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Résumé en Français

Au cours du développement embryonnaire, les cellules doivent adopter des programmes

d’expression génique afin de se spécifier en plusieurs destins. L’activation de ces programmes,

nécessite l’allumage de gêne du développement, leur transcription. Alors que la spécifica-

tion cellulaire est précise dans l’espace et dans le temps, et pourrait sembler déterministe, la

transcription reste un phénomène extrêmement stochastique.

Ainsi les techniques de visualisation de l’ARNm, soit dans des échantillons fixés à l’aide de

smFISH (Trcek et al. (2016), Lyubimova et al. (2013)) ou dans des cellules vivantes (meth-

ode MS2/MCP Bertrand et al. (1998) (Figure 1 A)), ont révélé que la synthèse des ARN

s’établissait de manière discontinue. La transcription s’établit par une alternance entre péri-

odes actives, où plusieurs polymérases initient la transcription (bursts) et périodes inactives.

Cette stochasticité dans la transcription (bursting) peut engendrer une hétérogénéité de tran-

scription entre cellules voisines, phénomène connu sous le nom de "bruit biologique".

Au cours de ma thèse, je me suis intéressée aux sources de ce bruit et aux mécanismes per-

mettant de le contrôler. J’ai appliqué des modèles mathématiques pour mieux appréhender

des données biologiques, acquises au cours de l’embryogenèse précise de la drosophile. En

effet l’embryon de drosophile est un système idéal pour étudier la stochasticité de la tran-

scription parce que l’imagerie quantitative et les manipulations génétiques y sont aisées.

Je me suis particulièrement intéressée à la régulation d’un gène clé du développement, le

gène snail, qui code pour un facteur de transcription, essentiel à la mise en place du mé-

soderme, aux transitions épithélio-mésenchymateuses (EMT) et à la gastrulation. Ce gène

est conservé chez les vertébrés, et sa dérégulation est impliquée dans les EMT des cellules

cancéreuses métastatiques chez l’Homme.

Je me suis concentrée sur le rôle des sequences cis-regulatrices de ce gène, son promoteur et

ses deux enhancers (l’un proximal et l’un distal). La transcription de ce gène a été visualisée

en temps réel, grâce à la méthode MS2/MCP (Figure 1 B)).

Mathématiquement, la transcription est modélisée comme une chaîne de Markov dans

l’hypothèse où un nombre restreint d’étapes limites est modélisé comme une transition entre

des états discrets. Nous classons ces états en trois catégories : les états ON productifs qui

peuvent initier la transcription, les états OFF non productifs qui ne peuvent ni initier ni

reprendre la transcription, et les états de pause dans lesquels la transcription initiée s’arrête

et peut reprendre plus tard ou s’interrompre. Le promoteur ne démarre la transcription

Page 2



3

snail 24xMS2 snail UTR

mesoderm

B

A

nc12 nc13 nc14

His2A MCP

Figure 1: Imagerie de la transcription en temps réel (extrait de Pimmett et al in prep).
A) Haut: Vue schématique des transgènes utilisés pour visualiser la transcription à l’aide
du système MS2/GFP. Bas: Schéma de l’embryon de drosophile montrant la restriction
spatiale de l’analyse au mésoderme présumé. B) Projection d’intensité maximale d’un Z-
stack représentatif de l’embryon nc12, nc13, nc14 montrant les foci transcriptionnels liés à la
MS2/MCP-GFP (GFP) et les noyaux (histone-RFP).

que dans l’état ON lorsqu’il peut déclencher plusieurs départs de molécules de RNAP le

long de l’ADN. La RNAP peut finalement s’arrêter dans un état de pause ou s’engager dans

une élongation irréversible que nous modélisons par l’état EL (Figure 2). Les techniques

d’imagerie de la transcription en direct permettent de suivre la transcription en temps réel

et pour chaque site de transcription.

Dans cette thèse, nous combinons des aspects théoriques, des techniques informatiques

et des analyses d’imagerie en temps réel de cellules individuelles. Notre objectif princi-

Figure 2: Illustration d’un processus de transcription modélisé comme un modèle de
Markov. Sur le côté gauche, nous décrivons une représentation simplifiée avec deux modes
d’états (modèle télégraphique) : l’état "OFF", "ON" et l’état "El". Sur la partie droite, une vue
plus détaillée comprend deux états non obligatoires : ’OFF1’, ’OFF2’ et ’ON’, suivis de l’état
’El’.
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pal est d’élargir notre compréhension concernant la nature stochastique de l’expression des

gènes, notamment au niveau transcriptionnel, et résoudre la contradiction apparente entre

la stochasticité et la robustesse des mécanismes d’expression des gènes.

Nous utilisons Drosophila melanogaster comme organisme modèle pour trois raisons prin-

cipales: le génome a été entièrement cartographié, ce qui permet une compréhension com-

plète de ses enhancers et promoteurs. Le développement de techniques d’imagerie en direct

nous permet de suivre la transcription et la traduction en temps réel et de manière fiable,

de plus, le développement embryonnaire de Drosophilia melanogaster est un modèle repro-

ductible.

Cependant, les différents paramètres des données transcriptionnelles qui aboutissent à la

traduction nécessitent des approches de modélisation uniques. Nous distinguons deux

critères principaux qui nous ont permis de connaître les limites de notre modèle dans l’extraction

d’informations directes à partir des données :

1. Signal "homogène dans le temps" vs "homogène dans le temps".

2. Signal "homogène dans l’espace" vs "inhomogènes dans l’espace".

Par conséquent, nous divisons notre problématique en trois conditions principales : don-

nées homogènes dans le temps et dans l’espace, données inhomogènes dans le temps mais

homogènes dans l’espace, et enfin données inhomogènes dans le temps et dans l’espace. Le

terme inhomogène dans le temps (resp. l’espace) provient du fait que le taux de transition

entre les différents états discrets du modèle markovien est dépendant du temps (resp. de

l’espace) (Figure 3).

Dans un premier temps, nous avons examiné un cas restreint d’homogénéité temporelle et

spatiale. Cette hypothèse simple sert de point de départ, nous permettant d’extraire di-

rectement des informations des données transcriptomiques. Cependant, lorsque nous in-

troduisons des hypothèses plus complexes, nous observons un changement dans notre ap-

proche. À mesure que la complexité augmente, l’extraction de détails spécifiques des don-

nées est diminuée et nous commençons à extraire des conclusions plus théoriques. Cette

transition reflète le compromis entre la richesse des informations expérimentales et la pro-

fondeur des connaissances théoriques au fur et à mesure que nous naviguons dans les com-

plexités de la modélisation de l’expression génique.

Ce manuscrit est composé de quatre chapitres principaux. Les méthodes décrites dans les
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Figure 3: Homogénéité dans le temps (extrait de Pimmett et al in prep). A) Moyenne du sig-
nal d’intensité sur plusieurs noyaux de transcription dans nc13 (à gauche) et nc14 (à droite).
B) Échantillon du signal d’intensité de nc13 mettant en évidence l’homogénéité du signal à
gauche et l’inhomogénéité du signal dans nc14 (à droite).

chapitres 1 et 2 nécessitent des données homogènes dans le temps et dans l’espace. Une

seconde partie de ma thèse vise à modéliser des données inhomogènes dans l’espace et dans

le temps, présentées dans les chapitres 3 (inhomogènes dans le temps) et 4 (inhomogène

dans le temps et l’espace).

Dans le Chapitre 1, nous présentons BurstDECONV, une méthode d’inférence statistique in-

novante conçue pour déconvoluer les traces de signaux en événements individuels d’initiation

de la transcription. Nous appliquons ensuite la solution du problème inverse pour obtenir

les paramètres de transition des données transcriptionnelles pour différents phénotypes.

Une analyse comparative approfondie des paramètres de cette méthode d’inférence est présen-

tée, ainsi qu’une comparaison avec d’autres méthodes utilisant des données synthétiques et

réelles. Les données sont acquises par imagerie en direct d’une cellule unique, les signaux

d’intensité étant calibrés à l’aide de smFISH Tantale et al. (2021); Pimmett et al. (2021).

Résultat: Le résultat de l’algorithme est triple : 1) Une carte temporelle détaillant les événe-

ments de transcription. Cette carte indique, pour chaque cellule, les moments précis où

les différentes d’ARN polymérase initient la production d’ARNm. 2) Sélection du modèle

: identification du nombre d’étapes limitant le taux de transcription. 3) Identification des

paramètres de transition à partir de données d’imagerie en direct.
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Dans le Chapitre 2, nous réalisons la résolution du problème inverse. La résolution du

problème inverse consiste à obtenir les taux cinétiques du processus de Markov à partir des

paramètres de la fonction de survie constituée par le temps d’attente entre les polymérases.

En analysant la distribution des temps d’attente entre les événements successifs d’initiation

de la polymérase, nous sommes en capacité de déduire des caractéristiques mécanistiques

de la transcription, notamment le nombre d’étapes limitant la vitesse de la réaction et leur

cinétique.

Résultat: Nous proposons une solution plus générale pour la résolution du problème in-

verse pour traiter des modèles plus compliqués que celui présenté dans le premier chapitre.

Dans le Chapitre 3: Nous souhaitons traiter des séries temporelles non homogènes. Un ex-

emple d’inhomogénéité dans la transcription peut résulter de la présence d’un répresseur.

Dans ce cas, les paramètres de commutation du modèle markovien dépendent de la concen-

tration en répresseur.

Résultat: Nous avons développé une méthode supplémentaire pour analyser les données

non homogènes. Cette méthode permet de diviser le signal temporel non homogène en sig-

naux homogènes à l’aide d’une approche bayésienne. En simplifiant la complexité du prob-

lème, nous pouvons ensuite appliquer BurstDeconv à la partie du signal dont les paramètres

de transition sont constants.

Dans le Chapitre 4: Nous avons effectué le traitement des signaux inhomogènes dans le

temps et dans l’espace. Dans ce chapitre, nous avons étendu notre étude à des perspectives

plus larges : les dimensions temporelles et spatiales. Comme ce problème est très complexe,

nous ne pouvons pas obtenir d’informations directement à partir des données brutes. Par

conséquent, dans ce chapitre, nous avons généré des méthodes numériques qui récapitulent

les observations expérimentales (données transcriptionnelles) tout en étant performantes en

termes de temps de calcul.

Résultat: Les résultats de ce chapitre sont au nombre de trois:

• Introduction d’une nouvelle méthode de simulation hybride qui implique des proces-

sus de Markov discrets et une approche déterministe (équations différentielles par-

tielles EDP) pour modéliser l’expression des gènes avec une extension spatiale. Ce

modèle est également capable de capturer la variabilité provenant de la stochasticité

inhérente à la transcription.
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• Comparaison de cette méthode avec d’autres techniques de simulation.

• Investigation des aspects critiques de la modélisation du blastoderme de la drosophile:

autorégulation négative Coulier et al. (2021), mémoire transcriptionnelle Bellec et al.

(2018); Dufourt et al. (2018).
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Résumé en Anglais

During embryonic development, cells must adopt specific gene expression sequences in or-

der to distinguish into several different fates. Activation of these genes requires their tran-

scription. Whereas gene expression regulation is precise in space and time, and might seem

deterministic, transcription remains an extremely stochastic phenomenon.

Single cell mRNA visualization techniques, either in smFISH-fixed samples (Trcek et al.

(2016), Lyubimova et al. (2013)) or in living cells (MS2/MCP method Bertrand et al. (1998)

(Figure 4 A)), have revealed that RNA synthesis is discontinuous. Transcription alternates

between active periods, when several polymerases initiate transcription (bursts) and inac-

tive periods. This stochasticity in transcription bursting can lead to transcriptional hetero-

geneity between neighboring cells, a phenomenon known as "biological noise".

In my thesis, I investigated the sources of this noise and the mechanisms by which it can

be controlled. I applied mathematical models to better understand biological data acquired

during the precise embryogenesis of Drosophila. Indeed, the Drosophila embryo is an ideal

system for studying transcriptional stochasticity, because it is easy to image quantitatively

and to manipulate genetically.

I was particularly interested in the regulation of a key developmental gene, snail, which en-

codes a transcription factor essential for mesoderm development, epithelial-mesenchymal

transitions (EMT) and gastrulation. This gene is conserved in vertebrates, and its deregula-

tion is implicated in the EMT of human metastatic cancer cells.

I focused on the role of the cis-regulatory sequences of this gene, its promoter and its two

enhancers (one proximal and one distal). Transcription of this gene was visualized in real

time, using the MS2/MCP method (Figure 4 B)).

Mathematically, transcription is modeled as a Markov Chain under the assumption that a

small number of limiting steps are modeled as transition between discrete states. We classify

these states in three categories: productive ON states that can initiate transcription, non-

productive OFF states that can not initiate nor resume transcription, and paused states in

which initiated transcription stops and can resume later or abort. The promoter starts tran-

scription only in the state ON when it can trigger several departures of RNAP molecules

along DNA. The RNAP can eventually stop in a paused state or commit to irreversible elon-

gation that we model by the state EL (Figure 5). Live transcription imaging techniques

allows the monitoring of transcription in real time and for each transcription site.
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Figure 4: Real-time single cell transcription imaging (from Pimmett et al in prep). A) Top:
Schematic view of the transgenes used to visualize transcription using the MS2/GFP sys-
tem. Bottom: Schematic of Drosophila embryo showing spatial restriction of analysis to
presumptive mesoderm. B) Maximum intensity projection of a representative Z-stack of the
nc12, nc13, nc14 embryo showing transcriptional foci linked to MS2/MCP-GFP (GFP) and
nuclei (histone-RFP).

Figure 5: Illustration of a transcription process modeled as a Markov model. On the left side,
we depict a simplified representation with two states mode (telegraph model): the ’OFF’,
’ON’ state and the ’Elongation’ state. On the right side, a more detailed view includes two
non-obligatory states: ’OFF1’, ’OFF2’ and ’ON,’ followed by the ’Elongation’ state.
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In this thesis, we combine theoretical aspects, computational techniques and real-time imag-

ing analysis of single cells. Our main aim is to broaden our understanding of the stochastic

nature of gene expression, particularly at the transcriptional level, and to resolve the appar-

ent contradiction between stochasticity and robustness of gene expression mechanisms.

We use Drosophila melanogaster as a model organism for three main reasons: the genome

has been fully mapped, enabling a complete understanding of its enhancers and promot-

ers. The development of live imaging techniques enables us to follow transcription and

translation reliably in real time, and Drosophilia melanogaster embryonic development is a

reproducible model.

However, the different parameters of transcriptional data that lead to translation require

unique modeling approaches. We distinguish two main criteria that have enabled us to

identify the limitations of our model in extracting direct information from the data:

1. ’Time homogeneous’ vs ’time inhomogeneous’ signal.

2. ’Space homogeneous’ vs ’space inhomogeneous’ signal.

Consequently, we divide our problem into three main conditions: data homogeneous in

time and space, data inhomogeneous in time but homogeneous in space, and finally data

inhomogeneous in time and space. The term inhomogeneous in time (resp. space) derives

from the fact that the transition rate between the different discrete states of the Markov

model is time (resp. space) dependent (Figure 6).

Initially, we examined a restricted case of temporal and spatial homogeneity. This simple

assumption serves as a starting point, enabling us to extract information directly from the

transcriptomic data. However, when we introduce more complex assumptions, we observe

a shift in our approach. As complexity increases, the extraction of specific details from the

data is diminished and we begin to extract more theoretical conclusions. This transition

reflects the trade-off between the richness of experimental information and the depth of

theoretical knowledge as we navigate the complexities of gene expression modeling.

This manuscript is composed of four main chapters. The methods described in Chapters 1

and 2 require spatially and temporally homogeneous data. A second part of my thesis aims

to model data inhomogeneous in space and time, presented in chapters 3 (inhomogeneous

in time) and 4 (inhomogeneous in time and space).
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Figure 6: Homogeneity over time (extract from Pimmett et al in prep). A) Average of mean
intensity signal across multiple transcriptional nuclei in nc13 (left) and nc14 (right). B) Sam-
ple of intensity signal of nc13 highlighting the homogenity of the signal on the left and the
inhomogeneouty of the signal in nc14 (right)

In Chapter 1, we introduce BurstDECONV, an innovative statistical inference method de-

signed to deconvolve signal traces into individual transcription initiation events. We then

apply the inverse problem solution to obtain transition parameters from transcriptional data

for different phenotypes. An in-depth comparative analysis of the parameters of this infer-

ence method is presented, as well as a comparison with other methods using synthetic and

real data. Data are acquired by live single-cell imaging, with intensity signals calibrated

using smFISH Tantale et al. (2021); Pimmett et al. (2021).

Result: The result of the algorithm is threefold: 1) A time map detailing transcription events.

This map indicates, for each cell, the precise moments when different RNA polymerases

initiate mRNA production. 2) Model selection: identification of the number of rate-limiting

steps in transcription. 3) Identification of transition parameters from live imaging data.

In Chapter 2, we solve the inverse problem. Solving the inverse problem consists in obtain-

ing the kinetic rates of the Markov process from the parameters of the survival function con-

stituted by the waiting time between polymerases. By analyzing the distribution of waiting

times between successive polymerase initiation events, we are able to deduce mechanistic

features of transcription, notably the number of rate-limiting steps and their kinetics.
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Result: We propose a more general solution for solving the inverse problem to deal with

more complicated models than the one presented in the first chapter.

In Chapter 3: We want to deal with inhomogeneous time series. An example of inhomo-

geneity in transcription may result from the presence of a repressor. In this case, the switch-

ing parameters of the Markov model depend on the concentration of the repressor.

Result: We have developed an additional method for analyzing inhomogeneous data. This

method divides the inhomogeneous temporal signal into homogeneous signals using a Bayesian

approach. By simplifying the complexity of the problem, we can then apply BurstDeconv to

the part of the signal whose transition parameters are constant.

Chapter 4: We have processed signals that are inhomogeneous in time and space. In this

chapter, we have extended our study to broader perspectives: temporal and spatial dimen-

sions. As this is a very complex problem, we cannot obtain information directly from the

raw data. Therefore, in this chapter, we have generated numerical methods that summa-

rize the experimental observations (transcriptional data) while being efficient in terms of

computation time.

Result: There are three results in this chapter:

• Introduction of a new hybrid simulation method involving discrete Markov processes

and a deterministic approach (partial differential equations PDEs) to model gene ex-

pression with spatial extension. This model is also capable of capturing the variability

arising from the stochasticity inherent in transcription.

• Comparison of this method with other simulation techniques.

• Investigation of critical aspects of Drosophila blastoderm modeling: negative auto-

regulation Coulier et al. (2021) and transcriptional memory Bellec et al. (2018); Dufourt

et al. (2018).
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CHAPTER1

General introduction

1.1.0 Gene expression

1.1.1 Into the world of gene expression

Intelligence is the ability to

adapt to change

Stephen Hawking

The cell is the fundamental structural and functional biological unit of all known living be-

ings. At the very core of its functioning are the genes, which constitute the building blocks

of the genetic information. This genetic information is decoded to create functional compo-

nents of the cells, the proteins. Decoding this information requires a tight control of gene

expression, which involves two key steps transcription and translation (Figure 1.1). Gene

expression must be tightly regulated to allow a cell to adapt to its changing environment

and to adopt a specific cell fate (Lee and Young (2013)).
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Figure 1.1: Overview of Gene Expression Process.

Transcription and Translation: two steps of the central dogma of molecular biology.

Stated by Francis Crick in 1957 Cobb (2017), the central dogma of gene expression states that

genetic information flows from DNA to RNA (transcription) and then from RNA to protein

(translation).

Transcription is the process by which the genetic information stored in the DNA sequence

is converted into a messenger RNA (mRNA). This fundamental process requires the action

of several transcription factors and the RNA Polymerase II (Pol II). Following transcription,

the mRNA molecule carries the genetic information from the nucleus, where DNA resides,

to the cytoplasm, where protein synthesis takes place.

Translation is the process by which the genetic instructions carried by mRNA, are converted

into functional proteins. By coordinating the different phases of translation (Kasinath et al.

(2006)) cells ensure the faithful translation of mRNA into proteins, enabling them to carry

out essential biological processes and contribute to the overall complexity and diversity of

cellular functions.

1.1.2 Transcription regulation

Rate limiting steps of transcription

Many aspects of gene regulation are universal, and the enzymatic machinery involved

in DNA processing demonstrates significant adaptability. Notably, RNA Polymerase II

emerges as a universal transcriptional engine, capable of transcribing a diverse array of

protein-coding genes.

The transcription cycle, consisting of initiation, elongation, and termination, plays a piv-
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Figure 1.2: Key steps of gene transcription (Taken from Cramer (2019)).

otal role in this intricate regulatory process. Initiation involves the assembly of General

Transcription Factors (GTFs) into the Pre-Initiation Complex (PIC) and the recruitment and

modification of RNA Polymerase II (Figure 1.2). As transcription proceeds through elon-

gation, it may encounter pausing and then transition to productive elongation before ulti-

mately culminating in termination. Variability in transcription outcomes often traces back

to the initiation phase, underscoring its significance in gene expression regulation.

At the core of transcription initiation is the chromatin accessibility. Chromatin, with its two

distinct states of euchromatin and heterochromatin, assumes a central role in dictating the

feasibility of transcription initiation. Euchromatin is characterized by its open and less com-

pacted structure which fosters a favorable environment. In this environment, DNA readily

interfaces with transcription factors and RNA polymerase. These interactions promote the

initiation of transcription. Conversely, in heterochromatin, where chromatin adopts a highly
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Figure 1.3: Visual representation depicting the hierarchical organization of chromatin and
its varying compaction levels within the cellular nucleus (Taken from Xu and Liu (2021)).

condensed form, the initiation of transcription is impeded due to reduced DNA accessibil-

ity (Figure 1.3). The intricate relationship encompassing transcription initiation, chromatin

dynamics (euchromatin and heterochromatin), and the pre-initiation complex underscores

the profound impact of chromatin structure on the regulatory fate of a gene. By shaping

the accessibility of the promoter region and guiding the formation of the pre-initiation com-

plex, chromatin emerges as a pivotal determinant, either permitting active transcription or

imposing repression upon a gene.

CIS regulatory elements

At the level of the DNA sequence, transcription is controlled by cis-regulatory elements,

enhancers, promoters and insulators Levine (2010); Bulger and Groudine (2011) (Figure 1.4).

These modules control where, when and at which levels transcription is activated. I will

primarily describe promoters and enhancers as they are the main regulatory modules that I

analysed during my PhD.

Cis-regulatory elements (CREs), are generally pieces of non-coding, containing binding sites

for transcription factors (TFs) and/or other regulatory molecules Ong and Corces (2011).

It is now widely recognized that mutations influencing the functioning of cis-regulatory

sequences are the foremost contributors to phenotypic divergence, particularly in terms of

morphology.

Promoter Promoters are DNA sequences that serve as the small stretch of DNA on which

this Pre-Initiation Complex (PIC) or RNA Polymerase II (Pol II) is recruited. They are in-

dispensable for eukaryotic transcription, yet they solely generate basal levels of mRNA. The

majority of eukaryotic genes possess a single promoter containing the transcription start site.
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Certain genes have alternative promoters, which initiate transcription at varying genomic

positions, often occurring in specific conditions.

Enhancer Enhancers harbor binding sites for multiple transcription factors (TFs), featur-

ing multiple sites for each TF. These enhancers usually position themselves upstream (5′),
downstream (3′), or within gene introns. They can also manifest at considerable distances

Kleinjan and van Heyningen (2004). They possess the capability to influence diverse genes

in distinct contexts by orchestrating long-range chromatin loops, fostering proximity in a

three-dimensional spatial framework Holwerda and De Laat (2012).

Multiple enhancers often govern gene expression, each exercising control over specific cell

types or stages of development. The traditional notion was that each enhancer exclusively

regulates a distinct segment of a gene’s expression. Recent discoveries, however, have re-

vealed pairs of enhancers which have substantial overlapping functions Hong et al. (2008a);

Perry et al. (2010). These enhancers contribute to the stability of phenotypic traits. The

functional independence of enhancers permits mutations in one enhancer to yield confined

effects on gene expression facets regulated by other enhancers.

Enhancers can also function in synergy or antagonistically with other enhancers. In some

instances, enhancers are active in the same cells, at the same time, and exert coordinated

control over the same promoter. This phenomenon introduces the concept of redundant en-

hancers, wherein multiple enhancers collaborate to finely tune gene expression, enhancing

robustness and adaptability in regulatory networks.

For example, the extensively studied enhancer governing eve stripe 2 orchestrates the sec-

ond out of seven expression stripes of the even-skipped gene during the patterning of the

Drosophila melanogaster embryo. Our particular emphasis centers on the genomic arrange-

ment of enhancers. This arrangement includes their proximity or distance from the tran-

scription site. We also focus on the intricate interplay among these enhancers.

1.2.0 Drosophila as optimal model to study gene

expression

Drosophila, commonly known as fruit flies, have long been cherished by scientists for their

key attributes. Firstly, their remarkably fast life cycle and the ease and cost-effectiveness

with which it can be manipulated in laboratory experiments. Fruit flies are known for their

rapid development from egg to adult, which takes only a matter of days.This short life cy-

cle allows researchers to perform experiments and see many fruit fly generations quickly,
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Figure 1.4: Different classes of regulatory elements

speeding up scientific progress.

Second of all, the fruit fly’s genome has been fully mapped. Resulting in a comprehensive

understanding of its enhancers and promoters. Notably, drosophila possess only four pairs

of chromosomes, in sharp contrast to the 23 pairs in humans.

Thirdly, the affordability and simplicity associated with maintaining Drosophila colonies

render them an ideal choice for genetic and experimental studies. Researchers can readily

introduce genetic mutations, perform gene knockdowns or over-expressions, and manipu-

late various environmental factors to investigate specific biological processes.

The combination of these attributes has led to numerous groundbreaking discoveries in the

realm of biology. Researchers have unraveled fundamental biological mechanisms related

to development, genetics, and disease by studying fruit flies. Importantly, many of these

discoveries have proven to be highly conserved in humans. This highlights the relevance

of Drosophila research to our understanding of human biology. The conservation of these

principles across species is significant underscoring the importance of Drosophila as a model

organism. Drosophila is valuable for deciphering fundamental principles governing life

processes and disease mechanisms.

These factors have resulted in a profound affinity between Nobel laureates and Drosophila,

as notably evidenced by the following Nobel Prizes:

• In 1933, Thomas Hunt Morgan employed drosophila to unravel the role of chromo-

somes in heredity.
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• Hermann Joseph Muller, in 1946, used X-ray irradiation to elevate mutation rates in

fruit flies.

• In 1995, Edward B Lewis, Christiane Nüsslein-Volhard, and Eric F Wieschaus em-

ployed drosophila to understand the genetic control of embryonic development.

• Richard Axel’s focus in 2004 revolved around odor receptors and the organization of

the olfactory system.

• Jules A Hoffmann, awarded in 2011, made significant contributions to the understand-

ing of innate immunity activation.

• Jeffrey C Hall, Michael Rosbash, and Michael W Young, who received the prize in 2017,

unraveled the molecular mechanisms governing circadian rhythms.

1.2.1 Early Drosophila embryogenesis

1.2.2 Fast division and syncytium

Drosophila embryogenesis begins with a large egg. Within this egg, the maternal and pa-

ternal nuclei combine, and then they undergo rapid and synchronous division. These di-

visions include 13 successive stages. (Farrell and O’Farrell (2014). Notably, early nuclear

cycles within this developmental process exhibit remarkable efficiency, with minimal inter-

vals between replication and division events. This efficiency is exemplified by the nuclei

alternating between division and S-phase (replication) in exceedingly brief time frames. To

illustrate, the first 14 nuclear cycles occur in just an hour and a half, averaging about one

division every 8.6 minutes Foe and Alberts (1983); Rabinowitz (1941) (see Figure 1.5).

Before cycle 14, which is the primary focus of our study, the nuclei divide without cytoki-

nesis (divisions of membranes). Thus, nuclei shared a common cytoplasm, and this stage is

referred to as the syncytial embryo or blastoderm embryo (Figure 1.5 top). During this phase

most of the molecular diffusion remains unconstrained. However, during nc 14, which ex-

tends for ∼ 50 minutes, the plasma membrane invaginates from the apical side of the nu-

clei, progressing towards the basal side (embryo’s interior). By the end of nc14, the embryo

is fully cellularized and can be considered as a real multicellular organism. In contrast, at

earlier stages, the cell membrane is only partially invaginated. Thus mRNA and protein

products located in the apical cytoplasm will experience distinct diffusion constraints than

those located in the basal cytoplasm. This specificity has some impact on the control of gene

expression which justify our modeling assumption in Chapter 5.
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Figure 1.5: Early Development in Drosophila (Taken from Farrell and O’Farrell (2014)). A
diagram of the first 14 cycles of Drosophila development with notable morphological stages
illustrated at the top. Note that while most embryos are displayed as sections through the
middle of the embryo with the ventral side to the right, the final illustration is a surface
view, with the ventral side up. The process of cellularization is diagrammed in more detail
in the insets. The duration of each phase of the cell cycle is below: S phase (green), mitosis
(red), and G2 (blue). Mitosis 14 is represented as a series of small bars because the embryo
is no longer synchronous at this time and individual groups of cells enter mitosis at dif-
ferent times according to a developmentally programmed schedule. The timing of notable
morphological events are demarcated in grey boxes: the migration of the nuclei to the blas-
toderm, the insulation of the germline by cellularization of the pole cells, the cellularization
of the blastoderm nuclei, and the onset of the first gastrulation movement—ventral furrow
formation. Below this is diagrammed the approximate number of genes for which zygotic
transcripts have been detected over time.

Page 24



1.2. Drosophila as optimal model to study gene expression 25

1.2.3 Maternal-to-Zygotic Transition

In the initial stages of embryonic development across various animal species, transcription

does not take place. Instead, maternal RNAs and proteins controls the regulation of de-

velopment. As development proceeds, control of this process transitions from maternally

provided components to those produced by the developing zygote’s genome. This shift is

referred to as the Maternal-to-Zygotic Transition (MZT) Tadros and Lipshitz (2009). The

MZT is characterized by two significant events: the degradation of maternal RNAs and the

activation of transcription from the zygotic genome Kwasnieski et al. (2019); Schulz and

Harrison (2019). As the MZT nears completion, there are notable changes. The cell division

cycle slows down, and a gap phase is introduced, allowing cells to grow before the next

division. These alterations prepare the embryo for gastrulation, a critical stage where cells

begin to migrate and differentiate into the major germ layers of the organism Tadros and

Lipshitz (2009).

Modern technologies have been developed to study the process of zygotic genome activa-

tion (ZGA), including methods like metabolic labeling, MS2-based reporters, and the use

of RNA-targeted dead Cas9 (dCas9) fused with fluorescent proteins. These techniques en-

able the tracking of the activation of individual genes during ZGA. This tracking has led to

the discovery of intricate transcriptional phenomena, such as mitotic memory Bellec et al.

(2018); Ferraro et al. (2015) and transcriptional bursting Pimmett et al. (2021); Bothma et al.

(2014); Senecal et al. (2014). Both discovery are of great importance in trancription process

and I will further discuss it in Chapter 5.

In the case of Drosophila, a significant wave of ZGA occurs later, during a specific embryonic

stage known as nc 14 Edgar and Schubiger (1986); De Renzis et al. (2007). This wave of ZGA

leads to the cellularization introduced in the section above. Cellularization represents the

first morphological event that depends on zygotic transcription.

1.2.4 Patterning

After fertilization, and before MZT, spatially varying gradients of maternal transcription

factors that were initially placed within the egg during oogenesis come into play Jaeger et al.

(2012) (Figure 1.7). These gradients play a role in setting up the embryo’s dorsal-ventral

(DV) and anterior-posterior (AP) orientation . This happens by triggering various signal

pathways in the growing embryo. This is outlined in studies like Belvin and Anderson

(1996); Kanodia et al. (2009); Levine and Davidson (2005). Consequently, these signaling

pathways work together to partition the embryo into distinct tissue types along both the

dorsal-ventral and anterior-posterior directions. Throughout the study we will focus more

on the DV axis.
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A)

B)

Figure 1.6: Zygotic genome activation (Adapted from Schulz and Harrison (2019). A) In
the first hours of life, animals undergo a process called the maternal-to-zygotic transition
(MZT) in which the clearance of maternal products is coordinated with the activation of
zygotic transcription. A totipotent state (gray bar) is established during this transition. B)
Key stages of zygotic genome activation are outlined . The absolute time (in hours post
fertilization) is indicated below.

Figure 1.7: Pattern formation systems in the Drosophila blastoderm (Taken from Jaeger et al.
(2012)). Maternal systems, both antero-posterior (A–P) and dorso-ventral (D–V), are illus-
trated in the top row with maternal morphogen gradients guiding their patterning. A–P
patterns are presented as lateral views, while D–V patterns are shown in cross-section. Be-
low, we depict representative expression patterns for each downstream gene class: gap,
pair-rule, and segment-polarity for A–P, and types I, II, III+, and III- for D–V. Notably, En
(Engrailed) expression is observed in an extended germ-band stage embryo. Key regulators
include Bcd (Bicoid), Hb (Hunchback), Kni (Knirps), Eve (Even-skipped), Dl (Dorsal), Sna (Snail),
Rho (Rhomboid), Sog (Short-gastrulation), and Dpp (Decapentaplegic).
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Figure 1.8: Dorsal Gradient and Germ Layer Specification. The dorsal gradient exhibits a bell-
shaped curve, reaching its highest concentration in the embryo’s ventral region. In proxim-
ity to the peak of this curve, the dorsal gradient displays a gradual decline, creating a wide
area (containing 12-14 nuclei) with maximal dorsal activation, which subsequently specifies
the Mesoderm. Along the lateral regions of the embryo, the dorsal concentration gradient
defines the Neuroectoderm. Beyond the descending region of dorsal, the concentration de-
creases, and the gradient becomes shallow, allowing for the formation of the dorsal region

DV axis

In Drosophila, the establishment of dorsal-ventral (DV) polarity involves the maternal tran-

scription factor Dorsal. Dorsal shares similarities with NF-kB Belvin and Anderson (1996).

Dorsal forms a concentration gradient along the DV axis, reaching its highest levels in the

ventral region of the embryo O’Connor et al. (2006); Umulis et al. (2010); Kanodia et al.

(2009); Raser and O’Shea (2005); Hong et al. (2008b) (Figure 1.7 right). The graded dis-

tribution of dorsal is achieved through differential activation of the toll signaling pathway,

originating from events preceding egg-laying Umulis et al. (2010); Kanodia et al. (2009).

Intermediate dorsal levels penetrate nuclei in the embryo’s lateral regions, while the dorsal-

most region lacks dorsal presence O’Connor et al. (2006); Umulis et al. (2010). This graded

dorsal distribution leads to distinct expression patterns in nearly 50 target genes involved in

the DV system Kanodia et al. (2009).

Through a sophisticated threshold-response mechanism, different concentrations of dorsal

activate distinct dorsal-target genes along the dorso-ventral axis. This creates the partition-

ing of the embryo into 3 tissue types: the mesoderm, the neurogenic ectoderm, and the

dorsal ectoderm Kanodia et al. (2009) (Figure 1.8). Hence, we distinguish dorsal target genes

that respond to high dorsal thresholds, such as snail and twist, that will specify the meso-

derm in the most ventral part of the embryo. In contrast, intermediate levels responsive

genes, such as sog/brk will specify the neurogenic ectoderm. At the most dorsal side of the

embryo, the morphogen dpp counteracts the action of dorsal. There, nuclei are depleted of

dorsal protein.
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This patterning process occurs with extreme precision, reproducibility and within 2-3 hours.

Therefore a question ask-itself: how come such speed and precision can be achieved?

