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Normandie

Rapporteuse

CLARYSSE PATRICK Directeur de Recherche CNRS, CREATIS Président et Rapporteur
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N◦ 0 0 1





ABSTRACT

Deep learning-based segmentation methods have shown promise in automating the seg-

mentation of cardiac MRI images, but they still face challenges in robustly segmenting

small, and ambiguous regions with irregular shapes like myocardial scars. Additionally,

these models struggle with domain shifts and out-of-distribution (OOD) samples, which

makes them unreliable and limits their usage in clinical practice. The main objective of

this thesis is to enhance the robustness and reliability of deep learning models for cardiac

MRI segmentation and analysis by leveraging uncertainty estimates.

To improve the segmentation of myocardial scars, a segmentation model is proposed that

integrates uncertainty information into the learning process. Uncertainty estimation is

achieved by utilizing Monte-Carlo dropout-based Bayesian neural networks during train-

ing, which are then incorporated into the loss function. This approach yields improved

segmentation accuracy and probability calibration, achieving state-of-the-art performance

on publicly available datasets focused on scar segmentation from Late Gadolinium En-

hancement (LGE) MRI. The method demonstrates superior performance, particularly for

visually challenging images with higher epistemic uncertainty.

To enhance the reliability of segmentation models, an uncertainty-based quality control

(QC) framework is introduced to identify failed segmentations before further analysis. The

QC framework utilizes a Bayesian Swin transformer-based U-Net for the segmentation of

T1 mapping images and employs image-level uncertainty features to detect poorly seg-

mented images. Experimental results on private and public datasets demonstrate that the

proposed QC method significantly outperforms other state-of-the-art uncertainty-based

QC methods, particularly in challenging scenarios. After rejecting inaccurate segmenta-

tions, T1 mapping, and Extracellular volume (ECV) values are automatically computed,

enabling reliable characterization of myocardial tissues in healthy and pathological cases.

Furthermore, a post-hoc OOD detection method is proposed to identify and reject outlier

images. This method utilizes the encoder features of the segmentation model and similar-

ity metrics to enhance the trustworthiness of segmentation models. Experimental results

demonstrate that the proposed method outperforms state-of-the-art feature space-based

and uncertainty-based OOD detection methods across the various OOD datasets. This

further safeguards performance by rejecting unsuitable outliers.

Keywords: Cardiac MRI Segmentation, Myocardial scar, T1 mapping MRI, LGE MRI,

ECV, Uncertainty Estimation, Quality Control, Out-of-distribution (OOD) detection
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RÉSUMÉ

Les méthodes de segmentation basées sur l’apprentissage profond se sont révélées

prometteuses pour automatiser la segmentation des images IRM cardiaques, mais elles

sont toujours confrontées à des défis pour segmenter de manière robuste des régions pe-

tites et ambiguës aux formes irrégulières comme les cicatrices myocardiques. De plus,

ces modèles sont confrontés aux changements de domaine et aux échantillons hors dis-

tribution (OOD), ce qui les rend peu fiables et limite leur utilisation dans la pratique clin-

ique. L’objectif principal de cette thèse est d’améliorer la robustesse et la fiabilité des

modèles d’apprentissage profond pour la segmentation et l’analyse d’IRM cardiaque en

exploitant les estimations d’incertitude.

Pour améliorer la segmentation des cicatrices myocardiques, un modèle de segmentation

est proposé qui intègre les informations d’incertitude dans le processus d’apprentissage.

L’estimation de l’incertitude est obtenue en utilisant des réseaux neuronaux bayésiens

basés sur une méthode Monté Carlo Drop out pendant la formation, qui sont ensuite

incorporés dans la fonction de perte. Cette approche permet d’améliorer la précision

de la segmentation et l’étalonnage des probabilités, obtenant ainsi des performances de

l’état de l’art sur des ensembles de données accessibles au public axés sur la segmen-

tation des cicatrices à partir de l’IRM avec rehaussement tardif au gadolinium (LGE).

La méthode démontre des performances supérieures, en particulier pour les images vi-

suellement difficiles avec une incertitude épistémique plus élevée.

Pour améliorer la fiabilité des modèles de segmentation, un cadre de contrôle qualité

(CQ) basé sur l’incertitude est introduit pour identifier les segmentations ayant échoué

avant une analyse plus approfondie. Le cadre CQ utilise un U-Net basé sur un Trans-

former bayésien Swin pour la segmentation des images cartographiques T1 et utilise

des caractéristiques d’incertitude au niveau de l’image pour détecter les images mal

segmentées. Les résultats expérimentaux sur des ensembles de données privés et

publics démontrent que la méthode de CQ proposée surpasse considérablement les

autres méthodes de CQ de l’état de l’art basées sur l’incertitude, en particulier dans des

scénarios difficiles. Après avoir rejeté les segmentations inexactes, la cartographie T1 et

les valeurs du volume extracellulaire (ECV) sont automatiquement calculées, permettant

une caractérisation fiable des tissus myocardiques dans les cas sains et pathologiques.

De plus, une méthode de détection OOD post-hoc est proposée pour identifier et rejeter

les images aberrantes. Cette méthode utilise les fonctionnalités d’encodeur du modèle de
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segmentation et les métriques de similarité pour améliorer la fiabilité des modèles de seg-

mentation. Les résultats expérimentaux démontrent que la méthode proposée surpasse

les méthodes de détection OOD de l’état de l’art basées sur l’espace des caractéristiques

et l’incertitude dans les différents ensembles de données OOD. Cela garantit davantage

les performances en rejetant les valeurs aberrantes inappropriées.

Mots clés: Segmentation IRM cardiaque, cicatrice myocardique, IRM de cartographie

T1, IRM LGE, volume extracellulaire, estimation de l’incertitude, contrôle qualité (CQ),

détection hors distribution (OOD)
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INTRODUCTION

The introduction chapter of this thesis begins with a presentation of the main motivations

behind the research and an overview of the proposed solutions including the contributions

of the thesis. The chapter concludes with a thesis outline that provides a brief summary

of the subsequent chapters and the key works that will be presented, which includes a

list of publications resulting from the research conducted.

1.1/ MOTIVATION AND CONTRIBUTIONS

Cardiovascular diseases (CVDs) are a group of diseases that affect the heart and blood

vessels, and they are the leading cause of death globally, accounting for 31% of all deaths

[WHO, 2017]. Heart attacks and strokes account for the majority of deaths from cardio-

vascular diseases. To diagnose and evaluate these diseases, medical imaging tech-

niques, such as Cardiovascular Magnetic Resonance (CMR) imaging, cardiac computed

tomography (CT), and echocardiography, are frequently used. These imaging techniques

help clinicians to non-invasively assess the qualitative and quantitative characteristics of

cardiac anatomical structures and functions [Chen et al., 2019b].

Compared to other cardiac imaging modalities, cardiovascular magnetic resonance

(CMR) imaging is widely recognized as the gold-standard non-invasive imaging tool

for many CVDs. It is particularly effective in visualizing and measuring cardiovascu-

lar anatomy, volumes, and function, as well as in characterizing myocardial tissues

[Schulz-Menger et al., 2020]. This is due to the fact that CMR provides superior image

quality with excellent soft tissue contrast and allows for multi-planar imaging, which helps

it to provide a more comprehensive view of the heart and blood vessels from different

angles. Moreover, it does not use ionizing radiation, unlike cardiac CT, which can expose

patients to potentially harmful levels of radiation [Ripley et al., 2016, Bai et al., 2017].

To extract relevant information from the CMR images, medical experts have been man-

ually segmenting the cardiac structures and pathologies in their clinical workflow. The

3
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obtained information is essential for the diagnosis, management, treatment planning, and

prognosis evaluation of CVDs. For example, Native T1 mapping and extracellular volume

(ECV) values which are extracted from cardiac structures of native and post-contrast car-

diac T1 mapping CMR images, can be used to quantify diffuse myocardial fibrosis and

to characterize myocardial tissues [Arega et al., 2023a]. However, a trained expert may

spend up to 20 minutes analyzing images of a single subject at two points in the cardiac

cycle [Bai et al., 2017], which can be tiresome and tedious, and may suffer from intra-

and inter-expert variability. The inter-observer variability can even increase more when

the images have low quality and are more challenging. This shows the need for auto-

matic, precise, and reliable segmentation of cardiac images to assist clinicians in their

workflow.

Recently, deep learning-based segmentation methods have shown remarkable progress

in the automatic segmentation of cardiac structures like the left-ventricular blood pool

(LV), myocardium (MYO), and right-ventricular blood pool (RV). This is because these

structures have a relatively consistent shape and structure that makes them easier to seg-

ment by deep learning models. However, accurately segmenting myocardial scars from

CMR images is more challenging, as these scars have irregular shapes, small sizes, and

lack contrast with the surrounding region [Lalande et al., 2021]. Therefore, deep learning-

based segmentation methods for CMR image segmentation, particularly for pathologies

such as myocardial scars, need further improvements to segment the images robustly.

Although deep learning-based segmentation methods have demonstrated significant po-

tential in CMR images, they are not widely used in clinical practice for several reasons.

One of the primary reasons is that the models are not robust and reliable enough to han-

dle domain shifts or out-of-distribution (OOD) samples. Various factors can influence the

performance of segmentation models. One of these can be image quality deterioration

during acquisition resulting in image artifacts like ghosting, blurring, and smearing. These

artifacts can arise from factors related to the scanner, patient physiology, or acquisition

settings [Galati et al., 2022]. Other factors that can impact the performance of segmenta-

tion models include changes in demographics, modalities, acquisition protocols, scanner

vendors, anatomical variability, or even adversarial attacks that alter the input images’

statistical properties [Galati et al., 2022]. These complexities can cause segmentation

models to produce inaccurate results, potentially leading to incorrect clinical decisions.

While techniques like data augmentation and image harmonization can enhance gener-

alization, models will inevitably encounter unfamiliar shifts. Regardless of the model’s

performance, there will always be cases where it is unsuitable for accurate predictions.

This poses a challenge for deploying segmentation networks as it can result in silent

failures that go undetected [González, 2023]. Therefore, it is crucial to develop quality

control methods that can detect failed segmentation results from In-distribution (ID) im-
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ages, as well as OOD detection techniques that can identify and reject images that are

significantly different from the ID images. In this thesis, different deep learning-based

methods are proposed to address these issues in cardiac Magnetic Resonance Imaging

(MRI) segmentation using different approaches. To improve the segmentation of cardiac

pathologies such as myocardial scar, we proposed a segmentation model that leverages

uncertainty estimates during training. The proposed method generates uncertainty esti-

mates using Monte-Carlo dropout during training and incorporates it into the loss func-

tion to improve the segmentation accuracy and probability calibration. The experimen-

tal results show that the proposed method outperforms the top-ranked methods of the

challenge and improves the segmentation results, particularly in visually challenging and

difficult images with higher epistemic uncertainty.

To identify failed segmentation results and improve the reliability of segmentation models,

we proposed an uncertainty-based quality control framework for T1 mapping and extra-

cellular volume (ECV) analysis. The proposed framework consists of three parts: seg-

mentation of cardiac structures using a Bayesian Swin transformer-based U-Net, a novel

uncertainty-based quality control method to detect inaccurate segmentation results, and

automatic computation of T1 mapping and ECV values to characterize myocardial tissues.

The proposed quality control method utilizes image-level uncertainty features as input to

a random forest-based classifier/regressor to determine the quality of the segmentation

outputs. The experimental results show that the proposed QC method outperforms other

state-of-the-art uncertainty-based QC methods and achieves an excellent agreement with

the manually computed myocardial T1 and ECV values.

Lastly, to detect and reject OOD images that are far from the ID images and enhance the

trustworthiness of the models, we proposed a post-hoc out-of-distribution (OOD) detec-

tion method that can be used with any pre-trained segmentation model. The proposed

method leverages features extracted from the segmentation model’s encoder blocks and

employs Mahalanobis distance as a metric to measure the similarity between the input

image and the validation set of in-distribution images. The experimental results show that

the proposed method outperforms existing feature space-based and uncertainty-based

OOD detection methods across various OOD datasets. The proposed method success-

fully detects near, mild, and far OOD images with high detection accuracy, showcasing the

advantage of using the multi-scale and semantically rich representations of the encoder.

During the Ph.D., we also participated in three cardiac MR image segmentation MICCAI

challenges. These three challenges involve the segmentation of cardiac structures from

Multi-disease, Multi-center, and Multi-view Cardiac MR images (M&M2 2021 challenge)

and from Cardiac MR images with Motion Artifacts (CMRxMotion 2022 challenge) and

left atrial and scar quantification and segmentation from multi-center cardiac MR images

(LAScarQS 2022 challenge). We won the LAScarQS 2022 challenge and ranked second
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in the M&M2 2021 and CMRxMotion 2022 (in segmentation task) challenges. The details

of the proposed methods that are used to solve the challenges can be found in Appendix

A.

1.2/ THESIS OUTLINE

The remainder of the thesis is organized as follows:

Chapter 2 and 3 provide the necessary background on the clinical context, technical

methods, and problem domain central to this thesis. Chapter 2 overviews relevant car-

diac anatomy, physiology, and major cardiovascular diseases to establish the clinical mo-

tivation. Common diagnostic approaches and imaging modalities like cardiac MRI and

echocardiography used to assess these diseases are discussed. Public datasets in car-

diac MRI are also briefly highlighted. Chapter 3 provides the necessary background on

deep learning and uncertainty estimation techniques, along with a review of state-of-the-

art methods in cardiac MRI analysis. First, core machine and deep learning concepts

are introduced, including neural network architectures, training procedures, and evalua-

tion metrics. A literature review on recent developments for deep learning-based cardiac

MRI segmentation is also conducted. Finally, different uncertainty estimation techniques

are introduced, along with their application to medical image analysis tasks. These two

chapters lay the groundwork for the proposed methods detailed in subsequent chapters

(Chapters 4 - 6).

Chapters 4 - 6 discuss the main contributions of this thesis. Chapter 4 details the first

contribution which proposes a novel segmentation model that leverages uncertainty es-

timates during the learning process. It employs Monte Carlo dropout to generate uncer-

tainty estimates (sample variance) during training and incorporates this information into

the loss function. This integration aims to enhance segmentation accuracy and proba-

bility calibration. The proposed method is validated on two publicly available datasets,

namely EMIDEC MICCAI 2020 and LAScarQS MICCAI 2022. These datasets focus on

segmenting infarcted myocardium and left atrial (LA) scars from LGE MRI.

Chapter 5 discusses the issue of incorrect segmentation results generated by deep

learning-based methods in cardiac MR. It emphasizes the importance of accurate seg-

mentation for downstream tasks, such as myocardial tissue characterization, and high-

lights the need for quality control methods to detect and reject failed segmentations before

further analysis. It proposes a fully automatic framework for quality control in T1 mapping

and extracellular volume (ECV) analysis. The framework consists of three parts. Firstly,

it focuses on segmenting cardiac structures from native and post-contrast T1 mapping

datasets using a Bayesian Swin transformer-based U-Net, achieving accurate initial seg-
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mentations. It, then, introduces a novel uncertainty-based Quality Control (QC) method

to detect inaccurate segmentation results. The QC method utilizes image-level uncer-

tainty features as input to a random forest-based classifier to determine the quality of

the segmentation outputs. After detecting and rejecting inaccurate segmentation results,

it presents the automatic computation of T1 mapping and ECV values to characterize

myocardial tissues in healthy and cardiac pathological cases.

Chapter 6 addresses the challenge of handling input images that deviate from the training

distribution. It presents a novel post-hoc out-of-distribution (OOD) detection method that

can be used with any pre-trained segmentation model. The proposed method leverages

multi-scale representations extracted from the encoder blocks of the segmentation model.

It utilizes the Mahalanobis distance as a metric to measure the similarity between the

input image and the in-distribution images used during pre-training. The detection perfor-

mance of the proposed method is compared with the state-of-the-art feature space-based

and uncertainty-based OOD detection methods on 13 different OOD datasets, catego-

rized as near, mild, and far OOD datasets based on their similarity to the in-distribution

dataset.

Finally, Chapter 7 concludes the work presented in this thesis and discusses some limi-

tations and potential future work.

1.3/ PUBLICATIONS

The work of this thesis is mainly based on the following three research publications:

1. Arega, T. W., Bricq, S., & Meriaudeau, F. (2023). Post-hoc Out-of-Distribution
Detection for Cardiac MRI Segmentation, Computers in Biology and Medicine

[under review]

2. Arega, T.W., Bricq, S., Grand, F.L., Jacquier, A., Lalande, A., & Mériaudeau,

F. (2023). Automatic uncertainty-based quality controlled T1 mapping and
ECV analysis from native and post-contrast cardiac T1 mapping images
using Bayesian vision transformer. Medical image analysis, 86, 102773

[Arega et al., 2023a]

3. Arega, T. W., Bricq, S., & Meriaudeau, F. (2021). Leveraging uncertainty esti-
mates to improve segmentation performance in cardiac MR. In Uncertainty for

Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Pla-

cental and Preterm Image Analysis: 3rd International Workshop, UNSURE 2021,

and 6th International Workshop, PIPPI 2021, Held in Conjunction with MICCAI

2021, Strasbourg, France, October 1, 2021, Proceedings 3 (pp. 24-33). Springer
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International Publishing. [Arega et al., 2021a]

During the Ph.D., the following peer-reviewed journals and conferences were published

in which I was either the first author or contributing author. While these works are related

to the topics and aims of this thesis, they are not directly included in the thesis itself.

1. Arega, T. W., Bricq, S., Legrand, F., Jacquier, A., Lalande, A., & Meriaudeau, F.

(2023). Uncertainty-based Quality Controlled T1 Mapping and ECV Analysis
using Bayesian Vision Transformer. In Medical Imaging with Deep Learning,

short paper track. [Arega et al., 2023b]

2. Martı́n-Isla, C., Campello, V.M., Izquierdo, C., Kushibar, K., Sendra-Balcells, C.,

Gkontra, P., Sojoudi, A., Fulton, M.J., Arega, T.W., Punithakumar, K., Li, L., Sun, X.,

Khalil, Y.A., Liu, D., Jabbar, S., Queirós, S., Galati, F., Mazher, M., Gao, Z., Beetz,

M., Tautz, L., Galazis, C., Varela, M., Hullebrand, M., Grau, V., Zhuang, X., Puig,

D., Zuluaga, M.A., Mohy-ud-Din, H., Metaxas, D.N., Breeuwer, M.M., Geest, R.J.,

Noga, M.L., Bricq, S., Rentschler, M.E., Guala, A., Petersen, S.E., Escalera, S.,

Palomares, J.F., & Lekadir, K. (2023). Deep Learning Segmentation of the Right
Ventricle in Cardiac MRI: The M&Ms Challenge. IEEE Journal of Biomedical and

Health Informatics, 27, 3302-3313. [Martı́n-Isla et al., 2023]

3. Li, L., Wu, F., Wang, S., Luo, X., Martı́n-Isla, C., Zhai, S., Zhang, J., Liu7, Y.,
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2

BACKGROUND: CLINICAL CONTEXT

This chapter provides relevant clinical background on cardiac anatomy, major cardiovas-

cular diseases, diagnostic approaches, and cardiac imaging modalities. First, normal car-

diac anatomy is reviewed, including heart walls, chambers, valves, arteries, and electrical

conduction. Next, various cardiovascular diseases, such as myocardial infarction, dilated

cardiomyopathy, hypertrophic cardiomyopathy, Takotsubo cardiomyopathy, and myocardi-

tis are introduced. Standard techniques for diagnosing these cardiac conditions are then

discussed. Finally, key cardiac imaging modalities are described, with a focus on mag-

netic resonance imaging and its applications in cine imaging, late gadolinium enhance-

ment, and T1 mapping. Public datasets in cardiac MRI are also briefly summarized.

Together, this background establishes core knowledge of the clinical context relevant to

the main contributions of the thesis which are presented in later chapters.

2.1/ CARDIAC ANATOMY

The heart is a muscular organ that circulates blood in the body through the vascular or

circulatory system. It is responsible for pumping blood and ensuring the circulation of

oxygen, nutrients, hormones, and other essential substances throughout the body. The

human heart is located within the thoracic cavity, medially between the lungs in the space

known as the mediastinum, and it is surrounded by the pericardium, a two-layered pro-

tective sac [Foundation, 2017]. The heart’s anatomy can be divided into different parts,

including the walls, chambers, valves, coronary arteries, and electrical conduction sys-

tem, as shown in Figure 2.1 (A).

2.1.1/ HEART WALLS

The heart walls are the muscles that contract and relax to send blood throughout the

body. The heart walls consist of three layers, namely the endocardium, the myocardium,

11
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and the epicardium, as shown in Figure 2.1 (B). The endocardium is an inner layer of thin

cells that line the heart’s chambers and valves. The myocardium is the thick, muscular

layer that contracts to pump blood throughout the body. The epicardium is the outermost

layer, covering the surface of the heart [Foundation, 2017, Schülke, 1968].

The heart is divided into left and right sides by a layer of muscular tissue called the

septum. The interatrial septum separates the atria, while the interventricular septum

separates the ventricles. This separation prevents oxygenated and deoxygenated blood

from mixing [Guo, 2017].

Figure 2.1: A) Internal structures of the heart, showing an anterior view of the four cham-
bers, major vessels, and their branches, along with the valves. B) Pericardial membranes
and layers of the heart wall. Image adapted from [Schülke, 1968].

2.1.2/ HEART CHAMBERS

The heart is comprised of four chambers. It has two chambers on the top (atria) and two

on the bottom (ventricles), one on each side of the heart, as shown in Figure 2.1 (A). The

heart has two atria, the right atrium, and the left atrium. The atria receive blood returning

to the heart. The right atrium receives deoxygenated blood from the body through the

superior and inferior vena cava. The left atrium receives oxygenated blood from the lungs

through the pulmonary veins. The heart also has two ventricles, the right ventricle, and

the left ventricle. The ventricles pump blood out of the heart. The right ventricle pumps

deoxygenated blood to the lungs through the pulmonary artery, while the left ventricle

pumps oxygenated blood to the rest of the body through the aorta [Callie Tayrien, 2023].

2.1.3/ HEART VALVES

Heart valves are structures that help regulate the flow of blood through the heart. There

are four heart valves in the human heart: the tricuspid valve, the pulmonary valve, the

mitral valve, and the aortic valve. The tricuspid valve is located between the right atrium

and right ventricle, while the mitral (or bicuspid) valve is situated between the left atrium
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and left ventricle. They prevent the backflow of blood into the atria when the ventricles

contract. The pulmonary valve is on the right side of the heart, at the entrance to the

pulmonary artery, preventing the backflow of blood from the artery into the right ventricle.

The aortic valve is on the left side of the heart, at the entrance to the aorta, preventing

the backflow of blood from the aorta into the left ventricle [Callie Tayrien, 2023].

2.1.4/ CORONARY ARTERY

Coronary arteries are blood vessels that supply oxygenated blood to the heart muscle

(myocardium). A constant supply of oxygen and nutrients is required for the proper

functioning of the heart muscle, and this vital task is carried out by the coronary arter-

ies. These essential substances are delivered to the heart muscle through two main

branches, namely the left coronary artery and the right coronary artery, which originate

from the aorta [Callie Tayrien, 2023].

2.1.5/ ELECTRICAL CONDUCTION SYSTEM

The heart has its own electrical conduction system that coordinates and regulates its

rhythm. It ensures synchronized contractions of the atria and ventricles. The sinoatrial

(SA) node initiates the electrical impulses, causing the atria to contract. The impulses

then pass through the atrioventricular (AV) node, bundle of His, and Purkinje fibers, lead-

ing to the contraction of the ventricles [Clinic, 2021].

2.2/ CARDIOVASCULAR DISEASES

Having a thorough understanding of the heart’s anatomy is crucial for comprehending

the intricate interplay of its structures and functions. However, despite the remarkable

design of this vital organ, it is vulnerable to numerous cardiovascular diseases that can

hinder its regular operation. These conditions can impair the heart’s ability to pump blood

effectively, lead to structural abnormalities, or disrupt the electrical conduction system.

Cardiovascular diseases (CVDs) are a set of medical conditions that are defined by a

range of diseases involving the heart or blood vessels. CVDs are the leading cause of

death globally, with more people dying annually from cardiovascular disease than any

other cause, according to World Health Organization (WHO) statistics [WHO, 2017]. An

estimated 17.9 million people died from CVDs in 2019, which represents around 31% of

all global deaths. Of these deaths, heart attacks and strokes account for 85%. CVDs

can be broadly classified as coronary heart diseases (such as angina and heart attacks),
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cerebrovascular diseases (such as stroke), and peripheral arterial disease (which affects

blood flow to the limbs)[Lopez et al., 2022].

The causes of CVDs are numerous and complex, with multiple factors involved in the

development and progression of cardiovascular diseases. These factors include lifestyle

factors like tobacco use, physical inactivity, an unhealthy diet, and excessive alcohol con-

sumption, as well as medical conditions like high blood pressure, diabetes, high blood

cholesterol, obesity, and a family history of cardiovascular diseases. Age is the most im-

portant risk factor, with the risk of developing heart disease increasing with each decade

of life. As a result, older adults are at greater risk of developing cardiovascular disease

than younger adults [Rodgers et al., 2019].

There are many cardiovascular conditions that can affect the heart’s ability to function

properly. The most common ones are arrhythmia, atrial fibrillation, cardiomyopathy, con-

gestive heart failure, coronary artery disease, heart attack (myocardial infarction), and

pericarditis. Arrhythmia refers to any abnormal heart rhythm that occurs when the elec-

trical impulses that regulate the heartbeat are disrupted. Atrial fibrillation is a type of ar-

rhythmia in which the heart’s upper chambers (atria) beat irregularly and out of sync with

the lower chambers (ventricles). Cardiomyopathy refers to the thickening, enlargement,

or stiffening of the heart muscle, which can impede its proper functioning. Congestive

heart failure, on the other hand, happens when the heart is either too weak or stiff to

pump blood throughout the body efficiently. Coronary artery disease, meanwhile, is char-

acterized by the narrowing of the coronary arteries due to plaque buildup. A heart attack,

also known as a myocardial infarction, occurs when a sudden blockage in the coronary

artery cuts off oxygen supply to a part of the heart muscle. Pericarditis, which refers to

an inflammation in the heart’s lining or pericardium, can also impact the heart’s function

[NHS, 2022].

In this thesis, the focus will be directed towards CVDs that mainly impact the heart muscle.

2.2.1/ MYOCARDIAL INFARCTION

Myocardial Infarction (MI), commonly known as a heart attack, is caused by decreased or

complete cessation of blood flow to a part of the heart muscle, which can lead to damage

or death of the heart muscle cells. Most myocardial infarctions are due to underlying

coronary artery disease. This happens when there is plaque or blood clots in the coronary

artery (Figure 2.2), which is responsible for the supply of blood and oxygen to heart

muscles. As the cells are deprived of oxygen, cellular injury occurs, which leads to the

infarction or death of the cells. This condition can be asymptomatic or can cause severe

hemodynamic problems and sudden death [Ojha et al., 2022].

The no-reflow phenomenon is a condition where the blood flow is restricted or blocked
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Figure 2.2: Myocardial Infarction. Image adapted from [Tricia Kinman, 2022].

even after the occlusion has been treated. This occurs because the small blood vessels,

known as microvessels, that supply blood to the heart muscle are damaged during the

heart attack and do not function properly, leading to reduced blood flow and oxygen de-

livery to the heart muscle. This incident usually appears in a proportion of patients with

acute myocardial infarction following re-perfusion therapy of an occluded coronary artery.

It can lead to inadequate myocardial perfusion, reperfusion injury, and poor healing of the

infarct [Caiazzo et al., 2020].

2.2.2/ DILATED CARDIOMYOPATHY

Dilated cardiomyopathy (DCM) is a non-ischaemic heart muscle disease where the heart

muscle becomes weak and enlarged (Figure 2.3 (A)), which can make it harder for the

heart to pump blood properly. It is characterized by left ventricular or bi-ventricular di-

lation and impaired contraction in the absence of coronary artery disease, hyperten-

sion, valvular disease, or congenital heart disease. DCM can be caused by a variety

of factors, including genetics, infections, alcohol or drug abuse, and certain medications

[Schultheiss et al., 2019].

2.2.3/ HYPERTROPHIC CARDIOMYOPATHY

Hypertrophic cardiomyopathy (HCM) is a genetic heart condition that is characterized by

an abnormal thickening of the heart muscle, specifically of the left ventricle, as shown

in Figure 2.3 (B). It is commonly caused by changes or mutations in genes that control

heart muscle growth and function. These gene mutations lead to the thickening of the

heart muscle. This thickening can cause stiffness of the heart muscle, which can lead to
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Figure 2.3: A) Dilated cardiomyopathy B) Hypertrophic cardiomyopathy C) Myocarditis.
Image adapted from [Dhua, 2020].

problems with relaxation and filling of the heart, and can also obstruct the flow of blood

out of the heart.

2.2.4/ MYOCARDITIS

Myocarditis is an inflammation of the heart muscle (myocardium), which can have a range

of serious effects on the heart’s ability to function properly (Figure 2.3 (C)). This inflam-

mation typically occurs due to viral or bacterial infections or as a result of autoimmune

disorders. The inflammation caused by myocarditis can weaken the heart muscle and

affect the heart’s electrical system, which can lead to cardiomyopathy and arrhythmia

[Gilotra, 2023].

Myocarditis can be categorized into acute and chronic. Acute myocarditis is commonly

caused by a viral infection and has a relatively fast onset. Symptoms of acute myocarditis

may develop rapidly and can resolve quickly as well. In contrast, chronic myocarditis

occurs when the disease takes longer to treat or when symptoms reappear after initial

treatment. Chronic myocarditis may be attributed to systemic inflammatory conditions

like autoimmune disorders, where the immune system attacks the body’s healthy cells

and tissues [Gilotra, 2023].

2.2.5/ TAKOTSUBO CARDIOMYOPATHY

Takotsubo cardiomyopathy or Takotsubo syndrome (TTS) is a non-ischemic form of car-

diomyopathy that is characterized by sudden weakness or temporary weakening of the

muscular portion of the heart. It causes the heart’s main blood-plumping chamber (the

left ventricle) to change shape and get larger. This condition is usually precipitated by

a significant physical or emotional stressor. Some physical stressors that can cause

TTS include sepsis, shock, subarachnoid hemorrhage, and pheochromocytoma, whereas
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emotional stressors can include bereavement, divorce, or financial losses. TTS is also

known as stress cardiomyopathy, broken heart syndrome, apical ballooning syndrome,

and tako-tsubo syndrome, which takes its name from the Japanese word for ”octopus

trap” due to the shape of the heart during the acute phase of the disease ((Figure 2.4)

[Ghadri et al., 2018].

Figure 2.4: Takotsubo cardiomyopathy. Image adapted from [Stanley Oiseth, 2023].

2.3/ DIAGNOSING CVDS

The diagnosis of myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomy-

opathy, myocarditis, and tako-tsubo cardiomyopathy usually involves a combination of

medical history, physical examination, and diagnostic tests.

To aid in the diagnosis of myocardial infarction, an electrocardiogram (ECG) and blood

test measuring cardiac biomarkers like troponin are commonly employed. Furthermore,

imaging techniques such as echocardiograms and cardiac MRI scans are utilized to

assess the structure and function of the heart [Ojha et al., 2022]. Similarly, for dilated

cardiomyopathy and hypertrophic cardiomyopathy, echocardiograms and cardiac MRI

scans are performed to evaluate cardiac structure and function. Additionally, genetic

testing might be conducted to identify specific genetic mutations associated with these

conditions. In the case of tako-tsubo cardiomyopathy, echocardiograms, cardiac MRI

scans, or cardiac catheterization procedures are employed to assess the heart’s struc-

ture and function. These tests are instrumental in distinguishing tako-tsubo cardiomyopa-

thy from other conditions that present similar symptoms, such as myocardial infarction

[Ghadri et al., 2018]. For myocarditis, blood tests are conducted to detect signs of infec-

tion or inflammation, echocardiograms are employed to evaluate cardiac structure and

function, and cardiac MRI scans or biopsies are used to identify any inflammation or

damage to the heart muscle [Gilotra, 2023].

Preventing cardiovascular disease involves a range of lifestyle and medical interven-

tions. Lifestyle changes like quitting smoking, increasing physical activity, and adopting
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a healthy diet can help improve overall cardiovascular health. Medical interventions like

controlling high blood pressure, cholesterol, and diabetes can also help reduce the risk of

developing heart disease. In addition, early diagnosis and treatment are also critical for

reducing the impact of cardiovascular disease on health outcomes [Harvard, 2022].

2.4/ CARDIAC IMAGING

2.4.1/ CARDIAC MAGNETIC RESONANCE IMAGING (CMR)

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology that uses a

powerful magnetic field and radio waves to create detailed three-dimensional anatomical

images and is frequently used for disease detection, diagnosis, and treatment monitoring.

It works by detecting the alteration in the rotational axis of protons that exist in the water

that make up living tissues. MRI machines use powerful magnets that create a strong

magnetic field, causing protons in the body to align with that field, and when radiofre-

quency current is added to the patient’s body, the protons are excited, spinning out of

balance and resisting the magnetic field. The MRI sensors detect the energy released

as the protons realign with the magnetic field after the radio frequency field is turned

off. The length of time and amount of energy released depends on the environment

and chemical molecules in a patient’s body. The emitted signals are measured after a

certain period and converted into intensity levels using Fourier transformation which are

displayed as shades of gray in a matrix arrangement of pixels. Different types of images

can be created by varying the sequence of radiofrequency pulses applied and collected.

[National Institutes of Health, 2022].

T1 and T2 are important parameters that describe the relaxation of protons back to their

equilibrium state once the RF pulse is removed. T1 relaxation time is the time taken

for longitudinal magnetization to recover by about 63% after an RF pulse is withdrawn,

and T2 relaxation time is the time taken for transverse magnetization to decay by about

63% in excited tissues. T1 relaxation time increases with magnetic field strength, while

T2 relaxation time is less dependent on magnetic field strength. T2 values are generally

shorter than T1 values in biological tissues, and different types of tissues have different

T1 and T2 values. For instance, fat has short T1 and T2 relaxation times, fluids have long

T1 and T2 relaxation times, and non-fatty soft tissues like the myocardium have long T1

and short T2 relaxation times [Ripley et al., 2016].

During an MRI image acquisition, the patient is positioned inside a large magnet and must

remain still to avoid blurring the image. Contrast agents with Gadolinium may be given

to the patient intravenously before or during the MRI, increasing the pace at which pro-

tons realign with the magnetic field and brighter the image. MRI machines are excellent
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for imaging non-bony or soft tissues without using X-rays’ dangerous ionizing radiation.

MRI machines do not emit harmful ionizing radiation, unlike X-ray and CT imaging, mak-

ing them a safer option. The strength of the magnetic field used in MRI machines can

range from 0.2 Tesla to 3 Tesla or higher, depending on the purpose of the scan. The

higher the strength of the magnetic field, the more detailed the images that can be ob-

tained. However, the magnetic field used in MRI machines can be very strong and may

exert powerful forces on certain objects, such as those made of iron or other magnetiz-

able materials. This means that patients with certain medical conditions, such as those

with pacemakers or other implanted devices, may not be able to undergo an MRI scan

[National Institutes of Health, 2022].

A cardiac MRI is a non-invasive imaging test that uses MRI to create detailed images

of the heart and its structures, including the heart muscle, chambers, valves, and blood

vessels. It can provide important information about the size and function of the heart,

as well as the presence of any abnormalities, such as inflammation or scarring of the

heart muscle. Cardiac MRI is a valuable diagnostic tool for a wide range of heart con-

ditions, including myocardial infarction, myocarditis, hypertrophic cardiomyopathy, and

dilated cardiomyopathy. It is also used to monitor the progression of heart disease over

time and to assess the effectiveness of treatment.

There are two primary coordinate systems utilized in cardiac MRI, namely the body (scan-

ner) planes and the cardiac planes. The body planes used in cardiac MRI are positioned

perpendicular to the body’s long axis and include the axial, sagittal, and coronal planes,

as shown in Figure 2.5. These planes are useful for providing a general overview of the

heart’s anatomy. The axial plane is a horizontal plane that divides the body into upper

and lower parts. It is obtained by imaging the body from the feet to the head or vice versa.

The axial plane is used to visualize the heart from a cross-sectional view, with the images

obtained perpendicular to the long axis of the body. The coronal plane is a vertical plane

that runs from front to back, dividing the body into anterior (front) and posterior (back)

portions. The sagittal plane is a vertical plane that divides the body into left and right

portions. Sagittal images are obtained by imaging the body from one side to the other.

In cardiac MRI, the axial plane can capture images of all four chambers of the heart and

the pericardium simultaneously, while the sagittal plane can display the great vessels ex-

tending from the ventricles. The coronal plane is useful for assessing the left ventricular

outflow tract, the left atrium, and the pulmonary veins [Ginat et al., 2011].

