack launching DDoS
It is a DoS attack that exploits MySQL
vulnerabilities using features included in
MySql to perform SQL injection.

www.hackingalert.net

Libnet Attack launching Packet injection
It is a popular attack tool used by intruders
to construct and inject new packets in the
network through an interface.

www.packetfactory.net/libnet

– Remote to User (R2U): During this attack, the intruder illicitly gains access to

an administrative account. Table 3.7 illustrates various forms of R2U attacks.

– User to Root (U2R): The intruder attempts to access the victim host as a legiti-

mate user to send packets over the network. Table 3.8 presents different forms

of U2R attacks.

3.2.3/ AVAILABLE DATASETS

Datasets play a critical role in evaluating and comparing IDSs and are considered the

backbone of state-of-the-art research in this field. These datasets enable researchers

to assess the performance of their systems, including their effectiveness in quickly and

accurately detecting various types of malicious activities. In this section, we present a
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Table 3.5: DoS attack forms

Attack name Description

Neptune
The attacker generates a SYN Flood attack by sending session
establishment packets using a fake source address. The receiv-
ing host will be waiting for the session to be confirmed which will
make it unavailable.

Smurf

It is a resource consumption attack where the attacker uses all
the available bandwidth by flooding the target server with Inter-
net Control Message Protocol (ICMP) packets, thus making the
bandwidth unavailable for legitimate users.

Land

The attacker accesses the server by sending a TCP SYN packet
where the IP address and port number are the same. When the
target machine tries to reply, it will send the replies to itself, en-
tering thus in an infinite loop, causing the server to crash.

Back

It is an attack on the Apache web server where the intruder sends
requests with URLs containing many front slashes. This will slow
down the server which becomes unable to process these re-
quests and the upcoming ones.

Ping Of Death (POD)
The attacker tries to crash and destabilize the targeted server by
sending malformed packets or packets larger than the maximum
allowable size.

Teardrop
The attacker sends fragmented packets to the target server, mak-
ing the server unable to reassemble these packets due to TCP/IP
vulnerabilities. The packets will overlap one another, crashing the
target server.

Table 3.6: Porbe attack forms

Attack name Description

Ipsweep
This tool identifies the hosts that are listening on the network. Such informa-
tion is useful to the attacker to help him launch other attacks and find vulnera-
ble machines.

Nmap
It is used to scan large networks in a fast manner. It can identify different
parameters and configurations about the network, such as the available hosts
and the services offered by them, the running operating system, and the used
firewalls.

Portsweep This attack aims to determine the hosts and open ports available in the net-
work. This information helps the attacker find vulnerable machines.

Satan It collects data from remote hosts and networks by examining multiple network
services such as NFS, NIS, FTP, statd, etc.

comprehensive summary of several cutting-edge datasets and discuss their characteris-

tics, limitations, and relevance in the context of state-of-the-art IDS evaluation.

• DARPA Dataset: The Defence Advanced Research Project Agency (DARPA)

dataset is created in 1998 at the MIT Lincoln Lab, stands as one of the founda-

tional datasets for IDS evaluation. It consists of seven weeks of real network traffic

data captured in packet-based format, along with host log files. This dataset, with its

5 million labeled records and 41 attributes, continues to serve as a benchmark for
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Table 3.7: Remote to User (R2U) attack forms

Attack name Description

FTP write
It occurs when the intruder takes advantage of a bad FTP con-
figuration. The attacker can thus create and add files, and gain
illegitimate access to the system.

Guess password It is an attack on guest accounts without a password or with an
easy-to-guess password.

Imap It exploits the vulnerability in the IMAP server to allow the attacker
to execute arbitrary commands on the server with root privileges.

Phf The attacker abuses a badly written CGI script to perform an at-
tack against the Web Server running the CGI script.

Warezclient This attack is usually initiated after the warezmaster attack.

Warezmaster This attack exploits a bug in the FTP server and occurs when the
FTP server gives users write permission by mistake.

Table 3.8: User to Root (U2R) attack forms

Attack name Description

Buffer overflow
Buffer overflow attack gives the attacker control over a privileged
program that accepts input data from the user. It occurs when a
program attempts to write excess data to a fixed-length buffer.

Load module

It is an intrusion on SunOS 4.1 systems that use the xnews win-
dow system. It loads two dynamically loadable kernel drivers into
the currently running system and creates special devices in the
directory to use those modules.

Rootkit

A rootkit attack allows the attacker to gain privileged access to
a computer. It is installed through different malicious tools such
as keyloggers, password stealers, antivirus disablers, etc., or by
exploiting system vulnerabilities.

Perl The Perl attack exploits a bug in some Perl implementations.

assessing IDS performance. However, it is essential to consider its limitations, such

as the presence of artificially injected attacks and a significant number of duplicate

records, which impact the accuracy of experimental results.

• KDD CUP 99 Dataset: The Knowledge Discovery and Data Mining (KDD) CUP 99

dataset, based on the DARPA dataset, was used for the competition held in 1999

as part of the KDD conference. it includes various types of attacks and comprises

5 million records, making it a valuable resource for studying network intrusion de-

tection. However, one challenge associated with the dataset is the presence of a

significant number of duplicate records. Addressing this limitation is crucial for de-

veloping detection algorithms that effectively handle both frequent and infrequent

attack patterns.

• NSL-KDD Dataset: The Network Security Laboratory-KDD (NSL-KDD) dataset

emerged as an enhanced version of the KDD CUP 99 Dataset, specifically de-
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signed to overcome its limitations. By removing redundant records from the training

and testing subsets, this dataset enhances the accuracy of intrusion detection re-

sults. With approximately 150K records encompassing 41 attributes and 22 attack

types, the NSL-KDD Dataset serves as a vital resource for evaluating the perfor-

mance of modern IDSs.

• CAIDA Dataset: The Center for Applied Internet Data Analysis (CAIDA) dataset

is recorded in 2007, provides valuable insights into network traffic with Distributed

Denial of Service attacks. However, it is important to note that this Dataset has

certain limitations when used for evaluating IDSs. Its specificity to a particular type

of attack and the absence of labels for distinguishing normal and anomalous traffic

restricts its applicability.

• ISCX 2012 Dataset: The Information Security Centre of Excellence (ISCX) 2012

dataset offers a comprehensive view of real network traffic, encompassing diverse

protocols such as HTTP, Internet Message Access Protocol (IMAP), and File Trans-

fer protocol (FTP). With labeled and non-anonymized records collected over one

week, it presents a wide range of network attack types, including Denial of Service

and DDoS attacks. However, the absence of HTTPS records, which constitute a

significant portion of current network traffic, hinders its realism and requires careful

consideration during IDS evaluation.

• TUIDS Dataset: The Traffic Usage and Intrusion Detection Scenario (TUIDS) pro-

vides researchers with realistic network traffic captured in both packet-based and

bidirectional flow-based formats. With its three subsets covering a period of seven

days and containing approximately 250K flows, this dataset offers valuable insights

for assessing IDS performance in complex network environments.

• Booters Dataset: The Booters dataset, recorded in a packet-based format, offers

a vast amount of realistic, anonymized network traffic, making it an attractive re-

source for IDS evaluation. With its inclusion of ten different DDoS attacks executed

against a null-routed IP address, this Dataset presents researchers with challenging

scenarios to test and improve their detection algorithms.

• CIDDS-001 Dataset: The Coburg Intrusion Detection Dataset (CIDDS-001),

recorded in 2017 from the OpenStack cloud server and external servers, provides

a recent and extensive collection of labeled and anonymized traffic data in a flow-

based format. Spanning four weeks with 32 million records and 14 attributes, this

dataset serves as a valuable resource for evaluating IDS performance in modern

network infrastructures [101].

We summarize in Table 3.9 the general information reflecting the properties of the

datasets presented above.
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Table 3.9: Summary of the datasets used for IDSs evaluation.

Dataset Public Year Data volume Duration Labeled
Attack

category
Traffic type Data type Anonymity

DARPA
[102]

✓ 1998 5M points 7 weeks ✓
DoS, Probe,
R2U, U2R

Realistic
Packet-

based, Log
files

×

KDD
CUP 99

[103]
✓ 1998 5M points 7 weeks ✓

DoS, Probe,
R2U, U2R

Realistic Other ×

NSL-
KDD
[103]

✓ 1998 148517 points 7 weeks ✓
DoS, Probe,
R2U, U2R

Realistic Other ×

CAIDA
[104]

✓ 2007 Not specified 1 hour ×
Denial of
Service

Realistic Packet-based ✓

ISCX
2012
[105]

✓ 2012 2M points 1 week ✓
DoS, DDoS,
SSH brute

force
Realistic

Packet-
based,

Flow-based
×

TUIDS
[106]

✓ 2012 250000 points 21 days ✓

IRC, DDoS,
port scans,
SSH brute

force

Realistic
Packet-
based,

Flow-based
×

Booters
[107]

✓ 2013
250 GB
packets

2 days × DDoS attacks Realistic Packet-based ✓

CIDDS-
001

[108]
✓ 2017 32M points 4 weeks ✓

DoS, port
scans, SSH
brute force

Realistic Flow-based ✓

3.3/ CROSS-LAYER FEDERATED IDS

3.3.1/ LIGHTWEIGHT SEMI-SUPERVISED INTRUSION DETECTION

IoT networks have experienced significant advancements, facilitated by technologies like

Arduino and ESP32, enabling a wide range of applications. However, these progressions

have given rise to new challenges, particularly concerning the resource limitations of IoT

devices. To overcome these challenges, there is an increasing demand for lightweight

and efficient algorithms. In this section, we delve into the realm of IoT intrusion detection

and propose the baseline k-means approach to address this need.

K-means clustering, renowned for its efficiency and low resource requirements, emerges

as a promising solution for IoT intrusion detection. By optimizing computations and mem-

ory usage based on the data points, features, and clusters, K-means is well-suited for

handling small datasets and a restricted number of clusters. Consequently, it proves to

be an excellent fit for resource-constrained IoT devices.