1.2.5 Spatio-temporal precision in patterning

At the deterministic level, gene expression demonstrates remarkable stability and robust-

ness, characterized by a highly stereotyped and predictable pattern. Cells adhere to a pre-

cise sequence of steps, faithfully executing genetic instructions without deviation. In opti-

mal conditions, this well-coordinated process unfolds consistently. It exemplifies a widely

prevalent and anticipated phenomenon (Dessalles (2017)).

However, when examining the molecular level, using single cell imaging techniques, phe-

notypic heterogeneity emerges, giving rise to the phenomenon known as biological "noise".

This noise has been recognized to originate from various sources, as elucidated by (Raser

and O’Shea (2005)). One notable contributor to this intricacy is the phenomenon of "tran-

scriptional bursts". This dynamic behavior results in fluctuations in gene expression levels

within an otherwise seemingly deterministic framework.

Transcriptional bursts

The earliest direct visual confirmation of this phenomenon dates back to the 1970s. During

that time, Miller chromatin spreads from fruit fly embryos were examined using an electron

microscope. These studies revealed an uneven distribution of nascent transcripts along gene

sequences (as depicted in Figure 1.9) McKnight and Miller Jr (1979).

These active and inactive phases are described in terms of "promoter states" or levels of

gene activity at which transcription can occur. Fluctuations between an ’active’ state (also

referred to as "ON") and an ’inactive’ state (designated as "OFF") result in brief bursts of

mRNA production interspersed with periods of transcriptional quiescence.

Transcriptional bursts are further characterized by two key parameters: burst frequency and

burst size. The association between burst frequency and burst size can differ among genes

and in various regulatory contexts. Understanding how these factors interact is crucial for

deciphering the complexities of gene regulation and its impact on the diversity of cellular

behaviors.

1.2.6 Methods to visualize transcription in live embryos

Transcriptional burst, chromatin accessibility and ZGA were revealed using live imaging

techniques. These imaging techniques can be broadly categorized into two main groups:
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Figure 1.9: Chromatin spreads from Drosophila embryos (Taken from Tunnacliffe and
Chubb (2020)). The image shows a pair of sister chromatids aligned in parallel, with in-
ferred initiation sites marked by α and β. Note the increasing size of the fibres (transcripts)
extending from the central axis of each chromatid with increasing distance from the initia-
tion sites (scale bar 1µm); also note the fibre-free gaps (marked by arrows).

static fluorescence microscopy, which captures stationary images, and live imaging, which

involves recording dynamic movies of transcription processes in vivo. We will provide a

comprehensive overview of the techniques employed to acquire the data utilized in this

PhD thesis.

Labeling mRNA in őxed samples

Single Molecule Fluorescence in situ Hybridisation (smFISH) is a technique used to detect

and visualize individual RNA molecules within fixed tissue at single-cell resolution (Trcek

et al. (2016), Lyubimova et al. (2013)). It involves the use of fluorescently labeled probes that

hybridize to specific RNA sequences of interest. By imaging and quantifying the fluorescent

signals from the labeled RNA molecules, researchers can gain insights into the abundance,

localization, and dynamics of transcriptional activity at the single-molecule level (Boettiger

and Levine (2013), So et al. (2011)) (Figure 1.10).

Labeling mRNA in living cells

The MS2/MCP system is an amplification method consisting in two parts. First an array of

MS2 sequences in inserted in the gene of interest (on transgenes or at the locus by crispr edit-

ing). Second, a fluorescent detector protein is provided as a free detector. Upon transcrip-

tion, this array will form mRNA loops These loops exhibit a high affinity for the detector,

which is the RNA-bound protein MCP which is used to a fluorescent detector, such as MCP-

GFP. This process is typically visualized using a specific imaging setting. This binding event

generates a fluorescent dot (spot) at the transcription site, whose fluorescence dynamically

evolve with time (Figure 1.11). The fluctuations in MS/MCP-GFP signal at the transcription

site can serve as a proxy for transcriptional activity (Gregor et al. (2014)). The MS2 system

was initially developed in 1998 (Bertrand et al. (1998)) and further refined in 2004 (Golding

and Cox (2004)). In the drosophila embryos, it was first used in 2013 by Lucas et al. (2013);

Page 29



30 Chapter 1. General introduction

Figure 1.10: Transcription imaging in fixed embryos (Taken from Trcek et al. (2018)). A) A
schematic of smFISH probe binding to nascent and mature mRNAs. B) Detection of cyto-
plasmic and nascent mRNAs (red) using smFISH. The nuclei are stained with a DAPI stain
(blue). Note that transcription sites, located within the nuclei, are brighter than single cyto-
plasmic mRNAs indicating that several RNAP IIs are transcribing the MDN1 gene concur-
rently. C) A spot-detection algorithm was applied to detect cytoplasmic and nascent MDN1
mRNAs. Detected mRNAs are marked as green spots demarcated by purple squares. D)
The intensity of a single cytoplasmic mRNA is determined. The total fluorescent intensity
of a single spot in x, y, and z is determined. Once the average intensity of a single mRNA
is known, it is used to calibrate the total intensity of transcription site to determine the ab-
solute number of nascent chains associated with the active transcription sites detected in b
and c. Scale bar: 1µm.
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Figure 1.11: Transcription imaging in live embryos (adapted from Pimmett et al. (2021)). A)
Schematic view of transgenes used to study transcriptional dynamics. A minimal enhancer
was placed upstream of the core promoter followed by 24xMS2 repeats and a yellow re-
porter gene. B) Schematic of Drosophila embryo showing spatial restriction of analysis to
presumptive mesoderm (purple). C) Maximum intensity projection of representative 15µm
Z-stack of snaE<snaPr<24xMS2-y (snaE<sna) nc14 embryo showing MS2/MCP-GFP-bound
transcriptional foci (GFP) and nuclei (histone-RFP). Scale bar is 5µm. D) Sample single nu-
clei trace showing GFP fluorescence during nc14. Surface of green region indicates trace
integral amplitude.

Garcia et al. (2013). Since then, it has been extensively utilized in various biological systems

Pimmett et al. (2021).

Image analysis

To better understand how intricate regulatory systems are interconnected, researchers

would have to use mathematical models Fischer (2008); Joyce and Palsson (2006). Image

analysis methods are essential for extracting quantitative information from microscopy data.

These techniques involve the processing and analysis of images obtained from techniques

such as MS2-GFP system and smFISH (Trullo et al. (2019)). Image analysis algorithms and

software enable the quantification of parameters such as signal intensity, spatial distribu-

tion, co-localization, and temporal dynamics of transcriptional events. This facilitates the

extraction of meaningful data from large datasets and provides quantitative insights into

transcription processes.

Data calibration

Calibrating the fluorescent signal obtained from live imaging holds a critical role in the anal-

ysis of transcription. This process enables us to interpret data using precise counts of tran-

scribing polymerases. It avoids the need to rely on arbitrary units. To achieve this calibration
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for the MS2-GFP system, we employed single-molecule hybridization experiments as out-

lined in Garcia et al. (2013). By leveraging the fluorescence emitted by an individual mRNA

molecule, we can derive an estimation of the average quantity of mRNA molecules. These

molecules are situated at the transcription site (TS) within the nucleus. This estimation is

made during a stable condition.

These techniques, when used individually or in combination, contribute to our understand-

ing of transcriptional processes. They do so by providing valuable information about the

localization, dynamics, and abundance of RNA molecules within cells. They are essential

tools for studying gene expression and unraveling the complexities of transcriptional regu-

lation.

1.2.7 Noise in gene expression

The question about how gene expression is tightly regulated despite the heterogeneity aris-

ing from the molecular level, or transcriptional bursts, is a fundamental question in molecu-

lar biology. This phenomenon plays a key role in many biological situations. It can be bene-

ficial, allowing the exploration of multiple fate choices during development, such as during

retinal photoreceptor specification (Urban and Johnston (2018)). But expression noise can

also be harmful, as during HIV viral load ebbs (Weinberger et al. (2005)). Moreover, phe-

notypic heterogeneity has a key role in cancer growth and the emergence of therapeutic

resistance (Blanco Calvo et al. (2009), Gupta et al. (2018a)).

We distinguish between two types of noise in gene expression: intrinsic noise and extrinsic

noise (Figure 1.12).

Intrinsic noise

Intrinsic noise refers to the inherent stochasticity or randomness within individual cells. It

arises from the discrete nature of molecular interactions and processes involved in gene

expression. Various sources contribute to intrinsic noise, including the random arrival of

transcription factors, the binding and unbinding of regulatory molecules, and the sponta-

neous nature of biochemical reactions within the cell. Intrinsic noise can result in cell-to-cell

variability, causing fluctuations in gene expression levels even among genetically identical

cells (highlighted by the different colors of the rectangles representing nuclei in Figure 1.12

below).

Extrinsic noise

Extrinsic noise, on the other hand, arises from external factors that influence gene expression

across a population of cells. These external factors can include variations in environmental
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Figure 1.12: Overview of intrinsic and extrinsic noise in gene expression (taken from Meyer
and Roeder (2014)).

conditions, fluctuations in available nutrients, or differences in cellular signaling and com-

munication. Extrinsic noise leads to cell-to-cell variability. This variability is coordinated

across the population, as highlighted by the same yellow color in Figure 1.12 above. It re-

sults in gene expression patterns that exhibit systematic deviations from cell-autonomous

stochasticity.

Under this perspective, multiple mathematical frameworks have been developed (Swain

et al. (2002); Paulsson (2004); Raser and O’Shea (2004); Meyer and Roeder (2014)). These

frameworks are used to formally describe noise in biological systems. They address noise

in general or dissect and quantify the contributions of each type of noise. In the simplest

model of transcription, mRNA production is depicted as a Poissonian process, where tran-

scripts are stochastically generated at a constant rate. However, this model proves inade-

quate for many genes. In such cases, the distribution of transcripts is "Super-Poissonian,"

meaning that the measured variance exceeds the mean (Nicolas et al. (2017); Lenstra et al.

(2016)). However it was not until the discovery that transcription happens in burst with the

developments of single cell live imaging technologies that major advances in the study of

transcription has been made (Munsky et al. (2012), Gregor et al. (2014)).

Throughout this thesis we are interested in understanding and deciphering intrinsic noise

through quantification of noise, manipulation of the biological context and prediction of
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noise.

1.3.0 Introduction to mathematical modeling of

stochastic gene expression

Mathematical modeling plays a crucial role in advancing our understanding of gene ex-

pression. Various frameworks have been developed to study distinct facets of gene ex-

pression, such as quantifying expression noise (section 1.2.7), deciphering the functions of

cis-regulatory elements (section 1.1.2), and understanding the establishment of morphogen

gradients (section 1.2.4). Consequently, in this section I will define the mathematical models

and properties used throughout the PhD thesis to model the gene expression process from

multiple point of view.

1.3.1 Stochastic chemical reaction networks as models of gene expression

A stochastic process is a mathematical model describing the evolution of a system over time,

where the outcomes or states at each time point are subject to randomness or uncertainty.

Stochastic processes are widely used in physics, engineering, economics, finance, and biol-

ogy to model phenomena with inherent randomness or uncertainty. Common examples of

stochastic processes include Poisson processes, Markov processes, and Brownian motion,

among others. They provide valuable tools for analyzing and predicting probabilistic be-

havior of dynamical systems.

With the establishment of transcriptional "bursts" the need of a stochastic process to model

transcription became trivial (section 1.2.5). Therefore we are interested in studying models

of stochastic gene expression. These models rely on the more general theory of stochastic

chemical reaction networks (CRN).

The stochastic CRN formalism was introduced by Delbrück (1940s), Rényi (1950s), and

Bartholomay (1960s).

Delbrück’s discussed one-species autocatalytic reaction models Delbrück (1940) and pro-

vided the solution of the master equations that describe the probabilistic dynamics of these

models.

The Rényi formalism Rényi (1954), while similar to Delbruck’s employs similar one species

models, but proposes an alternative approach to solve the master equation. Rényi’s ap-

proach uses probability generating functions to compute the distribution of the number of
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copies of the chemical species resulting from the reactions. Like Delbrück, Rényi studies

only univariate cases.

Building upon Dëlbruck’s and Rényi’s groundwork, the Bartholomay formalism Bartholo-

may (1957) introduces stochastic reaction networks in their full generality, going from the

univariate to the multivariate case. His axiomatic description of enzymatic reaction intro-

duces all the ingredients of the modern theory of stochastic chemical reaction networks

(CRN) as continuous time jump Markov jump processes: propensity of reactions (probabil-

ity per unit time that a reaction occurs), joint probabilities of species copy numbers, master

equation, generating function for the multivariate case, differential equations for the mo-

ments.

More recently, in the 70s, Daniel T. Gillespie proposed an algorithm to simulate stochastic

chemical reaction networks. This algorithm bridges the gap between theoretical frameworks

and real-world simulations, offering a means to accurately model the evolution of stochastic

chemical reaction networks Gillespie (1977). By simulating individual reaction events based

on their propensity and stoichiometry, the Gillespie algorithm has become a cornerstone in

the field of systems biology, enabling the detailed exploration of complex cellular dynamics

influenced by stochastic elements.

One of the first models to use chemical reactions to model gene expression was established

in 1997 McAdams and Arkin (1997). Rather generally, any intracellular process can be de-

scribed at the molecular level in terms of biochemical reactions. In models of stochastic gene

expression the synthesis of RNA and proteins has been modelled using stochastic CRNs.

Markov jump processes

As a matter of fact stochastic CRNs belong to a more general class of stochastic processes,

the Markov jump processes, defined as follows.

For any continuous time Markov process X(t) ∈ E, E being a metric space, we associate its

natural filtration (its past and present) with FX
t = σ{X(s), s ≤ t} and a transition probabil-

ity function P : R × E × R ×B(E) → [0, 1] (B(E) is the Borel set),

P(s, x, t, A) = P

[

X(t) ∈ A | FX
s

]

= P[X(t) ∈ A | X(s) = x] (1.1)

for t ≥ s. The last equality being the Markov property (the future of a Markov process

process depends on the past only through the present). P satisfies the following properties:

1. P[s, x, t, A] is measurable in x and represents a probability measure in A.
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2. P[t, x, t, .] = δx (Dirac mass in x).

3. P[t1, x, t3, A] =
∫

P[t1, x, t2, dy]P[t2, y, t3, A] ( Chapman-Kolmogorov equation).

Markov Jump processes are defined by the existence of the following limit Gikhman and

Skorokhod (1969):

lim inf
t→s

P[s, x, t, A]− δx(A)

t − s
= λ(s, x)µ(s, x, A) (1.2)

for t ∈ R, x ∈ E, A ∈ B(E).

The function λ : R × E → R+ is the intensity (average number of jumps per unit of time).

µ(s, x, A) is a probability measure in A known as the jump law. It represents the probability

of choosing to jump from x to A. For homogeneous processes, the intensity and law of jumps

do not depend on time s.

When E is separable, any Markov process with jumps is equivalent to a càd-làg process

(right continuous with left limits) and there is almost certainly a sequence of random

time intervals τi of exponential laws such that limn→∞ ∑
n
i=1 τi = ∞ et X(t) is constant in

[

∑
n
i=1 τi, ∑

n+1
i=1 τi

]

(Gikhman and Skorokhod (1969)). Thus, a Markov process with jumps can

be equivalently defined from a counting process v(t) (of intensity λ) and a Markov chain Xn

with transition kernel µ : X(t) = Xµ(t).

Formalism of the chemical reaction andmaster equation

Stochastic CRNs are modelled as Markov jump processes (Rényi (1954); Bartholomay

(1957)).

Let us consider a system of N chemical species {S1, ..., SN} that interact within M chemical

reactions {R1, ..., RM}. This system is assumed to be well-stirred, confined to a constant vol-

ume, and in thermal equilibrium at a constant temperature, but not necessarily in chemical

equilibrium. Let Xi(t) denote the copy number of molecules of species Si in the system at

time t. Our aim is to simulate the state vector X(t) = (X1(t), ..., XN(t)) given the initial state

X(t0) = x0 at some initial time t0.

The changes in species populations are a direct result of the chemical reactions. Each reaction

Rµ is characterized by two essential components. First, its state-change or stoichiometric

vector vµ = (v1µ, ..., vNµ) defines how one instance of reaction Rµ changes the molecular

population of each species Si. For instance, if the system is in state x, the occurrence of

reaction Rµ causes an instantaneous transition to state X + vµ.

Page 36



1.3. Introduction to mathematical modeling of stochastic gene expression 37

The second characteristic is the propensity function aµ for reaction Rµ. This propensity

function is designed such that when multiplied by τ, it gives the probability that a reaction

Rµ will change the value of a system variable X within an infinitesimal time interval (t, t +

τ). Rather generally, we can use the following relation to compute the propensity:

aµ(X) = Vhµ(X/V)kµ (1.3)

Here, V represents the volume of the well-stirred reactor, the arbitrary index µ refers to

the M reaction, hµ represents a function of the reactants concentrations X/V, and kµ is the

kinetic rate constant of the reaction.

A stochastic CRN can be seen as a Markov jump process. The intensity of the Markov

jump process is the total CRN propensity atot(X) = ∑µ aµ(X), whereas the jump measure is

∑µ
aµ(X)

atot(X)
δX+vµ .

The chemical master equation (CME) formally defines the equation that determines the

probability of each species having a specific molecular population at a given time in the

future. It is the forward Kolmogorov equation of the Markov jump process, resulting from

the Chapman-Kolmogorov equation. For a stochastic CRN the master equation reads Gille-

spie (1992); McQuarrie (1967):

∂P (x, t | x0, t0)

∂t
=

M

∑
µ=1

[
aµ

(
x − vµ

)
P
(

x − vµ, t | x0, t0
)
− aµ(x)P (x, t | x0, t0)

]
. (1.4)

Gillespie algorithm

Throughout this thesis, the Gillespie algorithm is used to simulate various stochastic models.

Hence, it is useful to provide a formal introduction to this algorithm.

The Gillespie algorithm, often referred to as the Stochastic Simulation Algorithm (SSA) as

well, serves as a means to numerically simulate the dynamic behavior outlined by the master

equation. More generally it can be used to simulate continuous time Markov jump processes

(last property in section 1.3.1). The mathematical underlying foundation behind this is that

the time-to-the-next-jump in a Markov jump process is exponentially distributed and the

probability of the next event is proportional to the rate. This was established by Feller (1940).

While there are situations where we can analytically solve the master equation, this ap-

proach may not be viable for intricate scenarios, such as when dealing with a multitude
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of reactions. Examples of solvable master equations are: the autocatalytic reaction model

of Delbrück (Delbrück (1940)), the two steps (transcription and translation) non-regulated,

gene expression model (Ham et al. (2020)), the one step regulated gene expression model

(Ramos et al. (2011)).

In such cases, the Gillespie algorithm, or some form of simulation, becomes essential.

The underlying concept of the Gillespie algorithm involves simulating a series of Markov

processes. This is accomplished by sampling the probability distribution of two quantities:

the time elapsed since the last reaction, denoted as τ, and the propensity function aµ (see

equation 1.3).

The intensity function λ(s, x) of the formalism of a markov jump process (equation 1.2)

corresponds to the propensity function aµ(x) in the Gillespie algorithm for reaction µ when

the system is in state x. Similarly the jump law µ(s, x, A) is related to the time until next

event τ

In a nutshell, the algorithm is presented in algorithm 1.

Algorithm 1 Gillespie Algorithm
1. At some initial time t(e.g.t = 0) select your initial state n and compute the propensities

aµ(x).

2. while t < tmax

3. Select two random numbers r1 ∼ U [0, 1] and r2 ∼ U [0, 1].

4. Compute τ using the formula

τ =
1
a0

ln(
1
r1
) (1.5)

where a0 = ∑µ aµ(x).

5. Find the smallest integer j that satisfies

j

∑
j′=1

aj′(x) > r2a0(x), (1.6)

and set j = µ.

6. Update the system according to X(t + τ) = x(t) + vµ and set t = t + τ.

7. endwhile.
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Figure 1.13: Markov model:
A) A simple first-order Markov Chain of state space S with N = 3. B) Observations zt of the

Markov model.

Markov Chain Models

Continuous time Markov chains find extensive utility as modeling tools in a diverse range

of fields including biology, medicine, physics, chemistry, economics, and actuarial science

Bharucha-Reid (1997). These chains serve as effective means of depicting complex systems

characterized by various states and probabilistic transitions among them. Within the frame-

work of Markov chain models, the evolution of states is memory-less, implying that the

likelihood of transitions relies only on the present state and not on the past. Moreover, the

waiting time to the next state is exponentially distributed.

A Markov chain model is simply defined by three core components: the state space,

the transition rate matrix, and the initial state vector. The state vector X is defined as

X = {X1, ..., XN} where N. The transition rate matrix, A ∈ R(N+1)×(N+1), is an array of

numbers describing the instantaneous rate at which a continuous-time Markov chain tran-

sitions between states. The value Ai,j ≥ 0 and the diagonal elements Ai,i are defined such

that Ai,i = −∑j ̸=i Ai,j therefore the rows of the matrix sum to zero.

The heart of this modeling involves predicting the future state of a system using its current

state and the rates of moving to different states Davis (1993).

Consider a sequence of observations denoted by z1, ..., zT providing the states of a system

over a period of time. In this context, the notation z(t) = zt signifies that at a particular time

instance, denoted as time step t, the system is found to be in a specific state (Figure 1.13 B)).

This state is represented by the variable z(t) and can take on values corresponding to the

predefined states of the Markov chain, which we’ve labeled as X1, X2, X3, and so on.

The memory-less or first-order Markov Chain property implies that

P[zt|z1, ..., zt−1] = P[zt|zt−1] (1.7)
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Therefore for a series of observations z1, ..., zT , the product rule can be used to express the

joint distribution of the observations as

P[z1, ...zT] =
T

∏
t=1

P[zt|z1, ...zt−1]

=
T

∏
t=2

P[zt|zt−1]P[z1] (1.8)

While this approach involves making strong assumptions regarding the temporal relation-

ships within the data, Markov Models have demonstrated effective utility in modeling time

series data characterized by straightforward and short-term temporal connections. In the

case where we are interested in integrating more extensive temporal relationships into the

model, we can introduce conditional dependence of zt on observations that extend further

into the past. For instance, allowing zt to be influenced by zt−1 and zt−2 leads to the cre-

ation of a Second-Order Markov Chain. In practical terms, this concept can be extended to

what’s known as an Mth order Markov Chain, where the conditional distribution of a given

variable relies on the previous M variables.

However, with the introduction of longer-term temporal dependencies, the complexity of

the model increases notably. As the value of M gets bigger, the number of parameters in-

creases very quickly. This makes the method not work well for larger M values because it

becomes too difficult to do the computations needed.

An example of a Markov model in the modeling of transcription process is the telegraph

model described in the end of section 1.3.1 (also refer to Figure 1.14 left). The model can

be extended to incorporate several ON and OFF states, depending on their time scale. Each

ON/OFF state is represented as a Markovian state. An example of a transcription process

occuring in a 3 state model where there are the promoter switches between two OFF states

is shown in Figure 1.14 right). After modeling the transcription process as a Markov model

we use the gillespie algorithm (Section 1.3.1) to simulate the time and the next state that the

process goes to. Similarly throughout the thesis we will be modeling different transcrip-

tion/translation steps as Markov chain states and then applying the gillespie algorithm to

the Markov chain.

1.3.2 Spatial extension of gene expressionmodeling

Using stochastic (or deterministic) CRNs as models for gene expressions is possible under

the assumption of well-stirred reactor, which means that molecular species are rapidly dif-

fusing and uniformizing their concentration in space.
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Figure 1.14: Illustration of a transcription process modeled as a Markov model. On the
left side, we depict a simplified representation with two states mode (telegraph model): the
’OFF’, ’ON’ state and the ’Elongation’ state. On the right side, a more detailed view includes
two non-obligatory states: ’OFF1’, ’OFF2’ and ’ON,’ followed by the ’Elongation’ state.

This approximation is true for large diffusion coefficients and small compartments. In these

thesis we deal with developmental biology models. In developping embryos diffusion can

be limited by crowding and various sterical constraints (Section 1.2.2). Compartments are

also large, as they can represent full embryos. In such cases, gene expression is no longer

homogeneous and forms spatially heterogeneous patterns, that are used to organize the

development of the embryo.

Furthermore, stochasticity of gene expression can lead to fluctuations in the spatial distri-

bution of these patterns which could in principle lead to developmental defects. For this

reason multiple studies have been dedicated to understand the mechanisms behind the re-

liable spatial control development in the embryo Dubuis et al. (2013); Tkačik and Gregor

(2021); Teimouri and Kolomeisky (2022).

In developmental biology, two primary methodologies were used for investigating gene

expression over spatial and temporal dimensions. The first one employs the concept of

positional information that hypothesizes that the information needed for the embryo orga-

nization is provided by one or several spatially heterogeneous morphogenes. The second

uses reaction-diffusion systems and explain patterning by instabilities of these systems that

break translation symmetry (Figure 1.15).
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Figure 1.15: Principles of Reaction-Diffusion and Positional Information Systems: Self-
Organization and Cell Fate Determination (taken from Green and Sharpe (2015)). (A)
There are two broad categories of Turing RD systems: the activator-inhibitor model and
the substrate-depletion model. In the former case, the two molecular concentrations make
periodic patterns that are in phase with each other. In the latter case, the patterns are out of
phase with each other. Here, we illustrate the general self-organising nature of RD systems
by reference to the activator-inhibitor model. Even an apparently homogeneous distribu-
tion of molecules across space will display molecular fluctuations. Some cells with a slightly
higher level of activator will thus auto-enhance these levels, pushing up the concentration
(i). Since the activator also enhances production of the inhibitor, levels of inhibitor will also
rise at that point (ii).
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Figure 1.15: However, the inhibitor can diffuse faster than the activator, which has two con-
sequences: first, at the position of the peak, inhibitor levels fail to accumulate sufficiently
to repress the activator, whose positive feedback is able to stabilise its own high levels; sec-
ond, the increase in inhibitor levels in neighbouring cells prevents levels of the activator
from growing, thus creating a zone on either side of the first peak where no new peaks can
form (iii). However, beyond these regions of ‘lateral inhibition’ new peaks can form (iv), so
the whole system dynamically changes until a regular array of peaks and valleys is formed
across the whole field of cells (v). (B) Wolpert’s concept of PI describes a very different pro-
cess. A prior asymmetry results in a graded monotonic distribution of a variable (usually
the concentration of a morphogen), and cells use this distribution to make fate choices. A
popular illustration of this concept is the French Flag Problem (i), in which the field of cells
must be divided into three equal regions of different cell fates (represented by red, white and
blue). It is increasingly believed that small networks of cross-regulating genes constitute the
mechanism of morphogen interpretation. However, irrespective of the molecular mecha-
nism, the effective calculation is to define threshold levels of morphogen (T1, T2) and to
associate prespecified fates to the different concentration ranges between these thresholds.
In principle, any pattern can be defined in this way, including a periodic pattern similar to
those produced by RD (ii). However, in this case a large number of different positional val-
ues (T1 to T7) would have to be accurately defined, even though they subsequently map to
just two fate choices.

Reaction-diffusion system

In the middle of the 20th century, Alan Turing also known for his foundational work in com-

puter science, introduced a model of morphogenesis: the initial symmetry in embryos can

be broken by an intercellular diffusion reaction between two classes of molecules which are

typically species of chemicals or biological agents: activator and inhibitor. The dynamics of

the concentration of these morphogens, Xi, are dictated by the diffusion-reaction equations:

δXi

δt
= gi(X1, ..., XM) + Di∇2Xi (1.9)

Where gi are local functions of the full set of M morphogen concentrations and Di is the

diffusion coefficient for the i-th morphogen. The key point of these equations is that the

interactions are fully local and posses translation symmetry. These equations describe how

the concentration of each chemical species changes over time and space, taking into account

the diffusion of the species through the system thus resulting in a pattern (Figure 1.15 A)).

Turing pattern formation arises from the spontaneous emergence of a spatial scale. This

phenomenon is known as Turing instability. Turing instability occurs when the rate of dif-

fusion of one species DX is much greater than the rate of diffusion of another species DY .

Furthermore, the more diffusive species is an inhibitor, whereas the less diffusive one is an

activator. This mechanism, know as latteral inhibition, promotes the formation of spatially

periodic patterns Turing (1952). This concept can be applied to a broad class of reaction dif-
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fusion models Baurmann et al. (2007); K. Maini et al. (1997); Maini et al. (2006); Miura and

Shiota (2000) .

Positional Information

The second most influential idea in morphogensis came from Lewis Wolpert between late

1960s and early 1970. Lewis Wolpert, introduced the idea of what is now know as "posi-

tional information" often represented by "The French Flag". The idea behind it is that the

positional information is encoded in morphogen gradients, suggesting that there exists a

predetermined initial symmetry breaking event for each cell depending on it’s location. The

cells are then able to "measure" their position within a morphogen gradient by comparing

the concentration of the morphogen they receive to a threshold value. Cells can then acti-

vate different sets of genes depending on whether their morphogen concentration is above

or below the threshold, leading to different cell fates Wolpert (1969, 1971) (Figure 1.15 B)).

These two ideas (reaction diffusion and positional information) are not mutually exclusive

and are now used to model space dependent gene expression in developmental biology

Green and Sharpe (2015); Gordon et al. (2020).

1.3.3 Modeling choice

To effectively accomplish the goals of modeling gene expression at multiple scales of time

and space, it is essential to connect several models operating at various scales. Furthermore,

it is crucial to use the appropriate model for each specific scale.

One of our aim is to extend CRN models from well-stirred reactors to spatially extended

systems and use them for modelling gene expression across multiple scales.

The modeling choices needed for representing reactions in a spatially extended domain are

determined by careful consideration of the following criteria:

1. global description vs local description.

• Global description dictates spatially homogeneous, “well-stirred” case excluding

diffusion.

• Local description is the spatially heterogeneous, “spatial model” including diffu-

sion.
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2. deterministic description vs stochastic description.

• Deterministic description usually concerns macroscopic scales and uses concen-

tration variables.

• Stochastic description is usually used for mesoscopic scale, taking into account

fluctuations, at the molecular level.

3. one-scale vs multiple scales

• one-scale description is characterized by a single, large population size scale, fea-

turing solely high reaction rates and fast dynamics.

• multiple scales which is distinguished by the presence of at least two population

size scales, encompassing both high and low reaction rates, along with fast and

slow dynamics.

The combination of the above criteria gives rise to six types of models:

(M1) Deterministic Homogeneous Model

(M2) Deterministic Spatial Model,

(M3) Stochastic Homogeneous Model,

(M4) Stochastic Spatial Model,

(M5) Multiscale Stochastic Homogeneous Model,

(M6) Multiscale Stochastic Spatial Model.

These models are not independent one from another.

(M3) , (M1): The relation between (M1) and (M3) has been extensively explored, particularly

by Kurtz, as documented in various works including Kurtz (1970, 1971), and in collaboration

with Ethier as shown in Ethier and Kurtz (1986). This investigation has yielded a law of

large numbers (LLN) and a corresponding central limit theorem (CTL), demonstrating the
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convergence of (M3) toward (M1).

{(M1), (M2)}, {(M3), (M4)}: The consistency between (M1) and (M2), as well as between

(M3) and (M4), has been established in Arnold (1981).

(M2), (M4): In their work, Arnold and Theodosopulu conducted a comparison of (M2) and

(M4) using the L2 norm, employing a Law of Large Numbers (LLN). Subsequently, Blount,

following in the footsteps of Kotelenez, extended this comparison extensively. They demon-

strated various LLNs and associated Central Limit Theorems (CLTs) under progressively

relaxed assumptions, including spaces of distributions. Blount’s research even included a

LLN in the supremum norm. Relevant references can be found in Kotelenez (1987, 1986,

1988), among others.

(M5), PDMP: In their research documented in Radulescu et al. (2007); Crudu et al. (2009,

2012), Crudu, Debussche, Muller, and Radulescu investigated (M5). In the latter publica-

tion, they adopted a modeling approach that incorporated the system’s multiscale nature

in the spatial homogeneous framework. They successfully demonstrated that the multiscale

model exhibits (weak) convergence to a finite-dimensional Piecewise Deterministic Markov

Process (PDMP). In finite dimensions, PDMPs are hybrid processes that follow ODE flows

between consecutive jumps, with parameters that can undergo jumps. These processes have

been thoroughly formalized and examined by Davis, as detailed in Davis (1993). Depending

on the nature of interactions and scaling factors, Crudu et al. (2009) discerned various types

of limiting PDMPs. It’s worth noting that in hybrid simplification, stochasticity does not

appear. However using multiscaling we can estimate asymptotically at the first order, the

noise lost in the Law of Large Numbers.

(M6), (M2), (M1) In Debussche and Nguepedja Nankep (2019), they prove a new law of

large numbers in the spatially heterogeneous framework, showing the convergence of (M6)

to (M2) coupled with (M1), in the supremum norm.

Nonetheless, the resulting integrated models are frequently demanding in terms of compu-

tational resources and pose challenges in computing numerical solution. This is a common

attribute of multi-scale problems, highlighting the need for appropriate multiscale algo-

rithms. Examples of multi-scale numerical methods are demonstrated in (Dada and Mendes

(2011); Smith and Yates (2018); Hepp et al. (2015)).

In Chapter 5, we compared numerically different modeling methods for gene expression,

using both stochastic and deterministic approach taking into consideration local description
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of the spatial scale. This comparison is done between Model (M2), (M4) and a third hybrid

techniques that combine {(M3)and(M2)}

1.3.4 Non-Markovianmodels

When applied in real-world scenarios, it’s important to note that not all states and transi-

tions within a system are readily observable. This leads to the concept of an incompletely

observed Markov chain, which can exhibit memory effects.

For instance, consider the context of transcription processes. These can be conceptualized as

continuous-time Markov chains, where a promoter sequence stochastically triggers various

non-productive states (OFF) before eventually transitioning to an active state (ON) capable

of initiating transcription. However, our access to data is primarily limited to the transcrib-

ing state itself rather than the intricate transitions of the promoter molecule. As a result, the

waiting times between observable states is no longer exponentially distributed. This devia-

tion from the standard Markovian behavior necessitates a shift from using purely Markovian

models to incorporating non-Markovian models.

Several strategies have been developed to tackle this complex phenomenon. Notable ap-

proaches involve the utilization of hidden Markov processes as demonstrated in works

such as Lammers et al. (2020a); Bowles and Rattray (2021); Tantale et al. (2021); Douaihy

et al. (2023).

Hidden Markov Models

The hidden Markov model (HMM) belongs to a category of doubly stochastic processes Ra-

biner and Juang (1986). These processes exhibit the Markov property and output indepen-

dence. In a HMM, there is an underlying Markov process that remains hidden. This means

that one cannot directly see the variable states, but can deduce them through a different set

of stochastic processes. These processes become evident as a sequence of observed outputs.

The Markov process generates the sequence of variable states. This is determined by the

initial state probabilities and the probabilities of transitioning between states. On the other

hand, the observation process produces measurable signals. These signals are determined

by a state-dependent probability distribution. Essentially, this observation process can be

thought of as a noisy version of a Markov process, providing insights into the hidden states.

Formally, an HMM constitutes a Markov model where we possess a sequence of observed

outputs X = {X1, X2, ..., XT} derived from an output alphabet V = {v1, v2, ..., bN′}, i.e.

Xt ∈ V, t = 1, ...T. We also assume the presence of a sequence of states z = {z1, z2, ..., zT}
selected from a state alphabet S = {s1, s2, ...sN}, zt ∈ S, t = 1, ..., T. The vector state z
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Figure 1.16: Illustration of Hidden markov Model.

follows a Markov model introduced in section 1.3.1, the actual values of these states re-

main unseen. The shift from one state, i, to another state, j, is once again denoted by

the corresponding entry in our state transition matrix Ai,j (Figure 1.16). We formulate the

likelihood of generating an observed output by considering the influence of our hidden

state. To achieve this, we operate under the assumption of output independence and define

P
[
Xt = vk|zt = sj

]
= P[Xt = vk|X1, ..., XT, z1, ..., zT] = Bj,k. The matrix B contains the infor-

mation about the likelihood that our hidden state produces the output vk given that the state

at the corresponding time was sj.