The standard cardiac imaging planes include the short-axis, horizontal long-axis (four-

chamber view), and vertical long-axis (two-chamber view) planes, as shown in Figure

2.6. These planes are defined along a line that extends from the heart’s apex to the

center of the mitral valve (the heart’s long axis) using images of the body taken from the

axial plane. The short-axis plane is positioned at the level of the middle of the left ventricle
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Figure 2.5: The anatomical planes of MRI: axial plane, coronal plane, and sagittal plane.
Image adapted from [Ginat et al., 2011].

and is perpendicular to the true long axis of the heart. It allows for the measurement of

ventricular volumes, ejection fraction, and wall thickness. Figure 2.7 shows short axis

(SAX) images of the cardiac structures at basal, middle, and apical slices.

Figure 2.6: The orientation of main cardiac planes with respect to heart: short axis,
horizontal long axis, and vertical long axis views. Image adapted from [Ginat et al., 2011].

The horizontal long axis is created by selecting a horizontal plane that is at a right angle

to the short axis, while the vertical long axis is established by using a vertical plane

that is at a right angle to the short axis plane. The horizontal long-axis plane is a view

that shows both the left and right ventricles, the interventricular septum, the mitral and

tricuspid valves, and the atria. It is useful for assessing the function of the ventricles and

for detecting any abnormalities in the valves. The vertical long-axis plane is a view that
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Figure 2.7: Short Axis (SAX) cardiac MRI. Image adapted from [Shaaf et al., 2022].

shows the left ventricle, the left atrium, and the aortic and mitral valves. It is useful for

evaluating the left ventricular function and detecting any abnormalities in the mitral valve

[Ginat et al., 2011].

The length of a CMR scan typically varies between 30 minutes to an hour, depending

on the complexity of the referral questions being asked. During the scan, patients are

required to hold their breath for most image acquisitions, which can be as short as a few

seconds with modern fast scanners and adjusted based on the patient’s ability. To prevent

image distortion due to cardiac motion, vectorcardiogram (similar to ECG) triggering and

gating are utilized, with cine images obtained during the entire cardiac cycle (prospective

triggering or retrospective gating) and static images taken during diastole (prospective

triggering). Most images are acquired over several cardiac cycles (segmented imaging)

to mitigate the effects of arrhythmias and poor breath holding, which can degrade the

quality of the image. However, in most cases, the use of arrhythmia rejection algorithms,

non-breath holding (free breathing), or single-shot acquisition can still provide diagnostic

quality information [Ripley et al., 2016].

There are many cardiac MRI modalities. In this thesis, we will focus only on three modali-

ties: cine CMR, LGE CMR, and T1 mapping CMR. Figure 2.8 shows Cine (bSSFP), LGE,

native T1, post-contrast T1, and ECV mapping images of one patient with a CVD.
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2.4.1.1/ CINE CMR

Cine CMR is one type of cardiac MRI modality that is used to capture cardiac motion.

It provides both a structural and functional assessment of the heart and is useful in the

diagnosis and management of various cardiovascular diseases. Cine cardiac MRI can

be performed using various imaging sequences, including balanced Steady-State Free

Precession (bSSFP). bSSFP is a type of MRI sequence that uses a short repetition time

and a low flip angle gradient echo sequence to achieve a steady state of magnetizations

in which the signal from the MRI is maximized. This allows for a high signal-to-noise

ratio and rapid image acquisition. It produces images with high spatial and temporal

resolution, allowing for detailed images of the heart’s anatomy and function. bSSFP

protocols have different names among different MRI manufacturers, including TrueFISP

(Siemens), FIESTA (General Electric), and balanced FFE (Philips) [AD Elster, 2023].

Figure 2.8: Cine (bSSFP), LGE, native T1, post-contrast T1 and ECV mapping for a
patient with dilated cardiomyopathy. Septal myocardial native T1 and ECV values are
elevated compared to the lateral. LGE, late gadolinium enhancement CMR. bSSFP, bal-
anced steady-state free precession CMR. Image adapted from [Reiter et al., 2018].

2.4.1.2/ LATE GADOLINIUM ENHANCEMENT (LGE) CMR

LGE CMR is a medical imaging technique that uses gadolinium-based contrast agents to

visualize areas of scarring and fibrosis in the heart muscle. It works by injecting a con-

trast agent into the patient’s bloodstream, which is taken up by the heart muscle tissue.

Areas of healthy myocardium do not retain the contrast agent, while areas of damaged

or scarred myocardium retain the contrast agent, leading to increased signal intensity on

the CMR images.
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To perform late gadolinium enhancement (LGE), medical professionals typically use

2D segmented inversion recovery gradient echo (GRE), or Phase-Sensitive Inversion-

Recovery (PSIR) methods. In some cases, 3D sequences are preferred for patients who

can hold their breath satisfactorily and if the signal-to-noise ratio (SNR) is sufficient. It

is necessary to wait for at least 10 minutes after injecting the gadolinium-based contrast

agent before proceeding. However, if lower gadolinium doses are used, and the blood

pool signal falls below that of the late enhanced myocardium, the delay can be less than

10 minutes. Typically, images are obtained during a diastolic standstill. The inversion

time (TI) is adjusted to nullify the signal from normal myocardium, making it appear black

on the image. This is achieved by using a special inversion recovery pulse that flips the

magnetization of the normal myocardium by 180 degrees, while leaving the scar tissue

magnetization unaffected. The sequence is timed so that the normal myocardium mag-

netization is inverted and then allowed to recover to its steady-state (longitudinal magne-

tization) by the time the image is acquired, resulting in a nulled signal. In contrast, the

scar tissue magnetization continues to generate a signal, resulting in a bright area on the

final image [Kramer et al., 2020].

The resulting LGE CMR image shows the distribution and extent of scar tissue in the

myocardium, which can be used to diagnose and monitor various cardiac conditions,

such as myocardial infarction, myocarditis, and cardiomyopathies. The technique has

a high spatial resolution that can accurately identify the location, extent, and distribu-

tion of myocardial scarring, which is important for guiding therapeutic decision-making

[Vöhringer et al., 2007].

2.4.1.3/ T1 MAPPING CMR

T1 mapping CMR is a medical imaging technique that provides quantitative measure-

ments of the T1 relaxation time of myocardial tissue. T1 relaxation time is a fundamental

parameter that reflects the rate at which protons in tissue return to their equilibrium mag-

netization after an external magnetic field is applied.

LGE imaging is regarded as the gold standard for measuring focal myocardial fibrosis.

However, in certain cardiomyopathies, fibrosis is frequently diffuse and not quantifiable on

LGE images. Identifying interstitial fibrosis using conventional T1-weighted imaging has

also been challenging due to the widespread and diffuse nature of structural changes.

To address this issue, T1 mapping techniques have been developed to measure diffuse

myocardial fibrosis and characterize the tissues [Arega et al., 2023a].T1 mapping refers

to pixel-wise illustrations of absolute T1 relaxation times on a map [Haaf et al., 2016].

They have made it possible to accurately measure T1 in the heart and create color-coded

T1 maps. These T1 maps use pixel values to represent T1 in each voxel, rather than
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arbitrary signal intensity units, and can effectively illustrate even minor variations in T1

within the heart muscle to identify any tissue pathology [Taylor et al., 2016].

T1 mapping CMR refers to the process of acquiring a set of T1 weighted images with

varying time intervals between preparation pulse and image acquisition. This generates

different T1 weightings that allow for the estimation of the T1 value at each pixel. The es-

timation is done by fitting an exponential relaxation curve to the pixel intensities of the ac-

quired images. The resulting T1 values can be displayed as a T1 map, where each pixel’s

intensity encodes an estimate of the T1 value [Moon et al., 2013, Fahmy et al., 2019a].

Modified Look-Locker Inversion Recovery (MOLLI) and Shortened Modified Look-Locker

Inversion Recovery (ShMOLLI) are the most commonly used CMR imaging techniques

for T1 mapping. MOLLI is a technique that acquires a series of images with different

inversion times to measure T1 values of the myocardium, as shown in Figure 2.9. MOLLI

sequences typically use three to five heartbeats to acquire the images, allowing for faster

acquisition times than other T1 mapping techniques. ShMOLLI is a modification of the

MOLLI technique that uses a shorter acquisition time by acquiring images during a sin-

gle breath-hold. This allows for more accurate T1 measurements by reducing the effects

of cardiac motion and respiratory motion. ShMOLLI has been shown to be more accu-

rate and reproducible than MOLLI, especially at higher heart rates and in patients with

arrhythmias [Taylor et al., 2016].

Figure 2.9: The MOLLI scheme is used for the T1 mapping in the heart. It involves two
inversions to obtain eight images over 11 heartbeats. The area of myocardial infarction
and elevated native T1 values is indicated by the orange arrow and relaxation curve,
while the area of normal septal myocardium and normal native T1 values is indicated by
the green arrow and relaxation curve. The images are sorted based on inversion times
[Haaf et al., 2016]. Image adapted from [Haaf et al., 2016].

The use of native (non-contrast) T1 and extracellular volume (ECV) presents an oppor-

tunity to monitor significant biological changes in the myocardium. Without the need for
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gadolinium-based contrast agents (GBCA), native T1 can provide insight into myocardial

disease affecting both the myocyte and interstitium. ECV, which measures the size of the

extracellular space and reflects interstitial disease, can categorize the myocardium into

its cellular and interstitial components with the help of GBCA [Moon et al., 2013]. Some

typical T1 mapping and ECV values of different CVDs are depicted in Figure 2.10.

Figure 2.10: Tissue characterization using native T1 and extracellular volume (ECV) of
different cardiovascular diseases (The native T1 and ECV are computed using 1.5 T
scanners). Image adapted from [Haaf et al., 2016].

Native T1 measurements of the myocardium allow for the non-invasive detection of bi-

ologically important processes, which have the potential to improve disease diagnosis,

severity assessment, and prognosis. Native T1 changes can detect pathologically sig-

nificant processes related to excess water in edema, protein deposition, and other sub-

stances that alter T1, such as lipid or iron, without requiring the use of a contrast agent.

Furthermore, native T1 techniques do not exclude patients with severe renal dysfunction.

Changes in myocardial native T1 can indicate various cardiac and systemic diseases,

such as acute coronary syndromes, infarction, myocarditis, cardiac amyloid, Anderson-

Fabry disease, and siderosis. Evidence suggests that when used in combination with

clinical scan protocols, native T1 mapping can reveal previously unknown pathologies,

areas at risk in acute coronary syndromes, and preclinical disease or unsuspected car-

diac involvement [Moon et al., 2013].

ECV is calculated by combining native and post-contrast (contrast-enhanced) T1 maps

of blood and myocardium, Eq. 2.1. It represents the ratio of the extracellular space to
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the total myocardial volume and reflects the proportion of myocardial tissue that is not

comprised of cells (i.e., the interstitium). ECV serves as a biomarker for the extracellular

space in the myocardium and can be used to monitor changes in interstitial disease.

It is expressed as a percentage, with higher values indicating greater expansion of the

extracellular space and a higher probability of myocardial fibrosis or other pathologies.

ECV measurement is particularly useful for evaluating myocardial disease involving both

the myocyte and interstitium without the need for a tissue biopsy or an invasive procedure

[Lee et al., 2011, Moon et al., 2013].

ECV = (1 − hematocrit) ×
( 1

T1myo post
− 1

T1myo native
)

( 1
T1blood post

− 1
T1blood native

)
(2.1)

Where T1myo post and T1myo native are the mean T1 value of myocardium computed from

post-contrast and native T1 mapping images, respectively. T1blood post and T1blood native

are the mean T1 value of the blood pool computed from post-contrast and native T1

mapping images, respectively.

2.4.2/ CARDIAC ULTRASOUND (ECHOCARDIOGRAPHY)

Echocardiography is a non-invasive medical imaging technique that uses high-frequency

sound waves, or ultrasound, to create real-time images (echocardiogram) of the heart

(Figure 2.11). This tool provides a quantification of the heart’s size, shape, internal cham-

ber size, pumping capacity, location, and extent of tissue damage, as well as an assess-

ment of the valves. In addition, echocardiography can estimate other aspects of heart

function, such as cardiac output, ejection fraction, and diastolic function. It is widely used

in the diagnosis, management, and follow-up of patients with suspected or known heart

diseases, including cardiomyopathies, myocardial infarction, heart failure, and valvular

regurgitation or stenosis, among others [Otto, 2013, Cleve et al., 2018].

To perform an echocardiogram, a technician places a transducer on the chest, which

emits sound waves that bounce off the heart and create images on a screen. These

images reveal the size, shape, and movement of the heart’s chambers and valves, as

well as the blood flow through the heart. Overall, echocardiography is a valuable and

painless tool for assessing heart health and guiding treatment decisions [Institute, 2019].

2.5/ PUBLIC DATASETS IN CARDIAC MRI

Public datasets in cardiac MRI have been instrumental in advancing research and de-

velopment in the field. These datasets provide a valuable resource for benchmarking al-
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Figure 2.11: Apical 4-chamber view of the heart showing the left ventricle, left atrium,
mitral valve, right ventricle, right atrium, tricuspid valve, and often aortic valve. Image
adapted from [Institute, 2019].

gorithms, and comparing methodologies. Over the years, several challenges have been

organized, resulting in the creation of diverse datasets that cover a wide range of cardiac

pathologies and imaging modalities. Table 2.1 presents a comprehensive summary of the

recent challenges and public datasets in cardiac MRI analysis [Li et al., 2022a].

Starting from the early SCD (Sunnybrook Cardiac Data) challenge dataset

[Radau et al., 2009] in 2009, these datasets have evolved to encompass a wide range

of cardiac pathologies. Challenges such as LVSC (Left Ventricle Segmentation Chal-

lenge) [Suinesiaputra et al., 2012], RVSC (Right Ventricle Segmentation Challenge)

[Petitjean et al., 2015], and LiVScar (Left Ventricle Infarct Segmentation Challenge)

[Karim et al., 2016] focused on segmenting specific cardiac structures and scar tissue

from cine and LGE CMR.

Other challenges, like LASC (Left Atrium Segmentation Challenge)

[Tobon-Gomez et al., 2015], introduced multi-modality datasets combining CT and

cine CMR to address segmentation tasks in cases of the left atrium (LA) cavity. cDEM-

RIS (Cardiac Delayed Enhancement Segmentation Challenge) [Karim et al., 2013] used

single-modality (SM) and multi-center/multi-vendor datasets for segmenting scars in the

left atrium (LA) with atrial fibrillation (AF) from LGE images. SLAWT (Segmentation of

LA Wall Thickness) [Karim et al., 2018] further expanded the scope by incorporating CT

and 3D Flash CMR data to segment LA wall thickness in various pathologies.

The ACDC (Automated Cardiac Diagnosis Challenge) [Bernard et al., 2018] provided a

comprehensive dataset for segmenting the left ventricle (LV), right ventricle (RV), and
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myocardium (Myo), while also classifying pathologies such as MI, dilated cardiomyopathy

(DCM), HCM, and abnormal right ventricle (ARV). Similarly, MM-WHS (Multi-Modality

Whole Heart Segmentation) [Zhuang et al., 2019] aimed to segment multiple cardiac

structures in normal and pathological cases, combining CT and cine CMR data.

These challenges and datasets have continued to evolve, covering more complex

tasks and diverse cardiac pathologies. Challenges like Atrial Segmentation Challenge

[Xiong et al., 2021], MS-CMRSeg (Multi-sequence Cardiac MR Segmentation Challenge)

[Zhuang et al., 2022], and M&Ms (Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Im-

age Segmentation Challenge) [Campello et al., 2021] have focused on segmenting spe-

cific cardiac structures or addressing multi-disease scenarios, further expanding the ap-

plicability of the datasets.

Recent additions to the CMR datasets include MyOps2020 (Myocardial pathology Seg-

mentation combining multi-sequence CMR) [Li et al., 2022a], EMIDEC (Automatic Eval

of Myocardial Infarction from DE Cardiac MRI) [Lalande et al., 2020], M&Ms2 (Multi-

Disease, Multi-View & Multi-Center RV Segmentation) [Martı́n-Isla et al., 2023], LAS-

carQS (Left Atrial and Scar Quantification & Segmentation Challenge) 1, CMRxMotion

(Extreme Cardiac MRI Analysis Challenge under Respiratory Motion) 2 and MYOSAIQ

(Myocardial Segmentation with Automated Infarct Quantification) 3. These challenges

have increased the diversity of CMR datasets.

Among these public datasets, as part of the thesis, we utilized several cardiac MRI

datasets, including ACDC, EMIDEC, LAScarQS, M&Ms, M&Ms2, and CMRxMotion, to

evaluate our proposed methods. Additionally, we also used a proprietary T1 map-

ping CMR dataset collected from Dijon Hospital and other clinical centers in France.

This proprietary dataset was obtained as part of the French National Research Agency

(ANR) project (reference ANR-19-CE45-0001-01-ACCECIT), which served as the funding

source for the Ph.D.

2.6/ CONCLUSION

In conclusion, this chapter has provided essential background on cardiac anatomy, major

cardiovascular diseases, diagnostic approaches, and cardiac imaging modalities relevant

to the clinical focus of this thesis. Key concepts covered include normal cardiac structure

and function, common conditions like myocardial infarction and cardiomyopathies, stan-

dard diagnostic tests, and cardiac imaging techniques particularly magnetic resonance

imaging and its various applications. Public datasets were also highlighted. This overview

1https://zmic.fudan.edu.cn/lascarqs22
2http://cmr.miccai.cloud/
3https://www.creatis.insa-lyon.fr/Challenge/myosaiq/

https://zmic.fudan.edu.cn/lascarqs22
http://cmr.miccai.cloud/
https://www.creatis.insa-lyon.fr/Challenge/myosaiq/
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of the clinical context and core medical imaging domains establishes the necessary foun-

dation for the technical contributions to advancing cardiac MRI analysis through deep

learning and uncertainty estimation that will be presented in the subsequent chapters.
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3

BACKGROUND: FUNDAMENTALS OF

DEEP LEARNING AND THE

STATE-OF-THE-ART IN CARDIAC MRI
ANALYSIS

This chapter provides a comprehensive exploration of the fundamental concepts and

state-of-the-art techniques in the field of cardiac MR analysis. It begins by delving into the

realm of machine learning and deep learning, introducing the principles, methodologies,

and applications within this domain. It covers a range of machine learning algorithms

like Support-Vector Machine (SVM), random forests, and artificial neural networks. Addi-

tionally, deep learning models such as convolutional neural networks (CNNs) and vision

transformers are explored in detail. Furthermore, the chapter emphasizes training neural

networks by explaining vital aspects such as loss functions, regularization techniques,

and evaluation metrics. These components are crucial for optimizing the performance of

neural networks in various applications. Lastly, the chapter explores uncertainty estima-

tion methods and their relevance in medical image analysis. It sheds light on techniques

such as variational inference, Monte Carlo dropout, and deep ensemble methods. The

application of these methods in medical image analysis is discussed, highlighting their

significance in quantifying uncertainty and improving decision-making processes. The

chapter provides a comprehensive foundation of knowledge necessary for the subse-

quent chapters of the thesis.

31
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3.1/ MACHINE LEARNING AND DEEP LEARNING

3.1.1/ INTRODUCTION

Artificial intelligence (AI) is the development of software or machines that can perform

tasks that would normally require human intelligence to complete. This includes tasks

such as recognizing speech, understanding natural language, making decisions, and rec-

ognizing patterns in data [Ed Burns, 2023]. Machine learning (ML) is a subset of AI that

focuses on designing algorithms that can learn from data and make predictions or deci-

sions based on that data [Kotsiantis et al., 2006]. Deep learning is a subset of machine

learning that uses neural networks with multiple layers to learn and extract features from

data.

Depending on the type of data available and the task at hand, machine learning algo-

rithms can be supervised, unsupervised, or semi-supervised. Supervised learning is

the most common type of machine learning where the algorithm is trained using labeled

data. In supervised learning, the algorithm tries to learn a mapping function that maps

the input data to the correct output based on the labeled examples provided during train-

ing. This mapping function can then be used to predict the output for new data points

[Russell et al., 1995]. For example, an algorithm might be trained to recognize handwrit-

ten digits by being shown labeled examples of digits from 0-9. Unsupervised learning,

on the other hand, is a type of machine learning where the algorithm is trained using

unlabeled data. In unsupervised learning, the goal is to find patterns or structures in

the data without any specific guidance or labels. For example, an unsupervised learning

algorithm might try to group similar images together without being told what the images

represent [Janiesch et al., 2021]. Semi-supervised learning is a type of machine learn-

ing that combines both labeled and unlabeled data to train an algorithm. The goal of

semi-supervised learning is to use the labeled data to guide the learning process while

also leveraging the unlabeled data to improve the accuracy and robustness of the model

[van Engelen et al., 2019].

In machine learning, experts with domain knowledge of the problem typically handcraft

features, which can be a time-consuming and labor-intensive process, and identifying the

most crucial features for a given problem is also challenging. Conversely, deep learning

methods can automatically learn features from data using neural networks that mimic

human brain functioning. Neural networks can recognize patterns in data that would be

difficult or impossible for humans to detect. This automatic feature learning capability is

advantageous for problems with large amounts of data and where hand-crafting features

is very difficult [Hosny et al., 2018]. Deep learning methods have achieved state-of-the-

art results in computer vision and medical image analysis tasks.
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3.1.2/ MACHINE LEARNING

This section discusses some of the machine learning methods that have been commonly

employed in computer vision and medical image analysis. These include the support

vector machine, random forests, and artificial neural networks.

3.1.2.1/ SUPPORT VECTOR MACHINE (SVM)

A Support Vector Machine (SVM) is a supervised machine learning algorithm that can

be used for classification and regression tasks. It is a flexible algorithm that can handle

both linear and non-linear data. SVM works by finding the best possible hyperplane that

separates the data into different classes [Boser et al., 1992, Cortes et al., 1995]. Hyper-

plane is a line or plane in n-dimensional space that divides the data into two regions.

The hyperplane is chosen in such a way that it maximizes the margin between the two

classes. The margin is defined as the distance between the hyperplane and the nearest

data points from each class. The SVM algorithm tries to find the hyperplane that has the

largest margin, which is considered to be the most robust and accurate solution. To help

illustrate this concept, Figure 3.1 shows a diagram of an SVM in 2D space. The diagram

depicts the hyperplane as a straight line that divides the data points into two classes, rep-

resented by blue and green dots. Support vectors are the data points or vectors that are

the closest to the hyperplane. They influence the position and orientation of the hyper-

plane [JavaTpoint, 2023]. The margin is shown as the space between the dotted lines that

run parallel to the hyperplane and is maximized by positioning the hyperplane equidistant

from the closest support vectors. In regression tasks, the SVM algorithm tries to find a

hyperplane that minimizes the mean squared error between the predicted output and the

actual output.

In the case of linearly separable data, the SVM algorithm finds the hyperplane that sep-

arates the data into two classes with the maximum margin. This hyperplane is known

as the optimal separating hyperplane [JavaTpoint, 2023]. However, in some cases, the

data points may not be linearly separable, so the SVM uses a technique called kernel

trick to map the input data into a higher-dimensional space where the data points can be

separated by a hyperplane [Boser et al., 1992, Cortes et al., 1995].

The kernel trick is a mathematical technique that allows the SVM algorithm to transform

non-linearly separable data into a linearly separable form. It does this by applying a

non-linear function to the input data, which transforms it into a higher-dimensional space

where it can be linearly separated. The kernel function calculates the similarity or dis-

tance between data points in the original feature space and maps them to a new, high-

dimensional feature space. The most commonly used kernel functions are polynomial,

Gaussian Radial Basis Function (RBF), and sigmoid kernels. Once the data is mapped
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to a higher-dimensional space, the SVM algorithm finds the optimal hyperplane that sep-

arates the classes with the maximum margin. This hyperplane is then used to predict the

class of new data points [Jakkula, 2006].

Figure 3.1: Support vector machine (SVM). Image adapted from [JavaTpoint, 2023].

3.1.2.2/ RANDOM FORESTS

Random Forest is an ensemble machine learning algorithm that is used for both classi-

fication and regression problems. It utilizes multiple decision trees to make predictions,

resulting in better accuracy than using a single decision tree. A decision tree is a non-

parametric supervised learning algorithm that uses a hierarchical tree-like structure to

make decisions based on input features. The structure of a decision tree consists of a

root node, branches, internal nodes, and leaf nodes. The internal nodes represent the in-

put features, the branches represent the decision rules, and the leaf nodes represent the

final decision of the algorithm. The decision tree algorithm recursively splits the training

data into smaller subsets based on the selected feature that best separates the data into

the target classes. The selection of the best attribute (feature) is based on a metric such

as entropy or Gini impurity. These metrics measure the level of impurity or randomness

in the subsets, and the goal is to find the feature that maximizes the information gain or

the reduction in impurity after the split [Bshyamanth, 2023].

Random forest uses an ensemble of individual decision trees to make predictions. In the

Random Forest algorithm, each decision tree is trained on a random subset of the origi-

nal training data and a random subset of the original features. This process is known as

bootstrapping and feature bagging, respectively. The Random Forest algorithm uses both

bootstrapping and feature bagging to create an uncorrelated forest of decision trees. Fea-

ture bagging generates a random subset of features for each decision tree, ensuring that
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each tree has a different set of features. This technique reduces overfitting and variance

in the model by increasing the diversity of the decision trees in the forest [IBM, 2023]. By

using a random subset of features for each decision tree, the Random Forest algorithm

can capture the most important features for making accurate predictions while reducing

the impact of noisy or irrelevant features. This approach also ensures that the decision

trees are not highly correlated, enabling the model to generalize well to new data.

When making a prediction with a random forest, each decision tree in the ensem-

ble makes a prediction, and the final prediction is obtained by averaging or taking the

mode of all the individual predictions for a classification task, as shown in Figure 3.2

[Dimitriadis et al., 2018]. For regression problems, the predicted value is the average of

the predictions from the decision trees. Random Forests can handle noisy data, missing

values, and high-dimensional data, making it a versatile algorithm in machine learning.

Figure 3.2: An informative illustration showcasing the structure of a random forest, which
consists of multiple decision trees. Image adapted from [Dimitriadis et al., 2018].

3.1.2.3/ ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) is a computational model inspired by the structure and

function of the human brain. It consists of interconnected processing units called neurons,

which work together to perform a specific task. Each neuron receives input signals from

other neurons and processes the information using an activation function, and produces

an output signal that is transmitted to other neurons in the network.

A single-layer perceptron is a type of artificial neural network that consists of a single

layer of neurons, as shown in Figure 3.3. Each neuron receives input from the data and

computes a weighted sum of those inputs. This weighted sum is then passed through an

activation function, which determines whether the neuron should fire or not (i.e., whether

it should output a 1 or a 0). The purpose of the activation function is to introduce non-

linearity into the output of the perceptron, which allows it to model more complex rela-
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tionships between the input and output data. The final output of the neuron (ŷ) can be

computed as:

ŷ = g(
m∑

i=1

wixi + b) = g(wT x + b), (3.1)

where w, b, x, m and g() represent connection weights, neuron bias, input values, number

of inputs to the perceptron, and activation function respectively. The bias is an addi-

tional input that is added to the weighted sum of inputs for each neuron. The bias allows

the neuron to adjust its output independently of its inputs, and it plays a crucial role in

the learning process of the perceptron. There are several different types of activation

functions that can be used in a single-layer perceptron, including the step function, the

sigmoid function, the ReLU function, and the tanh function, among others. While single-

Figure 3.3: A Visual Representation of Single layer perceptron. Image adapted from
[JavaTpoint, 2022].

layer perceptrons are effective at classifying linearly separable data, they have limitations

when it comes to handling more complex, non-linear data. To address this, multi-layer

perceptrons, or MLPs, were developed to allow for more sophisticated modeling of com-

plex relationships between input and output data. A multi-layer perceptron (MLP) is a

type of artificial neural network that consists of multiple layers of neurons, including an

input layer, one or more hidden layers, and an output layer, as presented in Figure 3.4.

Each neuron in the MLP receives input from the neurons in the previous layer, computes

a weighted sum of those inputs, and then applies an activation function to produce its out-

put. The output of each neuron in the previous layer serves as input to the next layer, and

this process is repeated until the output layer produces the final output of the network.

Training an ANN involves initializing the weights, forwarding the input through the network,

computing the loss, backpropagating the error to adjust the weights and biases, and

repeating these steps for multiple steps until the loss function converges to a minimum

value.
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Figure 3.4: A Multi-layer Perceptron, comprising an input layer, two hidden layers, and an
output layer. Image adapted from [JavaTpoint, 2022].

3.1.3/ DEEP LEARNING

Deep Learning (DL) is a subfield of machine learning that involves training artificial neural

networks with multiple layers to learn complex representations of data. Unlike traditional

machine learning models, which rely on hand-crafted features, deep learning models

learn features automatically from raw data. This makes deep learning particularly well-

suited for tasks like image recognition, speech recognition, and natural language pro-

cessing, where the input data is high-dimensional and complex [Hosny et al., 2018].

In recent years, deep learning has emerged as the leading technique for many image

analysis tasks, delivering state-of-the-art performance on image classification, object de-

tection, semantic segmentation, and image captioning. Convolutional neural networks

(CNNs) are the most widely used deep neural network architecture for image analysis

[Alzubaidi et al., 2021b]. They have demonstrated impressive results across various com-

puter vision and medical image analysis tasks. More recently, vision transformer-based

models have matched or exceeded the performance of CNNs on some computer vision

and medical image analysis tasks [Willemink et al., 2022, Khan et al., 2023]. In the fol-

lowing section, we will explore CNN and vision transformer-based approaches for medical

image analysis.

3.1.3.1/ CONVOLUTIONAL NEURAL NETWORKS (CNNS)

While MLPs have been successful in many applications, they have limitations when it

comes to image processing tasks. MLPs treat each pixel in the image as a separate

input feature, which can lead to a large number of parameters and slow training times.

Additionally, MLPs do not take into account the spatial relationships between pixels in an

image, while CNN architectures make the explicit assumption that the inputs are images.
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This allows to encode of certain properties into the architecture and makes the processing

more efficient by reducing the number of parameters in the network [Chen et al., 2021b].

CNN architectures are made up of multiple building blocks, such as convolutional layers,

pooling layers, and fully-connected layers, as depicted in Figure 3.5.

Figure 3.5: CNN architecture. Image adapted from [Jiang, 2019].

A convolutional layer is a fundamental building block of a convolutional neural network

(CNN). It is responsible for extracting important features from the input image by perform-

ing a convolution operation between the input image and a set of learnable filters (ker-

nels). A convolution operation involves sliding a small filter over the input image and com-

puting the dot product between the filter and the corresponding region of the input image

(local receptive field), as shown in Figure 3.6. This produces a single value, which is then

placed in the output feature map at the corresponding location. The filter is then moved

to the next location and the process is repeated until the entire input image has been cov-

ered. The size of the filter and the amount by which it is shifted over the input image are

hyperparameters that are typically chosen based on the characteristics of the input image

and the desired properties of the output feature map [Karpathy, 2016, Chen et al., 2021b].

Figure 3.6: Convolution operation in CNN. Image adapted from [Reynolds, 2019].

A convolutional layer may have multiple filters, each of which learns to detect a different

feature. The output feature map of the convolutional layer is obtained by stacking the

output maps produced by each filter. The output feature map has a smaller spatial di-

mension than the input image, due to the loss of pixels around the edges of the image
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during the convolution operation. To prevent the output feature map from becoming too

small, it is common to use padding around the edges of the input image before performing

the convolution operation. This ensures that the output feature map has the same spatial

dimensions as the input image [Karpathy, 2016].

Some of the core benefits of convolutional layers are weight sharing, local connectivity,

translation invariance, and hierarchical representation learning. Weight sharing involves

using the same set of weights (or filters) across the entire input image, which reduces

the number of parameters needed and improves model efficiency. Furthermore, convo-

lutional layers only process a small portion of the input image at a time, allowing them

to capture the local structure and patterns in the image. Their ability to be translation

invariant ensures that the same features can be detected regardless of their position in

the input image, which is particularly valuable for image recognition tasks. In addition,

convolutional layers can learn hierarchical representations of input data, with each layer

capturing increasingly more complex features, which leads to better representation of the

input data and improved performance [Alzubaidi et al., 2021a].

In CNNs, a pooling layer is a type of layer that is typically added after convolutional

layers to reduce the spatial size of the input feature maps while retaining important in-

formation. This is achieved by dividing the input image into non-overlapping regions and

computing a summary statistic, such as the maximum or average value, for each re-

gion [O’Shea et al., 2015]. There are different types of pooling layers commonly used

in CNNs, such as max pooling, average pooling, and global average pooling (GAP), as

depicted in Figure 3.7. Max pooling selects the maximum activation in each region of the

feature map, whereas average pooling computes the average activation in each region

of the feature map. Global average pooling reduces the spatial dimensions of feature

maps to a single value by taking the average value of each feature map across all spatial

locations [Alzubaidi et al., 2021a]. It is often used in the final layers of CNNs to produce

a fixed-length output. Pooling layers have several benefits in CNNs, such as reducing

the number of parameters and computation needed while preserving important features.

They also help to increase the model’s robustness to small changes in the input by pro-

viding translation invariance [Goodfellow et al., 2016].

A fully connected layer, also known as a dense layer, is a type of layer commonly used

in CNNs to perform classification or regression tasks. Fully connected layers are typi-

cally placed at the end of a CNN architecture and receive input from the output of the

preceding convolutional and pooling layers. In a fully connected layer, each neuron is

connected to every neuron in the previous layer. This means that the output of each neu-

ron in the previous layer is fed into each neuron in the current layer. The purpose of fully

connected layers in CNNs is to perform high-level reasoning or decision-making based

on the features learned by the convolutional and pooling layers [Gu et al., 2018]. These
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Figure 3.7: Different types of pooling layers. Image adapted from [Alzubaidi et al., 2021a].

layers take the output of the preceding layers and produce a vector of class probabilities

or regression values [Yamashita et al., 2018].

At the end of convolutional and fully connected layers in CNN architecture, activation
functions are employed to introduce non-linearity to the network, allowing it to learn

complex features and make accurate predictions. The non-linear transformation is nec-

essary to capture the complex relationships between the input and output variables and

to model complex patterns in the data [Montesinos López et al., 2022]. There are several

activation functions that are commonly used in CNNs, including Sigmoid, ReLU (Rectified

Linear Unit), Leaky ReLU, and ELU (Exponential Linear Units), as shown in Figure 3.8.

Figure 3.8: Different types of non-linear activation functions. Image adapted from
[Jayawardana et al., 2021].

ReLU is one of the most widely used activation functions in CNNs. It is defined as f (x) =

max(0, x), which means that it returns 0 for all negative inputs and returns the input value

for all positive inputs. ReLU is computationally efficient and has demonstrated excellent

performance in practice.

Leaky ReLU is a modification of the ReLU function that addresses some of its limitations.

It is defined as f (x) = max(ax, x), where a is a small positive constant. Leaky ReLU allows
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for a small non-zero gradient for negative inputs, which can help to prevent the ”dying

ReLU” problem where some neurons permanently output 0 [Alzubaidi et al., 2021a].

ELU is also a variant of ReLU that modifies the slope of the negative part of the function

by using a log curve to define the negative values, unlike the leaky ReLU. Mathematically,

it is defined as f (x) = x if x >= 0 and f (x) = a(exp(x) − 1) if x < 0, where a is a small

positive constant.

The sigmoid function is commonly used in the output layer of binary classification prob-

lems. It is defined as f (x) = 1/(1 + exp(−x)), which returns a value between 0 and 1.

However, the sigmoid function suffers from the vanishing gradient problem.

CNN architectures have undergone significant evolution and improvement since their in-

ception in the 1990s, with various variants emerging to address different challenges in

image processing tasks. LeNet-5 was one of the first CNN architectures, developed by

[LeCun et al., 2015] in the 1990s. It consists of several convolutional and pooling layers,

followed by two fully connected layers. LeNet-5 was primarily used for handwritten digit

recognition.

AlexNet, proposed by Krizhevsky et al. in 2012 [Krizhevsky et al., 2012], is a more com-

plex CNN architecture that won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2012. It used GPUs (Graphics Processing Units) and introduced the concept

of rectified linear units (ReLUs), dropout, and local response normalization (LRN) layers,

which improved the network’s performance. AlexNet consists of five convolutional layers

and three fully connected layers.

VGGNet [Simonyan et al., 2014] is another CNN architecture that is deeper than AlexNet,

with 16 or 19 layers. VGGNet’s architecture is characterized by its use of small 3x3 con-

volutional filters, which are stacked on top of each other to form deeper representations.

It was a runner-up in the ILSVRC challenge in 2014, and it showed that the depth of the

network plays an important role in achieving good performance. VGGNet also introduced

the use of batch normalization, which helps to improve the stability and convergence of

the network.

The Google Inception Network (GoogLeNet) [Szegedy et al., 2015] is a variant of CNN

that utilizes multiple filter sizes and aspect ratios in a single layer. It is characterized by

its use of ”inception modules,” which are parallel branches of convolutional layers with

different filter sizes (Figure 3.9). This allows it to capture features at multiple scales.

