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Abstract

“Everything is theoretically impossible, until it is
done.”

− Robert A. Heinlein −

T his PhD thesis is structured into two principal parts: Part I delves into the existence
of oriented paths in digraphs, aiming to establish a connection between a digraph’s
chromatic number and the existence of specific oriented paths within it as subdigraphs.

More specifically, our objective is to study the existence of an integer k such that any digraph
with a chromatic number k, contains a copy of a given oriented path with three blocks as its
subdigraph. Our journey towards achieving this objective relies significantly on fundamental
concepts, including, induction on the order of a given digraph, final forests, leveling techniques,
and strategic digraph decomposition methods. Part II takes us into the wide realm of S-packing
coloring in graphs. Here, our focus is centered on an intriguing conjecture proposed by Brešar
et al., which pertains to the packing coloring of subdivisions of subcubic graphs. Our desired
aim is to provide a confirmation of this conjecture for a specific class of subcubic graphs, and to
address the unresolved issues raised within this subject matter.
Before proceeding into our research topics of interest, we commence this thesis with Chapter
1, where we present fundamental definitions, standard notations, and preliminary results well-
established in the field of graph theory. These concepts are closely aligned with our research
subjects, and the purpose of this chapter is to provide the reader with a foundational under-
standing of the terminology and principles that will be employed throughout this research report.
As a preliminary exploration in Part I, Chapter 2 provides a brief historical overview of the re-
search conducted by graph theorists concerning the existence of oriented trees and in particular
paths in digraphs. This chapter encompasses numerous influential findings that have served to
inspire not only our own work but also a multitude of mathematicians. These contributions have
stimulated new ideas and approaches while presenting us with intriguing problems to address.
The problem that we delve into in Part I, which is considered a prominent problem in graph
theory, can be reframed as a fundamental question: Does there exist an integer k such that every
member of a specified family H of digraphs can be found as a subgraph in every k-chromatic
digraph? In this context, a ’copy’ of a digraph H in another digraph D is defined by an injective
function c : V (H) → V (D) such that for every (x, y) ∈ E(H), the pair (c(x), c(y)) belongs
to E(D). This concept of copy provides a way to examine the existence of a given digraph
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within a larger one. Digraphs contained in any n-chromatic digraph are called n-universal. It is
important to highlight that the concept of n-universal graphs will be central to the discussions
in Part I of this thesis. Our focus in this part is on studying the universality of oriented paths
which are special cases of oriented trees aiming for an exploration of partial solutions for the
previously posed problem. Specifically, we aim to determine the smallest integer k such that
any k-chromatic digraph contains a copy of a given oriented path of order n. To embark on
this quest, it is essential to start by revisiting a fundamental concept: any path of order n can
be fundamentally regarded as a tree of order n. Consequently, it can be embedded within any
digraph with a chromatic number of at least (n− 1)2, as originally established by Burr [20]. As
exhibited throughout Chapter 2, we consider in the first topic, two main conjectures. Burr’s
conjecture concerning the universality of oriented trees, and El Sahili’s conjecture concerning the
universality of oriented paths. Burr [20] conjectured that an oriented tree of order n is (2n− 2)-
universal. The most well-known general bound for the chromatic number of an oriented tree of
order n, which encompasses oriented paths, was formulated by Addario-Berry et al. [1], resulting
in n2

2 − n
2 + 1. However, for specific oriented paths, more favorable bounds for the chromatic

number have been achieved. The most famous result in this context is the Gallai-Hasse-Roy-
Vitaver theorem [37, 47, 61, 69], which specifically addresses directed paths. It states that every
directed path of order n is n-universal. Another well-explored category of oriented trees is that
of two-block paths, where a block is defined as a maximal directed sub-path. Addario et al. [2]
have demonstrated that any path of order n with precisely two blocks is n-universal. Inspired
by this research on the chromatic number of digraphs containing a directed path or path with
two blocks, El Sahili [26] conjectured that any oriented path of order n is n-universal.
In Chapter 3, we study the existence of the path P (k, 1, l) in digraphs. Using the concept of
final forests, and considering a partition of the digraph into two subdigraphs of equal chromatic
numbers, we were able to prove the existence of the path P (k, 1, l) in any (2n + 2)-chromatic
digraph. Introducing a specific condition to the digraph reduces the complexity of the problem,
making the results more specific and interesting. Fortunately, when dealing with Hamiltonian
digraphs, we have successfully confirmed El Sahili’s conjecture for this particular class of di-
graphs. More clearly, we have established the existence of any path P (k, 1, l) of order n in any
n-chromatic Hamiltonian digraph.
Furthermore, depending on the result we achieved on this specific class of digraphs, we proved
the correctness of El Sahili’s conjecture on a more general class of digraphs which is digraphs
containing a Hamiltonian directed path.
In Chapter 4, we move forward to consider the general case of oriented paths with three blocks.
We introduce a new technique which is represented by a decomposition of the digraph into
subdigraphs defined by a series of successive operations applied to the digraph relying on the
famous theorem of Roy [61] which establishes the existence of a directed path of order n in any
n-chromatic digraph. This technique has proven to be instrumental in establishing a new linear
bound for the chromatic number of digraphs that lack an oriented path with three blocks. By
categorizing the problem into three cases based on the lengths of the three blocks, we established
a linear bound for each case. It is worth noting that the reached bounds are the best achieved,
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so that improving all the previous bounds. Even more intriguing is that this marks the first
occurrence of the bound reaching 3n. Moreover, the new technique has served us to improve
the chromatic number’s bound of digraphs containing any path P (k, 1, l) of order n. In fact, we
improved the bound from 2n+2 into 2n−3. What makes the new achieved bound interesting is
the ability to confirm Burr’s conjecture for this special type of paths which is a particular case
of oriented trees.

Moving on to Part II, we begin with Chapter 5 in which we provide a modest panoramic
view on the problem of S-packing coloring and the approaches that have contributed over the
years to this problem and the conjectures proposed in this topic. The concept of the packing
chromatic number, initially referred to as the "broadcast chromatic number," was pioneered by
Goddard, S.M. Hedetniemi, S.T. Hedetniemi, Harris, and Rall [42]. This concept emerged from
the potential applications it held in addressing broadcast assignment problems. Subsequently,
in all the works that followed the seminal paper, the terms "packing coloring" and "packing
chromatic number" became the used terminology, as originally coined by Brešar, Klavžar, and
Rall [16]. Given the extensive body of literature dedicated to the packing chromatic number,
and its sustained significance, we believe that it is necessary to compile the main results and
elucidate unresolved questions related to our work in this field in the form of a comprehensive
survey in Chapter 5. We shed light on the conjecture proposed by Brešar et al. [18] concerning
the packing coloring of subcubic graphs which states for any subcubic graph G, the packing
chromatic number of its subdivision graph S(G) is bounded from above by 5 . We present some
of the results that establish connections between S-packing colorings of a graph G and those
of its subdivision graph S(G) and the approaches done by graph theorists in their examination
for this conjecture. Notably, all the attempts to confirm the conjecture have been confined to
specific subclasses of subcubic graphs.
In the end, Chapter 6 involves our contribution to the studied conjecture, in which it is affirmed
for a class of subcubic graphs. We deal with cubic Halin graphs. We will mention in Chapter
5 an observation for Gastineau and Togni which states that if a graph G is (1, 1, 2, 2)-packing
colorable, then the chromatic number of its subdivision graph S(G) is at most 5, and hence it
satisfies the conjecture. Depending on this observation, and in order to prove the correctness
of the conjecture for the class we worked on, we studied its S-packing coloring aiming to prove
that it admits a (1, 1, 2, 2)- packing coloring. We proved that a cubic Halin graph is (1, 1, 2, 3)-
packing colorable, which is stronger than (1, 1, 2, 2)-packing coloring, and so we confirm the
conjecture for this class. Moreover, Gastineau and Togni [40], after proving that every subcu-
bic graph is (1, 2, 2, 2, 2, 2, 2)-packing colorbale, have posed an open problem on whether every
subcubic graph is (1, 2, 2, 2, 2, 2)-packing colorable. We answer this question in affirmative in
the particular class we worked on; we proved that cubic Halin graphs are (1, 2, 2, 2, 2, 2)-packing
colorable.

Keywords. Subdivision, oriented cycle, oriented path, three-blocks path, chromatic number,
final out-tree, S-packing coloring, packing chromatic number, subcubic graph, Halin graph.
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Résumé

“Tout est théoriquement impossible jusqu’à ce que
ce soit fait.”

− Robert A. Heinlein −

C ette thèse de doctorat est structurée en deux parties principales : La Partie I se penche
sur l’existence de chemins orientés dans les digraphes, dans le but d’établir un lien entre
le nombre chromatique d’un digraphe et l’existence de chemins orientés spécifiques en

tant que sous-digraphes. Plus précisément, notre objectif est d’étudier l’existence d’un entier
k tel que tout digraphe avec un nombre chromatique de k contient une copie d’un chemin
orienté donné avec trois blocs en tant que sous-digraphe. Notre démarche pour atteindre cet
objectif repose fortement sur des concepts fondamentaux, notamment l’induction sur l’ordre d’un
digraphe donné, les forêts finales, les techniques de nivellement et les méthodes de décomposition
stratégique de digraphes.

La Partie II nous emmène dans le vaste domaine de la coloration par S-packing dans les
graphes. Ici, notre attention est centrée sur une conjecture intrigante proposée par Brešar et al.,
qui concerne la coloration par packing des subdivisions de graphes subcubiques. Notre objectif
est de confirmer cette conjecture pour une classe spécifique de graphes subcubiques, et de traiter
les questions non résolues soulevées dans ce domaine.
Avant de nous plonger dans nos sujets de recherche, nous commençons cette thèse par le Chapitre
1, où nous présentons des définitions fondamentales, des notations standard et des résultats
préliminaires bien établis dans le domaine de la théorie des graphes. Ces concepts sont étroite-
ment liés à nos sujets de recherche, et le but de ce chapitre est de fournir au lecteur une
compréhension fondamentale de la terminologie et des principes qui seront utilisés tout au long
de ce rapport de recherche.
En tant qu’exploration préliminaire dans la Partie I, le Chapitre 2 offre un bref aperçu historique
des recherches menées par les théoriciens des graphes concernant l’existence d’arbres orientés et
en particulier de chemins orientés dans les graphes orientés. Ce chapitre englobe de nombreuses
découvertes influentes qui ont non seulement inspiré notre propre travail, mais aussi de nom-
breux mathématiciens. Ces contributions ont stimulé de nouvelles idées et approches tout en
nous présentant des problèmes intrigants à résoudre.
Le problème que nous abordons dans la Partie I, considéré comme un problème important en
théorie des graphes, peut être reformulé en une question fondamentale : existe-t-il un entier k
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tel que chaque membre d’une famille spécifiée H de graphes orientés puisse être trouvé comme
sous-graphe dans tout graphe orienté k-chromatique ? Dans ce contexte, une ’copie’ d’un graphe
orienté H dans un autre graphe orienté D est définie par une fonction injective c : V (H) → V (D)
telle que pour tout (x, y) ∈ E(H), la paire (c(x), c(y)) appartienne à E(D). Ce concept de copie
offre une manière d’examiner l’existence d’un graphe donné au sein d’un autre plus grand. Les
graphes orientés contenus dans tout graphe n-chromatique sont appelés n-universels. Il est im-
portant de souligner que le concept de graphes n-universels sera central dans les discussions de la
Partie I de cette thèse. Notre objectif dans cette partie est d’étudier l’universalité des chemins
orientés, qui sont des cas particuliers d’arbres orientés, dans le but d’explorer des solutions
partielles au problème précédemment posé. Plus précisément, nous visons à déterminer le plus
petit entier k tel que tout graphe orienté k-chromatique contienne une copie d’un chemin orienté
donné d’ordre n. Pour entreprendre cette quête, il est essentiel de commencer par revisiter un
concept fondamental : tout chemin d’ordre n peut être fondamentalement considéré comme un
arbre d’ordre n. Par conséquent, il peut être incorporé dans tout graphe orienté avec un nombre
chromatique d’au moins (n − 1)2, comme l’a établi Burr [20]. Comme le montre le Chapitre
2, nous considérons dans le premier sujet deux conjectures principales. La conjecture de Burr
concernant l’universalité des arbres orientés, et la conjecture d’El Sahili concernant l’universalité
des chemins orientés. Burr [20] a conjecturé qu’un arbre orienté d’ordre n est (2n−2)-universel.
La borne générale la plus connue pour le nombre chromatique d’un arbre orienté d’ordre n, qui
englobe les chemins orientés, a été formulée par Addario-Berry et al. [1], et vaut n2

2 − n
2 + 1.

Cependant, pour des chemins orientés spécifiques, des bornes plus favorables pour le nombre
chromatique ont été obtenues. Le résultat le plus célèbre dans ce contexte est le théorème de
Gallai-Hasse-Roy-Vitaver [37, 47, 61, 69], qui concerne spécifiquement les chemins dirigés. Il
énonce que tout chemin dirigé d’ordre n est n-universel. Une autre catégorie bien explorée
d’arbres orientés est celle des chemins à deux blocs, où un bloc est défini comme un sous-chemin
dirigé maximal. Addario et al. [2] ont démontré que tout chemin d’ordre n avec précisément
deux blocs est n- universel. Inspirée par ces recherches sur le nombre chromatique des graphes
orientés contenant un chemin dirigé ou un chemin à deux blocs, El Sahili [26] a conjecturé que
tout chemin orienté d’ordre n est n- universel.
Dans le Chapitre 3, nous étudions l’existence du chemin P (k, 1, l) dans les graphes orientés.
En utilisant le concept de forêts finales, et en considérant une partition du graphe orienté en
deux sous-graphes de même nombre chromatique, nous avons pu prouver l’existence du chemin
P (k, 1, l) dans tout graphe orienté (2n + 2)-chromatique. En introduisant une condition spéci-
fique au graphe orienté, nous réduisons la complexité du problème, rendant les résultats plus
intéressants. Heureusement, lorsqu’il s’agit de graphes orientés hamiltoniens, nous avons con-
firmé avec succès la conjecture d’El Sahili pour cette classe particulière de graphes orientés. Plus
précisément, nous avons établi l’existence de tout chemin P (k, 1, l) d’ordre n dans tout graphe
orienté hamiltonien n-chromatique.
De plus, en fonction du résultat que nous avons obtenu sur cette classe spécifique de graphes
orientés, nous avons prouvé la véracité de la conjecture d’El Sahili pour une classe de graphes
orientés plus générale, à savoir les graphes orientés contenant un chemin dirigé hamiltonien.
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Dans le Chapitre 4, nous passons à l’étude du cas général des chemins orientés avec trois blocs.
Nous introduisons une nouvelle technique qui consiste en une décomposition du graphe orienté
en sous-graphes définis par une série d’opérations successives appliquées au graphe orienté, en
se basant sur le célèbre théorème de Roy [61] qui établit l’existence d’un chemin dirigé d’ordre
n dans tout graphe orienté n-chromatique. Cette technique s’est révélée essentielle pour établir
une nouvelle borne linéaire pour le nombre chromatique des graphes orientés qui ne contiennent
pas de chemin orienté avec trois blocs. En catégorisant le problème en trois cas en fonction de
l’ordre des longueurs des trois blocs, nous établissons une borne linéaire pour chaque cas. Il est
à noter que les bornes obtenues sont les meilleures réalisées, surpassant ainsi toutes les bornes
précédentes. Plus intrigant encore, il s’agit de la première occurrence de la borne atteignant
3n. De plus, la nouvelle technique nous a permis d’améliorer la borne du nombre chromatique
des graphes orientés contenant un chemin P (k, 1, l) quelconque d’ordre n. En effet, nous avons
amélioré la borne de 2n+ 2 à 2n− 3. Ce qui rend intéressante cette nouvelle borne c’est qu’elle
permet de confirmer la conjecture de Burr pour ce type de chemins, qui est un cas particulier
des arbres orientés.

En passant à la Partie II, nous commençons par le Chapitre 5 dans lequel nous présentons
une vue d’ensemble modeste du problème de la coloration S-packing et des approches qui ont
contribué au fil des ans à ce problème ainsi qu’aux conjectures proposées dans ce domaine.
Le concept du nombre chromatique de packing, initialement appelé "nombre chromatique de
diffusion", a été introduit par Goddard, S.M. Hedetniemi, S.T. Hedetniemi, Harris et Rall [42].
Ce concept est né des applications potentielles qu’il pouvait avoir pour résoudre des problèmes
d’attribution de diffusion. Par la suite, dans tous les travaux qui ont suivi l’article fondateur, les
termes "coloration de packing" et "nombre chromatique de packing" sont devenus la terminologie
utilisée, telle qu’initialement formulée par Brešar, Klavžar et Rall [16]. Compte tenu de l’ampleur
de la littérature consacrée au nombre chromatique de packing et de son importance constante,
nous estimons nécessaire de compiler les principaux résultats et d’élucider les questions non
résolues liées à notre travail dans ce domaine sous la forme d’une enquête complète au Chapitre
5. Nous mettons en lumière la conjecture proposée par Brešar et al. [18] concernant la coloration
de packing des graphes subcubiques, qui affirme que pour tout graphe subcubique G, le nombre
chromatique de packing de son graphe de subdivision S(G) est au plus 5. Nous présentons
certains des résultats qui établissent des liens entre les colorations S-packing d’un graphe G et
celles de son graphe de subdivision S(G), ainsi que les approches menées par les théoriciens des
graphes dans leur examen de cette conjecture. Notamment, toutes les tentatives pour confirmer
la conjecture ont été limitées à des sous-classes spécifiques de graphes subcubiques. En fin de
compte, le Chapitre 6 concerne notre contribution à la conjecture étudiée, par la confirmation
de celle-ci affirmée pour une classe de graphes subcubiques. Nous traitons des graphes de Halin
cubiques. Nous mentionnerons au Chapitre 5 une observation de Gastineau et Togni qui énonce
que si un graphe G possède une (1, 1, 2, 2)-coloration de packing, alors le nombre chromatique
de son graphe de subdivision S(G) est au plus égal à 5, et donc elle satisfait la conjecture.
En fonction de cette observation, et afin de prouver la véracité de la conjecture pour la classe
sur laquelle nous avons travaillé, nous avons étudié sa S-coloration visant à prouver qu’elle
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admet une coloration en (1, 1, 2, 2)-coloration de packing. Nous avons prouvé qu’un graphe de
Halin cubique admet une (1, 1, 2, 3)-coloration de packing, ce qui est plus fort que la (1, 1, 2, 2)-
coloration, et nous confirmons ainsi la conjecture pour cette classe. De plus, Gastineau et
Togni [40], après avoir prouvé que tout graphe subcubique est (1, 2, 2, 2, 2, 2, 2)-colorable, ont
posé une question ouverte sur le fait de savoir si tout graphe subcubique est (1, 2, 2, 2, 2, 2)-
colorable. Nous répondons à cette question de manière affirmative pour la classe particulière sur
laquelle nous avons travaillé ; nous avons prouvé que les graphes de Halin cubiques possèdent
une (1, 2, 2, 2, 2, 2)-coloration de packing.
Mots-clés. Subdivision, cycle orienté, chemin orienté, chemin à trois blocs, nombre chroma-
tique, arbre final, S-coloration de packing, nombre chromatique de packing, graphe subcubique,
graphe de Halin.
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1

Graph theory basics

“The cosmos is within us. We are made of
star-stuff. We are a way for the universe to

know itself.”
− Carl Sagan −

T he fundamental principles of graph theory possess remarkable simplicity and have
widespread applications in various disciplines. The primary aim of this introductory
chapter is to acquaint the reader with the terminology and notation that will be em-

ployed throughout this thesis. To facilitate the reader’s understanding and reinforce comprehen-
sion, we provide proofs of several well-known results that predominantly pertain to our specific
area of research. By doing so, we aim to guide the reader on the path of exploration within our
field of study.

1.1 Graphs

In the world of discrete mathematics, particularly in graph theory, a graph is a mathematical
construct which is a collection of points that are called vertices, and lines called edges that
establish connections between certain pairs of these vertices. The presence of an edge between
two vertices indicates some form of relationship or association between them. For instance, in
the context of representing countries on a map, the existence of a commercial exchange between
two countries can be depicted by an edge connecting them. The mentioned example is just one
of many scenarios which graph theory provides mathematical model for. For instance, electrical
circuits are effectively described using graphs, as demonstrated by the pioneering work of the
German physicist Gustav Kirchoff. Notably, the specific manner in which the points are linked
does not hold significance in graphs.

1.1.1 Definitions and Fundamental Properties

A graph G is represented as an ordered pair of disjoint sets (V,E), where E is a subset of
the set [V ]2 := {{x, y};x, y ∈ V and x ̸= y}, which represents the set of unordered distinct pairs
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1.1.2 Vertex degree

of vertices of V . The elements of V are referred to as vertices of G, and the elements of E are
known as the edges of G. For clarity, we use V (G) and E(G) instead of V and E to indicate
that V and E serve as the vertex-set and edge-set of G, respectively.

Throughout this thesis, we deal only with finite graphs, ensuring that V (G) and E(G) are
always finite. It is important to note that V (G) is commonly assumed to be non-empty, but
E(G) is allowed to be empty.

The order of a graph G, denoted by v(G), refers to the cardinality of V (G), while the size
of G, denoted by e(G), denotes the number of its edges.

G:

Figure 1.1: An example of a graph G with 8 vertices and 7 edges.

For an edge e = x, y connecting two vertices x and y in a graph G, we refer to e as being incident
with x (or y), and vice versa, stating that x is incident with e. In this situation, x and y are
denoted as the endvertices of e, and we say that they are adjacent vertices in G. To simplify
notation, it is common to represent an edge {x, y} as xy.

Two edges e and e′ of G are considered adjacent if they share a common endvertex. If they
do not share an endvertex, they are called independent edges

1.1.2 Vertex degree

Given a graph G, the neighborhood of a vertex x in G, denoted by NG(x), is defined as the set
of vertices adjacent to x in G. The set formed by combining a vertex x with its neighborhood
is referred to as the closed neighborhood of x in G, denoted by NG[x]. Symbolically, NG(x) =
{y ∈ V (G) | xy ∈ E(G)}, and NG[x] = NG(x) ∪ {x}. The degree of a vertex x in G, denoted by
dG(x), is the number of vertices in its neighborhood NG(x). When the context makes the graph
clear, we may omit the subscript and refer to NG(x) as N(x) and to dG(x) as d(x).