Although in this thesis we don’t use HMM explicitly but in Chapter 2 we compare a method

that we have developed to extract information from transcription to another method based

on HMM Lammers et al. (2020a); Bowles and Rattray (2021).

1.4.0 Thesis objectives

When examining the molecular level, using single cell imaging techniques, phenotypic het-

erogeneity emerges and gives rise to the phenomenon known as biological "noise". This

noise has been recognized to originate from various sources Raser and O’Shea (2005). One

contributor to this intricacy is the phenomenon of "transcriptional bursts". This dynamic

behavior results in fluctuations in gene expression levels within an otherwise deterministic

framework. Although the transcription cycle consists of 3 main phases: initiation, elonga-

tion and termination, variability in transcription outcomes often traces back to the initiation

phase, underscoring its significance in gene expression regulation.

In this thesis we combine theoretical frameworks, computational techniques, and single-cell

live imaging analyses. The primary goal is to expand our comprehension concerning the

stochastic nature of gene expression, particularly at the transcriptional level, and to resolve

the apparent contradiction between stochasticity and robustness of gene expression mecha-
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nisms.

We aim to answer this question using the Drosophila melanogaster embryonic development.

We have used this model organism for these three main reasons: genome has been fully

mapped, resulting in a comprehensive understanding of its enhancers and promoters, the

development of live imaging techniques that enables us to track transcription and transla-

tion in real time and the reliable, reproducible pattern.

However different criteria of transcriptional data that result in translation give rise to the

need of unique modeling approaches. We distinguish two main criteria that helped us know

our limitations in extracting direct information from the data:

1. ’Time homogeneous’ vs ’time-inhomogeneous’ signal.

2. ’Space homogeneous’ vs space ’in-homogeneous’.

Therefore we divide our problem into three main conditions: time and space homogeneous

data, time-inhomogeneous and space homogeneous data, and lastly time and space inho-

mogeneous. We start by examining a restricted case of time and space homogeneity. This

simple assumption serves as a starting point, allowing us to extract information from tran-

scription data directly. However, as we introduce more complex assumptions, we observe

a shift in our approach. As complexity increases, we extract fewer specific details from the

data itself and we start extracting more theoretical conclusions. This transition reflects the

trade-off between the richness of experimental information and the depth of theoretical in-

sights as we go through the complexities of gene expression modeling.

This PhD thesis is structured as follows.

In Chapter 2, we introduce BurstDECONV, an innovative statistical inference method de-

signed to deconvolve signal traces into individual transcription initiation events which we

then apply the solution of the inverse problem to obtain the switching parameters of the

transcriptional data for different phenotypes. A thorough parameter benchmarking for this

inference method is presented, along with a comparison against alternative methods using

both synthetic and real-world data. The data is acquired through single-cell live imaging

(see Section 1.2.6), wherein the intensity signals are calibrated using smFISH Tantale et al.

(2021); Pimmett et al. (2021).

In 3, we developed the inverse problem used in 2 to deal with more complicated models.
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Solving the inverse problem consisting of obtaining the kinetic rates of the markov Pro-

cess from the parameters of the survival function consisting of the waiting time between

polymerase. By analyzing the distribution of waiting times between successive polymerase

initiation events and using the method described, we are able to deduce mechanistic char-

acteristics of transcription, including the number of rate-limiting steps and their kinetics.

Both of these chapters require a time and space-homogeneous data.

When dealing with in-homogeneous time series we can no longer use the inverse problem.

An example for in-homogeneity in transcription can result from the presence of a repressor

Lagha et al. (2013). In this case the switching parameters of the Markovian model depend on

the concentration of the repressor. Therefore, in Chapter 4 we have developed an additional

method to analyze non-homogeneous data. This method can partition the in-homogeneous

time signal into homogeneous signal using a Bayesian approach. By simplifying the com-

plexity of our problem we are able then to apply BurstDeconv to the segment part of the

signal that has constant parameters.

Finally in Chapter 5 we extended our investigation to include broader perspectives: tempo-

ral and spatial dimensions. As this problem is quite complex we can not obtain information

directly from the data. Therefore, in this chapter, we constructed numerical methods that re-

capitulate experimental observations (transcriptional data) while it is also efficient in terms

of computational time. This is achieved by employing a hybrid modeling framework that

involves discrete Markov processes and deterministic approach (partial differential equa-

tions PDEs). Through a rigorous comparison of these models with real-world data, we were

able to uncover critical bottlenecks in the expression of the snail, a crucial gene in the devel-

opment of the drosophila embryo.
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Inference of bursting kinetics

2.1.0 Introduction

In this paper we employ machine learning techniques to extract features of single-cell tran-

scription activity from MS2 data (Section 1.2.6) in the case of time and space homogeneous

data. As mentioned in the introduction we assume that the key steps of transcription initia-

tion process is modeled as Markov chain (Section 1.3.1). The assume of time homogeneous

data is when the switching rate between these different states are constant.

The machine learning process yields three distinct outcomes.

Firstly, utilizing a deconvolution approach and high-resolution movies, we generate a time

map detailing transcription events. This map indicates, for each cell, the precise moments

when various RNA polymerase molecules initiate mRNA production. This direct transcrip-

tional event readout within a cell population is a unique aspect of our methodology, distin-

guishing it from other approaches that directly fit specific transcription models to MS2 data,

such as those relying on autocorrelation functions Coulon and Larson (2016); Ferguson and

Larson (2013); Desponds et al. (2016), maximum likelihood estimation Corrigan et al. (2016),

or Bayesian inference Rodriguez et al. (2019); Lammers et al. (2020a). This map enables di-
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rect characterization of transcription features, including polymerase convoys and various

inter-event time statistics.

Secondly, our approach yields a multiscale cumulative distribution function for the waiting

times between consecutive transcription events (or its complement, the survival function).

We provide both non-parametric Kaplan-Meier and parametric multi-exponential estimates

of this multiscale distribution function. This distribution, derived from a combination of

short, high-resolution and long, low-resolution movies, covers timescales ranging from sec-

onds to 10 hours. For drosophila embryo we use short movies, however for human cells we

use a combination of short plus long movies. The dynamic range of our method surpasses

that of other existing methods, which often rely on smaller sampling rates and/or shorter

movie duration. This waiting time distribution is model-independent but can be used to

identify various transcription dynamics models.

Thirdly, our method delivers model parameter identification simultaneously for multiple

transcription models that equally fit the data. Our primary focus is on discrete transcription

models, which rely on Markovian transitions among hidden promoter states. These models

vary in terms of state numbers and transition graph topologies. However, it it is important

to note that this approach, described mathematically in the paper chapter, can be applied to

very general models. In contrast to other methods, our approach stands out by streamlining

the process. It doesn’t demand separate fitting procedures for distinct models. Instead, it

achieves the simultaneous identification of a diverse range of models that are all compatible

with the data. Furthermore, it accomplishes this with a single parametric fit of the multiscale

waiting time distribution function.

2.2.0 BurstDeconv

BurstDeconv is a tool for identification of transcription mechanism models from live tran-

scription imaging data. The implementation and benchmarking of this tool are described in

a paper published in Nucleic Acids Research (NAR) Douaihy et al. (2023).

This work is collaborative and interdisciplinary, encompassing mathematical modeling of

the transcription process, live imaging techniques, CIS regulatory elements, image analysis,

data calibration. Thanks to the collaborative environment fostered between the IGMM and

IGH (for the biological aspect) and LPHI (for the mathematical modeling aspect), I had the

opportunity to participate in various aspects of the project while also learning from my

collaborators.
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Upon joining Professor Radulescu’s laboratory, a prototype Matlab pipeline had already

been developed and applied to different biological contexts, ranging from the Drosophila

Embryo (Pimmett et al. (2021)) to human cells (Tantale et al. (2021)). I implemented the ver-

sion specifically tailored for short movie analysis in Python. Additionally, as these pipelines

can always be improved, I worked on amelioring the local optimization method. However,

the primary emphasis of the paper was on evaluating the robustness of BurstDeconv against

errors and suboptimal experimental designs.

Initially, I tested the pipeline using artificial data generated through the Gillespie algorithm

(Gillespie (1977)) for both 2-state and 3-state Markovian models, where the 3-state model

included obligatory pause states and non-obligatory pause states. Subsequently, I assessed

the pipeline’s performance under changes in calibration (Section 1.2.6), highlighting the sig-

nificance of accurate calibration. I also conducted benchmarking experiments related to time

resolution. These experiments involved examining the trade-off between higher time reso-

lution, which leads to longer movie duration (increasing error in most cases but decreasing

error when inactive transcription states are prolonged), and lower time resolution, which

results in shorter movie durations with the potential for reduced error. Crucially, I bench-

marked the pipeline against methods based on Hidden Markov Models (HMM) Lammers

et al. (2020a,b); Bowles and Rattray (2021), which necessitated an extensive understanding

of those methods to implement the comparison.

Regarding figure construction, I designed and constructed figures 5, 6, and 7. Figure 1, 2, 9,

and 10 were collaboratively worked on by Rachel Topno and myself.
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ABSTRACT 

Monitoring transcription in living cells gives access 

to the dynamics of this complex fundamental pro- 

cess. It reveals that transcription is discontinuous, 

whereby active periods (bursts) are separated by one 

or several types of inactive periods of distinct life- 

times. Ho we ver, decoding temporal fluctuations aris- 

ing from live imaging and inferring the distinct tran- 

scriptional steps eliciting them is a challenge. We 

present BurstDECONV, a novel statistical inference 

method that deconvolves signal traces into individ- 

ual transcription initiation events. We use the dis- 

tribution of waiting times between successive poly- 

merase initiation events to identify mechanistic fea- 

tures of transcription such as the number of rate- 

limiting steps and their kinetics. Comparison of our 

method to alternative methods emphasizes its ad- 

vantages in terms of precision and flexibility. Unique 

f eatures suc h as the direct determination of the num- 

ber of promoter states and the simultaneous analy- 

sis of several potential transcription models make 

BurstDECONV an ideal analytic framework for live 

cell transcription imaging experiments. Using sim- 

ulated realistic data, we found that our method is 

r ob ust with regar ds to noise or suboptimal experi- 

mental designs. To show its generality, we applied it 

to different biological contexts such as Drosophila 

embryos or human cells. 

GRAPHICAL ABSTRACT 

INTRODUCTION 

The observation of transcription in li v e cells using meth- 
ods such as MS2 / MCP system ( 1 , 2 ) re v ealed that in most 
prokaryotic and eukaryotic cells, transcription is discontin- 
uous and undergoes alternati v e periods of activity and in- 
acti vity, gov erned by stochastic laws. This phenomenon was 
called transcriptional bursting ( 3–8 ). The underlying mech- 
anisms are complex because, even at the steady state, pro- 
moters can adopt multiple acti v e and inacti v e states with 

distinct timescales and transition schemes, which modulate 
the variability of e xpression le v els in single cells in non- 
trivial ways ( 9–12 ). Hence, it is necessary to infer these 
states and timescales from observations. The results of such 

infer ence ar e important as they provide insights into the 
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molecular mechanisms underlying promoter dynamics and 

transcriptional regulation. 
Transcriptional bursting with multiple acti v e and inacti v e 

promoter states can be modeled using Finite-State Markov 
Models (FSMM) defined by a set of promoter states and 

by the rates of stochastic transitions between these states 
( 13 ). The simplest FSMM, the r andom telegr aph model, 
has two states and explains the alternation of transcrip- 
tionally acti v e and inacti v e periods observ ed in transcrip- 
tional outputs ( 14 ). Commonly used to describe the burst- 
ing of prokaryote and less complex eukaryote promoters 
( 6 , 15 , 16 ), this model fails to explain more complex eukary- 
ote transcription mechanisms, as we and others have re- 
cently shown using li v e imaging data of human cell lines and 

Drosophila embryos ( 17–20 ). In this case, bursting models 
involving more than two states are required ( 21 , 22 ). 

We must emphasize that the identification of models and 

rates describing the observed transcription dynamics is not 
merel y a phenomenolo gical description. Indeed, this gi v es 
direct access to key regulatory mechanisms at the molec- 
ular le v el. A variety of perturbation e xperiments hav e in- 
dica ted tha t the sta tes in the kinetic models correspond to 

well defined biochemical states of the promoter, and specific 
chroma tin fea tures and binding profiles of gi v en transcrip- 
tion factors (e.g. assembled pre-initiation complex PIC, 
or T AT A Binding Protein-bound, or nucleosome occupied 

promoter; ( 7 , 16 , 23–25 )). Furthermor e, r ecent advances in 

cryo-electr on micr oscopy, as well as single molecule ge- 
nomic methods ( 26 ) hav e re v ealed that promoters can be 
found in a multitude of molecular states as they undergo 

transcription initiation or early elongation ( 27–31 ). How- 
e v er, it is often difficult to figure out from molecular experi- 
ments which state is rate-limiting, and this is a key question 

as the rate-limiting steps are likely points of regulation. Li v e 
cell transcription imaging fills this gap, and robust methods 
to infer promoter dynamics from such data are thus essen- 
tial for understanding the basic mechanisms of transcrip- 
tional control. 

In order to decode single cell transcriptional traces, we 
de v eloped BurstDECONV, a deconvolution based method 

for reconstructing FSMMs from li v e transcription imaging 
using RNA tagging. An ov ervie w of this method is pre- 
sented in Figure 1 . BurstDECONV first decomposes sin- 
gle cell MS2 / MCP li v e imaging data into individual tran- 
scription initiation temporal e v ents (Figure 1 C). This in- 
formation is model agnostic and r epr esents a compr ehen- 
si v e spatio-temporal map of transcription that can be used 

for multiple studies: identifying multiple temporal and spa- 
tial scales and kinetic parameters, testing the synchronic- 
ity or the correlation of transcription sites, detecting extrin- 
sic noise e v ents, and performing model selection and infer- 
ence ( 19 , 20 ). In a second step, BurstDECONV computes 
the survival function characterizing the distribution of wait- 
ing times between successi v e polymerase initiation e v ents 
(Figure 1 D). Finall y, m ultie xponential parametric survi val 
models are inferred and mapped to FSMM kinetic pro- 
moter models. The number of exponentials r equir ed to fit 
the survival functions corresponds to the number of pro- 
moter states in the model, and this facilitates model com- 
parison and selection (Figures 1 D and 3 ). BurstDECONV 

has also been successfull y a pplied to extracting transition 

r ate par ameters from real data ( 19 , 20 ) in human cells and 

Drosophila embryos. Importantly, this method re v ealed an 

alternati v e model of promoter pausing, described as facul- 
tati v e pausing, which could not be characterized by other 
li v e- or fixed-sample approaches. 
We have performed a comparative benchmarking 

in which BurstDECONV was tested along with auto- 
correlation ( 32 , 33 ) and Hidden Markov Model (HMM) 
( 34–36 ) methods, two other a pproaches previousl y em- 
ployed for analysing transcriptional bursting da ta. W hen- 
e v er comparison was possible, we found that the parameter 
reconstruction by BurstDECONV is significantly more 
accurate than by all other methods. Moreover, our method 

is precise for wide ranges of values of kinetic parameters 
of transcription processes. By combining short and long 
movies, we are able to quantify processes with timescales 
from seconds to days. This extremely wide dynamic range 
was not accessible with the previous quantitative live cell 
transcription imaging approaches. 
Thus BurstDECONV proves to be a very effective tool 

for analysing li v e cell transcription, paving the way to ex- 
citing discoveries in the field of transcriptional control. For 
a wide usage, we provide Matlab and Python implementa- 
tions of our method, and a user-friendl y gra phical interface 
tha t fits da ta to a variety of two and three state promoter 
models. 

MATERIALS AND METHODS 

Short, high resolution movie deconvolution 

The MS2 signal from one transcription site is modeled as: 

x( t) = 

N pol 
∑ 

i= 1 

x pol ( t − t i ) , (1) 

where x pol is the signal from one polymerase and t i are the 
successi v e initiation times. 

The initiation times are discretised t i = n i δ, n i ∈ N , 1 ≤
i ≤ N pol , where � = D min / V pol , with D min a minimal inter- 
polymerase distance (in bp) and V pol the polymerase 
speed (in bp / s) that we assume constant. The entire se- 
quence of initiation times is then coded as a fixed size bi- 
nary string B = ( b 1 , . . . , b N max ) , b n i = 1 , b j �= n i = 0 , 1 ≤ i ≤
N pol } , where N max = T / �, T is the movie length. 
If x cal ( t ) is the observed signal, calibrated in polymerase 

numbers, we find B and thus t i by least-squares regression 

using a genetic algorithm GA and the objecti v e function: 

O 1 ( B) = 

N f rames 
∑ 

k= 1 

( x( k� ; B) − x cal ( k� )) 2 , (2) 

where � is the movie time resolution and N frames is the num- 
ber of frames, T = N frames � . 

The GA optimization follows four steps: estimating the 
amount of polymer ases, gener ating an initial population, 
a ppl ying the genetic algorithm and the final local optimiza- 
tion. We estimate the number of polymerases N pol as the ra- 
tio of integral intensities of the experimental signal and of 
the single polymerase signal. The resulting rough estima- 
tion is used to accelerate next steps. Then we pr epar e an 
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Figure 1. Ov ervie w of the li v e cell transcription imaging pipeline. ( A ) Wor kflow of the pipeline. ( B ) Movies are segmented to e xtract single cell signals. ( C ) 
For each single cell we compute the sequence of polymerase positions. ( D ) Single cell data is used to compute the survival function and identify parameters 
of transcriptional bursting models. 
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initial population of polymerase positions. Starting with a 
binary string B with N max ’0’s, we randomly pick N pol po- 
sitions and change them into ’1’s. After the preparation of 
the initial population, we use the genetic algorithm (MAT- 
LAB built-in function ga or a modified Python function 

pygad.GA, depending on the implementation) to optimize 
the objecti v e function. At each step, the genetic algorithm 

solver randomly selects a sub-population of parental indi- 
viduals from which it produces the next generation by re- 
combination, crossover and mutation. Over successive gen- 
era tions, the popula tion keeps the best genera ted solutions 
and ‘e volv es’ towar ds an optimal solution. The local op- 
timization further decreases the objecti v e function by dis- 
placing the polymerase positions a few steps to the right or 
to the left. 

After optimization, the residuals x ( k � ; B optimal ) −
x cal ( k � ) for all the transcription sites in the same movie are 
used for estimating the noise in the signal. We systematically 
find that noise is heteroscedastic with a variance depending 
non-linearly on the signal amplitude. We use cubic polyno- 
mial r egr ession to approximate the dependence of the noise 
variance on the signal: 

σ 2 = b 3 x 
3 + b 2 x 

2 + b 1 x + b 0 . (3) 

The waiting times � i = t i + 1 − t i , defined as intervals be- 
tween successi v e initiation e v ents coming from all the tran- 
scription sites in the movie, are considered as realizations 
of the same random variable � . The survival function is de- 
fined as 

S( t) = P [ τ > t ] , (4) 

and estimated (non-parametrically) using the Kaplan- 
Meyer method ( 37 ) from the pooled series coming from all 
the transcription sites in the same movie. 

Space dependent analysis can also be performed, by pool- 
ing the transcription sites region-wise (a prior spatial seg- 
mentation is needed). 

We model the survival function using the multi- 
exponential family 

S( t; A , λ) = 

n exp 
∑ 

i= 1 

A i exp ( λi t) , (5) 

where 
∑ n exp 

i= 1 A i = 1 , �i < 0, 1 ≤ i ≤ n exp . 
The parametric estimate of the survival function is ob- 

tained by least squar e r egr ession with an objecti v e function 

that combines linear and logarithmic scales: 

O 2 ( A , λ) = 
α
n 

∑ n 
i= 1 ( S( t i ; A , λ) − S KM ( t i )) 

2 + 

+ 
1 −α
n 

∑ n 
i= 1 ( log ( S( t i ; A , λ)) − log ( S KM ( t i ))) 

2 (6) 

where S ( t ) is defined by ( 4 ), S KM ( t ) is the non-parametric 
estimate of the survival function, 0 ≤ � ≤ 1 is a weight rep- 
resenting the relati v e importance of the linear scale com- 
pared to the logarithmic scale in the estimate of the survival 
function. 

The use of linear and logarithmic scales was motivated by 
the fact that short timescales responsible of the large initial 
drop in the survival function are well captured by the linear 
scale, whereas longer timescales responsible for the smaller 

decrease in the tail of the survival function are well captured 

by the logarithmic scale. 
The multi-exponential least-squares regression is per- 

f ormed f or se v eral values of the number of exponentials 
n exp . The selection of the number of exponentials is based 

on three criteria: the optimal value of O 2 , the Kolmogorov– 
Smirnov test using the optimal S( t i ; A , λ) as r efer ence distri- 
bution and the uncertainty of the parameters A , λ obtained 

by considering optimal and close to optimal solutions 
(Figure 5 ). 

Combining two movies 

The second version of the method uses two movies. The 
short high resolution movie is processed exactly as in the 
first method, resulting in the survival function S 1 ( t ). The 
transcription site signals from the long low resolution movie 
ar e thr esholded. The sub-thr eshold intervals ar e used to 

estimate a survival function S 2 ( t ). Given that S 1 ( t ) misses 
waiting times longer than the short movie length T and 

that S 2 ( t ) misses waiting times shorter than T min (estimated 

as the sum of the long movie resolution and the single 
polymerase signal duration), an interpretation of these two 

survival functions in terms of conditional probabilities is 
appropriate: 

S 1 ( t) = P [ τ > t | τ < T ] , 

S 2 ( t) = P [ τ > t | τ > T min ] . (7) 

Using the total probability theorem we obtain the multiple 
time scale survival function 

S( t) = 

{

(1 − p s ) S 1 ( t) + p s , t < T 
p l S 2 ( t) , t > T min 

(8) 

where p s = P [ τ < T ] and p l = P [ τ > T min ] . 
p l is estimated using the formula (see ( 19 )): 

p l = 
N i nacti ve 

N i nacti ve + N active 

= 

= 
N i nacti ve 

N i nacti ve + 
P active (1 −S( T min )) 

−T min S( T min ) + 
∫ T min 
0 S( u ) du 

, (9) 

where N inactive is the number sub-threshold intervals (re- 
solv ed and countab le), N active is the number of waiting times 
inside over-threshold intervals (not resolved), P active is the 
probability to be over threshold (estimated as the time frac- 
tion from total that is over threshold) in the long movie sig- 
nals; for this estimate we use S ( t ) ≈ S 1 ( t ) for t < T min . 
p s is optimised to minimize the gap between the short 

time and long time survival function branches in ( 8 ). The 
estimate of the gap uses interpolation and is possible only if 
there is an overlap between S 1 ( t ) and S 2 ( t ). 

The multi-exponential parametric estimate of the sur- 
vival function is now performed using the multiple time 
scale survival function ( 8 ). 

Rate parameter identifiability 

Both versions (short movie and short-long movie) of our 
method end with the identification of the FSMM rate 
parameters. This identification is possible symbolically, 
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using analytical formulas that relate the multi-exponential 
parameters A , λ to the rate parameters. 

For the sake of completeness we introduce, in the simpli- 
fied case of the r andom telegr aph model, the ma thema tical 
objects needed for solving this problem. Some solutions for 
FSMM with 2, 3, and 4 states can be found in ( 19 ). The al- 
gorithmic solution for an arbitrary number of states will be 
provided in a separate publication. 
Let us denote by 1 and 2 the states OFF and ON of 

the random telegraph model, respecti v ely. In or der to study 
transcription initiation we add to the model a third state 3 
r epr esenting the initiation e v ent. The e xtended three states 
FSMM is defined by the transition rate matrix Q whose 
elements are the transition rates between the states of this 
model. For instance, the matrix element Q 12 r epr esents the 
tr ansition r ate from OFF to ON , which is k + . Furthermore, 
we ar e inter ested in the waiting time to initiation, so we de- 
cide to stop the FSMM whene v er we reach the state 3, which 

means that all the elements on the last row of Q are zero. 
The elements of the transition ra te ma trix sum to zero on 

any row, ther efor e 

Q = 

( 
−k + k + 0 
k − −( k − + k ini ) k ini 
0 0 0 

) 

The vector 

X = 

( 
P [ M( t) = 1 | M(0) = 2 ] 
P [ M( t) = 2 | M(0) = 2 ] 
P [ M( t) = 3 | M(0) = 2 ] ) 

) 

, 

where M ( t ) is the state of the FSMM at the time t satisfies 
the master equation: 

d X 

dt 
= Q 

T X , X (0) = 

( 
0 
1 
0 

) 

, (10) 

where Q 
T stands for the transpose of Q . 

Eq. ( 10 ) is equivalent to 

(

˙ X 1 

˙ X 2 

)

= ˜ Q 

(

X 1 

X 2 

)

, (11) 

˙ X 3 = k ini X 2 , (12) 

where 

˜ Q = 

(

−k + k −

k + −( k − + k ini ) 

)

. 

The waiting time w between successi v e initiation e v ents 
r epr esents the first return time in the state 3 after starting in 

the state 3 (this is equivalent to starting in 2 because after 
initiation the promoter is immediately freed and gets to the 
ON state). The survival function is then S( t) = P [ w > t ] = 

1 − P [ M( t) = 3 | M(0) = 2 ] = 1 − X 3 ( t) , which shows that 
one can compute the survival function by solving the linear 
system of ODEs ( 11 ) with the initial conditions from ( 10 ). 
Interestingly, for constant parameters, the distribution of w 

does not change in time (it is the same during transient and 

stead y sta te gene expression). In other words, the sequence 
of initiation e v ents is a renewal process. 

The solution of ( 11 ) reads 
(

X 1 

X 2 

)

= C 1 

(

α1 

1 

)

exp ( λ1 t) + C 2 

(

α2 

1 

)

exp ( λ2 t) , (13) 

X 3 = A 1 (1 − exp ( λ1 t)) + A 2 (1 − exp ( λ2 t)) , (14) 

where 

(

α1 

1 

)

, 

(

α2 

1 

)

ar e eigenvectors and �1 , �2 ar e eigen- 

values of the matrix ˜ Q , and C 1 , C 2 are the solutions of the 
system 

C 1 α1 + C 2 α2 = 0 , 

C 1 + C 2 = 1 . (15) 

Furthermore, 

S( t) = A 1 exp ( λ1 t) + A 2 exp ( λ2 t) . (16) 

From ( 14 ) and ( 12 ) 

A 1 = −k ini C 1 /λ1 , A 2 = −k ini C 2 /λ2 . (17) 

Eqs. ( 16 ), ( 15 ) and ( 17 ) provide the solution of the direct 
problem that consists in computing the survival function 

parameters gi v en the tr ansition r ate par ameters. The inverse 
problem consists in computing the rate parameters k + , k −, 
k ini gi v en the independent survival function parameters A 1 , 
�1 , �2 . The rate parameters are identifiable if and only if the 
inv erse prob lem is well posed, i.e. it has a unique solution. 

The inv erse prob lem for the random telegraph model cor- 
responds to solving the system 

λ1 + λ2 = −( k + + k − + k ini ) , (18) 

λ1 λ2 = k ini k 
+ , (19) 

A 1 λ1 + A 2 λ2 = −k ini . (20) 

Eqs. ( 18 ) and ( 19 ) are the Vieta’s formulas, resulting from 

the fact that �1 , �2 are the solutions of the characteristic 
equation of the matrix ˜ Q . Eq. ( 20 ) follows from ( 15 ) and 

( 17 ). 
For the random telegraph model, the solution of the in- 

v erse prob lem is unique and the tr ansition r ate par ameters 
ar e expr essed in terms of symmetric rational functions in 

the variables �1 , �2 , A 1 , A 2 , i.e. ratios of polynomials invari- 
ant with respect to permutations of these variables. More 
precisely, 

k ini = −S 1 , 

k − = ( S 1 − L 1 ) S 1 /L 2 , 

k + = −L 2 /S 1 (21) 

where S 1 = A 1 �1 + A 2 �2 , L 1 = �1 + �2 , L 2 = �1 �2 , are sym- 
metric polynomials. 

More generally, one can show that whene v er the inverse 
problem has a unique solution, this can be written in terms 
of symmetric polynomials. Of course, the inverse problem 

can also have no solutions, or have an infinity of solutions. 
The question of model and parameter identifiability can 

be decomposed into two steps. First, the survival function 

parameters are uncertain because they are obtained from 

data. Second, the inverse problem, consisting in identifying 
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the model and its kinetic parameters for the survival func- 
tion parameters can be not well posed and have infinitely 
many solutions. This source of uncertainty can be also ad- 
dressed using symbolic methods ( 19 ). There are se v eral sit- 
uations of symbolic non-identifiability / uncertainty: 

• Model non-identifibility / uncertainty. Model parameters 
are uniquely determined for each model, but different 
models gi v e e xactly the same survi val function with dif- 
ferent parameters (the case of models M 1 , M 2 , Fig- 
ure 3 C). 

• Parameter non-identifiability / uncertainty. Model kinetic 
parameters leading to the same survival function form 

smooth manifolds, meaning that some of them are free. 
Concurrentl y, m ulti-exponential parameters of the sur- 
vival function are constrained, meaning that there are less 
free parameters of the multi-e xponential survi val func- 
tion (the case of the model M 3 , Figure 3 C). 

In both cases of non-identifiability / uncertainty, more 
data is needed in order to directly identify one or se v eral 
parameters. We have implemented this strategy in ( 19 , 20 ) 
where, using chromatin immunoprecipitation or genetic 
perturbations of pausing, the parameter k + 

2 was shown to 

correspond to exit from proximal pausing, indicating that 
the model M 2 should be pr eferr ed to M 1 . 

Determining the polymerase dwell time from the signal auto- 
correlation 

The signal autocorrelation function is defined as R ( t , t 
′ 
) = 

Cov( x ( t ), x ( t 
′ 
)), where x ( t ) is the single site MS2 signal. For 

a stationary MS2 signal, this function depends only on � = 

t 
′ 
− t and factorizes as: 

R( τ ) = F ( τ ; k )( H ( τ + d) − 2 H ( τ ) + H ( τ − d)) , (22) 

where d is the dwell time, k contains all model parame- 
ters including the dwell time (for instance k = ( k + , k −, k ini , 
d ) for the random telegraph model), H ( x ) = −x �( − x ), 

θ ( x) = 

{

1 if x ≥ 0 
0 if x < 0 

is the Heaviside function (see ( 32 ) for 

a derivation). 
The determination of the dwell time results from fitting 

the theoretical model ( 22 ) to the empirical autocorrelation 

function resulting from data. The test of this method is il- 
lustrated in the Supplementary Table S1. 

It turns out from ( 22 ) that the autocorrelation function R 

depends strongly on d and only weakly on the other param- 
eters k . For this reason d is precise, whereas k is uncertain 

when estimated from R . 

RESULTS 

Principles and workflow 

The input data for our model are li v e imaging data of 
nascent transcription, with nascent RNAs labeled with a 
fluorescent tag. As test samples, we used MS2 / MCP data 
collected from either cultured human cells or Drosophila 
early embryos. This labelling method is bipartite, with an 

RNA containing MS2 repeats of various lengths, detected 

by an RNA binding protein, here MCP, fused to a fluores- 
cent protein (Figure 2 D). After li v e imaging, MS2 / MCP 

fluorescent signals of single transcription sites (temporal 
traces) are extracted through image analysis methods de- 
scribed in ( 18 , 20 ) that track each transcription site in 3D in 

order to extract the intensity of the MS2 signal over time. 
For each movie we produce an intensity matrix whose rows 
and columns r epr esent transcription sites and time, r espec- 
ti v ely (Figure 2 A). Because we wish to separate individual 
transcription initiation e v ents we use movies with high tem- 
poral resolutions (typically 3–4 s) and the sequence of tran- 
scription initiation e v ents is reconstructed independently 
for each transcription site (Figure 2 B, C). The MS2 / MCP 

fluorescent signals are calibrated to be expressed as poly- 
merase numbers. In order to decompose the signal ob- 
served from multiple polymerases (Figure 2 E) into initia- 
tion e v ents, we first consider the signal e xpected from a 
single polymerase, schematized in Figure 2 D. The single 
polymerase pattern is computed from n seq , n post , V pol and 

t a , r epr esenting the length in base pairs of the MS2 se- 
quence, the remaining length after the MS2 sequence un- 
til the polyA site, the polymerase elongation speed and the 
3’-end processing / polyadenylation time, respecti v ely. In this 
notation, the polymerase dwell time on the DNA is ( n seq 
+ n post ) / V pol + t a . In this model, we consider that a poly- 
merase, once initiated, will continue transcription until it 
reaches the 3’-end. The estima ted initia tion times are ob- 
tained by least squares regression using a global genetic al- 
gorithm, followed by local optimization (Figure 2 F). Multi- 
exponential parametric estimates of the survival function 

are then used to characterize the distribution of the wait- 
ing times between successi v e initiation e v ents for the entire 
population of sites (see Figure 2 G and Materials and Meth- 
ods). The multi-exponential r egr ession proposes one, two, 
or more exponentials. The number of exponentials corre- 
sponds to the number of states in the FSMM (Figure 3 ). 
Finally, comparison of the exponentials found by r egr ession 

to the analytic solutions of the master equation satisfied 

b y the surviv al function allows us to write explicit formu- 
las for FSSM parameters in terms of the r egr ession r esults 
(Figure 2 H). 