Inception achieves high accuracy while minimizing the number of parameters by using

1x1 convolutions to reduce the dimensionality of feature maps before applying larger

convolutions, as shown in Figure 3.9. It achieved state-of-the-art results on the ILSVRC

2014.

With the increasing depth of CNNs, a new challenge arises, vanishing gradients. Infor-
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Figure 3.9: Inception module with dimension reductions in the Google Inception Network.
Image adapted from [Szegedy et al., 2015].

mation about the input or gradient can diminish and disappear as it travels through many

layers, making it difficult to reach the end (or start) of the network [Huang et al., 2017].

To address this issue, He et al. [He et al., 2016] proposed ResNet, a CNN architecture

in 2016, that tackles the problem of vanishing gradients in deep networks. The key in-

novation in ResNet is the use of residual learning blocks where the input to each block

is added to the output via skip connections, as depicted in Figure 3.10. This allows

gradients to flow through identity mappings unimpeded. By retaining gradient magnitude

throughout the network, ResNet’s residual design enables extremely deep networks (e.g.,

ResNet-50, ResNet-101, ResNet-152) while still achieving excellent performance.

Figure 3.10: Residual block in ResNet architecture. Image adapted from [He et al., 2016].

Another CNN architecture that aims to enhance the feature extraction process and alle-

viates the vanishing-gradient problem is DenseNet, which was proposed by Huang et al.

in 2017 [Huang et al., 2017]. DenseNet employs ”dense blocks” that connect all layers

to each other within a block, as shown in Figure 3.11. In each dense block, every layer

obtains input from all preceding layers and passes its output to all subsequent layers, as

shown in Figure 3.11. This results in a highly interconnected network where each layer

can access the collective knowledge of all preceding layers. To accomplish this dense
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connectivity, DenseNet concatenates the feature maps of all preceding layers. This en-

ables feature reuse, mitigates the vanishing-gradient issue, and reduces the number of

parameters in the network, leading to better generalization. Variants of DenseNet in-

clude DenseNet-121, DenseNet-169, and DenseNet-201 [Huang et al., 2017], which are

deeper than ResNet.

Figure 3.11: A deep DenseNet with three dense blocks, where transition layers between
each block use convolution and pooling to modify feature-map sizes. Image adapted from
[Huang et al., 2017].

Following DenseNet, several noteworthy CNN architectures were introduced, including

ResNeXt [Xie et al., 2017b], SENet [Hu et al., 2017], and EfficientNet [Tan et al., 2019].

ResNeXt [Xie et al., 2017b] builds upon ResNet by incorporating ”split-transform-merge”

blocks, which enhance cardinality and improve representation. On the other hand, SENet

[Hu et al., 2017] employs ”squeeze-and-excitation” modules to enhance channel interde-

pendencies and recalibrate features, whereas, EfficientNet [Tan et al., 2019] revolution-

ized CNN scaling by introducing compound coefficient scaling for depth, width, and reso-

lution, resulting in more efficient models compared to previous approaches.

3.1.3.2/ VISION TRANSFORMERS

The Transformer architecture [Vaswani et al., 2017], introduced in 2017, revolutionized

the field of natural language processing (NLP) by providing a novel approach to ma-

chine translation tasks. As depicted in Figure 3.12, the Transformer model consists of an

encoder and a decoder, both comprising multiple transformer blocks. The encoder pro-

cesses input sequences and generates encodings, which are then passed to the decoder.

The decoder utilizes the encodings, along with their inherent contextual information, to

generate the output sequence. This process allows the Transformer to efficiently cap-

ture long-range dependencies and contextual relationships in the input data. Each trans-

former block is designed with a multi-head attention layer, a feed-forward neural network,

a shortcut connection, and layer normalization [Han et al., 2020, Vaswani et al., 2017].

The core idea behind the transformer model is self-attention, also known as scaled dot-

product attention. The self-attention layer is a crucial component in the Transformer

architecture, enabling the model to attend to different parts of the input sequence si-

multaneously. In this layer, the input vector is first transformed into three distinct vec-

tors: the query vector (q), the key vector (k), and the value vector (v) with dimension
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Figure 3.12: A) The original transformer architecture. B) Multi-head attention C) Self-
attention. Image adapted from [Vaswani et al., 2017].

dq = dk = dv = dmodel = 512. The query, key, and value vectors are then organized into

three matrices: Q, K, and V. The attention function is then computed in four steps. First,

the scores between different input vectors are computed with S = QKT . These scores

measure the relevance of other words when encoding the current word. Then the scores

are normalized for gradient stability, S n =
S√
dk

. After that, the scores are translated into

probabilities using the softmax function, P = so f tmax(S n). Finally, each value vector is

multiplied by the sum of the probabilities to give the weighted value matrix: Z = VP.

Vectors with larger probabilities receive additional focus from the following layers. These

steps can be combined into a single function, as shown below:

Attention(Q,K,V) = so f tmax(
QKT

√
dk

)V (3.2)

The scaled dot product attention is invariant to word order, so the self-attention layer

cannot capture positional information. To incorporate positional information, a positional

encoding of dimension dmodel is added to the input embeddings before self-attention. This

encoding allows the model to take into account the word’s position in the sequence, en-

abling it to capture important contextual information. In addition to the fixed positional

encoding in the vanilla transformer, there are other types of positional encoding such as

learned positional encoding and relative positional encoding.

Multi-head attention is a variation of the self-attention mechanism that allows the model
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to jointly attend to information from different representation subspaces at different posi-

tions. This is achieved by applying multiple attention mechanisms in parallel, each with its

own set of learnable weights and activation functions, as depicted in Figure 3.15 (B). The

outputs of these attention mechanisms are then combined to form the final output. The

idea behind multi-head attention is to capture different types of relationships between the

input elements. Each attention head can capture a different aspect of the input. By com-

bining the outputs of multiple attention heads, the model can capture a richer representa-

tion of the input than a single attention head could [Vaswani et al., 2017, Han et al., 2020].

Mathematically, multi-head attention can be represented as:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO

Where Q,K,V are the query, key, and value matrices, respectively; h is the number of

attention heads; headi is the output of the ith attention head; and WO is the learnable

weight matrix that projects the concatenated output to the final output space.

The output of each attention head headi is computed as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i )

where WQ
i ,W

K
i ,W

V
i are the learnable weight matrices for the ith attention head.

The input to each attention head is the concatenation of the query, key, and value ma-

trices, which are linearly transformed using the learnable weight matrices WQ
i ,W

K
i ,W

V
i .

The output of each attention head is then computed using the attention mechanism, and

the outputs of all attention heads are concatenated and linearly transformed using the

learnable weight matrix WO to produce the final output. Multi-head attention allows the

model to capture different types of relationships between the input elements, which can

improve the performance of the model [Vaswani et al., 2017].

The feed-forward network is a component within the transformer block that processes

and transforms the information at each position in the sequence independently. It is ap-

plied after the self-attention layer in each transformer block, as shown in Figure 3.12 (A).

It consists of two linear transformations with a non-linear activation function in between

[Vaswani et al., 2017].

Residual connections, also known as skip connections, are employed in the transformer

architecture to enhance information flow across the layers. They are added to each

sub-layer in both the encoder and decoder, as shown in Figure 3.12 (A). The inclusion

of residual connections strengthens the flow of information, leading to improved perfor-

mance. Layer normalization is typically applied after the residual connection to normalize
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the output [Han et al., 2020].

Taking inspiration from the successful scaling of Transformers in natural language pro-

cessing (NLP), Dosovitskiy et al. [Dosovitskiy et al., 2020] proposed Vision Transformer
(ViT) by directly applying a standard Transformer architecture to images with minimal

modifications. Their approach involved dividing an image into patches and treating them

as sequential inputs, similar to tokens (words) in NLP, as shown in Figure 3.13. The

patches were then converted into linear embeddings and fed into the Transformer. The

models were trained using supervised learning techniques for image classification tasks

[Dosovitskiy et al., 2020].

Traditional convolutional neural networks (CNNs) have been the dominant architecture for

image recognition tasks. CNNs operate on grid-like structures, such as images, by sliding

convolutional filters across the input to extract local features. This sequential processing

of the input limits the model’s ability to capture global dependencies and relations be-

tween different parts of the image. In contrast, the ViT model introduces a new paradigm

by treating images as sequences of patches and utilizing the Transformer’s self-attention

mechanism to capture long-range dependencies.

To handle 2D images, the image X ∈ RH×W×C is reshaped into a sequence of flattened 2D

patches xp ∈ RN×(P2C) such that C is the number of channels, (H,W) is the resolution of the

original image, and (P, P) is the resolution of each image patch. The effective sequence

length for the transformer is N = H×W/P2. As the transformer uses constant latent vector

size D in all of its layers, a trainable linear projection maps each vectorized patch to the

model dimension D. The output of this projection is referred to as patch embeddings

[Dosovitskiy et al., 2020, Han et al., 2020].

The learnable class token in ViTs [Dosovitskiy et al., 2020] functions similarly to the

[class] token in BERT [Devlin et al., 2019]. It is an embedding applied to the sequence

of embedding patches. The state of this embedding represents the image representa-

tion. Both during pretraining and fine-tuning, classification heads are attached to this

embedding, maintaining the same size. Additionally, 1D position embeddings are added

to the patch embeddings to preserve positional information. It is important to note that

ViT uses the vanilla transformer’s [Vaswani et al., 2017] encoder. The encoder consists

of a series of layers that alternate between multiheaded self-attention (MSA) and multi-

layer perceptron (MLP) blocks. Layer normalization (LN) is applied before each block,

and residual connections are used after each block. The MLP block typically consists

of two layers with a Gaussian Error Linear Unit (GELU) non-linearity activation func-

tion. ViT is typically pre-trained on large datasets and subsequently fine-tuned on smaller

datasets for specific tasks [Dosovitskiy et al., 2020, Han et al., 2020]. The Vision Trans-

former (ViT) has demonstrated impressive results on various computer vision tasks like

image classification, object detection, and semantic segmentation. A key advantage of
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Figure 3.13: Vision Transformer architecture. Image adapted from
[Dosovitskiy et al., 2020].

ViT is that the self-attention mechanism enables highly parallelizable computation across

image patches. However, relying on image patches may cause ViT to miss fine-grained

details that convolutional neural networks (CNNs) can capture. Additionally, ViT struggles

with more general vision tasks like detection and segmentation compared to CNNs. This

is due to ViT having fewer built-in inductive biases that are beneficial for images, such as

locality and translation equivariance. Furthermore, the global self-attention used in ViT

leads to quadratic complexity relative to input size, making it inefficient for high-resolution

images.

In vanilla Transformer models [Vaswani et al., 2017, Dosovitskiy et al., 2020], tokens have

a fixed scale, which is not ideal for vision applications. Images have a much higher pixel

resolution compared to words in text passages. Tasks like semantic segmentation re-

quire dense prediction at the pixel level, but this is challenging for Transformers on high-

resolution images due to the quadratic computational complexity of self-attention. To

address these issues, Liu et al. [Liu et al., 2021] proposed Swin Transformer, a ver-

satile Transformer backbone. Swin Transformer constructs hierarchical feature maps

and achieves linear computational complexity with respect to image size. It starts with

small patches (outlined in gray) and progressively merges neighboring patches in deeper

layers, as depicted in Figure 3.14. This hierarchical representation allows Swin Trans-

former to leverage advanced techniques like feature pyramid networks (FPN) or U-Net

for dense prediction. The linear computational complexity is achieved by computing self-

attention locally within non-overlapping windows that divide the image (outlined in red).

Swin Transformer is suitable for various vision tasks, unlike previous Transformer archi-
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tectures [Dosovitskiy et al., 2020] that produce feature maps of a single resolution and

have quadratic complexity due to computation of self-attention globally.

Figure 3.14: (a) The Swin Transformer architecture produces hierarchical feature maps
by merging image patches, represented in gray, in deeper layers. (b) In contrast, vision
Transformers (ViTs) generate feature maps with a single low resolution. Image adapted
from [Liu et al., 2021].

In Figure 3.15, an overview of the Swin Transformer architecture is presented. The input

RGB image is split into non-overlapping patches using a patch-splitting module, similar

to ViT. Each patch is treated as a ”token,” and its feature is obtained by concatenating

the raw pixel RGB values. In their implementation, [Liu et al., 2021] used a patch size

of 4 × 4, resulting in a feature dimension of 48 (4 × 4 × 3). A linear embedding layer is

then applied to project this raw-valued feature to an arbitrary dimension denoted as C.

These patch tokens, along with the Swin Transformer blocks, which have a modified self-

attention computation, and linear embedding, are referred to as ”Stage 1” and maintain

the number of tokens (H/4 ×W/4).

To create a hierarchical representation, patch merging layers are employed to reduce

the number of tokens as the network progresses. The features of each group of 2 × 2

neighboring patches are concatenated by the first patch merging layer, and a linear layer

is applied to the concatenated 4C-dimensional features. This downsamples the reso-

lution by a factor of 2×2 = 4 and sets the output dimension to 2C. Subsequently, Swin

Transformer blocks are applied for feature transformation while keeping the resolution at

(H/8 ×W/8). This initial stage of patch merging and feature transformation is denoted as

”Stage 2”. The process is repeated twice more, resulting in ”Stage 3” and ”Stage 4” with

output resolutions of (H/16 × W/16) and (H/32 × W/32), respectively. A hierarchical rep-
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resentation is jointly produced by these stages, having the same feature map resolutions

as conventional convolutional networks such as VGG and ResNet. As a result, the pro-

posed architecture can conveniently replace the backbone networks in existing methods

for various vision tasks [Liu et al., 2021].

Figure 3.15: (a) Swin Transformer architecture (b) two successive Swin Transformer
Blocks. Image adapted from [Liu et al., 2021].

The Swin Transformer block is constructed by replacing the standard multi-head self-

attention (MSA) module in the vanilla Transformer block with a module based on shifted

windows, while keeping other layers unchanged. In Figure 3.15(b), a Swin Transformer

block consists of a shifted window-based MSA module followed by a 2-layer MLP with

GELU nonlinearity in between, with LayerNorm (LN) applied before each module and

residual connections after [Liu et al., 2021].

To enable efficient modeling, self-attention is computed within local windows. These win-

dows evenly partition the image in a non-overlapping manner. If each window contains

M × M patches, the computational complexity of a global MSA module and a window-

based one on an image with h × w patches can be computed as follows:

Ω(MS A) = 4hwC2 + 2(hw)2C,

Ω(W − MS A) = 4hwC2 + 2M2hwC,

Where the former exhibits quadratic complexity with respect to the number of patches hw,

while the latter has linear complexity when M remains fixed (default value of 7). Global

self-attention computation becomes impractical for large hw, whereas window-based self-

attention remains scalable.

However, the window-based self-attention module lacks connections across windows,

limiting its modeling capability. To address this and maintain efficient computation with

non-overlapping windows, [Liu et al., 2021] proposed a shifted window partitioning ap-

proach. This approach alternates between two partitioning configurations in consecutive

Swin Transformer blocks. As shown in Figure 3.16, the first module employs a regular
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window partitioning strategy, starting from the top-left pixel. The 8 × 8 feature map is

evenly divided into 2 × 2 windows of size 4 × 4(M = 4). Subsequently, the next mod-

ule adopts a shifted window configuration, displacing the windows by (M/2,M/2) pixels

from the regularly partitioned windows in the preceding layer [Liu et al., 2021]. The com-

putation of consecutive Swin Transformer blocks is performed using the shifted window

partitioning approach, which can be summarized as follows:

ẑl = WMS A(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl,

ẑl+1 = S WMS A(LN(zl)) + zl,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1,

(3.3)

Where ẑl and zl represent the output features of the (S)WMSA module and the MLP mod-

ule for block l, respectively. W-MSA and SW-MSA denote window-based multi-head self-

attention using regular and shifted window partitioning configurations, respectively. By

incorporating connections between neighboring non-overlapping windows from the previ-

ous layer, the shifted window partitioning approach has proven to be successful in tasks

like image classification, object detection, and semantic segmentation [Liu et al., 2021].

Figure 3.16: An illustration of the shifted window approach for computing self-attention in
the Swin Transformer architecture. Image adapted from [Liu et al., 2021].

Positional encoding is essential in transformers and Vision Transformers (ViTs) as these

models do not inherently model the order or position of tokens or image patches in their

input sequences. Unlike recurrent neural networks (RNNs) and convolutional neural net-

works (CNNs), which capture positional information through their sequential or spatial

operations, transformers and ViTs process their inputs in parallel without regard to posi-

tion. This lack of positional encoding is problematic for tasks relying on element order or

position. Natural language processing tasks like machine translation and language under-

standing depend heavily on word order. Similarly, in computer vision, the spatial layout of
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image patches is crucial for capturing fine details and overall structure [Wu et al., 2021].

Therefore, positional representations are essential in transformers to overcome their se-

quence order invariance and enable modeling of structured data. There are two main

approaches used to encode positional information for transformers: Absolute Position

Encoding and Relative Position Encoding.

Absolute position encoding is a method to represent the absolute position of each el-

ement in a sequence. It allows the model to differentiate between elements based on

their positions. In the vanilla Transformer model [Vaswani et al., 2017], absolute position

encoding is achieved by adding positional embeddings to the input token embedding.

The positional embeddings are added element-wise to the input embeddings of the se-

quence, enabling the model to attend to different positions based on the added positional

information. There are several choices of absolute positional encodings, such as the

fixed encodings by sine and cosine functions with different frequencies and the learnable

encodings through training parameters [Wu et al., 2021].

Relative position encoding is an alternative approach that aims to capture positional re-

lationships between elements in a sequence by calculating the relative distance between

input elements and by learning the pairwise relationships between tokens. It allows the

model to focus on relative distances and patterns rather than relying solely on absolute

positions. Relative position encoding is achieved by incorporating relative positional bi-

ases into the attention mechanism. Instead of using absolute positional embeddings, the

attention scores are adjusted based on the relative positions between the query and key

elements. More specifically, they encode the relative position between the input elements

into query vector (Qp), the key vector (Kp), and the value vector (Vp), which have the

same dimension as dmodel (in Eq. 3.2). The encoding vectors are embedded into the self-

attention module by re-formulating the self-attention (Eq. 3.2) as follows [Wu et al., 2021]:

Attention = so f tmax(
(Q + Qp)(K + Kp)T

√
dk

)(V + Vp) (3.4)

In this way, the pairwise positional relation is learned during transformer training. Relative

position encoding is particularly useful in tasks where the absolute position of elements is

less important, but the relationships or dependencies between elements matter more. For

example, in tasks like object detection or semantic segmentation, the relative positions of

objects or regions within an image are more relevant than their absolute positions.

3.1.4/ TRAINING NEURAL NETWORKS

Neural networks need to be trained before they can make accurate predictions. Training

involves optimizing the weights and biases of the network to minimize the difference be-
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tween the network’s predictions and the true target values. Network training is an iterative

process done in two main steps: forward propagation and backward propagation.

During forward propagation, the input data is fed through the network layer by layer until

a prediction is generated. Neurons within each layer receive inputs from the preceding

layer, perform weighted summations, and apply an activation function to produce an out-

put. This output becomes the input for the subsequent layer, continuing until the output

layer yields a prediction.

After making a prediction, the network compares the predicted value to the true target

value. It then calculates the loss or the error. The loss function quantifies the discrep-

ancy between the predicted and actual outputs. During backward propagation, this error

is propagated back through the network in the reverse direction, layer by layer. Lever-

aging the chain rule of calculus, the derivatives of the error with respect to the weights

and biases are calculated. These derivatives, or gradients, indicate the contribution of

each weight to the error. The weights and biases are then adjusted to minimize the er-

ror. The magnitude of these adjustments is determined by the optimization algorithm

[Bushaev, 2017].

Optimizers play a critical role in the training process of neural networks by guiding the

updates to the network’s weights and biases based on the computed gradients. Various

optimization algorithms are employed during the backpropagation to enhance the stability

and efficiency of the training process. One commonly used algorithm is gradient descent,

which updates the network’s parameters in the direction opposite to the computed gradi-

ents. The size of the weight updates is determined by the learning rate, which scales the

negative gradients.

Stochastic gradient descent (SGD), a variant of gradient descent, updates the weights

for each sample individually, while mini-batch gradient descent applies weight updates for

a subset of the training set, resulting in smoother parameter adjustments. Another pop-

ular optimizer is Adam (Adaptive Moment Estimation), which combines the advantages

of adaptive learning rates and momentum methods. Adam maintains separate learning

rates for each parameter, adapting them based on the gradients. It also incorporates mo-

mentum, facilitating faster convergence by accumulating past gradients [Bushaev, 2017].

3.1.4.1/ LOSS FUNCTIONS

In a neural network, a loss function, also known as a cost function or objective function,

quantifies the discrepancy between the predicted output of the network and the true tar-

get values. It serves as a measure of how well the network is performing on a given

task [Pandit, 2023]. The choice of a suitable loss function depends on the nature of the

problem at hand, such as regression, classification, or segmentation.
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Regression problems involve predicting continuous numerical values. Mean Squared Er-

ror (MSE) is one of the most widely used loss functions for regression. It is computed

as the mean of the squared differences between each prediction and target value. Mean

Absolute Error (MAE) is an alternative to MSE that measures the average absolute differ-

ence between the predicted and true values. It is less sensitive to outliers compared to

MSE and provides a more robust measure of error [Pandit, 2023].

Classification problems involve assigning input data to predefined classes or categories.

Binary cross-entropy loss (BCE) is commonly used for binary classification tasks, where

there are only two classes. It measures the dissimilarity between the true class labels

and the predicted probabilities as shown in Eq. 3.5, where y is the ground truth label (0 or

1) and ŷ is the predicted value. The loss function penalizes the model more for incorrect

predictions with higher confidence [Pandit, 2023].

LBCE = −y log(ŷ) − (1 − y) log(1 − ŷ) (3.5)

Categorical cross-entropy loss (CE) is used for multi-class classification problems. It

calculates the average cross-entropy loss over all classes, as shown in Eq. 3.6, where

y is the ground truth label vector (a one-hot vector), ŷ is the predicted probability vector

and C is the number of classes [Pandit, 2023]. The loss function encourages the model

to assign high probabilities to the correct class and low probabilities to the other classes.

LCE = −

C∑
c=1

yc log(ŷc) (3.6)

Sparse categorical cross-entropy loss is similar to categorical cross-entropy but is used

when the true class labels are provided as integers rather than one-hot encoded vectors.

It avoids the need for one-hot encoding by directly comparing the true labels with the

predicted probabilities.

In image segmentation tasks, binary cross-entropy (BCE) and categorical cross-entropy

(CE) loss functions can also be employed, treating each pixel as a binary or multi-class

classification problem. For example, for multi-class segmentation, the CE loss can be

modified by incorporating a pixel-wise summation, as depicted in Eq. 3.7, where M rep-

resents the number of pixels in the corresponding image.

LCE(seg) = −
1
M

M∑
j=1

C∑
c=1

yc
j log(ŷc

j) (3.7)

Weighted cross-entropy (WCE) is a frequently used extension of CE, which is used to

address potential class imbalance issues encountered in medical image segmentation
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tasks by penalizing majority classes [Ma et al., 2021]. It is computed as shown in Eq.

3.8, where wc denotes the weight assigned to each class. The weights wc are typically

inversely proportional to the class frequencies.

LWCE(seg) = −
1
M

M∑
j=1

C∑
c=1

wcyc
j log(ŷc

j) (3.8)

Region-based loss functions are also utilized in image segmentation to minimize the mis-

match or maximize the overlap regions between the ground truth and predicted segmen-

tation [Ma et al., 2021]. One of the most prevalent region-based loss functions is the Dice

loss [Milletarı̀ et al., 2016], which quantifies the similarity between the predicted and true

segmentation masks. There are two common variants [Isensee et al., 2021]: one em-

ploying squared terms in the denominator [Milletarı̀ et al., 2016], and the other without

squared terms [Drozdzal et al., 2016] [Ma et al., 2021]. The squared version, depicted in

Eq. 3.9, calculates the Dice loss by summing the product of predicted probabilities and

ground truth labels and dividing it by the sum of the squares of predicted probabilities and

ground truth labels for each class.

LDice = 1 −
2
∑M

j=1
∑C

c=1 yc
jŷ

c
j∑M

j=1
∑C

c=1(yc
j)

2 +
∑M

j=1
∑C

c=1(ŷc
j)

2
(3.9)

Compound loss functions are often used in segmentation methods, combining multiple

loss functions [Ma et al., 2021]. A widely used compound loss for segmentation is the

combination of Dice loss and cross-entropy loss, as expressed in Eq. 3.10.

LDiceCE = LDice + LCE (3.10)

3.1.4.2/ REGULARIZATION

Regularization refers to a set of techniques that aim to prevent overfitting, where the

model becomes overly specialized to the training data and performs poorly on unseen

data [Jain, 2018]. This is particularly important in medical image analysis, where the

availability of labeled data is often limited and the models need to generalize well to

unseen patient cases.

Here are some common regularization techniques used in deep learning [Jain, 2018]:

• Weight regularization: Weight regularization, also known as weight decay, is a

widely used technique to control the complexity of neural networks. It introduces a

penalty term to the loss function, discouraging the model from relying excessively on

individual weights. L1 regularization encourages sparsity in the weights by adding
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the sum of the absolute weights, leading to some weights being set to zero, while

L2 regularization promotes smaller weights by adding the sum of squared weights

to the loss function.

• Dropout: Dropout is a regularization technique that randomly deactivates a frac-

tion of neurons during training. This prevents neurons from relying too heavily on

specific input features and encourages them to learn more robust and generaliz-

able representations. Dropout effectively acts as an ensemble of multiple models,

reducing the risk of overfitting.

• Data Augmentation: Data augmentation involves applying a variety of transforma-

tions to the training images, such as rotations, translations, flips, zooms, or intensity

variations. This artificially increases the size of the training dataset and introduces

diversity, helping the model learn more invariant and robust features. Data augmen-

tation is particularly useful in medical image analysis, where variations in patient

positioning, imaging modalities, and acquisition protocols are common.

• Early Stopping: Early stopping is a straightforward yet effective regularization tech-

nique. It involves monitoring the model’s performance on a validation set during

training and stopping the training process when the performance begins to decline.

This approach helps prevent overfitting by finding a balance between model com-

plexity and generalization.

• Transfer Learning: Transfer learning involves leveraging pre-trained models that

were trained on large-scale datasets, such as ImageNet, and adapting them to the

medical image analysis task at hand. By utilizing the knowledge learned from these

datasets, transfer learning allows models to generalize better with limited medical

image data.

3.1.4.3/ EVALUATION METRICS

Automated segmentation algorithms are commonly evaluated using two types of met-

rics: overlap-based metrics, such as the Dice Similarity Coefficient, and surface distance-

based metrics, such as the Hausdorff distance.

Overlap-based metrics assess the similarity between a segmented region and a ground

truth region in image segmentation tasks. These metrics provide a measure of segmen-

tation accuracy by quantifying the degree of overlap between the segmented region and

the ground truth. The Dice Similarity Coefficient [Dice, 1945] is a widely used metric for

evaluating segmentation performance. It calculates the overlap between the segmented

region (S) and the ground truth region (G) by considering the intersection of their pixel

sets and the sum of their pixel counts, as shown in Eq. 3.11 [Taha et al., 2015]. The
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equation also illustrates an alternative formulation of the Dice Similarity Coefficient using

true positives (TP), false positives (FP), and false negatives (FN).

Dice =
2|S ∩G|
|S | + |G|

=
2T P

2T P + FP + FN
(3.11)

where TP represents the number of pixels or voxels that are correctly identified as posi-

tive, FP denotes the number of pixels or voxels that are incorrectly identified as positive

and FN represents the number of pixels or voxels that are incorrectly identified as nega-

tive, as depicted in Figure 3.17.

Figure 3.17: Schematic representation depicting the measurement of segmentation
errors for the computation of the Dice similarity coefficient. Image adapted from
[McClure et al., 2014].

The Dice value varies between 0 and 1, with a value of 1 indicating a perfect overlap

between the segmentation and ground truth. A higher Dice value indicates a higher

degree of similarity between the segmentation and the ground truth, reflecting a more

accurate and precise segmentation result.

Surface distance-based metrics play a crucial role in evaluating image segmentation qual-

ity by measuring dissimilarity. The Hausdorff distance [Huttenlocher et al., 1993] is a well-

known surface distance-based metric commonly used for this purpose. It quantifies the

dissimilarity between two sets of points, typically representing the boundaries of a seg-

mented region and a ground truth region. The Hausdorff Distance (HD) between two

finite point sets A and B is defined by Eq. 3.12, where h(A, B) represents the directed

Hausdorff distance [Taha et al., 2015].

HD(A, B) = max(h(A, B), h(B, A)) (3.12)

The directed Hausdorff distance, denoted as h(A, B), is calculated as the maximum dis-

tance between a point in set A and its closest point in set B. The Hausdorff Distance is
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computed by taking the maximum value between h(A, B) and h(B, A), which accounts for

dissimilarities in both directions.

The Hausdorff Distance metric evaluates the maximum discrepancy or dissimilarity be-

tween the boundaries of the segmented region and the ground truth region. Typically, sets

A and B correspond to the boundary points or contours of the segmented region and the

ground truth region, respectively. A smaller Hausdorff Distance indicates a higher level of

similarity between the two sets, reflecting a better alignment between the segmentation

and the ground truth boundaries.

The Hausdorff distance metric is known to be sensitive to outliers, which can be prob-

lematic in medical segmentations where noise and outliers are common. Consequently,

directly using the HD metric is sometimes not recommended [Gerig et al., 2001]. How-

ever, an alternative approach to address this issue is the quantile method proposed by

Huttenlocher et al. [Huttenlocher et al., 1993]. The Hausdorff quantile method suggests

redefining the HD as the qth quantile of distances instead of the maximum. By doing

so, possible outliers are excluded from the computation, providing a more robust mea-

surement. The specific value of q is selected based on the particular application and the

characteristics of the point sets being measured [Taha et al., 2015].

3.1.5/ DEEP LEARNING FOR CARDIAC MR IMAGE SEGMENTATION

In recent years, deep learning has emerged as a powerful technique in various medical

imaging applications, including cardiac MR image segmentation. As mentioned in Section

2.4.1, cardiac MR imaging is crucial in diagnosing and assessing various cardiovascular

diseases, providing detailed anatomical and functional information about the heart. Ac-

curate segmentation of cardiac structures and pathological tissues such as scars from

cardiac MR images is essential for quantitative analysis, surgical planning, and disease

monitoring. While traditional image segmentation methods have been employed with

some success, they often require manual intervention, extensive preprocessing and may

struggle with complex anatomical variations, noise, and imaging artifacts. On the other

hand, deep learning techniques have shown great potential in automating the cardiac MR

image segmentation process, offering improved accuracy, efficiency, and robustness.

Several studies have been conducted to explore the application of deep learning algo-

rithms for cardiac MR image segmentation. These studies have demonstrated promising

results and paved the way for the development of advanced segmentation approaches

in cardiac imaging. The use of convolutional neural networks (CNNs), in particular, has

gained significant attention due to their ability to learn hierarchical representations of

features from images automatically. Several studies have employed CNN-based archi-

tectures, such as Fully Convolutional Network (FCN) [Shelhamer et al., 2014] and U-Net
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[Ronneberger et al., 2015], for cardiac MR image segmentation.

FCN [Shelhamer et al., 2014] are a type of convolutional neural network that can take

an input of arbitrary size and produce a correspondingly sized output. Unlike standard

CNNs, which have fully-connected layers at the end that require fixed-size inputs, FCNs

replace the fully-connected layers with convolutional layers that preserve spatial informa-

tion. FCNs are designed with an encoder-decoder structure, as depicted in Figure 3.18

(A), allowing them to process input images of any size and generate output maps of the

same size. The encoder component of FCN transforms the input image into high-level

feature representations, while the decoder interprets these feature maps and recovers

spatial details through operations such as transposed convolutions. Transposed convo-

lutions are commonly used to upscale the feature maps by a factor of 2, although alter-

native approaches like unpooling and upsampling layers can also be employed. How-

ever, the simple encoder-decoder structure of FCNs may fail to capture intricate con-

text information due to the elimination of some features by pooling layers in the encoder

[Chen et al., 2019b].

U-Net [Ronneberger et al., 2015] is a specific type of FCN architecture that has gained

substantial popularity in medical image segmentation tasks, including cardiac structure

segmentation. U-Net is characterized by its U-shaped architecture, which consists of

an encoder pathway followed by a decoder pathway. The encoder pathway captures

context and abstract features through a series of down-sampling operations, while the

decoder pathway performs up-sampling and concatenation of features from the encoder

to recover spatial resolution. U-Net incorporates skip connections between the encoder

and decoder, as illustrated in Figure 3.18 (B). These skip connections enable the re-

covery of spatial context lost during the down-sampling process, leading to more pre-

cise segmentation results. The U-Net, along with its 3D variants such as the 3D U-Net

[Çiçek et al., 2016] and the 3D V-Net [Milletarı̀ et al., 2016], has been widely adopted as

the backbone network in state-of-the-art cardiac image segmentation methods. These

methods have demonstrated promising segmentation accuracy in various cardiac seg-

mentation tasks [Chen et al., 2019b]. Recently, nnU-Net [Isensee et al., 2021] has been

proven a successful adaptive framework that automatically configures itself, including

preprocessing, network architecture, training and post-processing for automatic segmen-

tation of different types of medical images. It has been shown to be effective for a variety

of medical image segmentation tasks and winning multiple medical image segmentation

challenges [Ma, 2021].

Recently, a notable advancement in deep learning approaches for medical image seg-

mentation has been the utilization of vision transformer-based models. Vision transform-

ers [Dosovitskiy et al., 2020], originally introduced for natural image classification tasks,

have shown remarkable capabilities in capturing long-range dependencies and modeling
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Figure 3.18: A) FCN and B) U-Net segmentation architectures. Image adapted from
[Chen et al., 2019b].

complex spatial relationships, as described in detail in Section 3.1.3.2. This has mo-

tivated researchers to adapt vision transformers for medical image analysis, including

cardiac MR image segmentation. This section aims to provide an overview of the existing

literature on deep learning approaches for cardiac MR image segmentation, highlighting

their methodologies, achievements, and potential limitations.

3.1.5.1/ DEEP LEARNING FOR CARDIAC STRUCTURES SEGMENTATION

In cardiac magnetic resonance (CMR) imaging, various anatomical structures of the heart

can be visualized and segmented. These cardiac structures are essential for understand-

ing the cardiac anatomy, function, and pathology. In this thesis, we are mainly focusing on

the segmentation of left ventricular cavity or blood pool (LV), right ventricular blood pool

(RV) and left ventricular myocardium (MYO) from CMR images.

Tran (2016) [Tran, 2016] pioneered the use of fully convolutional networks (FCNs) to

directly segment the left ventricle, myocardium, and right ventricle in short-axis car-

diac MR images. Their end-to-end FCN approach demonstrated faster and more ac-

curate segmentation compared to traditional methods. Since the introduction of the Au-

tomated Cardiac Diagnosis Challenge (ACDC) [Bernard et al., 2018] in 2017, numerous

deep learning approaches have been proposed to further improve cardiac segmenta-

tion performance. Isensee et al. [Isensee et al., 2017] used an ensemble of 2D and

3D U-Nets, while Khened et al. [Khened et al., 2018] developed a dense U-Net with

inception modules to combine multiscale features for robust segmentation across vari-
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able anatomy. Other works have explored different loss functions like weighted cross-

entropy, Dice loss, deep supervision loss, and focal loss to boost segmentation accu-

racy [Jang et al., 2017, Yang et al., 2017, Sander et al., 2019, Chen et al., 2019c]. Most

methods utilize 2D networks rather than 3D due to the typically low through-plane res-

olution and motion artifacts in cardiac MR scans, which limit the utility of 3D networks

[Baumgartner et al., 2017, Chen et al., 2019b].

Li et al. [Li et al., 2019] proposed a two-stage method using FCNs for CMR image seg-

mentation. In the first stage, they localized the heart region by identifying a region of

interest (ROI). Subsequently, the localized region was used to segment the left ventric-

ular blood pool, myocardium, and right ventricular blood pool. This two-stage approach

allowed for accurate segmentation of the cardiac structures within the CMR image.

One limitation of 2D networks in cardiac segmentation is that they operate slice-by-slice

without leveraging inter-slice dependencies. Consequently, 2D networks can fail to locate

and segment the heart on challenging apical and basal slices where ventricular con-

tours are poorly defined. To provide additional contextual guidance to the 2D segmenta-

tion networks, some approaches have incorporated shape priors learned from labels or

multi-view images [Zotti et al., 2017, Chen et al., 2019a]. Others extract spatial informa-

tion from neighboring slices using recurrent units (RNNs) or multi-slice networks (2.5D)

to aid segmentation [Chen et al., 2019b].