A vertex v of a graph G is said to be a whole vertex if dG(v) = v(G) − 1, that is, if v is adjacent
to all other vertices of G. Otherwise, we say that v is a non-whole vertex of G.

The maximum degree of vertices in a graph G is denoted by ∆(G) and the minimum degree by
δ(G). In other words, ∆(G) = max {dG(x); x ∈ V (G)} and δ(G) = min {dG(x); x ∈ V (G)}. If
δ(G) = ∆(G) = k, meaning that every vertex of G has a degree equal to k, then G is classified
as a k-regular graph.

In this context, it is essential to to mention a famous theorem of Euler [35] which establishes a
fundamental identity relating the sum of the degrees of vertices in a graph and the number of
its edges:
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1. Graph theory basics

Theorem 1.1. (Euler, 1736) For any graph G,∑
x∈V (G)

d(x) = 2e(G). (1.1)

Consequently, as a prompt corollary, Equality 1.1 asserts that the sum of degrees of vertices is
even. Equivalently, the count of vertices of odd degree is an even number.

1.1.3 Subgraphs

A subgraph H of graph G is a graph such that its vertex-set is a subset of the vertex-set of G,
and its edge-set is a subset of the edge-set of G , that is, V (H) ⊆ V (G) and E(H) ⊆ E(G). If H
includes all the edges of G that have both endpoints in V (H), then H is said to be an induced
subgraph of G, or equivalently, H is the subgraph of G induced by V (H). In this case, we
represent H as G[V (H)]. Thus, an induced subgraph keeps both adjacency and non-adjacency
of the inducing vertices, unlike to an ordinary subgraph that preserves only non-adjacency.
When V (H) = V (G), we say that H is a spanning subgraph of G.

Concerning two graphs G and H, if G does not contain a subgraph that is a copy of H, we define
G as an H-free graph. In this situation, we classify H as a forbidden subgraph in G. We shall
see in the first part of this thesis the substantial role that forbidden subgraphs play in giving
information about the graph.

New graphs can be constructed from old ones by removing or adding some vertices or edges.
Let G be a graph, U a subset of V (G) and W a subset of E(G). Then G − U represents the
subgraph of G induced by V (G)\U , meaning that it is the subgraph of G obtained by removing
the vertices in U and all edges incident with them. Similarly, G−W corresponds to the spanning
subgraph of G whose edge-set is E(G) \ W . When U = {u} and W = {xy}, this notation is
usually simplified to G − u and G − xy. Identically, if W ⊆ [V (G)]2, then G + W is the graph
constructed by adding all the elements of W \ E(G).

A matching M of a graph G is a subgraph of G whose edges are pairwisely independent, that
is, no two edges of M share a common vertex. We say that M is a perfect matching of G
if V (M) = V (G), in other words, if every vertex of G is incident to exactly one edge of the
matching M .

As previously mentioned, the subgraph of graph G induced by a subset U of its vertex-set is
denoted as G[U ]. When the edge-set of G[U ] is empty, we classify U as a stable set in G. The
stability of graph G, denoted by α(G), corresponds to the cardinality of a maximum stable set.
On the other hand, a subset U of vertices in graph G is called a clique if every two distinct
vertices of U are adjacent.

Given two subgraphs G1 and G2 of a graph G, we denote by G1 ∪ G2 the subgraph of G with
the vertex-set being V (G1) ∪ V (G2) and edge-set being E(G1) ∪ E(G2).
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1.1.4 Types of graphs

1.1.4 Types of graphs

2 Complete graphs. A complete graph is a graph in which every pair of its vertices is joined
by an edge. In other words, for a complete graph G, its edge-set is defined as E(G) = {xy;x, y ∈
V (G) and x ̸= y}. Conventionally, the complete graph of order n is represented as Kn.

K5

Figure 1.2: A complete graph with 5 vertices.

2 Paths. A path P is a graph with a vertex-set defined as V (P ) = {x1, x2, ..., xn} and an edge-
set defined as E(P ) = {xixi+1|1 ≤ i ≤ n − 1}. This means that the edges of the path connect
consecutive vertices in the given order. For simplicity, we represent the path as P = x1, x2, ..., xn.
In this case, the vertices x1 and xn are called the endvertices of P , and P is described as an
x1xn-path. The length of a path P , denoted by l(P ), corresponds to the number of its edges.
A subpath P ′ of a path P is a subgraph of P which forms itself a path. Assuming that xi and
xj are the endvertices of the subpath P ′ for some 1 ≤ i < j ≤ n, we write P ′ = P [xi, xj ].
Throughout this thesis, we denote by P [xi, xj [ the subpath P [xi, xj ] − xj , P ]xi, xj ] the subpath
P [xi, xj ] − xi, and P ]xi, xj [ the subpath P [xi, xj ] − {xi, xj}.
Given a graph G, a path P in G is said to be a Hamiltonian path of G if V (P ) = V (G). The
distance between two vertices x and y in G, denoted by dG(x, y), is defined to be the minimal
length of an xy-path, or +∞ if such path does not exist. An xy-path P for which dG(x, y) = l(P )
is referred to as an xy-geodesic. The diameter of a graph G, denoted by d(G), represents the
maximum distance between two vertices in G.

2 Cycles. A cycle C is a graph with a vertex-set defined by V (C) = {x1, x2, ..., xn}, and an
edge-set defined by E(C) = {xixi+1|1 ≤ i ≤ n − 1} ∪ {xnx1}. For simplicity, we represent the
cycle as C = x1, x2, ..., xn, x1. The length of a cycle C, denoted by l(C), is defined to be the
number of its edges, that is, l(C) = e(C). If l(C) is even, then C is said to be an even cycle.
Otherwise, it is called an odd cycle. A subpath P of a cycle C is a path which is a subgraph of
C. If P = xi, xi+1, ..., xj , then we write P = C[xi, xj ].
Given a graph G, a cycle C in G is said to be a Hamiltonian cycle of G if it passes through all the
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1. Graph theory basics

vertices of G, that is, V (C) = V (G). In this case, G is said to be a Hamiltonian graph. By simply
deleting any edge of a Hamiltonian cycle we get a Hamiltonian path. However, it’s important to
note that a non-Hamiltonian graph can still possess a Hamiltonian path, i.e., Hamiltonian paths
cannot always be used to form Hamiltonian cycles. For example, as shown in Figure 1.3, G1 has
no Hamiltonian path (and so no Hamiltonian cycle), G2 has a Hamiltonian path P = x1x2x3x4
but lacks a Hamiltonian cycle, whereas G3 has the Hamiltonian cycle C = x1x2x4x3x1.

x1 x2

x3 x4

G1:

x1 x2

x3 x4

G2:

x1 x2

x3 x4

G3:

Figure 1.3: G1 has no Hamiltonian path, G2 has a Hamiltonian path but no Hamiltonian cycle,
whereas G3 has a Hamiltonian cycle.

If G contains no cycles, then it is called an acyclic graph. The girth of G, denoted by g(G),
is the length of a shortest cycle in G if there is one; otherwise it is defined to be zero.

2 Bipartite graphs. A bipartite graph refers to a graph G whose vertex-set, V (G), can be
partitioned into two disjoint sets A and B such that each edge in E(G) joins a vertex in A to a
vertex from B, i.e., A and B are two stable sets in G such that V (G) = A ∪B.

x1 x4

x2 x3

x5 x6

x1

x5

x3 x6

x2 x4

G:

A

B

Figure 1.4: An example of a bipartite graph on 6 vertices.

2 Empty graphs. An empty graph is a graph with an empty edge-set, meaning that any empty
graph G of arbitrary order satisfies e(G) = 0.

1.1.5 Petersen graph

In the realm of mathematical graph theory, the Petersen graph stands out as an undirected
graph comprising 10 vertices and 15 edges. This small graph serves a dual purpose, serving as
both an example and a counterexample in various graph theory problems. The name "Petersen
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1.1.6 Graph generalization

Figure 1.5: Petersen graph

graph" refers to Julius Petersen, who, in 1898, constructed it to represent the smallest bridgeless
cubic graph incapable of being three-edge-colored.

1.1.6 Graph generalization

A hypergraph is a generalization of a graph that allows an edge to join any number of vertices.
Formally, a hypergraph H is a pair (X,E) where X is a set of elements referred to as vertices, and
E is a set of non-empty subsets of X called hyperedges. It is often desirable to study k-uniform
hypergraphs which are hypergraphs in which each hyperedge connects precisely k vertices.

H:

Figure 1.6: An example of a 3-uniform hypergraph on 8 vertices.

For instance, a graph is considered as a 2-uniform hypergraph.

1.2 Digraphs

Digraphs are mathematical structures consisting of vertices and edges joining them, in which,
unlike graphs, we are interested in the orientations of edges. Returning to the example presented
in the introduction of §1.1, consider any two countries represented by points A and B. In this
context, a line is directed from A towards B if and only if A exports goods and services to B.

1.2.1 Definitions and basic properties

A digraph D is defined as an ordered pair D = (V (D), E(D)) where V (D) is a non-empty set
of elements called the vertices of D, and E(D) is a subset of the set of ordered pairs of V (D),
that is E(D) ⊆ {(x, y);x, y ∈ V (D) and x ̸= y}. The elements of E(D) are said to be the arcs
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1. Graph theory basics

of D. Given an arc a = (x, y) of a digraph D, the direction of a is from x to y, x is called the
tail of a and y is its head. Two arcs a and a′ are said to be bidirected arcs if the tail of a is the
head of a′ and vice versa.

Figure 1.7: Two bidirected arcs.

In this thesis, all digraphs under consideration are assumed to be without bidirected arcs, unless
explicitly stated otherwise.

The underlying graph of a digraph D, denoted by G[D], is the graph obtained from D by ignor-
ing the orientations of its arcs.

G(D):D:

Figure 1.8: An example showing a digraph D and its underlying graph G[D].

The concepts introduced for graphs may be extended to digraph by considering their under-
lying graphs. To avoid unnecessary repetition, all the notions defined for graphs in Subsection
1.1.1 and Subsection 1.1.3 are similarly defined to digraphs.

1.2.2 In-degree and out-degree of a vertex

Consider a digraph D and let e = (x, y) be an arc of D. We say that x is an in-neighbor of y, and
y is an out-neighbor of x. The (first) out-neighborhood of x in D, denoted by N+

D (x), is defined
to be the set of all out-neighbors of x in D. The (first) in-neighborhood of x in D, denoted by
N−

D (x), is defined to be the set of all in-neighbors of x in D. The out-degree of x in D, denoted
by d+

D(x), is the cardinality of N+
D (x). Similarly, the in-degree of x in D, denoted by d−

D(x), is
the cardinality of N−

D (x). A vertex x is said to be a sink if d+
D(x) = 0. If d−

D(x) = 0, then x is
said to be a source. Comparing a digraph with its underlying graph, it becomes evident that
NG[D](x) = N+

D (x) ∪N−
D (x) and dG[D](x) = d+

D(x) + d−
D(x).

In accordance with the last observation, Identity 1.1 which establishes a relation between the
number of edges of a graph and the degrees of its vertices, may be generalized to digraphs in
the following manner:
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1.2.3 Types of digraphs

Proposition 1.1. For any digraph D,∑
x∈V (D)

d+(x) = e(D) =
∑

x∈V (D)
d−(x). (1.2)

For a digraph D, we define the maximum out-degree ∆+(D), the minimum out-degree δ+(D),
the maximum in-degree ∆−(D) and the minimum in-degree δ−(D) as follows:

∆+(D) = max {d+
D(x); x ∈ V (D)};

δ+(D) = min {d+
D(x); x ∈ V (D)};

∆−(D) = max {d−
D(x); x ∈ V (D)};

δ−(D) = min {d−
D(x); x ∈ V (D)}.

On particularizing the out-neighborhoods of x, the second out-neighborhood of x in D is defined
by N++

D (x) = {z ∈ N+
D (y) \ N+

D (x); y ∈ N+
D (x)}. In other words, N++

D (x) is the set of vertices
that are at distance 2 from x. The second out-degree of x in D, denoted by d++

D (x), is the
number of elements in N++

D (x). Note that we may omit the subscript if there is no confusion in
the context.

1.2.3 Types of digraphs

2 Tournaments. A tournament is a digraph whose underlying graph is a complete graph. A
tournament of order n is usually denoted by Tn.

T5:

Figure 1.9: A tournament on 5 vertices.

2 Oriented paths. An oriented path is a digraph whose underling graph is a path. A directed
path, or simply a dipath, is an oriented path in which all the arcs have the same direction.
More formally, an oriented path P having its vertex-set V (P ) = {x1, x2, ..., xn} and its edge-set
E(P ) = {(xi, xi+1); 1 ≤ i ≤ n − 1} is called a directed path, or simply a dipath. In this case,
it is represented by P = x1, x2, ..., xn. We say that P is an x1xn-directed path, where x1 is its
initial vertex (origin) and xn is its terminal vertex (terminus). The length of an oriented path
P is denoted by l(P ) and it is the number of its arcs. In what follows, P+

k denotes a directed
path P of length k.
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1. Graph theory basics

Let P = x1, x2, ..., xn be an oriented path. We denote by P [xi, xj ] the oriented subpath
xi, xi+1, ..., xj . We say that an arc a of P is forward if a = (xi, xi+1), otherwise a is said
to be backward. A block of P is a maximal directed subpath of P . A block is said to be for-
ward (resp. backward) if it consists only of forward (resp. backward) arcs. If P has l blocks of
consecutive lengths k1, k2, ..., kl, then we write P = P+(k1, k2, ..., kl) if the block of length k1 is
forward, otherwise it is written P = P−(k1, k2, ..., kl). In both cases, we say that P is an l-blocks
path.

P+(2, 1, 1) P−(2, 1, 1)

Figure 1.10: This figure shows the difference between P+(2, 1, 1) and P−(2, 1, 1).

A oriented path P of a digraph D is said to be Hamiltonian if its underlying graph is a Hamil-
tonian path. The distance between two vertices x and y in a digraph D, denoted by dD(x, y), is
the minimal length of an xy-directed path, or +∞ if such a directed path does not exist.

2 Oriented Cycles. The notions and notations used for oriented cycles will be identical to
those of oriented paths. An oriented cycle is a digraph whose underlying graph is a cycle. A
directed cycle, or simply a circuit, is an oriented cycle in which all its arcs have the same ori-
entation. This means that the vertex-set and the edge-set of a directed cycle C are defined by
V (C) = {x1, x2, ..., xn} and E(C) = {(xi, xi+1); 1 ≤ i ≤ n − 1} ∪ {(xn, x1)} respectively. The
length of an oriented cycle C, denoted by l(C), is the number of its arcs.
Given an oriented cycle C = x1x2, . . . , xnx1, we denote by C[xi, xj ], the oriented subpath of C
induced by the subset {xi, xi+1, . . . , xj} of V (C) . A block of C is a maximal directed subpath
of C. If C has l blocks of consecutive lengths k1, k2, ..., kl, then we say that C is an l-blocks cycle
and we write C = C(k1, k2, ..., kl). According to the definition of a block, it is straightforward
to see that l must be an even integer. If all the blocks of a cycle C are of length 1, then C is
called an antidirected cycle.

C+(2, 1, 1, 2) C−(2, 1, 1, 2)

Figure 1.11: This figure shows the difference between C+(2, 1, 1, 2) and C−(2, 1, 1, 2).

Given a digraph D, a cycle C of D is said to be a Hamiltonian cycle in D if C passes through
all the vertices of D, that is V (C) = V (D). In this case, we say that D is a Hamiltonian digraph.
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1.3 Graph and digraph operations

Figure 1.12: An anti-directed cycle on 4 vertices.

In our work, we are interested in studying Hamiltonian digraphs, this will be elaborated in
Chapter3. If D does not contain any directed cycle, then D is said to be acyclic.

1.3 Graph and digraph operations

Graph operations generate new graphs from original ones. These operations can be catego-
rized into two main groups: unary operations and binary operations. Note that all the operations
defined below on graphs can be extended to digraphs. However, in case an operation is exclusive
to digraphs only, this will be mentioned explicitly in its definition.

1.3.1 Unary operations

Unary operations produce a new graph from a single initial one. Some of these operations, like
addition or deletion of a vertex or an edge, are done by a simple local change. These operations
are referred to as elementary operations or editing operations. Many others that require more
complex changes are called advanced operations. The operations that are essential for the coming
chapters will be explicitly described in complete details below.

2 Vertex Contraction. The contraction of a subset S of the vertex-set of a graph G produces
a graph G′ in which the vertices of S are replaced with a single vertex vS , such that vS is
adjacent in G′ to the union of the neighborhoods of the elements of S in G. More formally,
given a graph G = (V,E) and a subset S of V , the contraction of S into a new vertex vS results
in a new graph G′ = (V ′, E′) whose vertex-set is V ′ = (V \ S) ∪ {vS}, and whose edge set E′ is
defined as follows: Let x be a vertex in V \ S and y be a vertex in V ′. If y = vS , then xvS ∈ E′

if and only if there exists a vertex z in S such that xz ∈ E. Else if y ∈ V ′ \ {vS}, then xy ∈ E′ if
and only if xy ∈ E. To avoid multiple edges, if two vertices of S have a common neighborhood
x in V \ S, then the edge vSx is added just one time to G′.

2 Complement graph. The complement of a graph G is a graph H obtained from G which is
constructed by adding to G all the missing edges required to form a complete graph, and then
removing all the edges that were previously there. In formal terms, the complement of a graph
G, denoted by Ḡ, is a graph with vertex-set V (G), such that two distinct vertices are adjacent
in Ḡ if and only if they are not adjacent in G, that means, the edge-set of Ḡ is defined by the set
E(Kv(G)) − E(G). For example, a stable set in a graph G is a clique in the complement graph
of G and vice versa.

2 Digraph subdivision. A subdivision of a digraph H is a digraph H ′ obtained from H by
replacing each arc (x, y) by an xy-directed path of length at least 1. For example, it can be

24



1. Graph theory basics

observed that any directed cycle of length at least k is a subdivision of C+
k . A digraph D is said

to be H-subdivision-free if it does not contain any subdivision of H.

2 Reverse digraph. The reverse of a digraph D is a digraph Dc on the same vertex-set of
D with all the arcs are of reversed orientations compared to the corresponding arcs in D. In
formal terms, if (x, y) is an arc of D then the reverse digraph Dc of D contains the arc (y, x)
and vice versa. For giving a notation for reverse digraphs, there is no general agreement on a
preferred one.

1.3.2 Binary operations

Binary operations are tools used to produce a new graph from two initial graphs. One of the
most used binary operations throughout this thesis is the graph union. Conventionally, the
union of two graphs G1 and G2 is denoted by G1 ∪ G2, and it is the graph whose vertex-set is
V (G1) ∪ V (G2) and whose edge-set is E(G1) ∪E(G2). Note that it is not necessarily for V (G1)
and V (G2) to be disjoint.

1.4 Connectivity

A graph G is said to be connected if any two vertices in G are joined by a path. Otherwise,
G is said to be disconnected. A connected component of G refers to an inclusion-wise maximal
connected subgraph of G. A cut-vertex of G is a vertex whose removal increases the number of
components of G. More generally, a cut-set U of a connected graph G is defined as a subset of
its vertex-set such that G− U is disconnected.

The above notions can be extended to digraphs by applying them to their underlying graphs.
A digraph D is said to be strongly connected, or simply strong, if there exists an xy-directed
path for every pair {x, y} of distinct vertices of D. A strong component of D refers to a strong
induced subdigraph of D which is maximal with respect to inclusion.

1.5 Oriented and unoriented forests

Forests can be considered the simplest class of graphs. Despite their simplicity, they hold
significant importance and play a fundamental role in many fields due to their rich structural
properties. In Part I, we heavily rely on the trees properties as a key tool to construct some of
our proofs and achieve our desired results.

1.5.1 Forests and trees

A forest is an acyclic graph. A tree is a connected forest. The relation of a tree to a forest
sounds less absurd if we note that a forest is a disjoint union of trees, in other words, a forest is
a graph whose every connected component is a tree.
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1.5.2 Oriented forests and trees

One illustrious feature of forests is that every graph contains a forest as a spanning subgraph.
This significant property is an easy consequence of the following observation on trees:

Proposition 1.2. Every connected graph G contains a spanning tree T .

Proof. The proof follows directly by taking a tree T of maximal order in G and supposing that
T does not span G. ■

Furthermore, it can be straightforwardly remarked that any tree T contains at least ∆(T )
vertices of degree 1. Such vertices are called the leaves of T . Another prominent attribute of
trees is that any two vertices of a tree are joined by a uniquely determined path.

A rooted tree is a tree in which one vertex is distinguished and designated to be its starting
point. This vertex is called a root. The latter qualification assigned to a vertex of a tree T is
of great importance, because it induces a partial ordering (V (T ),⩽T ) on the vertices of a tree
associated with its root r, called the tree-order, defined by: x ⩽T y if and only if the unique
ry-path in T passes through x. A rooted spanning tree of a graph G is said to be normal, if
the endvertices of every edge of G are comparable in this tree-order. Normal spanning trees of
finite graphs are more commonly known as depth-first search trees, and they are widely used as a
structural tool in both algorithmic and pure graph theory. It is well-known that every connected
graph contains such a tree:

Proposition 1.3. Every connected graph has a normal spanning tree with any preassigned root.

1.5.2 Oriented forests and trees

An oriented tree is an orientation of a tree. An out-tree, also called an out-branching, is
an oriented tree in which all the vertices have in-degree at most 1. An in-tree, called an in-
branching, is an oriented tree in which all the vertices have out-degree at most 1. This implies
that in an out-tree (respectively, in-tree) there exists exactly one vertex of indegree (respectively,
outdegree) zero, and it is called the root. The root of an out-branching is called a source, and
that of an in-branching is said to be a sink. The leaves of an out-branching (resp. in-branching)
are the vertices of out-degree (resp. in-degree) zero. In the language of digraphs, an oriented
forest is a digraph whose all connected components are oriented trees.
According to the previous terminology, an outforest (respectively, inforest) is an oriented forest
in which its connected components are out-trees (respectively, in-trees).