A fe w e xamples of FSMMs ar e r epr esented in Figur e 3 . 
The r andom telegr aph model (Figure 3 A) contains two 

states: the ON state corresponding to acti v e transcription, 
modeled by Poissonian initiation with constant initiation 

rate k ini ; and the inacti v e OFF state where no initiation 

e v ents are observed. As the two state random telegraph 

model is generally too simplistic to fully describe the com- 
plexity of the transcription process ( 18 , 38 , 39 ), we also en- 
visaged more complex models with three states, compris- 
ing two inacti v e OFF states (models M 1 , M 2 and M 3 ). In 

the model M 1 (Figure 3 C), an inacti v e promoter occupying 
the state OFF 2 can become acti v e (state ON) or switch to 

a deeper inacti v e state OFF 1 . Inacti v e states r epr esent var- 
ious molecular states of the promoter, such as chromatin 

states or assembly stages of the transcription pre-initiation 

complex (PIC). In the model M 2 (Figure 3 C), the second 

inacti v e state was interpreted as proximal pausing. This in- 
terpretation is based on the experimental manipulation of 
pausing (in cis or in tr ans ) tha t we performed with model 
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Figure 2. Ov ervie w of various steps of BurstDECONV. ( A ) Heatmap of the signal extracted from a high resolution movie. Each row r epr esents a transcrip- 
tion site intensity in time (x-axis). The colour bar depicts the number of nascent RNA. ( B ) Timeline chart r epr esenting the transcription initiation e v ents 
obtained for each corresponding transcription site intensity trace after performing deconvolution using the genetic algorithm. ( C ) Close up of the timeline 
chart. Each bar r epr esents a single e v ent; successi v e e v ents are separated by waiting times. ( D ) The RNA tagging construct and its corresponding signal 
generated from a single polymerase. The orange box labeled Pr r epr esents the promoter site where transcription initiation takes place. The MS2 sequence 
is located a few bases downstream of the promoter region. The signal profile is sho wn belo w the construct. ( E ) Intensity trace from one transcription site. 
( F ) Example of polymerase positions reconstructing the transcription site intensity trace in the last three generations of the genetic algorithm. The red 
trace is the intensity trace that is to be reconstructed. The black trace is the reconstructed signal from the predicted polymerase positions (r epr esented with 
b lue bars). ( G ) Survi val function estimated from the waiting times between the predicted polymerases. The dotted r ed curve r epr esents the Gr eenwood 
confidence interval of the survival function. We obtain both non-parametric survival function (depicted with red circles) by Kaplan-Meier method, and 
the parametric survival function by least square regression (depicted with the b lack curv e). The parametric survival function is a sum of N exponentials. 
( H ) The various coefficients of the parametric survival function are used to obtain the model parameters (switching rates between different states) through 
symbolic re v erse engineering. 
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Figure 3. Finite-State Markov Models of transcription dynamics. ( A ) Model depicting two promoter states, ON and OFF with the respecti v e transition 
rates. ( B ) The theoretical survival function corrresponding to the two-state exponential model has two timescales. The two separated timescales can be 
distinguished as two distinct slopes, piecewise in the semi-logarithmic r epr esentation. ( C ) Thr ee-state models with different transition schemes. ( D ) The 
theoretical survival function of the three state models M 1 , M 2 is a sum of three exponentials with no constraints on the amplitudes A i . The three sepa- 
rated timescales can be distinguished as three distinct slopes, piecewise in the semi-logarithmic r epr esentation. These two models have the same type of 
survival function and can not be discriminated by BurstDECONV only. ( E ) The theoretical survival function of the three state model M 3 is a sum of three 
exponentials with constrains on the amplitudes A i and exponents �i . Only two free timescales can be distinguished in the semi-logarithmic r epr esentation. 
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paused promoters such as HIV-1 in human cells or de v el- 
opmental core promoters in Drosophila embryos ( 19 , 20 ). In 

the model M 2 the transition from ON to PAUSE is stochas- 
tic, ther efor e pausing is facultati v e. This is at odds with 

the traditional obligatory pausing model M 3 (Figure 3 C) 
in which the pausing occurs after initiation and systemat- 
ically pre v ents elongation, as usually depicted in the liter- 
ature ( 40 ). The model M 3 predicts a special type of sur- 
vival function whose multi-exponential parameters are con- 
strained by an additional relationship (see Figure 3 E and 

( 19 )). 
The inv erse prob lem consisting in computing the model 

kinetic parameters from the survival function parameters 
( A i , �i ), 1 ≤ i ≤ n , is well posed when it has a unique solu- 
tion for all survival function parameters satisfying the con- 
straints λi < 0 , 1 ≤ i ≤ n, 

∑ n 
i= 1 A i = 1 . This is the case for 

the random telegraph model, for the models M 1 , M 2 , for a 
family of models of arbitrary size discussed in ( 19 ), but not 
for the model M 3 . For M 3 , the survival function parame- 
ters are constrained by one bilinear equation in A i and �i 

(see Materials and Methods and Figure 3 ); furthermore, in 

this case the inverse problem has infinitely many solutions, 
that depend on one free parameter. 

Artificial data shows the robustness of BurstDECONV 

In order to benchmark the method we use a collection 

of artificially generated datasets. These datasets consist of 
MS2 signals from N transcription sites. The models and 

corresponding parameter sets are gi v en in Table 1 , and 

they are chosen to mimic a variety of real biological situ- 
ations. Indeed, the parameter sets simulate observations of 
wild type and mutated snail (D2,D3,D5,D7,D9) or Krup- 
pel (D1,D4,D8) Drosophila promoters studied in ( 20 ), or 
from HIV-1 promoters inserted in Hela reporter cell line in 

various configurations (notably with and without the viral 
transactiva tor Ta t; D12–14) studied in ( 19 ). We have added 

a few more parameter sets corresponding to the wild-type 
and mutant human EEF1A promoters inserted in human 

cell lines (D6;D10–11). These data cover a large range of ex- 
pression le v els, and correspond to promoters having two or 
three rate-limiting steps, and being mostl y, or onl y episodi- 
cally, acti v e. 

The artificial data was generated using the parameter 
estimates obtained with real data. Using the Gillespie al- 
gorithm we generated N independent trajectories of the 
FSMM that provide the initiation e v ents ov er a time in- 
terval T corresponding to the movie length. Then, we use 
the single polymerase patterns to compute the MS2 sig- 
nal. The single polymerase patterns correspond to 24xMS2 
and 128xMS2 constructions in Drosophila and in human 

cell lines, respecti v ely (see ( 18–20 )). For mor e r ealism, we 
add noise to this signal. In analogy to real data, we use 
Gaussian heteroscedastic noise (see ( 19 ) and Material and 

Methods). 
In order to evaluate the accuracy of the parameter 

reconstruction we use the logarithmic error defined as 
|lo g 10 ( k r / k true )|, w her e k r , k true ar e the r econstructed param- 
eter and their true value, respecti v ely. Errors were consid- 
ered unacceptable if they correspond to one order of mag- 
nitude, i.e. if the logarithmic error is larger than one. 

Table 1. FSMM parameters used to generate the artificial datasets. Fur- 

thermore, the MS2 sequence and elongation rate parameters were n seq = 

1292 bp (24 ×MS2), n post = 4526 bp , V pol = 45 bp × s −1 for D1–5 and 

D7–9, n seq = 5800 bp (128 ×MS2), n post = 8300 bp, V pol = 67 bp × s −1 

for D6 and D10–14. D1–5 and D7–9 parameters come from the study of 

Drosophila promoters in ( 20 ). D12–14 is based on estimates of HIV-1 tran- 

scription bursting in human cells studied in ( 19 ). D6 and D10–11 come 

from estimates of bursting from wild-type and mutated EEF1A promoters 

inserted in human cell lines 

Dataset / Ref. Parameters 

2 states k + [s −1 ] k −[s −1 ] k ini [s 
−1 ] 

D1 ( 20 ) 0.02036 0.00150 0.11432 
D2 ( 20 ) 0.01117 0.00593 0.07637 
D3 ( 20 ) 0.01189 0.01430 0.07745 
D4 ( 20 ) 0.02439 0.00144 0.13397 
D5 ( 20 ) 0.04169 0.00414 0.11277 
D6 0.00484 0.00025 0.113 

3 states M 2 k + 1 [ s 
−1 ] k −1 [ s 

−1 ] k + 2 [ s 
−1 ] k −2 [ s 

−1 ] k ini [ s 
−1 ] 

D7 ( 20 ) 0.01426 0.00339 0.06553 0.05751 0.17102 
D8 ( 20 ) 0.00661 0.00013 0.05772 0.01054 0.13201 

D9 ( 20 ) 0.00332 5.3 × 10 −5 0.05804 0.00586 0.13119 

D10 0.0001 2.3 × 10 −5 0.00091 0.00024 0.019 

D11 0.00023 3.2 × 10 −5 0.0011 0.00019 0.018 

D12 ( 19 ) 0.0015 4.9 × 10 −5 0.01 0.0043 0.17 
D13 ( 19 ) 0.00015 0.00031 0.0012 0.0028 0.1 

D14 ( 19 ) 6 × 10 −5 0.00035 0.00089 0.003 0.063 

BurstDECONV combines short high resolution with long low 

r esolution mo vies to co ver widely distributed timescales 

Transcription bursting is a complex phenomenon involving 
processes with multiple timescales distributed over many or- 
ders of magnitudes ( 8 , 18 ). The movie length sets the upper 
bound of the timescales of processes that can be identified 

using li v e cell RNA imaging data. A short movie may fail 
to detect slow processes that involve long waiting times. In 

order to test this we have used models that have timescales 
ranging from 1s to 10 4 s. Deconvolution of a short (20 min) 
signal (Figure 4 B) results in mediocre parameter recon- 
struction (Figure 4 F) and as expected, errors were larger 
for smaller kinetic parameters (large timescales). In order 
to illustrate this effect we have used the dataset D14 that 
includes very long waiting times (very small values of the 
parameters k + 

1 and k + 
2 ). 

Due to bleaching of the signal, obtaining long movies (in 

the h scale) while imaging with a high temporal resolution 

of few seconds is extremely challenging. 
Instead, we designed a version of BurstDECONV that 

combines short, high resolution movies, and long, low reso- 
lution movies. The first step consists in deconvolution of the 
short high-resolution movies and computation of their sur- 
vival function. The second step processes the long movies, 
which last typically 10 h with a temporal resolution of 3 
min. In this case, acti v e and inacti v e periods are defined di- 
rectly by considering the parts of the MS2 signal that are 
above and below a thr eshold, r espectively, with the thresh- 
old corresponding to the brightness of 2–3 RNAs (Fig- 
ure 4 C). By thresholding, we miss the short waiting times 
between transcription e v ents that occur during acti v e peri- 
ods, and we thus count only the long waiting times corre- 
sponding to inacti v e periods (i.e. waiting times greater than 
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Figure 4. Combining short and long movies. ( A ) Simulated long duration signal using the three-state model M 2 and high tempor al resolution, par ameters 
corresponding to dataset D14. The timeline with black markers r epr esent polymerase start time positions. The transcription site signal is r epr esented in 
blue, using short movie high temporal resolution. The x-axis major tick marks in black (every 1200 seconds) r epr esent the duration of a high resolution 
short movie (1 stack e v ery 3 s for 20 min). The minor ticks in red represent 3 min marks, i.e. the resolution of a long duration movie (1 stack e v ery 3 min). 
( B ) Simulated low resolution short movie using the model M 2 . Blue bars represent polymerase positions found by GA after deconvolution (blow-up start 
of the signal from A ). ( C ) Low resolution long movie with thresholding to extract off periods or waiting times. ( D ) Histogram of length of waiting times 
obtained from short movies (in blue) and long movies (in orange). ( E ) Matched Survival function of the long (green) and short movie (red) with overlap 
in the middle. ( F ) Accuracy of parameter reconstruction of the model M 2 for the parameter sets D12–14 in Table 1 using only a short movie and a short + 

long movie. ( G ) Average logarithmic error of the parameter reconstruction of the model M 2 for the parameter sets D12–14 in Table 1 using a short movie 
(20 min e v ery 3 s) combined or not with a long movie (10 h e v ery 3 min). ( H ) Long and short movie survival functions and their overlap for different 
lengths and resolutions of the short movie. ( I ) Average logarithmic error of the parameter reconstruction of the model M 2 for the parameter sets D12–14 
in Table 1 for different durations and resolutions of the short movie. 
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the dwell time of a polymerase, defined as the total time 
length of the signal generated by a single polymerase). The 
distribution of the long waiting times overlaps that of short 
waiting times obtained from the short movies (Figure 4 D). 
This overlap permits us to reconstruct a multiscale survival 
function that covers many orders of magnitude in time (see 
Figure 4 E and ( 19 )). The multiscale survival function is then 

used for multi-exponential r egr ession and provides the ki- 
netic parameters of the model. The combination of the two 

movie types permits a good reconstruction of these param- 
eters (Figure 4 G). 

The length of the short movie is critical for ensuring 
the overlap of the short and long timescale survival func- 
tions and an accurate parameter r econstruction. Inter est- 
ingly, longer short movie with lower temporal resolution (60 
min length with frames e v ery 9 s, instead of e v ery 3s for 20 
min) can ensure a better reconstruction of the model pa- 
rameters (Figures 4 H, I), e v en with initiation rates ( k ini ) in 

the range of 3 s. This provides useful guidelines for the ex- 
perimental design and imaging conditions. 

Thus, BurstDECONV allows to uncover processes with a 
remar kab le distribution of timescales ranging from seconds 
to days. 

BurstDeconv determines the number of states of the kinetic 
promoter model 

A key question when analyzing li v e cell transcription imag- 
ing experiments, is the choice of the model used to fit the 
data. Instead of arbitrarily employing the simple random 

telegraph promoter model, our procedure uses the multi- 
exponential fit of the waiting time data to determine the 
number of promoter sta tes tha t should be considered. We 
recall that, except for special cases when the spectrum of 

the matrix ˜ Q is degenerate, the number of states in the tran- 
scriptional bursting model is equal to the number of expo- 
nentials n exp in the multi-exponential fit. 

In order to compare models with different n exp we use sev- 
eral indicators for the goodness of fit (Figure 5 A). The ex- 
perimental estimate of the survival function by the Kaplan– 
Meyer method provides a confidence interval based on 

Greenwood’s formula ( 20 ). A first accuracy test consists 
in checking that the optimal parametric estimate of the 
survival function lies within this confidence interval. The 
Kolmogoro v–Smirno v (KS) test and the optimal value of 
the objecti v e function O 2 (the mean squared de viation; see 
Material and Methods for a definition) provide alternati v e 
measures of the quantitati v e goodness of fit. The Green- 
wood’s confidence interval and KS methods do not take 
into account errors resulting from the imperfect join of the 
short and long movie survival functions. Ther efor e, the only 
goodness of fit measure when one also uses long movies is 
the value of the objecti v e function O 2 . 

The goodness of fit systematically increases with n exp and 

one would like to know when to stop. The stopping crite- 
ria can be based on parsimony (Figure 5 A): choose the less 
complex model (smallest n exp ) whose goodness of fit does 
not differ significantly from the next more complex one. An 

alternati v e strategy can use cross-validation. We illustrate 
cross-v alidation b y splitting the artificial data in a train- 
ing and a validation subset. Both training error and vali- 

dation error decrease with n exp . Howe v er, their difference 
(the validation gap) has a minimum. The optimal n exp corre- 
sponds to training and validation errors that are as close as 
possible, i.e. corresponding to the minimal validation gap. 
A large validation gap indicates either underfitting (when 

both training and validation errors are large) or overfitting 
(Figure 5 B). 
Cross-validation is usually difficult to set in practice when 

the number of available cells is not large enough. In this case 
we estimate overfitting by parametric uncertainty. Indeed, 
an ov erly comple x model can fit data equally well for dif- 
ferent values of its parameters. We use optimal and close to 

optimal solutions to define uncertainty intervals that con- 
tain the parameters leading to a close to optimal fit. We 
then gradually increase n exp until the goodness of fit (train- 
ing error) becomes sufficiently small while the uncertainty 
parametric intervals are not large (Figure 5 A). 

Alternati v e model selection procedures, based on hierar- 
chical Bayesian learning have been proposed for obtaining 
the parametric survival function and the number of expo- 
nentials (chapter 5 of ( 41 )). Their practical implementation 

will be tested in future work. 

BurstDECONV is robust against error and suboptimal ex- 
perimental designs 

Robustness against changes in calibration. In this method 

and in any quantitati v e method based on li v e cell transcrip- 
tion imaging, the polymerase loading rate ( k ini ) can be de- 
termined only if the signal intensity is expressed in units of 
full-length transcripts. 

The calibration is performed by dividing the transcrip- 
tion site signal intensity by the calibration factor that is 
defined as the contribution to intensity of a single RNA 

molecule. This factor can be computed in different ways. In 

order to calibrate fluorescent signals from li v e Drosophila 
embryo imaging, we used single-molecule hybridization ex- 
periments (smFISH) as described in ( 20 ). In human cell 
lines, we collected right after the end of the movie one 3D 

stack –– termed calibration stack –– with increased laser in- 
tensity, w hich similarl y allowed reliable detection and quan- 
tification of the brightness of individual RNA molecules 
( 18 , 19 ). 
We illustrate the importance of the calibration factor by 

testing the effect of altering it in artificial data (Figure 6 ). 
Decreasing the calibration factor corresponds to underes- 
timating the contribution of one RNA to the signal and 

corresponds to more polymerases to model the same sig- 
nal (Figure 6 A). This also has an influence on the survival 
function, because more polymerases mean shorter waiting 
times between successi v e initiation e v ents (Figure 6 B). In- 
creasing the calibration factor leads to decreased estimates 
of all kinetic parameters (Figure 6 C). As expected, the poly- 
mer ase initiation r ate (par ameter k ini in the random tele- 
graph model) scales like the inverse of the calibration fac- 
tor (Figure 6 C). The effect of the calibration factor on 

the switching parameters ( k + and k − in the random tele- 
graph model) is asymmetric. It is weaker when the cali- 
bration factor is less than optimal and larger for calibra- 
tion factor larger than optimal (Figure 6 E). In other words 
overestimating the one polymerase signal leads to larger 
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Figure 5. Selection of the number of exponentials in multi-exponential survival models. ( A ) The number of exponentials n exp in the multi-exponential 
survival model is first selected using the Greenwood confidence interval for the Kaplan-Meyer non-parametric estimator. One verifies that the optimal 
parametric estimate is included in the confidence interval of the non-parametric estimate, for increasing n exp starting with n exp = 1. The selected n exp value 
is the first one that satisfies this condition. If the result is inconclusi v e (bor derline), we e v aluate the training error b y using the least-square error or the 
Kolmogoro v–Smirno v test, and the overfitting by using the width of the parametric uncertainty intervals. The selected n exp is the first one that has similar 
training error and lower parametric uncertainty than n exp + 1. ( B ) Cross-validation. The dataset (set of nuclei) obtained from a two-state ground truth 
model (dataset D6) is split into a training and validation subsets. Then the model capacity is increased by increasing n exp . Both training and testing errors 
decrease with n exp but the difference between the two (the cross validation gap) has a minimum at the ground truth. The cross-validation can be used for 
selection when the number of samples (nuclei) is large enough. 
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Figure 6. Testing the effect of a change in the calibration factor. ( A ) Simulated signal for a two-state model, dataset D1 in Table 1 , for different values of the 
calibration factor. The cyan timeline bars indicate the start time positions. The simulated transcription site signal is r epr esented in r ed. The r econstructed 
signal (after deconvolution) is r epr esented in black. For the ground truth, the number of simulated polymerases is 52 and the calibration factor is one. 
( B ) Survival functions reconstructed for different values of the calibration factor (two-state model, dataset D1 in Table 1 ). ( C ) Reconstructed parameter 
values for different calibration factors (two-state model, dataset D1 in Table 1 ). ( D ) Nonparametric survival function compared to parametric 2- and 
3-exponential functions for a calibration factor = 2. Doubling the calibration factor with respect to the ground truth can mistakenly lead to a change in 
the model selection from two (ground truth, falsified by the confidence interval criterion) to three states. ( E ) Average logarithmic parameter reconstruction 
error for various datasets and calibration factors. 
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reconstruction errors than underestimating it. A possible 
explanation of this effect is that increasing the calibration 

factor reduces the apparent number of initiation e v ents 
which renders the identification of the switching periods less 
reliab le. In or der to illustra te these ef fects we have used the 
dataset D1. This dataset (together with D4 that is very sim- 
ilar) proved to be the most sensiti v e to calibration, as in this 
case a twofold increase of the calibration factor with respect 
to the optimal value leads to selecting a three states instead 

of the ground truth two states model, see Figure 6 D. This 
dataset corresponds to a highly acti v e promoter as k − and 

k + are small and large, respecti v ely. 

Robustness against changes in polymerase speed and dwell 
time. In our method, the polymerase speed is considered 

to be known. Changing this parameter is roughly equiva- 
lent to changing the polymerase dwell time and has effects 
on the number of polymerases (and loading rate parameter) 
opposed to changing the calibration. 

Robustness against changes in time resolution. A low reso- 
lution mo vie pro vides poor r epr esentations of the MS2 in- 
tensity (Figure 7 A). The deconvolution algorithm tends to 

interpret local drops in the MS2 signal as an OFF state. 
Howe v er, these drops and the corresponding OFF states 
may be missed for very low resolutions (such as 131.3 s in 

Figure 7 A). Missing OFF states lead to a larger number of 
predicted polymerase positions (Figure 7 B), steeper sur- 
vival functions (Figure 7 C) and errors mostly in the ON 

to OFF tr ansition r ates (par ameter k − in Figure 7 D). The 
shorter timescales, corresponding to the parameters k + , k ini 
are less affected. The critical resolution producing large er- 
rors in the number of polymerases, survival function and ki- 
netic parameters is close to the polymerase dwell time. We 
compared the results obtained by our procedure on artificial 
datasets resampled with various temporal resolutions and 

found that the method is robust and tolerates resolutions 
(11–20 s) much lower than the ones currently employed (3– 
3.9 s). Thus, there is not significant gain when imaging ev- 
ery 3–4 s compared to imaging e v ery 11–20 s. This again 

provides important guidelines to design optimal imaging 
conditions. 

Robustness against noise in the data. In order to simu- 
late a noise that resembles real experimental data, we an- 
alyzed the variance of the residuals resulting from the least- 
squares fitting. We have found that residuals are normally 
distributed with a variance increasing with the le v el of the 
predicted signal, which means that the experimental noise 
is heteroscedastic. A thir d or der polynomial fitting was 
enough for approximating this dependence (see Materials 
and Methods). We thus have added Gaussian noise to the 
artificial data, whose variance has the same polynomial de- 
pendence on the mean as the experimental data. We have 
found that e v en for a noise amplitude multiplied by four 
with respect to the experimental values, BurstDECONV is 
able to reconstruct the parameter values used for the simu- 
lation (Figure 8 ). The accuracy is very good for experimen- 
tal noise amplitudes. To some extent, the noise in the sig- 
nal is averaged by the least-squares optimization step and 

ther efor e no noise subtraction or estimation is needed for 

the parametric model reconstruction in BurstDECONV. In 

order to illustrate these effects we have used the datasets 
D12–14 because they have multiple, well separated waiting 
times, which allow us to test the effect of noise on different 
timescales. 

Robustness against the detection limit. It is very common 

in li v e cell imaging to have a background noise signal that 
sets a detection limit. To r ecr ea te this ef fect, we have added 

a supplementary component to the noise, which is indepen- 
dent of the MS2 signal. We tested different amplitudes of 
this basal noise corresponding to one, two or four molecules 
of RNA, respecti v ely. The effect was tested on the datasets 
12–14 as these include long waiting times. 

The r esults ar e shown in the Supplementary Figur e S1. 
The error induced by the background noise is small (smaller 
than one in base 10 logarithmic scale) for the parameters k + 

1 , 

k −1 , k ini and for all the tested noise values. For the datasets 

13, 14 the parameters k + 
2 and k −2 are accurate for small noise, 

but can be inaccurate for a large background noise. How- 
e v er, reconstruction of parameters of the dataset 12 is par- 
ticularl y robust: the lo garithmic error is smaller than one 
for all parameters and noise values. 
It is reasonable to hypothesize that highly acti v e promot- 

ers with high transcription site intensities are less affected 

by the RNA detection limit because they are above the de- 
tection threshold most of the time. This is indeed what we 
see as dataset 12 (known str ong pr omoter) showed lower 
reconstruction errors as compared to the other datasets 13 
and 14 (weak promoters). 

Benchmark of BurstDECONV against state-of-the-art 
methods 

We have compared BurstDECONV to the two main existing 
methods generally employed in quantitati v e transcriptional 
bursting, namely auto-correlation ( 33 ) and Hidden Markov 
Model (HMM) methods ( 34 , 36 ). 

The auto-correlation method ( 32 , 33 , 42 ) uses the auto- 
correlation function of the single transcription site signal 
as a model-agnostic r epr esentation of the li v e cell tran- 
scription imaging data. Kinetic parameter inference can be 
performed by fitting theor etical auto-corr elation functions 
to the empirical auto-correlation function obtained from 

the time series data. Theoretical auto-correlation function 

models are available for the r andom telegr aph model ( 32 , 33 ) 
but also for a three state model (yet different from our mod- 
els M 1-3 ) ( 33 ). 

The HMM method ( 34 ) is based on a fixed choice of a 
mechanistic model. The model is inferr ed dir ectly from data 
by the method of maximum lik elihood. Lik e in our models, 
in the HMM model it is supposed that the promoter can 

be successi v ely in one of the acti v e or inacti v e states from a 
finite set of states. The transitions between states are mod- 
eled by a FSMM. Contrary to our models where the poly- 
merase loading is a Poissonian process, in the HMM model 
the same process is modeled by a Gaussian process ( 34 ). 
This approximation is accurate for high polymerase load- 
ing rates, but may fail for lower rates of initiation. More- 
ov er, in or der to compute the likelihood function, the HMM 

method computes a sum over all the possible states of the 
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Figure 7. Testing the effect of a change in the movie time resolution. ( A ) Simulated and reconstructed signal for different time resolutions, for a two state 
model, dataset D1 in Table 1 . The simulated transcription site signal is r epr esented in black. The same signal is resampled with dif ferent ra tes and then 
reconstructed by deconvolution. The reconstructed signal (after deconvolution and with different sampling rates) is r epr esented in r ed. ( B ) Histograms 
of the number of polymerases per analysed site for different time resolutions. ( C ) The reconstructed survival functions for different time resolutions. ( D ) 
Average logarithmic parametric reconstruction error for different time resolutions and kinetic parameters (dataset D1). ( E ) Average logarithmic error for 
dif ferent da tasets and time resolutions. 
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Figure 8. Robustness of the method against noise. All the simulations were performed using a 3-states model M 2 (Datasets D12-14 in Table 1 ). ( A ) Recon- 
structed signal (shown in red) obtained using deconvolution from noisy artificial data (shown in blue). The artificial signal without noise is shown in green. 
Noise x0 r epr esents the signal without any noise added to it and noise x1 is obtained by adding heteroscedastic noise to noise x0 equivalent to the one 
estimated from cultured human cells. noise x2 and x4 correspond to noise standard deviations two and four times larger, respecti v ely. ( B ) Parameters re- 
constructed by the pipeline vs the true parameters used to simulate the artificial data for model M 2 datasets D12–14 in Table 1 . ( C ) Logarithmic parametric 
reconstruction error D12–14 (left) Average uncertainty in the parameters (right). 

promoter at se v eral e xperimental time points spanning a 
memory interval equal to the dwell time. Thus, the compu- 
tation time of this method increases exponentially with the 
dwell time and with the time resolution. An approximate 
version of the HMM method ( 36 ) trades accuracy for speed 

by considering only promoter states of large enough prob- 
ability, for the computation of the likelihood function. 

Gi v en the difficulty of HMM in treating with high time 
resolutions, we have cross compared the kinetic parameter 
reconstruction error for se v eral methods, using various arti- 
ficial datasets and time resolutions. For the comparison we 
considered the two versions of BurstDECONV, the simple 
and the mixed one, using only short high resolution movies 
and both short and long movies, respecti v ely. All the other 

methods were tested on short movies as they do not allow 

to combine movies of different time scales. All the artifi- 
cial short movies last 26 min but their time resolution varies 
from 3.9 to 39 s. The HMM method was used in two ver- 
sions: the ‘exact’ version implemented in ( 34 ) that explores 
the full state combinatorics of the promoter states and the 
‘burstInfer’ version implemented in ( 36 ) that explores a re- 
duced number of states. The auto-correlation method is rep- 
resented by its implementation in ( 33 ). This implementa- 
tion considers that the polymerase loading is deterministic 
with a known fixed rate (one polymerase e v ery six seconds 
pr ecisely, corr esponding to our parameter k ini = 0.166 s −1 ) 
and fits only the switching rates of the random telegraph 

model (corresponding to our parameters k + and k −). We 
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have also tested inferring sim ultaneousl y all the parame- 
ters of the random telegraph model together with the poly- 
merase dwell time using the auto-correlation method de- 
scribed in ( 32 ). In this case the parameters k + , k − and k ini 
can not be reliably reconstructed, but interestingly, we ob- 
tain stable estimates of the polymerase dwell time (see Ma- 
terials and Methods and Supplementary Table S1). 

The results of the method comparison in terms of accu- 
racy are shown in Figure 9 . They show that BurstDECONV 

is robust and can be applied to all the datasets and time res- 
olutions. Because of combinatorial issues described above, 
HMM method may fail in some cases (by memory overflow 

or execution timeout). 
Whene v er comparison was possible, for two-state 

datasets we found that the parameter reconstruction by 
BurstDECONV is significantly more accurate than by the 
other methods. 

Some three-state datasets (D9,12–14) have very small 
switching rates ( k + or k − or both). In this case, the preci- 
sion of BurstDECONV is limited by the length of the short 
movie. Then, the simple deconvolution method can gener- 
ate large errors and the ‘mixed’ version of BurstDECONV, 
that combines short and long movies, is needed. Interest- 
ingly, the HMM method seems to be slightly less sensiti v e 
to the same phenomenon. Although large, the estimation er- 
rors of HMM are smaller than those of the simple BurstDE- 
CONV, for datasets D13 and D14 (Figure 9 ). Howe v er, in 

such difficult cases, the ‘mixed’ version of BurstDECONV 

significantly supersedes in accuracy all the other methods. 

Testing BurstDECONV using an enriched collection of 
datasets 

The datasets of Table 1 span a large par ameter r ange but 
the parametric resolution is poor. In order to increase this 
r esolution, we generated mor e parameter sets by latin hy- 
percube sampling. 

We generated 40 more short movie synthetic datasets 
corresponding to two states models. The parameter val- 
ues where defined by latin hypercube sampling in linear (20 
datasets) and logarithmic (20 datasets) scales. 

We also set up 240 more datasets for three states mod- 
els. These correspond to 60 parameter sets obtained by latin 

hypercube sampling in linear (30 datasets) and logarithmic 
(30 datasets) scales. We doubled the number of parameter 
sets by including both M2 and M1 three state models with 

parameters corresponding to the same theoretical survival 
function. Finally, the three states datasets were produced 

in two versions, simple (short movie) and mixed (short and 

long movies). 
We have used BurstDECONV to reconstruct the param- 

eters of these extra 280 synthetic datasets that add to those 
alr eady pr esented in Table 1 . The parameter values for these 
datasets can be found in the Supplementary Table S2. Fig- 
ure 10 illustrates the result of these numerical experiments. 

The initia tion ra te parameter k ini is accurately recon- 
structed for all models and datasets (Figure 10 A and C). 
Indeed, this parameter scales inversely with the signal am- 
plitude and is robust with respect to signal sampling. The 
lack of robustness of k ini against calibration was illustrated 

in Figure 6 C. 

In contrast to k ini , the switching parameters can be in- 
accurately reconstructed using the simple version of Burst- 
DECONV. We have identified two main sources of error. 
First, the reconstruction error is large when the lifetimes of 
the ON and OFF sta tes are larger than the movie dura tion 

or, equivalentl y, w hen k + or k − are smaller than the inverse 
of the short movie length. This effect is illustrated in Fig- 
ure 10 A–D. Second, when the lifetime of one of the OFF 

states becomes comparable to the interval between succes- 
si v e initiation e v ents (1 / k ini ) there is parametric uncertainty, 
as a model with less states fits equally well in this case. This 
effect, leading to large errors when k + 

1 or k 
+ 
2 are large and 

close to k ini is illustrated in Figure 10 B, D, F. 
As expected, the use of the mixed version of Burst- 

DECONV (short and long movies) allows the reconstruc- 
tion of very small switching parameters, corresponding to 

timescales larger than the length of the short movie (see Fig- 
ure 10 E). By using the mixed version, the error due to large 
lifetimes of ON and OFF states can be avoided. 

DISCUSSION 

While the de v elopment of imaging-based methods to mon- 
itor transcription in li v e cells and animals boomed over 
the last 20 years, the analytical frame wor ks e xtracting 
quantitati v e information from transcriptional bursting re- 
mained limited. Hence promoter switching was often mod- 
eled using ad hoc burst definitions, or using two states ran- 
dom telegraph model and rarely envisaging more complex 
models ( 18–20 , 39 ). Two main methods, namely the auto- 
correlation and the Hidden Markov Model (HMM) meth- 
ods were employed in analysing transcriptional bursting 
data. Howe v er, there is no comparati v e benchmar king of 
the accuracy and robustness of these methods. 
Here we provide BurstDECONV, a novel signal decon- 

volution method able to retrieve single polymerase initia- 
tion e v ents from single cell transcription bursts and infer 
promoter states and their switching rates. We comparati v ely 
benchmark our method to the other two state of the art 
methods. 

Our method is robust with respect to polymerase speed, 
signal calibration, time resolution, movie duration, and 

noise in the signal. The method is precise for wide values 
of kinetic parameters of the transcription regulation pro- 
cesses. By combining short and long movies, we are able 
to quantify processes with timescales from seconds to days. 
This extremely wide dynamic range was not accessible with 

the pre vious quantitati v e li v e cell transcription imaging ap- 
proaches. 

Thus, our method and tools are of interest in applica- 
tions where a precise description of rate-limiting steps gov- 
erning transcription dynamics is important: zygotic genome 
activation in model organisms, various aspects of gene ex- 
pr ession r egulation in human cells and tissues in health 

and disease, various studies of stochastic gene expression 

in prokaryotes and eukaryotes. Beyond transcription stud- 
ies, they can be used for other applications where the signal 
can be deconvoluted into individual initiation e v ents, for in- 
stance in studies of translation. 

Another advantage of BurstDECONV resides in its abil- 
ity to directly bridge agnostic r epr esenta tions of da ta to 
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Figure 9. Parametric reconstruction accuracy of BurstDECONV vs. autocorrelation and HMM methods The bar plots on the left correspond to the 
parameter reconstruction errors for the four methods, BurstDECONV, cphmm, burstInfer (based on hmm) and Autocorrelation for datasets 1–5. These 
datasets correspond to a two state promoter model. The bar plots on the right depict the errors for BurstDECONV and for cphmm (datasets 7–9, 12–14 
(3-state models)). BurstDECONV mixed refers to the deconvolution method combining high and low resolution movies. The x-axis for the plots have 
different time resolution of the short movies and the y-axis, the average log error (base 10). BurstDECONV mixed used short movies of resolution 3 s and 
long movies of resolution 3 min. 
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Figure 10. Parametric reconstruction accuracy for an enriched collection of 297 synthetic da tasets. ( A ) Estima ted vs. true parameters for 45 datasets 
generated with two states models. ( B ) Error versus parameters (all 2-state datasets); the mean logarithmic error is large when k + or k − are small or when 
k + is close to k ini . ( C ) Estimated versus true parameters for three states models using the simple version of BurstDECONV. Only datasets with error < 1 
are shown (81 out of 126). ( D ) Error versus parameters (all 3-state datasets); similarly to 2-state models, the error is large for small k + i or k 

−
i , i ∈ { 1, 2 } , or 

when k + 1 or k 
+ 
2 is close to k ini . ( E ) Estimated versus true parameters for three states models using the mixed version of BurstDECONV. Only datasets with 

error < 1 are shown (97 out of 126). ( F ) Error versus parameters (all 3-state datasets); the error is large when either k + 1 or k 
+ 
2 is close to k ini . 
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kinetic parameters of discrete state models of transcrip- 
tion. This is not possible in the framework of the HMM 

method, where each model has to be fitted separately using 
a different likelihood function. The survival function used 

in BurstDECONV conveys different information than the 
auto-correlation function used in previous methods. This 
renders the two methods complementary. BurstDECONV 

can not determine the polymerase dwell time, but provides 
accura te estima tes of the transition rate parameters. The au- 
tocorrelation method can estimate the dwell time, but is im- 
precise on the transition rates. 

BurstDECONV can be extended to consider more com- 
plex transcriptional bursting models, with arbitrary num- 
ber of states and transition schemes, or with multiple non- 
resolvab le acti v e sites resulting, for instance, from sister 
chromatids. 

In its current setting our method considers that transcrip- 
tion sites are statistically equivalent. This assumption is 
valid when there is limited spatial and temporal heterogene- 
ity. Howe v er, a segmentation step could be easily added to 

the image analysis in order to select statistically equivalent 
sites in the case of spatial or temporal heterogeneity. This 
is the case in a m ulticellular organism, w her e gene expr es- 
sion is submitted to positional information like Drosophila 
patterning instructed by gradients of morphogens. 