A limitation of 2D and 3D FCNs trained with pixel-wise loss functions is that they may

not learn features representing underlying anatomy. To improve prediction accuracy

and robustness, some approaches incorporate anatomical constraints as regularization

terms during training. These constraints account for topology [Clough et al., 2019], con-

tour/region information [Chen et al., 2019a] or shape [Oktay et al., 2017] to encourage

anatomically plausible segmentations. Along with network regularization during training,

Painchaud et al. [Painchaud et al., 2019] proposed a variational autoencoder to post-

process and correct inaccurate segmentations.

As part of the M&Ms (Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Seg-

mentation Challenge) [Campello et al., 2021] challenge, [Full et al., 2020, Ma, 2020b] ad-

dressed the challenge of domain shift or distribution shift in CMR image segmentation by

employing data augmentation-based solutions. These solutions included techniques such

as histogram matching, contrast modification, and image synthesis. By utilizing these

methods, they tried to reduce the differences in data distribution between training and

testing sets, improving the robustness and generalizability of the segmentation models.

Looking at the performance of transformer-based methods for cardiac image segmenta-

tion, Chen et al. [Chen et al., 2021a] introduced TransUNet as a novel method for cardiac

structure segmentation, leveraging the strengths of both convolutional neural networks

(CNNs) and Transformers. TransUNet follows a two-step approach, where high-resolution
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spatial features are initially extracted using a CNN. Subsequently, global context informa-

tion is encoded using a Transformer, which incorporates self-attentive features. These

encoded features from the Transformer are then upsampled and merged with features

from multiple scales extracted through skip connections in the encoding path. This fusion

of features enables precise localization in the segmentation process. TransUNet demon-

strated superior performance compared to other models like V-Net [Milletarı̀ et al., 2016],

Attention U-net [Oktay et al., 2017], and ViT [Dosovitskiy et al., 2020] for multi-organ and

cardiac segmentation tasks [He et al., 2022].

In a similar way, Xu et al. [Xu et al., 2021] proposed LeViT-UNet, which integrates a Light

Vision Transformer (LeViT) [Yang et al., 2022] Transformer module into the U-Net archi-

tecture for efficient and accurate segmentation of cardiac MR images. In LeViT-UNet, the

LeViT Transformer serves as the encoder, providing a better balance between accuracy

and efficiency in the Transformer block. Moreover, the authors incorporated multi-scale

feature maps from both transformer blocks and convolutional blocks of LeViT into the

decoder through skip connections. This integration allows for the effective utilization of

spatial information present in the feature maps, enhancing the segmentation performance

[He et al., 2022].

Gao et al. [Gao et al., 2021] introduced UTNet, a model that incorporates self-attention

modules in both the encoder and decoder blocks to capture long-range dependencies

at multiple scales while maintaining computational efficiency. They proposed an efficient

implementation of self-attention and relative position encoding techniques, reducing com-

plexity without sacrificing performance [He et al., 2022]. This allowed UTNet to effectively

model global interactions in the input data.

On the other hand, Cao et al. [Cao et al., 2021] proposed Swin-Unet, a Transformer-

based architecture designed specifically for cardiac MR image segmentation and other

medical imaging tasks. Swin-Unet adopts a U-shaped encoder-decoder architecture with

skip connections to facilitate the learning of local and global semantic features. The

encoder component utilizes a hierarchical Swin Transformer with shifted windows to ex-

tract contextual features, enabling effective context modeling. Meanwhile, the decoder,

based on a symmetric Swin Transformer, performs up-sampling operations to restore the

spatial resolution of the feature maps, aiding in accurate segmentation of CMR images

[He et al., 2022].

3.1.5.2/ DEEP LEARNING FOR CARDIAC SCAR TISSUE SEGMENTATION

Cardiac scar tissue segmentation from LGE CMR images is of great importance in the

evaluation and management of patients with various cardiac pathologies, including my-

ocardial infarction, cardiomyopathies, and arrhythmias. LGE CMR imaging provides high-
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resolution images that highlight regions of myocardial fibrosis or scar, which are crucial in

assessing the extent and location of damaged tissue.

Approaches to scar segmentation can be divided into non-deep learning and deep learn-

ing methods. Non-deep learning techniques rely on thresholding and clustering. Thresh-

olding exploits the enhanced intensity of infarcted myocardium compared to healthy my-

ocardium. Full width at half maximum (FHFW) defines the threshold as half the maximum

infarcted intensity [Amado et al., 2004]. The nSD method uses a threshold n standard

deviations above healthy mean intensity, with n between 2-6 [Kim et al., 1999]. While

simple, these methods require a manual region of interest selection to determine thresh-

olds. Clustering methods like Gaussian mixture modeling [Hennemuth et al., 2012] and

Fuzzy C-means [Baron et al., 2013] classify myocardial intensities to segment scars but

still need some manual intervention.

Recent deep learning methods use semi-automatic or fully automatic approaches. Zabi-

hollahy et al. (2018) manually segmented the myocardium and then applied a 2D FCN

for scar segmentation [Zabihollahy et al., 2018]. Moccia et al. (2019) proposed a semi-

automatic and fully automatic scar segmentation method [Moccia et al., 2018]. The for-

mer approach outperformed the latter approach due to the mediocre segmentation per-

formance of the fully automatic method on the myocardium. De la Rosa et al. (2019)

used a fully automatic pipeline of 2D U-net myocardium segmentation, top-hat transform

coarse scar segmentation, and final voxel classification [de la Rosa et al., 2019]. In addi-

tion, Fahmy et al. (2019) demonstrated the effectiveness of a deep learning approach us-

ing a 3D CNN for segmenting left ventricular scar in patients with hypertrophic cardiomy-

opathy (HCM), outperforming 2D CNNs, and demonstrating comparable performance in

a multi-center and multi-vendor setting [Fahmy et al., 2019b].

More recently, the use of deep learning methods for myocardial scar segmentation

from LGE MRI has gained some attention, especially following the EMIDEC (auto-

matic Evaluation of Myocardial Infarction from Delayed Enhancement Cardiac MRI)

[Lalande et al., 2020] challenge at MICCAI 2020. Numerous approaches have been

proposed for this task, typically adopting a two-stage cascaded framework. These ap-

proaches commonly involve delineating the myocardium as a Region of Interest (ROI) in

the first stage and subsequently segmenting the different myocardial tissues within the

ROI using another model in the second stage. Alternatively, some studies have proposed

one-stage models that aim to achieve end-to-end segmentation of all the target tissues

[Lalande et al., 2021].

For instance, Zhang 2020 proposed a cascaded 2D-3D framework that utilizes a 2D U-

Net for initial segmentation, focusing on intra-slice information [Zhang, 2020]. This is

followed by a 3D U-Net that incorporates both the original volume and the 2D segmen-

tation information to refine the segmentation. Similarly, Brahim et al. (2020) introduced
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a two-stage deep learning framework for enhanced segmentation of myocardial diseases

[Brahim et al., 2020]. In the first step, they employed an encoder-decoder segmentation

network to generate segmentations of the myocardium and cavity from the entire volume.

Then, a 3D U-Net incorporating shape priors was used to identify the segmentation of

myocardial infarction based on the predictions from the first network.

Feng et al. 2020 proposed an automatic LGE-MRI segmentation model that ad-

dressed image orientation dependency by incorporating rotation-based augmentation

[Feng et al., 2020]. They utilized a dilated 2D U-Net to enhance the network’s robust-

ness and employed weighted cross-entropy and soft-Dice loss functions to handle class

imbalance. Another approach by Yang et al. 2020 introduced a hybrid U-Net network

for simultaneous segmentation of various regions in LGE-MRI [Yang et al., 2020]. Their

architecture incorporated the squeeze-and-excitation residual (SE-Res) module in the

encoder to capture dependencies among feature channels and used a selective kernel

block in the decoder to adaptively adjust the receptive field size for gathering multi-scale

feature information.

In a recent study, Abdelhamed et al. (2023) proposed NesT-UNet, a 2D segmentation

network that leverages the Nested Hierarchical Transformer (NesT) [Zhang et al., 2022b]

architecture [Abdelhamed et al., 2023]. Their approach employed the NesT architecture

in both the encoder and decoder and utilized self-supervised pre-training for improved

segmentation of myocardium and scar. The method achieved results comparable to the

state-of-the-art on the EMIDEC dataset.

3.2/ UNCERTAINTY ESTIMATION METHODS

In many machine learning systems, it is crucial to have an understanding of what a model

does not know. Deep learning algorithms have made significant advancements in learn-

ing complex representations that can effectively map high-dimensional data to various

outputs. As a result, deep learning has become a key component in numerous modern

applications, enabling state-of-the-art performance. However, most deep learning models

lack the ability to represent uncertainty [Kendall et al., 2017b].

To address this limitation, Bayesian deep learning approaches provide a practical frame-

work for capturing and comprehending uncertainty in deep learning models. By incorpo-

rating Bayesian principles into deep learning, these approaches enable the modeling of

uncertainty, offering insights into the reliability and confidence of predictions. Bayesian

deep learning serves as a valuable tool for understanding the limits of a model’s knowl-

edge and provides a means to quantify and interpret uncertainty in deep learning models

[Gal, 2016, Kendall et al., 2017b].
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In Bayesian modeling, there exist two primary types of uncertainty that can be effec-

tively modeled. The first type, known as aleatoric uncertainty, captures the inherent noise

present in the observations. This noise can originate from various sources, such as

sensor inaccuracies or motion disturbances. Aleatoric uncertainty represents the por-

tion of uncertainty that remains unchanged, regardless of the amount of data collected.

It encompasses the irreducible uncertainty associated with the noise in the observa-

tions. Within the category of aleatoric uncertainty, there are further classifications. Ho-

moscedastic uncertainty refers to uncertainty that remains constant for different inputs,

indicating a consistent level of noise across the entire dataset. On the other hand, het-

eroscedastic uncertainty depends on the inputs to the model. It accounts for the possibil-

ity of certain inputs having noisier outputs compared to others, resulting in varying levels

of uncertainty across the dataset [Kendall et al., 2017b].

The second type, epistemic uncertainty, also known as model uncertainty, stems from in-

sufficient knowledge about the true underlying data distribution or limitations in the model

structure. It can be attributed to factors such as limited data availability or model misspec-

ification. Unlike aleatoric uncertainty, epistemic uncertainty can potentially be reduced by

collecting more data, allowing the model to refine its understanding and provide more

accurate predictions [Kendall et al., 2017b].

Bayesian neural networks (BNNs) differ from regular neural networks in that their weights

are assigned a probability distribution instead of a single value or point estimate, as shown

in Figure 3.19. These distributions represent the uncertainty associated with the weights

and allow for the estimation of uncertainty in predictions [Blundell et al., 2015]. By em-

ploying a Bayesian approach, we can quantify the epistemic uncertainty inherent in our

beliefs using probability distributions. Given training inputs X = x1, x2, ..., xN and their cor-

responding outputs Y = y1, y2, ..., yN , the task is to find a function that maps the input

data-points X to the output labels Y. If a Bayesian model, parameterized by the model

parameters ω drawn from the initial prior distribution P(ω), is used to learn this mapping

function. The prior distribution (P(ω)) represents our initial belief as to which parameters

are likely to have generated our data before we observe any data points. The goal of the

learning process is to modify the prior distribution based on the training data in such a

way that the model is transformed into an ideal or near-ideal mapping function between

X and Y. During the training, Bayes’ theorem is used to update the prior distribution of

the weights P(ω) to give the posterior P(ω|X,Y) based on the data likelihood P(Y |X, ω)

[Gal, 2016, Manivannan, 2020] as shown in the equation below:

P(ω|X,Y) =
P(Y |X, ω)P(ω)

P(Y |X)
(3.13)

Where P(ω) denotes the prior distribution, and P(ω|X,Y) is the likelihood. The likeli-
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hood function captures the probability of observing the data given the model parame-

ters. It describes how well the training data can be modeled with the available model

parameters. P(Y |X) is called model evidence. It serves as a normalization factor and

describes the principal probability over the training data independent of the parameter

choice [Gal, 2016, Wu et al., 2023], and it is computed as:

P(Y |X) =
∫

P(Y |X, ω)P(ω)dω (3.14)

Given a new input point x∗, the output y∗ can be inferred by integrating over all values of

the posterior probability distribution of ω:

P(y∗|x∗, X,Y) =
∫

P(y∗|x∗, ω)P(ω|X,Y) dω (3.15)

These equations highlight the advantage of using a Bayesian model compared to clas-

sical non-Bayesian neural networks, which typically provide a single-point estimate. In

contrast, a Bayesian model can provide a distributional output for both the model weights

and predictions. Distributions are valuable because they allow for easy extraction of un-

certainty estimates, such as computing the variance, and point estimates are obtained

using various statistical measures like mean, median, or mode. However, obtaining pre-

dictive posterior distributions in deep neural networks using simple Bayesian modeling

tools is not feasible. The computation of the posterior distribution (Eq. 3.13) and the

closed-form integral computation of the predictive distribution (Eq. 3.13), which involves

integrating over the space of all possible model parameters, are intractable due to the

complex data likelihood function and the presence of numerous weight parameters with

countless combinations of values [Gal, 2016, Wu et al., 2023].

To address this issue, approximation methods are necessary to efficiently estimate the

posterior distribution of the parameters in Bayesian neural networks (BNNs). These ap-

proximation methods provide practical ways to approximate the posterior distribution,

making the computations more manageable. Hence, various techniques have been

proposed to approximate the posterior. One category of methods involves Markov

Chain Monte Carlo (MCMC) techniques [Neal, 1995], which generate samples from the

posterior distribution. Another popular set of techniques involves variational inference

[Graves, 2011, Gal et al., 2015], where the posterior is approximated by a variational dis-

tribution [Mukhoti et al., 2018]. In the following section, we will explore various variational

inference-based techniques for approximating the posterior distribution of BNN parame-

ters.
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Figure 3.19: A comparison between deterministic Neural Networks (A) that have fixed
parameter values, and Bayesian Neural Networks (B) which exhibit a distribution defined
over their parameters. Image adapted from [Blundell et al., 2015].

3.2.1/ VARIATIONAL INFERENCE

In most cases, it is not possible to analytically evaluate the true posterior probability dis-

tribution, denoted as P(ω|X,Y). Instead, we employ an approximation method using a

variational distribution, denoted as q(ω|θ), which belongs to a known tractable family with

a predefined functional form. This can be done by minimizing the Kullback-Leibler (KL)

divergence between the variational distribution q(ω|θ) and the true posterior P(ω|X,Y)

[Gal, 2016]. Therefore, by finding the optimal parameters θ for the distribution q(ω|θ),

we aim to minimize the KL divergence between the variational distribution and the true

Bayesian posterior distribution of the weights as follows:

θ∗ = argmin
θ

KL[q(ω|θ)||P(ω|X,Y)]

= argmin
θ

∫
q(ω|θ) log

q(ω|θ)
P(Y |X, ω)P(ω)

dω

= argmin
θ

KL[q(ω|θ)||P(ω)] − Eq(ω|θ)[log P(Y |X, ω)]

(3.16)

The cost function resulting from this approach is commonly referred to as the variational

free energy. The negative variational free energy is also known as evidence lower bound

(ELBO). It consists of two components: the expected log-likelihood of the data under the

variational distribution and the negative KL divergence between the variational distribution

and the prior. Maximizing the ELBO encourages the variational distribution to closely

approximate the true posterior. The complete derivation of the cost function can be found
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in [Blundell et al., 2015], but for simplicity, let’s denote it as:

F(θ, X,Y) = KL[q(ω|θ)||P(ω)] − Eq(ω|θ)[log P(Y |X, ω)] (3.17)

where Eq(ω|θ) denotes expectation over the variational posterior q(ω|θ). The first term in

the equation (Eq. 3.17) is the KL divergence between the variational distribution q(ω|θ)

and the prior P(ω), often referred to as the complexity cost. The second term is the

expected value of the likelihood with respect to the variational distribution and is known

as the likelihood cost.

One way to represent the approximate posterior distribution q(ω|θ) is by utilizing a fully

factorized Gaussian, parameterized by θ = (µ, σ) where µ is the mean vector of the

distribution and σ the standard deviation vector. To ensure both a positive σ value

and training stability, σ is parameterized with ρ using softplus function, expressed as

σ = softplus(ρ) = ln(1 + eρ). The prior distribution P(ω) is typically selected as a fully fac-

torized Gaussian with a mean µpriorI and covariance σpriorI, where I denotes an identity

matrix [Ng et al., 2020].

During a training iteration, two main steps are involved: the forward pass and the back-

ward pass. In the forward pass, a single sample is randomly drawn from the variational

posterior distribution. This sample is then utilized to evaluate the cost function as defined

in Eq. 3.17. On the other hand, during the backward pass, the gradients of µ and ρ are

computed using backpropagation so that their values can be updated by an optimizer. As

the forward pass incorporates a stochastic sampling process, it becomes necessary to

employ the ”re-parameterization trick” to enable successful backpropagation. This train-

ing technique is referred to as Bayes by Backprop [Blundell et al., 2015], and its steps are

briefly summarized below [Ng et al., 2020]:

(1) For each weight θ, generate a sample ϵ from a standard normal distribution (N(0, 1))

and set θ = µ + softplus(ρ) · ϵ.

(2) Compute the loss according to Eq. 3.17, which involves the negative loga-

rithm of the likelihood P(Y |X, ω), and include a regularization term represented by

KL[q(ω|θ)||N(µpriorI, σpriorI)].

(3) Perform gradient descent to update the values of µ and ρ.

After the optimization process is complete, the trained BNN can be utilized for making

predictions and uncertainty estimates. Unlike a traditional neural network that provides a

single-point estimate, the BNN generates a distribution of potential outputs. This distribu-

tion allows for uncertainty estimation by calculating statistics such as variance or entropy,

and the final predictions are obtained using the mean. It is important to note that the ef-

fective number of trainable parameters in a BNN is doubled compared to a regular neural
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network, as BNNs are parameterized with both µ and σ.

3.2.2/ MONTE CARLO-DROPOUT

Monte Carlo Dropout (MC Dropout) [Gal et al., 2015] is a technique that combines

the ideas of dropout regularization [Srivastava et al., 2014] and Monte Carlo sampling

[Shapiro, 2003] to approximate the posterior distribution in Bayesian neural networks

(BNNs). It can be seen as a form of approximate variational inference.

In standard dropout regularization [Srivastava et al., 2014], during training, random sub-

sets of the neural network’s units (neurons) are dropped out or set to zero with a certain

probability. This helps prevent overfitting and encourages model robustness. During in-

ference, the dropout is turned off, and the model’s predictions are obtained using the full

network. In MC-dropout [Gal et al., 2015], a neural network with dropout is trained, and

during test time (inference), the dropout is activated to generate Monte-Carlo samples

of the prediction. From these Monte-Carlo samples, the uncertainty associated with the

output is estimated.

MC Dropout operates based on the principles of variational inference. In MC-dropout, the

variational distribution is assumed to be a Bernoulli distribution, and positioning this distri-

bution over the layer’s weights with parameter p is considered to be identical to adding a

dropout on that layer with a dropout rate of p. To perform approximate inference, it is nec-

essary to train a network with dropout. However, unlike common practice, these dropout

layers remain active even during the testing phase. The objective is to obtain samples

from the posterior distribution. As the dropout layers introduce a Bernoulli distribution over

the network weights, performing a stochastic forward pass through a trained network can

be interpreted as generating a Monte Carlo sample from the posterior distribution. Con-

sequently, multiple forward passes using the same input yield multiple Monte Carlo sam-

ples, the average of which can be utilized as the network’s prediction. The variance can

be interpreted as an estimate of uncertainty [Gal et al., 2015, Mukhoti et al., 2018].

3.2.3/ DEEP ENSEMBLE

Deep ensemble [Lakshminarayanan et al., 2016] is a technique used in deep learning

that involves training and combining multiple neural networks to improve prediction per-

formance and estimate uncertainty. It is based on the principle of ensemble learning,

where multiple models are trained independently, and their predictions are combined to

make final decisions.

In deep ensemble, multiple deterministic neural networks with the same architecture are

trained using the same data (or different subsets of the same data) with different random
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initialization [Lakshminarayanan et al., 2016, Ng et al., 2020]. Each network follows a dif-

ferent training trajectory due to the inherent randomness in the training process. As a

result, each network in the ensemble learns a slightly different representation of the data.

During inference, each network in the ensemble independently makes predictions on

the input data. The final prediction is obtained by aggregating the individual predic-

tions of all the networks. This aggregation can be done by averaging the predicted

probabilities or taking the majority vote, depending on the type of task. To measure

the uncertainty, the variance of the predictions made by the individual models are used

[Lakshminarayanan et al., 2016]. While deep ensembles are typically not categorized as

Bayesian approaches [Lakshminarayanan et al., 2016, Ng et al., 2020] since they do not

explicitly model the posterior distribution over network weights like BNNs, there is an in-

creasing body of research [Wilson et al., 2020, Hoffmann et al., 2021] arguing that they

can be seen as an approximate Bayesian method. Figure 3.20 shows the difference

between MC Dropout and Deep Ensemble. In the case of Deep Ensemble, all the net-

works in the ensemble possess the same architecture but have been randomly initialized

differently for training.

Deep ensemble offers several advantages, including its simplicity of implementation, easy

parallelization, minimal hyperparameter tuning, and the ability to generate high-quality

predictive uncertainty estimates [Lakshminarayanan et al., 2016]. However, it does come

with certain drawbacks. One such drawback is the increased computational and stor-

age demands compared to training a single neural network. Due to the need to train

and store multiple networks, both training and inference times can be prolonged. More-

over, ensemble models necessitate additional memory to store the parameters of each

individual network. Consequently, in some cases, deep ensembles can be prohibitively

expensive to use.

Figure 3.20: Comparison between Monte-Carlo Dropout (left) and Deep Ensemble (right)
methods. Image adapted from [Wu et al., 2023].
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3.2.4/ BAYESIAN DEEP LEARNING IN MEDICAL IMAGE ANALYSIS

Bayesian deep learning has emerged as a promising approach in the field of medical im-

age analysis, offering significant advancements in both accuracy and uncertainty quantifi-

cation. Traditional deep-learning methods excel at capturing complex patterns in medical

images, but they often lack the ability to provide reliable uncertainty estimates for their

predictions. This has become one of the main factors limiting the deployment of deep

learning models in clinical practice [Zou et al., 2023]. Bayesian deep learning, on the

other hand, combines the power of deep neural networks with probabilistic modeling, en-

abling a more comprehensive understanding of the underlying uncertainties in medical

image analysis tasks. This section delves into the application of Bayesian deep learning

in medical image analysis, more particularly in medical image classification and segmen-

tation tasks.

In recent years, there has been a growing interest in incorporating uncertainty theory to

establish trustworthy classification in medical images. Various studies have explored this

approach in different domains, including fundus retinal, dermoscopic, histopathology, and

MR images (a more detailed review can be found from Zou et al. [Zou et al., 2023] and

Lambert et al. [Lambert et al., 2022b]).

Leibig et al. [Leibig et al., 2016] evaluated the use of dropout-based Bayesian uncer-

tainty measures for deep learning in diagnosing diabetic retinopathy (DR) from fundus

images. Their findings demonstrated that such measures effectively capture uncertainty,

outperforming straightforward alternatives. Moreover, they highlighted that incorporating

uncertainty-informed decision referrals can enhance diagnostic performance. Ayhan et

al. [Ayhan et al., 2019] proposed an intuitive framework based on test-time data augmen-

tation to quantify the diagnostic uncertainty of deep neural networks for diagnosing dia-

betic retinopathy. They showed that the derived measure of uncertainty is well-calibrated

and that experienced physicians also find cases with uncertain diagnoses challenging to

evaluate.

Araujo et al. [Araújo et al., 2019] introduced a deep learning-based CAD system for DR

grading. Their system supports decision-making by providing a medically interpretable

explanation and an estimation of the prediction uncertainty. This allows ophthalmolo-

gists to assess the level of trustworthiness associated with a particular decision. Their

method adopts a Gaussian sampling approach within a multiple-instance learning frame-

work, enabling the inference of image grades along with explanation maps and prediction

uncertainties, even with image-wise labels during training. Filos et al. [Filos et al., 2019]

conducted an assessment of different Bayesian deep learning models, including MC-

Dropout, variational inference, and deep ensemble, in the context of DR tasks. Their

focus was on leveraging model uncertainty for medical pre-screening, where patients are

referred to experts when the model’s diagnosis is uncertain.
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Drawing inspiration from the actual practices of pathologists and the automatic Whole

Slide Image (WSI) classification system, [Feng et al., 2022] developed a multi-scale clas-

sification framework that integrates predictions and uncertainty estimates from different

magnification levels. They employed vision transformers to model both class predic-

tions and uncertainty based on evidential theory. By combining evidence across scales,

their approach aims to produce reliable predictions comparable to pathologists’ analysis.

Dolezal et al. [Dolezal et al., 2022] quantified uncertainty in whole slide classifiers using

dropout sampling. By establishing thresholds on training data, they differentiated between

low and high-confidence predictions which facilitated uncertainty-aware clinical decision-

making. For digital pathology, Linmans et al. [Linmans et al., 2022] suggested the use

of multi-head CNNs (multi-head ensembles) to efficiently estimate predictive uncertainty

and identify out-of-distribution (OOD) images. Their approach focused on enhancing un-

certainty estimation in digital pathology using a multi-head ensemble model.

In the context of skin lesion analysis, Molle et al. [Molle et al., 2019] highlighted the lim-

itations of a variance-based uncertainty metric, which often yields small and difficult-to-

interpret values. They proposed a new uncertainty measure that considered the overlap

between distributions of different output classes. This metric provided a clear range be-

tween 0 (indicating high certainty) and 1 (indicating low certainty), making it easy to inter-

pret. The effectiveness of these metrics was verified in skin lesion classification tasks.

In MR image analysis, Tousignant et al. [Tousignant et al., 2019] introduced an automatic

end-to-end Bayesian deep learning framework for predicting future disability progression

in patients with Multiple Sclerosis using multi-modal brain MRI. They demonstrated that

uncertainty estimates, derived from Monte Carlo dropout sample variance, exhibited a

correlation with the model’s errors. By providing clinicians with the model’s predictions

and associated uncertainty estimates, they were able to determine which scans require

further examination. Herzog et al. [Herzog et al., 2020] proposed a Bayesian convolu-

tional neural network that predicts the probability of a stroke lesion on 2D MR images

while providing uncertainty information about the reliability of the prediction. In the clas-

sification of Adamantinomatous Craniopharyngioma from preoperative MRI, Prince et al.

[Prince et al., 2023] utilized Variational Inference by elliptical slice sampling to quantify

uncertainty. By incorporating this uncertainty-aware deep learning approach, they aimed

to provide more reliable and informative classification results for this specific medical con-

dition [Zou et al., 2023].

Bayesian deep learning methods have also been used successfully for medical image

segmentation. Nair et al. [Nair et al., 2020] were among the pioneers in exploring multi-

ple uncertainty estimates based on MC dropout for lesion detection and segmentation in

medical images. They investigated four voxel-based uncertainty measures and analyzed

their performance in voxel-based segmentation and lesion-level detection. Their study re-
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vealed that utilizing uncertainty measures consistently led to the selection of superior op-

erating points compared to solely relying on the network’s sigmoid output as a probability.

In the context of semantic segmentation of polyps from colonoscopy images, Wickstrøm

et al. [Wickstrøm et al., 2018] developed MC dropout in FCNs and focused on enhancing

model interpretability. Their work aimed to improve the accuracy and reliability of polyp

segmentation by incorporating uncertainty estimation. Yu et al. [Yu et al., 2019] intro-

duced MC dropout within a semi-supervised framework and presented an uncertainty-

aware model for left atrium segmentation from 3D MR images. Soberanis-Mukul et al.

[Soberanis-Mukul et al., 2019] proposed a segmentation refinement method that lever-

aged uncertainty analysis and graph convolutional networks. They utilized the uncertainty

levels obtained from a convolutional network on a specific input volume to formulate a

semi-supervised graph learning problem. By training a graph convolutional network, they

refined the segmentation results. The effectiveness of their method was validated using

the medical segmentation decathlon dataset.

Baumgartner et al. [Baumgartner et al., 2019] presented a segmentation approach in-

spired by Probabilistic U-Net [Kohl et al., 2018] to capture uncertainty in medical image

segmentation. A probabilistic U-Net is a generative segmentation model that combines a

U-Net with a conditional variational autoencoder, enabling the generation of an unlimited

number of segmentation samples. The final prediction is computed as the mean of these

samples, while the uncertainty is determined by their variance. To enhance the diversity

of segmentation samples, Baumgartner et al. [Baumgartner et al., 2019] introduced a hi-

erarchical probabilistic model inspired by the Laplacian Pyramids. This model generates

image-conditional segmentation samples by initially producing outputs at a low resolution

and progressively refining the distribution of segmentations at higher resolutions. The

authors evaluated their method, PHiSeg, on two segmentation tasks: thoracic CT images

with lesions and prostate MRI. The results demonstrated that PHiSeg generated more

realistic and diverse segmentations compared to other similar methods.

In another study, Garg et al. [Garg et al., 2018] proposed a method for exact Markov

chain Monte Carlo (MCMC) sampling from generic Bayesian Markov random field (MRF)

models. Their approach was built upon Fill’s algorithm, a technique for sampling from

a Markov chain with the desired distribution as its equilibrium distribution. By extending

Fill’s algorithm to generic MRF models, Garg et al. [Garg et al., 2018] introduced a novel

bounding chain algorithm. The method was evaluated on both simulated data and clin-

ical brain image segmentation tasks, demonstrating its ability to produce more accurate

uncertainty estimates compared to other state-of-the-art methods.

An alternative approach to generating uncertainty in medical image segmentation in-

volves utilizing ensembles of deep networks. Mehrtash et al. [Mehrtash et al., 2020]

explored the estimation of predictive uncertainty by employing an ensemble of multiple
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FCNs. They investigated the effectiveness of these multi-FCN ensembling methods on

cardiac and prostate MR image segmentation. Building upon the concept of ensemble

learning, Cao et al. [Cao et al., 2020] developed an uncertainty-aware model for semi-

supervised breast ultrasound mass segmentation.

In the context of short-axis cardiac MRI segmentation, Guo et al. [Guo et al., 2022] de-

vised a globally optimal label fusion algorithm based on ensemble learning. Kushibar et

al. [Kushibar et al., 2022] proposed Layer Ensembles, an uncertainty estimation method

that utilizes a single network by ensembling the predictions from different layers or seg-

mentation heads of a deep learning model. They evaluated the effectiveness of this

method on mass segmentation from mammogram images and cardiac structure segmen-

tation from cardiac MRI. The results demonstrated competitive performance compared to

state-of-the-art Deep Ensembles.

In another study, Zhao et al. [Zhao et al., 2022] introduced an uncertainty esti-

mation method based on a posterior sampling of the weight space for nnU-Net

[Isensee et al., 2021], a widely used deep learning model for medical image segmen-

tation. Their method involved ensembling multiple snapshots of the nnU-Net model,

saved at different stages during training. The predictions from the ensembled models

were used to estimate the uncertainty of the model’s predictions. The method was evalu-

ated on two cardiac MRI segmentation datasets (ACDC [Bernard et al., 2018] and M&Ms

[Campello et al., 2021]) and showcased improved uncertainty estimation compared to

various baseline methods.

3.2.5/ USAGE OF UNCERTAINTY ESTIMATES IN MEDICAL IMAGE ANALYSIS

Uncertainty estimation is critical for building trust in AI systems used in healthcare, par-

ticularly in the field of medical image analysis, where early disease detection can be

life-changing. Deep learning models for medical image analysis can produce highly ac-

curate predictions, but their reliability is limited without proper uncertainty quantification

[Zou et al., 2023]. By providing confidence measures along with predictions, uncertainty

estimates can enable the identification of model limitations, quality control, active learn-

ing, and informed decision-making by medical professionals.

Incorporating uncertainty estimates into automated predictions enriches the process in

multiple ways. Uncertainty estimates can serve as indicators of potential errors or limi-

tations in the medical image analysis system. For example, high uncertainty could indi-

cate anomalies within the input data, a factor vital for Quality Control (QC) and out-of-

distribution (OOD) detection [Lambert et al., 2022b].

Additionally, uncertainty maps can direct attention to challenging or pathological regions

in medical images that are prone to mistakes. For instance, a model segmenting tumors
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in brain MR images may express higher uncertainty where tumors are small or irregularly

shaped. By highlighting these uncertain areas, radiologists can focus their review and

request additional imaging if needed. The uncertainty estimates thus allow clinicians to

make more informed diagnostic decisions.

Active learning is another promising application, where uncertainty guides the selection

of informative samples for labeling to improve model performance [Nath et al., 2020]. By

prioritizing data with high uncertainty for annotation, the model can be retrained to pro-

duce more reliable predictions.

Among the various applications of uncertainty, this thesis specifically focuses on quality

control and out-of-distribution detection. By utilizing uncertainty information, the aim is

to improve the reliability and trustworthiness of deep learning models, as extensively

detailed in Chapters 5 and 6.

3.3/ CONCLUSION

In summary, this chapter has provided a technical overview of machine learning and deep

learning concepts, uncertainty modeling approaches, and the state-of-the-art in cardiac

MRI analysis. The core machine and deep learning techniques were covered, including

neural network architectures, training procedures, and evaluation metrics. Main meth-

ods for estimating uncertainty in deep learning models were reviewed, as well as their

emerging use in medical image analysis. Recent literature applying deep learning to

advance cardiac MRI segmentation and analysis was discussed. Collectively, this back-

ground establishes the foundation required to present this thesis’ contributions around

developing reliable cardiac MRI analysis through novel deep learning approaches and

uncertainty-based techniques. The next chapters will build upon the concepts, methods,

and state-of-the-art surveys presented here to introduce the proposed methods for robust

and reliable cardiac MRI analysis.
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4

LEVERAGING UNCERTAINTY

ESTIMATES TO IMPROVE

SEGMENTATION PERFORMANCE IN

CARDIAC MR

In medical image segmentation, several studies have used Bayesian neural networks to

segment and quantify the uncertainty of the images. These studies show that there might

be an increased epistemic uncertainty in areas where there are semantically and visually

challenging pixels. The uncertain areas of the image can be of great interest as they

can possibly indicate the regions of incorrect segmentation. In this chapter, we propose a

segmentation model that incorporates uncertainty into its learning process to leverage the

uncertainty information. Firstly, we generate the uncertainty estimate (sample variance)

using Monte-Carlo dropout during training. Then we incorporate it into the loss function to

improve the segmentation accuracy and probability calibration. The proposed method is

validated on the publicly available EMIDEC MICCAI 2020 dataset and LAScarQS MICCAI

2022 which mainly focuses on the segmentation of infarcted myocardium and left atrial

(LA) scars from Late Gadolinium Enhancement (LGE) MRI.

4.1/ INTRODUCTION

Cardiac magnetic resonance imaging with late gadolinium enhancement (LGE-CMR) is

the gold standard for quantifying myocardial infarction caused by interrupted coronary

blood supply. LGE-CMR enables precise visualization and quantification of the infarcted

tissue resulting from this irreversible myocardial damage [Kate Meier et al., 2009]. The

no-reflow phenomenon is an incident that usually appears in a proportion of patients with

acute myocardial infarction following re-perfusion therapy of an occluded coronary artery
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[Abbas et al., 2015].

Recent deep learning methods for automatic myocardial scar segmentation from LGE

images have utilized multi-stage cascaded frameworks. Approaches include Zabihollahy

et al. [Zabihollahy et al., 2018] who used manual myocardium segmentation followed by a

2D FCN, and Zhang [Zhang, 2020], Ma [Ma, 2020a] and Girum et al. [Girum et al., 2020]

who employed two-stage nnUNets to coarsely segment the myocardium and refine the

scar segmentation. Arega et al. [Arega et al., 2020] also developed a three-network

cascaded system. While these methods have demonstrated promising performance on

datasets like EMIDEC, the main problem with these cascaded and complex methods is

that they can be time-consuming and computationally expensive.

As part of the Left Atrial and Scar Quantification and Segmentation Challenge (LAScarQS

2022), several techniques were proposed by different challengers to segment the Left

Atrial (LA) cavity and scar from LGE MRI. Tu et al. [Tu et al., 2022] adopted a self-pre-

training paradigm, combining Mask Autoencoder (MAE) and Vision Transformers (ViT),

to learn contextual information as priors from the LGE-MRI dataset before fine-tuning the

segmentation task. Zhang et al. [Zhang et al., 2022a] introduced a TopK loss focused

on boundary pixels for better LA cavity delineation and a distance map input to constrain

scar locations. Mazher et al. [Mazher et al., 2022] developed a semi-supervised segmen-

tation approach using pseudo labeling for improved left atrial and scar segmentation from

LGE MRI. Their method involved generating pseudo labels using a 3D ResUNet model

on training and validation data, which were then used alongside true labels to train the

nnUNet model for the final segmentation. Liu et al. [Liu et al., 2022] proposed the UG-

former framework, which integrates transformers, graph convolutional networks (GCN),

and convolutional decoders for LA scar segmentation. Their approach employed en-

hanced transformers with deformable convolutions to capture irregular shapes and GCN

bridges to improve generalization across images from different scanners.