Moreover, we explore the federated implementation of the proposed approach, facilitating

collaborative learning and ensuring data privacy. By adopting a federated framework,

multiple IoT devices can collectively contribute to the intrusion detection process, sharing

insights and knowledge while preserving the confidentiality of their individual data. In

summary, the baseline k-means approach presents an efficient and lightweight solution to

tackle the resource constraints faced by IoT devices. Its compatibility with small datasets

and limited clusters, along with the federated implementation for collaborative learning
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and data privacy, positions it as a promising technique for IoT intrusion detection.

3.3.1.1/ CROSS-LAYER

In this section, we present a lightweight federated implementation of the baseline k-means

algorithm specifically designed for IoT environments. Our model, known as ”Cross-Layer

Federated IDS,” derives its name from the two layers it operates within: sampling and

anomaly detection. We utilize our efficient cluster-based sampling algorithm, as intro-

duced in Chapter 2, along with the novel federated baseline k-means algorithm, which we

will describe here. By capitalizing on the fact that our sampling algorithm already estab-

lishes and maintains clusters in the first layer, we are able to alleviate a significant portion

of the workload in the second layer. This leads to a noteworthy reduction in memory,

processing, and power requirements for the entire process.

The term ”cross-layer” in the literature is often used in the context of layers of the network

stack. Amouri et al. [109] proposed a cross-layer IoT IDS that spans MAC and Network

layers. Likewise, Canbalaban and Sen [110] proposed a cross-layer IoT IDS that spans

link and routing layers. Long et al. [111] proposed cross-layer industrial IoT IDS that

spans its three layers which are: the application layer, the network layer, and the per-

ception layer. This work is aligned with Malik et al. [112] and Kore and Patil [113]. A

more thorough analysis was conducted by Parween et al. [114]. But none of the research

surveyed here incorporates both sampling and intrusion detection.

3.3.1.2/ BASELINE K-MEANS

The baseline k-means algorithm serves as a semi-supervised novelty detection tech-

nique. It leverages a small set of labeled benign data to train a classifier, which is then

utilized to assign labels to additional unlabeled data points. This approach proves partic-

ularly advantageous in situations where there is an abundance of unlabeled data but a

scarcity of labeled benign data. One notable aspect of our model is the utilization of the

Mahalanobis distance function, instead of the commonly used Euclidean distance em-

ployed with k-means. The Mahalanobis distance takes into account the covariance of the

distribution and provides a measure of the distance between a point and a distribution. It

calculates the Mahalanobis distance, denoted as d, between a point x and a distribution

characterized by its mean µ and covariance matrix Σ, using the following equation:

DM(x, µ,Σ) =
√

(x − µ)⊤Σ−1(x − µ) (3.1)

In the equation, T represents the transpose of a matrix, Σ−1 denotes the inverse of the

covariance matrix Σ, and ’(x − µ)’ represents the difference between the point x and the
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mean µ. The inclusion of the Mahalanobis distance and covariance matrix allows the

algorithm to consider correlations between features and adapt the distance metric to the

specific data distribution.

Our model employs two clusters, one for the baseline (benign) data and another for the

anomalous distributions. The training process, illustrated in Algorithm 2, follows these

steps: for each incoming point, we calculate its Mahalanobis distance from the centroid

of the anomalous cluster. If the point falls within a predefined threshold distance from

the cluster, it is added to the cluster. Once a sufficient number of anomalous points

are present, the anomalous centroid is updated by selecting the farthest point from the

baseline centroid. This process is repeated for a certain number of iterations or until

convergence. During prediction, each point is assigned to one of the two clusters based

on the Mahalanobis distance and the same distance threshold, as outlined in Algorithm

3. Algorithm 4 outlines the baseline k-means class, which is constructed with four input

arguments:

• baseline data: an array representing the baseline (benign) data used for training

the model.

• max iterations: an optional integer argument specifying the maximum number of

iterations to be performed during training.

• percentile: an optional integer argument indicating the percentile of the Maha-

lanobis distances between each baseline data point and the baseline centroid used

as the threshold.

• update after iteration: an optional integer argument determining the number of iter-

ations after which the baseline and anomalous statistics are updated.

Figure 3.6 demonstrates how the percentile value influences the clustering of points

around the benign centroid. A lower percentile value results in a lower threshold, po-

tentially labeling more benign points as anomalous and leading to a higher false positive

rate. This parameter allows for tuning the algorithm’s sensitivity.
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Algorithm 2 baseline k-means fit function.

Procedure fit(data)

n ← number of data points in data

d ← number of features in data

num_iter ← 0

while num_iter < max_iterations or not converged do

num_iter ← num_iter + 1

fit_clusters ← empty list for baseline and anomalous clusters

if num_iter is a multiple of update_after_iteration then

update() // update baseline and anomalous statistics

end if

for i in range(n) do

point ← i-th data point in data

compute Mahalanobis distance to baseline centroid

if anomalous centroid exists then

compute Mahalanobis distance to anomalous centroid

if distance to anomalous centroid is smaller than to baseline centroid

times a threshold then

classify point as anomalous and add to anomalous cluster

continue to next point

end if

end if

if distance to baseline centroid is below threshold then

classify point as baseline and add to baseline cluster

else

classify point as anomalous and add to anomalous cluster

end if

end for

update() // update baseline and anomalous statistics

if converged then

break loop

end if

end while

return clusters and centroids

end Procedure

3.3.1.3/ FEDERATED SAMPLING AND INTRUSION DETECTION

The training process involves updating the cluster statistics, including centroids and dis-

tances to the benign centroid, which serve as crucial information for guiding the intrusion

detection process. In this work, we propose a federated intrusion detection approach

where multiple IoT devices actively participate in the training process. Each node inde-

pendently computes its local statistics, such as means and distances, and shares this
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Algorithm 3 baseline k-means predict function.

Procedure predict(new_data)

baseline_distances ← empty list

anomalous_distances ← empty list

for i ← 1 to len(new_data) do

point ← i-th data point in new_data

compute Mahalanobis distance to baseline centroid

if distance to baseline centroid is below threshold then

// used to label additional unlabeled data points

classify point as baseline and append it to baseline data

append baseline distance to baseline_distances list

end if

if anomalous centroid exists then

compute Mahalanobis distance to anomalous centroid

append anomalous distance to anomalous_distances list

end if

end for

create binary vector indicating whether each point is baseline or anomalous

assign each new data point to the nearest centroid (0 for baseline, 1 for anomalous)

return the assigned clusters as a numpy array (0 for baseline, 1 for anomalous)

end Procedure

information with a central coordinator for aggregation. The coordinator then updates the

baseline and anomalous centroids based on the merged statistics from the IoT devices

and calculates a new threshold, as illustrated in Figure 3.7.

The algorithm consists of four steps:

1. Initialization (Algorithm 5): The coordinator initializes the k-means clustering model

with a fixed number of clusters and shares the cluster statistics among the partici-

pating workers.

2. Local clustering: Each node utilizes its own local k-means clustering model on its

sampled data to perform clustering.

3. Sharing cluster statistics: Each node shares its cluster statistics, including cluster

centroids and distances to the benign centroid, with other nodes through the coor-

dinator.

4. Merging statistics (Algorithm 6): The coordinator merges the cluster statistics re-

ceived from each node to create a comprehensive global representation of the be-

nign and anomalous clusters. The updated global model can then be shared with

the worker nodes for further local training.
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Algorithm 4 baseline k-means class shown in a Python-like pseudocode.

Input : Baseline data B, Anomalous data A, max iterations I, percentile P,

update after iteration U

Output: Trained model with updated centroids and threshold

Class BaselineKMeans:

Function __init__(self, baseline_data, max_iterations,

percentile, update_af ter_iteration)

/* Initialize the model with baseline data representing the expected normal

behavior or performance of the system. */

end

Function update(self, baseline data, anomalous data, percentile)

/* Update the baseline and anomalous statistics */

/* The centroids, baseline_mean, baseline_cov, threshold, anomalous_mean, and

anomalous_cov values are returned as output from the function. */

end

Function append_baseline_anomalous(self, baseline_distance, point)

/* Append new data to either the baseline or anomalous data based on distance

to baseline centroid */

end

Function fit(self, data)

/* The function iterates until convergence or the maximum number of

iterations is reached. */

/* For each iteration, the function assigns each data point to the nearest

centroid based on Mahalanobis distance. */

/* The centroids are updated after a certain number of iterations, and the

function checks if the distance to the anomalous distribution is smaller

than to the baseline to determine if a point is an anomaly. */

/* The function stops iterating when the clusters do not change between

iterations or the maximum number of iterations is reached. */

end

Function predict(self, new_data)

/* Classify new data as baseline or anomalous based on distances and baseline

distance threshold */

end

3.3.2/ EXPERIMENTS

In this section, we present a comprehensive comparison of the proposed method with

other semi-supervised novelty detection methods. We conduct simulations to evaluate the

performance of our federated IDS approach, utilizing the cluster-based sampling method
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BaselineKmeans with percentile value of 90% BaselineKmeans with percentile value of 95%

BaselineKmeans with percentile value of 98%

Figure 3.6: This figure depicts how adjusting percentiles (90, 95, 98) for anomaly thresh-
old calculation during data clustering impacts the trade-off between accurate anomaly
detection and fewer false positives.

Algorithm 5 The export statistics function shown in a Python-like pseudocode
Output: Threshold, baseline mean, inverse baseline covariance, anomalous mean,

inverse anomalous covariance

Function export_stats(self)

linalgInv_baseline ← pinv(baseline_cov + 0.001 * identity(dimension));

linalgInv_anomalous ← pinv(anomalous_cov + 0.001 * identity(dimension));

return threshold, baseline mean, linalgInv_baseline,

anomalous mean,linalgInv_anomalous;

end

described in the previous chapter. Through these simulations, we demonstrate how col-

laboration between workers and the coordinator enhances the overall effectiveness of

the IoT IDS. Furthermore, we delve into the simulations focused on the cross-layer IDS,

where intrusion detection is applied following the cluster-based sampling. We thoroughly

analyze the impact of the sampling rate on IDS performance to gain valuable insights.