It is worth mentioning that the class of digraphs having a spanning out-tree is more vast than
that of strongly connected digraphs:

Proposition 1.4. Every strongly connected digraph D contains a spanning out-tree T .

Proof. Consider an out-tree T in D of maximum order. Assume that T is not spanning, then
D − T is non-empty. Combining the last observation with the fact that D is strong induces
the existence of an arc a in D whose tail is a vertex in T and whose head is in D − T . Then
T + a is an out-tree in D of order strictly greater than that of T , which is a contradiction to the
maximality of T in D. Hence, T is a spanning out-branching of D. ■
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As a generalization of the structural property presented in Proposition 1.4 on strong digraphs,
we get the following on general digraphs:

Proposition 1.5. Every digraph contains a spanning out-forest.

Proof. The result is established simply by considering the strong components of the digraph and
applying Proposition 1.4 to each of them. ■

Let F be a spanning out-forest of a digraph D, having F1, F2, ..., Fk its out-branchings, rooted
at r1, r2, ..., rk respectively.
The unique directed path in F joining x with the root of the out-branching it belongs to, is
denoted by PF (x).
The level of a vertex x in D with respect to F , denoted by lF (x), is the order of the path PF (x).
For i ≥ 1, Li(F ) is defined to be the set containing all the vertices x ∈ V (F ) such that lF (x) = i.
We say that an arc (x, y) ∈ E(D) is a forward arc with respect to an outforest (respectively,
inforest) F of D if lF (x) < lF (y) (respectively, lF (x) > lF (y)), otherwise we call it a backward
arc.
A spanning outforest (respectively, spanning inforest) F of a digraph D is said to be final out-
forest (respectively, final inforest) of D if and only if for every backward arc (x, y) with respect
to F , F contains a yx (respectively, xy)-directed path.
It is clearly noticed that in a final outforest (respectively, inforest) F , Li(F ) is stable for every
i.

A spanning out-forest of a digraph D is called a maximal forest if ∑
x∈V (D)

lF (x) is maximal.

For short, l(F ) is commonly used to refer to ∑
x∈V (D)

lF (x).

The notion of a maximal forest was first introduced in 2007 by El Sahili and Kouider [24]. They
proved that a maximal forest of a digraph D is a final forest in it. Furthermore, they pointed
the existence of a maximal out-forest in each digraph:

Proposition 1.6. Every digraph D contains a maximal out-forest F .

Proof. Let F be a spanning out-forest of D. The existence of F is guaranteed due to Proposition
1.5. Assume that F is chosen so that l(F ) is maximal. Initially, set F0 = F . If F0 is maximal,
there is nothing to do. Otherwise there is an arc (x, y) of D which is backward with respect to
F0, such that F0 contains no yx-directed path. Let F1 be the out-forest obtained from F0 by
adding (x, y) to F0, and deleting the arc of head y in F0. We can easily see that the level of each
vertex in F1 is at least its level in F0, and that the level of y strictly increases. Consequently,
F1 is a spanning out-forest of D with l(F1) is strictly greater than l(F0), a contradiction. This
yields the hoped result. ■
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1.6 Median order

Given an enumeration L = x1x2...xn of the vertices of a digraph D, an arc (xi, xj) ∈ E(D)
is said to be forward with respect to L if i < j. Otherwise, it is called backward with respect
to L. The enumeration L is called a median order of D when the set of forward arcs of D with
respect to L is maximum. Let f(L) denotes the number of forward arcs of D with respect to L.
The concept of a median order can be restated as follows: L is a median order of D if f(L) is
maximum. The last vertex in a median order is said to be the feed vertex. In fact, the use of
median orders is a powerful tool as demonstrated in many studies built upon this concept, such
as Sumner’s conjecture.

1.7 Coloring

The concept of graph coloring originates from coloring the countries of a map, where it has
been postulated that four colors are sufficient to color any map in a way that regions sharing
a common border must receive distinct colors. Subsequently, the problem of coloring a graph
arises in many theoretical challenges and finds application in various practical scenarios such as
scheduling, exam timetabling and solving Sudoku puzzles. Nowadays, graph coloring remains
a highly active field of research that catches the curiosity and interest of a great number of
adventurous graph theorists. As we shall see throughout this thesis, the focus in Part I of our
work is to discover the relation between the existence of a given oriented path in a digraph as
its subdigraph with a measure of digraph coloring. In what follows, we shortly refer to the set
{1, 2, ..., k} by [k], for every positive integer k.

1.7.1 Graph coloring

A k-coloring of a graph G can be defined as a mapping c : V (G) −→ {1, 2, ..., k} that assigns to
each vertex x of G a color i from the set [k]. Usually, we write c(x) to refer to the color assigned
to the vertex x. The color class i of G with respect to c is defined by the set Ci = {x ∈ V (G);
c(x) = i}. By the definition of Ci, a k-coloring of G can be redefined as a partition of the
vertex-set into k color classes. A coloring c is said to be a proper coloring of G if any two
adjacent vertices of G are differently colored by c, that means, if the endvertices of each edge
in G belong to two distinct color classes of G with respect to c. The latter definition implies
that a k-coloring of G is considered proper if and only if the vertex-set of G can be partitioned
into k stable sets induced by the k color classes of G with respect to c. A graph G is said to be
k-colorable if it admits a proper k-coloring.

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors needed
to color G by a proper coloring. It can also be seen as the minimum number of sets required
to form a partition of V (G) into stable subsets. This implies that in case G is k-colorable, it
follows that χ(G) ≤ k. If χ(G) = k, then we say that G is a k-chromatic graph.
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The next proposition shows a basic inequality that relates the chromatic number of a graph and
its maximum degree:

Proposition 1.7. For every graph G,

χ(G) ≤ ∆(G) + 1. (1.3)

Proof. Suppose that χ(G) = k. Given that c is a proper k-coloring of G, assume that V (G) is
partitioned into χ(G) stable subsets {C1, . . . Ck}, where Ci is the color class i of G with respect
to c. Assume that for every v ∈ C1, d(v) < k− 1. Then, for every v ∈ C1, there exists 2 ≤ i ≤ k

such that Ci ∪ {v} is a stable set. This implies that V (G) may be decomposed into k− 1 stable
subsets, which is a contradiction with the minimality of the chromatic number k. Thus there is
a vertex v ∈ C1 such that d(v) ≥ k − 1 and therefore ∆(G) ≥ k − 1, which proves the required
inequality. ■

A sharper upper bound was given by Brooks [19] in 1941 for connected graphs, and it is a very
useful theorem:

Theorem 1.2. If G is a connected graph of maximum degree n, then it holds that

χ(G) ≤ ∆(G); (1.4)

unless G is the complete graph on n+ 1 vertices or an odd cycle.

A graph G is said to be a critical graph if the deletion of any vertex decreases its chromatic
number. Obviously, such a decrease cannot exceed 1. More specifically, a graph G is said to be
k-critical if χ(G) = k and χ(G − v) = k − 1 for every vertex v of G. Proceeding by induction
on the number of vertices of a k-chromatic graph G, it becomes easy to see that G contains a
k-critical subgraph G′. Note that there’s a possibility that G′ = G. This observation highlights
the fact that critical graphs are the minimal members in terms of the chromatic number, which
is a very important measure in the world of graph theory.

The following proposition shows a relation between the chromatic number of a critical graph
and its minimum degree:

Proposition 1.8. For every χ(G)-critical graph G,

δ(G) ≥ χ(G) − 1. (1.5)

Proof. Let G be a k-critical graph and suppose to the contrary that δ(G) < k − 1. Then there
exists a vertex x of G such that dG(x) ≤ k − 2. Let G′ be the graph obtained from G by
removing the vertex x. According to the fact that G is a k-critical graph, it follows that G′

admits a proper (k − 1)-coloring, say c′. As dG(x) ≤ k − 2, then the neighbors of x are colored
properly by the coloring c′ using at most k − 2 colors, say c′(NG(x)) ∈ {1, 2, ..., k − 2}. Thus,
we can extend this coloring to a proper (k− 1)-coloring of G by coloring x with the color k− 1.
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This contradicts the minimality of the chromatic number k, and so it indicates that our initial
supposition is wrong. Therefore, the wanted inequality holds. ■

A graph G is said to be d-degenerate, if any subgraph of G contains a vertex having at most d
neighbors. One way to prove that a graph G is (d+1)-colorable is to show that G is d-degenerate:

Lemma 1.1. Every d-degenerate graph G is (d+ 1)-colorable.

Proof. We argue by induction on n = v(G), say n. For n = 1, the result holds trivially. Suppose
now that every d-degenerate graph of order n−1 is (d+1)-colorable, and let G be a d-degenerate
graph on n vertices. By definition, G contains a vertex x whose degree is at most d. Let G′ be
the graph obtained from G by removing v. Since G′ is a subgraph of G and any subgraph of G′

is also a subgraph of G, it follows that G′ is d-degenerate. Applying the induction hypothesis
to G′, we obtain a proper coloring c′ of G′ using d+ 1 colors. Since dG(x) ≤ d, we may assume
that c′(NG(x)) ∈ {1, 2, ..., d}. Assigning the color d+ 1 to x, we get a proper (d+ 1)-coloring of
G, and so the hoped result follows. ■

The following well-known lemma, which bounds from above the chromatic number of the union
of graphs, will be essential for the coming proofs:

Lemma 1.2. For any two graphs G1 and G2,

χ(G1 ∪G2) ≤ χ(G1) × χ(G2). (1.6)

Proof. For i ∈ {1, 2}, let ci : V (Gi) −→ {1, 2, ..., χ(Gi)} be a proper χ(Gi)-coloring of Gi. Define
ψ, the coloring of V (G1 ∪G2), as follows:

ψ(x) =


(c1(x), 1) x ∈ V (G1) \ V (G2);

(c1(x), c2(x)) x ∈ V (G1) ∩ V (G2);
(1, c2(x)) x ∈ V (G2) \ V (G1).

We may easily verify that ψ is a proper coloring of G1 ∪ G2 with color-set {1, 2, ..., χ(G1)} ×
{1, 2, ..., χ(G2)}. Consequently, it follows that χ(G1 ∪G2) ≤ χ(G1) × χ(G2). ■

A consequence of the previous lemma is that, if we partition the edge-set of a graph G into
E1, E2, ..., Ek, then bounding the chromatic number of each spanning subgraph Gi of G induced
by the edge-set Ei gives an upper bound for the chromatic number of G.

The following lemma gives the analogous result for the case where the vertex-set of a graph is
decomposed into several subsets:

Lemma 1.3. Let G be a graph whose vertex-set is decomposed into two subsets V1 and V2, then

χ(G) ≤ χ(G1) + χ(G2), (1.7)

where G1 and G2 are defined to be the subgraphs of G induced by V1 and V2 respectively.
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We say graph G is k-universal if it is contained in every k-chromatic graph. Indeed, the litera-
ture shows that k-universal graphs are amongst the highly attractive fields of inquiry. A brief
historical overview of the research carried out in this area will be presented in Chapter 2.

1.7.2 Digraph coloring

All the above notions and notations for graph coloring are extended to digraphs by applying
them to their underlying graphs.

Let D be a class of digraphs. The chromatic number of D, denoted by χ(D), is the smallest
integer k such that χ(D) ≤ k for all D ∈ D, or +∞ if no such k exists. By convention, if D = ∅
then χ(D) = 0. If χ(D) ̸= +∞, we say that D has a bounded chromatic number.

1.8 S-Packing coloring

Let G be a graph with vertex-set V (G) and edge-set E(G). For a positive integer i, an
i-packing in G refers to a subset X of V (G) such that the distance dG(u, v) between any two
distinct vertices u and v in X is greater than i.
The packing chromatic number of G, denoted by χp(G), is defined as the smallest positive
integer k for which the vertex set of G can be divided into sets X1, . . . , Xk, where each Xi is an
i-packing. This partitioning corresponds to a mapping c : V (G) → [k], where Xi is formed by
the vertices u in V (G) such that c(u) = i. Moreover, this mapping c ensures the property that
if c(u) = c(v) = i and u ̸= v, then the distance dG(u, v) between u and v is greater than i. This
mapping c is called a packing k-coloring.
Throughout this thesis, it will be useful to have the following generalization of the packing
chromatic number in hand.
Given that S = (a1, a2, . . .) represents an infinite, non-decreasing sequence of positive integers.
An S-packing coloring of G denotes a mapping c : V (G) → N where the pre-image c−1(i) is an
ai-packing for every positive integer i. If such a mapping c can be established for a given graph
G, it is said that G is S-packing colorable.
Thus, for an integer k, we say that G is (a1, . . . ak)-packing colorable if V (G) can be partitioned
into sets V1, . . . , Vk such that for each 1 ≤ i ≤ k and u ̸= v ∈ Vi, we have d(u, v) ≥ ai + 1.
The S-packing chromatic number of G, denoted by χS(G), is defined to be the smallest k
for which G is (a1, a2, . . . , ak)-packing colorable. However, if G does not admit an S-packing
k-coloring for any positive integer k, then χS(G) is set to ∞.
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Oriented paths in digraphs
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2

History and new approaches for paths with two blocks

“ He who sees things grow from the beginning will
have the clearest view of them.”

− Aristotle −

P aths and cycles (as well as oriented paths and cycles) are undoubtedly among the most
extensively studied classes in the realm of graphs (and digraphs). An essential facet
of studying these categories involves delving into the connection between a graph’s

chromatic number χ(G) (or a digraph’s chromatic number χ(D)) and the presence of paths and
cycles (or oriented paths and cycles) within G (or D) as subgraphs (or subdigraphs). To be
more precise, a thought-provoking question arises regarding the chromatic number of a graph
that does not contain a particular path as a subgraph. Furthermore, we might wonder whether
a digraph devoid of a particular oriented cycle or path has a bounded chromatic number. These
inquiries, alongside numerous others, have been explored by a considerable number of graph
theorists over the years, and this chapter provides a brief discussion of these problems. In the
upcoming sections, we present a range of important issues linked to these topics, some of which
we are investigating in the Part I of this thesis. Following that, we provide a brief overview of
the research efforts aimed to solve these problems to varying degrees. Moreover, we provide, in
the last section, some new approaches concerning paths with two blocks.

2.1 k-universal graphs

The concept of k-universal graphs has a rich history in graph theory, and it has captured
the interest of numerous mathematicians and graph theorists over the years.
The celebrated Gallai-Roy Theorem [61, 37] states that every k-chromatic digraph contains a
directed path of order k. Inspired by this, one can ask of which digraphs are contained in any
k-chromatic digraph. Such digraphs are called k-universal.
Obviously, a graph can obtain a large chromatic number by containing a large complete sub-

35
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graph. However, this is not the only scenario, since we may affirm that there exist graphs with
large chromatic number but containing no large complete subgraphs. This fact is guaranteed
due to a famous theorem of Erdös [32] which states that:

Theorem 2.3. (Erdös, 1959) For any two positive integers g and k, there exists a graph G with
girth larger than g and chromatic number larger than k.

In deed, this theorem guarantees the existence of graphs with an arbitrarily high chromatic
number and an arbitrarily high girth. It is clear that for a graph containing a complete subgraph
of order at least 3, the girth is 3, so this theorem proves the mentioned fact.
Hence, for a family of digraphs D where one of its elements contains an oriented cycle of a
specific length, it is impossible to find an integer k such that any k-chromatic digraph contains
every element of D. This leads mathematicians to reduce the research area into studying the
following two interesting main categories of digraphs: oriented trees ( since they contain no
cycles) and oriented cycles with no upper bound on their length.

2.2 About the existence of oriented cycles

2.2.1 Oriented cycles in digraphs

On one hand, Bondy [8] demonstrated that every strong digraph contains a circuit whose
length is greater than its chromatic number. This assertion holds under the condition of the
digraph being strong, since for example, any acyclic k-chromatic digraph is defined to be devoid
of cycles and, therefore, incapable of including any circuit, regardless of its length. Remarkably,
this condition of strength might also be necessary when studying non-directed cycles. This
hypothesis finds partial validation in the work of Gyárfás and Thomassen [2], who proved the
existence of acyclic digraphs with arbitrarily large chromatic numbers, yet containing no oriented
cycles with two blocks.
This result was extended into a broader context by Cohen et al. [22] to any number of blocks.
More specifically, they established a stronger theorem, depending on a construction introduced
by Erdös and Lovász [34], which proves the existence of hypergraphs having a high girth and a
large chromatic number. To be precise, for any positive integers b and c, they demonstrated the
existence of an acyclic digraph D with χ(D) ⩾ c, where all oriented cycles within this digraph
consist of more than b blocks.

Hence, it becomes evident that merely working within the general form of the digraph is
insufficient; additional properties, such as being strong or Hamiltonian, need to be incorporated
before working on the quest to establish the existence of subdivisions of non-circuit cycles.
Along these lines, Cohen et al. [22] conjectured in 2018 that Bondy’s theorem can be extended
to encompass all oriented cycles:

Conjecture 1. For each oriented cycle C, there exists a constant f(C) such that any strongly
connected digraph with a chromatic number of at least f(C) includes a subdivision of C.
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In their paper, Cohen et al. [22] solved this conjecture for the scenario of cycles with two blocks.
To be more precise, they demonstrated that the chromatic number of strong digraphs containing
no subdivisions of two-block cycles C(k1, k2) is upper-bounded by O((k1 + k2)4):

Theorem 2.4. Consider two positive integers k1 and k2 satisfying the conditions k1 ⩾ k2 ⩾ 2
and k1 ⩾ 3. Let D be a strong digraph with no subdivisions of C(k1, k2) cycles. Then, the
chromatic number of D does not exceed (k1 + k2 − 2)(k1 + k2 − 3)(2k2 + 2)(k1 + k2 + 1).

In their proof, Cohen et al. heavily depend on the strategies of leveling and digraph decom-
position : Given that a strong digraph D has an out-branching T , as clarified in Proposition
1.4, they proceeded to divide the arc set of D into four distinct sets, A0, A1, A2, A3, based on
the levels of T . Consequently, they properly colored each subdigraph Di of D, defined with an
arc set Ai. Through this process, their proof attains completion, guided by the recognition that
χ(H) ≤ χ(H1) × χ(H2) for any pair of subdigraphs H1 and H2 such that H = H1 ∪ H2. Kim
et al. [52] recently improved this bound, progressing from O((k1 + k2)4) to O((k1 + k2)2) based
on a distinct methodology rooted in the concept of cycle-tree ordering and the utilization of
contracting and un-contracting strategies.

Theorem 2.5. (Kim et al., 2018) Consider two positive integers k1 and k2 satisfying the con-
dition that k1 ⩾ k2 ⩾ 1 and k1 ⩾ 2. Given a strong digraph D with no subdivisions of C(k1, k2)
cycles, then the chromatic number of D does not exceed 2(2k1 − 3)(k1 + 2k2 − 1).

2.2.2 Oriented cycles in tournaments

Regarding cycles in tournaments, Camion [21] showed early that a tournament contains a
Hamiltonian directed cycle if and only if it is strong. Shifting the focus to non-directed cycles,
Thomassen [68] in 1973 demonstrated that for any n ≥ 50, a tournament of order n includes a
Hamiltonian antidirected cycle. Subsequently, Rosenfeld [62], in 1974, improved Thomassen’s
result to n ≥ 28 and proposed a conjecture which states that there exists an integer N ≥ 9
such that any tournament of order n ≥ N contains any non-directed Hamiltonian cycle. This
conjecture was approached through various methods, leading to several noteworthy results.

Initially, Grünbaum [44] established the existence of cycles with a block of length n− 1. In
1983, Benhocine and Wojda [6] proved the existence of cycles with two blocks. Concurrently,
Petrové [58] improved Thomassen’s and Rosenfeld’s bounds by demonstrating the same result
for n ≥ 16.

The first comprehensive proof of Rosenfeld’s conjecture was provided by Thomason [67],
covering tournaments of order n ≥ 2128. Thomason, however, suggested that the conjecture
likely holds for tournaments of order 9 and above. Subsequently, Havet [50] improved this result
by proving the correctness of the conjecture for tournaments of order n ≥ 68. Then, Ayman
El-Zein, in [31], solved Rosenfeld’s cycles conjecture, establishing that any tournament contains
every Hamiltonian non-directed cycle with only 30 exceptions, all of which have orders less than
9.
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2.3 About the existence of oriented trees

In this section, we deal with oriented trees in digraphs and in tournaments, excluding paths
which we will separately discuss in the next section.

2.3.1 Oriented trees in tournaments

In the realm of trees within tournaments, Sumner (as referenced in [70]) introduced a con-
jecture in the early 1970s, which reads as follows:

Conjecture 2. Every tournament of order 2n− 2 contains any oriented tree of order n.

The sharpness of this bound can be easily shown since a regular tournament of order 2k− 3
has no vertex of out-degree at least k − 1, and thus, it does not contain the oriented tree S+

k

consisting of a vertex dominating k − 1 leaves. Notably, Reid and Wormald [59] confirmed
Sumner’s conjecture for near-regular tournaments. Here, a k-tournament is called near-regular
if k is even, and each vertex is of an out-degree either k

2 or k
2 − 1. However, the conjecture in its

general form remains unresolved. Over time, this conjecture has been the subject of a series of
research, each notable for its contribution in progressively reducing the previously established
bounds.

Wormald [70] proved that any tournament with n log2(2n/e) vertices contains every oriented
tree on n vertices. Häggkvist and Thomason [46] established the first linear bound, 12n, and
Havet, in [49], further decreased it to 7.6n. It’s worth noting that these two results shared
common proving techniques, specifically defined as the concept of a "k-heart" of a tree.

Havet and Thomassé [51] reduced this bound to 4n− 6 and then, through complicated tech-
nical arguments, further reduced it to (7n− 5)/2. Additionally, Havet and Thomassé extended
their confirmation of Sumner’s conjecture to cover out-branchings and in-branchings. These
achievements were reached through innovative applications of median orders.

Utilizing similar principles, El Sahili [23] achieved the most recent and optimal bound,
demonstrating that any (3n− 3)-tournament includes any tree of order n.

2.3.2 Oriented trees in digraphs

Burr [20] considered the function f(k) such that every oriented tree of order k is f(k)-
universal. In his work, he provided a proof for f(k) ≤ (k−1)2 and conjectured that f(k) = 2k−2,

Conjecture 3. (Burr, 1980) f(k) = 2k − 2, i.e., every oriented tree of order k is (2k − 2)-
universal.