The output of BurstDECONV is a set of promoter states 
and the transition rates between these states. The quan- 
titati v e frame wor k proposed in this study re v eals the key 
bottlenecks responsible for the promoter switching dynam- 
ics. Moreover, by informing on the timescale of each rate- 
limiting step, BurstDECONV provides a hint on the nature 
of these rate limiting steps. We foresee that with the de v elop- 
ment of novel perturbation methods (as for example opto- 
genetics), the molecular characterization of these steps will 
be more and more facilitated. 
In addition, our stochastic models of transcription dy- 

namics can be readily used to test mechanistic hypotheses. 
For example, by a ppl ying BurstDECONV to two biologi- 
cal systems, HIV-1 transcription in Hela cells and zygotic 
transcription in Drosophila embryos, we came to the con- 
clusion that a classical view of polymerase pausing may not 
be accurate. Indeed, a scenario where all polymerase would 

e xperience a discernab le paused sta te was not compa tible 
with our data. This analysis led us to propose a new view of 
pausing, a non-obligatory pausing model, where only a sub- 
set of polymerase would experience stable pausing, whereas 
other initiated polymerases would not be kinetically limited 

by such long pauses ( 19 , 20 ). Thus, monitoring transcription 

in li v e cells and employing rigorous analytical frame wor k, 
could in some cases affect our classical view of the tran- 
scription process, often raised from biochemical in vitro and 

static approaches. 

DA T A A V AILABILITY 

The artificial data as well as the code used for bench- 
marking the pipeline are available on Zenodo at 
https://zenodo.org/record/7438759 . BurstDECONV 

source code is available in both MATLAB and Python 

3 versions under 3-clause BSD open license. BurstDE- 
CONV is also available as a Graphical User Interface. 

The source codes are available through Github at 
https://github.com/oradules/BurstDECONV . For in- 
creased portability, we have created a Docker container 
for the Python notebook. Instructions for using this 
container can be found in the same Github reposi- 
tory. The GUI and the user manual are available on 

Zenodo at https://zenodo.org/record/7443044 . Burst- 
DECONV does not include the image analysis part of 
the pipeline. This can be performed with MS2-Quant 
https://bitbucket.org/muellerflorian/ms2 quant/src/master/ 
for cell line movies, segment-track https://github.com/ant- 
trullo/SegmentTrack v4.0 for Drosophila movies, or with 

any other equivalent software. 

SUPPLEMENT ARY DA T A 

Supplementary Data are available at NAR Online. 
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CHAPTER3

Inferring stochastic gene expression bursting mechanisms from

time-to-event data

3.1.0 Introduction

In Chapter 2 we have used phase-type distributions for inferring transcription regulation

mechanisms from live transcription imaging data Tantale et al. (2021); Pimmett et al. (2021).

However, in this Chapter we intend to elaborate the inverse problem method developed in

the previous section in order to find solutions for more complex models.

Many problems in biology, medicine, physics, chemistry, economy, actuarial science can

be modelled by using continuous time Markov chains Bharucha-Reid (1997). A common

dataset produced by such models comprises a sequence of states that denote the incidence

of specific events within the system. When all states within the model are observed, the

time until the occurrence of the next event follows the memoryless exponential distribution.

However, in many practical applications, not all the states of the model are observed. In this

case the time to the next event is no longer exponentially distributed.

A particular case is when only one state of the model can be observed. In this case the time
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to the next event distribution is a so-called phase-type distribution. Phase-type distributions

were introduced by Neuts Neuts (1975) and are defined as the distribution of the time to

absorbtion of a finite Markov chain when there is only a single absorbing state. For a sin-

gle observed state, computing the time-to-event distribution is equivalent to computing a

phase-type distribution (see Figure 3.1). Phase-type distributions have been used in various

domains such as queueing theory Ramaswami and Neuts (1980); Ramaswami and Lucan-

toni (1985), drug kinetics Faddy (1993), public health problems Fackrell (2009); Liquet et al.

(2012); Asanjarani et al. (2021); Stone et al. (2022). In spite of their importance for applica-

tions it is surprising how little is known about the general properties of phase-type distribu-

tions. Algorithmic calculations of phase-type distributions can be found in Asmussen and

Bladt (1996). For some general results and open questions one could also see O’Cinneide

(1999); Commault and Mocanu (2003); Bladt (2005).

In this paper we chose an inference perspective where we aim determining the Markov

chain from the phase-type distribution. This inverse problem has already been addressed

using methods based on maximum likelihood. In this approach, data likelihood is computed

for a chosen model and its maximization provide the optimal model parameters Asanjarani

et al. (2021); Stone et al. (2022). In contrast to this direct inference approach, here we de-

compose the inference problem into two parts. The first part consists in the regression of

parametric multi-exponential representations of the phase-like distributions. This part has

been developed in BurstDeconv and reviewed elsewhere Dufresne (2007) and will not be

developed here. The second part consists in solving symbolically the inverse problem con-

sisting in finding the Markov chain transition rate parameters from the parameters of the

multi-exponential distributions. This approach has several advantages. It allows us to com-

pute simultaneously all the Markov chain models, having different transition parameters

and diagrams, but exactly the same likelihood. It is thus a precious tool for analysing para-

metric and structural uncertainty in inference.

Although we chose to formulate our problem in the context of transcriptional bursting,

highly regarded in the gene expression research community, our approach can be applied

to other applications that involve phase-type distributions: modeling failure of systems and

components in reliability engineering, traffic flow characteristics in traffic engineering, opti-

mization of queueing systems and telecommunication networks, claim inter-arrival times in

insurance and actuarial science, survival times in epidemiology and medical research Aalen

(1995); Fackrell (2009); Buchholz et al. (2014).

The structure of this chapter is the following. In Section 3.2 we introduce the class of mod-

els used for transcription bursting and show that for this class of models the phase-type

distribution is multi-exponential. In Section 3.3 we introduce the symbolic inverse problem
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Figure 3.1: Phase-type distribution for a three state Markov chain model. 4 represents the
unique observed state. A typical dataset is represented by the moments when the state 4
is observed. One does not know what’s going on between two successive occurrences of
4 but can measure the time T3 separating them. The probability distribution of this time is
called phase-type distribution. The Markov model is represented by its transition diagram
(arcs connecting states) and by the transition rate parameters. It is considered that from 4
the chain returns to 3 instantly. For this reason, T3 is the first hitting time of 4 starting from
3. The timechart represents repeated observation of the state 4 for the same system. It could
be equivalently seen as a succession of replicas of a system that stops when it reaches the
state 4. The latter interpretation corresponds to the traditional definition of the phase-type
distribution.

consisting in finding the transition rate parameters of the model from the parameters of the

phase-type distribution. We show that the inverse problem consists in solving a system of

polynomial equations, symmetric in the phase-type distribution parameters. We also dis-

cuss solvable models, i.e. for which the inverse problem has a unique solution. In section

3.4 we discuss an example of solvable model with arbitrary number of states. In section 3.5

we use Thomas decomposition from computational algebra to solve the inverse problem.

3.2.0 Modeling transcription bursting

3.2.1 Biological considerations

Transcription is a cellular process resulting in RNA synthesis. It involves a DNA sequence

called promoter that binds the RNA polymerase (RNAP),the enzyme that synthesizes RNA.

Transcription needs several preparatory steps such as chromatin opening and formation of

transcription complexes needed for activation of the polymerase. Here we consider that

there is a small number of limiting steps that can be modeled as transition between discrete

states. We classify these states in three categories: productive ON states that can initiate

transcription, non-productive OFF states that can not initiate nor resume transcription, and

paused states PAUSE in which initiated transcription stops and can resume later or abort.

The promoter starts transcription in the productive state ON when it can trigger several

departures of RNAP molecules along DNA. The RNAP can eventually stop in PAUSE or

commit to irreversible elongation that we model by the state EL. Elongating polymerases
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Figure 3.2: All strongly ergodic models with N = 3. We show only those models that are not
related to one another by permutations of the states 1, . . . , N. All these models can generate
exactly the same phase-type distribution. Model M3 is symmetric and generates the same
phase-type distribution if its parameters are transformed by the permutation k1 ↔ k2, k3 ↔
k4 (the inverse problem has two solutions). Similarly, the inverse problem has two solutions
for M7 and M8, whereas the solution is unique for M1. Models M1, M7, M8, M3 are solvable
(the inverse problem has a unique or a finite number of solutions) and the model M6 is not
solvable (the inverse problem has infinitely many solutions). Models generating the same
phase-type distributions spend the same proportion of the total time in state 3. However,
they could be discriminated by the proportion of the total time spent in the states 1 and 2
(any comparison between M7,M8,M3) or by the lifetimes of the states 1 and 2 or by both
types of times (M1 compared to any other).

free the promoter that switches instantly to a productive or non-productive state.

Live transcription imaging allows the monitoring of transcription in real time and for each

transcription site. Using the tool BurstDeconv we can deconvolve the live imaging signal

and identify the time of each elongation event. This means that for each transcription site

we observe the sequence of EL states. The other states of the promoter are not observed.

In this paper we consider that EL can be reached only from an unique state that can be

either ON or PAUSE, and after reaching EL the promoter instantly switches to an unique

return state S, that can be either productive or non-productive. This is consistent with mod-

els without pause or models where pausing is obligatory after initiation. When pausing is

not obligatory it implies that pausing leads to systematic abortion. This important assump-

tion simplifies the problem for two, closely related reasons. First, because elongation is

instantly followed by the transition to the S state, therefore the observation of the elongation

is equivalent to the observation of the S state. Second, the times of successive observations

of elongations form a renewal process. For these reasons, the distribution of the waiting

time between successive elongation events is a phase-type distribution.

Moreover, we demonstrate that the inverse problem for phase-type distributions is well-

defined only when the productive and return states coincide, thereby ruling out the presence

of multiple ON states. Due to this, our paper does not address scenarios in which transcrip-

tion occurs simultaneously on duplicate DNA copies formed during recombination, a phe-
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nomenon referred to as sister chromatids. This specific scenario, which could be effectively

modeled using mixtures of phase-type distributions, will be addressed elsewhere.

3.2.2 Finite state continuous time Markov chain model

We model the promoter using a continuous time Markov chains with N+1 states M(t) ∈
{1, . . . , N + 1}. The first N states can be of the type ON, OFF, or PAUSE. A supplementary

state N + 1 designates EL, the event that we observe. For simplicity, we consider that N + 1

can only be reached from N. After N + 1 there is instantaneous transition to the state s ∈
[1, N].

The chain is defined by its generator Q, a (N + 1) × (N + 1) matrix such that Qij > 0

represents the probability per unit time to jump from the state Ai to the state Aj, j ̸= i, and

Qii = −∑j ̸=i Qij (zero row sum rule).

We are interested in the distribution of Ts, the first time to reach N + 1 starting from the state

s, 1 ≤ s ≤ N:

Ts = inf{t|t > 0, M(t) = N + 1, M(0) = s},

where M(t) is the state of the chain at time t.

Let us consider two models. In the model with return, once in N + 1, the Markov chain

returns to s instantly, QN+1,s = ∞ and then the chain starts again. Because the reset state

s is unique, the observation times in the model with return form a renewal process (the

inter-event times are positive, independent, identically distributed random variables Feller

(1966)). Because after each event, the model is instantaneously reset to s the inter-event time

is always distributed as Ts.

In the model with absorption, N + 1 is absorbing and QN+1,i = 0 for all i ̸= N + 1. In this case

Ts is the time to absorption starting from s.

The distribution of Ts is the same for the two models, with return and with absorption.

If several return states are possible, then the model with return is no longer a renewal pro-

cess. The distribution of the inter-event time depends on the return state and is no longer a

phase-type distribution.

Although the model with return describes the biological situation, for technical reasons, we

will use the model with absorption for computing the distribution of Ts.
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For example, with the absorption assumption, the generator of the model M3 represented in

the Figure 3.2 is

Q =









−k1 0 k1 0

0 −k3 k3 0

k2 k4 −(k2 + k4 + k5) k5

0 0 0 0









. (3.1)

For the calculation of the distribution of Ts it is convenient to introduce the state probabilities

Xi = P[M(t) = i|M(0) = s] , 1 ≤ i ≤ N + 1.

The variables Xi(t) satisfy the following system of linear differential equations (the master

equation) :
dX

dt
= QTX, (3.2)

with the initial conditions Xn(0) = δn,s, where δ is the Kronecker symbol and QT is the

transpose of the generator matrix Q.

Because the last column of QT is zero (N + 1 is absorbing), the variables X1, . . . , XN satisfy

an autonomous ODE system. Indeed, let Q̃ be the N × N matrix obtained by eliminating

the last line and the last column of QT. Then X̃ = (X1, . . . , XN) is the solution of

dX̃

dt
= Q̃X̃, (3.3)

with initial conditions Xi(0) = δi,s.

The remaining variable XN+1 satisfies

dXN+1

dt
= QN,N+1XN, (3.4)

with the initial condition XN+1(0) = 0.

Let us consider that the eigenvalues λi, 1 ≤ i ≤ N of the matrix Q̃ satisfy the following

non-degeneracy condition

λi ̸= λj, for all 1 ≤ i ̸= j ≤ N, and max
1≤i≤N

(λi) < 0. (3.5)

Remark 1. Using properties of solutions of (3.3) it can be shown that max1≤i≤N(λi) ≤ 0 is always

satisfied. Indeed, Xi(t), 1 ≤ i ≤ N are probabilities, therefore remain bounded for all t, which means
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that one can not have λi > 0 for some 1 ≤ i ≤ N. If some λi > 0, then there are solutions of (3.3)

that increase without bound when t increases. We will show later that strong connectedness of the

transition graph reduced to the vertices 1, . . . , N implies that none of the eigenvalues λi can be zero.

One should note that, unlike Q, Q̃T is not a continuous time Markov chain generator and does not

satisfy the zero row sum rule.

Considering that the condition (3.5) is satisfied, we have

X̃ =
N

∑
i=1

Ciuie
λit, XN+1 = QN,N+1

N

∑
i=1

Ciui,N

λi
(eλit − 1), (3.6)

where λi and ui = (ui1, . . . , ui,N)
T, i ∈ [1, N] are eigenvalues and eigenvectors of Q̃, respec-

tively.

Because N + 1 is absorbing, XN+1 = P[M(t) = N + 1|M(0) = s] = P[Ts ≤ t] is the cumula-

tive distribution function of the time Ts. We also define the survival function of Ts as follows

S(t) = P[Ts > t] = 1 − XN+1(t) =
N

∑
i=1

Aiexp(λit), (3.7)

where

Ai = −QN,N+1Ciui,N

λi
. (3.8)

The constants Ai are not independent. They satisfy

N

∑
i=1

Ai = 1, (3.9)

which follows from s(0) = 1.

This shows that in the non-degenerate case the distribution of the first hitting time Ts is

multi-exponentional with 2N − 1 independent parameters λ1, . . . , λN, A1, . . . , AN−1.

3.3.0 Inverse problem

The inverse problem consists in considering that the survival function and therefore the

parameters λ1, . . . , λN, A1, . . . , AN−1 are known. These can be inferred from data using least

squares or maximum likelihood regression.
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We want to find the transition rate parameters, which are the non-diagonal elements of the

matrix Q. We are interested in models where this problem could have a unique solution,

therefore the matrix Q has only 2N − 1 non-zero elements. We denote these transition rates

by the 2N − 1 dimensional vector k.

We show below that the inverse problem consists in solving 2N − 1 polynomial equations

for the transition rates k.

3.3.1 Vieta’s formulas

The eigenvalues λ1, . . . , λN are the roots of the the characteristic polynomial of Q̃, defined

as

P(λ) = det(Q̃ − λI) = (−1)NλN + aN−1(k)λ
N−1 + . . . + a1(k)λ + a0(k). (3.10)

The coefficients ai of the characteristic polynomial are polynomials with integer coefficients

on the transition rates k.

A first set of equations relating eigenvalues to the kinetic equations results from the Vieta’s

formulas

L1 =
N

∑
i=1

λi = (−1)N−1aN−1(k),

L2 = ∑
i<j

λiλj = (−1)N−2aN−2(k),

...

LN = λ1λ2 . . . λN = a0(k). (3.11)

3.3.2 Eigenvector equations

The amplitude parameters of the survival function A1, A2, . . . , AN occur in (3.8) together

with eigenvector components ui,N and solution coefficients Ci. We need to relate the latter

to transition rate parameters.

First, we need to solve the eigenvector equation

(Q̃ − λI)u = 0. (3.12)

From (3.12) it follows that the eigenvector components are rational functions of λ and k.
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We consider that the eigenvectors can be chosen of the form u(λ, k) =

(u1(λ, k), . . . , uN(λ, k)) with us(λ, k) = 1. In the subsection 3.3.4 we will see for which

models this choice is possible. It follows that

un(λ, k) =
bn(λ, k)

bs(λ, k)
, n ∈ [1, N]

where bn(λ, k) are polynomials. We also choose bs(λ, k) prime relatively to bi(λ, k), i ̸= s in

Z[k, λ].

The initial conditions satisfied by the variables Xi provide a linear system of equations for

the constants Ci:
N

∑
j=1

ui(λj, k)Cj = δi,s, i ∈ [1, N]. (3.13)

Because of the non-degeneracy condition (3.5), if u(λ, k) is not identically zero, then

u(λi, k), 1 ≤ i ≤ N are independent. Therefore (3.13) has a unique solution Ci(λ, k), i ∈
[1, N].

From (3.8) we obtain N − 1 equations for the transition rates k:

k2N−1uN(λi, k)Ci(λ, k) = −Aiλi, i ∈ [1, N − 1]. (3.14)

The solution of the inverse problem is the solution of the system formed by (3.11) and (3.14).

When this solution exists, the transition rates k can be expressed as functions of the survival

function parameters λi, Ai, 1 ≤ i ≤ N.

3.3.3 Symmetrized system

There is a difference between (3.11) and (3.14). (3.11) is entirely expressed using elementary

symmetric polynomials in λi, whereas there is no obvious symmetry in (3.14). We show here

that the system formed by (3.11) and (3.14) is equivalent to a system symmetrized in both

λi and Ai. The advantage of a symmetrized system over a non-symmetrized one is that it

handles simpler formulas, decreasing the computational burden of the symbolic tools.

To this aim we use the following identities ( due to Jacobi-Trudi Fulton and Harris (1991))
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that are valid for any distinct N numbers λi, 1 ≤ i ≤ N

N

∑
i=1

λk
i

N

∏
j=1
j ̸=i

1
λi − λj

=







0, if k < N − 1

1, if k = N − 1

hk−N+1(λ1, . . . , λN), if k > N − 1

, (3.15)

where hk−N+1 is the complete symmetric polynomial of degree k − N + 1 in N variables.

More precisely

h1 =
N

∑
i=1

λi,

...

hm = ∑
1≤i1≤···≤im≤N

λi1λi2 . . . λim ,

... (3.16)

In order to relate (3.14) and (3.15) we first related the coefficients Ci to eigenvalues. This can

be done using Cramer’s rule.

Denote by Di ∈ Z[λ, k], 1 ≤ i ≤ N the determinant of (N − 1)× (N − 1) submatrix of the

matrix λI − Q̃ obtained by deleting its s-th row and i-th column.

Lemma 2. Assume that λi ̸= λj, 1 ≤ i ̸= j ≤ N, Ds(λj) ̸= 0 and that us(λj) = 1, 1 ≤ j ≤ N.

Then

Cj =
Ds(λj)

∏1≤l ̸=j≤N(λj − λl)
, 1 ≤ j ≤ N, (3.17)

where Cj form the unique solution of the system

∑
1≤j≤N

us(λj)Cj = 1,

∑
1≤j≤N

ui(λj)Cj = 0, 1 ≤ i ̸= s ≤ N.

Proof. If Ds(λj) ̸= 0 then, using Cramer’s rule u(λj) = (D1(λj), . . . , DN(λj))/Ds(λj).

Therefore, it holds

∑
1≤j≤N

us(λj)Cj = ∑
1≤j≤N

Ds(λj)

∏1≤l ̸=j≤N(λj − λl)
= 1,
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while

∑
1≤j≤N

ui(λj)Cj = ∑
1≤j≤N

Di(λj)

∏1≤l ̸=j≤N(λj − λl)
= 0, 1 ≤ i ̸= s ≤ N

(where Cj, 1 ≤ j ≤ N are taken from (3.17)) due to (3.15). □

Using (3.14) and (3.17) it follows

Sk =
N

∑
i=1

Aiλ
k
i = −k2N−1

N

∑
i=1

λk−1
i

DN(λi)

∏1≤j ̸=i≤N(λi − λj)
. (3.18)

For their definition, it follows that degλ(Ds) = N − 1 and the (leading) coefficient of Ds at

the monomial λN−1 equals 1, while degλ(Di) ≤ N − 2, 1 ≤ i ̸= s ≤ N. We therefore have:

Ds(λ) =: λN−1 + cN−2(k)λ
N−2 + . . . + c1(k)λ + c0(k), (3.19)

DN(λ) =: dN−2(k)λ
N−2 + dN−3(k)λ

N−3 + . . . + d1(k)λ + d0(k), if N ̸= s. (3.20)

We can distinguish two cases:

s = N

In this case, after elongation the promoter returns to the same state. It is the case when

the last state N is ON, that can initiate transcription without pausing (this may happen

with pausing also, when pausing is facultative) and after initiation the promoter can recruit

another polymerase immediately.

Then, according to (3.20) DN has degree N − 1. Using (3.18) and (3.15) we find the following

N − 1 symmetrized equations:

S1 =
N

∑
i=1

Aiλi = −k2N−1,

S2 =
N

∑
i=1

Aiλ
2
i = −k2N−1(h1(λ) + cN−2(k)),

...

SN−1 =
N

∑
i=1

Aiλ
N−1
i = −k2N−1(hN−2(λ) + cN−2(k)hN−3(λ) + . . . + c2(k)h1(λ) + c1(k)).

(3.21)
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The symmetrized system is made of (3.11),(3.21) and is used to compute the transition rates k

as functions of the symmetric polynomials L1, . . . , LN, S1, . . . , SN−1. We should note that the

complete symmetric polynomials h1(λ), . . . , hN−2(λ) can be expressed using the elementary

symmetric polynomials L1, . . . , LN−2: h1 = L1, h2 = L2
1 − L2, . . ..

s < N

In this case, after elongation the promoter goes to another state. It is the case when the last

state N is PAUSE, that is followed by a ON state. Other situations are also compatible with

this case.

Then, according to (3.20) DN has degree at most N − 2. Using (3.18) and (3.15) it follows

S1 =
N

∑
i=1

Aiλi = 0. (3.22)

This means that the inverse problem is not well posed in this case. The 2N − 1 parameters

λ1, . . . , λN, A1, . . . , AN−1 are no longer independent and they do not determine k uniquely.

Although we can no longer obtain N − 1 independent symmetrized equations we can obtain

a smaller number of equations

S2 = −k2N−1dN−2(k),

S3 = −k2N−1(dN−2(k)h1(λ) + dN−3(k)),
...

Sk = −k2N−1(dN−2(k)hk−2(λ) + dN−3(k)hk−3(λ) + . . . + dN−k),
...

SN−1 = −k2N−1(dN−2(k)hN−3(λ) + . . . + d2(k)h1(λ) + d1(k)). (3.23)

In this case the symmetrized system made of (3.11),(3.23) can be used to compute the tran-

sition rates k as functions of the symmetric polynomials L1, . . . , LN, S2, . . . , SN−1 and of one

or several indeterminate transition rates.

3.3.4 Solvable models

Different Markov chain models are distinguished by their transition graph defined as the

directed graph G = (V, A) with vertices V = {1, . . . , N + 1} and arcs A = {(i, j), i ̸=
j, Qij ̸= 0}.

This graph satisfies some conditions related to the underlying biological process:
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C1. N + 1 is reachable only from N and

C2. from N + 1 there is only one outgoing arc, towards s, where 1 ≤ s ≤ N.

Conditions C1 and C2 where used for setting the problem and writing the equations defining

the inverse problem.

We would like to know for which models satisfying C1 and C2 the inverse problem has a

unique solution, eventually up to transformation by discrete symmetries.

Definition 3. We say that a model is solvable if the following solutions are satisfied:

i) The equation (Q̃ − λI)u = 0 has solutions u(λ, k) = (u1(λ, k), . . . , uN(λ, k)) with us(λ, k)

not identically zero where s is the return state.

ii) The model has 2N − 1 transition rate parameters.

iii) The system made by the equations (3.11) and (3.14) or equivalently the system made by the

equations (3.11) and (3.21) has unique solutions up to transformations by discrete symmetries,

on a open domain of dimension 2N − 1.

It is very difficult to obtain general sufficient conditions for solvability but we can state a

number of necessary conditions.

The following proposition follows from the subsection 3.3.3.

Proposition 4. A solvable model necessarily satisfies s = N.

For a directed graph G and its vertices v, w we denote v ⪯ w if there is a path in G from v to

w. We say that v, w are equivalent is v ⪯ w, w ⪯ v. If G consists of a single equivalence class

then we call G strongly connected. A Markov chain model is called strongly ergodic if and only

if its transition graph is strongly connected.

The following condition is another necessary condition of solvability.

Proposition 5. A solvable model is strongly ergodic.
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Proof. We will prove that a model with a non strongly connected transition graph contra-

dicts i).

Denote by G the graph of the Markov chain. Suppose the G is not ergodic. There exists its

vertex v such that not for every vertex w of G it holds w ⪯ v. Reorder the vertices of G in

such a way that first are listed all r vertices w for which w ⪯ v holds, and v is listed as the

last one among them (thus, v is numbered by r in the ordering). The rest of N − r vertices

are listed in an arbitrary order. The resulting matrix of the Markov chain we still denote by

Q̃ (slightly abusing the notations).

Making use of the notations from Lemma 2 we claim that the polynomial Dr+1 = 0 vanishes

identically. Indeed, in the matrix obtained from Q̃ by means of deleting its r-th row and

r + 1-th column, all the entries in places (i, j) where i ≥ r + 1, j ≤ r vanish, which justifies

the claim.

On the other hand degλ(Dr) = N − 1, and the coefficient of Dr at λN−1 equals 1 (cf. the

proof of Lemma 2). Hence Dr(λt) ̸= 0 for a suitable 1 ≤ t ≤ N. Therefore ur+1(λt) =

(Dr+1/Dr)(λt) = 0 (see again the proof of Lemma 2). □

Reciprocally, we have

Proposition 6. A strongly ergodic model satisfying the conditions C1, C2 and s = N satisfies the

condition i) of Definition 3, in other words the symmetrized equations (3.21) can be written down for

such models.

Proof. If s = N then DN ∈ Z[λ, k] is the determinant of (N − 1)× (N − 1) submatrix of the

matrix λI − Q̃ obtained by deleting its N-th row and N-th column. This is a polynomial in

λ whose leading term is λN−1, therefore not identically zero. In order to prove i) it is then

enough to follow the proof of Lemma 2.

Strongly ergodic models also satisfy the following property that has been used in condition

(3.5) and is needed for writing the solution (3.6).

Proposition 7. All strongly ergodic models satisfy max1≤i≤N λi < 0, where λi are the eigenvalues

of Q̃.

Proof. Suppose that some λi = 0. Then the corresponding eigenvector satisfies dX i
dt =
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Q̃X i = 0. Using the condition C1 we find that
d
(

∑
N
j=1 Xij

)

dt = −QN,N+1XiN. It follows that

XiN = 0. Also, X i is a steady state distribution of the Markov chain having the generator

Q̃
T in which QN,N+1 is set to zero. This chain is strongly ergodic. Or, any strongly ergodic

Markov chain has a unique steady state distribution in which all states have non-zero prob-

abilities, which contradicts XiN = 0. □

Figure 3.2 shows all strongly ergodic models with N = 3 satisfying the conditions C1 and

C2.

3.4.0 Solution of the inverse problem for the un-

branched chain model

In this section we present an example of solvable model with an arbitrary number of states.

For such model we propose a method to compute the solutions of the inverse problem.

Consider now a Markov chain with N + 1 states located on a line and reversibly connected

one to next such that

Q̃n+1,n = k+n , Q̃n,n+1 = k−n , 1 ≤ n < N, Q̃n,n = −k+n − k−n−1, 1 ≤ n < N, Q̃N,N = −kN − k−N−1.

This model is a generalization, of arbitrary length N, of the model M1 represented in Fig-

ure 3.2 that has N = 3.

We have an algebraic map

f := fN : C
2N−1 → C

2N−1, f (k+1 , . . . , k+N−1, k−1 , . . . , k−N−1, kN) = (A1, . . . , AN−1, λ1, . . . , λN).

(3.24)

The goal of this section is to prove that f is invertible and that its inverse is a rational func-

tion. In other words, we will show that the unbranched chain model is solvable for any

N.

Note that (3.13), (3.14) imply that

C1 + · · ·+ CN = A1 + · · ·+ AN = 1, kN = − ∑
1≤j≤N

Ajλj. (3.25)

Denote a vector C := (C1, . . . , CN)
T.
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For each eigenvalue λ of the matrix Q̃ it holds

k+N−1uN−1(λ) = kN + k−N−1 +λ, k+n un(λ) = (k+n+1 + k−n +λ)un+1(λ)− k−n+1un+2(λ), 0 ≤ n ≤ N − 2.

This provides by recursion on N − n a rational function gn with rational coefficients such

that

k+n un(λ) = gn(k
+
n+1, . . . , k+N−1, k−n , . . . , k−N−1, kN, λ). (3.26)

Moreover, the denominator of gn equals k+n+1 · · · k+N−1.

Consider N × N matrix U with the columns u(λ1), . . . , u(λN). Then for s ≥ 0 it holds

Q̃sUC = U · Diag(λs
1, . . . , λs

N)C = Q̃s(0, . . . , 0, 1)T (3.27)

where Diag(λs
1, . . . , λs

N) denotes a diagonal matrix.

The (N − s)-th coordinate of the middle vector in (3.27) equals

∑
1≤j≤N

uN−s(λj)λ
s
j(−Ajλj/kN). (3.28)

The same (N − s)-th coordinate of the right vector in (3.27) equals

k−N−s · · · k−N−1. (3.29)

Observe that the j-th coordinate of the right vector in (3.27) vanishes for 1 ≤ j < N − s.

Multiplying the both sides of (3.26) for n = N − s, λ = λj by λs
j(−Ajλj/kN) and summing

them up over 1 ≤ j ≤ N, we obtain that

k+N−sk
−
N−s · · · k−N−1 = GN−s,0(A1, . . . , AN−1, k+N−s+1, . . . , k+N−1, k−N−s, . . . , k−N−1, kN, λ1, . . . , λN)

(3.30)

for a suitable rational function GN−s,0 with rational coefficients and with a denominator

k+N−s+1 · · · k+N−1kN taking into account the equality of (3.28) and of (3.29). Summarizing, we

have established the following statement.

Lemma 8. For a suitable rational function GN−s with rational coefficients and with a denominator

k+N−s+1 · · · k+N−1k−N−s · · · k−N−1kN it holds

k+N−s = GN−s(A1, . . . , AN−1, k+N−s+1, . . . , k+N−1k−N−s, . . . , k−N−1, kN, λ1, . . . , λN).
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The (N − s + 1)-th coordinate of the middle vector in (3.27) equals

∑
1≤j≤N

uN−s+1(λj)λ
s
j(−Ajλj/kN). (3.31)

The same (N − s + 1)-th coordinate of the right vector in (3.27) equals

−k−N−s · · · k−N−1 + dN−s(k
+
N−s+1, . . . , k+N−1, k−N−s+1, . . . , k−N−1, kN) (3.32)

for an appropriate polynomial hN−s with integer coefficients.

Multiplying the both sides of (3.26) for n = N − s + 1, λ = λj by λs
j(−Ajλj/kN) and sum-

ming them up over 1 ≤ j ≤ N, we obtain that

−k+N−s+1k−N−s · · · k−N−1 + dN−s(k
+
N−s+1, . . . , k+N−1, k−N−s+1, . . . , k−N−1, kN) =

DN−s,0(A1, . . . , AN−1, k+N−s+2, . . . , k+N−1, k−N−s+1, . . . , k−N−1, kN, λ1, . . . , λN)

for a suitable rational function DN−s,0 with rational coefficients and with a denominator

k+N−s+2 · · · k+N−1kN taking into account the equality of (3.31) and of (3.32) (while the both

latter multiplied by k+N−s+1). Summarizing, we have established the following statement.

Lemma 9. For an appropriate rational function DN−s with rational coefficients and with a denomi-

nator k+N−s+1 · · · k+N−1k−N−s+1 · · · k−N−1kN it holds

k−N−s = DN−s(A1, . . . , AN−1, k+N−s+1, . . . , k+N−1, k−N−s+1, . . . , k−N−1, kN, λ1, . . . , λN).

Applying alternatingly Lemma 9 and Lemma 8 for s = 1, . . . , N − 1 consecutively, we con-

clude with the following main result of this section.

Theorem 10. One can produce rational functions F+
n , F−

n , 1 ≤ n ≤ N − 1 with rational coefficients

such that

k+n = F+
n (A1, . . . , AN−1, λ1, . . . , λN), k−n = F−

n (A1, . . . , AN−1, λ1, . . . , λN).

Remark 11. i) Together with (3.25) Theorem 10 assures the inverse rational map to f (see (3.24)) on

the open dense subset of C2N−1 determined by conditions k+1 · · · k+N−1 · k−1 · · · k−N−1 · kN ̸= 0 and

λi ̸= λj, 1 ≤ i < j ≤ N;
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ii) the proof of Theorem 10 provides an algorithm which produces explicitly rational functions F+
n , F−

n

by recursion on N − n.

Remark 12. In fact, for any model (not necessary, the unbranched chain model elaborated in this

section) one can consider a similar to (3.24) rational map. Thus, A1, . . . , AN−1, λ1, . . . , λN−1 are

rational functions in k+n , k−n , 1 ≤ n < N, kN. Therefore, there is a fields extension

C(A1, . . . , AN−1, λ1, . . . , λN−1) ⊂ C(k+1 , . . . , k+n−1, k−1 , . . . , k−n−1, kN).

It is known (see e.g. Shafarevich (1972), Ch. 1) that the degree of this extension equals the num-

ber of solutions in C2N−1 of the system of rational equations A1 = α1, . . . , AN−1 = αN−1, λ1 =

β1, . . . , λN = βN at a generic point (α1, . . . , αN−1, β1, . . . , βN) ∈ C2N−1. Recall that the de-

gree is defined as the dimension of the vector space C(k+1 , . . . , k+n−1, k−1 , . . . , k−n−1, kN) over the field

C(A1, . . . , AN−1, λ1, . . . , λN−1). The degree can be infinite. Theorem 10 states that for the un-

branched chain model the degree equals 1.

We conjecture that for all other models the degree is greater than 1.

3.5.0 Using the Thomas decomposition for solving

the inverse problem

Thomas decomposition is a computational algebra algorithm allowing to decompose sys-

tems of polynomial equations and inequations into simple systems whose solutions can be

more easily found by iteratively solving unvariate polynomial equations. We apply this

technique to compute the solutions of the inverse problem for all the strongly ergodic mod-

els with N = 3 and N = 4.

3.5.1 The Thomas Decomposition of an Algebraic System

In this section we introduce briefly the notion of the algebraic Thomas decomposition (see

the appendix of Lange-Hegermann et al. (2021) for a similar introduction). We will then

apply the algebraic Thomas decomposition in the subsequent sections to our symmetrized

systems to determine their solutions.

Let C[x] be a polynomial ring in n variables x = (x1, . . . , xn) over the complex numbers C.

An algebraic system S is defined as a finite set of polynomial equations and inequations,

that is as the set

S = {p1(x) = 0, . . . , pr(x) = 0, q1(x) ̸= 0, . . . , qs(x) ̸= 0} (3.33)
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with polynomials pi(x), qj(x) in C[x] and integers r, s ∈ N0. The solution set Sol(S) of

the algebraic system (3.33) is defined as the set of all x = (x1, . . . , xn) ∈ Cn satisfying the

equations and inequations of S , that is as

Sol(S) = {x ∈ C
n | pi(x) = 0, qj(x) ̸= 0 for all 1 ≤ i ≤ r and 1 ≤ j ≤ s}.

Geometrically, Sol(S) is the difference of the two varieties

{x ∈ C
n | p1(x) = 0, . . . , pr(x) = 0} and {x ∈ C

n | q1(x) · · · qs(x) = 0}

and so it is a locally Zariski closed subset of Cn.