To ensure reproducibility, we have made the Python code for the Baseline-Kmeans and

subsequent simulations publicly available on GitHub [115]. It is important to note that
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Merger:  The central server aggregates the local models by applying
an aggregation function, producing a new aggregate global model.

The aggregate global model
parameters are sent to each user’s device. After a certain amount of sampling,

the local model statistics are sent to the central
server.

The received parameters located on the user devices are updated with local data
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Figure 3.7: This figure presents a federated approach for intrusion detection in IoT net-
works. A BaselineKMeans class acts as the coordinator. Each worker utilizes a cluster-
based sampling algorithm.

Algorithm 6 The merge statistics function shown in a Python-like pseudocode.
Input: Worker baseline means, worker anomalous means, distances from baseline

points to new baseline centroid, distances from anomalous points to

anomalous centroid

Output: Updated threshold and centroids

//Merge statistics function:

Function merge(self, worker_baseline_means, worker_anomalous_means,

distances_inline, distances_outline)

update centroids based on the mean of worker, baseline means,

and worker anomalous means;

linalgInv ← pinv(baseline_cov + 0.001 * identity(dimension));

distances ← distances from baseline points to new baseline centroid;

distances ← vstack((distances, distances_inline));

min_outline ← min distance between outline points and benign centroid;

remove the distances that are greater than min_outline;

compute threshold based on the percentile of distances;

return updated threshold and centroids;

end

we employ the same NSL-KDD dataset used in our previous experiments for consistency

and continuity [116, 103].
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3.3.2.1/ SEMI-SUPERVISED LEARNING

Supervised learning methods pose a significant challenge as they necessitate large vol-

umes of labeled data that are difficult to obtain. On the other hand, designing and imple-

menting unsupervised models proves challenging due to the requirement for well-defined

boundaries between classes. This is precisely why a semi-supervised novelty detection

approach utilizing K-means offers numerous advantages. To effectively demonstrate the

rationale behind employing semi-supervised learning, we visualized the NSL-KDD data

transformed with Principal Component Analysis (PCA) and compared the outcomes of

unsupervised K-means clustering, the ground truth, and our proposed baseline k-means,

as depicted in Figure 3.8.

(a) Scatter plot of 10000 data points with the unsupervised
k-means (k=2) predicted classes (transformed with PCA)

(b) Scatter plot of 10000 data points with ground truth labels
(transformed with PCA)

(c) Scatter plot of 10000 data points with the semi-supervised
baseline k-means (percentile = 95)

predicted classes (transformed with PCA)

Figure 3.8: Clustering the NSL-KDD data points using the standard unsupervised k-
means and the proposed semi-supervised baseline k-means with k=2.

3.3.2.2/ SEMI-SUPERVISED NOVELTY DETECTION FOR INTRUSION

Novelty detection techniques in semi-supervised learning offer the advantage of utiliz-

ing a subset of benign data to learn normal traffic patterns, enabling the identification of

anomalous traffic. In order to demonstrate the effectiveness and suitability of our pro-
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posed baseline k-means algorithm for IoT intrusion detection, we compare it with alterna-

tive novelty detection techniques:

• One-Class Support Vector Machine (SVM): This technique maximizes the margin

between benign samples and the origin, allowing for the detection of novel data

points that deviate from the learned benign pattern.

• One-Class Gaussian Mixture Model (GMM): A generative probabilistic model that

assumes benign data is generated from a mixture of Gaussian distributions. It es-

timates the parameters of these distributions using the Expectation Maximization

(EM) algorithm, establishing the benign distribution for classification.

• Local Outlier Factor (LOF): A density-based algorithm that identifies outliers by com-

paring the local density of a data point with the densities of its neighbors. Data

points with significantly lower densities than their neighbors are considered anoma-

lies.

• Isolation Forest: This algorithm isolates data points by randomly selecting features

and splitting them with random thresholds, creating an ensemble of trees. Anoma-

lous data points require fewer splits and result in shorter path lengths, this property

is exploited in the classification phase.

• Minimum Covariance Determinant (MCD): A statistical method for detecting outliers

based on the Mahalanobis distance, considering feature correlations. MCD esti-

mates the mean and covariance matrix of benign data by finding the subset with the

smallest covariance determinant, and identifying anomalies exceeding a predefined

threshold.

To evaluate the performance of each semi-supervised novelty detection algorithm, we

provide 500 benign data points from our dataset for learning normal traffic patterns. Sub-

sequently, we apply the techniques to classify the data and report precision, recall, and

F1-score for each method within sliding windows of 1,000 data points. By calculating

the average metrics across all windows, we enable a comprehensive comparison of their

performance in IoT intrusion detection, as depicted in Figure 3.9.

The results demonstrate that our proposed method achieves the highest recall at 0.97

and a competitive F1-score at 0.85 compared to the other considered methods. This is

particularly significant in intrusion detection as it emphasizes the capability to detect a

greater number of real intrusions. As explained earlier, the sensitivity of our proposed

method can be tuned to increase precision if desired.
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Figure 3.9: This bar plot compares semi-supervised novelty detection algorithms based
on precision, recall, and F1-score. The Baseline K-means algorithm stands out with high
recall and a competitive F1-score.

3.3.2.3/ FEDERATED LIGHTWEIGHT IDS

In this section, we present the results of the simulation conducted on our federated IDS,

comprising one coordinator and three workers. The initial training involves the coordinator

being trained with a dataset of N=100 benign data points. The coordinator then shares

its statistics with the workers, and in each epoch, both the coordinator and the workers

process 1000 data points. Performance metrics such as precision, recall, and F1 score

are calculated for each window and aggregated for each node involved.

We consider three scenarios to analyze the impact of merging statistics on the system’s

performance and adaptability to evolving traffic. The first scenario involves no merging,

where the coordinator shares its initial training statistics with the workers (Figure 3.10).

The second and third scenarios incorporate three and four merging steps, respectively,

enabling us to evaluate the contribution of merging operations.

The results of the first scenario, depicted in Figure 3.10-b, show that the workers’ perfor-

mance is comparable to, and occasionally slightly better than, that of the coordinator, with

an average overall F1 score of approximately 0.84. As shown in Figure 3.10-a, there is

no significant variation in performance metrics throughout the epochs since no sharing of

new data occurs after the initial training phase.

Figure 3.11 illustrates the results of the second scenario, where merging operations take

place at epochs 7, 14, and 21. It is evident in Figure 3.11-a that recall improves after each

merge, further validating the effectiveness of our method. The third scenario’s results, as
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depicted in Figure 3.12, exhibit even more pronounced improvement. By the end of the

30 epochs, the workers achieve a recall of 0.97, as shown in 3.12-a. 3.12-b reveals an

average recall of approximately 0.96 for all workers and an increased F1 score of 0.86.

However, similar to the second scenario, the precision decreases to 0.78.

It is worth noting that in both scenarios, as recall increases, precision decreases. Hence,

it is crucial to consider the trade-off between precision and recall and determine appro-

priate intervals for merging operations.
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(a) Evolution of performance metrics for the coordinator and three workers over 30 epochs, each
comprising a window of 1,000 data points.
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(b) Average performance metrics for the coordinator and three workers after 30 epochs.

Figure 3.10: Federated IDS without merging operations.



3.3. CROSS-LAYER FEDERATED IDS 61

0.8

0.9

C
oordinator

0.8

0.9

W
orker_1

0.8

0.9

W
orker_2

0 5 10 15 20 25 30
Window

0.8

0.9

W
orker_3

Legend
Recall Precision F1-score

(a) Evolution of performance metrics for the coordinator and three workers over 30 epochs, each
comprising a window of 1,000 data points.
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(b) Average performance metrics for the coordinator and three workers after 30 epochs.

Figure 3.11: Federated IDS with three merging operations.

3.3.2.4/ CROSS-LAYER FEDERATED LEARNING

This section delves into the simulation of the cross-layer IDS, where intrusion detection

is applied following the cluster-based sampling technique proposed in our previous work

[117]. It sheds light on the impact of sampling on IDS performance metrics and em-

phasizes the significance of the sampling operation when implementing the IDS on a

microcontroller in terms of processing time.

1. IDS Performance Metrics: We explore two scenarios, tracking performance metrics

at three different sampling rates: 0.75, 0.5, and 0.25. In the first scenario, consisting
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(a) Evolution of performance metrics for the coordinator and three workers over 30 epochs, each
comprising a window of 1,000 data points.
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(b) Average performance metrics for the coordinator and three workers after 30 epochs.

Figure 3.12: Federated IDS with four merging operations.

of one coordinator and one worker without merging statistics, we process 5,000

data points per epoch over 11 epochs. Figure 3.13 illustrates the results, indicating

a decline in performance over time when utilizing sampled data through cluster-

based sampling. This decline is more pronounced with lower sampling rates. In

the second scenario, recall decreases from 0.88 to 0.87 at epoch 3, with the 0.25

sampling rate dropping to 0.83. However, after the first merging operation, recall

increases to 0.90 for sampling rates 0.75 and 0.5, and 0.89 for the sampling rate

0.25 by epoch 7. By epoch 11, recall reaches 0.95 for sampling rates 0.75 and

0.5, and 0.93 for the sampling rate 0.25. These results, depicted in Figure 3.14,
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emphasize the importance of the merging operation.