This conjecture is a generalization of Sumner’s conjecture which we mentioned previously in
Subsection 2.3.1. It holds a significant position in this thesis, being among the main conjectures
we investigate.
In 2013, Addario-Berry et al. [1] proved several results which improves the one of Burr. To be
more specific, they showed that f(k) ≤ k2/2 − k/2 + 1. This is the best reached upper bound
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for a general oriented tree. Moreover, they studied the universality of antidirected trees, which
are oriented trees such that every vertex has an in-degree of 0 or out-degree of 0. Burr [20]
showed that every digraph D with at least 4(k− 1)|V (D)| arcs includes all antidirected trees of
order k. He deduced that any antidirected tree of order k is (8k − 7)-universal. Addario-Berry
et al. [1] improved this bound to (5k− 9) (for k ≥ 2), and subsequenlty proved Conjecture 3 for
antidirected trees of diameter 3. They gave some sufficient conditions for a k-chromatic digraph
to contain some oriented tree. In particular, they proved that every acyclic k-chromatic digraph
contains any oriented tree of order k.
Finally, they conjectured that if |E(D)| > (k − 2)|V (D)|, then the digraph D contains every
antidirected tree of order k.

2.4 About the existence of oriented paths

Oriented paths, as a class of oriented trees, have been the interest of study of several graph
theorists. This section is divided into two parts: the first part discusses research on the existence
of oriented paths in tournaments, while the second part provides a historical overview of succes-
sive contributions regarding the existence of oriented paths in digraphs. This historical context
is particularly relevant as it forms the basis for the discussion and contributions presented in
Part I of our thesis.

2.4.1 Oriented paths in tournaments

For tournaments, it is well known that every tournament contains a Hamiltonian directed path.
This result was first achieved by Rédei in [60]. In addition, he proved in the same paper that
the number of Hamiltonian directed paths in every tournament is odd. In 1972, Rosenfeld [62]
conjectured that there exists an integer K ≥ 8 such that any n-tournament, n ≥ K, contains any
Hamiltonian oriented path. Alspach, Rosenfeld [4] and Straight [63] proved the correctness of
Rosenfeld’s conjecture for Hamiltonian paths with two blocks. Forcade [36] proved Rosenfeld’s
conjecture for any tournament of order 2k in 1973. Thomason [67], in 1986, was the first in
providing a comprehensive solution by demonstrating that there exists n0 < 2128 such that any
tournament with an order of n ≥ n0, includes every possible Hamiltonian oriented path. Havet
and Thomassé [48] conclusively solved the problem by providing a proof that there exist only
three exceptions identified by Grünbaum that do not satisfy Rosenfled’s conjecture. Havet and
Thomassé’s proof involves refining a fundemental concept initially introduced by Thomason. It
asserts that any set of b1 + 1 vertices in an n-tournament includes an origin of any (n− 1)-path
with its first block having a length of b1. They established that when s+(x, y) ≥ b1 + 1, either
vertex x or y serves as the origin of a copy of such a path, where s+(x, y) is defined as the car-
dinality of the set {z ∈ T : z can be reached from x or y by a directed path}. Their enhanced
approach enabled them to conclude that demonstrating the existence of an oriented path with
an order of (n− 1) within any n-tournament T is equivalent to confirming the existence of any
Hamiltonian path P in the tournament. This equivalence holds true unless the pair (T, P ) falls
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into one of the 69 exceptional cases, each of which was verified individually. In [9], Bou Hanna
gives a new simple proof of the result without the need to treat all the mentioned exceptions
individually.

2.4.2 Oriented paths in digraphs

When studying the existence of oriented paths, which are special forms of oriented trees,
we are able to achieve better results than those established for the general form of an oriented
tree, as mentioned in the previous section. When presenting the research efforts focused on the
existence of paths in digraphs, we will progressively explore the results in an increasing manner
of the blocks number in the path.
Starting with the case of an oriented path with one block, that is the directed path, the most
celebrated result is known as Gallai-Hasse-Roy-Vitaver theorem[37, 47, 61, 69]. It confirms that
any n-chromatic digraph contains a directed path of length n− 1:

Theorem 2.6. If D is an n-chromatic digraph with n ≥ 2, then D contains a directed path of
length n− 1.

This result, which marked the initial exploration for the existence of a directed path in an n-
chromatic digraph D, can be easily established by considering a final forest F of D, and looking
at the directed path joining the root with any vertex located on the maximum level of F . It is
noteworthy that Li(F ) forms a stable set in D for all i ≥ 1, which implies that the number of
levels in F should be at least equal to the chromatic number of D which is n.

Transitioning gradually to oriented paths with two blocks, which is a well studied class of oriented
trees, we consider El-Sahili’s conjecture [25] proposed in 2004. It states that every n- chromatic
digraph with n ≥ 4, contains any oriented path with two blocks.
Following this, El-Sahili and Kouider [24], who introduced the concept of maximum forest, made
a significant progress toward verifying El Sahili’s conjecture. They proved that every (n + 1)-
chromatic digraph contains any path of order n with two blocks. But, it’s important to bear in
mind that in their argument, they did not utilize paths consisting of more than four vertices.

Theorem 2.7. Every (n+ 1)-chromatic digraph, n ≥ 3, contains any path of length n− 1 with
two blocks.

In 2007, Addario-Berry, Havet and Thomassé [2] used strongly connected digraphs and a theorem
of Bondy [8] to prove the correctness of El-Sahili’s conjecture:

Theorem 2.8. Every n-chromatic digraph with n ≥ 4, contains any path with two blocks of
length n− 1.

Then, El Sahili et al. [27] gave a new elementary proof without using strongly connected
digraph.
After that, El Sahili [26] conjectured the following :
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Conjecture 4. Any n-chromatic digraph with n ≥ 8 contains any oriented path of length n− 1.

After the case of two blocks was solved, the case of three blocks remained open. Concerning
the general case of paths with three blocks, the first linear bound was given by El Joubbeh [29]
who proved that any path P (k, r, l) of length n−1 is contained in any (4.6n)-chromatic digraph.
We notice by observing the studies done in this direction that this bound can be improved when
considering special types of paths with three blocks by adding some conditions on the length of
each block.
Mortada et al. [56] proved that the path P (n − 3, 1, 1) is contained in any (n + 1)-chromatic
digraph. In addition, Mortada et al. [57] proved that any (2k + 1)-chromatic digraph contains
a P (1, k, 1).

El Joubbeh et al. [30] recently improved slightly the bound in the case of three and four blocks
paths and established a bound for the general case of Conjecture 4; they proved that any ori-
ented path of order n with t blocks is contained in every (4r(t)n+ q(t))-chromatic digraph where
r(t) = ⌊log2(t− 1)⌋ and q(t) = −20

7 · 8r(t)−1 + 6
7 .

In Chapter 3, we deal with the existence of any P (k, 1, l). We prove that any (2n+2)-chromatic
digraph contains any path P (k, 1, l) of length n− 1. Moreover, by putting an additional condi-
tion on the n-chromatic digraph D which is that it contains a Hamiltonian directed path, then
we prove that it contains any P (k, 1, l) of length n − 1. By this, we prove the correctness of
Conjecture 4 for in this special case.

In Chapter 4 We show an improvement of the bound reached in [65] presented in Chapter 3
concerning the path P (k, 1, l) from 2n+ 2 into 2n− 3. By achieving this bound, we assert that
Conjecture 3 holds for this special type of oriented trees.

Furthermore, concerning the general case of three blocks paths P (k, l, r), we show an improve-
ment of the bound reached by El Joubbeh [29]. We partition the problem into three cases
according to the values of k, l and r. We establish a new linear bound for the chromatic number
for digraphs lacking a P (k, l, r) which is 2(n− 1) + r, 2(n− 1) + l + r − k and 2(n+ l − 1) − k

in the three cases of the problem respectively.
The bound that we established is at most 3n − 6 for two cases of the problem and 4n − 13 for
the remaining case in its worst scenario, and so it is the first linear bound that hits 3n.
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2.5 New approaches concerning paths with two blocks

The proofs that we present in this section have served as the bedrock of our thinking to the
achievements in this thesis, marking the evolution of our thinking and paving the way for the
new contributions that unfold in the pages ahead. They have not only illuminated key aspects
of graph theory but have also provided the spark of inspiration that fueled our curiosity and
guided our quest for new results. As we mentioned in Section 2.4, the existence of paths with two
blocks in n-chromatic digraphs was conjectured by El Sahili and solved first by Addario-Berry
et al. . It is worthy to note that before proving the conjecture, El Sahili and Bondy [25] had
given an elemmentary proof of this conjecture in a special case in which one of the blocks is of
length 1. We explain their proof and provide another one. Concerning the general case P (k, l),
we give an elementary proof of the existence of this path in n-chromatic digraphs containing a
Hamiltonian directed path.

2.5.1 Bondy-El Sahili Theorem about path with two blocks

Theorem 2.9. (J.A.Bondy-A.El Sahili, [25]) Let n be an integer greater than three. Then, any
n-chromatic digraph contains a path of length n − 1 formed by two blocks, one of which is of
length 1.

Proof. Let D be an n-chromatic digraph, and suppose without loss of generality that D is n-
critical. It is required to prove that D contains a path P (n− 2, 1).
let Q = v1v2....vt be the longest directed path in D. By Gallai-Roy theorem [37], we conclude
that t ≥ n. If vt has a neighbor w ∈ V (D)−V (Q), then w is an inneighbor of vt. Since otherwise
l(Q ∪ (vt, w)) > l(Q), a contradiction. In this case Q ∪ (w, vt) contains P(n− 2, 1).
Now suppose that N(vt) ⊆ Q. Let vs be the neighbor of vt of minimal index. Since D is n-
critical, then dG[D](vt) ≥ n− 1, and so t− s ≥ n− 1. If vs is an inneighbor of vt then the path
vt−n+2...vtvs is a P (n− 2, 1). Otherwise:
• If s > 1, then vs+1....vtvsvs−1 contains a path P(n− 2, 1).
• If s = 1, then v1v2....vtv1 is a directed cycle, and we have two cases:
Case 1 : V (D) ̸= {v1, v2, ...vt}. Let w be a vertex of D such that wvi is an edge of G[D] which
is arbitrary oriented with 1 ≤ i ≤ t. Then D contains a directed path of length t which is a
contradiction.
Case 2 : V (D) = {v1, v2, ...vt}. Since D is not a tournament then t ≥ n+ 1. Let vivj be a chord
intercepting a path of minimal length of the Hamiltonian cycle. Without loss of generality
suppose that i = 1 and v1...vj is the path of minimal length intercepted by vivj .
We claim that t− j + 2 ≥ n. This is obvious for j = 3.
If j > 3, then we have N(v2)\{v1, v3} ⊆ {vj+1, ..., vt−j+3}. Since otherwise we get a chord
intercepting a path of length less than j − 1. Now since D is n-critical, then N(v2) contains at
least n− 1 vertices, so:
t− j + 2 ≥ d(v2) + 1 ≥ n.
It follows that vj+1...vtv1vjvj−1 contains a path P(n− 2, 1). ■
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2.5.2 Another proof of Bondy-El Sahili theorem

The new proof that we provide in this section, is similar to the previous one in its first part
which is dealing with the longest directed path. The difference appears when they consider the
chord intercepting a path of minimal length of the Hamiltonian cycle and have benefit from
D being not a tournament. However, we study some orientations of the arcs reaching the end
vertex v. We consider the predecessor of v on the path and proceed by induction to prove that
all its neighbors are inneighbors.

Proof. Suppose to the contrary that D contains no P (n− 2, 1). Suppose without loss of gener-
ality that D is n-critical. Let P be the longest directed path in D, then by Gallai-Roy theorem
[37], we get l(P ) ≥ n− 1 . Let u be the origin of P and v its end.
• v has no outneighbor w /∈ P , since otherwise l(P ∪ (v, w)) ≥ l(P ), a contradiction.
• v has no inneighbor w /∈ P since otherwise P ∪ (w, v) contains a P (n− 2, 1), a contradiction.
Then, NG[D](v) ⊆ V (P ). Let NG[D] = {ui, 1 ≤ i ≤ s}. Since D is considered n-critical, then
dG[D](v) ≥ n − 1 and so s ≥ n − 1. Suppose that the neighbors of v are located on P in an
increasing order of the index i.
• (v, u1) ∈ E(D) since otherwise, P[u2,v] ∪ (u1, v) contains P (n− 2, 1).
• (u2, v) ∈ E(D) since otherwsie, P[u3,v] ∪ (v, u2) ∪ (u′

2, u2) contains a P (n− 2, 1) where u′
2 is the

predecessor of u2 on P .
• (v, un−2) ∈ E(D) since otherwise, P[u1,un−2] ∪ (un−2, v) ∪ (us, v) contains a P (n− 2, 1) . Con-
sequently we get that u = u1 since otherwise, l(P[u,un−2]) ≥ n − 2 and so P[u,un−2] ∪ (v, un−2)
contains a P (n− 2, 1).

Consider the vertex us:
us has no neighbor outside P since otherwise, we get a contradiction with the fact that P is the
longest directed path in D. So, NG[D](us) ⊆ V (P ) .
• N(us) = {u1, u2, ..., un−2, v} since, suppose us has a neighbor w /∈ {u1, u2, ..., un−2, v}, then:
If w ∈ P[u1,un−2] then P[u1,un−2] ∪ (v, un−2) contains a P (n− 2, 1).
If w ∈ P[un−2,v] then P[u3,v] ∪ (u2, v) contains P (n− 2, 1).
Studying some orientations :
• (u1, us) ∈ E(D) since otherwise (us, u1) ∪ P[u1,un−2] ∪ (v, un−2) contains a P (n− 2, 1).
• (u2, us) ∈ E(D) since otherwise (u1, us)∪ (us, u2)∪P[u2,un−2] ∪ (v, un−2) contains a P (n−2, 1).
Suppose (ui, us) ∈ E(D) and let us prove that (ui+1, us) ∈ E(D):
Otherwise, P[u1,ui] ∪ (ui, us) ∪ (us, ui+1) ∪ P[ui+1,un−2] ∪ (v, un−2) contains a P (n− 2, 1) .

So, (v, u1) ∪ P[u1,un−3] ∪ (un−3, us) ∪ (un−2, us) contains a P (n − 2, 1), see Fig.2.1, a contra-
diction.
This completes the proof. ■
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Figure 2.1: N(us) = NP (us) = N+
P (us) and the red marked path is P (n− 2, 1)

2.5.3 The existence of the path P (k, l) in a particular class of digraphs

Here we give a simple proof showing the correctness of El Sahili’s conjecture for two blocks
paths in a specific class of digraphs which is that containing a Hamiltonian directed path. The
procedure that we followed in the proof, has inspired us to deal with the case of paths with three
blocks in such special classes of digraphs.

Lemma 2.4. Let D be an n-chromatic Hamiltonian digraph then D contains any path of length
n− 1 with two blocks P (k, l) such that k + l = n− 1.

Proof. If D is a tournament then D contains any P (k, l) such that k + l = n− 1.
So, it is sufficient to study the case when D is not a tournament.
Suppose to the contrary that there exists k, l such that k+ l = n− 1 and D contains no P (k, l).
Let m = v(D) and C = v1v2...vm be a Hamiltonian circuit in D.
We may consider, without loss of generality, that k ≤ l.
Suppose that v1 is of maximum degree ∆. Note that since D is not a tournament, we get
m ≥ n+ 1 = k + l + 2 and consequently, m− l + 1 ̸= k + 2.
If D contains any chord joining v1 and vj such that :
C[v1,vj ] ≥ k + 1 and C[vj ,v1] ≥ l + 1 or
C[vj ,v1] ≥ k + 1 and C[v1,vj ] ≥ l + 1,
then we get: v2v3...vjv1vm....vm−l+1 contains a P (k, l) whatever the orientation of the edge v1vj

is .
So such an arc does not exist, and v1vj /∈ E(G[D]) for all j ∈ {k + 2, ...,m − l}. Thus,
NG[D](v1) ⊆ {v2, ..vk+1} ∪ {vm−l+1,...vm} so |N(v1)| ≤ k + l = n− 1.
Since D is neither a tournament nor an odd cycle, then using [19] we get : χ(D) ≤ ∆ ⇒ χ(D) ≤
dG[D](v1) ≤ n− 1, a contradiction. Therefore, D contains any path P (k, l). ■

Based on this lemma, and following a similar approach to that used in Section 3.2, we were
able to prove the following:

Theorem 2.10. Let D be an n-chromatic digraph containing a Hamiltonian directed path. Then,
D contains any P (k, l) such that k + l = n− 1.
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We will omit the proof because a similar procedure will be explained in Chapter 3 (in Section
3.2).
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The existence of the path P (k, 1, l)

“Success is a journey, not a destination. The
doing is often more important than the

outcome.”
− Arthur Ashe −

I n this chapter, we show some contributions for studying conjecture 4. As we have mentioned
in Chapter 2, Conjecture 4 is affirmed by Addario-Berry et al. [2] for the case of two blocks
paths. Interests are then directed towards studying the existence of paths with three blocks.

Before delving into the general case of paths with three blocks, a question arises: Under what
constraints on the length of each block, or on the class of digraphs we can affirm the conjecture?
When studying particular cases of paths with three blocks, several bounds are established. First,
Mortada et al. [56] proved that the path P (n − 3, 1, 1) is contained in any (n + 1)-chromatic
digraph. In addition, Mortada et al. [57] proved that any (2k + 1)-chromatic digraph contains
a P (k, 1, 1). In this chapter, we deal with the path with three blocks with adding a condition
on the length of one of its blocks, which is the path P (k, 1, l). We first study its existence in a
special class of digraphs which is the class of Hamiltonian digraphs. In this case, we prove [65]
the correctness of Conjecture 4 for the path P (k, 1, l). Then, we go further into a more general
class which is digraphs containing a Hamiltonian directed path. To establish the correctness of
the conjecture within this class, we rely on our previously proven result concerning Hamiltonian
digraphs.
Following that, we proceed to eliminate any restrictions imposed on the class of digraphs. Thus,
we deal with the general case of digraphs. We prove [65] that (2n + 2)-chromatic digraphs
contain any path P (k, 1, l) of length n− 1. This result will be improved using a new technique
which we explain in details in Chapter 4.

3.1 The existence of the path P (k, 1, l) in Hamiltonian digraphs

In [65] we are able to prove the existence of any P (k, 1, l) of length n− 1 in any n-chromatic
Hamiltonian digraph. In our proof, we take advantage of Brooks’ theorem [19] which states
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that:

Theorem 3.11. For every connected graph G that is neither an odd cycle nor a complete graph,
χ(G) ≤ ∆(G).

Remark: Since in tournaments with n vertices, the existence of any oriented path of length
n − 1 is already proved [48], in particular the path P (k, 1, l) of length n − 1, it follows that all
the digraphs considered in this section are not tournaments.
In order to reach the proofs of our main results, we prove the following lemma:

Lemma 3.5. Let D be a Hamiltonian digraph with χ(D) ≥ n such that D contains no P (k, 1, l)
of length n− 1 for some k, l ∈ N∗. Then, ∆(D) = n.

Proof. Let D be a Hamiltonian digraph with χ(D) ≥ n such that D contains no P (k, 1, l) for
some k, l ∈ N∗. Let v(D) = m and C = v1v2 . . . vm be a Hamiltonian circuit in D. Since
n = k + 1 + l + 1 > 3, we get that D is not an odd cycle. Besides, as D is not a tournament,
then by Theorem 3.11, χ(D) ≤ ∆(D).
We still have to prove that ∆(D) ≤ n.
For every vt ∈ V (D), we define the vertices at and a′

t and the set At such that:

• l(C[vt,at]) = k + 1.

• l(C[a′
t,vt]) = l + 1.

• At = V (C[at,a′
t]).

To avoid any confusion, set vt+1 = v1 for t = m, and vt−1 = vm for t = 1.
We are going to show that |N(vt) ∩At| ≤ 2:
If vt has two inneighbors in the set At, say vi and vj with i < j, then:
C[vt+1,vi] ∪ (vi, vt) ∪ (vj , vt) ∪ C[vj ,vt−1] contains a path P (k, 1, l), a contradiction. So, vt has at
most one inneighbor in the set At.
If vt has two outneighbors in the set At, say vi and vj with i < j, then:
C[vt+1,vi] ∪ (vt, vi) ∪ (vt, vj) ∪ C[vj ,vt−1] contains a path P (k, 1, l), a contradiction. Thus, vt has
at most one outneighbor in the set At. Hence, we have

|N(vt)| ≤ |N(vt) ∩At| + |V (C) −At| ≤ 2 + k + l = n (*)

Therefore, ∆(D) ≤ n, and the required equation holds. ■

As a direct conclusion from Lemma 3.5:
Every (n + 1)-chromatic Hamiltonian digraph D contains any path P (k, 1, l) of length n − 1,
since otherwise we have ∆(D) = n, and so χ(D) ≤ n, a contradiction.
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One can easily notice that a cycle of type C(1, r) such that 1 + r ≥ n, contains any path
P (k, 1, l) of length n− 1.
Before proving the main theorem in this section, we are going to draw attention to the following
remark and prove it in order to use it in what follows.
Remark 3.1.
If D is an n-chromatic digraph with v(D) = n+ 1, then D contains an n-tournament.

Proof. Let S1, . . . , Sn be n stable sets covering V (D). Since v(D) = n + 1, so there exists
i0 ∈ {1, . . . , n} such that |Si0 | = 2 and |Si| = 1 for every i ̸= i0. We have D[

⋃
i ̸=i0

Si] is an

(n − 1)-tournament Tn−1 since if there exists {i, j} ⊂ {1, . . . , n} such that Si ∪ Sj is stable in
D, then χ(D) ≤ n − 1 which is a contradiction. There exists x ∈ Si0 such that x is adjacent
to all the vertices in

⋃
i ̸=i0

Si since otherwise the vertices of Si0 can be added to
⋃

i ̸=i0

Si forming

n − 1 stable sets in D covering it, a contradiction with χ(D) = n. Therefore D[Tn−1 ∪ {x}] is
an n-tournament. ■

Theorem 3.12. Let D be an n-chromatic Hamiltonian digraph. Then D contains any P (k, 1, l)
of length n− 1.