Bayesian deep learning has been used in segmentation tasks to provide a prediction

as well as quantify the uncertainty associated with each prediction. Recently, several

studies have employed Monte Carlo Dropout to estimate uncertainty for medical image

segmentation [Mehrtash et al., 2020, Nair et al., 2020, Ng et al., 2020, Roy et al., 2018,

Sander et al., 2019]. Nair et al. [Nair et al., 2020] explored MC dropout-based uncer-

tainty estimates for multiple sclerosis lesion detection and segmentation. They improved

the segmentation results by filtering and excluding the most uncertain voxels. Similarly,

Sander et al. [Sander et al., 2019] applied the MC Dropout based method for cardiac

MRI segmentation and showed that the uncertainty maps are close to the reported seg-

mentation errors and they improved the segmentation results by correcting the uncer-

tain pixels. These previous studies [Nair et al., 2020, Roy et al., 2018, Jungo et al., 2019,

Sander et al., 2019, Mehrtash et al., 2020] mostly focused on the correlations between
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predictive uncertainty and the segmentation accuracy and how the uncertainty metrics

can be used to improve the segmentation by filtering the most uncertain predictions.

However, these methods did not leverage the uncertainty information during training to

enhance the segmentation result.

In this work, we proposed a segmentation model that generates uncertainty esti-

mates during training using MC dropout. Then it leverages these uncertainty esti-

mates to improve the segmentation results by incorporating them into the loss func-

tion. Uncertainty information can possibly indicate the regions of incorrect segmenta-

tion [Sander et al., 2019, Wang et al., 2019]. We hypothesized that incorporating this

information as part of the learning process can help the network to improve the seg-

mentation results by correcting the segmentation errors that have high epistemic uncer-

tainty. The proposed method was evaluated on the publicly available EMIDEC MICCAI

2020 [Lalande et al., 2020] and LAScarQS MICCAI 2022 [Li et al., 2021, Li et al., 2022b,

Li et al., 2022c] datasets. It achieved state-of-the-art results outperforming the top-ranked

methods of both challenges. The experimental results showed that the uncertainty in-

formation was indeed beneficial in enhancing the segmentation performance. We also

observed that the improvements were more significant in the semantically and visually

challenging images which have higher epistemic uncertainty. Assessing the probability

calibration, we showed that the proposed method produced more calibrated probabilities

than the baseline method.

4.2/ MATERIALS AND METHODS

4.2.1/ MATERIALS

4.2.1.1/ EMIDEC

The Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac

MRI challenge (EMIDEC)1 is a MICCAI 2020 challenge that focuses on cardiac MRI seg-

mentation. The dataset consists of LGE images of 100 patients for training. Of these

cases, 67 are pathological cases and the remaining 33 are normal cases. The testing

set includes 50 patients of which 33 are pathological and 17 are normal cases. Each

case has 5 to 10 short-axis slices covering the left ventricle from base to apex with the

following characteristics: slice thickness of 8 mm, the distance between slices of 10 mm,

and spatial resolution ranging from 1.25× 1.25 mm2 to 2× 2 mm2 [Lalande et al., 2020]. As

a pre-processing step, we normalized the intensity of every patient image to have zero

mean and unit-variance and we resampled all the volumes to have a voxel spacing of

1http://emidec.com/

http://emidec.com/
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1.458mm × 1.458mm × 10.0mm.

4.2.1.2/ LASCARQS 2022

The Left Atrial and Scar Quantification and Segmentation Challenge (LAScarQS 2022) 2

consists of 200 LGE MRIs acquired in a real clinical environment from patients suffering

Atrial fibrillation (AF). All the LGE MRIs were collected from three different clinical centers.

The images from the first center (University of Utah) were acquired using Siemens Avanto

1.5T or Vario 3T. The voxel resolution of the images was 1.25 × 1.25 × 2.5 mm. The LGE

MRIs from the second center (Beth Israel Deaconess Medical Center) were acquired

with Philips Achieva 1.5T. The spatial resolution of the images was 1.4 × 1.4 × 1.4 mm.

Similar to the second center, the images from the third center (King’s College London)

were acquired with a Philips Achieva 1.5T. The spatial resolution of the LGE MRI scan

was 1.3 × 1.3 × 4.0 mm. The challenge focuses on the segmentation of left atrial blood

pool and left atrial scar [Li et al., 2021, Li et al., 2022b, Li et al., 2022c].

4.2.2/ METHODS

Various Bayesian deep learning methods are used to estimate uncertainties in images.

Among the most widely used Bayesian deep learning methods in medical images is

Monte-Carlo dropout (MC-dropout). In MC-dropout, a network with dropout is trained,

and then during testing the network is sampled N times in order to get N segmentation

samples. From these N segmentation samples, the uncertainty measure (sample vari-

ance) is computed. In our method, we used MC dropout during training in order to get

the uncertainty estimates. During training, the model is sampled N times and the mean

of these samples is used as the final segmentation as can be seen from Figure 4.1. The

uncertainty metric is computed from the N Monte-Carlo dropout samples. It can be calcu-

lated per pixel or per structure [Ng et al., 2020]. In this research, we used the pixel-wise

uncertainty and image-level uncertainty. Pixel-wise uncertainty is computed per pixel.

Sample variance is one of the pixel-wise uncertainty measures. It is calculated as the

variance of the N Monte-Carlo prediction samples of a pixel. Each pixel i has N sigmoid

predictions (yi,1...yi,N). From these predictions, the mean µi is computed (Eq. 4.1). In Eq.

4.2, σ2
i is the sample variance of each pixel i of the image [Nair et al., 2020]. In order to

compute the image-level uncertainty, the per-pixel uncertainty is averaged over all pixels

of the image as shown in Eq. 4.4. In this equation, I is the total number of pixels of the

image.

2https://zmic.fudan.edu.cn/lascarqs22

https://zmic.fudan.edu.cn/lascarqs22
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µi =
1
N

∑
n

(yi,n) (4.1)

σ2
i =

1
N

∑
n

(yi,n − µi)2 (4.2)

As stated by [Sander et al., 2019] and [Wang et al., 2019], uncertainty information indi-

cates potential mis-segmentations and the most uncertain part of the segmentation re-

sults covers regions of incorrect segmentations. In order to leverage this uncertainty

information, we proposed to include it as part of the loss function so that the network will

learn to correct the possible mis-segmentations. Hence, the total loss is computed as a

sum of the segmentation loss and uncertainty loss as can be seen from Figure 4.1. The

segmentation loss is the weighted average of cross-entropy (CE) loss and Dice loss (Eq.

4.3). For the uncertainty loss, we first computed the image level uncertainty (Eq. 4.4).

Then, it is added to the segmentation loss with a hyper-parameter value alpha (α) that

controls the contribution of the uncertainty loss to the total loss (Eq. 4.5).

Figure 4.1: The proposed method

LS eg = λDiceLDice + λCELCE (4.3)

LUncertainty =
1
I

∑
i

(σ2
i ) (4.4)

LTotal = LS eg + α × LUncertainty (4.5)

For the segmentation network, we used a 3D U-Net [Isensee et al., 2021] architec-

ture with dropout placed at the middle layers of the network (Figure 4.1) as sug-

gested by the literatures [Kendall et al., 2015, Fortunato et al., 2017, Blundell et al., 2015,

Ng et al., 2020]. The dropout rate was set at 0.1. The U-Net’s encoder and decoder con-
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sists of 8 convolutional layers where each convolution is followed by batch normalization

and Leaky ReLU (negative slope of 0.01) activation function.

4.2.3/ IMPLEMENTATION

The weights of the segmentation network are optimized using Stochastic gradient descent

(SGD) with nesterov momentum (µ = 0.99) with an initial learning rate of 0.01. The mini-

batch size was 5 and the model was trained for 1000 epochs on a five-fold cross-validation

scheme. For the segmentation loss, we set a weighting factor of 1.0 for Dice loss and 1.0

for CE loss as they provided the best results. In order to generate the segmentation

uncertainty (sample variance), we used 5 Monte Carlo samples (the N value in Eq. 5.1).

The weighting factor (α) for the uncertainty loss (in Eq. 4.5) is empirically selected to

be 3.0 after experimenting with different weighting factors. The training was done on

NVIDIA Tesla V100 GPUs using Pytorch deep learning framework based on nnU-Net

implementation [Isensee et al., 2021].

4.3/ RESULTS AND DISCUSSIONS

To evaluate the segmentation results, we used geometrical metrics such as the Dice

coefficient (DSC) and Hausdorff distance (HD). In addition, for the EMIDEC dataset, we

computed clinical metrics that are commonly used in cardiac clinical practice. These

include the average volume error (VD) of the left ventricular myocardium (in cm3), the

volume (in cm3) and percentage (PD) of infarction and no-reflow [Lalande et al., 2020].

To measure the probability calibration of the models, we used the Brier Score (BS). Brier

score measures how close the predicted segmentation probabilities are to their corre-

sponding ground truth probabilities (one-hot encoding of each class) by computing the

mean square error of the two probabilities [Ng et al., 2020]. To compare image level un-

certainties among the segmentation results, we utilized Dice agreement within MC sam-

ples (DiceWithinSamples) [Roy et al., 2018, Ng et al., 2020]. It is the average Dice score

of the mean predicted segmentation and the individual N MC prediction samples. Note

that DiceWithinSamples is inversely related to uncertainty.

4.3.1/ ABLATION STUDY

To evaluate the effect of adding uncertainty information to the segmentation loss, we com-

pared the model that uses only segmentation loss which is called baseline with the model

that uses combined loss of segmentation loss and uncertainty loss which is referred to as

proposed. Both networks have the same architecture and the comparison is done on the
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Table 4.1: Comparison of myocardium and scar (infarction) segmentation performance
of the baseline method and the proposed method in terms of geometrical and clinical
metrics obtained on the EMIDEC test set (50 cases). The values mentioned are mean
(standard deviation). The best results are in bold. VD is the volume error. For DSC, the
higher the value the better whereas for HD, Brier score (BS), and VD the lower is the
better.

Method Myocardium Infarction

DSC (%) HD (mm)
BS
(10−2) DSC (%) VD (cm3)

BS
(10−2)

Baseline 88.0 (2.63) 12.1(7.79) 4.03 (2.45) 65.0 (29.7) 3.04 (5.0) 1.19 (1.81)
Proposed 88.2 (2.55) 11.8 (7.26) 3.86 (2.8) 67.6 (28.8) 2.99 (4.55) 1.18 (1.83)

test dataset. For the ablation study, most of the comparisons are done on the main two

classes which are healthy myocardium and infarction.

As can be seen from the table 4.1, the addition of uncertainty information into the segmen-

tation loss enhanced the segmentation accuracy. It increased the DSC of scar (infarction)

by 3% and that of myocardium by around 0.2%. It also improved the HD and the average

volume error of both scar and myocardium. The segmentation enhancement is more sig-

nificant on the scar than on the myocardium. This can be explained by the fact that the

scar has more irregular shape, smaller area, and visually challenging pixels which may

result in higher uncertainty compared to the myocardium (Figure 4.2 (b)).

The apical and basal slices of the left ventricle are more difficult to segment than mid-

ventricular images even for human experts [Bernard et al., 2018, Petitjean et al., 2011].

Particularly at the apical slices, the MRI resolution is so low that it is even difficult to re-

solve the size of small structures (first row in Figure 4.3). Assessing the segmentation

performance and uncertainties at different slice positions of the left ventricle, it can be

observed that the apical slices have the highest epistemic uncertainty (lowest DiceWithin-

Samples) among the slices (Figure 4.2 (b)). Similarly, in the comparison of segmentation

performance, most of the improvements due to the addition of uncertainty information

(proposed method) are predominantly on the apical slices (Figure 4.2 (a)). The DSC in-

creased by 2% for scar and by almost 1% for myocardium in the apical slices. While the

segmentation performance of the proposed method at the mid and basal slices is similar

or slightly better than the baseline method. This tells us that the addition of uncertainty

information to the loss function is more advantageous to the semantically and visually

challenging images which generate higher epistemic uncertainty. This confirms our initial

assumption about the proposed method.

Figure 4.3 shows examples of the segmentation results of baseline and proposed method

at apical, mid-ventricular, and basal slices. At the apical slice, one can see that the seg-

mentation result of the baseline method has a lot of errors. In the generated uncertainties

(sample variance), the incorrectly segmented regions have higher uncertainty. The pro-
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Figure 4.2: Dice score (A) and certainty (B) comparison of the baseline and proposed
method at different slice locations. Myo baseline and Scar baseline refer to the my-
ocardium and scar Dice score or certainty of the baseline method respectively. Similarly,
Myo proposed and Scar proposed refer to myocardium and scar Dice score or certainty
of the proposed method.

posed method, which utilizes the sample variance as part of the loss, minimized the

segmentation errors of the baseline. Similarly, our proposed method produced more ro-

bust segmentation results at the mid and basal slices. From the results, we can say

that the uncertainty captures relevant information that can be leveraged to improve the

segmentation result.

Regarding probability calibration, the proposed method produced more calibrated proba-

bilities than the baseline method on both the myocardium and scar as it yielded a lower

Brier score. This suggests that using MC-dropout during training and the addition of un-

certainty information to the loss can improve not only the segmentation accuracy but also

the calibration of the probabilities.

Figure 4.3: Qualitative results comparison of the proposed method with the baseline on a
typical cardiac MRI. The generated uncertainty is the sample variance. Scar (green) and
myocardium (yellow).
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Table 4.2: Comparison of segmentation performance with state-of-the-art methods on
EMIDEC challenge’s test set (50 cases). Bold results are the best.

Methods Myocardium Infarction NoReflow
DSC
(%)

VD
(cm3)

HD
(mm)

DSC
(%)

VD
(cm3)

PD
(%)

DSC
(%)

VD
(cm3)

PD
(%)

[Zhang, 2020] 87.86 9.26 13.01 71.24 3.12 2.38 78.51 0.635 0.38
[Ma, 2020a] 86.28 10.2 14.31 62.24 4.87 3.50 77.76 0.830 0.49
[Feng et al., 2020] 83.56 15.2 33.77 54.68 3.97 2.89 72.22 0.883 0.53
[Yang et al., 2020] 85.53 16.5 13.23 62.79 5.43 4.37 60.99 1.851 1.63
[Hüllebrand et al., 2020] 84.08 10.87 18.3 37.87 6.16 4.93 52.25 0.953 0.64
[Zhou et al., 2020] 82.46 13.29 83.42 37.77 6.10 4.71 51.98 0.879 0.54
[Girum et al., 2020] 80.26 11.81 51.48 34.00 11.52 8.58 78.00 0.891 0.51

Proposed 88.22 7.75 12.87 67.89 2.59 2.06 81.25 0.487 0.32

4.3.2/ COMPARISON WITH STATE-OF-THE-ART METHODS

Table 4.2 shows the comparison of the proposed method with state-of-the-art methods

on the EMIDEC challenge. One can observe that the proposed method outperformed the

state-of-the-art methods on most of the geometrical and clinical metrics. Our proposed

method yielded much better results in all metrics than Feng et al. [Feng et al., 2020],

which used a dilated 2D U-Net. Zhang [Zhang, 2020] and Ma [Ma, 2020a] employed a

nnU-Net-based segmentation pipeline which is similar to the proposed method’s pipeline.

However, the proposed method, which utilizes a novel loss function that took into account

the uncertainty generated during training, outperformed these two top-ranked methods.

In the segmentation of infarction, the proposed method reduced the average volume error

from 3.12 cm3 to 2.99 cm3 and the percentage from 2.38% to 2.29% compared to Zhang’s

[Zhang, 2020] method. In terms of the Dice score of infarction, Zhang’s [Zhang, 2020]

method achieved better results, however, this was obtained using a two-stage cascaded

framework which is more computationally expensive framework.

Table 4.3 presents a performance comparison of our proposed method with state-of-the-

art approaches on the LAScarQS challenge’s test set. Our method outperformed all oth-

ers and emerged as the winner of the challenge during MICCAI 2022. Despite the other

methods [Mazher et al., 2022, Tu et al., 2022, Liu et al., 2022, Zhang et al., 2022a] em-

ploying more complex and cascaded techniques, such as semi-supervised segmentation

with pseudo labeling and self-supervised pre-training, our relatively simple approach, in-

corporating uncertainty information into the loss function, achieved Dice scores of 59.5%

for LA scar and 94.7% for cavity segmentation. These scores surpassed the state-of-the-

art methods by a notable margin of 3%. A more detailed comparison of the proposed

method on the LAScarQS challenge can be found in the Appendix A.
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Table 4.3: Comparison of segmentation performance with state-of-the-art methods on the
LAScarQS challenge’s test set (25 cases). Bold results are the best.

Methods Dice LA Scar (%) Dice LA Cavity (%)
[Zhang et al., 2022a] 56.1 90.8
[Liu et al., 2022] 54.9 92.2
[Tu et al., 2022] 47.8 82.8
[Mazher et al., 2022] 56.7 89.4
Proposed 59.5 94.7

4.4/ CONCLUSION

In this work, we proposed a segmentation model that generates uncertainty estimates

during training using the MC-dropout method and utilizes the uncertainty information to

enhance the segmentation results by incorporating it into the loss function. The pro-

posed method was evaluated on the publicly available EMIDEC and LAScarQS datasets.

It achieved state-of-the-art results outperforming the top-ranked methods of both chal-

lenges. Assessing the segmentation performance of the proposed method at different

slice positions, we observed that the Dice scores of the more challenging apical slices in-

creased much more than the other slice positions. Furthermore, the improvements in the

more difficult scar segmentation were higher than those of myocardium segmentation. In

the quantitative and qualitative results, we demonstrated that the uncertainty information

was indeed advantageous in enhancing the segmentation performance and the improve-

ments were more significant at the semantically and visually challenging images which

have higher epistemic uncertainty. In addition, the proposed method produced more cali-

brated segmentation probabilities.

The main limitation of our method is that it takes more time to train than the baseline

method as it uses MC dropout during training to generate the uncertainty estimates. How-

ever, once it is trained, the inference time is exactly the same as the baseline method.
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UNCERTAINTY-BASED QUALITY

CONTROL IN CARDIAC MR IMAGE

ANALYSIS

In Chapter 4, we proposed a segmentation model that incorporates uncertainty infor-

mation to improve scar tissue delineation from late gadolinium enhancement MRI. Our

method leverages uncertainty estimates from Bayesian neural networks to enhance seg-

mentation performance. While this technique shows promise for identifying small, am-

biguous regions like scars, it does not safeguard against outright segmentation failures

that could occur on difficult or unusual cases. Before analyzing derived measures like

myocardial tissue quantification, we must first ensure the segmentations are sufficiently

accurate. This motivates the development of quality control techniques to detect flawed

segmentations, as explored in this Chapter. By proposing an automated uncertainty-

based quality control framework, we can identify inaccurate cardiac MR segmentation

results and exclude them prior to the downstream tasks.

5.1/ INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible

for 31% of all global deaths according to the World Health Organization [WHO, 2017].

Cardiac magnetic resonance (CMR) imaging is increasingly used to assess CVDs. T1

mapping CMR quantifies diffuse myocardial fibrosis and characterizes tissues by assign-

ing T1 relaxation time values to each pixel [Haaf et al., 2016]. Native T1 mapping with-

out contrast is sensitive to disease processes that alter myocardial tissue composition.

Changes in native T1 values can indicate both primary cardiac conditions like infarction

and systemic diseases like amyloidosis [Moon et al., 2013, Haaf et al., 2016]. Contrast-

enhanced T1 mapping reflects extracellular characteristics and is used to calculate extra-

87
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cellular volume (ECV) [Messroghli et al., 2017], which measures extracellular space size,

as described in detail in Section 2.4.1.

5.1.1/ RELATED WORK

To analyze the T1 mapping and ECV values of patients with CVDs, the regions

of interest (ROIs) are manually drawn on native and post-contrast T1 images in

the blood pool, septum, and free wall of the left ventricle [Nakamori et al., 2018,

Ali et al., 2021, Thongsongsang et al., 2021]. Using manual segmentation of ROI,

[Thongsongsang et al., 2021] computed native T1 and ECV for patients with distinct

types of myocardial disease, including amyloidosis, dilated cardiomyopathy (DCM), hy-

pertrophic cardiomyopathy (HCM), myocarditis and coronary artery disease (CAD) to

determine the diagnostic yield and cut-off values of T1 and ECV to differentiate my-

ocardial diseases and CAD from their control group. Similarly, [Nakamori et al., 2018]

and [Ali et al., 2021] manually segmented the ROIs to evaluate the clinical application of

native and post-contrast T1 mapping in assessing diffuse myocardial fibrosis in patients

with HCM and DCM respectively. However, manual segmentation is tedious and likely

to suffer from intra- and inter-observer variability, particularly when the images are very

challenging.

Few works have focused on deep learning-based segmentation of cardiac structures from

T1 mapping images. [Fahmy et al., 2019a] proposed to automatically segment the left

ventricular myocardium from T1 mapping images. Similarly, [Hann et al., 2021] presented

quality-controlled segmentation of cardiac MRI T1 mapping using deep ensembles. How-

ever, their work did not include the segmentation and analysis of myocardial T1 and ECV

values. [Puyol-Antón et al., 2020] automatically segmented the left ventricular blood pool,

myocardium, and right ventricular blood pool from native T1 mapping images. They also

analyzed the corresponding global and regional myocardial T1 values and used them to

characterize the myocardial tissues of different cardiomyopathies. Even though the study

used a very large cohort, it did not include the post-contrast T1 mapping images, which

are necessary to compute the ECV values.

Both CNN-based and transformer-based segmentation networks have achieved state-

of-the-art results in medical image segmentation and in some cases achiev-

ing results surpassing expert-level segmentation performances [Bernard et al., 2018,

Tang et al., 2022]. Recently, the interest in deploying automatic segmentation frame-

works into the clinical routine has increased. However, these methods can generate incor-

rect segmentation results, which can lead to wrong clinical decisions in the downstream

tasks. To avoid this, experts examine the quality of the segmentation results, but this is a

time-consuming and very laborious task. As a solution, automatic quality control-based
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methods have been proposed. Some studies [Zhang et al., 2006, Kohlberger et al., 2012]

have tried to predict segmentation quality using hand-crafted features of the images and

segmentation maps. [Valindria et al., 2017] proposed Reverse Classification Accuracy

(RCA). It takes predicted segmentation from a new image to train a reverse classifier.

This is then evaluated on a set of reference images with ground truth to determine the

quality of the segmentation. The method achieved good Dice regression results. How-

ever, it was very slow as the time taken to process a single segmentation result was

11 minutes. [Robinson et al., 2018] proposed a CNN based method to regress the Dice

score from the image and segmentation pair on a large cohort. Even though it was com-

putationally less expensive than RCA, it did not exploit uncertainty information which can

be useful in determining the segmentation quality [Devries et al., 2018b].

Other works have leveraged uncertainty information to estimate the quality of segmen-

tation results. [Devries et al., 2018b] and [Chen et al., 2020c] proposed a quality control

method that utilizes a CNN-based QC to determine the quality of the segmentation out-

put from dermoscopic and CT images, respectively. As an input to the classifier, they

used the image with its corresponding segmentation and uncertainty maps. However,

directly using the image, segmentation, and uncertainty map may not correlate well with

the segmentation quality as it is shown in this study. [Puyol-Antón et al., 2020] proposed

a two-stage uncertainty-based QC method. To train their QC method, they manually la-

beled the outputs of the segmentation model as correct or incorrect segmentation. In the

first step, they utilized evidence lower bound (ELBO) based thresholding to reject wrong

segmentations, and in the second step, a deep learning image classifier was used to

classify the segmentation results as correct or incorrect. Using manually labeled seg-

mentation outputs to train the QC method can increase the sensitivity of the QC method;

however, obtaining the manual annotations is time-consuming and expensive.

In this chapter, we develop a fully automated and quality-controlled quantification of my-

ocardial tissue characteristics using native myocardial T1 and ECV. To analyze and quan-

tify the myocardial tissues, we first automatically segment the blood pool and the my-

ocardium of the left ventricle and the blood pool of the right ventricle from native and

post-contrast T1 images using a Bayesian Swin transformer-based segmentation net-

work. To detect and reject inaccurate segmentation results before further analysis, we

introduce uncertainty-based quality control (QC). The QC method uses image-level un-

certainty features as input to a random forest-based classifier/regressor to estimate the

segmentation result’s quality. Using the proposed method, we automatically compute the

mean myocardial native T1 and ECV values of healthy and pathological subjects. We

also analyze the ability of these values in differentiating a healthy group from cardiac

pathological groups.
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5.1.2/ CONTRIBUTIONS

In this chapter, we propose a novel uncertainty-based quality control for segmentation

to reduce the inclusion of failed segmentations in subsequent analysis such as native

myocardial T1 and ECV analysis. The main contributions of our work are:

• We introduced MC-Dropout-based uncertainty estimation to Swin-transformer-

based U-Net and systematically studied MC-Dropout in terms of architecture choice

(dropout position and amount). We found that the dropout at the multi-layer percep-

tron (MLP) module of the transformer block gives a good segmentation accuracy

and calibration while providing uncertainty estimates and regularization compared

to other dropout variants.

• To decrease the effect of inaccurate segmentation on downstream tasks, we pro-

posed uncertainty-based quality control that leverages simple image-level uncer-

tainty metrics to determine the segmentation quality using a random forest classi-

fier/regressor. In this research, we showed that training a classifier using simple

inputs that are derived from uncertainty metrics can determine segmentation qual-

ity better than the ones that directly use the image, segmentation, and uncertainty

map.

• To the best of our knowledge, this is the first study that automatically computes

ECV values from native and post-contrast T1 mapping images. From the automatic

quality-controlled analysis of T1 mapping and ECV values, we showed that these

values can be used to characterize the myocardial tissues of various cardiac dis-

eases.

5.2/ MATERIAL AND METHODS

5.2.1/ MATERIAL

The dataset used for this research is comprised of native T1 mapping and post-contrast

T1 mapping CMR images of 295 subjects, of which 31 of them are normal (healthy), and

264 are pathological. The cardiac pathologies include amyloidosis (n = 6), dilated car-

diomyopathy (DCM) (n = 71), hypertrophic cardiomyopathy (HCM) (n = 30), myocarditis

(n = 48), Tako-Tsubo syndrome (n = 5), and myocardial infarction (n = 70). In addition,

there are subjects that have undetermined or complex pathologies (n = 34). The images

were collected from different clinical centers in France. Each image was acquired using

a Siemens 1.5T MRI scanner. Modified Look-Locker inversion recovery (MOLLI) was uti-

lized to capture the native and post-contrast T1 mapping images. Each patient has three
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short-axis slices for each modality (native T1 mapping and post-contrast T1 mapping)

which are apical, mid, and basal slices.The slices of native and post-contrast T1 mapping

images are realigned according to the center of gravity of the area defined by the manu-

ally drawn epicardial contour of the left ventricle. The manual annotation of each case’s

left ventricular blood pool, myocardium, and right ventricular blood pool are available.

5.2.2/ METHODS

The proposed pipeline consists of three parts, as shown in Figure 5.1. The first one

involves segmentation of left ventricular and right ventricular blood pools, and left ventric-

ular myocardium from native and post-contrast T1 mapping images using Bayesian Swin

transformer-based U-Net. The Bayesian segmentation model outputs not only the seg-

mentation result but also uncertainty maps. In the second part, to detect the poorly seg-

mented images from the model, we propose an automated quality control (QC) method

that utilizes image-level uncertainty metrics generated by the Bayesian model to estimate

the quality of the segmentation result. The final part is focused on the automatic analysis

of native myocardial T1 mapping and ECV values of the images that were categorized as

good quality images by the proposed QC.

Figure 5.1: Proposed pipeline for automatic quality controlled T1 mapping and ECV anal-
ysis from native and post-contrast T1 mapping images. First, the cardiac structures are
segmented from native and post-contrast T1 mapping images using the Bayesian seg-
mentation model. Then the quality of the segmentation output is assessed using the
uncertainty-based QC. Myocardial T1 and ECV values of the good-quality images are
analyzed.

5.2.2.1/ SEGMENTATION

The segmentation network used is a Swin transformer-based U-Net [Liu et al., 2021,

Cao et al., 2021]. It is a pure transformer-based model that applies the Swin transformer

block to both the encoder and decoder parts of the network.
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In the segmentation architecture (Figure 5.2), the input image (H × W) is divided into

non-overlapping patches of size p × p, where we use 4 × 4 patches. Each patch is lin-

early embedded into C dimensions. The encoder consists of three stages, each with

two consecutive Swin transformer blocks and a patch merging layer. The first stage ap-

plies shifted window-based multi-head self-attention (W-MSA) and shifted window MSA

to extract feature representations, while the patch merging layer reduces the resolution by

concatenating 2× 2 neighboring patches. This process is repeated in subsequent stages,

resulting in output resolutions of H/8×W/8× 2C, H/16×W/16× 4C, and H/32×W/32× 8C.

The bottleneck employs two consecutive Swin transformer blocks for further transforma-

tion.

The decoder also has three stages, each comprising a patch-splitting layer and two con-

secutive Swin transformer blocks. The patch-splitting layer upsamples the bottleneck’s

feature representations to H/16×W/16×4C. The upsampled features are then transformed

using the transformer blocks, and skip connections concatenate encoder features with the

upsampled decoder features. The final layer uses a linear layer to project the feature rep-

resentations and obtain the segmentation predictions [Liu et al., 2021, Cao et al., 2021].

Dropout at test time enables us to approximate the posterior distribution of the weights

by sampling from the Bernoulli distribution across the network’s weights [Gal et al., 2016,

Kendall et al., 2017a]. The Bayesian Swin transformer-based U-Net has dropout layers

at different positions of the network. In particular, the dropout layer is inserted at three dif-

ferent parts of the transformer block, as can be seen from Figure 5.3. In the self-attention

module, the dropout is positioned in two places. The first one is called attention dropout,

and it is located right after the softmax layer in the self-attention block. The dropout is ap-

plied to the attention weights to mask some of the attention weights randomly. The second

dropout is placed at the output of the multi-head self-attention module; after concatenat-

ing the feature representations of the multi-head attention and then projecting them using

a linear layer (Figure 5.3 (a)). It is called projection dropout. It can be helpful in improving

the generalization of multi-head attention. The third dropout is located in between the

linear layers in the MLP module and at the end of the MLP module (Figure 5.3 (c)). It

is named MLP dropout. These dropout layers are placed in all transformer blocks of the

encoder and decoder.

A Swin transformer-based U-Net with dropout is trained to segment the heart structures

from native and post-contrast T1 mapping CMR images. The model is sampled N times

during testing to obtain N Monte-Carlo segmentation samples. The uncertainty metrics

are derived from these Monte-Carlo samples. The mean of MC samples is used as the

final segmentation. The uncertainty metrics utilized are described in detail in Section

5.2.2.2.
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Figure 5.2: Segmentation network architecture: Swin-based U-Net with dropouts (Dp)
activated at the MLP part of the transformer block.

Figure 5.3: Dropout introduced in multi-head attention module (a) Scaled dot-product
Attention module (b) and in Multi-Layer Perceptron (MLP) module (c), where h represents
the number of heads.
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5.2.2.2/ UNCERTAINTY-BASED QUALITY CONTROL

From the Bayesian Swin transformer-based U-Net, we get N Monte-Carlo segmenta-

tion samples (S 1, ..., S N) when the model is sampled N times. From these segmentation

samples, we compute the mean of the segmentation samples (Eq. 5.1) to get the final

prediction. For the uncertainty, two different pixel-wise uncertainties are calculated. The

sample variance is computed as the variance of the N Monte-Carlo prediction samples of

a pixel (Eq. 5.2) [Nair et al., 2020, Arega et al., 2021a]. It captures the model uncertainty.

The second one is predictive entropy, which is estimated by calculating the entropy of the

mean probability vector across the class dimension (Eq. 5.3) of each pixel, and it captures

predictive uncertainty. To leverage the pixel-wise uncertainty measures to estimate the

quality of the segmentation result, we computed the mean of each pixel-wise uncertainty

(mean of sample variance and mean of predictive entropy). This way, we have a single

uncertainty score for each segmentation.

µi =
1
N

∑
n

(yi,n) (5.1)

σ2
i =

1
N

∑
n

(yi,n − µi)2 (5.2)

entropy = −
C∑

c=1

(pc log pc) (5.3)

In addition to the mean pixel-wise uncertainties, we defined two other uncertainty

measures: Dice agreement within MC samples (DiceWithinSamples) [Roy et al., 2018,

Ng et al., 2020] and HD agreement within MC samples HDWithinsamples. DiceWithin-

Samples is the average Dice score of the mean predicted segmentation (S mean) and the

individual N MC prediction samples as shown in Eq.5.4. When the DiceWithinsamples is

very high, it shows that the model’s MC samples have high agreement among themselves

and the model’s uncertainty is very low and vice-versa. HDWithinSamples is the average

HD score of the mean predicted segmentation (S mean) and the individual N MC prediction

samples (Eq. 5.5).

DiceWithinSamples =
1
N

∑
n

Dice(S mean, S n) (5.4)

HDWithinSamples =
1
N

∑
n

HD(S mean, S n) (5.5)

In this research, we propose a simple uncertainty-based quality control that leverages

image level uncertainty metrics such as DiceWithinsamples, HDWithinsamples, mean
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sample variance, and mean predictive entropy to predict the quality of the segmentation.

From the uncertainty metrics, the mean of sample variance and mean of predictive en-

tropy are directly computed from the pixel-wise uncertainties whereas DiceWithinsamples

and HDWithinsamples are calculated from the MC segmentation samples and the mean

segmentation map, as can be seen from Figure 5.4. These image-level uncertainty fea-

tures are fed to a random forest (RF) classifier/regressor to train the model to classify the

quality of the segmentation result or to directly regress the Dice score. In our experiment,

we used RF with 100 trees and gini criterion, and we utilized Scikit-learn’s RF implemen-

tation [Pedregosa et al., 2011]. The RF classifier/regressor is trained and validated using

the image-level uncertainty metrics computed from the images that were used to train

and validate the Bayesian segmentation model.

Figure 5.4: The proposed uncertainty-based QC method. The RF classifier/regressor
uses four image-level uncertainty features as an input to determine the segmentation
quality.

The labels for the quality of the segmentation maps are based on the mean Dice score of

the cardiac structures with the ground truth segmentations. If the average Dice score of

the cardiac structures (left ventricular blood pool, myocardium, and right ventricular blood

pool) is greater than 0.9, the quality of the predicted segmentation map is labeled as good;

otherwise, it is labeled poor quality. The threshold is selected after reviewing the inter-

observer agreements on cardiac segmentation from different literature [Bai et al., 2018,

Bernard et al., 2018, Kushibar et al., 2022].

5.2.2.3/ T1 MAPPING AND ECV COMPUTATION

For T1 mapping analysis, we computed the mean native T1 value of the myocardium to

characterize the myocardial tissues. For ECV, it is calculated by measuring myocardial

and blood pool T1 before and after administration of contrast agent as well as the patient’s

hematocrit value (Eq. 2.1) [Haaf et al., 2016].

To exclude papillary muscles while calculating the mean T1 value of the blood pool, we

eroded the segmented blood pool until 1/3 of the area remains [Puyol-Antón et al., 2020].
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Similarly, to avoid the partial volume effect while calculating the mean T1 value of the

myocardium, we eroded the segmented myocardium until 2/3 of the area was left.

ECV refers to the space or volume of a tissue that is not occupied by cells and in-

cludes the intracapillary plasma volume [Moon et al., 2013]. To compute ECV, the pa-

tient’s hematocrit value is needed which can be cumbersome to do during cardiac MRI

acquisition. When the patient’s hematocrit is not measured during the clinical routine,

a synthetic hematocrit can be derived from the relaxation rate of blood pool (native T1

values of blood pool) as shown by [Treibel et al., 2016]. According to [Treibel et al., 2016]

and [Fent et al., 2017], there is a linear relationship between hematocrit and blood relax-

ivity (1/blood pool T1 time). The synthetic hematocrit is calculated using the following

formula [Treibel et al., 2016]:

S yntheticHematocrit = (866.0 ×
1

T1blood native
) − 0.1232 (5.6)

Where T1blood native is the mean T1 value of the blood pool computed from native T1 map-

ping images.

Since all the patients in our dataset did not take blood sampling (hematocrit) during the

MRI acquisition, ECV was calculated using a synthetic hematocrit value that was derived

from the native T1 value of the blood pool as shown in Eq. 5.6.

5.2.2.4/ IMPLEMENTATION

For the segmentation networks, all models are trained for 2000 epochs using Stochastic

gradient descent (SGD) with Nesterov momentum (µ = 0.9) with an initial learning rate

of 0.01 with a poly learning rate decay strategy. During training, the batch size is set to

24. The loss function employed is a weighted sum of cross-entropy and Dice losses. The

weights of the segmentation models are initialized using the pre-trained weights of the

Swin transformer (on ImageNet) [Liu et al., 2021]. To improve the model’s generalization,

a simple data augmentation that includes random rotation and flipping is used. The mod-

els were implemented using the Pytorch deep learning framework and trained on NVIDIA

Tesla V100 GPUs with 32GB of memory.