2. Processing and Implementation: To showcase the low processing requirements of

our cross-layer federated IDS solution, we implement it on an Arduino Nano 33

microcontroller. We utilize an efficient C++ implementation of the Mahalanobis dis-

tance function, which plays a crucial role in our method. The coordinator exports

various values such as the threshold, baseline mean, baseline covariance inverse,

anomalous mean, and anomalous covariance inverse to each worker. The tests are

conducted using a window of 100 data points, each containing six features at differ-

ent sampling rates. Figure 3.15 demonstrates that the processing time decreases

from approximately 32ms at a 100% sampling rate to around 9ms at a sampling rate

of 0.25.
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Figure 3.13: IDS performance metrics when applying cluster-based sampling with sam-
pling rates of 0.75, 0.5, and 0.25, a change ratio of 0.5, and without merging operations.

3.3.3/ DISCUSSION

In this section, we delve into the details and explanations of the key observations derived

from our experiments.

1. The performance of the coordinator does not improve over time. This can be at-

tributed to the fact that the workers do not share their inverse covariance matrix with

the coordinator. This design choice was made considering the computational bur-

den of calculating and transmitting the covariance matrix on resource-constrained

devices like microcontrollers. While utilizing the coordinator’s covariance matrix is

an alternative, it can result in diminished performance when there are significant
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Figure 3.14: IDS performance metrics when applying cluster-based sampling with sam-
pling rates of 0.75, 0.5, and 0.25, a change ratio of 0.5, and two merging operations.
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Figure 3.15: Processing time vs sampling rate on an Arduino Nano 33.

disparities in data point distribution across workers. A potential compromise could

involve workers sharing a compressed or subset of their local covariance matrix,

which will be addressed in future work.

2. After each merge operation, as recall increases, the precision decreases. The

merge process entails calculating new means for baseline and anomalous data by

averaging the workers’ and coordinators’ respective means, along with the threshold

based on the percentile parameter described in Algorithm 3. As the merge oper-
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ation progresses, the coordinator’s calculated threshold becomes more conserva-

tive, considering the specified percentile and the minimum distance of a worker’s

anomalous data points from the baseline mean. Consequently, an increased num-

ber of data points are rejected, leading to an increase in false positives and a drop

in precision. Addressing this issue will be a focus of future work as we revisit the

implementation of the merge operation.

3. The performance metrics of the IDS decrease when the sampling rate is reduced

over time. This phenomenon can be attributed to the selection of data points for the

cluster sample by the cluster-based sampling technique, which favors points that

decrease sampling error. If a chosen data point happens to be at the periphery of

the benign distribution, the IDS may perceive it as a dubious data point due to its

conservative nature, potentially leading to its rejection as an anomaly. However, this

effect is effectively mitigated by the merging operation.

3.4/ CONCLUSION

This chapter presents and evaluates a lightweight IDS specifically tailored for IoT appli-

cations, exemplified by its implementation on a microcontroller. Through comprehensive

experiments and simulations, the proposed IDS showcases both effectiveness and effi-

ciency when integrated into a cross-layer federated learning framework, encompassing a

cluster-based sampling process and an intrusion detection process. This study empha-

sizes the impact of merging operations on the performance of both the coordinator and

workers, the inherent trade-offs between precision and recall when exchanging statis-

tics between workers and the coordinator, and the factors influencing performance trends

when adjusting the sampling rate. The conducted experiments and simulations consis-

tently demonstrate the suitability of our approach for IoT applications, offering efficient

intrusion detection capabilities within resource-constrained environments.
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CROSS-LAYER FEDERATED

HETEROGENEOUS ENSEMBLE

LEARNING IDS

4.1/ INTRODUCTION

Distributed and federated IDSs play a crucial role in ensuring the security of IoT devices.

However, there is a pressing need for more robust mechanisms to address the existing

gaps in these systems [60]. One major challenge lies in extending these systems to

lightweight IoT devices.

In Chapter 3, we introduced a novel cross-layer IDS that leverages a cluster-based sam-

pling technique. This approach ensures comprehensive data representation while min-

imizing sampling error caused by data variance. By utilizing IDS on sampled data, we

can effectively reduce memory usage and energy consumption. To further enhance this

approach, we extended the proposed sampling algorithm to incorporate a federated IDS,

employing a semi-supervised ML model [118]. However, this distributed approach en-

countered a significant increase in the false positive rate, posing a persistent challenge

in anomaly detection, particularly in anomaly-based intrusion detection [119]. The model

struggles to account for all normal traffic patterns, leading to misclassification of untrained

or abnormal benign data as attacks.

Although a system with a high rate of false positives may successfully identify a large

number of real threats, the high number of false alarms can lead to ’alarm fatigue’. This

term refers to the phenomenon where, due to an overwhelming number of false alarms,

system administrators begin to ignore or downplay alerts, potentially missing genuine

threats amidst the noise. In the context of IoT, the problem is even more pronounced due

to the large-scale and high-density nature of these networks. Frequent false positives

can result in unnecessary consumption of computational resources, network bandwidth,

67
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and human attention. Therefore, an effective IDS should aim for a balance, achieving

a high recall rate while keeping false positives to a minimum. Our proposed baseline

k-means approach in Chapter 3 is designed with a focus on recall, aiming to capture

as many threats as possible. This design choice reflects the severity of the potential

consequences of missing a true positive threat. However, this focus comes with the

trade-off of a potentially higher false positive rate, a limitation that will be addressed in

this chapter to enhance the overall performance of the IDS.

The literature provides several solutions to mitigate false positives in IDS, with ensem-

ble approaches being particularly promising. Recent research suggests that employing

ensemble learning techniques can be a promising strategy to mitigate false positives in

anomaly detection systems [120, 121]. Ensemble techniques involve the combination of

multiple models to achieve better performance than could be obtained from any of the

constituent models alone. This can lead to improved prediction performance and robust-

ness against overfitting. An ensemble IDS could utilize the strengths of various detection

techniques, including our baseline k-means, to form a collective decision about the in-

trusion status of a data point. By integrating different models with varying strengths and

weaknesses, an ensemble can potentially achieve a higher true positive rate and a lower

false positive rate simultaneously. One example is a two-stage architecture proposed

in [119], where unsupervised methods are used for attack detection, while supervised

learning is employed for classification. However, it is important to note that unsupervised

learning may not be suitable for all problem types, and supervised techniques may not be

feasible without appropriately labeled data [122].

Considering our research’s limited labeled dataset, we approach the problem as a semi-

supervised novelty detection task. In this Chapter, we present a lightweight, semi-

supervised, federated IDS for IoT devices. By leveraging ensemble learning techniques,

we combine the strengths of various detection models, including our baseline k-means, to

form a collective decision about the intrusion status of data points. This integration allows

us to achieve a higher true positive rate and a lower false positive rate simultaneously,

improving the precision of our IDS.

In conclusion, our design incorporates a sampling layer and employs a heterogeneous

ensemble learning strategy. This approach effectively detects malicious packets while

maintaining a low false positive rate over time, providing a more reliable and sustainable

solution for IoT security.
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4.2/ ANOMALY-BASED INTRUSION DETECTION TECHNIQUES

Anomaly-based techniques are broadly used in IDSs due to their effectiveness in de-

tecting unknown attacks. Unlike signature-based systems, these techniques establish

patterns of normal network behavior and utilize them to identify abnormal patterns. This

section explores several such techniques illustrated in Figure 4.1, along with a discussion

of their limitations.

Figure 4.1: Taxonomy of anomaly-based intrusion detection techniques.

4.2.1/ STATISTICAL MODELS

Statistical models play a crucial role in anomaly-based intrusion detection techniques,

assuming that anomalous data follows distinct statistical distributions from typical data.

These models are built using historical traffic data, and similarity measures are employed

to classify data points as normal or anomalous. Univariate detection techniques focus on

analyzing individual parameters such as mean, standard deviation, and median. Control

chart methods, widely used in Statistical Process Control (SPC), are prominent in this

category [123, 124]. Intrusion detection models incorporating the EWMA and CUSUM

control charts have shown promising results in detecting R2L intrusions in TCP packets
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[124, 125, 126]. On the other hand, multivariate detection techniques allow for the ex-

amination of complex changes involving multiple variables. Time-series and forecasting

models such as the ARIMA model, Principal Component Analysis, and likelihood ratio

are commonly used in this category [127]. Soule et al. 61 proposed a method for the

detection of traffic anomalies based on the Kalman Filter.

Statistical models offer several advantages, including tunability, adaptability to network

conditions, and the ability to provide quantitative measures for anomaly detection without

prior knowledge of network attacks or normal system behavior [128]. However, they also

have limitations, such as the challenge of parameter tuning and the assumptions of data

stationarity and linearity in real-world scenarios.

4.2.2/ MACHINE LEARNING TECHNIQUES

ML techniques play a pivotal role in the realm of IDSs, offering powerful methodologies

for detecting network attacks. These techniques can be broadly classified into three main

categories: supervised, semi-supervised, and unsupervised. In the following sections,

we provide an overview of each category, delving into their fundamental concepts and

highlighting notable research contributions that underscore their significance:

1. Supervised Techniques

Supervised learning techniques rely on labeled data to classify network traffic as

normal or attack. While popular due to their simplicity and accuracy, these tech-

niques struggle to detect new and unknown attacks. Notable examples include:

• K Nearest Neighbors (KNN): The KNN algorithm identifies the nearest neigh-

bors in the training dataset to classify new data points. Variations of KNN,

such as weighted KNN and feature selection with genetic algorithms, improve

accuracy [129, 130].

• Decision Trees: Decision trees are employed for network traffic classification.

Combining decision tree algorithms with techniques like genetic algorithms en-

hances detection, especially for DDoS attacks [131, 132, 133].

• Artificial Neural Networks (ANNs): ANNs model complex patterns in network

data and can detect non-linear relationships. They consist of interconnected

layers of neurons with weights defining their connections.Various training tech-

niques, such as recurrent neural networks and feed-forward neural networks,

show promise in intrusion detection [134, 135, 136].