Proof. Let C = v1v2 . . . vm be a Hamiltonian circuit in D. Suppose, without loss of generality,
that d(v1) = ∆(D). We proceed the proof by induction on v(D) = m ≥ n+ 1.
It is true for m = n + 1. In this case, according to Remark 3.1, D contains a tournament T of
order n which contains any P (k, 1, l).
Let us prove it for m ≥ n+ 2, assuming that it is true up to m− 1.
Suppose to the contrary that D contains no P (k, 1, l) for some k, l ∈ N∗.
Using Lemma 3.5, we have d(v1) = n and so by (*), we get:

• V (C[v2,vk+1]) ∪ V (C[vm−l+1,vm]) ⊂ N(v1).

• v1 has one inneighbor and another outneighbor in the set A1.

To continue our proof, we need to consider two cases concerning the values of k and l.
• Case 1: k > 2.
We have (v1, v3) ∈ E(D), since otherwise (v3, v1) ∪ C[v3,v1] is a C(1,m− 2), a contradiction.
Now consider the vertex v2, using (*), we have:

|N(v2)| ≤ |V (C[v3,vk+2]) ∪ V (C[vm−l+2,v1])| + 2.

We are going to prove that v4 /∈ N(v2). Indeed:
If (v4, v2) ∈ E(D), then (v4, v2) ∪ C[v4,v2] is a C(1,m− 2).
If (v2, v4) ∈ E(D), then (v1, v3) ∪ (v2, v3) ∪ (v2, v4) ∪ C[v4,v1] is a C(1,m− 1).
So, in both cases, D contains a P (k, 1, l), a contradiction.
Also, v5 /∈ N(v2), since otherwise:
If (v5, v2) ∈ E(D), then (v5, v2) ∪ C[v5,v2] is a C(1,m− 3).
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3.1 The existence of the path P (k, 1, l) in Hamiltonian digraphs

If (v2, v5) ∈ E(D), then (v1, v3) ∪ (v2, v3) ∪ (v2, v5) ∪ C[v5,v1] is a C(1,m− 2).
So, in both cases, D contains a P (k, 1, l), a contradiction.
Thus, d(v2) ≤ n− 2.
Now consider the digraph D′ = D− {v2}. Note that χ(D′) = χ(D) = n and C[v3,v1] ∪ (v1, v3) is
a Hamiltonian circuit in D′. Thus, by induction, D′ contains a P (k, 1, l), a contradiction.
We omit the case when l > 2, since it is done analogously by proving that d(vm) ≤ n − 2, and
then applying the induction hypothesis on D′ = D − {vm}.
• Case 2: k ≤ 2 and l ≤ 2.
In this case, P (k, 1, l) ∈ {P (1, 1, 1), P (1, 1, 2), P (2, 1, 1), P (2, 1, 2)}.
We are going to deal with the existence of each type in D.

1. The existence of a P (1, 1, 1):
Let vj be the outneighbor of v1 in A1 = V (C[v3,vm−1]). We have j = 3, since otherwise
(vj−1, vj)∪(v1, vj)∪(v1, v2) is a P (1, 1, 1), a contradiction. Moreover, N−(v2) = {v1}, since
otherwise (w, v2)∪(v1, v2)∪(v1, v3) is a P (1, 1, 1), where w is an inneighbor of v2 other than
v1, a contradiction. We have N+(v2) = {v3}, since otherwise (v1, v3) ∪ (v2, v3) ∪ (v2, w) is
a P (1, 1, 1), where w is an outneighbor of v2 other than v3, a contradiction. Consequently,
d(v2) = 2 = n − 2. Let D′ = D − {v2}, then D′ is an n-chromatic Hamiltonian digraph
and C[v3,v1] ∪ (v1, v3) is a Hamiltonian circuit in D′. Thus, by induction, D′ contains a
P (1, 1, 1), a contradiction.

2. The existence of a P (1, 1, 2):
(vm−1, v1) ∈ E(D), since otherwise a C(1,m− 2) appears in D, a contradiction. We have
vm−2 /∈ N(vm), since otherwise either (vm−2, vm) ∪ (vm−1, vm) ∪ (vm−1, v1) ∪ (v1, v2) is a
P (1, 1, 2) or (vm, vm−2) ∪ C[vm,vm−2] is a C(1,m− 2), a contradiction.
No outneighbor of vm exists in Am = V (C[v2,vm−3]), since otherwise (vm−1, v1) ∪ (vm, v1) ∪
(vm, vi) ∪ (vi, vi+1) is a P (1, 1, 2) with vi is an outneighbor of vm in Am, a contradiction.
Using (*), we get d(vm) ≤ |{v1} ∪ {vm−1}| + 1 = 3 = n− 2. Let D′ = D− {vm}, then D′ is
an n-chromatic Hamiltonian digraph with C[v1,vm−1] ∪ (vm−1, v1) is a Hamiltonian circuit
in D′. Thus, by induction, D′ contains a P (1, 1, 2), a contradiction.

3. The existence of a P (2, 1, 1):
We proved thatD contains a P (1, 1, 2). Applying this result onDc, which is an n-chromatic
Hamiltonian digraph, we get that Dc contains a P (1, 1, 2), and so D contains a P (2, 1, 1),
a contradiction.

4. The existence of a P (2, 1, 2):
By (∗), we have |N(v2)| ≤ |{v3, v4} ∪ {vm, v1}| + 2. We use a similar argument to that
used in the beginning of Case 1, to prove that neither v4 nor vm is a neighbor of v2, so
d(v2) ≤ 4 = n − 2. Let D′ = D − {v2}, then, as in the previous cases, D′ contains a
P (2, 1, 2).

■
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3.2 The existence of P (k, 1, l) in digraphs containing a Hamilto-
nian directed path

In this section, we are able, in Theorem 3.13, to show an improvement of Theorem 3.12,
so that we prove the correctness of Conjecture 1 on a more general class than Hamiltonian
digraphs, which is that containing a Hamiltonian directed path.

Theorem 3.13. Let D be an n-chromatic digraph containing a Hamiltonian directed path. Then
D contains any P (k, 1, l) of length n− 1 with n ≥ 5 and k, l ∈ N∗.

Proof. We proceed by induction on v(D). For m = v(D) = n+ 1, D contains an n-tournament
which contains any P (k, 1, l). Let us prove it for m ≥ n+2, assuming that it is true up to m−1.
Let P = v1 . . . vm be a Hamiltonian directed path in D. Suppose that D contains no P (k, 1, l)
for some k, l ∈ N∗ and, without loss of generality, suppose that k ≥ l. We have k + l = n − 2
with n ≥ 5, and k ≥ l so it follows that k ≥ 2.
Note that v1vm /∈ E(G[D]), since otherwise either D is a Hamiltonian digraph if (vm, v1) ∈ E(D),
or (v1, vm) ∪P is a C(1,m− 1) if (v1, vm) ∈ E(D), and so, in both cases, D contains a P (k, 1, l),
a contradiction.
We are going to prove now that v2vm /∈ E(G[D]). If (v2, vm) ∈ E(D), then (v2, vm) ∪ P[v2,vm] is
a C(1,m− 2), a contradiction. Suppose that (vm, v2) ∈ E(D). Then v1 has no outneighbors in
P[v3,vm−n+3], since otherwise (vm, v2)∪(v1, v2)∪(v1, w)∪P[w,vm] is a C(1, r) with r ≥ n−1, where
w ∈ N+(v1)∩P[v3,vm−n+3], a contradiction. Besides, v1 has at most one inneighbor in P[v3,vm−n+3],
since otherwise (vm, v2)∪P[v2,vi] ∪(vi, v1)∪(vj , v1)∪P[vj ,vm] is a C(1, r) with r ≥ n, where vi and
vj , i < j, are two inneighbors of v1 in P[v3,vm−n+3], a contradiction. Thus, d(v1) ≤ n− 2. Hence,
D − {v1} is an n-chromatic digraph containing a Hamiltonian circuit C = (vm, v2) ∪ P[v2,vm],
then using Theorem 3.12, D − {v1} contains a P (k, 1, l), a contradiction.
Set A = V (P[vk+1,vm−l−1]). Then, by following a similar argument to that introduced in Lemma
3.5, we get that vm has at most one inneighbor and at most one outneighbor in the set A. Thus,
|N(vm)∩A| ≤ 2, and so d(vm) ≤ |NP[v1,vk](vm)|+ |NP[vm−l,vm−1](vm)|+2 ≤ (k−2)+ l+2 = n−2.
Therefore χ(D − {vm}) = n and P[v1,vm−1] is a Hamiltonian directed path in D − {vm}. Then,
by induction, D − {vm} contains a P (k, 1, l), a contradiction. ■

3.3 The existence of P (k, 1, l) in a (2n + 2)-chromatic digraph

In this section, we study the chromatic number of digraphs containing any P (k, 1, l) of length
n− 1 and we get the following result:

Theorem 3.14. Let D be a (2n+2)-chromatic digraph; then D contains any P (k, 1, l) of length
n− 1 with k, l ∈ N∗ where N∗ is the set of positive integers.

Proof. Let D be a (2n + 2)-chromatic digraph and suppose to the contrary that there exist
k, l ∈ N∗ such that D contains no P (k, 1, l) of length n − 1. Divide D into two induced
subdigraphs D1 and D2 such that χ(D1) = χ(D2) = n+ 1.
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3.3 The existence of P (k, 1, l) in a (2n+ 2)-chromatic digraph

Let F1 be a final spanning outforest of D1 and F2 be a final spanning inforest of D2. Let x ∈ D1
and y ∈ D2 with lF1(x) ≥ k + 1 and lF2(y) ≥ l + 1; then (x, y) ∈ E(D) whenever x and y are
neighbors in G[D]. In fact, if (y, x) ∈ E(D), then PF1(x) ∪ (y, x) ∪ PF2(y) contains a P (k, 1, l),
a contradiction.
Set B = {y ∈

⋃
i≥l+1

Li(F2); y has an inneighbor x ∈
⋃

i≥k+1
Li(F1)}. There exists no backward arc

in D[B] with respect to F2. Actually, if (y1, y2) is a backward arc with respect to F2 in D[B],
then PF1(x) ∪ (x, y2) ∪ (y1, y2) ∪ PF2(y1) contains a P (k, 1, l), where x is an inneighbor of y2 in⋃
i≥k+1

Li(F1), a contradiction. It follows that D[B] contains no circuits. Moreover, d+
D[B](y) ≤ 1

for every y ∈ B, since if there exists y ∈ B such that d+
D[B](y) ≥ 2, let y1 and y2 be two

outneighbors of y in B with lF2(y1) ≥ lF2(y2); then PF1(x) ∪ (x, y1) ∪ (y, y1) ∪ (y, y2) ∪ PF2(y2)
contains a P (k, 1, l), where x is an inneighbor of y1 in

⋃
i≥k+1

Li(F1), a contradiction. Thus,

D[B] contains no cycles and so it is a bipartite graph. Color the first k levels of F1 and the
first l levels of F2 by k + l colors by giving each level a color distinct from the others. Color
(

⋃
i≥k+1

Li(F1)) ∪ (
⋃

i≥l+1
Li(F2) −B) by n+ 1 new colors and B by 2 colors. All colorings are done

properly, then the obtained coloring is a (2n+ 1)-proper coloring, a contradiction. ■
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4

The existence of paths with three blocks in digraphs

“The best solutions are often simple, yet
unexpected.”

− Julian Casablancas −

I n this chapter, we explain the new technique that we introduced in [64] and used to study
the existence of oriented paths in digraphs. This technique has served us in improving the
chromatic number bounds of digraphs when dealing with the existence of several types of

oriented paths. More precisely, while focusing on three blocks paths, we first study the path
P (k, 1, l) and then we deal with the general case which is the paths P (k, l, r). By using the
new technique, we improved the bound reached in [65] for digraphs containing P (k, 1, l) which
we presented in Chapter 3, so that the new bound that we established, 2n − 3, proves the
correctness of Burr’s conjecture for this types of paths which is clearly a special type of oriented
trees. Concerning the general case, we partitioned the problem into three cases according to
the values of k, l and r and in each case we improved the latest established linear bound for
the chromatic number. We shed light in this chapter on this technique, explain it and show its
importance in dealing with the two conjectures in hand.

4.1 An overview of the new technique

In this section we give the reader the intuition how the technique works, what are its most
important steps and how it is used in this setting. In the cases under study, the followed tech-
nique has served us in improving the latest previous bounds of the chromatic number. We also
believe that it may be useful in dealing with different types of oriented paths. This technique
is followed in the two theorems that we prove, but with some differences that have advantages
when the second block is of length 1 (Theorem 4.15). First, we start by defining a sequence
{Di, i ∈ I} of subdigraphs of the digraph D, by taking out at each step a directed path Pi with
all its neighbors Ni where the length of the path is precised according to the case of the path
we are studying its existence. Let P and N be the union of the paths Pi and their neighbors Ni

respectively. The next step is partitioning the set of neighbors N into subsets according to the
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4.2 The existence of the path P (k, 1, l)

localization of their neighbors on the paths Pi. We suppose that the digraph is P (k, l, r)-free
and start assigning the colors to its vertices. In the coloring process, we have benefit that there
are no edges between one path and another, and that we have un upper bound for the chromatic
number of the remaining subdigraph since it contains no directed path of the specified length.
When dealing with the subsets forming the set of neighbors, we use the concept of final outforest
and inforest, and proceed the coloring of each subset according to its definition based on the
localization of its neighbors. At the end, we reach a contradiction with the given chromatic
number and this completes the proof.

More specifically, this technique is used in what follows:
• In Section 4.2, we deal with the path P (k, 1, l).
• In Section 4.3, we deal with the general case of paths with three blocks.

As we mentioned above, we were able to improve the bound shown in Chapter 2, so that
we proved the following:
Let D be a (2n−3)-chromatic digraph; then D contains any path P (k, 1, l) of length n−1, with
n ≥ 7.
This verifies that the path P (k, 1, l) satisfies Conjecture 4.

Concerning the general case of three blocks paths P (k, l, r), we partition the problem into three
cases according to the values of k, l and r. We establish a linear bound for the chromatic number
which is 2(n− 1) + r, 2(n− 1) + l+ r− k and 2(n+ l− 1) − k in the three cases of the problem
respectively. The reached bound is at most 3n− 6 for two cases of the problem and 4n− 13 for
the remaining case, and so it is the first linear bound that hits 3n.

Remark: If we prove that an f(n)-chromatic digraph D contains any path P (k1, k2, k3) for
k1 ≤ k3, then it is trivial that Dc contains the path P (k1, k2, k3) because it has the same chro-
matic number as D. Moreover, the existence of a path P (k1, k2, k3), for k1 ≤ k3, in the digraph
Dc results in the existence of the path P (k3, k2, k1) in D. So to prove the existence of any path
P (k1, k2, k3) in a digraph D, it is sufficient to prove it for k1 ≤ k3 and the case when k1 > k3
is deduced by using the digraph Dc. Therefore, in what follows it is sufficient to deal only with
the case when k1 ≤ k3.

4.2 The existence of the path P (k, 1, l)

In this section, we deal with the path P (k, 1, l). We show its existence in any (2n − 3)-
chromatic digraph.

Theorem 4.15. Let D be a (2n− 3)-chromatic digraph; then D contains any path P (k, 1, l) of
length n− 1, with n ≥ 7.

Proof. First, it is worthy to note that the case when k = 1 or l = 1 is treated in [56], in which
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4. The existence of paths with three blocks in digraphs

they proved that any (n + 1)-chromatic digraph contains the path P (n − 3, 1, 1). Thus, we
assume in what follows that k ̸= 1 and l ̸= 1. Suppose that D is P (k, 1, l)-free and, without loss
of generality, suppose that l ≥ k, and so l ≥ 3. Let:

• D1 = D

• Di+1 = Di − (Pi ∪N(Pi)) for every 1 ≤ i ≤ r − 1, where :

– Pi is a directed path of length k + l − 2 in Di.
– N(Pi) = {v ∈ Di − Pi; v has a neighbor in Pi}.
– r is the minimal value satisfying that Dr contains no directed path of length k+ l−2.

Let D′ = D[
r−1⋃
i=1

V (Pi) ∪Dr] and N =
r−1⋃
i=1

N(Pi).

By definition, we have:

• v(Pi) = k + l − 1, then χ(D[V (Pi)]) ≤ k + l − 1 = n− 3 for every 1 ≤ i ≤ r − 1.

• Dr contains no directed path of length k + l − 2 = n− 4, then χ(Dr) ≤ n− 4.

• Pi+1 ∈ Di+1 = Di − (Pi ∪ N(Pi)), then uv /∈ E(G[D]) for every u ∈ Pi and v ∈ Pj with
i ̸= j for all 1 ≤ i, j ≤ r − 1, similarly for every u ∈ Dr and v ∈ Pi.

So, χ(D′) ≤ n− 3. We color D′ by the set {1, 2, ..., k + l − 1}.
Let Pi = vi

1 . . . v
i
k+l−1, and let A and B be two subsets of N such that:

B =
r−1⋃
i=1

N+(vi
k) ∪N(Pi[vi

k+1,vi
k+l−1]

) and A = N −B, i.e. A ⊆
r−1⋃
i=1

N(Pi[vi
1,vi

k−1]
) ∪N−(vi

k).

Claim 4.15.1. : χ(D[A]) ≤ k + 2.

Proof. Let FA be a final spanning outforest of D[A].
Let A′ = D[

⋃
i≥k+1

Li(FA)] and F ′
A be the sub-outforest of FA spanning the vertices of A′. For

every v ∈ A′, l(PFA
(v)) ≥ k, then for all 1 ≤ i ≤ r − 1, v is not an outneighbor of a vertex in

Pi[vi
1,vi

k−1]
, say vj , otherwise PFA

(v) ∪ (vj , v) ∪ Pi[vj ,vi
k+l−1]

contains a P (k, 1, l), a contradiction.
So, for every v ∈ A′, v is an inneighbor of a vertex in Pi[vi

1,vi
k

]
for some 1 ≤ i ≤ r − 1.

A′ is a bipartite digraph, otherwise there exists e ∈ E(A′)\E(F ′
A), so we study two cases:

Case 1: e = (x, y) is backward with respect to FA.
We have x ∈ A′, so x an inneighbor of a vertex in Pi[vi

1,vi
k

]
, say vj . Thus, PFA

(y)∪(x, y)∪(x, vj)∪
Pi[vj ,vi

k+l−1]
contains a P (k, 1, l), a contradiction.

Case 2 : e = (x, y) is forward with respect to FA.
Let z = N−

FA
(y), we have z ∈ A′ and so it is an inneighbor of a vertex in Pi[vi

1,vi
k

]
, say vj . Thus,

PFA
(x) ∪ (x, y) ∪ (z, y) ∪ (z, vj) ∪ Pi[vj ,vi

k+l−1]
contains a P (k, 1, l), a contradiction.
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4.2 The existence of the path P (k, 1, l)

Therefore, E(A′) = E(F ′
A). Thus, A′ is an outforest and consequently, a bipartite digraph which

we partition into two stable sets A1 and A2. So χ(D[A]) ≤ k + 2. ■

Claim 4.15.2. χ(D[B]) ≤ l + 2.

Proof. Let FB be a final spanning inforest of D[B].
Let B′ = D[

⋃
i≥l+1

Li(FB)] and F ′
B be the sub-inforest of FB spanning the vertices of B′. In a

similar way to the proof of claim 4.15.1, we prove that E(B′) = E(F ′
B). Consequently, B′ is an

inforest, which we partition into two stable sets B1 and B2. ■

Claim 4.15.3. χ(D[A1 ∪B′]) ≤ 2.

Proof. We have χ(B′) ≤ 2. Let v ∈ A1, (u, v) /∈ E(D) for every u ∈ B′, since otherwise
PFA

(v) ∪ (u, v) ∪ PFB
(u) contains a P (k, 1, l), a contradiction.

Now we are going to prove that v has at most one outneighbor in B′. Suppose that v has two
outneighbors u1 and u2 in B′. Without loss of generality, suppose that lFB

(u1) ≤ lFB
(u2). We

have u2 ∈ B′, then u2 is not an inneighbor of a vertex in Pi[vi
k+1,vi

k+l−1]
, say vj , since otherwise

Pi[vi
1,vj ]

∪ (u2, vj) ∪ PFB
(u2) contains a P (k, 1, l), a contradiction. Thus, u2 is an outneighbor

of a vertex in Pi[vi
k

,vi
k+l−1]

, say vj . But Pi[vi
1,vj ]

∪ (vj , u2) ∪ (v, u2) ∪ (v, u1) ∪ PFB
(u1) contains a

P (k, 1, l), a contradiction.
So v has at most one neighbor in B′ and consequently, χ(D[A1 ∪B′]) ≤ 2. ■

Claim 4.15.4. Let Fr be a final spanning outforest of Dr. If Lk+l−2(Dr) ̸= ∅, then χ(D[B′ ∪
A1 ∪ Lk+l−2(Dr)]) ≤ 2

Proof. Let v ∈ Lk+l−2(Dr). We have l ≥ 3 ⇒ lFDr
(v) ≥ k + 1, then:

• v has no inneighbor in B′ since otherwise, PFDr
(v) ∪ (u, v) ∪ PFB

(u) contains a P (k, 1, l)
where u is an inneighbor of v in B′, a contradiction.

• v has no inneighbor in A′, say u since otherwise, PFDr
(v) ∪ (u, v) ∪ (u, vj) ∪ Pi[vj ,vi

k+l−1]

contains a P (k, 1, l) where vj is an outneighbor of u in Pi[vi
1,vi

k
]
, a contradiction.

Now we are going to prove that v has at most one outneighbor in B′ ∪A1. Suppose that v has
two outneighbors x and y in B′ ∪A1:
If x and y belong to B′, then suppose, without loss of generality, that lFB

(x) ≤ lFB
(y).

We have y ∈ B′, then y is an outneighbor of a vertex in Pi[vi
k

,vi
k+l−1]

, say vj . Thus, Pi[vi
1,vj ]

∪
(vj , y) ∪ (v, y) ∪ (v, x) ∪ PFB

(x) contains a P (k, 1, l), a contradiction.
If x and y belong to A1, then suppose, without loss of generality, that lFA

(x) ≤ lFA
(y). We have

y ∈ A1, then y is an inneighbor of a vertex in Pi[vi
1,vi

k
]
, say vj . Thus, PFA

(x) ∪ (v, x) ∪ (v, y) ∪
(y, vj) ∪ Pi[vj ,vi

k+l−1]
contains a P (k, 1, l), a contradiction.