In order to introduce the notion of an algebraic Thomas decomposition of a system S we

make the following definitions. On the variables x = (x1, . . . , xn) of our polynomial ring

C[x] we define a total ordering (sometimes also called a ranking) by setting xi < xj for i < j.

With respect to this ranking the leader ld(p(x)) of a non-constant polynomial p(x) is defined

as the greatest variable appearing in p(x). In case p(x) ∈ C is a constant polynomial, we set

ld(p(x)) = 1. If we consider every polynomial p(x) ∈ C[x] as a univariate polynomial in its

leader, say ld(p(x)) = xk, then the coefficients of p(x) as a polynomial in xk are polynomials

in C[x1, . . . , xk−1]. The coefficient of the highest power of ld(p(x)) in p(x) is called the initial

of p(x) which we denote by init(p(x)). The separant sep(p(x)) of a polynomial p(x) is

defined as the partial derivative of p(x) with respect to its leader.

Definition 13. Let S be the algebraic system of (3.33). Then S is called a simple algebraic system

with respect to a ranking, if the following conditions are satisfied:

1. The leaders of all equations and inequations are pairwise different, i.e. we have

card
(
{ld(p1(x)), . . . , ld(pr(x)), ld(q1(x)), . . . , ld(qs(x))} \ {1}

)
= r + s.

This property is called triangularity.

2. For every p(x) ∈ {p1(x), . . . , pr(x), q1(x), . . . , qs(x)} the equation init(p(x)) = 0 has no

solution in Sol(S). We call this property non-vanishing initials.

3. For every p(x) ∈ {p1(x), . . . , pr(x), q1(x), . . . , qs(x)} the equation sep(p(x)) = 0 has no

solution in Sol(S). This is called square-freeness.

The advantage of a simple algebraic system S is that one can obtain its solution set by it-
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eratively solving univariate polynomials. This is a consequence of the triangularity of a

simple algebraic system. Indeed, the triangularity implies that there is at most one equation

p(x) = 0 with leader x1 or at most one inequation q(x) ̸= 0 with leader x1. Note that p(x)

or respectively q(x) is a univariate polynomial in x1. The square-freeness implies that the

number of zeros in C of p(x) (respectively q(x)) is equal the degree of p(x) (respectively

q(x)). In case of the equation p(x) = 0, any root x1 ∈ C of p(x) can be chosen as the first

coordinate of a solution x of S . In case of the inequation q(x) ̸= 0, all elements of C ex-

cept for the roots of q(x) can here be chosen as the first coordinate of a solution. If there is

no equation or inequation with leader x1, then the first coordinate is free, that is x1 can be

chosen arbitrary in C. Now we make the first iteration step. Again by triangularity there

is at most one equation or inequation with leader x2. If there is an equation or inequation

with leader x2, then we substitute x1 for x1 in this equation or inequation and obtain so an

univariate polynomial in x2. Condition 2 of Definition 13 guarantees that the degree of the

so obtained polynomial is independent of the choice of x1 and the square-freeness implies

that the number of roots of this polynomial is equal to its degree. According to the three

possible cases, that is there is an equation, inequation or neither of them, we determine as

described above x2 ∈ C for the second coordinate of a solution of S . An iteration of this

process yields successively a solution x = (x1, . . . , xn) ∈ Cn of S . Moreover, any solution of

the simple algebraic system S can be obtained by this process.

Definition 14. A Thomas decomposition of an algebraic system S as in (3.33) consists of

finitely many simple algebraic systems S1, . . . ,Sm such that Sol(S) is the disjoint union of

Sol(S1), . . . , Sol(Sm).

It was proved by Thomas in Thomas (1962, 1937) that any algebraic system has a Thomas

decomposition which is in general not unique. A Thomas decomposition can be determined

algorithmically (see Bächler et al. (2012)) and there is an implementation in MAPLE. A de-

scription of the implementation can be found in Bächler and Lange-Hegermann (2008-2012);

Gerdt et al. (2019).

We will apply in the subsequent sections the Thomas decomposition to the symmetrized

systems. In other words we will use the MAPLE implementation to compute a Thomas

decomposition for them. To this end we need to define a ranking on the polynomial ring

C[k1, k2, k3, k4, k5, L1, L2, L3, S1, S2].

To simplify notation we collect the variables into k = (k1, k2, k3, k4, k5) and v =

(L1, L2, L3, S1, S2). Since we want to solve the symmetrized systems for the variables k, we

rank them always higher than the collection of variables v. Among the variables k we some-
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times change the ranking for the different symmetrized systems. This is done to minimize

the output of the Thomas decomposition and has no deeper meeting. The ranking of the

variables k > v implies that each simple algebraic system returned by the Thomas decom-

position yields solutions for the variables k which are only valid for solutions of the variables

v satisfying equation and inequation conditions in v over C.

3.5.2 A Thomas Decomposition for Model M1

The model studied here is a particular case of the one from Section 3.4 and Theorem 10. We

are going to determine the solutions of the algebraic system of equations

S =
{
− S1 = k5, −S2 = k5 (L1 + k1 + k2 + k3), L1 = −k1 − k2 − k3 − k4 − k5,

L2 = k1 k4 + k1 k5 + k2 k3 + k2 k5 + k3 k4 + k3 k5, L3 = −k2 k3 k5
}

.

To this end we compute with MAPLE an algebraic Thomas decomposition of S with respect

to the ranking

k1 > k3 > k2 > k4 > k5 > v.

MAPLE returns eleven simple systems S1, . . . ,S11. We will only compute here the solutions

in k for the first simple systems, since it the most generic one, meaning that the solutions are

valid for specializations of the variables v satisfying only inequations, i.e the solutions for k

are valid over an Zariski open subset of C5. The first simple system consists of the equations

and inequations

S1 =
{

L2
1 S3

1 S2 + L2
2 S3

1 + S1 S3
2 + L2

3 S1 + (−S2
1 S2

2 + S3
2 + (S3

1 S2 − S1 S2
2) L1

+(−S4
1 + S2

1 S2) L2 + (S3
1 − S1 S2) L3) k1 + (−2 S2

1 S2
2 + (−S4

1 − S2
1 S2) L2

+(S3
1 + S1 S2) L3) L1 + (S3

1 S2 − 2 L3 S2
1 + S1 S2

2) L2 + (S4
1 − 3 S2

1 S2) L3 = 0,

(L1 S1 S2 − L2 S2
1 + L3 S1 − S2

2) k3 + (−S2
1 + S2) L3 = 0,

−L1 S1 S2 + L2 S2
1 − L3 S1 + S2

2 + (S3
1 − S1 S2) k2 = 0, k4 S1 − S2

1 + S2 = 0,

k5 + S1 = 0, L1 S1 S2 − L2 S2
1 + L3 S1 − S2

2 ̸= 0, S3
1 − S1 S2 ̸= 0, S2 ̸= 0

}
.

One easily checks that the last three inequations do not involve any variable k. Thus the

inequations

L1 S1 S2 − L2 S2
1 + L3 S1 − S2

2 ̸= 0, S3
1 − S1 S2 ̸= 0, S2 ̸= 0 (3.34)

define the above described Zarisk open subset. Solving now successively the remaining

equations for the variables k (they are all linear in their respective leaders), we obtain the

Page 95



96
Chapter 3. Inferring stochastic gene expression bursting mechanisms from time-to-event

data

solutions

k1 =
−1

(−S2
1 S2

2 + S3
2 + (S3

1 S2 − S1 S2
2) L1 + (−S4

1 + S2
1 S2) L2 + (S3

1 − S1 S2) L3)

(L2
1 S3

1 S2 + L2
2 S3

1 + S1 S3
2 + L2

3 S1 + (−2 S2
1 S2

2 + (−S4
1 − S2

1 S2) L2 + (S3
1 + S1 S2) L3) L1

+ (S3
1 S2 − 2 L3 S2

1 + S1 S2
2) L2 + (S4

1 − 3 S2
1 S2) L3),

k3 =
(S2

1 − S2) L3

(L1 S1 S2 − L2 S2
1 + L3 S1 − S2

2)
,

k2 =
L1 S1 S2 − L2 S2

1 + L3 S1 − S2
2

S3
1 − S1 S2

,

k4 =
S2

1 − S2

S1
,

k5 = −S1,

which are only valid for those v ∈ C5 satisfying the inequations in (3.34). If one is now

interested in a solutions for k with respect to a v ∈ C5 which does not satisfy the inequations

of (3.34), then there is a simple system among S2, . . . ,S11, which one can solve successively

for k as described in the previous subsection. The remaining simple systems S2, . . . ,S11 can

be found in subsection A.1 of the appendix.

The conditions (3.34) do not contain equalities, therefore the inverse problem has solutions

on an open domain of dimension 5. According to the Section 3.3.4 this means that the model

M1 is solvable.

3.5.3 A Thomas Decomposition for Model M6

The symmetrized algebraic system for model M6 is

S =
{
− S1 = k5, −S2 = k5 (L1 + k1 + k2 + k3), L1 = −k1 − k2 − k3 − k4 − k5,

L3 = −k2 k3 k5, L2 = k1 k4 + k1 k5 + k2 k3 + k2 k4 + k2 k5 + k3 k4 + k3 k5
}

and we compute an algebraic Thomas decomposition for it with respect to the ranking

k1 > k2 > k3 > k4 > k5 > v.

MAPLE returns 10 simple systems S1, . . . ,S10. One easily checks by comparing the num-

ber of equations only involving the variables v (see appendix A.2 for the remaining simple

systems S2, . . . ,S10), that the first simple sytem

S1 =
{

k1 k3 S1 S2 + k2
3 S1 S2 + L3 S2 + (L2 S2

1 − L3 S1) k3 = 0, k2 k3 S1 − L3 = 0, k3 ̸= 0,

k4 S1 − S2
1 + S2 = 0, k5 + S1 = 0, L1 S1 S2 − L2 S2

1 + L3 S1 − S2
2 = 0, S1 ̸= 0, S2 ̸= 0

}
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is the most generic one. Here, even in the most generic case, the solutions for k are only

valid for v ∈ C5 lying on a Zariski open subset of a hypersurface defined by

L1 S1 S2 − L2 S2
1 + L3 S1 − S2

2 = 0, S1 ̸= 0, S2 ̸= 0. (3.35)

Solving again the remaining equations successively for k5, k4, k3, k2, k1, we obtain the solu-

tions

k5 = −S1

k4 =
S2

1 − S2

S1

k3 arbitrary in C \ {0},

k2 =
L3

k3 S1
,

k1 =
−1

k3 S1 S2
(k2

3 S1 S2 + L3 S2 + (L2 S2
1 − L3 S1) k3),

where the expression for k2 and k1 depend on the choice made for k3.

The conditions (3.35) contain one equality, therefore the inverse problem has solutions on an

open domain of dimension 4. Furthermore, the set of solutions is infinite. According to the

Section 3.3.4 this means that the model M6 is not solvable.

3.5.4 A Thomas Decomposition for Model M7

In case of model M7 the symmetrized algebraic system is

S =
{
− S1 = k5, −S2 = k5 (k1 + k2 + k3 + L1), L1 = −k1 − k2 − k3 − k4 − k5,

L2 = k1 k3 + k1 k4 + k1 k5 + k2 k3 + k2 k5 + k3 k4 + k3 k5, L3 = −k1 k3 k5 − k2 k3 k5
}

.

Using the ranking

k1 > k2 > k3 > k4 > k5 > v

the MAPLE implementation of algebraic Thomas decomposition returns 21 simple systems

(see subsection A.3 of the appendix for the systems S2, . . . ,S21). The first simple system

S1 =
{

L1 S2
1 − L2 S1 − S1 S2 + (S2

1 − S2) k1 + (S2
1 − S2) k3 + L3 = 0,

L2 S2
1 − L1 S1 S2 − L3 S1 + S2

2 + (S3
1 − S1 S2) k2 = 0, k2

3 S1 + (L1 S1 − S2) k3 + L3 = 0,

k4 S1 − S2
1 + S2 = 0, k5 + S1 = 0, L2

1 S2
1 − 2 L1 S1 S2 − 4 L3 S1 + S2

2 ̸= 0, L3 ̸= 0,

S3
1 − S1 S2 ̸= 0, S2 ̸= 0

}
.
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is the most generic one. Indeed, all inequations appearing in S1 involve only the variables

v, namely

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 ̸= 0, L3 ̸= 0, S3

1 − S1 S2 ̸= 0, S2 ̸= 0,

and so the solutions for k are valid for all v ∈ C5 of the Zariski open subset defined by these

inequations. We can now successively solve the remaining equations in S1 for the variables

k5, k4, k3, k2 and k1, where the equations for k5, k4, k2, k1 are all linear in their respective

leaders except for the equation with leader k3,

k2
3 S1 + (L1 S1 − S2) k3 + L3 = 0,

which is quadratic. Since we want to consider only real roots for k3, we require that the

discriminant is positive, that is we change the inequation L2
1S2

1 − 2L1S1S2 − 4L3S1 + S2
2 ̸= 0

into L2
1S2

1 − 2L1S1S2 − 4L3S1 + S2
2 > 0. Solving successively the equations with leader k5, k4,

k3, k2, k1 using for k3 the quadratic formula, we obtain the solutions

k5 = −S1,

k4 =
S2

1 − S2

S1
,

k1,2
3 = −

L1 S1 − S2 ±
√

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2

2 S1
,

k2 =
L1 S1 S2 − L2 S2

1 + L3 S1 − S2
2

S3
1 − S1 S2

,

k1 =
−L1 S2

1 + L2 S1 + S1 S2 − (S2
1 − S2) k1,2

3 − L3

S2
1 − S2

subject to the conditions

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 > 0, L3 ̸= 0, S3

1 − S1 S2 ̸= 0, S2 ̸= 0. (3.36)

Note that the solution for k1 depends on the choice of the root k1,2
3 .

The generic simple system provides a finite set of solutions of the inverse problem on the

open domain of dimension 5 defined by (3.36). According to the Section 3.3.4 this means

that the model M7 is solvable.
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3.5.5 A Thomas Decomposition for Model M8

In case of model M8 the symmetrized algebraic system is

S =
{
− S1 = k5, −S2 = k5 (k1 + k2 + L1), L1 = −k1 − k2 − k3 − k4 − k5,

L3 = −k1 k2 k5, L2 = k1 k2 + k1 k3 + k1 k4 + k1 k5 + k2 k3 + k2 k5
}

.

We compute the algebraic Thomas decomposition of S with respect to the ranking

k1 > k3 > k4 > k2 > k5 > v

and obtain from MAPLE twelve simple systems S1, . . . ,S12. One easily checks by comparing

the number of equations which have leader one of the variables of v, that the first simple

system

S1 =
{

S1 k1 k2 − L3 = 0, k3 k2 S2
1 + L1 S1 S2 − L2 S2

1 + L3 S1 − S2
2 + (−S3

1 + S1 S2) k2 = 0,

S2
1 k2 k4 − L1 S1 S2 + L2 S2

1 − L3 S1 + S2
2 = 0, k2

2 S1 + (L1 S1 − S2) k2 + L3 = 0,

k5 + S1 = 0, L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 ̸= 0, L3 ̸= 0, S1 ̸= 0

}

is the most generic one. Analogously as in case of model M7 one determines the solutions

k5 = −S1,

k1,2
2 = −

L1 S1 − S2 ±
√

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2

2 S1
,

k4 =
L1 S1 S2 − L2 S2

1 + L3 S1 − S2
2

k1,2
2 S2

1

,

k3 = −−S3
1 k1,2

2 + L1 S1 S2 − L2 S2
1 + S1 S2 k1,2

2 + L3 S1 − S2
2

k1,2
2 S2

1

,

k1 =
L3

S1 k1,2
2

of S1 subject to the conditions

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 > 0, L3 ̸= 0, S1 ̸= 0. (3.37)

Note that here the solution for k4, k3 and k1 depend on the choice of the root k1,2
2 and that

we changed the inequation L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 ̸= 0 for the discriminant into

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 > 0 to guarantee that the roots are real. The remaining

simple systems are presented in subsection A.4 of the appendix.

The generic simple system provides a finite set of solutions of the inverse problem on the
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open domain of dimension 5 defined by (3.37). According to the Section 3.3.4 this means

that the model M8 is solvable.

3.5.6 A Thomas Decomposition for Model M3

We compute an algebraic Thomas decomposition of the algebraic system

rclS =
{
− S1 = k5, −S2 = k5 (k1 + k2 + L1), L1 = −k1 − k2 − k3 − k4 − k5,

L3 = −k1k2k5, L2 = k1 k2 + k1 k4 + k1 k5 + k2 k3 + k2 k5
}

(3.38)

for model M3 with respect to the ranking

k3 > k1 > k4 > k2 > k5 > v.

The MAPLE implementation returns 15 simple systems S1, . . . ,S15, where the most general

simple system is

S1 =
{

L1 S1 S2 − L2 S2
1 + L3 S1 − S2

2 + (2 k2 S2
1 + L1 S2

1 − S1 S2) k3 + (−S3
1 + S1 S2) k2 = 0,

−L1 S2
1 + L2 S1 + S1 S2 + (2 k2 S1 + L1 S1 − S2) k4 + (−S2

1 + S2) k2 − L3 = 0,

k1 S1 + k2 S1 + L1 S1 − S2 = 0, k2
2 S1 + (L1 S1 − S2) k2 + L3 = 0,

k5 + S1 = 0, L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 ̸= 0, L3 ̸= 0, S1 ̸= 0

}
.

Similar as for model M7 and M8 one determines the solutions

k5 = −S1,

k1,2
2 = − L1 S1−S2±

√
L2

1 S2
1−2 L1 S1 S2−4 L3 S1+S2

2
2 S1

,

k4 =
L1 S2

1+S2
1 k1,2

2 −L2 S1−S1 S2−S2 k1,2
2 +L3

2 k1,2
2 S1+L1 S1−S2

,

k1 = − k1,2
2 S1+L1 S1−S2

S1
,

k3 = −−S3
1 k1,2

2 +L1 S1 S2−L2 S2
1+S1 S2 k1,2

2 +L3 S1−S2
2

S1 (2 k1,2
2 S1+L1 S1−S2)

(3.39)

subject to the conditions

L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 > 0, L3 ̸= 0, S1 ̸= 0. (3.40)

Note that the solutions for k4, k1, k3 depend on the choice of the root k1,2
2 and to guarantee real

roots we changed the inequation representing the discriminant L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 +

S2
2 ̸= 0 into L2

1 S2
1 − 2 L1 S1 S2 − 4 L3 S1 + S2

2 > 0. The remaining 14 simple algebraic systems

can be found in subsection A.5 of the appendix.
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The generic simple system provides a finite set of solutions of the inverse problem on the

open domain of dimension 5 defined by (3.40). According to the Section 3.3.4 this means

that the model M3 is solvable.

3.6.0 Conclusion

Mapping the parameters of the phase-type distribution to kinetic model parameters allows

to identify transcription bursting mechanisms from live transcription imaging. This has

practical applications and led to a tool, BurstDeconv Douaihy et al. (2023).

In contrast to statistical inference that treats one model at a time, using symbolic solutions

for the inverse problem allowed us to infer simultaneously all solvable models.

Thomas decomposition can be used to solve the inverse problem for models with a small

number of states (we provide results for N = 3 but we tested the method also for N = 4).

This allowed us to extend the list of models that can be analysed with BurstDeconv (the

current implementation of this tool covers only the two state random-telegraph and the

three states M1 and M3 models).

The algebraic structure of the phase-type distribution inverse problem lead us a classifica-

tion of different bursting mechanisms models. Some models are solvable and others are not.

Among the three state solvable models we found relations resulting from similar symmetry

properties of the inverse problem. Its generalization possibly asks for different mathemat-

ical tools and we leave it for future work. Moreover, we have found examples of solvable

models with an arbitrary number of states and necessary solvability conditions but we did

no find sufficient solvability conditions. The task of finding sufficient solvability conditions,

as well as classifying all solvable models, can be very challenging.

Phase-type distributions arise when the sequence of transcription events resulting from tran-

scription imaging data is a renewal process. However, we can consider other situations

when this property is no longer valid, for instance in the presence of sister chromatids, i.e.

homologous DNA sequences resulting from replication and capable of undergoing tran-

scription, when the transcription site should be considered as having multiple ON states.

This case has to be treated using different methods and the corresponding problem will be

addressed elsewhere.
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Time-inhomogeneous signal

4.1.0 Introduction

In Section 2, I’ve delved into an algorithm able to extract bursting kinetics from a time-

homogeneous signal. Importantly, the process of deconvolving the signal is entirely inde-

pendent of the underlying Markovian model governing it. However, when we venture into

addressing the issue associated with solving the inverse problem for the deconvolved data,

as outlined in Section 3, we encounter a critical problem. This problem revolves around

the assumption that we are operating within a time homogeneous regime where the kinetic

parameters remain constant over time.

In the context of time-series data originating from transcription processes, it’s important to

acknowledge the presence of regulatory checkpoints occurring at various timings and oper-

ating at various timescale. These checkpoints, such as changes in transcription factor (TF)

concentration or the presence of feedback loops, can lead to moments when the relationships

between various components of the system undergo alterations in response to external stim-

uli.

The dataset discussed in Pimmett et al. (2021) relates to transgenic lines where the cis-
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regulatory element, was deliberately constrained and kept identical between various exper-

imental conditions. Indeed, instead of considering the full regulatory repertoire of the gene

snail, a synthetic construct was considered, expressing only one truncated enhancer, the sna

core part of the distal sna enhancer. The data was purposefully acquired in a region where

the activator dorsal was at peak levels, in order to solely focus on the impact of core promoter

motifs. The idea was to start with a controlled, simple synthetic construct. However, when

our objective is to truly comprehend the dynamics of cis-regulatory elements, one needs to

consider transcription controlled by various enhancers and one also needs to consider the

impact of TF regulators. Thus we can not avoid dealing with time-series data in which all

binding sites are present and therefore which does not lead to time-homogeneous signal.

In such cases, we need to develop an alternative approach, suited to analyse time inho-

mogeneous data This necessity remains irrespective of whether the inhomogeneous nature

of the signal arises from the complexities of a feedback loop or the dynamic alterations in

transcription factors binding to the gene of interest.

We model the inhomogeneous time signals in this case as piecewise Markov process. A

piecewise Markov process exhibits Markovian behavior within distinct time intervals or

segments. When this process begins within a particular initial state at the start of a segment,

it proceeds in a Markovian fashion until the segment ends at a random time point (a jump).

On a segment the state has a distribution determined by the initial state. The concluding

state of the segment then dictates the starting state for the subsequent segment Kurtz (1970,

1971); Kuczura (1973).

However, estimating the parameters of this process through an inverse problem can be quite

intricate. Consequently, I have applied an existing method, as described in Adams and

MacKay (2007), to facilitate the determination of the transition time points between these

Markov models.

In this chapter, I will first introduce the Bayesian Change Point Detection (BOCPD) method

developed by Adams and MacKay (2007), which is used to determine the onset of repres-

sion. Subsequently, I will apply this method to artificial data generated using the Gillespie

algorithm in the presence of a feedback loop (see Section 1.3.1). I will then investigate the

process of distinguishing between homogeneous and inhomogeneous time signals on real

data. This discrimination will be achieved through a sliding time window approach, cou-

pled with an evaluation of the stability of the product PON × kr where PON represents the

probability that the promoter is in an ON state (transcribing state), and kr denotes the tran-

scription initiation rate. Finally, I will put the pipeline to the test with real data and proceed

to compare the obtained kinetics results with those that can be directly extracted from the
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datasets.

4.2.0 Bayesian change point detection

Changepoints denote sudden change in the underlying parameters that generate the data. In

our context, these changepoints manifest as the jumps that occurs between segments within

the piecewise Markov process. Such transitions result in a modification of the switching

rate of the Markov process governing transcription. Multiple Research papers on Bayesian

changepoint detection exists, as cited in Aminikhanghahi and Cook (2017); Van den Burg

and Williams (2020). In Van den Burg and Williams (2020) they compared different Change

point detection algorithms and concluded using the F1-score (Van Rijsbergen (1979)) that

the Bayesian online changepoint detection is the most optimal to deal with univariate and

multivariate time series.

Bayesian online changepoint detection, as introduced by Adams and MacKay (2007), has

undergone several extensions in subsequent works. These extensions include online hy-

perparameter optimization, as discussed by Turner et al. (2009), and the incorporation of

Gaussian Process segment models, as explored in works by Garnett et al. (2009); Saatçi et al.

(2010). Recent research by Knoblauch and Damoulas (2018) has expanded this framework

to encompass model selection and spatiotemporal models, along with robust detection tech-

niques using β-divergences, as detailed in Knoblauch et al. (2018). Its purpose is to accu-

rately predict the distribution of the next unseen data point in the sequence (in our case the

next transcriptional intensity signal), based solely on the data observed up to that point.

4.2.1 Method

In these two sections I will present the algorithm introduced by Adams and MacKay (2007),

so that I can apply it to our case.

Let xt ∈ Rd, in our case d = 1, represent the t-th observation within a sequence of data,

and let xs:t represent the sequence xs, xs+1, ..., xt−1, xt for s ≤ t where s is the time of the last

change in the distribution. We make an assumption that our dataset consisting of T data

points, denoted as x1:T, can be divided into η(p) partitions where the data within each parti-

tion are independent and identically distributed (i.i.d.) samples originating from a common

distribution. This concept aligns with what is known as the product partition model Barry

and Hartigan (1992). In our context, x is the transcription intensity.

To be more precise, let p = 1, 2, ..., η(P), represent the generative parameters pertaining to

partition P, and let η0 stand for the hyperprior. Consequently, ηP ∼ η0, and these parameters
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are independent and identically distributed across partitions, where p ranges from 1 to P.

Bayesian online changepoint detection operates through the representation of the time

elapsed since the previous changepoint, which is referred to as the "run length". The run

length at time t is symbolized as rt. rt increases by 1 when the next time step is part of the

distribution which still didn’t see a change in its parameters.

Let x
(r)
t denotes the set of observations in the run rt, since the last changepoint. The ob-

jective of the BOCPD is to compute the distribution of probability of the time to the next

changepoint given the observed data P[rt|x1:t]. This distribution can be computed by using

P[rt|x1:t] =
P[rt, x1:t]

P[x1:t]
(4.1)

where the joint distribution P[rt, x1:t] can be computed recursively using the following equa-

tion:

P[rt, x1:t] = ∑
rt−1

predictive distribution
︷ ︸︸ ︷

P

[

xt|rt−1, x(r)t

]
changepoint prior
︷ ︸︸ ︷

P[rt | rt−1]

Message
︷ ︸︸ ︷

P[rt−1, x1:t−1] . (4.2)

Note that, based on the independence of rt and xt, we use

P[rt, xt|rt−1, x1:t−1] = P

[

xt|rt−1, x(r)t

]

P[rt | rt−1] (4.3)

One can notice that the algorithm is recursive since the "message" is the same as the joint

distribution at t − 1. Therefore after we compute the joint distribution P[rt−1, x1:t−1], we can

forward message-pass this distribution to calculate P[rt, x1:t] once we know P[r1, x1]

It’s worth noting that the predictive distribution, denoted as P

[

xt|rt−1, x(r)t

]

, relies only on

the most recent data x(r)t , where rt indicates that a changepoint occurred rt time steps ago.

Consequently, we can establish a recursive message-passing algorithm for the joint distri-

bution over the current run length and the data. This algorithm relies on two fundamental

distributions: 1) the changepoint prior distribution P[rt | rt−1], and 2) the predictive distri-

bution P

[

xt|rt−1, x(r)t

]

.

Predictive distribution

To compute the predictive distribution, we utilize Conjugate-exponential models. We as-

sume that the predictive distribution belongs to the exponential family, a class of probability

distributions Pitman (1936); Koopman (1936). One important property about the exponen-

tial family is that it has a conjugate priors. In this case the the prior distribution possesses
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the same mathematical structure as the posterior distribution. Therefore we avoid the need

for integration in the posterior distribution.

Let x(r)t represent the most recent data, xt denote a new observation, θ represent our model

parameters, and α stand for the hyperparameters of the conjugate prior. The conjugate prior

gives that:

p(θ | x(r)t , α) = p
(
θ | α′) (4.4)

for different hyperparameters α′ related to the conjugate prior.

If the predictive distribution belongs to the exponential family then the predictive distribu-

tion P

[

xt|rt−1, x(r)t

]

of equation 4.2 as a conjugate prior and therefore:

p(xt | x(r)t , rt−1, α) =
∫

p(xt | θ)p(θ | x(r)t , rt−1, α)dθ

=
∫

p(xt | θ)p
(
θ | rt−1, α′)dθ

= p
(
xt | rt−1, α′) .

(4.5)

As a consequence, the posterior predictive distribution is identical to the prior predictive

distribution, with the only distinction being the utilization of hyperparameter α′ instead of

α. This signifies that if we can determine the values of α′, in function of α′ we can calculate

the posterior predictive distribution without the need for integration.

In our case, I assume that the transcriptional signal follows a normal distribution with an

unknown mean µ and variance σ, where θ = {µ, σ}. Since the Gaussian distribution is a

member of the exponential family we can benefit from the conjugate prior.

In this case we have the following

x ∼ N (µx, σ2
x)

(µx, σx | µ0, κ0, α0, β0) ∼ N
(

µ | µ0, (κ0 σx)
−1
)

Ga (σx | α0, rate = β0)
(4.6)

This is given in more details in Murphy (2007) and is needed to compute the predictive

distribution.

Due to the fact that the conjugate prior of a Gaussian distribution with unknown mean

and variance is normal-Gamma distribution Murphy (2007). µx, σx changes according to a

changepoint prior. The set of parameters α0 = {µ0, κ0, α0, β0} are parameters of the prior

also known as hyperparameters.
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The posterior predictive distribution for this specific model, after seeing n data points, is

given by

p(xt|rt−1, x(r)t ) = (π)−1/2 Γ ((2αn + 1) /2)
Γ ((2αn) /2)

(
Λ

2αn

) 1
2
(

1 +
Λ (x − µn)

2

2αn

)−(2αn+1)/2

(4.7)

which is a T-distribution with center at µn , precision Λ = αnκn
βn(κn+1) and degree of freedom

2αn.

The hyperparameters are updated according to the following:

αn+1 = αn + 1/2

κn+1 = κn + 1

βn+1 = βn +
κn(x − µn)2

2(κn + 1)

µn+1 = µn
κn

κn+1
+

1
κn+1

(4.8)

For the full details about the conjugate of a Gaussian distribution and the equations 4.8

please refer to Murphy (2007).

To clarify, the subscripts in the expressions above represent the number of data points linked

to a specific hypothesis about the run length. For instance, µ2 denotes the posterior predic-

tive mean when we consider that the most recent changepoint took place two observations

ago.

Changepoint prior

As for the second calculation, P[rt | rt−1], required for equation 4.2, let H(τ) be the hazard

function defined by

H(τ) =
f (τ)

S(τ)
(4.9)

where f (τ) denotes the probability that the current run length is τ and S(τ) is the survival

function associated to it i.e. to τ. The hazard function provides a measure of the response

to the following question: "If a changepoint has not taken place by the time we reach a run

length of τ, what is the likelihood that it will indeed happen at τ?" The hazard function is a

concept often utilized in survival analysis and reliability engineering.
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Our modeling assumption is that our changepoint prior is

p(rt|rt−1) =







H(rt−1 + 1) if rt = 0

1 − H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise

(4.10)

In our case, we make the assumption that τ follows a geometric distribution with a success

probability of p. Consequently, the hazard function H(τ) is equivalent to p, as stated in

Forbes et al. (2011). This type of process is referred to as "memoryless" because the hazard

function remains constant and does not vary with time.

4.2.2 Algorithm

I have implemented the algorithm of BOCPD proposed in Turner et al. (2009) on equations

4.7, 4.8, 4.10. We recall it in Algorithm 2, where the input is the prior hyperparameters of

the conjugate prior of the Gaussian distribution, and the transcriptional data. The algorithm

will output a T × T triangular matrix r, such that ri,j = 0 for i > j and

ri,j = P
[
rj = i|x1:j

]
(4.11)

where rj is the run length at time j (see Figure 4.1 for a visual explanation).

4.2.3 Application on simulated data

In order to test the algorithm, I have generated artificial data using Gillespie algorithm (see

section 1.3.1) with the following chemical reactions corresponding to the random-telegraph

model of auto-regulated gene expression, with two stages, RNA and protein (P)

OFF
kON(P)−→ ON

ON
kOFF(P)−→ OFF

ON
kr−→ ON + RNATS

RNATS
dwell−→ φ

ON
kr−→ ON + RNA

RNA
λr−→ φ

RNA
kp−→ RNA + P

P
λp−→ φ

(4.16)
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Algorithm 2 BOCPD Algorithm
(A1) Set the priors α0 and initial conditions.

p (r0) = 1 Since we consider there is a changepoint time t = 0. (4.12)

Choose the priors α0 = {µ0, κ0, α0, β0} that best suits the data

(A2) Observe new data point xt.

(A3) Compute predictive probabilities. This calculation π
(r)
t−1 = p(xt|rt−1, x(r)t ) is for each

possible run length value r, according to equation 4.7
At time t − 1, there exist a total of t potential run lengths. We proceed by forward-
ing the accumulated information associated with these values up through the trellis
structure. This enables us to compute the predictive distribution for xt

(A4) Compute growth probabilities. The growth probabilities are the probabilities
p (rt = rt−1+ 1, x1:t ) for each possible run length value. To compute the probability
for a specific value rt = r, the growth probability equation is given by

p (rt = r, x1:t) = p (rt−1, x1:t−1)π
(r)
t−1 (1 − H (rt−1)) . (4.13)

where (1 − H (rt−1)) is given in 4.10. This is the solution of equation 4.2
It’s important to note that there is no summation considered over rt−1 because, within
the context of a specific run length, the only applicable "growth value" corresponds to
rt−1 = r − 1.

(A5) Compute changepoint probability. The changepoint probability is the probability that
the run length drops to 0 . Again using equation 4.13 , we see

p (rt = 0, x1:t) = ∑
rt−1

p (rt−1, x1:t−1)π
(r)
t−1H (rt−1) . (4.14)

In this case, a summation over rt−1 is necessary because rt−1 can assume any value
within the range from 0 to t.

(A6) Compute the evidence. This is just the normalization:

p(rt|x1:t) =
p(rt, x1:t)

∑rt′ p(rt′, x1:t)
(4.15)

(A7) Compute the posterior. Equation 4.15.

(A8) Update sufficient statistics according to equation 4.8

(A9) Set t = t + 1. Return to Step (A2) .
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4.2. Bayesian change point detection 111

Where ON, OFF represents the promoter state (active or not), the promoter switching rates,

kON(P), kOFF(P) are functions of the protein P introducing a negative feed-back. kON(P),

kOFF(P) are decreasing and increasing functions of P, respectively. In order to take into ac-

count cooperativity of the repression I have used the Hill equation to model these functions:

kOFF(P) = km
min + (km

max − km
min)

thnhm

thnhm
m + Pnhm

kON(P) = k
p
max + (k

p
min − k

p
max)

Pnhp

th
nhp
p + Pnhp

(4.17)

nhm (resp. nhp) is the Hill coefficient, which represents the cooperativity of binding, thm

(resp. thp) represents the concentration of protein at which half-maximal response of the

switching rates to protein is achieved, km
min, km

max (resp k
p
min, k

p
max) represents the mini-

mal/maximal switching rate from OFF −→ ON (resp. ON −→ OFF).

In this model I expect a changepoint because the switching parameters change from

(km
min, k

p
max) to (km

max, k
p
min) when P increases from zero to a value larger than the thresholds.