• Fuzzy Logic: Fuzzy logic techniques handle uncertainty in data. A fuzzy logic

IDS performs on par with decision tree-based systems [137].
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• Genetic Algorithms (GAs): GAs optimize solutions inspired by natural se-

lection. GA-based systems have been effective in detecting DDoS attacks,

weighted feature extraction, rule generation, and detecting unknown attacks

[138, 139, 140, 141].

• Support Vector Machine (SVM): SVM finds optimal hyperplanes for classifica-

tion. SVM models trained with malicious data show effectiveness in detecting

specific attacks [142]. Combining SVM with genetic algorithms improves fea-

ture selection [143].

• Bayes Classifiers: Bayesian classifiers use Bayes’ theorem for classification.

Feature filtering followed by a Bayes classifier offers an IDS for intrusion de-

tection [144]. Non-parametric IDS based on the Bayesian model detects both

known and unknown network attacks [145].

2. Semi-supervised Techniques

Semi-supervised techniques require only normal data for training and identify

anomalies based on deviations from normal behavior. Noteworthy contributions

include:

• Semi-supervised Multi-Layered Clustering (SMLC): This model employs k-

means clustering for network attack detection [146].

• Semi-supervised Tri-Adaboost (STA): STA combines three Adaboost algo-

rithms and the chi-square technique for feature selection and reduced com-

putational requirements [147].

These techniques demonstrate high detection accuracy while operating with limited

labeled data, making them suitable for scenarios where obtaining labeled attack

data is challenging.

3. Unsupervised Techniques

Unsupervised techniques automatically discover patterns and anomalies in data

without relying on labeled examples. Remarkable illustrations include:

• K-means Clustering: This technique divides traffic data into clusters and de-

tects outliers based on the distance from the cluster centroid [148].

• Hybrid Intrusion Detection System: Combining K-means and KNN algorithms

enhances the detection of anomalous traffic [149].

• CANN: CANN utilizes distances to nearest neighbors and cluster centroids to

identify anomalous traffic [150].

• EIDS-ACC-OD: This intrusion detection system combines K-means and KNN

for traffic classification and attack detection [151].
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Unsupervised techniques excel at fast anomaly detection and handle large

datasets. However, challenges include defining stable normal behavior and dif-

ferentiating intrusions from other anomalies in dynamic network environments. Re-

searchers and practitioners can leverage these techniques to enhance the security

of network systems by identifying and mitigating threats in real-time.

4.2.3/ HYBRID MODEL

HIDS have been proposed to address the limitations of Anomaly-based Intrusion Detec-

tion Systems (AIDSs) and Signature-based Intrusion Detection Systems (SIDSs). HIDS

combines the strengths of both approaches, leveraging signature-based detection for

known attacks while maintaining the ability to detect unknown or less-frequent attacks

with a low false alarm rate. These hybrid models can be either sequence-based or

parallel-based, applying different detection techniques in a specific order or simultane-

ously for accurate classification.

One significant contribution in this area is the hybrid IDS proposed by Elvis et al. [152].

Their approach first utilizes an anomaly detector to identify malicious instances and then

employs a signature-based detector to classify suspicious instances into false alarms,

intrusions, and unknown intrusions. Another notable contribution is the work of Zhang et

al. [153], who designed a HIDS using the random forest algorithm for both known and

unknown attack detection in the signature-based detector. Additionally, researchers in

[154] developed a hybrid decision technology that combines data filtering and multiple

classifiers to enhance the performance of the IDS. These contributions highlight the sig-

nificance of hybrid models in improving detection accuracy and reducing false alarms in

intrusion detection.

The above discussion is shown in Table 4.1.

4.2.4/ PERFORMANCE METRICS OF AIDS

The evaluation of AIDS is crucial for assessing their effectiveness and efficiency in detect-

ing network attacks. This section focuses on key performance metrics used to measure

the capabilities of AIDS. The performance evaluation of AIDS aims to achieve timely at-

tack detection, accurate intrusion identification, and minimizing false positives.

A widely used tool in performance evaluation is the confusion matrix (Table 4.2), which

provides a comprehensive overview of the classification algorithm’s performance. Metrics

such as precision, recall, specificity, accuracy, and false positive rate are derived from the

confusion matrix, offering insights into the system’s accuracy, ability to detect true attacks,

capability to identify normal behavior, and efficiency in real-time scenarios. Furthermore,
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Table 4.1: Comparison of anomaly-based intrusion detection techniques.

Advantages Drawbacks Examples

K Nearest
Neighbors

Do not require any data distribution
Straight-forward technique
It is a non-parametric algorithm that has no
assumption regarding the data
No need for a learning phase

High computing complexity making the al-
gorithm slow
Failure possibility
Results are depending on the choice of the
number of neighbors k
Sensitive to the distance metric
Cannot deal with missing values

Su [155]
Adetunmbi [156]
Malhotra [129]
Serpen [130]
Lin [150]

Clustering

Flexibility
Low computational complexity
Fast detection
Extends the concept of anomaly from sin-
gle objects to groups of objects

Require thresholds to calculate the dis-
tances
Sensitive to the chosen number of clusters
Anomalies may affect the initial formation of
clusters

Munz [148]
Aung [149]
Lin [150]
Peng [157]
Kumar [158]
Benaddi [159]

Neural
Networks

Ability to detect complex and non-linear re-
lationships between different features
Ability to build the model from limited infor-
mation

Require long training time
High computational complexity
Does not require any prior knowledge
about the output

Vesely Cannady [160]
Dao [161]
Jadidi [162]
Xu [134]
Iqbal [135]
Vesely [163]

Statistical
models

Do not require a priori knowledge of net-
work attacks
Effective in detecting the attacks mani-
fested by abrupt changes

Small and gradual attacks are hard to be
detected

Umer [123]
Sklavounos [126]
Sklavounos [164]
Fouladi [165]
Nezhad [127]

Decision
trees

Can process numerical and categorical
data
Capability to handle high-dimensional data
Fast to train in small datasets

Require long time to train the model for
large datasets

Bloedorn [131]
Sinclair [132]
Kevric [166]

Genetic
algorithms

They do not assume any prior knowledge
about system behavior

Require long time to train the model for
large datasets

Chaudhary [138]
Pawar [167]
Middlemiss [139]
Gong [140]
Zhao [141]
Hoque [168]

Support
Vector
Machine

Effective for multi-dimensional data
Fast detection with high accuracy

Cannot extend the classification to more
than two classes
Requires long time to train the model for
large datasets

Winter [142]
Kuang [169]
Tao [143]
Al-Qatf [170]

Bayes
classifiers

Ability to break complex problems into dif-
ferent smaller models

Slow in classifying data with multiple at-
tributes

Kevric [166]
Mukherjee [144]
Zhang [171]

Fuzzy
logic

Ability to deal with uncertain and/or incom-
plete data
Does not need a large training dataset
Interpretability, Simplicity
No need to re-train the system when adding
new rules

Can be used only if some knowledge about
the output is available in the form of linguis-
tic rules

Bridges [172]
Danane [173]
Shanmugavadivu [174]
Mkuzangwe [137]

computational resource metrics such as CPU and memory usage are considered. These

performance metrics provide valuable insights into the capabilities and limitations of AIDS,

enabling researchers and network administrators to evaluate IDSs and make informed

decisions regarding their deployment and optimization.

Table 4.2: Confusion matrix table.

Actual
Detected as

Normal Anomalous

Normal True Negative (TN) False Positive (FP)
Anomalous False Negative (FN) True Positive (TP)

4.2.5/ PERFORMANCE EVALUATION

This section discusses the performance evaluation of various anomaly-based intrusion

detection algorithms presented in this chapter. Table 14 presents a comparison of se-

lected intrusion detection algorithms based on their detection accuracy. It considers the

number of features used, the types of attacks detected, and the datasets employed for
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testing. The primary evaluation metric used is detection accuracy.

From the results, two main conclusions can be drawn. Firstly, different algorithms show

varying effectiveness in detecting specific types of attacks, with some algorithms per-

forming better than others for certain attack types. Secondly, the number of selected

features impacts the detection accuracy, with a lower number of features generally lead-

ing to higher accuracy. The evaluation also includes the accuracy of correctly classifying

normal traffic data.

By examining the performance evaluation results, researchers can gain insights into the

strengths and weaknesses of different intrusion detection algorithms, aiding in the selec-

tion and optimization of algorithms for specific attack scenarios.

4.3/ ENSEMBLE LEARNING

4.3.1/ ENSEMBLE LEARNING AND DATA STREAMS

Traditional ML methods typically assign labels to data points by identifying the best single

hypothesis that can explain them. In contrast, ensemble learning constructs a collection

of combined hypotheses that are then voted on [175]. Each hypothesis within the voting

set is generated using a ML method, and this collective approach often leads to superior

accuracy compared to individual ML methods [176]. Ensemble learning, as emphasized

by Dong et al. [177], is particularly well-suited for handling complex, imbalanced, high-

dimensional, and noisy datasets.

ML algorithms often struggle with constrained sliding windows in data streams, result-

ing in sub-optimal models [178]. Polikar [179] defines ensemble learning as a means

to reduce the likelihood of poor selection by reducing the likelihood of poor outcomes.

Sun et al. [180] proposed a class-based ensemble method to detect emerging or

disappearing data classes. Van Rijn et al. [181] proposed a heterogeneous ensem-

ble learning framework that outperforms state-of-the-art techniques across diverse data

streams. This framework relies on multiple classifiers, unlike most dynamic data stream

ensembles, which rely on a single base-level classifier. Zhang and Jin [182] proposed

an automatic ensemble learning algorithm that adaptively distinguishes sensible clas-

sifiers, outperforming static configurations. Individual ensemble learning techniques

have been proposed to address specific data stream problems such as concept drift

[183, 184, 180, 178], imbalance [185, 186], and noise [187, 178].
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4.3.2/ ENSEMBLE LEARNING IN IOT IDS

Lama and Tim [188] conducted a systematic survey on the application of ensemble learn-

ing in IDSs, with a particular focus on the IoT domain. Their findings highlighted the

widespread use of random forest within ensemble learning for IDS. They also provided

a detailed breakdown, noting that homogeneous ensembles utilized random forest, bag-

ging, and boosting techniques, while heterogeneous ensembles employed majority voting

and stacking architectures. Illy et al.[189] proposed an ensemble learning mechanism for

the fog-to-things environment, aiming to reduce latency and improve accuracy. Addition-

ally, Verma and Ranga [190] introduced ELNIDS, an ensemble learning IDS specifically

designed for ”Low-Power and Lossy” IoT networks. ELNIDS utilized a four-model ensem-

ble consisting of bagged trees, boosted trees, subspace discriminant, and RUSBoosted

trees. Their work aligns with Abu Al-Haija and Al Badawi [191] and Mohy-Eddine et al.