5.3/ RESULTS

For segmentation, the performance was mainly evaluated using Dice coefficient and

Hausdorff distance (HD) metrics. To measure the calibration quality of the models, we

used the Brier score. Brier score measures how close the predicted segmentation proba-
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bilities are to their corresponding ground truth probabilities by computing the mean square

error of the two probabilities [Arega et al., 2021a]. For the quality control, the perfor-

mance of the models regarding Dice regression was assessed using the mean absolute

error (MAE) metric. The Pearson correlation coefficient (r) of the predicted Dice and the

ground truth Dice was also computed. For the binary classification task of the QC method,

the classifier’s performance was evaluated using the Receiver Operating Characteristics

(ROC) curve and the Area under the ROC Curve (AUC).

The dataset was shuffled and randomly split into 60% training, 20% validation and 20%

testing datasets. For all the reported results in this chapter, we utilized the test set un-

less mentioned otherwise. The statistical analysis was performed using SciPy (python

library) [Virtanen et al., 2020]. To assess the statistical difference between samples, we

utilized the Mann-Whitney U test [Mann et al., 1947], a non-parametric statistical signifi-

cance test.

5.3.1/ SEGMENTATION

Table 5.1 shows the performance of different dropout variants in the validation set. Most

of the dropout variants have similar segmentation accuracy, including the one with no

dropout. From all the variants, MLP dropout has relatively better segmentation perfor-

mance and model calibration. It has the best Dice score on all the heart structures (left

ventricular blood pool, myocardium, and right ventricular blood pool). These improve-

ments were mostly statistically significant (p < 0.05) except for the left ventricular blood

pool. For the HD, it also achieved the best result in all but the left ventricular myocardium.

In terms of calibration quality, MLP dropout yielded the lowest Brier score (the lower the

better) (p < 0.05), illustrating that dropout in MLP layer of the transformer block produces

well-calibrated uncertainty estimates. Transformer dropout uses dropout at both attention

weights and at the end of multi-head attentions. We noticed that the segmentation perfor-

mance and calibration quality of the Transformer dropout were relatively worse than the

other dropout variants.

In terms of dropout rates and the number of Monte-Carlo samples (the N value in Eq.

5.1 and 5.2), we experimented with different dropout rates (0.1, 0.3, 0.5, 0.7, and 0.9)

and various numbers of samples (5, 10, 15, 25 and 50). The dropout rate of 0.1 gave us

the best result. Performances were improved while increasing the number of samples.

However, since the segmentation accuracy difference between sample number 5 and

sample number 50 was not significant, for the rest of the experiment we utilized sample

number 5 as it was computationally less expensive.

For the Bayesian CNN-based U-Net, similar to [Kendall et al., 2017a], we compared dif-

ferent dropout variants, and the variant that uses Dropout at the central Encoder-Decoder
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Table 5.1: Quantitative comparison of Swin-based U-Net at different Dropout positions
in terms of Dice score, HD (in mm) and Brier score (BS) in the validation set. The bold
results are better. LV: left ventricular blood pool, RV: right ventricular blood pool, MYO: left
ventricular myocardium. Statistically significant differences (p < 0.05) compared to MLP
Dropout are indicated by ‘*’.

Dropout variant Dice LV Dice MYO Dice RV HD LV HD MYO HD RV BS (10−3)
No Dropout 0.976 0.926 * 0.941 * 2.12 * 2.38 4.26 * 3.61 *
MLP Dropout 0.979 0.934 0.945 1.61 1.99 3.60 3.31
Attention Dropout 0.977 0.928 * 0.940 * 2.08 * 2.45 5.15 * 3.56 *
Projection Dropout 0.977 0.924 * 0.937 * 2.11 * 2.57 4.94 * 3.69 *
Transformer Dropout 0.976 0.923 * 0.936 * 2.55 * 2.57 4.36 * 3.73 *
MLP-Projection Dropout 0.977 0.929 * 0.941 1.64 1.95 3.90 * 3.56 *
MLP-Attention Dropout 0.977 0.931 0.939 * 1.72 * 2.07 3.91 * 3.46 *
All Dropout 0.978 0.929 * 0.939 * 1.71 * 2.14 5.22 * 3.54 *

position achieved the best result in terms of segmentation accuracy and uncertainty cali-

bration in the validation set. We utilized this variant of the Bayesian CNN-based U-Net in

the subsequent stages.

It should be noted that all hyperparameter tunings, including the selection of the best

dropout variant for Bayesian Swin-based U-Net (MLP-Dropout) and Bayesian CNN-based

U-Net (Central Enc-Dec Dropout), were done in the validation set. These best models

were then taken forward in the subsequent stages.

5.3.2/ UNCERTAINTY-BASED QUALITY CONTROL

The proposed QC method is compared to different state-of-the-art QC methods, which

are based on the various inputs including the image, segmentation map, and uncertainty

map. The first QC method, Seg [Chen et al., 2020c], uses only a segmentation map as an

input to the classification/regression method to determine the quality of the segmentation

result. Seg-Uncert QC [Williams et al., 2021] method utilizes both segmentation map and

uncertainty map as an input. Image-Seg QC [Robinson et al., 2018, Huang et al., 2016]

employs the image-segmentation pair as an input. Whereas the Image-Seg-Uncertainty

QC method [Devries et al., 2018b, Chen et al., 2020c] uses all of the three inputs to-

gether (the image, segmentation map, and uncertainty map). All these methods uti-

lize CNN-based network architectures, which are ResNet-18 and ResNet-34 classifica-

tion/regression networks. These networks are selected because their performance was

better than other similar classification/regression networks for the specific task. Similarly,

for the proposed method, RF classifier/regressor is chosen due to its superior perfor-

mance on the task compared to other machine learning and deep learning (multi-layer

perceptron (MLP)) based classifiers/regressors.
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Table 5.2: Segmentation performance of Bayesian Swin-based U-Net (S U-Net) and
Bayesian CNN-based U-Net (C U-Net) on the native T1 mapping and post-contrast T1
mapping dataset in terms of Dice score and HD (in mm). The bold results represent the
best. LV: left ventricular blood pool, RV: right ventricular blood pool, MYO: left ventricular
myocardium. Statistically significant differences (p < 0.05) compared to Swin-based U-
Net are indicated by ‘*’.

Dataset Method Dice LV Dice MYO Dice RV HD LV HD MYO HD RV

Native
S U-Net 0.972 0.916 0.922 1.90 2.26 4.43
C U-Net 0.968 0.907 * 0.905 * 2.10 * 2.79 * 5.93 *

Post-Contrast
S U-Net 0.954 0.887 0.893 2.81 3.22 5.43
C U-Net 0.941 * 0.857 * 0.867 * 3.31 * 4.01 * 6.70 *

The QC methods are evaluated on segmentation results of CNN-based U-Net and Swin

transformer-based U-Net. This can tell us how the QC methods perform in identifying

inaccurate segmentation results from a CNN-based U-Net and transformer-based U-Net

on native T1 mapping and post-contrast T1 mapping datasets. Regarding the datasets,

the native T1 mapping dataset generally has better image quality, and the contrast among

the three heart structures is good. The post-contrast T1 mapping dataset is relatively

more challenging for the segmentation models as the contrast among the heart structures

is lower and some of the images have artifacts and noise. Looking at the quantitative

results of CNN-based and Swin-based segmentation networks in Table 5.2, the latter

method has better segmentation performance achieving higher Dice scores and lower

HD on all the three heart structures. This performance enhancement can be due to the

Swin transformer’s strong feature representation capability as it leverages the advantages

of both the vanilla transformer and CNN.

Table 5.3 summarizes the Dice regression results of the QC methods in terms of mean

absolute error (MAE) and Pearson correlation coefficient (Pearson CC) between the pre-

dicted Dice and the ground truth Dice. From the table, one can observe that the proposed

method achieved the best result in terms of MAE and Pearson CC. From the CNN-based

U-Net’s segmentation results on native T1 mapping images, the proposed method ob-

tained a mean absolute error of 0.01636, significantly outperforming the Seg (0.01994),

Seg-Uncert (0.01997), Image-Seg (0.02072) and Image-Seg-Uncertainty (0.02085) QC

methods. In terms of the correlation coefficient, the predicted Dice of the proposed

method has the highest Pearson CC with the ground truth Dice (r = 0.88) compared to

the other QC methods. For the post-contrast T1 mapping images, the proposed method

achieved the lowest MAE (0.02244) with a statistical significance of p < 0.01 among the

QC methods. It also reached a Pearson CC of 0.82 ahead of all other QC methods by a

margin of 9 − 15%, showing the robustness of our proposed method on relatively difficult

images. After the proposed method, Seg-Uncert QC has the second-best Dice regression

performance among the QC methods. Similarly, looking at the Dice regression result from
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Table 5.3: Dice score regression results of different quality control (QC)
methods: Seg [Chen et al., 2020c], Seg-Uncert [Williams et al., 2021], Image-
Seg [Robinson et al., 2018, Huang et al., 2016], Image-Seg-Uncertainty
[Devries et al., 2018b, Chen et al., 2020c] and the Proposed QC on various seg-
mentation result types in terms of MAE and Pearson CC between the predicted Dice
and the ground truth Dice. Bold results are the best. Asterisks indicate a statistically
significant improvement in MAE comparing the proposed QC with the other QC methods.

Model Dataset QC Method MAE Pearson CC
Seg 0.01994 (0.03636) ** 0.74
Seg-Uncert 0.01997 (0.03545) ** 0.76
Image-Seg 0.02072 (0.03757) * 0.76
Image-Seg-Uncert 0.02085 (0.03617) *** 0.72

Native

Proposed 0.01636 (0.02715) 0.88
Seg 0.03189 (0.03229) *** 0.71
Seg-Uncert 0.02937 (0.03822) ** 0.70
Image-Seg 0.02876 (0.03865) ** 0.71
Image-Seg-Uncert 0.02916 (0.03808) ** 0.69

CNN U-Net

Post-contrast

Proposed 0.02244 (0.03095) 0.82
Seg 0.02006 (0.02684) ** 0.70
Seg-Uncert 0.01959 (0.02815) * 0.67
Image-Seg 0.01980 (0.02726) * 0.72
Image-Seg-Uncertainty 0.01953(0.02421) * 0.74

Native

Proposed 0.01731 (0.02277) 0.82
Seg 0.02854 (0.04890) * 0.67
Seg-Uncert 0.02790 (0.04729) 0.69
Image-Seg 0.03001 (0.04708) * 0.67
Image-Seg-Uncert 0.02940 (0.05158) * 0.64

Swin U-Net

Post-contrast

Proposed 0.02634 (0.03698) 0.82
∗ stat. significant with p < 0.05 ∗∗ stat. significant with p < 0.01 ∗∗∗ stat. significant with p < 0.001

Swin-based U-Net’s segmentation, the proposed QC method, which utilizes very simple

uncertainty-based features, achieved the best result in both native T1 and post-contrast

images. Comparing the Dice regression results of post-contrast and native T1 mapping

images for both models, the MAE of all QC methods on native T1 mapping images was

lower than on the corresponding post-contrast images.

The quality control methods were assessed for their ability to classify the segmentation

results as poor quality (mean ground truth Dice < 0.9) or good quality (mean ground

truth Dice ≥ 0.9). Akin to the Dice regression, their performance was evaluated on the

segmentation results of Swin-based U-Net and CNN-based U-Net on both native and

post-contrast T1 mapping images. As can be seen from Figure 5.5 (b), on segmentation

results of CNN-based U-Net of native T1 mapping images, all the QC methods achieved

superior results comparing their classification performance on other segmentation results

(Figure 5.5 (a), (c) and (d)). Img-Seg, Seg-Uncert, and Seg QC methods reached an

AUC of 0.922, 0.918, and 0.901, respectively. Among the QC methods, the classification
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performance of Img-Seg-Uncertainty was the worst (AUC = 0.867). However, when the

proposed method is compared to the other methods, it obtained the best result with an

AUC of 0.958. In classifying the quality of segmentation results of the more challenging

images (post-contrast), the performance of the proposed method was also robust.

Figure 5.5: ROC curve and AUC comparison of different QC classifiers on four types
of segmentation results. In the top row, on segmentation results of Swin-based U-Net
(a) and CNN-based U-Net (b) of native T1 images. In the bottom row, on segmentation
results of Swin-based U-Net (c) and CNN-based U-Net (d) of post-contrast T1 images.

The CNN-based U-Net on post-contrast images has the lowest mean Dice compared to

the other segmentation results (Table 5.2). As can be seen from Figure 5.5 (d), the pro-

posed method’s classification performance on the segmentation results of CNN-based

U-Net on post-contrast images was superior, reaching an AUC of 0.943 ahead of all other

QC methods by a large margin (10%−17.3%). This shows how robust our method is in de-

tecting inaccurate segmentation of a poor-performing segmentation model. Interestingly,

the proposed method’s performance in detecting failures from a good-performing seg-

mentation model is also strong. However, the performance gap between the proposed

method and the other QC methods is smaller when the segmentation model has good

segmentation accuracy. From the ROC curves in Figure 5.5, one can also observe that

after the proposed method, on average Seg-Uncert QC method performed better than

the other QC methods on all of the segmentation results. The Img-Seg-Uncertainty QC

method, which uses all the three inputs to the classification network, performed the worst.
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After determining the quality of the segmentation results using the QC methods, the bad

quality segmentation results are rejected. Then we computed the mean Dice and mean

HD (in mm) of the good quality segmentation results (the retained images), as can be

seen from the box plots in Figure 5.6. For this analysis, we focused only on the perfor-

mance of the QC methods on the segmentation results of Swin-based U-Net on post-

contrast T1 images. Of the 279 test images (slices), only the segmentation results of 52

images are classified as bad quality because their mean ground truth Dice is less than

0.9. We refer to this as ground truth (GT) for the QC methods (Figure 5.6). This is the ideal

QC that rejects all the bad quality segmentations. In the comparison, we also included the

performance of No-QC, where all the segmentation results (279) are retained. Looking

at the number of rejected segmentations of each QC method, the proposed method re-

jected 44. Whereas Seg, Seg-Uncert, Image-Seg, Image-Seg-Uncertainty QC methods

classified 17, 23, 22, and 17 segmentations as bad quality, respectively.

Figure 5.6: Box plots comparing mean Dice (a) and mean HD (in mm) (b) of different QC
methods after each QC rejected their poor quality images. Note that the numbers inside
the parenthesis of the QC method names represent the number of images rejected by
each QC.

From the box plot (Figure 5.6), one can observe that the proposed method has rejected

most of the bad quality images and significantly enhanced the mean Dice from 0.912

to 0.932 (p < 0.001) and the mean HD from 3.82 mm to 3.08 mm (p < 0.01) compared

to No-QC. The difference in performance between GT QC and the proposed method is

not significant (p > 0.05) in terms of mean Dice 0.0045 and mean HD 0.058 mm. This

shows us that the proposed method has successfully removed the images with implausi-

ble segmentation (very high HD). From Figure 5.6, we also noticed that out of all the QC

methods, the proposed QC has the lowest number of outliers particularly in the mean HD.

Considering the other QC methods, Seg-Uncert QC has the second-best performance af-

ter the proposed QC. It achieved 0.924 mean Dice and 3.41 mm mean HD even though
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the difference in performance compared to the GT QC is significant concerning mean

Dice (p < 0.01). Following Seg-Uncert QC, Image-Seg QC and Seg QC produced a

mean Dice of 0.922, 0.923 and mean HD of 3.48 mm, 3.53 mm respectively. We observed

that Image-Seg-Uncertainty QC, which has the worst performance in the regression and

classification tasks, achieved the lowest mean Dice and the highest mean HD, and the

highest number of outliers (Figure 5.6).

Analyzing the images rejected by the QC method according to their position, 73.1% of the

images were from the apical slices, and 17.3% were from the mid slices, and 9.61% were

from the basal slices. Examining the failed images further in terms of their pathology, we

noticed that 35% of the myocardial infarction, 33% of the amyloidosis, 30% of the HCM

,and 17% of the DCM slices were rejected. In contrast, normal and pathological slices

such as Tako-Tsubo syndrome and myocarditis have less than 10% failed images.

Figure 5.7 depicts some of the segmentation results which are rejected by the proposed

QC method. Figure 5.7 (a − c) shows failed cases from native T1 mapping images and

(d − f ) are from post-contrast T1 mapping images. One can observe that these images

have some artifacts that confuse the segmentation models. It led to higher uncertainty on

the location where an artifact was positioned. In the last two columns of Figure 5.7, we

can see that there is higher uncertainty whenever there is a segmentation error. In this

figure, Uncertainty-I is a sample variance, and Uncertainty-II is a predictive entropy.

Figure 5.7: Examples of segmentation results rejected by the Proposed QC method.
Rows (a-c) show rejected images from native T1 mapping dataset and rows (d-f) show
rejected images from post-contrast T1 mapping dataset. Uncertainty-I and Uncertainty-II
represent sample variance and predictive entropy uncertainty maps respectively.

To interpret the decision of the random forest classifier, we analyzed the impor-
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tance of each input feature on the random forest’s decision using Scikit-learn library

[Pedregosa et al., 2011]. As depicted in Figure 5.8, the most important feature is

Dicewithinsamples which has an importance score of 0.7. The second most important

feature is HDwithinsamples with a score of 0.16. The contribution of image-level sam-

ple variance (IL mean variance) and predictive entropy (IL mean entropy) is minimal com-

pared to the first two features in altering the decision of the RF classifier. They have a

feature importance score of 0.064 and 0.076, respectively.

Figure 5.8: Feature importance score for RF classifier. Note that IL mean variance is the
mean of sample variance and IL mean entropy is the mean of predictive entropy.

For myocardial T1 analysis, we only need the segmentation of the myocardium, whereas,

for ECV analysis, the segmentations of all the structures (myocardium and blood pools)

are used. Due to this, we compared the performance of a general QC and a separate QC.

General QC is the proposed QC method that uses the mean Dice of the three structures

(LV, MYO, and RV) to determine the ground truth quality of the segmentation, i.e., poor

quality (mean ground truth Dice < 0.9) or good quality (mean ground truth Dice ≥ 0.9).

Separate QC is also the proposed QC method, but it uses the Dice of each structure

separately to determine the ground truth quality of the segmentation. We compared these

two QCs in terms of the mean Dice of the myocardium or all structures and mean absolute

error (MAE) between the automatically and manually calculated myocardial T1 or ECV

values of the retained good quality segmentation results on the test set.

For myocardial native T1 analysis, a general QC is compared with a separate QC that

focuses only on the myocardium (considers a segmentation result as good quality if the

ground truth Dice of the myocardium is greater than 0.9). The separate QC enhanced the

mean Dice of the myocardium from 0.920 to 0.923 and the MAE of myocardial T1 values

from 11.00 ms to 10.25 ms compared to the general QC. This performance enhancement

was achieved with the same training and inference time as the general QC. For ECV anal-

ysis, even though the separate QC achieved better performance by increasing the mean

Dice of all structures from 0.943 to 0.946 and by lowering the MAE of ECV from 0.96%

to 0.86% compared to the general QC, its training and inference time was 3 times higher

than the general QC. This is because, for separate QC, we need to train six models (3
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for native T1 and 3 for post-contrast T1 images) and use these six trained models dur-

ing inference to decide the segmentation’s quality, whereas, for general QC, two models

are needed. Furthermore, the training and inference times will linearly increase as the

number of structures to be segmented increases. By looking at the trade-off between

performance improvement and computational overhead, we decided to use a separate

QC for myocardial T1 analysis and a general QC for ECV analysis.

To demonstrate the generalizability of the proposed QC on public datasets, experi-

ments were conducted on public cardiac MRI datasets - ACDC [Bernard et al., 2018] and

the Extreme Cardiac MRI Analysis Challenge under Respiratory Motion (CMRxMotion)

[Wang et al., 2022] datasets. Across both datasets, the proposed QC demonstrated su-

perior detection performance compared to the other uncertainty-based QC methods, with

higher AUC and F1 scores. These results using public benchmark datasets further high-

light the efficacy of the proposed approach for quality control in cardiac MR image seg-

mentation. A more detailed comparison of the QC methods on these two public datasets

can be found in Appendix B.

5.3.3/ T1 MAPPING AND ECV ANALYSIS

For the analysis of T1 mapping and ECV, we utilized both the validation and test dataset

(401 slices) to increase the number of cases per pathology. From 401 images (slices), the

proposed QC method rejected 73 images for myocardial T1 analysis and 78 images for

ECV analysis due to their inaccurate segmentation. The mean absolute error between the

automatic and manual myocardial T1 values (ms) and ECV (%) of the images retained by

the proposed method are 10.41 ms and 0.91%, respectively. Compared to No-QC, which

keeps all images, the MAE is lower by 3.7 ms (p < 0.05) for myocardial T1 values and 1%

(p < 0.05) for ECV. The proposed method also reached a Pearson correlation coefficient

of 0.990 for myocardial T1 values and 0.975 for ECV. The automatic ECV is calculated us-

ing Eq. 2.1 from the automatically segmented right-ventricular and left-ventricular blood

pools and left-ventricular myocardium, whereas the manual ECV is computed from the

manual segmentation of these areas. Similar to ECV, the automatic and manual myocar-

dial T1 values are calculated from the automatically segmented and manually segmented

myocardium, respectively. The T1 mapping and ECV analysis are done on the good-

quality images that are retained by the proposed QC method. In this analysis, we also

did not include some patients who have undetermined or complex pathologies (51).

In Figure 5.9, we computed the mean of each patient group’s native myocardial T1 value

and ECV to see if there is a clear difference between healthy and pathological groups.

From the native myocardial T1 values of each group (Figure 5.9 (a)), we can see that

pathology groups with diffuse fibrosis like DCM and HCM have a native myocardial T1
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value of 1128 ms and 1057 ms respectively. Other pathologies such as Tako-Tsubo syn-

drome, amyloidosis and myocardial infarction obtained mean T1 values of 1142 ms, 1115

ms, and 1079 ms, respectively. These native T1 values are much higher than the healthy

group’s native T1 value which is 1035 ms. Among the pathologies, only the myocarditis

group has a lower T1 value (1032 ms) than the healthy group. Comparing the myocar-

dial pathologies with the healthy group, Tako-Tsubo syndrome (p < 0.001), amyloidosis

(p < 0.001), DCM (p < 0.001), myocardial infarction (p < 0.001) and HCM (p < 0.05) have

significantly higher mean native T1 values. The difference in native T1 value between

myocarditis and the healthy group was not significant (p > 0.5).

From Figure 5.9 (b), one can observe that amyloidosis and myocardial infarction pa-

tient groups obtained a mean ECV(%) of 44.04 and 35.38 respectively. These are the

two highest mean ECVs from all patient groups. Myocardial pathological diseases with

diffuse fibrosis such as DCM and HCM have a mean ECV(%) of 30.17 and 30.37 respec-

tively which are slightly higher than the healthy group (27.86). Myocardial diseases such

as myocarditis got a mean ECV(%) of 27.39 which is quite similar to the healthy group.

Tako-Tsubo syndrome pathology has a mean ECV(%) of 31.2. From the ECV result, we

observed that there is a statistically significant difference in ECV between the healthy

group and the following myocardial pathological groups: myocardial infarction (p < 0.001),

amyloidosis (p < 0.001), HCM (p < 0.05), and DCM (p < 0.05). Whereas the difference

in ECV between the healthy group and pathological groups such as myocarditis (p > 0.5)

and Tako-Tsubo syndrome (p > 0.05) is not significant.

5.4/ DISCUSSION

In this chapter, we proposed a fully automatic quality-controlled framework for myocar-

dial tissue quantification from native myocardial T1 and ECV values. The framework has

three main parts. The first part involves segmenting heart structures using Bayesian Swin

transformer-based U-Net from T1 mapping images. Then in the second part, the qual-

ity of the segmentation results is evaluated by a novel uncertainty-based quality control

method that automatically detects and rejects the failed segmentation results. The last

part involves T1 mapping and ECV analysis to distinguish myocardial pathology groups

from healthy groups of the retained good quality segmentation results.

To generate uncertainty from Swin-based U-Net using MC-Dropout, we placed dropout

at different locations of the segmentation model. Analyzing the dropout variants, using

dropout in the self-attention part of the transformer block (attention dropout, projection

dropout, etc), which is responsible for computing the representation of a patch by relating

to different patches in the same window, results in lower segmentation performance and

calibration. This can tell us that features extracted by self-attention layers are better mod-
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Figure 5.9: Comparison of native myocardial T1 (a) and ECV (b) values of healthy and
various cardiac diseases. MI: myocardial infarction, HCM: hypertrophic cardiomyopathy,
DCM: dilated cardiomyopathy, TAKO: Tako-Tsubo syndrome, AMY: amyloidosis

eled with deterministic weights. In contrast, adding dropouts to the MLP layers yielded

better results in terms of both segmentation accuracy and calibration. This shows us that

the features extracted from MLP layers (the later part of the transformer block) can be

more useful with Bayesian weights.

From the results in Section 5.3.2, we can conclude that the proposed QC method that

leverages four important image-level uncertainty features to determine the quality of

segmentation results can accurately detect most of the failed segmentation results of

both good performing models (Swin-based U-Net) and relatively poor performing models

(CNN-based U-Net). It also performed relatively better on the more challenging post-

contrast T1 mapping dataset than on the native T1 mapping dataset. Compared to the

other QC methods, its performance was superior in classifying/regressing segmentation

results of challenging datasets or poor-performing models. This shows how robust our

method is in detecting failed segmentations. However, the performance gap between

the proposed method and the other QC methods becomes lower when the segmentation

model has good segmentation accuracy or when the dataset has good quality.

Of the other QC methods, the Seg-Uncert QC method has on average the second-best

performance in terms of regression/classification after the proposed method. Its per-

formance tells us that when using image-segmentation-uncertainty-based QC methods

using a combination of segmentation map and uncertainty map gives a better estimation
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of the quality of the segmentation. However, in general, due to the weak correlation be-

tween the inputs (image, segmentation map, and uncertainty map) and the segmentation

quality, the other QC methods failed to detect most of the poor segmentation results.

Studying the effect of the four image-level uncertainty features on the RF classifier,

the results showed us that the image-level uncertainty metrics Dicewithinsamples and

HDwithinsamples hold vital information related to the segmentation quality. This can be

because Dicewithinsamples and HDwithinsamples are highly correlated with the ground

truth Dice coefficient and HD, respectively, as mentioned by [Roy et al., 2018] and

[Ng et al., 2020]. Even though the feature importance score of the image level sample

variance and predictive entropy features were very small, their contribution was not negli-

gible as the RF classifier performance decreased when these two features were omitted.

Examining the images rejected by the proposed QC based on their position, we noticed

that more than two-thirds of them are from the apical slices of the left ventricle. This

can be expected as the most difficult and challenging images are mainly the apical slices

of the left ventricle even for human experts [Petitjean et al., 2011, Bernard et al., 2018].

Investigating further the rejected images based on their pathological group, we found out

that pathological groups such as myocardial infarction, amyloidosis, HCM and DCM were

rejected in higher percentages than other pathology groups such as healthy, myocarditis

and Tako-Tsubo syndrome. This can be due to the fact that the first group of pathologies

changes the contrast and anatomy of the heart structures more than the second group

of pathologies. For example, myocardial infarction has lower contrast between the left

ventricular myocardium and left ventricular blood pool due to the presence of scar tissues

[Rajiah et al., 2013, Cui et al., 2018]. In the case of pathologies like HCM and DCM, the

anatomy of the myocardium is changed by thickening or thinning it [Amano et al., 2018,

Francone, 2014]. The change in contrast and anatomy can lead to worse segmentation

performance. In contrast, images that come from healthy, Tako-Tsubo syndrome, and

myocarditis pathology groups affect less the anatomy of the heart structures.

Using the proposed method for downstream tasks such as T1 mapping and ECV analysis,

we showed that our approach achieved very low MAE between the automatic and manual

myocardial native T1 and ECV values. For both myocardial T1 value and ECV value,

even though the proposed QC method removed images with bad segmentation results

and decreased the MAE significantly, the improvements were not very high. This can be

due to the fact that myocardial T1 value and ECV are calculated by taking the average

of the myocardium and blood pool T1 values which can make them tolerant to some

mis-segmentations.

From the T1 mapping analysis, similar to the works of [Puyol-Antón et al., 2020] and

[Thongsongsang et al., 2021], we showed that myocardial native T1 values can be utilized

to distinguish healthy groups from myocardial diseases such as Tako-Tsubo syndrome,
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amyloidosis, and myocardial infarction. We also noticed that myocardial pathologies with

diffuse fibrosis such as DCM and HCM have significantly higher mean myocardial native

T1 values than the healthy group. However, the native T1 values were not helpful in sepa-

rating myocarditis pathology from the healthy group as their difference was not significant.

From the ECV analysis, we demonstrated that the automatically computed synthetic ECV

can significantly differentiate a healthy group of patients from other cardiac pathology

groups such as myocardial infarction, amyloidosis, HCM and DCM. However, it was dif-

ficult to use ECV to separate the healthy group from the myocarditis and Tako-Tsubo

syndrome pathology groups because they have very similar ECV values.

The main limitation of the QC method is the metric used to classify the segmentation

quality. In this research, similar to other quality control studies [Valindria et al., 2017,

Chen et al., 2020c, Hann et al., 2021] we utilized the Dice score to categorize the quality

of the segmentation result as good or poor. However, the Dice score does not always

reflect the true quality of the segmentation, for example, when the segmented structure is

small or when there are outliers, as mentioned in [Reinke et al., 2021]. Furthermore, the

selection of the Dice score threshold can also affect the performance of the QC method.

In future work, other segmentation metrics will be assessed to determine the quality of

segmentation more accurately.

In the T1 mapping and ECV analysis, it is difficult to directly compare the T1 val-

ues, and ECVs computed from our cohort with other cohorts [Reiter et al., 2018,

Puyol-Antón et al., 2020, Thongsongsang et al., 2021]. This is because the T1 values

and ECVs vary as the scanner field strength, vendor type and acquisition techniques are

changed [Scully et al., 2018]. The other limitation is in our cohort some pathology groups

such as amyloidosis and Tako-Tsubo syndrome have a small number of cases because

these diseases are less common. Due to this, it can be difficult to draw conclusions from

their T1 and ECV values. Furthermore, it will be essential to validate the generalizability

of the proposed framework in a large-scale cohort for the framework to be used clini-

cally, even though there are limited datasets that have both native and post-contrast T1

mapping images for the ECV analysis.

5.5/ CONCLUSION

In this chapter, we proposed a novel uncertainty-based quality control that utilizes image-

level uncertainty features to detect failed segmentation results from native and post-

contrast T1 mapping images. The proposed framework is applied to automatically charac-

terize myocardial tissues of various cardiac diseases using T1 mapping and ECV analy-

sis. For the segmentation network, we utilized a Bayesian Swin transformer-based U-Net

to generate segmentation maps of the heart structures and uncertainty maps. A random
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forest classifier/regressor that uses the image-level uncertainty features is proposed to

determine the quality of the segmentation results. Compared to other state-of-the-art

uncertainty-based QC methods, our method achieved the highest area under the ROC

curve (AUC) for classification and the lowest MAE Dice for regression with less computa-

tional complexity and training time. From the results, we noticed that these improvements

were notably higher when the dataset is more challenging or when the performance of the

segmentation model is poor. This shows how robust our method is in detecting inaccurate

segmentations. From T1 mapping and ECV analysis, we automatically characterize the

myocardial tissues of cases with different cardiac pathologies from their mean native my-

ocardial T1 values and mean ECV. From the results, we observed that the automatically

computed T1 mapping and ECV values can significantly differentiate a healthy group from

myocardial diseases like myocardial infarction, amyloidosis, HCM and DCM.



6

UNCERTAINTY-BASED AND FEATURE

SPACE-BASED OUT-OF-DISTRIBUTION

DETECTION IN CARDIAC MRI
SEGMENTATION

In the previous chapter (Chapter 5), we proposed an uncertainty-based quality control

framework to detect inaccurate segmentations and exclude them before proceeding with

further analysis. However, the model can still fail on unusual out-of-distribution (OOD)

inputs which are very different from the training images. This motivates developing tech-

niques to explicitly detect OOD inputs before segmentation, as explored in this chapter.

By identifying OOD images upfront, we can reject them to avoid unreliable downstream

analysis. While uncertainty helps indicate errors on nearby distributions, additional OOD

detection better handles distant deviations. Our proposed framework leverages the seg-

mentation model’s rich feature representations and similarity metrics to recognize outlier

inputs. Together with the quality control approach in Chapter 5, the OOD detection tech-

nique aims to further improve the reliability of cardiac MR analysis on real-world data.

Detecting outliers complements quality control to make segmentation systems more ro-

bust and reliable.

6.1/ INTRODUCTION

Deep learning-based models have achieved remarkable performance in medical image

segmentation tasks, including cardiac MRI segmentation, and the models are trained un-

der the assumption that the test data will be drawn from the same distribution as the

training data. However, when these models are deployed in a clinical setting, test sam-

ples may deviate from the in-distribution (ID) and fall under the out-of-distribution (OOD)

111
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samples category. OOD samples in medical image segmentation can arise due to various

reasons, such as changes in scanners, acquisition protocols, clinical centers, or pathol-

ogy, which can lead to domain shifts, referred to as near-OOD (OOD images whose

distribution are near ID) [Yang et al., 2021]. We could also have some cases where the

samples come from a slightly different cardiac MR imaging modality, which we call mild

OOD. Or, the samples could come from a completely different domain or task, such as

CT scans of the abdomen or natural images. These would be far-OOD cases, where the

distribution of the OOD images is very far from that of the in-distribution (ID) images. As

a result, it is essential to develop models that can handle OOD samples in medical image

segmentation to ensure safe and effective clinical practice.

Several studies have proposed methods for detecting OOD data in image classification.

Hendrycks et al. [Hendrycks et al., 2016] proposed a baseline method that uses a classi-

fier’s Maximum Softmax Probability (MSP) to detect out-of-distribution examples without

requiring additional network training. The method works based on the observation that

a well-trained neural network typically assigns higher softmax scores to in-distribution

examples compared to out-of-distribution. Guo et al. [Guo et al., 2017] have enhanced

the MSP method by incorporating temperature scaling in the softmax function to increase

the softmax score difference between in-and out-of-distribution examples. Liang et al.

[Liang et al., 2017] employed temperature scaling and input preprocessing to further en-

hance the gap between in- and out-of-distribution samples.

Some works used distance metrics in the feature space to identify OOD images

[Yang et al., 2021]. Lee et al. [Lee et al., 2018] suggested fitting a Gaussian discriminant

model on the last hidden layer of a pre-trained model and used the minimum Mahalanobis

distance to the class centroids to detect the OOD images. Other studies utilized the co-

sine [Techapanurak et al., 2020] and Euclidean distances [Huang et al., 2020] between

the class centroids and the input’s embedding to detect OOD samples [Yang et al., 2021].

Other OOD detection techniques involve modifying the network architecture or training

process. Devries and Taylor, [Devries et al., 2018a] appended an OOD scoring branch

onto a classification network. The trained model outputs confidence estimates for each

input, which is used to differentiate between in and out-of-distribution examples. Lee et

al. [Lee et al., 2017] proposed an OOD detection method that involves jointly training a

classifier and a generator to detect and generate out-of-distribution samples by minimiz-

ing their losses alternatively. Other methods [Hendrycks et al., 2018, Vyas et al., 2018]

also trained an OOD detector by exposing the model to OOD samples during training.

Another approach for detecting OOD samples is based on reconstruction models such as

auto-encoders (AEs) [Guo et al., 2018, Denouden et al., 2018], variational auto-encoders

(VAEs) [An et al., 2015], and GANs [Perera et al., 2019]. In this approach, the model

is trained with a reconstruction loss using in-distribution (ID) data. Once the model is
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trained, it is assumed that the reconstruction of unseen OOD samples will fail since they

deviate from the ID distribution [Berger et al., 2021]. This makes it possible to detect OOD

samples based on the reconstruction error, which is usually higher for OOD samples

compared to ID samples. The problem with reconstruction models based OOD detection

is that it requires training an auxiliary network (reconstruction model) using the ID images

in addition to the main task. This can be time-consuming and computationally expensive,

especially for large datasets.

Some works have used prediction uncertainty to detect OOD samples. The

most commonly used uncertainty estimation methods are deep ensemble

[Lakshminarayanan et al., 2016] and MC-dropout [Gal et al., 2015]. Sample vari-

ance among the predictions [Lambert et al., 2022a] or the entropy of the predicted class

probability [Mehrtash et al., 2019] is mostly used as an uncertainty metric to detect the

OOD samples. However, other image-level uncertainty metrics have not been explored

and used by these methods.