Once I determined the initiation time of RNATS, I generated the transcription signal. This

signal was constructed using experimentally measured elongation and 3’-end processing

rates Tantale et al. (2016). Subsequently, I passed this signal through the algorithm to as-

sess the stability of the switching rates with respect to the identified changepoint. I apply

the algorithm by optimising it to data of a normal distribution with unknown mean and

variance.

I ran a sample of 500 simulation for a duration of 40min (approximate duration of nuclear

cycle 14). The switching parameters used are found in table 4.1 as for the values of the signal

construction I used the ones in Pimmett et al. (2021).

In figure 4.2 A), I plotted a sample of the simulations output, mRNA, TS RNA, protein

(upper pannel) and the constructed signal (middle pannel).

To test the results of the simulation of BOCPD I plotted the point where the change was

detected by changing the color of the constructed signal (middle pannel). By comparing the

changepoint found with the switching parameters, kON, kOFF, of the same nuclei I noticed

that indeed these switching parameters are rather constant after the change point (figure 4.2

A).

Finally in order to compute the stability of the parameters after the cut point I computed the
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112 Chapter 4. Time-inhomogeneous signal

Name Symbol Formula

Number of simulations N 500

minimal Promoter switching to OFF km
min 0.004 s-1

maximal Promoter switching to OFF km
max km

min × 20 s-1

maximal Promoter switching to ON k
p
max 0.042 s-1

minimal Promoter switching to ON k
p
min k

p
max/20 s-1

Transcription rate kr 0.113 s-1

mRNA half-life Tm
1/2 13 × 60 s-1

Translation rate kp λr × 4 s-1

Protein half-life T
p
1/2 26 × 60 s-1

Hill coefficient for kON nhp 2

Hill coefficient for kOFF nhm 2

Threshold on protein for inhibition for kON thp 40

Threshold on protein for inhibition for kOFF thm 40

dwell time dwell 2*60 s-1

Table 4.1: Parameter Values for BOCPD

variance of kON, kOFF for each nuclei in the "repressed part" (figure 4.2 B). The stability of

the parameters is needed to be able to run and extract the switching parameters from real

data at least in the "repressed part".

4.3.0 Application to real data

To emphasize the importance of our methodology and clarify the essential stages leading

to Bayesian Online Change Point Detection (BOCPD), I will conduct a comparative analysis

involving two mutations of snail gene within Drosophila melanogaster: "transgenic snail"

and "CRISPR snail".

The first mutation, introduced in the introduction of this chapter, is what I refer to as the

"transgenic snail." This is essentially a synthetic platform designed to eliminate looping ef-

fects in transcription. In this platform, only the Core promoters were inserted immediately

downstream of the snail distal minimal enhancer (snaE). The platform was then cloned into

a minigene and integrated into the Drosophila genome at the same genomic location. To en-

able the tracking of transcription, we incorporated 24 MS2 stem loops in the 5’ UTR down-

stream of the promoter, followed by the insertion of the yellow reporter gene 1.2.6.
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On the other hand, the second mutation, which we refer to as the "CRISPR snail", represents

the endogenous form of the snail gene, unaltered except for the insertion of the 24 MS2 stem

loops. The native snail gene is known to auto-regulate its own transcription, resulting in an

inherently inhomogeneous time series Lagha et al. (2013).

Figure 4.3 A) presents a heatmap featuring the transgenic snail (on the left side), where it

becomes evident that the density of Pol II, as determined through signal deconvolving (see

section 2), remains relatively constant over time following the variable time to activation

experienced by different nuclei. In contrast, on the right side of Figure 4.3, the heatmap

showcasing the CRISPR-edited snail clearly reveals a decline in Pol II density.

4.3.1 Identiőcation of inhomogeneous data

To discern between homogeneous and inhomogeneous temporal data, I adopt an approach

where I evaluate the product of P[ON] and kr over time. Instead of computing each com-

ponent separately, I calculate this product directly since applying them separately using

BurstDeconv might not be appropriate when the signal’s homogeneity is uncertain.

The first method consists of considering that the initiation rate remains at 0 during "OFF"

periods and takes on the value kr during "ON" periods. As a result, the mean initiation rate

τr can be expressed as τr = P[ON] × kr. Now since the mean waiting time is the inverse

of the mean initiation rate then to obtain τr I calculate the mean waiting time τw for Pol II

within a sliding time window of length w.

The signal’s homogeneity is then assessed based on the constancy of τr over time, which is

determined by the mean waiting time. The results of τr are visualized in Figure 4.3 B) for

both phenotypes, utilizing a time window comprising 8 frames (around 30s).

The second method for confirmation involves applying a sliding time window technique

to the signal. Here, I select a fixed time window denoted as TI and then employ the com-

plete BurstDeconv algorithm within each of these time windows. This approach operates

under the assumption that within sufficiently small time windows, there isn’t a significant

alteration in the data’s underlying distribution. I then assume the constancy of the kinetic

parameters within this time window.

The results of this sliding time window analysis on both phenotypes, using an 8-minute

time window, are presented in Figure 4.3. It’s important to note that I excluded the output

from the initial time window of the movie since during this time, transcription is shut down

in most of the nuclei.
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By utilizing both of these methods, I can confirm that the "transgenic snail" indeed exhibits

temporal homogeneity. Consequently, I can directly apply the BurstDeconv algorithm to ex-

tract valuable information. However, in the case of the "CRISPR snail," transcription exhibits

temporal heterogeneity, necessitating the application of BOCPD before employing BurstDe-

conv.

4.3.2 BOCPD results

Once I am able to identify the inhomogeneous data and before I run the BOCPD, I needed

to set the proper priors for the conjugate of the Gaussian distribution α0 = {µ0, κ0, α0, β0}

Let Di denotes the transcription data for nuclei i between 5min and 8 min after mitosis. I

assume that during this time window the data is rather homogeneous since I avoid the time

into activation, known as post-mitotic reactivation time, and therefore I can extract the prior

α0 from it.

According to equation 4.6 the variance of the data σx follows a gamma distribution

Ga (σx | α0, rate = β0) Therefore the parameters α0, β0 were chosen according to the

maximum likelihood estimation of a gamma distribution for the data consisting of the

{variance(Di)}i∈N where N denotes the total number of nuclei.

As for the mean µ0 it was set to be the mean of the dataset Di. And finally the parame-

ter κ0 was chosen by benchmarking against artificial data by changing the hyperparameter

κ0 in both the simulations of the artificial data and the input in BOCPD and choosing the

least sensitive value of input of BOCPD regardless of the value of κ0 initially used in the

simulations.

I employed BOCPD with these priors to determine an independent changepoint, denoted

as T0, for each nucleus. A representative subset of the results is visualized in Figure 4.4 A),

where I illustrated the transcription intensity, the complete BOCPD output. At each time

point the probability of the BOCPD output is plotted by the gradient color of the black lines:

the darker the black lines are, the higher probability. Whenever a changepoint emerges

within the distribution, I can see a discontinuity in the increasing line of rt. I also plotted

the output of BOCPD when the probability exceeds 0.8. It’s important to note that BOCPD

does not aim to overestimate changes in the distribution. Consequently, there may be nuclei

where BOCPD does not identify a changepoint, as illustrated in Figure 4.4 D).

Once I have established the changepoint for each nucleus, I can determine the time T1/2 at

which 50% of the repression process was built, as demonstrated in Figure 4.4 B).
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Now that I possess the stable, repressed segment of the signal, I proceed to apply BurstDe-

conv on the reoressed oart of the signal. This yields P[ON]× kr, which I then compare with

τr as an additional validation of our methodology, as presented in Figure 4.4 C).

4.4.0 Conclusion

In our current biological and mathematical landscape, we face inherent limitations that chal-

lenge our ability to extract meaningful information from time-inhomogeneous data that are

due to the presence of feedback loop or other biological limitations in transcription. One sig-

nificant constraint lies in our capacity to simultaneously capture both protein and nascent

mRNA intensity signals through live imaging techniques. Indeed, if we were equipped

with the capability to conduct live imaging for both protein and mRNA, it would unlock

the potential for comprehensive Hill function fitting. Additionally, when it comes to mathe-

matical modeling, obtaining non-constant switching parameters within a Markovian frame-

work, whether utilizing a hidden Markov approach or inverse problem solving, remains a

formidable challenge.

To address these limitations, I have used online changepoint detection techniques. This ap-

proach serves a dual purpose: it simplifies the problem at hand and facilitates the transition

from a piecewise deterministic Markov model to a Markov model with constant switching

rates. By doing so, I hope to obtain more manageable and interpretable analyses of dynamic

transcription processes.

Through our optimized online changepoint detection method, we’ve achieved the remark-

able ability to pinpoint the exact moment when repression commences for each individual

nucleus. This represents a substantial advancement in our capacity to discern key temporal

events.

Nonetheless, challenges persist, particularly in extracting information from the active phase

of transcription. The switching parameters governing these dynamic processes do not have

sufficient time to stabilize and attain constancy before the transition from the time of nucleus

activation to the onset of repression. This part of the signal requires further exploration and

innovative solutions to fully elucidate the intricacies of transcription dynamics.

In summary, while our current limitations impose formidable constraints, our approach rep-

resents a significant step forward in unraveling the complexities of time-inhomogeneous

data. It not only simplifies the problem but also enables us to capture critical moments in

biological processes.
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Figure 4.1: Diagram of the message-passing algorithm. Each node has associated mass. For

example, the probability of p(r6 = 5|x1:6) = p(r6 = 5|x2:5) = 0 if changepoint occured 7 else

is associated with the node indexed by t = 5 and rt = 5. In other words, at this node, the

run length can either increase by one, hence rt = 6 or we have a changepoint and rt will go

back to 0.

Figure 4.2: Efficiency of BOCPD on Simulated Data with Feedback Loop Regulation.

A) In each subplot, the upper panel depicts the Gillespie output, emphasizing how

mRNA levels decrease as protein concentration increases due to the feedback loop. In

the middle panel, the Bayesian Online Change Point Detection (BOCPD) output is dis-

played by transitioning the mRNA signal color from blue (before the changepoint) to

orange (after the changepoint is detected). The changepoint is detected when the out-

put of BOCPD r, given by equation 4.11), is such that ri,j ≤ 0.2 given that ri−1,j−1 ≥ 0.8

for j < i. The green bar represents the initiation time of transcription. The lower panel

shows the changes in the values of kON and kOFF based on the protein concentration

obtained from each simulation using the hill function (refer to Equation 4.17).

B) Histogram displaying the variance of the kinetic parameters kON and kOFF after iden-

tifying the changepoint for each dataset. The variance highlights the stability of these

parameters in the repressed portion of the signal. The dashed black line (resp. green

line) is the mean of the variance (resp. median).

Figure 4.3: Evaluating the stability of time sereis using different criteria by comparing

snail transgene to snail CRISPR.

A) Heatmap displaying the number of polymerases for the transgenic snail (left) and

CRISPR-edited snail (right) as a function of time. Each row corresponds to a nucleus,

and the color of each time bin represents the count of Pol II initiation events per 30-

second interval.

B) Probability of transcription initiation (τr) which is computed as the inverse of the mean

waiting time τw for Pol II within a sliding time window of length w for each nucleus

(black) and the average value across all nuclei (green) for the snail transgene (left) and

the CRISPR-edited snail (right).

C) Each subplot represents one of the kinetic parameters estimated using a two-state

model with a sliding time window approach over an 8-minute window for the snail
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transgene (left) and the CRISPR-edited snail (right).

Figure 4.4: Evaluating BOCPD output and results on CRISPR snail data.

A) Three instances showcasing the application of BOCPD to distinct nuclei, each repre-

sented by a column. Top row: of each column, you’ll find the transcription signal

displayed in yellow, along with the time that the changepoints occured indicated by

the red line.

Middle row: comprehensive output of rt wit. The output of BOCPD r is plotted such

that ri,j is the value found at the coordinate {i, j}. The value of ri,j is shown by the

gradient color of the black lines: the darker the black lines are, the higher probability.

Whenever a changepoint emerges within the distribution, we can see a discontinuity

in the increasing line of rt.

Last row: represents r solely when the probability of a changepoint surpasses 0.8, i.e.

ri,j ≥ 0.8

B) Cumulative distribution function of the identified changepoints for each nucleus. The

black line here represents T1/2, which marks the point in time when 50% of the nuclei

have transitioned through the repression phase.

C) Probability of transcription initiation (τr) which is computed as the inverse of the mean

waiting time τw for Pol II within a sliding time window of length w for each nucleus

(black) and the average value across all nuclei (green). In blue, resp, yellow, resp. red

I plotted the value P[ON]× kr coming from each output of BurstDeconv for the models

two states, 3states M1 and 3states M2 (see figure 3 in appendix 2.2 for the reference of

the models).

D) Example of a nucleus that did not experience repression. This illustration serves to

emphasize that BOCPD does not overestimate the occurrence of changepoints. The

subplot is the same as subplot A).
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Figure 4.1: Diagram of the message-passing algorithm.
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Figure 4.2: Efficiency of BOCPD on Simulated Data with Feedback Loop Regulation.
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Figure 4.4: Evaluating BOCPD output and results on CRISPR snail data.
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CHAPTER5

Space and timemodeling of gene expression

5.1.0 Introduction

Zygotic gene expression during early stages of embryogenesis of Drosophila is submitted

to complex regulation resulting in spatio-temporal patterns. For instance, the protein snail

required to coordinate the mesoderm invagination during gastrulation, is expressed within

a spatial domain sharply delimited along the dorso-ventral embryo axis (Figure 5.1 A). Mi-

croscopy studies using single-molecule fluorescence in situ hybridization, smFISH, (section

1.2.6) in fixed embryos and MS2-MCP dual mRNA synthesis reporter in live embryos (sec-

tion 1.2.6) showed that snail mRNA levels undergo stochastic fluctuations in populations

of nuclei and in single nuclei time series (Figure 5.1 F). It was proposed that these fluctu-

ations result from transcriptional bursting, a stochastic phenomenon consisting in alternat-

ing transcriptionally active and inactive promoter states (Pimmett et al. (2021); Tantale et al.

(2021)). Mathematically, incorporating both spatial and stochastic effects, even within un-

complicated geometries and homogeneous environments, presents a formidable challenge

Gardiner et al. (1985).

Deterministic patterning of zygotic genes, snail in particular, was intensively modeled using

thermodynamic or differential equations models (Bieler et al. (2011); Jaeger et al. (2012);
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124 Chapter 5. Space and time modeling of gene expression

Kanodia et al. (2012)). Much less is known about stochastic patterning in a transcriptional

bursting regime. In order to approach this regime we use models of stochastic biochemical

networks with spatial extension as well as hybrid models consisting in coupling stochastic

biochemical networks and differential equations.

Stochastic reaction-diffusion models (SRDM) were first introduced in non-equilibrium sta-

tistical physics by van Kampen (Van Kampen (1976)), Nicolis and Prigogine (Nicolis and

Prigogine (1977)), and Haken (Haken (1978)). A one dimensional SRDM is illustrated in Fig-

ure 5.1 D. In SRDMs space is divided into compartments in which reactions take place and

neighboring compartments are coupled by diffusion reactions. These (quasi-)compartments

are needed for replacing continuous with discrete diffusion (that is more convenient for

simulation and analysis purposes) and do not necessarily have physical or biological signif-

icance. The choice of compartments size should adhere to Kuramoto’s length, denoted as lk,

such that it satisfies the condition

lk =
√

DT
p
1/2 ≥ h (5.1)

Here, D represents the diffusion rate, T
p
1/2 signifies the average lifespan of the protein, and h

corresponds to the size of the cell. This criterion ensures that within each compartment, any

concentration fluctuations at a specific location within the compartment swiftly propagate

throughout the entire compartment. Consequently, homogeneity is consistently maintained,

allowing us to disregard diffusion for enter-compartment reactions Cottrell et al. (2012);

Grima and Schnell (2008); Van Kampen (1992).

SRDMs are mathematically described as Markov processes (continuous time Markov

chains). Therefore, the chemical master equation approach as well as the Gillespie simula-

tion algorithm known for well-stirred reactors apply to SRDMs as well. In the macroscopic

limit corresponding to large number of particles in each cell, the Markov jump processes

can be approximated by deterministic reaction-diffusion partial differential equations, PDE,

(Arnold and Theodosopulu (1980); Debussche and Nguepedja Nankep (2019)) or by stochas-

tic partial differential equations (Van Kampen (1976); Blount (1992, 1993); Asllani et al.

(2013)).

SRDMs have already been used to model fluctuations of gene expression in tissues and

developing embryos (Pfaffelhuber and Popovic (2015); Smith and Grima (2018); McFann

et al. (2021)).

One should note that a generalisation of SRDM is the Reaction-Diffusion Master Equation

(RDME) (Gardiner et al. (1976)) which uses voxels for dividing space instead of a regular
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grid. The RDME can be simulated using specialized algorithms like the Next Subvolume

Method (NSM) (Fange et al. (2010)), which optimize the stochastic simulation for reaction-

diffusion scenarios. The RDME has been extended to handle unstructured meshes, enabling

simulations in complex geometries Engblom et al. (2009). However, it presents additional

numerical challenges, particularly when the mesh size approaches zero, which require care-

ful consideration for reliable results (Fange et al. (2010), Hellander et al. (2012), Isaacson

(2009)).

In this study, our primary objective is to employ a hybrid approach. This approach com-

bines both SRDM (Stochastic Reaction-Diffusion Modeling) and differential equations mod-

els. The goal is to effectively represent gene expression with spatial considerations. This

model should be capable of capturing the variability coming from the inherent stochasticity

of transcription. The decision regarding which approach to employ is not solely dependent

on accuracy of the model but also on the delicate balance between efficiency, in terms of ob-

taining results quickly, and accuracy, in terms of having results aligned with experimental

knowledge.

Moreover, our investigation centers on critical aspects when modeling the drosophila’s blas-

toderm, with a specific emphasis on the significance of two regulatory factors contributing

to spatial stochastic fluctuations: negative self-regulation Coulier et al. (2021) and transcrip-

tional memory Bellec et al. (2018); Dufourt et al. (2018).

The structure of this chapter is as follows: Firstly, in section 5.2, we conduct a comprehen-

sive review of existing modeling methods found in the literature. Subsequently, in section

5.3, we introduce our own model. Following that, in section 5.4, we present a range of sim-

ulation methods employed throughout the chapter, taking into account both temporal and

spatial scales (refer to Figure 5.1 E, F). Finally, in section 5.5.2, we apply our model within a

biological context, with a specific focus on the drosophila’s blastoderm. We utilize snail as a

foundational model

5.2.0 State of the art numerical methods for gene

expression modeling

Beside SRDM, there are various simulations methods that have been developed to study

gene expression ranging from simple models with deterministic transcription initiation

models without diffusion to models that incorporate diffusion and promoter switching.

Here are some of the main simulation methods used to model gene expression.
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5.2.1 Green Function Reaction Dynamics (GFRD):

GFRD is a method used to model diffusion-limited reactions in continuous space and time

(van Zon and ten Wolde (2005); van Zon et al. (2006); Belousov et al. (2018)). GFRD sim-

ulates particle-based reactions by considering the interactions between particles and their

surrounding environment. It uses the analytical solution of the diffusion reaction using

Green’s functions to combine in one step the propagation of the particles in space while also

taking into consideration the reactions between them. GFRD offers an efficient approach

to study reaction dynamics but may face challenges when dealing with complex geome-

tries or when analytical solutions are not readily available. In addition to GFRD, Enhanced

Green Function Reaction Dynamics (eGFRD) has been developed in order to incorporate

additional enhancements, such as protective domains, to optimize computational efficiency

(Sokolowski et al. (2019)).

5.2.2 Mcell and Smoldyn:

Mcell (Gupta et al. (2018b)) and Smoldyn (Andrews and Bray (2004), Andrews et al. (2010),

Coulier et al. (2021)) are particle-based simulation methods used in spatial stochastic mod-

eling. They focus on tracking the positions of relevant molecules within a continuous space.

Unlike some other simulation methods, Mcell and Smoldyn avoid the use of a mesh, which

simplifies their computational approach. Instead of discretizing space, these methods dis-

cretize time. This unique approach enables them to effectively simulate various molec-

ular processes, including diffusion, membrane interactions, and reactions of individual

molecules. These methods simulate the movement of particles by determining their new

random positions based on Smoluchowski’s dynamics at each time step. Smoluchowski de-

rives the steady-state reaction rate for diffusion-limited bimolecular reactions, expressing it

in terms of the molecular radii and the diffusion coefficients of the reactant species Smolu-

chowski (1917). Mcell and Smoldyn offer advantages such as efficient handling of complex

geometries but introduce a discretization error due to the discretization of time. However

they are computationally expensive Coulier et al. (2021).

5.2.3 Hybrid Models:

Multiple hybrid models that combine different simulations method such as particle based

models, ODEs, stochastic simulations, have been developed.

For example in Intep et al. (2009), they compare different hybrid methods while also proving

uniqueness and convergence of numerical solutions for models transcription/translation

without diffusion of molecules.
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In Smith and Yates (2018) they give a review of different Spatially coupled hybrid methods

in three steps. They give the appropriate modeling technique at each scale. These hybrid

models are restricted to cases where different regions of space represent different scales and

therefore are modeled using distinct modelling paradigms. The models in these distinct

regions of space are typically coupled together through an interface or overlap.

Utilizing the RDME framework to handle spatial simulations, a number of algorithms em-

ploying tau-leaping assumptions for species with sufficiently large copy numbers were de-

veloped (Marquez-Lago and Burrage (2007), Ferm et al. (2010)).

Additionally, in the work by Coulier et al. (2021), a combination of compartment-based mod-

els and the RDME framework is utilized to model various biological processes, including

negative-feedback loops, promoter switching, and diffusion of proteins and mRNA while

taking into consideration the different abundance of mRNA and protein molecules by de-

riving transition rates using first-exit times. They compare the different hybrid methods to

Smoldyn models as these are the most accurate representations of not well stirred systems.

5.3.0 Model introduction

Stochastic reaction-diffusion models are powerful mathematical frameworks employed to

investigate the behavior of dynamic systems in which both random fluctuations and spatial

variations play significant roles. At the core of stochastic reaction-diffusion models is the

recognition that many natural processes involve not only the diffusion of particles through

space but also random encounters and interactions between these particles. To explore the

behavior of these systems computationally, we will be using the stochastic algorithm 1.3.1

in order to capture the essence of gene expression in the Drosophila blastoderm.

5.3.1 Example of model

We are interested in modeling gene expression in Drosophila blastoderm which is composed

of two main steps: transcription and translation. The inter-compartments reactions that are

of interest for us are summarized in Figure 5.1 C and consists of the following reactions

• Promoter switching in a two state telegraph process where the ON and OFF states

represent the transcriptionally active and inactive promoter, respectively.

• mRNA production in the nucleus.
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• Active transport of mRNA to the cytoplasm.

• Translation of the cytoplasmic mRNA to cytoplasmic protein.

• Active transport of cytoplasmic protein back to the nuclei (useful to when we want to

add the auto feedback-loop).

The ON state mentioned in the first bullet point means that the transcription pre-initiation

complex is formed and the polymerase is ready to initiate transcription. The OFF state is

any other state where these conditions are not fulfilled.

It is of course possible to have several OFF states. Degradation reactions are ubiquitous, as

molecular species can be degraded anywhere in space.

We focus on modeling the expression of one gene in 1D. We divide our space domain (which

will represent the DV axis of the embryo) [0, L] into N compartments of equal length h =

L/N where h needs to justify the Kuramoto’s length 5.1.

We denote by PTSi, Pcyti
, RNATSi, RNAcyti

, si the concentration of proteins in each compart-

ment, proteins in each compartment with active source, mRNA in compartment, mRNA in

compartment with active source and the gene state in the i-th compartment [(i − 1)h, ih],

i = 1, . . . , N, respectively. The active source represent the presence of at least one nuclei.

In each compartment we can have 0, 1, or more than 1 nuclei. In the case of 0 nuclei we

consider that PTSi = RNATSi = 0. This case, when the distance between nuclei is larger

than the compartment size h, and is discussed in section 5.3.5. If we have more than 1 nuclei

in each compartment than we consider that PTSi (resp. RNATSi is the result of averaging of

several nuclei that are present in the compartment.

The gene state si specifies the state of the promoter, that can be one of several OFF and

ON states. For simplicity, we will consider that we have only one OFF and one ON state

(telegraph model). In this case si ∈ {0, 1} where 0 is the OFF state and 1 is the ON state.

We consider that the diffusivity of the mRNA is limited and therefore they can not move

between compartments. On the other hand the cytoplasmic protein can move between com-

partments by diffusion and this diffusitivity is the between-compartment reaction of our

model. This constraint, can be easily lifted by considering that both the protein and the

mRNA diffuse with various diffusivities (Figure 5.1 B).

All of the transitions (inter-compartment and between-compartments) are considered to be
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Markovian and the resulting model is a Markov jump process described by the following

set of chemical reactions:

Pcyt1

dh

⇄

dh

Pcyt2

dh

⇄

dh

Pcyt3

dh

⇆

dh

. . .
dh

⇄

dh

PcytN
(5.2)

RNAcyti

kp−→ RNAcyti
+ Pcyti

(5.3)

Pcyti

kentry−→ PTSi (5.4)

Pcyti

λp−→ φ (5.5)

PTSi

λp−→ φ (5.6)

si
kr,h−→ si + RNATSi (5.7)

RNATSi
kexit−→ RNAcyti

(5.8)

RNAcyti

λr−→ φ (5.9)

1 − si

kONi−→ si (5.10)

si
kOFF−→ 1 − si (5.11)

where i = 1, . . . , N.

Equation 5.2 to 5.11 represent consecutively: protein diffusion, translation, import of protein

to the nuclei, protein degradation in cytoplasm, protein degradation in nuclei, transcrip-

tion, mRNA export to cytoplasm, mRNA degradation in cytoplasm, promoter switching to

ON and finally promoter switching to OFF. We disregard the degradation of nuclei mRNA

within the nucleus, similar to the approach taken in Bahar Halpern et al. (2015) and Battich

et al. (2015). To maintain simplicity, we do not make assumptions about mRNA import into

the nucleus or protein export from it.

Our model distinguishes itself from the one outlined in Coulier et al. (2021) through its

explicit integration of interactions between neighboring nuclei (by protein diffusion) and its

focus on revealing the impact of the morphogene gradient on gene expression within our

framework.

5.3.2 Modeling themorphogen gradient

To incorporate the breaking of spatial translation symmetry, we rely on modeling the mor-

phogen gradient. The morphogen gradient refers to the spatial distribution of signaling

molecules, characterized by varying concentration levels that form a pattern across space,
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influencing transcription regulation and development during embryogenesis. In the case

of snail , it is well-established that the primary regulator is a transcription factor known as

dorsal (dl) Ip et al. (1992). Dl directly activates sna expression in the ventral region of the

early embryo. We model this morphogen gradient by assuming that the switching rate from

the OFF to ON state for the different gene states s depends on the concentration levels of dl,

which takes the form of a sum of sigmoidal functions (see Figure 5.1 E). While this concept

could be applied to all switching rates, for biological simplicity, we simplify it to a single

switching rate, kON, which is modulated by the sum of sigmoidal functions. Consequently,

kON is given by

kONi
= kON × k(i, x0, x1, h) = kON

(
1

1 + e−(i−x0)χ
+

1
1 + e−(i−x1)χ

− 1
)

(5.12)

where χ represents the steepness of the gradient, for i ∈ [0, N], x0 < x1 are the positions

where dorsal gradient is maximal (in absolute value).

5.3.3 Modeling the transcriptionmemory

All nuclear cycles start with a period of transcription inactivity due to the structural con-

straints imposed by the important nuclear re-organization operating during mitosis. This

period of inactivity changes stochastically from one nucleous to another, but can depend on

the history of activation of ancestor nuclei, a phenomenon called transcriptional memory

(Dufourt et al. (2018)). We model trancriptional memory using a finite state Markov chain

model proposed in (Bellec et al. (2018); Dufourt et al. (2018)). In the transcriptional memory

model, the transcriptionally active ON state is reached by a chain of irreversible transitions

made of OFF states denoted by Ij where 1 ≤ j ≤ M where M is the number of OFF state,

different from the one used in the telegraph model to describe bursting (figure 5.4 B for

M = 2). The transcriptional memory is modeled by the following chain of reactions

Ii
M

kIM−→ Ii
M−1 (5.13)

Ii
M−1

kIM−1−→ Ii
M−2 (5.14)

... (5.15)

Ii
1

kI1−→ ONi (5.16)

which we incorporate the set of chemical reactions described in 5.3.1 with the minor modi-

fication of replacing equations 5.10, 5.11 by

OFFi

kONi−→ ONi

ONi
kOFF−→ OFFi

(5.17)
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and equation 5.7 by

ONi
kr,h−→ ONi + RNATSi (5.18)

5.3.4 Modeling the negative feedback loop

Based on the hypothesis that the snail gene represses itself Boettiger and Levine (2013) we

introduce a negative feedback loop in the model (see figure 5.4-C. We consider that the

protein concentration modulates the promoter switching rates kON and kOFF (figure 5.4 C).

The switching parameters in this case are given by Hill functions

kOFFi
= kmin

OFF + (kmax
OFF − kmin

OFF)×
PTS

nOFF
i

T
nOFF
OFF + PTS

nOFF
i

(5.19)

kONi
= kmax

ON + (kmin
ON − kmax

ON )× PTS
nON
i

T
nON
ON + PTS

nON
i

(5.20)

where TOFF, TON represents the concentration threshold of PTS that results in half-maximal

repression, nOFF, nON represents the Hill coefficient, which describes the steepness of the

the repression curve for each switching parameter respectively. These modeling choices

are standard (see also Hooshangi and Weiss (2006); To and Maheshri (2010)) and take into

account the possibility of cooperative repression corresponding to nOFF > 1 or nON > 1.

5.3.5 Modeling distant transcription site

In cases where the distance between nuclei, denoted as d, exceeds the Kuramoto’s length, it

is better to chose a compartment size h such that h ≤ d.

In this scenario, we effectively create a delta Dirac source, for RNA production, where not

every mesh grid point serves as a source. To account for the finite internuclear distance,

we introduce sources only within every ⌊d/h⌋ compartments, rather than in every compart-

ment. This approach helps incorporate the influence of the internuclear distance into the

simulation (figure 5.4 A). This boils down to writing reactions (5.3), (5.4), (5.7), (5.8), (5.10),

(5.11),

only for i = 1, 1 + r, 1 + 2r, . . ., where r = ⌊d/h⌋.

5.4.0 Approximations and numerical schemes

We simulated our model with 4 different algorithms, using a full deterministic approach

which we call Det, then one using a fully stochastic approach SRDM with the assumption
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of a well stirred model and two hybrid approaches called H1 and H2 resp. We first apply the

different simulation methods to the simplest model, i.e. without feedback loop and memory.

Then we use different type of statistical test to uncover the optimal simulation method.

5.4.1 The deterministic limit

Let us consider that the size of each compartment is small but remains large enough to

contain a large number of molecules. This situation corresponds to the deterministic limit,

that can be obtained from a re-scaling of the model’s variables and parameters. More pre-

cisely, molecular species copy numbers are replaced by concentrations and promoter state

variables by occupation probabilities. We also suppose that

dh =
D

h2 =
DN2

L2

kr,h = hµKr (5.21)

Then hµ sets the scale of the number of particles in each compartment.

Considering that N → ∞, µ → ∞ such that log N/(hµ) → 0, classical results Blount (1992,

1993); Debussche and Nguepedja Nankep (2019) show that the SRDM converges in probabil-

ity for the supremum norm to the solution of the following system of differential equations:

∂pON

∂t
= kON(x)pOFF − kOFF pON, (5.22)

∂pOFF

∂t
= −kON(x)pOFF + kOFF pON, (5.23)

∂[RNATS]

∂t
= Kr pON − Kexit[RNATS], (5.24)

∂[RNAcyt]

∂t
= Kexit[RNATS]− λr[RNAcyt], (5.25)

∂[Pcyt]

∂t
= D

∂2[Pcyt]

∂x2 + kp[RNAcyt]− λp[Pcyt]− Kentry[Pcyt], (5.26)

∂[PTS]

∂t
= Kentry[Pcyt]− λp[PTS], (5.27)

with Neumann, no flux boundary conditions

∂[Pcyt]

∂x
(x, t) = 0 for x ∈ ∂([0, L]) ∀t > 0, (5.28)

where [RNATS] = RNATS/(µh), [RNAcyt] = RNAcyt/(µh), [PTS] = PTS/(µh), [Pcyt] =

Pcyt/(µh) and pON, pOFF are the probabilities of promoters being ON and OFF, respectively.

We have opted to utilize the finite differences method and more precisely the Forward Euler
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Scheme to numerically solve Equation 5.26 and, consequently, Equation 5.27. Although

there are other established numerical techniques available for solving such linear systems,

as demonstrated in references Smith et al. (1985) and Brenner and Carstensen (2004), we

have chosen the finite differences method due to its efficiency, in terms of speed, in obtaining

numerical solutions for these partial differential equations.

In this approach we consider that all molecules are deterministic. The Euler Scheme involves

dividing the spatial and temporal domains into a mesh, where the solution of the PDE is

estimated by taking into consideration the stability condition given by

∆t ≤
1
2

h2

D
(5.29)

where h and ∆t are the space and time mesh sizes, respectively.

5.4.2 Stochastic approach

We are going to use Gillespie algorithm for the simulations of the SRDM (Gillespie (1977)).

To cite Gillespie, "the probability, given X(t) = x, that the system’s next reaction will occur

in the infinitesimal time interval [t, t + τ], and will be of stoichiometry corresponding to the

jth reaction" where τ is the time until next event given by

τ =
1
α0

ln

(
1
r1

)

(5.30)

with α0 is the combined rate of all possible reactions also known as the sum of propensities.

The algorithm for our SRDM problem is the classical gillespie algorithm given in section

1.3.1 by taking into account the multiple compartments separated by Kuramoto length.

When there is no diffusion and no feedback-loop, the sites function can be simulated in-

dependently.

5.4.3 Hybrid methods

Gillespie simulation of the SRDM is too costly in terms of execution time. The finite dif-

ferences integration of deterministic PDE approximation does not render the stochastic

fluctuations generated by the SRDM. A compromise can be obtained by hybrid modeling

where some variables are considered discrete and are simulated using the Gillespie algo-

rithm and other variables are considered continuous and follow PDEs. For our model, two

discrete/continuous splittings are natural, leading to two hybrid models: H1, where the

promoter states are discrete whereas the mRNA and protein concentrations are continuous,

and H2, where the promoter states and the mRNA are discrete and the protein is continuous.
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More precisely, in H1 and H2 the variables si resp. (si, RNATSi, RNAcyti
) are considered

discrete and the rest of the variables are considered continuous. The continuous variables

follow PDEs as follows:

∂[RNATS]

∂t
= Kr ∑

NTS
i=1 siδ(x − xi)− Kexit[RNATS]∑

NTS
i=1 δ(x − xi),

∂[RNAcyt]

∂t
= Kexit[RNATS]− λr[RNAcyt]∑

NTS
i=1 δ(x − xi),

∂[Pcyt]

∂t
= D

∂2[Pcyt]

∂x2 + kp[RNAcyt]− λp[Pcyt]− Kentry[Pcyt]∑
NTS
i=1 δ(x − xi),

∂[PTS]

∂t
= Kentry[Pcyt]∑

NTS
i=1 δ(x − xi)− λp[PTS], (5.31)

for H1 and

∂[Pcyt]

∂t
= D

∂2[Pcyt]

∂x2 + ∑
NTS
i=1 (kp[RNAcyt]− Kentry[Pcyt])δ(x − xi)− λp[Pcyt],

∂[PTS]

∂t
= Kentry ∑

NTS
i=1 [Pcyt]δ(x − xi)− λp[PTS] (5.32)

for H2, where NTS, xi are the number and positions of the nuclei and δ is the Dirac delta

distribution.