[192].

Alhowaide, Alsmadi, and Tang [193] employed an automatic Model Selection Method

(MSM) to configure a heterogeneous set of classifiers, similar to Zhang’s approach [182].

Abu Alghanam et al. [194] utilized ensemble learning to introduce LS-PIO, an enhanced

feature selection algorithm for IoT IDS. K-Means was employed to reduce processing

time for IoT, aligning with Gopalakrishnan and Purusothaman [195]. Abu Al-Haija and

Al-Dala’ien [196] proposed ELBA-IoT, an ensemble learning model for botnet attack de-

tection in IoT networks using AdaBoosted, RUSBoosted, and bagged trees. Hazman

et al. [197] proposed lIDS-SIoEL, an intrusion detection framework for IoT-based smart

environments based on Ensemble Learning using AdaBoost, Boruta, mutual information,

and correlation.

The methods surveyed in this section are summarized in Table 4.3. For more compre-

hensive insights into ensemble learning in IoT IDS, refer to [198, 199, 200].

4.4/ CROSS-LAYER FEDERATED ENSEMBLE LEARNING

In this work, we propose a novel federated semi-supervised ensemble novelty detection

technique for IDSs in IoT networks. Our approach addresses the challenge of limited

labeled regular or benign traffic data in real-world applications. As we have previously

detailed in Chapter 3, the proposed method referred to as baseline k-means [117, 201]

leverages unsupervised IDS methods and transforms them into semi-supervised meth-

ods by learning a boundary that approximates the baseline observations’ distribution.

Remembering from the previous chapter, the baseline k-means was designed to maxi-

mize recall. However, this approach can lead to a higher rate of false positives, which is

an issue that needs to be carefully managed to preserve the utility and credibility of an



76CHAPTER 4. CROSS-LAYER FEDERATED HETEROGENEOUS ENSEMBLE LEARNING IDS

Reference Ensemble learning set

Illy et al. [189]
Random Forest, Bagging Classifier, Ad-
aBoost and Voting

Verma and Ranga
[190]

bagged trees, boosted trees, subspace
discriminant and RUSBoosted trees

Abu Al-Haija and Al
Badawi [191]

bagged trees, ensemble subspace kNN
(ESK), RUSBoosted trees, shallow neu-
ral network (SNN), bilayered neural net-
work (BNN and logistic regression kernel
(LRK)

Mohy-Eddine et al.
[192]

isolation forest (IF) and pearson’s corre-
lation coefficient (PCC)

Alhowaide, Alsmadi
and Tang [193]

logistic regression, random forest, deci-
sion tree, gradient boosting, bagged tree,
gaussian naive bayes, adaboosted, knn,
bernoulli naive bayes, multi-layer per-
ceptron, stochastic gradient descent and
support vector machines

Abu Alghanam et al.
[194]

support vector machines, isolation forest,
local outlier factore and K-means

Gopalakrishnan and
Purusothaman[195]

deep neural network, random forest, and
AdaBoost

Abu Al-Haija and Al-
Dala’ien [196]

AdaBoosted, RUSBoosted, and bagged
trees

Hazman et al. [197]
AdaBoost, Boruta, mutual information
and correlation

Table 4.3: List of IoT IDS using ensemble learning and the set of used ML algorithms

IDS. Let X = {x1, x2, ..., xn} be the initial baseline observations, where each xi ϵ Rd repre-

sents a data point in the d-dimensional feature space. We apply the baseline k-means

algorithm to obtain a centroid C ϵ Rd for the baseline data. The threshold τ is computed

as follows:

τ = percentile(DM(x1,C), . . . ,DM(xn,C), p) (4.1)

For any new observation x′, the baseline k-means classifies it as benign or anomalous

based on the following decision rule:

benign, if DM(x′,C) ≤ τ

anomalous, if DM(x′,C) > τ

In this classification process, benign traffic is classified within a subspace based on Maha-

lanobis distances, while abnormal observations outside the boundary indicate an attack.

The threshold is determined by the percentile of distances between data points.
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4.4.1/ MOTIVATION

Our approach, based on KMeans, utilizes a distance metric to determine whether an ob-

servation originates from the baseline population or is an outlier. This method achieves a

high true positive rate by minimizing the boundary to the baseline centroid, which is cru-

cial in security contexts where attacks may be intolerable. However, it also exhibits a high

false-positive rate. The main motivation for this method stems from the observation that

during merging operations, worker recall increases over time while precision decreases

due to IDS rejecting more packets or data points.

Consider the following equations that summarize the merge operation and threshold re-

calculation:

Mbaseline =
1
2

(Mcoordinator,baseline + Mworker,baseline)

Manomalous =
1
2

(Mcoordinator,anomalous + Mworker,anomalous)

S −1 = pinv(S coordinator,baseline + 0.001 · I)

D(xi,Mbaseline) =

√√ n∑
i=1

(xi − Mbaseline)T S −1(xi − Mbaseline)

Dmin = min(D(xi,Mworker,anomalous))

D′ = {D(xi,Mbaseline) | where D(xi) < Dmin}

τ′ = percentile(D′, p)

Here, Mbaseline and Manomalous represent the updated baseline and anomalous means,

respectively, after the merge operation. S −1 is the pseudo-inverse of the sum of the base-

line covariance matrix and a small regularization term. D(xi,Mcoordinator,baseline) denotes

the Mahalanobis distance of point xi from the coordinator’s baseline mean, while Dmin

represents the minimum distance of the worker’s anomalous data points to the baseline

mean. D′ is the set of distances that are less than Dmin, and τ′ is the updated threshold

calculated based on the specified percentile of distances in D′.

During merging operations, the coordinator’s threshold becomes more conservative, lead-

ing to a higher number of data points being rejected. This occurs because the threshold

considers the percentile and minimum distance between worker anomalous data points

and the baseline mean. To reduce false-positive rates, we propose an ensemble-based

approach as shown in Figure 4.2 that utilizes cross-layer federated ensemble learning in

lightweight IoT IDS.This figure illustrates a federated intrusion detection approach for IoT

networks. It demonstrates how a baseline k-means coordinator is initialized with baseline

data and shares statistics with worker nodes. Each worker employs a cluster-based sam-
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pling algorithm to minimize data processing and labels data points with the coordinator’s

statistics. Additionally, local independent models assist Worker Kmeans IDS in the clas-

sification process. Workers periodically transmit their statistics to the coordinator, which,

in turn, updates the global model and shares the updated statistics.

The received parameters located on the user devices are updated with local data
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modal 

(Coordinator
dependent)

Aggregator
Coordinator

4

1 3

2

Merger:  The central server
aggregates the  local models by
applying an aggregation function,
producing a new aggregate
global model.

The aggregate global model
parameters are sent to each user’s device.

After a certain amount of sampling,
the local model statistics are
 sent to the central server.

Cluster-based
Sampling
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Sampling
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Figure 4.2: The Figure Illustrates the Proposed Cross-Layer Federated Ensemble Learn-
ing for Lightweight IoT IDS

4.4.2/ ENSEMBLE IDS

In this research, we introduced an ensemble learning technique to improve the preci-

sion of the baseline k-means model, specifically when identifying anomalous packets.

The proposed approach incorporates two local semi-supervised novelty detection mod-

els, each unique to a worker, which are trained on a small batch of benign data. By

leveraging the conservative nature of the baseline k-means model, which is already pro-

ficient at detecting benign packets. Let ybkmeans, ypred1, and ypred2 denote the predictions

of the baseline k-means model, local model 1, and local model 2, respectively. Then, the

ensemble learning output, denoted as yel, is computed as shown in Algorithm 7.

Here, the function majority vote returns 0 (benign) if both local models predict that the



4.5. IMPLEMENTATION METHODOLOGY 79

Algorithm 7 Ensemble Learning IDS

function MAJORITY_VOTE(vote1, vote2, vote3)

if (vote1 + vote2 + vote3) >= 2 then

return 1

else

return 0

end if

end function

for i ← 1 to n do

if ybkmeans(i) = 0 then

y_el(i) ← 0

else

y_el(i) ← MAJORITY_VOTE(ybkmeans(i), ypred1(i), ypred2(i))

end if

end for

packet is benign, and 1 (anomalous) otherwise. The ensemble learning output considers

a packet anomalous if at least one model predicts it to be so, while if both local mod-

els predict it as benign, the baseline k-means decision is overturned, considering the

packet benign. The ensemble learning strategy improves the baseline k-means method’s

accuracy by incorporating voting-based and weight-based techniques. When classifying

benign data points, the ensemble prioritizes the baseline k-means prediction, exhibiting

weighted characteristics. The method employs a hybrid ensemble learning approach that

combines voting-based and weight-based techniques to enhance the accuracy of the

baseline k-means model. The final label is determined by the majority vote of the base-

line k-means and two other local models (Algorithm 7). Ensemble learning effectively

integrates voting-based and weight-based techniques for precise, robust classification of

normal and abnormal data points. This hybrid approach is expected to enhance IDS per-

formance by combining the benefits of both voting-based and weight-based ensemble

learning techniques to improve the precision of the baseline k-means model.