If x ∈ A1 and y ∈ B′, then we have PFA
(x) ∪ (v, x) ∪ (v, y) ∪ PFB

(y) contains a P (k, 1, l), a
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4. The existence of paths with three blocks in digraphs

contradiction.
Therefore v has at most one neighbor in B′ ∪A1. By Claim 4.15.3, we have χ(B′ ∪A1) ≤ 2, so
χ(D[B′ ∪A1 ∪ Lk+l−2(Dr)]) ≤ 2. ■

Now we are ready to continue the proof of Theorem 4.15:

By definition, A has neighbors only in
r−1⋃
i=1

Pi[vi
1,vi

k
]
. So, we choose the coloring of D′ such that the

colors of V (
r−1⋃
i=1

Pi[vi
1,vi

k
]
) are picked from the set {1, 2, . . . , k}, then the colors {k+ 1, . . . k+ l− 1}

are not used in the coloring of N{P1∪...Pr−1}(A).
Dr contains no path of length k+ l− 2, so χ(Dr) ≤ k+ l− 2. Recall that Fr is a final spanning
outforest of Dr, we color Li(FDr ) by the color i for every i.
If χ(Dr) ≤ k + l − 3, then we color Dr by the set {1, . . . , k + l − 3}.
Otherwise, Lk+l−2(Dr) ̸= ∅. We have by Claim 4.15.4, χ(D[B′ ∪ A1 ∪ Lk+l−2(Dr)]) ≤ 2, so we
can recolor Lk+l−2(Dr) by the set of colors given to B′.
Thus, in both cases, the colors {k + l − 2, k + l − 1} are not used in the coloring of Dr.
Now we conclude that the colors {k + l − 2, k + l − 1} are not used in the coloring of ND′(A),
so we color L1(FA) and A2 by these two colors.
Finally, χ(D) ≤ χ(L1(FA) ∪A2 ∪D′ − (Lk+l−2(Dr))) + χ(B ∪A1 ∪ Lk+l−2(Dr)) + χ(A− (A1 ∪
A2 ∪ L1(FA)))
≤ (n− 3) + (l + 2) + (k − 1) = n− 3 + n− 1 = 2n− 4, a contradiction. ■

4.3 The existence of the path P (k, l, r) in digraphs with chro-
matic number bounded from above

When studying the existence of a path P (k, l, r), it is worthy to note that the case when
k = 1 or r = 1 is treated in [3], in which Al Mniny proved that any (2n− 2)-chromatic digraph
contains the path P (k, l, 1) of length n−1. Moreover, the case when l = 1 is treated in Theorem
4.15 in this paper. Thus, in what follows, we suppose that 1 /∈ {k, l, r}.

Theorem 4.16. Let D be a P (k, l, r)-free digraph with k + l + r = n− 1 and k ≤ r , then

χ(D) ≤



2(n− 1) + r if l ≤ k ≤ r

2(n− 1) + l + r − k if k ≤ l ≤ r

2(n+ l − 1) − k if k ≤ r ≤ l

(4.1)

Proof. Let:

• D1 = D

• Di+1 = Di − (Pi ∪N(Pi)) for every 1 ≤ i ≤ h− 1, where :
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4.3 The existence of the path P (k, l, r) in digraphs with chromatic number bounded
from above

– Pi is a directed path of length k + r − 2 in Di.
– N(Pi) = {v ∈ Di − Pi; v has a neighbor in Pi}.
– h is the minimal value satisfying the fact that Dh contains no directed path of length
k + r − 2.

Let D′ = D[
h−1⋃
i=1

V (Pi) ∪Dh] and N =
h−1⋃
i=1

N(Pi).

By definition, we have:

• v(Pi) = k + r − 1, then χ(D[V (Pi)]) ≤ k + r − 1 for every 1 ≤ i ≤ h− 1.

• Dh contains no directed path of length k + r − 2, then χ(Dh) ≤ k + r − 2.

• Pi+1 ∈ Di+1 = Di − (Pi ∪ N(Pi)), then uv /∈ E(G[D]) for every u ∈ Pi and v ∈ Pj with
i ̸= j for all 1 ≤ i, j ≤ h− 1, similarly for every u ∈ Dh and v ∈ Pi.

So, χ(D′) ≤ k + r − 1. Color D′ by {1, 2, ..., k + r − 1}.
Let Pi = vi

1 . . . v
i
k+r−1, and let A,B,C, and H be four subsets covering N such that:

H =
⋃
i

N+(Pi[vi
k

,vi
k+r−1])

C =
⋃
i

N−(Pi[vi
k+1,vi

k+r−1]) ∩ (N −H)

B =
⋃
i

N+(Pi[vi
1,vi

k−1]) ∩ (N − (H ∪ C))

A = N − (H ∪ C ∪B), i.e. A ⊆
⋃
i

N−(Pi[vi
1,vi

k
]).

Now let FA and FB be final spanning outforests of A and B respectively. Let FC and FH be
final spanning inforests of C and H respectively. Suppose, without loss of generality, that k ≤ r.
Then it is enough to study the following three cases:
Case 1 : l ≤ k ≤ r.
Let A′ =

⋃
i≥k+1

Li(FA) and B′ =
⋃
i≥l

Li(FB).

We have uv /∈ E(G[D]) for every u ∈ A′ and v ∈ B′ since otherwise, suppose without loss of
generality, that (u, v) ∈ E(D), then PFA

(u) ∪ (u, v) ∪PFB
(v)[z,v] ∪ (vj , z) ∪Pi[vj ,vi

k+r−1] contains
a P (k, l, r) where PFB

(v)[z,v] is the subpath of Pv(FB) of length l− 1 and vj is an inneighbor of
z on Pi[vi

1,vi
k−1] for some i.

Claim 4.16.1. χ(A′) ≤ l + 1.

Proof. We have Ai = {
⋃
j≥0

Li+j(l+1)} is stable for every i ≥ k + 1, since otherwise let uv ∈

E(G[D]) such that LFA
(u) = i0 and LFA

(v) = i0 + j0(l+ 1) for some i0, j0 ∈ N∗ with i0 ≥ k+ 1.
Suppose, without loss of generality, that (u, v) ∈ E(D). We have PFA

(u) ∪ (u, v) ∪ PFA
(v)[z,v] ∪

(z, vj) ∪ Pi[vj ,vi
k+r−1] contains a P (k, l, r) where PFA

(v)[z,v] is the subpath of PFA
(v) of length l

and vj is an outneighbor of z in Pi[vi
1,vi

k
] for some i. ■
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4. The existence of paths with three blocks in digraphs

Claim 4.16.2. χ(B′) ≤ k + 1.

Proof. We define Bi = {
⋃
j≥0

Li+j(k+1)} for every i ≥ l. Similarly to the proof of Claim 4.16.1,

we prove that χ(B′) ≤ k + 1. ■

We conclude, from claim 4.16.1 and Claim 4.16.2, that χ(A′ ∪B′) ≤ k + 1.
Therefore, χ(A ∪B) ≤ χ(A′ ∪B′) + χ(A−A′) + χ(B −B′) ≤ k + 1 + k + l − 1 = k + k + l.

Claim 4.16.3. Let Fh be a final spanning outforest of Dh. Then, uv /∈ E(G[D]) for all u ∈
A′ ∪B′ and v ∈

⋃
i≥k+1

Li(Fh).

Proof. Let uv ∈ E(G[D]) with u ∈ A′ ∪ B′ and v ∈
⋃

i≥k+1
Li(Fh). Suppose, without loss of

generality, that (u, v) ∈ E(D) and u ∈ A′. We have PFh
(v) ∪ (u, v) ∪ PFA

(u)[z,u] ∪ (z, vj) ∪
Pi[vj ,vi

k+r−1] contains a P (k, l, r) where z and vj are defined as above, a contradiction. ■

Now we are ready to continue the proof of Theorem 4.16:
We have, by definition, A and B have neighbors only in the set V (

⋃
i≥1

Pi[vi
1,vi

k
]). We choose the

coloring of D′ such that the colors of V (
⋃
i≥1

Pi[vi
1,vi

k
]) are picked from the set of colors {1, . . . , k}.

Then the colors {k + 1, . . . , k + r − 1} are not used in coloring of N{P1∪···∪Ph−1}(A ∪B).
Concerning Dh, we give Li(Fh) the color i for every i. By Claim 4.16.3, we can give the colors
{k+1, . . . , k+r−1} to A′∪B′. We get that χ(D′∪A∪B) ≤ χ(D′∪A′∪B′)+χ(A−A′)+χ(B−B′) ≤
k + r − 1 + 2 + k + l − 1 = k + k + r + l.
Concerning C and H, let C ′ =

⋃
i≥l

Li(FC) and H ′ =
⋃

i≥r+1
Li(FH). Similarly we prove that

uv /∈ E(G[D]) for all u ∈ C ′, and v ∈ H ′ and that χ(C ′ ∪ H ′) ≤ r + 1. Thus, χ(C ∪ H) ≤
l − 1 + r + r + 1 = l + r + r.
Therefore, χ(D) ≤ k + k + r + l + l + r + r = n− 1 + n− 1 + r = 2n− 2 + r = 2(n− 1) + r.

Case 2: k ≤ l ≤ r. Let A′ =
⋃

i≥l+1
Li(FA), B′ =

⋃
i≥l

Li(FB), C ′ =
⋃
i≥l

Li(FC), H ′ =
⋃

i≥r+1
Li(FH),

and let Fh be a final spanning outforest of Dh. We follow a similar procedure to that followed in
the previous case to obtain the following: χ(A′∪B′) ≤ k+1, χ(A∪B) ≤ k+1+l+l−1 = k+l+l,
and χ(D′ ∪A ∪B) ≤ k + r − 1 + 2 + l + l − 1 = k + r + l + l.
χ(C ′ ∪ H ′) ≤ r + 1, and χ(C ∪ H) ≤ l + r + r. So, χ(D) ≤ k + r + l + l + r + r + l =
n− 1 + n− 1 + r − k + 1 = 2n− 2 + l + r − k = 2n− 2 + l + r − k = 2(n− 1) + l + r − k.

Case 3: k ≤ r ≤ l. Let A′ =
⋃

i≥l+1
Li(FA), B′ =

⋃
i≥l

Li(FB), C ′ =
⋃
i≥l

Li(FC), H ′ =
⋃

i≥r+1
Li(FH),

and let Fh be a final spanning outforest of Dh. We follow a similar procedure to that followed
in Case 1 and we get the following: χ(A′ ∪B′) ≤ k+ 1, χ(A∪B) ≤ k+ 1 + l+ l− 1 = k+ l+ l,
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4.3 The existence of the path P (k, l, r) in digraphs with chromatic number bounded
from above

and χ(D′ ∪A ∪B) ≤ k + r − 1 + 2 + l + l − 1 = k + r + l + l.
χ(C ′ ∪ H ′) ≤ l + 1, and χ(C ∪ H) ≤ l + l + r. So, χ(D) ≤ k + r + l + l + l + l + r =
n− 1 + n− 1 − k + l + l = 2(n+ l − 1) − k. ■
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5

Survey on S-packing coloring

“The purpose of life is to conjecture and prove.”
− Paul Erdös −

I n this chapter, we embark on a concise exploration of the extensive research conducted in
the realm of S-packing coloring. Our primary focus is directed towards the endeavors made
to investigate the S-packing coloring of subcubic graphs.

5.1 Recall of necessary definitions

5.1.1 i-packing

In the context of a graph G = (V (G), E(G)) and a positive integer i, a subset X of the
vertex set V (G) is said to be an i-packing in G if the distance dG(u, v), is required to be greater
than i for every {u, v} ⊆ X.

5.1.2 Packing chromatic number

The packing chromatic number of a graph G, denoted by χρ(G), is defined to be the smallest
positive integer k such that the vertices of G can be partitioned into sets X1, . . . , Xk, where each
Xi is an i-packing for all i in the range [k] = 1, . . . , k. This partition corresponds to a mapping
c : V (G) → [k] where Xi = {u ∈ V (G) : c(u) = i}. Furthermore, this mapping satisfies the
following condition:
If c(u) = c(v) = i and u ̸= v, then the distance dG(u, v) must be greater than i. This function c
is referred to as a k- packing coloring.

5.1.3 S-packing chromatic number

Along the way, we will utilize the following generalization of the packing chromatic number
in hand. Given an infinite, non-decreasing sequence S = (s1, s2, . . .) of positive integers, an S-
packing coloring of a graph G is a partition of the vertex set of G into k subsets {V1, V2, . . . , Vk}
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5.2 The effect of some local operations on the packing chromatic number

such that for each 1 ≤ i ≤ k, the distance between any two distinct vertices u and v in Vi is at
least si + 1. In other words, it is a mapping c : V (G) → N such that c−1(i) is an si-packing for
every i ∈ N. If k is a positive integer, and for every vertex u in the graph G, c(u) belongs to
the range [k], we refer to this coloring c as an S-packing k-coloring or an (s1, . . . , sk)-packing
coloring of G.
The S-packing chromatic number of G, denoted by χS(G), is the smallest positive integer k for
which there exists an S-packing k-coloring of the graph G. It is worthy to note that ((1)i∈N)-
packing colorings correspond to the standard proper vertex colorings of a graph, while ((i)i∈N)-
packing colorings are just the packing colorings. In addition, for a positive integer ℓ, ((ℓ)i∈N)-
packing colorings are referred to in the literature as either ℓ-distance colorings or colorings of
the ℓth power of a graph. Remark : For every subgraph H of G, we have χρ(H) ≤ χρ(G).

5.2 The effect of some local operations on the packing chromatic
number

5.2.1 Vertex deletion

In this section, we delve into the concept of vertex deletion. Depending on the previous
remark, for any vertex v ∈ V (G), we can conclude that, χρ(G − v) ≤ χρ(G). However, it is
important to note that the difference χρ(G) − χρ(G− v) can exhibit considerable variability, as
demonstrated in reference [17]. While for leaves, the situation is different.

The following lemma sheds light on the behavior of leaf vertices in this context:

Lemma 5.6 (Lemma 4.1, [53]). For a leaf x in a graph G, we have χρ(G) − 1 ≤ χρ(G− x) ≤
χρ(G).

5.2.2 Edge deletion

By revisiting the above remark, we conclude that the result χρ(G − e) ≤ χρ(G) holds true
for each edge e ∈ E(G). Moreover, we have:

Theorem 5.17 (Theorem 4.4, [14]). For an edge e in a graph G, it is established that χρ(G−e) ≥
χρ(G)+1

2 .

It’s worth noting that this bound is not just a theoretical limit; it is achievable in practice.
Furthermore, Brešar and Ferme’s work introduces a realization result demonstrating that

χρ(G− e) can achieve any integer value within the range defined by the two bounds mentioned
in Theorem 5.17.

5.2.3 Edge subdivision

In the study presented in [42], it was established that the packing chromatic number χρ(S(G))
is consistently equal to 3 for every connected bipartite graph G containing at least two edges.
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5. Survey on S-packing coloring

The impact of edge subdivision on the packing chromatic number was further explored by Brešar,
Klavžar, and Rall [16].

A noteworthy result is summarized in the following proposition:

Proposition 5.9 (Proposition 4.11, [16]). For n ≥ 3, the packing chromatic number of the
subdivided complete graph χρ(S(Kn)) equals n+ 1.

Additionally, an insightful theorem regarding the relationship between the clique number,
the packing chromatic number after edge subdivision, and the original one is presented:

Theorem 5.18 (Theorem 4.12 , [16]). For a connected graph G with an order of at least 3, it
holds that:

ω(G) + 1 ≤ χρ(S(G)) ≤ χρ(G) + 1,

and these bounds represent the best achievable values.

Let G be a graph and e an edge in G. The graph obtained from G by subdividing its edge
e is denoted by Se(G).
Brešar, Klavžar, Rall, and Wash established the following result for a single subdivided edge:

Theorem 5.19 (Theorem 4.13, [17]). Given a graph G with χρ(G) = j, it holds that
⌊

j
2

⌋
+ 1 ≤

χρ(Se(G)) ≤ j+ 1. Furthermore, for any k ≥ 2, there exists a graph G with an edge e such that
k = χρ(G) = χρ(Se(G)) − 1.

5.3 Packing chromatic number of specific classes

The following inequality represents a trivial relation between the chromatic number and the
packing chromatic number of a graph G:

χ(G) ≤ χρ(G) (5.1)

5.3.1 Packing coloring of trees

The packing chromatic number of a tree with a diameter of 2 (or simply a star) is 2, and
for a tree with a diameter of 3, it is 3. However, determining the packing chromatic number
becomes more intricate when dealing with a tree of diameter 4.

Proposition 5.10 ([42]). Consider a tree T with a diameter of 4 and a central vertex v. For
each i in the range [3], let ni represent the number of neighbors of v having degree i. Furthermore,
let L be the number of neighbors of v having degrees of at least 4. In the case where L = 0, we
have the following:

χρ(T ) =

4, if n3 ≥ 2 and n1 + n2 + n3 ≥ 3,
3, otherwise.
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5.3.2 Packing coloring of subcubic graphs

Figure 5.1: A cubic graph of order 24 and packing chromatic number 11

If L > 0, we have

χρ(T ) =


L+ 3, if n3 ≥ 1 and n1 + n2 + n3 ≥ 2,
L+ 1, if n1 = n2 = n3 = 0,
L+ 2, otherwise.

The following theorem provides an upper bound of the packing chromatic number of a tree
in terms of its order.

Theorem 5.20. In the case of a tree T with v(T ) = n, it holds that χρ(T ) ≤ n+7
4 , except for

the cases when n equals either 4 or 8. In these exceptional cases, the bound increases by 1/4.
These bounds represent sharp values.

5.3.2 Packing coloring of subcubic graphs

The question of whether subcubic graphs have bounded packing chromatic number remained
open for a long time. Gastineau and Togni [40] presented an example of a cubic graph with 38
vertices, having a packing chromatic number of 13 (see Figure 5.2).

They also provided another example of a cubic graph with 24 vertices and a packing chro-
matic number of 11 (see Figure 5.1).

In addition to these findings, they posed the question of whether a (sub)cubic graph with a
larger packing chromatic number exists. The affirmation to this question was subsequently pro-
vided by Brešar et al. in [17], where they constructed a cubic graph on 78 vertices, demonstrating
a packing chromatic number of at least 14.
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5. Survey on S-packing coloring

Figure 5.2: A cubic graph of order 38 and diameter 4 and packing chromatic number 13

Following these developments, Balogh, Kostochka, and Liu [10] made a significant break-
through, utilizing a probabilistic approach.

Theorem 5.21. For any fixed integer k ≥ 12, almost every cubic graph G with an order of n
and a girth of at least 2k + 2 has a packing chromatic number greater than k.

The proof of Theorem 5.21 is intricate and relies on the application of the configuration
model technique. However, it does not offer a specific construction for a group of subcubic
graphs that exhibit an unlimited packing chromatic number. Independently, such a group of
graphs was introduced by Brešar and Ferme [13].

Considering Theorem 5.21 as a starting point, Brešar and Ferme raised the question of
whether the packing chromatic number remains bounded within the class of subcubic planar
graphs [13]. This inquiry has yet to receive a definitive resolution, even when further constrained
to subcubic outerplanar graphs. In the forthcoming theorem, we state various results concerning
the packing chromatic number of subcubic outerplanar graphs, which is collected from the work
of Gastineau, Holub, and Togni. It is worth noting that when a 2-connected outerplanar graph
G is presented in a plane drawing, there exists a cycle C encompassing all the vertices of G,
with non-crossing chords of C that partition the interior of C into faces. Among these faces,
some are categorized as internal, implying that they are bounded by more than two chords of
C. Importantly, several of these results offer a positive response to Brešar and Ferme’s problem
within specific subclasses.

Theorem 5.22 ([39]). 1. If G is a 2-connected subcubic outerplanar graph with no internal
face, then χρ(G) ≤ 15.

2. If G is a 2-connected subcubic outerplanar graph with r internal faces, then χρ(G) ≤
17 · 63r−2.

3. If G is a connected subcubic outerplanar graph with r (non-external) faces, then χρ(G) ≤
9 · 6r−2.
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5.4 A Comprehensive Survey of S-Packing Coloring of subcubic graphs

4. If G is a 2-connected subcubic outerplanar graph with exactly one internal face, then
χρ(G) ≤ 51.

5. If G is a connected subcubic outerplanar graph with no internal face such that the block
graph of G is a path, then χρ(G) ≤ 305.

6. There exists an infinite family of 2-connected subcubic outerplanar graphs without internal
faces and with a packing chromatic number of 5.

In the particular case of bipartite, 2-connected, subcubic outerplanar graphs, the work of
Brešar, Gastineau, and Togni [15] established the following:

Theorem 5.23. Let G be a 2-connected, bipartite, subcubic outerplanar graph, it holds that
χρ(G) ≤ 7. It is worth noting that this bound is sharp.

5.4 A Comprehensive Survey of S-Packing Coloring of subcubic
graphs

The study of S-packing colorings of graphs is a well developed area in graph theory, and so
covering all the achieved results in this survey is a little bit hard. In this section, we present a
historical overview of some of the previous work done in this field.
In the following subsection, we delve into a pivotal conjecture proposed by Brešar et al. and
outline the various approaches that have been explored in attempts to address and resolve
this conjecture. This conjecture captures a primary focus of our research and investigations in
Chapter 6.

5.4.1 Brešar et al. conjecture on the packing coloring of subdivision of sub-
cubic graphs

The question of whether the subdivision of any subcubic graph is packing 5-colorable was
originally posed by Gastineau and Togni [40]. Subsequently, Brešar, Klavžar, Rall, and Wash
[18] transformed this inquiry into a conjecture:

Conjecture 5. For any subcubic graph G, χρ(S(G)) ≤ 5.

Given that χρ(S(G)) = 3 for any connected bipartite graph G with at least 3 vertices, and
knowing that every subcubic graph can be considered a subgraph of a cubic graph, our focus
narrows to cubic non-bipartite graphs. Moreover, the fact that χρ(S(K4)) = 5 directs our
attention primarily to 3-chromatic cubic graphs.