The sums of Dirac delta distributions in (5.31) and (5.32) are spatially discretized in the same

way as for modeling the finite distance between nuclei in the section 2.

H1

The algorithm in this case is going to calculates which reaction occurs next (between the

different promoter state s) and when. The next reaction is obtained based on the propensity

function and the time until next event follows an exponential distribution in the case where

we don’t have a feedback loop. The adaptation of the algorithm to the presence of a feedback

loop is discussed at the end of this section. Thus the algorithm realisation of the H1 is

provided in Algorithm 3.

H2

The algorithm for H2 (see Algorithm 4) proceeds by firstly generating N independent time

until the next event for each compartment (a diffusive jump between mRNA production,

degradation and switching of the states) according to the Gillespie algorithm Gillespie (1977)
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Algorithm 3 H1 algorithm
(B1) Set the initial condition for the stochastic variables (promoter state).

(B2) Set the initial condition for the deterministic RNATS
0
i , RNAcyt

0
i

PTS
0
i , Pcyt

0
i

for each
i ∈ [0, LN × h].

(B3) Initiate the timing for the simulations t.

(B4) Discretize the space into mesh points and specify the PDE-update time step ∆t satisfy-
ing condition 5.29.

(B5) Generate 2Na random variables uniformly distributed in (0, 1), where Na is the number
of transcriptionally active compartment. The first Na will choose the time for the next
event, and the other Na will be responsible for the next reaction.

(B6) Compute propensity functions of the transcription model αi
j(t) at time t for each posi-

tion i ∈ [0, Na].

(B7) Calculate the sum of the propensity function αi
0 = ∑

R
j=1 αi

j(t) where R is the number of
reactions per position.

(B8) Determine the time for the next ’stochastic simulation’ event, ti = ti + τi, where τi is
given 5.30 for each i and keep τ = min(ti)i∈[1,Na].

(B9) Find the next reaction j = {1, ..., S} according to

r=i−1

∑
r=0

αr < r2α0 ≤
r=i

∑
r=0

αr (5.33)

for each i.

(B10) Update the stochastic variable (si) at t + τ.

(B11) Update the deterministic variables
(a) solve the analytical equation of equations 5.31, 5.31 between tp and t + τ for each

i ∈ [0, N × h].
(b) solve equations 5.31, 5.31 according to the finite difference method between t and

t + τ with initial condition Pcyt0, PTS0.
(c) Update the PDE simulator time t = t + τ.

(d) Set RNAcyt
0
i
= RNAcyt

t
p
1

i , RNATS
0
i = RNATS

t
p
1

i
(e) Update the initial condition for the next PDE simulator

Pcyt0 = Pcyt
t, PTS0 = PTS

t. (5.34)
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which will represent the transcriptional model. Then it calculates the deterministic variables

using finite-difference method. The algorithm is given in Algorithm 4.

Algorithm 4 H2 algorithm
(C1) Set the initial condition for the stochastic variable (promoter state, mRNA) in each

compartment.

(C2) Set the initial condition for the deterministic variable (Pcyt = Pcyt0), (PTS = PTS0)

(C3) Initiate the timing for the simulations t.

(C4) Discretize the space into mesh points and specify the PDE-update time step ∆t satisfy-
ing condition 5.29.

(C5) Generate 2Na random numbers uniformly distributed in (0, 1) (the first Na will chose
the time into the next event and the other Na will be responsible for the next reaction),
where Na is the number of "active position"

(C6) Compute propensity functions of the transcription model αi
j(t) at time t for each posi-

tion i ∈ [0, Na]

(C7) Calculate the sum of the propensity function αi
0 = ∑

R
j=1 αi

j(t) where R is the number of
reactions per position.

(C8) Determine the time for the next ’stochastic simulation’ event, ti = ti + τi, where τi is
given by equation 5.30 for each i and keep τ = min(ti)i∈[1,Na].

(C9) Find the next reaction j = {1, ..., S} according to 5.33 for each i.

(C10) update the stochastic variables at t + τ

(C11) Update the deterministic variables:
(a) solve equations 5.32, 5.32 according to the finite difference method between t and

t + τ with initial condition Pcyt0, PTS0.
(b) update the PDE simulator time t = t + τ.
(c) update the initial condition for the next PDE simulator

PTS0 = PTS
t, Pcyt0 = Pcyt

t (5.35)

Adaptation of the hybrid models to feedback loop

In the case of a feedback loop, Algorithm 3 and Algorithm 4 need to be modified where step

(B8) in Algorithm 3 (resp. (C8) in Algorithm 4) is replaced by
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While∆t < τi for all i ∈ [1, N]

1. Update the deterministic variables according to step (B11) in Algorithm 3

(resp. (C11) in Algorithm 4)

2. Update the propensity function to take into consideration the change in

PTS concentration

3. Calculate τi according to 5.30

EndWhile

where ∆t is the time mesh size used for Euler Scheme (see equation 5.29.

5.5.0 Numerical results

In this section, we assess the accuracy and limitations of our proposed simulation techniques

by subjecting them to a series of carefully selected statistical tests. These tests aim to mea-

sure the precision of our methods in reproducing the behavior described by the Stochastic

Reaction-Diffusion Model (SRDM). We conduct these evaluations for both mRNA and pro-

tein levels to comprehensively validate our approach. Then, we demonstrate a practical

application of the simulations to biological data.

5.5.1 Approximation quality

For each algorithm, we generated a 41-compartment grid for a simulation duration of 60

minutes. We repeated the simulations 500 times. The chosen parameters for these simula-

tions were based on information found in the bibliography given below.

In the study by Pimmett et al. (2021), the switching rates KON, KOFF, and Kini of snail were

computed in the central region of the pattern, where the gene is assumed to be at its maxi-

mum transcription capacity. This was achieved through live imaging and deconvolution of

the signal.

Additionally, in Boettiger and Levine (2013), the half-life of mRNA (T1/2) was computed,

which relates to the degradation rate (γr) by γr = ln(2)
T1/2

. Furthermore, Boettiger et al. Boet-

tiger and Levine (2013) computed the half-life of mRNA (T1/2), which is related to the degra-

dation rate (γr) by γr =
ln(2)
T1/2

.

Regarding the diffusion rate, it was required to be sufficiently fast so that a well-mixed

model could effectively capture the crucial aspects of the spatial dynamics that we are inter-

ested in therefore we chose a diffusion rate of D = 0.0005µm2s−1

As for the translation rate, import rate, export rate and the minimum value for KON there is
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limited information available.

The summary of the parameters used in these simulations are provided in the table 5.1.

Name Symbol Formula

Number of compartments N 41

Compartment size h 0.0128 µm

Length of the space L 1 µm

Diffusion rate D 5 × 10−4 µm2s-1

Promoter switching to OFF kOFF 0.004 s-1

Promoter switching to ON kON(x) 0.042 s-1

Translation rate kp λr × 4 s-1

Protein half-life T
p
1/2 26 × 60 s-1

Transcription rate kr 0.113 s-1

mRNA half-life Tm
1/2 13 × 60 s-1

Lower bound of kON kmin
ON kON × 10−4 s-1

mRNA export rate Kentry 0.0417 s-1

Protein import rate Kexit 0.005 s-1

Table 5.1: Parameter Values

A sample of each algorithm was chose randomly for visualisation the protein concentration

in the cytoplasm in figure 5.2-A. On the side of each method a time and space point was

chosen, to plot the cytoplasmic mRNA concentration that contributed to generate the pro-

tein concentration shown in the heatmap. A comparison between the different simulation

methods was done using the Kolmogorov distance metrics and by comparing the distance

between a set of summary statistics.

Kolmogorov distance

To measure the disparity between the data distributions of the various simulation methods

used, we employed the Kolmogorov distance. This metric is frequently employed in the

comparison of simulation methods Cao and Petzold (2006) Coulier et al. (2021).

The Kolmogorov distance (also known as the Kolmogorov-Smirnov distance) is the maxi-

mum difference between two cumulative distribution functions (CDFs) given by

DKS = sup
a

|FX(a)− FY(a)| (5.36)
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where DKS represents the Kolmogorov distance, FX(a) = P[X ≤ a], (resp. FY(a) =

P[Y ≤ a]) is the the cumulative distribution function (CDF) of the distribution X and Y re-

spectively.

We conducted comparisons of the Kolmogorov distance between the hybrid methods and

SRDM, examining every combination of time and space coordinates denoted as (t, x). For

each specific (t, x) point, and for each simulation method, we have a dataset consisting of 500

values coming from the number of simulations we generated. This approach verifies that

the datasets for all simulation methods originate from the same underlying distribution.

However, the deterministic approach, denoted as Det, lacks variability. Consequently, at

each (t, x) point, we have only one value, making it impossible to apply the Kolmogorov

distance. The outcomes of these analyses are illustrated on the heatmap presented in Figure

5.3 A.

Summary of statistics

Summary statistics, such as moments, play a crucial role in understanding data as they

provide insights into a dataset’s shape and characteristics without relying on knowledge of

the underlying distribution. Selecting appropriate summary statistics can be challenging in

real-world scenarios.

For the sake of simplicity, we have chosen a set of three commonly used summary statistics:

the mean value, the standard deviation, and the Fano factor.

The Fano factor represents the variance-to-mean ratio, a significant parameter for quanti-

fying the departure from Poisson statistics. It is commonly employed to describe the vari-

ability arising from gene expression. These summary statistics offer valuable information

about the central tendency, variability, and distribution characteristics of the the different

simulation methods.

Mean error and standard deviation We calculated the average values from multiple simu-

lations (n=500) and determined the relative error w.r.t. the mean in SRDM. This resulted

in a 2D error map. Subsequently, we generated plots illustrating the mean and standard

deviation of these errors across space (Figure 5.3-B). To emphasize the influence of the mor-

phogen gradient, represented by the variation in kON, we also plotted a spatially normalized

visualization of kON in the same plot.

Fano Factor An essential criterion for gene expression modeling is the capacity to capture

the noise inherent to transcription, stemming from its stochastic nature. While cells might

leverage gene expression noise for fitness gains in fluctuating environments (Acar et al.,
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2008), noise is generally detrimental. Precise internal regulation of biochemical reactions

is vital for cell growth and survival. In the context of the gene snail, expression variability

could disrupt gastrulation, yielding incomplete ventral furrows or even halting gastulation.

A crucial factor in mathematical model selection is the model’s ability to replicate inherent

transcription noise, particularly at the protein level (Perry et al., 2010; McFann et al., 2021).

The Fano Factor (FF) assesses this variability. To compute the FF with spatial extension, our

domain was divided into three sections based on spatial switching parameter percentages

relative to the highest value, as shown in Figure 5.3-C. Figure 5.3-E displays FF results over

time for mRNA and protein.

Our analysis of the simulations results using the statistical tests mentioned above revealed

that the hybrid model H2 outperformed the others in predicting gene expression in space

and time in function of the balance between accuracy and timing (Figure 5.3 D). While yield-

ing comparable statistical test results to the other models, its distinction lies in its capacity

to accurately reproduce the inherent noise. It has approximately the same noise output as

SRDM at the level of mRNA and is still able to capture the noise at the level of protein. How-

ever, it is important to note that our simulation experiments had some limitations, such as

the simplifications and assumptions made in the models, and the specific parameters used

in the simulations. Nonetheless, our results provide strong evidence that the hybrid model

H2 is the most effective approach for modeling gene expression in space and time and can

be used to gain deeper insights into the complex regulatory mechanisms underlying gene

expression in living organisms.

5.5.2 Application to biology

We modeled each regulatory mechanisms presented in Section 5.3 in conjunction with an

appropriate propensity function in the Hybrid method. The simulation results for all these

mechanisms ( transcriptional memory, negative feedback, finite distance between nuclei) are

illustrated in Figure 5.4-D. Each subplot is presented in the same format as Figure 5.2-A.

Relative contribution of different layers of spatial stochastic ŕuctuations

To assess the relative contributions of the aforementioned mechanisms to the spatial stochas-

tic fluctuations of the Drosophila blastoderm, we compared the mRNA output from real data

generated in Lagha’s lab Virginia_Paper to simulation results at the nuclei mRNA level, us-

ing three criteria: heatmaps illustrating the distribution of transcription activity in time (x-

axis) and space (y-axis) (figure 5.5-A), the Fano Factor of transcription as a function of time

(figure 5.5-b), the percentage of active nuclei over time (figure 5.5-C). The mRNA intensity

signal was obtained using the MS2-MCP system from the central region of the snail expres-
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sion domain, and was calibrated to provide the number of mRNA molecules present in each

nucleus at every time step.

5.6.0 Conclusion

In conclusion, our study underscores the critical role of spatial dynamics in shaping the

behavior of biological systems. When dealing with large-scale modeling tasks, such as

model exploration and parameter inference, it becomes imperative to identify the most cost-

effective simulation method capable of accurately capturing the dynamics of interest.

Throughout our investigation, we conducted a comprehensive comparison between various

simulation methods, including classic Gillespie algorithm and alternative approaches, both

hybrid and deterministic. Our findings unequivocally demonstrate that the newly proposed

hybrid approximation, specifically H2, significantly broadens the applicability of the SRDM

model. This computational innovation offers a remarkable advantage by accurately repli-

cating the the behavior of interest: noise originating from the promoter level to the level of

protein process. Additionally, this model provides valuable insights into the key regulatory

elements governing snail protein dynamics, with a particular focus on feedback loops and

memory effects.

The choice of noise quantification as a metric for selecting the simulation method arises

from the increasing relevance of cell-to-cell variability in contemporary research. This source

of variation has accumulated significant attention due to its potential to influence various

statistical properties of biochemical reactions and, consequently, the probability of specific

phenotypic outcomes. However one needs to note that, despite the presence of stochastic

fluctuations, many phenotypic traits exhibit a degree of robustness.

Moving forward, our model serves as a solid foundation for further exploration and bench-

marking. Future efforts will investigate into an exhaustive analysis of the free parameters

within our simulations, seeking to answer crucial questions about the optimal parameter

ranges for auto-feedback mechanisms in noise reduction. This research direction promises

to enhance our understanding of the intricate interplay between spatial dynamics, cellular

variability, and gene expression, ultimately advancing our knowledge of complex biological

systems.

Figure 5.1: Model introduction for spatial gene expression.

A) On the left we have a Drosophila embryo showing the gradient distribution of the
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snail mRNA. On the right, we have a closer look at the embryo, highlighting how

the diffusion can differ between the location of transcription site (apically or basally)

before invagination.

B) A simplified model showing bursty transcription leading to protein production.

C) A model of simple diffusion. In each pseudo-compartment containing a nucleus there

is stochastic mRNA and protein production. Both products can diffuse locally with

varied diffusion lengths.

D) Dorsal gradient affecting the switching rate kON(s) of transcription in space.

E) Stochastic signal example of nascent mRNA in time for the same space point.

Figure 5.2: Simulation results.

A) Simulations output of the different methods. For each method we have a heatmap of

the protein concentration in time (xaxis) and space (yaxis). On top of the heatmap is

the output of the mRNA in time of the respected method at the middle point of space.

On the right of the heatmap is the output of mRNA in space at the final time point (60

mn).

B) Different variables plotted together. Above slow KON = 0.00013 rate. Below: Fast

kON = 0.00024 rate. Blue denotes RNATS, orange denotes RNAcyt, green denotes Pcyt

Figure 5.3: Simulation performance.

A) KS distance output. Each column represent a variable and each row represent the

output of the different hybrid method w.r.t. SRDM in time (x-axis) and space (y-axis).

B) Error of the mean and std of the different methods over the different simulation

method and over time. The output is then plotted in function of space. The dashed

line are a normalized kON value w.r.t. the maximum error in order to visualized the

error in space in function of the morphogene gradient.

C) Sections of the space dimension that was used to compute FF in different spatial con-

ditions. The choice of the division was taken w.r.t. the switching parameters are ,40%,
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between 40 and 80% and above 80% of the maximal intensity respectively.

D) Table of execution time of the different methods. The timing is done for 1 simulations

with 40 mesh points and 60 min duration.

E) FF results over the different sections at the level of TS mRNA, cytoplasmic mRNA and

cytoplasmic protein.

Figure 5.4: Additional biological layers.

A) Representation of delta Dirac source point. We divide the space into a mesh grid with

h step (represented in squares). We then consider that not all of the compartments

are active sources highlighting the active compartment with navy blue according to a

delta Dirac source .

B) Transcriptional memory: To incorporate the time that each gene is active with respect

to mitosis, n inactive states are added to the Markov model of transcription. We initiate

each nuclei randomly between one of the n inactive states.

C) Another important property in gene expression is the presence of feedback loop. In

this case we consider that we have a negative feedback loop affecting the switching

between promoter state ON, OFF.

D) Simulations results of the hybrid methods with different added properties.

Figure 5.5: Visual comparison of the simulations output w.r.t. real data

A) HeatMap of mRNA output in section III of the spatial space. First plot is real data of

snail transgenic line NC14 followed by simulations output.

B) on the left, F.F. of the mRNA output of the different properties added to the hybrid

method. On right, FF output of different transgenic lines of snail.

C) Percentage of non zero nuclei in function of time with simulated output on the left and

real data on the right.
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APPENDIXA

List of simple Thomas decomposition systems

A.1.0 The Remaining Simple Systems for Model

M1

S2 =
{
− L2

2 S2
1 − L3 S3

1 + 2 L2 L3 S1 − L2
3 + (L2 S3

1 − L3 S2
1) k1 + (L2 S3

1 − L3 S2
1) L1 = 0,

L3 S1 + (L2 S1 − L3) k3 = 0, k2 S2
1 + L2 S1 − L3 = 0, k4 − S1 = 0, k5 + S1 = 0,

L2 S1 − L3 ̸= 0, S1 ̸= 0, S2 = 0
}

,

S3 =
{

k1 k2 S1 S2 + k2
2 S1 S2 + L3 S2 + (L2 S2 − L3 S1) k2 = 0, k3 k2 S1 − L3 = 0, k2 ̸= 0,

k4 = 0, k5 + S1 = 0, L1 S1 S2 − L2 S2 + L3 S1 − S2
2 = 0, S2

1 − S2 = 0, S2 ̸= 0
}

,

S4 =
{

k1 S2 + k3 S2 + L2 S1 = 0, k2 = 0, k4 S1 − S2
1 + S2 = 0, k5 + S1 = 0,

L1 S1 S2 − L2 S2
1 − S2

2 = 0, L3 = 0, S1 ̸= 0, S2 ̸= 0
}

,

S5 =
{

k1 + k3 + L1 = 0, k2 = 0, k4 − S1 = 0, k5 + S1 = 0, L2 = 0, L3 = 0,

S1 ̸= 0, S2 = 0
}

,
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S6 =
{

k1 k2 + k2
2 + k2

4 + k4 L1 + (2 k4 + L1) k2 + L2 = 0, k3 k2 − k2 k4 − k2
4 − k4 L1 − L2 = 0,

k2 ̸= 0, k5 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S7 =
{

k1 + k3 + k4 + L1 = 0, k2 = 0, k2
4 + k4 L1 + L2 = 0, k5 = 0, L2

1 − 4 L2 ̸= 0,

L2 ̸= 0, L3 = 0, S1 = 0, S2 = 0
}

,

S8 =
{

k1 + k3 = 0, k2 = 0, k4 + L1 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S9 =
{

k1 + k3 + L1 = 0, k2 = 0, k4 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S10 =
{

2 k1 + 2 k3 + L1 = 0, k2 = 0, 2 k4 + L1 = 0, k5 = 0, L2
1 − 4 L2 = 0, L2 ̸= 0, L3 = 0,

S1 = 0, S2 = 0
}

,

S11 =
{

k1 + k3 = 0, k2 = 0, k4 = 0, k5 = 0, L1 = 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

.

A.2.0 The Remaining Simple Systems for Model

M6

S2 =
{

k1 k3 S1 + k2
3 S1 + k3 L1 S1 + L3 = 0, k2 k3 S1 − L3 = 0, k3 ̸= 0, k4 − S1 = 0,

k5 + S1 = 0, L2 S1 − L3 = 0, S1 ̸= 0, S2 = 0},

S3 =
{

k1 S2 + k2 S2 + L2 S1 = 0, k3 = 0, k4 S1 − S2
1 + S2 = 0, k5 + S1 = 0,

L1 S1 S2 − L2 S2
1 − S2

2 = 0, L3 = 0, S1 ̸= 0, S2 ̸= 0
}

,

S4 =
{

k1 + k2 + L1 = 0, k3 = 0, k4 − S1 = 0, k5 + S1 = 0, L2 = 0, L3 = 0,

S1 ̸= 0, S2 = 0
}

,

S5 =
{

k1 k3 + k2
3 + k2

4 + k4 L1 + (k4 + L1) k3 + L2 = 0, k2 k3 − k2
4 − k4 L1 − L2 = 0,

k3 ̸= 0, k5 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S6 =
{

k1 + k2 + k4 + L1 = 0, k3 = 0, k2
4 + k4 L1 + L2 = 0, k5 = 0, L2

1 − 4 L2 ̸= 0,

L2 ̸= 0, L3 = 0, S1 = 0, S2 = 0
}

,

S7 =
{

k1 + k2 = 0, k3 = 0, k4 + L1 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0,

S2 = 0
}

,

S8 =
{

k1 + k2 + L1 = 0, k3 = 0, k4 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0,
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S2 = 0
}

,

S9 =
{

2 k1 + 2 k2 + L1 = 0, k3 = 0, 2 k4 + L1 = 0, k5 = 0, L2
1 − 4 L2 = 0, L2 ̸= 0,

L3 = 0, S1 = 0, S2 = 0
}

,

S10 =
{

k1 + k2 = 0, k3 = 0, k4 = 0, k5 = 0, L1 = 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

.

A.3.0 The Remaining Simple Systems for Model

M7

S2 =
{

L1 S1 S2 − L2 S2
1 − S2

2 + (S3
1 − S1 S2) k1 = 0, k3 S1 + L1 S1 − S2 = 0,

− L1 S1 S2 + L2 S2
1 + S2

2 + (S3
1 − S1 S2) k2 = 0, k4 S1 − S2

1 + S2 = 0, k5 + S1 = 0,

L1 S1 − S2 ̸= 0, L3 = 0, S3
1 − S1 S2 ̸= 0, S2 ̸= 0

}
,

S3 =
{

L1 S2
1 − L2 S1 − S1 S2 + (S2

1 − S2) k1 = 0, −L1 S1 S2 + L2 S2
1 + S2

2 + (S3
1 − S1 S2) k2 = 0,

k3 = 0, k4 S1 − S2
1 + S2 = 0, k5 + S1 = 0, L1 S1 − S2 ̸= 0, L3 = 0, S3

1 − S1 S2 ̸= 0, S2 ̸= 0
}

,

S4 =
{
− 2 L2 S2

1 − S2
1 S2 + 2 L3 S1 − S2

2 + (2 S3
1 − 2 S1 S2) k1 + (S3

1 + S1 S2) L1 = 0,

− L1 S1 S2 + L2 S2
1 − L3 S1 + S2

2 + (S3
1 − S1 S2) k2 = 0, 2 k3 S1 + L1 S1 − S2 = 0,

k4 S1 − S2
1 + S2 = 0, k5 + S1 = 0, L2

1 S2
1 − 2 L1 S1 S2 − 4 L3 S1 + S2

2 = 0,

L3 ̸= 0, S3
1 − S1 S2 ̸= 0, S2 ̸= 0

}
,

S5 =
{
− L2 S1 + (S2

1 − S2) k1 = 0, L2 S1 + (S2
1 − S2) k2 = 0, k3 = 0, k4 S1 − S2

1 + S2 = 0,

k5 + S1 = 0, L1 S1 − S2 = 0, L3 = 0, S3
1 − S1 S2 ̸= 0, S2 ̸= 0

}
,

S6 =
{

k1 S2
1 + k3 S2

1 + L1 S2
1 − L2 S1 + L3 = 0, k2 S2

1 + L2 S1 − L3 = 0, k4 − S1 = 0,

k2
3 S1 + k3 L1 S1 + L3 = 0, k5 + S1 = 0, L2

1 S1 − 4 L3 ̸= 0, L3 ̸= 0, S1 ̸= 0, S2 = 0
}

,

S7 =
{

k1 S1 − L2 = 0, k2 S1 + L2 = 0, k3 + L1 = 0, k4 − S1 = 0, k5 + S1 = 0, L1 ̸= 0, L3 = 0,

S1 ̸= 0, S2 = 0
}

,

S8 =
{

k1 S1 + L1 S1 − L2 = 0, k2 S1 + L2 = 0, k3 = 0, k4 − S1 = 0, k5 + S1 = 0, L1 ̸= 0,

L3 = 0, S1 ̸= 0, S2 = 0
}

,

S9 =
{

2 k1 S2
1 + L1 S2

1 − 2 L2 S1 + 2 L3 = 0, k2 S2
1 + L2 S1 − L3 = 0, 2 k3 + L1 = 0, k4 − S1 = 0,
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k5 + S1 = 0, L2
1 S1 − 4 L3 = 0, L3 ̸= 0, S1 ̸= 0, S2 = 0

}
,

S10 =
{

k1 S1 − L2 = 0, k2 S1 + L2 = 0, k3 = 0, k4 − S1 = 0, k5 + S1 = 0, L1 = 0, L3 = 0,

S1 ̸= 0, S2 = 0
}

,

S11 =
{

k1 S1 S2 + k2 S1 S2 + k3 S1 S2 + L2 S2 − L3 S1 = 0, k4 = 0, k5 + S1 = 0,

k2
3 S1 S2 + L3 S2 + (L2 S2 − L3 S1) k3 = 0, L1 S1 S2 − L2 S2 + L3 S1 − S2

2 = 0,

L2
2 S2 − 2 L2 L3 S1 − 4 L3 S1 S2 + L2

3 ̸= 0, L3 ̸= 0, S2
1 − S2 = 0, S2 ̸= 0

}
,

S12 =
{

k1 + k2 = 0, k3 S1 + L2 = 0, k4 = 0, k5 + S1 = 0, L1 S1 − L2 − S2 = 0, L2 ̸= 0,

L3 = 0, S2
1 − S2 = 0, S2 ̸= 0

}
,

S13 =
{

k1 S1 + k2 S1 + L2 = 0, k3 = 0, k4 = 0, k5 + S1 = 0, L1 S1 − L2 − S2 = 0, L2 ̸= 0,

L3 = 0, S2
1 − S2 = 0, S2 ̸= 0

}
,

S14 =
{

2 k1 S1 S2 + 2 k2 S1 S2 + L2 S2 − L3 S1 = 0, 2 k3 S1 S2 + L2 S2 − L3 S1 = 0, k4 = 0,

k5 + S1 = 0, L1 S1 S2 − L2 S2 + L3 S1 − S2
2 = 0, L2

2 S2 − 2 L2 L3 S1 − 4 L3 S1 S2 + L2
3 = 0,

L3 ̸= 0, S2
1 − S2 = 0, S2 ̸= 0},

S15 =
{

k1 + k2 = 0, k3 = 0, k4 = 0, k5 + S1 = 0, L1 S1 − S2 = 0, L2 = 0, L3 = 0,

S2
1 − S2 = 0, S2 ̸= 0

}
,

S16 =
{

k1 k4 − k2
3 − k3 L1 − L2 = 0, k2 k4 + k2

3 + k2
4 + k4 L1 + (k4 + L1) k3 + L2 = 0, k4 ̸= 0,

k5 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S17 =
{

k1 + k2 + k3 + L1 = 0, k2
3 + k3 L1 + L2 = 0, k4 = 0, k5 = 0, L2

1 − 4 L2 ̸= 0, L2 ̸= 0,

L3 = 0, S1 = 0, S2 = 0
}

,

S18 =
{

k1 + k2 = 0, k3 + L1 = 0, k4 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S19 =
{

k1 + k2 + L1 = 0, k3 = 0, k4 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S20 =
{

2 k1 + 2 k2 + L1 = 0, 2 k3 + L1 = 0, k4 = 0, k5 = 0, L2
1 − 4 L2 = 0, L2 ̸= 0,

L3 = 0, S1 = 0, S2 = 0
}

,

S21 =
{

k1 + k2 = 0, k3 = 0, k4 = 0, k5 = 0, L1 = 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

.
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A.4.0 The Remaining Simple Systems for Model

M8

S2 =
{

k1 = 0, −L1 S2
1 + L2 S1 + S1 S2 + (L1 S1 − S2) k3 = 0,

L1 S1 S2 − L2 S2
1 − S2

2 + (L1 S2
1 − S1 S2) k4 = 0, L1 S1 + S1 k2 − S2 = 0, k5 + S1 = 0,

L1 S1 − S2 ̸= 0, L3 = 0, S1 ̸= 0
}

,

S3 =
{
(L1 S1 − S2) k1 + 2 L3 = 0,

2 L2 S2
1 + S2

1 S2 − 2 L3 S1 + S2
2 + (L1 S2

1 − S1 S2) k3 + (−S3
1 − S1 S2) L1 = 0,

2 L1 S1 S2 − 2 L2 S2
1 + 2 L3 S1 − 2 S2

2 + (L1 S2
1 − S1 S2) k4 = 0, L1 S1 + 2 S1 k2 − S2 = 0,

k5 + S1 = 0, L2
1 S2

1 − 2 L1 S1 S2 − 4 L3 S1 + S2
2 = 0, L3 ̸= 0, S1 ̸= 0

}
,

S4 =
{

L2 S1 + S2 k1 = 0, −S2
1 + S1 k3 + S1 k4 + S2 = 0, k2 = 0, k5 + S1 = 0,

L1 S1 S2 − L2 S2
1 − S2

2 = 0, L3 = 0, S1 ̸= 0, S2 ̸= 0
}

,

S5 =
{

k1 + L1 = 0, k3 + k4 − S1 = 0, k2 = 0, k5 + S1 = 0, L2 = 0, L3 = 0, S1 ̸= 0, S2 = 0
}

,

S6 =
{

k1 + k3 + k4 + k2 + L1 = 0,

k2
3 + k2

4 + k2
2 + k2 L1 + (2 k4 + k2 + L1) k3 + (2 k2 + L1) k4 + L2 = 0,

− L2
1 + 2 L1 k2 + 3 k2

2 + 4 k2 k4 + 4 L2 ̸= 0, k2 ̸= 0, k5 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S7 =
{

k1 + k3 + k4 + L1 = 0, k2
3 + k2

4 + k4 L1 + (2 k4 + L1) k3 + L2 = 0, k2 = 0, k5 = 0,

L2
1 − 4 L2 ̸= 0, L2 ̸= 0, L3 = 0, S1 = 0, S2 = 0

}
,

S8 =
{

k1 = 0, k3 + k4 + L1 = 0, k2 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S9 =
{

k1 + L1 = 0, k3 + k4 = 0, k2 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S10 =
{

2 k1 + k2 + L1 = 0, L2
1 − k2

2 + 4 k2 k3 − 4 L2 = 0,

− L2
1 + 2 L1 k2 + 3 k2

2 + 4 k2 k4 + 4 L2 = 0, k2 ̸= 0, k5 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S11 =
{

2 k1 + L1 = 0, 2 k3 + 2 k4 + L1 = 0, k2 = 0, k5 = 0, L2
1 − 4 L2 = 0, L2 ̸= 0,

L3 = 0, S1 = 0, S2 = 0
}

,

S12 =
{

k1 = 0, k3 + k4 = 0, k2 = 0, k5 = 0, L1 = 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

.
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A.5.0 The Remaining Simple Systems for Model

M3

S2 =
{
− L1 S2

1 + L2 S1 + S1 S2 + (L1 S1 − S2) k3 = 0, k1 = 0,

L1 S1 S2 − L2 S2
1 − S2

2 + (L1 S2
1 − S1 S2) k4 = 0, k2 S1 + L1 S1 − S2 = 0, k5 + S1 = 0,

L1 S1 − S2 ̸= 0, L3 = 0, S1 ̸= 0
}

,

S3 =
{

L1 S1 S2 − L2 S2
1 − S2

2 + (L1 S2
1 − S1 S2) k3 = 0, k1 S1 + L1 S1 − S2 = 0,

− L1 S2
1 + L2 S1 + S1 S2 + (L1 S1 − S2) k4 = 0, k2 = 0, k5 + S1 = 0, L1 S1 − S2 ̸= 0,

L3 = 0, S1 ̸= 0
}

,

S4 =
{

k3 S1 + k4 S1 − S2
1 + S2 = 0, L2 S1 + (S2

1 + S2) k1 − L3 = 0, k5 + S1 = 0,

L2 S1 + (S2
1 + S2) k2 − L3 = 0, −2 L2 S2

1 − S2
1 S2 + 2 L3 S1 − S2

2 + (S3
1 + S1 S2) L1 = 0,

L2
2 S3

1 − 2 L2 L3 S2
1 + L2

3 S1 + (−S4
1 − 2 S2

1 S2 − S2
2) L3 = 0, L3 ̸= 0, S3

1 + S1 S2 ̸= 0, S2 ̸= 0
}

,

S5 =
{

k3 S1 + k4 S1 − S2
1 + S2 = 0, k1 = 0, k2 = 0, k5 + S1 = 0, L1 S1 − S2 = 0, L2 = 0,

L3 = 0, S3
1 + S1 S2 ̸= 0, S2 ̸= 0

}
,

S6 =
{

k3 + k4 − S1 = 0, k1 S2
1 + L2 S1 − L3 = 0, k2 S2

1 + L2 S1 − L3 = 0, k5 + S1 = 0,

L1 S2
1 − 2 L2 S1 + 2 L3 = 0, L2

2 S2
1 − L3 S3

1 − 2 L2 L3 S1 + L2
3 = 0, L3 ̸= 0, S1 ̸= 0, S2 = 0

}
,

S7 =
{

k3 + k4 − S1 = 0, k1 = 0, k2 = 0, k5 + S1 = 0, L1 = 0, L2 = 0, L3 = 0, S1 ̸= 0,

S2 = 0
}

,

S8 =
{

k3 S1 + k4 S1 + 2 S2 = 0, 2 k1 S1 + L1 S1 − S2 = 0, 2 k2 S1 + L1 S1 − S2 = 0, k5 + S1 = 0,

L2
1 S2 + 2 L1 S1 S2 + 4 L3 S1 − S2

2 = 0, L2 S2 + L3 S1 = 0, L3 ̸= 0, S2
1 + S2 = 0, S2 ̸= 0

}
,

S9 =
{

k3 S1 + k4 S1 + 2 S2 = 0, k1 = 0, k2 = 0, k5 + S1 = 0, L1 + S1 = 0, L2 = 0, L3 = 0,

S2
1 + S2 = 0, S2 ̸= 0

}
,

S10 =
{

k3 k4 + k2
4 + k2

2 + k2 L1 + (2 k2 + L1) k4 + L2 = 0, k1 k4 − k4 k2 − k2
2 − k2 L1 − L2 = 0,

k4 ̸= 0, k5 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S11 =
{

k3 + k1 + k2 + L1 = 0, k4 = 0, k2
2 + k2 L1 + L2 = 0, k5 = 0, L2

1 − 4 L2 ̸= 0, L2 ̸= 0,

L3 = 0, S1 = 0, S2 = 0
}

,
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S12 =
{

k3 + k1 = 0, k4 = 0, k2 + L1 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S13 =
{

k3 + k1 + L1 = 0, k4 = 0, k2 = 0, k5 = 0, L1 ̸= 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

,

S14 =
{

2 k3 + 2 k1 + L1 = 0, k4 = 0, 2 k2 + L1 = 0, k5 = 0, L2
1 − 4 L2 = 0, L2 ̸= 0,

L3 = 0, S1 = 0, S2 = 0
}

,

S15 =
{

k3 + k1 = 0, k4 = 0, k2 = 0, k5 = 0, L1 = 0, L2 = 0, L3 = 0, S1 = 0, S2 = 0
}

.
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