4.5/ IMPLEMENTATION METHODOLOGY

The techniques described in this study were implemented in Python and made publicly

available on GitHub [201]. The evaluation was conducted using the NSL-KDD dataset,

an enhanced version of the original KDD Cup 1999 dataset [source: Tavallaee et al., ”A

Detailed Analysis of the KDD CUP 99 Data Set”].

In our experimental analysis, we assessed the performance of the baseline k-means

model against several semi-supervised novelty detection techniques, including Local Out-
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lier Factor, Gaussian Mixture Models, One-Class Support Vector Machines (One-Class

SVM), Isolation Forests, Minimum Covariance Determinant, K Nearest Neighbor detector,

Kernel Density Estimation (KDE), and Shallow Autoencoder. Our goal was to develop an

ensemble learning approach where each worker is assigned two local models of semi-

supervised novelty detection to assist the baseline k-means model in accurately identify-

ing true attacks and reducing false positives. To this end, we tested various combinations

of these methods, as presented in Table 4.4.

Table 4.4: Comparison of baseline k-means and various Ensemble combinations: Aver-
age performance metrics and standard deviations.

Precision Recall F1-score F2-score
baseline k-means 0.76 ± 0.02 0.96 ± 0.01 0.85 ± 0.01 0.92 ± 0.01
Bkmeans-AE-IF 0.85 ± 0.02 0.89 ± 0.01 0.87 ± 0.01 0.89 ± 0.01
Bkmeans-AE-KDE 0.86 ± 0.02 0.94 ± 0.01 0.90 ± 0.01 0.92 ± 0.01
Bkmeans-AE-KNN 0.85 ± 0.02 0.90 ± 0.01 0.87 ± 0.01 0.89 ± 0.01
Bkmeans-AE-SVM 0.86 ± 0.02 0.89 ± 0.01 0.88 ± 0.01 0.88 ± 0.01
Bkmeans-IF-KDE 0.83 ± 0.02 0.95 ± 0.01 0.89 ± 0.01 0.92 ± 0.01
Bkmeans-IF-KNN 0.83 ± 0.02 0.90 ± 0.01 0.87 ± 0.01 0.89 ± 0.01
Bkmeans-IF-LOF 0.82 ± 0.02 0.94 ± 0.01 0.88 ± 0.01 0.91 ± 0.01
Bkmeans-KNN-KDE 0.85 ± 0.02 0.96 ± 0.01 0.90 ± 0.01 0.93 ± 0.01
Bkmeans-LOF-SVM 0.85 ± 0.02 0.94 ± 0.01 0.89 ± 0.01 0.92 ± 0.01

Among the ensembles, the combination of baseline k-means, KNN detector, and KDE

yielded the highest F1-score (0.90 ± 0.01) and F2-score (0.93 ± 0.01) compared to other

ensembles. Additionally, the ensemble comprising baseline k-means, a shallow autoen-

coder, and KDE demonstrated notable effectiveness in detecting anomalous data points,

achieving an F1-score of 0.90. These results indicate that combining baseline k-means

with KNN and KDE, or incorporating a one-class SVM, can enhance the overall per-

formance of the model in anomaly detection. However, Gaussian Mixture Models and

Minimum Covariance Determinant were not considered in our analysis, as shown in Ta-

ble 4.4, due to their high computational complexity, rendering them unsuitable for deploy-

ment on resource-constrained devices like microcontrollers or IoT devices. GMM requires

substantial memory for covariance matrix calculations and storage, while MCD involves

computationally intensive searches for covariance matrix computations based on subsets

of data points.

4.5.1/ SEMI-SUPERVISED NOVELTY DETECTION FOR INTRUSION DETECTION

In this study, we conducted a comparative analysis of our proposed ensemble IDS method

with several well-known novelty detection techniques. All methods utilized a subset of be-

nign data to uncover normal traffic patterns. Specifically, each method was trained using
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4,000 benign data points to capture the characteristics of normal traffic patterns. Subse-

quently, the novelty detection techniques were employed on sliding windows of 1,000 data

points for categorization and classification purposes. Figure 4.3 clearly illustrates the sig-

nificant performance advantage achieved by our ensemble learning approach, particularly

when employing the combination of Federated baseline k-means, K-Nearest Neighbors,

and Kernel Density Estimation. In comparison to the standalone application of Feder-

ated baseline k-means and other novelty detection techniques, the ensemble approach

demonstrates superior performance in terms of accurate classification and detection of

anomalies.
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Figure 4.3: Performance Comparison of Semi-Supervised Novelty Detection Algorithms:
Precision, Recall, and F-Score (beta = 2). The proposed Ensemble achieves the highest
recall while maintaining competitive precision

This figure presents a comprehensive comparison of various semi-supervised novelty

detection algorithms for intrusion detection, with a specific focus on precision, recall, and

the Fβ − score (where β = 2). It highlights the ensemble model’s remarkable ability to

prioritize true positives with the highest recall while maintaining competitive precision

when compared to the standalone baseline k-means model.

Notably, the ensemble model exhibits a substantial improvement in precision, achieving

a score of 0.85 compared to the baseline k-means model’s precision score of 0.76. This

improvement signifies a reduction in false positives and underscores the ensemble’s su-

perior capability to accurately identify genuine attacks. In practical applications, where

false positive rates can incur unnecessary costs and resource wastage, this enhanced

precision is of utmost importance.

Furthermore, the ensemble learning method maintains a high recall value of 0.96, which
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is nearly equal to that of the baseline k-means model. This high recall score indicates

the ensemble’s effectiveness in correctly identifying positive cases, which is crucial in

anomaly detection to ensure system security. By identifying as many actual attacks as

possible, a high recall score contributes significantly to maintaining system integrity. Com-

pared to other novelty detection techniques, the ensemble approach outperforms them in

terms of precision, recall, and the F2 score. Gaussian Mixture Models and Minimum Co-

variance Determinant (CMD), while exhibiting higher precision, demonstrate lower recall

scores, indicating a higher rate of false negatives. On the other hand, techniques such as

Isolation Forest, KNN, Local Outlier Factor, One-Class SVM, and Shallow Autoencoder

(AE) yield lower F2 scores. The F2 score, which assigns more weight to recall, is par-

ticularly crucial in intrusion detection as it minimizes potential harm and ensures system

security.

Overall, the results clearly demonstrate the ensemble model’s superior performance,

with higher precision, recall, and F2 scores compared to both the standalone baseline

k-means model and other evaluated novelty detection techniques.

4.5.2/ FEDERATED ENSEMBLE IDS

In this study, we present a simulated federated IDS composed of a coordinator and three

workers. The coordinator initially learns a baseline model using 100 benign data points

and shares its statistics with the workers. Our experimentation utilizes the NSL-KDD

dataset, consisting of approximately 120,000 rows, and spans 30 epochs to process net-

work traffic data. Each epoch involves the processing of 1,000 data points per entity, al-

lowing us to evaluate the effectiveness of the baseline k-means algorithm in a distributed

environment with dynamic network traffic data. Performance metrics are calculated and

recorded in a Python dataframe after each epoch. Our simulation study investigates two

scenarios: one employing the federated baseline k-means algorithm without integrating

an ensemble, and another utilizing the proposed federated ensemble method. Both sce-

narios entail three merging operations.

The results from the first scenario (Figure 4.4a) demonstrate that the federated baseline

k-means approach enhances performance in both the coordinator and workers through

distributed data processing. Initial performance reveals high precision and recall, indicat-

ing accurate classification of true positives and actual positives from predicted positives.

This accuracy is also reflected in the F1 and F2 scores. As the experiment progresses,

performance generally improves for both the coordinator and workers. The F2 score,

which places emphasis on recall, exhibits a significant increase in most iterations, in-

dicating improved identification of true positives. However, fluctuations in performance

are observed across precision and F1 score metrics after each merge operation. Preci-
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sion shows a negative trend throughout the windows/epochs, suggesting an increasing

false-positive rate with each merge. The baseline k-means algorithm prioritizes the true-

positive rate over the false-positive rate, causing the workers to become more stringent

in rejecting distances greater than the dynamically evolving threshold after each merging

operation. The results highlight the potential of federated learning in intrusion detection,

showcasing improved performance over time while mentioning the possibility of increas-

ing false positives in the baseline k-means approach.
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Figure 4.4: Evolution of performance metrics for the coordinator and three workers over
30 epochs, each comprising a window of 1,000 data points. The vertical dashed red lines
denote points where merge operations were conducted

An ensemble approach combining federated baseline k-means, K-nearest neighbors, and

kernel density estimation enhances precision for both workers and the coordinator, over-
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coming limitations of standalone baseline k-means techniques. As illustrated in the sec-

ond scenario (Figure 4.4b), this strategy significantly improves outcomes compared to

non-ensemble strategies. Particularly noteworthy is that each worker achieves a preci-

sion score above 0.8, in contrast to the decline observed in non-ensemble approaches.

The ensemble approach exhibits a stable trend, with temporal fluctuations and a notice-

able increase in recall, particularly in the coordinator’s results. The ensemble approach

also demonstrates slightly improved F1 scores and consistently higher F2 scores, indi-

cating its effectiveness compared to the non-ensemble method. Figure 4.5 illustrates

the average performance metric differences between the ensemble and non-ensemble

approaches.
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(a) Average performance metrics for the federated baseline k-means
without local ensemble after 30 epochs.
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Figure 4.5: Average performance metrics for the coordinator and three workers with three
merging operations.
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4.5.3/ CROSS-LAYER FEDERATED LEARNING

In this study, we explore cross-layer federated IDS utilizing our cluster-based sampling

technique [117]. We consider a scenario involving a coordinator and a worker with two

sampling rates: 0.60 and 0.20. The coordinator is trained on baseline data and shares its

statistics with the worker, which then utilizes the same statistics for 10 epochs, processing

5,000 data points per epoch. Two merging operations are performed at epochs 2 and 6.