However, as χρ(S(Kn,n,n)) approaches infinity as n tends to infinity (as demonstrated in
[18], Proposition 2.2), it becomes evident that Conjecture 5 cannot universally apply to all
3-chromatic graphs.

The most notable contribution to the understanding of Conjecture 5 comes from the work
of Balogh, Kostochka, and Liu.
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5. Survey on S-packing coloring

Theorem 5.24 (Theorem 4.15, [11]). For any connected subcubic graph G, the graph S(G)
admits a packing 8-coloring in which the color 8 is used at most once.

Moreover, Gastineau and Togni delved into the study of S-packing colorings of graph sub-
divisions [40]. Their subsequent observation establishes a direct relationship between S-packing
colorings for a given graph G and those for its corresponding subdivision graph S(G). This
connection, as we will see further, offers a strategy for investigating Conjecture 5.

Their observation is shown in the following proposition:

Proposition 5.11 ( Proposition 7.20, [40]). Let S = (s1, . . . , sk). If a graph G is S-packing
colorable, then its subdivision graph S(G) is (1, 2s1 + 1, . . . , 2sk + 1)-packing colorable.

By this observation, if one can prove that a subcubic graph G is (1, 1, 2, 2)- packing colorable,
then the graph G satisfies the conjecture.
Brooks’ theorem guarantees that every subcubic graph, with the exception of K4, can be colored
as a (1, 1, 1)-packing. Gastineau and Togni, building upon this result, derived the subsequent
corollary from Proposition 5.11 by providing a specific (1, 3, 3, 3)-packing coloring for S(K4).

This corollary is stated as follows:

Corollary 5.1 (Corollary 7.21, [40]). For any subcubic graph G, the corresponding subdivision
graph S(G) admits a (1, 3, 3, 3)-packing coloring.

Goddard and Xu [43] established the NP-hardness of determining whether a graph G can
be colored with a (1, 1, a3)-packing coloring for all values of a3. However, when it comes to
subcubic graphs, the following result holds:

Theorem 5.25 (Theorem 7.26, [40]). Every subcubic graph admits a (1, 1, 2, 2, 2)-packing col-
oring.

Furthermore, the subsequent proposition elucidates that, due to the presence of the Petersen
graph, the bound established in Theorem 5.25 is, in some sense, the best attainable:

Proposition 5.12 (Proposition 7.27, [40]). For cases where a3 ≥ 2, the Petersen graph can not
be colored with a (1, 1, a3, a4)-packing coloring.

The subsequent lemma played a valuable role in illustrating that various classes of cubic
graphs can be assigned (1, 1, 2, 2)-packing colorings. The concept of the 2nd power of a graph G
refers to the square of G.

Lemma 5.7 (Lemma 7.28, [18]). A graph G can be colored with a (1, 1, 2, 2)-packing coloring if
and only if there exists a partition {V1, V2, V3} of V (G) such that V2 and V3 form independent
sets in G, and the vertices in V1 induce a bipartite graph when considering the square of G.

A graph G having 2n vertices is called a generalized prism of a cycle if it is constructed by
adding a perfect matching M to the disjoint union of two cycles C and C ′, each of order n, in
such a way that every edge in M joins one vertex from C to one vertex from C ′.

Brešar, Klavžar, Rall, and Wash [18] provided the subsequent characterization of the Petersen
graph, which is linked to Proposition 5.12:
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5.4.1 Brešar et al. conjecture on the packing coloring of subdivision of subcubic graphs

Theorem 5.26 (Theorem 7.29, [18]). If G is a generalized prism of a cycle, then G can be
colored with a (1, 1, 2, 2)-packing coloring if and only if G is not the Petersen graph.

For clarity, we mention the following definition: A graph G is said to be d-irregular if it does
not contain adjacent vertices, both having degree d.
In [40], Gastineau and Togni identified a rare example of a cubic graph that does not admit a
(1, 1, 3, 3, 3)-packing coloring. However, on a more encouraging note, the subsequent theorem
has been proven:

Theorem 5.27 (Theorem 7.30, [40]). Any 3-irregular subcubic graph admits a (1, 1, 2)-packing
coloring.

They posed a problem: Is every 3-irregular subcubic graph is (1, 1, 3)-packing colorable?
Yang and Wu [71] recently proved that it is true. In the subsequent subsection, we state various
applications of S-packing coloring to offer valuable insights into Conjecture 5. The following
proposition establishes a direct link between the conjecture and (1, 1, 2, 2)-packing colorings.

Proposition 5.13 (Proposition 7.31, [18]). If G admits a (1, 1, 2, 2)-packing coloring, then
χρ(S(G)) ≤ 5.

The combination of Theorem 5.26 and Proposition 5.13 implies that Conjecture 5 holds true
for all generalized prisms of cycles, except for the Petersen graph. A packing 5-coloring of the
subdivision of the Petersen graph was detailed in [18]. As a result, we deduce the subsequent
corollary.

Corollary 5.2 (Corollary 7.32, [18]). If G is a generalized prism of a cycle, then χρ(S(G)) ≤ 5.

The subsequent theorem extends the scope of Theorem 5.26.

Theorem 5.28 (Theorem 7.33, [18]). Consider a connected, cubic graph G of order 2n equipped
with a 2-factor F and a perfect matching M . If F has a cycle C of length n where none of the
edges in M connect both vertices in C, and if F contains at most one 5-cycle, then G admits a
(1, 1, 2, 2)-packing coloring.

In addition, the following result further gives more support for the validity of Conjecture 5.
Here, P (n, k) denotes a generalized Petersen graph.

Corollary 5.3 (Corollary 7.34, [18]). For positive integers n and k such that k < n/2, and
provided that n is not a multiple of 5, P (n, k) admits a (1, 1, 2, 2)-packing coloring, thus ensuring
χρ(S(P (n, k))) ≤ 5.

While intuition might lead one to assume that any optimal packing coloring of S(G) as-
signs color 1 to all the newly introduced vertices in the subdivision, the subsequent proposition
contradicts this notion.

Proposition 5.14 (Proposition 7.35, [18]). In the case that G is not (1, 1, 2, 2)-packing colorable,
and χρ(S(G)) ≤ 5, then within any packing 5-coloring of S(G), at least one of the vertices in
S(G) − V (G) will be assigned a color greater than 1.
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5. Survey on S-packing coloring

A more refined upper bound than the one provided in Theorem 4.15 is attainable when
dealing with subcubic graphs that are 2-degenerate.

Theorem 5.29 (Theorem 7.36, [11]). If G is a subcubic graph in which each subgraph contains
a vertex with a degree of at most 2, then G can be colored with a (1, 1, 2, 2, 3, 3)-packing coloring.
As a consequence, χρ(S(G)) is bounded above by 7.

Liu, Rolek, and Yu [55] investigated Conjecture 5 in the context of subcubic graphs charac-
terized by a bounded maximum average degree, denoted as mad(G), defined as follows:

mad(G) = max
H subgraph of G

2|E(H)|
|V (H)| .

Their findings can be summarized as follows:

Theorem 5.30 (Theorem 7.37, [55]). If G is a subcubic graph with mad(G) < 30
11 , then G can

be colored with a (1, 1, 2, 2)-packing coloring, implying that χρ(S(G)) ≤ 5.

For planar graphs with a girth of at least g, it has been established that the maximum
average degree is bounded by 2g

g−2 , as detailed in [12, Observation 1]. This leads to the following
immediate conclusion:

Corollary 5.4 (Corollary 7.38, [55]). If G is a subcubic planar graph with a girth of at least 8,
then G can be colored with a (1, 1, 2, 2)-packing coloring, resulting in χρ(S(G)) ≤ 5.

5.4.2 S-packing coloring with 1 appearing once in S

Let S = (1, a2, . . . , ak), where a2 ≥ 2. If G is a graph that can be colored with an S-packing
coloring c, and there exists a vertex v ∈ V (G) with c(v) = 1, then it follows that deg(v) ≤ k− 1
since no two neighbors of v can be assigned the same color according to c. Consequently, this
implies that no cubic graph can possess a (1, 2, 2)-packing coloring.

However, it is worth noting that there exist subcubic graphs that can be (1, 2, 2)-packing
colored (for instance, any path), and Gastineau [38] demonstrated that determining whether a
subcubic bipartite graph can be (1, 2, 2)-packing colored is NP-complete.

By permitting a partition of V (G) into an independent set and incorporating at least six
2-packings, we arrive at the following conclusion:

Theorem 5.31 (Theorem 7.22, [40]). Every subcubic graph can be colored with a (1, 2, 2, 2, 2, 2, 2)-
packing coloring.

The result is sharp, as the Petersen graph, a cubic graph, cannot be colored with a (1, 2, 2, 2, 2, 2)-
packing coloring.

Computational evidence leans towards the possibility that the Petersen graph might be the
only subcubic exception, as indicated in ( Table 1, [40]). Moreover, in the same paper, Gastineau
and Togni posed an open question which we consider in Chapter 6:
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1

2a 2b 2c

1 2b 2a 2c 2d 2e

2e 2d 1 1

Figure 5.3: A cubic bipartite graph of order 14 that is not (1, 2, 2, 2, 2, 3)-packing coloring

Is any subcubic graph (1, 2, 2, 2, 2, 2)-packing colorable?

However, the following proposition shows the sensitivity of Theorem 5.31 :

Proposition 5.15 (Proposition 7.23, [40]). There exist bipartite cubic graphs that do not admit
a (1, 2, 2, 2, 2, 3)-packing coloring.(see Figure 5.3)

The following theorem shows that by adding specific restrictions on the adjacencies of a
subcubic graph, we can strengthen the conclusions drawn from Theorem 5.31 and Proposition
5.15.

Theorem 5.32 ([40]). Let G be a 3-irregular subcubic graph, then G admits a (1, 2, 2, 2)-packing
coloring.

The cycle of order 5 serves as a demonstration, highlighting the necessity of three 2-packings,
as mentioned in Theorem 5.32. In this specific sense, the conclusion stands as the most suitable
option for 3-irregular subcubic graphs. On the other hand, it is important to mention that there
exist 3-irregular subcubic graphs that admit (1, 2, 2, 2)-packing coloring c, with the condition
that |c−1(4)| = 1. In such cases, the initial coloring c can be adjusted to give a (1, 2, 2, 3)-
packing coloring, as exemplified in [40]. It is clear, by definition, that any bipartite graph G can
be colored using a (1, 1)-packing coloring. Proposition 7.20 establishes that as a consequence,
the graph S(G) can be colored with a (1, 3, 3)-packing coloring. Consequently, S(G) also admits
both a (1, 2, 3)-packing coloring and a (1, 2, 2)-packing coloring. Surprisingly, Gastineau and
Togni demonstrated that if a graph possesses a minimum degree of at least 3, all of the following
are equivalent.

Proposition 5.16 (Proposition 7.25, [40]). If G is a graph with δ(G) ≥ 3, then the following
statements are equivalent :

• S(G) is (1, 2, 2)-packing colorable.

• S(G) is (1, 2, 3)-packing colorable.
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• S(G) is (1, 3, 3)-packing colorable.

• G is bipartite.

Brešar, Gastineau, and Togni [15] contributed additional insights into S-packing colorings,
particularly focusing on outerplanar graphs:

Theorem 5.33 (Theorem 7.39, [15]). Consider the sequence S = (1, 3, . . . , 3), where 3 appears
exactly k times, and assume that k ≥ 3. If G is a bipartite outerplanar graph satisfying ∆(G) ≤
k, then G can be colored with an S-packing coloring.

Brešar et al. presented an example demonstrating that when S = (1, 3, . . . , 3, 4) with 3
occurring ∆(G) − 1 times, there exists a bipartite outerplanar graph that does not admit an
S-packing coloring. However, when dealing with subcubic outerplanar graphs free of triangles,
they established the following result:

Theorem 5.34 (Theorem 7.40, [15]). If G is a subcubic, triangle-free, outerplanar graph, then
G admits a (1, 2, 2, 2)-packing coloring.

It is noteworthy that Theorem 5.34 is accompanied by two illustrative examples, highlighting
that the theorem represents an optimal result for subcubic outerplanar graphs. The first example
refers to a subcubic outerplanar graph containing triangles, which cannot be colored with a
(1, 2, 2, 2)-packing coloring. The second example involves a subcubic, triangle-free, outerplanar
graph that has no (1, 2, 2, 3)-packing coloring.

Kostochka and Liu [54] proved that every 2-connected subcubic outerplanar graph is (1, 1, 2)-
packing colorable and every subcubic outerplanar graph is (1, 1, 2, 4)-packing colorable. Further-
more, they posed the following problem:
Is any subcubic 2-connected outerplane graph (1, 2, 2, 2)-colorable?
Recently, Yang and Wu [71] answered this problem in affirmative.

Furthermore, Gastineau and Togni [41] investigated the concept of edge-packing S-coloring
in cubic graphs G, which aligns with S-packing colorings of the line graph L(G) derived from
G. Their notable findings encompass several cases, including:

• Every line graph of a cubic graph with a 2-factor can be colored with a (1, 1, 1, 3, 3)-
packing coloring, as well as a (1, 1, 1, 4, 4, 4, 4, 4)-packing coloring, in accordance with [41],
Theorems 3.3 and 3.7.

• They also referenced a result, attributed to Payan and to Fouquet and Vanherpe, asserting
that the line graph of a cubic graph is amenable to a (1, 1, 1, 2)-packing coloring, detailed
in [41], Theorem 3.1.
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6

S-packing coloring of cubic Halin graphs

“A story has no beginning or end: arbitrarily one
chooses that moment of experience from which

to look back or from which to look ahead.”
− Graham Greene −

O n our way for proving Conjecture 5 for a subclass of subcubic graphs which are Halin,
and depending on the observation of Gastineau and Togni, it would have been sufficient
to prove that such graphs are (1, 1, 2, 2)-packing colorable, but we proved a stronger

result [66] which is that cubic Halin graphs are (1, 1, 2, 3)-packing colorable.
Concerning the (1, 2, 2, . . . )-packing coloring of cubic Halin graphs, we proved [66] that cu-
bic Halin graphs are (1, 2, 2, 2, 2, 2)-packing colorable, and this answers the question posed by
Gastineau and Togni [40] for these class of graphs.

Before delving into the proofs, we will provide a brief reminder of the definition of Halin graphs.
A Halin graph is a planar graph, constructed by connecting the leaves of a tree into a cycle such
that the tree is of order at least four, in which the degree of each vertex is either one which is
called a leaf, or of degree at least 3. For a Halin graph G, we write G = T ∪ C where T is its
characteristic tree and C its adjoint cycle

6.1 (1, 1, 2, 3)-packing coloring of cubic Halin graphs.

Theorem 6.35. Every cubic Halin graph is (1, 1, 2, 3)-packing colorable.

Proof. Let G = T ∪ C be a cubic Halin graph. The set of colors that we are going to use is
{1, 1′, 2, 3}.
First, we color T by the coloring ϕT in which we use the colors {1, 1′}, this is possible since T is
a tree, hence 2-colorable. Going back to the graph G, by adding the edges of the cycle, conflicts
may appear on the vertices of V (C) such that two consecutive vertices on C may be receiving a
same color. So we are going to recolor the vertices of the cycle by benefiting from the remaining
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6.1 (1, 1, 2, 3)-packing coloring of cubic Halin graphs.

colors.
Let n = |V (C)| and C = a1a2 . . . an arranged in an increasing order according to a clockwise
direction.
We have two main cases to study:
Case 1: There exist two consecutive vertices ai0 and ai0+1 on C such that ϕT (ai0) = 1′ and
ϕT (ai0+1) = 1.
Let u and v be two vertices on the cycle C, we define dC(u, v), the distance between u and
v given by the cycle, as min{l(C[u,v]), l(C[v,u])}. As a first step, we are going to recolor V (C)
by a (1, 1, 2, 3)-packing coloring ϕC such that this coloring considers dC(u, v) (we mean by this
that when giving two vertices same color i, we must make sure that the distance dC between
these two vertices is at least i+ 1). Then we will deal with the conflicts that appear due to the
distance given by G since we possibly have dC(u, v) > dG(u, v) for some u, v ∈ C.
• If n ≡ 0 mod 4 then we color V (C) by repeating the sequence i2i3 where i ∈ {1, 1′} depending
on ϕT .
• If n ≡ 1 mod 4, then we color V (C) starting from ai0+1 and repeating the sequence i2i3 where
i ∈ {1, 1′} depending on ϕT , this is possible since ϕT (ai0) = 1′.
• If n ≡ 2 mod 4, then we color V (C[ai0+1,ai0−2]) starting from ai0+1 and repeating the sequence
i2i3 where i ∈ {1, 1′} depending on ϕT . If ϕT (ai0−1) = 1 then we are done, otherwise we give
ai0−1 the color 2.
• If n ≡ 3 mod 4, then we color V (C) starting from ai0+1 and repeating the sequence i2i3 where
i ∈ {1, 1′} depending on ϕT , this is possible since ϕT (ai0) = 1′.
Now we are going to deal with the conflicts that appear due to the distance given by G. We
have two types of conflicts:

Conflict of type 1: There exists x ∈ T\C and {ai, aj} ⊂ C such that {xai, xaj} ⊂ E(G),

Figure 6.1: Conflict of type 1.

and both ai and aj recieve the color 2 or 3 by the coloring ϕC as illustrated in Fig.6.1.
We have d(x) = 3, so we may suppose, without loss of generality, that the third neighbor of x is
in the region C1 = C[ai,aj ] ∪ xai ∪ xaj . Since G is connected and planar, then the characteristic
tree T of G is contained in the region C1. Thus, aj and ai are consecutive on C, and this
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contradicts the fact that the coloring ϕC is a (1, 1, 2, 3)-packing coloring of V (C).

Conflict of type 2: There exist {x, y} ⊂ T\C, {ai, aj} ⊂ C with j < i such that {xai, xy, yaj} ⊂

Figure 6.2: Conflict of type 2.

E(G), and both ai and aj receive the color 3 by the coloring ϕC , see Fig.6.2.
In what follows, we are going to deal with such type of conflict. Since the vertices of C are
colored by the packing coloring ϕC , and both ai and aj receive the color 3 according to ϕC , then
dC(aj , ai) ≥ 4. Thus clearly they are not consecutive on C and so the third neighbor of x and
that of y must exist in the two different regions of C which are C1 = C[aj ,ai] ∪ xai ∪ xy ∪ yaj

and C2 = C[ai,aj ] ∪xai ∪xy ∪ yaj since otherwise the characteristic tree will be contained in one
of the two regions and ai and aj will be consecutive which is a contradiction. We may suppose,
without loss of generality, that the third neighbor of x, say x′, is in the region C1.
Now we assign to x the color 2, and then we recolor ai by the color α ∈ {1, 1′}, chosen such that
α ̸= ϕC(ai+1).
If α = ϕC(ai−1) then we switch the colors 1 and 1′ of the vertices in the region C1 except the
vertex y. This switch of the colors is possible since x is now colored 2.
We have x′ /∈ C, since otherwise C[aj ,ai] = ajx

′ai and so dC(ai, aj) = 2, a contradiction with the
packing coloring ϕC . Note that if x′ has a neighbor on C then this neighbor must be either aj+1
or ai−1, since otherwise we get a contradiction with the fact that G is planar and connected.
Now we are going to deal with conflicts appearing due to giving x the color 2.

(i) A conflict may appear if x′ is adjacent to aj+1 and ϕC(aj+1) = 2. According to sequences of
colors that we followed, the color 3 is followed by the color 2 only in the case when n ≡ 2 mod 4
in which the pattern of colors is (i2i3)∗21′ where this notation (i2i3)∗ denotes the repetition of
the sequence i2i3. So C[aj ,ai] is colored as follows : 321′(i2i3)∗i2iα.
Now we assign to the vertex aj+1 the color ϕT (aj+1), assign to the vertex aj+2 the color 2,
switch the colors 2 and 3 in C[aj+3,ai−1].
Thus C[aj ,ai] will have the following pattern: 3ϕT (aj+1)2(i3i2)∗i3iα.
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6.1 (1, 1, 2, 3)-packing coloring of cubic Halin graphs.

(ii) A conflict may appear if ϕC(ai+1) = 2. As before, we notice that this pattern, which
is color 3 followed by color 2, only appears in the case when n ≡ 2 mod 4. Then C[ai,aj ] is
colored as follows : α21′(i2i3)∗. So we assign to ai+1 the color 3.
Note that the conflicts (i) and (ii) do not occurr at the same time, because this pattern exists
once in the coloring of V (C). So the coloring of ai+1 in (ii) does not make conflict with the
switch of the colors 2 and 3 mentioned in (i).

(iii) A conflict may appear if ai−1 receives the color 2. This is not possible since according
to the sequence of colors used to color V (C), the color 2 is not followed by 3 in any of the cases.
After dealing with the conflict of type 2, by giving x the color 2, we want to make sure that if
there exists two or more vertices in T\C having the same situation as x and so receiving the
color 2, then they do not make a conflict with each other.
Let S = {xi, i ∈ I} be the set of vertices in T\C receiving color 2 by treating conflicts of type
2. For every xi ∈ S, set {ai1 , ai2} ⊂ C with i1 < i2, and yi ∈ T\C to be the vertices such that
xi and yi are adjacent in which one of them is adjacent to ai1 and the other is adjacent to ai2

where {ai1 , ai2} receive the color 3. Also for every xi, let Ci
1 and Ci

2 be the two regions of the
cycle defined as C1 and C2 are defined previously. Let xi and xj be two vertices in S, the new
color assigned to these vertices is the color 2.
Note that:

N(xi) ⊆ Ci
1 andN(xj) ⊆ Cj

1 (*)

(since as we mentioned before, the vertices in S, that are assigned the new color 2, are chosen
according to this location of their neighbors).
In what follows, we are going to study three cases.
Subcase 1: [ai1 , ai2 ] ∩ [aj1 , aj2 ] = ∅. By using (*), we get that neither xiyj nor xjyi belongs to
E(G). So dG(xi, xj) ≥ 3 and there exists no conflict.
Subcase 2: ai1 = aj2 . By using (*), we conclude that C = C[aj1 ,ai2 ] ∪ ai2aj1 , and so ai2 and
aj1 are consecutive on C and both receiving a color 3 according to the coloring ϕC , which is a
contradiction.
Subcase 3: [aj1 , aj2 ] ⊂ [ai1 , ai2 ]. Conflict may appear only if xi and yj are adjacent, but if
such an edge exists then we get that ai1 and aj1 are consecutive on C, a contradiction with the
coloring ϕC .
Case 2: All the vertices of C receive the same color according to ϕT .
We may suppose, without loss of generality, that all the vertices of C receive the color 1.
First note that if n ≡ 0 mod 4, then χp(C) = 3 and so we can color C by the colors {1, 2, 3} by
repeating the sequence 1213.
In what follows, we suppose that n mod 4 ∈ {1, 2, 3}.
Our aim is to choose a vertex from T\C to give it the color 2, and give its neighbor on C the
color 1′, and then deal with the problem similarly to the first case.
Since all the vertices of C receive the same color according to ϕT , then there exists no path P

of odd length joining two vertices ai and aj on C such that P ∩ C = {ai, aj}.
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Now we suppose that there exists a vertex w ∈ T\C such that w has exactly one neighbor on
C.