A few works have been proposed for OOD detection in medical image segmenta-

tion. Mehrtash et al. [Mehrtash et al., 2019] utilized prediction uncertainty to deter-

mine the segmentation quality and detect OOD inputs. As shown by [Chen et al., 2020c,

Arega et al., 2023a], information extracted from predictive uncertainty can be useful in

detecting errors of segmentation models when the models perform poorly in the in-

distribution test set images [Arega et al., 2023a]. However, predictive uncertainty infor-

mation may not be helpful when the samples are far from the training data distribution

as the models output empty segmentation outputs with high confidence, as shown in

this research. Lambert et al. [Lambert et al., 2022a] studied that the predictive uncer-

tainty of binary segmentation models, which focuses only on anatomical segmentation,

fails to detect OOD inputs. However, they found that incorporating anatomical label seg-

mentation alongside lesion segmentation (multi-class segmentation) could improve OOD

detection in Multiple Sclerosis lesions segmentation. Other works like Gonzalez et al.

[González et al., 2021] used features extracted from the latent space of the segmentation

network and Mahalanobis distance between the latent space features of the test image

and the training images to detect OOD inputs, whereas Karimi et al. [Karimi et al., 2023]

utilized the features from the penultimate layer of the segmentation model and Euclidean

distance to detect the OOD inputs. However, these works only focused on features ex-

tracted from only two specific layers of the network and did not take advantage of the

features extracted from the other parts of the network.

In this chapter, we proposed a post-hoc OOD detection method that leverages the fea-

tures extracted from the encoder layers of a pre-trained segmentation model to differ-

entiate in-distribution images from out-of-distribution images in cardiac MR segmenta-

tion. A 2D U-Net segmentation model was pre-trained on a publicly available short-axis
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cine CMR dataset. To measure the distance between encoder features, we studied and

compared the two commonly used distance metrics: Euclidean and Mahalanobis dis-

tances. We also studied uncertainty-based OOD detection methods and leveraged a Dice

coefficient-based image-level uncertainty metric to detect OOD images in segmentation

tasks efficiently. Furthermore, we investigated the correlation between the Mahalanobis

distance and the segmentation quality, as well as the correlation between uncertainty

scores and the segmentation accuracy.

6.2/ DATASETS

6.2.1/ IN-DISTRIBUTION DATASET

As an in-distribution (ID) dataset, we used a publicly available dataset called Automatic

Cardiac Diagnosis Challenge (ACDC) 1 dataset [Bernard et al., 2018]. The dataset con-

sists of short-axis cine cardiac MR images of 100 patients acquired at the University

Hospital of Dijon using two MRI scanners of different magnetic strengths (1.5 T (Siemens

Area, Siemens Medical Solutions, Germany) and 3.0 T (Siemens Trio Tim, Siemens Med-

ical Solutions, Germany)). The cine MR images were acquired in breath hold with a ret-

rospective or prospective gating and with an SSFP sequence in short axis orientation.

The CMR images have a spatial resolution ranging from 1.37 to 1.68 mm2/pixel and a

slice thickness of 5-10 mm. The cardiac structures (left-ventricular cavity, left-ventricular

myocardium, and right-ventricular cavity) were segmented manually by clinical experts at

the end-diastolic (ED) and end-systolic (ES) phases [Bernard et al., 2018].

As a pre-processing step, all ID images were pre-processed by resizing the images to

have a spatial size of 400 by 400 and by normalizing the intensity of every image to have

zero mean and unit variance. The dataset was shuffled and randomly split into three

subsets, 60% for the training dataset (1163 slices), 15% for the validation dataset (291

slices), and 25% for the testing dataset (448 slices).

6.2.2/ OUT-OF-DISTRIBUTION DATASETS

The out-of-distribution images include artificially transformed in-distribution (ACDC) test

images, cine cardiac MRI images acquired using different MR scanners or imaging pro-

tocols, cardiac images from different MR modalities, and non-cardiac images such as

abdominal and lung CT scans and ADE20K scene-centric natural images. For all OOD

images, we applied the same pre-processing steps as ID images.

1https://www.creatis.insa-lyon.fr/Challenge/acdc/

https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Table 6.1: Summary of the in-distribution and OOD datasets used in this research.

Type Dataset Modality No. of Images
In-distribution (ID) ACDC cine CMR 448
Near OOD RandomBiasField cine CMR with random bias field 448

RandomMotion cine CMR with random motion artifact 448
RandomNoise cine CMR with Gaussian noise 448
RandomGamma cine CMR with contrast enhancement 448
Adversarial cine CMR with adversarial examples 191
M&Ms cine CMR from different centers,vendors 391

Mild OOD Native T1 Cardiac native T1 mapping MRI 279
PostContrast T1 Cardiac post-contrast T1 mapping MRI 279
Emidec LGE Cardiac LGE MRI 358
Camus US Cardiac Ultrasound (echocardiography) 285

Far OOD Abdominal CT CT scans of abdomen 589
Lung CT CT scans of lung 918
ADE RGB Natural images 64

The OOD datasets are grouped into three sub-categories: near OOD, mild OOD, and far

OOD, depending on their similarity to the ID images. The near OOD datasets include cine

cardiac MR images from different centers or vendors like the M&Ms dataset and artificially

transformed in-distribution (ACDC) test images such as random bias field, random motion

artifact, contrast enhancement, Gaussian noise as well as adversarial images. In the mild

OOD datasets, we include cardiac images but from different modalities such as native

T1 mapping, post-contrast T1 mapping, late gadolinium enhancement cardiac MR, and

cardiac ultrasound or echocardiogram. In the far OOD datasets, we include datasets far

from cardiac MR, such as abdominal CT scans, lung tumor CT scans, and natural RGB

images. A summary of the datasets is shown in Table 6.1.

6.2.2.1/ ARTIFICIALLY TRANSFORMED ACDC

For the near-OOD dataset, we artificially transformed the in-distribution (ACDC) test im-

ages to emulate some imaging artifacts such as random bias field, random motion ar-

tifacts, contrast enhancement, and Gaussian noise [Pérez-Garcı́a et al., 2020]. More

specifically, we used the TorchIO library [Pérez-Garcı́a et al., 2020] to apply the following

parameters: for the random bias field, the bias field was modeled as a linear combination

of polynomial basis functions with polynomial coefficients of (0.5, 1.5) and an order of the

basis polynomial functions of (3, 5) for MRI magnetic fields. For random motion artifacts,

we used simulated movements within the range of (10,20), with a rotation range of 60

degrees and a translation range of 60 mm. For contrast enhancement, we used gamma

values within the range of (-3.5, 3.5), and for Gaussian noise, we used a mean of 0 and a

standard deviation of (0.05, 0.25). Each of these transformations was applied to every ID
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test image, resulting in 448 slices for each transformation.

6.2.2.2/ MULTI-CENTRE, MULTI-VENDOR & MULTI-DISEASE CINE CARDIAC MRI -

M&MS

The M&Ms2 challenge dataset consists of short-axis cine cardiac MR images scanned

in five clinical centers in Spain and Germany using three different MR vendors

[Campello et al., 2021, Martı́n-Isla et al., 2023]. This can be an ideal near-OOD dataset

as its distribution deviates from the training data distribution due to changes in acquisition

protocol and MR scanner. We used cine cardiac MR images of 36 patients (391 slices)

as an OOD.

6.2.2.3/ ADVERSARIAL ACDC

As an OOD, we also used adversarial examples of the in-distribution ACDC test dataset.

These are intentionally created examples designed to deceive a model into producing

inaccurate predictions. These adversarial examples were generated using the Dense Ad-

versary Generation (DAG) algorithm [Xie et al., 2017a]. The algorithm works by utilizing

an incorrect segmentation mask and computing a minimum perturbation that will change

the prediction of a set of non-background pixels from the correct classification to an incor-

rect classification [Xie et al., 2017a, Paschali et al., 2018]. As OOD images, we utilized

191 slices.

6.2.2.4/ CARDIAC NATIVE AND POST-CONTRAST T1 MAPPING MRI

In-house native T1 mapping and post-contrast T1 mapping CMR images consisting of

93 subjects that have different cardiac pathologies. The images were collected from

different clinical centers in France. Each image was acquired using Siemens 1.5T MRI

scanner. Modified Look-Locker inversion recovery (MOLLI) was utilized to capture the

native and post-contrast T1 mapping images. Each patient has three short-axis slices for

each modality (native T1 mapping and post-contrast T1 mapping) [Arega et al., 2023a].

6.2.2.5/ CARDIAC LGE MRI - EMIDEC

The Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac

MRI challenge (EMIDEC)3 is a MICCAI 2020 challenge that focuses on the segmentation

of cardiac structures and myocardial infarction from Late gadolinium enhancement (LGE)
2https://www.ub.edu/mnms/
3http://emidec.com/

https://www.ub.edu/mnms/
http://emidec.com/
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cardiac MR images. The acquisitions were obtained using Siemens MRI scanners (Area

(1.5 T) and Skyra (3T)) during conventional cardiovascular exams with no specific pro-

tocol [Lalande et al., 2020]. As an OOD, we used LGE CMR images of 50 patients (358

slices).

6.2.2.6/ CARDIAC ULTRASOUND - CAMUS

The Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CAMUS) dataset 4

contains 2D echocardiographic sequences of patients with two and four-chamber views. It

was acquired from GE Vivid E95 ultrasound scanners (GE Vingmed Ultrasound, Horten

Norway), with a GE M5S probe (GE Healthcare, US) at the University Hospital of St

Etienne (France) [Leclerc et al., 2019]. As an OOD, we used cardiac ultrasound images

(two and four-chamber views) of 10 patients (285 slices).

6.2.2.7/ ABDOMINAL CT SCAN - BCVA

The Multi Atlas Labeling Beyond the Cranial Vault - Abdomen challenge (BCVA)5 is a

2015 MICCAI abdominal segmentation challenge [Landman et al., 2015]. The dataset

consists of 30 abdominal CT scans. The CT scans were acquired during the portal ve-

nous contrast enhancement phase at Vanderbilt University Medical Center. As an OOD,

we used CT scans of 8 patients (589 slices).

6.2.2.8/ LUNG CT SCAN - TCIA

The lung CT scan dataset is comprised of patients with non-small cell lung cancer from

Stanford University’s publicly available through The Cancer Imaging Archive (TCIA) 6. As

an OOD, we used CT scans of 5 patients (918 slices).

6.2.2.9/ ADE20K RGB

The ADE20K 7 dataset is a large-scale scene-centric dataset that focuses on recognizing

and segmenting objects and ”stuff” (non-object regions like water or sky) from natural

images (RGB images) [Zhou et al., 2016, Zhou et al., 2017]. In our OOD experiment, we

utilized 64 images from the ADE20K dataset.

4https://www.creatis.insa-lyon.fr/Challenge/camus/index.html
5https://www.synapse.org/Synapse:syn3193805/wiki/217752
6cancerimagingarchive.net
7https://groups.csail.mit.edu/vision/datasets/ADE20K/

https://www.creatis.insa-lyon.fr/Challenge/camus/index.html
https://www.synapse.org/Synapse:syn3193805/wiki/217752
cancerimagingarchive.net
https://groups.csail.mit.edu/vision/datasets/ADE20K/
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6.3/ METHODS

6.3.1/ SEGMENTATION NETWORK

To segment the cardiac structures from the CMR images, a 2D U-Net segmentation net-

work was utilized [Ronneberger et al., 2015]. The network consists of an encoder and a

decoder part connected via skip connections. The encoder has four convolutional blocks

or stages, in which each stage is made up of 2 consecutive convolutional layers. Each

convolution is followed by batch normalization and rectified linear unit (ReLU) activation

function. At the end of each stage, a max pooling layer is used to reduce the spatial

resolution of the feature maps by a factor of 2 while retaining the most important features.

After the encoder stages, there is a bottleneck block that has two convolutional layers,

each followed by batch normalization and ReLU activation. Each encoder bock (including

the bottleneck) doubles the number of channels of the feature maps.

The decoder consists of four transpose convolutional layers that upsample the feature

maps by a factor of 2. Each decoder layer is connected to the corresponding encoder

layer via a skip connection that concatenates the feature maps from the encoder and the

decoder layers. The concatenated feature maps are then fed into a decoder block that

performs two 3x3 convolutions followed by batch normalization and ReLU activation. The

final convolutional layer in the network is a 1x1 convolution that maps the feature maps

to the desired number of output channels. The decoder layer then upsamples the image

and concatenates it with the corresponding feature map from the encoder layer, as shown

in Fig 6.1.

6.3.2/ UNCERTAINTY-BASED OOD DETECTION

Uncertainty-based OOD detection methods can be promising, particularly in identify-

ing near-OOD images. Most of the methods use uncertainty metrics based on pixel-

wise uncertainty, such as predictive entropy [Karimi et al., 2023] and sample variance

[Lambert et al., 2022a]. The average of predictive entropy and the average of sample

variance are used as image-level uncertainties to decide whether the input sample is an

outlier. However, these image-level uncertainty metrics may not work well as they are in-

sensitive to class imbalance. In segmentation, the class distribution is often imbalanced,

with the background class being much more prevalent than the objects of interest. Thus

taking the average of the pixel-wise uncertainty values can sometimes be misleading, as

it may appear low even if the model is uncertain on the minority classes.

In this research, we proposed to use a Dice coefficient-based image-level uncertainty

metric called Dice within samples (Dice-ws) to detect OOD samples. It is the average Dice
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Figure 6.1: Proposed OOD detection method, which leverages the features extracted
from the encoder blocks of a pre-trained segmentation model. To reduce the dimension-
ality of the features, global average pooling is used for each of the extracted feature maps
before concatenating them. To measure the similarity between the input image and the
validation in-distribution images, a Mahalanobis distance is used. To determine a thresh-
old for this distance, we can either use a distance threshold that achieves a 95% true posi-
tive rate on the validation in-distribution dataset [Liang et al., 2017, González et al., 2021]
or compute it from the mean and standard deviation of the distances [Karimi et al., 2023]
calculated from the validation ID datasets.

coefficient of the mean predicted segmentation and the individual M prediction samples

(Eq. 5.4). This metric is more sensitive to class imbalance as it takes into account the

overlap between the segmentations.

To generate segmentation uncertainty, we employed two techniques: MC Dropout and

Deep Ensemble. For MC Dropout, a dropout with a rate of 0.1 was applied at the middle

layers (central Encoder-Decoder position) of the network. For Deep Ensemble, multiple

models were trained from scratch with random weight initialization.

6.3.3/ FEATURE SPACE-BASED OOD DETECTION

The encoder of a segmentation network is used to extract high-level features from an

input image and create a condensed representation of that image that can be used by

the decoder to generate a segmentation map. This is accomplished by using a series

of convolutional and pooling layers that increase the number of learned features while
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reducing the spatial dimensionality of the input image.

Features extracted by the encoder layers of a segmentation network can be important

for OOD detection because they capture the key visual characteristics of the input im-

age. The encoder layers of a segmentation network are designed to capture multi-scale

representations of the input image at multiple levels of abstraction, starting with low-

level features such as edges and corners and moving up to higher-level features such

as object parts, textures, and shapes. This multi-scale representation provides a rich

and diverse set of features that can be used to distinguish between in-distribution and

out-of-distribution images.

One problem with using all the encoder features is the dimensionality of the encoder

features, as it can be very large. To mitigate this problem, global average pooling was

applied to each of the extracted encoder feature maps before merging them to create a

feature vector representing the input image in the feature space, as seen in Fig 6.1.

For an input image x, each encoder stage of the pre-trained segmentation model pro-

duces a feature map fl ∈ Rnl,hl,wl , where nl is the number of channels, and (hl,wl) indicate

the spatial-size of the feature map of an encoder stage (block) l. To reduce the dimen-

sionality of each feature map, a global average pooling is applied, resulting in feature map

fl ∈ Rnl . Then all the resized feature maps of the encoder stages are merged to create

a single feature vector (z ∈ Rk, k =
∑

l nl) that represents the input image, where k is the

sum of the number of feature maps of all the encoder stages. In our case, the encoder of

the pre-trained segmentation network has five stages (including the bottleneck or latent

space). When an input image of size (400, 400) is given, feature maps of size (32, 200, 200),

(64, 100, 100), (128, 50, 50), (256, 25, 25), and (512, 25, 25) are generated by each of the en-

coder stages. Afterward, global average pooling is applied to each feature map to obtain

feature maps of size (32, 1), (64, 1), (128, 1), (256, 1), and (512, 1), respectively. Finally, all

the resized feature maps are concatenated to form the final feature vector of size (992, 1).

Different distance metrics can be used to measure the similarity between the input im-

age’s feature vector and the training images’ feature vectors to detect OOD images using

the encoder features of a segmentation network. In this research, two commonly used

distance metrics in OOD detection are explored: Mahalanobis and Euclidean distances.

The Mahalanobis distance is a multivariate distance metric that takes into account the

covariance between features. It measures the distance between a point and the distribu-

tion of data. From the encoder features of the validation images, we computed the mean

(µ ∈ Rk) and covariance (Σ ∈ Rk,k) of the features to estimate the multivariate Gaussian

distribution. During inference, when a new input image xt is given, its encoder feature

zt ∈ Rk is extracted and the Mahalanobis distance to the estimated Gaussian distribution

is computed as follows (Eq. 6.1):
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DMah(zt) =
√

(zt − µ)TΣ−1(zt − µ) (6.1)

Euclidean distance is a simple distance metric that measures the straight-line distance

between two vectors in a high-dimensional space. It is sensitive to the scale of the fea-

tures, so the feature vectors were normalized prior to using Euclidean distance. During

inference, when a new input image xt is given, its encoder feature zt ∈ Rk is extracted,

and the Euclidean distance between the input image’s feature vector zt and its nearest

neighbor from features of the validation set zv is calculated as shown in Eq. 6.2.

DEucl(zt, zv) =
√

(zt1 − zv1)2 + (zt2 − zv2)2 + ... + (ztk − zvk )2 (6.2)

6.3.4/ IMPLEMENTATION

The 2D segmentation model was trained for 200 epochs, utilizing the ADAM optimizer

with a learning rate of 0.001 and a batch size of four. For the segmentation loss, a hybrid

loss function was used, which consisted of both cross-entropy and dice loss with equal

weights (1.0). In order to generate the segmentation uncertainty, we used 5 Monte Carlo

samples or Deep Ensemble samples. The models were implemented using the Pytorch

deep learning framework and were trained on NVIDIA Tesla V100 GPUs with 32GB of

memory.

6.4/ RESULTS

To evaluate the performance of the OOD detection methods, the following two

metrics are employed: false positive rate (FPR) at 95% true positive rate (TPR)

[González et al., 2021, Liang et al., 2017] and Area Under the Receiver Operating Char-

acteristic curve (AUC). FPR at 95% TPR represents the probability that a negative (OOD)

example is classified wrongly as positive (ID) when the true positive rate (TPR) is as high

as 95%. The AUC is a useful metric for evaluating the overall performance of the OOD

detection method, as it summarizes the method’s ability to distinguish between positive

(ID) and negative (OOD) cases over a range of thresholds.

6.4.1/ ABLATION STUDY

To evaluate the effect of the different distance metrics, the performance of Mahalanobis

(Mah.) and Euclidean (Eucl.) distances were compared in differentiating ID and OOD

images using the encoder features of the images as shown in Table 6.2. The comparison
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Table 6.2: Ablation results comparing the performance of different distance metrics and
the features extracted from different parts of the segmentation network in near, mild,
and far OOD datasets in terms of AUC and FPR at 95% TPR. The better results are
highlighted in bold.

Ablation Method Near OOD Mild OOD Far OOD Average
AUC FPR AUC FPR AUC FPR AUC FPR

Distance
Eucl. 0.810 0.504 0.989 0.065 1 0 0.91 0.252
Mah. 0.842 0.401 1 0 1 0 0.927 0.185

Position

Latent 0.787 0.599 0.998 0.01 1 0 0.901 0.28
Encoder 0.842 0.401 1 0 1 0 0.927 0.185
Decoder 0.652 0.699 0.950 0.241 0.977 0.176 0.819 0.437
All 0.830 0.429 1 0 1 0 0.922 0.198

was done on the grouped OOD images (near, mild, and far OOD) using AUC and FPR at

95% TPR. The Mahalanobis distance performed the best, achieving an average AUC of

0.933 and FPR at 95% TPR of 0.173. The gain in performance was mostly in the near

and mild OOD datasets, whereas in the far OOD datasets, the performance of the two

distance metrics was the same.

In our experiments, the performance of the OOD detection methods in terms of the fea-

tures extracted from different parts of the segmentation network was also studied. These

features include latent-space features (latent), encoder features (encoder), decoder fea-

tures (decoder), and features from all encoder and decoder blocks (all). The size of the

latent space feature vector is 512, while encoder features, decoder features, and all fea-

tures have feature vector sizes of 992, 992, and 1472, respectively. It should be noted

that the latent-space feature is also included as part of the encoder and decoder features.

To compare the performance of the different features, the Mahalanobis distance metric

was utilized. As can be seen from Table 6.2, the encoder and all features performed per-

fectly with an AUC of 1 and FPR of 0 in both mild and far OOD, whereas in the near OOD

datasets, the encoder features achieved slightly better detection results than all features.

Looking at the performance of the latent space features, even though it uses a compar-

atively small-sized feature vector to represent an image, its detection performance was

weaker than the encoder and all features. As for the decoder features, its performance

was much lower than the other three features, particularly in the near OOD datasets.

6.4.2/ SEGMENTATION PERFORMANCE

Table 6.3 presents a comparison of the segmentation model’s performance on both in-

distribution (ID) and out-of-distribution (OOD) datasets. Additionally, the table includes

information about uncertainty (Dice-ws) and Mahalanobis distance (Mah. Distance) for

each dataset. Note that the encoder features were utilized for computing the Mahalanobis
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distance. The table also shows the Pearson Correlation Coefficient (PCC) between the

Dice score and Mahalanobis distance (PCC Mah. Dist) as well as the Pearson correlation

coefficient between the Dice score and Dice-ws uncertainty (PCC Dice-ws), which are

displayed in columns 5 and 6, respectively. The Dice score is obtained by calculating the

mean Dice of the three cardiac structures: left ventricular blood pool (LV), myocardium

(MYO), and right ventricular blood pool (RV).

The model achieved an average Dice score of 0.808 on the ACDC test dataset images,

which are the in-distribution images. However, its performance decreased significantly

on the near OOD datasets. Despite this, the model demonstrated relatively good per-

formance on images with random bias fields, random gamma (contrast enhancement),

and M&Ms datasets, achieving average Dice scores of 0.687, 0.688, and 0.680, respec-

tively. On the other hand, the model struggled to segment well the artificially transformed

ACDC images with random motion artifacts, yielding an average Dice score of 0.560. For

the artificially transformed ACDC images with random noise and adversarial artifacts, the

model failed to segment them correctly. Furthermore, the standard deviations (std) of the

Dice scores of most of the near OOD datasets were very high, indicating that the model

performed well on some images that were similar to the ID dataset but very poorly on

others that were more dissimilar. Similarly, the model performed poorly in the mild OOD

datasets showing the generalization problem of deep learning models when tested on

images with different modalities.

Looking at the certainty of the model on the different datasets, generally, the model’s cer-

tainty decreases when the OOD images are farther away from the ID images. As can be

seen from Table 6.3, the certainty in terms of Dice-within-samples (Dice-ws) of the model

decreased from 0.922 for ID dataset to 0.880, 0.875, 0.874, 0.866, 0.793, and 0.627 for

random noise, random bias field, M&Ms dataset, random gamma, random motion, and

adversarial artifacts, respectively. This indicates the strong correlation between the seg-

mentation performance (Dice score) and the certainty of the model for most of the near

OOD images (with the exception of the random noise dataset), as shown in column 6 of

the table. This is also true for some mild OOD datasets like native T1 and LGE CMR

images. However, the certainty starts increasing in the far OOD dataset. For example,

the model is more certain of its prediction of the cardiac ultrasound images (0.963) than

of the ID images (0.922), even though for the ultrasound cardiac images, it outputs empty

segmentation maps. In the far OOD datasets, the images are very different from the ID

datasets in which the images are CT scans of different organs or natural images instead

of cardiac MR images, and the segmentation model outputs empty segmentation maps

with high certainty.

For the Mahalanobis distance, we utilized the encoder features and discussed them in

detail in Section 6.4.4.
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Table 6.3: Quantitative comparison of the segmentation model’s performance in the ID
and OOD datasets in terms of Dice score as well as the Mahalanobis distance and cer-
tainty scores of the OOD detection methods. PCC (Mah. Dist) denotes the Pearson cor-
relation coefficient between Dice Score and Mahalanobis Distance, while PCC (Dice-ws)
represents the Pearson correlation coefficient between Dice Score and Dice-ws certainty.
The values displayed are the mean values, while those inside the parentheses represent
the standard deviations.

Datasets Dice Score Mah. Distance
Uncertainty

(Dice-ws)
PCC

(Mah. Dist)
PCC

(Dice-ws)
ACDC (ID) 0.808 (0.24) 4730 (1160) 0.922 (0.14) -0.149 0.744
RandomBiasField 0.687 (0.33) 25,170 (61,805) 0.875 (0.17) -0.481 0.644
RandomMotion 0.560 (0.32) 9194 (2623) 0.793 (0.20) -0.260 0.632
RandomNoise 0.424 (0.41) 167,417 (167,397) 0.880 (0.21) -0.722 0.134
RandomGamma 0.688 (0.33) 34,930 (78,284) 0.866 (0.19) -0.607 0.755
Adversarial 0.237 (0.25) 5023 (1327) 0.627 (0.20) 0.046 0.396
M&Ms 0.680 (0.29) 9085 (4828) 0.874 (0.15) -0.112 0.632
Native T1 0.219 (0.21) 15,460 (3815) 0.609 (0.19) -0.324 0.454
PostContrast T1 0 (0) 13,520 (3164) 0.779 (0.21) -0.05 0.0
Emidec LGE 0 (0) 45,107 (20,613) 0.590 (0.19) -0.245 0.582
Camus US - (-) 25,608 (6179) 0.963 (0.10) - -
Abdominal CT - (-) 892,542 (87,555) 0.917 (0.14) - -
Lung CT - (-) 33,345 (16,276) 0.827 (0.19) - -
ADE RGB - (-) 72,399 (50,608) 0.829 (0.18) - -

6.4.3/ UNCERTAINTY-BASED OOD DETECTION

In Table 6.4, we compared the OOD detection performance of the commonly used image-

level uncertainty metrics, which are the average of sample variance (IL var) and predictive

entropy (IL Ent), with our proposed Dice score-based image-level uncertainty metric that

is Dice-within-samples (Dice-ws) in the near, mild and far OOD datasets. This comparison

was done on both deep ensemble-based and MC-dropout-based uncertainty estimation

methods.

For both deep ensemble-based and MC-dropout-based uncertainty, the proposed Dice-

within-samples metric outperforms the other two metrics, the average of sample variance

and the average of predictive entropy, in almost all of the datasets in terms of AUC and

FPR at 95% TPR. The only exception is for random bias field and native T1 datasets

where the average of sample variance from deep ensemble outperforms Dice-within-

samples in terms of FPR.

Comparing the deep ensemble-based and MC-dropout-based Dice-within-samples

method, the former has on average better detection performance than the latter in terms

of AUC and FPR. However, the MC-dropout-based Dice-within-samples outperforms the

deep ensemble based in terms of FPR, particularly in most of the near OOD datasets

and far OOD datasets. The Dice-within-samples-based OOD detection method per-
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formed well on adversarial, native T1, and postcontrast T1 datasets, achieving AUCs

of 0.895, 0.911, and 0.913, respectively. While its performance was very low in the far

OOD datasets and in some of the near OOD datasets. Comparing the performance of the

average of sample variance (IL var) and average predictive entropy (IL Ent), the former

consistently outperforms the latter in all the datasets in terms of both AUC and FPR.

6.4.4/ COMPARISON WITH STATE-OF-THE-ART

The proposed feature space-based OOD detection method is compared to different state-

of-the-art OOD detection methods in terms of AUC and FPR at 95% TPR in Table 6.5.

The proposed feature space-based method uses the encoder features of the images

and utilizes Mahalonobis distance to detect OOD images. The state-of-the-art meth-

ods consist of uncertainty-based methods such as Dice-within-samples (Dice-ws), the

average sample variance (IL Var) [Lambert et al., 2022a], maximum softmax probabil-

ity (MSP) [Hendrycks et al., 2016], and softmax with temperature scaling (Temp Scale)

[Guo et al., 2017] as well as feature space-based OOD detection methods like spec-

tral features (Spectral) [Karimi et al., 2023], and latent space features (Latent Space)

[González et al., 2021]. For the uncertainty-based methods, we used deep ensemble

[Lakshminarayanan et al., 2016] as our uncertainty estimation method, as it yielded the

best OOD detection result, as indicated in Table 6.4. Additionally, we assessed tempera-

ture scaling [Guo et al., 2017] with three different temperatures (10, 100, and 1000) and

found that a temperature of 100 yielded the best results, which we reported in the table.

The OOD detection methods are evaluated in the 13 OOD datasets, as outlined in Section

6.2, to assess their ability to detect OOD images.

As can be seen from Table 6.5, the proposed method achieved the best result in terms

of AUC and FPR, outperforming the other state-of-the-art OOD detection methods. Com-

pared to the uncertainty-based OOD detection methods, the performance improvement

was in almost all the datasets, except for the adversarial dataset, where Dice-ws per-

formed better. Compared to the feature space-based OOD detection methods, the per-

formance enhancement was mostly in the near and mild OOD datasets. In the far OOD

datasets, the spectral and latent space feature-based methods perfectly detected the

OOD images similar to the proposed method with almost an AUC of 1 and FPR of 0.

The proposed method exhibited excellent performance in the mild and far OOD datasets,

achieving an AUC of 1 and an FPR of 0. However, in the near OOD dataset, although

our method still outperformed the other OOD detection methods, its performance was

lower, especially in terms of FPR. For instance, in the M&Ms, random bias field, random

gamma, and adversarial datasets, the FPR values were 0.355, 0.355, 0.46, and 0.948, re-

spectively. Additionally, all the other feature space-based OOD detection methods failed
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to properly detect the adversarial images, whereas the uncertainty-based Dice-within-

samples method achieved the best result with an AUC of 0.895 and an FPR of 0.555.

Among all the methods, the MSP and temperature scaling, which are based on the soft-

max scores, have the worst OOD detection result. They achieved the lowest AUC and

the highest FPR in most of the OOD datasets.

In Figure 6.2, we computed and analyzed the Mahalanobis distance (of the proposed

feature space-based OOD detection method) of the ID and OOD datasets from the ID

validation set using box plots. The ID images, which are the ACDC test images, obtained

a mean and standard deviation Mahalanobis distance of 4730(1160), with very few outliers

as shown in Figure 6.2 and Table 6.3 (second column). Among the near OOD datasets,

the adversarial dataset has the nearest distance to the ID images with a mean and stan-

dard deviation Mahalanobis distance of 5023(1327). For the M&Ms dataset, even though

the mean Mahalanobis distance is near to the ID images, there are some outliers that are

very far. Random bias field, random gamma, and random noise have the farthest dis-

tance from the ID images and have many outliers, and particularly random noise has the

highest standard deviation of the Mahalanobis distance. For the mild OOD datasets, they

have a mean Mahalanobis distance ranging from 13,520 to 45,107 and their standard

deviation is relatively low, with the exception of the LGE dataset. Mahalanobis distances

of the far OOD datasets are characterized by their very high mean and high standard

deviation with many outliers. Among all OOD datasets, the abdominal CT scans have the

highest mean Mahalanobis distance (892,542), making it the farthest OOD dataset, even

greater than the natural RGB images.

Furthermore, we assessed the qualitative result of the segmentation model and its pixel-

wise sample variance uncertainty (deep ensemble based) and its image-level uncertain-

ties like the average of sample variance and Dice-within-samples as well as the Maha-

lanobis distance of the proposed feature-based OOD detection in Figure 6.3 and Figure

6.4. In Figure 6.3, which contains the qualitative results of the ID and near OOD datasets,

the segmentation model either segmented the image very well with low uncertainty or

segmented the image inaccurately but with high uncertainty. In this case, both the image

level uncertainty and the Mahalonobis distance provide a good indication of the quality of

the segmentation result with the exception of the adversarial dataset where the feature

space-based OOD detection method has confused the adversarial images with the ID

images because they look very similar. Looking at the Mahalonobis distances, the ACDC

ID image has a Mahalonobis distance of 5392, whereas the adversarial version of the

same image has a lower Mahalonobis distance which is 4827. However, the image level

uncertainty (Dice-within-samples) of the ACDC ID image is much lower than its adversar-

ial version by more than 30%. The prediction of the segmentation model is also empty.

This shows the advantage of the uncertainty-based OOD detection method in detecting

adversarial images, which look very similar to the original images.
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Figure 6.4 contains the qualitative results of the mild and far OOD datasets. For the

images of these datasets, the segmentation model predicted an empty segmentation map

except for the native T1 mapping image. The model’s uncertainty is low for most of the

empty predictions; the model is confident with its prediction. This makes the uncertainty

very difficult for detecting mild and far OOD images. However, the Mahalanobis distance

provided a better estimation of how similar the images are with respect to the ID images,

as the distance becomes larger as the images are more dissimilar to the ID images. For

example, the native T1 mapping image, which is the most similar image among the mild

and far OOD datasets, has a Mahalanobis distance of 13,138, whereas the RGB natural

image, which is considered the most dissimilar image, has a Mahalanobis of 56,290.

Figure 6.2: Box plots comparing the Mahalanobis distances (proposed method) of the ID
(ACDC test set) and the 13 different OOD datasets

6.5/ DISCUSSION

In this chapter, we proposed a simple post-hoc OOD detection method that can be

used with any pre-trained segmentation model. Our method uses the features extracted

from the encoder blocks of the segmentation model and Mahalanobis distance to distin-

guish the different OOD datasets from the in-distribution cardiac cine MR dataset. We

compared its detection performance with state-of-the-art uncertainty-based and feature

space-based OOD detection methods. In addition, we studied the correlation between the

Mahalanobis distance and the segmentation quality, as well as the correlation between

uncertainty scores and the segmentation quality.

Regarding the distance metrics, the Mahalanobis distance metric outperformed Euclidean

distance in distinguishing ID and OOD images. This indicates that considering the covari-

ance between the features, as captured by the Mahalanobis distance, is crucial for effec-

tive OOD detection. However, it is worth noting that the performance gains were more

prominent for near and mild OOD datasets, suggesting that the covariance information is

more discriminative as the OOD datasets are less dissimilar.
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Figure 6.3: Qualitative results of ID and near OOD datasets with their corresponding
mean Dice score, Dice within samples uncertainty, image level sample variance (IL Vari-
ance) uncertainty, and Mahalanobis distance for the encoder features (proposed method).
Image: the input image, GT: ground truth, Predicted-mean: the final prediction, Sample-
variance: the pixel-wise uncertainty

The encoder features exhibited superior performance in OOD detection compared to

other features, particularly in the near OOD images. This shows that the shifts in data are

well captured by the encoder features more than the other features. This can be due to

the fact that the encoder layers capture multi-scale representations of the input image at

multiple levels of abstraction. All features, which combine encoder and decoder features,

achieved similar performance as the encoder features. However, its feature vector size is

48% larger than encoder features. On the other hand, the weaker performance of decoder

features implies that this region does not capture sufficient discriminative information for

OOD detection.

The segmentation model’s performance varied across different OOD datasets. It achieved

relatively good segmentation results on images with random bias fields, random gamma,

and the M&Ms dataset, indicating robustness to certain types of artifacts and variations.

The model’s poor performance on near OOD datasets, such as those with random noise

and adversarial artifacts, demonstrates the difficulty of the model in handling images with

Gaussian noises and adversarial perturbations. The high standard deviation of the Dice
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Figure 6.4: Qualitative results of Mild and Far OOD datasets with their corresponding
mean Dice score, Dice within samples uncertainty, image level sample variance (IL Vari-
ance) uncertainty, and Mahalanobis distance for the encoder features (proposed method).
Image: the input image, GT: ground truth, Predicted-mean: the final prediction, Sample-
variance: the pixel-wise uncertainty

scores in the near OOD datasets indicates that the model was very sensitive to the level

of artifacts added to the images. This is because when the amount of artifacts is light,

the model’s segmentation was good, but its performance decreased as the amount of

artifacts increased.

In relation to the association between the Mahalanobis distance, uncertainty (Dice-ws),

and segmentation quality (Dice score), we found that the Mahalanobis distance has

a weak correlation with the segmentation quality. This signifies its inability to distin-

guish poorly segmented images in both the in-distribution (ID) and most of the near

OOD datasets. On the other hand, in agreement with the findings of Arega et al.

[Arega et al., 2023a], the uncertainty-based approach (Dice-ws) demonstrates a strong

correlation with the segmentation quality and effectively identifies suboptimal segmenta-

tion results, notably in the ID dataset and several near OOD datasets, such as random

gamma, random bias field, random motion, and the M&Ms datasets. This outcome is an-

ticipated because the feature space-based method lacks sufficient information pertaining

to the segmentation result, given that the encoder features primarily reflect information
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related to the input image, whereas the estimated uncertainties reflect the confidence of

the deep ensemble or MC-Dropout segmentation models in their segmentation results.