In the context of IDSs, the sampling rate refers to the amount of data retained in mem-

ory for analysis. A high sampling rate, such as 0.60, indicates a larger data retention,

while a lower rate, as in our case, 0.20, preserves a smaller portion. This sampling tech-

nique aids in detecting and preventing cyber threats like replay attacks, where attackers

intercept, delay, or retransmit valid data to deceive the recipient system into unauthorized

operations. The analysis of IDS performance metrics (Precision, Recall, and F1-score) at

different sampling rates (Figure 4.6) reveals a slight decline in performance at the lower

sampling rate (0.20) compared to the higher rate (0.60). This decline is expected as a

reduced volume of data leads to less information available for accurate decision-making.

However, the IDS retains its ability to identify attack packets with comparable efficiency at

higher sampling rates. In contrast, the ensemble approach consistently outperforms the

non-ensemble methods across all sampling rates and windows, leveraging the strength of

combining multiple models for more robust and accurate results.The performance slightly

degrades with the reduction in sampling rate, especially for the non-ensemble condition,

further highlighting the robustness of the ensemble approach. For instance, at the first

window with a sampling rate of 0.60, the precision using the ensemble approach is 0.869,

higher than the precision of 0.803 achieved without ensemble. This trend of enhanced

performance is consistently observed across all windows and both sampling rates.
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4.6/ CONCLUSION

This Chapter introduces a novel IDS that combines a heterogeneous federated ensemble

approach, utilizing weighted and voting-based strategies to enhance anomaly detection.

By incorporating local models into the decision-making process, the system achieves

higher accuracy compared to standalone IDS models under different sampling rates (0.6

and 0.2). The integration of weighted and voting-based strategies enhances the sys-

tem’s ability to accurately identify anomalous packets. The federated design enables

periodic merging and sharing of statistics and local models, thereby increasing the detec-

tion capacity of each worker without compromising false positives. Overall, this research

demonstrates the effectiveness of heterogeneous federated ensembles in IDS, offering

promising advancements for network security in IoT applications.
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CONCLUSION AND PERSPECTIVES

5.1/ CONCLUSION

Intrusion detection in networks is a highly researched field, given its critical role in today’s

interconnected world. This work explored the landscape of IDS systems in research, with

a specific focus on lightweight IDS for IoT applications. The contributions and experiments

conducted in this research have advanced the field of lightweight intrusion detection in IoT

environments.

Contribution 1: Comprehensive Survey and Comparative Analysis of Existing Sampling

Algorithms for Network Traffic Characterization

• The key to lightweight IDS is an efficient sampling algorithm that reduces the

amount of processed data. To address this, we have developed a taxonomy for

existing sampling algorithms for both stream and non-stream data. Additionally, we

introduced a statistical metric (OS) that measures the degree of distortion intro-

duced by each sampling algorithm.

• Experiments and Performance Analysis: We conducted experiments to analyze the

performance of the sampling algorithms in terms of execution speed and their ability

to produce highly representative samples at different window sizes and sampling

ratios. The results revealed that while many of the surveyed algorithms perform

well at high sampling ratios, they fall short at low sampling rates, which are crucial

for a lightweight IDS solution in resource-constrained environments like IoT.

Contribution 2: Cluster-based Sampling Algorithm for Lightweight IoT Intrusion Detection

System

• We introduce our Cluster-based sampling strategy, which leverages the prior dis-

tribution of data by pre-clustering similar data together. This approach ensures

that the final sample captures the characteristics of all subgroups within the data.
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The strategy involves feature reduction and the utilization of the K-means cluster-

ing algorithm to divide the data stream into clusters, effectively identifying patterns,

particularly rare ones, and detecting changes in the data distribution.

• Experiments and Results: Our experiments demonstrate that the sampling accu-

racy is influenced by the sampling ratio and the change percentage. The proposed

algorithm, utilizing 2 clusters and a 90% change ratio, yielded the least distortion for

two sampling ratios/learning base sizes: 0.3 and 0.5. Our sampling method cate-

gorizes the sampled data into separate clusters, providing an intriguing feature that

we exploit in our next contribution, the cross-layer IDS.

Contribution 3: Cross-layer Federated Learning for Lightweight IoT Intrusion Detection

System

• The proposed cross-layer IDS utilizes a federated version of the baseline k-means

algorithm for lightweight IoT IDS. It leverages a small amount of labeled data as

the baseline for learning and identifies anomalies using the Mahalanobis distance,

improving the performance of the classifier. This algorithm allows multiple IoT de-

vices to participate in the training process while preserving data privacy. By utilizing

a federated solution, the workload is divided among multiple workers, reducing the

burden on individual devices and enhancing scalability. One of the key benefits of

our approach is its privacy-preserving nature, where nodes only need to transmit

cluster statistics to the central coordinator. This ensures that sensitive data remains

on the devices and is not exposed during the training and detection process. By

focusing on the transmission of cluster statistics rather than raw data, our method

provides a higher level of privacy protection, which is crucial in IoT environments

where data security is a top priority.

• Experimental Validation: The method is experimentally validated by testing its ex-

ecution speed on an Arduino Nano. Experiments and simulations demonstrate the

effectiveness and efficiency of the proposed IDS when implemented in a cross-layer

federated learning framework, where a sampling operation precedes intrusion de-

tection. The impact of cluster-based sampling on the IDS performance is assessed.

The primary findings of this study highlight the influence of merging operations on

the performance of the coordinator and workers, the trade-offs between precision

and recall when sharing statistics between workers and the coordinator, and the

factors affecting the performance trends when adjusting the sampling rate. Our

method succeeds in detecting most attacks at the cost of a slightly higher false

positive rate. Despite demonstrating a promising ability to detect malicious pack-

ets, this distributed approach encountered a notable increase in the false positive

rate following each aggregation and parameter redistribution step by the centralized
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node.

The high false positive rate represents a persistent challenge within the domain of

anomaly detection, as the model faces inherent difficulties in covering all possible

benign behaviors in the learning dataset. Consequently, benign data that deviates

from the learned distribution or was not present during the training phase may be

misclassified as an attack.

Contribution 4: Cross-layer Federated Heterogeneous Ensemble Learning for Lightweight

IoT Intrusion Detection System

To counterbalance the conservative nature of our previous algorithm and improve preci-

sion, we proposed a heterogeneous federated ensemble approach.

• This research presents a novel IDs that employs a heterogeneous federated ensem-

ble approach, combining weighted and voting-based strategies to enhance anomaly

detection. We leverage the baseline k-means algorithm, supported by assisting

local models, to achieve superior accuracy compared to standalone IDS under

varying sampling rates (0.60 and 0.20). Integrating local models into the decision-

making process represents a significant advancement, enhancing the system’s ca-

pability to accurately identify anomalous packets. When the baseline k-means pre-

dicts a benign class, the system relies solely on this prediction, emphasizing its

weighted aspect. However, when a potential anomaly is detected, a voting process

among local models is initiated, thus implementing a voting-based strategy. This

fusion of strategies enhances the system’s reliability and precision in identifying cy-

ber threats. Moreover, the federated design of our approach allows for the periodic

merging and sharing of local model statistics, effectively increasing the detection

capacity of each worker. Importantly, this does not lead to a higher false positive

rate due to the ensemble’s ability to validate and consolidate predictions.

• Experimental Validation: We experimented with a weight-based and vote-based en-

semble learning approach where we pair our workers with different semi-supervised

methods like KNN and KDE. Our experiments show that the ensemble approach

succeeded in improving precision without affecting recall. The ensemble approach

consistently outperforms the non-ensemble condition across all metrics and both

sampling rates (0.2, 0.6). The performance slightly degrades with the reduction in

sampling rate, especially for the non-ensemble condition, further highlighting the

robustness of the ensemble approach.

Our research underlines the effectiveness of heterogeneous federated ensembles in IDS,

offering promising advancements for network security in IoT applications. In conclusion,

our work succeeded at producing a viable lightweight intrusion detection solution for IOT
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environments capable of operating at very low memory, processing and bandwidth usage

and still producing acceptable results.

5.2/ PERSPECTIVES

There are still plenty of areas we would like to cover in future research.

First, while the OS measure introduced in Chapter 2 effectively measures distortion in-

troduced by a sampling algorithm, there are no metrics that show how well a sample

represents rare packet subgroups, which are important in the context of IDS. This is the

subject of future work to develop a metric that measures both properties of a sampling

algorithm for better comparative analysis.

The limitation of the federated IDS proposed in Chapter 3 is the reliance on the coordi-

nator’s covariance matrix, which may not accurately represent the global dataset if there

are significant disparities in the data point distribution across workers. To address this

limitation, future research can explore a hybrid approach where workers send a com-

pressed version of the covariance matrix, allowing for adjustment of the threshold value

based on the local distribution of data points in each worker’s dataset. This would im-

prove the system’s accuracy in detecting anomalies in scenarios with varying data point

distributions.

Future work can focus on improving the system’s reliability and precision in identifying cy-

ber threats. This can involve developing advanced algorithms and techniques for weight-

ing and voting strategies, considering the specific characteristics of different types of

anomalies. Integrating multiple data sources, leveraging contextual information, and in-

corporating domain-specific knowledge can further enhance the precision and accuracy

of the ensemble federated learning approach. This research direction aims to reduce

false alarms and improve the overall effectiveness of IDSs in IoT applications.
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and privacy. Furthermore, ensemble learning
was employed to extend the federated cross-
layer solution, leveraging both supervised and
unsupervised IDS models collocated within the
IoT devices. The benefits of this research are
multifold. Firstly, it contributes to the body of
knowledge in sampling by proposing a cluster-
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Les dispositifs Internet des Objets (IoT) légers
sont vulnérables aux attaques réseau en raison
de leur fonctionnement dans des environnements
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résultats avec les nœuds IDS individuels. Cette
solution inter-couches fédérée présente une haute

efficacité, performance et confidentialité. De
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