Figure 6.3: w has one neighbor on C and paths with odd length are not allowed.

Assign to w the color 2 and give its neighbor on C, say ak, the color 1′.
If n ≡ 1 mod 4, then we color V (C\{ak}) starting from ak+1 by repeating the sequence 1213.
Vertex w has no neighbors on C other than ak, so let w1 and w2 be the neighbors of w in T\C.
A conflict may appear if wi for some i ∈ {1, 2} is adjacent to a vertex u on C receiving the color
2, but wi has no neighbors on C since otherwise akwwiu is an odd length path, see Fig.6.3.
If n = 2 mod (4). Color V (C\{ak}) starting from ak+1 by repeating the sequence 1213. This
coloring assigns to ak−1 the color 1, so it has no conflict with w. Also as the previous case the
neighbors of w make no conflicts.
If n = 3 mod(4), then color V (C\{ak, ak−1, ak−2}) starting from ak+1 by repeating the sequence
1213, and assign to ak−1 the color 1 and to ak−2 the color 2.

Now assume there exists no vertex in T\C which has exactly one neighbor on C. So all the
vertices in T\C that are adjacent to C, have two neighbors on C. It is clear that any vertex on
C is adjacent to one vertex in T\C, therefore we get that n is even and we are in the case n = 2
mod (4). Let w ∈ T\C, and let ai and aj be the neighbors of w on C with i < j. Since G is
planar and connected, we conclude that ai and aj are consecutive. We assign to w the color 2
and to aj the color 1′ and color V (C\{aj}) starting from aj+1 till reaching ai by repeating the
sequence 1213.
This completes the proof. ■

6.1.1 Sharpness of the proved result

First, it is worthy to note that without the condition that the graph is cubic, it is easy to
find examples proving that a Halin graph is not (1, 1, 2, 3)-packing colorable in general.
Moreover, the result of Theorem 6.35 is sharp in the sense that there exists a cubic Halin graph
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that is not (1, 1, 3, 3)-packing colorable.
We claim that the graph G1 shown in Fig.6.4, which is clearly cubic Halin, is not (1, 1, 3, 3)-
packing colorable.

Proof. Suppose that G1 is (1, 1, 3, 3)-packing colorable and let {1a, 1b, 3a, 3b} be the set of colors
that we will use. For every subgraph Ti of G, with i ∈ {1, 2, 3}, there exists a vertex vi ∈ Ti

such that the coloring of vi must be chosen from the set {3a, 3b}. So we get that two vertices
from {v1, v2, v3} must receive the same color, without loss of generality, say 3a. But the distance
between any two of them is at most 3, which is a contradiction. ■

So this graph can not be colored with such a packing coloring. And consequently, it is not
colored by (1, 2, 3, 4). Therefore, cubic Halin graphs are neither (1, 1, 3, 3)-packing colorable nor
4-packing colorable in general.

Figure 6.4: A non (1,1,3,3)-packing colorable cubic Halin graph G1

6.2 (1, 2, 2, 2, 2, 2)-packing coloring of cubic Halin graphs

Remark first that any tree T of order at least 4 such that all its leaves are either of degree 1
or 3, contains a vertex that is adjacent to two leaves. This is easy to be proved, so we will omit
its proof.

Moreover, as a conclusion of the previous remark and by using the induction, we get that
such type of tree has even number of vertices.

Lemma 6.8. Let T be a tree of order at least 4, such that all its vertices are either of degree 1
or 3. Then T admits a (1, 2, 2, 2)-packing coloring in which all the leaves are given the color 1.

Proof. We will proceed the proof by induction on v(T ) = |V (T )|.
For v(T ) = 4, it is clearly true. Let us prove it for v(T ) = m, knowing that it is true up to m−2.
Let T be a tree of order m satisfying the above conditions. Let x and y be two leaves which
are adjacent to the same vertex z. Let T ′ = T\{x, y}. By applying the induction hypothesis
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on T ′, we get that T ′ admits a (1, 2, 2, 2)-packing coloring such that all its leaves are colored
by 1. Going back to T , by adding the vertices x and y, we have all the leaves of T are colored
by 1 except x and y. The color assigned to z is 1 because it is a leaf in T ′. Now we are going
to give both vertices x and y the color 1, and then recolor z. Note that the set of colors that
we are using is {1, 2a, 2b, 2c}. Let z′ be the third neighbor of z and N2 be the set of neighbors
of z′ other than z. If there exists a color i ∈ {2a, 2b, 2c} such that i is not given to any of the
vertices of N2 ∪ {z′}, then we assign to z the color i. Otherwise, we give z′ the color 1 and
assign to z the color that was previously given to z′ from the set {2a, 2b, 2c}. Now T admits a
(1, 2, 2, 2)-packing coloring in which all its leaves are given the color 1, and this completes the
proof. ■

Theorem 6.36. If G is a cubic Halin graph, then G is (1, 2, 2, 2, 2, 2)-packing colorable.

Proof. Let {1, 2a, 2b, 2c, 2d, 2e} be the set of colors that we are going to color G with. First, by
using Lemma 6.8, we use the set of colors {1, 2a, 2b, 2c} to color the vertices by a (1, 2, 2, 2)-
packing coloring such that all the vertices of the cycle, which are the leaves of the tree, are
colored by 1. Then, we are going to recolor the vertices of the cycle by combining the sequences
12d2e and 12d12e depending on the order of the cycle. This completes the proof. ■

Notice that the unique cubic Halin graph on 6 vertices is not (1, 2, 2, 2)-packing colorable,
however we are not able to find a cubic Halin graph that is not (1, 2, 2, 2, 2)-packing colorable,
hence the result of the previous theorem is maybe not sharp.
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Directions for further work

“I hope we’ll be able to solve these problems
before we leave.”

− Paul Erdös −

I n this thesis we showed several results concerning the existence of oriented paths with three
blocks in digraphs, and the S-packing coloring of subcubic graphs. Let us give some direc-
tions for further work.

Problems on Part I:
We begin with the main problem that we study in this part which is El Sahili’s conjecture:

Problem 1. Does every n-chromatic digraph contain any oriented path of order n?

Moreover, we consider Burr’s conjecture:

Problem 2. Does every (2n− 2)-chromatic digraph contain any oriented tree of order n?

Knowing that oriented paths are special type of oriented tree, we aim to address the
challenge posed by the intersection of these two conjectures. Our goal is to simplify the
problem, making it more amenable to resolution.

Problem 3. Does every (2n− 2)-chromatic digraph contain any oriented path of order n?

By adding some conditions on the class of a digraph, we have the following problem:

Problem 4. In the case of n-chromatic Hamiltonian digraphs, can we generalize the result
obtained on P (k, 1, l) into P (k, l, r)? into any oriented path with any number of blocks?

By ignoring the condition being on the chromatic number, and adding different condi-
tions, we have the following problem:

Problem 5. What about studying the existence of oriented paths in digraphs having conditions
on their diameter? on their girth?
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Problems on Part II:

Problem 6. Is it true that χρ(S(G)) ≤ 5 for every G subcubic graph?

Problem 7. Is every subcubic graph except the Petersen graph (1, 1, 2, 2)-packing colorable?

Problem 8. Is it true that every subcubic graph is (1, 2, 2, 2, 2, 2)-packing colorable ?

Problem 9. Is every cubic Halin graph (1, 1, 2, 4)-packing colorable? (1, 1, 2, 5)-packing col-
orable?

Problem 10. Is every cubic Halin graph (1, 2, 2, 2, 2)-packing colorable?

Problem 11. Can we have benefit from the procedure we followed to prove our result on Halin
graphs to prove it on generalized Halin graphs?

84



Bibliography

[1] L. Addario-Berry, F. Havet, C. L. Sales, B. A. Reed, and S. Thomassé, Oriented trees in
digraphs, Discrete Mathematics, 313 (8), pages 967-974, 2013.

[2] L. Addario-Berry, F. Havet, and S. Thomassé, Paths with two blocks in n-chromatic di-
graphs, Journal of Combinatorial Theory, Series B, 97 (4), pages 620-626, 2007.

[3] D. Al Mniny, About three blocks paths and their subdivisions, submitted.

[4] B. Alspach, M. Rosenfeld, Realization of certain generalized paths in tournaments, Discrete
Math., 34 (1981), 199–20.

[5] L. W. Beineke, Derived graphs and digraphs, Beitrage zur Graphentheorie, H. Sachs, H. J.
Voss, and H. Walter (Editors), Teubner, Leipzig, (1968), 17-23.

[6] A. Benhocine and A. P. Wojda, On the existence of a specified cycle in tournaments, J.
Graph Theory, 17, (1983), 469-474. 147 (1962), 758-789 (in Russian).

[7] J. A. Bondy, Disconnected orientations and a conjecture of Las Vergnas, J. Lond. Math.
Soc. (2), Vol. 14(1976), 277–282.

[8] J. A. Bondy, Disconnected orientations and a conjecture of Las Vergnas, Journal of the
London Mathematical Society, 14 (2), pages 277-282, 1976.

[9] C. Bou Hanna, Paths in tournaments, a simple proof of Rosenfeld’s Conjecture, Submitted,
hal-03029968.

[10] J. Balogh, A. Kostochka, and X. Liu, Packing chromatic number of cubic graphs, Discrete
Math. 341 (2018), 474–483. doi:10.1016/j.disc.2017.09.014

[11] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of subdivisions of cubic
graphs, Graphs Combin. 35 (2019) 513–537.
doi:10.1007/s00373-019-02016-3

[12] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum
average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999)
77–89.
doi:10.1016/S0012-365X(98)00393-8

85



BIBLIOGRAPHY

[13] B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing
chromatic number, Discrete Math. 341 (2018) 2337–2342.
doi:10.1016/j.disc.2018.05.004

[14] B. Brešar and J. Ferme, Graphs that are critical for the packing chromatic number, Discuss.
Math. Graph Theory.40 (2020).
doi:10.7151/dmgt.2298

[15] B. Brešar, N. Gastineau and O. Togni, Packing colorings of subcubic outerplanar graphs,
Aequationes Math..

[16] B. Brešar, S. Klažar and D.F. Rall, On the packing chromatic number of Cartesian products,
hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007) 2303–2311.
doi:10.1016/j.dam.2007.06.008

[17] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number under local
changes in a graph, Discrete Math. 340 (2017) 1110–1115.
doi:10.1016/j.disc.2016.09.030

[18] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number, (1, 1, 2, 2)-
colorings, and characterizing the Petersen graph, Aequationes Math. 91 (2017) 169–184.
doi:10.1007/s00010-016-0461-8

[19] R. L. Brooks, On colouring the nodes of a network, Mathematical Proceedings of the Cam-
bridge Philosophical Society, 37 (2), pages 194–197, 1941.

[20] S. A. Burr, Subtrees of directed graphs and hypergraphs, In Proceedings of the Eleventh
Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton,
Congr. Numer, 28, pages 227-239, 1980.

[21] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris,
249, (1959), 2151-2152.

[22] N. Cohen, F. Havet, W. Lochet, and N. Nisse, Subdivisions of oriented cycles in digraphs
with large chromatic number, Journal of Graph Theory, 89 (4), pages 439-456, 2018.

[23] A. El-Sahili, Trees in tournaments, J. Comb. Theory, B., 92 (2004) 183–187.

[24] A. El-Sahili and M. Kouider, About paths with two blocks, Journal of Graph Theory, 55
(3), pages 221–226, 2007.

[25] A. El-Sahili, Paths with two blocks in k-chromatic digraphs, Discrete Math., 287 (1-3),
pages 151-153, 2004.

[26] A. El Sahili, Seminars on graph theory, Lebanese University 2015.

86



BIBLIOGRAPHY

[27] A. El Sahili, M. Mourtada and S.Nasser, The existence of a Path with two blocks in digraphs,
submitted.

[28] A. El-Sahili, Functions and line digraphs, J. Graph Theory, 4 (2003), 296-303.

[29] M. El Joubbeh, On three blocks paths P (k, l, r), Discrete Applied Math., 2022.
https://doi.org/10.1016/j.dam.2022.08.021

[30] M. El Joubbeh and S. Ghazal, Existence of paths with t blocks in k(t)-chromatic digraph,
to appear in Discrete Applied Math.

[31] A. El Zein, Oriented Hamiltonian Cycles in Tournaments: a Proof of Rosenfeld’s Conjecture,
submitted, hal-03368362.

[32] P. Erdös, Graph Theory and probability, Canadian Journal of Mathematics, 11, pages
34-38, 1959.

[33] P. Erdös and A. Hajnal, On chromatic number of graphs and set-systems, Acta Mathematica
Hungarica, 17 (1-2), pages 61-99, 1966.

[34] P. Erdös and L. Lováz, Problems and results on 3-chromatic hypergraphs and some related
questions, Infinite and finite sets, Vol. II, pages 609-627, Colloquia Mathematica Societatis
Janos Bolyai, Vol. X, North-Holland, Amsterdam, 1975.

[35] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii academiae
scientiarum Petropolitanae, 8, pages 128–140, 1736.

[36] R. Forcade, Parity of Paths and Circuits in Tournaments, Discrete Math. 6 (1973), 115–118.

[37] T. Gallai, On directed paths and circuits, Theory of Graphs, 38, pages 115-118, Academic
Press, New York, 1968.

[38] N. Gastineau, Dichotomies properties on computational complexity of S-packing coloring
problems, Discrete Math. 338 (2015) 1029–1041.
doi:10.1016/j.disc.2015.01.028

[39] N. Gastineau, P. Holub and O. Togni, On the packing chromatic number of subcubic out-
erplanar graphs, Discrete Appl. Math. 255 (2019) 209–221.
doi:10.1016/j.dam.2018.07.034

[40] N. Gastineau and O. Togni, S-packing colorings of cubic graphs, Discrete Math. 339 (2016)
2461–2470.
doi:10.1016/j.disc.2016.04.017

[41] N. Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, Discrete Appl.
Math. 259 (2019) 63–75.
doi:10.1016/j.dam.2018.12.035

87



BIBLIOGRAPHY

[42] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast
chromatic numbers of graphs, Ars Combin. 86 (2008) 33–49.

[43] W. Goddard and H. Xu, The S-packing chromatic number of a graph, Discuss. Math. Graph
Theory 32 (2012) 795–806.
doi:10.7151/dmgt.1642

[44] B. Grünbaum. Antidirected Hamiltonian paths in tournaments, J. Combin. Theory Ser. B,
16, (1974), 234-242.

[45] A. Gyárfás, Graphs with k odd cycle lengths, Discrete Mathematics, 103 (1), pages 41-48,
1992.

[46] R. Häggkvist, A.G. Thomason, Trees in tournaments, Combinatorica, 11 (1991) 123–130.

[47] M. Hasse, Zur algeraischen Begündung der Graphentheorie. I, Math. Nachr., 28
(1964/1965), 275-290.

[48] F. Havet, S. Thomassé, Oriented hamiltonian paths in tournaments: a proof of Rosenfeld’s
conjecture, J. Combin. Theory Ser B, 78 (2000), 243-273.

[49] F. Havet, Trees in tournament, Discrete Math. 243 (1–3) (2002) 121–134.

[50] F. Havet, Oriented Hamiltonian cycles in tournaments, J. Combinatorial Theory Ser. B, 80
(2000), 1-31.

[51] F. Havet and S. Thomassé, Median Orders of Tournaments: A Tool for the Second Neighbor-
hood Problem and Sumner’s Conjecture, Journal of Graph Theory, 35 (4), pages 244-256,
2000.

[52] R. Kim, SJ. Kim, J. Ma, and B. Park, Cycles with two blocks in k-chromatic digraphs,
Journal of Graph Theory, 88 (4), pages 592–605, 2018.

[53] S. Klavžar and D.F. Rall, Packing chromatic vertex-critical graphs, Discrete Math. Theor.
Comput. Sci. 21(3) (2019) #8.
doi:10.23638/DMTCS-21-3-8

[54] A.Kostochka and X.Liu, Packing (1, 1, 2, 4)-coloring of subcubic outerplanar graphs,Discrete
Applied Math. Vol.302, 2021, pages 8-15.

[55] R. Liu, X. Liu, M. Rolek and G. Yu, Packing (1, 1, 2, 2)-coloring of some subcubic graphs,
Discrete Appl. Math. (2020).
doi:10.1016/j.dam.2020.03.015

[56] M. Mourtada, A. El Sahili and M. El Joubbeh, About paths with three blocks, Australas.
J. Comb. 80 (2021) 99–105.

88



BIBLIOGRAPHY

[57] M. Mortada, A. El Sahili, Z. Mohsen, Paths with three blocks in digraphs, submitted.

[58] V. Petrovié, Antidirected Hamiltonian circuits in tournaments, Journal of Graph Theory,
Novi Sad, 198, (1984), 259-269.

[59] K.B. Reid, N.C. Wormald, Embedding oriented n-trees in tournaments, Stud. Sci. Math.
Hungaria 18 (1983) 377–387.

[60] L. Rédei, Ein Kombinatorischer Satz, Acta Scientiarum Mathematicarum 7 (1934), 39–43.

[61] B. Roy, Nombre chromatique et plus longs chemins d’un graphe, Revenue française
d’informatique et de recherche opérationnelle, 1 (5), pages 129-132, 1967.

[62] M. Rosenfeld, Antidirected Hamiltonian Paths in Tournaments, J. Comb. Theory. B., 12
(1972), 249–257.

[63] H.J. Straight, The existence of certain type of semi-walks in tournaments, Proceedings of
the Southeastern Conference on Combinatorics, Graph Theory and Computing, Congress.
Numer. 29 (1980), 901–908.

[64] B. Tarhini, About the existence of paths with three blocks, submitted.

[65] B. Tarhini, M. Mourtada, On paths with three blocks P (k, 1, l), Australas. J. Comb. 83(2)
(2022) 304–311.

[66] B. Tarhini, O.Togni, S-packing coloring of cubic Halin graphs, submitted.
https://arxiv.org/abs/2209.09135.

[67] A. Thomason, Paths and cycles in tournaments, Trans. Amer. Math. Soc., 296 (1986),
167-180.

[68] C. Thomassen, Antidirected Hamiltonian cycles and paths in tournaments, Math. Ann.,
201, (1973), 231-238.

[69] L.M. Vitaver, Determination of minimal coloring of vertices of a graph by means of Boolean
powers of the incidence matrix, Dokl. Akad. Nauk SSSR,

[70] N.C. Wormald, Subtrees of large tournaments, Combinatorial Mathematics X, Lecture
Notes in Mathematics, Vol. 1036, Springer, Berlin, pages 417–419, 1983.

[71] W. Yang, B. Wu On packing S- coloring of subcubic graphs, Discrete Applied Mathematics,
2023, Vol. 334, pages 1-14

89



BIBLIOGRAPHY

90


	Abstract
	Résumé
	Graph theory basics
	Graphs
	Definitions and Fundamental Properties
	Vertex degree
	Subgraphs
	Types of graphs
	Petersen graph
	Graph generalization

	Digraphs
	Definitions and basic properties
	In-degree and out-degree of a vertex
	Types of digraphs

	Graph and digraph operations
	Unary operations
	Binary operations

	Connectivity
	Oriented and unoriented forests
	Forests and trees
	Oriented forests and trees

	Median order
	Coloring
	Graph coloring
	Digraph coloring

	S-Packing coloring

	I Oriented paths in digraphs 
	History and new approaches for paths with two blocks
	k-universal graphs
	About the existence of oriented cycles
	Oriented cycles in digraphs
	Oriented cycles in tournaments

	About the existence of oriented trees
	Oriented trees in tournaments
	Oriented trees in digraphs

	About the existence of oriented paths
	Oriented paths in tournaments
	Oriented paths in digraphs

	New approaches concerning paths with two blocks
	Bondy-El Sahili Theorem about path with two blocks
	Another proof of Bondy-El Sahili theorem
	The existence of the path P(k,l) in a particular class of digraphs


	 The existence of the path P (k,1,l)
	The existence of the path P(k,1,l) in Hamiltonian digraphs
	The existence of P(k,1,l) in digraphs containing a Hamiltonian directed path
	The existence of P(k,1,l) in a (2n+2)-chromatic digraph 

	The existence of paths with three blocks in digraphs
	An overview of the new technique
	The existence of the path P(k,1,l)
	The existence of the path P(k,l,r) in digraphs with chromatic number bounded from above


	II S-packing coloring of subcubic graphs
	Survey on S-packing coloring
	Recall of necessary definitions 
	i-packing
	Packing chromatic number 
	S-packing chromatic number

	The effect of some local operations on the packing chromatic number
	Vertex deletion
	Edge deletion
	Edge subdivision

	Packing chromatic number of specific classes
	Packing coloring of trees
	Packing coloring of subcubic graphs

	A Comprehensive Survey of S-Packing Coloring of subcubic graphs
	Brešar et al. conjecture on the packing coloring of subdivision of subcubic graphs 
	S-packing coloring with 1 appearing once in S


	S-packing coloring of cubic Halin graphs
	(1,1,2,3)-packing coloring of cubic Halin graphs.
	Sharpness of the proved result

	(1,2,2,2,2,2)-packing coloring of cubic Halin graphs

	Directions for further work