The results from uncertainty-based OOD detection show that the Dice-based image level

uncertainty metric is more robust and correlates better to the segmentation result than

the ones which are based on pixel-wise uncertainty metrics (sample variance and predic-

tive entropy) in both deep ensemble-based and MC-dropout-based uncertainty estimation

methods. The weaker performance of the pixel-wise uncertainty metrics can be due to the

fact that taking the average of these metrics to estimate the uncertainty at the image level

sometimes does not accurately convey the level of uncertainty, especially when there is

a class imbalance. The certainty of the model’s predictions, as indicated by the Dice-

within-samples metric, generally decreased as the OOD datasets deviated further from

the ID images. This correlation suggests that the model’s segmentation performance

is closely linked to its certainty in near OOD scenarios. However, interestingly, in far

OOD datasets such as cardiac ultrasound images, and abdominal CT scans, the model

exhibited high certainty while producing empty segmentation maps. This indicates that

uncertainty-based methods are not good enough for OOD detection because the model’s

uncertainty is not reliable for some mild and far OOD images.

The proposed feature space-based OOD detection method, which utilizes Mahalanobis

distance, achieves the best results in terms of AUC and FPR when compared to other

state-of-the-art methods in most of the OOD datasets. Generally, the feature space-

based OOD detection methods outperform the uncertainty-based methods, except for

adversarial datasets. This tells us that the feature space-based methods capture the data

shifts better when the images are more dissimilar than the ID images. However, when the

images are confusingly similar to the ID images, like adversarial images, the uncertainty-

based method (Dice-within-samples) detects them better than the feature space-based

methods. The adversarial perturbation added to the original ID image confuses the seg-

mentation network even though it is visually undetectable. This also makes the adver-

sarial images confusing for the feature space-based OOD detection methods. Since the

MC-dropout or deep ensemble methods produce wrong segmentation results with high

uncertainty for the adversarial images, it is easier for the uncertainty-based methods to

detect them.

Compared to feature space-based methods, the proposed method shows superior detec-

tion performance, mainly in the near OOD datasets. This indicates that instead of using

only the spectral features or the latent space features, it is better to utilize the combined

features which are extracted from the encoder blocks to detect OOD images because

the encoder layers extract multi-scale and semantically rich representations of the input

image. These representations capture the underlying patterns and main characteristics

of the image that can be helpful in distinguishing in-distribution (ID) and OOD images.
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Analyzing the results of the proposed method in the near OOD datasets, despite achiev-

ing the best results in terms of AUC and FPR, we noticed that the FPR results of M&Ms,

random bias field, random gamma, and random noise datasets were relatively poorer

than the other OOD datasets. Interestingly, these poor performances have some cor-

relation with the high standard deviation of their Dice scores. This can tell us that the

relatively high FPR of these datasets could be due to the presence of images that are

very similar to ID images in which the model segments them well.

The qualitative analysis of segmentation results, uncertainties, and Mahalanobis distance

supports the quantitative findings. The uncertainty metrics and Mahalanobis distance

provide some insights into the quality of segmentation and the similarity of images to the

ID images.

Finally, the proposed OOD detection method offers a straightforward implementation that

can be easily integrated with any pre-trained segmentation model as a post-hoc, requir-

ing no modifications to the model or its pre-trained weights. To deploy the OOD detection

system, it is necessary to determine a threshold for the OOD score or distance. One ap-

proach is to select a distance threshold that achieves a 95% true positive rate (TPR) on

the validation in-distribution (ID) dataset [Liang et al., 2017, González et al., 2021]. Alter-

natively, the threshold can be based on the mean and standard deviation of the distances

or OOD scores calculated from the validation ID datasets [Karimi et al., 2023]. These

thresholds serve as effective criteria for distinguishing between ID and OOD samples,

facilitating the practical implementation of the OOD detection system.

6.6/ CONCLUSION

In this chapter, we propose a post-hoc method for detecting out-of-distribution images,

which can be easily integrated with any pre-trained segmentation model. Our method

utilizes the features extracted from the encoder blocks of the segmentation model and

employs Mahalanobis distance as a metric to measure the distance between the encoder

features of the input image and the in-distribution images to determine whether the input

image is OOD or not. To evaluate the performance of our approach, we conducted ex-

periments using a pre-trained segmentation model trained on a publicly available cardiac

short-axis cine MRI dataset. We assessed the detection performance on 13 different out-

of-distribution datasets, categorized as near, mild, and far based on their similarity to the

in-distribution dataset. The results demonstrate that our proposed method outperforms

state-of-the-art feature space-based and uncertainty-based out-of-distribution detection

methods. It achieves the best detection results across all datasets, except for the adver-

sarial dataset, in terms of both AUC and FPR at a TPR of 95%. Our method success-

fully detects out-of-distribution datasets, particularly the mild and far out-of-distribution
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datasets, with an AUC of 1.0 and an FPR of 0.0. This highlights the advantage of

utilizing the multi-scale and semantically rich representations of the encoder for out-of-

distribution detection, as opposed to solely relying on the latent space features. Although

the uncertainty-based method, specifically the Dice-within-samples approach, exhibits

better detection performance for the adversarial dataset and shows a strong correlation

with the segmentation quality in the near out-of-distribution datasets, it fails to detect mild

and far out-of-distribution images, showing the weakness of these methods when the

images are more dissimilar. Future work will focus on exploring the potential of combin-

ing both Mahalanobis distance and uncertainty scores to enhance the identification and

detection of challenging out-of-distribution images that are difficult to segment.
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7

CONCLUSION

This chapter provides a summary of the work presented in this thesis and explores the

limitations of our work as well as the potential future directions for improvement and fur-

ther development.

7.1/ THESIS SUMMARY

In this thesis, we first focused on improving the segmentation of the more challenging scar

segmentation from LGE MRI with the help of uncertainty information. Then to detect failed

segmentation results before analyzing the segmentations in the downstream tasks, we

proposed uncertainty-based quality control to determine the quality of the segmentation

results and to reduce incorrect analysis in the downstream tasks. Finally, to identify and

reject outlier images during inference, we proposed feature-space and uncertainty-based

out-of-distribution detection for cardiac MR segmentation.

Deep learning-based segmentation of the heart structures from cardiac MR images has

achieved state-of-the-art results, sometimes even matching the segmentation perfor-

mance of experts. However, the segmentation of scar tissues, such as myocardial scar,

remains challenging for deep learning methods due to their small size and lack of contrast

with surrounding structures. Previous studies have utilized Bayesian neural networks to

generate uncertainty estimates, with higher uncertainty indicating challenging image re-

gions. These uncertain areas can provide insights into potential segmentation errors. To

leverage this uncertainty information, we propose a segmentation model that integrates

uncertainty into the learning process. To improve the segmentation of the challenging

regions such as scars in cardiac MRI, we propose a segmentation model that integrates

uncertainty information into the learning process. More specifically, Monte-Carlo dropout

is employed to estimate uncertainty during training, and the uncertainty (mean of the

pixel-wise sample variance) is then incorporated into the loss function to improve seg-

mentation accuracy and probability calibration. The proposed method is evaluated on
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two publicly available datasets: EMIDEC MICCAI 2020 and LAScarQS MICCAI 2022,

which specifically target the segmentation of infarcted myocardium and left atrial scars

from LGE MRI. The experimental results demonstrate that our method achieves state-of-

the-art performance, surpassing the top-ranked approaches from both challenges. From

the ablation study, we observe that the benefits of incorporating uncertainty information

are most pronounced in apical slices and scar segmentation, which are visually difficult

cases with higher epistemic uncertainty. This confirms that uncertainty provides useful

guidance, especially for challenging examples.

Despite achieving high accuracy, deep learning models lack reliability for clinical adop-

tion. Even top segmentation models generate anatomically implausible cardiac MRI seg-

mentations, unlike human experts. Flawed segmentations can lead to erroneous clinical

decisions in subsequent tasks. To address this issue, we propose an uncertainty-based

quality control (QC) method to identify failed segmentations before further analysis. The

proposed QC framework for T1 mapping and ECV analysis consists of three key compo-

nents. Firstly, we employ a Bayesian Swin transformer-based U-Net to segment the left

ventricular and right ventricular blood pools, as well as the left ventricular myocardium,

from native and post-contrast T1 mapping images. Secondly, we introduce an automated

QC method to detect poorly segmented images generated by the model. This QC method

utilizes image-level uncertainty metrics derived from the Bayesian model, including met-

rics such as Dice agreement within Monte Carlo samples, Hausdorff distance agreement

within MC samples, and the mean of pixel-wise uncertainty metrics like sample variance

and predictive entropy. These image-level uncertainty features are fed into a random

forest (RF) classifier, which is trained to classify the quality of the segmentation results.

Experimental results using private and public datasets demonstrate that our proposed

QC method significantly outperforms other state-of-the-art uncertainty-based QC meth-

ods, as evidenced by the mean area under the ROC curve. Notably, the improvements

are particularly pronounced when dealing with challenging datasets or when the segmen-

tation model’s performance is suboptimal, showcasing the robustness of our method in

detecting inaccurate segmentations. After rejecting the inaccurate segmentation results

identified by the QC method, T1 mapping and ECV values are automatically computed,

enabling the characterization of myocardial tissues in both healthy and pathological car-

diac cases. The computed myocardial T1 and ECV values show excellent agreement with

manual segmentations, as indicated by high Pearson correlation coefficients. These au-

tomatically computed values effectively capture the characteristics of myocardial tissues.

Overall, our proposed fully automatic uncertainty-based QC framework for T1 mapping

and ECV analysis has great potential to enhance the accuracy and reliability of cardiac

MR segmentation, thereby improving the clinical decision-making process. The method’s

robustness in detecting failed segmentations and the strong agreement between auto-

matic and manual segmentations underscores its value as a valuable tool for character-
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izing myocardial tissues in healthy and pathological cardiac cases.

Real-world segmentation models encounter out-of-distribution (OOD) inputs deviating

from training data. Such differences can arise from changes in scanners, protocols, or

even modalities. Unseen OOD images cause unpredictable model behavior, threatening

clinical safety. Predictive uncertainty information can be valuable in detecting segmen-

tation errors when models perform poorly on in-distribution test set images. However,

the uncertainty information may not be effective when samples deviate significantly from

the training data distribution. To address this challenge and enhance the trustworthiness

of the models by detecting and rejecting OOD images that differ greatly from the in-

distribution images, we propose a post-hoc out-of-distribution (OOD) detection method.

Our method can be applied to any pre-trained segmentation model without requiring mod-

ifications to the model or its pre-trained weights. It utilizes the features extracted from the

encoder blocks of the segmentation model and employs the Mahalanobis distance as a

metric to measure the distance between the encoder features of the input image and the

in-distribution images. This distance measurement helps determine whether the input

image is OOD or not. To evaluate the performance of our approach, we conducted exper-

iments using a pre-trained segmentation model that was trained on a publicly available

cardiac short-axis cine MRI dataset. We assessed the detection performance on 13 dif-

ferent OOD datasets, categorized as near, mild, and far based on their similarity to the

in-distribution dataset. The results demonstrate that our method outperforms state-of-

the-art feature space-based and uncertainty-based OOD detection methods across the

various OOD datasets. Our method successfully detects near, mild, and far OOD images

with high detection accuracy, showcasing the advantage of leveraging the multi-scale and

semantically rich representations of the encoder. While the uncertainty-based method,

specifically the Dice-within-samples approach, exhibits better detection performance for

the adversarial dataset and shows a strong correlation with segmentation quality in the

near OOD datasets, it fails to detect mild and far OOD images. This highlights the lim-

itations of these methods when dealing with images that are more dissimilar from the

training distribution.

7.2/ PERSPECTIVES

In this section, we discuss some limitations of the work presented in this thesis and pro-

vide comprehensive discussions and suggestions for future research directions that build

upon the main contributions.

Improving segmentation performance through refined image-level uncertainty fea-
tures: In Chapter 4, we explored the use of uncertainty information to enhance cardiac

MR segmentation performance. Our approach utilized an image-level uncertainty mea-
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sure obtained by averaging pixel-wise sample variances. However, this metric may not

be optimal when dealing with imbalanced class distributions, where the background class

significantly outweighs the objects of interest. Averaging pixel-wise uncertainty may not

accurately represent underlying segmentation uncertainty.

To address this limitation, a potential future direction is to employ image-level uncer-

tainty metrics less affected by class imbalance. One such metric is the Dice coefficient-

based uncertainty metric [Roy et al., 2018, Ng et al., 2020, Arega et al., 2021a], Dice

within samples. By incorporating the Dice within samples uncertainty-based loss along-

side segmentation loss, the approach can achieve more refined segmentation perfor-

mance in cases where the background is significantly larger than the objects of interest.

Dice within samples focuses solely on foreground classes, disregarding the background

(true negative) class, making it a more effective measure in these scenarios.

Uncovering the underlying causes of segmentation failure: In the pursuit of improv-

ing the reliability of the segmentation model, a quality control method was proposed in

Chapter 5 to identify and reject incorrect segmentation results. However, in addition to

identifying these failures, it could be valuable to understand the underlying causes or

sources behind them. By gaining insights into why certain segmentation results are re-

jected, we can further enhance the model’s reliability.

Explaining the cause of segmentation failure can involve investigating whether the in-

correct results are due to the low quality of the input image or due to the poor gen-

eralization capability of the segmentation model. For the latter case, techniques can

be devised to improve the model’s generalization and reduce the occurrence of incor-

rect segmentations. This may involve exploring model performance-enhancing meth-

ods [Chen et al., 2020a, Garcea et al., 2022] tailored to address the model generalization

problem.

Regarding low-quality input images, it could be worth considering image quality enhance-

ment techniques [Tsai et al., 2013, Zhou et al., 2019, Bing et al., 2019] to improve the

overall quality of the images. These techniques could include noise or artifact reduc-

tion, contrast or brightness enhancement, or deep learning-based super-resolution ap-

proaches [Chen et al., 2020b]. By enhancing the image quality, the number of flawed

segmentation results can be reduced, thereby improving the overall reliability and accu-

racy of the segmentation model.

Correcting segmentation errors before or after the QC method: The proposed quality

control (QC) method in Chapter 5 primarily focuses on detecting erroneous segmentation

results and excluding them from downstream tasks. However, it could be interesting also

to correct some of the bad segmentation results with minor errors using different deep

learning-based post-processing methods. For instance, techniques such as those pre-

sented in [Painchaud et al., 2019] and [Larrazabal et al., 2020] could be employed to rec-
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tify and refine the detected segmentation errors. As proposed in [Painchaud et al., 2019]

and [Larrazabal et al., 2020], one approach can involve leveraging constrained Variational

Autoencoders (cVAE) or Denoising Autoencoders (DAE) to ensure anatomical validity in

the segmentation results. These methods employ a warping step that guides the seg-

mentation predictions toward the closest anatomically valid cardiac shape.

Such correction procedures could be incorporated either before the QC method to reduce

the number of anatomical errors in the segmentation results or after the QC to correct

some of the rejected segmentation results that have minor errors. This expanded ap-

proach can allow for the inclusion of more patient cases (which were previously rejected

due to minor errors) in the downstream tasks, providing additional valuable information

about various pathologies and ultimately enhancing the overall clinical decision-making

process.

Considerations for T1 and ECV values comparison: In Chapter 5, we examined the

T1 and ECV values associated with various myocardial pathologies. These values were

obtained from T1 mapping images acquired using one T1-mapping imaging technique

(MOLLI). However, it is crucial to consider that differences in MR field strength, MRI

scanners, imaging techniques, or even versions of T1-mapping sequences can impact

T1 estimations [Puyol-Antón et al., 2020]. Therefore, it is essential to exercise caution

when directly translating the T1 and ECV values from this study to images acquired using

different vendor types or T1-mapping acquisition techniques.

Multi-Modal myocardial pathology analysis through combined LGE and T1 Map-
ping: Another interesting study regarding myocardial pathology characterization could

be to leverage complementary modalities like LGE imaging alongside T1 mapping

[Puyol-Antón et al., 2020]. LGE visualizes fibrotic scar while T1 mapping quantifies dif-

fuse fibrosis. Combining modalities may offer deeper tissue insights and provide a more

robust pathology assessment. Future studies exploring the correlation and complemen-

tarity between LGE and T1 mapping measurements can contribute valuable insights to

the field of cardiac imaging and myocardial pathology assessment. However, it is worth

noting that registering or aligning these modalities could be challenging.

Combining uncertainty-based and feature space-based information for better OOD
image detection: For the OOD detection method presented in Chapter 6, as a fu-

ture work, it could be interesting to see the combination of feature space-based and

uncertainty-based OOD detection methods to distinguish ID from OOD images bet-

ter. The results from our experiments in Chapter 6 also suggest this approach, as the

uncertainty-based method performs well in detecting adversarial OOD images, while fea-

ture space-based methods struggle with them. In addition, the uncertainty-based method

is good at identifying poorly segmented images (quality control) and provides useful un-

certainty estimates for the near ODD images, which can be utilized alongside the distance
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information from the feature space-based methods to provide complementary information

for the OOD detection system.

Model interpretability and explainability: While the methods proposed in this thesis

focus primarily on improving model performance and reliability, an equally important con-

sideration is model interpretability and explainability [Singh et al., 2020]. Ensuring that

clinical users can understand and trust model outputs is critical for real-world adoption.

Therefore, a valuable research direction lies in enhancing the interpretability and explain-

ability of our approaches.

By incorporating state-of-the-art explainable AI techniques, such as those discussed in

[Arrieta et al., 2020, Singh et al., 2020], into our methods, we can enhance the trans-

parency and trustworthiness of the models. These techniques aim to uncover the in-

ternal mechanisms of deep learning models and provide insights into the features and

patterns that contribute to their decisions. This integration of explainable AI techniques

could enhance the interpretability of the models and facilitate their integration into clinical

workflows, making them more usable in real-world scenarios.



BIBLIOGRAPHY

[Abbas et al., 2015] Abbas, A., Matthews, G. H., Brown, I. W., Shambrook, J., Peebles,

C., et Harden, S. (2015). Cardiac MR assessment of microvascular obstruction.
The British journal of radiology, 88 1047:20140470.

[Abdelhamed et al., 2023] Abdelhamed, M. K., et Meriaudeau, F. (2023). NesT UNet:
pure transformer segmentation network with an application for automatic car-
diac myocardial infarction evaluation. In Medical Imaging 2023: Computer-Aided

Diagnosis, volume 12465, pages 608–619. SPIE.

[AD Elster, 2023] AD Elster, E. L. (2023). True fisp. https://mriquestions.com/

true-fispfiesta.html.

[Ali et al., 2021] Ali, N., Behairy, N., Kharabish, A., Elmozy, W., Hegab, A., et Saraya,

S. (2021). Cardiac MRI T1 mapping and extracellular volume application in hy-
pertrophic cardiomyopathy. Egyptian Journal of Radiology and Nuclear Medicine,

52:1–9.

[Alzubaidi et al., 2021a] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y.,

Al-Shamma, O., Santamarı́a, J., Fadhel, M. A., Al-Amidie, M., et Farhan, L. (2021a).

Review of deep learning: Concepts, CNN architectures, challenges, applications,
future directions. Journal of big Data, 8:1–74.

[Alzubaidi et al., 2021b] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A. Q., Duan, Y.,

Al-Shamma, O., Santamarı́a, J. I., Fadhel, M. A., Al-Amidie, M., et Farhan, L. (2021b).

Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. Journal of Big Data, 8.

[Amado et al., 2004] Amado, L. C., Gerber, B. L., Gupta, S. N., Rettmann, D. W., Szarf,

G., Schock, R. B., Nasir, K., Kraitchman, D. L., et Lima, J. A. C. (2004). Accurate and
objective infarct sizing by contrast-enhanced magnetic resonance imaging in a
canine myocardial infarction model. Journal of the American College of Cardiology,

44 12:2383–9.

[Amano et al., 2018] Amano, Y., Kitamura, M., Takano, H., Yanagisawa, F., Tachi, M.,

Suzuki, Y., Kumita, S., et Takayama, M. (2018). Cardiac MR imaging of hypertrophic
cardiomyopathy: Techniques, findings, and clinical relevance. Magnetic Reso-

nance in Medical Sciences, 17:120 – 131.

143

https://mriquestions.com/true-fispfiesta.html
https://mriquestions.com/true-fispfiesta.html


144 BIBLIOGRAPHY

[An et al., 2015] An, J., et Cho, S. (2015). Variational autoencoder based anomaly
detection using reconstruction probability.
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Rohé, M.-M., Pennec, X., Sermesant, M., Isensee, F., Jäger, P. F., Maier-Hein, K., Full,

P. M., Wolf, I., Engelhardt, S., Baumgartner, C. F., Koch, L. M., Wolterink, J. M., Ivs-

gum, I., Jang, Y., Hong, Y., Patravali, J., Jain, S., Humbert, O., et Jodoin, P.-M. (2018).



146 BIBLIOGRAPHY

Deep learning techniques for automatic MRI cardiac multi-structures segmenta-
tion and diagnosis: Is the problem solved? IEEE Transactions on Medical Imaging,

37:2514–2525.

[Bing et al., 2019] Bing, X., Zhang, W., Zheng, L., et Zhang, Y. (2019). Medical image
super resolution using improved generative adversarial networks. IEEE Access,

7:145030–145038.

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., et Wierstra, D. (2015).

Weight uncertainty in neural networks. ArXiv, abs/1505.05424.

[Boser et al., 1992] Boser, B. E., Guyon, I. M., et Vapnik, V. N. (1992). A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152.

[Brahim et al., 2022] Brahim, K., Arega, T. W., Boucher, A., Bricq, S., Sakly, A., et
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ternational expert consensus document on takotsubo syndrome (part i): Clinical
characteristics, diagnostic criteria, and pathophysiology. European Heart Jour-

nal, 39:2032 – 2046.

[Gilotra, 2023] Gilotra, N. A. (2023). Myocarditis. https://www.hopkinsmedicine.org/

health/conditions-and-diseases/myocarditis.

[Ginat et al., 2011] Ginat, D. T., Fong, M. W., Tuttle, D. J., Hobbs, S. K., et Vyas, R. C.

(2011). Cardiac imaging: Part 1, MR pulse sequences, imaging planes, and basic
anatomy. AJR. American journal of roentgenology, 197 4:808–15.

[Girum et al., 2020] Girum, K. B., Skandarani, Y., Hussain, R., Grayeli, A. B., Créhange,
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A

MICCAI CHALLENGE PAPERS

A.1/ USING POLYNOMIAL LOSS AND UNCERTAINTY INFORMATION

FOR ROBUST LEFT ATRIAL AND SCAR QUANTIFICATION AND

SEGMENTATION

Automatic and accurate segmentation of the left atrial (LA) cavity and scar can be helpful

for the diagnosis and prognosis of patients with atrial fibrillation. However, automating the

segmentation can be difficult due to the poor image quality, variable LA shapes, and small

discrete regions of LA scars. In this paper, we proposed a fully-automatic method to seg-

ment LA cavity and scar from Late Gadolinium Enhancement (LGE) MRIs. For the loss

functions, we propose two different losses for each task. To enhance the segmentation of

LA cavity from the multi-center dataset, we present a hybrid loss that leverages Dice loss

with a polynomial version of cross-entropy loss (PolyCE). We also utilize different data

augmentations that include histogram matching to increase the variety of the dataset.

For the more difficult LA scar segmentation, we propose a loss function that uses un-

certainty information to improve the uncertain and inaccurate scar segmentation results.

We evaluate the proposed method on the Left Atrial and Scar Quantification and Seg-

mentation (LAScarQS 2022) Challenge dataset. It achieves a Dice score of 0.8897 and a

Hausdorff distance (HD) of 16.91mm for LA cavity and a Dice score of 0.6406 and sensitiv-

ity of 0.5853 for LA scar. From the results, we notice that for LA scar segmentation, which

has small and irregular shapes, the proposed loss that utilizes the uncertainty estimates

generated by the scar yields the best result compared to the other loss functions. For

the multi-center LA cavity segmentation, we observe that combining the region-based

Dice loss with the pixelwise PolyCE can achieve a good result by enhancing the seg-

mentation result in terms of both Dice score and HD. Furthermore, using moderate-level

data augmentation with histogram matching improves the model’s generalization capabil-

ity. Our proposed method won the Left Atrial and Scar Quantification and Segmentation

(LAScarQS 2022) Challenge.
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This work was presented at the STACOM - MICCAI 2022 conference as part of the

Left Atrial and Scar Quantification and Segmentation (LAScarQS 2022) Challenge

[Arega et al., 2022b]:

Arega, T. W., Bricq, S., & Meriaudeau, F. (2022). Using Polynomial Loss and Uncer-
tainty Information for Robust Left Atrial and Scar Quantification and Segmentation.

In Challenge on Left Atrial and Scar Quantification and Segmentation (pp. 133-144), MIC-

CAI 2022. Cham: Springer Nature Switzerland. [Arega et al., 2022b]

A.2/ AUTOMATIC QUALITY ASSESSMENT OF CARDIAC MR IM-

AGES WITH MOTION ARTEFACTS USING MULTI-TASK LEARN-

ING AND K-SPACE MOTION ARTEFACT AUGMENTATION

The movement of patients and respiratory motion during MRI acquisition produce image

artefacts that reduce the image quality and its diagnostic value. Quality assessment of

the images is essential to minimize segmentation errors and avoid wrong clinical deci-

sions in the downstream tasks. In this paper, we propose automatic multi-task learning

(MTL) based classification model to detect cardiac MR images with different levels of mo-

tion artefact. We also develop an automatic segmentation model that leverages k-space

based motion artefact augmentation (MAA) and a novel compound loss that utilizes Dice

loss with a polynomial version of cross-entropy loss (PolyLoss) to robustly segment car-

diac structures from cardiac MRIs with respiratory motion artefacts. We evaluate the pro-

posed method on the Extreme Cardiac MRI Analysis Challenge under Respiratory Motion

(CMRxMotion 2022) challenge dataset. For the detection task, the multi-task learning-

based model that simultaneously learns both image artefact prediction and breath-hold

type prediction achieved significantly better results compared to the single-task model,

showing the benefits of MTL. In addition, we utilized test-time augmentation (TTA) to en-

hance the classification accuracy and study aleatoric uncertainty of the images. Using

TTA further improved the classification result as it achieved an accuracy of 0.65 and Co-

hen’s kappa of 0.413. From the estimated aleatoric uncertainty, we observe that images

with higher aleatoric uncertainty are more difficult to classify than the ones with lower

uncertainty. For the segmentation task, the k-space based MAA enhanced the segmen-

tation accuracy of the baseline model. From the results, we also observe that using a

hybrid loss of Dice and PolyLoss can be advantageous to robustly segment cardiac MRIs

with motion artefact, leading to a mean Dice of 0.9204, 0.8315, and 0.8906 and mean HD95

of 8.09 mm, 3.60 mm and 6.07 mm for LV, MYO and RV respectively on the official valida-

tion set. On the test set, the proposed segmentation method was ranked in second place

in the segmentation task of CMRxMotion 2022 challenge.
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This work was presented at the STACOM - MICCAI 2022 conference as part of the Ex-

treme Cardiac MRI Analysis Challenge under Respiratory Motion (CMRxMotion 2022)

challenge [Arega et al., 2022a]:

Arega, T.W., Bricq, S., & Mériaudeau, F. (2022). Automatic Quality Assessment of
Cardiac MR Images with Motion Artefacts Using Multi-task Learning and K-Space
Motion Artefact Augmentation. In International Workshop on Statistical Atlases and

Computational Models of the Heart (pp. 418-428) STACOM@MICCAI 2022. Cham:

Springer Nature Switzerland. [Arega et al., 2022a]

A.3/ USING MRI-SPECIFIC DATA AUGMENTATION TO ENHANCE

THE SEGMENTATION OF RIGHT VENTRICLE IN MULTI-

DISEASE, MULTI-CENTER AND MULTI-VIEW CARDIAC MRI

Accurate segmentation of the right ventricle (RV) from cardiac MRI is essential to evalu-

ate the structure and function of the RV and to further study cardiac disorders. However, it

is a difficult task due to its complex crescent shape and the presence of wall irregularities

in its cavity. As part of the multi-disease, multi-center, and multi-view RV segmentation in

cardiac MRI challenge (M&Ms-2), we propose to solve the problem using a fully automatic

deep learning method that employs different data augmentation techniques. More specif-

ically, we applied MRI-specific based, intensity and spatial data augmentation techniques

to reduce the variation among the multi-center images with various cardiac pathologies.

MRI-specific data augmentation are transformations that simulate image artifacts specific

to MRI such as random bias field, random ghosting and random motion artifacts. We

evaluate the proposed method in the validation set of the challenge. Among the data

augmentation techniques applied, the MRI-specific based data augmentation enhanced

the segmentation results of both long-axis and short-axis images in terms of Dice coef-

ficient and Hausdorff Distance (HD). From the experiments, it shows us that the usage

of MRI-specific transformations alongside intensity and spatial transformations in cardiac

MRI can increase the variety of the training dataset and further help to improve the gen-

eralization capabilities of the models in multi-center, multi-disease cardiac MRI images.

The proposed method ranked second in the M&Ms-2 challenge.

This work was presented at the STACOM - MICCAI 2021 conference as part of the

Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI

(M&Ms-2) challenge [Arega et al., 2021b]:

Arega, T. W., Legrand, F., Bricq, S., & Meriaudeau, F. (2021, September). Using MRI-
specific data augmentation to enhance the segmentation of right ventricle in multi-
disease, multi-center, and multi-view cardiac MRI. In International Workshop on Sta-
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tistical Atlases and Computational Models of the Heart (pp. 250-258), MICCAI 2021.

Cham: Springer International Publishing. [Arega et al., 2021b]



B

A SIMPLE UNCERTAINTY-BASED

QUALITY CONTROL FOR CARDIAC MR
IMAGES SEGMENTATION

Deep learning-based methods have achieved state-of-the-art results for cardiac MR seg-

mentation. However, inaccuracies from these methods can lead to wrong clinical de-

cisions in subsequent tasks. To identify the incorrect segmentations, experts manually

inspect the segmentation results, but this is a very tiresome and time-consuming task.

In this work, we propose a simple uncertainty-based quality control (QC) that estimates

the quality of segmentation results. It utilizes image-level uncertainty features as input

to a random forest-based classifier to determine the quality of the segmentation outputs.

First, the cardiac structures are segmented from the cardiac MR images using the deep

ensemble-based Bayesian segmentation model. Then the quality of the segmentation

output is assessed using the uncertainty-based QC. The Random Forest (RF) classifier

uses four image-level uncertainty features as an input to determine the segmentation

quality. The four image-level uncertainty features include Dice agreement within deep

ensemble samples (DiceWithinSamples), HD agreement within deep ensemble samples

(HDWithinsamples) as well as mean of sample variance and mean of predictive entropy.

We evaluated the QC methods on cardiac MR segmentation using the Automated Car-

diac Diagnosis Challenge (ACDC) and Extreme Cardiac MRI Analysis Challenge under

Respiratory Motion (CMRxMotion) datasets. The segmentation models were trained on

the ACDC dataset and tested on the ACDC and CMRxMotion datasets to evaluate the

performance of the QC methods on the segmentation results of these two public datasets.

From the results (Table B.1), our method outperformed other state-of-the-art uncertainty-

based QC methods that are based on image, segmentation, and uncertainty maps in

detecting bad quality segmentation results. This enhancement was shown in both ACDC

and CMRxMotion segmentation results by achieving an F1-score of 84.1% and AUC of

89.34% on the ACDC segmentation results (n=40) and an F1-score of 84.6% and AUC of
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92.2% on the CMRxMotion segmentation results (n=139). From the results, we showed

that training a classifier using simple inputs that are derived from uncertainty metrics can

determine segmentation quality better than the ones that directly use the image, segmen-

tation, and uncertainty map.

Table B.1: Comparison of different uncertainty-based QC methods and the proposed
QC method in terms of F1-score and area under the receiver operating characteris-
tic curve (AUC) on ACDC [Bernard et al., 2018] and CMRxMotion cardiac MRI datasets
[Wang et al., 2022]. The best results are in bold.

QC Methods ACDC CMRxMotion
F1-Score (%) AUC (%) F1-Score (%) AUC (%)

Img-Seg-Uncert 80.8 83.8 78.5 85.4

[Devries et al., 2018b, Chen et al., 2020c]

Seg-Uncert 81.3 85.9 80.1 86.4

[Williams et al., 2021]

Proposed method 84.1 89.34 84.6 92.2

This work has been accepted as part of the first edition of the French Colloquium on Ar-

tificial Intelligence in Biomedical Imaging (IABM) 2023. It is an extension of our proposed

QC method, which is described in Chapter 5.

Arega, T.W., Bricq, S., & Mériaudeau, F. (2023). A Simple Uncertainty-based Qual-
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Artificielle en Imagerie Biomédicale (IABM 2023).



Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/


école doctorale sciences pour l ’ingénieur et microtechniques
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Abstract:

Deep learning-based segmentation methods have
shown promise in automating the segmentation of
cardiac MRI images, but they still face challenges in
robustly segmenting small, ambiguous regions with
irregular shapes like myocardial scars. Additionally,
these models struggle with domain shifts and out-
of-distribution (OOD) samples, which makes them
unreliable and limits their usage in clinical practice.
To improve the segmentation of myocardial scars,
a segmentation model is proposed that integrates
uncertainty information into the learning process. By
utilizing Monte-Carlo dropout-based Bayesian neural
networks, uncertainty is estimated and incorporated
into the loss function, resulting in improved
segmentation accuracy and probability calibration.
To enhance the reliability of segmentation models,
an uncertainty-based quality control (QC) framework
is introduced to identify failed segmentations before

further analysis. The QC framework utilizes a
Bayesian Swin transformer-based U-Net for the
segmentation of T1 mapping images and employs
image-level uncertainty features to detect poorly
segmented images. Experimental results on
private and public datasets demonstrate that the
proposed QC method significantly outperforms other
state-of-the-art uncertainty-based QC methods,
particularly in challenging scenarios. Furthermore,
a post-hoc OOD detection method is proposed
to identify and reject outlier images. This
method utilizes the encoder features of the
segmentation model and similarity metrics to
enhance the trustworthiness of segmentation
models. Experimental results demonstrate that
the proposed method outperforms state-of-the-art
feature space-based and uncertainty-based OOD
detection methods across the various OOD datasets.

Titre : Méthodes d’apprentissage profond basées sur l’incertitude pour une segmentation et une analyse
robustes et fiables de l’IRM cardiaque

Mots-clés : Segmentation IRM cardiaque, cicatrice myocardique, IRM LGE, IRM de cartographie T1,
volume extracellulaire, estimation de l’incertitude, contrôle qualité, détection hors distribution (OOD)

Résumé :

Les méthodes de segmentation basées sur
l’apprentissage profond se sont révélées
prometteuses pour automatiser la segmentation des
images IRM cardiaques, mais elles sont toujours
confrontées à des défis pour segmenter de manière
robuste de petites régions ambiguës aux formes
irrégulières comme les cicatrices myocardiques. De
plus, ces modèles sont confrontés aux changements
de domaine et aux échantillons hors distribution
(OOD), ce qui les rend peu fiables et limite leur
utilisation dans la pratique clinique. Pour améliorer
la segmentation des cicatrices myocardiques, un
modèle de segmentation est proposé qui intègre
les informations d’incertitude dans le processus
d’apprentissage. En utilisant des réseaux neuronaux
bayésiens basés sur une méthode Monté Carlo
Drop out, l’incertitude est estimée et incorporée
dans la fonction de perte, ce qui améliore la
précision de la segmentation et l’étalonnage des
probabilités. Pour améliorer la fiabilité des modèles
de segmentation, un cadre de contrôle qualité (CQ)
basé sur l’incertitude est introduit pour identifier les

segmentations ayant échoué avant une analyse
plus approfondie. Le cadre CQ utilise un U-
Net basé sur un Transformer bayésien Swin pour
la segmentation des images cartographiques T1
et utilise des caractéristiques d’incertitude au
niveau de l’image pour détecter les images mal
segmentées. Les résultats expérimentaux sur
des ensembles de données privés et publics
démontrent que la méthode de CQ proposée
surpasse considérablement les autres méthodes
de CQ de l’état de l’art basées sur l’incertitude, en
particulier dans des scénarios difficiles. De plus, une
méthode de détection OOD post-hoc est proposée
pour identifier et rejeter les images aberrantes.
Cette méthode utilise les fonctionnalités d’encodeur
du modèle de segmentation et les métriques de
similarité pour améliorer la fiabilité des modèles
de segmentation. Les résultats expérimentaux
démontrent que la méthode proposée surpasse les
méthodes de détection OOD de l’état de l’art basées
sur l’espace des caractéristiques et l’incertitude
dans les différents ensembles de données OOD.
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